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Abstract

This paper discusses solutions for gain sharing in consortia of logistic providers
where joint planning of truckload deliveries enables the reduction of empty kilometres.
The highly competitive nature of freight transport markets necessitates solutions that
distinguish among the logistics providers based on their characteristics, even in sit-
uations with two players only. We introduce desirable properties in these situations
and propose a solution that satisfies such properties. By comparing the existing solu-
tions against the introduced properties we demonstrate the advantages of our proposed
solution.

1 Introduction

Road freight constitutes the most dominant form of transportation. However, the industry
suffers from significant inefficiencies. In 2012 more than 24% of all the distance driven
by commercial vehicles in European Union were empty (Eurostat, 2012). This paper is
motivated by a project initiated by two major European logistics providers to create a
consortium for cooperative planning of truckload delivery requirements of joining companies
in order to, among others, reduce the costs of empty kilometres. Cruijssen et al. (2007)
discuss the other benefits that logistics providers could achieve by cooperation. We address
the important issue of sharing the gains obtained from joint planning.

Cooperative truckload delivery (CTLD) situations comprise a number of logistics providers,
their resources (e.g. depots, trucks, drivers, equipments, etc.), and their delivery require-
ments. A delivery requirement can simply be considered as an order for picking up cargo
at some location and transporting it to another location. But it may actually involve deliv-
ery time windows, special equipments and personnel, and other practical constraints. The
delivery requirements must be fulfilled by vehicles in feasible trips. The feasibility of a trip
depends on the number and type of deliveries fulfilled in a trip, specific depots and equipment
that must be employed, and other details.

The optimal delivery plans of individual companies in most cases include a significant
amount of unavoidable repositioning movements, i.e. empty kilometres, among the depots

1



and various pick-up/delivery locations. By taking advantage of the synergy in aggregated
networks of depots and delivery requirements, cooperating companies can decrease their
overall empty kilometres. As the cooperating companies are usually in direct competition
with each other, it is absolutely critical for them to understand how the cooperation would
benefit them as well as their competitors. Thus the existence of formal models that unam-
biguously determine allocations of gains and justifies their fairness and/or competitiveness
in these situations are imperative to success of such consortia.

There are many simple ways to divide the savings among the logistics providers. Such
simple ways often divide the savings proportional to some measure defined harmoniously for
all players, e.g. number and/or amount of exchanged deliveries, additional costs incurred,
empty kilometres avoided, or contributions to total savings. However, despite their practical
appeal, simple solutions often fail to produce outcomes which are desirable in terms of
fairness/competitiveness in these situations. But what constitutes as a desirable allocation
in these situations? In this paper, we introduce a set of formal properties that have the
ability to capture the notions of fairness and/or competitiveness with regard to allocations
in CTLD situations.

The gain sharing problems in the literature are often approached via the well-known
solutions developed in cooperative game theory. By abstracting a cooperative situation into
a cooperative game, usually consisting of the player set and the amount of gains attainable
by different groups of players, cooperative game theory studies allocations that satisfy col-
lections of logically desirable properties expressed in relation to such abstraction. In some
situations, however, the properties expressible in relation to the associated cooperative games
are insufficient to capture all desirable requirements of the allocations. Therefore, by dis-
regarding the information contained in the underlying cooperative situation, indispensable
properties in some cooperative situations would be impossible to formalize. The cooperative
organizations of logistics providers assessed in this paper are instances of such cooperative
situations. In this paper, we allow solutions to draw upon the cooperative situations to
determine the allocations of savings.

The highly competitive nature of logistics markets as well as the limited number of partic-
ipants necessitate solutions that are capable of incorporating the notion of competitiveness
to distinguish among the logistics providers. Such a requirement implores solutions that
could potentially distinguish among the logistics providers who are identical in terms of
their contribution to the obtained savings. A typical example of the latter is situations with
only two players. Most of the well-known solutions in cooperative game theory, e.g. Shapley
value and nucleolus, are incapable of differentiating among the allocations in two-player sit-
uations. Nevertheless, a number of papers in the OR/OM literature, e.g. Frisk et al. (2010),
introduce alternative solutions to tackle the latter drawback. However, we show that the
available solutions in the literature do not satisfy the properties that are desirable in CTLD
situations introduced in this paper.

Part of the desirable properties of solutions in CTLD situations can be expressed in rela-
tion to the cooperative games associated with those situations. The nonemptiness property
demands at least one allocation in every situation. The uniqueness property distinguishes
solutions that upon nonemptiness, yield a single allocation in every situation. This property
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is needed so that no further negotiations would be required to choose among the multiple
possible allocations. Finally, the least unstability property prescribes allocations that mini-
mize the incentives of sub-coalitions to organize cooperation within themselves. In addition
to these rather standard properties, we introduce two new properties which are specific to
CTLD situations.

The first desirable property defined specifically for CTLD situations is the independence
of irrelevant deliveries property which expresses that the allocated savings to the players must
be insensitive to the parts of their networks which could not have any possible contribution
to the savings obtained by cooperation. In this regard, this property defines a boundary for
the relevant scope of operation for every logistics provider such that anything beyond this
scope should be ignored in allocation of savings. If a solution for CTLD situations does not
satisfy this property, then the logistics providers would have the incentives to inflate their
shared delivery requirements in a cooperative organization and smaller companies with high
contribution to the saving could be discriminated against the larger companies which may
not have significant contributions.

The last property introduced in this paper addresses the ability of solutions to consider
the competitive positions of cooperating logistics providers. Although there is no standard
measure of competitive positions in logistics markets, we draw upon the notation of average
cost of fulfilment to define one. The average cost of fulfilment of a set of delivery require-
ments is the minimum cost of fulfilment divided by the size of full kilometres involved. The
motivation for using the average cost of fulfilment as a measure of competitiveness is its pric-
ing implications. Suppose that companies have to announce a fixed price for a unit distance
of their delivery services. The average cost of fulfilment then represents the lowest unit price
at which a logistics provider neither makes profit nor incurs loss. Thus if the average cost of
fulfilment of a logistics provider i is lower than that of j, i would be able to announce a lower
unit price for its delivery services while making a profit. We take this as an indication that
prior to cooperation i is in a better competitive position. An allocation of savings to players
could alter the average costs of fulfilment after cooperation. Under certain conditions, the
restricted competitiveness property requires that solutions equalize the ratio of average costs
of fulfilment of players before and after cooperation. In this regard, the appropriate solutions
in CTLD situations preserve the competitive positions of logistics providers.

We propose a solution that satisfies the listed properties in all CTLD situations. In
doing so, we first introduce the essential deliveries of the players as the subsets of delivery
requirements of each player which are necessary and sufficient in bringing about their contri-
bution to cost savings in the grand coalition. When the optimal delivery plan of the grand
coalition is unique, the essential deliveries correspond to the deliveries whose fulfilment trips
in the grand coalition involve some other players. Therefore the deliveries which are not
essential can be fulfilled independently by the players owning them as efficiently as in the
grand coalition. A preliminary version of our proposed solution equalizes the average cost of
fulfilments of essential deliveries of the players before and after cooperation. Although this
solution can be easily implemented in such situations, it does not necessarily produce stable
outcomes. Nevertheless, our final solution obtains a unique point in the core (Gillies, 1959),
or when the latter is empty, in the least-core (Maschler et al., 1979) which has the shortest
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distance to the aforementioned allocation.
The rest of this paper is organized as following. In Section 2 we discuss the literature on

allocation problems with special focus on logistics and transportation context. In Section
3 we model a general class of truckload delivery problems and in Section 4 we introduce
the cooperative version of such situations. The desirable properties in CTLD situations are
defined in Section 5. In Section 6 we develop our proposed solution for CTLD situations.
Specifically, Section 6.2 outlines the formula for the proposed solution and shows that it
satisfies all the listed properties. Section 7 discusses some of the known solutions in the
literature in line with the properties introduced in this paper. Section 8 concludes the
paper.

2 Literature Review

There is an extensive literature on allocation problems arising in cooperative operations.
Tijs and Driessen (1986) provide a structured view of general cost allocation methods along
with references to early adoption of such methods in practice. The literature on cooperative
logistics operations, on the other hand, is relatively recent. This is mainly due to the
industry’s shrinking margins and advances in information technology which motivate and
facilitate cooperation.

