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Abstract In this paper sequencing situations with Just-in-Time (JiT) arrival are intro-
duced. This new type of one-machine sequencing situations assumes that a job is
available to be handled by the machine as soon as its predecessor is finished. A basic
predecessor dependent set-up time is incorporated in the model. Sequencing situations
with JiT arrival are first analyzed from an operations research perspective: for a sub-
class an algorithm is provided to obtain an optimal order. Secondly, we analyze the
allocation problem of the minimal joint cost from a game theoretic perspective. A cor-
responding sequencing game is defined followed by an analysis of a context-specific
rule that leads to core elements of this game.

Keywords Just-in-Time arrival · Set-up time · Sequencing situations ·
Cooperative game theory · Core · Nucleolus

1 Introduction

Sequencing theory deals with a variety of problems sharing several characteristics:
a number of jobs have to be processed on one or more machines, in such a way
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286 E. Lohmann et al.

that a cost criterion is minimized. From one sequencing problem to another the way
these characteristics are defined can differ and additional constraints can be added: the
machines can be parallel or serial, there can be conditions on the order in which the
jobs should be processed and different cost criteria can be used. Applications of the
theory of sequencing situations are numerous and diverse: from manufacturing and
maintenance to scheduling patients in an operating room.

The starting point of the game theoretic analysis of sequencing situations is the paper
by Curiel et al. (1989). In their one-machine model, only one job can be processed at
a time. The processing time is deterministic for every job, and every job has a certain
constant cost per time unit it spends in the system. A job is in the system from the
moment the machine starts processing the first job until the job itself is processed by
the machine. An order that minimizes total cost, processes the jobs in a decreasing
order with respect to their urgency [cost per time unit divided by the length of the
job, cf. Smith (1956)]. A procedure is introduced that, given an initial order, uses
neighbor switches to obtain the optimal order and constructs a stable cost allocation in
the process. Since Curiel et al. (1989) several related classes of sequencing problems
are discussed, including ready times, due dates, multiple machines and numerous cost
criteria (see e.g., Curiel et al. 2002; Borm et al. 2002; Calleja et al. 2002; Slikker 2005
for game-theoretic discussions).

From an operations research point of view, classes of sequencing problems where
between jobs one needs time to set-up the machine are discussed extensively in the
literature. Different types of set-up time are considered to match the application under
consideration, such as sequencing aircraft landings (Psaraftis 1980) and steel pipe
manufacturing (Ahn and Hyun 1990). In Gupta (1988) the mean flow time is minimized
in sequencing situations with switching times between jobs depending on the class
of both jobs. The change-over model by van der Veen et al. (1998) on the other
hand minimizes the makespan in a setting which uses set-up times as well as after-
processing times to define the switching time. Çiftçi (2009) discusses a sequencing
model where a predecessor-independent switching time occurs if two subsequent jobs
belong to different classes of jobs. Here, the focus is on the game-theoretic aspect of
cost-sharing, based on the presence of an initial queue.

Similar to Gupta (1988) and van der Veen et al. (1998), we incorporate a set-up
time in the model that is to be executed by the job to be processed next. We consider
a basic setting of this set-up time - one can think of cleaning up a machine, adjusting
a machine to the new jobs or something simple as erasing the blackboard before one
can start the lecture—such that it only depends on the state in which the system is left
behind by the predecessor.

A key feature of the sequencing situations discussed in this paper is the Just-in-
Time (JiT) arrival of the jobs: a job is available to be handled by the machine as soon
as its predecessor is finished. Hence, we leave the setting of the sequencing literature
described above, where every job is waiting in a queue from the moment the first job
starts. The owner of the job has to execute the set-up himself. So, given the job that is
processed before, the time it takes before a next job can start processing is fixed. The
time a job spends being processed is formed by this predecessor dependent set-up time
and the length of the job itself. This way, the cost incurred by a job depends on the
set-up time, its own processing time and his individual cost per time unit. As the costs
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incurred during the processing of the job itself is constant across all possible orders
of jobs, we do not incorporate these costs into our analysis. For sequencing without
set-ups, JiT arrival of the jobs would imply that the time a job spends in the system
equals the processing time of the job itself. Of course, this problem is trivial as in this
case every order of jobs results in the same costs.

Verdaasdonk (2007) initiated the study on this subject. The model discussed in this
paper can also be modeled in terms of the traveling salesman problem (see e.g. Lawler
et al. 1985). Our specific costs structure makes that the matrix underlying the traveling
salesman problem corresponding with a sequencing situation with JiT arrival in general
is not contained in any well-studied matrix class for the traveling salesman problem
such as the class of Monge matrices or Van der Veen matrices (see, e.g., Burkard et al.
1998). This means that, to the best of our knowledge, for this specific subclass of trav-
eling salesman problems no efficient algorithm is known in the literature. Although the
corresponding optimization problem incorporates features from matching problems,
the basic idea of combining jobs with high set-up times with jobs with low costs per
time unit, and vice versa, is flawed by the sequencing nature of JiT arrival. Typically
pairs of jobs cannot be viewed as separate entities, but interact with jobs before and
behind them. Moreover, the fact that one has to choose first and last jobs in the queue
creates further complications. We focus in the current paper on those sequencing sit-
uations with JiT arrival and predecessor dependent set-up times, where there are two
different values for the set-up time and two different values for the costs per time
unit.

The topic will be treated from two perspectives. The first part concerns the oper-
ations research perspective. For each sequencing situation with JiT arrival (or, for
short, JiT sequencing situation) we provide sufficient conditions to check if an order
minimizes joint costs, and provide an algorithm to obtain such an optimal order. Some
remarks on a possible generalization to a larger class of JiT sequencing situations are
provided. The second part, concerning the game theoretic perspective, involves the
allocation of the minimal joint costs. For this, we define an objective and consistent
way to determine cost savings for each coalition of jobs, thus defining a cooperative
JiT sequencing game with transferable utility. In particular, we assume that the play-
ers are part of a larger system with players in the system before and after the grand
coalition, so that for the grand coalition consistent with the worst-case approach for
subcoalitions, the system is left behind with high set-up time due.

We show that every JiT sequencing game has a non-empty core, which implies that
there exist stable reallocations of the total joint cost savings such that no coalition
has an incentive to stop cooperating with the other players. In particular we provide a
context specific allocation rule, the large instance based allocation rule, that for any
JiT sequencing situation leads to a core element of the corresponding JiT sequencing
game. It turns out that in general the core of a JiT sequencing game can be quite
large. Focussing on complete JiT sequencing situations in which there is at least one
player of each set-up/cost per time unit type (high–high, high/low, low/high, low/low),
we formulate conditions that guarantee the core either to be just one point or a line
segment. Under the same conditions we show that the outcome of the large instance
based allocation rule coincides with the nucleolus of the corresponding JiT sequencing
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game. Our results when the core is a line segment are in line with results on assignment
games (cf. Shapley and Shubik 1972; Böhm-Bawerk 1891; Núñez and Rafels 2005).

