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a b s t r a c t

A global model structure is developed for parametrization and identification of a general class of Linear
Parameter-Varying (LPV) systems. By using a fixed orthonormal basis function (OBF) structure, a linearly
parametrized model structure follows for which the coefficients are dependent on a scheduling signal.
An optimal set of OBFs for this model structure is selected on the basis of local linear dynamic properties
of the LPV system (system poles) that occur for different constant scheduling signals. The selected OBF
set guarantees in an asymptotic sense the least worst-case modeling error for any local model of the LPV
system. Through the fusion of the Kolmogorov n-width theory and Fuzzy c-Means clustering, an approach
is developed to solve the OBF-selection problem for discrete-time LPV systems, based on the clustering
of observed sample system poles.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In general, many physical systems and control problems
exhibit parameter variations due to non-stationary or nonlinear
behavior or dependence on external variables, such as space
coordinates, in particular found in servo-mechanical applications.
These systems vary in size and complexity, but they share the
common need for accurate and efficient control of the relevant
process variables. However, accurate modeling of such systems
is in general a complex and tedious task, involving the use of
nonlinear differential equations, leading to models with many
parameters and high computational complexity. For processes
with mild nonlinearities or dependence on external variables,
the theory of Linear Parameter-Varying (LPV) systems offers an
attractive modeling framework (Rugh & Shamma, 2000). Discrete-
time LPV systems are generally described in either a State-
Space (SS) or an Input/Output (I/O) representation (Tóth, Felici,
Heuberger, & Van den Hof, 2007), where the parameters are
functions of a time-varying scheduling signal p(k) : Z → P, that
schedules between local Linear Time Invariant (LTI) behaviors of

I Thematerial in this paperwas partially presented at 45th IEEE Conf. onDecision
and Control. 2006Dec., SanDiego, California, USA. This paperwas recommended for
publication in revised form by Associate Editor Brett Ninness under the direction of
Editor Torsten Söderström.
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the system. The compact set P ⊂ Rnp denotes the scheduling
space. Practical use of the LPV framework is stimulated by the
fact that control design for LPV systems is well worked out. For
this class of systems, application of LTI control theory via gain
scheduling (Rugh & Shamma, 2000) and LPV control synthesis
techniques like µ-synthesis (Zhou & Doyle, 1998) or Linear Matrix
Inequality (LMI)-based optimal control (Scherer, 1996) offer fast
and reliable controller design, proved by a wide range of applied
LPV control solutions from aerospace applications (Marcos & Balas,
2004) to CD players (Dettori & Scherer, 2001). However, it still
remains a problem how to develop LPV models in a systematic
fashion.
Recently several methods have been worked out, aiming at

global identification of discrete-time LPV models from given
measured data. This comprises methods based on multiple-model
approaches (Murray-Smith & Johansen, 1997; Steinbuch, van
de Molengraft, & van der Voort, 2003; Wassink, van de Wal,
Scherer, & Bosgra, 2004), set-membership methods (Mazzaro,
Movsichoff, & Pena, 1999; Milanese & Vicino, 1991), subspace
techniques (dos Santos, Ramos, & de Carvalho, 2007; Felici, van
Wingerden, & Verhaegen, 2006, 2007; Verdult & Verhaegen, 2002),
basis functions (Tóth, Heuberger, & Van den Hof, 2007), LMI-based
optimization (Sznaier, Mazzaro, & Inanc, 2000), simple Least Mean
Squares (LMS) approaches (Giarré, Bauso, Falugi, & Bamieh, 2006;
Wei & Del Re, 2006), and parameter estimation based gradient
searches (Lee & Poolla, 1996; Verdult, Ljung, & Verhaegen, 2002).
Most of these approaches build on the fact that an LPV system
S can always be viewed as a collection of ‘‘local’’ behaviors and
p-dependent weighting functions, i.e. scheduling functions that
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http://www.elsevier.com/locate/automatica
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schedule between them (Rugh & Shamma, 2000; Tóth, Heuberger
et al., 2007). For any constant scheduling signal: p(k) = p̄ for all
k ∈ Z where p̄ ∈ P, the LPV system S is identical to an LTI system
Fp̄. Thus, the set of local behaviors of S is given as FP = {Fp̄}p̄∈P.
The p-dependent scheduling function set, that schedules on FP, is
denoted by HP =

{
hp̄ (�)

}
p̄∈P.

Identification of FP is commonly accomplished in a sampled
sense by LTI identification of S for a set of constant scheduling
signals, associated with (for instance equidistant) points in the
scheduling space P. Then, assuming that the scheduling functions
{hp̄} have a particular structure of dependence, like polynomial,
an interpolation problem is formulated on P to give a global
approximation of S. Recently it was exposed that this approach
should be handled with care for several reasons (Tóth, Felici
et al., 2007; Tóth, Heuberger et al., 2007). In Tóth, Felici et al.
(2007) it was shown that for general discrete-time LPV systems
each hp̄ is a function of time-shifted versions of p (dynamic
dependence). Then, if the particular interpolation structure of
{hp̄} is chosen to be too simple (dependence only on p(k) (static
dependence), linear dependence, etc.) the interpolation based on
state-space or I/Omodel parametrization can result in significantly
different models (Tóth, Felici et al., 2007). An additional concern of
interpolation is that the McMillan degree of the local systems {Fp̄}

may vary for different values of p̄ ∈ P. This shows that the choice
of an easily interpolatable model structure which can incorporate
aspects of dynamical dependence and local order changes is a
crucial point of this identification approach.
The Orthonormal Basis Function (OBF)-based model represen-

tation offers such a structure with a well worked-out theory
in the context of LTI system approximation and identification
(Heuberger, Van den Hof, & Wahlberg, 2005). The basis functions,
that provide bases for the system spaceH2 (Hilbert space of com-
plex functions that are squared integrable on the unit circle), are
generated by a cascaded network of stable all-pass filters, whose
pole locations represent the prior knowledge about the system at
hand. This approach characterizes the transfer function of a strictly
proper LTI system as

F(z) =
∞∑
i=1

wiφi (z) , (1)

where {wi}∞i=1 is the set of coefficients and Φ∞ = {φi}
∞

i=1
represents the sequence of OBFs. This implies that every Fp̄ ∈ FP
can be represented as a linear combination of a given Φ∞, i. e.
FP ⊂ span {Φ∞}. In practice, only a finite number of terms is
used in (1), like in Finite Impulse Response (FIR) models. In contrast
with FIR structures, the OBF parametrization can achieve almost
zero modeling error with a relatively small number of parameters,
due to the infinite impulse response characteristics of the basis
functions. In thisway, it is always possible to find a finiteΦn ⊂ Φ∞,
with a relatively small number of functions n ∈ N, such that
the representation error for all Fp̄ is negligible. Using this idea
in the time-domain (substitution of z with the forward time-shift
operator q), it is possible to prove that LPV systems also have a
series expansion representation in terms of LTI basis functions, but
with coefficients {wi}∞i=1 dependent on p. Thus in terms of a finite
OBF set Φn ⊂ Φ∞, the following approximation of the I/O map of
S can be introduced:

y ≈
n∑
i=1

wi(p)φi (q) u, (2)

where {wi}ni=1 is a set of coefficient functions, with dynamic
dependence on p. Note that in this structure,Φn gives the basis set
used to approximate each element ofFPwhile {wi}ni=1 describes the
scheduling functions HP. Thus for a givenΦn = {φi}, identification
of the LPV system based on (2) simplifies to the identification of
the scheduling functions. Assuming static dependence of {wi}ni=1,
such a task can be accomplished via two approaches:

• Local approach: Identify some Fp̄ ∈ FP for constant p(t) = p̄
with the LTI OBF model structure

ŷ =
n∑
i=1

rp̄,iφi (q) u. (3)

Based on a chosen functional dependence, e.g. polynomial,
interpolate the resulting {rp̄,i} for an estimate of {wi}ni=1 in (2),
such thatwi(p̄) = rp̄,i.
• Global approach: Parametrize the functional dependence of
{wi}

n
i=1 linearly (e.g. polynomial). Then for a data record with

varying p, the estimation of the parameters of {wi}ni=1 reduces
to linear regression based on (2) in a least-squares prediction
error setting.

