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Abstract

We develop accurate approximations of the delay distribution of the MArP/G/1 queue that
capture the exact tail behavior and provide bounded relative errors. Motivated by statistical
analysis, we consider the service times as a mixture of a phase-type and a heavy-tailed distribu-
tion. With the aid of perturbation analysis, we derive corrected phase-type approximations as
a sum of the delay in an MArP/PH/1 queue and a heavy-tailed component depending on the
perturbation parameter. We exhibit their performance with numerical examples.

1. Introduction

The evaluation of performance measures in stochastic models is a key problem that has been widely
studied in the literature [1, 8, 19, 35]. In this paper, we focus on the evaluation of the delay distri-
bution of a single server queue where customers arrive according to a Markovian Arrival Process
(MArP) [9, 25] and their service times follow some general distribution. Under the presence of
heavy-tailed service times, such evaluations become more challenging and sometimes even prob-
lematic [4, 11]. In such cases, it is necessary to construct approximations. In this study, we propose
to modify existing approximations by adding a small refinement term, which can serve two pur-
poses. On the one hand, the refinement term helps in constructing approximations not only with a
small absolute error, but also with a small relative error. On the other hand, it gives information
on the accuracy of the approximation without the modification: the smaller the refinement term,
the better the pre-modified approximation.

An important generalization of the Poisson point process is the MArP. In a MArP, the arrivals
are not homogenous in time, but they are determined by a Markov process {Jt}t≥0 with a finite
state space. The class of MArPs is a very rich class of point processes, containing many well-known
arrival processes as special cases. A special case of a MArP is the Markov-modulated Poisson
process (MMPP), which is a popular model for bursty arrivals [17]. The class of MArPs contains
also the class of phase-type renewal processes, i.e. renewal processes with phase-type interarrivals
[26].

It has been shown that the Laplace transform of the delay of a MArP/G/1 queue has a matrix
expression analogous to the Pollazceck-Khinchine equation of an M/G/1 queue [27, 28]. However,
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these closed-form expressions are only practical in case of phase-type service times [6, 7], where the
delay distribution has a phase-type representation [29] in a form which is explicit up to the solution
of a matrix fixed point problem.

Since the class of phase-type distributions is dense in the class of all distributions on (0,∞) [6], a
common approach to approximate the delay is by approximating the service time distribution with a
phase-type one; see e.g. [15, 33]. We refer to these methods as phase-type approximations. There are
many algorithms for phase-type approximations, which provide highly accurate approximations for
the delay distribution when the service times are light-tailed. However, in many cases, a heavy-tailed
distribution is most appropriate to model the service times [14, 31]. In these cases, the exponential
decay of phase-type approximations gives a big relative error at the tail and the evaluation of the
delay becomes more complicated. Since heavy-tailed distributions have cumbersome expressions for
their Laplace transform, this prevents the usage of techniques that require transform expressions,
such as [18].

In this paper, we develop approximations of the delay distribution for heavy-tailed service times
that maintain the computational tractability of phase-type approximations, capture the correct
tail behavior and provide small absolute and relative errors. In order to achieve these desirable
characteristics, our key idea is to use a mixture model for the service times. The idea of our
approach stems from fitting procedures of the service time distribution to data. Heavy-tailed
statistical analysis suggests that only a small fraction of the upper-order statistics of a sample is
relevant for estimating tail probabilities [30]. The remaining data set may be used to fit the bulk of
the distribution, where, as we mentioned earlier, a natural choice is to fit a phase-type distribution
to the remaining data set [10]. As a result, a mixture model for the service times is a natural
assumption.

We now briefly explain how to derive our approximations when the service time distribution
is a mixture of a phase-type distribution and a heavy-tailed one. We show that if the service
time distribution is such a mixture, then the queueing delay can also be written as a mixture, in
the sense that it involves the queueing delay of a model with purely phase-type service times and
some additional terms related to the heavy-tailed distribution of our mixture model. Consequently,
we first need to compute the delay in a MArP/PH/1 queue and afterwards use this as a base to
calculate the rest of the terms involving the heavy-tailed distribution.

As a first step to derive our approximations, we write the service time distribution as pertur-
bation of the phase-type distribution by a function that contains the heavy-tailed component. By
ignoring the perturbation term and by taking the service time distribution equal to the phase-type
distribution, we find the delay of a resulting simpler MArP/PH/1 queue, which is a phase-type
approximation of the queueing delay. By applying perturbation analysis to all parameters that
depend on the service time distribution, we can write the queueing delay as a series expansion,
where the constant term is the delay of the MArP/PH/1 queue used as base and all other terms
contain the heavy-tailed component.

Large deviations theory suggests that a single catastrophic event, i.e. a stationary heavy-tailed
service time, is sufficient to give a non-zero tail probability for the queueing delay [14]. As we will
see in Section 3.3, the second term of the series expansion of the queueing delay can be expressed in
terms of such a catastrophic event. Thus, we define our approximations as the sum of the first two
terms of the series expansion of the queueing delay, and we show that the addition of the second
term leads to improved approximations when compared to their phase-type counterparts. In other
words, the second term makes the phase-type approximation more robust so that the relative error
at the tail does not explode. Therefore, we call this term correction term, and inspired by the
terminology corrected heavy traffic approximations [7] we refer to our approximations as corrected
phase-type approximations. In a previous study [34], we applied this approach to Poisson arrivals.
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The connection between the stationary delay distribution of a MArP/G/1 queue and ruin
probabilities for a risk process in a Markovian environment, where the claim sizes in the risk model
correspond to the service times and the arrival process of claims is the time-reversed MArP of the
queueing model, is well known [7, 8]. Thus, the corrected phase-type approximations can also be
used to estimate the ruin probabilities of the above mentioned risk model. Finally, our technique
can be applied to more general queueing models, i.e. queuing models with dependencies between
interarrival and service times [12, 32], and also to models that allow for customers to arrive in
batches (the arrival process is called then Batch Markovial Arrival Process) [22, 23, 24].

A closely related work is Adan and Kulkarni [3]. They consider a single server queue, where the
interarrival times and the service times depend on a common discrete Markov Chain. In addition,
they assume that a customer arrives in each phase transition, and they find a closed form expression
for the delay distribution under general service time distributions. However, when there exist also
phase transitions not related to arrivals of customers, their results remain valid for the evaluation
of the workload. This can be seen by using the standard technique of including dummy customers
in the model; namely customers with zero service times.

The rest of the paper is organized as follows. In Section 2, we introduce the model under con-
sideration without assuming any special form for the service time distribution, and in Section 2.1
we find the general expressions for the Laplace transforms of the queueing delay a customer ex-
periences upon arrival in each state. In Section 2.2, we consider service time distributions that
are a mixture of a phase-type distribution and a heavy-tailed one, and we explain the idea to
construct our approximations. Later in Section 3.1, we specialize the results of Section 2.1 for
phase-type service times. We use as base model the phase-type model of Section 3.1, and we apply
perturbation analysis to find in Section 3.2 the perturbed parameters and in Section 3.3 the desired
Laplace transforms of the delay in the mixture model. Using the latter results, we construct in
Section 3.4 the approximations and we discuss their properties. In Section 4, we discuss an alter-
native way to construct approximations for the queueing delay. Furthermore, in Section 5, we use
a specific mixture service time distribution for which the exact delay distribution can be calculated
and we exhibit the accuracy of our approximations through numerical experiments. Finally, in the
Appendix, we give the proofs of all theorems, the necessary theory on perturbation analysis, and
other related results. Due to the complexity of the formulas, we use a simple running example in
order to explain the idea behind the calculations.

2. Presentation of the model

We consider a single server queue with FIFO discipline, where customers arrive according to a
Markovian Arrival Process (MArP). The arrivals are regulated by a Markov process {Jt}t≥0 with a
finite state space N , say with N states. We assume that the service time distribution of a customer
is independent of the state of {Jt} upon his arrival. For this model, we are interested in finding
accurate approximations for the delay distribution.

The intensity matrix D governing {Jt} is denoted by the decomposition D = D(1) +D(2), where
the matrix D(1) is related to arrivals of dummy customers, while transitions in D(2) are related to
arrivals of real customers. Note that the diagonal elements of the matrix D(2) may not be identically

equal to zero. This means that if d
(2)
ii > 0, then a real customer arrives with rate d

(2)
ii and we have

a transition from state i to itself. However, phase transitions not associated with arrivals (dummy
customers) from any state to itself are not allowed. Since the matrix D is an intensity matrix, its
rows sum up to zero. Therefore, the diagonal elements of the matrix D(1) are negative and they

are defined as d
(1)
ii = −

∑
k 6=i d

(1)
ik −

∑N
k=1 d

(2)
ik .
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In this paper, we are interested in modeling heavy-tailed service times. As stated earlier,
motivated by statistical analysis, we assume that the service time distribution of a real customer
is a mixture of a phase-type distribution, Fp(t), and a heavy-tailed one, Fh(t). Namely, the service
time distribution of a real customer has the form

Gε(t) = (1− ε)Fp(t) + εFh(t), (1)

where ε is typically small.
Our goal is to find the delay distribution for this mixture model. Towards this direction, we

present in the next section existing results [3] for the evaluation of the delay distribution under the
assumption of generally distributed service times. Ultimately, we wish to specialize these results to
service times of the aforementioned form (1).

2.1 Preliminaries

Since the results of this section are valid for any service time distribution, we suppress the index
ε and we use the notation G(t) for the service time distribution of a real customer. We consider
now the embedded Markov chain {Zn}n≥0 on the arrival epochs of customers (real and dummy)
and we denote by P the transition probability matrix of the regulating Markov chain {Zn}, which
we assume to be irreducible. If λi is the exponential exit rate from state i, i.e.

λi =
∑
k 6=i

d
(1)
ik +

N∑
k=1

d
(2)
ik , (2)

the transition probabilities can be calculated by

pij =
d

(1)
ij (1− δij) + d

(2)
ij

λi
, (3)

where δij is the Kronecker delta (δij = 0 when i 6= j and δij = 1 when i = j). In addition, an
arriving customer at a transition from state i to state j is tagged i. If pij > 0, then we define the
probability

q
(1)
ij =

d
(1)
ij (1− δij)

d
(1)
ij (1− δij) + d

(2)
ij

, (4)

which is the probability of an arriving customer to be dummy conditioned on the event that there
is a phase transition from state i to j. Similarly, conditioned on the event that there is a phase
transition from i to j, the arriving customer is real with probability

q
(2)
ij =

d
(2)
ij

d
(1)
ij (1− δij) + d

(2)
ij

. (5)

If pij = 0, then we define q
(1)
ij = q

(2)
ij = 0. Consequently, the conditional service time distribution of

an arriving customer at a transition from i to j is Gij(t) = q
(1)
ij + q

(2)
ij G(t), and its Laplace-Stieltjes

transform (LST) is G̃ij(s) = q
(1)
ij + q

(2)
ij G̃(s), i, j = 1, . . . , N , where G̃(s) is the LST of the service

time distribution G(t) of a real customer. In matrix form, the above quantities can be written as

Λ = diag(λ1, . . . , λN ), (6)
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Q(1) = [q
(1)
ij ], (7)

Q(2) = [q
(2)
ij ], (8)

G̃(s) = Q(1) + G̃(s)Q(2). (9)

Let now ◦ denote the Hadamard product between two matrices of same dimensions; i.e. if B = (bij)
and C = (cij) are m × n matrices, then the (i, j) element of the m × n matrix B ◦C is equal to
bijcij . We also define the matrix

H(s) = G̃(s) ◦PΛ, (10)

which we will need later. Finally, let π = [π1, . . . , πN ] be the stationary distribution of {Zn}n≥0, and
µ be the mean of the service time distribution G(t). Then the system is stable if the mean service
time of a customer is less than the mean inter-arrival times between two consecutive customers in
steady state. Namely,

π
(
Λ−1 −M

)
e > 0, (11)

where M = µQ(2) ◦ P and e is the column vector with appropriate dimensions and all elements
equal to 1. Note that the (i, j) element of the matrix Q(2) ◦P is the unconditional probability that
a real customer arrives at a transition from i to j.

From this point on, we use a simple running example so that we display the involved param-
eters and the derived formulas. The running example evolves progressively, which means that its
parameters are introduced only once and the reader should consult a previous block of the example
to recall the notation.

Running example For our running example, we consider a MArP with Erlang-2 distributed
interarrival times, where the exponential phases have both rate λ (N = 2). Therefore, the matrices
D(1) and D(2) are given as follows:

D(1) =

(
−λ λ

0 −λ

)
and D(2) =

(
0 0
λ 0

)
.

In this case, we have that λ1 = λ2 = λ, pij = 1− δij , q(1)
12 = q

(2)
21 = 1, and all other elements of the

matrices Q(1) and Q(2) are equal to zero. Observe that we only have transitions from state 1 to
state 2 and from state 2 to state 1. Therefore, in state 1 we always have arrivals of dummy customers
while in state 2 we only have arrivals of real customers. Thus, only the diagonal elements of the
matrix G̃(s) are not equal to zero, so that G̃11(s) = 1 and G̃22(s) = G̃(s). Finally, the stability
condition takes its known form λµ/2 < 1. �

Let now V denote the steady-state workload of the system just prior to an arrival of a customer.
If the arriving customer is real, then the workload just prior to its arrival equals the delay or waiting
time of the customer in the queue, which we denote by W . In terms of Laplace transforms, the
steady-state workload of the system just prior to an arrival of a customer in state i is found as

φ̃i(s) = E(e−sV ;Z = i), <(s) ≥ 0, i = 1, . . . , N,

where Z is the steady-state limit of Zn. Gathering all the above Laplace transforms φ̃i(s), i =
1, . . . , N , we construct the transform vector

Φ̃(s) = [φ̃1(s), . . . , φ̃N (s)]. (12)

We first provide some general theorems for the transform vector Φ̃(s) and we give its connection
to the Laplace transform w̃(s) of the queueing delay of real customers. Later on we refine these
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results in order to provide more detailed information regarding the form of the elements φ̃i(s),
i = 1, . . . , N . In the following, I stands for the identity matrix, with appropriate dimensions.

Theorem 2.1. Provided that the stability condition (11) is satisfied, the transform vector Φ̃(s)
satisfies

Φ̃(s)
(
H(s) + sI −Λ

)
= su, (13)

Φ̃(0)e = 1, (14)

where u = [u1, . . . , uN ] is a vector with N unknown parameters that needs to be determined.

Note that the above theorem is similar to Theorem 3.1 in [3] and so does its proof. Therefore,
we omit here the proof and we refer the reader to Theorem 3.1 of [3] for more details.

A real customer arrives in state i with probability
∑N

j=1 pijq
(2)
ij =

∑N
j=1 d

(2)
ij /λi, and conse-

quently a real customer arrives in the system with probability
∑N

i=1 πi ·
∑N

j=1 d
(2)
ij /λi. Therefore,

the following relation holds

N∑
i=1

πi

∑N
j=1 d

(2)
ij

λi
· w̃(s) =

N∑
i=1

∑N
j=1 d

(2)
ij

λi
φ̃i(s).

Thus, if ω is a column vector of dimension N such that

ω =
Λ−1D(2)e

πΛ−1D(2)e
, (15)

the Laplace transform of the queuing delay is found as

w̃(s) = Φ̃(s)ω, <(s) ≥ 0. (16)

If det
(
H(s) + sI −Λ

)
denotes the determinant of the square matrix H(s) + sI −Λ, then for

the determination of the unknown vector u, we have the following theorem.

Theorem 2.2. The next two statements hold:

1. The equation det
(
H(s) + sI − Λ

)
= 0 has exactly N solutions s1, . . . , sN , with s1 = 0 and

<(si) > 0 for i = 2, . . . , N .

2. Suppose that the stability condition (11) is satisfied and that the above mentioned N − 1
solutions s2, . . . , sN are distinct. Let ai be a non-zero column vector satisfying(

H(si) + siI −Λ
)
ai = 0, i = 2, . . . , N.