In order to deal with the allocation problems in logistics and transportation context, many
authors have proposed the adoption of well-known solutions of cooperative game theory.
Krajewska et al. (2007) discuss the implementation of the Shapley value (Shapley, 1953b)
as the solution in cooperative organizations of logistics providers. Özener and Ergun (2008)
study cooperative truckload delivery situations where all logistics providers have available
depots at every location and show that the core (Gillies, 1959) of the games associated with
these situations are always non-empty and dual solutions provide allocations in their core.
Hezarkhani et al. (2013) further delineate the possibilities and impossibilities for a complete
characterization of the core of these games via dual solutions. In cooperative vehicle routing
situations, where the core could be empty or it may include many elements, Göthe-Lundgren
et al. (1996) and Engevall et al. (2004) elaborate on the implementation of the nucleolus
(Schmeidler, 1969) as the solution of choice.

Several papers in the recent literature investigate the solutions that incorporate some
proportional measures defined on specific features of the underlying situations to divide the
savings/costs among the logistics providers. Frisk et al. (2010) propose a solution that draw
upon the stand-alone costs of individual companies. Their suggested solution, i.e. the equal
profit method (EPM), chooses allocations in the core, or in the least-core (Maschler et al.,
1979) when the core is empty, such that the spread of ratios of allocated savings to stand-
alone costs over all players in minimized. A similar method is proposed independently by
Drechsel and Kimms (2010). Multiple extensions of this solution have been proposed ever
since. Audy et al. (2010) extend the EPM by including additional constraints that ensure a
minimum allocation of savings for all logistics providers. Liu et al. (2010) directly incorporate
the marginal contributions of players as weights into the EPM formulation. Finally, Dai and
Chen (2012) draw attention to allocations in the core with the property that the greatest
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deviation from the Shapley value is minimum. What seems to be lacking in this stream of
research is the formal definition of the situation-specific properties that are expected from
the allocations to satisfy. Vanovermeire et al. (2013) and Lozano et al. (2013) discuss the
different outcomes of various solutions in transportation contexts via numerical examples.

Another stream of research investigate the special structures in cooperative games asso-
ciated with simplified delivery problems. Hamers (1997) analyses the cooperative Chinese
postman games and Hamers et al. (1999) discuss the cost allocation problem in these sit-
uations. Granot et al. (1999) investigate the special classes of single-depot delivery games
whose cores are always non-empty. Platz and Hamers (2013) characterize the graphs whose
induced multi-depot Chinese postman games have non-empty cores. We refer the reader to
Curiel (2008) for an overview of cooperative games associated with logistics/transportation
situations. Nevertheless, the complexity of games associated with combinatorial situations
have given rise to new research frontiers that seek reasonable theoretical compromises in
finding good solutions (Caprara and Letchford, 2010).

3 Truckload Delivery Situations

Truckload delivery situations reflect the key features of centralized road freight sector. Let V
be a set of nodes corresponding to spatial locations and w ∶ V ×V → R+ be a distance function
which satisfies triangular inequalities. A set of m delivery requirements D = {d1, ..., dm} is
given. A delivery requirement dk ∈ D is determined by its pickup location, a(dk) ∈ V , and
its delivery location, b(dk) ∈ V . The fulfilment of the delivery requirement dk corresponds to
a single traverse of the arc [a(dk), b(dk)] for k, i.e. two delivery requirements with identical
pickup and delivery locations correspond to two non-identical fulfilments. We assume that
the distance between the pickup and delivery locations of every trip is positive. A non-
empty set of available depots O = {o1, ..., oh} ⊆ V stations vehicles that fulfil the delivery
requirements.

Delivery requirements must be fulfilled in trips. A trip is a sequence of deliveries that
starts and ends at a particular depot. Formally, a trip l is a tuple (ol,Dl, σl) where ol ∈ O
is the origin/destination, Dl is a subset of deliveries in D that are fulfilled in l, and σl is
an ordering of deliveries in Dl which represents the sequence of fulfilments in trip l. LetL be the set of all such trips. In order to incorporate the practical constraints that could
render some trips infeasible–e.g. delivery time windows, number of possible trips per day,
traffic network–we introduce the feasible trip set L ⊆ L. A truckload delivery situation is
characterized by a tuple

Λ = (V,w,D,O,L).
We assume that cost and distance are linearly proportional and without loss of generality

normalize the proportion to one. The cost of the feasible trip l, Dl ≠ ∅, is comprised of two
parts. The first part is the cost associated with the distance travelled between the pickup
and delivery locations. The full kilometres cost of a trip is independent of both the choice
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of the trip’s depot and the sequence of fulfilments:

clF = ∑
dk∈Dl

w[a(dk), b(dk)] (1)

The second part of a trip’s cost, i.e. empty kilometre cost, is the cost associated with the
distance travelled from/to the depot and among different fulfilments:

clE = w[o, a(σl1)] +
∣Dl∣−1∑
j=1

w[b(σlj), a(σlj+1)] +w[b(σl∣Dl ∣, o)] (2)

where the shorthand notation σlj represents the delivery requirement which is fulfilled after
all the j − 1 deliveries preceding it in σl are fulfilled. By ∣Dl∣ we denote the number of
deliveries in Dl. The cost of trip l is defined by cl = clF + c

l
E .

Let L(O,D) = {l ∈ L∣ol ∈ O,Dl ⊆ D} be the set of feasible trips from depots in O ⊆ O,
O ≠ ∅, to satisfy deliveries in D ⊆D. A fulfilment plan P , hereafter a plan, from O to D is a
collection of trips in L(O,D) that fulfils all the deliveries in D. The deliveries fulfilled in the
collection of trips partition the set of delivery requirements, i.e. ⋃l∈P Dl =D and Dl∩Dk = ∅
for all k, l ∈ P with l ≠ k. The cost of a plan P is the total cost of its trips, i.e. Dls are
disjoint and c(P ) = ∑l∈P cl. Accordingly, c(P ) is decomposable into full and empty parts:

c(P ) = cF (P ) + cE(P ), (3)

where cF (P ) = ∑l∈P clF and cE(P ) = ∑l∈P clE are the total costs of full and empty kilometres
of P respectively.

Let P(O,D) denote the set of all possible fulfilment plans from O to D. We call P ∈
P(O,D) an optimal plan from O to D if

c(P ) ≤ c(P ′) for all P ′ ∈ P(O,D). (4)

The set of all optimal plans from O to D is denoted by P∗(O,D). If there are multiple
optimal plans from O to D, their costs are the same. We denote the minimum cost of
delivery from O to D with c∗(O,D), and the full kilometres cost of D, which is independent
of the choice of depots, with cF (D).

We provide some observations which will be used in the rest of the paper.

Lemma 1. Let Λ be a TLD situation. Then,

(i) c∗(O,D) ≥ c∗(O,D′) for all ∅ ≠ O ⊆O and D′ ⊂D ⊆D,

(ii) c∗(O,D) ≤ c∗(O′,D) for all O′ ⊂ O ⊆O and D ⊆D,

(iii) c∗(O,D)+ c∗(O,D′) ≥ c∗(O,D ∪D′) for all ∅ ≠ O ⊆O and D,D′ ⊆D with D ∩D′ = ∅.

Proof. (i) Let D′ ⊂ D ⊆ D and define D′′ = D ∖D′. Let P ∈ P∗(O,D) be an optimal plan
from O to D. For every l ∈ P construct l′ where Dl′ = Dl ∖D′′ and σl

′

keeps the precedence
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Figure 1: A TLD situation

ordering of Dl in σl. As the triangular inequalities hold we have cl
′

≤ cl for every l ∈ P .
Note that the plan P ′ obtained in this manner is a feasible plan from O to D′. Since the
cost of a plan is the total sum of the costs of its trips we have c(P ′) ≤ c(P ) = c∗(O,D).
Considering that the optimal plan from O to D′ is at most as costly as c(P ′) we have
c∗(O,D′) ≤ c∗(O,D).

(ii) Let O′ ⊂ O ⊆ O and suppose P ′ ∈ P∗(O′,D) is an optimal plan from O′ to D. Note
that P ′ is a feasible plan from O to D as well since for any trip l ∈ P ′ we have ol ∈ O. By
definition of optimal plans it must be that c∗(O,D) ≤ c∗(O′,D).

(iii) Let D,D′ ⊆D be such that D∩D′ = ∅. Let P ∈ P∗(O,D) and P ′ ∈ P∗(O,D′). Note
that P ∩ P ′ = ∅ and P ∪ P ′ is a feasible plan from O to D ∪D′. Furthermore,

c(P ∪P ′) = ∑
l∈P∪P ′

cl =∑
l∈P

cl + ∑
l∈P ′

cl = c∗(O,D) + c∗(O,D′).
By definition of optimal plans we have c∗(O,D) + c∗(O,D′) ≥ c∗(O,D ∪D′).