There are many beneficial properties of the structure (2).
For instance, the obtained model simplifies control design (see
Section 6) and this parametrization is not affected by local order
changes. The problem that remains to be solved with the proposed
OBF-based identification approaches is to choose the set of OBFs
Φn, ‘‘sufficiently rich’’ to describe FP with a predefined number of
functions. Seeking the solution for this problem is the purpose of
the present paper.
Even in the case of LTI systems, the choice of OBFs to

approximate a given system F in an ‘‘optimal’’ sense (based on
some error measure) is a highly non-trivial task (Heuberger et al.,
2005). For the LTI case, already quite some effort has been put into
tackling the basis function selection problem resulting in methods
of nonlinear optimization (Heuberger et al., 2005) and iterative
search (Bodin, Villemoes, & Wahlberg, 1997). One of the concepts
used for this purpose is the Kolmogorov n-width (KnW) theory for
OBFs (Oliveira e Silva, 1996), which establishes optimality in the
sense of theworst-casemodeling error for any LTI systemwith pole
locations in a given region of the complex plane. Denote by

ΩP = {λ ∈ C | λ is a pole of Fp̄ ∈ FP for p̄ ∈ P},

the collection of all pole locations belonging to the local behaviors
of the LPV system S. Then, based on ΩP, the KnW theory can be
evidently applied (e.g. by the approach of Heuberger et al. (2005))
to solve the optimal selection of OBFs with respect to FP. However,
this approach is not applicable if FP is unknown. This underlines
the need for a mechanism that guarantees optimality of the OBF
selection (selection ofΦn) based on the available information.
In this paper, we assume as a starting point that a collection of

pole locations, some samples of ΩP, is available that are obtained
from local linear behaviors of the LPV system S. This set of pole
samples Ω̄ ⊂ ΩP can result – but not necessarily – from
identification of the related local linear models. Based on Ω̄ , we
aim at the derivation of a basis function selection mechanism, that
is capable of accomplishing the following objectives:

• Reconstruction ofΩP from Ω̄ .
• Determination of the set of OBFs, which has the least possible
worst-case modeling error for any LTI system with pole
locations inΩP, therefore for all Fp̄ ∈ FP.

This choice ofmodel structure leads to the local and global iden-
tificationmethods. The proposedmethod is the joint application of
the KnW theory and Fuzzy c-Means (FcM) clustering (Jain & Dubes,
1988). The contribution of this method is to provide a practical
model structure selection tool for the local and global LPV identi-
fication methods based on globally fixed OBFs. Earlier work along
this line is proposed in Tóth, Heuberger, and Van den Hof (2006a),
Tóth, Heuberger, and Van den Hof (2006b) and Vergeer (2005).
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The paper is organized as follows: Section 2 introduces the
description and properties of OBFs while Section 3 describes the
n-width result with respect to these functions; in Section 4, the
mechanism of the KnW-based FcM pole clustering is given that
solves simultaneously the determination ofΩP fromsampledpoles
and the selection of optimal OBFs with respect toΩP; in Section 5,
the OBF-based LPV system identification scheme is specified to
provide a brief description how the selected basis functions are
used in an identification scenario; in Section 6, the applicability of
the introduced method is shown through an example; and finally,
in Section 7, the main results of the paper are discussed.

2. Orthonormal basis functions

We consider only the case of real rational (finite-dimensional)
discrete-time, SISO transfer functions. For details see Heuberger
et al. (2005), Heuberger, Van den Hof, and Bosgra (1995) and
Ninness and Gustafsson (1997). Let G0 ≡ 1 and {Gi}∞i=1 be a
sequence of inner functions (i.e. stable transfer functions with
Gi(z)Gi( 1z ) = 1), and let {Ai, Bi, Ci,Di} be minimal balanced SS
representations of Gi. Let {ξ1, ξ2, . . .} denote the collection of all
poles of the inner functions G1,G2, . . .. Under the (completeness)
condition that

∑
∞

i=1(1 − |ξi|) = ∞, the scalar elements of the
sequence of vector functions

Vn(z) = (zI − An)−1Bn
n−1∏
i=0

Gi(z), (4)

constitute a basis forH2− (E), the Hardy space of functions, which
are 0 for z = ∞, analytic on E, the exterior of the unit disk
D, and squared integrable on the unit circle T with norm ‖.‖H2 .
In this way H2− (E) is the space of all stable strictly proper
transfer functions. These functions (4) are often referred to as the
Takenaka–Malmquist functions. The special cases when all Gi are
equal, i.e. Gi(z) = Gb(z), ∀i > 0, where Gb has McMillan degree
nb > 0, are known as Hambo functions or generalized orthonormal
basis functions (GOBFs) for arbitrary nb, 2-parameter Kautz functions
for nb = 2, and as Laguerre functions for nb = 1. Note that for
these cases the completeness condition is always fulfilled. In the
remainder we will only consider the set of Hambo functions. Let
Gb be an inner function with McMillan degree nb > 0 andminimal
balanced SS representation {Ab, Bb, Cb,Db}. Define V1(z) = (zI −
Ab)−1Bb andφj = [V1]j , j ∈ Inb1 , where Is2s1 = {s1, s1 + 1, . . . , s2} ⊂
Z is the index set. The Hambo basis then consists of the functions
Φ∞nb = {φjG

i
b}
i=0,...,∞
j=1,...,nb

. An important aspect of these bases is that
the inner function Gb is, modulo the sign, completely determined
by its polesΞnb := {ξ1, . . . , ξnb}:

Gb(z) = ±
nb∏
j=1

1− zξ ∗j
z − ξj

, (5)

where ∗ denotes complex conjugation, and it is immediate that
the function V1 has the same poles. Any F ∈ H2− (E) can be
decomposed as

F (z) =
∞∑
i=0

nb∑
j=1

wijφj(z)Gib(z), (6)

and it can be shown that the rate of convergence of this series
expansion is bounded byρ = maxk |Gb(λ−1k )|, called the decay rate,
where {λk} are the poles of F(z). In the ‘‘best’’ case, where the poles
of F are the same (with multiplicity) as the poles of Gb, only the
terms with i = 0 in (6) are non-zero. The I/O relation of the OBF
parametrization (6) is illustrated in Fig. 1.
In practice, only a finite number of terms Φnenb =

