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ABSTRACT
This paper presents a compiler flow to map Deep Convolu-
tional Networks (ConvNets) to a highly specialized VLIW
accelerator core targeting the low-power embedded market.
Earlier works have focused on energy efficient accelerators
for this class of algorithms, but none of them provides a
complete and practical programming model. Due to the
large parameter set of a ConvNet it is essential that the
user can abstract from the accelerator architecture and does
not have to rely on an error prone and ad-hoc assembly
programming model. By using modulo scheduling for soft-
ware pipelining we demonstrate that our automatic gener-
ated code achieves equal or within 5-20% less hardware uti-
lization w.r.t. code written manually by experts. Our com-
piler removes the huge manual workload to efficiently map
ConvNets to an energy-efficient core for the next-generation
mobile and wearable devices.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Compilers; C.1.3 [Processor Architectures]: Other
Architecture Styles—Heterogeneous (Hybrid) Systems

General Terms
Algorithms, Performance, Theory

Keywords
Convolutional Networks, VLIW, Compilation, Code Gener-
ation, Software Pipelining

1. INTRODUCTION
Since the last decade machine learning has become the

dominant paradigm in machine vision applications. Rather
than imposing our real-world knowledge of objects into static
algorithms, machine learning extracts this knowledge from a
rich collection of examples. Especially one category of algo-
rithms, called Deep Learning and Convolutional Networks
(ConvNets) has caused this shift by setting the state-of-the-
art across a broad range of applications [9, 7, 8].
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Although ConvNets achieves superior results for machine
vision, it lacks an attribute that is crucial for mobile and
wearable applications, and that is energy-efficiency. The
rather large computational workload and data intensity has
motivated optimized implementations on CPUs [2] and GPUs
[4], but these do not fit the constrained (less than 1 Watt)
mobile power budget. Our community is well aware of the
trend towards heterogeneous computing where architecture
specialization is used to achieve high performance at low en-
ergy [6]. A few research groups exploited this customization
paradigm to design highly specialized, and thus highly effi-
cient, hardware which could enable excellent machine vision
for mobile devices [1, 5, 3]. They achieve most of their effi-
ciency gains by tuning data storage structures to the data-
flow and data-locality requirements of the algorithm.

The main challenge in accelerator design is to reconcile
architecture specialization and flexibility. Especially, the
right level of flexibility is key for the adoption of a new
core. ConvNets have many parameters such as the layers,
feature maps, and kernels, which are different for every task.
Hence the architecture should support different parameters
efficiently and it should have a programming model. All the
earlier works have focused on efficiently implementing the
compute primitives, but none of them provides a complete
and practical programming model. They voluntarily ignore
programming for simplicity, or they refer to an ad-hoc and
therefore impractical assembly program.

In this paper we present a ConvNet compiler for a highly
specialized Very Long Instruction Word (VLIW) accelerator
core [11]. Our aim is to replace the complicated manual as-
sembly writing by an automatic flow that converts a flexible
high level network description into an optimized VLIW as-
sembly program. Our main contributions that achieve this
goal are:

1. A VLIW code generation flow, from a high level XML
network description to assembly output. (Section 3)

2. We use list scheduling with backtracking, additionally
important optimization steps, such as modulo software
pipelining. In addition, the usage of HW address gen-
erators is automated. (Section 3.3)

3. We evaluate our method against expert manual as-
sembly coding. Performance is max 20% worse com-
pared with code written by human architecture ex-
perts. (Section 4)

First this paper gives an overview about ConvNets and the
Neuro Vector Engine (NVE) Archtecture in Section 2. The
conclusions and possible future work is discussed in Section 5
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Figure 1: ConvNet for speed sign recognition

2. BACKGROUND
2.1 Convolutional Networks

ConvNets as depicted in Fig . 1, are implemented as a
series of connected 2D convolution filters. The coefficients
of these filters are obtained by a learning process on a labeled
dataset, this ensures that important features are extracted
from the input image. E.g. Layer 1 extracts simple features
like edges, in further layers these are combined into more
complex features such as corners and crossings. In the last
layer high level features are combined into decisions such
as the detection of a speed sign at a location in the frame
and which speed it represents. The filter operations differ
over successive layers as illustrated by Fig. 1 e.g., different
window sizes, subsampling, and connected featuremaps.