Part (i) of Lemma 1 shows that shrinking the set of delivery requirements cannot increase
the optimal cost. A reverse effect is shown in part (ii) for the depots, that is, augmenting
the set of depots cannot increase the optimal cost. Finally, part (iii) demonstrates the
subadditive effect with regard to the optimal costs that results from aggregated planning of
delivery requirements.

We define the average cost of fulfilment from O ≠ ∅ to D ≠ ∅ as

z(O,D) = c∗(O,D)
cF (D) . (5)

The average cost of fulfilment z(O,D) represents the average cost for fulfilling a unit distance
of delivery.1 If one were supposed to determine a fixed price for every unit distance of delivery
services, the average cost of fulfilment would represent the minimum price at which no loss
is incurred. By assumption, the full kilometre cost of a non-empty delivery set is strictly
positive. For D = ∅, we let z(O,∅) = 0.
Example 1. Figure 1 depicts a TLD situation with two locations, two depots and two delivery
requirements. The distance between the two locations is one and the trip which fulfils both
deliveries is feasible. We have c∗(O,D) = 2 and z(O,D) = 1. △

1The equivalence of cost and distance assumed in this paper is for simplifying the notation. When this
assumption is relaxed, the denominator in equation (5) must be replaced with the total distance of full
kilometres in D.
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The last lemma in this section establishes the connection between the separability of
optimal delivery plans and the additivity of their costs.

Lemma 2. Let Λ be a TLD situation. Let ∅ ≠ O′ ⊆ O ⊆ O and D′ ⊆ D ⊆ D. We
have c∗(O′,D′) + c∗(O,D ∖ D′) = c∗(O,D) if and only if for every P ′ ∈ P∗(O′,D′) and
P ∈ P∗(O,D ∖D′), it holds that P ∪P ′ ∈ P∗(O,D).
Proof. (if) Let P ′ ∈ P∗(O′,D′) and P ∈ P∗(O,D ∖D′) and assume that P ∪ P ′ ∈ P∗(O,D).
By definition of optimal costs we have

c∗(O,D) = ∑
l∈P ′∪P

cl = ∑
l∈P ′

cl +∑
l∈P

cl = c∗(O′,D′) + c∗(O,D ∖D′).
(only if) Assume that c∗(O′,D′) + c∗(O,D ∖ D′) = c∗(O,D). Let P ′ ∈ P(O′,D′) and

P ∈ P(O,D ∖D′). Note that P ∪P ′ is a feasible delivery plan from O to D. We have

c(P ′ ∪ P ) = ∑
l∈P ′∪P

cl = c∗(O′,D′) + c∗(O,D ∖D′) = c∗(O,D)
where the last equality follows by assumption. Hence P ′ ∪P ∈ P∗(O,D).

4 CTLD Situations and Games

This section introduces the cooperative versions of truckload delivery situations wherein a
number of logistics service providers, hereafter players, have the option to jointly plan their
fulfilment plans. While these situations reflect the key features of decentralized road freight
markets, their associated games formalize the underlying gain-sharing problems.

4.1 CTLD situations

Consider a non-empty set N = {1, ..., n} of players. Each player i ∈ N possesses a non-empty
set of depots Oi = {o1i , ..., ohii } and a set of delivery requirements Di = {d1i , ..., dmi

i }.
A coalition is a subset of players. Let OS = ∪i∈SOi and DS = ∪i∈SDi denote the combined

set of depots and delivery requirements of players in coalition S ⊆ N . As above, denote the
set of feasible trips for the grand coalition N with L. The set L(OS,DS) = {l ∈ L∣ol ∈ OS,Dl ⊆
DS} contains all feasible trips for coalition S ⊆ N . We assume that the set of feasible trips of
any player is rich enough to enable that player to fulfil its own deliveries individually. The
following formalizes this requirement.

Assumption 1. For all i ∈ N , it holds that ∪l∈L(Oi,Di)D
l =Di.

A cooperative truckload delivery (CTLD) situation is a tuple

Γ = (N,V,w, (Oi)i∈N , (Di)i∈N ,L)
with all elements being as described previously. We denote the set of all possible CTLD
situations with T .
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Figure 2: A CTLD situation

By joint planning of its fulfilments, a coalition in a CTLD situation could reduce the cost
of its empty kilometres and thus obtain savings. The savings generated by a coalition can be
due to utilization of a larger pool of depots for constructing trips or combining fulfilments
together more efficiently, or both.

The cost savings obtained by a coalition S ⊆ N in Γ is

∑
i∈S

c∗(Oi,Di) − c∗(OS,DS).
Recall that c∗(OS,DS) is the cost of an optimal plan from OS to DS in the TLD situation
ΛΓ = (V,w,ON ,DN ,L).
Example 2. Figure 2 depicts a CTLD situation Γ with two players i and j each having a
single depot o1i and o

1

j , and a single delivery requirement d1i and d
2

j respectively. The pick-up
location of each player’s delivery requirement is its depot and the delivery location coincides
with the other player’s depot. Assuming that the distance between the two locations is one
kilometre, we have c∗(Oi,Di) = c∗(Oj,Dj) = c∗(ON ,DN) = 2. The cost saving obtained by
the grand coalition is 2. △

4.2 CTLD games

A cooperative game is a tuple (N,v) consisting of a player set N and a coalition function v
which assigns to every coalition S ⊆ N a value v(S) with v(∅) = 0. A cooperative game (N,v)
is superadditive if for all S,T ⊆ N such that S ∩ T = ∅ it holds that v(S ∪ T ) ≥ v(S) + v(T ).
If a game is superadditive, then the savings obtained in the grand coalition N is never less
than the total savings obtained by any other partitioning of players into coalitions.

The cooperative CTLD game associated with situation Γ ∈ T with player set N is the
pair (N,vΓ) where for every S ⊆ N :

vΓ(S) =∑
i∈S

c∗(Oi,Di) − c∗(OS,DS). (6)

The following theorem states that the games associated with CTLD situations are supper-
additive.

Theorem 1. For every CTLD situation Γ ∈ T , the associated game (N,vΓ) is superadditive.
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Proof. Let Γ be a CTLD situation and let S,T ⊆ N such that S ∩ T = ∅. Then,

vΓ(S ∪ T ) = ∑
i∈S∪T

c∗(Oi,Di) − c∗(OS∪T ,DS∪T )
≥ ∑

i∈S∪T

c∗(Oi,Di) − c∗(OS∪T ,DS) − c∗(OS∪T ,DT )
≥ ∑

i∈S∪T

c∗(Oi,Di) − c∗(OS,DS) − c(OT ,DT )
= ∑

i∈S

c∗(Oi,Di) − c∗(OS,DS) +∑
i∈T

c∗(Oi,Di) − c(OT ,DT )
= vΓ(S) + vΓ(T ).

The first inequality follows from part (iii) of Lemma 1 and the second inequality from part
(ii) of the same lemma. Thus, vΓ(S ∪ T ) ≥ vΓ(S) + vΓ(T ).

A game (N,v) is zero-normalized if v({i}) = 0 for all i ∈ N . As the coalition functions
of CTLD games yield the savings comparing the individual and aggregated costs, they are
zero-normalized. We discuss other features of CTLD games in Section 7.

5 CTLD Solutions and Their Properties

A CTLD allocation is a point in ∣N ∣-dimensional Euclidean space denoted by α = (αi)i∈N
with αi being the allocation to player i. A CTLD solution is a set-valued function, A, which
for every CTLD situation Γ ∈ T determines a set of allocations for the players in Γ.

This definition of solution is innocuously different than the standard definition of solutions
in cooperative game theory as our definition draws upon the situation rather than the game.
Note that different situations can correspond to the same cooperative game. This definition
allows us to utilize information other than the savings obtained by different coalitions to
devise allocations. The rest of this section is devoted to introducing desirable properties of
CTLD solutions.

5.1 General properties for CTLD solutions

We start with properties which can also be expressed in relation to the cooperative games
associated with CTLD situation. Perhaps the most intuitive desirable property of solutions
in any cooperative situation is the efficiency property which requires that all the savings
obtained in the grand coalition be completely divided among the players.

Property 1. A CTLD solution A satisfies the efficiency property if for all Γ ∈ T and
every α ∈ A(Γ) it holds that ∑i∈N αi = vΓ(N).

The nonemptiness property defined below reflects the ability of a solution to produce at
least one allocation in every given CTLD situation.

Property 2. A CTLD solution A satisfies the nonemptiness property (NE) if for all
Γ ∈ T , A(Γ) is non-empty.
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A solution would be inconclusive if it yields more than one allocation in situations wherein
it could suggest any allocation at all. The uniqueness property addresses this issue.