This paper is organized as follows: in the subsequent section, we formally intro-
duce the JiT sequencing model. Also, we provide optimality conditions regarding the
processing order, and give an algorithm to find an optimal order. Section 3 analyzes
general JiT sequencing games while Sect. 4 focusses on complete sequencing games.

2 JiT sequencing situations

A JiT sequencing situation is defined by a tuple � = (N , α, s, s0). Here, N denotes
the nonempty finite player set. It is assumed that every player owns exactly one job. As
there is a one-to-one correspondence between players and jobs, we will use the words
player and job interchangeably throughout this paper. The vector α ∈ R

N+ is such that
for player i ∈ N , the costs of spending t time units in the system is given by αi t . The
set-up times are denoted by the vector s ∈ R

N+ , where for i ∈ N , si is the set-up time
needed after the job of player i is processed and before the machine can process another
job. The time needed before the machine can process the first job is denoted by s0.

An order of processing σ of the jobs in N is a bijective function σ : {1, . . . , |N |} →
N . Here, σ(k) denotes the player at position k ∈ {1, . . . , |N |} in the order σ . The set
of all orders of N is denoted with �(N ). For notational convenience, we set σ(0) = 0
and therefore sσ(0) = s0 for all σ ∈ �(N ).

In JiT sequencing situations, it is assumed that a player enters the system at the
moment the player starts to prepare the machine for his job and leaves the system as
soon as his job is finished. This situation is shown in Fig. 1. This differs from standard
sequencing problems as depicted in Fig. 2, where a player enters the system already
as the first job in the order starts processing and leaves after his own job is finished.
Also, we include set-up times.

The time a job spends in the system consists of a set-up time depending on the job
that is processed before him and his own processing time. The costs arising from this
last part is constant over all orders. Hence, we just focus on the costs arising from
set-up. So, for an order σ ∈ �(N ) the corresponding costs γi (σ ) for player i ∈ N are
given by

γi (σ ) = αi sσ(σ−1(i)−1).

Machine Set-up Job 1 Set-up Job 2 Set-up Job 3

Time in system job 3

Fig. 1 Time in system for JiT sequencing

Machine job 1 job 2 job 3

Time in system job 3

Fig. 2 Time in system for standard sequencing
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Sequencing situations with Just-in-Time arrival 289

Table 1 Partition of the player
set

Costs Set-up time

N H
h αH sh

N H
l αH sl

N L
h αL sh

N L
l αL sl

For a coalition S ∈ 2N , we set γS(σ ) = ∑
i∈S γi (σ ). We call an order σ ∗ ∈ �(N )

optimal for N if γN (σ ∗) = min{γN (σ ) | σ ∈ �(N )}.
In this paper we restrict ourselves to the analysis of JiT sequencing situations with

two different values for the set-up times and two different values for the cost per time
unit. We denote by J iT 2,2 the class of all JiT sequencing situations satisfying this
restriction. So, for every (N , α, s, s0) ∈ J iT 2,2, there exist αH , αL ∈ R+, αH > αL

such that for all i ∈ N it holds that either αi = αH or αi = αL . With respect
to the set-up times, we assume there exist sh, sl ∈ R+, sh > sl , such that for all
i ∈ N ∪ {0} it holds that either si = sh or si = sl . We partition the set of players
according to their characteristics as provided in Table 1, into sets N H

h , N H
l , N L

h and
N L

l . Note that the superscript refers to the cost per time unit, and the subscript refers
to the set-up time. Also, throughout the paper uppercase H and L refer to cost per
time unit and lowercase h and l to set-up time. We denote N H = N H

h ∪ N H
l , and

define N L , Nh and Nl in a similar way. For a subset S ∈ 2N we use a similar notation:
SH

h = S ∩ N H
h , SH = S ∩ N H , etc.

Naturally, an interesting question is how we can identify whether an order is optimal
or not. Also, if we can find sufficient conditions for this, could we use these conditions
to construct an optimal order? As it turns out, we can indeed find such conditions and
use these to obtain an algorithm that constructs an optimal order for every sequencing
situation in J iT 2,2.

First we focus on the sufficient conditions. For this, we introduce the following
additional notation. Given a JiT sequencing situation (N , α, s, s0) ∈ J iT 2,2 and an
order σ ∈ �(N ), define the following classes of neighboring pairs:

Mh H (σ ) = {(i, j) ∈ (N ∪ {0}) × N | si = sh, α j = αH , σ−1(i) = σ−1( j) − 1},
Ml L(σ ) = {(i, j) ∈ (N ∪ {0}) × N | si = sl , α j = αL , σ−1(i) = σ−1( j) − 1},
MhL(σ ) = {(i, j) ∈ (N ∪ {0}) × N | si = sh, α j = αL , σ−1(i) = σ−1( j) − 1},

and

Ml H (σ ) = {(i, j) ∈ (N ∪ {0}) × N | si = sl , α j = αH , σ−1(i) = σ−1( j) − 1}.

Note that the first superscript indicates the set-up time and the second superscript
indicates the cost level. For every σ ∈ �(N ), we have the following equalities:

|Mh H (σ )| + |Ml H (σ )| = |N H |, (1)
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and

|Ml L(σ )| + |MhL(σ )| = |N L |. (2)

If s0 = sh , we have for every order σ ∈ �(N ) that

|Ml H (σ )| + |Ml L(σ )| = |Nl | − 1[sσ(|N |)=sl ], (3)

and

|Mh H (σ )| + |MhL(σ )| = |Nh | + 1[sσ(|N |)=sl ], (4)

since 1[sσ(|N |)=sl ] = 1 − 1[sσ(|N |)=sh ], s0 = sh and the set-up time of the last player in

the order does not incur costs for a player in N . If s0 = sl , we have

|Ml H (σ )| + |Ml L(σ )| = |Nl | + 1[sσ(|N |)=sh ], (5)

and

|Mh H (σ )| + |MhL(σ )| = |Nh | − 1[sσ(|N |)=sh ], (6)

for every order σ ∈ �(N ). Again, note that 1[sσ(|N |)=sh ] = 1 − 1[sσ(|N |)=sl ]. The
following theorem states sufficient conditions for an order to be optimal. In general,
an order satisfying these sufficient conditions need not exist. However, Proposition
2.1 shows that only in the specific case where N H

h ∪ N L
l = ∅ such an order does not

exist.1

Theorem 2.1 Let (N , α, s, s0) ∈ J iT 2,2 and let σ ∈ �(N ). If sσ(|N |) = maxi∈N si

and either |Mh H (σ )| = 0 or |Ml L(σ )| = 0, then σ is optimal.