{φj(z)Gib}
i=0,...,ne
j=1,...,nb

with ne ≥ 0 is used in (6), like in Finite Impulse
Response (FIR) models. In contrast with FIR structures, which are
Fig. 1. I/O signal flow graph of the OBFmodel structure described by (6) for a finite
ne number of extensions of Gb and withWi =

[
wi1, . . . winb

]
.

described by (6) as a finite linear combination of pulse basis func-
tions φ1(z) = z−1 with nb = 1 and Gib(z) = z−i, the OBF
parametrization uses a broad class of basis functions with infinite
impulse responses. Therefore, OBF parametrization can achieve al-
most zero modeling error with a relatively small number of pa-
rameters due to the faster convergence of the series representation
than in the FIR case. Moreover, the reduced number of parameters
in the structure results in decreased variance of the final model es-
timate.
Identification of any F ∈ H2− (E) based on a predefined

set of OBFs Φnenb consisting of n = (ne + 1) nb basis functions,
is performed as a linear regression with respect to the basis
coefficientsW nenb =

[
wij
]i=0,...,ne
j=1,...,nb

due to the linear parametrization
of (6). The OBF-based identification has valuable properties. Non-
asymptotic variance bounds of the estimates are computable
through reproducing kernels and the identified models are
unbiased if the input signal is uncorrelated to the noise. This
is explained by the Output Error (OE) like structure of the OBF
parametrization (Heuberger et al., 2005). However, selection of
the basis function set has a major impact on the outcome of the
identification process as the distance between basis poles and
the original system poles determines the convergence rate of the
coefficients,meaning thatwith a ‘‘better’’ basis function set a better
approximation can be achieved.
As discussed, OBF-based parametrization can be effectively

used for LTI system representation and in this way to describe
each Fp̄ ∈ FP of an LPV system S. However, if the same OBFs
are used to compose each Fp̄, then it is required that the basis
function set is ‘‘well chosen’’ with respect to the entire FP. In the
next section, the concept of optimality of anOBF setwith respect to
FP is established, giving the key theorem to solve the basis function
selection problem of the proposed identification scheme.

3. Kolmogorov n-width for OBFs

In the proposed LPV identification approach, it is crucial to
find an appropriate model set, i.e. set of basis functions Φnenb
for the local behaviors FP, in the sense that Φnenb is sufficiently
rich to describe the systems belonging to FP, with a relatively
small number of statistically meaningful parameters. In LTI system
identification, one approach to find appropriate model sets is
based on the n-width concept (Pinkus, 1985), which was shown
to result in appropriate model sets for robust modeling of linear
systems (Mäkilä & Partington, 1993). Using this concept, Oliveira
e Silva (1996), (Heuberger et al., 2005, Ch. 11) showed that OBF
model structures are optimal in the n-width sense for specific
subsets of systems. In the following, the basic ingredients of this
theory for discrete-time, stable, SISO systems are described.
Let F denote a set of systems with transfer functions {F} =

T ⊆ H2− (E), that we want to approximate with the linear
combination of n elements of H2− (E). Let Φn = {φi}ni=1 be a
sequence of n linearly independent elements of H2− (E), and let
Ψn = span(Φn). The distance dH2− (F ,Ψn) between F ∈ H2− (E)
and Ψn is defined as
dH2− (F ,Ψn) = infG∈Ψn

‖F − G‖H2 . (7)
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(a) Gb(z) = z−1 , pole at the origin. (b) Gb(z)with poles 0.5 and−0.5± 0.5i.

Fig. 2. The plot of the function
∣∣Gb (z−1)∣∣ for different choices of the inner function Gb and the decay rate ρ (in dB). Level sets of ∣∣Gb (z−1)∣∣ give the boundaries of the regions

{z ∈ C,
∣∣Gb (z−1)∣∣ ≤ ρ}. Optimality of the Gb generated basis is ensured with a worst-case decay rate ρne+1 for systems with pole locations inside the regions defined by

the level set boundaries.
IfMn is the collection of all n-dimensional subspaces of H2− (E),
then the Kolmogorov n-width of T inH2− (E) is

πn (T,H2− (E)) = inf
Ψn∈Mn

sup
F∈T
dH2− (F ,Ψn) , (8)

which means the smallest possible approximation error for the
worst-case F in T. The subspace Ψ̆n ∈Mn, for which πn is minimal,
is called the optimal subspace in the KnW sense. Now we can
formulate this concept for OBFs:

Proposition 1 (Oliveira e Silva, 1996). Let Gb be an inner function
with McMillan degree nb > 0, with poles Ξnb and ne ∈ N. Consider
the subspace Ψn = span{φj (z)Gib (z)}

i=0,...,ne
j=1,...,nb

. Then the subspace Ψn
is optimal in the Kolmogorov n-width sense, with n = (ne + 1) nb, for
the set of systems with transfer functions analytic in the complement
of the region

Ω
(
Ξnb , ρ

)
= {z ∈ C,

∣∣Gb (z−1)∣∣ ≤ ρ}, (9)

and squared integrable on its boundary. The worst-case approxima-
tion error is proportional to ρne+1.

This remarkable result shows that for the specified region (9)
one cannot improve on the worst-case error by adding new poles
to the nb basis poles. It also generalizes the well-know fact that
the set of pulse functions {z−i}ni=1 is optimal for the class of stable
systems analytical outside the circular region Ω (0, ρ) = {|z| ≤
ρ}, ρ > 0. The boundary of Ω (0, ρ) is given in Fig. 2(a) as a
function of the decay rate ρ. For a given ρ > 0, the boundary of
the region results as the level set of this function, like the contour
lines at the bottom of the figure. The worst-case approximation
error in this case is proportional to ρn. This implies the optimality
of FIR model structures with respect to the identification of such
systems. However in case of arbitrary regions, like the regions
in Fig. 2(b), the level sets are commonly non-circular containing
separate regions that merge for increasing values of ρ. For these
regions, the optimal choice of a basis has to be found amonggeneral
basis functions (OBF model structures).
In the LPV identification scenario we are dealing with the

opposite problem, referred to as the inverse Kolmogorov problem,
where we are given a region of non-analyticity ΩP ⊂ D and we
want to find an inner function Gb to describe/approximate this
region in the form Ω

(
Ξnb , ρ

)
with ρ as small as possible. The

reason is that in terms of Proposition 1, the inner function Gb,
associated with the best fittingΩ

(
Ξnb , ρ

)
, generates the n-width

optimal basis functions with respect toΩP. For a given number of
poles nb, this comes down to the following min–max problem:

min
ξ1,...,ξnb

max
z∈ΩP

nb∏
j=1

∣∣∣∣∣ z − ξj1− zξ ∗j

∣∣∣∣∣ . (10)
See Heuberger et al. (2005, Chapters 10 and 11) for details on this
nonlinear optimization problem and solution methods.
The previous results show that the Kolmogorov n-width theory

for OBFs provides an effective way to choose appropriate basis
functions for the description1 of FP based on ΩP. However, in
an identification scenario we are facing the situation where ΩP
is unknown. Thus, to enable the application of this theory, we
will focus on the problem of reconstruction of ΩP based on some
sample pole locations of this set. As we will see, the joint solution
of this reconstruction problem and the optimization (10) can be
found through a clustering approach.