Property 3. A CTLD solution A satisfies the uniqueness property (UQ) if for all Γ ∈ T
such that A(Γ) ≠ ∅, it holds that ∣A(Γ)∣ = 1.

The notion of stability is a critical concept in many cooperative situations, including
CTLD situations. Given a CTLD situation Γ and ǫ ∈ R, we call an allocation α ǫ-stable if (a)
α is efficient, i.e. ∑i∈N αi = vΓ(N), and (b) for all S ⊂ N , it holds that ∑i∈S αi+ǫ ≥ vΓ(S). The
set of all ǫ-stable allocations of a situation comprises the ǫ-core of its associated cooperative
game (Shapley and Shubik, 1966). An ǫ-stable allocation provides sufficient incentives for all
players not to break apart from the grand coalition if the cost of reorganizing cooperation
in a sub-coalition is larger than ǫ. Ideally, a 0-stable (stable) allocation provides sufficient
incentives for all players to remain in the grand coalition even if separating from the grand
coalition is free. We will give an example in Section 7 to show that it may be impossible
to find stable allocations in CTLD situations. The following property reflects the need for
solutions that either produce stable allocations, or, when the latter cannot be achieved,
obtain allocations that are as stable as possible.

Property 4. A CTLD solution A satisfies the least unstability property (LU) if for all
Γ ∈ T and every α ∈ A(Γ), α is ǫ∗-stable where

ǫ∗ =min{ǫ ≥ 0 ∣∑
i∈S

αi + ǫ ≥ v
Γ(S) for all S ⊂ N,∑

i∈N

αi = v
Γ(N)} . (7)

5.2 Specific properties for CTLD solutions

The two properties introduced in this section are specific to CTLD situations and address
issues concerning the competitive positions of the players and the scope beyond which the
network of deliveries of a player should be ignored by the solution. We start by introducing
two special classes of delivery requirements in CTLD situations.

Definition 1. Let Γ be a CTLD situation. D ⊆ Di is a separable delivery set (SDS) of
i if

c∗(Oi,D) + c∗(ON ,DN ∖D) = c∗(ON ,DN). (8)

Let SDSi(Γ) be the set of separable delivery sets of i.

The stand-alone cost of fulfilling a separable delivery set of a player is additive to the
cost of fulfilling the remaining deliveries of the grand coalition. Therefore, a player can indi-
vidually fulfil a separable delivery set of itself without disrupting the optimality of delivery
plans of the grand coalition.

Example 3. Figure 3 depicts a CTLD situation Γ with two players. It is easy to see that
player i can individually fulfil the delivery requirement {d1i }. Also, i can take out either

11
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Figure 3: Separable and irrelevant deliveries

{d2i , d3i } or {d4i } (but not both!) from the grand coalition’s delivery requirements and fulfil
them separately such that total optimal cost does not increase. Thus, we have

SDSi(Γ) = {{d1i },{d2i , d3i },{d4i },{d1i , d2i , d3i },{d1i , d4i }} .
△

The previous example shows two different types of separable delivery sets in CTLD
situations. While some separable delivery sets of a player can be substituted with each other,
there might exists separable delivery sets which are separable in all scenarios. Therefore,
among the separable delivery sets of a player i, we distinguish delivery sets which do not
have any possible internal or external relevance to the rest of the network of deliveries in
any coalition with irrelevant deliveries.

Definition 2. Let Γ be a CTLD situation. D ⊆ Di is an irrelevant delivery set (IDS) of
i if for all D′ ⊆ D, all S ⊆ N with i ∈ S, and all D′′ ⊆DS ∖D it holds that

c∗(Oi,D
′) + c∗(OS,D

′′) = c∗(OS,D
′
∪D′′). (9)

Let IDSi(Γ) be the set of irrelevant delivery sets of i.

The cost of fulfilling any subsets of irrelevant deliveries of a player is additive to any
subset of the set of remaining deliveries in any coalition that includes that player, so the
player can fulfil such deliveries separately in any possible combination with other deliveries.
In Example 3, {d1i } is the only irrelevant delivery set of i. Note that neither {d2i , d3i } nor{d4i } would remain separable if i removes the other set and plan its delivery by himself. This
example clarifies that every irrelevant delivery set is also separable, but the reverse does not
hold necessarily.

We are ready to present the first property in this section which specifies a scope of con-
sideration for CTLD situations where the delivery requirements beyond this scope should be
ignored in the calculation of allocations. We define the independence of irrelevant deliver-
ies property as the insensitivity of a solution to the exclusion of irrelevant deliveries of the
players. Given D′i ⊆Di, let Γ∖D′i be a CTLD situation that coincides with Γ except for the
delivery set of i which is replaced by Di ∖D

′
i.

Property 5. A CTLD solution A satisfies the independence of irrelevant deliveries

property (IID) if for all Γ ∈ T , any i ∈ N , and every D ∈ IDSi(Γ) it holds that A(Γ) =
A(Γ ∖D).

12
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Figure 4: A CTLD situation where i and j have different competitive positions

The final property in this section addresses the competitive aspect of solutions in CTLD
situations. Considering the limited number of players in consortia of logistics providers and
the competitive nature of transportation markets, a key requirement for solutions in CTLD
situations is their ability to maintain the competitive positions of the players in dividing the
savings obtained by cooperation.

Recall from Section 3 that the average cost of fulfilment represents the lowest price that
i can charge for every unit distance of its delivery services. In this regard, the average
cost of fulfilment provides a basis for calculating unit delivery prices in logistics markets.
However, it can also be utilized as a measure of comparison among the players. This idea
is motivated by the observation that a lower average cost of fulfilment of a logistics player
compared to that of another logistics player allows the former to charge a lower unit price
for its delivery services while remaining profitable. Therefore, if for two players i and j it
holds that z(Oi,Di) < z(Oj ,Dj), it can be stated that prior to cooperation, i is in a better
competitive position than j. The definition of average cost of fulfilment can be naturally
extended to incorporate the savings allocated to the players after the cooperation. Given an
allocation α and player i ∈ N , Di ≠ ∅, define the average cost of fulfilment of player i under
α as

zαi (Oi,Di) = c∗(Oi,Di) −αi
cF (Di) (10)

Note that the cost of full kilometres of any non-empty set of delivery requirements is strictly
positive. The notion of competitiveness in this paper is motivated by the observation that
non-competitive allocations eliminate the advantage of a player over other players in terms
of its competitive position before and after cooperation. We elaborate with the help of an
example.

Example 4. Figure 4 represents a CTLD situation with two logistics players i and j. Assum-
ing that the distance between any two locations is 1, we get z(Oi,Di) = 1.5 and z(Oj ,Dj) = 2.
The cooperation in this case results in 2 units of savings, i.e. vΓ(N) = 2. Observe that the
equal allocation α = (1,1) results in having zαi (Oi,Di) = zαj (Oj ,Dj) = 1. Thus, the equal
allocation eliminates i’s advantage over j with regard to their competitive positions prior to
the cooperation. △

We are now ready to introduce a competitiveness property defined over a restricted
set of CTLD situations. Let T ○

2
be the set of 2-player situations such that for all j ∈ N ,

SDSj(Γ) = ∅.

13



Property 6. A CTLD solution satisfies the restricted competitiveness property (RC)
if for every Γ ∈ T ○

2
and any α ∈ A(Γ) it holds that

zαi (Oi,Di)z(Oj ,Dj) = zαj (Oj ,Dj)z(Oi,Di). (11)

If the set of delivery requirements of each player is non-empty, then (11) boils down
to z(Oi,Di)/zαi (Oi,Di) = z(Oj ,Dj)/zαj (Oj,Dj). In this respect, the RC property prescribes
allocations that preserve the competitive positions of the players, that is, an allocation satis-
fying the RC property equalizes the ratio of average costs of fulfilments of the players before
and after cooperation. Note that the latter can also be expressed in terms of the stand-
alone costs of the players, i.e. for players with non-empty delivery sets (11) is simplified to
αi/c∗(Oi,Di) = αj/c∗(Oj ,Dj). In Example 4, the allocation α = (1.2,0.8) preserves the com-
petitive positions of i and j before and after the cooperation, resulting in zαi (Oi,Di) = 0.9
and zαj (Oj,Dj) = 1.2.

6 A Solution for CTLD Situations

In this section we introduce a CTLD solution that satisfies all the properties mentioned
above. Our solution draws upon essential delivery sets, i.e. particular subsets of deliveries of
players which are necessary and sufficient in creating the contribution of the player to the
grand coalition.

6.1 Essential delivery sets

Let S ∖ i denotes the coalition S excluding player i.