Then u is given by the unique solution to the following N linear equations:

uΛ−1e = π
(
Λ−1 −M

)
e, (17)

uai = 0, i = 2, . . . , N. (18)

Again, Theorem 2.2 is similar to Theorems 3.2 & 3.3 in [3], and therefore, its proof is omitted.
Theorem 2.2 on one hand provides us with an algorithm to calculate the vector u and on the

other hand it guarantees that all elements of the transform vector Φ̃(s) are well-defined on the
positive half-plane. To understand the latter remark observe the following. For simplicity, we set

E(s) = H(s) + sI −Λ. (19)
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Let E(s) be the adjoint matrix of E(s), so E(s) · E(s) = det E(s)I. Post-multiplying Eq. (13) with
E(s), we have that Φ̃(s) det E(s) = suE(s), and consequently

Φ̃(s) =
1

det E(s)
suE(s). (20)

The first statement of Theorem 2.2 says that the determinant det E(s) has the factors s − si,
i = 1, . . . , N , in its expression. This means that the transform vector Φ̃(s) has N potential
singularities on the positive half plane, as the determinant appears at the denominator. However,
the second statement of Theorem 2.2 explains that the vector u is such that these problematic
factors are canceled out.

Observe that Theorem 2.2 does not give us any information about the form of the elements of
the transform vector Φ̃(s), which is the stepping stone for the construction of our approximations.
For this reason, we proceed by finding an analytic expression for the aforementioned elements. It
is apparent from Eq. (20) that for the evaluation of Φ̃(s) we only need det E(s) and the adjoint
matrix E(s). For the determination of these quantities, we introduce the following notation:

• As before, we denote the set of all states of the Markov process {Jt} as N = {1, . . . , N} .

• If S ⊂ Ω, for some set Ω ⊂ N , then Sc is the complementary set of S with respect to Ω.
Observe that all subset relations are used locally and that the symbol “⊂” does not imply
strict subsets. The number of elements in a set S is denoted as |S|.

• For a subset S of N we define λS =
∏
i∈S λi and ζS(s) =

∏
i∈S(s − λi). We also define

λ∅ = ζ∅(s) = 1.

• Suppose that U,W ⊂ N and that A is a square matrix of dimension N . Then AW
U is the

submatrix of A if we keep the rows in U and the columns in W . Whenever the notation
becomes very complicated, to avoid any confusion with the indices, we will denote the ith
column and row of matrix A with A•i and Ai•, respectively. We also define det A∅∅ = 1.

• Suppose that S is a subset of Ω, for some set Ω ⊂ N , and that it follows some properties, i.e.
“Property 1”, etc. If we want to sum with respect to S, then we write under the symbol of
summation first S ⊂ Ω, followed by the properties. Namely, we write

∑
S⊂Ω

Property 1
etc

. In some

cases, to avoid lengthy expressions we will write instead of
∑

S⊂Ω
Properties of S

∑
R⊂Ω1

Properties of R
the

double sum
∑

S⊂Ω
Properties of S;

R⊂Ω1
Properties of R

, where R is a subset of Ω1, for some set Ω1 ⊂ N . We apply the

same rule also for multiple sums.

• Suppose that A and B are two square matrices of dimension N , and that U and W are two
disjoint subsets of N . For all Ω ⊂ N , we use the notation AU

Ω on BW
Ω for the matrix that has

columns the union of the columns V of matrix A and the columns W of matrix B, ordered
according to the index set U ∪W ; e.g. if Ω = N = {1, . . . , 5}, U = {1, 2, 4}, and W = {3, 5},
then A

{1,2,4}
N on B

{3,5}
N = (A•1,A•2,B•3,A•4,B•5).

Using the above notation, we proceed with refining the desired quantities. More precisely, we
first find det E(s), then the adjoint matrix E(s), and finally the vector suE(s) that appears in the
numerator of the transform vector Φ̃(s) (see Eq. (20)). Combining these results, one can easily
derive Φ̃(s). We start by finding the determinant of matrix E(s) (see Eq. (19)).
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Theorem 2.3. The determinant of matrix E(s) can be explicitly calculated as follows:

det E(s) =
∑
S⊂N

λSζS
c
(s) det

(
Q(1) ◦P

)S
S

+
N∑
k=1

G̃k(s)
∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
.

Proof. See Appendix B.

Observe that the determinant det E(s) is an at most N degree polynomial with respect to the
LST of the service time distribution G̃(s) of a real customer. Moreover, the coefficients of this
polynomial are all polynomials with respect to s. Therefore, in case G̃(s) is a rational function
in s, then det E(s) is also a rational function in s and its eigenvalues can be easily calculated.
Furthermore, the subset Γ of N that appears in the second summand has at least one element,
thus in the formula of det E(s) it always holds that Γ 6= ∅.

Running example (continued) The matrix E(s) has elements Eii(s) = s−λ, i = 1, 2, E12(s) =
λ, and E21(s) = λG̃(s). We will calculate its determinant using Theorem 2.3. It holds that

det
(
Q(1) ◦ P

)S
S

= 0 for all subsets S of N , except for S = ∅. Since Γ 6= ∅, it is evident that

det
((

Q(1) ◦ P
)S\Γ
S

on
(
Q(2) ◦ P

)Γ
S

)
6= 0 only for Γ = {1} and S = N , because the 1st column of

the matrix Q(1) and the 2nd column of the matrix Q(2) are zero. Combining all these we obtain

det E(s) =λ∅ζN (s) det
(
Q(1) ◦P

)∅
∅ + G̃(s)λN ζ∅(s) det

((
Q(1) ◦P

){2}
N on

(
Q(2) ◦ P

){1}
N

)
=(s− λ)2 − λ2G̃(s).

�
In a similar manner, we find the explicit form of the adjoint matrix E(s) in the following theorem.

Theorem 2.4. The adjoint matrix E(s) has elements

Eij(s) =



∑N−1
k=0 G̃k(s)

∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
, i = j,

(−1)i+j
∑N−1
k=1 G̃k(s)

∑
Γ⊂N\{i,j}
|Γ|=k−1

∑
S⊂N\{i,j}

S⊃Γ;
R⊂S∩Tij

(−1)|R|λS∪{j}ζS
c

(s)

×det
((

Q(1) ◦P
)S\Γ
S∪{i} on

(
Q(2) ◦P

)Γ∪{j}
S∪{i}

)
+(−1)i+j

∑N−2
k=0 G̃k(s)

∑
Γ⊂N\{i,j}
|Γ|=k

∑
S⊂N\{i,j}

S⊃Γ;
R⊂S∩Tij

(−1)|R|λS∪{j}ζS
c

(s)

×det
((

Q(1) ◦P
)(S\Γ)∪{j}
S∪{i} on

(
Q(2) ◦P

)Γ
S∪{i}

)
, i 6= j,

where mij = min{i, j}, Mij = max{i, j}, and Tij = {mij + 1, . . . ,Mij − 1}.

Proof. See Appendix B.

The adjoint matrix E(s) is equal to the transpose of the cofactor matrix of E(s). Therefore,
similarly to det E(s), each element of E(s) is an at most N − 1 degree polynomial with respect
to G̃(s). This observation explains also the similarity between the formula of det E(s) and the
diagonal elements of E(s).
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Running example (continued) Using the same arguments as for the evaluation of the deter-
minant, we have for the adjoint matrix

Eii(s) =G̃0(s)λ∅ζN\{i}(s) det
((

Q(1) ◦P
)∅
∅ on

(
Q(2) ◦P

)∅
∅

)
= s− λ, i = 1, 2,

E12(s) =(−1)1+2(−1)|∅|λ∅∪{2}ζ∅(s) det
((

Q(1) ◦P
){2}
{1} on

(
Q(2) ◦P

)∅
{1}

)
= −λ,

E21(s) =(−1)2+1G̃(s)(−1)|∅|λ∅∪{1}ζ∅(s) det
((

Q(1) ◦P
)∅
{2} on

(
Q(2) ◦P

){1}
{2}

)
= −λG̃(s).

�
For the evaluation of the Laplace transform w̃(s) of the queueing delay, it is only left to calculate

suE(s)ω (see Eqs. (16) and (20)). Observe that the elements of the transform vector Φ̃(s) are
defined as φ̃i(s) = suE(s)ei/ det E(s), where ei is a column vector with element equal to 1 in
position i and all other elements zero. The outcome of suE(s)ei is the inner product of the vector
su with the ith column of matrix E(s). Therefore, as a first step we calculate the quantities
suE(s)ei, and we have the following theorem.

Theorem 2.5. The numerator of the ith element of the transform vector Φ̃(s) takes the form

suE(s)ei = sui

N−1∑
k=0

G̃k(s)
∑

Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+s

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

G̃k(s)
∑

Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|

× λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+s

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=0

G̃k(s)
∑

Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
.

Proof. See Appendix B.

Combining now the results of the Theorems 2.3 and 2.5 by using Eq. (20), one can find the
transform vector Φ̃(s).

Running example (continued) For each state we have

uE(s)e1 =u1E11(s) + u2E21(s) = u1(s− λ)− u2λG̃(s),

uE(s)e2 =u1E12(s) + u2E22(s) = −u1λ+ u2(s− λ).

The transform vector Φ̃(s) is then

Φ̃(s) =

[
su1(s− λ)− su2λG̃(s)

(s− λ)2 − λ2G̃(s)
,
−su1λ+ su2(s− λ)

(s− λ)2 − λ2G̃(s)

]
.

�
The following remark connects the system of equations that is required for the evaluation of u,

which was introduced in Theorem 2.2, to the adjoint matrix E(s).
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Remark 1. The second statement of Theorem 2.2 practically says that each si, i = 2, . . . , N , is
a simple eigenvalue of the matrix H(s) + sI −Λ. Therefore, the column vector ai belongs to the
null space of the matrix H(si) + siI − Λ. Combining the results of Theorem A.1, Remark 5 and
Corollary A.2 (see Appendix A), which provide some general results with respect to the form of the
null space of a singular matrix, without loss of generality we can assume that the vector ai is any
non-zero column of the matrix E(si). Namely, if the mth column of E(si) is such a column, then

ai := ai(si) =
(
E(si)

){m}
N , i = 2, . . . , N. (21)

This observation is very useful, because it allows us to calculate in a straightforward way the desired
system of equations and find closed form expressions for the vector u. In addition, since the vectors
ai, i = 2, . . . , N , are matrix functions evaluated at the point s = si we define the derivative of each
ai as

ai
(1) =

d

ds
ai(s)

∣∣∣∣
s=si

, i = 2, . . . , N.

The usefulness of the latter definition will be apparent in Section 3.2, where we provide an extension
of Theorem 2.2 that helps us to calculate our approximations.

Running example (continued) If s2 is the only positive (and real) root of the equation
det E(s) = 0, the vector u satisfies the system of equations (17)–(18)

1

λ
u1 +

1

λ
u2 =

1

λ
− µ

2
,

−λu1 + (s2 − λ)u2 = 0,

where for the derivation of the second equation we used the second column of the matrix E(s).
Namely, we used a2 =

(
E(s2)

){2}
N . It is easy to verify that the solution to the above system is given

by

u =

((
1− λ

s2

)(
1− λµ

2

)
,
λ

s2

(
1− λµ

2

))
.

�
Although Theorems 2.4 and 2.5 provide explicit expressions for the transform vector, they may

not be practical in cases where the LST of the service time distribution of a real customer G̃(s),
which is involved in the formulas, does not have a closed form; i.e. Pareto distribution. In such
cases, one would have to either consort to a numerical evaluation of G̃(s) or approximate the
transform vector Φ̃(s) in some other fashion. This paper focuses on the latter approach, which
we work out in detail in the following section by taking as starting point a mixture model for the
service time distribution of a real customer.

2.2 Construction of the corrected phase-type approximations

We assume now that the service time distribution of a real customer is Gε(t), which was defined
in Eq. (1) as a mixture of a phase-type distribution and a heavy-tailed one. We will eventually
show that the queueing delay can be written also as a mixture, in the sense that we can identify
the queueing delay of a model with purely phase-type service times and some additional terms that
involve the heavy-tailed service times. As a result, in order to derive our approximations, we first
need to compute the delay in a MArP/PH/1 queue and afterwards use this as a base to further
develop our approximations involving a heavy-tailed component. In the sequel, we give a more
detailed description of our technique.

10



In terms of Laplace transforms we get for our mixture service time distribution G̃ε(s) = (1 −
ε)F̃p(s) + εF̃h(s). As observed in Section 2.1, when the service time distribution of a real customer
is of phase type, then the determinant det E(s) and the elements of the adjoint matrix E(s) are
all rational functions in s. Therefore, after the cancelation of the problematic factors s − si,
i = 1, . . . , N , that appear in the denominator (see the analysis below Theorem 2.2), the elements
of the transform vector Φ̃(s) are also rational functions in s and they can easily be inverted to find
the delay distribution.

Note now that the LST of the service time distribution of a real customer G̃ε(s) can be written
in the following two ways:

G̃ε(s) = F̃p(s) + ε
(
F̃h(s)− F̃p(s)

)
or G̃ε(s) = (1− ε)F̃p(s) + ε+ ε

(
F̃h(s)− 1).

In both formulas, the LST of the service time distribution G̃ε(s) can be seen as perturbation of a
phase-type distribution by a term that contains the heavy-tailed component F̃h(s). The index ε is
interpreted as the perturbation parameter and it used for all parameters of the system that depend
on it. Next, we explain how these two different representations of the same formula can lead with
the aid of perturbation analysis to two different approximations for the queuing delay.

We start our discussion with the first formula. By setting F̃h(s) ≡ F̃p(s)
1 in the formula, one

can find with G̃ε(s) = F̃p(s) the workload of a simpler MAP/PH/1 queue, by specializing the
formulas of Section 2.1 to phase-type service times. As a next step, we find all the parameters of
the mixture model as perturbation of the simpler phase-type model, which we use as base. Then,
we write the workload of the mixture model in a series expansion in ε, where the constant term
is the workload of the MAP/PH/1 queue we used as base and all other terms contain the heavy-
tailed service times.

We define our approximation by taking the first two terms of the aforementioned series, namely
the up to ε-order terms. We call this approximation corrected replace approximation. The charac-
terization “corrected” comes from the fact that the ε-order term corrects the tail behavior of the
constant term, which as a phase-type approximation of the workload is incapable of capturing the
correct tail behavior. Finally, the characterization “replace” is due to the phase-type base model we
used. We give analytically all the steps to derive the corrected replace approximation in Section 3.

In a similar manner, we construct the corrected discard approximation by using the second
formula. By setting F̃h(s) ≡ 12 we derive the queuing delay of the phase-type base model with
service time distribution G̃•ε (s) = (1− ε)F̃p(s) + ε for a real customer, which has an atom of size ε

at zero. Throughout the paper, we use G̃•ε (s) for the LST of the service time distribution of a real
customer in the discard base model instead of G̃ε(s) to avoid confusion with the mixture model. We
briefly discuss the details for the construction of the corrected discard approximation in Section 4.

In the next sections, we provide the steps to construct the corrected replace and the corrected
discard approximations, which we call collectively corrected phase-type approximations.

3. Corrected replace approximation

In this section, we construct the corrected replace approximation. First, we calculate the queueing
delay for the phase-type model that appears when we replace all the heavy-tailed customers with
phase-type ones in Section 3.1; i.e. we specialize the results of Section 2.1 to phase-type service
times. Later, in Section 3.2, we calculate the parameters of the mixture model with service time

1In other words, we assume that all of the customers come from the same phase-type distribution or equivalently
that we replace all the heavy-tailed customers with phase-type ones.

2By setting the service time of the heavy-tailed customers equal to zero we simply discard them from the system.
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distribution G̃ε(s) given by Eq. (1) as perturbation of the parameters of the corresponding phase-
type model, with perturbation parameter ε. In Section 3.3, we find a series expansion in ε of the
queueing delay in the mixture model with constant term the queueing delay in the phase-type base
model and all higher terms involving the heavy-tailed services. Finally, in Section 3.4, we construct
the corrected replace approximation by keeping only the first two terms of the aforementioned series.
We start in the next section with the analysis of the replace base model; i.e. the one containing
only phase-type service times.