The optimality conditions in Theorem 2.1 consist of two parts: the first condition
states that it is optimal to place a player with highest set-up time possible at the last
position. The second condition means that it is optimal to place players with low
costs behind players with high set-up time and players with high costs behind players
with low set-up time. These conditions are used in the following algorithm. The first
condition is explicitly taken care of in step 2, the second condition is dealt with in step
3. Step 4 deals with these optimality conditions more implicitly, which is demonstrated
in Example 2.1.

Algorithm 1
Input: a sequencing situation (N , α, s, s0) ∈ J iT 2,2.
Output: an order σ̃ ∈ �(N ).

Step1. Initialize p = 1 and C1
1 = N .

1 The proof of the results in this section can be found in the appendix.
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Step2. Define

C2
p =

{
C1

p\Nh if |C1
p ∩ Nh | = 1 and p �= |N |;

C1
p else.

Step3. Define

C3
p =

⎧
⎪⎨

⎪⎩

C2
p ∩ N L if sσ̃ (p−1) = sh and C2

p ∩ N L �= ∅;
C2

p ∩ N H if sσ̃ (p−1) = sl and C2
p ∩ N H �= ∅;

C2
p else.

Step4. Define

C4
p =

{
C3

p ∩ Nl if C3
p ∩ Nl �= ∅;

C3
p else.

Step5. Choose a job i ∈ C4
p and define σ̃ (p) = i .

Step6. If p = |N |, stop.
If p < |N |, set p = p + 1 and, subsequently, set C1

p = C1
p−1\{σ̃ (p − 1)}.

Next,
return to step 2.

The notation σ̃ is used for an order provided by the algorithm. The algorithm generates
this order by filling up all positions in the order from front to back. For every position,
the set of candidate players is narrowed down in a few steps. In the algorithm, C4

p ⊆
C3

p ⊆ C2
p ⊆ C1

p ∈ 2N are the sets of candidate players for the pth position in this order.
Roughly speaking, the algorithm puts the jobs in an alternating sequence, that is in

a way that high set-up time meets low cost of spending a unit of time in the system
and vice versa. Hereby it takes into account that a job with high set-up time should be
left over for the last position in the sequence. The basic idea underlying this algorithm
seems to work well in a setting with arbitrary weights and two setup times as well.
Greedy filling positions from front to end by placing after a high setup time a job with
lowest available weight and after a low setup time a job with highest available weight
does not always result in an optimal order, however, even if a job with high set-up time
would be left over for the last position in the sequence.2 We leave this more general
setting for further research.

Example 2.1 Consider the JiT sequencing situation � = (N , α, s, s0), where we have
α = (2, 2, 1, 1), s = (3, 1, 3, 1) and s0 = 3. We have N H

h = {1}, N H
l = {2}, N L

h =
{3}, and N L

l = {4}. As |Nh | = 2, we have C2
1 = C1

1 = N (see Table 2). In step 3
we obtain C3

1 = {3, 4} as s0 = sh . Step 4 further narrows down the set of candidate

2 For example consider a 6-player situation with α = (1, 2, 3, 4, 5, 6) and s = (1, 2, 1, 2, 1, 1) where these
greedy approaches result in nonoptimal orders 1–6–5–4–2–3 and 1–6–5–4–3–2, with costs equal to 27 and
25, respectively. A possible optimal order of the jobs would be 2–1–5–6–3–4 with costs equal to 24.
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Table 2 Sets of candidate
players in example 2.1

p 1 2 3 4

C1
p N {1, 2, 3} {1, 3} {3}

C2
p N {1, 2, 3} {1, 3} {3}

C3
p {3, 4} {1, 2} {1} {3}

C4
p {4} {2} {1} {3}

σ̃ (p) 4 2 1 3

Fig. 3 Order σ̃ provided by
algorithm 1 in example 2.1

3 1 , 1 2 , 1 2 , 3 1 , 3
4 2 1 3

s0
α4,s4 α2,s2 α1,s1 α3,s3

players for the first position, as C4
1 = {4}. Therefore, we obtain σ̃ (1) = 4. Now that

player 4 is placed, we have C2
2 = C1

2 = {1, 2, 3}. In step 3 of iteration 2, we obtain
C3

2 = {1, 2} and in step 4 we obtain C4
2 = {2} so σ̃ (2) = 2. In the third iteration,

C2
3 = C1

3 = {1, 3} and C4
3 = C3

3 = {1} so σ̃ (3) = 1 and σ̃ (4) = 3. It is easily seen
that a player with high set-up time is placed last. Furthermore, players with high costs
are placed behind players with low set-up time and the other way around (see Fig. 3).
We obtain γN (σ̃ ) = 10 which is indeed optimal. Also, note the importance of step 4 of
the algorithm: if we would place an arbitrary player in C3

2 at position 2, we could have
ended up with the order σ ′ such that σ ′(1) = 4, σ ′(2) = 1, σ ′(3) = 2, σ ′(4) = 3,
with γN (σ ′) = 12. �
Now we are ready to prove that Algorithm 1 provides an optimal order, for every
sequencing situation (N , α, s, s0) ∈ J iT 2,2.

Theorem 2.2 Let � = (N , α, s, s0) ∈ J iT 2,2. Then Algorithm 1 provides an optimal
order σ̃ for N.

The proof of Theorem 2.2 implies the following.

Proposition 2.1 If N H
h ∪ N L

l �= ∅, then every order provided by Algorithm 1 satisfies
the sufficient conditions of Theorem 2.1.

3 JiT sequencing games

In the previous section we addressed the problem of finding an optimal order for
J iT 2,2 sequencing situations. An additional question is how the total costs of such an
optimal order should be allocated among the players. To answer this question, we will
use the framework of transferable utilty games. Let us first recall some basic concepts
within cooperative game theory used in the later analysis.

A transferable utility game (N , v) is defined by a finite player set N and a function
v on the set 2N of all subsets of N assigning to each coalition S ∈ 2N a value
v(S) ∈ R such that v(∅) = 0. The imputation set I (v) of a game (N , v) is given by
all individually rational and efficient allocations, so
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I (v) =
{

x ∈ R
N

∣
∣
∣
∣
∣

∑

i∈N

xi = v(N ), xi ≥ v({i}) for all i ∈ N

}

.

For a game (N , v), the core C(v) is defined as the set of those imputations, for which
no coalition has an incentive to split off:

C(v) =
{

x ∈ R
N

∣
∣
∣
∣
∣

∑

i∈N

xi = v(N ),
∑

i∈S

xi ≥ v(S) for all S ∈ 2N

}

.