2.2 The Neuro Vector Engine (NVE)
The varying workload in a ConvNet causes that a single

efficient compute operator (like in a systolic dataflow based
design) is often too specialized and therefore underutilized.
In our previous work we proposed the Neuro Vector Engine
(NVE) [11], a programmable accelerator core with a high
degree of flexibility. To obtain a good balance between effi-
ciency and flexibility the core employs the Single Instruction
Multiple Data (SIMD) principle i.e., we can change the oper-
ation per instruction, but share control overhead over many
parallel execution units.

2.2.1 Vector Data-Path
Fig. 2 illustrates the pipelined data path of the core NVE,

as the name implies all possible data operations are per-
formed on vectors. The main compute primitive is a Vector
Multiply Accumulate with scalar y← y +x×w. It modifies
an array of accumulator values y representing neighboring
neurons. By sequentially repeating this operation for all in-
puts of a 2D convolution window this resource is optimally
utilized for different windows sizes. The Register Opera-
tion stage in Fig. 2 performs the vector shift operations that
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Figure 2: Pipelined accelerator datapath
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Figure 3: VLIW steady-state for 3x3 convolution

are necessary to provide the correct input elements x and
broadcast the weight coefficient w. If the input window is
processed the results are saturated and normalized by an
activation function implemented as a vector look up table.
Data reuse of overlapping windows is exploited by the Local
Scratchpad Buffer that holds vectors of input neurons and
coefficients.

2.2.2 VLIW Programming Model
The control of the successive stages in the architecture

is distributed over issue slots, implemented as a Very Long
Instruction Word (VLIW) core. Each slot is very specific,
so the instruction with is small. Using instructions creates
flexibility but it causes overhead. To reduce the instruction
overhead we use two techniques. 1) SIMD: Operate on
vectors as discussed above this increases the amount of useful
work per instruction. 2) Modulo Software Pipelining:
We create a schedule of instructions (Steady State) that is
repeated very often. As a result, a lot of instruction reuse
can be exploited by an instruction buffer which substantially
reduces the instruction transfer overhead.

A simple example of the steady-state of a 3x3 convolution
filter is given in Fig. 3. One execution of the steady-state (10
cycles) results in 16 neighboring 3x3 convolution outputs,
requiring is 144 MACC ops. For simple programs manual
construction of schedules is feasible. However complex Con-
vNet layers require over 200 instructions in the steady-state;
additionally prologue and epilogue must be created. Manual
programming is very-time consuming and error prone, so an
automatic optimizing compiler is key for the NVE.

3. AUTOMATIC CODE GENERATION FLOW
Our compilation flow, as depicted in Fig. 4, requires an

XML network description as input. First, the XML is con-
verted into a series of task graphs, more specifically each
output feature-map has a separate task graph. For each
graph a schedule is created, these are later combined by an
optimizing bundling procedure. The result is a very efficient
executable VLIW program.

3.1 XML Network Specification
As stated before we use an XML ConvNet description as

input instead of a program. Listing 1 contains a description
of a network layer similar to layer 1 in Fig. 1. As shown
the XML lists size parameters as the width and height of the
feature-maps and convolution kernels. Also the connections
between feature-maps are specified, e.g. outMap specifies the
connection of an output feature-map idx with a number of
input feature maps cnt, in this case one input feature-map.
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Generation
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.xml 
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Figure 4: Automatic code generation flow
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Figure 5: Partial DAG for a 3x3 convolution kernel

3.2 Task Graph Construction
Graph construction is started by connecting the set bias

and the successive MAC operations according to the kernel
size, as detailed in Fig. 5. Next, the required register ops to
provide data are generated and dependencies are connected.
The same is performed for the reads from and writes to
the local scratchpad. All dependencies have a distance pa-
rameter representing the minimum latency between adjacent
vertices. In a stage the distance is always one cycle, e.g. ad-
jacent MAC ops have a distance of one. Across stages the
distance varies, e.g. scratchpad ops are pipelined so moving
data to a register has a distance of two.