3.1 Replace base model

When we replace the heavy-tailed customers with phase-type ones, we consider the service time
distribution G̃ε(s) = F̃p(s) for our phase-type base model. Observe that this service time distri-
bution is independent of the parameter ε, and so will be all the other parameters of this simpler
model. Thus, from a mathematical point of view, the action of replacing the heavy-tailed service
times with phase-type ones is equivalent to setting ε = 0 in the mixture model.

To avoid overloading the notation, we omit the subscript “0” (which is a consequence of the fact
that ε = 0) from the parameters of the replace phase-type model and we assume that the service time
distribution of a real customer is some phase-type distribution with LST G̃(s) := F̃p(s) = q(s)/p(s),
where q(s) and p(s) are appropriate polynomials without common roots. The degree of p(s) is M ,
and without loss of generality, we choose the coefficient of its highest order term to be equal to 1.
Finally, the degree of the polynomial q(s) is less than or equal to M − 1. Define

K = max
k 6=0

{
max
Γ⊂N

{
rank

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)}
: k =| Γ |, and Γ ⊂ S ⊂ N

}
. (22)

Then, the following result holds.

Proposition 3.1. There exist xj and yj, with <(xj) > 0, <(yj) > 0, j = 1, . . . , rM , such that the
Laplace transform w̃(s) of the queueing delay takes the form

w̃(s) =
uω
∏rM
j=1(s+ yj)∏rM

j=1(s+ xj)
,

where the vector u is calculated according to Theorem 2.2 with the LST of the service times being
equal to F̃p(s), and r is some positive integer less than or equal to K defined by (22).

Proof. See Appendix B.

The formula of w̃(s) is a rational function that corresponds to a phase-type distribution. Ap-
plying Laplace inversion to w̃(s), we can find the exact tail probabilities of the queueing delay;
namely we can find P(W > t).

Running example (continued) Given that we have already calculated the transform vector
Φ̃(s), we can now calculate the Laplace transform w̃(s) of the queueing delay for phase-type cus-
tomers. In our example, K = 1 and consequently, r = 1. In addition, ωT = (0, 2), where superscript
T denotes the transpose of a vector or a matrix. Thus, w̃(s) under phase-type service times is

w̃(s) =2φ̃2(s) = 2
s2u2 − sλ(u1 + u2)

(s− λ)2 − λ2F̃p(s)
= 2

s2p(s)u2 − sp(s)λ(u1 + u2)

(s− λ)2p(s)− λ2q(s)
.
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Observe that both the numerator and the denominator of w̃(s) are polynomials of degree M + 2.
Moreover, Theorem 2.2 guarantees that 0 and s2 are common roots of them. If −yj and −xj ,
j = 1, . . . ,M , <(xj),<(yj) > 0, are the remaining roots of the numerator and the denominator,
respectively, the Laplace transform of the queueing delay can be written as

w̃(s) =
2u2s(s− s2)

∏M
j=1(s+ yj)

s(s− s2)
∏M
j=1(s+ xj)

=
2u2

∏M
j=1(s+ yj)∏M

j=1(s+ xj)
.

�
As pointed out in Section 2.2, the LST of the service time distribution G̃ε(s) (see Eq. (1)) can

be seen as perturbation of F̃p(s) by the term ε
(
F̃h(s) − F̃p(s)

)
. In the next section we write the

parameters of the mixture model as perturbation of the parameters of the replace base model.

3.2 Perturbation of the parameters of the replace base model

In order to find the queueing delay in the mixture model as a series expansion in ε with constant
term the queueing delay in the replace base model, we apply perturbation analysis to the parameters
of the mixture model that depend on ε. Thus, we first check which of the parameters in the mixture
model depend on ε and then we represent them as perturbation of the parameters of the replace
base model.

Since the matrices P, Q(1), Q(2), and Λ (see Section 2.1) depend only on the arrival process,
they are invariant under any perturbation of the service time distribution. However, the matrix
G̃ε(s), and consequently Hε(s) change, and so does the stability condition (see Eqs. (9)–(11)).
Let now F̃ ep (s) and F̃ eh(s) be the LSTs of the stationary-excess service time distributions F ep (t)
and F eh(t), and µp and µh be the finite means of the phase-type and heavy-tailed service times,
respectively. Then, we obtain

G̃ε(s) =G̃(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
Q(2), (23)

and

Hε(s) =G̃ε(s) ◦PΛ = H(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
Q(2) ◦PΛ. (24)

Finally, the stability condition takes the form

π(Λ−1 −Mε)e > 0, (25)

where Mε = M + εs
(
µh − µp

)
Q(2) ◦P.

Under the stability condition (25), Theorem 2.1 holds for the transform vector Φ̃ε(s), for some
row vector uε. More precisely, there exists a unique vector uε such that the transform vector Φ̃ε(s)
satisfies the system of equations:

Φ̃ε(s)
(
Hε(s) + sI −Λ

)
= suε, (26)

Φ̃ε(0)e = 1, (27)

where the vector uε is calculated according to Theorem 2.2.
Recall that the evaluation of uε goes through the evaluation of the positive eigenvalues of the

matrix

Eε(s) =Hε(s) + sI −Λ = E(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
Q(2) ◦PΛ. (28)
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Observe that the above representation of the matrix Eε(s) is a linear perturbation in ε of the
matrix E(s) of the base model. Thus, according to results on perturbation of analytic matrix
functions [13, 21], we have that the positive eigenvalues of the matrix Eε(s) and their corresponding
eigenvectors are analytic functions in ε. Consequently, one can find a series representation in ε for
all the involved quantities that are needed for the evaluation of the vector uε (see Theorem 2.2). By
using these parameters, we can find a complete series representation for the transform vector Φ̃ε(s)
and by applying Laplace inversion to each term of this series we can find a formal expression for
the queueing delay that is a series expansion in ε. As we stated earlier, we only need the first two
terms of the latter series to define the corrected replace approximation. Therefore, in our analysis,
we keep only the terms up to order ε of each involved perturbed parameter.

In the next theorem, we provide an algorithm to calculate the first order approximation in ε
of the vector uε, given that we have already calculated the vector u of the replace base model,
by specializing Theorem 2.2 to phase-type service times. We denote by U the square matrix of
appropriate dimensions with all its elements equal to one.

Theorem 3.2. Let u be the unique solution to the Eqs. (17)–(18) for the replace base model. If
the roots s2, . . . , sN of det

(
H(s) + sI −Λ

)
= 0 with positive real part are simple, then

1. the equation det
(
Hε(s)+sI−Λ

)
= 0 has exactly N non-negative solutions sε,1, . . . , sε,N , with

sε,1 = 0 and sε,i = si − εδi +O(ε2) for i = 2, . . . , N , where

δi : = δ(si) =

∑N
j=1 det

(
E(si)•1, . . . ,K(si)•j , . . . ,E(si)•N

)∑N
j=1 det

(
E(si)•1, . . . ,E

(1)(si)•j , . . . ,E(si)•N
) ,

and K(s) = s
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
Q(2) ◦PΛ.

2. We set A =
(
Λ−1e,a2, . . . ,aN

)
(see Eq. (21)) and c =

(
π(Λ−1 −M)e, 0, . . . , 0

)
, and we

assume that the stability condition (25) is satisfied. Then, the vector uε is the unique solution
to the system of N linear equations

uε
(
A − εB +O(ε2U)

)
= c + εd, (29)

where B =
(
0, δ2a2

(1)−k2, . . . , δNaN
(1)−kN

)
and d =

(
(µp− µh)πQ(2) ◦Pe, 0, . . . , 0

)
, with

ki, i = 2, . . . , N , being a column vector with coordinates

ki,j = (−1)m+j
N−1∑
k=1

det

((
E(si)

N\{j}
N\{m}

)
•1
, . . . ,

(
K(si)

N\{j}
N\{m}

)
•k
, . . . ,

(
E(si)

N\{j}
N\{m}

)
•N−1

)
, j ∈ N ,

and the choice of m explained in Remark 1.

Proof. See Appendix B.

Remark 2. When the number of states is N = 2, the column vector k2 of Theorem 3.2 is equal to

k2 =
(
K22(s2),−K21(s2)

)T
or k2 =

(
−K12(s2),K11(s2)

)T
,

depending on whether m = 1 or m = 2, respectively. The case N = 1 has been treated earlier by
the authors; see [34].
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Running example (continued) In order to evaluate the vector uε, we first need to calculate
the perturbed root sε,2, and more precisely the term δ2. Observe that in our case only the element

K21(s) = sλ
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
of the matrix K(s) is not equal to zero. Then, the numerator of

δ2 becomes

det
(
E(s2)

{1}
N ,K(s2)

{2}
N
)

+ det
(
K(s2)

{1}
N ,E(s2)

{2}
N
)

= −s2λ
2
(
µpF̃

e
p (s2)− µhF̃ eh(s2)

)
,

and its denominator takes the form

det
(
E(s2)

{1}
N ,E(1)(s2)

{2}
N
)

+ det
(
E(1)(s2)

{1}
N ,E(s2)

{2}
N
)

= 2(s2 − λ)− λ2F̃ (1)
p (s2),

because the first derivative of the matrix E(s) is

E(1)(s) =

(
1 0

λF̃
(1)
p (s) 1

)
.

Combining the above, we have

δ2 =
−s2λ

2
(
µpF̃

e
p (s2)− µhF̃ eh(s2)

)
2(s2 − λ)− λ2F̃

(1)
p (s2)

.

Recall that for the determination of the vector a2 we had used the second column of the adjoint
matrix, namely we had chosen m = 2. Thus, according to Remark 2 the vector k2 is a zero column
vector of dimension 2. Since a2

(1) is the second column of the matrix E(1)(s), it holds that B22 = δ2

and all other elements of B are equal to zero. Finally, d =
(

1
2(µp − µh), 0

)
. �

By matching the coefficients of ε on the left and right side of Eq. (29), we can write the vector
of unknown parameters uε as uε = u + εz +O(ε2e). The exact form of the vector z is given in the
following lemma, which we give without proof.

Lemma 3.3. The vector uε can be written in the form

uε = u + εz +O(ε2e),

where
z =

(
cA−1B + d

)
A−1.

Running example (continued) For the evaluation of z we need to find the inverse of matrix
A, namely we need

A−1 =
λ

s2

(
s2 − λ λ
− 1
λ

1
λ

)
. (30)

By observing that cA−1 = u and by following the calculations of Lemma 3.3 we obtain

z =
λ

s2

[
1

2
(µp − µh)(s2 − λ)− 1

s2

(
1− λµp

2

)
δ2,

λ

2
(µp − µh) +

1

s2

(
1− λµp

2

)
δ2

]
.

�
In our analysis, we used first order perturbation with respect to the parameter ε. The exact

same procedure can be followed if higher order terms of ε are desired. However, this would result
to the increase of the complexity of the formulas. In the next section, we provide the formulas
for the evaluation of the perturbed transform vector Φ̃ε(s) and the Laplace transform w̃ε(s) of the
queueing delay.
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3.3 Delay distribution of the perturbed model

If Eε(s) is the adjoint matrix of Eε(s) (see Eq. (28)), then the ith element of the transform vector
Φ̃ε(s) is defined as

φ̃ε,i(s) =
suεEε(s)ei
det Eε(s)

. (31)

Therefore, to find the exact formula of φ̃ε,i(s) we need to find det Eε(s) and suεEε(s)ei. By using

the binomial identity and by omitting higher order powers of ε, we have that
(
F̃p(s)+εs

(
µpF̃

e
p (s)−

µhF̃
e
h(s)

))k
=
(
F̃p(s)

)k
+εk

(
F̃p(s)

)k−1
s
(
µpF̃

e
p (s)−µhF̃ eh(s)

)
+O(ε2). We give the following lemmas

without proof. The first one gives the formula for the evaluation of the denominator of the desired
quantity.

Lemma 3.4. If det E(s) is evaluated according to Theorem 2.3 with G̃(s) = F̃p(s), then det Eε(s)
can be written as perturbation of det E(s) as follows

det Eε(s) = det E(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

) N∑
k=1

k
(
F̃p(s)

)k−1
∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c
(s)

×det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
+O(ε2).

Running example (continued) Only the combination k = 1 with Γ = {1}, and S = N gives
a non-zero coefficient for ε. Therefore,

det Eε(s) = det E(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
λN ζ∅(s) det

((
Q(1) ◦P

){2}
N on

(
Q(2) ◦P

){1}
N

)
= det E(s)− ελ2s

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
.

�
The next lemma gives the numerator of each φ̃ε,i(s), i ∈ N .

Lemma 3.5. If suE(s)ei is evaluated according to Theorem 2.5 with G̃(s) = F̃p(s), then suεEε(s)ei
can be written as perturbation of suE(s)ei as follows

suεEε(s)ei = suE(s)ei + εs

[
zi

N−1∑
k=1

(
F̃p(s)

)k ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+zi
∑

S⊂N\{i}

λSζS
c
(s) det

(
Q(1) ◦P

)S
S

+

N∑
l=1
l 6=i

zl(−1)l+i
N−1∑
k=1

(
F̃p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k−1;
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)

+

N∑
l=1
l 6=i

zl(−1)l+i
N−2∑
k=0

(
F̃p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)
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× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
+s
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
ui

N−1∑
k=1

k
(
F̃p(s)

)k−1
∑

Γ⊂N\{i}
|Γ|=k

∑
S⊂N\{i}
S⊃Γ

λSζS
c
(s)

× det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
+

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

k
(
F̃p(s)

)k−1
∑

Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=1

k
(
F̃p(s)

)k−1
∑

Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

))]
+O(ε2),

where zi, i ∈ N , are the coordinates of the vector z given in Lemma 3.3.

Running example (continued) By doing the calculations for each state without taking into
account terms that are equal to zero, we obtain:

suεEε(s)e1 =suE(s)e1 + εs

[
z1λ

∅ζ{2}(s) det
(
Q(1) ◦P

)∅
∅ + z2(−1)2+1F̃p(s)(−1)|∅|λ∅∪{1}ζ∅(s)q

(2)
21 p21

+s
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
u2(−1)2+1(−1)|∅|λ∅∪{1}ζ∅(s)q

(2)
21 p21

)]
+O(ε2)

=suE(s)e1 + εs
(
z1(s− λ)− z2λF̃p(s) + s

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
(−λu2)

)
+O(ε2),

and

suεEε(s)e2 =suE(s)e2 + εs

[
z2λ

∅ζ{1}(s) det
(
Q(1) ◦P

)∅
∅ + z1(−1)1+2(−1)|∅|λ∅∪{2}ζ∅(s)q

(1)
12 p12

]
+O(ε2)

=suE(s)e2 + εs
(
− z1λ+ z2(s− λ)

)
+O(ε2).

�
Combining the results of Lemmas 3.4–3.5, we have the following proposition for the Laplace

transform w̃ε(s) of the queueing delay.

Proposition 3.6. If w̃(s) is calculated according to Proposition 3.1 for the replace base model, then
there exist unique coefficients β, γ, αi, βk, γk, k = 2, . . . , N , and α′′j,l, β

′′
j,l and γ′′j,l, j = 1, . . . , σ,

l = 1, . . . , rj, such that the Laplace transform w̃ε(s) of the queueing delay of the mixture model
satisfies

w̃ε(s) =w̃(s) + ε
1

uω
w̃(s)

[(
zω +

N∑
k=2

αk
s− sk

+

σ∑
j=1

rj∑
l=1

α′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)
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+
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
β +

N∑
k=2

βk
s− sk

+

σ∑
j=1

rj∑
l=1

β′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

(
γ +

N∑
k=2

γk
s− sk

+
σ∑
j=1

rj∑
l=1

γ′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)]
+O(ε2),

where the vector z given in Lemma 3.3.

Proof. See Appendix B.

Before we evaluate w̃ε(s) in our running example, we apply Laplace inversion to the coefficient of
ε in the series expansion of w̃ε(s). We denote by Ek(λ) the r.v. that follows an Erlang distribution
with k phases and rate λ. For simplicity, we write E(λ) for the exponential r.v. with rate λ.
Finally, let Be and Ce be the generic stationary excess phase-type and heavy-tailed service times,
respectively.