A game (N , v) is called balanced if its core is nonempty. A game (N , v) is called
convex if v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ) for all i ∈ N and S ⊂ T ⊂ N\{i}.
Every convex game has a nonempty core. If for i ∈ N and j ∈ N it holds that
v(S ∪ {i}) = v(S ∪ { j}) for all S ∈ 2N\{i, j}, then player i and j are called symmetric.

We define the excess of coalition S ∈ 2N with respect to allocation x ∈ I (v) by
E(S, x) = v(S) − ∑

i∈S xi . The excess measures the dissatisfaction of coalition S

with respect to allocation x . Let ω(x) ∈ R
2|N |

be the vector of excesses of x ∈ I (v),
arranged in weakly decreasing order. For a game (N , v) such that I (v) �= ∅, the
nucleolus η(v) (Schmeidler 1969) is the unique imputation x ∈ I (v) such that ω(x)

is lexicographically smaller than ω(y) for all y ∈ I (v). So, the nucleolus is the
individual rational and efficient allocation that minimizes the highest dissatisfactions
in a hierarchical manner. For every game (N , v) such that C(v) �= ∅, we have η(v) ∈
C(v). Furthermore, if player i ∈ N and player j ∈ N are symmetric in the game
(N , v) then ηi (v) = η j (v).

For the grand coalition we employ a worst case approach and consider the players
in N to be part of a larger system with players in the system before and after the players
in N . The worst case approach comprises that we assume that the system is left behind
with high set-up time by the players outside the grand coalition. We provide a game
theoretic analysis of those instances of J iT 2,2 where s0 = sh , denoted by J iT 2,2

h . We
assume that by cooperating, every coalition S ∈ 2N can form any order σ ∈ �(S) at
the first |S| spots in the sequence. Thus we employ a pessimistic view for both the grand
coalition and for subcoalitions, in the sense that the set-up time for the first player in
the order σ equals s0 = sh . This setup allows us to measure the value of every coalition
consistently over all coalitions, and independent of the players outside the coalition.3

Let � = (N , α, s, s0) be a JiT sequencing situation. We will define the costs for
coalition S ∈ 2N as the costs of an optimal order in the JiT sequencing problem
(S, α′, s′, s′

0), where α′ ∈ R
S and s′ ∈ R

S∪{0} are such that α′
i = αi for all i ∈ S, and

s′
i = si for all i ∈ S ∪ {0}. Given a JiT sequencing situation � = (N , α, s, s0) and

a coalition S ∈ 2N , we denote by σ ∗
S an optimal order of the situation (S, α′, s′, s′

0).
Hence, formally, the JiT sequencing game (N , v�) is defined by

3 If, on the other hand, one would assume that s0 = sl , this exogenous feature would cause free-rider
problems and coalitional stability in the sense of the core cannot be obtained in general. In other words, the
corresponding cooperative JiT sequencing game would not provide an adequate model for the allocation
problem at hand: other techniques would have to be employed to arrive at suitable allocation proposals.
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Table 3 The JiT sequencing game (N , v�) of example 3.1

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
v� (S) 0 0 0 0 4 0 4 2

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

v�(S) 4 2 4 8 4 6 8

v�(S) =
∑

i∈S

γi (σ
∗{i}) − γS(σ ∗

S ),

for all S ∈ 2N . Clearly, v�({i}) = 0 for every i ∈ N .

Example 3.1 Reconsider the JiT sequencing situation of Example 2.1, where α =
(2, 2, 1, 1), s = (3, 1, 3, 1) and s0 = 3. It is seen that γ1(σ

∗{1}) = γ2(σ
∗{2}) = 6 and

γ3(σ
∗{3}) = γ4(σ

∗{4}) = 3. Take S = {1, 2, 4}. The optimal order σ ∗
S is such that

σ ∗
S (1) = 4, σ ∗

S (2) = 2, and σ ∗
S (3) = 1, which results in total costs γS(σ ∗

S ) = 7.
Hence, we have v�(S) = (6 + 6 + 3) − 7 = 8. The JiT sequencing game (N , v�) is
given by Table 3. Note that (N , v�) is not convex, since

v�({3, 4}) − v�({4}) = 2 > 0 = v�(N ) − v�({1, 2, 4}).

�
For� = (N , α, s, s0) ∈ J iT 2,2

h we can explicitly express the value of each coalition
in terms of the number of players in the different player classes in the JiT sequencing
situation.4

Proposition 3.1 Let � = (N , α, s, s0) ∈ J iT 2,2
h . Then

v�(S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(|SH
l | + |SL

l |)(sh − sl )αH if SH
h �= ∅ and |SH

h | ≥ |SL
l |;

|SH
h |(sh − sl )(αH − αL ) + |SH

l |(sh − sl )αH if SH
h �= ∅ and |SH

h | < |SL
l |;

+|SL
l |(sh − sl )αL

|SH
l |(sh − sl )αH + |SL

l |(sh − sl )αL if SH
h = ∅, SL

l �= ∅
and SL

h �= ∅;
|SH

l |(sh − sl )αH + (|SL
l | − 1)(sh − sl )αL if SH

h = ∅, SL
l �= ∅

and SL
h = ∅;

(|SH
l | − 1)(sh − sl )αH + (sh − sl )αL if SH

h = ∅, SL
l = ∅, SH

l �= ∅
and SL

h �= ∅;
(|SH

l | − 1)(sh − sl )αH if S = SH
l and S �= ∅;

0 if S = SL
h ,

for all S ∈ 2N .

4 The proof of this proposition can be found in the appendix.
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We use the expressions from Proposition 3.1 to show that every JiT sequencing
game has a nonempty core. To this end, we define the large instance based allocation
rule θ on the class of JiT sequencing situations J iT 2,2

h .

Definition 3.1 Let � = (N , α, s, s0) ∈ J iT 2,2
h . Then, for all i ∈ N ,

θi (�) = (sh − si )αi +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(αH −αL )(sh−sl )
2 if i ∈ N H

h ∪ N L
l

and |N H
h | = |N L

l |;
(αH − αL)(sh − sl) if i ∈ N H

h and |N H
h | < |N L

l |,
or if i ∈ N L

l

and |N H
h | > |N L

l |;
− 1

|N L
l | (s

h − sl)αL if i ∈ N L
l and |Nh | = 0;

− 1
|N H

l | (α
H − αL)(sh − sl) if i ∈ N H

l , |N L
h | > 0 and

|N H
h | = |N L

l | = 0;
− 1

|N H
l | (s

h − sl)αH if i ∈ N H
l and N = N H

l ;
0 otherwise.

