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If the pages of this book contain
some successful verse, the reader
must excuse me the discourtesy of
having usurped it first. Our
nothingness differs little; it is a
trivial and chance circumstance
that you should be the reader of
these exercises and I their author.

Jorge Luis Borges

Chapter 1
Introduction
Look around you. Virtually everything you see was at some point stored as
‘inventory’, awaiting for its transformation or sale. Everything you see was
produced, and stored, according to a policy that a human put in place.
Not too long ago, I contacted a company in the Netherlands to print my
dissertation. The order I placed affected their paper and ink and glue stocks;
these raw materials were transformed into the convenient book you are holding
right now. The decision of how many books to get printed was not trivial: Had
I made a rushed decision and ordered too few of them, and you may have not
had the chance to be reading this right now; had I ordered too many of them,
and I would have faced a problem: where do I put all these boxes and boxes of
excess dissertations? In the end, I ordered enough so that everyone interested
in my work was able to get one and also made sure that I kept some books
myself, in case someone wants one in the future. In other (managerial) words, I
ordered enough to fulfill the current demand and I kept some inventory to face
the uncertainty of future demand.
This –admittedly rather trivial example– illustrates several key aspects of
inventory research. It shows, through the fundamental question, how much,
exactly, should I order?, how inventories and orders are intimately related:
inventory policies drive orders and orders drive inventories. It also demonstrates
its enormous scope: not only is that question ‘everywhere’, but it also is repeated
several times over the life of a product before it even reaches your hand. Finally,
it highlights something that we (at least I) often forget: behind every decision,
there is a decision maker with a particular set of priorities and objectives. To
be able to print the number of dissertations I requested1, the printer had to –

1
150, by the way.



2 Introduction

at some point– make his own purchase decisions regarding the paper and the
ink and the glue. In the same way, the paper producer (and the ink producer,
and the glue producer) had to make similar decisions. Decisions that ultimately
culminated in someone chopping trees to produce paper, someone extracting
oil to produce glue, and someone extracting certain minerals from the earth to
produce ink. The way in which trees (and oil and minerals) gradually became
this book, through successive transformations (steps), and, especially, the way in
which these successive steps are intimately related (decisions made at each step
affect prior and later steps) is why we talk about supply chains.
Broadly speaking, in this dissertation we look at different ways in which
inventory decisions at one point of the supply chain affect orders further up
the chain. In particular, we examine different manifestations of The Bullwhip
Effect —a phenomenon that has been studied for decades, and which explains
the observations made that (1) the variability of orders tends to be larger than
the variability of demand, and (2) that this amplification of demand variance
itself increases the further upstream a company is in a supply chain. In other
words, The Bullwhip Effect states that my sudden order of 150 books is capable of
causing a ripple that is amplified as it travels upstream through the supply chain;
by the time it reaches the lumberjack upstream, the change that he observes in
his demand is far larger than the equivalent amount of trees needed to produce
the 150 books I ordered. In itself, my modest order of 150 books is but a drop in
the ocean, but if you consider that more than 500 million books were sold in the
US alone during 2013

2, that’s a lot of trees.

In this chapter, we briefly introduce The Bullwhip Effect; then formulate a
series of research questions; introduce the methodologies used to answer these
questions; and position this work among the broader operations management
(OM) literature. Finally, we present a brief overview of the organization of the
remainder of the dissertation.

1.1 The Bullwhip Effect

Lee et al. (1997a) define the Bullwhip Effect as

“the phenomenon where orders to the supplier tend to have larger
variance than sales to the buyer (i.e., demand distortion), and the
distortion propagates upstream in an amplified form (i.e., variance
amplification).”

2Source: Nielsen Bookscan.
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The dynamics associated with the Bullwhip Effect have, however, been of
interest for decades. For example, Procter & Gamble, is often cited (Geary
et al., 2006) as the canonical example of the Bullwhip Effect in action due
to their early recognition of a wave-like pattern in their diaper sales—how
could pampers’ demand be so profoundly cyclical, when babies’ needs are,
on the aggregate, relatively constant?. Forrester (1958) answered this question.
Using system dynamics simulations to study amplification on supply chains
from the perspective of managerial decision making, he shows that ordering
decisions can drive demand amplification and create artificial seasonal effects.
His contribution to the field cannot be understated; before Lee et al. (1997a)
popularized its current designation, the Bullwhip Effect was known as the
Forrester effect.

Today, we distinguish between operational and behavioral causes for the
Bullwhip Effect. Lee et al. (1997a) identify four operational causes for the
Bullwhip Effect: demand signal processing, rationing games, order batching,
and price fluctuations. They show that the presence of any one of them is enough
to induce amplification, and identify counter measures that can be applied to
reduce their impact. Croson and Donohue (2006) perform an experiment based
on Sterman’s Beer Game simulation (1989) in which they control for all the
operational causes, yet still find evidence of the bullwhip. They conclude that
human behavior and the inherent difficulty of making decisions in dynamic
environments contribute to the effect—in particular, the players’ tendency to
underestimate the pipeline inventory (orders that have been placed but not yet
received) is found to be a key driver.

For a phenomenon so well understood, both analytically and in the lab, the
Bullwhip Effect is still controversial and a source of inspiration to researchers
all over the world. Empirical studies on the real-world appearance of the
Bullwhip Effect do not draw the same clear cut conclusions as the theoretical
and experimental work. Even though the Bullwhip Effect itself has been proven
to be significant at the firm level (Metters, 1997; Fransoo and Wouters, 2000;
Bray and Mendelson, 2012), attempts to empirically quantify the effect at higher
aggregation levels have had disparate results: Studies have failed to consistently
prove it statistically significant at the level of whole industries (Cachon et al.,
2007; Bu et al., 2011). This lack of clear empirical evidence is attributed to
the influence of factors such as the high level of aggregation (Chen and Lee,
2012), and the seasonal adjustment present in government statistics (Gorman
and Brannon, 2000).
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1.2 Research Objectives

The objective of the research presented in this dissertation is to obtain insights
on the role of inventories in real world decision-making processes. We look at
inventories through two diametrically opposed perspectives and, in doing so,
answer two main research questions: To what extent is real world decision making
being driven by inventories? And, in turn, To what extent does the decision-making
behavior affect inventory performance?

To tackle this research objective we make the problem manageable by posing a
series of smaller, more modest questions that we answer progressively through
a series of studies The Bullwhip Effect is central in this dissertation; we frame
all of our research questions around it, its appearance, and its link to inventory
decisions and behavior.

1.2.1 Historical link of inventories and the Bullwhip

As mentioned before, research on the Bullwhip Effect in the context of supply
chain management has been conducted extensively since at least Forrester’s
(1958) seminal work. The phenomenon is, however, so encompassing that it is
of interest not only at the supply chain management level; economists have long
debated about the appearance and causes of periodicity in the economy (Geary
et al., 2006). Indeed, the role of inventories in the economy is a stirring topic of
research, and disagreements, for micro and macro economists (Fitzgerald, 1997);
the former tend to see inventories as a stabilizing force, whereas the latter tend to
see them as a destabilizing force (Blinder and Maccini, 1991). In light of this, the
first research question that we formulate is a meta question on past research:
What have researchers learned about the link between inventories and the Bullwhip
Effect? What are the questions that are still open? We answer this in Chapter 2,
through an exhaustive literature review on the Bullwhip Effect, its history, and
the link between business cycles and inventories. One interesting observation
unearthed in this chapter is that research investigating the role of inventories in
the general economy tends to follow cycles; interest in inventories tends to peak
after economic crises and dwindle in times of boon.

1.2.2 The Bullwhip during the credit crisis

In line with the above observation, our next research question concerns the
role of inventories during the recent credit crisis. Following the collapse of
the financial system in September 2008, manufacturers in several industries
observed a sizable drop in demand that was not driven by a comparable drop
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in end market demands. While end markets appeared relatively stable, the
demand oscillations observed by manufacturers were massive and consistent
with the evolution of demand that one would expect in a supply chain struck
by a sudden shock, propagated by the Bullwhip Effect. With a demand shock
out of the question, an inventory shock could provide an explanation. Thus, we
formulate the following research question: Can a synchronized inventory shock
–caused by the desire of firms to retain liquidity in moments of financial distress–
explain the demand dynamics experienced by upstream manufacturing firms following
the collapse of Lehman Brothers on September 2008?

To answer this question, in Chapter 3, we extend the system dynamics supply
chain model from Sterman (1989) by explicitly modeling de-stocking decisions.
We use primary empirical data from a Dutch chemical company to parameterize
and validate models for 4 different supply chains. Methodologically, the system
dynamics models draw from the behavioral operations literature: instead of
assuming an optimal inventory policy, the orders for each of the firms of
the supply chain (echelons) are calculated through an anchor and adjustment
heuristic (Kahneman et al., 1982) calibrated with the empirical sales data. We use
the crisis period as a natural experiment; the synchronization of the observed
reactions allowing us to use this heuristic, previously used to explain human
behavior at the individual level in controlled experiments (Sterman, 1989; Croson
and Donohue, 2006).

In this work, we observe that the behavior at an echelon level closely replicates
what has been reported in experiments, with firms steering on on-hand and
pipeline inventories—displaying a smoothing of orders and under estimation of
the pipeline. To test the validity of our hypothesis, that the inventory reduction
drove the fall in orders observed by manufacturers, we construct an alternative
model with no de-stocking. We find that said model is unable to replicate the
observed behavior.

1.2.3 The Bullwhip and human behavior

Having found support for the capability of the anchoring and adjustment
heuristic to replicate behavior at an aggregate level, we turn to its inner
workings. The research question that we formulate is a descriptive one: How
does human behavior –as measured by the inventory and pipeline smoothing– affect
the stability of a production/inventory system, its dynamic performance, and the
amplification (bullwhip) of orders and inventories?

We answer this question through an analytical study in Chapter 4. In this
chapter, we switch our viewpoint: instead of studying the response of the system
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to an inventory shock, we analyze how human behavior affects inventories. To
do so, we develop a model that uses a decision-making mechanism equivalent
to the one used in Chapter 3 and analyze it through control theory. We base
our model on the rich literature dealing with control theoretic models of supply
chains (Dejonckheere et al., 2003; Hoberg et al., 2007b; Disney, 2008), however,
we approach our research in a descriptive manner. If the focus of prior research
in the area was primarily the development of optimal policies and guidelines
for the selection of parameters (Towill et al., 2007; Disney et al., 2006a), we are
interested in the effect of non-optimal behavior: Knowing that decision-makers
tend to smooth orders and under-estimate the pipeline, how does this affect the
performance of the firm?

We discover a complex interplay between human behavior, as measured by the
inventory and pipeline smoothing, and the performance of the system. Non-
optimal behavior, such as the under estimation of the pipeline, adds a new
dimension to the trade-off between transient and stationary performance; in
particular, the under estimation of the pipeline (observed by researchers in
the lab and in our supply chain models of Chapter 3) introduces a cyclical
component to the response of the system. In the case of inventory performance,
we observe that these oscillations can result in an improved performance at the
cost of an increased sensitivity of the system.

1.2.4 The Bullwhip and seasonality

The findings of Chapter 4 are illuminating and puzzling at the same time.
By under estimating the pipeline, decision makers induce a cyclicality in the
inventory behavior that –for a limited range of parameters– can potentially
result in an increased inventory performance. The performance metrics used in
that chapter, however, assume very specific demand conditions: The amount of
bullwhip is measured against a normally distributed demand, and the dynamic
performance is measured as a result of a single demand shock. Even though the
reasoning behind the usage of these metrics is sound (a system that responds
well to both shocks and random demand is indeed a desirable system) it leaves
open the space to question its robustness. The research questions that follows are
then: How robust are the theoretically developed metrics to changes in demand? And,
in particular, how does the cyclicality of the system interact with cyclical demands?

We set out to answer these in Chapter 5 through a series of extensive numerical
experiments carried out on the control theoretic model presented in the prior
Chapter. In doing so, we turn our attention to a ‘forgotten’ aspect of the
Forrester effect: Rogue seasonality. Rogue seasonality (originally called the
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‘fake business cycle’ by Forrester (1958)) describes the way in which a system
imposes an endogenous cyclicality to its outputs. In the case of the system
we are describing, rogue seasonality describes a seasonality in the orders and
inventory of the system that is different to the seasonality of demand. In
the case of the theoretical, non-seasonal, demands that we study in Chapter
4, rogue seasonality is detected by the appearance of any kind of cyclicality
in the evolution of orders and inventory. However, how does the system react
to actual demand streams? To answer this, we first benchmark the theoretical
bullwhip performance metric and find that even when the input demand is
sampled from a normal distribution, the system’s performance deviates from
the theoretical performance. This deviation depends on the behavioral and
structural parameters of the system; deviations from the optimal are heavily
penalized. We find that this deviation from theoretical performance is related to
the appearance of rogue seasonality and develop a method to quantify it. In the
last section of this study, we analyze the interplay between exogenous (demand
side) and endogenous (rogue) seasonality: The seasonality imposed by the
system can attenuate the demand seasonality, provided that the frequencies are
sufficiently different. With this study, we highlight the need for decision-makers
to understand both their system and the demand that they are facing; optimal
decision making must take both, including their interaction, into account.

1.2.5 The Bullwhip and the chicken and the egg

The last study in this dissertation shifts the viewpoint once again. In Chapter
5, we explicitly look at the role of inventories as drivers of decision making
through an empirical study using firm-level secondary data. We construct
a database of supplier-customer pairs and study how downstream inventory
decisions affect upstream purchase decisions. We motivate this study through
the following question: Do upstream decision makers over-react to changes in
downstream inventory levels? We find statistical significance of manufacturers
overreacting to downstream inventory changes. Furthermore, we study the
origin of said inventory changes: Can we observe evidence of firms adapting their
inventory levels to economic and financial conditions? We find evidence of this by
studying a structural model of the decision-making mechanism: The data is
consistent with rational decision-makers that vary their cost structure according
to the economic and financial conjuncture. This finding is consistent with the
hypothesis developed in Chapter 3, in which we proposed that decision makers
all over the world turned to inventories as a source of liquidity—leading to a
generalized de-stocking.
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By focusing on answering the above set of questions, the research presented
in Chapters 2–5 attempts to shed light into the role of inventories in decision-
making processes. We find support for the hypothesis that explicit inventory
decisions helped drive the demand drops associated with the recent credit
crisis. First, we find that the behavioral mechanisms behind firm-level decision
making are consistent with the individual-level mechanisms studied in the lab.
Second, we identify the performance trade-offs associated with such behavior—
both in a theoretical and practical level. And finally, we find that downstream
inventory decisions affect upstream production orders, and that in turn, financial
conditions affect these inventory decisions.

1.3 Research Methodology and Positioning
The research questions presented in this dissertation require the use of various
research methodologies. In this section, we briefly describe each of them and
position our work within the existing literature.

1.3.1 System Dynamics simulations

System Dynamics is popular when it comes to modeling the dynamics of
complex systems, such as the production/inventory system used in Chapter
3. This methodology allows the modeler to decouple endogenous, exogenous,
and structural effects. System Dynamics models explicitly describe the behavior
of individual components pursuing local results, and exploit the structure of the
system to model the interactions between these components.
The entire field of System Dynamics emerged from the work of Forrester (1958).
In that work, the author presents an inventory/production system , with which
he illustrates the concept of the dynamics we know today as the Bullwhip
Effect. This model is expanded and refined by Sterman (2000) and used by
other researchers to derive insights on the Bullwhip Effect (Kim and Springer,
2008). System dynamic models make two important assumptions: Continuous
time and continuous flows. Because of this, the power of the methodology
resides in its ability to model complex feedback-ridden systems that are able
to replicate real-world behavior with relative computational ease, rather than
its use in axiomatic research. In line with this, in Chapter 3 we develop an
extension of Sterman’s (2000) echelon model with which we run simulations
that we validate empirically. The main contributions of this dissertation to the
literature are the empirical testing and validation of the de-stocking hypothesis
in the context of the credit crisis, and the use of this insight for managerial
decision making at the tactical level.
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1.3.2 Linear control theory

Linear control theory is widely used in operations management to perform
axiomatic research on inventory/production systems based upon the same
concepts as the System Dynamics models presented above. Control theory, in
contrast to system dynamics, typically relies on transforming the mathemat-
ical time-domain representation of the model (differential equations) into an
equivalent representation in the frequency domain. This is achieved through
Laplace transforms (in the case of continuous time systems) or Z-transforms
(in the case of discrete-time systems) (Wunsch, 1983). In the OM literature,
control theoretic inventory/production systems have been studied with several
different objectives. Disney and Towill (2006) show that there exists a range
of policies (when the inventory and pipeline are taken into account with the
same weight at the time of calculating replenishment orders) that are optimal
from the perspective of stationary and transient performance, these policies are
called Deziel-Eilon (DE) policies in honor of the researchers that first described
them (Deziel and Eilon, 1967); Dejonckheere et al. (2003) shows that when
the adjustments of DE-policies are full (inventory and pipeline deviations are
taken entirely into account), then they are equivalent to regular Order-Up-
To policies, and introduce the concept of fractional adjustments as a tool to
reduce the bullwhip. Disney (2008) explores non-optimal policies and presents
a way of calculating the stability of the policies for a given lead time through
a determinant-method based on Jury’s (1964) inner method. In Chapter 4, we
develop a compact expression for the stability of the system for any arbitrary
value of lead time. In Chapter 5, we perform numerical experiments on the
control theoretic models to characterize the appearance of rogue seasonality in
the system’s orders.

1.3.3 Empirical modeling

There exists a wide range of inventory research that explicitly connects several
stages in the supply chain (Graves, 1999). We use firm level, secondary empirical
data to test econometric forecasting and inventory models at two stages of the
supply chain. The contribution of our research to the OM literature is the
inclusion of two stages of the supply chain into these models. The second part
of Chapter 6 presents a structural model of the processes behind the inventory
decision making that takes economic and financial conjuncture into account to
decide upon the cost-ratio that the firm uses for determining the optimal value of
its safety stock. In structural modeling, theory is used to develop mathematical
statements about how a set of observable “endogenous” variables y, are related
to another set of observable “explanatory” variables, x. In this context, we
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assume that decision makers are rational, and then use the data to impute
the cost parameters that explain the observed behavior. In the OM literature,
structural modeling has been used most notably by Olivares et al. (2008), who
used a similar approach to impute the implied costs behind the decisions on
operating room assignments.

1.4 Outline of the Thesis
The rest of this dissertation is divided as follows: In Chapter 2, we present
a literature review that focuses on the historical research conducted on the
Bullwhip Effect, and the role of inventories within said literature. Chapter
3 follows with the empirical modeling of supply chains during the credit
crisis. In this chapter, we develop a de-stocking hypothesis and test it with
primary empirical data; we show that upstream companies experienced market
dynamics consistent with a synchronized de-stocking shock affecting the world’s
supply chains, and study the underlying managerial behavior from a behavioral
operations point of view. In Chapters 4 and 5, we use a discrete time control
theory model of the inventory/production system to investigate the role of
human behavior on inventory and order performance. The former is an
analytical study, where we provide a general expression for the stability of
the system under any kind of behavioral policy, and the latter is a numerical
study, where we perform extensive experimentation to understand the effect that
different demand patterns have on the performance of the system. Chapter 6

returns to the empirical world, to test the hypothesis that downstream inventory
decisions affect –and cause overreactions– upstream production decisions. We
use secondary data from customer-supplier pairs to test econometric and
structural models.



Understanding the world requires
you to take a certain distance
from it. Things that are too small
to see with the naked eye, such as
molecules and atoms, we magnify.
Things that are too large, such as
cloud formations, river deltas,
constellations, we reduce. At
length we bring it within the
scope of our senses and we
stabilize it with fixer. When it has
been fixed we call it knowledge.

Karl Ove KnausgårdChapter 2
Literature Review
In the introduction, we briefly described the Bullwhip Effect and the different
methodologies used to study it. In this chapter, we review the existing literature
on the Bullwhip Effect by positioning published contributions to the theory
in a different way; rather than grouping different works according to their
methodology, we group them according to their purpose.

We first introduce the stream of research that attempts to measure the Bullwhip
Effect. This includes the pioneering work that predates the term “Bullwhip
Effect”, but sets the mathematical basis for everything that came after; the work
that sets performance measures for different aspects of the bullwhip; and the
empirical work that seeks for evidence of the Bullwhip Effect in real-life data.

Then, we turn our attention to the analysis of the bullwhip: How different
replenishment policies and forecasting methods impact the bullwhip; how
human behavior exacerbates the information distortion; and how frequency
domain analysis can help uncover a hidden dimension of the bullwhip: rogue
seasonality.

Finally, we take a look at the literature that proposes and analyses different ways
of taming the bullwhip, primarily through the usage of particular policy settings
and/or information sharing.
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2.1 Discovering and measuring the Bullwhip Effect

Before we discuss the Bullwhip Effect, we must introduce the mathematical
structures that made it possible for researchers to identify the phenomenon.
Forrester is considered the “father” of the Bullwhip Effect due to his seminal
1958 work. However, his discovery of the Bullwhip Effect as a systematic phe-
nomenon could not have happened had he not, first, developed the mathematical
tools of system dynamics. These tools allowed him to numerically solve complex
inventory models based upon difference and differential equations.

In parallel to Forrester’s progress, researchers like Simon (1952) and Vassian
(1955) started to use transform methods to obtain analytical solutions to these
models. Lacking the computing power we have today and years of refinement of
these methods, the analytical study of dynamic models would trail the numerical
study of complex system dynamic models for decades.

In this section, we first introduce the early era of dynamic inventory models,
pioneered by Simon’s (1952) and Vassian’s (1955) usage of transform methods.
Then, we follow the path that took us from these mathematical formulations to
the control theoretic inventory modeling framework, which adapts, and applies,
concepts originally developed in systems engineering to the analysis of dynamic
inventory models. Following this, we introduce Forrester’s (1958) work and its
legacy: the development of system dynamics and the discovery of the bullwhip.
Having established the existence of the bullwhip, we then present the efforts
of researchers determined to introduce appropriate ways to quantify it; and we
finish by recounting the past, and present, controversies and difficulties inherent
to the search for empirical evidence of the bullwhip.

2.1.1 Before the bullwhip: Mathematical foundations of dynamic
analysis

Simon’s (1952) exploratory study laid down the mathematical foundation for
the analysis of the dynamics of production control. In his paper, the author
points out the ‘obvious analogies’ between electrical and mechanical control
systems, used to control physical systems through the use of servomechanisms;
and production control systems, used to plan and schedule production in a
business setting. Simon develops a simple model of a production control system
in terms of servomechanisms operating in continuous time. He takes advantage
of the recent (at the time) advances in techniques and methodologies developed
for engineering applications, to analyze the dynamic response of this model.
Simon recognizes that the (inherently dynamic) variation in inventories and
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orders drive the total cost of the system and, using Laplace transform methods,
analyses a quadratic cost system. He finds that optimizing for steady state
will not generally minimize cost for changes in the steady state. Thus, he
defines a decision rule for the rate of change of production that minimizes
the steady state costs while dampening transient deviations. Furthermore, he
shows that stabilizing inventories leads to fluctuating orders and vice versa.
The insights obtained in this study are limited in their application and –
by the author’s admission– readily obtained by intuition; however, in setting
up the first dynamic model of an inventory system, this study immediately
opens the door for more. Simon’s work is the basis for two methodological
branches of the utmost importance for the study of supply chain dynamics
and the Bullwhip Effect: The control theory methodology, which uses Laplace
and Z transforms to analytically solve increasingly more realistic and complex
systems; and the system dynamics field, which essentially allows for a fast
numerical solution of the represented systems and thus permits the modeling of
even more complex systems. Extending from this seminal work, Vassian (1955)
will lead the analytical branch by developing discrete time models (solved using
the Z transform), and Forrester (1958) will develop system dynamics.

2.1.2 Control theory and the mathematical analysis of production
systems

Vassian (1955) extended Simon’s (1952) work by describing an equivalent
production system using discrete time. For this discrete time, periodic-review
system, with deterministic lead times and complete back-ordering, the author
defines the following difference equation:

Ik − Ik−1 = θk−(T+1) − Ck, (2.1)

where Ik represents the inventory at time k, θk is the order quantity placed at
time k, T represents the production lead time, and Ck is the customer’s order
quantity at time k. Vassian recognizes that a desirable decision rule depends
on both the forecast of demand and the inventory level at each time period.
Specifically, he finds that the following decision rule:

θk = C∗k (T + 1)−
T

∑
j=1

θk−j − (Ik − Ip), (2.2)

where C∗k (T + 1) is the forecast of total customer orders during periods (k +
1) until (k + 1 + T), results in the minimum variance of inventories about
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the desired level, for any given sequence of forecast errors. In particular,
for normally distributed errors, the mean inventory level, Ip, can be easily
determined to give any arbitrary service level. The author’s analysis, however,
makes no explicit consideration for either a cost structure or the variability of
production. Deziel and Eilon (1967) tackle the problem of the interplay between
inventory and production costs in a paper that will prove to be an important
stepping stone in the control-theoretic supply chain literature. Even though
it effectively minimizes stock-holding costs by minimizing inventory variance,
they argue that the above decision rule is inadequate when considering total
costs as a combination of stock-holding, shortage, and production fluctuation
costs. They construct a variant of the decision rule by inserting a smoothing
constant γ that allows for production (or order quantity) fluctuations to be
reduced at the expense of increased inventory variability1:

θk = γ

[
Ip − Ik −

k−1

∑
j=k−T

(
θj − Fj

)]
+ Fk, (2.3)

with Fk a simple exponentially smoothed forecast of the demand at time k. Deziel
and Eilon show that with the above decision rule, the system is stable for values
of γ and α (the exponential smoothing parameter) between 0 and 2. The authors
then conduct a series of simulations with an analogue computer to characterize
the behavior of the system to varying values of γ, α, and T. Additionally,
they define (and compute) a measure of the system’s performance as the ratio
between demand variance and order (and inventory) variance when the demand
is stationary and stochastic. This performance measure is equivalent to the
measurement of the bullwhip later adopted by Fransoo and Wouters (2000).
The mathematical tractability of this decision rule, coupled with its stability and
performance make it the most adopted rule in the control theoretic inventory
modeling field. Decades after its publication, this decision rule will be the object
of intense study by researchers in the field—it has been retrospectively been
named the DE-APVIOBPCS design.

Towill (1982), formalized the concepts described here with the introduction of
the Inventory and Order Based Production Control System (IOBPCS) design
framework. In an IOBPCS design, replenishment orders are generated as
the sum of an exponentially smoothed demand forecast and a fraction of the
inventory discrepancy. In contrast with Deziel and Eilon’s (1967) decision
rule, the pipeline is not involved in the calculation of replenishment orders for

1For consistency, all the control theoretic models are presented, in this chapter, with the notation
used by Vassian (1955).
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IOBPCS models. However, by representing an Inventory/Production system
in block diagram form, the work of Towill allowed for the straightforward
application of linear control theory methodologies to study structural and
dynamic properties and sparked numerous extensions to the models. Given that
a substantial amount of the extensions to the IOBPCS models concern the choice
of smoothing parameters (γ), we present a graphical sketch of the subsequent
extensions as a function of inventory and pipeline smoothing parameters (γI
and γP). This is shown, together with the classical Order-Up-To (OUT) policy
for reference, in Figure 2.1

A first extension to IOBPCS is VIOBPCS (Variable Inventory and Order Based
Production Control System), where the inventory target is no longer constant,
but calculated each period as a multiple of the demand forecast. Edghill and
Towill (1990) study this system and find that, in comparison to IOBPCS, the
variable inventory targets of VIOBPCS designs introduce interesting trade-offs
between the “marketing” and “production” sides of a firm: increased service
levels through a better correlation of inventory and demand, at the cost of
increased variability in orders.

A powerful extension, APIOBPCS (Automatic Pipeline Inventory and Order
Based Production Control System) developed by John et al. (1994), adds a second
feedback loop in the form of a pipeline adjustment. APIOBPCS generalizes the
decision rule of Deziel and Eilon (1967) by allowing independent smoothing of
the pipeline and inventories. Adopting the notation used above, we write the
orders generated by an APIOBPCS [system]:

θk = γI
[
Ip − Ik

]
+ γP

[
k−1

∑
j=k−T

(
Fj − θj

)]
+ Fk, (2.4)

where γI and γP are the independent smoothing parameters for inventory and
pipeline respectively. A final extension to this system; APVIOBPCS (Automatic
Pipeline Variable Inventory and Order Based Production Control System) drops
the assumption of a constant desired inventory level, Ip, and replaces it by a
function of the expected sales, thus:

θk = γI [CFk − Ik] + γP

[
k−1

∑
j=k−T

(
Fj − θj

)]
+ Fk, (2.5)

where the coverage C is constant, but the resulting desired inventory varies with
the updating of the forecast. Dejonckheere et al. (2003) show that this decision
rule is indeed a modification of an Order-Up-To policy with a safety lead
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time in place of an explicit safety factor multiplying the demand variability2.
Despite the equivalence of APVIOBPCS and OUT policies, the control theory
literature focuses on the analysis of the influence of parameters and the structure
of the system in the dynamic response of the system, often without explicit
considerations of cost functions. We review the control theoretic literature’s role
on analyzing the dynamic performance of supply chains in section 2.2.

Figure 2.1 Overview of IOBPCS design variants according to pipeline and inventory
smoothing approaches.

2.1.3 System dynamics and the Forrester effect

According to Forrester (1958), system dynamics (originally dubbed industrial
dynamics) was created as a tool to aid managerial decision making. In this view,
his objectives and approach to model design are pragmatic; insights come first,
mathematical rigorousness, second:

Industrial dynamics is an approach that should help in important
top–management problems. (...) Many men predetermine mediocre
results by setting initial goals too low. The attitude must be one of
enterprise design. The expectation should be for major improvement
in the systems. The attitude that the goal is to explain behavior,
which is fairly common in academic circles, is not sufficient. The goal

2Consider a classical OUT policy, where orders at time t, Ot, are calculated through Ot =
St − Inventory Positiont, with St = DL

t + kσL
t ; DL

t the expected lead time demand, σL
t the standard

deviation of the lead time demand, and k a safety factor. If we set up k = 0 and increase the coverage
lead time by a safety factor C, then the policy defined by Equation (2.5) is a complete analogue to
the OUT policy when γI = γP = 1, and a smoothed extension of the OUT otherwise
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should be to find management policies and organizational structures
that lead to greater success. (Forrester, 1958).

Forrester proposed a substantial paradigm shift, so much so that his book
ends with an appendix dedicated to teaching his new concepts to beginners.
He stresses the need for designers to ask the right questions, to think about
the correct scope of the system to be modeled, to think in terms of feedback
structures, and not to be afraid to think of models as ever evolving—in his
view, as the understanding of the system by the designer evolves, so should
the model. It comes as no surprise, then, that the introduction of this new
methodology was not without questioning. Ansoff and Slevin (1968) attempt
an impartial discussion on the merits and shortcomings of system dynamics
as a methodology; they argue that even though it can provide “a useful way
of looking at a business firm”, it can not be said to be “the way of looking at
a business firm”. In this view, for all its merits, system dynamics falls short
of a proven theory; the approach is considered suitable for modeling complex
systems, but it contains insufficient support when it comes to analysis (Ortega
and Lin, 2004).

Ansoff and Slevin (1968) cite the inventory modeling of Simon (1952) as a
successful attempt to translate the mathematical feedback control theory into
“theorems and generalizations applicable to the firm” thus, conserving the
analytic support. Simon’s approach –as we have seen– sparked a vast amount of
rigorous research, but –in what can be interpreted as a justification of Forrester’s
points– it took decades for researchers to develop analytic insights equivalent to
those shown by Forrester.

Forrester’s implementation of Simon’s inventory model starts with a subtle
mathematical inversion of the problem; rather than expressing the system as
a set of differential equations, he expresses the system as a set of integral
equations—he decomposes the system into rates and stocks, the latter being the
integral of the former.3 With this in mind, the continuous time integral equation
for inventories is:

I(k) =
∫ k

0
[O(t)− C(t)] dt + I(0), (2.6)

3Forrester (1958) argues that, even though engineers feel comfortable describing the world in
terms of differential equations, nature “tends to integrate rather than differentiate”. To illustrate
this point, take the relationship between acceleration and velocity; engineers tend to see as a
differential equation—with velocity being the derivative of acceleration. Forrester argues that the
natural relationship is the inverse: Forces create acceleration, which is integrated to get velocity.
Both views are mathematically equivalent, yet conceptually opposite.
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where I(0) is the initial inventory level, O(t) is the rate at which inventory
is received, and C(t) is the consumption rate of the inventory. This integral
equation represents a stock, or level. The ordering decision rule, on the other
hand, is a rate equation that is itself linked to the level equation—this is the
reason why we speak of feedback loops.
Analyzing equation (2.5) from this viewpoint, we distinguish one feedback loop
for the pipeline correction, and one feedback loop for the inventory correction. It
follows, then that in a system dynamic representation of this system, we divide
the system into 2 level equations (inventory and pipeline) and two rate equations
(inventory and pipeline arrival rates), each with a feedback loop. The power of
system dynamics resides in splitting complex systems into smaller sub-systems
that can be represented in terms or levels, rates, and feedback loops. The rate
equation for the inventory subsystem is

O(k) =
Î − I(k)

AT
, (2.7)

where Î is the desired inventory level and AT is the adjustment time.4

The approach taken in system dynamics to solve the system of simultaneous
equations is to split the time interval into smaller discrete chunks DT, assume
that rates are constant in each of these intervals and, starting with a initial values,
calculate a new level by using the value of the slope (rate) at that point, and
consequently calculate the new value of the rate using the new level. Figure 2.2
shows a graphical sketch of this approach (Figure adapted from Ortega and Lin
(2004)). The given levels and rates are calculated sequentially through:

I(a) = I(0) + DT× (O(a)− C(a)) (2.8)

O(b) =
Î − I(a)

AT
. (2.9)

Forrester justifies this numerical approach by putting the insights obtained
ahead of rigorousness:

A fascination with methodology is apt to lead to a quite dispropor-
tionate amount of attention to peripheral questions of technique.
The mathematician may want to substitute some more elegant
methodology for the first-order integration such as used in this book,

4The adjustment time in system dynamics models represents the time that we allow for the
adjustment to take place. As before, the thinking behind this adjustment time is just a switch in the
viewpoint we used in the previous decision rules. Mathematically speaking AT = 1

γI
, thus, a long

adjustment time is tantamount to a heavy smoothing of the inventory difference.
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Figure 2.2 Sketch of inventory levels and rates.

even though there can probably be no objective demonstration of
the necessity. He may become involved in the discontinuities and the
computing phenomena that revolve around the selection of a solution
interval DT. He may become involved in trying to determine how
large this interval can be made, rather than merely making sure that
it is small enough to raise no questions. (Forrester, 1958).

Forrester uses this methodology to construct a 4 echelon supply chain model
(retailer-wholesaler-distributor-factory) and test the performance of the system
with various retailer demands and supply chain parameters. His simulation
results show the tendency that orders at a given echelon tend to be more variable
than demand, that this variability increases further upstream, and that random
downstream demand fluctuations can generate cyclical fluctuations in upstream
demand. Forrester, through his system dynamic simulations, exposed what we
know today as the Bullwhip Effect—and was for decades referred to as the
Forrester effect. Burns and Sivazlian (1978) use a combination of simulation
and analysis of a multi-echelon supply chain to investigate the causes of the
Forrester effect, and find two different sources: the necessary adjustments due to
transient inventory changes, and “false orders” generated by upstream echelons
misreading the change in downstream orders. They show –through simulations–
that the first of these sources is unavoidable when echelons want to achieve a
target inventory level, but that the second source is a byproduct of the way that
information is transmitted and thus preventable. They develop a decision rule
based upon the parameters of the system that manages to eliminate the false
order effect.

Forrester’s system dynamics group at MIT developed, during the early 60’s,
the beer distribution game as a showcase of the dynamics behind multi-echelon
production/distribution systems. To this day the beer game has been played



20 Literature Review

by millions of students and managers, and remains the go-to tool for teaching
the mechanisms and insights behind the Bullwhip Effect. Sterman (1989) uses
the causal feedback structure from system dynamics to model the beer game
dynamics. Using data from beer game sessions played by students, and theory
from human behavioral research developed by Tversky and Kahneman (1974),
he fits a decision rule based upon (2.5) and finds that human players consistently
underestimate the pipeline (γP < γI) when calculating replenishment orders.
Under the umbrella term “misperceptions of feedback”, Sterman describes the
subjects’s tendency to ignore past decisions, provided they have not yet taken
effect, when making future decisions. This study is significant in the search of
the Bullwhip Effect because it explicitly introduces human behavior to the list
of causes of the demand amplification. Sterman (1989) ends his paper calling
for the development of testable theories to explain the link between individual
human behavior and observable macro behavior.

It is the work of Lee et al. (1997b) that opens the door for mainstream acceptance
of the Bullwhip Effect. In this seminal paper, the authors acknowledge
Forrester’s and Sterman’s contribution to the understanding of supply chain
dynamics and study the appearance of the Bullwhip Effect from an analytical
perspective, using traditional multi-period inventory models and order up to
policy decision rules. The authors find 4 structural causes of the Bullwhip
Effect: Demand signal processing, order batching, shortage gaming, and price
variations. They demonstrate that each of the causes is independent of each
other, and relate them to the relaxation of 4 commonly used assumptions in
inventory modeling (stationary demand, infinite resupply with fixed lead time,
zero fixed ordering cost, and stationary production costs). This study is pivotal
not only for popularizing the name of the Bullwhip Effect5 but because it shows
that: (a) rational, optimizing, managerial behavior is capable of triggering the
bullwhip, and (b) for explicitly recognizing the difference between material and
informational flows, the latter being the source of distortion. We review this
paper in more detail in section 2.2.

2.1.4 Measuring the bullwhip

Thus far in this review, we have settled on the Bullwhip Effect as the name for
the phenomenon of variability amplification in the supply chain, and provided
evidence that human behavior (Forrester, 1958; Sterman, 1989), as well as rational
behavior (Lee et al., 1997b) are potential causes of its appearance. We focus now
on the literature related to the objective measurement of the Bullwhip Effect.

5Prior to the publication of this paper, Forrester effect, whiplash effect, and whip-saw effect where
also popular terms to refer to the amplification of demand
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In the studies we have examined this far, Forrester (1958) measures the
amplification in a supply chain by quantifying the peak overshoot to a demand
shock; (Lee et al., 1997b) compare the variances of orders and demand, and claim
that the bullwhip exists when the former is larger than the latter; and Deziel
and Eilon (1967) –without explicit references to the Bullwhip Effect– introduce
the quotient between order and demand variability under stationary random
demand as a measure of the stationary performance of the system. These
methodologies all quantify the bullwhip, however, they produce measures that
are not comparable.

Fransoo and Wouters (2000) tackle the problem of measuring the bullwhip from
the perspective of industrial practice. The authors discuss the implications
of data aggregation; they show that when presented with ample data from
electronic point of sales (EPOS) data from multiple products and multiple firms,
different aggregation strategies result in different measures of the bullwhip.
The authors adopt the quotient of the coefficient of variation of orders and
the coefficient of variation of demand as a standard measure for the bullwhip
and recommend that the bullwhip be measured for each echelon in the supply
chain independently and, in case of the existence of disaggregated data, its
aggregation be based upon the specific problem under investigation. Disney
and Towill (2006) remark that in addition to the mentioned measures, frequency
response plots (Dejonckheere et al., 2002) are relevant for the measure of
artificial seasonality in the response. Frequency response plots, however, require
frequency domain analysis, which limits their application in analytical work.
Dejonckheere et al. (2003) show that when the input is an i.i.d normally
distributed demand, a common metric in communications engineering (Garnell
and East, 1977), the noise bandwidth, is proportional to the bullwhip as
measured by the quotient of variances. Disney and Towill (2003) additionally
remark that to properly quantify the bullwhip of a system, the quotient between
the variance of inventory and the variance of demand must also be considered
(recall that stabilizing orders tends to increase the fluctuations of inventories and
vice versa). Quantifying the Bullwhip Effect through these variability quotients
(for simplicity we refer to these measures as BWO, or bullwhip of orders, and
BWI , or bullwhip of inventories) has an attractive quality: it can be measured
empirically as well as calculated theoretically (provided we make assumptions
on the demand distribution); however, it is a static measure—it gives us
information of the overall response of the system but ignores the transient
performance. Hoberg et al. (2007b) analyses different transient performance
measures and concludes that the Integral Time-weighted Absolute Error (ITAE)
is an appropriate measure of the system’s performance. The ITAE accumulates
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the time-weighted deviations from the ideal performance of the system after it
is presented with a single unit demand shock; it quantifies the magnitude of
the shock amplification by accumulating the errors, and it penalizes long lasting
deviations by time-weighting them.