Theorem 3.7. If θ̃(s) is the coefficient of ε in the series expansion of w̃ε(s) in Proposition 3.6, its

Laplace inversion Θ(t) = L−1{θ̃(s)} is given as follows

Θ(t) =
1

uω

[(
zω −

N∑
k=2

αk
sk

)
P(W > t) +

(
β −

N∑
k=2

βk
sk

)(
µpP(W +Be > t)− µhP(W + Ce > t)

)
−
(
γ −

N∑
k=2

γk
sk

)(
µpP(W +W ′ +Be > t)− µhP(W +W ′ + Ce > t)

)
−

N∑
k=2

1

sk

(
γk

(
µpP

(
t < W +W ′ +Be < t+ E(sk)

)
− µhP

(
t < W +W ′ + Ce < t+ E(sk)

))
− βk

(
µpP

(
t < W +Be < t+ E(sk)

)
− µhP

(
t < W + Ce < t+ E(sk)

))
− αkP

(
t < W < t+ E(sk)

))

−
σ∑
j=1

rj∑
l=1

(
γ′′j,l

(
µpP

(
W +W ′ +Be + Erj−l+1(yj) > t

)
− µhP

(
W +W ′ + Ce + Erj−l+1(yj) > t

))
− β′′j,l

(
µpP

(
W +Be + Erj−l+1(yj) > t

)
− µhP

(
W + Ce + Erj−l+1(yj) > t

))
− α′′j,lP

(
W + Erj−l+1(yj) > t

))]
,

where W ′ is independent and follows the same distribution of W .

Proof. See Appendix B.

Remark 3. Note that an Ek(λ) distribution (k ≥ 1) is defined for a non-negative real valued rate
λ. To state Theorem 3.7, we assumed that all the roots sk, k = 2, . . . , N , and −yj , j = 1, . . . , rM ,
are real-valued. In most systems, this assumption in not always true. Recall that the previously
mentioned roots are roots of a polynomial with real coefficients (see analysis above Eq. (44)).
Therefore, from the Complex Conjugate Root Theorem it holds that if e.g. s2 is complex, then its
complex conjugate s2 is also a root. Thus, we write ERe(s2) instead of Es2 and Es2 , because every
parameter or function that depends on s2 appears as a complex conjugate of the corresponding
quantity that depends on s2, and their imaginary parts cancel out. The same result holds for all
other roots.
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Running example (continued) For the evaluation of the Laplace transform w̃ε(s) = Φ̃ε(s)ω
of the queueing delay Wε, we follow the steps in the proof of Proposition 3.6. Recall that in our
example, r = 1, and assume that only σ of the roots −yj are distinct and that the multiplicity of
each of them is rj , such that

∑σ
j=1 rj = M .

Therefore, we first find p(s) det Eε(s) and p(s)suεEε(s)ω. If we set ξ(s) = −λ2p(s), ξ′1(s) =
−2λp(s), and ξ′2(s) = 2(s− λ)p(s), then we obtain

p(s) det Eε(s) = p(s) det E(s) + εs
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
ξ(s) +O(ε2),

p(s)suεEε(s)ω = p(s)suE(s)ω + εs
2∑
l=1

zlξ
′
l(s) +O(ε2).

We define the functions d(s) and n(s) (see Eqs. (47) and (52) respectively) as

d(s) =

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
ξ(s)w̃(s)

uω(s− s2)
∏σ
j=1(s+ yj)rj

− δ2

s− s2
,

n(s) =

∑2
l=1 zlξ

′
l(s)

uω(s− s2)
∏σ
j=1(s+ yj)rj

− δ2

s− s2
,

where the two equivalent definitions of δ2 (see Eqs. (46) and (51)) take the form

δ2 =

(
µpF̃

e
p (s2)− µhF̃ eh(s2)

)
ξ(s2)w̃(s2)

uω
∏σ
j=1(s2 + yj)rj

=

∑2
l=1 zlξ

′
l(s2)

uω
∏σ
j=1(s2 + yj)rj

.

Following the calculations after Eq. (53) we get that

w̃ε(s) = w̃(s) + ε
1

uω
w̃(s)

( ∑2
l=1 zlξ

′
l(s)

(s− s2)
∏σ
j=1(s+ yj)rj

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

ξ(s)

(s− s2)
∏σ
j=1(s+ yj)rj

)
+O(ε2). (32)

Now, we apply simple fraction decomposition to the rational functions∑2
l=1 zlξ

′
l(s)

(s− s2)
∏σ
j=1(s+ yj)rj

,
ξ(s)

(s− s2)
∏σ
j=1(s+ yj)rj

.

Thus, we calculate

α2 =

∑2
l=1 zlξ

′
l(s2)∏σ

j=1(s2 + yj)rj
, γ2 =

ξ(s2)∏σ
j=1(s2 + yj)rj

,

and for j = 1, . . . , σ, p = 1, . . . , rj , the coefficients α′′j,p and γ′′j,p, are respectively the unique solutions
to the following two linear systems of rj equations

d

dsn

[
2∑
l=1

zlξ
′
l(s)

]∣∣∣∣∣
s=−yj

=
d

dsn

[
(s− s2)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

α′′j,p(yj)
rj−p+1(s+ yj)

p−1

]∣∣∣∣∣∣∣
s=−yj

,

d

dsn

[
ξ(s)

]∣∣∣∣∣
s=−yj

=
d

dsn

[
(s− s2)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

γ′′j,p(yj)
rj−p+1(s+ yj)

p−1

]∣∣∣∣∣∣∣
s=−yj

,
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n = 0, . . . , rj . In addition, the polynomial ξ(s) is of degree M , and the polynomial
∑2

l=1 zlξ
′
l(s) is

of degree M + 1 with the coefficient of sM+1 equal to 2z2. Combining all these, we write Eq. (32)
as

w̃ε(s) =w̃(s) + ε
1

2u2
w̃(s)

[(
2z2 +

α2

s− s2
+

σ∑
j=1

rj∑
l=1

α′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

(
γ2

s− s2
+

σ∑
j=1

rj∑
l=1

γ′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)]
+O(ε2).

Observe that in this case γ = 0 and all β coefficients are also equal to zero. Thus, if θ̃(s) is the
coefficient of ε in the series expansion of w̃ε(s), we apply Theorem 3.7 to find its Laplace inversion
as

Θ(t) =
1

2u2

[(
2z2 −

α2

s2

)
P(W > t) +

γ2

s2

(
µpP(W +W ′ +Be > t)− µhP(W +W ′ + Ce > t)

)
− 1

s2

(
γ2

(
µpP

(
t < W +W ′ +Be < t+ E(s2)

)
− µhP

(
t < W +W ′ + Ce < t+ E(s2)

))
− α2P

(
t < W < t+ E(s2)

))

−
σ∑
j=1

rj∑
l=1

(
γ′′j,l

(
µpP

(
W +W ′ +Be + Erj−l+1(yj) > t

)
− µhP

(
W +W ′ + Ce + Erj−l+1(yj) > t

))

− α′′j,lP
(
W + Erj−l+1(yj) > t

))]
,

where W ′ is independent and follows the same distribution of W . �
By applying Laplace inversion to the first two terms of the series expansion in ε of the queueing

delay, we obtain that the first term is a phase-type approximation of the queueing delay that results
from the replace base model (see Section 3.1). In addition, the second term, which we refer to as
correction term and is found explicitly in Theorem 3.7, involves linear combinations of terms that
have probabilistic interpretation. More precisely, these terms with probabilistic interpretation are
either tail probabilities of convoluted r.v. or probabilities for some of the aforementioned convoluted
r.v. to lie between a fixed value t and the same value t shifted by an exponential time. Finally,
observe that these convoluted r.v. involve the heavy-tailed stationary-excess service time r.v. Ce in
a maximum appearance of one. Combining the results of Proposition 3.6 and Theorem 3.7, in the
next section we define our approximations.

3.4 Corrected replace approximations

The goal of this section is to provide approximations that maintain the numerical tractability
but improve the accuracy of the phase-type approximations and that are able to capture the tail
behavior of the exact delay distribution. As we pointed out in the introduction, a single appearance
of a stationary excess heavy-tailed service time Ce is sufficient to capture the correct tail behavior
of the exact queueing delay. As we observed in Section 3.3, the correction term contains terms
with single appearances of Ce. For this reason, the proposed approximation for the queueing delay
is constructed by the first two terms of its respective series expansion for the queueing delay. We
propose the following approximation:
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Approximation 1. The corrected replace approximation of the survival function P(Wε > t) of
the exact queueing delay is defined as

ϕ̂r,ε(t) := P(W > t) + ε
1

uω

[(
zω −

N∑
k=2

αk
sk

)
P(W > t)

+
(
β −

N∑
k=2

βk
sk

)(
µpP(W +Be > t)− µhP(W + Ce > t)

)
−
(
γ −

N∑
k=2

γk
sk

)(
µpP(W +W ′ +Be > t)− µhP(W +W ′ + Ce > t)

)
−

N∑
k=2

1

sk

(
γk

(
µpP

(
t < W +W ′ +Be < t+ E(sk)

)
− µhP

(
t < W +W ′ + Ce < t+ E(sk)

))
− βk

(
µpP

(
t < W +Be < t+ E(sk)

)
− µhP

(
t < W + Ce < t+ E(sk)

))
− αkP

(
t < W < t+ E(sk)

))

−
σ∑
j=1

rj∑
l=1

(
γ′′j,l

(
µpP

(
W +W ′ +Be + Erj−l+1(yj) > t

)
− µhP

(
W +W ′ + Ce + Erj−l+1(yj) > t

))
− β′′j,l

(
µpP

(
W +Be + Erj−l+1(yj) > t

)
− µhP

(
W + Ce + Erj−l+1(yj) > t

))
− α′′j,lP

(
W + Erj−l+1(yj) > t

))]
,

where P(W > t) is the replace phase-type approximation of P(Wε > t), W ′ is independent and
follows the same distribution of W , and the coefficients β, γ, αk, βk, γk, k = 2, . . . , N , and α′′j,l,
β′′j,l and γ′′j,l, j = 1, . . . , σ, l = 1, . . . , rj , are calculated according to Proposition 3.6.

The following result shows that the corrected replace approximation makes sense rigorously.

Proposition 3.8. If P(W > t) is the replace approximation of the exact queueing delay P(Wε > t),
then as ε→ 0, it holds that

P(Wε > t)− P(W > t)

ε
→ Θ(t),

where Θ(t) is given in Theorem 3.7.

Proof. See Appendix B.

Although Approximation 1 gives an approximation of the queueing delay that can be calculated
explicitly and is computationally tractable, it involves the evaluation of many terms. Therefore, to
simplify the formula of the approximation, it makes sense to ignore terms that do not contribute
significantly to the accuracy of the corrected replace approximation. Such terms seem to be the
probabilities of convoluted r.v. that lie between a fixed value t and the same value t shifted by an
exponential time. Therefore, we define the simplified corrected replace approximation as follows.
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Approximation 2. The simplified corrected replace approximation of the survival function P(Wε >
t) of the exact delay is defined as

ϕ̂sr,ε(t) := P(W > t) + ε
1

uω

[(
zω −

N∑
k=2

αk
sk

)
P(W > t)

+
(
β −

N∑
k=2

βk
sk

)(
µpP(W +Be > t)− µhP(W + Ce > t)

)
−
(
γ −

N∑
k=2

γk
sk

)(
µpP(W +W ′ +Be > t)− µhP(W +W ′ + Ce > t)

)
−

σ∑
j=1

rj∑
l=1

(
γ′′j,l

(
µpP

(
W +W ′ +Be + Erj−l+1(yj) > t

)
− µhP

(
W +W ′ + Ce + Erj−l+1(yj) > t

))
− β′′j,l

(
µpP

(
W +Be + Erj−l+1(yj) > t

)
− µhP

(
W + Ce + Erj−l+1(yj) > t

))
− α′′j,lP

(
W + Erj−l+1(yj) > t

))]
,

where P(W > t) is the replace phase-type approximation of P(Wε > t), W ′ is independent and
follows the same distribution of W , and the coefficients β, γ, αk, βk, γk, k = 2, . . . , N , and α′′j,l,
β′′j,l and γ′′j,l, j = 1, . . . , σ, l = 1, . . . , rj , are calculated according to Proposition 3.6.

4. Corrected discard approximation

In this section, we construct the corrected discard approximation. There are two different ap-
proaches to obtain this approximation. In the first one, we follow the same steps as in the con-
struction of the corrected replace approximation. Namely, we first calculate the queueing delay
for the simpler phase-type model when we discard the heavy-tailed customers and then we write
the queueing delay of the mixture model as perturbation of the queueing delay in the discard base
model. However, here we use an alternative approach that connects the discard base model with
the replace base model.

As we mentioned in Section 2.2, when we discard the heavy-tailed customers we simply consider
that

G̃•ε (s) = (1− ε)F̃p(s) + ε = F̃p(s) + ε
(
1− F̃p(s)

)
= F̃p(s) + εsµpF̃

e
p (s).

Although the service time distribution G̃•ε (s) has an atom at zero, the resulting delay distribution
has a phase-type representation and consequently it can be directly calculated through Laplace
inversion of its LST w̃•ε (s). However, it is difficult to apply perturbation analysis to find the
connection between w̃•ε (s) and w̃ε(s), because both of them depend on ε.

Observe that G̃•ε (s) can be expressed as perturbation of F̃p(s) by the term εsµpF̃
e
p (s). Therefore,

we can apply perturbation analysis to find a connection between w̃•ε (s) and w̃(s), which is the
Laplace transform of the queueing delay in the replace base model, and then use the connection of
w̃(s) with w̃ε(s) to establish a connection between w̃ε(s) and w̃•ε (s). Thus, as a first step we express
the matrices in the discard base model as perturbation of the ones in the replace base model, by
setting F̃h(s) ≡ 1 in the results of Section 3.2. So, we define the matrices

G̃•ε (s) =G̃(s) + εsµpF̃
e
p (s)Q(2),

22



H•ε (s) =H(s) + εsµpF̃
e
p (s)Q(2) ◦PΛ,

E•ε (s) =E(s) + εsµpF̃
e
p (s)Q(2) ◦PΛ,

M•
ε =M − εsµpQ(2) ◦P.

Now, we provide a series of results for the evaluation of w̃•ε (s) = su•εE•ε (s)ω/ det E•ε (s), which
occur as corollaries of their corresponding results in Sections 3.2 and 3.3. The first two corollaries
are for the evaluation of the vector u•ε of unknown parameters.

Corollary 4.1. Let u be the unique solution to the Eqs. (17)–(18) for the replace base model. If
the roots s2, . . . , sN of det

(
H(s) + sI −Λ

)
= 0 with positive real part are simple, then

1. the equation det
(
H•ε (s) + sI − Λ

)
= 0 has exactly N non-negative solutions s•ε,1, . . . , s

•
ε,N ,

with s•ε,1 = 0 and s•ε,i = si − εδ•i +O(ε2) for i = 2, . . . , N , where

δ•i : = δ•(si) =

∑N
j=1 det

(
E(si)•1, . . . ,K(si)•j , . . . ,E(si)•N

)∑N
j=1 det

(
E(si)•1, . . . ,E

(1)(si)•j , . . . ,E(si)•N
) ,

and K(s) = sµpF̃
e
p (s)Q(2) ◦PΛ.

2. We set A =
(
Λ−1e,a2, . . . ,aN

)
(see Eq. (21)) and c =

(
π(Λ−1 −M)e, 0, . . . , 0

)
, and we

assume that the stability condition π(Λ−1 −M•
ε )e > 0, is satisfied. Then, the vector u•ε is

the unique solution to the system of N linear equations

u•ε
(
A − εB• +O(ε2U)

)
= c + εd•, (33)

where B• =
(
0, δ•2a2

(1) − k•2, . . . , δ
•
NaN

(1) − k•N
)

and d• =
(
µpπQ(2) ◦Pe, 0, . . . , 0

)
, with k•i ,

i = 2, . . . , N , being a column vector with coordinates

k•i,j = (−1)m+j
N−1∑
k=1

det

((
E(si)

N\{j}
N\{m}

)
•1
, . . . ,

(
K(si)

N\{j}
N\{m}

)
•k
, . . . ,

(
E(si)

N\{j}
N\{m}

)
•N−1

)
, j ∈ N ,

and the choice of m explained in Remark 1.