3.3 Instruction Scheduling
For scheduling of the vertices, we use bottom-up Breadth

First Search (BFS) through the DAG. The bottom-up ap-
proach is a good heuristic that minimizes the number of
scheduling conflicts. In Fig. 5 the assigned schedule po-
sitions are numbered in the vertices. However architecture
constraints sometimes cause conflicts on set rw (set weight)
and set ri (set img reg) operations, see the dashed vertices.
If a conflict is detected it is solved by a backtracking proce-
dure that revises the schedule from the conflict point.

Listing 1: Convolutional network description of first
layer face detection in XML
<NVEDescriptor >
<layer idx="0">
<outHeight >638</outHeight >
<outWidth >368</outWidth >
<kernelHeight >6</kernelHeight >
<kernelWidth >6</kernelWidth >
<subHeight >2</subHeight >
<subWidth >2</subWidth >
<outCount >4</outCount >
<outMap idx="0" cnt="1">0</outMap >
<outMap idx="1" cnt="1">0</outMap >
<outMap idx="2" cnt="1">0</outMap >
<outMap idx="3" cnt="1">0</outMap >

</layer>
</NVEDescriptor >

Algorithm 1 Task Graph Scheduling

1: procedure createSchedule(G,v)
2: create queue Q
3: create table T
4: Q.push(v)
5: v.schedule ← 0
6: v.status ← visited
7: while not Q.empty() do
8: v ← Q.pop()
9: for all edges e from w to v in G.edges(v) do

10: if w.instruction 6= wr and w.instruction 6= act then
11: if w.status 6= visited then
12: Q.push(w)
13: w.schedule ← v.schedule - e.distance
14: w.status ← visited
15: if w.instruction = set r then
16: while T.exist(w.schedule) do
17: w.schedule ← w.schedule - 1
18: T.insert(w.schedule)

19: else
20: newSchedule ← v.schedule - e.distance
21: if newSchedule < w.schedule then . revised
22: w.schedule ← newSchedule
23: Q.push(w)
24: for all edges ē from w̄ to w in G.edges(w) do
25: if Q.exist(w̄) then
26: Q.remove(w̄)
27: w̄.status ← not visited

Algorithm 1 lists the scheduling procedure that constructs
the schedule as given in Table 1. Starting bottom-up in the
DAG of Fig. 5 a conflict occurs when scheduling two regis-

ter set ops at cycle -6 (detected in the resources table), so
one of them is moved to -7. However, the already scheduled
MAC on -6 has a problem which is detected after schedul-
ing the connected parents. The backtrack procedure revises
the scheduling of the MAC to -7 (insert a stall) and updates
visited parents to ensures a correct schedule.

After scheduling the read, register, and MAC operations,
the activation operations are scheduled by an As Soon
As Possible heuristic. The scratchpad write operations
are split into a prologue and steady-state part. The pro-
logue contains coefficient-writes and the first set of image-
writes. The steady-state part writes the non-overlapping
image-writes with an As Late As Possible heuristic.

The bundling procedure combines schedules (output feature-
maps) to increase data reuse over shared input feature-maps.
This combining stops when the instruction buffer is full, in
this case a new bundle is started. Algorithm 2 lists the
bundling procedure, B holds the individual schedules and R

is the resulted program list in partitions.
During the bundling process, Modulo Scheduling and Data

Buffer Allocation are performed. Similar to earlier work
[10] we count the resource-minimum initiation interval of
the steady state and wrap around to reduce the number of
instructions. Data Buffer Allocation generates addresses for
all buffer accesses, for the steady state repetitive patterns are
extracted and stored in the address generation unit (AGU),
which implements a rotating buffer.