Definition 3. Let Γ be a CTLD situation. D ⊆Di is an essential delivery set (EDS) of
i if

c∗(Oi,Di ∖D) + c∗(ON ,DN∖i ∪D) = c∗(ON ,DN). (12)

and for every D′ ⊂ D, D ≠ ∅:

c∗(Oi,Di ∖D
′) + c∗(ON ,DN∖i ∪D

′) > c∗(ON ,DN) (13)

Let EDSi(Γ) be the set of all essential delivery sets of i.

An essential delivery set of a player i meets two conditions. First, the complement of this
set comprises a separable delivery set of i, that is, an essential delivery set is sufficient for
creating the cost savings of players in the grand coalition. Second, one cannot expand the
complement of this set to obtain a larger separable delivery set for i. In fact, an essential
delivery set is necessary for creating the players’ contribution to the grand coalition in
the sense that the situation obtained by excluding its complement delivery set contains no
separable delivery sets. The following lemma formalizes this.

Lemma 3. Let Γ be a CTLD situation, D ∈ EDSi(Γ), and Γ′ = Γ ∖ (Di ∖D). We have
SDSi(Γ′) = ∅.

14



Proof. It suffices to show that for any D∗ ⊆ D it holds that

c∗(Oi,D
∗) + c∗(ON ,DN∖i ∪ (D ∖D∗)) > c∗(ON ,DN∖i ∪D). (14)

For any D∗ ⊆D we have

c∗(Oi,D
∗) + c∗(ON ,DN∖i ∪ (D ∖D∗))

= c∗(Oi,D
∗) + c∗(ON ,DN∖i ∪ (D ∖D∗)) + c∗(Oi,Di ∖D) − c∗(Oi,Di ∖D)

≥ c∗(Oi,Di ∖ (D ∖D∗)) + c∗(ON ,DN∖i ∪ (D ∖D∗)) − c∗(Oi,Di ∖D)
> c∗(ON ,DN) − c∗(Oi,Di ∖D)
= c∗(ON ,DN∖i ∪D).

where the first inequality follows from part (i) of Lemma 1, the second inequality follows
from the second condition of EDS in (13) for D′ = D∖D∗, and the last equality follows from
the first condition of EDS in (12). Therefore (14) holds for any D∗ ⊆D.

In Example 3 (Figure 3), player i has two sets of essential delivery sets {d2i , d3i } and {d4i }.
This demonstrates that a player in a CTLD situation might have multiple essential delivery
sets.

The next lemma elaborates on the relation between essential and irrelevant delivery sets.

Lemma 4. Let Γ be a CTLD situation, i ∈ N , and Dr
i ∈ IDSi(Γ). Then

(i) for every D ∈ EDSi(Γ), D ∩Dr
i = ∅,

(ii) for every j ∈ N , EDSj(Γ) = EDSj(Γ ∖Dr
i ).

Proof. (i) Suppose the contrary that D ∩ Dr
i ≠ ∅. Let D′ = D ∩ Dr

i , hence D
′ ⊆ D. By

definition of irrelevant deliveries of i in Γ it must be that

c∗(Oi,D
′) + c∗(ON ,DN∖i ∪ (D ∖D′)) = c∗(ON ,DN∖i ∪D). (15)

The latter implies that D′ is a separable delivery set of i in Γ ∖ (Di ∖D) which contradicts
Lemma 3. Thus it must be that D ∩Dr

i = ∅.
(ii) First we show that for any j ∈ N and every D′ ⊆ DN ∖D

r
i such that D′ ≠ ∅ it holds

that

c∗(Oj,Dj ∖D
′) + c∗(ON ,DN∖j ∪D

′) − c∗(ON ,DN) = (16)

c∗(Oj,Dj ∖D
′) + c∗(ON , (DN∖j ∖D

r
i ) ∪D′) − c∗(ON ,DN ∖D

r
i ).

Since Dr
i ∈ IDSi(Γ), we have

c∗(Oi,D
r
i ) + c∗(ON ,DN ∖D

r
i ) = c∗(ON ,DN), (17)

and, since (DN∖j ∖D
r
i ) ∪D′ ⊂ DN ∖D

r
i , we have

c∗(Oi,D
r
i ) + c∗(ON , (DN∖j ∖D

r
i ) ∪D′) = c∗(ON ,DN∖j ∪D

′). (18)
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By (17) and (18) we get

c∗(ON ,DN∖j ∪D
′) − c∗(ON ,DN) = c∗(ON , (DN∖j ∖D

r
i ) ∪D′) − c∗(ON ,DN ∖D

r
i ) (19)

Adding c∗(Oj ,Dj ∖D′) to both sides of the equation (19) obtains (16).
Suppose that D ∈ EDSj(Γ). For j ≠ i it holds that D ⊆ Dj, and for j = i part (i) of this

lemma indicates that D ⊆Di ∖D
r
i . Therefore for j ∈ N we have D ⊆DN ∖D

r
i . By definition

of EDS it must be that

c∗(Oj,Dj ∖D) + c∗(ON ,DN∖j ∪D) = c∗(ON ,DN) (20)

and for every D′′ ⊂ D, D′′ ≠ ∅,

c∗(Oj,Dj ∖D
′′) + c∗(ON ,DN∖j ∪D

′′) > c∗(ON ,DN). (21)

However, due to (16), equality in (20) implies that

c∗(Oj,Dj ∖D) + c∗(ON , (DN∖j ∖D
r
i ) ∪D) = c∗(ON ,DN ∖D

r
i ) (22)

and, due to (16), inequality in (21) implies that

c∗(Oj ,Dj ∖D
′′) + c∗(ON , (DN∖j ∖D

r
i ) ∪D′′) > c∗(ON ,DN ∖D

r
i ) (23)

for every D′′ ⊂D, D′′ ≠ ∅. The conditions in (22) and (23) indicate that D ∈ EDSj(Γ∖Dr
i ).

Suppose that D ∈ EDSj(Γ ∖Dr
i ). For j ≠ i it holds that D ⊆ Dj , and for j = i it is the

case that D ⊆ Di ∖D
r
i . Therefore for j ∈ N we have D ⊆ DN ∖D

r
i . By definition of EDS

equality (22) as well as inequality (23) for every D′′ ⊂ D, D′′ ≠ ∅, hold. As direct results of
(16), equality (20) as well as inequality (21) for every D′′ ⊂ D, D′′ ≠ ∅, must also hold. We
conclude that D ∈ EDSj(Γ).

Part (i) of Lemma 4 asserts that the essential delivery sets never include any irrelevant
deliveries. Part (ii) shows that the exclusion of irrelevant deliveries of any player from the
entire delivery set of the grand coalition does not affect the sets of essential delivery sets of
all players.

The last lemma in this section shows that for finding essential delivery sets, it is sufficient
to compare the optimal individual plans and those of the grand coalition. Given an optimal
plan of a player i and an optimal plan for the grand coalition, an essential delivery set of
i comprises the delivery requirements whose fulfilment in the grand coalition involve other
players, i.e. they are either fulfilled from depots of other players or in trips which contain
delivery requirements of players other than i.

Lemma 5. Let Γ be a CTLD situation and D ∈ EDSi(Γ). There exists P ∈ P∗(ON ,DN)
such that D = ⋃l∈P∖L(Oi,Di)D

l.

Proof. Let P ′ ∈ P∗(Oi,Di ∖D), P ′′ ∈ P∗(ON ,DN∖i ∪D), and P = P ′ ∪P ′′. By first condition
of EDS in (12) we have c∗(Oi,Di ∖ D) + c∗(ON ,DN∖i ∪ D) = c∗(ON ,DN). By Lemma 2,
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we have P ∈ P∗(ON ,DN). Note that P ′ ⊆ L(Oi,Di). To complete the proof it suffices to
show that P ′′ ∩L(Oi,Di) = ∅. Suppose the contrary. Then there must exist trip l such that
l ∈ P ′′ ∩ L(Oi,Di) which requires that Dl ⊂ D ⊆ Di. As the cost of the delivery plan P ′′ is
the sum of its individual trips, it must be that

cl + c∗(ON ,DN∖i ∪ (D ∖Dl)) = c∗(ON ,DN∖i ∪D).
Since l ∈ L(Oi,Di), we have cl = c∗(Oi,Dl). Then it must be that

c∗(Oi,D
l) + c∗(ON ,DN∖i ∪ (D ∖Dl)) = c∗(ON ,DN∖i ∪D).

The latter implies that Dl is a separable delivery set of i in (Γ ∖Di) ∪D which contradicts
Lemma 3. Thus, given D, any optimal fulfilment plan of the form P = P ′∪P ′′ has the feature
that D = ⋃l∈P∖L(Oi,Di)D

l.

