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SOLVING WAVE PROPAGATION WITHIN FINITE-
SIZED COMPOSITE MEDIA WITH LINEAR EMBED-
DING VIA GREEN’S OPERATORS

V. Lancellotti* and A. G. Tijhuis

Faculty of Electrical Engineering, Eindhoven University of Technology,
Den Dolech 2, 5600 MB, Eindhoven, The Netherlands

Abstract—The calculation of electromagnetic (EM) fields and waves
inside finite-sized structures comprised of different media can benefit
from a diakoptics method such as linear embedding via Green’s oper-
ators (LEGO). Unlike scattering problems, the excitation of EM waves
within the bulk dielectric requires introducing sources inside the struc-
ture itself. To handle such occurrence, we have expanded the set of
LEGO sub-domains — employed to formulate an EM problem — to
deal with the inclusion of elementary sources. The corresponding sub-
domains (bricks) play the role of “generators” in the equivalent model.
Moreover, if a source is “turned off”, as it were, the enclosing brick
can be utilized as a numerical “probe” to sample the EM field. In this
paper, we present the integral equations of LEGO modified so as to
accommodate generator/probe bricks. Numerical results are provided
which demonstrate the validity and the efficiency of the approach.

1. INTRODUCTION AND MOTIVATION

The need for computing the electromagnetic (EM) fields radiated
by sources in the presence of composite media (e.g., piecewise hom-
ogeneous dielectrics) arises in several engineering applications such as
dielectric waveguides and devices, antenna arrays, frequency selective
surfaces, to name but a few examples. As real-life structures are finite
and oft-times their size is commensurate with the wavelength, a full-
wave solution of Maxwell’s equations with some numerical method
is generally required. In fact, over the past fifty years the Method
of Moments (MoM) [1] has been routinely used. It is notorious,
though, that turning integral equations (IEs) into a weak form through
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the standard MoM leads to full and possibly large system matrices.
Among the strategies contrived to mitigate the ensuing computational
burden, we solely mention domain decomposition methods (DDMs)
in tandem with various kinds of macro basis functions [2–7], because
these techniques relate to the main topic of our paper.

Initially applied to the scattering off aggregates of metallic
objects [7], linear embedding via Green’s operators (LEGO) is a DDM
which relies on the conceptual separation of the local (geometrical and
material) complexities from the multiple scattering that occurs in a
cluster of bodies or between parts of a single structure. In view of said
feature, LEGO has also been employed for solving scattering problems
that involve composite and diverse media [8–10].

Taking one step forward, we have recently extended LEGO to the
calculation of EM fields and waves inside composite (dielectric) media.
Unlike scattering problems in which an object is usually illuminated by
an external field, launching EM waves within a bulk dielectric requires
placing sources inside the structure itself. Thus, we have introduced a
new type of LEGO sub-domains (bricks) which are devised to embed
elementary sources (Fig. 1): Because of their function, we refer to such
bricks as “generators.” Still, if necessary, a source can be thought of as
“turned off”; then, the enclosing brick can serve as a numerical “probe”
to sample the EM field at the source location or, more generally,
any other point within the brick. In light of LEGO modularity, not
only is the addition of generator/probe bricks straightforward but it
also marginally affects the IE which describes a problem. Hence, we
can adopt the numerical strategy based on Arnoldi basis functions

Figure 1. For defining passive (Dk) and generator (Dn) LEGO bricks
along with scattering and transfer operators, plus equivalent incident
(qi

k,n), scattered (qs
k,n) and generator (qg

n) currents. The labels À, Á

and Â denote background, host and object medium, respectively.
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(ABFs) [8, 9] without substantial changes.
The remaining of the paper is organized as follows. In Section 2

we derive the system of LEGO IEs in the presence of generator/probe
bricks. Then, in Section 3 we elaborate on the description of a
generator brick and the calculation of the fields within a probe brick.
Finally, numerical results concerning the validation and application of
the approach are discussed in Section 4.

2. FORMULATION WITH LEGO REVISITED

When the solution of a complicated EM problem involving composite
media is tackled with LEGO, one begins by defining ND bricks Dk,
k = 1, . . . , ND, whose EM behavior is rigorously described in terms
of scattering operators Skk. The latter — which account for the
geometrical and material complexities that may exist inside Dk — are
determined separately for each brick at the beginning [7, 8].