Table 1: Graph schedule and resource table
cycle MEMA MEMB WREG IREG VMAC ACT

-9 rd rd — — — —
-8 rd sh sh mac
-7 set mac
-6 set
-5 sh setsh mac

resource table -2 -3 -6 -7



Algorithm 2 Schedule Bundling

1: procedure scheduleBundling(B, R)
2: best ← current ← B.first
3: B.remove(B.first)
4: for all schedule b in B do
5: combine(current,b) . store in current
6: temp ← current . make a copy
7: moduloSchedule(current)
8: if current.count > capacity then . exceeded, use best
9: moduloSchedule(best)

10: allocateBuffer(best)
11: r ← Assemble(best) . create binary
12: R.insert(r) . store program partition
13: best ← current ← b . start new
14: else . bundling fit
15: best ← current ← temp . prepare for next bundling

16: moduloSchedule(best)
17: allocateBuffer(best)
18: r ← Assemble(best)
19: R.insert(r)

4. EXPERIMENTAL EVALUATION
Our generated code quality is evaluated by comparison

with assembly coding by architecture experts. Table 2 presents
code metrics such as, effective number of MAC ops per in-
struction, data transfers, code size, and number of code par-
titions. For some layers, performance in MAC/instruction
is equal but often the automatic code has 5-20% less perfor-
mance w.r.t. manual. A manual programmers can reorder
the content of weight vectors this is done to prevent schedul-
ing conflicts, and is not yet available in our automatic tools.

Due to feature map combining (bundling) the automatic
generated schedules often have less data transfers. Espe-
cially, for dense ConvNet layers like layer 2 and 3 combin-
ing removes many redundant image loads. For a manual
programmer this option is more difficult to explore because
it generates larger and more complicated programs. Auto-
matic code generation has a huge productivity advantage for
the programmer, e.g. an architecture expert spends about 4
hours to code a complex layer, our automatic flow performs
this in a few seconds.

5. CONCLUSIONS
Customized hardware acceleration for ConvNets has sig-

nificantly improved their computational efficiency. The last
bottleneck for market adoption of such accelerators is the
complexity of programming these accelerators. We presented
a new compilation flow, from a high level XML ConvNet de-
scription to an optimized accelerator VLIW program. By
using advanced techniques such as Modulo Scheduling and
HW address generation units we can generate code that
achieves a hardware utilization at max 20% lower than code
written by an expert. Due to our feature-map combining
technique our generated code always has better or similar
locality, which reduces the challenging data transfer require-
ments.

The introduction of our compiler flow enables users to
abstract from the accelerator architecture to only a net-
work specification. This abstraction reduced the workload
involved when programming a ConvNet vision application
from days to minutes. The removal of this last produc-
tivity bottleneck enables the adoption of ConvNets in the
next-generation mobile devices and bring ’smart’ features
like real-time machine vision and speech recognition to our
portable companions.

Table 2: Manual coding vs auto code generation
Architecture Expert Manual Coding

Utilization
[MAC/instr.]

Data transfer
[word]

Code size
[word]

Code
partition

3x3 filter 14.39 6401 21 1

Face
detection

L1 13.7 11554 238 1
L2 10.95 72784 974 14
L3 15.53 22232 910 14
L4 5.89 9378 37 1

Speed
sign

detection

L1 13.7 14104 342 1
L2 13.67 202744 4950 16
L3 15.13 663040 31040 80
L4 6.26 50645 203 1

Our Automatic Code Generation
3x3 filter 13.08 6399 20 1

Face
detection

L1 12.79 11544 240 1
L2 10.35 31230 658 2
L3 15.53 22190 868 2
L4 4.87 9364 50 1

Speed
sign

detection

L1 12.79 14094 350 1
L2 12.78 182960 4336 13
L3 15.13 660720 28640 80
L4 4.88 25605 283 1
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