Given the favourable features of essential delivery sets, we concentrate on them when
determining players allocations in CTLD situations. However, as seen in Example 3, the
essential delivery sets of a player can be multiple. In these cases, we focus on essential
delivery sets which have the lowest costs when fulfilled individually. In this way, we make
sure that players fulfil the bulkiest parts of their delivery requirements by themselves. We
introduce the minimal essential delivery sets as the essential delivery sets with minimum
stand-alone cost.

Definition 4. Let Γ be a CTLD situation. D ⊆ Di is a minimal essential delivery set

(MEDS) of i if D ∈ EDSi(Γ) and
c∗(Oi,D) ≤ c∗(Oi,D

′) for all D′ ∈ EDSi(Γ). (24)

Let MEDSi(Γ) be the set of minimal essential delivery sets of i.

Note that even if the set of minimal essential delivery sets has multiple elements, the
stand-alone costs of fulfilment for all of them are equal.

6.2 The proposed solution

Our proposed CTLD solution is introduced in two steps. In the first step, we introduce
a proportional CTLD solution, AP , which incorporates the notions of competitiveness and
scope defined in the previous section. In the second step, we use the latter proportional
allocation to construct a least-unstable solution, AE .

Fix Γ, let Dm
i ∈MEDSi(Γ), and define AP (Γ) = {αP (Γ)} such that

αPi (Γ) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c∗(Oi,D
m
i )∑j∈N c∗(Oj ,D

m
j )v

Γ(N) if ∑
j∈N

c∗(Oj,D
m
j ) ≠ 0

1

n
vΓ(N) otherwise

(25)
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When there exists at least one player with a non-empty essential delivery set, the solution AP

obtains a unique efficient allocation that divides the savings obtained in the grand coalition
of CTLD situation Γ among players with non-empty essential delivery sets proportional to
the stand-alone cost of their minimal essential deliveries. If the set of essential delivery set
of every player is empty, then AP allocates the savings among the players equally. Example
5 in Section 7 discusses a CTLD situation where the latter is the case.

The CTLD solution AP completely preserves the competitive positions of the players with
regard to their minimal essential delivery sets. This means that for every pair of players i, j ∈
N with non-empty essential delivery sets we have αPi (Γ)/c∗(Oi,D

m
i ) = αPj (Γ)/c∗(Oj ,D

m
j )

which implies that
zi(Oi,D

m
i )

z
αP (Γ)
i (Oi,D

m
i ) =

zj(Oj ,D
m
j )

z
αP (Γ)
j (Oj,D

m
j ) .

The solution AP does not necessarily obtain an ǫ∗-stable allocation. In order to achieve this,
we present the stable CTLD solution AE . Define AE(Γ) such that

AE(Γ) = argmin
α

∑
i∈N

(αPi (Γ) − αi)2 (26)

s.t. ∑
i∈S

αi + ǫ
∗ ≥ vΓ(S) ∀S ⊂ N (27)

∑
i∈N

αi = v
Γ(N) (28)

where ǫ∗ is defined in (7). Below we show that AE always produces a single ǫ∗-stable
allocation with the minimum Euclidean distance from the proportional allocation αP (Γ).
Theorem 2. The solution AE satisfies the NE, UQ, and LU.

Proof. Let Γ ∈ T . We proceed in order.
NE: By Assumption 1, vΓ is well-defined. From (25) it is clear that αP (Γ) always exists

since either ∑j∈N c∗(Oj ,D
m
j ) ≠ 0 or ∑j∈N c∗(Oj ,D

m
j ) = 0. Also, definition of ǫ∗ guarantees

the existence of α that satisfy (27) and (28) (Maschler et al., 1979). Therefore AE(Γ) ≠ ∅.
We conclude that AE satisfies the nonemptiness property.

UQ: The allocations contained in AE(Γ) minimize the Euclidean distance between αP (Γ)
and the set of ǫ∗-stable allocations defined via (27) and (28). Note that the region defined
via (27) and (28), which is essentially an ǫ-core, is a compact convex polyhedron (Maschler
et al., 1979). The convex projection theorem (Davidson and Donsig, 2010) asserts that there
exists a unique point in every non-empty closed and convex set having the minimum Eu-
clidean distance from any given point. Therefore, ∣AE(Γ)∣ = 1 which implies that AE satisfies
the uniqueness property.

LU: The unique allocation obtained by AE(Γ) satisfies the constraints in (27) and (28).
By definition of ǫ∗-stability in (7), this allocation is an ǫ∗-stable allocation as well. It follows
that the solution AE satisfies the LU property.

18



Since the allocation AE satisfies the UQ property, in any CTLD situation Γ it results in
a single allocation. We denote this single allocation with αE(Γ), i.e. AE(Γ) = {αE(Γ)}.

Before providing the results regarding the ability of AE to satisfy IID and RC properties,
we show that the coalition functions in CTLD situations remain intact if irrelevant delivery
sets of the players are excluded from the situation.

Lemma 6. Let Γ be a CTLD situations, i be a player in N and D ∈ IDSi(Γ). We have
vΓ(S) = vΓ∖D(S) for every S ⊆ N .

Proof. From the definition of irrelevant delivery sets we know that

c∗(Oi,D) + c∗(Oi,Di ∖D) = c∗(Oi,Di)
and for S ⊆ N , i ∈ S,

c∗(Oi,D) + c∗(OS,DS ∖D) = c∗(OS,DS).
By definition of vΓ it then follows that

vΓ(S) = ∑
j∈S∖i

c∗(Oj,Dj) + c∗(Oi,Di) − c∗(OS,DS)
= ∑

j∈S∖i

c∗(Oj,Dj) + c∗(Oi,Di ∖D) − c∗(OS,DS ∖D)
= vΓ∖D(S).

In light of the previous lemma, it can be inferred that the CTLD game associated with
a CTLD situation remains the same after excluding the irrelevant delivery sets of players.

Next theorem asserts that AE also satisfies the remaining two properties defined specifi-
cally for CTLD situations.

Theorem 3. The solution AE satisfies the IID and RC properties.

Proof. Let Γ be given.
IID: Let Dr

i ∈ IDSi(Γ). By Lemma 6, we have vΓ(S) = vΓ∖Dr

i (S) for all S ⊆ N . Thus the
constraints in (27) and (28) would not be affected by exclusion of the irrelevant deliveries. It
remains to show that αPj (Γ) = αPj (Γ∖Dr

i ) for every j ∈ N . By part (ii) of Lemma 4 we know
that EDSj(Γ) = EDSj(Γ∖Dr

i ) for all j ∈ N . Consequently, MEDSj(Γ) =MEDSj(Γ∖Dr
i )

for all j ∈ N . From the definition of αP in (25) in conjunction with Lemma 6 it immediately
follows that αPj (Γ) = αPj (Γ ∖Dr

i ) for every j ∈ N . Thus, AE(Γ) = AE(Γ ∖Dr
i ) which proves

that AE satisfies the IID property.

RC: Suppose ∣N ∣ = 2. In this case the constraints in (27) and (28) are reduced to αi+αj =
vΓ(N) and αi, αj ≥ 0. The allocation αP (Γ) is within this region. Hence, αE(Γ) = αP (Γ)
which results in the objective function value of zero in (26). Next suppose that SDSj = ∅ for
j ∈ N . In this case we haveMEDSj(Γ) = EDSj(Γ) = {Dj} for j ∈ N . By definition of αP (Γ)
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we get αPi (Γ)/c∗(Oi,Di) = αP (Γ)/c∗(Oj ,Dj) which implies that (11) holds. Therefore the
solution AE satisfies the RC property.

The solution AE incorporates the notions of scope and competitiveness to produce alloca-
tions for CTLD situations. When the proportional solution AP is within the set of ǫ∗-stable
allocations, defined via (27) and (28), AE coincides with AP . Otherwise, when the allocation
obtained by AP is not an ǫ∗-stable allocation, AE draws upon a simple mechanism to single
out an allocation in relation to the AP .

7 Adopting Existing Solutions for CTLD Situations

This section discusses the adoption of some of the existing solutions for CTLD situations
and compares them with regard to the properties introduced earlier in this paper. Table 1
at the end of this section exhibits the summary of the results.

One of best-known solutions in cooperative game theory is the core. The core of a
cooperative game (N,v), i.e. C(N,v), contains all allocations that are stable. In this regard,
the core in itself is an ǫ-core with ǫ = 0. The core of a CTLD situation can be defined
accordingly as a mapping that assign to every CTLD situation the core of its associated
game. In this manner, one can extend the core as a CTLD solution. Formally,

AC(Γ) = C(N,vΓ) = {α ∣∑
i∈S

αi ≥ v
Γ(S) for all S ⊂ N, and ∑

i∈N

αi = v
Γ(N)} .