One dimension of the Bullwhip Effect that has been proven difficult to quantify
is the rogue seasonality, namely the appearance of a seasonality in the orders
and inventories that is not present in the demand. Metters (1997) shows
that eliminating demand seasonality brings substantial cost savings and links
his analysis to the Bullwhip Effect by citing it as an important source of
seasonality. His analysis, however, does not attempt to either provide a solution
or a measurement of rogue seasonality. Recent work, inspired in the control
of chemical process plants by Thornhill and Naim (2006) introduces Spectral
Principal Component Analysis (SPCA) as an empirical measure of endogenous
seasonality, but this measure is qualitative and thus of a limited application.
Kim and Springer (2008) perform a theoretical analysis of the conditions under
which rogue seasonality appears in a system dynamics supply chain model;
they define a rogue seasonality measure and suggest strategies to minimize
volatility, however, their analysis approximates lead times through a first order
exponential delay. Shukla et al. (2012) extend the empirical measure of rogue
seasonality and quantify its appearance on a system dynamics simulation model.

2.1.5 The empirical conundrum

Anecdotal evidence of the Bullwhip Effect is often presented as motivation for
the study of the bullwhip: P&G famously detected (and later mitigated) the
presence of strong seasonal patterns in their diaper products—one would expect
the demand for pampers would be fairly stable! (Lee et al., 1997a); Barilla has also
faced a similar problem in their pasta supply chain (Hammond, 1994); and HP
in their printer consumables (Lee et al., 1997a). But the plural of anecdote is
not data. Even though we understand the theoretical and behavioral causes of
the Bullwhip Effect –and can replicate it in the lab– formal empirical research is
needed if one is to conclude that it is indeed present in the real world.

Using the bullwhip measures to quantify the bullwhip in an empirical setting
is, in theory, straightforward: given demand, order, and inventory time series
we can calculate the bullwhip of any system. In practice, however, we face the
reality of data availability. Data is often aggregated at arbitrary levels (in terms
of time and product); data is often unavailable, in such cases it must either be
estimated or a suitable proxy needs to be found. To illustrate the importance
of data aggregation, Fransoo and Wouters (2000) perform an empirical study of
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the Bullwhip Effect exploiting the availability of fine grained data for multiple
products and outlets. The authors use their data to calculate the bullwhip using
4 different types of data aggregation: individual product and outlet, individual
product and combined outlet, individual outlet and combined product, and
combined product and outlet; they find that the aggregation strategy has a
significant impact in the measured bullwhip, and consequently recommend that
researchers base the sequence of data aggregation on the specific problem that is
being investigated. Unfortunately, as researchers, we must often use secondary
data over which we have no control—different databases impose different trade-
offs in their granularity. For example, COMPUSTAT offers firm-level data
of American companies aggregated at quarterly intervals, the United States
Census Bureau offers industry level data aggregated at the monthly level, and
EUROSTAT provides industry level data for 27 European countries in monthly
intervals, but lack inventory data.

As the title of this section suggests, empirical evidence of the Bullwhip Effect
is disparate: empirical evidence of amplification is found in some studies,
empirical evidence of smoothing is found in others. Given this, researchers
have dedicated their time to understand these results; is the diversity caused
by the fact that ultimately different firms perform differently? Or is the
diversity a by-product of data aggregation and manipulation? In general, the
more disaggregated the data used in a study, the stronger the evidence of the
bullwhip. This is in line with Fransoo and Wouters’s (2000) results mentioned
above, and also with the results of a recent study by Chen and Lee (2012).6 At an
SKU level, Trapero et al. (2014) find evidence of bullwhip in 100% of a dataset
comprising of a year of weekly sales and incoming shipment observations of
16 SKU’s sold at a UK retailer. Lai (2005) presents a study based on a larger
sample; with a database of 3745 SKU’s from a Spanish supermarket retailer,
collected with a monthly frequency over 28 months, his analysis finds evidence
of amplification in 80% of his sample. Moreover, he studies the causes of the
amplification and concludes that the main contributor to the bullwhip is order
batching. At a higher aggregation level, Shen (2008) conducts a study using
product-category-subgroups data published by the Department of Statistics of
the Ministry of Economic Affairs in Taiwan. The author constructs a database
of 10 years of monthly observations of production, sales, and inventories for
15 key group categories of the electronic part manufacturing sector (such as
integrated circuits, LCD’s, and PCB’s). He finds that only 3 out of the 15 groups
exhibit bullwhip7. Additionally, the author investigates the effect of temporal

6In fairness, one could suggest that a positive bias could exist in individual level studies and
products that do not exhibit the Bullwhip Effect would simply not be subjects of study.

7One could argue that these product categories have strong incentives to have a smooth
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aggregation in his data, and finds that performing the same tests with data
aggregated over quarters changes the value of the bullwhip measure but not
enough to alter his insights.

Bray and Mendelson (2012) use quarterly COMPUSTAT data to estimate the
bullwhip of 4297 public U.S. companies over the period 1974-2008; they find
that about 66% of the firms in the sample exhibit a bullwhip. Additionally,
they also find that comparing the period 1974-1994 to 1995-2008, the sample’s
mean bullwhip dropped by 33% and hypothesize that this drop can be related
to advancements in information systems. In an empirical study using data
from Chinese manufacturing industries, Bu et al. (2011) use quarterly data
for the period 2004-2010 and finds support for bullwhip in 23 out of the 27

industries in the sample. Dooley et al. (2010) use data from the U.S. Bureau
of Economic Analysis to investigate the effect of the recent financial crisis
on the American industry. Using data aggregated at retail, wholesaler, and
manufacturer levels the authors find empirical support for the hypothesis that
U.S. manufacturing firms observed a Bullwhip Effect during the recession.
Finally, Cachon et al. (2007) perform an exhaustive analysis of U.S. industries
using monthly Census data aggregated at the 3-to-5-digit NAICS level for the
1992-2005 period. They find support for the bullwhip in 17% percent of retailers,
89% of wholesalers, and 40% of manufacturers. Recognizing the contrast of
their results with previous studies, the authors conjecture that their usage
of seasonally unadjusted data could be a potential explanation for the low
proportion of bullwhipping manufacturers. They hypothesize that the usage of
seasonally adjusted data biases the data of other studies towards amplification.
This conjecture is consistent with the findings of Ghali (1987) who, in a prior
study, did not find support for amplification when using seasonally unadjusted
data of the cement industry (only 2 out of 19 Portland cement production
districts exhibit a bullwhip). After seasonally adjusting the same data, the
proportion of districts that exhibit a bullwhip changes from 2/19 to 8/19.
Gorman and Brannon (2000) perform a similar study using monthly Census
data for U.S. manufacturing aggregated at the 2-digit SIC level for the 1958-1997

period. They find that seasonally adjusted data overestimates the bullwhip in
the majority of cases.

Chen and Lee (2012) tackle the potential causes of bullwhip masking in
empirical data head-on; they analyze a modified base stock policy with capacity
constraints and order batching—2 features that are expected in real-life systems.
They find that capacity constraints dampen the amplification of orders, and
show that using shipments as a surrogate for demand –like Cachon et al.

production.
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(2007) and most empirical studies do– also result in an under-estimation of
the bullwhip ratio; they explicitly differentiate between informational bullwhip
(using demand and placed orders) and material bullwhip (using shipment and
receipts). With regards to seasonality, Chen and Lee (2012) also find analytical
support for the findings of Ghali (1987), Gorman and Brannon (2000), and
Cachon et al. (2007): When the variability of the seasonality dominates over the
variability of demand then, if the bullwhip is present, the inclusion of seasonality
in the data dampens the bullwhip ratio. Additionally, Chen and Lee (2012) show
that when the system has a finite capacity, the inclusion of seasonality dampens
the material bullwhip ratio. In terms of aggregation, the authors show that
temporal aggregation masks the bullwhip ratio. Also, that product and location
aggregation can mask the bullwhip when it is subject to other conditions, such
as the auto-correlation of the demand streams and shared seasonality patterns.

In a recent working paper, Chen et al. (2014) argue that a discrepancy between
empirical studies and the theory exists due to common assumptions made in
the former. In particular, the authors claim that while the theoretical studies
of the Bullwhip Effect measure an information bullwhip (through the variance
of orders and demand), empirical studies use material flow data (sales and
shipments) as a proxy for the information flow data. This results in a measure
of a material bullwhip, which is assumed equal to the information bullwhip.
In this study, Chen et al. develop an exact characterization of material flow
in a two-echelon model and find that, in general, the information and material
bullwhips are not necessarily equal. Furthermore, they identify a series of factors
that affect the discrepancy between the bullwhip measures: The stocking level
of the supplier, supply chain location, lead time, and demand correlation. The
conclusion derived from this work is that, because empirical research typically
quantifies the Bullwhip Effect through material flow measurements, such studies
should control for the mentioned factors so as to avoid estimation biases8.

In summary, empirical evidence of the Bullwhip Effect is not universal, nor
should it be. As Ghali (1987) points out, if firms seek to smoothen their
production, the degree to which they do it depends on cost factors (e.g., how
expensive it is to vary production as opposed to varying their stock levels)
and the seasonality present in the particular demand. Looking back at the
empirical research performed in the past decades, we see that the Bullwhip Effect
is significant and consistently measurable at lower levels of aggregation. Its
evidence at higher aggregation levels is not as clear cut, but we have theory that

8Whether the material bullwhip overestimates or underestimates the information bullwhip
depends on the combination of the prior factors, and is thus, impossible to characterize the material
bullwhip as being “always overestimating” or “always underestimating” the information bullwhip.
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explains the reasons why this happens. Sprague and Wacker (1996) argue that
perhaps better inferences could be made if the data were aggregated by echelons
along the inventory stream because the business objectives behind each stage
differ. Industries in Cachon et al. (2007) are aggregated at a level of between 3

and 6 digit NAICS code9. Using a 3-digit NAICS code aggregation, such as code
332 “Fabricated metal products” lumps together firms with different objectives,
lead time, and distance from the end market10, all factors that are potentially
crucial in the appearance of the Bullwhip Effect (Hosoda and Disney, 2006).

In a recent paper, Bray and Mendelson (2013) argue that production smoothing
and the Bullwhip Effect are not necessarily mutually exclusive—a firm may try
to smooth its production, and yet exhibit the Bullwhip Effect. Because of this,
they suggest that measuring production smoothing by comparing the variance
of production to the variance of orders is a comparison between “apples and
oranges”. They develop a new measure for production smoothing and test it
with monthly data from the automotive sector disaggregated at the car model
level. They find evidence of both production smoothing and bullwhip present
in the data.

2.1.6 A look at economists

The dichotomy between production smoothing and variance amplification
has not been the sole territory of researchers in the Operations Manage-
ment/Operations Research field; it’s at the heart of a puzzle that has entertained
macro economists for decades. The vast majority of macroeconomic research
on inventories models is based upon production smoothing models (Fitzgerald,
1997). These models were first introduced by Holt, Modigliani, Muth, and
Simon (1960) in the context of research aimed to improve decision-making at
a factory-warehouse system. In its most basic form, the intuition behind the
production smoothing model, is that in the face of varying demand and convex
production costs, a profit maximizing firm will use inventories to buffer the
sales fluctuations and thus maintain production as stable as possible (Blinder,
1986). This implies that inventories will decrease when sales increase, that
inventories will decrease when sales increase, and that –because of the buffering
of inventories– production will be more stable than sales.

9Under the NAICS classification, the first 2 digits define the economic sector, the third designates
the sub-sector, the fourth the industry group, the fifth the NAICS industry, and the sixth the national
industry.

10Because the NAICS classification is hierarchical, code 332 includes all 4-digit codes starting with
332; 3321 “forging and stamping”, 3322 “cutlery and hand tool manufacturing”, 3323 “architectural
and structural metals manufacturing”, etc.
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Researchers in the field, however, agree that empirical data shows that inven-
tories and sales are pro-cyclical (they grow together) and that the variance of
production is larger than the variance of sales Wen (2005)—this, of course, goes
against the main predictions of a simple production smoothing model and is a
puzzle that has sparked a vast amount of research. In this section, we offer a
stylized summary of the historical evolution of the view of inventory dynamics
within the macroeconomic field.

Before the prevalence of production smoothing models, dynamic models
dominated the field. Lundberg (1937) developed the first of such models by
introducing a lag whereupon decision-makers had to base production decisions
on sales information from the previous period. Metzler (1941), in a paper
developed while completing his PhD in Harvard, extended this model in
two key ways: (i) he analyzes the influence of sales expectations on the
dynamics of the system, and (ii) he introduces the concept of a variable target
inventory level, where decision-makers attempt to maintain inventories at a
constant proportion of expected sales. The author shows that such systems
generate endogenous inventory cycles and performs numerical experiments to
characterize the behavior of the system to changes in the parameters. Because of
the role of inventories in such systems is de-stabilizing, such models are known
in the literature as “inventory accelerator” models. Goodwin (1948) and Lovell
(1961) study the “flexible accelerator model”. In this model, target inventories
( Ît) are assumed to depend on sales (St) through:

Ît = a + bSt, (2.10)

with a and b constants. In its simplest incarnation, the flexible accelerator
assumes that, because there exist costs in adjusting the inventory, the actual
inventory change in the period (∆It), will depend on an arbitrary fraction d:

∆It = d( Ît − It−1), (2.11)

where It−1 is the actual inventory level at the end of period t− 1, and 0 < d < 1.
This results in production releases (Qt) depending on the period sales11 (St) and
the change in inventory levels:

Qt = St + ∆It. (2.12)

In particular, Lovell uses an extension of this framework to perform an empirical

11The authors do not explicitly state a sequence of events. Production at time t depends then on
sales during the same period and the difference between initial and ending inventory levels.



28 Literature Review

study of U.S. industrial data for the 1948-1955 period. The author includes the
effect of missed sales expectations in the model, and independently estimates
manufacturing (raw material and work in process) and finished product
inventories. He concludes that the extended period of inventory deficiency
in manufacturing industries shown in the data supports the hypothesis that
manufacturers use fraction inventory adjustments, and that, additionally, man-
ufacturers tend to underestimate actual increases in sales. Hay (1970a) however,
questions whether it is proper to assume that there exist costs associated
with changing inventory levels other than those directly related to the costs
of the necessary change in production.12 The author argues that if it is the
production costs that affect the change of inventory, then the proper model must
generate fractional adjustments of the desired production, rather than of the
desired inventory level. Thus, he proposes the following change in the model
specification:

Ît = a + bSt, (2.13)

Q̂t = St + Ît − It−1, (2.14)

where Q̂t is the desired production at time t, which is then smoothed through:

∆Qt = g(Q̂t −Qt−1). (2.15)

with 0 < g < 1. Lovell (1971) retorts that without knowing the explicit cost
functions used, the a priori rejection of the his model by Hay is unwarranted.
Accepting production smoothing as a valid hypothesis, and citing that the recent
(at the time) empirical literature examining the matter often concluded that
a mix between production and inventory smoothing best fit the data. Hay,
however, having presented this production-smoothing variant to the model,
argues that even this specification is an oversimplification of reality and that
a “proper” model must take into account more variables present in the cost
calculation, as well as the interdependence between the variables. With this in
mind, he develops a comprehensive empirical model where pricing, production,
and inventory are estimated simultaneously (Hay, 1970b). This model is based
on Holt et al.’s (1960) quadratic cost specification. In fact, it is one of the
earliest macroeconomic studies based on this model (building upon early work
by Belsley (1969) and Childs and Johnston (1967)), which –as mentioned above–
is to become the “empirical workhorse” for macro empirical research.

The production smoothing model developed in Holt, Modigliani, Muth, and

12He, however, concedes that the flexible accelerator may be a useful concept in the case of
investments in fixed capital, where the changes in inventory holdings do incur tangible cost.
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Simon (1960) is particularly important because it introduces the concept of
quadratic cost components. The intuition behind quadratic costs is very simple:
given an optimal value of any of the variables, positive –as well as negative–
deviations increase the costs. Furthermore, construction of such a cost function
guarantees that an optimal solution exists and is a linear combination of the
parameters. The original model is aimed at a plant-level decision maker and
thus is defined in terms of regular payroll costs (CP), hiring and layoff costs
(CH), overtime costs (CO), and inventory costs (CI). The total costs are then
minimized for a finite horizon (T):

min
T

∑
t=1

(CP + CH + CO + CI) , (2.16)

where the inventory costs are modeled as

CI = a1(It − (a2 + a3St))
2, (2.17)

where the a’s are constants—note that this term includes, in essence, the
“inventory accelerator” from the earlier models.

For the canonical basic production smoothing model as applied to aggregate
economies, we turn to Blinder’s (1986) paper, provocatively titled “Can the
production smoothing model of inventory behavior be saved?”. In this paper,
the authors briefly recount the “long and venerable” history of the produc-
tion smoothing model, describe the mathematical structure of the production
smoothing framework, and put forward the reasons why the model “is in
trouble”. In contrast with the original (Holt et al., 1960) model specification,
macroeconomic applications of the production smoothing model attempt to
maximize revenues, rather than to minimize costs. Let R(xt) be the revenue,
dependent on the demand function xt, and let C(yt) and C(Nt) be the costs
related to production (yt) and holding inventory (Nt). Then, the firm wishes to
maximize

E0

∞

∑
t=0

Dt (R(xt)− C(yt)− C(Nt)) , (2.18)

where the demand curve is assumed to be linear with stochastic shocks:

pt = −δxt + εt, (2.19)

where pt is the price and εt a shock component13.This results in a quadratic

13Unlike models in OR/OM, economic equilibrium models assume that demand is linear in price.
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revenue function:

R(xt) = ptxt = −δx2
t + xtεt. (2.20)

We refer the reader to Blinder (1983), and Ramey and West (1999) for insights on
the solution methods of such equilibrium problems. The production (yt ) and
inventory (Nt ) costs are assumed to be quadratic and defined thus:

C(yt) = c1yt + (1/2c)y2
t , (2.21)

C(Nt) = b1Nt + (b/2)N2
t , (2.22)

where c1 and b1 are constants, and c and b are the curvature parameters and are
critical to the production smoothing issue. A large value of c represents a steep
marginal cost curve for production, and thus a strong incentive for smoothing;
a large value of b, on the other hand, represents large costs for changes of
inventory and thus presents a strong disincentive for smoothing. Assuming i.i.d
demand shocks, and that firms attempt to maximize the expected discounted
value of profits, the author derives the analytical solution for the model and
shows that the resulting variance of production is higher than the variance of
demand, and that inventories and sales are counter-cyclical—exactly opposite to
what the empirical data suggests. The authors offer two plausible amendments
to the model that put the predictions in line with the observations: cost shocks,
and serially correlated demand shocks. They show that if Equation (2.21) is
modified in such a way that an additive i.i.d stochastic shock (Γt) is added to the
production cost:

C(yt) = (c1 + Γt)yt + (1/2c)y2
t , (2.23)

then production is more variable than sales, and the inventory and sales are
pro-cyclical. A similar result is obtained when the demand shocks εt are highly
serially correlated. However, the fact that these modifications to the model are
able to replicate the empirical observations (that inventory and sales are pro-
cyclical, and that production variance tends to be larger than sales variance) are
not enough for this to be a convincing explanation. Empirically, even though
cost shocks have been reported to affect inventory investment in the form of raw
material price changes Blinder (1986), and as technology shocks Eichenbaum
(1990), the authors concede that they are not a plausible complete explanation—
these modifications impose strong assumptions on the model.

This implies that firms can set the sales price so as to achieve equilibrium between supply and
demand.



Discovering and measuring the Bullwhip Effect 31

Following the publication of Blinder’s (1986), a large amount of research has
been dedicated to understanding the puzzle, and to reconcile the production
smoothing model with the empirical evidence. Ramey and West (1999)
contributes to the discussion with a paper that documents the empirical
puzzle, reviews the relevant literature, and proposes several ways to align
the predictions of the production smoothing model with the empirical data.
In particular, the authors propose two plausible explanations: the addition
of persistent shocks to the cost of production, and the inclusion strong
“accelerator” motive in the cost of carrying inventories. The authors define the
total costs as:

Ct = .5a0∆Q2
t + .5a1Q2

t + .5a2(It−1 − a3St)
2 + UctQt, (2.24)

where the a’s are constants; Qt is the period’s production; ∆Qt is the change
in the period’s production; It, end of period inventories; St, sales; and Uct, a
permanent cost shock. The first two terms in the model capture the costs of
production and of changing production. The third term explicitly embodies
the inventory holding and backlog costs. It is straightforward to see that
this term is derived from the original production smoothing model of Holt,
Modigliani, Muth, and Simon (1960) (Equation (2.17)). Like Blinder (1986),
the authors assume a linear demand curve dependent on price, and solve the
profit maximization problem to derive the linear decision rule. They characterize
the response of the system by studying the influence of the different constants
(a0 − a3) and the auto correlation of the demand and cost shocks. They find
that the desired response of the system is achieved in the presence of demand
shocks when there are large costs of adjusting production (a2 small relative
to either a0 or a1) and the inventory accelerator motive is strong (a2a3 large
relative to a0 and a1), or when the marginal production costs are declining
(a1 < 0). Additionally, like Blinder (1986), they find that the required response
of the system is also achieved in the face of persistent cost shocks of an auto-
regressive nature. When they review the empirical evidence, however, they find
that declining marginal production costs are not a convincing explanation, and
that they do not have enough data to back one alternative over the other (or even
over another alternative explanation). The paper ends with a call for the usage
of different data to be able to test these explanations empirically.

Kahn (1986, 1992) provides a theoretical basis for including the inventory
accelerator motive into the models in the form of stock-out avoidance and
shows that under linear costs and i.i.d, or serially correlated, demand then
the variance of production is higher than the variance of sales. Wen (2005),
however, points out that from a macroeconomic perspective, Kahn’s models
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make several restrictive assumptions that limit its applicability, specifically: the
theory is based on a partial equilibrium model with exogenous demand and
labor supply, as well as specific structural assumptions such as constant marginal
production costs and no capital investment. Wen builds up on Kahn’s work
and develops a model based on general equilibrium theory that generalizes
the latter’s results. The author shows that Kahn’s insights continue to hold,
provided several conditions are met: either the marginal cost of production are
constant and the inventory holding costs strictly positive, or costs of production
are convex but inventory holding costs sufficiently large, or there exists an asset
that dominates inventory investment in the long term expectation of returns so
that there is no incentive to plan on holding inventories in the long run.

More recently, Ramey and Vine (2006) conduct a plant-level empirical study of
the U.S. automotive manufacturing industry. The objective of their research is
to understand why the variability of GDP decreased during the 90’s and 00’s as
compared to the 80’s. Using a variation of Holt et al.’s (1960) they find that a
change in the scheduling strategy of the workforce is correlated with the drop
of production variance at the plant level. Their findings suggest that plants
have shifted their scheduling and the use of overtime hours has become more
prevalent. They argue that this implies that the marginal production costs begun
to be dominated by a more “traditional convex” function. From this it follows
that non-convex lumpy margins, such as shift changes, present in the industry
can be a cause of the variance of production being higher than that of sales—
implying that the [inaccurate] assumption of convex production costs may play
a role in the empirical problems of the production smoothing model.

2.2 Analyzing the bullwhip
In their analytical work, Lee et al. (1997a) identify four operational causes of
the Bullwhip Effect. Under the assumptions of an Order Up To policy and
a serially correlated demand process (AR(1)14), the authors analyze a single-
stage, single-item, multi-period inventory model. The first of the operational
causes of the Bullwhip Effect, demand signal processing, appears when past
demand realizations are used to update the forecast of demand. When this is
the case, the variance of orders is strictly larger than the variance of demand
for positively correlated demands, and that this variance is strictly increasing
in the replenishment lead times. Note that the authors do not make any
assumptions on the forecast—they only require it be updated with past demand

14Dt = d + ρDt−1 + ut, where Dt is the demand in period t, −1 ≤ ρ ≤ 1, and ut is an i.i.d error
term with mean 0 and variance σ2 .
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information. To prove the influence of the next operational cause, shortage
gaming, they develop an extended newsvendor model with one manufacturer
and multiple retailers and show that if the combined retailer demand exceeds
the manufacturer’s production, and the latter allocates shipments proportional
to demand, then the optimal order quantity for the retailer exceeds the optimal
order quantity with no supply constraint. This implies that in a multi-stage
supply chain, the rational behavior of managers –in the presence of expectation
of supply shortage– induces the amplification of order variance. The intuition
behind the third operational cause, order batching, is as follows: consider a
supply chain where each player uses a periodic review replenishment system
with full backlogging and the retailer(s) face stationary demand. Under this
system, each retailer will order, every review period, the demand faced during
the previous review cycle. If a firm supplies to more than one retailer, the
orders from all retailers will arrive exactly at the same time, completely balanced
(with no 2 orders arriving at the same time), or somewhere in the middle. Lee
et al. (1997a) prove that the variability observed by suppliers is larger than the
variability of retailer’s orders. The final operational cause reported in the paper
is the fluctuation of prices. The authors show that, when purchasing costs
fluctuate between a high level (CH) and a low level (CL) with CL < CH , then
the optimal inventory policy has the following form: When price is CL steer the
stock level towards SL, and when price is CH steer the stock level towards SH ,
where SL < SH . This inventory policy results in Var[Ot] > Var[Dt].

2.2.1 The influence of inventory policies and demand forecasts

Graves (1999) extends the demand signaling processing result shown above to
the case where the demand is a non-stationary process defined by an integrated
moving average (IMA) of order (0,1,1)15. For this demand stream, Graves derives
an adaptive base-stock policy of the form

Ot = Dt + L(Ft+1 − Ft), (2.25)

where Dt is observed before calculating Ot, Ft is an exponentially smoothed fore-
cast of demand for time t, calculated in period t− 1, and L, the replenishment
lead time. The author admits that this is not an optimal policy, but a rather
reasonable adaptation of a base-stock policy to the non-stationary demand.
In his analysis, Graves proves that under this setting, Ot is the same type of
process as Dt, and that Var[Ot] > Var[Dt]; i.e., demand signaling processing also

15Also knwon as an ARIMA demand. It is defined by D1 = µ + ε1, and Dt = Dt−1 − (1− α)εt−1 +
εt for t > 1; µ and α are known parameters, and εt is a series of i.i.d normally distributed random
variables, with E[εt] = 0 and Var[εt] = σ2.
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generates bullwhip of orders under this setting. Perhaps most interesting is his
proof that, in multiechelon contexts operating under this adaptive base-stock
policy, there is no advantage in sharing downstream information with upstream
players because the optimal forecast is an exponentially smoothed time series
that depends on the orders observed upstream, and is not improved by knowing
the actual realization of downstream demand—provided the upstream player
knows the parameters of the customer demand process.

Hoberg et al. (2007b,a) use control theory to explicitly investigate the influence
of inventory policies and the exponential smoothing parameter, α on demand
and inventory amplification. Both papers analyze a two-echelon supply chain
and compare the installation-stock and echelon-stock versions of an order up to
policy with full adjustments, inventory coverage C, and exponentially smoothed
forecasts—effectively the policy described in Equation (2.5), where γI = γP = 1.
The installation-stock version of the OUT policy takes into account the inventory
level at each individual echelon to generate new orders; the echelon-stock
version of OUT the policy takes aggregated information into account: The
upstream echelon uses downstream order and demand information to inform
its decision-making process. In Hoberg et al. (2007a) the authors concentrate
on the stationary performance of the system (measured by the bullwhip ratios,
BWO and BWI) and in Hoberg et al. (2007b), they concentrate on the transient
performance of the system (measured by the ITAE of orders and inventories).
Additionally, Hoberg et al. (2007a) also analyze an inventory-on-hand policy,
where inventories alone are taken into account for order generation—equivalent
to Equation (2.5) with γI = 1 and γP = 0. This policy is found to be unstable
for positive lead times. In accordance with traditional multi-echelon research
(Clark and Scarf, 1960) the authors find that the echelon-stock policies offer
superior performance for virtually every possible parameter combination and
performance measure.16 Analyzing the influence of the exponential smoothing
parameter, the authors find that the stationary performance (measured through
BWO and BWI) is decreasing in α, but the transient performance (ITAEO and
ITAEI) is increasing in α. Thus, the usage of exponentially smoothed forecasts
imposes a trade-off in the system design; the authors recommend low values of
α when demand is stationary, to avoid amplification, and high values of α when
demand is not stationary, to adapt to changes in the demand’s mean.

Dejonckheere et al. (2003) study the influence of different forecasting mech-
anisms on the performance of the OUT policy with full adjustments (Equa-
tion (2.5), with γI = γP = 1), and the performance of a subset of the OUT

16The exception being the response to certain specific sinusoidal demand patterns (purely seasonal
demands) where installation-stock policies perform marginally better.



Analyzing the bullwhip 35

with fractional, but equal, adjustments of inventory and pipeline feedback loops
(Equation (2.5), with 0 ≤ γI = γP ≤ 1). As mentioned in §2.1.2 this family of
policies is named DE-APVIOBPCS in honor of Deziel and Eilon, whose work
was the first to suggest fractional adjustments as a way to reduce amplification.
The OUT policy with full adjustments is analyzed with exponentially smoothed
forecasts, moving average forecasts, and with demand signal processing (Lee
et al., 1997a) as a forecast. The authors prove that OUT policies, no matter what
forecasting mechanism is used, will always result in the Bullwhip Effect. They
suggest the adoption of the DE-APVIOBPCS policy in cases where the variability
of orders results in excessive costs, for they allow the decision maker to eliminate
variance amplification at the cost of responsiveness.

Jakšič and Rusjan (2008) perform a single-echelon transfer function analysis of
the performance of a family of replenishment policies derived from the work of
Bowman (1963). The general form of the family of policies is:

Ot = D̂t + (1− γ)(Ot−1 − D̂t) + β(IPT
t − IPt), (2.26)

where Ot is the order placed at time t, D̂t the forecast of demand at time t,
IPt the inventory position at time t, and IPT

t the desired inventory position at
time t, calculated through IPT

t = D̂tTL + kD̂t
√

1 + TL with k a safety factor and
TL the replenishment lead time. The choice of the arbitrary smoothing factors
γ and β define the replenishment policy: when β = 0 and γ = 1, then the
policy reduces to ordering the forecasted demand every period; when β = 0 and
0 ≤ γ ≤ 1, the policy incorporates smoothed information of past orders while
ignoring the inventory position; the opposite is true when 0 ≤ β ≤ 1 and γ = 1;
the policy reduces to a conventional base stock policy when β = γ = 1; and the
policy at its most general is defined by 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1. The authors
perform numerical experiments using different demand streams and, confirming
prior findings, show that the inclusion of the inventory position in the ordering
rule introduces variance amplification at specific frequencies, depending on the
system’s parameters. They perform a cost analysis by introducing fixed ordering
costs and variable holding and shortage costs and conclude that, under certain
conditions, ignoring the inventory position can bring about overall savings. The
authors do not report, however, the cost parameters used for their study.

2.2.2 The influence of behavior

Sterman (1989) argues that the poor performance of individuals playing the beer
game arises from “misperceptions of feedback”; that is, humans are inherently
unable to incorporate the feedback structure of a dynamically complex system
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into their decision making—specifically, we seem unable to completely account
for the cumulative pipeline when placing orders. In other words, he argues
that the Bullwhip Effect is essentially a behavioral problem. His experimental
work, however, being carried out in the lab, is unable to provide any certainty
about this effect being present in higher levels of aggregation. Sterman shows
that individual human biases can generate the Bullwhip Effect, but he cannot
show that the Bullwhip Effect in the real world is caused by human biases.
His work, nevertheless, inspired valuable research on the behavioral causes of
the Bullwhip Effect. In a series of related studies, Croson and Donohue (2005,
2006) use a controlled version of the beer distribution game where they suppress
the known operational causes of the Bullwhip Effect: Order batching, shortage
gaming, forward buying, and errors in demand signaling. The authors test
hypotheses related to information sharing and find (a) that the Bullwhip Effect
and the under-estimation of the pipeline persist when the end market demand is
stationary and known by all players; (b) that the Bullwhip Effect and the under-
estimation of the pipeline persist, but are reduced, when dynamic inventory
information is relayed to all players (i.e., every player has complete knowledge
of the inventory level of every other player) and that the magnitude of the
performance improvement is larger for upstream players than for downstream
players (Croson and Donohue, 2006); and (c) that sharing only downstream
inventory information reduces the oscillations in the supply chain –specially
upstream oscillations– whereas sharing only upstream inventory information
does not result in the reduction of oscillations at all (Croson and Donohue, 2005).

Diehl and Sterman (1995) attempt to disentangle the effects of feedback
processes and time delays in human decision making through an experimen-
tal study that combines econometric fitting of decision-making models with
subjective data taken from “notebooks” given to the subjects, where they
annotate calculations and other general comments on their experience. The
experimental set up is based on a single-echelon system to isolate the intra-
echelon dynamics and incorporates time delays in the production process, and
an explicit feedback process in the demand generation.17 The performance
of the subjects decreased as time delays and feedback gain increased. In the
more difficult conditions (long delays and high feedback gain), human players
performed worse than a naive, no-control rule. The authors conclude that the
poor performance of human subjects stems from 2 different mechanisms: On
the one hand, people over-simplify complex tasks when creating mental models,
often excluding side effects, feedback structures, and other dynamic effects,

17Demand is a combination of an exogenous process –a random walk– and an endogenous process
–a proportion of the prior period’s production fed back into the demand process–.
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resulting in an inherently human difficulty for understanding accumulation;18

on the other hand, we simply cannot solve complex systems of non-linear
differential equations intuitively. The former can be improved by training (see
Sterman (2010) for a study on the benefits of formal training in the human
understanding of accumulation); the latter is a human limitation.

Croson et al. (2014) look at the effect of human behavior in the bullwhip in a
different way. They study the influence of “coordination risk” and “coordination
stock” in the inter-echelon dynamics of a modified beer distribution game set
up. The thinking behind these concepts is that there is a risk involved when
collective performance (the bullwhip of the entire supply chain) depends on
individual decisions (orders at each echelon) that are not known with certainty
by all the players—i.e., coordination risk; and that holding extra inventory as a
buffer against this risk can mitigate the oscillations generated by the Bullwhip
Effect—i.e., coordination stock. The authors test a series of hypothesis related
to these concepts by conducting different experiments with undergraduate and
graduate students of diverse disciplines. They find that the Bullwhip Effect
and pipeline under-weighting persist in all the experimental variants, thus
providing evidence that the Bullwhip Effect is –to an extent– a behavioral
problem. Additionally, they identify “coordination risk” as another mechanism
through which the bullwhip manifests itself, and propose two mechanisms that,
reducing this risk, mitigate the bullwhip. These mitigating mechanisms are
(1) sharing knowledge about optimal decision rules among all players and (2)
keeping “coordination stock”, essentially a physical buffer against oscillations.
Even though these strategies reduce the amplitude of oscillations, they appear
not to reduce the behavioral trait of pipeline under-estimation.

2.2.3 Rogue seasonality

Rogue seasonality is, of all of Forrester’s (1958) contributions to the theory,
the least explored manifestation of the Bullwhip Effect. It is easy to see why
this aspect is comparatively under-explored in the literature: By definition,
rogue seasonality is a periodic phenomenon; it cannot be identified through
stationary measures, and its analysis in the time domain is qualitative at best—
the overwhelming majority of literature related to this phenomenon concerns
frequency-domain analysis. If we analyze the replenishment policy of a single
echelon in a supply chain in the frequency domain, for example through control
theory methodologies, the intuition behind the appearance of rogue seasonality
(also called fake business cycle by Forrester) is easy to understand: every system

18Rather than understanding stocks increase when inflow exceeds outflow, people tend to use a
correlation heuristic, concluding that a system’s inputs and outputs are correlated (Sterman, 2010).
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has a “spectral signature” that depends on the replenishment policy, the type
of forecasting method, and the specific parameters; this “spectral signature” is
immediately seen in frequency response plots; certain frequencies are amplified
more than others. It follows then, that if the input is uniform19, then the output
will adopt the spectral signature of the system. We are not aware of any study
that analyses the seasonality of a system’s output in the time domain; as we
have recounted in this review, much of the research on the Bullwhip Effect has
focused on the amplification of order variance—even research focusing on the
frequency domain, such as control theoretic models. Kim and Springer (2008)
perform a mathematical analysis of Sterman’s (1989, 2000) system dynamics
single-echelon supply chain model with the aim of defining specific conditions
under which rogue seasonality appears. The authors propose a test for the
endogenous seasonality generation: If, after being affected by a demand shock,
the system’s inventory and pipeline oscillate before converging to an equilibrium
value, then the system generates endogenous oscillations. The authors derive a
series of conditions under which endogenous seasonality is avoided; in general,
decreasing the replenishment lead time, decreasing the pipeline adjustment
time, or increasing the stock adjustment time, increases the chances of rogue
seasonality avoidance. This result, however, depends on a crucial assumption of
the system dynamics model specification: lead times are approximated by first
order exponential delays. Mathematically, this results in a second order system
for all lead times; in second order systems, we can find whether the response is
oscillatory by finding whether the roots of a second degree polynomial are real
or complex conjugates—the latter introduce oscillations. If the first order lead
time assumption is dropped, however, the system’s order depends on the lead
time, and therefore an analysis as the one presented in Kim and Springer (2008)
cannot be conducted for general lead times (see Chapter 4 for more details on
the analysis of high-order systems).

We can, nevertheless, analyze endogenous seasonality in systems with realistic
lead time assumptions using frequency domain analysis. Thornhill and Naim
(2006) illustrate an application of spectral principal component analysis (SPCA)
to the detection of rogue seasonality in a supply chain that can be applied to
empirical, as well as simulation, data. The approach they adopt is a direct
application of the methods Thornhill et al. (2002) develop for the detection of
oscillations in the processes of a chemical refinery, and is based upon clustering
the data according to the similarity in frequency responses. The method
comprises of several steps: First, we mean-center each of the time series data
we want to compare, and calculate its power spectra (i.e., its frequency-domain

19As is the case of a normal demand, where by definition all frequencies are equally represented.
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representation) using Fast Fourier Transforms (FFT); we then normalize the
power spectra to allow for comparisons of different systems; finally, we use
principal component analysis (PCA) on the data to reduce the dimensionality
of the frequency response to 2 or 3 principal components, which can be plotted
and clustered. For more details regarding this methodology, we refer the reader
to Chapter 5.

2.3 Taming the Bullwhip
Lee et al.’s (1997a) paper, in addition to showing the operational causes of
the Bullwhip Effect, identified possible strategies for its mitigation such as
information sharing , vendor managed inventory (VMI), and the reduction of
replenishment lead times. In this section, we describe work carried out since
with the objective of mitigating the Bullwhip Effect, or –in Lee’s own words– the
taming of the bullwhip. The section is split in two: In §2.3.1 we survey the literature
that seeks bullwhip reductions through the optimization of the parameters
of individual systems, and in §2.3.2 we survey the literature concerned with
optimizing the supply chain performance through the sharing of information
across firms.

2.3.1 Optimizing intra-echelon performance

In the control theory world, the AP(V)IOBPCS framework (to describe a
generalized OUT policy) is the most widespread tool for the analysis of
inventory systems. Among this framework, it is well known that the subset
of DE-AP(V)IOBPCS policies have desirable characteristics. Such systems are
always stable, and generate a response with only limited oscillations (see
Dejonckheere et al., 2003 and Disney et al., 2006a). In Disney et al. (2006a),
the authors use a DE-APVIOBPCS policy to investigate the impact of parameter
combinations in bullwhip reduction when the demand is a generalized ARMA
process. They argue that setting the parameters of the inventory policy needs
to be done in a case by case basis, since the desired response depends on
the “peculiarities” of each supply chain; the reduction of variability is not
always the ultimate goal—inventory and customer service levels are important
dimensions in the design of a system. Illustrating this point, Disney et al. (2013)
presents a case study based on the implementation of a decision support system
based upon the APVIOPCS policy for the control of Lexmark’s printer toner’s
production line. They report that after implementing the DSS the bullwhip
for orders was reduced five-fold and the bullwhip for inventory was reduced
tenfold, without a hit in customer service level. They do not, however, report on
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the changes in the inventory level itself.

Not all control-theoretic studies of inventory-production systems, however, use
the AP(V)IOBPCS framework. In a study that predates it, Bertrand (1980)
analyses the variance amplification of inventories and order releases in the
diffusion department of a semiconductor plant. Due to the cyclic nature of
the manufacturing process, the production is modeled as a multi-stage system
with serially connected processes and intermediate inventories. Uniquely,
stochasticity in this system is generated by random yields of the intermediate
processes rather than by random demands. Just as Disney et al. (2013), the
motivation for this study is entirely practical: Several months after implementing
a control rule based upon the line-of-balance technique, personnel started
complaining. The variance of both inventories and order releases was such that
at times the available capacity was too low for the requirements, while at other
times the requirements were very small. This behavior was due to the adoption
of a control rule that was optimized for steady state—its dynamic behavior
was not analyzed before the implementation phase. Bertrand (1980) uses the
z-transform technique to derive expressions for the steady state behavior and
the impulse response of the system; studies the trade-off between steady-state
and dynamic behavior, and proposes a new decision-rule that incorporates
smoothing of the target deviations. He concludes by advocating thorough
analyses of the dynamic behavior of control rules, citing control theory as a
solid methodology for the purpose.