The common part of the expression for θ(�), (sh − si )αi , gives an estimation of the
cost savings that can be attributed to player i . This estimation is based on the marginal
costs of player i entering in a fictive, ‘large’ coalition. The part shαi are the stand-alone
costs of player i . Now assume there is an order σ ∈ �(N ) where sσ(k) = si for some
k. If player i is placed in between player σ(k) and player σ(k + 1), then the marginal
costs equal siαi . Hence, we estimate the cost savings by (sh − si )αi .

The second part serves as a correction to this estimation: a player in N H
h and a player

in N L
l together are responsible for more cost savings than we already allocated to them.

These additional cost savings go to the minority, the players in N H
h if |N H

h | < |N L
l |

and the players in N L
l if |N L

l | < |N H
h |, and is shared equally if |N H

h | = |N L
l |. Note

that if i ∈ N H
h and j ∈ N L

l then θi (�) + θ j (�) = (sh − sl)αH and that for all
i ∈ N L

h , θi (�) = 0. The other corrections are due to boundary cases of the player
set: for example, if there are no players in both N H

h and N L
l , then the cost savings

attributed to players in N H
l is overestimated, and is corrected.

For every JiT sequencing situation � ∈ J iT 2,2
h , the large instance based allocation

rule provides a core element for the corresponding game (N , v�).

Theorem 3.1 Let � = (N , α, s, s0) ∈ J iT 2,2
h . Then θ(�) ∈ C(v�).

Proof We consider four different cases, and use Proposition 3.1 and Definition 3.1 in
each of these cases.

123



296 E. Lohmann et al.

(i) Assume |N H
h | = 0, |N L

l | = 0 and |N L
h | > 0. For S ∈ 2N we have

θS(�) − v�(S) ≥
∑

i∈SH
l

(

(sh − sl)αH − 1

|N H
l | (s

h − sl)(αH − αL)

)

−(|SH
l | − 1)(sh − sl)αH − (sh − sl)αL

= |SH
l |

(

(sh − sl)αH − 1

|N H
l | (s

h − sl)(αH − αL)

)

−(|SH
l | − 1)(sh − sl)αH − (sh − sl)αL

=
(

1 − |SH
l |

|N H
l |

)

(sh − sl)(αH − αL)

≥ 0,

with equality if S = N , and therefore θ(�) ∈ C(v�).
(ii) Assume |N H

h | + |N L
l | > 0 and |Nh | > 0. For S ∈ 2N we have

θS(�) − v�(S) ≥ |SH
l |(sh − sl)αH + |SL

l |(sh − sl)αL

+ min{|SH
h |, |SL

l |}(sh − sl)(αH − αL)

−|SH
l |(sh − sl)αH − |SL

l |(sh − sl)αL

− min{|SH
h |, |SL

l |}(sh − sl)(αH − αL)

≥ 0,

again with equality if S = N , and therefore θ(�) ∈ C(v�).
(iii) Assume |Nh | = 0 and |N L

l | > 0. For S ∈ 2N we have

θS(�) − v�(S) ≥ |SH
l |(sh − sl)αH + |SL

l |((sh − sl)αL − 1

|N L
l | (s

h − sl)αL)

−|SH
l |(sh − sl)αH − (|SL

l | − 1)(sh − sl)αL

=
(

1 − |SL
l |

|N L
l |

)

(sh − sl)αL

≥ 0,

with equality if S = N , and therefore θ(�) ∈ C(v�).
(iv) Finally, assume |N H

h | = |N L
l | = |N L

h | = 0. For S ∈ 2N we have

θS(�) − v�(S) = |SH
l |((sh − sl)αH − 1

|N H
l | (s

h − sl)αH )

−(|SH
l | − 1)(sh − sl)αH
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Table 4 The JiT sequencing game (N , v�) of example 3.2

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v�(S) 0 0 0 8 2 2 10

=
(

1 − |SH
l |

|N H
l |

)

(sh − sl)αH

≥ 0,

with equality if S = N , and therefore θ(�) ∈ C(v�).

��
Example 3.2 Consider the JiT sequencing situation � = (N , α, s, s0) ∈ J iT 2,2

h such
that N = {1, 2, 3}, α = (1, 4, 1), s = (1, 1, 3) and s0 = 3. This means that N L

l =
{1}, N H

l = {2}, N L
h = {3}, and N H

h = ∅. The corresponding JiT sequencing game is
provided in Table 4.

Clearly, since 3 ∈ N L
h , θ3(�) = 0. Since 0 = |N H

h | < |N L
l | = 1, and 1 ∈ N L

l , we
have

θ1(�) = (sh − s1)α1 = 2,

while, since 2 ∈ N H
l and N L

l �= ∅

θ2(�) = (sh − s2)α2 = 8.

Hence, θ(�) = (2, 8, 0). It is readily checked that

C(v�) = Conv{(8, 0, 2), (0, 8, 2), (2, 8, 0), (8, 2, 0)}

while for the nucleolus, we have that

η(v�) =
(

4
1

2
, 4

1

2
, 1

)

. (7)

�

4 Complete JiT sequencing situations

In this section we analyze the core and the allocation prescribed by the large instance
based allocation rule θ for complete JiT sequencing games, i.e., JiT sequencing games
corresponding to JiT sequencing situations for which N H

h �= ∅, N H
l �= ∅, N L

h �= ∅,
and N L

l �= ∅.
We first reformulate θ for the specific case of a complete JiT sequencing situation.
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Lemma 4.1 Let � = (N , α, s, s0) ∈ J iT 2,2
h be complete. Then

(i) If i ∈ N H
h ,

θi (�) =
⎧
⎨

⎩

(αH − αL)(sh − sl) if |N H
h | < |N L

l |;
(αH −αL )(sh−sl )

2 if |N H
h | = |N L

l |;
0 if |N H

h | > |N L
l |.

(ii) If i ∈ N L
l ,

θi (�) = (sh − sl)αL +
⎧
⎨

⎩

0 if |N H
h | < |N L

l |;
(αH −αL )(sh−sl )

2 if |N H
h | = |N L

l |;
(αH − αL)(sh − sl) if |N H

h | > |N L
l |.

(iii) If i ∈ N H
l ,

θi (�) = (sh − sl)αH .

(iv) If i ∈ N L
h ,

θi (�) = 0.

Our first result on the core of complete JiT sequencing situations is the following.

Theorem 4.1 Let � = (N , α, s, s0) ∈ J iT 2,2
h be complete and such that |N H

h | �=
|N L

l |. Then θ(�) is the unique core element of (N , v�).

Proof For every x ∈ C(v�) and i ∈ N it holds that xi ≤ v�(N ) − v�(N\{i}). By
Theorem 3.1, θ(�) ∈ C(v�). It suffices to show that θi (�) = v�(N ) − v�(N\{i})
for every i ∈ N , as this implies that for every x ∈ C(v�) with x �= θ(�) we have∑

i∈N xi <
∑

i∈N θ(�) = v(N ) which contradicts the core condition
∑

i∈N xi =
v(N ).