The following example shows that the core of CTLD situations does not satisfy the NE
property.

Example 5. Consider the CTLD situation Γ depicted in Figure 5. There are three players
each having a depot and a delivery requirement. The distance between the pickup and de-
livery locations for all delivery requirements is two and the distance from the depots to any
pickup/delivery point is one. The set of feasible trips includes all trips which fulfil no more
than two delivery requirements, i.e. L = {l ∈ L∣∣Dl∣ ≤ 2} (only two deliveries can be fulfilled
sequentially during a day). For S ⊆ N , we have c∗(OS,DS) = 4 if ∣S∣ = 1, c∗(OS,DS) = 6 if∣S∣ = 2, and c∗(ON ,DN) = 10. This results in vΓ(S) = 0 when ∣S∣ = 1, vΓ(S) = 2 when ∣S∣ = 2,
and vΓ(N) = 2. No stable allocation can be found in this setting thus the core of Γ is empty.
△

Upon existence, the core of a CTLD situation could as well contain an infinite number
of allocations. For example, in two-player CTLD situations with vΓ(N) > 0, any efficient
allocation that gives non-negative allocations to the players is in the core. Therefore, the
core of CTLD situations does not satisfy UQ property. On the other hand, the definition of
the RC property in combination with the efficiency property necessitates a unique allocation
in every two-player situation. Consequently, the core does not satisfy the RC property either.
Since the core solely draws upon the CTLD game, it follows from Lemma 6 that it satisfies
the IID property.
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Figure 5: A CTLD situation with empty core

The intuitive appeal of the stability concept on one side, and the possibility of having
empty cores on the other side motivates alternative solutions that mainly address the stability
issue. The least-core of the game (Maschler et al., 1979), i.e. LC(N,v), is the intersection of
all non-empty ǫ-cores of (N,v). Accordingly, the least core of CTLD solutions is defined as
a mapping that assigns to every situation the least-core of its associated game:

ALC(Γ) = {α ∣∑
i∈S

αi + ǫ
min ≥ vΓ(S) for all S ⊂ N, and ∑

i∈N

αi = v
Γ(N)} .

where

ǫmin = min{ǫ ∣∑
i∈S

αi + ǫ ≥ v
Γ(S) for all S ⊂ N,∑

i∈N

αi = v
Γ(N)} . (29)

Considering the definition ǫ-core, one can always find values of ǫ such that the corre-
sponding ǫ-core is non-empty. Consequently, the least-core, unlike the core, satisfies the NE
property. However, the least-core does not necessarily results in a unique allocation (see
Example 7 below) so it does not satisfy the UQ property. Since the least-core solely draws
upon the CTLD game, it follows from Lemma 6 that it satisfies the IID property. It is
straightforward to verify that in zero-normalized two-player games, the least-core contains
only the allocation which divides the savings equally between the players which imply that
it does not satisfy the RC property. Note that the definition of least-unstability implies
that the set of ǫ∗-stable allocations for a CTLD situation always contains the corresponding
ǫmin-stable allocations. This is due to the fact that ǫmin can take negative values while ǫ∗ is
always non-negative. Therefore, when the core of a CTLD situation is not empty, the least-
unstable allocations are within the core and when the latter is empty, the set of least-unstable
allocations coincide with the least-core. Thus leas-core satisfies the LU property.

The nucleolus is another well-studied solution for cooperative games. As in the case of
the core, the nucleolus in CTLD solutions can be defined as a mapping that assigns to every
situation Γ the nucleolus of its corresponding game, η(N,vΓ). For a CTLD situation Γ and
an allocation α, define the vector of excesses θ(α) as a vector in R2

n

whose components
are the numbers vΓ(S) −∑i∈S αi arranged non-increasingly. For two vectors x,x′ ∈ Rm, the
lexicographical order x ≤lex x′ implies that either x = x′, or there is 1 ≤ t ≤m such that xi = x′i
for 1 ≤ j < t and xt < x′t. Define the imputation set M(Γ) = {α∣∑i∈N αi = vΓ(N) and αi ≥
0 for all i ∈ N}. The nucleolus of a CTLD situation Γ, i.e. Aη(Γ), is the set of imputations
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whose associated vectors of excesses are lexicographically minimal:

Aη(Γ) = η(N,vΓ) = {α ∣θ(α) ≤lex θ(α′) for all α,α′ ∈M(Γ)} .
The nucleolus selects the allocations which lexicographically minimize the vector of objec-
tions for all coalitions of players where the objection is defined as the difference between the
savings obtainable by that coalition and the given allocation. For every cooperative game,
the nucleolus always exists, is unique, and is contained in the least-core (Schmeidler, 1969).
Therefore, the nucleolus of CTLD situations satisfies the NE, UQ, and LU properties. Since
the nucleolus solely draws upon the CTLD game, it follows from Lemma 6 that it satisfies
the IID property. However, it does not satisfy the RC property as in two-player situations
it always results in the allocation that divides the savings equally between the two players
(Aumann and Maschler, 1985).

The Shapley value is a classic solution in cooperative game theory. The Shapley value of
a game Φ(N,v) is a single-valued solution that allocates the savings to players based on their
average contributions to all coalitions. By extending the notion of Shapley value to CTLD
situations, we obtain the solution AΦ wherein for situation Γ we have AΦ(Γ) = {αΦ(Γ)} ={Φ(N,vΓ)}, that is for all i ∈ N :

αΦ

i (Γ) = ∑
S⊆N∖i

∣S∣!(n − ∣S∣ − 1)!
n!

[vΓ(S ∪ i) − vΓ(S)] .
For every CTLD situation, the corresponding Shapley value always exists and is unique.
Since the Shapley value solely draws upon the CTLD game, it follows from Lemma 6 that
it satisfies the IID property. Moreover, it always divides the savings equally in two-player
situations (Aumann and Maschler, 1985) thus it does not satisfy the RC property. The fol-
lowing example shows that the Shapley value does not satisfy the least-unstability property.

Example 6. Consider the CTLD situation Γ depicted in Figure 6. There are three players
each having a depot at the same location and a delivery requirement. The distance between
the pickup and delivery locations for all delivery requirements is one. The stand-alone cost
for all players is 2. Although cooperation between players i and j does not create any savings,
either of them can cooperate with k to generate 2 units of savings. This results in vΓ(S) = 0
when ∣S∣ = 1, vΓ({i, j}) = 0, vΓ({i, k}) = vΓ({j, k}) = 2, and vΓ(N) = 2. The allocation
α = (αi, αj , αk) = (0,0,2) is the unique stable allocation. The Shapley value of the situation
is αΦ(Γ) = (1/3,1/3,4/3). Thus the Shapley value is not the least-unstable allocation. △

Weighted Shapley values (Shapley, 1953a) extend the Shapley value by allowing unequal
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Figure 7: A CTLD situation with five players

allocations of savings in two player situations based on exogenously given weights. Note that
the Shapley value by itself is a weighted Shapley value where all players have equal weights.
The exogenous weights reflect the different bargaining powers of the players which justifies
discrimination among their allocations irrespective of the characteristics of the situation.
In CTLD situations encountered by the authors, no player has ex-ante a higher bargaining
power over the others.

The alternative cost avoided (ACA) method introduced by Tijs and Driessen (1986) is a
solution which draws upon the stand-alone costs. We can adopt the ACA as a solution for
CTLD situations. Let Γ ∈ T and define mi = c∗(ON ,DN) − c∗(ON∖i,DN∖i). The allocation
of savings2 obtained by solution AACA in situation Γ is AACA(Γ) = {αACA(Γ)} where for all
i ∈ N :

αACAi (Γ) = [c∗(Oi,Di) −mi] [1 − ∑j∈Nmj − c∗(ON ,DN)
∑j∈N(mj − c∗(Oj,Dj))] .

This solution does not satisfy the NE property: in the situation depicted in Figure 5
(Example 5) we have mj − c∗(Oj,Dj) = 0 for all j ∈ N so AACA(Γ) is not well-defined for
the situation in this example due to division by zero. Upon existence AACA obtains a single
allocation. Definition of alternate cost avoided implies that the cost of irrelevant deliveries
of a player i is additive both in c∗(Oi,Di) and mi so it would cancel out in c∗(Oi,Di) −mi.
Therefore exclusion of irrelevant deliveries would not affect AACA and consequently it satisfies
the IID property. It is straightforward to verify that in situations with two players only, the
ACA solution always results in equal division of savings. Thus it does not satisfy the RC
property. Finally, the next example shows that the ACA solution does not satisfy the LU
property.