Li et al. (2013) turn their focus to another widespread tool in the analysis of
inventory systems: the use of exponentially smoothed forecasts. In this study,
the authors prove that simple exponentially smoothed forecasts, as well as
forecasts that follow Holts method, always result in bullwhip when using an
OUT policy. They approach the question of bullwhip reduction by adopting
a dampened trend forecast (both Holts and simple exponentially smoothed
forecasts are a generalization of a dampened trend forecast). They show that
using this forecasting technique, the appearance of the bullwhip depends on the
demand pattern, and can be avoided under certain conditions. Their analysis
generates sufficient conditions for bullwhip generation and necessary conditions
for bullwhip avoidance. They call for more attention to be given to dampened
trend forecasts as a way of reducing the bullwhip. This view, contrary to the use
of smoothing policies, relies on obtaining “better information” to be used as an
input to the policy rather than adopting a robust policy.
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2.3.2 Information sharing in supply chains

It is no surprise that information sharing is often proposed as a remedy for
the Bullwhip Effect—the latter is, after all, caused in part by the transmission
of distorted information up a supply chain (Bray and Mendelson, 2012).
Information sharing has received substantial attention in recent years, in part
because advances in technology have enabled the practical application of such
systems in the industry. What was implausible at the moment of Forrester’s first
unveiling of the bullwhip (e.g. the sharing of real-time inventory information
across remote locations) is nowadays attainable.

The information sharing literature can broadly be classified (1) according to
the source of the information that is to be shared, and (2) according to the
relationship among the various information-sharing players.

Regarding the source of information, we can identify a stream of literature that
analyses the potential benefits of sharing downstream information with upstream
players, and conversely a stream that analyses the potential benefits of sharing
upstream information with downstream players. Regarding the relationship
among the various supply chain players, a large body of literature assumes the
point of view of a central planner of sorts, with the objective of optimizing
the supply chain as a whole. This stream extends the OR/OM literature using
concepts, models, and assumptions from multi-echelon inventory theory; the
analysis is often centered in quantifying the benefits of information sharing with
regards to supply chain costs and/or service performance metrics.

The complementary stream, on the other hand, assumes that a supply chain
comprises independent firms with private information. Under this paradigm,
incentive issues arise: Due to asymmetries in the quality of information that
is to be shared (and the resulting benefits), an entire new set of research
questions crops up. In this view, it is not immediately clear whether different
firms have sufficient incentives to share information. Thus, the analysis shifts
towards deciding whether information sharing is an equilibrium solution of
a non-cooperative game; it is often centered in deriving the conditions under
which every independent firm in the supply chain benefits from sharing the
information they posses.

We refer the reader to Chen (2003) for a comprehensive review on information
sharing in supply chains according to the aforementioned taxonomy. In the
remainder of this section, we pay particular attention to the literature that
concerns the sharing of downstream information with upstream firms with the
Bullwhip Effect as a performance measure.
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Chen et al. (2000) consider a two-stage supply chain model with a serially
correlated, AR(1), downstream demand stream (see footnote 14). Each stage
in the supply chain uses an OUT policy and a simple moving average forecast
to update, every period, its estimates of the demand mean and variability
after. They show that under these settings, sharing complete information of
the downstream demand will reduce the bullwhip observed upstream, but will
not completely eliminate it.

Lee et al. (2000) consider a similar setting, with AR(1) demand, to study the
benefits of sharing downstream demand information in a two echelon supply
chain. In this study, however, the authors assume that both the downstream
firm’s demand process and its ordering policy are fully known by the upstream
player. This allows the upstream to update the estimates of future orders using
the previous period’s orders and their knowledge of the underlying demand
structure (as opposed to a simple moving average forecast). In this study, the
effect of information sharing on the Bullwhip Effect is not explicitly measured;
instead, they quantify the effect on the upstream order variability20. The authors
show that sharing downstream demand information reduces the variability of
upstream orders and is thus beneficial. They also note that the longer the lead
times and the more variable, or more correlated, the demand is, the larger the
potential benefits of information sharing are.

Raghunathan (2001), however, argues that the benefits of information sharing
found by Lee et al. (2000) become insignificant if the manufacturer makes
“intelligent use of available information”. He shows that the manufacturer
can get a highly accurate estimate of future demand using the entire order
history, rather than just the last period’s order, to update the forecasts. Under
this setting, the benefits of information sharing are negligible because the
manufacturer already has full information about the demand process, and the
order history contains information about the demand observed by the retailer.

Gaur et al. (2005) extend and generalize these results to the more general
ARMA (p,q) demand process21. They generalize the results of Raghunathan
(2001) by presenting a rule to determine whether the order information can
be used to infer the demand information. This allows the manufacturer to
determine under which situations there is additional value in information
sharing.

20Assuming that downstream orders are not affected by information sharing, this measure is
indeed a proxy for the Bullwhip Effect.

21An ARMA (p,q) demand process follows Dt = µ + ρ1Dt−1 + ρ2Dt−2 + · · · + ρpDt−p + εt −
λ1εt−1−λ2εt−2− · · ·−λqεt−q where εt are uncorrelated random variables of mean zero and variance
σ2, and ρ1, . . . , ρp and λ1, . . . , λq are known constants.
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Chen and Lee (2009) argue that the assumption that the manufacturer has full
knowledge of the retailer’s demand process and ordering policy is, in reality, an
aggressive assumption. They note that if these assumptions are relaxed, then the
value of point of sales data (retailer demand) may be of limited use. Chen and
Lee (2009) suggest that, in such a case, the sharing of the retailer’s forecast may
be of greater value. In this study, the authors adopt a most general model of
demand evolution, the Martingale Model of Forecast Evolution (MMFE22) and
a general order up to policy structure. The authors derive optimal ordering
policies that minimize the total supply chain costs when the retailer’s forecast
information is shared; they argue that by sharing forecast information, the
retailer is supplying the manufacturer with all the information it needs (thus,
dropping the aggressive assumption that manufacturers have full knowledge
about the demand and ordering processes of the retailer). Additionally, they note
that by receiving the downstream forecast information, the manufacturer is able
to separate between order variability and order uncertainty. In doing so, order
variability is not the key cost driver anymore, instead, it is the uncertainty of the
order revisions that drives the manufacturer’s cost. This, they contend, calls for
a rethinking of the use of order variability as the common quantification of the
Bullwhip Effect—the empirical work of Bray and Mendelson (2013), discussed
in §2.1.5 is an example of this approach.

From a control theoretic perspective, Dejonckheere et al. (2004) study the value
of information sharing in traditional and generalized OUT policies. They
investigate the influence of the forecasting mechanism and the assumptions
of demand distribution (they derive expressions for the bullwhip using i.i.d
normally distributed demands, and show the response to general demand
distributions through frequency plots). Their analysis confirms the finding that
information sharing is capable of reducing –but not completely eliminating– the
bullwhip depending on the supply chain’s parameters. They further quantify
the reduction in bullwhip (under i.i.d normal demands) as one travels upstream
in a supply chain as going from a geometric increase in the bullwhip ratio
when no information is shared, to a linear increase when upstream players
know the customer demand data. Furthermore, they find that in the case of
the smoothed OUT policy, the variability of the bullwhip ratio (comparing the
ratios at different echelons) is also reduced.

Cannella and Ciancimino (2008) analyze the impact of the parameters of a DE-
APVIOBPCS design under progressive information sharing strategies through

22The MMFE demand process follows Dt = µ + ∑∞
i=0 εt−i,t where εt−i,t is the incremental

information obtained in period t − i with respect to demand Dt. εt−i,t is mutually independent,
stationary, and normally distributed with mean zero and variance σ2.
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a continuous time differential equation analysis. Considering a supply chain
derived from the beer distribution game setting, the authors conduct a series of
numerical experiments to test the performance of 3 different information sharing
strategies (no information sharing, sharing of customer demand information,
and vendor managed inventory). Their findings suggest that using the
smoothing parameters of the replenishment policy by themselves to reduce
the bullwhip can have the undesirable effect of worsening the service level;
that information sharing helps in reducing the bullwhip; that the deeper the
information sharing strategy is, the larger the bullwhip reduction; anf, finally,
that –in general– the bullwhip reduction due to information sharing are larger
than those achieved by the smoothing of orders.

To illustrate the practical application of information sharing, Kelepouris et al.
(2008) report on a computational study performed with data obtained from a
Greek retail grocery store. They consider a two echelon supply chain (warehouse
and retailer) using an OUT replenishment policy with exponentially smoothed
demand forecasts and perform simulations to understand the influence of lead
times and information sharing on the system’s performance. Since their study
is numerical in nature, they relax several assumptions that are common in
the analytical literature (they do not allow either back-orders or returns in the
model). They find that lead time has a significant impact in both the oscillations
and fill rate of the system, and that sharing information of the retailer demand
reduced the bullwhip of the system because it allowed the warehouse to generate
more accurate forecasts. Additionally, the authors show that the sharing of
information also lets the warehouse reduce the distortion stemming from order
batching at the retailer.

From an implementation perspective, De Kok et al. (2005) present the de-
velopment of an advanced planning and scheduling system that supports
collaborative planning of operations between Philips Semiconductors and one
of its customers, Philips Optical Storage. In this study, the reduction of the
Bullwhip Effect is explicitly set forth as one of the main objectives behind the
development of the collaborative planning project.

In contrast with the previously discussed analytical literature, the main focus of
this study is the implementation of collaborative decision making that incorpo-
rates information sharing. The authors base their collaborative planning toolset
on synchronized based stock policies (De Kok and Fransoo, 2003) that take into
account stochasticity in demand, lead times, and yield through the concept of
safety lead times.

To feed the planning tool, all partners collect and share live data on actual
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stocks, scheduled receipts, and material in transit. Thus, the outcome of the
planning tool is a release plan for all the firms involved (Philips Optical Storage,
Philips Semiconductors, and contract manufacturers). Previously, schedules
were maintained individually per firm. Once the parameters are calculated,
the generation of short-term feasible plans does not involve an optimization,
rather just a calculation step that is essentially trivial. The authors stress that the
biggest roadblock to adoption was not an implementation difficulty, rather to
generate trust in the generated plans. The impact of the adoption of collaborative
planning is estimated as a yearly savings of 2% of the total turnover, derived
from inventory and obsolescence reductions. Key stakeholders assert that the
reduction of information lead time, as well as increased visibility of up-to-date
information enables decision making “based on facts”.





There are 1011 stars in the galaxy.
That used to be a huge number.
But it’s only a hundred billion.
It’s less than the national deficit!
We used to call them astronomical
numbers. Now we should call
them economical numbers.

Richard Feynman

Chapter 3
De-stocking and the Bullwhip: an
Empirical Investigation
The world economy experienced a sudden, severe and synchronized collapse in
late 2008. The magnitude of the drop in global trade was the largest since World
War II, it was the steepest in recorded history, and it was synchronized: all
104 nations where data is collected by the WTO experienced a drop in imports
and exports during the second half of the year (Baldwin, 2009). Following
the public collapse of the financial system (starting with the Lehman Brothers
bankruptcy in September 2008), firms all over the world observed substantial
demand disruptions; sales plummeted across the board, and panic spread.
While many consumer markets remained relatively stable (exceptions being
consumer durables and capital goods), the manufacturing sector observed
almost instantaneous demand drops (Dooley et al., 2010).

In crises such as these, managers are pressured to improve the financial position
of the company at the same time that demand levels are dropping dramatically.
This typically leads to strategic decisions such as reducing inventories (to reduce
the level of working capital), downsizing (to reduce operational expenses),
and closing manufacturing facilities (to reduce fixed assets). These decisions,
however, have substantial operational consequences when demand increases at
a later stage: the reduction of inventory levels, workforce, and manufacturing
facilities are decisions that require significant time to be reversed. If the situation
that triggered such decisions is temporary and demand recovers faster than the
speed at which firms can react, lost sales and general problems with inventory
management will appear. Knowledge about the underlying dynamics behind
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the demand slump is therefore needed to avoid costly mistakes.

3.1 Introduction
In this chapter, we argue that firms reacted to the 2008 financial crisis by reduc-
ing their working capital targets and –because it was global and synchronized–
this reaction introduced a significant shock in the world’s supply chains,
essentially creating an inventory-driven Bullwhip Effect. To test our hypothesis,
we adopt supply chain modeling, experimentation, and validation methods
based on theory from the experimental work by Sterman (1989) and Croson and
Donohue (2006), originally focused on the appearance of the Bullwhip Effect
following demand shocks in a laboratory setting. We develop 4 different supply
chain models for a major chemical company in the Netherlands and validate
them with demand data from the crisis period. In terms of methodology, our
work distinguishes itself from previous studies on inventory dynamics by using
extensive empirical data, framing the Lehman Brothers collapse as a natural
experiment. We specifically distinguish between the direct estimation of the
operational model parameters such as lead times, and the econometric fitting
of behavioral parameters such as stock adjustment times. In terms of theory,
we model aggregates of companies at a particular level of the supply chain
in a particular region rather than individual decision makers (as is common
in experiments) or firms (as is common in much of the system dynamics
literature in supply chain management). The crisis time-frame, through the
resulting synchronization in managerial objectives, gives us the opportunity to
link aggregate and individual human behaviors.

Our results show that demand drops in the respective end markets were
not severe enough to explain –by themselves– the wild dynamics observed
upstream. Moreover, we show that the combination of declining end-markets
and the appearance of a synchronized inventory shock successfully account for
a significant portion of the observed long and short term dynamics. In this view,
exogenous end-markets drive the overall long-term evolution of sales, while
endogenous behavior (such as the inventory decisions taken as a consequence
of the crisis) primarily impacts the short term dynamics.

The contribution of this chapter is thus threefold: (1) We identify the 2008

financial crisis as a natural experiment that –with the introduction of a
synchronized inventory shock– effectively controls for the masking effects of
aggregation. This allows for the usage of a system dynamics framework based
on the Bullwhip Effect literature whereupon we model aggregate echelons.
(2) We introduce a de-stocking hypothesis capable of explaining the demand
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evolution observed by upstream companies following the bankruptcy of Lehman
Brothers. (3) We identify the importance of both consumer end-markets, and
ordering behavior in the evolution of demand patterns through time. By
explicitly modeling separate structural, operational, and behavioral parameters,
this study quantifies their contribution to the observed transient behavior and
allows for a comparison with results obtained from experimental studies on
individual human decision making.

The remainder of this chapter is organized as follows: In Section 2 we introduce
the historical views of inventories as seen in the economics literature, we identify
the challenges inherent in the study of inventories as part of aggregate models,
and develop our de-stocking hypothesis. Section 3 introduces the methodology
and model formulation, extending prior experimental work and framing it in
the crisis time-period by explicitly modeling behavioral managerial decisions in
the form of a reduction of inventory targets. In Section 4, the echelon model is
used to model four different supply chains, we use empirical data to calibrate
and validate the models, and develop forecasts for these supply chains. We then
formulate an alternative model –sans the de-stocking hypothesis– to study the
appropriateness of this hypothesis. We conclude in section 5 with a series of
managerial insights.

3.2 Background and Hypothesis Development
When looking at the link between inventories and macro economic devel-
opments, Blinder and Maccini (1991) point out that interest in inventory
behavior seems to follow cycles, not unlike the economy we attempt to explain.
Indeed, we observe that research on the role of inventories in the economy
peaks throughout history following extraordinary economic happenings such
as the post-war period, the late seventies oil crisis, and –relevant to current
developments– the financial crisis of 2008.

We refer the reader to Fitzgerald (1997) and Blinder and Maccini (1991) for
comprehensive reviews of over 50 years of discussions on inventory theory in
the economics discipline. In his work, Fitzgerald (1997) identifies inconsistencies
between theory and data, and the subsequent attempts of researchers to
eliminate these discrepancies from their models. Blinder and Maccini (1991)
summarize the opposing views of micro and macro economists with regards to
the role of inventories: the former discipline sees them as a stabilizing factor,
whereas the latter sees them as a de-stabilizing one. Despite these fundamental
disagreements, Feldstein and Auerbach (1976) point out, inventory fluctuations
have long been recognized as a major endogenous force in American business
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cycles. In their experience, irrespective of the conceptual contradictions between
contemporary models and the real-life processes behind them, most studies of
inventory behavior note that about 75 percent of the cyclical downturn in gross
national product (from peak to trough) can be accounted for by the reduction
of business inventories. Recognizing these conceptual difficulties, Lovell (1994)
reflects upon the inherent challenge of trying to reconcile these views. He poses
a series of questions that –for all the body of research available– remain open to
this day: “(...) Do firms actually attempt to smooth production? Is an empirical
analysis of industry-level data enough? Is it necessary to analyze firm-level
data in order to explain these effects?”. These questions read as a research
agenda on the mechanisms behind empirical observations on both macro and
micro levels, recognizing, amongst other issues, the potential masking effects
of aggregate data. In the operations management (OM) literature, inventory
theory is often developed in a stylized manner; with strong assumptions that
favor mathematical tractability over the inclusion of the myriad factors that are
present in real life. The objective of these simplifications is to develop managerial
insights that are both rigorous, and useful in the real world. In an exploratory
study, Rumyantsev and Netessine (2007) find evidence that many insights from
classical inventory models survive aggregation and do, in fact, hold up when
analyzing empirical data.

The dynamics that stem from the interactions of subsequent echelons along a
supply chain have been extensively studied in the OM literature. The fact that
relatively small shocks can introduce severe instabilities in entire systems was
shown by Forrester (1958), and is a central idea behind the Bullwhip Effect. The
Bullwhip Effect has long been analytically and experimentally understood, and
its effects and causes have sparked a great amount of research that has delivered
valuable managerial insights (Sterman, 1989; Lee et al., 1997b; Croson and
Donohue, 2006). However,even though the Bullwhip Effect itself is significant at
the firm level (Metters, 1997; Fransoo and Wouters, 2000; Bray and Mendelson,
2012), attempts to empirically quantify the effect at higher aggregation levels
have not been successful: studies have failed to prove it statistically significant
at an industry level (Cachon et al., 2007; Bu et al., 2011). The lack of clear
empirical evidence is attributed to the influence of factors present in government
statistics such as their high level of aggregation (Chen and Lee, 2012), and
seasonal adjustment (Gorman and Brannon, 2000). Furthermore, as Rumyantsev
and Netessine (2007) point out, extending many structural properties from
single-product, single-echelon models to higher aggregation levels also requires
the assumption that products be homogeneous and their inventory control be
synchronized.
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With this in mind, the financial crisis of 2008 allows us to study empirical data
in a different way. Following the bankruptcy of Lehman Brothers on September
2008, the financial world found itself in turmoil; credit dried up almost instantly
and many companies in the world shifted their financial priorities according to
the “cash is king” motto: liquidity became essential. Freeing up cash in the
short term through inventory divestment is one strategy that can be followed
by companies in times of distress (Sudarsanam and Lai, 2001). In a recent
work, Pesch and Hoberg (2013) conduct an empirical study that shows that
firms in financial distress reduce their inventories as part of their turnaround
strategy: 70% of the firms in their sample reduce their inventories, with a median
reduction of 9.4% of all inventories. We hypothesize that firms all over the
world reacted to the financial collapse by significantly reducing their inventory
targets. This, combined with the extraordinary synchronization observed during
the the period (Alessandria et al., 2010) and the ever increasing influence of
supply chain dynamics in the global economy (Escaith et al., 2010), introduced a
synchronized, endogenous, inventory shock that generated an inventory-driven
Bullwhip Effect. Early studies following the financial crisis seem to confirm this
view in the manufacturing sector (Dooley et al., 2010). Using the collapse as
a natural experiment, we model supply chains at an aggregate-echelon level,
use exogenous end market data to drive those models, and validate them with
primary empirical data collected at a major dutch chemical company.

3.3 Theoretical Background and Model Structure
In this section, we present our echelon model based upon Sterman’s managerial
decision making and supply chain models (Sterman, 1989, 2000) and follow
with an introduction to the de-stocking logic we use to model the hypothesized
reaction to the credit crisis.

3.3.1 Echelon model

An echelon model consists of three sectors (see Figure 3.1): the forecasting
and orders sector tracks the incoming customer orders, maintains the echelon
sales forecast, and generates material orders. The production sector regulates
inventories and production, and the delivery sector keeps track of customer
deliveries and backlogs. The model assumes no lost sales, and is based on
continuous time system dynamics simulations. There is no sequence of events
as such; cause and effect relationships are modeled by differential equations
(i.e., we model rates of change), and products are modeled as continuous flows
(demand is an outflow, incoming orders an inflow).
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Because these echelon models are intrinsically linked to one another (deliveries
from one echelon will become material receipts for the echelon immediately
downstream in its supply chain), each of the parameters we define has a
subscript [n = (1, ..., N)] representing its place in the supply chain. We number
echelons from downstream to upstream: the most downstream echelon being
1 and the most upstream N. In the case of diverging supply chains, where one
echelon can potentially have several direct customers, we introduce a second
number following a period, indicating the existence of other parallel echelons in
the supply chain.

Table 3.1 Definition of model parameters

Sn on-hand stock at echelon n
PLn Pipeline inventory at echelon n
Wn work in process stock at echelon n
Pn production rate of echelon n
Fn sales forecast at echelon n
Ln incoming delivery lead time at echelon n

PTn production time of echelon n
τn(PL) pipeline inventory adjustment time at echelon n

τn(S) stock adjustment time at echelon n
τn(F) forecast adjustment time at echelon n
τn(L) expected delivery delay at echelon n
τn(L) minimum time to fill orders at echelon n

Ĉn desired on-hand inventory coverage at echelon n
D̂n desired delivery rate echelon n
Ŝn desired on-hand inventory at echelon n

P̂Ln desired supply ilne at echelon n
On(PL) pipeline inventory adjustment of orders at echelon n

On(S) stock adjustment of orders at echelon n
On orders placed by echelon n
Dn delivery rate at echelon n
An incoming material rate at echelon n
dn de-stocking fraction at echelon n
Rn delivery ratio echelon n
Bn backlog at echelon n

3.3.2 Forecasting

The forecasting sector maintains a sales forecast by accumulating the differences
between the incoming customer demand (On−1) and the previous forecast (Fn).
When demand exceeds the forecast it’s updated upwards and vice-versa. To
allow for a smoothing of the forecast, these differences are divided by the
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Figure 3.1 Overview of a modeled echelon.

forecast adjustment time (τn(F)), indicating whether the whole difference or
only a fraction is taken into account.

(
d
dt
)Fn =

On−1 − Fn

τn(F)
. (3.1)

3.3.3 Production

The production sector models the flow of material through the echelon. The
incoming material rate (An) is equal to the delivery rate of the immediately
upstream echelon (Dn+1),

An = Dn+1. (3.2)

The pipeline inventory is the cumulative difference between orders placed and
orders received,

(
d
dt
)PLn = On − An. (3.3)

Incoming material is stored as work in process (Wn). In the interest of simplicity
we do not model any production release rule. Thus, the work in process stock is
not used strategically or as a control variable: all incoming material is committed
to production, and the production rate is modeled by applying a fixed delay
(equal to the production time PTn) to the order arrival rate. System dynamics
modeling allows for the introduction of this discrete step in the model, which
approximates the real production process,

Pn = DELAY(An, PTn). (3.4)
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Equation 3.4 assumes a production model where the manufacturing time is
independent of the utilization rate, it also implicitly assumes that there are
no capacity limitations for production (the model can be straightforwardly
extended to include capacity limitations).
On -hand inventory (Sn) depends on the delivery rate (Dn) and the production
rate (Pn),

(
d
dt
)Sn = Pn − Dn. (3.5)

Material orders are based on an anchor and adjustment heuristic (Tversky and
Kahneman, 1974): the sales forecast acts as the anchor, with the adjustment
stemming from the difference between actual and target stock (and supply
pipeline) levels.
To calculate the target stock, we start with the desired on hand inventory
coverage measured in time units (Ĉn). When this is multiplied by the sales
forecast, we obtain the desired on hand stock (Ŝn) in units of product.

Ŝn = ĈnFn. (3.6)

Analogously, there is a pipeline inventory level (P̂Ln) consisting of the multipli-
cation of the lag (lead time) and the forecasted volumes,

P̂Ln = Fn (Ln) . (3.7)

3.3.4 Orders

Once we have calculated the desired levels of on-hand and pipeline inventories,
we generate adjustment orders with the purpose of closing the gap between the
actual values of these inventories, and their desired (target) levels. The inventory
adjustment time (τn(S)) and pipeline inventory adjustment time (τn(PL))
represent the time allowed for these quantities to reach the desired levels.
These adjustment times model the behavioral aspect of the order generation.
Short times imply a nervous buying behavior whereas a long adjusting time is
equivalent to a smooth ordering strategy. We define the stock adjustment orders
(On(S)) and pipeline inventory adjustment orders (On(PL)) as,

On(S) =
Ŝn − Sn

τn(S)
, (3.8)

On(PL) =
P̂Ln − PLn

τn(PL)
. (3.9)

Equations 3.8 and 3.9 calculate the difference between desired and actual values
and spread these in equal parts over the amount of periods specified by the
adjustment times. Finally, generated orders (On) are calculated as,

On = max{0, Fn + On(S) + On(PL)}. (3.10)
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3.3.5 Delivery

A backlog is used to keep track of orders. The backlog is calculated as the
cumulative difference between the incoming customer order rate On−1 and
actual delivery rate (Dn). O0, the demand observed by the echelon closest to
the end market, is the only exogenous input to the model,

(
d
dt
)Bn = On−1 − Dn. (3.11)

The order delivery rate (Dn) is the rate of product that is actually shipped out in
response to the incoming customer orders. To calculate this, we first define the
desired delivery rate (D̂), which is equal to the current backlog divided by the
expected delivery delay (τn(L)),

D̂n =
Bn

τn(L)
. (3.12)

The maximum delivery rate (max(D)n) per period depends on the ability of firm
to physically prepare the products for shipment, modeled as the minimum time
to fill orders (τn(I)),

max(D)n =
Sn

τn(I)
. (3.13)

We calculate the delivery ratio (Rn) as the proportion of outstanding orders that
can be shipped from stock,

Rn = min{1,
max(D)n

D̂n
}. (3.14)

Finally, the actual order fulfillment rate is equal to the desired delivery rate
multiplied by the delivery ratio,

Dn = D̂nRn (3.15)

Alternatively, we can combine equations 3.12 to 3.15 and define the order
fulfillment rate as:

Dn = min{ Bn

τn(L)
,

Sn

τn(I)
}. (3.16)

3.3.6 Modeling de-stocking decisions

We model de-stocking decisions by decreasing the desired inventory coverage
(Ĉn) of an echelon n at time T by a fraction dn (with 0 6 dn < 1).
Thus, we can define Ĉn as:

Ĉn =

{
Ĉn if t < T
(1− dn)Ĉn if t > T,

(3.17)

Where Cn is the desired stock coverage in “normal” (non-crisis) situations. It is
important to note that de-stocking is a decision to lower target stock levels that
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are measured in time units. It is not a decision to reduce its absolute value, nor
does it imply the destruction or writing-off of inventory. In this way, we separate
explicit decisions to lower inventory targets from the implicit reductions that
come from a decrease in sales.

3.3.7 On the equivalence of the ordering policy

The model presented in this section is a straightforward extension of the model
found in Sterman (2000). In particular, we introduce an explicit de-stocking
decision and a discrete production delay. The structure of this ordering policy,
however, is not unique to System Dynamics models, and can be found in other
branches of the literature.

In the behavioral operations literature, an equivalent rule is used to model the
decision-making behavior of human managers. In this context, the model is
presented based upon its equivalence to an ‘anchor and adjustment heuristic’
(Tversky and Kahneman, 1974). These heuristics are used to describe human
decision-making biases: Orders are calculated by selecting an anchor (in this
case the forecast) with subsequent adjustments motivated by deviations from
the target stock and supply line levels (Sterman, 1989; Croson et al., 2014). In
contrast with the models used in laboratory experiments, however, our model
allows for dynamic inventory and pipeline coverage (the desired inventory and
pipeline are not a constant, but proportional to expected sales) as well as changes
in the inventory policies (implemented through the de-stocking hypothesis).

The control theoretic branch of inventory theory also uses a family of models
based on the same principles as the model described in this paper. The
more general of the models in this framework, the Automatic Pipeline Variable
Inventory Order-based Production Control System (APVIOPCS), is a discrete-
time, constant-coverage, equivalent of our System Dynamics model. For a
discussion on the implications of independent supply line and stock adjustments
based upon discrete, control theoretic models, we refer the readers to chapters 4

and 5.

3.4 Results and Analysis
In this section, we use the echelon model as a building block to construct,
calibrate, and validate 4 different supply chain models based upon data collected
at our research company.

The methodology presented thus far concerns the modeling of a single echelon
in a supply chain: The input to an echelon model is a customer order and its
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output is an order placed to a supplier. To model a supply chain, we link echelon
models according to the customer/supplier relationships defined by its structure
(e.g. number of echelons, linear, divergent) and parameterize the individual
echelons. We run the supply chain models using end-market sales data as their
exogenous inputs.

Each of the echelon models is defined by operational and behavioral parameters.
Operational parameters posses a concrete interpretation in the day to day
operation of a firm (e.g. target stocks and production times) and are thus set
based upon expert interviews. Behavioral parameters (e.g. supply line and stock
adjustment times), on the other hand, define the relationship between internal
variables –product of explicit or implicit managerial decisions– and are thus
estimated through a process of model calibration. The de-stocking decisions we
hypothesize, however, do not fall squarely in either of these definitions. While
these decisions correspond to the operation of the firm, we could find no hard
evidence of the desired inventory reductions. Rather, the de-stocking decisions
corresponded to financial recommendations from upper management, which
were estimated to be ‘on the order of 10 to 20 percent’. Similarly, de-stocking
decisions do not conform to the definition of a behavioral characteristic of the
models. Thus, de-stocking is estimated via scenario analysis based upon expert
interviews: Feasible de-stocking quantities (from 5-30% reductions of desired
stocks) are defined in discrete increments, the calibration is performed for each
of these scenarios, and the best fit is chosen. Potentially, the amount of de-
stocking could depend on a series of firm characteristics such as the type of
product and distance from the end market. However, due to the limitations
of our data, we can only quantify the cumulative effect of de-stocking on the
uppermost echelon. We therefore use a single de-stocking parameter for each
supply chain.

The rest of this section is divided as follows. We explain the model set-up
and data collection in §3.4.1. Then, we define the structure of the modeled
supply chains and their observable parameters in §3.4.2, and the calibration of
behavioral parameters in §3.4.3. Finally, we study the historical fit of the model
in §3.4.4, and analyze an alternative model, where the de-stocking hypothesis is
dropped, in § 3.4.5.

3.4.1 Model set-up and data collection

Two distinct flows appear when we link individual echelon models to form a
supply chain model: an information flow that travels upstream (orders), and
a material flow that travels downstream (deliveries). The information flow of
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any supply chain originates at the sales point of a finished product, i.e., its
end-market. Thus, the demand information observed by an upstream firm is a
function of the original signal, generated by the end-market, and transformed
–throughout its flow upstream– by the subsequent echelons of the particular
supply chain (in the case of divergent supply chains, the combination of end-
market signals).

We use the 2008 credit crisis as a natural experiment because it allows us
to link these end-market signals to the corresponding upstream demand:
the synchronization observed during the period effectively controls for the
smoothing effects of aggregation. Explicitly, we assume that (a) firms at a
given echelon share the same structure, (b) firms at a given echelon share the
same behavior during this time frame, and (c) the information distortion that
is observed in the passage of demand information upstream –from its origin
in the end-market– corresponds to locally rational policies at each stage of the
supply chain (i.e., no demand information is arbitrarily created or discarded
by intermediate echelons). We base this approach upon the observation that
empirical data shows that during the credit crisis turning points in sales and
inventories were indeed aligned by tiers (retail, wholesale, and manufacturing)
(Dooley et al., 2010), suggesting that companies along a single echelon exhibited
a synchronized behavior.

Conceptually, we model echelons that represent individual tiers: a group of
competing companies providing the same product to the same supply chain.
This follows what Sprague and Wacker (1996) define as the modeling with a
“disaggregation by stages along the inventory stream”. They point out that
management practice generalizations made in this way recognize the impact
of the management of inventory as it progresses through the stages. In
particular, we model 4 different supply chains that belong to a dutch chemical
company. As a reference, the different supply chains belong to four different
business units that are situated 4-5 echelons upstream from retail demand. The
upstream products of these supply chains are different resins, thermoplastics,
and polymers. The end-markets where these are found are shown in Table 3.2

We use monthly, EU27 data available from Eurostat as a proxy for the demand
for each of the end-markets for the period of Jan 2005–Aug 2009. The series
used are: Construction index, automobile registrations, household goods retail
index, and production indexes for: food products (C10), paper and paper
products (C17), glass and glass products (C231), basic metal and metal products
(C24), and motor vehicles (C291). All data is normalized with the average of
2007 = 100. The work at each of the four sites of the company began with
a kickoff meeting with management where the objectives and scope of the
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Table 3.2 Summary of end-markets served by the 4 modeled supply chains

Supply Chain End Markets

Supply Chain 1 (resins a) Residential and commercial construction;
Residential and commercial repair & maintenance.

Supply Chain 2 (resins b)
Residential and commercial construction;
Residential and commercial repair & maintenance;
Furniture sales.

Supply Chain 3 (polymers) Automotive sales.

Supply Chain 4 (thermoplastics)

Automotive manufacturing; Glass panel manufacturing;
Metal manufacturing; Food manufacturing;
Paper and pulp manufacturing;
Residential and commercial construction.

study were explained and defined. Following these, interviews were conducted
with employees to formalize data collection procedures. The structure of
the supply chain model and the parameterization of observable parameters is
based on input from these employees, complemented with information obtained
from players distributed along the supply chain. The modeling work was
performed on-site, which allowed for additional ad-hoc interviews and further
familiarization with the particulars of each individual supply chain.

3.4.2 Structure and observable parameters

The number of echelons, structure, and end markets of each of the 4 supply
chains are all different and can be seen in Figure 3.2. The supply chains in this
study consist mainly of chemical firms upstream and make-to-stock component
suppliers downstream. For this study, we consider our research site to be the
upstream-most boundary of each supply chain. The parameterization of the
observable parameters per echelon is shown in Table 3.3.

Table 3.3 Observable Supply Chain parameters per echelon

Supply Chain 1 Supply Chain 2 Supply Chain 3 Supply Chain 4
Ĉ Ln PTn Ĉ Ln PTn Ĉ Ln PTn Ĉ Ln PTn

1.1 5 10 1 1.1 8 4 1 1 4 3 1.5 1 8 0.25 2

1.2 5 10 1 1.2 4 4 1 2 2 1 1 2 14 0.25 5

2 8 2 1 1.3 4 4 1 3 1.5 2 1 3 10 0.25 4

3 8 2 1 2.1 8 4 1 4 1 2 1 4 8 0.25 1

4 4 2 1 3 8 0.25 1 5 2 2 1

4 3 0.25 1

5 2 0.25 1

de-stocking 0.15 0.25 0.2 0.1

In an attempt to simplify the models, we assume deterministic lead times and
the availability of resources such that order preparation does not introduce
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(a) Supply chain 1 (b) Supply chain 2

(c) Supply chain 3 (d) Supply chain 4

Figure 3.2 Supply chain structures

significant lags. Thus, the expected delivery delay (τn(L)) is equal to its own
delivery lead time (Ln−1), and the minimum time to fill orders (τn(I)) is equal
to 1. Due to the absence of disaggregated data, the lead time is defined as
the time between placing an order and its receipt (i.e., it encompasses both the
informational and physical components of the delay). We make two assumptions
regarding the boundary conditions: (1) orders placed by the uppermost echelon
in a supply chain are always served by a supplier with infinite stock, and (2)
downstream demand is exogenous and is composed of the individual demand
signals of the end markets that require the materials produced upstream.
With the structure and observable parameters estimated for each of the supply
chain models, we proceed with the analysis of the de-stocking decisions and the
estimation of behavioral parameters.

3.4.3 Model calibration and behavioral parameters

Behavioral parameters are, by definition, not observable; we must estimate them
through the individual calibration of each of the supply chain models. Model
calibration is the process of estimating parameters to obtain a match between
modeled and observed behavior and is, in itself, a stringent test of the validity
of the model that links structure and behavior (Oliva, 2003). Nevertheless, Oliva
(2003) points out that achieving a good historical fit is not enough to confirm
the dynamic hypothesis behind the model; the model has to match the observed
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behavior for the right reasons.

In system dynamics models, this is usually achieved through “partial model
calibration”: The process of estimating parameters within a subset of model
parameters, instead of the entire model parameter space (Homer, 2012). This
strategy “reduces the risk of the structure being forced into fitting the data,
increases the efficiency of the estimation (estimators with smaller variances),
and concentrates the differences between observed and simulated behavior in
the piece of structure responsible for that behavior” (Oliva, 2003). In the context
of our supply chain models, partial model calibration entails calibrating each
echelon separately. Unfortunately, we cannot do so because we lack primary
sales and inventory data at the intermediate levels, and it is not possible to map
secondary empirical data to individual echelons.

To overcome this, however, we perform a full model calibration and follow it
with: (i) a sanity check of the estimated parameters (is the model structure
sound?) and (ii) the test of an alternative hypothesis (can we achieve the same
behavior through a different structure?) to increase the confidence in our model.

We use 27 months (Jan 2007 – Mar 2009) of historical, secondary, EU27 end-
market data as the input for each of the end-markets in our models, and primary
sales data from our research company as a proxy for upstream demand, which
we use as the calibration target.

In using full model calibration, we assume an open-loop behavior for the supply
chain models. Namely, we assume that the input to the model (end-market
demand) does not depend on its output (upstream demand). This assumption
is reasonable because we calibrate an uncapacitated model during a period
where demand was either relatively stable or declining, which controls for any
upstream influence on downstream demand1.

The calibration step is implemented within the simulation software (Vensim);
simulations are performed for each supply chain by generating model runs
where all the observable parameters are fixed as established in §3.4.2, while the
behavioral parameters are varied. The cumulative sum of square errors between
the estimated demand and the historical sales data is calculated per run and the
combination of parameters that minimizes this error is then chosen. Formally,

1In a capacitated supply chain, upstream demand can potentially influence downstream demand.
Failure to meet upstream demand due to capacity constraints can result in an increase of downstream
demand at a later point in time due to, for example, shortage gaming (i.e. when customers, expecting
shortages, artificially inflate their orders).
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the minimization corresponds to:

min
τn(F),τn(PL),τn(S)

k

∑
t=1

(ON−1(t)− D̃N(t))2 (3.18)

Where N is the most upstream echelon in the supply chain, and D̃N(t) is
the historical sales data for time t at echelon N (our research company). In
other words, we compare the orders generated by the modeled customers of
our research site with the actual historical sales of said firm and search for
the parameter values that minimize the error. The minimization is performed
through a modified Powell-Brent algorithm (Brent, 2002). For computational
purposes and to reduce the search space, τ(S), τ(PL), and τ(F) are estimated
through their reciprocals, αS, αPL, and Θ, and αS, αPL, Θ ∈ [0, 1]. Table
3.4 lists all the parameters estimated through calibration, including the 95%
confidence intervals calculated through a sensitivity analysis. De-stocking
fractions represent a non-observable parameter and were thus estimated through
a combination of interviews and scenario analysis; experts identified a range of
de-stocking fraction per supply chain, scenarios where then run with different
values for d (intervals of 0.05), and the best fit was chosen. All echelons in a
supply chain are assumed to incur the same de-stocking behavior at the same
time. This is motivated by: (a) recent literature suggesting synchronization
during the crisis, (b) the availability of only upstream sales data as a calibrating
time-series. The latter factor negates the additional information that could be
gleaned from having individual de-stocking parameters: upstream sales are
affected by the cumulative amount of inventory being taken out of the supply
chain. These data are shown in Table 3.3.

In all cases, the confidence bounds of the estimations for the uppermost echelon
are lax: This is due to the data available for calibration being the historical sales
of this echelon. None of the parameters in the model allow a firm to influence
its own demand via strategic decisions. Thus, the uppermost echelon can either
meet the demand or incur in destabilizing stock-outs. The confidence bounds
represent the parameter space that allows for the former. Similarly, the amount
of parameters being estimated from a single time series (between 12 and 21,
depending on the supply chain) explain the size of the confidence intervals of
the pipeline inventory adjustment time, which are particularly large.

A parameter estimated to be ∞ corresponds to a parameter that is not taken into
account in the ordering heuristic. The upper bound for the pipeline inventory
adjustment time for all but two of the echelons is ∞, which suggests that we
cannot reject the hypothesis that firms completely ignore the pipeline. On the
other hand, the lower bound for more than 2/3 of the echelons is larger than
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one, which suggests smoothing of the pipeline inventory adjustment.

This is consistent with results from experiments found in the behavioral
literature (Sterman, 1989). The gap between desired and actual pipelines is
severely underestimated in the ordering decisions: Both the means and medians
of the pipeline inventory adjustment time (τ(PL)) are larger than the respective
values for the stock adjustment times (two-sample t-tests on the means, Wilcoxon
rank-sum tests for the medians, all p ≤ 0.01), as well as the values for the forecast
adjustment time (p ≤ 0.1 when comparing means and p ≤ 0.01 when comparing
medians). When we compare the stock and forecast adjustment times, on the
other hand, we find that the mean forecast adjustment time is larger than the
mean stock adjustment time (p ≤ 0.1). However, this difference is caused by
extreme values in supply chain 2, as there is no statistical difference between
the medians of these parameters—suggesting a smoothing of the same order of
magnitude for the adjustment of the inventory gap and the forecast updating.
We next compare the adjustment times between the different supply chains to
test for any differences in the inherent behavior. We find that the mean and
median adjustment times of supply chain 4 are significantly larger than those of
supply chain 2 (p ≤ 0.1). However, all other mean and median differences are
non-significant. This suggests that, while supply chain 4 is less responsive than
supply chain 2, the overall behavior and the mechanisms behind all the supply
chain models is comparable.