More specifically, by virtue of the surface equivalence principle [11]
we introduce various types of equivalent electric (J) and magnetic (M)
surface current densities over ∂D−k . As emphasized in Fig. 1, such
currents are set against ∂Dk, though they exist within the background
medium À. With these positions, in the quite general case when a brick
embeds a source the relevant constitutive equation reads

qs
k = Skkq

i
k + qg

k, q s,i,g
k =

[ √
η1J

s,i,g
k

−M s,i,g
k /

√
η1

]
, η1 =

√
µ1

ε1
, (1)

where the superscripts ‘s’, ‘i’ and ‘g’ are catchy reminders for scattered,
incident and generator, respectively. The equivalent current density qg

k
— the distinctive attribute of a “generator” brick — is to account
for the fields radiated by the source† (e.g., an elementary dipole)
localized inside Dk. In fact, when no sources are enclosed in Dk,
then qg

k vanishes and (1) reduces to the usual constitutive equation
for passive bricks [7, Eq. (7)]. Still, it ensues from (1) that qs

k may be
non-null even if qi

k vanishes — which corresponds to the special case
of a solitary generator brick in the background medium and in the
absence of external sources.

To proceed we need to define ND(ND − 1) transfer operators Tkn

which we employ to describe the multiple scattering that occurs among
the bricks, as hinted at in Fig. 1. By definition, Tkn is to produce
additional equivalent incident currents on ∂D−k as a result of scattered

† We will show in Section 3 that the effect of the abrupt change in the material properties
at the interface ∂Dk is included in q

g
k as well. Conversely, it is quite superfluous to embed a

source in a brick filled with a medium Á whose properties are the same as the background’s.
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currents induced on ∂D−n , viz.,
qi
k(n) = Tknqs

n, n 6= k, (2)

where the subscript ‘k(n)’ means “incident currents on Dk due to
sources on Dn.” Notice that, consistently with Tkn being unaffected by
the bricks’ content, (2) is the same as [7, Eq. (13)]. In the light of (1),
(2), apparently qi

k(n) is not only caused by contrast currents inside Dn

(or even right on ∂Dn), but also by independent elementary sources,
when Dn happens to be a generator brick.

The last step towards a full-wave formulation of the problem
consists of combining all the bricks electromagnetically. To this end let
Bg the set of indices pertaining to the generator bricks in the model.
A closer look at (1), (2) suggests that the equations governing the EM
behavior of a structure modelled with ND bricks are

qs
n =

{
Snnqi

n,tot + qg
n , n ∈ Bg,

Snnqi
n,tot, n 6∈ Bg,

qi
k,tot =

ND∑

n6=k

Tknqs
n, (3)

where qi
k,tot contains the total incident electric and magnetic current

densities over ∂D−k and is defined similarly to q s,i,g
k in (1). Plugging the

expression of qs
n into the second of (3) and performing a little algebra

allows writing the functional equation succinctly as
(I− Tdiag{Snn}) qi

tot = T qg, (4)
with qi

tot an ND-element symbolic column vector storing qi
k,tot, and qg

likewise a column vector with non-null entries qg
l , l ∈ Bg. Besides, T

is a symbolic square matrix of transfer operators [8] and I a suitable
diagonal matrix of identity operators.

Once qi
tot has been computed, we obtain the scattered currents

through the first of (3). More importantly, thanks to the physical
meaning of qi

k,tot, qs
k, and paying due regard to the orientation of the

normal n̂k (see Fig. 1), the difference qi
k,tot−qs

k yields the total (twisted)
tangential electric and magnetic fields over ∂Dk.

Except for the different form of the forcing term, (4) bears close
resemblance to [8, Eq. (5)]. Confessedly, (4) may be made even more
general by adding to Tqg a vector qi that takes into account any
true sources outside the structure, but here we will not explore this
circumstance any further. By contrast, we observe that in principle all
the ND bricks may simultaneously be generators.

3. GENERATOR AND PROBE BRICKS

In this section we work out an expression for the generator current qg
k,

and we elaborate on the calculation of the fields inside a brick. Both
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tasks are most involved if the brick of concern embeds one or more
objects. Thereby, for the time being we content ourselves with the
case of a brick without inclusions, as the rightmost one in Fig. 1.