Corollary 4.2. The vector u•ε can be written in the form

u•ε = u + εz• +O(ε2e),

where
z• =

(
cA−1B• + d•

)
A−1.

The next corollary give as the denominator of w̃•ε (s).

Corollary 4.3. If det E(s) is evaluated according to Theorem 2.3 with G̃(s) = F̃p(s), then det E•ε (s)
can be written as perturbation of det E(s) as follows

det E•ε (s) = det E(s)

+ εsµpF̃
e
p (s)

N∑
k=1

k
(
F̃p(s)

)k−1
∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
+O(ε2).
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For the evaluation of the numerator of w̃•ε (s), we need the following result.

Corollary 4.4. If suE(s)ei is evaluated according to Theorem 2.5 with G̃(s) = F̃p(s), then su•εE•ε (s)ei
can be written as perturbation of suE(s)ei as follows

su•εEε(s)ei = suE(s)ei + εs

[
z•i

N−1∑
k=1

(
F̃p(s)

)k ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+z•i
∑

S⊂N\{i}

λSζS
c
(s) det

(
Q(1) ◦P

)S
S

+
N∑
l=1
l 6=i

z•l (−1)l+i
N−1∑
k=1

(
F̃p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k−1;
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)

+
N∑
l=1
l 6=i

z•l (−1)l+i
N−2∑
k=0

(
F̃p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
+sµpF̃

e
p (s)

(
ui

N−1∑
k=1

k
(
F̃p(s)

)k−1
∑

Γ⊂N\{i}
|Γ|=k

∑
S⊂N\{i}
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

k
(
F̃p(s)

)k−1
∑

Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=1

k
(
F̃p(s)

)k−1
∑

Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

))]
+O(ε2),

where z•i , i ∈ N , are the coordinates of the vector z• given in Corollary 4.2.

Combining Corollaries 4.3 and 4.4, and Proposition 3.6, we have the following Proposition that
connects the delay in the discard model w̃•ε (s) and the delay in the mixture model w̃ε(s).

Proposition 4.5. If w̃•ε (s) is the Laplace transform of the queueing delay of the discard base model
that is calculated as perturbation of w̃(s) (see Proposition 3.1), then there exist unique coefficients
β, γ, αi, βk, γk, k = 2, . . . , N , and α′′j,l, β

′′
j,l and γ′′j,l, j = 1, . . . , σ, l = 1, . . . , rj, such that the
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Laplace transform w̃ε(s) of the queueing delay of the mixture model satisfies

w̃ε(s) =w̃•ε (s) + ε
1

u•εω
w̃•ε (s)

[(
(z− z•)ω +

N∑
k=2

αk
s− sk

+
σ∑
j=1

rj∑
l=1

α′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

−µhF̃ eh(s)

(
β +

N∑
k=2

βk
s− sk

+
σ∑
j=1

rj∑
l=1

β′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

+µhF̃
e
h(s)w̃•ε (s)

(
γ +

N∑
k=2

γk
s− sk

+

σ∑
j=1

rj∑
l=1

γ′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)]
+O(ε2),

where the vector z• given in Corollary 4.2.

Using same arguments as in the definition of the corrected replace approximations, we define
the corrected discard approximations as follows.

Approximation 3. The corrected discard approximation of the survival function P(Wε > t) of
the exact queueing delay is defined as

ϕ̂•d,ε(t) := P(W •ε > t) + ε
1

u•εω

[(
(z− z•)ω −

N∑
k=2

αk
sk

)
P(W •ε > t)−

(
β −

N∑
k=2

βk
sk

)
µhP(W •ε + Ce > t)

+
(
γ −

N∑
k=2

γk
sk

)
µhP(W •ε +W •ε

′ + Ce > t) +

N∑
k=2

1

sk

(
γkµhP

(
t < W •ε +W •ε

′ + Ce < t+ E(sk)
)

− βkµhP
(
t < W •ε + Ce < t+ E(sk)

)
+ αkP

(
t < W •ε < t+ E(sk)

))

+

σ∑
j=1

rj∑
l=1

(
γ′′j,lµhP

(
W •ε +W •ε

′ + Ce + Erj−l+1(yj) > t
)
− β′′j,lµhP

(
W •ε + Ce + Erj−l+1(yj) > t

)
+ α′′j,lP

(
W •ε + Erj−l+1(yj) > t

))]
,

where P(W •ε > t) is the discard phase-type approximation of P(Wε > t), W •ε
′ is independent and

follows the same distribution of W , and the coefficients β, γ, αk, βk, γk, k = 2, . . . , N , and α′′j,l,
β′′j,l and γ′′j,l, j = 1, . . . , σ, l = 1, . . . , rj , are calculated according to Proposition 3.6.

Approximation 3 can be made rigorous along the same lines as in Proposition 3.8. The simplified
version of this approximation is found in the following lines.

Approximation 4. The simplified corrected discard approximation of the survival function P(Wε >
t) of the exact queueing delay is defined as

ϕ̂•sd,ε(t) := P(W •ε > t) + ε
1

u•εω

[(
(z− z•)ω −

N∑
k=2

αk
sk

)
P(W •ε > t)−

(
β −

N∑
k=2

βk
sk

)
µhP(W •ε + Ce > t)

+
(
γ −

N∑
k=2

γk
sk

)
µhP(W •ε +W •ε

′ + Ce > t) +

σ∑
j=1

rj∑
l=1

(
γ′′j,lµhP

(
W •ε +W •ε

′ + Ce + Erj−l+1(yj) > t
)

− β′′j,lµhP
(
W •ε + Ce + Erj−l+1(yj) > t

)
+ α′′j,lP

(
W •ε + Erj−l+1(yj) > t

))]
,

where P(W •ε > t) is the replace phase-type approximation of P(Wε > t), W •ε
′ is independent and

follows the same distribution of W , and the coefficients β, γ, αk, βk, γk, k = 2, . . . , N , and α′′j,l,
β′′j,l and γ′′j,l, j = 1, . . . , σ, l = 1, . . . , rj , are calculated according to Proposition 3.6.
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In the next section, we perform numerical experiments to check the accuracy of the corrected
phase-type and the simplified corrected phase-type approximations. In addition, we show that
indeed the corrected approximations do not differ significantly from their simplified versions.

5. Numerical experiments

In Section 3.3, we pointed out that the first term of the corrected replace expansion is already a
phase-type approximation of the queueing delay, a result that holds also for the discard expansion.
In this section, we show that addition of the correction term leads to improved approximations
that are significantly more accurate than their phase-type counterparts. Therefore, we check here
the accuracy of the corrected phase-type approximations (see Definitions 1 – 4) by comparing them
with the exact delay distribution and their corresponding phase-type approximations.

For the MArP arrival process of customers we choose a MMPP with two states and a MMPP
with five states. Since it is more meaningful to compare approximations with exact results than
with simulation outcomes, we choose the service time distribution such that we can find an exact
formula for the queueing delay.

As service time distribution we use a mixture of an exponential distribution with rate ν and a
heavy-tailed one that belongs to a class of long-tailed distributions introduced in [2]. The Laplace
transform of the latter distribution is F̃h(s) = 1 − s

(κ+
√
s)(1+

√
s)

, where EC = κ−1 and all higher

moments are infinite. Furthermore, the Laplace transform of the stationary heavy-tailed claim size
distribution is

F̃ eh(s) =
κ

(κ+
√
s)(1 +

√
s)
,

which for κ 6= 1 can take the form

F̃ eh(s) =

(
κ

1− κ

)(
1

κ+
√
s
− 1

1 +
√
s

)
.

For this combination of service time distributions, the survival queueing delay can be found explic-
itly, by following the same ideas as in Theorem 9 of [34].

What is left now is to fix values for the parameters of the mixture models and perform our
numerical experiments. Thus, for the MMPP(2) arrival process we choose the parameters such
that λ1 = 10, λ1 = 1/2, p11 = 8/9, and p22 = 3/100 (the rest of the parameters can be calculated
using the formulas (2)–(5)). For the MMPP(5) model we choose:

P =


7
27

5
27 0 0 5

9
0 1

29
20
29

8
29 0

3
25

2
5

3
10

9
50 0

0 0 7
36

5
18

19
36

12
47

20
47

20
47

5
47

10
47

 ,

and Λ = diag{11, 11, 13, 10, 8}. Although we do not have any restrictions for the parameters of
the involved service time distributions, from a modeling point of view, it is counterintuitive to fit a
heavy-tailed service-time distribution with a mean smaller than the mean of the phase-type service-
type distribution. For this reason, we select κ = 2 and ν = 3.

Finally, note that we performed extensive numerical experiments for various values of the per-
turbation parameter ε in the interval [0.001, 0.1]. We chose to present only the case ε = 0.01, since
the qualitative conclusions for all other values of ε are similar to those presented in this section.
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Figure 1: Exact queueing delay, phase-type, and corrected phase-type approximations for pertur-
bation parameter 0.01, MMPP(2) arrivals, and load of the system 0.908336
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Figure 2: Exact queueing delay, phase-type, and corrected phase-type approximations for pertur-
bation parameter 0.01, MMPP(5) arrivals, and load of the system 0.812845
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For this choice of parameters, the load of the first system is equal to 0.909336 and of the second is
0.812845.

As we observe from Figures 2, the phase-type approximations (replace and discard) give accurate
estimates for small values of the queueing delay, while they are incapable of capturing the correct
tail behavior of the exact survival function of the queueing delay. Contrary, both corrected phase-
type approximations are highly accurate and give a small relative error at the tail. More precisely,
we can observe the following:

• The corrected replace approximation gives better numerical estimates than the corrected
discard approximation.

• The corrected discard approximation always underestimates the exact tail probability of the
queueing delay. Contrary, the corrected replace approximation may overestimate the exact
survival function for small values, but always underestimates the tail of the exact queueing
delay.

• The corrected phase-type approximations do not differ significantly from their simplified
versions. The maximum observed absolute error between the two corrected replace approx-
imations is smaller than 0.0011 for the MMPP(2) model and smaller than 0.00069 for the
MMPP(5) model. The corresponding numbers for the corrected discard approximations are
0.0052 and 0.00167.

• Finally, we estimated the relative error at the tail for all four corrected phase-type approxi-
mations. We found that in the MMPP(2) model the relative error is smaller than 10% for all
the approximations, while this number reduces to 7% in the MMPP(5) model.

6. Conclusions

To conclude, all corrected replace approximations are highly accurate and there is no significant
difference between them. For this reason, the simplified versions of the approximations serve
as excellent substitutes to their original corrected phase-type approximations for estimating the
queueing delay. Finally, the corrected phase-type approximations give a small relative error at the
tail, which can easy be verified that it is O(ε).
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A. Results on perturbation theory

In this section, we provide some preliminary results on linear algebra, matrix functions, and per-
turbation theory that are needed in our analysis. We introduce an N × N matrix function E(s)
with a single parameter s > 0. We say that the matrix function E(s) is regular if det E(s) is not
identically zero as a function of s. In addition, if E(s) is regular (we denote it as det E(s) 6≡ 0),
then the eigenvalues of E(s) are the solutions of the equations det E(s) = 0 [13]. Throughout our
analysis, we assume that the matrix E(s) is regular and that r is a simple eigenvalues of it. In
addition, we assume that the matrix E(s) is analytic in the neighborhood of r. We use the notation
E(n)(s) for the nth derivative of the matrix function E(s). Thus, E(s) can be written as a Taylor
series in the following form:

E(s) = E(0)(r) + (s− r)E(1)(r) + · · · =
∞∑
n=0

(s− r)n

n!
E(n)(r). (34)

To avoid redundant notation, in the forthcoming analysis we use the conventions that E = E(0)(r) =
E(r) and E(n) = E(n)(r).

As a consequence of the fact that the multiplicity of the eigenvalue r is one, the dimension of
the nullspace of E is equal to one. Our first goal is to find the form of the eigenvectors of the
nullspace of matrix E. The following theorem gives us exactly the form of these eigenvectors.

Theorem A.1. If C is an N × N matrix with determinant equal to zero, i.e. det C = 0, and
nullspace of dimension one, then a right N×1 eigenvector that corresponds to the simple eigenvalue

zero is t with coordinates tj = (−1)1+j det C
N\{j}
N\{1}, j ∈ N .

Proof. We need to prove that the inner product of every row of C with t is equal to zero. More
precisely, if ci denotes the ith row of matrix C, we need to show that

cit = 0, i ∈ N .

If cij is the (i, j) element of matrix C, for the first row we have

c1t =
N∑
j=1

c1j(−1)1+j det C
N\{j}
N\{1}

def.
= det C = 0.

For an arbitrary row i = 2, . . . , N , we have

cit =

N∑
j=1

cij(−1)1+j det C
N\{j}
N\{1}.

We expand the determinant of each matrix C
N\{j}
N\{1}, j ∈ N , in minors of the ith row of matrix C.

Observe that the ith row of the initial matrix is indexed i− 1 in every matrix C
N\{j}
N\{1}, due to the

removal of the first row of C. Note also that, every column k placed to the right of the jth column
of matrix C, after the removal of the jth column is shifted one position to the left, therefore it is
indexed as k− 1. Using the notation 1 for the indicator function, after the above observations, we
have

cit =
N∑
j=1

cij(−1)1+j det C
N\{j}
N\{1} =

N∑
j=1

cij(−1)1+j
∑
k 6=j

cik(−1)i−1+k−1{k>j} det C
N\{j,k}
N\{1,i}
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= (−1)i
N∑
j=1

∑
k 6=j

cijcik(−1)j+k−1{k>j} det C
N\{j}
N\{1} = 0,

because for any two arbitrary columns m and l, with m > l, only the summands

cilcim(−1)l+m−1 det C
N\{l,m}
N\{1,i} , and cimcil(−1)m+l det C

N\{l,m}
N\{1,i} ,

appear in the expression of cit and they cancel out with one another. Since, all summands of the
above double sum are coupled and canceled out, the double sum is equal to zero. Thus, we have
proven that the inner product of any column of C with t is equal to zero. Consequently, t is an
eigenvector of matrix C that corresponds to its eigenvalue zero.

Remark 4. If the nullspace of an N × N matrix C has dimension one, then rankC = N − 1.
Therefore, there exists at least one submatrix of C such that its determinant is not equal to zero.

More precisely, there exists at least one combination of row-column (m,n) with det C
N\{n}
N\{m} 6= 0.

Thus, if all determinants det C
N\{j}
N\{1}, j ∈ N , are equal to zero, we can choose the coordinates of the

right eigenvector t, which corresponds to the eigenvalue zero, as tj = (−1)m+j det C
N\{j}
N\{m}, j ∈ N .

Remark 5. If t is an arbitrary eigenvector that belongs to the nullspace of C, then any other
eigenvector z that belongs to the same nullspace is proportional to t. Namely, there exists σ ∈ R
such that z = σt.

From Theorem A.1 and Remark 4, we have as consequence the following corollary for the right
eigenvectors of the matrix E.

Corollary A.2. If m ∈ N is such that det E
N\{j}
N\{m} 6= 0 for at least one j ∈ N , a right eigenvector

t of the nullspace of E has coordinates

tj = (−1)m+j det E
N\{j}
N\{m}, j ∈ N .

We now perturb the matrix function E(s) by εK(s). Namely, we consider the matrix E(s) +
εK(s), where we assume that the matrix K(s) is analytic in the neighborhood of r. If K(n) is the
nth derivative of the matrix function K(s) at s = r, the Taylor series of matrix K(s) around r is:

K(s) = K + (s− r)K(1) + · · · =
∞∑
n=0

(s− r)n

n!
K(n), (35)

where K(n) = K(n)(r) and K = K(0). Our goal is to find the form of the eigenvectors of the
nullspace of E(s) + εK(s). Thus, as a first step we find the roots of the equation

det
(
E(s) + εK(s)

)
= 0. (36)

At this point, we need the following result from perturbation theory, which gives us the root of
a function f(s) when it it perturbed by a small amount.