3.4.4 Historical fit and structural validity

Following the calibration, we run the four supply chain models driven by
the exogenous end market and the de-stocking hypothesis. In contrast to
the calibration step, runs are now performed with published historical end
market data complemented with scenarios based upon published forecasts, and
expectations of the business intelligence groups for subsequent periods.
Figure 3.3 shows the model outputs against the seasonally corrected upstream
demand realizations. The vertical axis represents the demand expressed in % of
the average 2007 demand and the dotted vertical lines indicate the threshold
between historical fit and forecast values. Table 3.5 shows the root mean
squared error (RMSE), R2, and Theil inequality statistics for the data series
shown in the figure. These inequality statistics decompose the mean square
error into three fractions representing: unequal means (Um), unequal variances
(Us), and imperfect correlation (Uc) (Theil, 1966). A low Um indicates a strong
correspondence between the modeled mean and the actual mean, and a low Us
indicates a similar correspondence between variances. Therefore, low variance
and means statistics indicate that the error is unsystematic, and therefore
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Table 3.4 Estimated behavioral Supply Chain parameters

τ(S) 95% CI τ(PL) 95% CI τ(F) 95% CI

Supply Chain 1
1.1 3.91 3.14 4.93 6.16 4.05 9.48 5.49 1.53 11.27

1.2 8.70 6.13 15.60 ∞ 191.79 ∞ ∞ 794. 62 ∞
2 9.70 8.96 10.70 ∞ 25.65 ∞ 10.30 8.43 12.76

3 14.08 13.17 15.12 ∞ 31.05 ∞ 17.56 15.54 19.93

4 10.00 1.42 ∞ 100.00 1.42 ∞ 6.03 1.00 2194.05

Supply Chain 2
1.1 4.15 3.31 5.25 ∞ 3.50 ∞ 3.91 1.00 9.85

1.2 3.99 1.00 ∞ ∞ 1.00 ∞ 4.31 1.00 ∞
1.3 4.54 3.09 6.95 ∞ 5.30 ∞ 1282.98 27.33 ∞
2.1 3.33 1.18 5.19 1.00 1.00 1.76 4.60 2.37 7.38

3 7.20 6.20 8.4 10.00 1.00 ∞ 983.40 157.60 ∞
4 23.11 17.30 32.31 3333.33 1.00 ∞ 8.10 6.30 9.10

5 10.00 1.00 102.63 10.00 1.00 ∞ 6.03 1.00 33.45

Supply Chain 3
1 9.69 7.22 12.69 ∞ 7.22 ∞ 21.64 13.69 37.33

2 6.41 4.20 8.97 ∞ 4.20 ∞ 16.98 9.85 30.67

3 8.74 6.32 11.81 ∞ 6.32 ∞ 11.02 6.85 17.08

4 13.90 10.02 17.53 ∞ 10.02 ∞ 9.58 6.61 13.51

5 10.00 1.00 ∞ 100.00 1.00 ∞ 6.03 1.00 ∞
Supply Chain 4

1 10.18 7.13 14.07 31.10 7.13 ∞ ∞ 90.49 ∞
2 9.35 7.00 12.63 33.03 7.00 ∞ 16.91 9.03 31.49

3 13.76 10.21 18.94 2215.27 10.21 ∞ 11.53 6.83 18.96

4 16.88 1.00 ∞ 101.73 1.00 ∞ 10.00 1.00 ∞

Table 3.5 Historical fit statistics

RMSE R2 Um Us Uc

Supply chain 1 4.53% 0.65 0.031 0.190 0.779

Supply chain 2 8.11% 0.68 0.065 0.041 0.893

Supply chain 3 6.74% 0.88 0.040 0.210 0.750

Supply chain 4 11.48% 0.75 0.000 0.079 0.921

desirable (Oliva and Sterman, 2001).

The models, driven by one exogenous data series (end customer demand), and
one “crisis response” policy (desired stock reductions in September 2008) shows
a good tracking of the overall behavior of the system. However, a match between
observed and simulated behavior is not in itself enough to accept the model and
hypothesis. As Oliva (2003) explains, “There is a chance that a set of parameter
values might be capable of replicating the observed behavior through a set of
unrealistic formulations, and thus generate the right behavior for the wrong
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Figure 3.3 Model output vs. seasonally corrected sales data.

reasons”. To test the validity of the model, we analyze what the estimated
parameters say about its structure, and follow with the analysis of an alternative
model to test whether the same behavior can be achieved through a different
structure.

The system dynamics model presented in §3.3 is based on the anchor and
adjustment heuristic for order generation (Tversky and Kahneman, 1974). The
same decision rule is used in a substantial amount of experimental work, were
individual human behavior is analyzed in the context of the beer distribution
game. Three of the most salient such studies are Sterman (1989), Croson
et al. (2014), and Croson and Donohue (2006). In these experiments, students
(and professionals) play the beer game (under different settings), and then the
behavioral parameters are then fit through the use of regression analysis. From
these publications, we can derive the estimate of the stock, pipeline inventory,
and forecast adjustment times, and we see that in all cases the experimental
studies conclude that subjects tend to under-estimate the pipeline inventory, and
observe low reactiveness towards inventories and forecasts. The fact that these
two phenomena can be observed in the behavioral parameters of our calibrated
models increases our confidence on its structural validity.

3.4.5 Alternative model

The de-stocking hypothesis presented in this chapter is motivated by a variety
of results from the inventory management and economics literature. It
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has been shown that firms can convert assets into cash in the short-term
(Sudarsanam and Lai, 2001), and that lowering inventories is a common response
to financial distress (Pesch and Hoberg, 2013). Furthermore, studies focused
on the mechanisms behind the recent 2008 financial crisis have reported on its
extraordinary magnitude and synchronization (Alessandria et al., 2010). In line
with this, anecdotal evidence points to decisions having been made to reduce
working capital: formal and informal interviews with decision makers across
the industry support this view.

However, the empirical validation of our hypothesis is not possible: inventory
targets are not explicitly reported, and we can’t use actual inventories as a
proxy for inventory targets during the time-frame of this study. The decision
to reduce inventory targets triggers a shock that immediately affects orders, but
its effect on inventory levels is substantially more complex: the combination of
time delays and declining demand caused inventory levels to spike following the
start of the crisis, further increasing the gap between target and actual inventory
levels.

Therefore, to further test our model and –in particular– the de-stocking
hypothesis driving it, we perform additional experiments to rule out alternative
explanations. In Figure 3.4 we observe the model output of a calibrated
alternative model without the de-stocking hypothesis. The alternative model
differs from the original model only in that it does not allow for any de-stocking
to be performed at any point in the supply chain, and its calibration follows the
same procedure outlined in §3.4.3. Table 3.6 shows the fit statistics.

Table 3.6 Alternative model fit statistics

RMSE R2 Um Us Uc

Supply chain 1 7.69% 0.002 0.004 0.682 0.314

Supply chain 2 11.96% 0.259 0.007 0.260 0.733

Supply chain 3 12.83% 0.611 0.068 0.009 0.923

Supply chain 4 15.96% 0.577 0.011 0 0.988

We see that the alternative model adequately tracks the average, or long-term,
demand variations but cannot explain the magnitude of the demand drops nor
their timing. If we compare the alternative model runs with the original (de-
stocking) model runs we can see that the end market sales drive the long-term
evolution of upstream sales, while the short term dynamics are dominated
by shocks. In Table 3.7 we present the summary statistics for the relevant
variables of both models. We perform two-sample t-tests for the means and
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Figure 3.4 Alternative model output.

Table 3.7 Summary statistics for original and alternative models

Variable Mean St. Dev 1st Quartile Median 3rd Quartile

Original Model

τ(S) 9.67 4.81 6.41 9.69 10.18

τ(PL) 7254.17 23152.01 31.10 100 101.73

τ(F) 360.80 1096.79 6.03 10.15 17.27

RMSE 7.72 2.91 5.64 7.43 9.80

R2
0.74 0.10 0.67 0.72 0.82

Alternative Model

τ(S) 10.96 3.51 10 11 12.86

τ(PL) 38009.98 68070.23 17.55 72.72 89756.50

τ(F) 8.89 3.59 6.03 9.96 10.99

RMSE 12.11 3.41 9.83 12.40 14.40

R2
0.36 0.29 0.13 0.42 0.60

find that the alternative model has a significantly larger RMSE and a lower
R2 than the original model (all p ≤ 0.05). Similarly, testing the effect on the
medians (Wilcoxon rank-sum test) gives the same results (p ≤ 0.1, and p ≤ 0.05
respectively).

Additionally, we test for differences in the estimated parameters: the means of
the forecasting, and pipeline inventory adjustment times differ at the p ≤ 0.1
level when comparing original and alternative models, but no such difference
is found when testing for difference in the median values. This is consistent
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with the observation that abnormally large values of these parameters skew the
average results. In general, we observe that all the calibrated models exhibit
characteristics consistent with experimental findings: slow reaction speeds and
an under-weighing of the pipeline inventory.

3.5 Conclusions and Managerial Insights

Behavioral dynamics in supply chains have been widely researched. Initial
studies by Forrester (1958) analyzed data at the level of individual or series of
companies. Following the work by Lee et al. (1997a), extensive analytical work
has been conducted, and more recently, driven by the work by Sterman (1989)
and Croson and Donohue (2005), focus has been on laboratory experimentation.
On the empirical front, Cachon et al. (2007) does not find conclusive evidence
for the existence of the Bullwhip Effect in aggregate empirical data. Chen and
Lee (2012), through analytical work, argue that it is the aggregation of the data
that plays an important role in hiding some of the effect, which is observed at a
firm level (Bray and Mendelson, 2012).

In this study, we use observations following the collapse of Lehman Brothers
in the Fall of 2008 to develop a hypothesis regarding target level setting and
investigate the explanatory power of behavioral dynamics. Our study observes
demand at the level of an individual company, but takes into account the
hypothesized dynamic decision making behavior at meso-level. With this, our
study sets itself apart from previous studies, and not only builds upon the
lines of research discussed above, but also on research in economics studying
inventory cycles. Our results show that the theoretical results of Sterman
(1989) and Croson and Donohue (2005) together with an endogenous inventory
shock, can explain the dynamic evolution of demand observed upstream in
the periods following the start of the recent credit crisis. The endogenous
replenishment process drives the evolution of demand throughout the supply
chain, determined by structural characteristics of the supply chain (following
Forrester, 1958) and the hypothesized human behavior (following Sterman,
1989). The empirical evidence presented shows that slow reaction speeds and
an apparent underestimation of the supply pipeline are prevalent at higher
aggregation levels, suggesting that they go beyond being a phenomenon of
individual decision-making biases. At this level, the pipeline underestimation
seems to be caused not from an incorrect estimation of target values, but as
a combination of the inherent reaction time of firms and a decision rule that
eschews the tracking of the pipeline inventory by instead steering on large
amounts of on-hand inventory. This finding calls for further study on the
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ordering behavior of firms; if behavioral biases influence decision-making at
the echelon level, how can –and should– firms overcome them?. Equally important:
how do these behaviors change over time?

To increase the confidence in our de-stocking hypothesis in the presence of
limited data, we presented an alternative model without the hypothesized de-
stocking. Our results in four supply chains show that the underlying behavior is
consistent among both models and also with prior research. Furthermore, while
the exogenous demand at consumer level and endogenous ordering decisions
in the supply chain drive the overall demand evolution, short-term demand
bullwhip-like dynamics are mainly driven by the de-stocking response to the
crisis.

For managers, our results have implications at both the tactical and strategic
levels of decision making. Tactically, for managers it is much more important
to keep track of consumer demands, supported by an endogenous simulation of
ordering behaviors to make demand forecasts, rather than relying exclusively on
information obtained from one or two echelons downstream. These simulation-
based forecasts can drive decisions on plant openings and closures, staffing
decisions, and aggregate inventory strategies. Additionally, our results highlight
the importance of understanding the implications that policy changes can bring
into a supply chain. It is well known that aggregate inventory levels can serve as
an additional way to achieve liquidity targets, however, limited research exists
on the implications of such decisions on the stability of the entire supply chain.
Our results suggest that such decisions can be a significant source of demand
fluctuations.

Strategically, we show that the structure of the supply chain impacts the
clockspeed at which the supply chain operates. In this sense, we provide a
formal model that can be used (a) to analyze the effects of structural and policy
changes in the supply chain, and (b) to potentially become a decision-making
tool in which endogenous behavioral changes form the basis of scenario-based
forecasting. A cursory glance at the model outputs of the original and alternative
models suggests that in certain cases (such as in supply chain 1), the de-stocking
behavior not only had influence in the short term dynamics, but that it is also
the main source of the steep demand drops observed in the periods following
Lehman Brother’s bankruptcy.

In this sense, our findings highlight the prospective value of information
sharing. In cases such as the period studied in this paper, and consistent
with experimental research (Croson and Donohue, 2006), knowledge about
the underlying source of the observed demand dynamics (i.e. distinguishing
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between ‘actual’ demand drops and inventory adjustments) is crucial so as to
adopt the correct response strategy.

There are limitations and opportunities for further research. First, we used a
single time series of upstream sales per echelon model, which hinders our ability
to perform partial model calibration and dissociate the de-stocking decisions
according to the supply chain stages. To overcome this we performed the
model calibration during a time-frame where supply chain decision-making
was particularly synchronized and demand was declining. Further studies with
detailed data at every stage of the supply chain can offer more robust statistical
tests of firm-level behavior as well as bring insights regarding the influence
of firm characteristics (in particular the distance from the end market) in the
ordering and de-stocking behavior.

Second, we make a series of implicit assumptions that may not necessarily apply
in other industries or time periods. Our models assume independent echelons
with no information sharing among them, with constant market share (and no
price changes), a stable supply chain structure, no capacity limitations, and
aggregate data. We expect these assumptions to be reasonable within the crisis
time-frame, but further modeling efforts are necessary to test whether they can
be applied during stable times, where the demand dynamics are more subtle.

Such studies, combining fine grained data from multiple echelons in a supply
chain, have the potential to take us closer to the objective, both empirical and
experimental, of testing whether endogenous mechanisms that we know govern
the individual behavior (such as the underestimation of the supply line, and
de-stocking and hoarding behaviors) can be consistently found at the aggregate
level.



I was almost driven to madness in
considering and calculating this
matter.

Johanes Kepler

Chapter 4
Human Behavior and the
Bullwhip: an Analytical model
The Bullwhip Effect is a major problem in today’s supply chains. It is a
dynamic phenomenon that has sparked a vast body of research from a wide
array of methodologies. Empirical, experimental, and analytical studies exist
of both a descriptive nature –trying to identify and describe it– and of a
normative nature –trying to overcome it–. The causes for the Bullwhip Effect
can be broadly separated into operational (such as order batching and price
fluctuations) and behavioral categories (such as artificially inflating orders and
pipeline underestimation).
In the previous chapter, we saw that a synchronized inventory shock is capable
of generating the demand dynamics experienced by upstream manufacturing
firms during the 2008 credit crisis. When calibrating that model, we observed
that the model’s behavioral parameters are consistent with certain behavioral
traits that are routinely exhibited by humans in beer game experiments.
The goal of this chapter is to extend the analytical knowledge regarding the
influence of human behavior in the appearance of the Bullwhip Effect and the
amplification of inventory variance. We use linear control theory as a modeling
methodology, and frame our work as a descriptive work: we attempt to link
existing experimental and empirical results to insights developed through this
analysis.
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4.1 Introduction
In this chapter, we use discrete-time classical control methods to analyze an
Automatic Pipeline, Variable Inventory Order Based Production Control System
(APVIOBPCS) design in light that it is the policy that most closely resembles
human decision-making heuristics. We aim to understand not only the bias
shown by beer game players (Sterman, 1989; Croson and Donohue, 2006)) in
under-estimating the pipeline, but also why empirical data suggests that real-
life firms operate through APVIOBPCS with low fractional adjustments (see
Chapter 3). We focus on both the bullwhip and inventory variance amplification
and adopt stationary and transient measures to quantify performance.
The rest of this chapter is structured as follows: In the next section we introduce
the discrete-time model in both time and frequency domains. We follow with a
comprehensive analysis of the stability of the system, deriving exact expressions
for the general stability boundaries. We introduce performance measures in
Section 4.4, analyzing the dynamic, and steady state, responses of both the
generation of orders and the evolution of inventories. We then identify the trade-
offs inherent to these designs, and position real-life firms in this context. We
conclude in Section 4.5, and present all the mathematical proofs in Appendix A.

4.2 Model Description
In this section, we analyze a discrete-time, periodic-review, single-echelon, gen-
eral APVIOBPCS design with an exponentially smoothed forecast of demand.
The inventory coverage (C ∈ R+), the delivery lead time (L ∈ N), and the
forecast smoothing parameter α ∈ [0, 1] are the structural parameters of the
system, while the pipeline (γP ∈ [0, 1]) and inventory (γI ∈ [0, 1]) adjustment
factors are the behavioral parameters of the system1. The inventory coverage
represents the target inventory (measured in weeks of sales) that a firm chooses
to maintain, while the target pipeline is calculated each period as the product of
the forecast and the system’s lead time. The lead time is assumed deterministic
and defined as the time elapsed between the placement and receipt of a
replenishment order. The behavioral parameters specify the fraction of the gap
between target and actual values that are taken into account when generating
orders: γI is the fraction of the inventory gap to be closed per period, and γP is
the fraction of the pipeline gap to be closed per period. For instance, a system

1Note that the APVIOBPCS model presented in this chapter is the discrete equivalent to the
model presented in Chapter 3. Because of the different intuitive representation, the behavioral
parameters in this chapter are expressed as fractional adjustments, the reciprocal of the adjustment
times introduced in Chapter 3.
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with γI = 1 and γP = 0 completely closes the inventory gap every period, while
it ignores the pipeline entirely.

Formally, the sequence of events, and the equations in the model are as follows:
at the beginning of each period (t) a replenishment order (ot) based on the
previous period’s demand forecast ( ft−1) is placed with the supplier. Following
this, the orders that were placed L periods before are received. Next, the demand
for the period (dt) is observed and served. Excess demand is back-ordered. Then,
the demand forecast is updated according to the formula: ft = αdt + (1− α) ft−1.
The forecast is used to compute the target levels of both inventory, ît = C ft,
and pipeline, p̂t = L ft. The orders that will be placed in the following period
(ot+1) are generated according to an anchor and adjustment-type procedure,
ot+1 = γI(ît − it) + γP( p̂t − pt) + ft. The balance equations for inventory (i)
and pipeline (p) are: it = it−1 + ot−l − dt, and pt = pt−1 + ot − ot−l . Note that
the assumptions that orders and inventories can be negative are necessary to
maintain the linearity of the model.

This sequence of events is identical to the one described in Hoberg et al. (2007b)
with the difference being that our study introduces the fractional behavioral
parameters γI and γP. Other studies of AP(V)IOBPCS designs use different
order of events; e.g., Dejonckheere et al. (2003), and Disney (2008) orders are
placed at the end of each period. These changes in the sequence of events
introduce extra unit delays in the equations. However, these differences only
affect the mathematical representation of the system; the structure of the system
and the results, remain the same.

4.2.1 On the equivalency of APVIOBPCS and Order Up To policies

Dejonckheere et al. (2003) remark that when γI = γP = 1, an APVIOBPCS
design is equivalent to an Order-Up-To (OUT) policy with safety lead times. To
see this equivalency, we take a classical OUT policy, where orders are defined as
follows:

ot = D̂L
t + SSt − IPt, (4.1)

where D̂L
t is the expected lead time demand, SSt the safety stock, and IPt the

inventory position. The safety stock is given by SSt = kσ̂L
t , where k is a constant

term chosen to meet a required service level, and σ̂L
t is the expected standard

deviation of the forecast error during the lead time. Following Disney et al.
(2006b) we can set the safety constant k = 0 and instead set a safety lead time,
C, so that we can rewrite the policy (using the notation and sequence of events
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defined in the prior section) as:

ot+1 = D̂L+1
t + D̂C

t − IPt. (4.2)

Since the inventory position is equal to the sum of net and pipeline stocks, and
the expected demand is maintained in our model through the forecast, ft, we
can successively obtain:

ot+1 = D̂L+1
t + D̂C

t − It − pt, (4.3)

ot+1 = (L + 1) ft + C ft − It − pt, (4.4)

ot+1 = ft + C ft − It + L ft − pt. (4.5)

The latter equation represents an APVIOBPCS design with γI = γP = 1.

Following this reasoning, an APVIOBPCS design with independent adjustment
of the inventory deficits through γI 6= γP, is a generalization of OUT policies;
analogous to a Proportional-Order-Up-To (POUT) policy (see Chen and Disney,
2007) with individual adjustments of the net and pipeline inventory deficits:

ot+1 = ft + γI(C ft − It) + γP(L ft − pt). (4.6)

If we restrict γI = γP = γ we obtain an analogous of a POUT policy where the
adjustments are driven by the inventory position deficit:

ot+1 = ft + γ ((L + C) ft − IPt) . (4.7)

Given that the safety stock in APVIOBPCS designs is determined by the
inventory coverage C, the trade off between cost and service level considerations
is implicitly included in its calculation, as well as in the smoothing parameters
γI and γP.

When we bound the fractional adjustments between zero and unity (γI , γP ∈
[0, 1)), these are smoothing policies. While classical OUT policies react swiftly
to changes in the demand at the expense of variability in orders, smoothing
policies display steadier orders at the expense of a slower reaction time—they
use inventories as a buffer for demand variability. All else equal, a smoothing
policy will result in higher inventory-related costs to achieve the same service
level as a classical OUT policy2. From a cost perspective, then, the adoption
of smoothing APVIOBPCS policies hinges on the trade-off between the costs
related to the variability of inventory and orders, and the cost of inventory and
holding costs.

Because the work contained in this chapter is descriptive in nature, we assume

2This observation is trivial if we consider that it has been shown that OUT policies minimize
inventory and shortage costs (Dejonckheere et al., 2003).



Model Description 75

that the parameters C, γI , and γP are given and therefore we do not attempt
to calculate or optimize them. In the remainder of this chapter, we explore the
influence of different parameters in the dynamic performance of APVIOBPCS
policies without explicit considerations of the cost trade-offs associated.

4.2.2 The Frequency Domain

The model we introduced completely describes the relationships between
the parameters of a general APVIOBPCS design. However, due to time
dependencies, we cannot find a clear relationship between the inputs and the
outputs of the system. For this reason, we turn from the time domain to
the frequency domain (where these relationships become simply algebraic), by
taking the Z-transform of the system’s set of equations.

The Z-transform is defined as:

Z{xt} = X(z) =
∞

∑
k=0

xkz−k, (4.8)

where z is a complex variable and xk is the value of a time series in period k. We
refer the reader to Jury (1964), and Nise (2007) for a comprehensive background
on discrete systems and the Z-transform method; and to Hoberg et al. (2007b),
and Dejonckheere et al. (2003) for an introduction to their application on
inventory modeling.

Using the following properties of the Z-transform:

Z{a1xt + a2yt} = a1X(z) + a2Y(z) (Linearity), (4.9)

Z{xt−T} = z−TX(z) (Time delay), (4.10)

we can write all system parameters in the frequency domain. The equation for
orders is written then as:

O(z) =
[
γI( Î(z)− I(z)) + γP(P̂(z)− P(z)) + F(z)

]
z

. (4.11)

In control theory, the response of a system is completely characterized by its
transfer function G(z) = N(z)/C(z), that represents the change in output N(z)
with regards to a change in input C(z) in the frequency domain. In this chapter
we are interested in studying the properties of the transfer function of orders
(GO(z)) and the transfer function of inventories (GI(z)) The transfer function of
orders represents the change in orders O(z) in response to a change in customer
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demand D(z):

GO(z) =
O(z)
D(z)

=

[
γI( Î(z)− I(z)) + γP(P̂(z)− P(z)) + F(z)

] 1
z

D(z)

=
[α(γIC + γPL + 1)(z− 1) + γI(z− 1 + α)] zL

(z− 1 + α)(zL(z− 1 + γP) + (γI − γP))
. (4.12)

Analogously, the transfer function of the inventory is defined as the change in
inventory level I(z) as a response to customer demand D(z):

GI(z) =
I(z)
D(z)

=
z

z−1
[
O(z)z−L − D(z)

]
D(z)

=
zα(γIC + γPL + 1)(z− 1) + z(z− 1 + α)

(
γP − zL(z− 1 + γP)

)
(z− 1)(z− 1 + α)(zL(z− 1 + γP) + (γI − γP))

.

(4.13)

Having defined the transfer functions for orders and inventories3, we can now
provide structural properties of the response of the system.

4.3 Stability and Aperiodicity of the System
We have the following definition for the stability of a system:

Definition 4.1 (Nise, 2007). A system is stable if every bounded input yields a bounded
output, and unstable if at least one bounded input yields an unbounded output.

In our model, the customer demand is the input, and orders and inventory are
the outputs. In this context, a stable production/inventory system will produce
finite orders and finite inventories as long as the demand itself is finite. Thus, the
stability of the system is a desirable property that we want to study. However,
Definition 4.1 does not specify mathematical conditions for stability, necessary
to understand whether a given system is stable or not. An alternative definition-
condition that connects the stability of a discrete system with its transfer function
is:

Definition 4.2 (Jury, 1964). Suppose that G(z) = N(z)/C(z) is the transfer function
of a linear time-invariant, system and that the denominator C(z) has exactly n roots pi,
namely C(pi) = 0, i = 1, . . . , n. We call the roots pi poles of the transfer function, and
we say that a system is stable if all poles pi are within the unit circle of the complex

3Readers familiar with the stability criteria for a discrete system will notice that the existence of
the term (z− 1) in the denominator of Eq (4.13) suggests that the system is not stable. We cope with
this issue in §4.3.1, following the formal definition of the stability criteria.



Stability and Aperiodicity of the System 77

plane (|pi| < 1), marginally stable if at least one pole is on the unit circle (|pi| = 1),
and unstable if at least one pole resides outside the unit circle (|pi| > 1).

Consequently, judging the stability of a system is equivalent to finding the
solutions to the characteristic equation C(z) = 0.

Remark 4.1 Suppose that P with |P| ≥ 1 is a root of C(z) with multiplicity m, namely,
C(i)(P) = 0, ∀ i = 0, . . . , m− 1. If N(i)(P) = 0, ∀ i = 0, . . . , m− 1, and if all the other
roots of C(z) are inside the unit circle, then the system is called stabilizable. However
this is sometimes used alternatively as a definition for a stable system (Wunsch, 1983).
This is not the case here.

In the next section we derive conditions for the stability of the system through
an analysis of the structure of the involved characteristic polynomials, and we
introduce the aperiodicity of the system, which is a characterization of the
dynamic response of a stable system. We begin our analysis with the response
of orders to changes in demand (Eq. (4.12)) and follow with the analysis of the
inventory response to changes in demand (Eq. (4.13)).
In the forthcoming mathematical analysis, the fractional parameters γI , and γP
are not a-priori bounded to [0, 1]. This allows us to characterize the stability of
the system over a broader range of possible values than the ones that can be
found in a physical system.

4.3.1 Stability Boundaries

By comparing equations (4.12) and (4.13) we see that the characteristic poly-
nomials of orders and inventories are almost equal except for the extra term
(z − 1) that appears in the latter. The pole z = 1 would render the inventory
response marginally unstable, unless this is also a root of the numerator of
GI(z) (see Eq. (4.13) and Remark 4.1). To this effect, we use the geometric series
zL+1 − 1 = (z− 1)∑L

i=0 zi to rewrite equation (4.13) as:

GI(z) =
zα(γIC + γSL + 1)− zL+2 − zL+1(α + γP − 1) + γPz + αγP

(
1−∑L

i=0 zi
)

(z− 1 + α)(zL(z− 1 + γP) + (γI − γP))
.

(4.14)

Thus, in an APVIOBPCS design, the stability of both orders and inventories is
defined by the same characteristic polynomial

C(z) = (z− 1 + α)(zL(z− 1 + γP) + (γI − γP)), (4.15)
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Being a polynomial in z of degree L + 2 with real coefficients, C(z) has exactly
L + 2 roots. Unfortunately, this polynomial is transcendental: it is impossible
to find its roots independently of L. Furthermore, exact solutions for C(z) = 0
can only be found for values of L ≤ 2. Thus, we study structural properties
of C(z) to derive a set of conditions that define an exact stability boundary for
the general APVIOBPCS design4. The proofs of all the theorems, lemmas, and
propositions are found in the Appendix.
It can be shown that APVIOBPCS designs share the same characteristic poly-
nomial with APIOBPCS designs (Disney and Towill, 2006). The latter have
constant target inventories as opposed to being proportional to expected sales as
in APVIOBPCS. Thus, the insights and conclusions derived from the analysis of
C(z) hold for both designs. For notational simplicity we refer to AP(V)IOBPCS
designs when both can be used interchangeably.

Proposition 4.1 The stability of a general AP(V)IOBPCS system with smoothing
parameter α ∈ [0, 1] can be determined by analyzing the poles of the reduced
characteristic polynomial:

Ĉ(z) = zL(z− 1 + γP) + (γI − γP). (4.16)

An AP(V)IOBPCS is stable if all the roots of Ĉ(z) are located inside the unit circle.

Thus, the stability of a general AP(V)IOBPCS system with the commonly used
exponential smoothing parameter range of [0, 1] is completely determined by the
values of L, γI , and γP.

Theorem 4.1 For each value of L, stability is guaranteed when γI and γP satisfy the
following L + 1 conditions:.

(i)

|γI − γP| < 1, (4.17)

(ii)

(1− (γI − γP)
2) |γP − 1|(n−1) Un−1

(
X
)
− |γP − 1|n Un−2

(
X
)
> 0, n = 2, · · · , L,

(4.18)

4There are simplified criteria to determine the stability of a system without having to explicitly
calculate the roots of the characteristic polynomial: The Routh-Hurwitz stability criterion (Nise,
2007) for continuous systems and its discrete analogous, Jury’s stability criterion (Jury, 1964).
However, these methods require the knowledge of the order of the characteristic polynomial.
Because the order of the characteristic polynomial in our system is defined by the lead time L,
such methods cannot be used to obtain a stability criterion independent of L.
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where Un(X) is the Chevyshev polynomial of the second kind, defined by

Un(X) =

(
X +
√

X2 − 1
)n+1 −

(
X−
√

X2 − 1
)n+1

2
√

X2 − 1
, (4.19)

with

X =
1− (γI − γP)

2 + (γP − 1)2

2 |γP − 1| , (4.20)

and,

(iii) ((
1− (γI − γP)

2
)2
− ((γI − γP) (γP − 1))2

)
|γP − 1|L−1 UL−1

(
X
)
−

− 2
(

1− (γI − γP)
2
)
|γP − 1|L UL−2

(
X
)
+ |γP − 1|L+1 UL−3

(
X
)

+ 2 (−1)L+1 (γI − γP) (γP − 1)L+1 > 0. (4.21)

Remark 4.2 It can be seen that the L conditions defined by (4.17) and (4.18) describe
regions of convergence decreasing in L. These regions are plotted in Figure 4.1. We
observe that the intersection of all the regions that are defined by the conditions in (4.18)
is equal to the region that is defined in (4.18) for n = L. Moreover, we found that the
last condition can be simplified. This allows us to pose the following conjecture.

Conjecture 4.1 For each value of L, stability is guaranteed when γI and γP satisfy the
following conditions:

(i) |γI − γP| < 1,

(ii) (1− (γI − γP)
2) |γP − 1|(L−1) UL−1

(
X
)
− |γP − 1|L UL−2

(
X
)
> 0,

(iii) If the L is odd, then the third condition reduces to
γI > max{0, 2(γP − 1)}, and if L is even, then the third condition reduces to
0 < γI < 2.

This conjecture has been numerically verified for L = 2, · · · , 200. Furthermore,
the behavior of the conditions point towards an asymptotic region of conver-
gence, defined by

Lemma 4.1 For all values of lead times L ∈ N, stability is guaranteed in the area that
is bounded by the lines γI = 0, γI = 2, γI = 2(γP − 1), and γI = 2γP .



80 Human Behavior and the Bullwhip: an Analytical model

To build intuition for the reasoning behind Conjecture 4.1 and Lemma 4.1, we
refer the reader to Figure 4.1 where we plot the (γI , γP) pairs that satisfy the
conditions from Theorem 4.1 in the form of colored regions in the [γI , γP] space
for six different values of L. We plot the region that satisfies condition (i) in
a shade of blue, the region that satisfies condition (iii) in a shade of light red,
and the L − 1 regions that satisfy condition (ii) in shades of yellow. A system
satisfies all conditions, and thus is stable, if its pair of parameters (γI , γP) falls
inside a region where all L + 1 conditions are satisfied. We color the regions that
satisfy each of the conditions with semitransparent hues so that graphically, the
intersection of all the L + 1 regions (which defines the stability of the system) is
represented by a dark purple stability region (the variation in the color shades
across plots corresponds to the amount of overlapping regions, which increases
in L). The additional green areas in Figs. 4.1a and 4.1b concern aperiodicity,
which we define in the next sub-section.

The plots on the left column of Fig. 4.1 correspond to systems with odd lead
times, and the plots on the right column correspond to even lead times. It is
easy to see that the region that satisfies condition (i) is independent of the lead
time, whereas the region that satisfies condition (iii) depends on the parity of
the lead time. Indeed, we observe that the latter region is the same for all even
(odd) lead times, this observation results in the simplified condition (iii) defined
in Conjecture 4.1.

When we analyze the behavior of the (L− 1) regions that satisfy condition (ii),
we observe that within the overlap of the regions that already satisfy conditions
(i) and (iii) (red and blue), each additional yellow region includes the preceding
one. In other words, the nth yellow region lies inside the (n− 1st) yellow region.
This observation results in the simplified condition (ii) defined in Conjecture 4.1.
Thus, we can ensure stability by determining the overlap of only 3 regions for
any value of lead time L.
Furthermore, looking at the region of stability, we can see that it asymptotically
converges towards the parallelogram defined in Lemma 4.1.

Note that in this mathematical analysis we have not bounded the parameters γI
nor γP. From our analysis, this results in pairs of values where for a given γI ,
there may exist a γP < 0 for which the system is stable. Having γP < 0 implies
that the adjustment of orders will increase when the pipeline gap decreases and
vice versa. Disney (2008) described this “negative” stability region for a system
with L = 2 and found that its response is heavily dampened. Similarly, for all
examples shown in Figure 4.1, there exists a region of stability where γI > 1
and/or γP > 1. In this case, the order adjustments calculated by such a policy
will be larger than the inventory/pipeline gap. Given that such policies are
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counter intuitive, and not analogous to commonly used OUT policies, we restrict
the analysis in the remainder of this chapter to the case where γI , γP ∈ [0, 1].

4.3.2 Aperiodicity

If a system has a time-domain response with a number of maxima or minima
that is less than n, the order of the system, we call such a system aperiodic (Jury,
1985). These dynamics are also defined by the poles of the transfer function:
positive real poles contribute a damping component to the response, whereas
negative real poles, and poles with an imaginary component will contribute
oscillatory terms (Nise, 2007). Formally,

Definition 4.3 (Jury, 1985). Suppose that G(z) = N(z)/C(z) is the transfer function
of a stable, linear, time-invariant, system. Thus, all poles of the transfer function, pi,
i = 1, . . . , n are within the unit circle. The response of this system is aperiodic if
∀i, pi ∈ [0, 1). From Disney (2008) we adopt the concept of a weakly aperiodic system
if ∀ i, pi ∈ R and there exists an index k ∈ {1, . . . , n} such that pk < 0.

By analyzing the poles of the reduced characteristic polynomial (4.16) for
AP(V)IOBPCS and applying Definition 4.3 we obtain the following propositions:

Proposition 4.2 When γI = γP = γ the response of a stable system for all lead times
L is:

• aperiodic when 0 < γ ≤ 1, and
• weakly-aperiodic when 1 < γ < 2.

Proposition 4.3 When L > 2 and γI 6= γP the response of a stable system is non-
aperiodic.

We can find aperiodicity and weak-aperiodicity for the cases of γI 6= γP and
L = 1, 2. The area shaded in green represents the region for which the system
is aperiodic in Figure 4.1a and weakly-aperiodic in Figure 4.1b. The boundaries
for these regions can be found by following the same analysis as in the proof of
Proposition 4.3.
The analysis of stability of an AP(V)IOBPCS design is important because a stable
system guarantees bounded orders and inventories for any possible demand,
as long as it is finite. Similarly, the aperiodicity analysis of the system is
relevant because an aperiodic system avoids costly oscillations. By themselves,
however, stability and aperiodicity boundaries are not enough to measure
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the performance of the system. The stability conditions and aperiodicity
propositions, as well as the special regions defined in the accompanying figures,
must be seen, then, as a necessary first step in the evaluation of the system. The
analysis presented thus far is necessary, but it is not enough to distinguish any
performance difference between two stable systems, or two aperiodic systems.
From an analysis of the poles of the transfer functions, we see that policies where
γI < γP will always have a dampening component, whereas when γI > γP
the response can be oscillatory. This observation suggests that the performance
of the system will depend on the ratio of the behavioral parameters; we
expect an oscillatory response in systems where the pipeline is under-estimated
(γI > γP ), and an over-dampened response in systems where the inventory
is under-dampened. However, we cannot derive more general statements on
the performance of the system through pole analysis because the amount, and
magnitude of the poles (necessary to characterize the response) depend on the
order of the system, and on the behavioral parameters. This, coupled with the
observation made, where humans tend to under-estimate the pipeline, motivate
the structure of the next section. We aim to characterize the performance of
a stable system as a function of the ratio of its behavioral parameters through
extensive numerical experimentation.
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(a) Stability and aperiodicity regions, L=1 (b) Stability and aperiodicity regions, L=2

(c) Stability and aperiodicity regions, L=3 (d) Stability regions for lead time L=4

(e) Stability regions for lead time L=9 (f) Stability regions for lead time L=10

Figure 4.1 Stability and aperiodicity conditions.
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4.4 The relationship Between Behavior and Performance

In this section, we study the performance of an APVIOBPCS design through an
analysis of its variance amplification (stationary performance) and its response
to demand shocks (transient performance). We introduce in each case the
relevant measures we need to characterize its performance. Our objective is
to gain an understanding of the influence of the behavioral parameters on said
performance measures through extensive experimentation.

4.4.1 Variance Amplification

In supply chains, the concept of variance amplification is often studied in the
context of the Bullwhip Effect: the propensity of orders to be more variable
than demand signals, and for this variability to increase the further upstream a
firm is in a supply chain (Lee et al., 1997a). In general, variance amplification
measures the ratio of input variance to output variance and can be defined for
any pair of input/outputs. In this section, we use concepts from control theory
to analyze the stationary performance of an APVIOBPCS design through the
lens of variance amplification for orders and inventories.
To perform our analysis, we introduce two performance measures: the amplifica-
tion ratio, which measures the ratio of the output and input standard deviations
in the steady state; and the bullwhip measure, which measures the ratio of the
output variance to the input variance when demand is stochastic and stationary.

Steady state performance

We study the systems’ steady state performance by evaluating its amplification
ratio when demand is a sinusoid of frequency ω. In steady state, a sinusoidal
input to a linear system produces a sinusoidal output of the same frequency
but of a different magnitude and phase. For a given linear system, the ratio
between the amplitude of the input and the magnitude of the output at a given
frequency is constant and is calculated as the modulus of its transfer function
evaluated at that frequency (Dejonckheere et al., 2003). Thus, the steady state
amplification ratio of an APVIOBPCS design can be calculated directly, for any
input sinusoid, from its transfer functions. Furthermore, it can be shown that
for sinusoidal inputs, the amplification ratio value is exactly the same as the ratio of
the standard deviations of input over output (Jakšič and Rusjan, 2008). Formally, for
our system we define AO,ω as the amplification ratio of orders for a sinusoidal
demand of frequency ω, and AI,ω as the amplification ratio of inventory for a
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sinusoidal demand of frequency ω, where:

AO,ω = |GO(eiω)|, and (4.22)

AI,ω = |GI(eiω)|. (4.23)

Frequency response plots are the graphical representation of the AO,ω and
AI,ω of the system for sinusoidal demands with frequencies between 0 and
π. Because any demand stream can be decomposed into a sum of sinusoids,
these plots are a very powerful tool; by showing the response to every possible
demand frequency, they provide a good intuition over the performance of a
certain behavioral policy (pairs of γI and γP values) with regards to any possible
demand pattern.

Stationary performance

We now introduce the bullwhip measure as a way of evaluating the performance
of a system over all possible demand frequencies. Disney and Towill (2003)
define the bullwhip measure as the ratio between input variance to output
variance (BW = σ2

out/σ2
in) and show that if the mean of the input is zero and its

variance is unity, the bullwhip of a system can be directly calculated through the
square of the area below the frequency response plots. In particular, this implies
that if the input to our system is a stationary i.i.d. normal demand stream, then
the bullwhip of orders can be calculated through

BWO =
σ2

O
σ2

D
=

1
π

∫ π

0
|GO(eiω)|2dω, (4.24)

and the bullwhip of inventories (BW I) is defined analogously:

BW I =
σ2

I
σ2

D
=

1
π

∫ π

0
|GI(eiω)|2dω. (4.25)

Thus, by plotting the contours of BWO and BWI as a function of the behavioral
parameters γI and γP, we obtain a graphical representation of the stationary
performance of the system as a function of the behavioral policies.