3.1. Calculation of the Generator Current

In [8] by posing suitable surface integral equations on ∂Dk we derived
the 2-by-2 scattering operator SJk of the interface. The purpose of SJk

is to link scattered and incident currents on both sides of ∂Dk. In
symbols, the latter reads[

qs
J1,k

qs
J2,k

]
=

[
SJ11,k SJ12,k

SJ21,k SJ22,k

] [
qi
J1,k

qi
J2,k

]
, (5)

where with evident notation the integer number in the subscript of an
equivalent current tells whether it belongs to the background (À) or
the host (Á) medium (see Fig. 1). Such currents are defined similarly
to the ones we introduced in (1).

Now, the effect of a source inside Dk is exactly reproduced by an
equivalent current qi

J2,k on ∂D+
k that satisfies (cf. [7])

P i
22,k qi

J2,k = F i
t2,k, F i

t2,k =
[

0√
η2 H i

t2,k

]
, η2 =

√
µ2

ε2
, (6)

where P i
22,k is the propagator detailed in Table 1, and H i

t2,k represents
the incident magnetic field in medium Á. More precisely, P i

22,k (a

Table 1. Definition of propagator P i
22,k used in (6), (7).

G2(R) is the 3-D scalar Green’s function in medium Á.
The unit normal n̂k to ∂Dk points inward Dk (Fig. 1).
NOMENCLATURE
G2(R) = exp (−jk2R)/(4πR), R = |r− r′|, k2 = ω

√
ε2µ2,

I
s
= I − n̂kn̂k, ∇s = ∇− n̂kn̂k · ∇, ∇′s = −∇s

∂D+
k → ∂D+

k (from incident currents to incident fields), r ∈ ∂D+
k

(P i
22,k)11 = −j

∫
∂D+

k
d2r′

[
k2G2(R)I

s
+ 1

k2
∇sG2(R)∇′s

]
·

(P i
22,k)12 = −P.V.

∫
∂D+

k
d2r′∇′sG2(R)× I

s
· −1

2 n̂k × I
s
·

(P i
22,k)21 = P.V.

∫
∂D+

k
d2r′∇sG2(R)× I

s
· +1

2 n̂k × I
s
·

(P i
22,k)22 = −(P i

22,k)11
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2× 2 abstract matrix of dyadic operators) acts on equivalent incident
currents on ∂D+

k to yield incident fields thereon. Since qi
J2,k radiates

the actual fields generated by the source towards infinity (and null
fields in Dk), P i

22,k looks formally the same as P s
kk in [7, Table 1]. The

actual calculation of H i
t2,k depends on the nature of the source as well

as the shape of ∂Dk. In fact, if the relevant source is an elementary
dipole, then H i

t2,k is nothing but the corresponding magnetic Green’s
function (in an unbounded medium) evaluated for observation points
on ∂Dk.

As a last step, we invert (6) symbolically and insert qi
J2,k into the

first row of (5); on comparison with the first of (1) we then obtain

Skk = SJ11,k, qg
k = SJ12,k(P i

22,k)
−1F i

t2,k, (7)

which provide a suitable recipe for characterizing a generator brick.
Though a formal result, (7) acquires practical significance in the
context of the numerical solution of (4) through the MoM.

3.2. Calculation of the Fields inside a Probe Brick

In order to determine the fields in selected points inside a structure,
after solving (4), we can adopt the conceptual expedient of inserting
probe bricks in the LEGO model. A probe brick, however, is just a
generator which has been turned off, so to speak.

Although not strictly mandatory, such point of view makes it
simpler to implement the strategy in a numerical code, because probe
bricks can be dealt with pretty much in the same way as generator
bricks. In this respect, switched-off generator bricks contribute a zero
in the corresponding positions of the vector qg in (4). Secondly, the
relevant scattering operators are already available from (7). Lastly, as
the position of the elementary source is already known information,
“sampling” the scattered field at the source location is straightforward
— which may be enough for some applications.