Theorem A.3. Let r be a simple root of an analytic function f(s). For some function h(s, ε) and
for all small real values ε, we define the perturbed function

F (s, ε) = f(s) + h(s, ε). (37)
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If h(s, ε) is analytic in s and ε near (r, 0), then F (s, ε) has a unique simple root (x(ε), ε) near
(r, 0) for all small values of ε. Moreover, x(ε) is an analytic function in ε, and if ∂

∂snh(s, 0) ≡ 0,
n = 0, 1, . . . , then it holds

x(ε) = r − ε
∂
∂εh(r, 0)

f (1)(r)
+O(ε2). (38)

Proof. From the Implicit function theorem [5], we know that there exist a unique function x, with
x(0) = r, such that for all small values of ε, it holds that F

(
x(ε), ε

)
= 0 close to (r, 0). Moreover,

the function x is analytic in ε. To find the linear Taylor polynomial approximation of x(ε), which
is defined as

x(ε) = x(0) + εx(1)(0) +O(ε2),

we differentiate the function F
(
x(ε), ε

)
= 0 as a function of ε, and by using the chain rule we obtain

∂

∂x(ε)
F
(
x(ε), ε

)
x(1)(ε) +

∂

∂ε
F
(
x(ε), ε

)
= 0

⇒(
f (1)(x(ε)) +

∂

∂x(ε)
h(x(ε), ε)

)
x(1)(ε) +

∂

∂ε
h(x(ε), ε) = 0.

In the latter equation, we substitute ε = 0 and we solve it with respect to x(1)(0). Since r is a
simple root the function f , it holds that f (1)(r) 6= 0 [20]. Thus, we have

f (1)(r)x(1)(0) +
∂

∂ε
h(r, 0) = 0 ⇒ x(1)(0) = −

∂
∂εh(r, 0)

f (1)(r)
,

which completes the proof.

From Theorem A.3, we have the following lemma.

Lemma A.4. If the functions f(s) and h(s, ε) satisfy the assumptions of Theorem A.3, and g(s)
is an analytic function with g(r) 6= 0, then the perturbed function

G(s, ε) = f(s)g(s) + h(s, ε)g(s),

has the same unique simple root (x(ε), ε) near (r, 0) for all small values of ε with the perturbed
function F (s, ε) = f(s) + h(s, ε). Namely

x(ε) = r − ε
∂
∂εh(r, 0)

f (1)(r)
+O(ε2).

Proof. According to Theorem A.3, the unique simple root x(ε) of G(s, ε) near (r, 0) for all small
values of ε satisfies

x(ε) = r − ε
∂
∂ε

(
h(s, ε)g(s)

)∣∣
(r,0)

∂
∂s

(
f(r)g(r)

)∣∣
s=r

+O(ε2) = r − ε
∂
∂εh(r, 0)g(r)

f (1)(r)g(r) + f(r)g(1)(r)
+O(ε2)

= r − ε
∂
∂εh(r, 0)

f (1)(r)
+O(ε2),

because f(r) = 0.
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We also need the following property for the determinant of a square matrix.

Proposition A.5. If C and D are N×N matrices with columns C•i and D•i, i ∈ N , respectively,
then

det(C•1 + εD•1, . . . ,C•N + εD•N ) = det(C•1, . . . ,C•N )︸ ︷︷ ︸
det(C)

+ε

N∑
i=1

det(C•1, . . . ,D•i, . . . ,C•N ) +O(ε2).

Proof. The result is an immediate consequence of the additive property of determinants.

As shown in the following corollary, we can find the roots of the equation det
(
E(s)+εK(s)

)
= 0,

combining the results of Theorem A.3 and Proposition A.5.

Corollary A.6. The number rε = r − εδ +O(ε2), where

δ =

∑N
j=1 det

(
E•1, . . . ,K•j , . . . ,E•N

)∑N
j=1 det

(
E•1, . . . ,E•j

(1), . . . ,E•N
) ,

is a simple root of the determinant det
(
E(s) + εK(s)

)
= 0.

Proof. According to Proposition A.5,

det
(
E(s) + εK(s)

)
= det E(s) + ε

N∑
j=1

det
(
E•1(s), . . . ,K•j(s), . . . ,E•N (s)

)
+O(ε2).

Note that det E(s) is an analytic function in r and its derivative is defined as

d

ds
det E(s) =

N∑
j=1

det
(
E•1(s), . . . ,E•j

(1)(s), . . . ,E•N (s)
)
.

Since r is a simple eigenvalue of E(s), by the definition of the multiplicity of a root of an analytic
function, it holds that d

ds det E(s) |s=r 6= 0 (see [20]). In addition, the function
∑N

j=1 det
(
E•1(s), . . . ,

K•j(s), . . . ,E•N (s)
)

is also analytic in the neighborhood of r. The result is then immediate from
Theorem A.3.

According to Corollary A.6, the eigenvalue rε of the matrix E(s)+εK(s) is simple. Consequently,
the dimension of the nullspace of the matrix E(rε)+εK(rε) is equal to one. We apply Theorem A.1
to find the eigenvectors of the matrix E(s) + εK(s), that correspond to its eigenvalue rε. Before
that though, we do the following simplification. From Eqs. (34)–(35) we have the Taylor expansion

E(s) + εK(s) =

∞∑
n=0

(s− r)n

n!

(
E(n) + εK(n)

)
.

Evaluating this at the point rε = r − εδ +O(ε2), we obtain

E(rε) + εK(rε) = E − εδE(1) + εK +O(ε2U) = E + ε
(
K − δE(1)

)
+O(ε2U),

where we denote by U the matrix with all its elements equal to one.
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Theorem A.7. A right eigenvector of matrix E + ε
(
K − δE(1)

)
that corresponds to its eigenvalue

rε is
w = t− εδt(1) + εk +O(ε2e),

where t is a right eigenvector of E defined as in Corollary A.2 and t(1) is its derivative. Moreover,
k is an N × 1 vector with coordinates

kj = (−1)m+j
N−1∑
k=1

det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

(
K
N\{j}
N\{m}

)
•k
, . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)
, j ∈ N ,

where the choice of m ∈ N is explained in Corollary A.2.

Proof. According to Remark 4 and Corollary A.2, there exists an m ∈ N such that the vector t
with coordinates

tj = (−1)m+j det E
N\{j}
N\{m}, j ∈ N ,

is a right eigenvector of matrix E. We prove that a right eigenvector that corresponds to the matrix
E + ε

(
K − δE(1)

)
is w with coordinates

wj = (−1)m+j det
(
E + ε

(
K − δE(1)

))N\{j}
N\{m}, j ∈ N .

Using Proposition A.5, the above equation simplifies to

wj = (−1)m+j det
(
E + ε

(
K − δE(1)

))N\{j}
N\{m}

= (−1)m+j det E
N\{j}
N\{m} + ε(−1)m+j

N−1∑
k=1

det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

((
K − δE(1)

)N\{j}
N\{m}

)
•k
, . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)

= (−1)m+jE
N\{j}
N\{m} − ε(−1)m+jδ

N−1∑
k=1

det

((
E
N\{j}
N\{m}

)
•1
, . . . , . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)

+ ε(−1)m+j
N−1∑
k=1

det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

(
K
N\{j}
N\{m}

)
•k
, . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)
= tj − εδt(1)

j + εkj ,

where t
(1)
j = d

ds tj(s)
∣∣
s=r

and

kj = (−1)m+j
∑N−1

k=1 det

((
E
N\{j}
N\{m}

)
•1
, . . . ,

(
K
N\{j}
N\{m}

)
•k
, . . . ,

(
E
N\{j}
N\{m}

)
•N−1

)
.

Observe that t is not identically equal to zero, because it is an eigenvector of E. Thus, the
vector w is also not identically equal to zero. Therefore, according to Remark 4, w is an eigenvector
of the matrix E + ε

(
K − δE(1)

)
, which completes the proof.

B. Proofs

of Theorem 2.3. To prove the theorem, we need formulas that result from the properties of the
determinants. We define the sets Fi = {1, . . . , i} and Li = {i, . . . , N}, where F0 = LN+1 = ∅.
Expansion by minors along the first row and the additive property of determinants give for i ∈ N ,

det E(s)LiLi =G̃(s)λi det
((

Q(2) ◦P
){i}
Li
,E(s)

Li+1

Li

)
+ λi det

((
Q(1) ◦P

){i}
Li
,E(s)

Li+1

Li

)
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+ (s− λi) det E(s)
Li+1

Li+1
.

Suppose now that V = {i1, . . . , in} and W = {j1, . . . , jk} are two non-overlapping (V ∩W = ∅)
collections of n and k elements from N , respectively, with 1 ≤ n + k ≤ N − 1. Furthermore, we
choose j such that j > max{l : l ∈ V ∪W}. Then, the determinant of the (N + 1 − j + n + k)-

dimension square matrix
((

Q(1) ◦P
)V
V ∪W∪Lj

on
(
Q(2) ◦P

)W
V ∪W∪Lj

,E(s)
Lj
V ∪W∪Lj

)
satisfies,

det
((

Q(1) ◦P
)V
V ∪W∪Lj

on
(
Q(2) ◦P

)W
V ∪W∪Lj

,E(s)
Lj

V ∪W∪Lj

)
=G̃(s)λj det

((
Q(1) ◦P

)V
V ∪W∪Lj

on
(
Q(2) ◦P

)W∪{j}
V ∪W∪Lj

,E(s)
Lj+1

V ∪W∪Lj

)
+ λj det

((
Q(1) ◦P

)V ∪{j}
V ∪W∪Lj

on
(
Q(2) ◦P

)W
V ∪W∪Lj

,E(s)
Lj+1

V ∪W∪Lj

)
+ (s− λj) det

((
Q(1) ◦P

)V
V ∪W∪Lj+1

on
(
Q(2) ◦P

)W
V ∪W∪Lj+1

,E(s)
Lj+1

V ∪W∪Lj+1

)
.

Note that det E(s) = det E(s)L1
L1

. The theorem is proven by applying recursively the above
formulas.

of Theorem 2.4. It is known that

Eij(s) = (−1)i+j det E(s)
N\{i}
N\{j}.

The case i = j is merely an application of Theorem 2.3, where instead of state space N we have
N \ {i}. Therefore,

Eii(s) =
∑

S⊂N\{i}

λSζS
c
(s) det

(
Q(1) ◦P

)S
S

+
N−1∑
k=1

G̃k(s)
∑

Γ⊂N\{i}
|Γ|=k

∑
S⊂N\{i}
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
.

When i 6= j, we need to separate the two cases i < j and i > j. We first deal with the case i < j.
We then have,

Eij(s) =(−1)i+jG̃(s)λj det
(
E(s)

Fj−1\{i}
N\{j} ,

(
Q(2) ◦P

){j}
N\{j},E(s)

Lj+1

N\{j}

)
+(−1)i+jλj det

(
E(s)

Fj−1\{i}
N\{j} ,

(
Q(1) ◦P

){j}
N\{j},E(s)

Lj+1

N\{j}

)
.

We find Eij(s) by expanding the determinants that appear above by minors along their first
row. For this reason, it is important to know what is the position of the elements En,n(s) =

G̃nn(s)pnnλn + s − λn, n ∈ N \ {i, j}, in the above reduced matrix. Note that the elements
En,n(s) with n = i + 1, . . . , j − 1, are on the diagonal of matrix E(s). However, when j 6= i + 1

they drop to the lower-diagonal of the matrices
(
E(s)

Fj−1\{i}
N\{j} ,

(
Q(2) ◦ P

){j}
N\{j},E(s)

Lj+1

N\{j}

)
and(

E(s)
Fj−1\{i}
N\{j} ,

(
Q(1) ◦P

){j}
N\{j},E(s)

Lj+1

N\{j}

)
It is immediately obvious that if this displacement takes place, it will result in a change of sign

for the determinants. For this reason, we split the columns of the latter matrices in the subsets
Fi−1, T , {j} and Lj+1, where T = {i+ 1, . . . , j − 1}. We fix some m ∈ N \ {i, j} and we separate
the following cases:
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1. m ∈ Fi−1. For every two non-overlapping collections of n and k elements from Fm−1, say
V = {i1, . . . , in} and W = {j1, . . . , jk}, with 1 ≤ n+ k ≤ m− 1, it holds that

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)

(Lm∩Fi−1)∪T
Ω ,

(
Q(2) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
=G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
(Lm+1∩Fi−1)∪T
Ω ,

(
Q(2) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
+λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

(Lm+1∩Fi−1)∪T
Ω ,

(
Q(2) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
+(s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

(Lm+1∩Fi−1)∪T
Ω\{m} ,

(
Q(2) ◦P

){j}
Ω\{m},E(s)

Lj+1

Ω\{m}

)
,

and,

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)

(Lm∩Fi−1)∪T
Ω ,

(
Q(1) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
=G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
(Lm+1∩Fi−1)∪T
Ω ,

(
Q(1) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
+λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

(Lm+1∩Fi−1)∪T
Ω ,

(
Q(1) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
+(s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

(Lm+1∩Fi−1)∪T
Ω\{m} ,

(
Q(1) ◦P

){j}
Ω\{m},E(s)

Lj+1

Ω\{m}

)
,

where Ω = V ∪W ∪ (Lm ∩ Fi−1) ∪ {i} ∪ T ∪ Lj+1.

2. m ∈ T with T 6= ∅ (note that T 6= ∅ when j 6= i + 1). For every two non-overlapping
collections of n and k elements from Fm−1 \ {i}, say V = {i1, . . . , in} and W = {j1, . . . , jk},
with 1 ≤ n+ k ≤ m− 2, it holds that

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)Lm∩T

Ω ,
(
Q(2) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
=G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
Lm+1∩T
Ω ,

(
Q(2) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
+λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

Lm+1∩T
Ω ,

(
Q(2) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
−(s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

Lm+1∩T
Ω\{m} ,

(
Q(2) ◦P

){j}
Ω\{m},E(s)

Lj+1

Ω\{m}

)
,

and

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)Lm∩T

Ω ,
(
Q(1) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
=G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
Lm+1∩T
Ω ,

(
Q(1) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
+λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

Lm+1∩T
Ω ,

(
Q(1) ◦P

){j}
Ω
,E(s)

Lj+1

Ω

)
−(s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

Lm+1∩T
Ω\{m} ,

(
Q(1) ◦P

){j}
Ω\{m},E(s)

Lj+1

Ω\{m}

)
,

where Ω = V ∪W ∪ {i} ∪ (Lm ∩ T ) ∪ Lj+1.

3. m ∈ Lj+1. For every two non-overlapping collections of n and k elements from Fm−1 \ {i},
say V = {i1, . . . , in} and W = {j1, . . . , jk}, with 1 ≤ n+ k ≤ m− 2, it holds that

det
((

Q(1) ◦P
)V

Ω
on
(
Q(2) ◦P

)W
Ω
,E(s)Lm

Ω

)
= G̃(s)λm det

((
Q(1) ◦P

)V
Ω
on
(
Q(2) ◦P

)W∪{m}
Ω

,E(s)
Lm+1

Ω

)
+λm det

((
Q(1) ◦P

)V ∪{m}
Ω

on
(
Q(2) ◦P

)W
Ω
,E(s)

Lm+1

Ω

)
+(s− λm) det

((
Q(1) ◦P

)V
Ω\{m} on

(
Q(2) ◦P

)W
Ω\{m},E(s)

Lm+1

Ω\{m}

)
,

where Ω = V ∪W ∪ Lm.
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Using the above formulas to evaluate all the involved determinants, we find that

Eij(s) =(−1)i+jG̃(s)

N−2∑
k=0

G̃k(s)
∑

Γ⊂N\{i,j}
|Γ|=k;

S⊂N\{i,j}
S⊃Γ;
R⊂S∩T

(−1)|R|λS∪{j}ζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S∪{i} on

(
Q(2) ◦P

)Γ∪{j}
S∪{i}

)

+(−1)i+j
N−2∑
k=0

G̃k(s)
∑

Γ⊂N\{i,j}
|Γ|=k;

S⊂N\{i,j}
S⊃Γ;
R⊂S∩T

(−1)|R|λS∪{j}ζS
c

(s) det
((

Q(1) ◦P
)(S\Γ)∪{j}
S∪{i} on

(
Q(2) ◦P

)Γ
S∪{i}

)
,

which holds even when T = ∅.
We assume now that i > j, and we have to calculate

Eij(s) =(−1)i+jG̃(s)λj det
(
E(s)

Fj−1

N\{j},
(
Q(2) ◦P

){j}
N\{j},E(s)

Lj+1\{i}
N\{j}

)
+(−1)i+jλj det

(
E(s)

Fj−1

N\{j},
(
Q(1) ◦P

){j}
N\{j},E(s)

Lj+1\{i}
N\{j}

)
.