4.4.2 Influence of Behavioral Policies on the Amplification of Variance

Since the stationary and steady state performance measures are closely related,
we adopt a two-step approach to analyze the influence of different behavioral
policies on the system’s performance: we first look at the stationary performance
by plotting contours of the bullwhip measures, and follow by analyzing the
steady state performance of different policies belonging to the same contour.
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Because every frequency is equally represented in the stationary measures, the
insights obtained by comparing behavioral policies within a single contour, hold
for every contour. The results presented in this section correspond to a system
with α = 0.3, C = 3, L = 5. Note that we performed extensive experiments with
different parameters, we chose to present only these cases since the qualitative
conclusions are similar.

Bullwhip contours Figure 4.2a shows the bullwhip contour plots for orders
as a function of the behavioral parameters, and Figure 4.2b, the equivalent
plot for inventories. We see that despite differences in the magnitude of the
variance amplification (BWI>BWO for any given behavioral policy), low values
of γI and γP correlate with low values of BWI and BWO. Apart from this
tendency to increase from the lower left quadrant towards the upper right, the
variance amplification displays an asymptote in the critical stability line. These
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Figure 4.2 Contour plots

observations suggest that the behavioral policies observed in experimental and
empirical research result in good stationary performance for both inventories
and orders, but do not, however, provide any additional information about
how specific policies affect the performance (i.e., we cannot separate between
different policies within a single contour line). Also note that under stationary
demand an unstable system has a finite bullwhip (as evidenced by the existence
of contour lines in the lower right corner of the graphs).
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Performance within contours We use frequency response plots of different
behavioral policies within a single contour to study how these policies affect the
performance of a system.
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Figure 4.3 Bullwhip contour, and frequency plots for orders
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Figure 4.4 Inventory amplification contour, and inventory frequency plots

The steady state performance of the system can be grouped into three categories,
according to whether the ratio between behavioral parameters is greater, smaller,
or equal to one. Specifically, γI > γP policies outperform the rest when the
frequency is larger than roughly π/4 (If demand is observed daily, a frequency
of π/4 represents a cyclical demand with a period of 8 days), but significantly
under-performs otherwise. The performance advantages observed are a lower
amplification ratio for any given frequency than all other policies, and a higher
robustness to changes in frequency (i.e., flatter response) than γI < γP policies.
Conversely, γI < γP policies offer a performance advantage with frequencies
smaller than roughly π/4. We see this in Figure 4.3 (Figure 4.4), where we plot
the frequency responses of the same system under 7 different behavioral policies,
grouped into Figures 4.3b and 4.3c (4.4b and 4.4c) according to their BWO (BWI).
We see that the influence of behavioral parameters on the system’s performance
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depends on the demand pattern. In particular, the behavioral policies cause
systems to react very differently towards high- and low-frequency demands,
with a very clear trade-off in performance. The observed empirical behavior of
under-estimating the pipeline, for example, is consistent with a desire to buffer
short term fluctuations in demand. In the next section, we study a special case
of demand: a one-time shock.

4.4.3 Influence of Behavioral Policies on the Response to Demand
Shocks

We perform this study in the time-domain, by keeping track of the actual
changes in orders and inventories after a step demand increase. We quantify
the system’s transient performance through the integral time weighted absolute
error (ITAE ), a measure of the dynamic performance of the system in terms of
time-weighted deviations from the ideal response (Hoberg et al., 2007b). We use
the ITAE to quantify the transient behavior of the system after a step change in
demand. The ITAE is defined as:

ITAE =
∞

∑
t=0

t|ε(t)|, (4.26)

where ε(t) represents the absolute error at time t. This measure penalizes
deviations from the new steady state, and introduces a linear penalty for longer
lasting deviations. Thus, both the amplification and the settling time of the
system play a role in its determination. Due to the transcendental nature of the
transfer functions of the system, it is not possible to derive a general, closed
form expression for its ITAE. An analytical expression for fixed values of L
can be calculated through a double transform of the transfer functions (Hoberg
et al., 2007b), but the complexity of the general transforms makes this procedure
unsuitable for anything but trivial values of L. Hence, we continue to build upon
our results thus far through numerical experimentation.
Thus far, the influence of behavioral parameters on the orders and inventories
have been comparable. When responding to shocks, on the other hand, we
find that γP = γI policies perform best when looking at ITAEO, while the
performance of ITAEI is best for a policy of the type γP < γI . Furthermore, and
in direct contrast with the findings of the previous section, for a given γI/γP
ratio, the system’s performance increases towards the top-right quadrant of the
behavioral parameter space. This means that the behavioral policies that were
found to work best for stationary demands, are at a disadvantage when shocks
occur. Figure 4.5 shows the transient performance of a APVIOBPCS design as
measured by the ITAE of orders (ITAEO) and inventory (ITAEI) of a design with
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(a) Log of ITAE for orders (b) Log of ITAE for inventories
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Figure 4.5 ITAE as a response to a step increase in demand.

α = 0.3, C = 3, and L = 5 for different behavioral parameters (γI and γP). The
ITAE is calculated for the first 50 periods. Due to the extreme variation in values,
we plot the logarithm of ITAE and clip the values of exploding series.

4.4.4 Insights

Systems in real life seem to operate in what we can describe as the lower left
quadrant of the behavioral parameter space, and below the stability diagonal
(Sterman (1989), Chapter 3 of this dissertation). These systems offer performance
advantages under stationary demands, and demands with high frequency
components but at the same time offer performance disadvantages when there
is a demand shock. This is to be expected: the slow behavioral response that
buffers high frequency demand fluctuations causes the system to be too slow to
respond to a shock, while the rapid behavioral response that allows the system to
quickly adapt to a demand shock causes the system to overreact when demand
is stationary or cyclic. To understand and analyze this performance trade-off we
introduce performance trade-off curves for orders and inventories.

4.4.5 Stationary and Transient Performance Trade-off

To quantify the trade-off we group behavioral policies through the γI/γP ratio
(diagonals in the behavioral parameter space) and plot BWO against IATEO,
and BWI against IATEI . As expected, DE-policies (γP = γI) offer the best trade-
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off between stationary and transient performance. However, under-estimating
the pipeline (γP < γI) can give a performance edge if the objective is to
minimize the stationary error. This slight performance edge comes at the
cost of an increased sensitivity: a deviation from the optimal policy brings
about significant performance penalties. Over-estimating the pipeline, on the
other hand, decreases the performance of the system, but displays increased
robustness.
Figures 4.6a and 4.6b show the performance trade-off curves of order and
inventories, Figure 4.6c gives the reference for the position of the curves within
the behavioral parameters, and Figures 4.6d and 4.6e show the trade-off curves
limited to the [0, 0.4]2 area in the behavioral space.
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(a) Order performance trade-off curves
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Figure 4.6 Performance trade-off curves between stationary and transient responses.
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4.5 Conclusions

We have used classical control theory to model general AP(V)IOBPCS systems
and analyze the impact of fractional behavioral parameters γI and γP on their
performance. Behavioral parameters in the context of these systems are what in
the control theory world are known as feedback controllers, and represent the
incomplete closure of inventory and pipeline gaps at the moment of generating
replenishment orders. The study of the behavioral influence is motivated by the
existence of a large body of experimental, and empirical, research that identifies
human biases in ordering decisions. The quantification of these biases suggests
that both individual decision makers and firms operate in a clearly defined zone
within the parameter space. We attempt, throughout this chapter, to understand
what –if any– advantages this zone brings to the performance of the system.

To achieve this, we first modeled a discrete time, general APVIOBPCS de-
sign with independent behavioral parameters. We then derived its order
and inventory transfer functions, analyzed the stability of such designs and
developed a new procedure for the determination of the exact stability region
of a system with a given lead time. This test has the advantage of avoiding the
direct calculation of determinants, or matrix-based procedures that characterize
previous exact solutions of the problem (Jury, 1964; Disney, 2008). Additionally,
this procedure allowed us to find an asymptotic region of stability, providing us
with a sufficient condition for stability that is independent of L. From the work
of Disney (2008), we adopted a characterization of the response of the system
based on the position of the poles of the transfer function in the complex plane
with which we completely identified the regions for which a system complies
with the aperiodicity and weak aperiodicity conditions.

Following the stability and aperiodicity results we performed an extensive set
of numerical experiments to help us understand the influence of behavioral
parameters in the performance of the system. Due to the large amount of
parameters of the system, we needed to specify values for non-behavioral
parameters in our experiments. We then performed extensive tests that suggest
that the insights developed through the chapter hold in general.

The performance of a system was measured first in the frequency domain, and
then in the time domain. Through the frequency domain analysis we found
insights related to the steady state response of the system to cyclical inputs
(i.e., sinusoidal demands of varying frequency), and the stationary response to
white noise (i.e., i.i.d normally distributed demands). Through these analyses,
we found that the heavy smoothing (low behavioral parameters) and pipeline
underestimation (i.e., not taking the pipeline into account as much as actual
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inventory when making replenishment decisions; γP < γI) found in practice
favors the reduction of both the bullwhip for orders and the amplification of
inventory variance, as well as increasing the robustness of the system to short
term demand fluctuations.
In contrast, the time domain analysis identifies serious performance issues of
the system when confronted to a demand shock. The smoothing that we
found beneficial in lowering the variance amplification of the system, lowers
the reaction time of the system thus decreasing its reactiveness in reaching a
new steady state after a shock. Similarly, the pipeline underestimation that
contributes to the robustness of the system to short term demand variations,
causes performance-decreasing oscillations following a demand shock.

Finally, we showed the trade-off between the stationary and transient perfor-
mances and found that both inventories and orders achieve good performance
around the same values of behavioral parameters. The best combined perfor-
mance occurs in the lower left quadrant of the behavioral parameter space,
which suggests that the smoothing observed in real life data is indeed beneficial.
With regards to the pipeline underestimation, also predominant in the data,
further research needs to be undertaken to further quantify the trade-offs,
taking into account realistic demand streams and cost considerations. From a
managerial perspective, these factors have important consequences; the optimal
policy will ultimately depend on the cost structure (whether inventory-related,
or variability-related costs dominate) as well as on the demand characteristics
(whether demand is relatively stationary or not) of a given firm.

Since demand observed in real life is neither purely stationary nor composed
entirely of shocks, how should firms approach the trade-offs? What is the
weight that should be placed upon different demand types? Are the benefits
of increased high frequency robustness achieved through underestimating the
pipeline offset by the decrease in performance following shocks? We are
confident that our modeling framework provides a good basis to address these
and similar highly relevant research questions.
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Appendix A

Proofs
Proof of proposition 4.1:
We denote each root of the characteristic polynomial (pole of the transfer
function) by pL

i , where i = {1, 2, ..., L + 2}.
It follows from (4.15) that pL

1 = (1− α) is a root of the characteristic polynomial
that does not depend on L.
When α ∈ (0, 1], pL

1 is inside the unit circle and the remaining L + 1 roots of the
characteristic polynomial C(z) will be equal to the L + 1 roots of the reduced
characteristic polynomial Ĉ(z). Thus the condition for stability when α ∈ (0, 1]
reduces to checking that all roots of Ĉ(z) be inside the unit circle.
When α = 0, then

∣∣pL
1

∣∣ = 1, which means that the system will be marginally
stable unless

∣∣pL
1

∣∣ = 1 is also a root of the numerator of the transfer function.
The transfer function for orders when α = 0 can be rewritten as:

GO(z) =
γI(z− 1)zL

(z− 1) ˆC(z)
=

γIzL

ˆC(z)
. (A.1)

The transfer function for inventories when α = 0 can be rewritten as:

GI(z) =
γI − z(zL+1 + zL(γP − 1)− γP

(z− 1) ˆC(z)
=

γI − z(zL + γPzL−1 + . . . + γPz + γP)
ˆC(z)

.

(A.2)

Thus, since z = 1 is a root of the denominator of both GO(z) and GI(z), ∀L ∈N,
the conditions for stability when α = 0 reduce to checking that all roots of Ĉ(z)
be inside the unit circle. �

Proof of proposition 4.2:
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When γI = γP = γ we can rewrite the reduced characteristic polynomial:

Ĉ(z) = zL(z− 1 + γ). (A.3)

Its L + 1 zeroes are:

pL
2 = (1− γ), (A.4)

pL
3 = pL

4 = ... = pL
L+2 = 0. (A.5)

When γ ∈ (0, 2),
∣∣pL

2

∣∣ < 1, therefore the system is stable. More precisely, for
γ ∈ (0, 1], pL

2 ≥ 0, and for γ ∈ (1, 2), pL
2 < 0. Thus, the system is respectively

aperiodic, and weakly aperiodic. �

Proof of proposition 4.3:
We know that all the roots of the reduced characteristic polynomial Ĉ(z) of a
stable system lie inside the unit circle of the complex plane. To judge on the
aperiodicity of such a system, we need to know whether the roots of Ĉ(z) lie on
the negative or positive half plane.
For this reason, we apply Descartes’ rule of signs to the polynomial Ĉ(z).
Descartes’ rule of signs states that:

When the terms of a single variable polynomial with real coefficients
are ordered by descending variable exponent, then the number of
positive roots of the polynomial is either equal to the number of sign
differences between consecutive nonzero coefficients, or is less than
it by a multiple of 2. As a corollary, the number of negative roots
is the number of sign changes after multiplying the coefficients of
odd powers by (-1), or less than it by a multiple of 2. Finally, for
a polynomial of degree n, the minimum number of complex roots
equals n− (p+ q) where p is the maximum number of positive roots,
and q the maximum number of negative roots. (Struik, 1969)

To apply Descartes’ rule of signs, we write the reduced characteristic polynomial
as

Ĉ(z) = zL+1 − zL(1− γP) + γI − γP. (A.6)

We assume that the system is stable and distinguish between two cases: γI < γP,
and γI > γP.

The case of γI < γP For all values of L, γP this polynomial will have one
sign change. Therefore we will always have one positive and real root. To find
the negative and real roots of Ĉ(z), we separate between odd and even lead



97

times L: For L odd, the polynomial Ĉ(−z) = zL+1 + zL(1− γP) + γI − γP has
1 sign change for all values of γP . Therefore, there exists a real and negative
root of Ĉ(z) and the remaining L− 1 roots come in pairs of complex conjugates.
Only for L = 1 does Ĉ(z) have no complex roots. For L even, the polynomial
Ĉ(−z) = −zL+1 − zL(1− γP) + γI − γP does not have any sign change when
γP ∈ [0, 1] and thus no negative and real roots. This means that it has at least
1 pair of conjugate complex roots. When γP ∈ (1, 2), it has 2 sign changes and
thus 0 or 2 negative and real roots. If it has 2 negative roots and L = 2, then
the system is weakly aperiodic. In any other case, there exists at least 1 pair of
complex roots and the system is thus unstable.

The case of γI > γP For all values of L, and for γP ∈ [1, 2) the reduced
characteristic polynomial Ĉ(z) will have no sign changes and consequently it
does not have any positive and real roots. To find the negative and real roots of
Ĉ(z) with γP ∈ [1, 2), we separate between odd and even lead times L: For L
odd, the polynomial Ĉ(−z) has 2 sign changes and therefore either 2 or 0 real
and negative roots. When L = 1 and it has 2 negative real roots, the system is
weakly aperiodic. In all other cases, there exist at least 1 pair of complex roots
and the system will consequently be non-aperiodic. For L even, the polynomial
Ĉ(−z) has 1 sign change and therefore 1 real and negative root. Thus in this
case the polynomial will always have at least 1 pair of complex roots and the
system will consequently be non-aperiodic. For all values of L, and for γP ∈
[0, 1) the reduced characteristic polynomial Ĉ(z) will have 2 sign changes and
consequently it has either 2 or 0 positive and real roots. To find the negative
and real roots of Ĉ(z) with γP ∈ [0, 1), we separate once more between odd and
even lead times L: For L odd, the polynomial Ĉ(−z) has 0 sign changes and
therefore either 0 real and negative roots. When L = 1 and it has 2 positive
real roots, the system is aperiodic. In all other cases there exist at least 1 pair of
complex roots and the system will consequently be non-aperiodic. For L even,
the polynomial Ĉ(−z) has 1 sign change and therefore 1 real and negative root.
Only the combination L = 2 and 2 positive real roots gives a weakly aperiodic
response. In all other cases, there exists at least 1 pair of complex roots and thus
the system is non-aperiodic. �

Proof of Theorem 4.1:
According to Theorem 43.1 of Marden (1969), the number of roots of our reduced
characteristic polynomial Ĉ(z) (Eq. 4.16) inside the unit circle is equal to the
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number of negative signs in the sequence

∆1,
∆2

∆1
, . . . ,

∆L+1

∆L
, (A.7)

where

∆n := det
[

An A∗Tn
A∗n AT

n

]
, (A.8)

and

An :=


a 0 0 · · · 0
0 a 0 · · · 0
0 0 a · · · 0
...

...
...

...
...

0 0 0 · · · a

 , n = 1, . . . , L, AL+1 :=


a 0 0 · · · 0
0 a 0 · · · 0
0 0 a · · · 0
...

...
...

...
...

b 0 0 · · · a

 ,

A∗n :=


1 0 0 · · · 0
b 1 0 · · · 0
0 b 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

 , n = 1, . . . , L + 1,

with a = γI − γP, and b = γP − 1. Here AT
n denotes the transpose of An where

the dimension of these matrices is n× n.
To guarantee stability, we need all the roots of Eq. (4.16) to be inside the unit
circle. Thus, we need to have L + 1 negative signs in the sequence (A.7).
Consequently, we need to have:

(−1)n∆n > 0, ∀n = 1, . . . , L + 1. (A.9)
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Since the matrices An and A∗n commute, according to Silvester (2000), we have
that for
n = 1, . . . , L + 1, (−1)n∆n = det

(
An AT

n − A∗n A∗Tn
)
. Thus, for n = 1, . . . , L,

(−1)n∆n = det



1− a2 b 0 · · · · · · −ab
b 1− a2 + b2 b 0 · · · 0
0 b 1− a2 + b2 b · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 b 1− a2 + b2 b
−ab 0 · · · 0 b 1− a2 + b2


,

(A.10)

and also ,

(−1)L+1∆L+1 = det



1− a2 b 0 · · · · · · −ab
b 1− a2 + b2 b 0 · · · 0
0 b 1− a2 + b2 b · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 b 1− a2 + b2 b
−ab 0 · · · 0 b 1− a2


.

(A.11)

If we denote Mn as the square n × n matrix with diagonal elements equal to
1− a2 + b2, and all the elements on the upper and lower diagonal are equal to b,
then we can find recursively that,

(−1)n∆n = (1− a2)det Mn−1 − b2det Mn−2, n = 2, . . . , L. (A.12)

The determinant det Mn can be calculated through formula (3) of Marr and
Vineyard (1988) as

det Mn = Dn(1− a2 + b2, b, b) = |b|Un

(
1− a2 + b2

2 |b|

)
, (A.13)

where Un is the nth degree Chebyshev polynomial of the second kind, defined
by

Un(Z) =

(
Z +
√

Z2 − 1
)n+1 −

(
Z−
√

Z2 − 1
)n+1

2
√

Z2 − 1
. (A.14)

If we set X = (1− a2 + b2)/(2 |b|), then

(−1)n∆n = (1− a2) |b|(n−1) Un−1
(
X
)
− |b|n Un−2

(
X
)
. (A.15)
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Similarly, for the (L + 1)st determinant, it holds that

(−1)L+1∆L+1 =(1− a2)2det ML−1 − 2(1− a2)b2det ML−2 + b4 det ML−3 + 2(−1)L+1abL+1 − (ab)2 det ML−1

=

((
1− (γI − γP)

2
)2
− ((γI − γP) (γP − 1))2

)
|γP − 1|L−1 UL−1

(
X
)
−

− 2
(

1− (γI − γP)
2
)
|γP − 1|L UL−2

(
X
)
+ |γP − 1|L+1 UL−3

(
X
)

+ 2 (−1)L+1 (γI − γP) (γP − 1)L+1 . (A.16)

Finally, observe that −∆1 = 1− a2, which completes the proof. �

Proof of Lemma 4.1:
In a compact form, the region defined by Lemma 4.1 can be written as |b| ≤
1 − |a| with a = γI − γP, and b = γP − 1. We observe that condition (iii) of
Conjecture 4.1 always defines two boundary lines in this region. Therefore,
inside this region, condition (iii) is always going to be satisfied. In order to
show that this is indeed the asymptotic region defined by Lemma 4.1 when L
goes to infinity, it is sufficient to show that when we set |b| = 1− |a|,

lim
L→+∞

(−1)L∆L = 0. (A.17)

Knowing that X = 1 (see proof of Theorem 4.1) and, using that UL(1) = L + 1
(Abramovich and Stegun, 1965, Table 22.3.7), we can rewrite (A.15) as:

(−1)L∆L = (1− |a|)L(1 + L |a|), (A.18)

which goes to 0 as L goes to ∞ since |a| < 1 and the proof is complete. �
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An experiment is a question
which science poses to Nature,
and a measurement is the
recording of Nature’s answer.

Max Planck

Chapter 5
Seasonality and the Bullwhip:
Numerical Experiments
In the previous chapter we introduced the frequency-domain analysis of a
production/inventory system through the use of linear control theory. We
obtained exact expressions for the stability of the system and analyzed the trade-
offs inherent to the smoothing of orders. In this chapter, we use linear control
theory in a different way. By means of extensive numerical experimentation, we
capitalize on the benefits of frequency-domain analysis in the study of cyclical
inputs and outputs. In operations management, cyclical inputs (outputs) are of
the utmost importance and often found in demand (order) time series—we call
them seasonal demands (orders).

In this chapter, we use the frequency domain to characterize the seasonality of
the orders generated by an APVIOBPCS design. We find that the behavioral
parameters not only affect the performance of the system as measured by the
metrics introduced in Chapter 4, but that they can also potentially introduce a
seasonal component, in both orders and inventories, that is completely unrelated
to the seasonality of the demand stream. We observe that inventories are
particularly sensitive to these effects.

We find that this phenomenon (identified as rogue seasonality, or fake business
cycle) has been a focal point of Forrester’s (1958) seminal work, but has since
then been seldom analyzed in a systematic way. We review the existing
rogue seasonality literature and propose an extension to a methodology to
quantify the phenomenon. We show, through numerical experiments, that
rogue seasonality information is not contained in neither the stationary nor the
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transient performance metrics presented thus far. Rather, the rogue seasonality
index quantifies information contained in the frequency response plots.

5.1 Introduction: The Bullwhip Effect & Rogue Seasonality

With the publication of his seminal work, Forrester (1958) pioneered a way
of modeling and analyzing complex, feedback-ridden systems that would
kick-start the field of system dynamics. He analyses the behavior of entire
production/inventory systems facing different demand streams and identifies
the way in which, even in the absence of changes of both average and periodic
retail levels, the system converts random retail-level fluctuations into upswings
and downswings in orders and inventories at all levels.

This tendency for production/inventory systems to generate and amplify
demand fluctuations has been intensely studied in the years since, and plays
a fundamental role in explaining the Bullwhip Effect. The study of the
bullwhip has produced a vast amount of analytical, experimental, and empirical
research—a summary of which is presented in Chapter 2.

In this chapter, we focus on one of the fundamental concepts related to the
Bullwhip Effect that has least been studied over the years: rogue seasonality.
This concept, also known as fake business cycle, is clearly illustrated in Forrester
(1958), where the author shows –for the production/inventory system– how
the upswings and downswings generated by random demand fluctuations
can become cyclical—leading to oscillations with a frequency reflecting the
characteristics of the system itself rather than external phenomena. In other
words, the system generates cyclical orders, and inventories, even in the presence
of a random demand.

In recent years, this dynamic component of the Bullwhip Effect has been the
subject of a number of studies over which we intend to build upon. Kim and
Springer (2008) and Springer and Kim (2010) use a system dynamics model to
derive analytic conditions for the appearance of rogue seasonality. They find
that the existence of this effect depends on the lead time and the fractional
adjustments of inventory and pipeline. However, to keep the models tractable,
they approximate lead times with an exponential delay, which generates second
order systems independent of the lead times. If, on the other hand, we relax
this assumption and model lead times through pure delays (as in the models
presented in chapters 3 and 4), the order of the system depends on the lead
time (Disney, 2008). This generates transcendental transfer functions that make a
generalized analysis impossible. In his paper, Disney (2008) looks at the problem
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of rogue seasonality from a normative perspective; rather than describing the
appearance of rogue seasonality, he takes the opposite approach and defines
regions where the absence of the phenomena is guaranteed. He uses the
‘Jury’s inners’ method to completely describe the regions for which a discrete
system with a fixed lead time (with L = 2) exhibits an aperiodic response
(with no oscillations) or a weakly-aperiodic response (with a limited number
of oscillations). In Chapter 4, we show that for lead times larger than 2, the
high-order nature of the system introduces oscillatory components for all but a
subset of parametrizations (the so called DE-policies we studied in Chapter 4).
However, this approach only characterizes the impulse response of the system,
equivalent to a one-period spike in demand.

In the empirical literature, we find a series of efforts to quantify artificial
seasonality (Lai, 2008) as well as the effect of demand seasonality in inventory
variance (Steinker and Hoberg, 2012), and the effects of controlling for season-
ality when measuring the Bullwhip Effect (Cachon et al., 2007; Gorman and
Brannon, 2000). These empirical studies, due to the limitations of available data,
can only analyze low frequency cycles: Quarterly cycles the case of Lai (2008)
and Steinker and Hoberg (2012), and yearly cycles in the case of Cachon et al.
(2007). Lai finds evidence of artificial seasonality being generated by the fiscal
year effect (FYE) (where inventories tend to decrease in the last quarter of a
fiscal year), however, this seasonality is thought to be due to specific executive
action rather than due to a systematic effect stemming from an order-generation
process. Steinker and Hoberg (2012) study the effect of numerous explanatory
variables on the volatility of firm-level inventories and find evidence that this
volatility increases with sales seasonality. They suggest that this fact supports
the hypothesis that firms smooth production, using inventories to buffer against
the seasonal changes in demand. Cachon et al. (2007) argue that because demand
seasonality represents a strong incentive for firms to smooth production, all
empirical studies should be conducted with demand series that are not corrected
for seasonality. Pragmatically, they contend that “firms must produce to meet
demand, not seasonally adjusted demand” and show that the Bullwhip Effect
is over-estimated when using seasonally adjusted data. These studies, showing
its immediate practical relevance, motivate further research to understand how
seasonality affects inventory models and vice versa.

In this chapter, we perform extensive numerical experimentation on our discrete-
time model to investigate the relationship between the behavioral parameters
and the appearance –or attenuation– of rogue seasonality for different demand
streams. In this view, in line with the thinking behind Chapter 4, we approach
the problem in a descriptive manner: Not looking for optimal parameterizations,
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but rather to describe the interplay between behavior, demand patterns, and
rogue seasonality. We adopt the methodology of Spectral Principal Component
Analysis (SPCA) to achieve our objective. SPCA is an application of Principal
Component Analysis (PCA) to spectral data. PCA is a widespread statistical tool
that exploits orthogonal transformations to convert multi-dimensional data into
useful representations in a lower dimensional space. In the operations research
literature, SPCA was first used by Thornhill and Naim (2006) to demonstrate,
through a case study, the use of SPCA to qualitatively identify rogue seasonality
in a supply network. On a recent study, Shukla et al. (2012) develop a
numerical method for rogue seasonality detection which they apply to a series
of statistically generated demand streams, and test with real-life data from the
case study of Thornhill and Naim (2006). They quantify, through their rogue
seasonality index, the findings of the earlier study. We motivate our interest in
rogue seasonality as an additional performance measure by showing that the
popular metric used in the control systems literature (the Bullwhip measure,
see Equation (4.24)) does not tell the complete story when the system observes
actual demand realizations.

We carry out the numerical experimentation on discrete-time control-theoretic
models and extend the SPCA methodology to quantify seasonality through a
rogue seasonality index. For the design of experiments, because of the large two-
dimensional parameter space, we fix the structural parameters and use concepts
introduced in Chapter 4 to divide the parameter space into one-dimensional
isometric Bullwhip Contours. We show that the findings hold for different
parameter combinations in Appendix B.

The rest of this Chapter is structured as follows: In the next section we
revisit the discrete-time control theoretic Automatic Pipeline Variable Inventory
Order Based Production Control System (APVIOBPCS) model, methodologies
for measuring the Bullwhip, and the SPCA methodology for rogue seasonality
detection. In §5.3, we carry out the numerical experimentation and analysis
of within-contour and between-contour behaviors. We present conclusions
and insights derived from our work in §5.4. In an appendix, we present the
performance of the system with varying structural parameters.
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5.2 Model and methodology

In this section we introduce the discrete-time simulation model and the
methodology which we use to use to quantify the cyclicality of the responses:
Spectral Principal Component Analysis.

5.2.1 Discrete-time model

The numerical experiments in this chapter are based upon the discrete-time,
periodic-review, single-echelon, general APVIOBPCS design that we introduced
in Chapter 4. The inventory coverage (C ∈ R+), the delivery lead time (L ∈ N),
and the forecast smoothing parameter α ∈ [0, 1] are the structural parameters
of the system, while the pipeline (γP ∈ [0, 1]) and inventory (γI ∈ [0, 1])
adjustment factors are the behavioral parameters of the system. The inventory
coverage represents the target inventory –measured in periods– that a firm
chooses to maintain, while the target pipeline is calculated each period as the
product of the forecast and the systems lead time. The lead time is assumed
deterministic and defined as the time elapsed between the placement and receipt
of a replenishment order. The behavioral parameters specify the fraction of the
gap between target and actual values that are taken into account in the periodical
ordering adjustment: γI is the fraction of the inventory gap to be closed per
period, and γP is the fraction of the pipeline gap to be closed per period. For
instance, a system with γI = 1 and γP = 0 completely closes the inventory gap
every period, while it ignores the pipeline entirely.

Formally, the sequence of events and the equations in the model are as follows:
at the beginning of each period (t) a replenishment order (ot) based on the
previous period’s demand forecast ( ft−1) is placed with the supplier. Following
this, the orders that were placed L periods before are received. Next, the demand
for the period (dt) is observed and served. Excess demand is back-ordered. Then,
the demand forecast is updated according to the formula: ft = αdt + (1− α) ft−1.
The forecast is used to compute the target levels of both inventory, ît = C ft,
and pipeline, p̂t = L ft. The orders that will be placed in the following period
(ot+1) are generated according to an anchor and adjustment-type procedure,
ot+1 = γI(ît − it) + γP( p̂t − pt) + ft. The balance equations for inventory (i)
and pipeline (p) are: it = it−1 + ot−l − dt, and pt = pt−1 + ot − ot−l .

In Chapter 4, we used control theory to analyze this model and developed
insights regarding the influence of behavior on a set of performance measures.
In this Chapter, we perform extensive numerical experiments on the model to
(a) benchmark the performance measures against the actual behavior of the
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system, and (b) develop insights regarding a different dimension of the system’s
performance; rogue seasonality. Figure 5.1 shows a schematic of the model’s
block diagram. We refer the reader to Chapter 4 for the explicit derivation of the
inventory and order transfer functions.

Figure 5.1 Block diagram of model as implemented in software.

5.2.2 Spectral Principal Component Analysis

The seasonal information of the response of a system is contained in its
frequency plot. Systems with similar seasonal components have similar
frequency plots; peaks at a given frequency reveal a seasonal component
at that frequency. Visual analysis of the frequency response is a powerful
tool to compare the cyclicality/dampening of the response of a system with
respect to its input (or among different systems), however, this is a qualitative
methodology.

Spectral Principal Components Analysis provides us with the methodology
needed to quantify similarities and differences between the frequency response
of different behavioral policies. Intuitively, SPCA reduces the dimensionality of
a frequency response plot by quantifying a single dimension that captures its



Model and methodology 109

most prominent frequency characteristic. It maps an entire frequency spectrum
to a point in a 2- or 3-D space. Thus, using SPCA we can characterize how
the dynamic response of the system changes to changes in parameterizations
and demand patterns through a graphical representation of these frequency plot
mappings.

SPCA describes the application of Principal Component Analysis (PCA) to
spectral data. The core idea behind PCA is to reduce the dimensionality of a
data set consisting of a large number of variables, while retaining as much of the
variation present in the dataset as possible. This is achieved by first transforming
the data to a new set of uncorrelated variables (the Principal Components) that
are ordered in such a way that a the first few retain most of the variation of
the original data (Jolliffe, 2005). Since we can describe most of the variation
in the original data with the first few variables, if we discard the remaining
variables we effectively reduce the dimensionality of the problem without losing
valuable information. In the case of our control theoretic inventory model, the
dimensionality of the data is the amount of distinct frequencies that we use to
compute the systems’ frequency response. We use SPCA to condense all the
information contained in a given frequency plot into a point on a 2D plane or
3D space.

Principal Component Analysis is used in a wide variety of fields; for example,
Shlens (2005) presents a clear explanation of the method including examples
from the world of physics, and Dougherty (2013) introduces it as a method
for pattern recognition. SPCA was first described in a patent application by
Belchamber et al. (1992) as a method to identify and cluster acoustic emissions
through a measured spectrogram (essentially automating the detection of faulty
motors by the sound they produce). Recently, Thornhill et al. (2002) use SPCA
to cluster different chemical processes within a plant, and Thornhill and Naim
(2006) use the methodology to cluster different components of a supply network
according to the oscillatory components. We adopt their implementation of
SPCA, which we detail below.

To compare the responses of different systems or parameterizations, we follow
these steps:

1. Collect the time-series data of all the experiments (model runs).
2. Mean-center the time-series data and calculate each of their single-sided

power spectra.
3. Scale the spectra so that the total power is unity.
4. Perform the PCA decomposition of the data.
5. Calculate contribution of each of the Principal Components to the total



110 Seasonality and the Bullwhip: Numerical Experiments

variance.
6. Keep the limited number of PC’s that explain most1 of the variation.

Let xi be the power spectra of experiment i, where the power, P, is measured at
n different frequencies:

xi = (Pi( f1), . . . , Pi( fn)) (5.1)

We can then, when we have m experiments, construct the m× n matrix X:

X =

 P1( f1) . . . P1( fn)
... . . .

...
Pm( f1) . . . Pm( fn)

 (5.2)

We can interpret this as the matrix that results in arranging one experiment per
row and one frequency per column. The PCA decomposition transforms the
matrix X into the sum over m orthonormal basis functions w′1 to w′m. These are
row vectors with N frequency channels. Intuitively, one can think of each of the
w′i vectors as a series of weights placed on each of the original N frequencies.
The column vectors (t1,i, . . . , tm,i)

′ are the principal components:

X =

 t1,1
...

tm,1

w′1 +

 t1,2
...

tm,2

w′2 + . . . +

 t1,m
...

tm,m

w′m (5.3)

We can rewrite Equation (5.3) in a compact way as X = TW ′ where the ith
column of T is the vector (t1,i, . . . , tm,i)

′ and the rows of W ′ are w′1 to w′m.
Because, by definition, the rows W ′ are orthonormal, then W ′ is an orthogonal
matrix and W ′W = I. Thus, T = XW.

We use Singular Value Decomposition to compute the necessary vectors. Let
X = UΣV′ with T = UΣ and W = V′. Knowing that matrix Σ is diagonal
and its elements are the positive square roots of the eigenvalues of X′X. For
experimental data, SVD is typically applied in software.

Equation (5.3) transforms the data without any loss of information. We can
describe the majority of the variation of X by truncating the PCA description;
if all the experiments share similar frequency traits, most of the variation can
be described as a function of a limited amount of terms (principal components).

1This is a subjective assessment. As a reference, the articles cited above set the threshold at 80-90%
of the variation
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For example, we can rewrite X in terms of two principal components:

X =

 t1,1
...

tm,1

w′1 +

 t1,2
...

tm,2

w′2 + E, (5.4)

Where E is an error matrix. In doing so, we reduce the problem of comparing n
different frequencies of m different experiments to comparing just two principal
components, ti,1 and ti,2 for each of the m experiments. This can be represented
graphically by a 2D scatter plot in which each experiment maps to a point
in the space defined by the two orthonormal basis w′1 and w′2. Therefore, by
comparing the 2D representation of the principal components we quantify the
relative similarity between the experiments’ response, and by observing the form
of the basis vectors w′i we can gain insights and quantify the cyclical component
of each experiment.

5.2.3 Rogue seasonality detection

Rogue seasonality describes “[cyclical] demand patterns that are induced by the
internal processes themselves and not by any external influences” (Thornhill and
Naim, 2006); to detect rogue seasonality in the output of a system we need then 2

things: a cyclical response, and for this cyclicality to be generated endogenously
(i.e., not present in the input). Our approach is inspired on the observation of
Shukla et al. (2012): When rogue seasonality is present, the different outputs of
the system (inventory and orders) will become cyclical and similar to each other,
while at the same time remain different from the input. We adopt their approach
and calculate a rogue seasonality index based on the similarity of the responses
among themselves and the input demand. Shukla et al. (2012) show that a rogue
seasonality index constructed as

Average dissimilarity between input and other variables
Average dissimilarity between all variables

yields a useful and robust measure of the system’s rogue seasonality. In
their study, they measure dissimilarity as the euclidean distance between the
variables in various transformed forms. We adopt the euclidean distance of the
SPCA transformation as a measure of similarity between frequency responses.
Formally, we define the rogue seasonality index for experiment i, φi, as:
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φi =

1
2

(
dIi−D + dOi−D

)
dIi−Oi

, (5.5)

where dIi−D is the euclidean distance between the SPCA description of the
inventory response of experiment i and the SPCA description of the demand;
dOi−D is the euclidean distance between the SPCA description of the order
response of experiment i and the SPCA description of the demand; and dIi−Oi is
the euclidean distance between the SPCA description of the inventory response
of experiment i and the SPCA description of the order response of experiment
i . Additionally, to better understand the rogue seasonality of the system, we
define two additional measures:

φI,i =
dIi−D

dIi−Oi

, (5.6)

φO,i =
dOi−D

dIi−Oi

, (5.7)

with φI,i and φO,i, we measure the similarity of each of the responses individ-
ually. In doing this, we can detect whether either orders or inventories are
independently exhibiting rogue seasonality in their response.

5.3 Numerical Results
This section is divided as follows: We first introduce an experimental design
based on the behavioral parameters and the stationary response of the system;
then, we present the demand streams that we use as an input for the
experiments; we revisit the Bullwhip (stationary) performance measures derived
Chapter 4 through a comparison of the theoretical and numerical results;
finally, we study the dynamic performance of the systems by comparing the
rogue seasonality of different behavior-demand combinations through the SPCA
methodology.

5.3.1 Experimental Design

The system has 3 structural parameters (C, L, and α) and 2 behavioral parameters
(γI and γP). In Chapter 4, we fixed the structural parameters to study
the influence of the behavioral parameters on the stationary and dynamic
performance measures. Following on this, in this section we fix the structural
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parameters and use the insights from the stationary performance of the system
to develop an experimental design for the behavioral parameters. We present
a set of performance metrics for various values of structural parameters in
Appendix B; These metrics suggest that the insights obtained from the analysis
of behavioral changes hold under different structural parameters.

Parametrization of experiments To create the experimental designs we fix the
structural parameters (C = 3, L = 5, α = 0.3) and calculate isometric-Bullwhip
lines for the entire behavioral parameter space—based on BWo, the theoretical
stationary measure derived in Chapter 4. We then define 4 different experiment
clusters, consisting each of 18 parameterizations along each of the contours. The
73 different parameter combinations that belong to the 4 different clusters are
shown in Figure 5.2, and the values of their Bullwhip of orders, in Table 5.1.
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Figure 5.2 Experiments in the behavioral parameter
space.