To see how this is done in practice, we begin by observing that
the equivalent current density qs

J2,k (in the light of its definition) is
responsible for radiating the scattered fields inside a brick. From the
second of (5), for a generator brick we then have

qs
J2,k = SJ21,k qi

k,tot + SJ22,k(P i
22,k)

−1F i
t2,k , (8)

where qi
k,tot factors in the effect of the remaining ND − 1 bricks. In

this instance, obtaining the total fields requires adding the direct
contribution of the source inside Dk. Since the field of a concentrated
source is singular at its own location, that point must be excluded. By
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contrast, as the source is off inside a probe brick, not only does the
rightmost term in (8) vanish, but more importantly, qs

J2,k is all we need
to compute the fields in any point of Dk.

We now apply the reaction theorem [11] to an unbounded region
with the properties of the host medium Á. (Recall that we are allowed
to “fill” the space outside Dk with any medium deemed convenient,
inasmuch as qs

J2,k radiates no fields in there.) To this purpose, we
choose the states as follows:

State (a) The sources are the equivalent scattered surface current
densities J s

2,k and M s
2,k on ∂D+

k , as given by (8).

State (b) The source is an elementary electric (magnetic) dipole of
unit moment p̂e (p̂h), and located at the point r ∈ Dk where the
value of the electric (magnetic) field is desired.

In keeping with the very idea of a probe brick, the dipoles relevant to
state (b) above are just a mathematical tool for sampling the scattered
field inside Dk. Therefore, p̂e,h should not be confused with the true
source, although they may all share the same location, as argued at
the beginning of this section.

To finalize our derivation, we equate the reactions to arrive at

p̂e ·E s
k(r) =

∫

∂Dk

d2r′
[
E{p̂e} · J s

2,k −H{p̂e} ·M s
2,k

]
, (9)

−p̂h ·H s
k(r) =

∫

∂Dk

d2r′
[
E{p̂h} · J s

2,k −H{p̂h} ·M s
2,k

]
, (10)

where E{p̂e,h} (H{p̂e,h}) signifies the electric (magnetic) field
produced at r′ by the dipole with moment p̂e,h. The Cartesian
components of the scattered field inside Dk ensue by setting p̂e,h ∈
{x̂, ŷ, ẑ} in (9), (10) in succession.

As regards the practical implementation of (9), (10), we notice
that the fields E{p̂e,h}, H{p̂e,h} can be computed by the same piece
of code that provides H i

t2,k (and, though not used, E i
t2,k as well) in (6),

as long as the elementary source of concern is a dipole. Again, this is
a consequence of medium Á being reciprocal.

4. NUMERICAL RESULTS

Since to solve (4) numerically we employ the same procedure described
thoroughly in [8, 10], the interested Reader is kindly referred to those
works for the necessary details. Here we just recapitulate the essential
points to lay the groundwork for the numerical results discussed below.
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To begin with, (4) is turned into a weak form by applying the MoM
(in Galerkin’s form) with Rao-Wilton-Glisson (RWG) functions [12].
More precisely, the currents q s,i,g

k , qi
k,tot, are all expanded on a set

of 2NF RWG functions associated with the NF edges of the 3-D
triangular-facet mesh which models a brick’s boundary. If a brick
encloses an object, then NO RWG functions are likewise introduced
over the object’s surface (also see [7]). The algebraic system resulting
from (4) (size 2NF ND × 2NF ND) is to be solved for the vector of
current coefficients [qi

tot]. The latter is expressed as a superposition
of nA Arnoldi basis functions (ABFs), namely, [qi

tot] =
∑nA

s=1 [ψs] as.
Since nA ¿ 2NF ND, this change of basis effectively compresses the
original system, which can then be inverted via LU factorization. The
convergence properties of the ABFs are investigated to a great extent
in [9] and literature cited therein.

4.1. Example of Validation

In order to check that the numerical solution of (4) has been correctly
implemented, we consider the toy problem (a dielectric slab embedding
elementary sources) whose LEGO model is shown in Fig. 2. In
particular, we want to make sure that the symmetry relations dictated
by the reaction theorem [11] are actually fulfilled.