First consider the case |N H
h | > |N L

l |. By Proposition 3.1, Definition 3.1, and
Lemma 4.1 we obtain that

v�(N ) − v�(N\{i}) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i ∈ N H
h ;

(sh − sl)αH if i ∈ N L
l ;

(sh − sl)αH if i ∈ N H
l ;

0 if i ∈ N L
h ;

= θi (�).
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Now consider the case |N L
l | > |N H

h |. Then, by Proposition 3.1, Definition 3.1, and
Lemma 4.1,

v�(N ) − v�(N\{i}) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(sh − sl)(αH − αL) if i ∈ N H
h ;

(sh − sl)αL if i ∈ N L
l ;

(sh − sl)αH if i ∈ N H
l ;

0 if i ∈ N L
h ;

= θi (�).

��
To describe the core for complete JiT sequencing games with |N H

h | = |N L
l |(> 1)

we define an upper vector θ ∈ R
N and a lower vector θ ∈ R

N . For a JiT sequencing
situation � = (N , α, s, s0) ∈ J iT 2,2

h with |N H
h | = |N L

l | > 1, and define, for all
j ∈ N ,

θ j (�) = (sh − s j )α j +
{

(sh − sl)(αH − αL) if j ∈ N H
h ;

0 if j ∈ N\N H
h ,

θ j (�) = (sh − s j )α j +
{

(sh − sl)(αH − αL) if j ∈ N L
l ;

0 if j ∈ N\N L
l .

Then we have the following result.5

Theorem 4.2 Let � = (N , α, s, s0) ∈ J iT 2,2
h be complete and such that |N H

h | =
|N L

l | > 1. Then C(v�) = Conv{θ(�), θ(�)} and

θ(�) = 1

2
(θ(�) + θ(�)).

Moreover, θ(�) is equal to the nucleolus η(v�).

Proof First we establish that Conv{θ(�), θ(�)} ⊆ C(v�), by showing that
θ(�) ∈ C(v�) and θ(�) ∈ C(v�).

Let S ∈ 2N . Then we have that

∑

i∈S

θ i (�) − v�(S) =
∑

i∈S

(sh − si )αi + |SH
h |(sh − sl)(αH − αL) − v�(S)

≥ |SH
l |(sh − sl)αH +|SL

l |(sh − sl)αL+|SH
h |(sh−sl)(αH −αL)

−
(
|SH

l |(sh − sl)αH + |SL
l |(sh − sl)αL

)

+ min{|SH
h |, |SL

l |}(sh − sl)(αH − αL)

5 In fact, the proof of this theorem does not use completeness of the underlying JiT sequencing situation.
The results described in the theorem therefore hold for a wider class of JiT sequencing situations.
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=
(
|SH

h | − min{|SH
h |, |SL

l |}
)

(sh − sl)(αH − αL)

≥ 0.

Note that the first inequality follows from Proposition 3.1, and that for S = N the two
inequalities hold with equality. Hence, θ(�) ∈ C(v�). A similar reasoning shows
that θ(�) ∈ C(v�).

Now we show that C(v�) ⊆ Conv{θ(�), θ(�)}. It suffices to show that for every
x ∈ C(v�) it holds that:

(i) xi ≥ 0 for every i ∈ N .
(ii) xi = 0 for every i ∈ N L

h .
(iii) xi = (sh − sl)αH for every i ∈ N H

l .
(iv) xi + x j = (sh − sl)αH for every i ∈ N H

h and j ∈ N L
l and, therefore,

xi = xk for all i, k ∈ N H
h , and x j = xr for all j, r ∈ N L

l .
(v) (sh − sl)αL ≤ xi ≤ (sh − sl)αH for every i ∈ N L

l .

Note that (iv) and (v) together imply 0 ≤ xi ≤ (sh − sl)(αH −αL) for every i ∈ N H
h .

We prove (i)–(v) point by point. Take x ∈ C(v�).

(i) As xi ≥ v({i}) and v({i}) = 0 for every i ∈ N , we have xi ≥ 0 for every i ∈ N .
(ii) As v�(N\N L

h ) = v�(N ), we obtain xi = 0 for all i ∈ N L
h .

(iii) Take i ∈ N H
l , and take j ∈ N H

h , k ∈ N L
l . Then

∑

r∈N

xr + xi =
∑

r∈N H
h ∪{i}

xr +
∑

r∈N\N H
h

xr

≥ v�({i, j, k}) + v�(N\{ j, k})
= 2(sh − sl)αH + (|N H

l | + |N L
l |)(sh − sl)αH

= v�(N ) + (sh − sl)αH

=
∑

r∈N

xr + (sh − sl)αH .

The second equality holds by the observation that N H
h ∩ (N\{ j, k}) �= ∅ and

N L
l ∩ (N\{ j, k}) �= ∅, which means that N\{ j, k} is contained in the first case of

Proposition 3.1. We obtain xi ≥ (sh − sl)αH and using Proposition 3.1 we have
v�(N ) − v�(N\{i}) = (sh − sl)αH . Therefore, xi = (sh − sl)αH .

(iv) Take i ∈ N H
h and j ∈ N L

l . Asv�({i, j}) = (sh−sl)αH = v�(N )−v�(N\{i, j})
we have xi + x j = (sh − sl)αH .

(v) Take j ∈ N H
h and i, k ∈ N L

l with j �= k. The observation that v({i, j, k}) = (sh −
sl)(αH −αL)+2(sh − sl)αL and v(N\{ j, k}) = (|N H

l |+ |N L
l |−1)(sh − sl)αH

leads with a similar reason as with (i i i) to xi ≥ (sh − sl)αL . As v�({i, j}) =
(sh − sl)αH = v�(N ) − v�(N\{i, j}) Furthermore, since

v(N ) − v(N\N L
l ) = |N L

l |(sh − sl)αH ,

it follows that xi ≤ (sh − sl)αH .
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Lastly, from Lemma 4.1 we have

θi (�) = (sh − si )αi +
{

(αH −αL )(sh−sl )
2 if i ∈ N H

h ∪ N L
l

0 if i ∈ N H
l ∪ N L

h ,

so θ(�) = 1
2 (θ(�) + θ(�)) follows directly from the definition of θ(�) and θ(�).