Table 5.1 Experimental Design

Cluster Experiments BWo

1 1-18 0.7
2 19-36 2.0
3 37–54 4.6
4 55-72 9.7

Thus, all parameterizations that belong to a given cluster have the exact same
BWo for orders as calculated through Equation (4.24). Table 5.2 shows the
behavioral parameters, the theoretical stationary performance measures (BWo
and BWI) and the experimental dynamic measures (ITAEo and ITAEI , see
Equation (4.26)). The bold results are those that conform to the DE-diagonal,
where γI = γP and the experiments followed by an asterisk (*) correspond to
experiments in which the dominant pole of the transfer function is real (i.e.,
experiments with a dampened response).
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Table 5.2 Design of experiments

(a) Experimental cluster 1

γI γP BWo BWI ITAEo ITAEI

1 0.11 0 0.7 10.3 13.0 131.9
2 0.11 0.02 0.7 10.3 12.4 129.7
3 0.11 0.03 0.7 10.2 11.8 128.4
4 0.11 0.04 0.7 10.1 11.2 129.1
5 0.11 0.05 0.7 10.0 10.9 134.2
6 0.10 0.07 0.7 9.9 10.9 135.0
7 0.10 0.07 0.7 9.9 10.8 43.7
8 0.10 0.09 0.7 9.8 10.8 51.7
9 0.10 0.1 0.7 9.7 10.7 162.1
10* 0.10 0.11 0.7 9.6 10.7 178.5
11* 0.09 0.13 0.7 9.5 10.7 187.3
12* 0.09 0.14 0.7 9.4 10.6 204.4
13* 0.08 0.15 0.7 9.3 10.5 260.5
14* 0.07 0.18 0.7 9.1 10.5 264.7
15* 0.07 0.18 0.7 9.1 10.2 325.9
16* 0.05 0.21 0.7 8.9 9.6 410.6
17* 0.04 0.24 0.7 8.7 8.4 529.0
18* 0.03 0.25 0.7 8.7 2.3 927.0

(b) Experimental cluster 2

γI γP BWo BWI ITAEo ITAEI

19 0.19 0.00 2.0 14.7 28.4 160.3
20 0.21 0.02 2.0 14.8 24.9 141.3
21 0.21 0.04 2.0 14.8 23.0 132.4
22 0.23 0.06 2.0 14.7 20.2 119.0
23 0.24 0.09 2.0 14.6 18.8 112.4
24 0.25 0.11 2.0 14.5 15.9 100.3
25 0.26 0.13 2.0 14.2 14.8 96.2
26 0.27 0.16 2.0 14.0 13.1 89.9
27 0.27 0.19 2.0 13.6 12.0 86.4
28 0.27 0.23 2.0 13.2 10.8 83.5
29 0.27 0.27 2.0 12.8 10.0 84.9
30* 0.25 0.32 2.0 12.2 10.0 90.6
31* 0.23 0.37 2.0 11.6 10.0 104.8
32* 0.18 0.43 2.0 11.1 10.0 124.7
33* 0.14 0.46 2.0 10.9 10.0 167.9
34* 0.09 0.50 2.0 10.6 10.0 220.0
35* 0.04 0.53 2.0 10.5 10.1 309.1
36* 0.01 0.54 2.0 10.4 9.4 479.7

(c) Experimental cluster 3

γI γP BWo BWI ITAEo ITAEI

37 0.26 0.03 4.6 18.9 55.9 248.3
38 0.29 0.05 4.6 19.4 49.9 216.6
39 0.32 0.08 4.6 19.7 43.5 185.8
40 0.34 0.11 4.6 19.9 38.4 162.7
41 0.37 0.13 4.6 20.0 33.8 143.3
42 0.39 0.16 4.6 20.0 29.5 125.3
43 0.42 0.20 4.6 19.8 26.1 112.2
44 0.44 0.22 4.6 19.6 23.0 101.8
45 0.46 0.25 4.6 19.3 20.5 92.8
46 0.48 0.29 4.6 18.8 17.6 83.4
47 0.50 0.35 4.6 17.8 13.8 72.5
48 0.50 0.50 4.6 15.5 10.0 67.3
49* 0.48 0.55 4.6 14.8 10.0 71.3
50* 0.40 0.64 4.6 13.8 10.0 82.8
51* 0.32 0.69 4.6 13.4 10.0 104.4
52* 0.25 0.71 4.6 13.3 10.2 148.8
53* 0.14 0.73 4.6 13.3 11.1 222.4
54* 0.04 0.73 4.6 13.4 12.3 467.9

(d) Experimental cluster 4

γI γP BWo BWI ITAEo ITAEI

55 0.30 0.03 9.7 22.2 88.2 352.4
56 0.34 0.06 9.7 23.4 81.8 311.2
57 0.38 0.10 9.7 24.6 76.7 280.2
58 0.42 0.13 9.7 25.3 69.4 246.0
59 0.46 0.16 9.7 26.2 63.5 219.2
60 0.51 0.20 9.7 26.8 56.1 189.8
61 0.55 0.24 9.7 27.3 50.6 168.8
62 0.61 0.29 9.7 27.5 44.8 149.4
63 0.68 0.35 9.7 27.2 40.3 133.7
64 0.76 0.45 9.7 25.8 29.9 102.9
65 0.83 0.57 9.7 23.0 20.8 77.7
66 0.80 0.80 9.7 18.3 11.7 58.9
67* 0.66 0.91 9.7 17.0 10.0 62.8
68* 0.52 0.95 9.7 16.7 10.0 98.7
69* 0.42 0.96 9.7 16.9 10.4 121.9
70* 0.29 0.95 9.7 17.4 11.7 165.5
71* 0.12 0.90 9.7 18.8 16.8 353.7
72* 0.01 0.84 9.7 18.9 20.0 669.7
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5.3.2 Response Types

We saw in Chapter 4 that imaginary poles generate oscillatory responses and
positive and real poles, dampening. In the proof of Proposition xxx we
characterized the structure of the poles in the following way,

Definition 5.1 When γI > γP there is always a real and positive pole.
When γI < γP there is either zero or two a real and positive poles.

When a system is of order larger than 1, the response of the system , however
we can approximate the response by analyzing the dominant pole—the pole
with the largest real part. When the dominant pole is real, the system will
exhibit a dampened response. When the dominant poles are a pair of complex
conjugates, the system will exhibit an oscillatory response (Nise, 2007). To
build up intuition with regards to the time-domain response of our system with
different behavioral parameters, we can plot the poles resulting from different
experimental designs in the complex plane. Detecting the dominant pole of
each is thus immediate. Additionally, we can plot the time-domain response to
an impulse input function.

In Figure 5.3, spread over pages 116 and 117, we plot the poles and impulse
response of a number of experiments. We group clusters in four columns with
two plots each, the leftmost column shows experiments from Cluster 1 and the
rightmost column, experiments from Cluster 4. Poles (left of each column)
are plotted on the complex plane. The time response (right of each column)
corresponds to an input of a unit impulse. The top two rows correspond to
γI > γP, the middle row corresponds to γi = γP, and the two bottom rows
correspond to γI < γP. Poles (left) are plotted on the complex plane. The time
response (right) corresponds to an input of a unit demand impulse. We clearly
see the influence of the location of the dominant pole in the time response.

When the dominant poles are a pair of complex conjugates (figures 5.3a, 5.3f,
5.3g, 5.3k, 5.3l, 5.3p, and 5.3q), the response is clearly oscillatory. Note that the
magnitude of the imaginary component of the dominant pole pairs increases
towards the right, and that this increase is accompanied by an increase in the
amplification and persistence of the oscillations2. When all poles are real (figures
5.3c, 5.3h, 5.3m, and 5.3r), the response is aperiodic. Finally when, in the
presence of complex poles, the dominant pole is real, then the response is of
an over-dampened oscillation (figures 5.3d, 5.3e, 5.3i, 5.3j, 5.3n, 5.3o, 5.3s, and
5.3t).

2Note that the scale of the time plots of the two rightmost columns is double that of the two
leftmost columns, to account for the increased amplification.
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(b) Experiment 6
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(c) Experiment 9
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(d) Experiment 15
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Figure 5.3 Poles and time response of selected experiments.
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Figure 5.3 Poles and time response of selected experiments.
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5.3.3 System Response Under Different Demand Conditions

The performance measures shown in Table 5.2 make strong assumptions
regarding the underlying demand stream. The Bullwhip measures (BWo and
BWI) assume a normal demand and the transient measures (ITAEo and ITAEI),
a single unit-step change in demand. It is unlikely that an production/inventory
system encounters in real-life a demand with one of these characteristics.
In chapter 4, we studied the trade-off of stationary and transient measures
independently for orders and inventories. We found that, picturing the whole
parameter space in two dimensions, both BWo and BWI decrease when the
behavioral parameters approach the lower left quadrant, and increase when
they approach the upper right quadrants. The opposite is true of the transient
measures, ITAEo and ITAEI. Additionally, we found that systems with
behavioral parameters along the DE-diagonal offer a reasonable performance
trade-off, systems below the DE-diagonal offer marginally better performance in
certain instances with the downside of increased sensitivity to parameters, and
systems above the DE-diagonal offer robustness to parameters with the cost of
inferior performance (Figure 4.6).

The thinking behind the study of the trade-off between the stationary and
transient measures is that whereas real-life demand does not consist of pure
white noise nor of pure shocks, systems that perform well under both extreme
conditions will perform well in real life. To study whether this assessment is
adequate, we perform numerical experiments and measure the performance
of the system under varying behavioral conditions (as per our experimental
clusters) and demand streams.

5.3.4 Robustness of the Bullwhip Measure

We test the robustness of the theoretical bullwhip measures by running a
series of simulations using a demand sampled from a normal distribution as
an input. Table 5.3 shows the measured bullwhip for orders and inventory
(BWO, BWI) for each of the experimental clusters and the respective percent
error when compared to the theoretical measures (∆O% = (BWO − BWO)/BWO
and ∆I% = (BWI − BWI)/BWI). The input to the simulation in each of the
experiments is a demand stream consisting of 10000 observations sampled from
a normal distribution with µ = 0 and σ = 13.

The average absolute percent error of orders (|∆O%|) is 3.9% and its median

3The theoretical bullwhip measure is insensitive to the demand parameters, its only requirement
is the input to consist of “white noise”, that is, for all frequencies to be equally represented—a trait
of the normal distribution.
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2.2%. In the case of |∆I%|, the discrepancy between theoretical and actual values
is larger, with an average of 50.8% and a median of 22.6%. If we look at the
extreme values, we see that the minimum difference in both cases is 0%, but
the maximum deviations are 12.4% for orders and 462.9% for inventories. The
large spread of the error in inventories suggests that they are more sensitive
than orders to changes in behavioral parameters, and casts doubts over the
usage of the theoretical bullwhip as a performance measure4. To control for
the experimental design affecting the outcomes, we repeated the experiments
with demand streams consisting of 100, 103, 105, and 106 data points, as well as
demands sampled using different random number seeds.

Every instance generates comparable results. This suggests that the difference
in the frequency responses between the theoretical and sampled demands is
significant enough that it introduces errors in the estimation of the bullwhip
measure. Note that systematically, the discrepancy between theoretical and
measured bullwhip is larger at the extremes of the experimental clusters; this
corresponds to the observation experiments along the DE-diagonal exhibit the
flattest frequency response for both orders and inventories, while extreme values
introduce pronounced peaks at specific frequencies. Additionally, the frequency
response of inventories for a given parameterization contains larger peaks than
its corresponding frequency response of orders (see Appendix B). This explains
the difference in magnitude of the inventory and order absolute percent errors.

Steady state performance revisited In §4.4.1, we used frequency response
plots to illustrate how the behavioral parameters affect the performance of the
system by amplifying different frequencies. For orders, we identified the DE-
diagonal (γI = γP) as the flattest response, and showed that policies below the
DE-diagonal (γI > γP) amplify the lower frequencies, while policies above the
diagonal (γI < γP) exhibit peaks at higher frequencies. For inventories, on the
other hand, we have seen that all policies amplify the lower frequencies and that
policies above the DE-diagonal show an additional peak at higher frequencies.

The effect of the uneven amplification of the different frequencies of the input
signal is such that the noise in demands sampled from theoretical distributions
is enough to introduce substantial differences from the theoretical performance.
This is consistent with the results we see in Table 5.3; the relatively flat response
of policies near the DE-diagonal result in small deviations from the theoretical
performance, while the frequency-specific peaks of policies close to the edge
of the parameter space seem to drive the deviations. Inspection of Figures 4.3

4Remember that we are not yet measuring performance per se; solely the performance of the
theoretical performance measures.
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and 4.4 shows that: (a) for comparable policies frequency peaks in the inventory
response tend to be larger than for the order response; (b) that this difference
is greater when policies are closer to the lower-left quadrant of the parameter
space; and (c) that the order response appears to be more sensitive to the
variation of behavioral parameters.

Even though these characteristics of the frequency response help us understand
several of the observations we have made, they are inherently qualitative and
hard to interpret if the demand is anything but a pure sine wave or normally
distributed—analyzing the frequency response of each of the possible policies is
a useful, but impractical technique if we are interested in more general insights.

To overcome this weaknesses of frequency plot analysis, we use SPCA to
decompose the frequency information into a handful of principal components
that we can plot. With these plots, we learn about the way that behavioral
parameters affect the seasonal component of the system. We further quantify the
response through the rogue seasonality index φ, which condenses the graphical
information into one dimension.

SPCA as a quantification of rogue seasonality We saw in §5.2.2 that by
performing principal component analysis on spectral data, we can reduce its
dimensionality with little loss of information. When we apply SPCA to the
output of our system fed with the sampled normally distributed demand, we
can describe 90.4% of the variance information using 3 principal components.
By reducing the dimensionality of spectral data to 3 dimensions, we transform
the subjective problem of comparing the frequency response plots of different
policies into a quantitative one because we can represent each frequency plot
by a single point in the 3-dimensional space. Figures 5.5 to 5.7 illustrate
the application of SPCA to the output of our system. Instead of drawing
cumbersome 3D plots, we represent the three dimensional space in the ‘flatland’
of the page by plotting three orthogonal projections called score plots. Each
axis (score) represents one of the w′ basis functions (as a convention, score 1 is
the dimension that describes most of the variation in the data). Each point in
the plot represents one spectrum in the data set, we use pink for the inventory
spectra and blue for the order spectra. Additionally, we include a green point in
the plots to represent the spectra of the input demand. Figure 5.5 plots score 1

Vs. score 2, Figure 5.6 plots score 2 Vs. score 3, and 5.7 plots score 1 Vs. score 3.

Each of the figures contains 4 individual plots: The top plot (a) aggregates
the spectra of all 4 experimental clusters and each of the 4 bottom plots (b)-
(e) represents a single experimental cluster. To distinguish between individual
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experiments, we identify the even-numbered experiments in the bottom graphs.

For each point in the plots, the coordinates represent the weights of t (as
described in Equation (5.3)). For example, the coordinates for the order
response of experiment 24 are t24,1

∼= −0.085, t24,2
∼= 0, and t24,3

∼= 0.01.
Thus, multiplying each of the weightings by the w′ vectors approximately
reconstruct the spectrum. Figure 5.4 shows the spectrum of the order and
inventory responses of experiment 24 and its reconstruction via the 3 principal
components. Because a spectral plot represents the decomposition of a time-
series into the sum of individual sine waves at different frequencies, similar
spectral plots represent similar cyclical components. Thus, we know that the
closer together two experiments are in the score plots, the more similar their
seasonal component is: This is the basis of our rogue seasonality index measure.

The intuition is as follows. The green dot in each plot represents the input
(demand) seasonality, each of the blue dots represents the order seasonality for a
given experiment, and each of the pink dots represents the inventory seasonality
for a given experiment. The rogue seasonality index measures the similarity in
the response of orders and inventories among themselves and relative to the
input demand. The rogue seasonality index increases the more dissimilar the
frequency responses are among themselves. Thus, rogue seasonality decreases
(a) the closer the blue, and pink, dots of a given experiment are to the green
dot, and (b) the closer the blue and pink dots of a given experiment are among
themselves.

In Figures 5.5 to 5.7 we see that the frequency response of the system with
the different behavioral policies follows a smooth evolution within each contour
(experimental cluster). This confirms that partitioning the parameter space in
isometric contour lines is an efficient strategy. Also, we see that while the type of
response variation across contours is similar, the spread, the difference between
the extremes of each contour, appears to increase when for each successive
experimental cluster. From these representations, we can glean several insights:
Below the DE-diagonal (experiments 1− 9, 19− 28, 37− 47, and 55 − 65) the
response of orders and inventories is similar and distant from the input response
(green dot). With each successive experiment, orders and inventories start to
diverge; orders then show a frequency response that is closer to the that of the
demand than it is to that of the inventory. This suggests that experiments below
the diagonal exhibit a greater rogue seasonality (orders and inventory having
similar frequency response, but different from the input), and that this rogue
seasonality decreases when we move through a contour line. It is interesting
to see how the frequency response of inventories does not approximate the
frequency response of the demand—consequently remaining cyclical in all
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Figure 5.4 Reconstructed spectra (solid line) and complete spectra (dots)

experiments.

In Table 5.4 we see the complete performance metrics of all experiments,
including the seasonality indices. We can see that φ correctly captures the
behavior we observe in Figures 5.5 to 5.7: Experiments below the DE-diagonal
have a high rogue seasonality, this value decreases along each experimental
cluster up to a minimum point, and then increases again. We also see that
for a vast majority of the behavioral policies, inventories are more susceptible
to rogue seasonality than orders. However, it is apparent that the measure of
rogue seasonality in itself is not an absolute performance metric: As expected,
a high seasonality index (φ > 1) is followed by poor performance according to
the bullwhip and ITAE metrics; however, when φ < 1 (and thus the difference
between the frequency response of orders and inventories is greater than the
difference between these and the demand) the system also under-performs.

5.3.5 System performance with seasonal demands

Thus far, we have explored different aspects of the system’s performance when
demand is sampled from a normal distribution. We have found that the system’s
response depends on the input frequency: thus, even when the demand is
sampled from a theoretical distribution, the different amplification peaks cause
the actual performance to deviate from the theoretical measures. Therefore,
the performance of the system will be intrinsically linked to the seasonality of
the input demand. To be able to form a more complete picture of the system’s
response, we generate 3 additional demand streams by adding different artificial
seasonal components to our sampled normally distributed demand.

We generate three artificial seasonal demands by adding the original sampled
demand stream to three different sine waves. Formally, let D1(t) be the sampled
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Figure 5.5 Score plots of the SPCA decomposition of the frequency response of orders (blue)
and invevntories (pink). First projection (Score 1 Vs. Score 2).
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Figure 5.6 Score plots of the SPCA decomposition of the frequency response of orders (blue)
and invevntories (pink). Second projection (Score 2 Vs. Score 3).
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Figure 5.7 Score plots of the SPCA decomposition of the frequency response of orders (blue)
and inventories (pink). Third projection (Score 1 Vs. Score 3).
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demand at time t, then:

D2(t) = sin
(

2π

7
t
)
+ D1(t) t ∈ I [0, 10000], (5.8)

D3(t) = sin
(

2π

30
t
)
+ D1(t) t ∈ I [0, 10000], (5.9)

D4(t) = sin
(

2π

90
t
)
+ D1(t) t ∈ I [0, 10000]. (5.10)

This represents (for a system that observes demand each day) weekly, monthly,
and quarterly seasonal demand streams (D2, D3, and D4 respectively). Observ-
ing Figures 4.3 and 4.4, we see that the both the inventory and order plots show a
peak at a frequency of approximately π

8 . However, in the case of orders, the peak
is larger for parameter combinations below the DE-diagonal. This, translated
into cyclical terms means that the system exhibits peak amplification with a
ciclicality of around 25 days (assuming demand is measured daily). Knowing
this, we expect that when the system faces a demand with a similar frequency
(such as demand D3), the interaction between exogenous and endogenous
seasonality components will result in poor performance. In contrast, when the
demand is of significantly higher frequency (such as demand D2), the system
will attenuate its amplification and rogue seasonality. In the case of exogenous
demand D4, of a lower frequency, the amplification of low frequencies results
in poor performance compared to the normally distributed benchmark, but
better performance than when the exogenous and endogenous seasonalities are
of approximately the same frequency.

These results show that the behavior of the system plays a central role in the
performance of the system, not only by defining the stability and bullwhip
measures, but also by characterizing the rogue seasonality of the system and the
interaction with seasonal demands. From a managerial perspective, this result
highlights the importance of understanding both the endogenous seasonality of
one’s own system, as well as any seasonality present in the demand stream.
From a theoretical perspective, the fact that exogenous seasonality affects the
performance of an inventory policy underscores the opportunity to include such
factors in inventory models. Empirically, this is in line with the reasoning from
Cachon et al. (2007), where the authors argue that since real-life firms react to
demands that can very well be seasonal, the models used should take this into
consideration.
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5.4 Conclusions

In this study, we have performed extensive numerical experiments, using a
control theoretic model, with the objective of benchmarking the performance
of different behavioral policies reacting to different demand patterns. We
motivated this study with the findings of Chapter 4, where we analyze an
equivalent system and find defined performance trade-offs that depend on the
demand. Because the stationary performance metric assumes a normal demand,
we first test the robustness of this measure by simulating the response of the
system when the demand is sampled from a normal distribution. According
to our findings, inventories are especially sensitive to demand patterns; the
maximum difference between the theoretical and actual inventory performance
is ∼ 450%.
To understand the reasons for this discrepancy, we study the frequency response
plot of the inventory response of this system; we find that lower frequencies
(centered around π

8 , or a cycle of approximately 25 periods) are consistently am-
plified, and that this amplification depends on the behavioral parameters. This
uneven amplification of different frequencies has two immediate effects: The
aforementioned discrepancy between theoretical and simulated performance,
and the appearance of rogue seasonality—the generation of a cyclical output
from a random input.

Thus, in the presence of a given demand, the cyclicality of the produc-
tion/inventory system itself can potentially dominate over any seasonality
present in the demand. To better understand this, we introduce Spectral
Principal Component Analysis as a way to quantify the frequency response
and therefore be able better describe the appearance of rogue seasonality for
different experiments. We develop a rogue seasonality index, based on the
SPCA decomposition, and find that it captures the way in which different
policies are susceptible to cyclical amplification. In particular, we observe
intense rogue seasonality when the pipeline is underestimated (policies below
the ‘optimal’ DE-diagonal) and the opposite effect when the pipeline adjustment
is taken into account more than the inventory adjustment (policies above the DE-
diagonal). The consequence of these observations is immediately observed when
we study the interaction between the demand’s seasonality and the system’s
rogue seasonality. When the seasonality of demand is of a higher frequency
than the system, then taking the pipeline into account more than the inventory
adjustment decreases the bullwhip of the system, while the opposite is true
when the demand is of a lower frequency than the system.

This study is of a descriptive nature; rather than optimizing the system, we
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observe its performance when different parameters change. With this in mind,
we have succeeded in uncovering, via the rogue seasonality measure, another
dimension of inventory performance. Our study shows that in addition to
having an influence in the stationary and transient theoretical performance
metrics, behavioral parameters affect the performance of the system in other,
non trivial ways. Behavioral parameters fundamentally change the sensitivity
of the system to the demand stream. Furthermore, when the demand contains
a seasonal component, the behavioral parameters also determine the periodic
response of the system: different parameter combinations attenuate and amplify
different frequencies.

From an operational perspective, this implies that characterizing and tracking
the seasonality of customer demand is of importance inasmuch as it defines
the core response of the system. In addition to understanding the seasonal
component of demand, our study calls for an understanding of the rogue
seasonality of one’s system. The rogue seasonality index contains information
that is not captured by the often used stationary and transient performance
metrics.
At a tactical level, understanding rogue seasonality allows managers to better
understand the medium- to long-term evolution of inventories and orders,
potentially affecting the way internal performance metrics work. In this view,
the baseline from which to measure inventory performance is not stationary, but
cyclical.

More research is needed to further understand the trade-offs between all the
different performance metrics we have presented. There is a need, in particular,
to introduce explicit cost and service considerations into control theoretic
models. How do the trade-offs presented in chapters 4 and 5 relate to cost considerations,
and service level requirements? Is rogue seasonality inherently negative? How does an
acceptable cost-driven trade-off differ from a performance-driven trade-off?.

To understand the generality of our numerical results, we present an Appendix
with frequency plots and bullwhip contours for various structural parameter
combinations. From these, we see that of the structural changes, the exponential
smoothing constant α and the inventory coverage C affect the performance of the
system in magnitude but not in its structure. All else equal, the bullwhip of a
system increases with α and C, as does the amplification of a particular demand
frequency. In contrast, a change in the lead time L brings about a fundamental
change in the response. The amount of peaks observed in the frequency plots,
as well as their frequencies, depend on the lead time.



Conclusions 129

Table 5.3 Realizations of the bullwhip measures

(a) Experimental cluster 1

BWo BWI ∆O% ∆I %

1 0.68 12.9 -2.3 25.1
2 0.68 12.4 -2.3 20.7
3 0.68 12.0 -2.3 17.4
4 0.68 11.3 -2.2 11.5
5 0.68 10.9 -2.2 8.9
6 0.68 10.4 -2.1 4.8
7 0.68 10.2 -2.1 3.6
8 0.68 9.8 -2.0 0.2
9 0.68 9.5 -1.9 -2.0
10* 0.68 9.1 -1.7 -4.7
11* 0.68 8.9 -1.6 -6.6
12* 0.68 8.6 -1.5 -8.7
13* 0.68 8.3 -1.2 -11.2
14* 0.69 7.8 -0.9 -14.5
15* 0.69 7.8 -0.9 -14.7
16* 0.69 7.2 -0.4 -18.8
17* 0.69 6.9 -0.1 -21.5
18* 0.69 6.7 0.1 -22.6

(b) Experimental cluster 2

BWo BWI ∆O% ∆I %

19 1.88 27.88 -4.8 90.4
20 1.89 25.31 -5.2 71.3
21 1.89 23.85 -5.5 61.3
22 1.88 21.59 -5.8 46.5
23 1.88 19.75 -5.9 35.1
24 1.88 18.47 -5.8 27.6
25 1.89 17.01 -5.6 19.5
26 1.89 15.66 -5.2 12.3
27 1.90 14.4 -4.7 5.9
28 1.92 13.21 -4.0 0.0
29 1.93 12.03 -3.2 -5.6
30* 1.95 10.78 -2.2 -11.5
31* 1.98 9.69 -1.1 -16.7
32* 2.00 8.69 0.0 -21.8
33* 2.01 8.15 0.5 -24.9
34* 2.02 7.62 0.9 -28.2
35* 2.02 7.2 1.1 -31.1
36* 2.02 10.63 1.2 2.2

(c) Experimental cluster 3

BWo BWI ∆O% ∆I %

37 4.27 51.0 -6.2 170.1
38 4.21 45.2 -7.8 133.4
39 4.18 40.6 -8.7 106.2
40 4.17 37.0 -9.0 85.8
41 4.17 34.0 -8.9 70.0
42 4.19 31.3 -8.6 56.5
43 4.21 28.5 -8.1 44.1
44 4.23 26.7 -7.7 36.0
45 4.26 24.9 -7.2 28.9
46 4.29 22.6 -6.4 20.3
47 4.34 19.5 -5.1 9.4
48 4.49 14.5 -2.2 -6.6
49* 4.52 13.2 -1.4 -10.7
50* 4.58 11.4 -0.2 -18.0
51* 4.60 10.4 0.3 -22.6
52* 4.61 9.8 0.4 -26.2
53* 4.60 9.2 0.5 -30.3
54* 4.60 8.9 0.6 -33.1

(d) Experimental cluster 4

BWo BWI ∆O% ∆I %

55 8.98 101.1 -7.1 355.9
56 8.61 86.0 -11.4 267.5
57 8.52 75.5 -12.4 207.0
58 8.56 70.0 -11.5 176.7
59 8.54 62.8 -11.8 140.0
60 8.59 57.0 -11.3 112.6
61 8.72 52.7 -10.1 93.3
62 8.84 47.8 -9.1 74.0
63 8.93 41.1 -8.0 51.3
64 9.07 33.3 -6.6 29.3
65 9.29 25.9 -4.4 12.7
66 9.64 17.2 -0.9 -5.8
67* 9.72 14.4 -0.1 -15.4
68* 9.70 13.1 -0.2 -21.9
69* 9.68 12.5 -0.4 -26.0
70* 9.62 12.0 -0.6 -31.2
71* 9.70 12.1 -0.2 -35.9
72* 9.63 106.3 0.4 462.9
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Appendix B

The Influence of Structural Parameters
In this appendix, we present frequency plots and bullwhip plots computed with
different structural parameters. Each figure shows the plots corresponding to a
fixed Cover (C) and a varying exponential Smoothing Coefficient (α) and Lead
Time (L). Figures B.2–B.4 show the frequency plots of orders (with C = 1, 3, 6,
respectively); Figures B.5–B.7, the frequency plots for inventories; Figures B.8–
B.10, the bullwhip plots for orders; and Figures B.11–B.12, the bullwhip plots for
inventories.
Each figure contains 9 sub-figures arranged in a 3x3 matrix. Each row contains
plots with fixed α and L = 1, 5, 10; and each column, plots with fixed L and
α = 0.1, 0.3, 0.5. The experimental design for the frequency plots is shown in
Figure B.1.
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Figure B.1 Experimental design. The color dots show 4 different parametrizations of the
behavioral parameters. The parametrizations correspond to the same stationary performance
(BWO = 6). The blue line highligts the DE-diagonal.
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Figure B.2 Frequency plots of orders corresponding to the experimental design of Figure
B.1 and coverage C = 1. We see that the response of systems along the DE-diagonal
(blue) maintain its flatness across variations in structural parameters; systems below the
DE-diagonal (red) exhibit a low frequency peak; and systems above the DE-diagonal (purple)
exhibit multiple frequency peaks, which depend on the lead time. Increasing the exponential
smoothing parameter α increases the amplification at all frequencies. Lead time L changes
affect the response of the system, the amount, position, and magnitude of frequency peaks
appears to be associated with lead time, except for systems along the DE-line (blue).
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Figure B.3 Frequency plots of orders corresponding to the experimental design of Figure
B.1 and coverage C = 3. We see that the response of systems along the DE-diagonal
(blue) maintain its flatness across variations in structural parameters; systems below the
DE-diagonal (red) exhibit a low frequency peak; and systems above the DE-diagonal (purple)
exhibit multiple frequency peaks, which depend on the lead time. Increasing the exponential
smoothing parameter α increases the amplification at all frequencies. Lead time L changes
affect the response of the system, the amount, position, and magnitude of frequency peaks
appears to be associated with lead time, except for systems along the DE-line (blue).
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Figure B.4 Frequency plots of orders corresponding to the experimental design of Figure
B.1 and coverage C = 6. We see that the response of systems along the DE-diagonal
(blue) maintain its flatness across variations in structural parameters; systems below the
DE-diagonal (red) exhibit a low frequency peak; and systems above the DE-diagonal (purple)
exhibit multiple frequency peaks, which depend on the lead time. Increasing the exponential
smoothing parameter α increases the amplification at all frequencies. Lead time L changes
affect the response of the system, the amount, position, and magnitude of frequency peaks
appears to be associated with lead time, except for systems along the DE-line (blue).
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Figure B.5 Frequency plots of inventories corresponding to the experimental design of Figure
B.1 and coverage C = 1. We see that the lead time L changes affect the response of the system.
The the amount, position, and magnitude of frequency peaks appears to be associated with
lead time for all systems (including the DE-line). Systems below the DE-diagonal (red), and
systems above the DE-diagonal (purple) exhibit multiple frequency peaks, which depend on
the lead time. Increasing the exponential smoothing parameter α increases the amplification
at all frequencies.
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Figure B.6 Frequency plots of inventories corresponding to the experimental design of Figure
B.1 and coverage C = 3. We see that the lead time L changes affect the response of the system.
The the amount, position, and magnitude of frequency peaks appears to be associated with
lead time for all systems (including the DE-line). Systems below the DE-diagonal (red), and
systems above the DE-diagonal (purple) exhibit multiple frequency peaks, which depend on
the lead time. Increasing the exponential smoothing parameter α increases the amplification
at all frequencies.
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Figure B.7 Frequency plots of inventories corresponding to the experimental design of Figure
B.1 and coverage C = 6. We see that the lead time L changes affect the response of the system.
The the amount, position, and magnitude of frequency peaks appears to be associated with
lead time for all systems (including the DE-line). Systems below the DE-diagonal (red), and
systems above the DE-diagonal (purple) exhibit multiple frequency peaks, which depend on
the lead time. Increasing the exponential smoothing parameter α increases the amplification
at all frequencies.
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Figure B.8 Bullwhip plots for orders for C = 1. The hue of each contour represents the
value of the bullwhip, starting with dark orange (BWO = 0.5) and increasing towards dark
red (BWO = 24). Black contours indicate BWI ≥ 30 and are illustrated in increments of
10.
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Figure B.9 Bullwhip plots for orders for C = 3. The hue of each contour represents the
value of the bullwhip, starting with dark orange (BWO = 0.5) and increasing towards dark
red (BWO = 24). Black contours indicate BWI ≥ 30 and are illustrated in increments of
10.
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Figure B.10 Bullwhip plots for orders for C = 6. The hue of each contour represents the
value of the bullwhip, starting with dark orange (BWO = 0.5) and increasing towards dark
red (BWO = 24). Black contours indicate BWI ≥ 30 and are illustrated in increments of
10.
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Figure B.11 Bullwhip plots for Inventories for C = 1. The hue of each contour represents
the value of the bullwhip, starting with dark orange (BWI = 0.5) and increasing towards
dark red (BWI = 24). Black contours indicate BWI ≥ 30 and are illustrated in increments
of 10.
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Figure B.12 Bullwhip plots for Inventories for C = 3. The hue of each contour represents
the value of the bullwhip, starting with dark orange (BWI = 0.5) and increasing towards
dark red (BWI = 24). Black contours indicate BWI ≥ 30 and are illustrated in increments
of 10.
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Figure B.13 Bullwhip plots for Inventories for C = 6. The hue of each contour represents
the value of the bullwhip, starting with dark orange (BWI = 0.5) and increasing towards
dark red (BWI = 24). Black contours indicate BWI ≥ 30 and are illustrated in increments
of 10.



Although I cannot lay an egg,
I am a very good judge of
omelettes.

George Bernard Shaw

Chapter 6
Inventories and the Bullwhip: a
Chicken and Egg Situation
Inventories, as we saw in Chapter 3, can play a large role in business
cycles. However, as we saw in Chapter 2, the causal relationship is not
entirely understood; do inventory cycles generate business cycles, or vice
versa? In operations management theory, modeling choice pre-determines
the role of inventories. Production smoothing models dictate that inventories
follow production decisions; Order-Up-To models dictate that inventories drive
production decisions. Empirical observations, however, show that inventories
are both a cause and an effect of production decisions.

In this chapter, we hypothesize that –in real life– target inventory levels are
dynamic and are adjusted in response to not only changes in demand forecast
but also fluctuating cost considerations. We develop a two-echelon structural
model of inventory decisions using financial data for 6040 unique supplier-
customer dyads for the years 1984–2013 to investigate downstream inventory
adjustments and their influence on upstream firms. The model shows that
suppliers react to arbitrary downstream inventory adjustments over and above
the demand changes, revealing a new explanation for transient shocks getting
amplified upstream. Our results show that inventory cost ratios are dynamic,
and support the hypothesis that they follow economic and financial sentiment
such as liquidity considerations and GDP growth rates.
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6.1 Introduction

The importance of inventories in the economy has long been understood.
Economists agree that fluctuations in inventory investment account for more
than a third of the quarterly change in U.S. GDP (Fitzgerald, 1997)1. Blinder
(1990) famously remarked: “Business cycles are, to a surprisingly large degree,
inventory cycles”. Yet, the precise role of inventories in these cycles is still an
open question. Do inventory cycles cause business cycles or is it the other way
around?

At a smaller scale, the role of inventories in the day-to-day operations of
a firm is, to a large extent, determined by its production strategy2. When
convex production costs dominate, firms benefit from maintaining production
as constant as possible. As a result, such firms use inventories as a buffer to
absorb demand uncertainty. This is the intuition behind production smoothing.

When inventory-related costs dominate, on the other hand, firms benefit from
maintaining a stable inventory level. In these firms, inventories drive production
decisions with the objective of minimizing inventory variability around a pre-
defined target level. This is the intuition behind Order-Up-To policies.

In this view, inventories can be classified as either an adjustment variable (i.e.
the consequence of production decisions) or as a decision variable (i.e. the driver
of production decisions). The proverbial “chicken or egg” situation. Reality,
however, is more subtle. Neither pure production smoothing nor Order-Up-To
models fully explain empirical observations. As a consequence, hybrid models
have been developed: Smoothing models that incorporate inventory-driven
adjustments (Blinder, 1990; Ramey and West, 1999) as well as generalized
Order-Up-To models that incorporate a smoothing component (Dejonckheere
et al., 2003; Chen and Lee, 2009). These models, however, assume that relative
costs are constant in time; modeled firms do not change their smoothing strategy
nor their inventory targets3.

In this chapter, we argue that target inventory levels, in practice, are dynamic.
Firms systematically adjust their targets responding (among other causes) to

1Depending on time period analyzed, estimations of how much inventory fluctuations account
for post-war GDP fluctuations go from 44% to 87%, (Blinder and Maccini, 1991; Wang and Wen,
2009).

2Even though we use the term “production”, the discussion also applies to non-manufacturing
firms where “production” is replaced by “orders”.

3Several models do however, compute target inventory levels as a function of a demand forecast
that is updated with each subsequent demand observation. In these models, changes in the demand
forecast result in changes in the target inventory level. However, it is not a systematic one; the
underlying target inventory, expressed as a function of the demand forecast, remains constant.



Introduction 149

fluctuating cost considerations. As a consequence, the customer demand faced
by upstream firms depends directly on downstream inventory decisions.

This view is motivated by a series of recent developments. In Chapter 3, we
discussed one way in which inventory decisions are able to drive the dynamics
of entire supply chains. We conducted a firm-level study using the 2008 financial
crisis as a natural experiment. We found our observations to be consistent
with the hypothesis that inventories are used as an instrument of liquidity in
times of need. Drastic reductions in inventory investment free up much needed
cash. Similarly, Pesch and Hoberg (2013) used secondary data to show that
inventories are used as a significant source of liquidity by firms in financial
distress, independent of global crises.

Burns and Sivazlian (1978) analyzed inventory adjustments from a different
perspective, using numerical experimentation in a serial supply chain. Without
assumptions regarding the underlying motives, they show that inventory
adjustments executed by downstream echelons trigger transient changes in their
orders that cause an overreaction in upstream echelons because suppliers cannot
distinguish transient from permanent changes in demand. They identify this
“false ordering” phenomenon as a purely structural issue, product of the delays
inherent to the transmission of information, and propose a modified ordering
rule that takes this into account as a way of solving it. Intuitively, their
solution implies separating the component of incoming orders that corresponds
to downstream inventory fluctuations from the component that corresponds to
“actual” demand, and reacting only to the latter.

More recently, the interaction between different echelons in a supply chain has
been the focus of the information-sharing literature. The objective of this stream
of the literature is, as Cachon and Fisher (2000) put it, to test “the general belief
within industry that capturing and sharing real-time demand information is
the key to improved supply chain performance”. Insights from the analytical
information-sharing literature indicate that, in general, upstream firms benefit
the most from the sharing of information among supply chain players, and
that the benefits depend on the type of demand observed downstream (and
thus, the amount of non-inferable information that can be obtained through
sharing). Most studies in this stream, however, assume rational firms with
actions modeled through Order-Up-To policies, the knowledge of which is also
shared among a supply chain. Chen and Lee (2009) drop the latter assumption,
noting that in practice, it is rather rather bold to assume that firms share details
about their ordering policies. They advocate for the sharing of order projections
as it eliminates guesswork from the part of the suppliers. In fact, they note that
this allows suppliers to separate order uncertainty from order variability.
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Separating order uncertainty from order variability, according to Bray and
Mendelson (2013), is the key to disentangle the effects of production smoothing
and the Bullwhip Effect. They argue that the goal of production smoothing
is to protect against order uncertainty, not against order variability—and thus,
that empirical measures of production smoothing should not benchmark order
variability against demand variability but against what the theoretical order
variability would be in the absence of production adjustment costs.

In this chapter, we use secondary data at two levels of a supply chain
(supplier/customer pairs) to investigate the causes of downstream inventory
decisions, and their influence on upstream orders. Using firm level data, we
find evidence of an overreaction of upstream firms to downstream inventory
adjustments, and track down systematic factors that drive fluctuations of safety
inventories. Methodologically, we use an econometric model specification to
estimate the influence of inventory changes in orders, and structural modeling
of the cost factors to estimate the systematic adjustment of inventory buffers.

The contribution of this chapter to the literature is threefold: First, we identify
the portion of order uncertainty that corresponds to downstream safety stock
changes and analyze its influence on upstream order generation. Second, we
extend the structural modeling methodology of Olivares et al. (2008) to estimate
the cost ratios used by firms in a multi-period setting. Finally, we show evidence
of a systematic adjustment of target inventories that follows economic and
financial conditions.

The remainder of the chapter is organized as follows. In Section 6.2, we
introduce the data used and detail the construction of supplier/customer firm
pairs. We present the econometric inventory model and related hypothesis in
Section 6.3, the structural cost model and related hypothesis in Section 6.4. We
follow in Section 6.5 with the results of our analysis, and conclude in Section
6.6.

6.2 Data

To quantify the effect of downstream inventory decisions on upstream firms, the
first step we take is to collect firm-level data and define explicit relationships
between upstream and downstream firms. To do so, we adopt an approach
pioneered by the financial community. In this approach we use the disclosure
of major customers, contained in the annual financial statements of public
firms, to identify explicit relationships between firms. Recent examples of
such an approach include Fee and Thomas (2004), who use customer-supplier
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relationship data to quantify the effect of horizontal mergers in post-merger
operating performance; Fee et al. (2006), who investigate the customer-supplier
relationships to determine the conditions under which customers own equity of
their suppliers; and Cohen and Frazzini (2008), who study whether stock returns
can be predicted through knowledge of economic links between companies. In
§6.2.1 we detail the methodology we use to construct supplier-customer pairs,
and in §6.2.2 we summarize the collection of the remaining financial data.