4. Fuzzy–Kolmogorov c-Max clustering

4.1. The pole clustering algorithm

In the following we propose a particular data clustering
algorithm, which by weighting-function-based separation, the so-
called fuzzy clustering of sampled pole locations Ω̄ of the LPV
system, can effectively handle the reconstruction ofΩP jointlywith
the solution of (10).
Objective-function-based fuzzy clustering algorithms, such as

the Fuzzy c-Means (FcM), have been used in a wide collection
of applications like pattern recognition, data analysis, image
processing and fuzzy modeling (Bezdek, 1981; Kaymak & Setnes,
2002). Generally, FcM partitions the data into overlapping groups
so called clusters, where each data element is associated with a set
of membership levels with respect to these clusters. These indicate
the strength of the association between that data element and
a particular cluster. In this way, fuzzy clustering is a process of
assigning these membership levels such that the resulting clusters
describe the underlying structure within the data (Jain & Dubes,
1988). This enables the determination of the region ΩP on the
basis of the observed poles by exploring the underlying data
coherency. To exploit this fruitful property, in the following such
a Fuzzy–Kolmogorov c-Max(FKcM) algorithm is presented, which
provides an effective OBF selection approach based on the fusion
of the KnW theory and the FcM technique.
Let c > 1 be the number of clusters or data groups and let

Z = [zk]Nk=1 ∈ DN , be the set ofN ∈ N observed poles for clustering.
A cluster is represented by its center (or prototype) vi ∈ D, i ∈ Ic1.

1 Note that FP is a set of LTI systems which can be represented in the frequency
domain. However, it must be clear that the global LPV system S is not described in
frequency domain terms.
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Furthermore, membership functions µi : D → [0, 1] determine
the ‘‘degree of membership’’ to the cluster for all z ∈ D. By using a
threshold value ε, we obtain a set

Ωε = {z ∈ D | ∃i ∈ Ic1, µi(z) ≥ ε}. (11)

We can now formulate the problem we will consider.

Problem 2. For a set of sampled pole locations Z and for a given
number of clusters c , find a set of cluster centers {vi}ci=1, a set of
membership functions {µi}ci=1, and the maximum of ε, such that

• Ωε contains Z .
• With respect to Ωε , the OBFs, with poles Ξc in the cluster
centers {vi}ci=1, are optimal in the KnW sense, where n = c .

The solution is based on finding clusters in accordance with
the KnW concept and subsequently finding a maximal value for ε,
such that all sampled poles are inside Ωε . The latter is equivalent
to minimizing ρ in the optimization problem of (10). Note that
optimality of the OBFs is sought as ne = 0. According to the
principle of KnW theory, this might result in repetitive optimal
poles and therefore similar clusters. In the following we will focus
on finding n-width-based clusters.
Denote V = [vi]ci=1 and introduce the membership matrix U =

[µik]c×N , where µik is the degree of membership of zk to cluster i.
To constrain the clustering it is required that U ∈ UN

c , where

UN
c =

{
U ∈ [0, 1]c×N

∣∣∣∣∣ c∑
i=1

µik = 1 for ∀k ∈ IN1 ,

0 <
N∑
k=1

µik for ∀i ∈ Ic1

}
(12)

characterizes the fuzzy constraints.
Furthermore, distances dik are introduced between vi and zk to

measure dissimilarity of Z with respect to each candidate cluster.
To derive an algorithmic solution of Problem 2, the Kolmogorov
metric2 (KM) of D:

κ(x, y) :=
∣∣∣∣ x− y1− xy∗

∣∣∣∣ : D× D→ R+0 , (13)

withR+0 = {r ∈ R | r ≥ 0} is used, which is the 1-width version of
the cost function of (10). As a notation, dik = κ(vi, zk) is introduced.
It will be shown that KM relates the FcMasymptotically to the KnW
theory and to the solution of Problem 2.
Fuzzy clustering can be defined as theminimization of the FcM-

functional (Bezdek, 1981), Jm (U, V ) : UN
c × Dc → R+0 . For

Problem 2, Jm is formulated as

Jm(U, V ) = max
k∈IN1

c∑
i=1

µmikdik. (14)

Here, the design parameter m ∈ (1,∞) determines the fuzziness
of the resulting partition. It can be observed, that (14) corresponds
to a worst-case (max) sum-of-error criterion, contrary to themean-
squared-error criterion of the original FcM, see Bezdek (1981).
The exact relation of (14) with the KnW optimality of the
partition (U, V ) is explained later. The following theorem yields
the ingredients for the approach to solve Problem 2:

2 Note that KM is not a distance in D, only arctanh (κ(x, y)), called the Poincaré
distance, bears this property (Brannan, Esplen, & Gray, 1999). However in fuzzy
clustering, the dissimilarity measure does not need to qualify as a distance.
Theorem 3 (Optimal Partition). Let m > 1, a data set Z ∈ DN , and
a fuzzy partition (U, V ) ∈ UN

c × Dc be given. Denote [V ]i = vi
and [U]ij = µij. Define γi(ν,U) as the minimal value of γ ∈ [0, 1]
fulfilling the quadratic constraints:[
|1− z∗k ν|

2 µmik(zk − ν)
µmik(zk − ν)

∗ γ 2

]
� 0, ∀k ∈ IN1 , (15)

where ν ∈ D. Additionally, let dik = κ(vi, zk) be the dissimilarity
measure of zk with respect to V and I

(k)
s =

{
i ∈ Ic1 | dik = 0

}
be the

singularity set of zk with n
(k)
s = card(I

(k)
s ) (number of elements).

Then (U, V ) is a local minimum of Jm, if for any (i, k) ∈ Ic1 × IN1 :

µik =



[
c∑
j=1

(
dik
djk

) 1
m−1

]−1
if I(k)s = ∅,

1

n(k)s
if i ∈ I(k)s ,

0 if i 6∈ I(k)s 6= ∅,

(16)

and vi = argmin
ν∈D

γi(ν,U). (17)

The proof is given in Appendix A. In the FcM case, minimization of
(14) subject to (12) is usually tackled by alternating optimization
(Picard iteration) (Bezdek, 1981), steering the solution towards a
settling partition in the sense of Theorem3. For the FKcMthis yields
Algorithm 1, formulated next, where Vl and Ul denote the actual
fuzzy partition in iteration step l. In the following part, we will
discuss the main properties of this algorithm and clarify each step
in detail.

Algorithm 1. Fuzzy–Kolmogorov c-Max

(1) Initialization
Fix c andm; and initialize V0 ∈ Dc, l = 0.

(2) Membership update
With (16), solve Ul+1 = argminU∈UNc Jm (U, Vl).

(3) Cluster center update
With (17), solve Vl+1 = argminV∈Dc Jm (Ul+1, V ).

(4) Check of convergence
If Jm (Ul+1, Vl+1) has converged, then stop, else l = l+1 and go
to Step 2.

4.2. Properties of the FKcM

In order to explain the specific choices for the fuzzy functional
(14) and the dissimilarity measure (13), we use the following
theorem.