Finally, we show that θ(�) = η(v�) by showing that ω(θ(�)) ≤L ω(x) for every
x ∈ C(v�). By Theorem 4.2, C(v�) = Conv{θ(�), θ(�)}. So, take c ∈ [0, 1] and
define xc = cθ(�) + (1 − c)θ(�). By Lemma 3.1, the excesses are

E(S, xc) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−c(|SH
h | − |SL

l |)A if SH
h �= ∅ and |SH

h | ≥ |SL
l |;

−(1 − c)(|SL
l | − |SH

h |)A if SH
h �= ∅ and |SH

h | < |SL
l |;

−(1 − c)|SL
l |A if SH

h = ∅, SL
l �= ∅ and SL

h �= ∅;
−(1 − c)|SL

l |A − (sh − sl )αL if SH
h = ∅, SL

l �= ∅ and SL
h = ∅;

−A if SH
h = ∅, SL

l = ∅, SH
l �= ∅ and SL

h �= ∅;
−(sh − sl )αH if SH

h = ∅, SL
l = ∅, SH

l �= ∅ and SL
h = ∅;

0 if SH
h = ∅, SL

l = ∅ and SH
l = ∅,

where A = (sh − sl)(αH − αL) > 0.
It is readily checked that the highest excess equals 0. This excess occurs, indepen-

dent of the value of c, for every coalition S ∈ 2N such that either |SH
h | = |SL

l | > 0
or S = SL

h . For c = 0 or c = 1, there are additional coalitions with excess equal to
zero whereas for c ∈ (0, 1) all other coalitions have a negative excess. Hence, both
x0 �= η(v�) and x1 �= η(v�). Since −(sh − sl)αH < 0 and −(sh − sl)αL < 0, for
c ∈ (0, 1) the second highest excess equals either −cA or −(1 − c)A, or a multiple
of these values. Hence, the second highest excess is minimized for c = 1

2 , implying

that η(v) = x
1
2 = θ(�). ��

Note that both Theorems 4.1 and 4.2 do not cover the case of a complete JiT
sequencing situation with |N H

h | = |N L
l | = 1. The next example shows that in this

case the core need not be one point or a line segment and that the coincidence between
the large instance based rule and the nucleolus is lost.

Example 4.1 Reconsider the complete JiT sequencing situation � = (N , α, s, s0) ∈
J iT 2,2

h analyzed before in Examples 2.1 and 3.1. Here |N H
h | = |N L

l | = 1. It is readily
checked that

C(v�) = Conv{(2, 4, 0, 2), (2, 2, 0, 4), (0, 4, 0, 4)}

while
θ(�) = (2, 4, 0, 2), θ(�) = (0, 4, 0, 4), and θ(�) = (1, 4, 0, 3)

and

η(�) =
(

1
1

3
, 3

1

3
, 0, 3

1

3

)

.

�
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Appendix: Proofs

Proof of Theorem 2.1 Assume s0 = sh and first consider the case where maxi∈N si =
sl . This implies that |N H

h | = |N L
h | = 0. For σ ∈ �(N ) we obtain

γN (σ ) =
∑

i∈N

slαi + (s0 − sl)ασ(1) =
∑

i∈N

slαi + (sh − sl)ασ(1).

Assume there exists an order σ ′ ∈ �(N ) such that |Mh H (σ ′)| = 0, and take such
a σ ′ ∈ �(N ). As s0 = sh , we obtain that ασ ′(1) = αL and therefore σ ′(1) ∈ N L

l .
Hence, for all σ ∈ �(N )

γN (σ ′) =
∑

i∈N

slαi + (sh − sl)αL ≤ γN (σ ),

so σ ′ is optimal.
Now assume there exists an order σ ′′ ∈ �(N ) such that |Ml L(σ ′′)| = 0 and

|Mh H (σ ′′)| > 0, and take such a σ ′′ ∈ �(N ). Then either |N L
l | = 0, which means

that N = N H
l and every order is optimal, or |N L

l | = 1 with σ ′(1) ∈ N L
l . In the last

case γN (σ ′′) = ∑
i∈N slαi + (s0 − sl)αL ≤ γN (σ ) for all σ ∈ �(N ), and σ ′′ is

optimal.
Now consider the case where maxi∈N si = sh . Take an arbitrary σ ∈ �(N ). Take

B, D ∈ N such that B = |Mh H (σ )| and D = |Ml L(σ )|. Note that by Eqs. (2) and (4)
we have

B − D = |Mh H (σ )| − |Ml L(σ )| = |Nh | − |N L | + 1[sσ(|N |)=sl ].

By (3) and (4) it holds that

γN (σ ) = |Mh H (σ )|shαH + |Ml H (σ )|slαH + |MhL(σ )|shαL + |Ml L(σ )|slαL

= BshαH + (|Nl | − 1[sσ(|N |)=sl ] − D)slαH

+(|Nh | + 1[sσ(|N |)=sl ] − B)shαL + DslαL

≥ (B − min{B, D})shαH + (|Nl | − 1[sσ(|N |)=sl ] − D + min{B, D})slαH

+(|Nh | + 1[sσ(|N |)=sl ] − B + min{B, D})shαL + (D − min{B, D})slαL

= max{0, |Nh | − |N L | + 1[sσ(|N |)=sl ]}shαH

+ min{|Nl | − 1[sσ(|N |)=sl ], |N H |}slαH

+ min{|N L |, |Nh | + 1[sσ(|N |)=sl ]}shαL

+ max{|N L | − |Nh | − 1[sσ(|N |)=sl ], 0}slαL

≥ max{0, |Nh | − |N L |}shαH + min{|Nl |, |N H |}slαH

+ min{|N L |, |Nh |}shαL + max{|N L | − |Nh |, 0}slαL ,
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where the first inequality follows from the observation that (sh − sl)(αH − αL) > 0.
If |Nh |−|N L | ≥ 0, and therefore |Nl |−|N H | ≤ 0, then the second inequality follows
from (sh − sl)αH > 0. If |Nh | − |N L | < 0, then the second inequality follows from
(sh − sl)αL > 0. The first inequality holds with equality if either B = 0 or D = 0,
and the second inequality holds with equality if sσ(|N |) = sh . This shows that every
order σ ∈ �(N ) with sσ(|N |) = sh and either |Mh H (σ )| = 0 or |Ml L(σ )| = 0 is
optimal.

Next, assume s0 = sl and first consider the case where maxi∈N si = sl . In this
case, for any order σ ∈ �(N ) we have

γN (σ ) =
∑

i∈N

slαi .

So, every order is optimal.
Now consider the case where maxi∈N si = sh . Take an arbitrary σ ∈ �(N ). Take

B, D ∈ N such that B = |Mh H (σ )| and D = |Ml L(σ )|. Note that by Eq. (2) and (6)
we have

B − D = |Mh H (σ )| − |Ml L(σ )| = |Nh | − |N L | − 1[sσ(|N |)=sh ].