In this case, T = {j+1, . . . , i−1}. When T 6= ∅, the elements En,n(s) = G̃nn(s)pnnλn+s−λn, with
n = j + 1, . . . , i− 1, which are on the diagonal of matrix E(s), move to the upper-diagonal of the

matrices
(
E(s)

Fj−1

N\{j},
(
Q(2)◦P

){j}
N\{j},E(s)

Lj+1\{i}
N\{j}

)
and

(
E(s)

Fj−1

N\{j},
(
Q(1)◦P

){j}
N\{j},E(s)

Lj+1\{i}
N\{j}

)
.

The formula is exactly the same, with T = {i+ 1, . . . , j− 1}. Thus, gathering all the above, for
i 6= j

Eij(s) =(−1)i+j
N−1∑
k=1

G̃k(s)
∑

Γ⊂N\{i,j}
|Γ|=k−1;
S⊂N\{i,j}

S⊃Γ;
R⊂S∩Tij

(−1)|R|λS∪{j}ζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S∪{i} on

(
Q(2) ◦P

)Γ∪{j}
S∪{i}

)

+(−1)i+j
N−2∑
k=0

G̃k(s)
∑

Γ⊂N\{i,j}
|Γ|=k;

S⊂N\{i,j}
S⊃Γ;

R⊂S∩Tij

(−1)|R|λS∪{j}ζS
c

(s) det
((

Q(1) ◦P
)(S\Γ)∪{j}
S∪{i} on

(
Q(2) ◦P

)Γ
S∪{i}

)
,

where mij = min{i, j}, Mij = max{i, j} and Tij = {mij + 1, . . . ,Mij − 1}.

of Theorem 2.5. Observe that

suE(s)ei =s

N∑
l=1

ulEli(s) = s

N∑
l=1
l 6=i

ulEli(s) + suiEii(s).

Using the definition of Eij(s), ∀i, j ∈ N , and Theorem 2.4, the result is straightforward.

of Proposition 3.1. In this case, the determinant det E(s) (see Theorem 2.3) takes the form

det E(s) =
∑
S⊂N

λSζS
c
(s) det

(
Q(1) ◦P

)S
S
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+
N∑
k=1

(
q(s)

p(s)

)k ∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
, (39)

and the numerator of w̃(s) (see Eq. (16) and Theorem 2.5) becomes

suE(s)ω = s

N∑
i=1

uiωi

N−1∑
k=0

(
q(s)

p(s)

)k ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+s

N∑
i=1

ωi

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

(
q(s)

p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k−1;
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)

+s

N∑
i=1

ωi

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=0

(
q(s)

p(s)

)k ∑
Γ⊂N\{l,i}
|Γ|=k;

S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
.

(40)

Observe that both the denominator (39) and the numerator (40) of w̃(s) are rational functions
with denominators the polynomial p(s) raised to some power. To simplify as much as possible the
expression of w̃(s), we multiply (39) and (40) with

(
p(s)

)r
, where r ∈ N is the highest possible

power of p(s) that is involved in the formulas. It is immediately obvious that r ≤ K. Therefore,
we multiply both (39) and (40) with

(
p(s)

)r
When multiplied with

(
p(s)

)r
, the denominator of w̃(s) becomes(

p(s)
)r

det E(s) =
(
p(s)

)r ∑
S⊂N

λSζS
c
(s) det

(
Q(1) ◦P

)S
S

+

N∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N
|Γ|=k

∑
S⊂N
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
. (41)

The term
(
p(s)

)r∑
S⊂N λ

SζS
c
(s) det

(
Q(1) ◦ P

)S
S

is a polynomial of degree rM + N . The

coefficient of srM+N is found when we set S = ∅, and it is equal to 1. Let now n be the degree
of the polynomial q(s). Therefore, the second term of the right hand side of (41) is a polynomial
of degree at most n + (r − 1)M + N − 1 (the highest order of s is found when |S| = 1). Since
n ≤M − 1, it is immediately obvious that

(
p(s)

)r
det E(s) is a polynomial of degree N + rM , thus

it has exactly N + rM roots. From Theorem 2.2, we know that exactly N − 1 of its roots have
positive real part and that zero is also a root. We denote these roots as s1 = 0, and s2, . . . , sN , and
we assume them to be simple. We denote the remaining rM roots with negative real part as −xj ,
j = 1, . . . , rM . Consequently, the denominator of w̃(s) is written as

(
p(s)

)r
det E(s) = s

N∏
k=2

(s− sk)
rM∏
j=1

(s+ xj). (42)
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Similarly, the numerator of w̃(s) becomes

(
p(s)

)r
suE(s)ω =s

N∑
i=1

uiωi
(
p(s)

)r ∑
S⊂N\{i}

λSζS
c

(s) det
(
Q(1) ◦P

)S
S

+s

N∑
i=1

uiωi

N−1∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+s

N∑
i=1

ωi

N∑
l=1
l 6=i

ul(−1)l+i
N−1∑
k=1

(
q(s)

)k(
p(s)

)r−k
×

∑
Γ⊂N\{l,i}
|Γ|=k−1;
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s) det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)

+s

N∑
i=1

ωi

N∑
l=1
l 6=i

ul(−1)l+i
N−2∑
k=0

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{l,i}
|Γ|=k;

S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c

(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)
. (43)

It is easy to verify that
(
p(s)

)r
suE(s)ω is also a polynomial of degree rM +N . The coefficient

of srM+N is equal to uω and it is determined by the term s
∑N

i=1 uiωi
(
p(s)

)r∑
S⊂N\{i} λ

SζS
c
(s)

det
(
Q(1) ◦P

)S
S

for S = ∅. We know from Theorem 2.2, that the vector u is such that the numbers
sk, k ∈ N , are also roots of the numerator of w̃(s). We denote the rest rM roots of the numerator
as −yj , j = 1, . . . , rM . Therefore, the numerator of w̃(s) is written as

(
p(s)

)r
suE(s)ω = uωs

N∏
k=2

(s− sk)
rM∏
j=1

(s+ yj). (44)

Combining (42) and (44), the result is immediate.

of Theorem 3.2. Since K(0) is an N ×N zero matrix, it is evident that sε,1 = 0 is an eigenvalue of
the matrix Hε(s)+sI−Λ (see Eq. (28)). According to Corollary A.6, the numbers sε,i, i = 2, . . . , N ,
are also simple eigenvalues of this matrix. Thus, according to Theorem 2.2, there are no other roots
of the equation det

(
E(s) + εK(s)

)
= 0 with non-negative real part besides the values sε,i, i ∈ N .

For the second part of proof we have the following. Using Theorem A.7, we can evaluate N − 1
column vectors wε,i such that(

Hε(sε,i) + sε,iI −Λ
)
wε,i = 0, i = 2, . . . , N.

Since sε,i 6= 0, i = 2, . . . , N , post-multiplying equation (26) with s = sε,i by wε,i, we obtain

uεwε,i = 0, i = 2, . . . , N.
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To derive the remaining equation, we take the derivative of equation (26) with respect to s, yielding

Φ̃ε(s)
(
Hε

(1)(s) + I
)

+ Φ̃(1)
ε (s)

(
Hε(s) + sI −Λ

)
= uε.

Setting s = 0 we get
Φ̃ε(0)

(
Hε

(1)(0) + I
)

+ Φ̃(1)
ε (0)

(
P− I

)
Λ = uε.

Post-multiplying by Λ−1e gives

Φ̃ε(0)
(
Hε

(1)(0) + I
)
Λ−1e + Φ̃(1)

ε (0)
(
P− I

)
ΛΛ−1e = uεΛ

−1e.

Finally, using (P − I)e = 0, Hε
(1)(0) = −MΛ + ε

(
µp − µh

)
Q(2) ◦ PΛ and Φ̃ε(0) = π (where

the latter follows from (26) with s = 0 and the normalization equation (27)), the above can be
simplified to

π
(
Λ−1 −M

)
e + ε(µp − µh)πQ(2) ◦Pe = uεΛ

−1e.

The uniqueness of the solution follows from the general theory of Markov chains that under the
condition of stability, there is a unique stationary distribution and thus also a unique solution Φ̃ε(s)
to the equations (26) and (27). This completes the proof.

of Proposition 3.6. Recall that r is the maximum power of p(s) that appears in the formulas.
Therefore, to use perturbation analysis, we multiply both det Eε(s) and suεEε(s)ω with

(
p(s)

)r
.

So, if we set

ξrM+N−1(s) =
N∑
k=1

k
(
q(s)

)k−1(
p(s)

)r−k+1
∑
Γ⊂N
|Γ|=k;
S⊂N
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)
, (45)

then, (
p(s)

)r
det Eε(s) =

(
p(s)

)r
det E(s) + εs

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
ξrM+N−1(s) +O(ε2).

Note that the polynomial ξrM+N−1(s) is of degree at most rM + N − 1, and the coefficient of

srM+N−1 is equal to γ =
∑N

i=1 λi det
(
Q(2) ◦P

){i}
{i} =

∑N
i=1 λiq

(2)
ii pii. Theorem 3.2 guarantees that

the function
(
p(s)

)r
det Eε(s) has exactly N−1 roots with positive real part and it also has sε,1 = 0.

The roots with positive real part are of the form sε,k = sk − εδk +O(ε2), k = 2, . . . , N , where

δk =

(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)
ξrM+N−1(sk)∏N

l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + xj)

=

(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)
ξrM+N−1(sk)w̃(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

. (46)

Thus, if we set

d(s) =

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
ξrM+N−1(s)w̃(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

−
N∑
k=2

δk
s− sk

, (47)

the denominator of w̃ε(s) multiplied by
(
p(s)

)r
can be written as

(
p(s)

)r
det Eε(s) = s

rM∏
j=1

(s+ xj)
N∏
k=2

(s− sk + εδk +O(ε2))
(
1 + εd(s) +O(ε2)

)
. (48)
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Note that the function d(s) is well defined in the positive half plane due to the definition (46) of
δk, k = 2, . . . , N . Similarly, if we set

ξi,l,rM+N−2(s) =1{l=i}

N−1∑
k=1

k
(
q(s)

)k−1(
p(s)

)r−k+1
∑

Γ⊂N\{i}
|Γ|=k;

S⊂N\{i}
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)

+1{l 6=i}

[
(−1)l+i

N−1∑
k=1

k
(
q(s)

)k−1(
p(s)

)r−k+1
∑

Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+ (−1)l+i

N−2∑
k=1

k
(
q(s)

)k−1(
p(s)

)r−k+1
∑

Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)]
, (49)

and

ξ′i,l,rM+N−1(s) =1{l=i}

[(
p(s)

)r ∑
S⊂N\{i}

λSζS
c
(s) det

(
Q(1) ◦P

)S
S

+
N−1∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{i}
|Γ|=k

∑
S⊂N\{i}
S⊃Γ

λSζS
c
(s) det

((
Q(1) ◦P

)S\Γ
S

on
(
Q(2) ◦P

)Γ
S

)]

+1{l 6=i}

[
(−1)l+i

N−1∑
k=1

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{l,i}
|Γ|=k−1

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)S\Γ
S∪{l} on

(
Q(2) ◦P

)Γ∪{i}
S∪{l}

)
+(−1)l+i

N−2∑
k=0

(
q(s)

)k(
p(s)

)r−k ∑
Γ⊂N\{l,i}
|Γ|=k

∑
S⊂N\{l,i}
S⊃Γ;

R⊂S∩Tli

(−1)|R|λS∪{i}ζS
c
(s)

× det
((

Q(1) ◦P
)(S\Γ)∪{i}
S∪{l} on

(
Q(2) ◦P

)Γ
S∪{l}

)]
, (50)

then (
p(s)

)r
suεEε(s)ω =

(
p(s)

)r
suE(s)ω + εs

[
N∑
i=1

ωi

N∑
l=1

zlξ
′
i,l,rM+N−1(s)

+ s
(
µpF̃

e
p (s)− µhF̃ eh(s)

) N∑
l=1

ωi

N∑
l=1

ulξi,l,rM+N−2(s)

]
+O(ε2).
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Note that the polynomial
∑N

l=1 ωi
∑N

l=1 zlξ
′
i,l,rM+N−1(s) is of degree rM + N − 1, and the coef-

ficient of srM+N−1 is zω. Analogously, the polynomial s
∑N

l=1 ωi
∑N

l=1 ul × ξi,l,rM+N−2(s) is of

degree at most rM + N − 1, and the coefficient of srM+N−1 is equal to β =
∑N

l=1 ωi
∑N

l=1 ul

×
(
1{l=i}

∑N
j=1
j 6=i

λjq
(2)
jj pjj + 1{l 6=i}(−1)l+iλiq

(2)
li pli

)
. The first part is for S = Γ = {j}, and the

second part for S = Γ = ∅. Theorem 3.2 guarantees that the roots sε,k, k ∈ N , are also roots of

the numerator of w̃ε(s). Therefore, applying perturbation analysis to
(
p(s)

)r
suεEε(s)ω results in

an equivalent definition for each δk, k = 2, . . . , N , as

δk =

(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)
sk
∑N
i,l=1 ωiulξi,l,rM+N−2(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

+

∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

. (51)

Now, if we set

n(s) =

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
s
∑N

i,l=1 ωiulξi,l,rM+N−2(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

+

∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

−
N∑
k=2

δk
s− sk

,

(52)

the numerator of w̃ε(s) multiplied by
(
p(s)

)r
can be written as

(
p(s)

)r
suεEε(s)ω = uωs

rM∏
j=1

(s+ yj)
N∏
k=2

(
s− sk + εδk +O(ε2)

)
×
(
1 + εn(s) +O(ε2)

)
. (53)

Note that the function n(s) is well defined in the positive half plane due to the definition (51) of
δk, k = 2, . . . , N . Combining (48) and (53), we obtain

w̃ε(s) =
uω
∏rM
j=1(s+ yj)∏rM

j=1(s+ xj)
· 1 + εn(s) +O(ε2)

1 + εd(s) +O(ε2)
= w̃(s)

(
1 + εn(s) +O(ε2)

)(
1− εd(s) +O(ε2)

)
=w̃(s) + εw̃(s)

(
n(s)− d(s)

)
+O(ε2)

=w̃(s) + ε
1

uω
w̃(s)

(∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(s)∏N

k=2(s− sk)
∏rM
j=1(s+ yj)

+
(
µpF̃

e
p (s)− µhF̃ eh(s)

)s∑N
i=1 ωi

∑N
l=1 ulξi,l,rM+N−2(s)∏N

k=2(s− sk)
∏rM
j=1(s+ yj)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

ξrM+N−1(s)∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

)
+O(ε2)

=w̃(s) + ε
1

uω
w̃(s)

[(
zω +

N∑
k=2

αk
s− sk

+

rM∑
j=1

α′j · yj
s+ yj

)
+
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
β +

N∑
k=2

βk
s− sk

+

rM∑
j=1

β′j · yj
s+ yj

)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

(
γ +

N∑
k=2

γk
s− sk

+

rM∑
j=1

γ′j · yj
s+ yj

)]
+O(ε2), (54)

where the last equality comes from simple fraction decomposition under the assumption that the
roots −yj , j = 1, . . . , rM , are simple. The coefficients αk, βk, γk, k = 2, . . . , N , and α′j , β

′
j , γ
′
j ,

j = 1, . . . , rM , are as follows

αk =

∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(sk)∏N

l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

, (55)
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βk =
sk
∑N

i=1 ωi
∑N

l=1 ulξi,l,rM+N−2(sk)∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

, (56)