Theorem 4 (Limiting Property of Jm). Given a data set Z ∈ DN ,
N > 0, and a set of cluster centers V ∈ Dc , c > 0, such that
dik = κ(vi, zk) 6= 0 for all (i, k) ∈ IN1 × Ic1 (no singularity). Define Um
as a membership matrix of V satisfying (16) for m > 1. Then

a. limm→1 Jm(Um, V ) = maxk∈IN1
mini∈Ic1

{dik}, which corresponds to

the hard partitioning of Z, i.e. µik ∈ {0, 1}, ∀ (i, k) ∈ Ic1 × IN1 .
Here, the optimal partition corresponds to a collection of 1-width
optimal basis functions with respect to each reconstructed pole
region.

b. J2(U2, V ) = maxk∈IN1

[∑c
i=1 dik

]−1, which is the maximum of
the harmonic-means-based distance of each zk with respect to the
clusters.

c. Jm(Um, V ) = c1−mmaxk∈IN1

[∏c
i=1 dik

]1/c
+ O(e−m). Further-

more, Jm(Um, V ) decreases monotonically with m, and J∞(U∞, V )
= 0.
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The proof is presented in Appendix A. Based on Theorem 4, the
minimization of Jm corresponds to a close approximation of (10) for
large m, enabling the FKcM to solve Problem 2 directly. However,
if m → ∞, then in the optimal partition µik → 1/c for all
(i, k) ∈ Ic1 × IN1 , which can cause numerical problems in the
minimization of (17). Therefore, to obtain a well-approximating
solution of Problem 2, an appropriately large value of m ∈ (1,∞)
should be used. Based on experience, m ∈ [5, 10] usually yields
satisfactory results.
Form > 1, the FKcM-functional (14) is a bounded (0 ≤ Jm ≤ 1)

monotonically descending function both in {dik} and U , which
allows Algorithm 1 to converge in practice. The convergence point,
which is directly dependent on the initial V 0, can either be a local
minimum or a saddle point of Jm, fulfilling Theorem 3. Therefore, it
is advisable to repeat the algorithm multiple times with different
initial choices for V 0 and then select the best resulting set of OBFs
by comparison of the achieved decay rate

ρ̄ = max
z∈Z

c∏
i=1

∣∣∣∣ z − vi1− zv∗i

∣∣∣∣ , (18)

and by visual inspection of the regionΩ(Ξc = V , ρ̄) with respect
to Z . In practice, uniformly random choices for V 0 are suggested.

4.3. Optimization and numerical conditioning

While the membership update step in Algorithm 1 can be
analytically computed through (16), the cluster center update step
requires the solution of (17) which is aminimization problemwith
a Quadratic Constraint (QC) where γ is the optimization variable
and ν is the decision variable. Based on Scherer and Hol (2006),
it is possible to derive Sum-of-Squares (SoS) relaxations of such
constraints, through which (15) is turned into LMIs. The resulting
LMIs constrained convexminimization of γ is a Linear Semi Definite
Programming (LSDP) problem that can be efficiently solved by a
variety of (interior-point-based) solvers like SeDuMi (Sturm, 1999)
or CSDP etc. Alternatively, bisection-based recursive search can
also be utilized to obtain theminimization of γ in (17). In each step
of this bisection-based minimization, the QCs with a fixed γ are
rewritten as LMI constraints. Checking feasibility of the constraints
indicates how to proceed with the minimization of γ .
For high values of m, the QCs (15) become numerically ill-

conditioned which can be overcome by the normalization of{
µmik
}N
k=1:

µ̄ik =
µmik

µ̆i
, with µ̆i =

N∑
k=1

µmik . (19)

4.4. Termination criterion

In Algorithm 1, the cost function Jm flattens when m increases.
This yields that for high values of m, Jm drastically drops in a
local minimum, while Jm is almost constant for other points. To
avoid unnecessary termination, the relative evolution of Jm, in each
iteration step l, has to be checked in a windowed sense:

1−
max
k
[Jm (Uk, Vk)− Jm (Uk−1, Vk−1)]

max
k
Jm (Uk, Vk)

< εt (20)

where k ∈ Ill−nw , nw ∈ N is the length of the window, and
0� εt < 1 is a user defined termination constant. Form ∈ [5, 10],
εt = 0.99 with nw = 3 usually works well.
4.5. Cluster merging

The determination of the number of ‘‘natural’’ groups in Z ,
i.e. the best suitable c for clustering, is important for the successful
application of the FKcM method. Similarity-based adaptive cluster
merging (ACM) is frequently used for this purpose (Kaymak &
Setnes, 2002), but other strategies exist also. ACM is suitable for
problems where little is known about the statistical properties
of the data, like in the pole clustering case. The basic idea is the
following: a measure of similarity is introduced with respect to
cluster pairs. A cluster pair is merged when its similarity does
not decrease between iterations and if also this pair is the most
similar of all cluster pairs. However, merging is only applied if the
similarity measure exceeds a certain threshold value, εa ∈ [0, 1]
arbitrarily chosen by the user. In FcM clustering, most commonly
the following similarity measure is applied:

Definition 5 (Inclusion Similarity Measure (Kaymak & Setnes,
2002)). The fuzzy-inclusion-similarity measure (given point-wise
on Z) for two fuzzy clusters i and j is defined as

sij =

N∑
k=1
min

(
µik, µjk

)
min

(
N∑
k=1
µik,

N∑
k=1
µjk

) . (21)

This measure takes into account the contribution to similarity
from all {zk}Nk=1. For the theoretical details see Kaymak and Setnes
(2002). Then, in the lth iteration of Algorithm 1, the most similar
cluster pair can be selected as(
ı̂, ȷ̂
)
= argmax

(i,j)∈Ic1×Ic1,i>j
{s(l)ij }. (22)

Merging is applied if |s(l−1)ı̂̂ȷ − s(l)ı̂̂ȷ | < εs, where 0 < εs � 1 is
a threshold value to judge the significance of decrease of cluster
similarity between iterations. However as the partition converges,
similarity changes a little between iterations, therefore merging
is only applied if s(l)ı̂̂ȷ > ε

(l)
a where ε

(l)
a ∈ [0, 1] is an adaptive

threshold. In Kaymak and Setnes (2002), it is suggested to use
ε
(l)
a = (c(l) − 1)−1 which is observed empirically to work well if
the initial number of clusters c0 satisfy c0 < 1

2N .
In this way, the FKcM algorithm with ACM provides the

possibility to automatically choose the number of required OBFs
for the model structure based on Z . So by starting from a large
c , the algorithm converges to a partition which contains only
the necessary number of clusters representing the data. However
in terms of Proposition 1, the setting of Problem 2 implies that
repetitive basis poles can be part of the optimal solution. With
the ACM, these solutions are not accessible, since repetitive poles
result in perfectly similar clusters which are immediately joined.
Therefore, ACM only provides convergence to partitions with
distinct cluster centers.