6.2.1 Customer-Supplier Firm Pairs

The regulation of the Statement of Financial Accounting Standards (SFAS)
No. 131 requires firms to disclose any customer that represents at least 10% of
the revenues for a given fiscal year. This information is included in Compustat’s
customer segment database, which we access through Wharton Research Data
Services (WRDS) of the University of Pennsylvania. We extract the identity
of supplier-customer firm pairs for the 1976 − 2012 period.4 Firms, however,
report the identity of their customers as a plain-text string in a non-standardized
way. Therefore, spelling mistakes exist in the data, as well as spelling variations
and abbreviations that vary across suppliers and periods. We apply a three-
step procedure, inspired by the financial research literature (Fee and Thomas,
2004), to map the reported plain-text customer names to Compustat’s unique
customer identifier keys. In the first step, we perform a 1-1 match between the
reported company names and the Compustat company name and assign the
corresponding customer identifier key to successful matches.

In the second step, we apply a partial string matching algorithm, based on the
normalized Levenshtein distance, to the remaining data5.

The partial string matching algorithm calculates the normalized Levenshtein dis-
tance between all potential combinations of reported and Compustat company
names, and flags them as a potential match when leva,b < 0.25. Potential matches
are then manually checked against (a) possible ambiguities (in cases where any
ambiguity exists –such as for example a match for ‘continental’, a name that
appears in numerous companies– the potential matches are dropped), and (b)
business segments, by confirming that the business segment reported by the
supplier is compatible with the business segment of the matched customer.

4Regulation SFAS 131, issued by the Financial Accounting Standards Board in 1997, has been
effective for fiscal years beginning after December 15th 1997. The customer disclosure requirements
in this regulation carried over from regulation SFAS 14, effective since December 1976.

5The Levenshtein distance between strings a and b (leva,b) is defined as The smallest number of
insertions, deletions, and substitutions required to change string a into string b (Levenshtein, 1966). The
normalized Levenshtein distance (leva,b) is defined as leva,b/ min(|a| , |b|), where |i| is the length of
string i.
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Finally, we sort all remaining unmatched observations by the frequency of
appearances of the reported customer name and manually match the top 16

firms (these represent ∼ 16% of the data).

Compustat’s customer segment database contains a discontinuity in the year 2006:
No data is available for firms whose fiscal year ends in Q4 2006, causing the
number of records for the year to be abnormally low.6 To overcome this, we
assume that companies that are linked both in 2005 and 2007 are also linked in
2006 and update the links accordingly.

As a reference, Figure 6.1 shows the number of records per quarter and the
quarter-on-quarter change in US GDP for the entire period. Because the 1976-
1984 period is marked by a large instability in the GDP time series and relatively
few data-points, we drop the observations from 1976 until 1983 from the dataset.
The final firm pair database includes 24825 unique yearly pairs.

Figure 6.1 Available data per quarter and GDP variation

6.2.2 Customer and Supplier Financial Data

To take advantage of the reporting frequency of the quarterly fundamentals
database, we assume that each of the firm pairs we have defined are involved
in trading during the four quarters of the reported fiscal year, and thus populate
the firm pair database with financial information from said database. Following
Cachon et al. (2007), we use cost of goods sold (COGS) as a proxy for demand (d),
production (q) as a proxy for orders, and calculate production with the balance
equation qt = dt + it − it−1, where it is the reported total inventory at the end

6This is due to significant changes made to Compustat’s databases in the year 2006.
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of the period t. We delete observations with negative, or missing, values for
inventories and/or sales from the sample.

Since fiscal year endings vary across firms, we pair customers and suppliers
independently using calendar dates. The final sample contains 77886 quarterly
observations, representing 6040 unique supplier-customer relationships between
1984 and 2013. Table 6.1 shows summary statistics for our dataset.

The firm size distribution is calculated on the basis of average COGS over the
entire sample. We can see that the nature of our supplier-customer pairing
strategy, where we can only identify customers that represent more than 10%
of a firm’s revenues, biases the sample towards large customers with a large
number of relatively smaller suppliers. We analyze the influence of this bias on
our results in Appendix C, presented at the end of this chapter.

Table 6.1 Summary Statistics

Min Max Mean SD 1st Quartile Median 3rd Quartile

Number of suppliers in the sample per quarter 5 711 501 142 391 533 609

Number of customers in the sample per quarter 4 349 220 110 101 277 321

Frequency-Weighed link duration (quarters) 1 140 14 15 4 8 17

Supplier size percentile 0.01 0.99 0.70 0.82 0 .24 0.42 0.62

Customer size percentile 0.01 0.99 0.99 0.99 0 .91 0.98 0.99

Number of customers per supplier 1 27 3.78 3.20 2 3 5

Number of suppliers per customer 1 351 102.1 112.1 11 53 203

Table 6.2 shows additional sales and inventory statistics of the firms contained in
our dataset, grouped according to their 2-digit NAICS code. Note that while we
constrain the suppliers to the manufacturing sector, customers belong to a range
of industries. Nevertheless, manufacturing, retail, and wholesale customers
make up the vast majority of the sample: 58%, 19% and 10% respectively.

6.3 Replenishment Model

In this section, we use a non-stationary-demand inventory model to motivate
hypotheses related to the influence of downstream inventory changes on
upstream orders. In §6.3.1 we present the single echelon inventory model. We
derive the hypotheses in §6.3.2, detail the 2-echelon model in §6.3.3, present a
forecasting model in 6.3.4, and finally, present the econometric specification of
the model in §6.3.5.
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Table 6.2 Summary statistics by NAICS code for suppliers (top) and customers (bottom)

NAICS Code Frequency COGS Total Inventory
Supplier Mean 25th Percentile Median 75th Percentile Mean 25th Percentile Median 75th Percentile

31 8070 294.7 17.8 56.5 217.4 237.1 15.3 53.8 188.6
32 17120 181.4 5.9 20.8 109.6 224.9 1.6 15.1 100.7
33 52696 252.6 7.3 30.7 135.1 156.9 7.3 27.2 98.3

Customer
11 18 662.0 350.0 555.5 710.0 1387.0 1130.0 1298.5 1387.0
21 323 2740.6 347.3 912.0 2934.0 846.8 109.2 386.3 962.0
22 320 1705.4 682.8 1615.0 2405.0 566.6 182.2 379.0 786.0
23 219 2540.5 1332.6 1901.0 3235.5 1637.2 819.7 1094.1 1519.8
31 1129 1635.0 396.9 1113.0 2034.0 1153.4 361.0 716.6 1204.7
32 6829 3478.5 344.6 976.0 2689.3 2261.6 423.4 1560.5 3021.5
33 34057 10381.5 1318.9 4880.1 19502.0 4716.9 909.0 3150.0 6845.0
42 7191 12705.2 3307.3 12883.5 21303.0 4529.5 1373.3 4822.4 7585.3
44 3717 6381.8 1148.0 5751.2 11049.0 4851.3 1333.2 3250.0 8314.0
45 10105 15245.5 2408.8 6178.0 17684.0 9765.5 2656.0 5200.0 14682.0
48 269 1924.9 1353.0 1897.0 2455.0 312.0 164.0 257.0 458.0
49 17 7214.9 6957.0 7402.0 7937.0 408.6 389.0 413.0 440.0
51 3097 3919.9 1066.1 2378.2 7105.0 1053.5 0.0 381.0 1464.6
53 56 343.6 13.7 122.0 763.5 18.2 2.7 9.0 30.4
54 989 4670.7 1090.5 2103.0 10856.0 2910.2 816.5 2483.6 4858.0
56 43 1636.0 1689.0 1906.0 2044.0 84.0 75.0 80.0 92.0
61 9 358.5 342.4 358.0 366.8 28.3 27.6 29.3 31.5
62 146 488.3 63.9 573.4 785.9 48.2 4.6 54.9 77.9
71 1 14.1 14.1 14.1 14.1 3.3 3.3 3.3 3.3
72 205 1736.8 422.7 1861.0 2801.7 84.9 33.1 85.7 115.1
81 12 401.6 384.8 402.2 421.4 31.6 30.9 31.4 33.7
99 1243 11938.2 8956.0 11880.0 15133.5 8374.2 5026.0 6735.0 11744.0

6.3.1 Single Echelon Model

Let qt be the order placed at time t. We consider a single-item adaptive base-
stock control policy of the form:

qt = dt + L(Ft+1 − Ft), (6.1)

where L is the lead time, and Ft+1 the forecast of dt calculated at the end of
period t. We assume that we (1) observe demand, (2) calculate the forecast for
the next period, (3) place the orders for the period, (4) receive the orders placed
L periods ago, and finally (5) fulfill demand from inventory (backlogging any
demand that cannot be met). Graves (1999) adopts this policy for a multi-echelon
environment with non-stationary demand, arguing that it is a myopic policy
that, while not necessarily optimal, is a “reasonable extension of the order-up-to
policy”. The policy contains two terms; the left term replenishes the period’s
demand, and the right term modifies the base-stock level in proportion to the
change in forecast, to account for changes in the mean lead-time demand.

We propose, for later econometric estimation, a firm-level model based upon this
replenishment rule. For the purpose, we assume that a firm controls the entirety
of their purchases equally and that lead times are constant. Using this model
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with firm-level data is in line with Rumyantsev and Netessine’s (2007)7 empirical
finding that aggregate inventory changes are positively associated with sales
surprise, a term introduced by Gaur et al. (2005). Sales surprise is defined as the
ratio of sales to demand forecast, and thus quantifies unexpectedly high (or low)
sales. Additionally, suppose that a rational decision maker on behalf of firm i
uses a variant of the proposed policy whereupon she can arbitrarily adjust the
order quantity by an amount u in every period:

qi,t = di,t + Li(Fi,t+1 − Fi,t) + ui,t. (6.2)

Here, we see that the base-stock level is adjusted proportionally to the change in
mean lead-time demand (as in Equation (6.1)), but is also adjusted discretionarily
in every period through the adjustment quantity ut, of which we make no
assumptions yet. We call the first kind of adjustment the ‘planned change in
inventory buffer’, and the second the ‘unplanned change in inventory buffer’.
For notational convenience, we denote the change in the forecast as ∆Fi,t,

∆Fi,t = Fi,t+1 − Fi,t, (6.3)

then we have:

qi,t︸︷︷︸
Orders

= di,t︸︷︷︸
Demand

Replacement

+ β1 ∆Fi,t︸ ︷︷ ︸
Planned change

in inventory buffer

+ ui,t︸︷︷︸
Unplanned change
in inventory buffer

, (6.4)

where β1 is a coefficient, to be estimated, that contains information on the
replenishment lead times. When ui,t = 0, this is equivalent to the policy from
Equation (6.1) with β1 = L.

6.3.2 Hypotheses Development

Changes in base-stock levels (inventory buffers), whether “planned” or “un-
planned”, materialize through changes in order quantities. Burns and Sivazlian
(1978) show that the transient nature of such changes in downstream orders
contribute to the amplification of order variability in serial supply chains because
they are interpreted as persistent demand changes by upstream firms, which
triggers an overreaction. Analytical work shows that information sharing
can be used to reduce the amplification—with the caveat of specific demand

7Rumyantsev and Netessine (2007) tested several hypothesis derived from traditional inventory
theory using a multiplicative inventory model with which they quantified the influence of several
independent variables. Our specification differs from theirs in that we test a linear inventory model
and consider both positive as well as negative deviations from the forecasted values.
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distributions, or assumptions on the knowledge of the underlying replenishment
rules (Chen and Lee, 2009).

Experimental work based upon behavioral operations theory, on the other
hand, drops such assumptions in favor of human beings making decisions in
the context of a supply chain simulation—usually some version of the beer
distribution game. This stream of literature suggests that the human biases that
are a cause of the Bullwhip Effect are robust to information sharing. They show
that, even when controlling for all operational causes of the Bullwhip Effect, and
under full information sharing, the amplification of orders in a supply chain
persists (Croson and Donohue, 2006).

Our first hypothesis comes from the combination of our inventory model with
the insights mentioned above. When analyzing the customer-supplier data pairs,
we expect that when a downstream firm executes a planned change in their
inventory buffer, the upstream firm will overreact to this change and will adapt
his inventory buffer proportionally to the downstream change.

H 6.1 Changes in upstream inventories are positively associated with planned changes
in downstream inventory buffers.

Similarly, we expect that unplanned changes in downstream inventory buffers
will have a similar effect on upstream inventories.

H 6.2 Changes in upstream inventories are positively associated with unplanned
changes in downstream inventory buffers.

6.3.3 Two-Echelon Model

To test Hypotheses 6.1 and 6.2, we develop a two-echelon model. We identify
customers with the subscript c, and suppliers with the subscript s so that we can
express the orders of customer c at time t as:

qc,t = dc,t + β1∆Fc,t + uc,t. (6.5)

Furthermore, we propose the following model of supplier s’s orders to test
hypotheses 6.1 and 6.2:

qs,t = ds,t + β2 ∆Fs,t + β3 β1 ∆Fc,t + β4 uc,t + us,t. (6.6)

Coefficients β3 and β4 respectively quantify how changes in the customer’s
planned, and unplanned, inventory buffers influence the supplier’s ordering
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decisions. Because the information pertaining to the customer’s changes
in planned and unplanned inventory is already contained in the supplier’s
demand, these coefficients represent an explicit over-reaction to such inventory
changes. The null hypothesis, that suppliers only respond to downstream
inventory changes through the demand information, implies β3 = β4 = 0.

6.3.4 Demand Forecasts

In view of the fact that management’s forecasts are not publicly available, we
must estimate sales forecasts for every firm in the sample. This poses a challenge
because we do not have information regarding the forecasting methods used in
practice by the firms, and must thus make a simplifying assumption.

There is a vast body of research that attempts to quantify the performance of
different forecasting methods and the subsequent decision on which method
to use in different contexts. One well established method to quantify forecast
performance is through the so-called forecast competitions: Empirical studies
where different forecasting methods are used to forecast a large number of
data series in an effort to obtain objective measures of relative performance.
Makridakis and Hibon (2000) present the results of one such competition
and compare the results with prior competitions. They show that more
complex methods do not necessarily exhibit better performance, and that
performance itself is dependent of the particular performance measure used.
More importantly, they show that these results are consistent across studies.

Taking this into account, as well as the prevalence of seasonal, trending, time
series in our data, we compute forecasts for every time series in our sample
using the simplest seasonal-forecast method: the additive seasonal Holt-Winters
forecasting procedure (Chatfield, 1978). Dekker et al. (2004), in a study aimed at
developing methods to improve seasonal forecasts, show that the Holt-Winters
method (HW) performs best when seasonality patterns are deterministic, and
when demand variance is reduced through aggregation. The temporal and
product aggregation present in our data series, combined with the relative
simplicity of the HW method motivate its adoption in this study.

The HW forecasting procedure requires three smoothing constants, one each
for the level (α), trend (β), and seasonal (γ) components. Formally, given the
estimates for the level (a(t)), linear trend (b(t)), and seasonality (s(t + τ − L)),
the τ step-ahead forecast, x̂t+τ , is defined as:

x̂t+τ = (a(t) + b(t)τ) s (t + τ − L) , (6.7)
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where L measures the periodicity of the seasonality (L = 4 in quarterly data).
Given the smoothing parameters α (0 ≤ α ≤ 1), β (0 ≤ β ≤ 1), and γ (0 ≤ γ ≤ 1),
the updating equations are:

a(t) = α
xt

s(t− L)
+ (1− α) (a(t− 1) + b(t− 1)) , (6.8)

b(t) = β (a(t)− a(t− 1)) + (1− β)b(t− 1), (6.9)

s(t) = γ

(
xt

a(t)

)
+ (1− γ)s(t− L), (6.10)

We compute the forecast for each firm using the same smoothing parameters
(α = β = γ = 0.3)8 .

As an additional robustness check, we performed analyses using different
forecasting methods. In particular, we used the time-series data to compute the
best-fitting parameters for each individual firm, as well as the best-fitting sales
forecasts using simple exponential smoothing and Holt’s linear trend forecasting
procedures. We calculated the errors for each forecasting method, for each
individual series and then performed the entire analysis using the best-fitting
forecast per series. The results obtained with the latter method are comparable
to the results using only the HW forecasts. Therefore, we report the results
obtained using the HW method. By choosing a single method for every firm we
avoid introducing unwarranted complexity, as well as potential biases into the
analysis (we have no reason to believe firms use the best-available forecasting
method in their operations).

6.3.5 Econometric Specification

We use fixed-effects OLS estimation with robust standard errors (to account for
heteroscedasticity in the data) to estimate the following regression model for
customers:

∆ic,t = ac + β1 ∆Fc,t + uc,t, (6.11)

where, from the inventory balance equation, we define ∆ic,t as,

∆ic,t = ic,t − ic,t−1 = qc,t − dc,t. (6.12)

8We settled on these values after performing an exploratory search on randomly chosen series.
We found forecast performance to be quite robust within reasonable parameter values, and α = β =
γ = 0.3 to be a good compromise between the nervousness and tracking ability of the forecasts.
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Here, ac is the time-invariant firm-specific fixed effect, β1 is the coefficient of
∆Fc,t, and uc, t, the unplanned change in inventory buffer, is defined as the error
term for the observation. We perform the estimation on the change of inventory
level, rather than on the estimated purchase quantity to reduce the effects of
scale.

To test hypotheses 6.1 and 6.2, we perform a similar regression on the upstream
data. For each customer-supplier pair, c-s, we have:

∆is,t = as + β2 ∆Fs,t + rc,s β3 β1 ∆Fc,t + rc,s β4 uc,t + rc,s + us,t, (6.13)

where rc,s is a moderating variable derived from the relative sizes of the firms,
computed through:

rc,s =
1
T

∑T
1 ds,t

∑T
1 dc,t

, (6.14)

with T the length of the link between firms. We include this interaction effect
because, by definition, the orders of customer c consist of an unknown fraction of
the demand of s. By re-scaling the customer parameters thus, we obtain a more
meaningful estimation of the regression coefficients β3 and β4. Additionally, we
include the coefficient rc,s in the regression to test for any information contained
in the scaling coefficient by itself.

6.4 Safety Stock Model

In this section, we study the unplanned change in inventory buffers in greater
detail. We develop a series of hypotheses to study the relationship between the
changes in inventory buffers and the economic and financial conjuncture. To
test these hypotheses, we adopt the econometric structural modeling framework
developed by Olivares et al. (2008) with which we impute the cost parameters of
a rational newsvendor-type model to the empirical observations.

Newsvendor-style equations are common in the inventory-modeling literature.
They provide a way of quantifying the trade-off between the holding- and
penalty-costs that result from over- and under-ordering in a stochastic setting.
While the newsvendor formulation depends on strong assumptions (single-item,
single-period systems with zero lead time), studies have found that newsvendor-
style equations also hold in more complex inventory systems. For example,
Rogers and Tsubakitani (1991) prove that a newsvendor-type result minimizes
costs in a divergent two-echelon, periodic-review inventory system with positive
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lead times and budgetary constrains. Further, Diks and De Kok (1998) show that
in a divergent N-echelon system, applying nesvendor-type equations at every
end-stockpoint minimizes long-run costs. In this section, we assume that the
determination of the empirical order quantities in our sample follows a rational
newsvendor-style model where the critical fractile (determined by the relative
cost of over- and under-ordering) varies, period-by-period and firm-by-firm.

In this model, we explicitly link the unplanned changes in the inventory buffers
to a cost function (represented by the critical fractile) unknown to us, but known
to the decision-maker. In this view, the unplanned change in inventory buffer
reflects a hedge made by the decision-maker based upon a cost structure that is
no longer assumed constant, but that changes in time. Since this cost information
is a priori unknown to us, to estimate it we assume that the decision-maker is
rational, and that the decisions he makes, which we can observe in our data, are
optimal in the context of this newsvendor-type cost model.

We observe these newsvendor decisions in the form of variable inventory buffers.
In the preceding section, we introduced a replenishment model that quantified
safety stock changes through two parameters: planned and unplanned changes
in the inventory buffers. The former explicitly describes the variation due to a
shift in the mean demand (as measured by a change in the firms’s forecasts),
while the latter acts as an umbrella factor that represents any other possible
changes. With our newsvendor-type model, we assume that unplanned changes
are driven by changes in the cost factors. After we obtain an estimate of the costs
that drive the decisions, we test a series of hypothesis related to the external
factors driving these costs.

6.4.1 Newsvendor Model

Let Cu
s,t and Co

s,t represent supplier s’s underage and overage costs, respectively,
at time t. In the context of our model, because we assume that firms carry
safety stocks, we relate these costs to the cost of increasing (or decreasing) the
unplanned component of the inventory buffers. This is represented by a cost
function dependent on the deviation of orders from the demand plus planned
changes in the inventory buffer:

CUB(qs,t) =
[
Co

s,t(qs,t − (ds,t + ps,t))
+ + Cu

s,t((ds,t + ps,t)− qs,t)
+
]

, (6.15)

where ps,t is the planned change in inventory buffer, and CUB(qs,t) the total cost
related to changes to the unplanned inventory buffer. Here, we are not interested
in assigning a defined interpretation to these costs, rather, we are interested in
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the relative cost ratio:

γs,t =
Co

s,t

Cu
s,t

. (6.16)

This cost ratio can vary within a single supplier over time, and it depends on
information known by the decision-maker. When γs,t increases, the firm has an
incentive to reduce inventories; when γs,t decreases, the firm has an incentive to
increase inventories. Assuming continuous variables, the first order condition
that follows from a one-period, myopic minimization of the cost Equation 6.15

results in the following condition for the optimal decision q∗s,t:

F(q∗s,t) = Pr(ds,t + ps,t ≤ q∗s,t) =
1

1 + γs,t
. (6.17)

where ds,t + ps,t is the estimated order quantity before considering the cost
components and can be estimated from our data through:

ds,t + ps,t = as + β2 ∆Fs,t + rc,s β3 β1 ∆Fc,t + rc,s β4 uc,t + rc,s + εs,t, (6.18)

ds,t + ps,t = ΩXs,t + εs,t, (6.19)

where εs,t represents the error in the estimation and we use Ω and Xs,t, vectors
of coefficients and covariates, to represent the estimation equation in compact
form.

6.4.2 Hypothesis Development

The reasoning behind the use of a policy through which the decision-maker
of a firm is allowed to adjust purchase orders every period, is that there are
conditions not captured by the stationary-cost model that, in practice, impact
daily decision making. Examples of such conditions are batch-discount pricing,
promotions (both at the supplier and customer level), advance information not
captured in the forecast, the firms’ financial standing, and macro economic
conditions. While we cannot model the full extent of information available to a
decision maker, we can track certain financial indicators and the overall macro-
economic conjuncture. Consequently, we present two hypotheses that link these
indicators to the variable cost ratio presented in the previous section.

Our first hypothesis comes from the combination of results we obtained in
Chapter 3 and knowledge from prior empirical research. In Chapter 3, we
showed that a sharp decrease in target inventories, as a reaction to the onset
of the recent financial crisis, is consistent with the dynamics observed by
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manufacturers in the periods following Lehman Brothers’ bankruptcy. In spite
of the unusual magnitude and synchronization of the recent financial crisis, the
mechanism proposed (that firms reduce target inventory levels when they face
financial difficulties) is not new. Escaith et al. (2010), for example, suggest that
reducing inventories is a common first reaction in the face of adverse credit
conditions and activity slowdown. More recently, Pesch and Hoberg (2013)
analyze firms facing financial distress during the 1995-2007 period and estimate
that approximately 70% reduce their inventories in order to free up cash and
prevent bankruptcy.

Thus, we expect to see a negative relationship between financial constraints and
the cost ratio. Given this, we formulate our cost Hypotheses:

H 6.3 When firms are constrained by liquidity, they adjust their critical fractile down.

Similarly, we hypothesize that the overall economic sentiment will have a
positive association with the acceptable inventory-related risks that a firm is
willing to face; in recessionary times, firms will prioritize cash over service
levels. Using the relative change in Gross Domestic Product (GDP) as a proxy to
the overall economic conjuncture, we expect that negative GDP changes will shift
the cost ratio balance towards penalizing overage. Therefore, we hypothesize
that:

H 6.4 When macro-economic conditions are adverse (GDP decreases), firms adjust their
critical fractile down.

6.4.3 Structural Estimation of Cost Ratios

In the standard normative approach to newsvendor-type models, the researcher
assumes a distribution function for the random variable and certain explicit cost
parameters. With these assumptions, he then computes the optimal ordering
decision q∗. Unfortunately, we cannot directly observe the evolution of the cost
ratios for the firms in our dataset. Thus, we use a structural modeling framework
to estimate the cost parameters given an assumed distribution and observations
of the realized decisions.
We assume that the decision-maker is locally rational and therefore the observed
orders are optimal. We use this assumption to impute, for each observation, the
cost ratio that would make the observed decision rational.

Additionally, we cannot assume that two firms will react equally given a certain
cost ratio. There is an ex ante heterogeneity in the inventory buffers; different
decision-makers use different processes to select the target buffer inventory (e.g.,
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at an aggregate level the inventory buffer may be associated to the number
of Stock Keeping Units (SKU), the time of year, or other firm-specific factors).
To model this heterogeneity in the inventory buffers, we follow Olivares et al.
(2008). We assume that the value of the inventory buffer is given by independent
random variables from a common family of distributions, (F(·; θ) : θ ∈ Θ), where
θ is a vector parameter from the parameter space Θ which characterizes each
member of the class. The distribution of the inventory buffer of supplier s at
time t is given by F(·; θs,t). We let this distribution depend on the vector of
covariates Xs,t as defined in Equation (6.18), and assume the functional form:

θi = h(Xs,t, η), (6.20)

where η is a vector of parameters to be estimated. Thus, the distribution of
the desired inventory buffer for firm s at time t, F(·; θs,t) is characterized by
the functional form of the distribution, the function h(·; ·), the vector η, and the
vector of covariates Xs,t. In other words, all else being equal, different decision
makers will have different target inventory levels in different periods.
In addition, recall that the decision-maker may face different trade-offs between
overage and underage costs across observations: the cost ratio γ may differ
across observations, and it depends on a series of factors that are a priori
unknown to us. Formally, we define:

γs,t = g(Zs,t, α), (6.21)

where Zi is a vector of covariates, g(·) is a link function, and α is a vector of
parameters to be estimated.
We can express the critical fracile as:

F(q∗i ; h(Xs,t, η)) =
1

1 + g(Zi, α)
, (6.22)

where q∗i specifies the optimal decision for each observation.

Following Olivares et al.’s (2008) N1 model of the decision-maker behavior, we
assume that there are unobservable factors that affect the calculation of the
overage/underage ratio. Let ξs,t be an i.i.d (unobservable) factor that affects the
calculation of cost ratio, E(ξs,t = 0) and let the cost ratio follow the following
log-linear specification:

Log (γs,t) = αZt + ξt. (6.23)

Since we do not know the realizations of γs,t, we cannot estimate α. We know,
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however, that if the decision-maker is rational, then she will behave according to
the critical fractile:

γs,t =
1

F(qs,t; θs,t)
− 1 (6.24)

The procedure to estimate α is then:

Step 1: Estimate η through maximum likelihood using the observed
realizations of qs,t. Use η̂s,t to compute the fitted values θ̂s,t =

h(Xs,t, η̂).
Step 2: Compute the estimated cost ratios γ̂s,t = 1/F(qs,t; θ̂s,t) − 1,
and then estimate α through an OLS estimation of Equation (6.23).
(Olivares et al., 2008).

We assume that the distribution of the actual orders placed by the supplier
at time t (demand plus planned changes in inventory buffer plus unplanned
changes in inventory buffer) is defined by the vector θs,t = (µs,t, σs,t) and the
orders placed can be written as:

qs,t = ΩXs,t + εs,t. (6.25)

(Olivares et al., 2008) show that, if we assume εs,t to be i.i.d, normally
distributed with mean zero and standard deviation σ, then η = (Ω, σ2),
h(Xs,t, Ω, σ2) = (ΩXs,t, σ2), and estimating (Ω, σ2) via maximum likelihood is
equivalent to estimating Ω through OLS and σ through the standard deviation
of the regression residuals. Furthermore, we can estimate the critical fractile
through:

F(ds,t + ps,t, θ̂s,t) = Pr
(
ds,t + ps,t ≤ q∗s,t

)
(6.26)

= Φ

(
qs,t − Ω̂Xs,t

σ̂

)
. (6.27)

And finally estimate γs,t through:

γ̂s,t =
1

F(ds,t + ps,t, θ̂s,t)
− 1 (6.28)

Since the normality assumption is quite restrictive, we repeated the analysis
using the empirical distribution of the regression errors for each industry
segment to calculate the critical fractile. Results obtained using said method
are consistent with the results derived with this assumption.
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6.4.4 Econometric Specification

We now formulate the econometric specification to test Hypotheses 6.3 and6.4.
After estimating the cost ratio γ, we obtain an estimate of the vector of
coefficients α through:

Log(γt,s) = λ1QuickRatios,t−1 + λ2∆GDPt−1 + λ3Years,t + λ4q2 + λ5q3 + λ6q4 + ξt.
(6.29)

Here, QuickRatios,t−1 is the lagged quick ratio of firm s, calculated using the
financial identity:

QuickRatios,t =
CurrentAssetss,t − Inventoriess,t

CurrentLiabilitiess,t
. (6.30)

∆GDP data is obtained from the Bureau of Economic Analysis9. To control
for other external effects, we add Year, a linear time trend dummy; and q2–q4,
quarterly dummies.

6.5 Results
We use the “xtreg” panel data module in STATA to perform our analysis. We
estimate fixed effect regressions with robust standard errors.

Table 6.4 shows the results of the estimation of the inventory model with the
change in supplier’s inventory as the dependent variable. Column 1 provides the
results for the pooled regression; columns 2–4 provide the results for individual
industry segments as defined by the 2-digit NAICS industry code. Similarly,
Column 1 of Table 6.5 provides the pooled results of the cost ratio model,
with Log(γs,t) as the dependent variable; columns 2–4 show the results for the
individual industry segments. Both tables show the estimation results using all
periods in the sample. Table 6.3 shows the detail of the segments included in
each of the NAICS codes.

The data at the aggregate level are consistent with Hypothesis 6.1: Upstream
inventory changes are positively correlated with planned changes in down-
stream inventory buffers. This implies that upstream firms react to planned
downstream inventory changes. This relationship is not statistically significant
for industries that belong to NAICS code 32.

The data at the aggregate level are consistent with Hypothesis 6.2: Upstream
inventory changes are positively correlated with unplanned changes in down-

9http://bea.gov/national/index.htm
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stream inventory buffers. This implies that upstream firms react to unplanned
downstream inventory changes. This relationship is statistically significant for
all individual industries.

The data at the aggregate level are consistent with Hypothesis 6.3: The estimated
cost ratio decreases with the lagged quick ratio. This relationship is also not
significant for industry code 32.

The data at the aggregate level are consistent with Hypothesis 6.4: The estimated
cost ratio decreases with the lagged change in GDP. However, this effect appears
to be driven mainly by firms in industry code 33; this relationship is not
significant for industry codes 31 and 32.

To add to the hypotheses tests, we analyze the significance of the other
regression coefficients. The inventory regression for the industry code 32 shows
that, in addition to the scaled change in downstream buffer, the firm’s own
change in forecast is not statistically significant. This suggests that this segment
does not plan its production runs according to forecasts. A plausible explanation
for this observation is that code 32 consists majorly of process industries.

The statistical significance of the dummy variables in the cost ratio regressions
are consistent across all industry segments. The 3rd and 4th quarter dummies
are statistically significant and positive for all industries; the 2nd quarter dummy
is not statistically significant for code 31. Furthermore, the coefficients increase
from q2 to q4, this reflects a negative association between inventory buffers and
the fiscal year cycle—with buffers decreasing until they reach a minimum in the
last quarter. The main reason for including the yearly trend in the cost ratio
regression was to account for the potential influence that expanding product
lines can have in the inventory buffers. However, the yearly trend is statistically
significant only in code 32 industries, and with a positive sign. This suggests
an increasing trend in the cost ratio, equivalent to a decreasing trend in buffers.
Together with the results obtained through the inventory regression results for
code 32 industries, these observations merit further analysis.

Table 6.3 Segments per industry code

Code Industrial Segments

NAICS 31 Food, Beverage and Tobacco, Textile, Apparel, and Leather Manufacturing.

NAICS 32 Wood Product, Paper, Printing, Petroleum and Coal,
Chemical, Plastics and Rubber, and Non-metallic Mineral Product Manufacturing

NAICS 33 Primary Metal, Fabricated Metal, Machinery, Computer and Electronic Product,
Electrical Equipment, Appliance and Component, Transportation Equipment,
Furniture, and Miscellaneous Manufacturing.
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Table 6.4 Pooled and industry-specific inventory regressions for period 1984-2013

Coefficient Pooled NAICS 31 NAICS 32 NAICS 33

∆Ft 0.055 (0.020)*** 0.182 (0.037)*** 0.005 (0.025) 0.071 (0.023)***
Scale 0.153 (0.765) 7.949 (4.607)* -1.210 (1.306) 0.304 (0.530)
Scaled Unplanned Buffer 0.120 (0.032)*** 0.206 (0.099)** 0.226 (0.079)*** 0.097 (0.033)***
Scaled Planned Buffer 0.446 (0.135)*** 0.680 (0.316)** 0.179 (0.191) 0.437 (0.147)***
Constant 1.760 (0.131)*** 0.578 (0.344)* 4.059 (0.165)*** 1.110 (0.117)***
N 71337 7463 15662 48212

Suppliers 2558 275 624 1659

Table 6.5 Pooled and industry-specific cost regressions for period 1984-2013

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆GDPt−1 -0.011 (0.003)*** 0.006 (0.005) 0.006 (0.011) -0.020 (0.003)***
QuickRatiot−1 -0.005 (0.001)*** -0.065 (0.015)*** -0.001 (0.001) -0.008 (0.001)***
Scaled Unplanned Buffer 0.001 (0.001) -0.003 (0.003) 0.000 (0.003) 0.001 (0.001)
Scaled Planned Buffer -0.004 (0.003) -0.005 (0.008) 0.002 (0.004) -0.004 (0.003)
Year 0.001 (0.003) 0.005 (0.005) 0.013 (0.006)** -0.003 (0.004)
q2 0.047 (0.015)*** -0.046 (0.059) 0.133 (0.038)*** 0.032 (0.016)**
q3 0.161 (0.019)*** 0.360 (0.091)*** 0.224 (0.053)*** 0.115 (0.019)***
q4 0.274 (0.026)*** 0.399 (0.106)*** 0.286 (0.066)*** 0.240 (0.026)***
Constant -0.059 (0.067) -0.181 (0.142) -0.404 (0.148)*** 0.061 (0.080)
N 70,962 7,441 15,617 47,904

Note: Standard errors are reported in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01

6.5.1 The Impact of the 2008 Financial Collapse

The recent credit crisis was global in nature, dramatic in magnitude, and
significantly affected the performance of manufacturing firms (Levchenko et al.,
2010). In Chapter 3, we argue that pressing financial conditions drove
individual firms to seek monetary refuge by converting inventories into cash,
and find support support for our hypothesis at the individual supply chain
level. Similar observations, concerning higher aggregation levels, have been
made in the financial literature: Gao and Yun (2009), for example, explicitly
link manufacturing performance in the periods following Lehman brothers’
bankruptcy to firms’ ability to withstand the financial turmoil. They show that
firms’ access to liquidity is positively associated with their business performance
during the 2008-2009 period.

The results we have presented thus far in this chapter take explicit consideration
of financial conditions. To account for the potential impact that significant10

crisis - related disruptions in our results, we temporally disaggregate our dataset
10As in behavior-changing paradigm shifts.
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and repeat our econometric analysis independently for the 1984–2006 and 2007–
2013 periods.

Tables 6.6 and 6.7 provide the results of the inventory regressions for the periods
1984–2006 (pre-crisis) and 2007–2013 (crisis/post-crisis) respectively. Similarly,
Tables 6.8 and 6.9 show the results of the cost ratio regressions for those periods.

The temporally disaggregated data are consistent with the findings detailed in
the previous section. All hypotheses are supported by the pooled data.

At the industrial segment level, it is interesting to note that the results from the
pre- and post-crisis inventory regressions are generally consistent for codes 32

and 33, but not for code 31. We see, in the pre-crisis period (column 2 of Table
6.6), no statistical significance for either of the coefficients related to downstream
inventory buffers. This changes significantly in column 2 of Table 6.7.

To test for a change in the behavior of the firms among the periods, we perform a
statistical test of the values of the coefficients for pre- and post-crisis regressions.
We do so by generating a dummy variable to indicate whether an observation
belongs to the pre- or post-crisis period and then re-running the regression with
an interaction term between this indicator variable and each of the predictors.
Then, the p-value for the interaction term effectively gives us a significance test
for the difference between the coefficients. We find that, at the aggregate level,
the difference between the pre- and post-crisis Scaled Planned Buffer coefficients
is statistically significant at the 10% level. None of the other coefficients show a
statistical difference across periods.

Comparing the results of the cost ratio regressions, results at the aggregate and
industry segment levels are generally consistent. A notable observation is that
the quick ratio coefficient for code 32, which was not statistically significant
in the previous analysis becomes significant and negative in the post-crisis
regression (column 3, Table 6.9). This suggests that process industries also
steered on cash during and after the credit crisis. Also notable is the statistical
significance and negative sign of the yearly trend dummy in the pre-crisis
regression. This is mainly driven by code 33 (column 3, Table 6.8) and suggests
a progressive increase in the desired inventory buffers through this period. This
relationship turns statistically non-significant in the post crisis period. However,
further research is needed to identify the causality of the ‘84-‘06 relationship (an
increase in the number of SKU’s is a plausible explanation), and the reasons why
this relationship is not observed in the post-crisis period.

Finally, we perform statistical tests to quantify the change in the coefficients. We
find that the quick ratio coefficient during the post-crisis period is more negative
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than during the pre-crisis period with a statistical significance at the 1% level;
the quarterly dummies for 3rd and 4th quarter, on the other hand, are found to
increase in the post crisis period with the same level of statistical significance.
This underscores the increased importance of the financial performance during
the period inasmuch as it highlights an increase in the association between
liquidity and inventory buffers, and between the fiscal year and inventory
buffers.
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Table 6.6 Estimation results for period 1984-2006

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆Ft 0.0460 (0.0179)** 0.146 (0.0491)*** 0.0644 (0.0489) 0.0395 (0.0185)**
Scale 0.0291 (0.742) 0.612 (2.104) 0.731 (0.432)* 0.0200 (0.804)
Scaled Unplanned Buffer 0.0843 (0.0420)** 0.124 (0.0935) 0.0590 (0.0278)** 0.0837 (0.0461)*
Scaled Planned Buffer 0.597 (0.169)*** 0.215 (0.407) 0.236 (0.170) 0.627 (0.182)***
Constant 1.029 (0.126)*** -0.0728 (0.146) 2.268 (0.075)*** 0.871 (0.151)***
N 51029 5404 9758 35867

Suppliers 2235 249 502 1484

Table 6.7 Estimation results for period 2007-2013

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆Ft 0.0602 (0.0328)* 0.242 (0.0420)*** -0.000183 (0.0229) 0.130 (0.0450)***
Scale 0.292 (1.702) 11.623 (6.684)* -0.0439 (1.953) 1.613 (0.682)**
Scaled Unplanned Buffer 0.187 (0.0555)*** 0.266 (0.113)** 0.341 (0.131)** 0.117 (0.0440)***
Scaled Planned Buffer 0.259 (0.131)** 0.735 (0.300)** -0.131 (0.354) 0.232 (0.135)*
Constant 3.593 (0.306)*** 3.025 (0.677)*** 6.517 (0.268)*** 1.826 (0.100)***
N 20308 2059 5904 12345

Suppliers 906 99 274 533

Note: Standard errors are reported in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01
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Table 6.8 Pooled and segment-specific cost regressions for period1984-2006

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆GDPt−1 -0.007 (0.002)*** 0.011 (0.005)** 0.004 (0.003) -0.014 (0.003)***
QuickRatiot−1 -0.003 (0.001)*** -0.041 (0.010)*** 0.000 (0.000) -0.006 (0.001)***
Scaled Unplanned Buffer 0.001 (0.001) -0.002 (0.002) -0.001 (0.002) 0.001 (0.001)
Scaled Planned Buffer -0.001 (0.003) 0.014 (0.009) 0.003 (0.003) -0.002 ( 0.003)
Year -0.004 (0.002)** -0.000 (0.002) 0.001 (0.003) -0.006 (0.002)***
q2 0.041 (0.014)*** 0.017 (0.042) 0.080 (0.030)*** 0.028 (0.016)*
q3 0.106 (0.016)*** 0.234 (0.055)*** 0.121 (0.038)*** 0.080 (0.019)***
q4 0.107 (0.020)*** 0.254 (0.055)*** 0.134 (0.046)*** 0.159 (0.022)***
Constant 0.038 (0.030) -0.063 (0.054) -0.133 (0.059)** 0.107 (0.038)***
N 50,745 5,391 9,745 35,609

Table 6.9 Pooled and segment-specific cost regressions for period 2007-2013

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆GDPt−1 -0.018 (0.007)*** -0.019 (0.011)* 0.009 (0.021) -0.032 (0.006)***
QuickRatiot−1 -0.022 (0.004)*** -0.258 (0.078)*** -0.027 (0.008)*** -0.016 (0.004)***
Scaled Unplanned Buffer 0.000 (0.001) -0.004 (0.003) 0.002 (0.003) 0.000 (0.002)
Scaled Planned Buffer -0.005 (0.006) -0.007 (0.008) -0.002 (0.006) -0.005 (0.007)
Year 0.006 (0.010) 0.055 (0.039) 0.012 (0.024) -0.006 (0.011)
q2 0.036 (0.037) -0.272 (0.164)* 0.212 (0.075)*** 0.014 (0.042)
q3 0.289 (0.046)*** 0.632 (0.243)** 0.371 (0.099)*** 0.202 (0.043)***
q4 0.515 (0.056)*** 0.812 (0.287)*** 0.515 (0.106)*** 0.443 (0.059)***
Constant -0.228 (0.298) -1.503 (1.193) -0.386 (0.682) 0.120 (0.312)
N 20,217 2,050 5,872 12,295

Note: Standard errors are reported in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01
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6.6 Conclusions

In this Chapter, we have studied the effect of changes of downstream inventories
in the production decisions made upstream. We find support for the hypothesis
that planned and unplanned changes in a customer’s inventory trigger an
overreaction on the part of its supplier. Furthermore, we also find support
the hypothesis that decision makers adjust their safety stock (and thus the
unplanned component of their inventory changes) according to the economic
sentiment (measured by the change in the GDP) and their financial position
(measured as the quick ratio).