γk =
ξrM+N−1(sk)∏N

l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

, (57)

α′j =

∑N
i=1 ωi

∑N
l=1 zlξ

′
i,l,rM+N−1(−yj)

yi,j
∏N
k=2(−yj − sk)

∏rM
l=1
l 6=j

(−yj + yl)
, (58)

β′j =
−
∑N

i=1 ωi
∑N

l=1 ulξi,l,rM+N−2(−yj)∏N
k=2(−yj − sk)

∏rM
l=1
l 6=j

(−yj + yl)
, (59)

γ′j =
ξrM+N−1(−yj)

yj
∏N
k=2(−yj − sk)

∏rM
l=1
l 6=j

(−yj + yl)
. (60)

The above results hold when all roots −yj , j = 1, . . . , rM , are simple. Suppose now that only
σ of the roots are distinct and that the multiplicity of root −yj , j = 1, . . . , σ, is rj , such that∑σ

j=1 rj = rM . In this case,

w̃ε(s) = w̃(s) + ε
1

uω
w̃(s)

[(
zω +

N∑
k=2

αk
s− sk

+

σ∑
j=1

rj∑
l=1

α′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)

+
(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
β +

N∑
k=2

βk
s− sk

+
σ∑
j=1

rj∑
l=1

β′′j,l · (yj)rj−l+1

(s+ yi,j)rj−l+1

)

−
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

(
γ +

N∑
k=2

γk
s− sk

+

σ∑
j=1

rj∑
l=1

γ′′j,l · (yj)rj−l+1

(s+ yj)rj−l+1

)]
+O(ε2), (61)

where αk, βk and γk, k = 2, . . . , N , are defined through (55)–(57). For each j = 1, . . . , σ, the
coefficients α′′j,p, p = 1, . . . , rj , are the unique solution to the following linear system of rj equations

d

dsn

[
N∑
i=1

ωi

N∑
l=1

zlξ
′
i,l,rM+N−1(s)

]∣∣∣∣∣
s=−yj

=
d

dsn

[
N∏
k=2

(s− sk)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

α′′j,p (yj)
rj−p+1(s+ yj)

p−1

]∣∣∣∣∣
s=−yj

,

(62)

for n = 0, . . . , rj . Similarly, for each j = 1, . . . , σ, the coefficients β′′j,p and γ′′j,p, p = 1, . . . , rj , are
the respective unique solutions to the following two linear system of rj equations

d

dsn

[
s

N∑
i=1

ωi

N∑
l=1

ulξi,l,rM+N−2(s)

]∣∣∣∣∣
s=−yj

=
d

dsn

[
N∏
k=2

(s− sk)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

β′′j,p (yj)
rj−p+1(s+ yj)

p−1

]∣∣∣∣∣
s=−yj

,

(63)

d

dsn

[
ξrM+N−1(s)

]∣∣∣∣∣
s=−yj

=
d

dsn

[
N∏
k=2

(s− sk)

σ∏
l=1
l 6=j

(s+ yl)
rl

rj∑
p=1

γ′′j,p (yj)
rj−p+1(s+ yj)

p−1

]∣∣∣∣∣
s=−yj

,

(64)

for n = 0, . . . , rj .
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of Theorem 3.7. Here, we follow the notation we introduced in Proposition 3.6. We denote by θ̃(s)
the correction term (the coefficient of ε) in the expression of w̃ε(s). In order to apply Laplace
inversion to θ̃(s), we first reorder the involved terms (see Eq. (61)) as

θ̃(s) =
1

uω
w̃(s)

[(
zω + β

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
− γ
(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

)

+

N∑
k=2

1

s− sk

(
αk + βk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
− γk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

)

+
σ∑
j=1

rj∑
l=1

1

(s+ yj)rj−l+1

(
α′′j,l + β′′j,l

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
− γ′′j,l

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)

)]
.

(65)

From the above formula it is evident that only the terms in the middle bracket cannot be inverted
directly as they are, because of the singularities they seem to have in the positive half plane. Thus,
we treat them separately in the next lines. From the two equivalent definitions (46) and (51) of
the perturbation terms δk, k = 2, . . . , N , and the relations (55)–(57) we obtain that

αkw̃(sk) + βk
(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)
w̃(sk)− γk

(
µpF̃

e
p (sk)− µhF̃ eh(sk)

)(
w̃(sk)

)2
= 0, k = 2, . . . , N.

The above equations are equivalent to

0 =αk

∫ ∞
x=0

e−skxdP(W ≤ x) + βi,k

(
µp

∫ ∞
x=0

e−skxdP(W +Be ≤ x)− µh
∫ ∞
x=0

e−skxdP(W + Ce ≤ x)
)

− γk
(
µp

∫ ∞
x=0

e−skxdP(W +W ′ +Be ≤ x)− µh
∫ ∞
x=0

e−skxdP(W +W ′ + Ce ≤ x)
)
, (66)

k = 2, . . . , N . We first show that

L−1

(
N∑
k=2

1

s− sk

(
αkw̃(s) + βk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)− γk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
w̃(s)

)2))

=

N∑
k=2

[
γk

(
µp

∫ ∞
y=x

esk(x−y)dP(W +W ′ +Be ≤ y)− µh
∫ ∞
y=x

esk(x−y)dP(W +W ′ + Ce ≤ y)
)

− βk
(
µp

∫ ∞
y=x

esk(x−y)dP(W +Be ≤ y)− µh
∫ ∞
y=x

esk(x−y)dP(W + Ce ≤ y)

)
− αk

∫ ∞
y=x

esk(x−y)dP(W ≤ y)

]
.

(67)

Since Laplace transforms turn convolutions of functions into their product, using the property∫∞
y=0 f(y)dy =

∫ x
y=0 f(y)dy +

∫∞
y=x f(y)dy and the relations (66) we obtain

L

{
N∑
k=2

[
γk

(
µp

∫ ∞
y=x

esk(x−y)dP(W +W ′ +Be ≤ y) − µh
∫ ∞
y=x

esk(x−y)dP(W +W ′ + Ce ≤ y)

)

− βk

(
µp

∫ ∞
y=x

esk(x−y)dP(W +Be ≤ y)− µh
∫ ∞
y=x

esk(x−y)dP(W + Ce ≤ y)

)
− αk

∫ ∞
y=x

esk(x−y)dP(W ≤ y)

]}

=L

{
N∑
k=2

[
− γk

(
µp

∫ x

y=0

esk(x−y)dP(W +W ′ +Be ≤ y) − µh
∫ x

y=0

esk(x−y)dP(W +W ′ + Ce ≤ y)

)

+ βk

(
µp

∫ x

y=0

esk(x−y)dP(W +Be ≤ y)− µh
∫ x

y=0

esk(x−y)dP(W + Ce ≤ y)

)]
+ αk

∫ x

y=0

esk(x−y)dP(W ≤ y)

}
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=

N∑
k=2

1

s− sk

(
αkw̃(s) + βk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)
w̃(s)− γk

(
µpF̃

e
p (s)− µhF̃ eh(s)

)(
w̃(s)

)2))
,

which proves (67).
To find the tail probabilities that correspond to the terms in the middle bracket of (65), we

integrate the inverted Laplace transform in Eq. (67) from t to ∞, and we obtain

N∑
k=2

[
γk

(
µp

∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W +W ′ +Be ≤ y)dx− µh
∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W +W ′ + Ce ≤ y)dx

)

− βk

(
µp

∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W +Be ≤ y)dx− µh
∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W + Ce ≤ y)dx

)

− αk
∫ ∞
x=t

∫ ∞
y=x

esk(x−y)dP(W ≤ y)dx

]

=

N∑
k=2

[
γk

(
µp

∫ ∞
y=t

e−skydP(W +W ′ +Be ≤ y)

∫ y

x=t

eskxdx− µh
∫ ∞
y=t

e−skydP(W +W ′ + Ce ≤ y)

∫ y

x=t

eskxdx

)

− βk

(
µp

∫ ∞
y=t

e−skydP(W +Be ≤ y)

∫ y

x=t

eskxdx− µh
∫ ∞
y=t

e−skydP(W + Ce ≤ y)

∫ y

x=t

eskxdx

)

− αk
∫ ∞
y=t

e−skydP(W ≤ y)

∫ y

x=t

eskxdx

]

=

N∑
k=2

[
γk
sk

(
µp

∫ ∞
y=t

dP(W +W ′ +Be ≤ y)− µh
∫ ∞
y=t

dP(W +W ′ + Ce ≤ y)

)

− βk
sk

(
µp

∫ ∞
y=t

dP(W +Be ≤ y)− µh
∫ ∞
y=t

dP(W + Ce ≤ y)

)
− αk
sk

∫ ∞
y=t

dP(W ≤ y)

− γk
sk

(
µp

∫ ∞
y=t

e−sk(y−t)dP(W +W ′ +Be ≤ y)− µh
∫ ∞
y=t

e−sk(y−t)dP(W +W ′ + Ce ≤ y)

)

+
βk
sk

(
µp

∫ ∞
y=t

e−sk(y−t)dP(W +Be ≤ y)− µh
∫ ∞
y=t

e−sk(y−t)dP(W + Ce ≤ y)

)

+
αk
sk

∫ ∞
y=t

e−sk(y−t)dP(W ≤ y)

]

=

N∑
k=2

1

sk

[
− γk

(
µpP

(
t < W +W ′ +Be < t+ E(sk)

)
− µhP

(
t < W +W ′ + Ce < t+ E(sk)

))

+ βk

(
µpP

(
t < W +Be < t+ E(sk)

)
− µhP

(
t < W + Ce < t+ E(sk)

))
+ αkP

(
t < W < t+ E(sk)

)]

+

N∑
k=2

1

sk

[
γk

(
µpP(W +W ′ +Be > t)− µhP(W +W ′ + Ce > t)

)
− βk

(
µpP(W +Be > t)− µhP(W + Ce > t)

)

− αkP(W > t)

]
. (68)

By using now the property L−1{ an+1

(s+a)n+1 } = 1
n!a

n+1tn × e−at, t ≥ 0, of the inverse Laplace

transform, we see that the terms
(yj)

rj−l+1

(s+yj)
rj−l+1 in Eq. (65) correspond to the Laplace transform of
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an Erj−l+1(yj) r.v. Combining all the above, the result in immediate, which completes the proof
of the theorem.

of Proposition 3.8. In Proposition 3.6, we found that

w̃ε(s) = w̃(s) + εθ̃(s) +O(ε2),

where θ̃(s) is the Laplace-Stieltjes transform of the signed measure Θ(t) introduced in Proposi-
tion 3.7. The above equation implies that

w̃ε(s)− w̃(s)

ε
= θ̃(s) + o(1). (69)

We set n = 1
ε and we define the sequence of functions

ṽn(s) :=
1

ε

(
w̃ε(s)− w̃(s)

)
,

where ṽn(s) is the Laplace-Stieltjes transform of the measure Vn(t) = 1
ε

(
P(Wε > t) − P(W > t)

)
.

By using (69), we obtain that ṽn(s)→ θ̃(s), for all s > 0 as n→∞ (or equivalently ε→ 0). Thus,

it follows from the Extended Continuity Theorem (see Theorem XIII.2 [16]) that P(Wε>t)−P(W>t)
ε →

Θ(t), which completes the proof.

of Theorem 4.5. The steps are exactly the same as in Proposition 3.6, but with different parameters
that are in accordance to the discard base model. We first write the denominator and the numerator
of w̃•ε (s) multiplied by

(
p(s)

)r
as perturbation of the respective quantities in the replace base model,

and we have that(
p(s)

)r
det E•ε (s) =

(
p(s)

)r
det E(s) + εsµpF̃

e
p (s)ξrM+N−1(s) +O(ε2),

and,(
p(s)

)r
su•εE•ε (s)ω =

(
p(s)

)r
suE(s)ω

+ εs

[
N∑
i=1

N∑
l=1

zlωiξ
′
i,l,rM+N−1(s) + sµpF̃

e
p (s)

N∑
i=1

N∑
l=1

ulωiξi,l,rM+N−2(s)

]
+O(ε2),

where the polynomials ξrM+N−1(s), ξi,l,rM+N−2(s), and ξ′i,l,rM+N−1(s) are defined according to the
formulas (45), (49), and (50), respectively, and r is the maximum power of p(s) that appears in the
formulas. The N − 1 common roots of the numerator and the denominator of w̃•ε (s) with positive
real part are of the form s•ε,k = sk − εδ•k +O(ε2), k = 2, . . . , N , where the two equivalent definitions
of δ•k are as follows

δ•k =
µpF̃

e
p (sk)ξrM+N−1(sk)w̃(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

=
µpF̃

e
p (sk)sk

∑N
i=1

∑N
l=1 ulωiξi,l,rM+N−2(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

+

∑N
i=1

∑N
l=1 zlωiξ

′
i,l,rM+N−1(sk)

uω
∏N
l=2
l 6=k

(sk − sl)
∏rM
j=1(sk + yj)

.

If we set now

d•(s) =
µpF̃

e
p (s)ξrM+N−1(s)w̃(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

−
N∑
k=2

δ•k
s− sk

,
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and,

n•(s) =
µpF̃

e
p (s)s

∑N
i=1

∑N
l=1 ulωiξi,l,rM+N−2(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

+

∑N
i=1

∑N
l=1 zlωiξ

′
i,l,rM+N−1(s)

uω
∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

−
N∑
k=2

δ•k
s− sk

,

the denominator and the numerator of w̃•ε (s) multiplied by
(
p(s)

)r
can be written respectively as

(
p(s)

)r
det E•ε (s) = s

rM∏
j=1

(s+ xj)

N∏
k=2

(s− sk + εδ•k +O(ε2))
(
1 + εd•(s) +O(ε2)

)
, (70)

and,

(
p(s)

)r
su•εE•ε (s)ω = uωs

rM∏
j=1

(s+ yj)
N∏
k=2

(
s− sk + εδ•k +O(ε2)

)(
1 + εn•(s) +O(ε2)

)
.

Note that both functions d•(s) and n•(s) are well-defined in the positive half-plane due to the
definitions of δ•k. Combining (70) and (B) we obtain

w̃•ε (s) = w̃(s)
1 + εn•(s) +O(ε2)

1 + εd•(s) +O(ε2)
⇒ w̃(s) = w̃•ε (s)

1 + εd•(s) +O(ε2)

1 + εn•(s) +O(ε2)
.

So,

w̃ε(s) =w̃(s)
1 + εn(s) +O(ε2)

1 + εd(s) +O(ε2)
= w̃•ε (s)

1 + εd•(s) +O(ε2)

1 + εn•(s) +O(ε2)
· 1 + εn(s) +O(ε2)

1 + εd(s) +O(ε2)

=w̃•ε (s)

(
1 + ε

(
(n(s)− n•(s))− (d(s)− d•(s))

)
+O(ε2)

)
=w̃•ε (s) + ε

1

uω
w̃•ε (s)

(∑N
i=1

∑N
l=1(zl − z•l )ωiξ

′
i,l,rM+N−1(s)∏N

k=2(s− sk)
∏rM
j=1(s+ yj)

− µhF̃ eh(s)
s
∑N
i=1

∑N
l=1 ulωiξi,l,rM+N−2(s)∏N

k=2(s− sk)
∏rM
j=1(s+ yj)

+ µhF̃
e
h(s)w̃(s)

ξrM+N−1(s)∏N
k=2(s− sk)

∏rM
j=1(s+ yj)

)
+O(ε2)

=w̃•ε (s) + ε
1

uω
w̃•ε (s)

[(
(zi − z•l ) +

N∑
k=2

α•k
s− sk

+

rM∑
j=1

α•
′

j · yj
s+ yj

)
− µhF̃ eh(s)

(
β +

N∑
k=2

βk
s− sk

+

rM∑
j=1

β′j · yj
s+ yj

)

+ µhF̃
e
h(s)w̃•ε (s)

(
γ +

N∑
k=2

γi,k
s− sk

+

rM∑
j=1

γ′j · yj
s+ yj

)]
+O(ε2). (71)
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