5. LPV system identification

In the previous section, an OBF selection algorithm has been
proposed to obtain an adequate selection of the model structure
(2) with respect to an unknown LPV system S. The fact that an LPV
system can be viewed as a set of local LTI behaviors FP which are
combined by a set of scheduling functions HP is the motivation to
select the optimal model structure based on FP. In the following,
according to the LPV system identification approach of Section 1,
it is briefly shown how these OBFs can be used for identifying a
discrete-time S efficiently, i.e. how the scheduling functions can be
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Fig. 3. I/O signal flow graph of the W-LPV OBF model structure.

estimated. Based on (2), we introduce a model structure presented
in Fig. 3,where the selectedOBFs are set up as a filter bank followed
by a p-dependentweighting function (Tóth, Heuberger et al., 2007).
Due to the similarity of this model structure to Wiener models we
will call it a Wiener-LPV (W-LPV) OBF model.
Let Φnenb be a set of OBFs in H2− (E). Denote by {Ab, Bb, Cb,Db}

a minimal balanced SS realization of Gneb , where Gb is the inner
function associated with Φ0nb . Let S be a data generating SISO LPV
systemwithout a feedthrough term. By applying theW-LPVmodel
of S in an OE setting and with static coefficient dependence, leads
to the following 1-step ahead predicted output

ŷ (k) =
ne∑
i=0

nb∑
j=1

wij (p (k)) φj(q)Gib(q)u (k)︸ ︷︷ ︸
y̆ij(k)

, (23)

where q denotes the forward time-shift operator and {wij} is a set
of functions. The SS equivalent representation of (23), is defined as

x (k+ 1) = Abx (k)+ Bbu (k) , (24a)

ŷ (k) = W (p (k)) x (k) , (24b)

where xT = [y̆01 . . . y̆nenb ] and W (p) = [w01 (p) . . .
wnenb(p)]. Note that using the model structure (23) in an OE
setting has many attractive properties. For instance, it is linear in
the coefficient functions {wij}, the noise model is independently
parametrized from the process part, and this model structure
has a direct state-space realization via (24a) and (24b) where
only the output equation has dependence on p. The latter
implies that LPV control design simplifies for the obtained model
estimate. Furthermore, it can be shown based on series expansion
representation of LPV systems, that the W-LPV OBF structure can
represent the general class of LPV systems with arbitrary precision
in case the weighting functions W have dynamic dependence
(dependence on the past/future of p) (Tóth, Heuberger et al.,
2007). In case of static dependence, i.e. dependence on p(k) (the
instantaneous value of p), approximation of a wide class of LPV
systems is available by this model structure. This class however is
hard to characterize as the approximation error results both from
the finite number/quality of the chosenOBFs and the assumption of
static dependence. Identification of an LPV system S by this model
class can be accomplished through the local and global approach
presented in Section 1. The schematic view of these approaches is
given in Fig. 4.

5.1. Local approach

In this method, the identification is based on data records Dl =

{y(k), u(k), p̄l}
Nd
k=1 gathered from S for constant scheduling points

Pn = {p̄1, . . . , p̄n} with persistently exciting (in the LTI sense) u.
Then local LTI models of S

ŷ(k) =
ne∑
i=0

nb∑
j=1

rp̄l,i,jφj(q)G
i
b (q) u(k), (25)

in terms of the OBFs Φnenb with rp̄l,i,j ∈ R are estimated, e.g. by
linear regression, based onDl. The obtained coefficients {r̂p̄l,i,j} are
the estimated samples of {wij} in (23) for the applied constant
scheduling functions, i.e. wij(p̄l) ≈ r̂p̄l,i,j. Then by choosing a
particular structure of the static functional dependence of each
wij, interpolation (by arbitrarymethod) of {r̂p̄l,i,j} gives an estimate
{ŵij} of {wij} for which ŵij(p̄l) = r̂p̄l,i,j. In this way, the local
approach simply provides an extension of the classical LTI OBF
identification approaches with all their beneficial properties to the
LPV case.
Note that an adequate choice of Pn is required for an efficient

model estimate and adequateness of Pn depends on the variation
Fig. 4. Block diagram of local and global identification methods.
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of the dynamical properties in FP (see Murray-Smith, Johansen,
and Shorten (1999) for more on this issue). Furthermore, in case
of systems where p cannot be held constant, the local approach is
hardly applicable. This approach also estimates the global behavior
of S based only on samples of FP which cannot describe the
transient behavior imposed in the scheduling functions. These
disadvantages motivate the following alternative:

5.2. Global approach

In the global case, identification is based on a single data record
D = {y(k), u(k), p(k)}Ndk=1 of S with a varying p. If each wij in (23)
is parametrized linearly:

wij(p(k)) =
nϕ∑
l=0

rlijϕl(p(k)), (26)

where ϕl are arbitrary chosen functions, e.g. polynomials, and
rlij ∈ R, then (23) becomes linear in the unknown parameters
{rlij}. This implies that estimation of {wij} based on (26) and D

can be accomplished through linear regression. Consistency of the
parameter estimation can be shown underminor conditions (Tóth,
Heuberger et al., 2007) together with the extension of some
classical results on the variance, bias, etc. of OBF model estimates.

6. Results of application

As an example, an asymptotically stable discrete-time LPV
system S is considered, in an I/O representation:

5∑
i=0

ai (p (k)) y (k− i) = b1 (p (k)) u (k− 1) , (27)

where p : Z → P is the discrete-time scheduling signal with
P = [0.6, 0.8] and a0 (p) = 0.58 − 0.1p, a1 (p) = − 511860 −
48
215p

2
+ 0.3(cos(p) − sin (p)), a2 (p) = 61

110 − 0.2 sin (p), a3 (p) =
−
23
85 + 0.2 sin (p), a4 (p) =

12
125 − 0.1 sin (p), a5 (p) = −0.003,

b1 (p) = cos(p). In Fig. 5(a), the local pole setΩP of S is presented,
while in Fig. 5(b) the impulse responses of the local subsystem
set FP is given. By these pictures, it can be concluded that the
dynamic changes of S are quite heavy between different constant
scheduling points.

6.1. OBF selection by FKcM clustering

By using constant scheduling signals with values {0.6; 0.6 +
τ ; . . . ; 0.8}, where τ = 0.02, 11 local LTI representations of S are
obtained, whose pole locations are samples ofΩP (see Fig. 5(a)). In
our basis function selection approach, these LTI systems represent
the results of local identification. With the obtained N = 11 · 5
pole locations, the FKcMalgorithm has been applied with different
values ofm and both with fixed number of clusters c = 8 (denoted
by m2c8 for m = 2) and also with the application of ACM starting
from c(0) = N/2 (denoted by m8ad11 for m = 8 resulting in
c = 11 clusters). The number of clusters 8 agrees with the number
of sets by visual inspection (two times 3 sets for the complex
and 2 sets for the real poles) and as will follow, also with the
number of clusters selected by ACM. The results of the algorithm
are presented in Table 1 and in Fig. 6. The comparison in Table 1
is presented in terms of Nav, the average number of iterations
based on 10 runs of the algorithm starting from random V0; c ,
the number of obtained clusters; Hp, the Normalized Entropy3; χ ,

3 Normalized Entropy (Bezdek, 1981) describes the separation of clusters. The
smaller theHp , themore valid the hypothesis that the clustersmatchwith naturally
separated data groups.
Table 1
Comparison of algorithmic results.

m2c8 m8ad8 m8ad11 m25c8

Nav 21 37 65 56
c 8 8 11 8
χ (dB) −17.49 −12.42 −8.44 −13.20
ρ̄ (dB) −55.86 −58.38 −83.11 −61.36
Hp 1.79 2.41 2.94 2.43
εne=1max (dB) −43.73 −46.90 −77.33 −45.34
εne=3max (dB) −146.61 −171.41 −249.63 −168.83

the Xie–Beni validity index4; ρ̄, the achieved decay rate; and εnemax,
the worst-case absolute representation error of the local impulse
responses with ne extension of the cluster centers generated OBFs.
By using the cluster centers as basis poles,Ξnb=c = V , the resulting
Kolmogorov regionΩ (Ξc, ρ̄) is also given in Fig. 6. Based on these,
the following observations can be made:

• The FKcM with ACM (εs = −15 dB) converges to a 8-cluster-
based partition for lowm, but in case of higher values ofm, the
merging, starting from c0 = 1

2N , will have different attractive
solutions, like the m8ad8 and m8ad11 cases. Here both the 8
and the 11 cluster-based partitions are attractive, depending
on the initial position of the cluster centers. However, m8ad8
achieves a lower entropy Hp than m8ad11, suggesting that
m8ad8 corresponds better to the natural data structure. As
different initial conditions can drive the FKcM with ACM to
converge to partitionswith different c , it is suggested to the user
to choose the onewith the lowestHp, as it most likely yields the
‘‘best’’ partition.
• χ is small in all cases, showing that each partition represents
the underlying structurewell. However,χ is not comparable for
different m. χ has a decreasing tendency with growing c and
an increasing tendency for growing m, therefore the fact that
χm25c8 < χm8ad8 supports thatm25c8 corresponds better to the
underlying data structure in the KnW sense thanm8ad8.
• The resulting Kolmogorov region Ω (Ξc, ρ̄) is relatively tight
in all cases except for m2c8. ρ̄ is also acceptable, which means
small modeling error if the corresponding OBFs are used for
identification. In the m8ad11-case, ρ̄ is the best, which is the
consequence of the larger (c = 11) number of OBFs only. By
using extension of the derived poles associated inner functions
such that the number of generated basis function is equal,
comparison of the KnW performance of these cases becomes
available. Based on such a comparison, it follows that m25c8 is
better in the KnWsense, which is in agreementwith Theorem4.
The partition m2c8 is the worst among these results which
suggests that only larger values of m can ensure the quality of
the obtained solution.
• Fig. 7 and Table 1 show the representation errors of the local
impulse responses of FP by the selected OBFs with poles in
the obtained cluster centers. From these results it follows that
the obtained OBFs result in negligible representation error with
respect to FP, which is our main objective to achieve with the
presented basis function selection approach (see Section 1).
Among the solutions with 8 basis functions, surprisingly m 8c8
has the lowest representation error instead ofm25c8. Based on
the previous results, one would expect, that the representation
error drops for OBFs generated with higher m, however this is
not the case here, due to the fact that ΩP is sampled. Even if
m25c8 delivers a better choice with respect to the sampled pole
locations, it is not guaranteed that the reconstruction of ΩP,

4 The Xie–Beni validity index χ (Xie & Beni, 1991) gives a common ground of
comparison between different FcM partitions. The smaller the χ , the better the
corresponding fit to the data.
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Fig. 5. (a) The local pole setΩP (solid line) of the LPV system S. Sampled pole locations are denoted by ?. (b) Impulse responses of the local subsystem set FP of S associated
with constant scheduling signals p(k) ≡ p̄ ∈ P.
(a)m2c8. (b)m8ad8. (c)m8ad11. (d)m25c8.

Fig. 6. Results of FKcM clustering: sampled poles (o), resulting cluster centers (?), and Kolmogorov boundaries (bold lines).
based on the available information, resulted in a better estimate
than in the other case. By comparing the results of Hp of these
cases, such a phenomena is clearly indicated. The quality of
the information with respect to the pole samples is highly
significant in establishing optimality between the sampled-
poles-based OBFs and the original system.
In conclusion, the FKcM solutions for the considered example

are converging relatively fast to optimal partitions in terms of
Theorem 3. In accordance with Theorem 4, as m increases, these
partitions give better solutions of Problem 2. ACM also ensures
proper selection of an efficient number of OBFs in the KnW sense,
if the different settling partitions are compared in terms of Hp.
Furthermore, validity of the derived partitions is supported by low
χ in all cases.
Comparison of results to solutions provided by the gradient

search method (Heuberger et al., 2005, Ch. 11), is only possible if
the number of available samples of ΩP is so high that there is no
need for the reconstruction ofΩP. Thus an advantage of the FKcM
approach is that it provides a solution for the practical case when
only few samples ofΩP are available. In the unrealistic case, when
ΩP is known, the algorithms converge to similar solutions, butwith
a lower computational time in the FKcM case. The two algorithms
also have similar properties in the sense that they only provide
convergence to local minima. As online selection of the efficient
number of OBFs is very difficult to implement into the gradient
search method, the FKcM approach, with strategies like the ACM,
has a second advantage over the gradient method.
6.2. Identification by the W-LPV OBF model structure

Using the basis functions of the m8c8 case, identification of S
with theW-LPVOBF structure has been accomplished by the global
approach with a 500 sample long data record D. D was generated
by uniform noise u ∈ U(−1, 1), p ∈ U(0.6, 0.8) and with ad-
ditive, white output noise: e ∈ N (0, 0.5). For the estimation of
W (p), 2nd-order polynomial parametrization has been used. In
Fig. 8, the (in)validation result of themodel estimate is shownwith
an MSE5 of 0.0572, BFT6 of 83.69%, and VAF7 equals to 97.34%. For
the (in)validation of the obtainedmodel, signals u ∈ U(−1, 1) and
p ∈ U(0.6, 0.8) have been used that are different from the signals
applied for model estimation. Due to the absence of dynamic de-
pendence in the parametrization ofW (p), theW-LPVOBF structure
could not cope fully with the variations in the {al}5l=0 parameters,
but for such a heavy nonlinear system, the method provided quite
acceptable result in terms of the investigated error measures.

5 Mean Squared Error, the expected value of the squared estimation error (Ljung,
1999), often computed in a sampled form: M̂SE = 1

N

∑N−1
k=0

(
y (k)− ŷ (k)

)2 .
6 Best Fit percentage, the percentage of the output variation that is explained by

the model (Ljung, 2006). BFT = 100% · max
(
1− ‖

y−ŷ‖2
‖y−ȳ‖2

, 0
)
where ȳ is the mean

of y.
7 Variance Accounted For percentage is defined as VAF = 100% · max

(
1−

var(y−ŷ)
var(y) , 0

)
and computed on noise free y.
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(a)m2c8. (b)m8ad8.

(c)m8ad11. (d)m25c8.

Fig. 7. Representation error of the local impulse responses with the FKcM clustering obtained OBFs.
Fig. 8. Comparison of the identified (dotted line) and the true model (solid line) of
S by their responses for u ∈ U(−1, 1) and p ∈ U(0.6, 0.8).