To study the relationship between downstream and upstream companies, we
constructed a database of customer/supplier pairs by taking advantage of a US
regulation in which customers that account for at least 10% of a firms’ sales
must be included in financial reports. This kind of database is not, however, in
widespread use because of the format in which the customer names are reported:
rather than reporting a unique and predefined identifier, firms report their
customers’ names in the form of a plain text string. This causes difficulties for the
researcher constructing links from this information, for the data is plagued with
spelling mistakes, abbreviations, and unconventional spellings. We overcome
this ambiguity in the reporting using a combination of a partial string matching
algorithm and manual matching. Our database consists of financial information
of supplier-customer pairs during approximately 80000 firm-quarters, in the
period 1984-2013.

To test our first set of hypotheses, we derive an econometric specification model
that allows us to separate between the customer’s planned and unplanned
inventory changes by assuming that planned inventory changes follow the firms’
forecast and the unplanned changes depend on factors that we are unable to
observe. We find that suppliers consistently overreact to the inventory changes
of their customers. This suggests that inventories are being used systematically
as drivers of ordering decisions.
The second part of our study expands on this finding with a structural model of
the decision making mechanism. In this model, the decision maker is assumed
to be following a rational, newsvendor-like policy, and adjusting the safety stock
component every period by allowing the cost ratio (the ratio between the overage
and underage cost) vary. With this model, we find support for the second set of
hypotheses. Moreover, and in line with the findings from chapter 3, we show
that the relative importance of the firm’s liquidity as a driver increased in the
period 2007-2013 as compared to the 1984-2006 period.

Our study has several limitations. The use of aggregated financial data
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from Compustat can lead to space and time aggregation biases. We also
use proxies that may introduce biases: sales for demand and production for
orders. In the structural estimation, we assume a rational decision maker,
which assumes knowledge and application of optimal policies. The construction
of the supplier/customer pairs also brings limitations. The sample is biased
towards large customers and small suppliers, which can potentially cause an
over-estimation of the effects that downstream changes have upstream.
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Appendix C

The Influence of firm size bias
In §6.2.1 we observed that, due to the nature of the reporting process, our
customer-supplier pair database is biased towards large customers and small
suppliers. This bias can potentially affect the generality of our results. It is
possible that smaller firms behave differently from larger firms. Smaller firms
can be more agile in implementing changes, as well as more sensitive to changes
in their liquidity.

To test whether the results obtained from our analysis are being driven primarily
by this bias towards smaller suppliers, we partition our data according to the
relative size of customer-supplier pairs and repeat our analysis on a sub-sample
of our data, comprised of the top 25th percentile. We present the results in tables
C.1 through C.6.

We see that qualitatively, the results obtained with this sub-sample are consistent
with those obtained through the analysis of the entire dataset. This suggests that
the firm size bias is not driving our results and thus increases the confidence on
the results. However, it is important to note that while this rules out the influence
of firm size bias in our dataset, it is not a stringent test of the influence of firm
size.
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Table C.1 Estimation results for period 1984-2013

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆Ft 0.053 (0.026)** 0.236 (0.070)*** -0.014 (0.024) 0.090 (0.029)***
Scale -0.009 (0.895) 7.567 (4.875) -1.957 (1.379) 0.197 (0.549)
Scaled Unplanned Buffer 0.120 (0.034)*** 0.225 (0.112)** 0.241 (0.084)*** 0.095 (0.034)***
Scaled Planned Buffer 0.440 (0.137)*** 0.651 (0.360)* 0.133 (0.202) 0.420 (0.145)***
Constant 4.388 (0.512)*** 3.577 (1.390)** 10.297 (0.515)*** 2.757 (0.362)***
N 17,757 1,602 3,248 12,907

Table C.2 Estimation results for period 1984-2006

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆Ft 0.061 (0.029)** 0.141 (0.061)** 0.038 (0.077) 0.059 (0.030)*
Scale 0.017 (0.779) 1.118 (2.974) 0.915 (0.423)** -0.023 (0.835)
Scaled Unplanned Buffer 0.087 (0.045)* 0.163 (0.104) 0.067 (0.027)** 0.085 (0.049)*
Scaled Planned Buffer 0.583 (0.165)*** 0.023 (0.496) 0.251 (0.174) 0.610 (0.176)***
Constant 2.422 (0.449)*** 0.789 (0.742) 3.584 (0.188)*** 2.323 (0.545)***
N 11,727 1,023 1,980 8,724

Table C.3 Estimation results for period 2006-2013

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆Ft 0.045 (0.034) 0.379 (0.085)*** -0.012 (0.024) 0.123 (0.047)***
Scale -0.292 (2.035) 9.529 (5.203)* -0.728 (2.114) 1.573 (0.687)**
Scaled Unplanned Buffer 0.182 (0.058)*** 0.277 (0.128)** 0.366 (0.143)** 0.110 (0.044)**
Scaled Planned Buffer 0.260 (0.135)* 0.708 (0.346)** -0.247 (0.370) 0.232 (0.138)*
Constant 8.080 (1.059)*** 10.124 (1.719)*** 18.004 (0.813)*** 3.494 (0.249)***
N 6,030 579 1,268 4,183

Note: Standard errors are reported in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01
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Table C.4 Pooled and segment-specific cost regressions for period 1984-2013

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆GDPt−1 -0.045 (0.019)** -0.001 (0.020) 0.005 (0.066) -0.065 (0.020)***
QuickRatiot−1 -0.011 (0.005)** -0.323 (0.161)** -0.000 (0.003) -0.024 (0.011)**
Scaled Unplanned Buffer 0.001 (0.001) -0.003 (0.003) 0.001 (0.003) 0.001 (0.001)
Scaled Planned Buffer -0.000 (0.003) -0.003 (0.012) 0.003 (0.005) 0.000 (0.003)
Year 0.010 (0.011) 0.006 (0.027) 0.050 (0.037) 0.005 (0.012)
q2 0.137 (0.075)* -0.179 (0.259) 0.437 (0.189)** 0.115 (0.086)
q3 0.429 (0.102)*** 0.744 (0.396)* 0.694 (0.285)** 0.342 (0.112)***
q4 0.782 (0.127)*** 0.823 (0.500) 1.024 (0.346)*** 0.696 (0.138)***
Constant -0.292 (0.264) -0.071 (0.943) -1.344 (0.954) -0.079 (0.284)
N 17,503 1,593 3,216 12,694

Table C.5 Pooled and segment-specific cost regressions for period 1984-2006

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆GDPt−1 -0.046 (0.020)** 0.039 (0.020)* 0.011 (0.014) -0.057 (0.026)**
QuickRatiot−1 -0.009 (0.005)* -0.224 (0.096)** 0.001 (0.001) -0.017 (0.011)
Scaled Unplanned Buffer 0.001 (0.001) -0.002 (0.002) -0.001 (0.002) 0.001 (0.001)
Scaled Planned Buffer 0.000 (0.003) 0.017 (0.012) 0.004 (0.004) 0.001 (0.002)
Year 0.010 (0.011) -0.014 (0.009) 0.011 (0.012) -0.007 (0.013)
q2 0.169 (0.076)** -0.019 (0.205) 0.231 (0.164) 0.114 (0.086)
q3 0.412 (0.102)*** 0.306 (0.189) 0.353 (0.210)* 0.238 (0.113)**
q4 0.739 (0.123)*** 0.406 (0.255) 0.508 (0.226)** 0.505 (0.149)***
Constant -0.259 (0.266) 0.287 (0.310) -0.531 (0.307)* 0.174 (0.240)
N 16,930 1,020 1,974 8,554

Table C.6 Pooled and segment-specific cost regressions for period 1984-2013

Segment Pooled NAICS 31 NAICS 32 NAICS 33

∆GDPt−1 -0.048 (0.020)** -0.089 (0.034)** 0.017 (0.125) -0.081 (0.023)***
QuickRatiot−1 -0.010 (0.005)* -0.623 (0.613) -0.139 (0.112) -0.060 (0.031)**
Scaled Unplanned Buffer 0.001 (0.001) -0.004 (0.003) 0.003 (0.003) 0.001 (0.001)
Scaled Planned Buffer -0.000 (0.003) -0.003 (0.012) -0.001 (0.007) -0.001 (0.006)
Year 0.010 (0.011) 0.126 (0.169) 0.019 (0.162) -0.007 (0.034)
q2 0.139 (0.078)* -0.661 (0.517) 0.698 (0.439) 0.022 (0.165)
q3 0.433 (0.108) *** 1.447 (1.003) 1.109 (0.632)* 0.510 (0.210)**
q4 0.801 (0.130)*** 1.734 (1.060) 1.716 (0.560)* 1.003 (0.216)***
Constant -0.290 (0.276) -3.303 (5.778) -0.343 (4.555) 0.163 (0.985)
N 16,483 573 1,242 4,140

Note: Standard errors are reported in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01





“Would you tell me, please, which
way I ought to go from here?”
“That depends a good deal on
where you want to get to.”
“I don’t much care where –”
“Then it doesn’t matter which
way you go”.

Lewis Carroll

Chapter 7
Conclusions
Through the years, the Bullwhip Effect has been a fertile source of research.
A Google scholar search shows that, since 1997, over 1000 published scientific
articles have “the Bullwhip Effect” in their title. Moreover, bullwhip research
appears to be ‘methodologically-agnostic’: Analytical, empirical, experimental,
behavioral, time domain, frequency domain, micro, macro—essentially every
kind of methodology or framework has something to add to our understanding
of the bullwhip.

Such a broad pursuit is driven in part because of how interesting the Bullwhip
Effect is. The bullwhip is so encompassing that its massive reach would be a
dissertation topic in itself, were it not eclipsed by the sheer importance it has in
the operation of real life supply chains—there is still a large amount of relevant
research to be conducted.

Because of this timely, practical, and scientific relevance, the main objective of
this dissertation is to expand our collective knowledge of how the bullwhip
and inventories are interrelated. Reading the literature review presented in
Chapter 2, one cannot but notice that a discussion of the Bullwhip Effect implies
a discussion of inventories and inventory policies. A fitting analogy is that
inventories are the medium through which the bullwhip propagates; any study
of the bullwhip is at some level a study of inventories.

One of the main contributions of this dissertation is to highlight the explicit
influence that inventories have on the bullwhip, and that the bullwhip has on
inventories. Methodologically, we make contributions to the simulation-based
system dynamics literature (Chapter 3); the analytical, and numerical, control
theory literature (Chapter 4 and Chapter 5); and to the empirical literature in
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operations management (Chapter 6).

The rest of this chapter is organized as follows. In Section 7.1 we summarize the
findings presented throughout the thesis by answering the research questions
posed in Chapter 1. In Section 7.2 we reflect upon the managerial implications
that are derived from our work. We end with a discussion on future research
directions in Section 7.3.

7.1 Research Questions Revisited
Since we explore the relationship between inventories and the bullwhip through-
out the entire dissertation, the first research question we analyzed was:

What have researchers learned about the link between inventories and the
Bullwhip Effect?

In Chapter 2, we surveyed over 50 years of Bullwhip Effect research. We
tackled the literature review by classifying existing research according to its
main purpose: Bullwhip discovery and measurement, bullwhip analysis, and
bullwhip taming. While it is immediately apparent that inventories are of
extreme importance in bullwhip research, inventories are seldom the focal point
of analysis. This, however, was not always so: In the original descriptions of the
“Forrester Effect”, before the term bullwhip was even conceived, the dynamics
of inventories were as much the focus as the dynamics of orders.

Because order variability has more immediate cost (and personnel) repercussions
than inventory variability, and because direct costs can more readily be imputed
to highly variable orders (e.g. production cost curves are usually assumed to be
steeper than inventory cost curves), order variance emerged as the key metric
for the quantification of the bullwhip. In Lee et al.’s (1997a) seminal paper,
the Bullwhip Effect itself is defined as the appearance of demand distortion.
It is recognized that the distortion (amplification) originates from inventory
decisions, but the measurement of inventory variability is not in itself a standard
measure of the bullwhip—with the exception of work in the control theory
literature, where inventory variability is explicitly taken into account when
considering performance trade-offs (Dejonckheere et al., 2003; Disney et al.,
2006a; Hoberg et al., 2007b).

Even though inventory variability is not the key metric of most of the bullwhip
models, inventories themselves are a key part of them. Again, inventories are
the medium through which the bullwhip propagates. In the vast majority of
the Operations Management/Operations Research literature, inventories drive
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purchase decisions. Order-Up-To Policies (OUT) are implemented in statistical
modeling (Lee et al., 1997a), control theoretic modeling (Dejonckheere et al.,
2003), system dynamics modeling (Kim and Springer, 2008), empirical work
(Bray and Mendelson, 2012), and experimental work (Sterman, 1989).

In the macroeconomics literature, on the contrary, the production smoothing
model is the basis for partial and general equilibrium models that consider
total inventories. In this view, inventories are not a driver anymore—they
are an adjustment variable. Under the assumption of convex production costs,
production smoothing justifies the usage of inventories as an adjustment variable
by proposing that the optimal production schedule is a constant production
schedule. Thus, inventories act as a buffer, preventing production fluctuations.
As the inspection of any undergraduate or graduate texts in the field easily
proves, the interest that macro-economists as a whole have on inventories is
limited (for example Abel et al., 2008, contains but 3 mentions of inventories
among its 750 pages). Nevertheless, a number of researchers in the field have
noted that inventories can also be more than an adjustment variable.

In the macroeconomics world, the exact role of inventories is still very much an
open question. Researchers in the early 1980’s have pronounced the production
smoothing model “in trouble” for its inability to explain the variability of
orders and pro-cyclicality of inventories (traits of the bullwhip), and started
advocating for the adoption of models with a micro-foundation—such as OUT
replenishment policies. In the intervening years, such models have been
developed, as well as modifications to the production smoothing model that
make its predictions fall in line with empirical observations. These modified
models smooth production, but allow decisions to depend on explicit inventory
policies. As a result, inventories are both a drivers and an adjustment variable.

In OM research, the view of inventories as drivers of replenishment policies is
widely accepted. There is, however, limited research on the explicit influence of
inventory decisions over and above these policies. What happens if parameters
change? For example, what are the effects of changes in the underlying cost
structure on the supply chain dynamics? Can we infer the influence of human
decision-making by studying aggregate data? The majority of the work done in
this area is encompassed on the behavioral operations research, mostly within
the beer game framework. This view of inventories as explicit decision-making
instruments motivates the next research question.

Can a synchronized inventory shock –caused by the desire of firms to retain
liquidity in moments of financial distress– explain the demand dynamics
experienced by upstream manufacturing firms following the collapse, on
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September 2008, of Lehman Brothers?

We explored this in Chapter 3. As a testament of the importance of the Bullwhip
Effect in supply chain performance, the motivation behind the development of
this question came to us from the industry. In particular, this chapter is the
result of the collaboration with a dutch chemical firm that was experiencing
demand drops that did not correspond to what the end-markets themselves
were experiencing. For example, while the sale of bottled beverages stayed stable
during the first periods of the crisis, the demand of raw materials used in the
manufacturing of the bottles and labels saw a significant downswing.

During the same period, higher management at this site implemented a set of
crisis measures as a direct reaction to the observed plummeting of the demand.
Reducing inventories across the board was one of them. Informal interviews
with customers and competitors confirmed that this was the norm in the
industry. We hypothesized that a synchronized reduction of inventory targets
across the supply chain would result in significant demand drops upstream—the
very same thing that motivated the inventory reductions in the first place.

We developed supply chain models based on system dynamics theories to test
this hypothesis. From a scientific point of view, the fit of the model predictions,
coupled with the failure of alternative models to explain the observations,
suggests that inventory reductions played indeed a large part in supply chain
dynamics during the credit crisis. The lack of data for downstream echelons of
the modeled supply chains, however, lessens the power of the statistical tests
that we are able to carry out.

From a practical point of view, the models we developed where incorporated
into the decision system for various business units within the firm, and were
used to complement medium term forecasts. These forecasts, combined with
other crisis measures, enabled the firm to successfully steer through the credit
crisis period.

The motivation for the next research question stems directly from the estimation
of the parameters for the system dynamics models. We found that the best
model fit was associated with parameters that are consistent with Sterman’s
(1989) beer game experiments. In particular, our results are consistent with
the behavioral characteristic of slow adjustment speeds and underestimation of
pipeline inventories. The next question, naturally, is:

How does human behavior -as measured by the inventory and pipeline
smoothing– affect the stability of a production/inventory system, its dy-
namic performance, and the amplification of orders and inventories?
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In Chapter 4, we contribute to the literature by presenting a compact mathe-
matical expression for the stability of an Automatic Pipeline, Variable Inventory
Order Based Production Control System (APVIOBPCS, a generalization of the
OUT policy). To find this compact expression, we used linear control theory as a
modeling methodology. The stability of the system1 is completely characterized
by a set of structural and behavioral parameters. In the second half of Chapter
4, we explicitly look at the effect of a particular behavior: the underestimation
of the pipeline inventories:

How does the under-estimation of the pipeline affect the performance of the
firm?

Under-estimation of the pipeline, as we saw in Chapter 3, is a trait associated
with human behavior that we observe in experimental and empirical data.
Numerous studies have shown that humans playing the beer game tend to
consistently under-estimate the pipeline inventory (Sterman, 1989; Croson and
Donohue, 2006); it is simply difficult for us to mentally keep track of cumulative
quantities. We have shown in Chapter 3 that under-estimation of the pipeline is
present at firm level data, and consequently studied this phenomenon in detail
in Chapter 4. We introduced stationary, transient, and steady state performance
metrics to analyze the performance of the system. We identified the trade-
off between bullwhip smoothing and transient performance, and found that
under-estimating the pipeline can lead to marginal performance gains. However,
we also observed that under-estimating the pipeline leads to peaks in the low
frequency response of orders, which in turn leads to oscillations. We investigated
the performance metrics and the oscillatory response through the next research
question:

How robust are the theoretical performance metrics to changes in the
demand? How does the cyclicality of the system interact with cyclical
demands?

The theoretical performance metrics we derived in Chapter 4 depend on the
assumption of a demand distribution. In Chapter 5, we performed numerical
experiments, with the control theoretic model, to extend our insights to
demands that more accurately resemble those which we encounter in real
life. Surprisingly, we found that, for certain behavioral conditions, the control
theoretic models are extremely sensitive to the input demand. The way the

1A stable system is a system that given a finite input, gives a finite output (i.e., does not explode).
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system amplifies certain frequencies more than others means that even in the
presence of demand sampled from a theoretical distribution, the sampling noise
is enough to bring about a response that, when measured, differs from the
theoretical response. In the case of cyclical (seasonal) demands, we observed that
the frequency of the demand cycles is of utmost importance. The performance
associated with different behavioral parameters depends on the dominant
seasonality of the demand. Therefore, demand seasonality must be explicitly
considered when designing inventory control systems.

In Chapter 6, we turned to secondary data to understand more about the
consequences of a number of the insights we had developed thus far. In this
chapter, we looked at inventories as explicit drivers of demand dynamics. The
first part of this chapter develops a series of hypothesis designed to answer the
question:

Do upstream decision makers over-react to changes in downstream inven-
tory levels?

We compiled a database that contains financial information of supplier/customer
pairs for the 1984-2013 period. With it, we estimated explicit changes to
downstream (customer) inventory buffers, and categorized them as either
planned or unplanned (the former respond to a change in the demand forecast).
We found support for the hypothesis that downstream changes in inventory
buffers are associated with an overreaction upstream. Our finding suggests that
changes in downstream base stock policies are also transmitted upstream. This
result again highlights the importance of studying inventory changes in more
detail. The next, and last, question follows:

Can we observe empirical evidence of firms adapting their inventory levels
to economic and financial conditions?

In the second part of Chapter 6, we tested the hypothesis that economic and
financial conditions constrain the target levels of inventory buffers. We have
offered anecdotal evidence of such a mechanism as one of the motivations
behind the study of Chapter 3, where we found support for it in the context of
the credit crisis. We use a structural model of a rational decision making process
to show that a cost ratio that governs a variable safety stock, dependent on the
greater economic climate and on a firm’s individual liquidity is consistent with
the empirical observations. Additionally, we found that firms have increased
their reliance on liquidity conditions during and after the crisis, which supports
the assumptions of Chapter 3.
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In conclusion, there are various threads that we find when we analyze the
different research questions dealt with in this dissertation. First, we observe
how inventories and orders are intertwined and how one affects the other no
matter the modeling methodology. Second, from a practical perspective, we see
that different modeling methodologies are useful in explaining different aspects
of real-life observations. This has the theoretical consequence that inventory
research, inasmuch as it attempts to develop insights applicable to real-life
situations, must therefore embrace different methodologies to study different
aspects of performance.

7.2 Managerial Implications
Even though the Bullwhip Effect is usually studied with particular attention
to the influence of demand shocks or variations, we have seen (in chapters 3

and 6) that managerial decisions at every level of a supply chain can have a
large impact, potentially generating “endogenous bullwhips”. The managerial
decisions that can have such an impact on performance relate to locally optimal
inventory decisions; a decision that is optimal in the short term for one firm may
very well be detrimental in the medium to long term, as well as when the entire
supply chain’s performance is considered.

A significant amount of analytical inventory models tend to assume that
inventory policies are static with regards to the underlying cost structure and
consequently study steady state performance. In other words, models assume
that all costs remain constant relative to one another, and study the stationary
consequences of a policy. This is a perfectly reasonable assumption from a
theoretical point of view2, however, we have seen evidence that suggests that
in real life the cost ratios fluctuate. Viewed from a pragmatic perspective, the
cost of having too much inventory is not the same to a “healthy” company than
to a company with financial constraints—nor is the definition of a “healthy”
company constant in time. In this thesis we have seen that, in the form of
inventory adjustments, fluctuations in cost ratios can have a significant effect in
the performance of a supply chain.

From a managerial perspective, this raises several interesting observations.

The first is that decisions taken in the interest of the financial short term can have
repercussions in the entire performance of the supply chain. A sudden reduction
of inventories will (all else equal) increase the liquidity of a firm, but may

2The steady state analysis of performance changes due to parameter changes is trivial and not
interesting from a research perspective.
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generate a Bullwhip Effect that will propagate upstream. In a capacitated supply
chain, the Bullwhip Effect can cause significant stock-outs in the upswings.
Thus, to downstream supply chain members, the bullwhip can return from
the supply side in the form of shortages when demand picks up and over-
supply when those shortages are resolved. Anecdotal evidence from the 2008

credit crisis suggests that those firms that built up stocks early profited by, for
example, increasing their market share when direct competitors faced large scale
stock-outs.

Second, from a supply chain perspective this implies that not all fluctuations
in one’s demand are created equal. This implies that the origin of, as well as
the magnitude of demand fluctuations should be tracked. The knowledge of
the source of demand fluctuations and shocks can lead a firm to make better
informed production/ordering decisions.

In general, the main insights that can be derived from this work are summed
up in the realization that not only all demand is not equal, but that the inherent
dynamics of a firm mean that the idea of a target stock is necessarily a dynamic
one. As to why this is important, we start by thinking about Chapter 6. The
evidence presented in this chapter points to systematic adjustments of target
stocks that follow economic and financial developments. In Chapter 3, we
see that such dynamics are present in a plausible explanation of observations
during the financial crisis. Finally, Chapter 5 shows that even in random
conditions, inventories and orders fluctuate because they have an inherent
dynamic signature to them. Hence, if decisions are made with the support of
static data (e.g. a snapshot of inventory levels without dynamic considerations),
then they can lead to amplification and oscillations (as seen in Chapter 3) which
will in turn cause further adjustments.

Thus, decisions on inventories must be made taking their dynamics into
consideration. Given that each individual firm possesses its own characteristics
(and thus it’s own dynamic footprint) and that different demand dynamics
interact differently to different firms (a firm that smooths significantly will react
very differently to a seasonal demand than an agile firm), it follows that both
have to be fundamentally understood if correct decisions are to be made. In this,
the type of decisions is as important as the decision itself. The correct reaction
to a demand shock derived from a downstream inventory correction is very
different to the correct reaction to a demand shock derived from a fundamental
change in the downstream end-market demand. If decision-making is static,
both shocks will be treated equally. If decision-making incorporates dynamics,
then both shocks will be treated differently—and in some cases, no reaction will
be the best reaction.
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Information sharing is widely lauded as an effective way of mitigating the
Bullwhip Effect. It is, at its core, a way of qualifying demand signals. In this
sense, the objective of sharing information is to be able to separate between
demand uncertainty and demand variability. Studies show that the majority of
the benefits of information sharing can be obtained if the downstream demand
as well as the inventory policy is known (Chen, 2003).

The majority of theoretical information sharing literature concentrates in the
analysis of pairs of firms, or linear supply chains. We have shown, in Chapter 3,
that for firms involved in more general, divergent, supply chains there is value
in obtaining information regarding the source of demand changes by tracking
downstream demand and inventory policies, be it by systematic study of one’s
own supply chain or otherwise; this view recognizes the challenge of large scale
information sharing as well as its benefits. In the absence of true information
sharing at these levels, then, learning about the demand patterns affecting one’s
own supply chain, enables firms to implement decision support systems that are
capable of distinguishing between demand uncertainty and demand variability,
and thus react accordingly.

7.3 Future Research
As it is not unusual in scientific research, the research contained in this
dissertation raises a large number of questions. We discuss some general
directions for future research concerning the main threads of this thesis through
the formulation of a number of new research questions. In this section, we
present a series of questions to be addressed by future research, followed by the
intuition and motivation behind them.

Can we find further evidence of managerial underestimation of the pipeline
inventory in firm level data?

Behavioral experiments have shown time and time again that human decision-
makers underestimate the pipeline inventory when playing the beer game. We
have found, in chapter 3, evidence that suggests that the same effect is present
in industrial settings. However, further research is needed to test this hypothesis
and rule out the effects of aggregation. The main hurdle for this direction of
research is the availability of data.

Can we learn more with better data?
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The large majority of empirical research on inventories is carried out with what
are essentially single-echelon models. This is not because of a limitation in
empirical modeling of supply chains, rather, it is because the availability of
‘multi-echelon’ data is extremely poor (as exhibited by the limitations of the
data pertaining customer-supplier dyads discussed in Chapter 6). Better data, of
a higher frequency and at an aggregation level that lets us construct empirical
supply chains will open the doors to substantial advances in our understanding
of the way that firms operate. Bray and Mendelson (2013) demonstrate the use
of high-frequency (albeit single-echelon) data in a recent study of the Bullwhip
Effect in the automotive industry. They use monthly, physical, sales and
inventory data collected by a private industry-specific business intelligence firm.
New sources of such smaller scale data have the potential to greatly increase the
possibilities of what is possible in empirical research.

The technological advances of the past two decades made it possible for firms to
collect and store large amounts of information. Researchers, however, can only
access this kind of data through individual collaborations with firms—limiting
its adoption3. Ideally, large, high frequency databases of primary data will one
day be able to replace the sources of aggregate information we have today—if
firms are willing to share such information and support the publication of the
insights that originate from its use. Such primary data can be of a material
nature, thus allowing researchers to avoid the use of financial proxies, which (as
shown by Chen et al., 2014) can lead to under/over estimations of performance
metrics.

What is the dynamic effect of arbitrary changes to inventory buffers?

In large sections of this dissertation, we hypothesize that decision-makers have
economic and financial incentives to alter their inventory buffers. However,
no research has been done to study this analytically. in part because, from
a theoretical perspective, parameter changes are not interesting when looking
at steady state performance. However, as we have shown through this
dissertation, the dynamic responses brought about by such changes are of
extreme importance. Robustness in the dynamic response should be analyzed
when adopting or altering policies. Of course, the study of the dynamic
consequences of parameter changes is not without challenges. For example,
extending control theoretic models to allow arbitrary changes in parameters
would make them non-linear, which would preclude us from using the linear
control theory frameworks developed during the past 30 years.

3Case in point, the research presented in Chapter 3 uses such primary data for the upstream
echelons, but suffers the disadvantage of the non-availability of similar supply-chain-wide data.
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Likewise, capacity limitations introduce a similar non-linearity into the models.
Relaxing the assumption of an inventory-production system of infinite capacity
is a hard problem, but nonetheless a practically relevant one.

What is the influence of capacity limitations on the bullwhip?

Capacity limitations, both at a production level (i.e. how much can I produce
at one?) and at an inventory level (i.e. how much can I store at once?) are a
major issue in real-life production systems. The inventory models presented in
this dissertation assume that no capacity constraints exist in a given firm. This
means that a firm will always fulfill orders within the lead time, and that a firm
will always be able to store any arbitrary amount of product.

The reason why capacity limitations are potentially relevant to the study of
the bullwhip is that, by definition, the bullwhip generates oscillations in both
orders and inventories, whereas capacity limits impose a hard boundary to those
oscillations. At first sight, this appears to imply that capacity limitations will
keep the bullwhip in check4, however, the theory suggests that in the presence of
shortages, humans will increase orders in subsequent periods. This phenomena,
called shortage gaming, appears in the hope that a larger order is reciprocated
with a larger allocation of the available capacity. These allocation decisions,
however, will depend on a multitude of factors—order size may or may not be
one of them. Unfilled orders, nevertheless, are usually tracked by suppliers;
shortage gaming, when adopted as a strategy to secure a large allocation, is
usually followed by the return of the bullwhip: a surge in deliveries from suppliers
catching up to unfilled demand (De Kok, 2012).

Thus, the effect of capacity limitations in a supply chain goes beyond an arbitrary
bound on a model; it involves human behavior (shortage gaming) as well as firm
policy (allocation rules). While expanding simulation models to include capacity
limitations is trivial, this tells only part of the story. Further research into the
influence of capacity limitations in real life can be performed using empirical
data and the natural experiment of the 2008 crisis, for example.

Moreover, on the flip-side of capacity limitations issues experienced by suppliers,
we find financing limitations experienced by customers. Another common
assumption in inventory models is that customers have the necessary liquidity to
finance their orders, no matter their size. In this dissertation, however, we have
seen that liquidity is an important factor in the day to day running of firms.

4The reasoning being that if a bullwhip-related spike in my orders exceeds my supplier’s available
capacity, then my actual orders will be equal to said capacity and consequently, smaller than the
original spike.
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From a simplified point of view, customers’ financial limitations can be seen to
be akin to suppliers’ capacity limitations: They bound the possible orders, but
also introduce behavioral and firm dynamics into the picture. Unlike capacity,
however, the financial standing of publicly traded companies is available for
researchers to use.

Are there other possible sources of bullwhip that we can study?

The 2008 credit crisis, with its synchronization and magnitude, served as a
powerful natural experiment. We expect that other similarly synchronized
phenomena can be used for the study of the bullwhip—and for the application of
taming measures. A recent example of such a natural experiment is the massive
flood that struck Thailand in 2011. Production in large parts of the country was
essentially halted.

From an empirical point of view, to study the way in which different firms (or
sectors) respond to different “bullwhip events” can generate interesting insights.
Particularly, we can test whether the rogue seasonality defined by the particular
parameters of the system is observable in the successive responses. If this is
true, then the structural footprint of different supply chains can be calculated
and used to aid in the forecasting of future reactions.

In conclusion, it is clear that the Bullwhip Effect, and inventory dynamics in
general, are a ripe field for future research whether it be analytical, empirical or
experimental. The hypothetical research questions presented in this section are
direct extensions of some of the limitations and simplifying assumptions present
in this dissertation. Naturally, they do not represent an all-inclusive list—new
research directions are limited by one’s own imagination. They do, however,
represent a series of concrete directions that are realistic and with potentially
significant impact in the practical application of our knowledge.

One can argue that the reason we use mathematical relationships to model,
and ultimately achieve a deeper understanding of the matter we study is, as
physicist Richard Feynman put it, because “[the real reason is that] the subject
is enjoyable”. However, when choosing research directions in the presence of
a virtually infinite number of choices, we mustn’t forget that, in our field, the
potential for application of our results is of significance. Choose accordingly: fun
and impactful research.
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Summary

Inventory dynamics and the bullwhip effect:
Studies in supply chain performance

More often than not, discussions regarding the bullwhip effect begin with
diapers. This is not the exception. Some years ago, while analyzing the
order patterns of their pampers line of diapers, Procter and Gamble executives
were surprised to see that orders placed by distributors had considerably more
variation than the retail sales to the public. In fact, this increase in variability also
held when comparing orders and sales at different stages of the supply chain:
The further upstream a firm was, the higher the variability of their orders. This
phenomenon, it turns out, is not exclusive to diaper sales; it affects essentially
every supply chain in the world. Today, we call it the bullwhip effect.

In general, the causes of the bullwhip effect are broadly separated into
operational and behavioral. As the name implies, operational causes refer to
factors around the way that firms implement their ordering processes. They
are the updating of demand forecasts (due to the necessity to hedge against
demand uncertainty), order batching (due to the tendency to buy less often in
pre-defined multiples), price fluctuations (and the resulting speculative motives
for inventory holding), and shortage gaming (due to customers inflating orders
to gain better allocations in case of shortages).

Behavioral causes of the bullwhip effect, on the other hand, refer to those causes
that stem from the innate humanness of decision making. Most notably, our
apparent inability to keep track of cumulative quantities. In a supply chain
context this is observed in the way that decision makers tend to under-estimate
the supply pipeline. In other words, when calculating replenishment orders, we
fail to fully take into account the inventory that has already been ordered but
not yet received. This leads to the telltale over-ordering and over-adjusting of
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the bullwhip effect, and has been replicated over and over by researchers all over
the world—usually by running experiments where students manage simplified
supply chains, where the operational causes of the bullwhip are controlled for.

In this thesis we investigate the dynamics of inventories and how they are
intrinsically linked to the bullwhip effect. In particular, we explicitly model
different mechanisms of the aforementioned under-estimation of the supply
pipeline to study how this behavior, the bullwhip effect, and the dynamic nature
of inventories are interrelated.

To understand exactly how prevalent and encompassing a subject the bullwhip
effect is, we perform a survey that spans over 50 years of research, several
disciplines, and multiple research methodologies. We trace the development
of dynamic supply chain models to the 1950’s and show how they led to the
establishment of an new discipline –system dynamics– capable of simulating
supply chain dynamics using the limited computing power of the age. In fact,
we find that Forrester, already in 1958, describes the bullwhip effect in terms
of business cycles. Using system dynamics, he describes the mechanisms that
lead to the amplification of orders variance, as well as the appearance of a “fake
business cycle”: The emergence of a seasonality in orders that is not contained
in the demand, an effect which today we know as rogue seasonality.

Among other research directions, we encounter, relevant to this thesis, the afore-
mentioned separation of the causes of the bullwhip effect into operational and
behavioral parameters and, perhaps surprisingly, substantial debate regarding
its measurement and appearance on empirical data at different aggregation
levels. For all the body of work available, the role of inventories is often implied
and taken for granted: The view of economists, often assuming them to be an
adjustment variable, clashing with the OM/OR view of inventories as explicit
drivers of ordering decisions. In this view, inventories are the medium through
which the bullwhip propagates, but their direct influence on the bullwhip
dynamics are seldom analyzed.

To understand the impact of inventory decisions on the supply chain dynamics,
we develop a system dynamics model based upon behavioral operations
methodologies and use it to model four real-life supply chains at an echelon level
of aggregation. We use the recent 2008 financial crisis as natural experiment to
validate our models with primary data collected at a dutch chemical company.

Our study shows that the use of inventories as an explicit financial decision-
making instrument (de-stocking to turn inventories into cash and increase liq-
uidity) can act as a trigger to an inventory-driven bullwhip effect that accurately
predicts the wave-like demand dynamics experienced by manufacturers during
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this period of economic distress.

In addition to this contribution to theory, we add to practice by demonstrating
that these insights can be used operationally for demand predictions. We
develop a prediction method by which final consumer demand, potentially four
to five levels down the supply chain, is taken as the only exogenous information,
whereupon the system dynamics models are used to propagate the demand
upstream.

While the exogenous demand at consumer level drives the overall demand
evolution, short-term demand dynamics are mainly driven by endogenous
ordering decisions in the supply chain and the de-stocking response to the crisis.
To increase the confidence in our de-stocking hypothesis, we test the models in
the absence of the inventory shock induced by the synchronized de-stocking,
and find that while they show good tracking of the long term evolution, they
cannot replicate the magnitude and timing of the observed upstream demand.

Furthermore, the empirical evidence presented shows that slow reaction speeds
and under-estimation of the supply pipeline correctly explain firm and echelon
level observations. At this level, however, the pipeline under-estimation is not
necessarily an entirely behavioral phenomenon. It is potentially a cause of a
combination of the inherent reaction times of firms, and a decision rule that
primarily steers, based upon, the on-hand inventory level.

Motivated by these findings, we perform additional studies to further our un-
derstanding of the interaction between inventories, behavior, and the bullwhip.

Using control theory, we develop a single-echelon model that allows us to study
the inventory and order dynamics in an analytical way, explicitly modeling the
behavioral mechanisms. In terms of theory, we develop a closed form expression
that allows us test for the stability of the system as a function of its behavior, as
measured by the over- or under-estimation of the supply pipeline. A stable
system, in a supply chain context, guarantees that the orders generated by the
policy will be finite. Additionally, we characterize the trade-off between the
dynamic and stationary performance of the system and find that performance
does not solely depend on the behavior itself, but rather on the way that
behavioral parameters interact with different demand patterns. Behavior that is
advantageous in the presence of cyclical demands is detrimental in the presence
of shocks, and vice versa. The results of this study suggest that our prior
observations are aligned with a behavior that –instead of being optimal for any
one type of demand– seeks to control the bullwhip in the presence of changing
demand patterns.
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To further understand this interaction between behavior and demand, we
perform extensive numerical experiments based upon the control theoretic
model. We investigate the effect of behavior on performance by measuring the
system’s rogue seasonality. We find that the behavioral mechanisms can drive
the seasonality of the system –overpowering the original demand seasonality–
and that this resulting pattern is different for orders and inventories. With this
study we add a new dimension to the study of “bullwhip-optimal” policies:
The amount of over- or under-estimation of the supply pipeline determines a
natural frequency for the inventory and order responses which can, depending
on the particular behavior, be substantially different. The consequence of these
observations is immediately perceived when we study the interaction between
the demand’s seasonality and the system’s natural frequency. When the demand
has a high frequency seasonality, over-estimating the supply pipeline helps
reduce the bullwhip of the system. When the demand is of a low frequency,
the opposite is true.

From an operational perspective, this implies that characterizing and tracking
the seasonality of customer demand is of importance inasmuch as it defines
the core response of the system. In addition to understanding the seasonal
component of demand, our study calls for an understanding of the natural
response frequency of one’s system. At a tactical level, this understanding
allows managers to better understand the medium- to long-term evolution
of inventories and orders, potentially affecting the way internal performance
metrics work. In this view, the baseline from which to measure inventory
performance is not stationary, but cyclical.

Finally, we focus on a different dimension of the relationship between inven-
tories and the bullwhip: Are inventories a consequence, or are they drivers,
of production decisions? Earlier in the thesis we tested the hypothesis that
inventories triggered a bullwhip effect following the financial crisis. We
did so by comparing the results of a model with and without inventory
reductions. We now use historical financial data on approximately 6.000 distinct
customer-supplier dyads to statistically test a series of hypothesis relating the
upstream consequences of downstream inventory decisions, and the systematic
components that influence such decisions. In the first part of this empirical study
–covering 30 years of data– we find evidence of suppliers over-reacting to their
customers’ inventory changes. To understand the underlying reasons behind
the inventory decisions, we impute a rational ordering behavior to upstream
decision makers, and find that the observed data is consistent with the usage
of inventories as a financial decision-making instrument, as hypothesized in
the first of our studies. Given that the data analyzed contains the turbulent
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periods of the 2008 financial crisis, which could skew the results, we repeat our
statistical analysis with sub-samples of the data. After separating the pre- and
post-crisis data, we still find evidence of the overreaction of upstream orders
to downstream inventory changes, and of systematic adjustments to inventory-
related costs tied to the financial and economic conjuncture. Furthermore, when
performing statistical tests on the effects, we find that the crisis period attenuates
the former and exacerbates the latter.
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