By (5) and (6) it holds that

γN (σ ) = |Mh H (σ )|shαH + |Ml H (σ )|slαH + |MhL(σ )|shαL + |Ml L(σ )|slαL

= BshαH + (|Nl | + 1[sσ(|N |)=sh ] − D)slαH

+(|Nh | − 1[sσ(|N |)=sh ] − B)shαL + DslαL

≥ (B − min{B, D})shαH + (|Nl | + 1[sσ(|N |)=sh ] − D + min{B, D})slαH

+(|Nh | − 1[sσ(|N |)=sh ] − B + min{B, D})shαL + (D − min{B, D})slαL

= max{0, |Nh | − |N L | − 1[sσ(|N |)=sh ]}shαH

+ min{|Nl | + 1[sσ(|N |)=sh ], |N H |}slαH

+ min{|N L |, |Nh | − 1[sσ(|N |)=sh ]}shαL

+ max{|N L | − |Nh | + 1[sσ(|N |)=sh ], 0}slαL

≥ max{0, |Nh | − |N L | − 1}shαH + min{|Nl | + 1, |N H |}slαH

+ min{|N L |, |Nh | − 1}shαL + max{|N L | − |Nh | + 1, 0}slαL ,

where the first inequality follows from the observation that (sh − sl)(αH − αL) > 0.
If |Nh | − |N L | ≤ 0, then the second inequality follows from (sl − sh)αL < 0. If
|Nh | − |N L | > 0, then the second inequality follows from (sl − sh)αH < 0. The first
inequality holds with equality if either B = 0 or D = 0, and the second inequality
holds with equality if sσ(|N |) = sh .

Hence for both values of σ0 every order σ ∈ �(N ) with sσ(|N |) = sh and either
|Mh H (σ )| = 0 or |Ml L(σ )| = 0 is optimal. ��
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Proof of Theorem 2.2 Let σ̃ ∈ �(N ) be an order provided by Algorithm 1. In Step 2
of the algorithm, it is made sure that there is always a player with the highest available
set-up time left to place at the last position. Hence, sσ̃ (|N |) = sh , unless N H

h ∪ N L
h = ∅

which implies that there is in fact only one value for si and sσ̃ (|N |) = sl = maxi∈N si .
We prove that either optimality of σ̃ follows directly from Theorem 2.1, i.e.,

|Mh H (σ̃ )| = 0 or |Ml L(σ̃ )| = 0, or N H
h ∪ N L

l = ∅. For the latter case we show
that σ̃ is optimal as well.

Assume that optimality of σ̃ does not follow directly from Theorem 2.1, i.e.,
|Mh H (σ̃ )| > 0 and |Ml L(σ̃ )| > 0. Then there exist p, r ∈ {0, . . . , |N | − 1} such
that (σ̃ (p), σ̃ (p + 1)) ∈ Mh H (σ̃ ) and (σ̃ (r), σ̃ (r + 1)) ∈ Ml L(σ̃ ).

Assume r < p. According to the algorithm, job σ̃ (r + 1) is only placed behind job
σ̃ (r) if there is no job j with α j = αH left that is not yet placed, or there is only one
job j with α j = αH left, but this job has to be reserved for the last spot because it is
the only remaining job with high set-up time. In the first case, we have a contradiction,
since job σ̃ (p + 1) is not yet placed. The second case also results in a contradiction,
since both sσ̃ (p) = sh and sσ̃ (|N |) = sh .

Now assume p < r . According to the algorithm, job σ̃ (p+1) is only placed behind
job σ̃ (p) if there is no job j with α j = αL left that is not yet placed, or there is only
one job j with α j = αL left, but this job has to be reserved for the last spot because it is
the only remaining job with high set-up time. In the first case, we have a contradiction,
since job σ̃ (r + 1) is not yet placed.

The second case can only hold if r+1 = |N |. For all jobs i ∈ {σ̃ (p+1), . . . , σ̃ (r)} it
then must hold that si = sl , otherwise job σ̃ (r +1) would have been placed at position
p+1. Furthermore, αi = αH otherwise job i would have been placed at position p+1
as this would avoid the combination of sh and αH . So, we obtain that i ∈ N H

l for
all i ∈ {σ̃ (p + 1), . . . , σ̃ (r)}. Since the algorithm first places the jobs in N H

l before
placing the jobs in N H

h , and σ̃ (|N |) �∈ N H
h , we obtain that N H

h = ∅ and therefore
σ̃ (p) ∈ N L

h . Furthermore, if there existed a job i ∈ N L
l then the algorithm would

place every job in N H
l directly behind this job. But since σ̃ (p) �∈ N L

l this implies that
N L

l = ∅. Hence, the second case only allows players in N H
l and N L

h , so N H
h ∪N L

l = ∅.
If s0 = sl , then the algorithm first places all players in N H

l and then all players in N L
h ,

which contradicts σ̃ (s) ∈ N L
h . So, s0 = sh and the solution provided by the algorithm

for this situation (first all players in N L
h but one, then all players in N H

l and finally the
last player in N L

h ) is clearly optimal. ��
Proof of Proposition 3.1 Here, we will only prove the first case, the other cases follow
from a similar reasoning. First of all, we have

∑

i∈S

γi (σ
∗{i}) = (|SH

h | + |SH
l |)shαH + (|SL

h | + |SL
l |)shαL ,

for every S ∈ 2N . ��
Take S ∈ 2N such that SH

h �= ∅ and |SH
h | ≥ |SL

l |. Since SH
h �= ∅, it holds for every

(optimal) order σ̃S provided by Algorithm 1 that sσ ∗
S (|S|) = sh . Furthermore, since
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SH
h �= ∅ we have by Proposition 2.1 that either |Mh H (σ̃S)| = 0 or |Ml L(σ̃S)| = 0. It

must hold that |Ml L(σ̃S)| = 0, since |SH
h | ≥ |SL

l | together with (1) and (3) implies
that |Mh H (σ̃S)| ≥ |Ml L(σ̃S)|. So, we have

γS(σ̃S) = |Mh H (σ̃S)|shαH + |Ml H (σ̃S)|slαH + |MhL(σ̃S)|shαL + |Ml L(σ̃S)|slαL

= (|SH
h | − |SL

l |)shαH + (|SH
l | + |SL

l |)slαH + (|SL
h | + |SL

l |)shαL ,

and we may conclude that

v�(S) =
∑

i∈S

γi (σ̃{i}) − γS(σ̃S)

= (|SH
h | + |SH

l |)shαH + (|SL
h | + |SL

l |)shαL ,

−
(
(|SH

h | − |SL
l |)shαH + (|SH

l | + |SL
l |)slαH + (|SL

h | + |SL
l |)shαL

)

= (|SH
l | + |SL

l |)(sh − sl)αH .
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