7. Conclusions

In this paper, an OBF-basedmodel structure selection algorithm
has been proposed for the identification of LPV systems. The fact
that any LPV system can be viewed as a set of local LTI behaviors
combined by a scheduling function set, motivated to formulate the
OBF selection algorithm based on the local behavior set. For this
set of LTI systems, an optimality condition for OBFs is expressed
in the KnW sense, which requires the knowledge of the complex
regions where the local pole locations of the system lie. In an
identification scenario, such knowledge is often only available in
a sampled sense, e.g. in the form of poles of some local LTI systems.
To overcome this problem, a pole clustering algorithm, the FKcM
method, is introduced which offers an attractive procedure to
determine the pole regions of an unknown system and the
associated asymptotically optimal OBFs in the KnW sense, based
on the available information. This contribution enables the direct
use of the KnW result for the OBF-based model structure selection
in an LPV identification scenario. As a next step of the research,
we will focus on the robust extension of the algorithm in order to
attenuate the effects of uncertainty in the pole samples.
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Appendix A

Proof of Theorem 3. The proof is given in an alternating mini-
mization sense. First, fix V and define Ĵm (U) = Jm(U, V ), for U ∈
UN
c . Since the membership values [µik]

c
i=1of zk to the fixed clusters

are not depending on the memberships of other data points, the
columns of U degenerate to each other (decoupled) in the mini-
mization of Ĵm (U), therefore:

min
U∈UNc

Ĵm (U) = min
U∈UNc

max
k∈IN1

c∑
i=1

µmikdik = max
k∈IN1

min
U∈UNc

c∑
i=1

µmikdik.

Denote Ĵ (k)m (U) =
∑c
i=1 µ

m
ikdik. To introduce the constraints UN

c ,
the LagrangianΛk (λk,U) of Ĵ

(k)
m (U) is defined for each k ∈ IN1 as

Λk (λk,U) =
c∑
i=1

µmikdik − λk

[(
c∑
i=1

µik

)
− 1

]
. (28)
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Assume that I
(k)
s = ∅, then (λk,U) is a stationary point for Λk,

only if ∇λ,UΛk (λk,U) =
(
0N , 0c×N

)
for all k ∈ IN1 .Setting all of

these gradients equal to zero yields that

∂Λk (λk,U)
∂λk

=

c∑
i=1

µik − 1 = 0, (29a)

∂Λk (λk,U)
∂µik

= mµm−1ik dik − λk = 0, (29b)

for every k ∈ IN1 and i ∈ Ic1. From (29b), it follows that

µik =

(
λk

mdik

) 1
m−1

. (30)

Moreover, by substitution of (30) into (29a):

0 =
c∑
l=1

(
λk

m

) 1
m−1

(
1
dlk

) 1
m−1

− 1 (31a)

(
λk

m

) 1
m−1

=

[
c∑
l=1

(
1
dlk

) 1
m−1

]−1
. (31b)

If (31b) is substituted back into (30), it follows that

µik =

(
1
dik

) 1
m−1

c∑
l=1

(
1
dlk

) 1
m−1
=

1
c∑
l=1

(
dik
dlk

) 1
m−1

. (32)

In this way we have proved that in a local minimum of Jm(U, V ),
all µik have to satisfy (16). If I

(k)
s 6= ∅, then (32) is singular. In

this situation, choosing µik as given by (16) results in Ĵ
(k)
m (U) = 0,

because the non-zero weights are placed on zero distances, while
positive distances with non-zero weights would increase Ĵ (k)m (U),
contradicting minimality. As the zero-distances can have arbitrary
weights, for the sake of simplicity equal weights are considered
fulfilling (16). Note, that such a singularity hardly occurs in reality,
since machine round-off prevents its encounter.
To establish (17), fix U ∈ UN

c and define J̌m (V ) = Jm(U, V ).
Minimization of J̌m (V ) is unconstrained on Dc , and it is decoupled
for each vi. Therefore

min
V∈Dc

J̌m (V ) = min
V∈Dc

max
k∈IN1

c∑
i=1

µmikdik =
c∑
i=1

min
V∈Dc

J̌ (i)m (V ) ,

where J̌ (i)m (V ) = maxk∈IN1
µmikdik, depending only on vi. This means

that

vi = arg min
V∈Dc

J̌ (i)m (V ) = argmin
vi∈D
max
k∈IN1

µmikdik. (33)

Optimization (33) can be formulated as a matrix inequality
constrained minimization problem. Denote

γi = J̌ (i)m (V ) = max
k∈IN1

µmikdik, (34)

then the solution of (33) can be obtained by solving

minimize γi ≥ 0,

subject to µmik

∣∣∣∣ zk − v1− z∗k v

∣∣∣∣ ≤ γi,∀k ∈ IN1 ,

v ∈ D.
The constraints of this minimization can be written for each k as

µmik

∣∣∣∣ zk − v1− z∗k v

∣∣∣∣ ≤ γi, (35a)

µ2mik |zk − v|
2
∣∣1− z∗k v∣∣−2 ≤ γ 2i . (35b)

From the Schur-complement of (35b) it follows that (35a) holds iff[
|1− z∗k v|

2 µmik(zk − v)
µmik(zk − v)

∗ γ 2i

]
� 0, ∀k ∈ IN1 , (36)

where v ∈ D. Then a sufficient but not necessary condition for
(U, V ) being a local minimum of Jm is to satisfy (32) and (33).
This concludes the proof. It is important to remark that Jm (U, V )
has more stationary points than what can be reached through
alternating minimization, however all points fulfilling Theorem 3
are stationary points of Jm (U, V ). �

Proof of Theorem 4. As the cluster centers of V are assumed to be
‘‘non-singular’’ with respect to Z , i.e. dik > 0 for all (i, k) ∈ Ic1× IN1 ,
thus based on the optimality of Um, substitution of (32) into (14)
implies, that form > 1:

Jm(Um, V ) = max
k∈IN1

c∑
i=1

µmikdik = max
k∈IN1

c∑
i=1

µikµ
m−1
ik dik

= max
k∈IN1

c∑
i=1

µik
dik

dik

[
c∑
l=1

(
1
dlk

) 1
m−1

]m−1

= max
k∈IN1

[
c∑
l=1

(dlk)
1
1−m

]1−m
,

holds as
∑c
i=1 µik = 1. Now introduce

J̄ (k)t (V ) =

[
c∑
i=1

1
c
(dik)t

]1/t
, (37)

with t = 1
1−m . Then

Jm(Um, V ) = J t−1
t
(U t−1

t
, V ) = c1/t max

k∈IN1

J̄ (k)t (V ).

Eq. (37) is called the Hölder or generalized mean (Bullen, 2003) of
dik. Based on the properties of the generalized mean in terms of t ,
the following hold:

Case m → 1 ⇔ t → −∞ ⇒ J̄ (k)t (V ) → mini∈Ic1
{dik} for all

k ∈ IN1 . Since c
1−m
→ 1, the minimum over Ic1 is unique for

each k:

lim
m→1

Jm(Um, V ) = max
k∈IN1

min
i∈Ic1
{dik} . (38)

Case m = 2 ⇔ t = −1. Then J̄ (k)
−1(V ) is the harmonic mean of

{dik}ci=1 for each k ∈ IN1 , so

J2(U2, V ) =
1
c
max
k∈IN1

c
c∑
i=1

1
dik

. (39)

Case m→∞⇔ t → 0. Then, the asymptotic convergence of the
generalized mean to the geometric mean yields: J̄ (k)t (V ) =[∏c

i=1 dik
]1/c
+ O(e

1
t ), which gives

Jm(Um, V ) = c1−mmax
k∈IN1

[
c∏
i=1

dik

] 1
c

+ O(e−m),
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and since c1−m → 0, therefore

lim
m→∞

Jm(Um, V ) = 0. �
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