Example 7. Consider the CTLD situation in Figure 7. Players k1, k2, and k3 each have
a depot at the same location and a delivery with equal stand-alone costs of 2 (the distance
between the two points at right is 1). Players i and j each also have a depot at the same loca-
tion with a single delivery whose stand-alone costs is 4 (the distance between the two points at
left is 2). The deliveries and depots in the left and right sides of the figure are distant enough
so that no optimal trip can be constructed by combining the corresponding components.
The stand-alone costs are c∗(Oi,Di) = c∗(Oj ,Dj) = 4 and c∗(Ok1,Dk1) = c∗(Ok2,Dk2) =
c∗(Ok3 ,Dk3) = 2. The saving obtained by coalition {i, j} is 4, the saving obtained by coali-
tions {k1, k2}, {k1, k3}, {k2, k3}, and {k1, k2, k3} are 0, 2, 2, and 2 respectively. The savings
obtained by the grand coalition is 6. The core of the associated game is non-empty and can

2Note that ACA is originally defined over cooperative cost games. We have modified the original ACA
formula to describe corresponding allocations of savings rather than costs.
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be completely characterized by the allocations α = (αi, αj , αk1 , αk2 , αk3) = (θ,4− θ,0,0,2) with
0 ≤ θ ≤ 4. With respect to ACA solution, we have mi = mj = mk3 = 0 and mk1 = mk2 = 2.
Consequently, we get αACA = (2.4,2.4,0,0,1.2). So αACA is not the least-unstable allocation.
△

The proportional solution introduced by Ortmann (2000) incorporates proportionality as
a measure of fairness in division of savings. In order to provide the formula for this solution
in CTLD situations, let ΓS be the situation obtained by ignoring the players not in S. Note
that ΓN is the complete situation. The proportional solution a la Ortmann is defined via

Aψ(Γ) = {(c∗(Oi,Di) −ψi(ΓN))i∈N}
where for all i ∈ N and S ⊆ N , ψi(ΓS) is obtained recursively from3

ψi(ΓS) = c∗(OS,DS)[1 + ∑
j∈S∖i

ψj(ΓS∖i)
ψi(ΓS∖j)]

−1

with ψi(Γi) = c∗(Oi,Di). With the above definition, this solution only exists in situations
where for every i ∈ N it holds that c∗(Oi,Di) ≠ 0. This is not always the case in CTLD
situations as shown in the next example.

Example 8. Consider the CTLD situation depicted in Figure 8. The player i has a depot
but no deliveries and player j has a depot and a delivery which is close to i’s depot. The
distance between the adjacent points is 1. Through cooperation the players can obtain 2 units
of savings, i.e. vΓ(N) = 2, we have c∗(Oi,Di) = 0. △

The example above shows that the proportional solution does not satisfy the NE property.
Upon existence the proportional solution provides a single allocation (Ortmann, 2000). In
CTLD situations with two players, the proportional solution divides savings in proportion
to stand-alone costs of the players. As the result, this solution satisfies the RC property.
However, considering the entire stand-alone cost players hinders this solution from satisfying
the IID property. Looking back at Example 6, observe that the proportional solution Aψ

obtains the allocation αψ = (2/5,2/5,6/5). Given that the only stable allocation in this
situation is α = (0,0,2), we conclude that this solution does not satisfy the LU property.

The equal profit-sharing method (EPM) proposed by Frisk et al. (2010) addresses the
concerns over stability as well as competitiveness in transportation situations. The EPM
solution chooses allocations in the core, or in the least-core when the core is empty, which

3Note that the original solution is extended to incorporate proportionality with regard to costs, instead
of savings.
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Solution RC IID NE UQ LU
AC Core × ✓ × × ✓

ALC Least-core × ✓ ✓ × ✓

Aη Nucleolus × ✓ ✓ ✓ ✓

AΦ Shapley value × ✓ ✓ ✓ ×

AACA ACA × ✓ × ✓ ×

Aψ Proportional ✓ × × ✓ ×

AEPM EPM ✓ × × × ✓

AE Proposed ✓ ✓ ✓ ✓ ✓

RC: restricted competitiveness, IID: independence of irrelevant deliveries,

NE: non-emptiness, UQ: uniqueness, LU: least unstability

Table 1: Comparing CTLD solutions

minimize the maximum difference between all pairwise ratios of allocation to stand-alone
cost. In CTLD situations, the EPM solution is defined as AEPM where for a situation Γ:

AEPM(Γ) =argmin
α

f (30)

s.t.
αi

c∗(Oi,Di) −
αj

c∗(Oj,Dj) ≤ f ∀i, j ∈ N (31)

∑
i∈S

αi + ǫ
min ≥ vΓ(S) ∀S ⊂ N (32)

∑
i∈N

αi = v
Γ(N) (33)

with ǫmin being defined in (29). In CTLD situations with two players, the EPM allo-
cates savings proportional to stand-alone costs of the players. Thus AEPM satisfies the RC
property. However, this solution does not satisfy the IID property as it considers the entire
stand-alone costs of the players. Moreover, EPM is not defined for the case where stand-alone
cost of a player is zero (as in Figure 8), thus it does not satisfy the NE property either. We
return to Example 7 in order to show that EPM can produce more than a single allocation
in some situations. With regard to later example, first note that ǫmin = 0. Now consider
the family of allocations (αi, αj , αk1 , αk2 , αk3) = (θ,4 − θ,0,0,2) with 0 ≤ θ ≤ 4. Note that
the largest difference between pairwise ratios of allocation to stand-alone cost in this family
is 1. In fact, all allocations in this family are optimal solutions to the program defined by
(30)–(33). We conclude that AEPM does not satisfy the UQ property.

8 Final Remarks and Conclusions

In this paper we proposed a solution for cooperative truckload delivery situations. The pro-
posed solution satisfies a series of properties which reflect the requirements for fairness and/or
competitiveness in these situations. The solution always exists, gives a unique allocation,
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and is situated within the core or, if the latter is empty, within the least-core (Theorem 2).
The proposed solution is insensitive to the deliveries which could not play any role in coop-
eration and satisfies a minimal requirement for competitiveness of allocations (Theorem 3).
When the stability constraints on allocations permits, the obtained allocation preserves the
competitive positions of all logistics providers with regard to their minimal essential deliver-
ies, i.e. the subsets of delivery requirements of players which are necessary and sufficient in
creating their contributions to the grand coalition and have the minimum stand-alone costs
(Definition 4). The preservation of competitive positions implies that the ratio of average
cost of fulfilments of the players remain the same before and after cooperation.

Our allocation is proposed with special attention to implementability considerations. The
preliminary allocation introduced in this paper, i.e. AP , which draws upon minimal essential
delivery sets of players, can be calculated by comparing the individual optimal delivery plans
of the logistics providers in stand-alone mode versus those in the grand coalition. This is
due to the fact that the essential delivery sets are detectable from the latter comparison
(as implied by Lemma 5). In practical instances where the multiplicity of optimal delivery
plans are improbable, the essential delivery sets of the players can be obtained by detecting
the deliveries whose fulfilment in the grand coalition involve other players, that is, the trips
including those deliveries are either initiated from another player’s depot or they include
deliveries of others. When the essential delivery sets are multiple, finding the minimal sets
among them requires comparison among their stand-alone delivery costs.

To the best of our knowledge, this paper is the first to formally incorporate an endogenous
measure of competitiveness in logistics markets. This is done by considering the lowest
possible price that a logistics provider is able to charge for a unit-distance of its delivery
services within a specified scope without incurring loss. Such a measure reflects the internal
efficiency of the logistics providers’ operations. Consequently, our solution takes advantage
of information contained in a situation in addition to the savings generated in all possible
coalitions to calculate the allocation.

We argue that in cooperative operations management, investigating the desirable prop-
erties of solutions and their formal definition ex-ante obtains more meaningful results than
using generic solutions. Without having a solid ground for comparing among different solu-
tions, one cannot objectively evaluate the performance of various available solutions. The
definition of desirable properties in CTLD situations in this paper allows us to conduct such
comparison. The results clarify the advantages of our proposed solution over some of the
existing solutions in the literature which are more suited to be adopted in these situations.

As a practical advantage of our proposed solution, it can be extended to handle more
realistic cooperative truckload delivery situations. The restrictions for delivery time windows,
requirements for trip lengths, availability of personnel and shifts can all be easily included in
the basic model which obtains costs. In spite of possible challenges in solving the optimization
problem, as long as one can identify the best joint plans for fulfilling the delivery requirements
in the grand coalition, our approach in obtaining competitive allocations remains valid for
cooperating logistics players.
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