To this purpose, we model the dielectric slab by means of ND = 2
generator/probe bricks of cubical shape. (Other geometrical and
simulation data are given in the caption of Fig. 2.) Next, we define
two states as follows:

ε1 = ε0

ε 2 =2 ε 0

dGENERATOR
OR PROBE 1

GENERATOR
OR PROBE 22NF RWGs

Figure 2. For validation of generator/probe LEGO bricks: a dielectric
slab (ε2), immersed in free space (ε1), is modelled with ND = 2 cubic
bricks. An elementary dipole of moment pe or ph is located at each
brick’s center. Data: d = 1 cm, 2NF = 1152, nA = 30, f ∈ [5, 7]GHz.
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Figure 3. Validation of generator/probe bricks: (a) the reaction
E{peb} · pea (–) is compared to the reaction E{pea} · peb (◦); (b) the
reaction E{peb} · pea (–) is compared to the reaction −H{pea} · phb

(◦). Data: pea = peb = 0.01ŷ Vm, phb = 0.01ẑ Am, 1/λ2 = f
√

ε2µ0.

State (a) The source is an elementary electric dipole of moment pea

located at the center of D1 (leftmost brick in Fig. 2).
State (b) The source is an elementary electric (magnetic) dipole of

moment peb (phb) located at the center of D2.

Finally, an application of the reaction theorem to whole space
provides us with the two conditions

E{peb}·pea = E{pea}·peb, E{peb}·pea = −H{pea}·phb, (11)

where the notation complies to (9), (10). The quantities on both sides
of the relations in (11) — as computed by our code — are compared in
Fig. 3 as a function of the electrical distance (in medium Á) between
the two dipoles. As can be seen, the two sets of curves for each case
are perfectly overlapped for all practical purposes. From a numerical
standpoint, the two states are realized by assuming either D1 or D2 to
be a generator and the other brick a probe, as proposed in Section 3.2.

4.2. Example of Application

Let us apply LEGO to the problem of wave propagation inside two
composite structures (Fig. 4) which consist of the same finite-size
dielectric slab (medium Á) immersed in free space (medium À). One
or two waveguides are patterned within the bulk dielectric by means
of cylindrical holes (medium Â) that are etched in selected positions.

We commence by “dicing” the slab into ND = 105 cubical bricks
with various content and function, as required by the relevant EM
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background (ε  )1
holes (ε  )3

1

2

bulk dielectric (ε  )2
generator or probe (ε  )

2

(a)

1

2

3

4
background (ε  )1

holes (ε  )3

bulk dielectric (ε  )2
generator or probe (ε  )2

(b)

Figure 4. Modelling two composite dielectric structures with LEGO:
(a) single waveguide and (b) two parallel waveguides comprised of
“defects.” (For visualization’s sake the surface of the bricks that embed
the cylindrical holes is not displayed.).
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Figure 5. Computed |E × n̂| for the structures of Fig. 4: (a) single
waveguide with generator brick at port 1 (port 2) on (off); (b) two
waveguides with generator brick at port 1 (ports 2, 3, 4) on (off).

problem. For instance, to model the single waveguide of Fig. 4(a) we
employ 2 generator/probe bricks, 30 bricks with holes and 73 bulk
dielectric bricks. By contrast, the two waveguides shown in Fig. 4(b),
are modelled via 4 generator/probe bricks, 75 bricks with holes and
only 26 bulk dielectric bricks. We also assume all the sources to be the
elementary magnetic current M = 10−3x̂δ(3)(r−r0)V/m2, with r0 the
center of the generator/probe bricks; therefore, we need to define just
one type of generator bricks.

In both problems the bricks’ edge is 1 cm, the holes’ diameter and
height is 0.8 cm, and we choose the working frequency as f = 6.3GHz.
The three media are not magnetic and have permittivities ε1 = ε3 = ε0,
ε2 = 11ε0. Lastly, for the numerical solution with MoM and ABFs,
2NF = 1152 and NO = 498 (this is the number of RWGs set over a
hole’s surface to represent electric and magnetic currents thereon [7].).

As an example of results, plotted in Fig. 5 is the distribution of
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the total twisted electric field (|E × n̂|) over the visible part of the
bricks’ surface. These values are obtained with port 1 energized and
the generators at the remaining ports turned off. The electric field
components registered by the probe bricks at port 2 (single waveguide)
and port 4 (two waveguides) are listed in Table 2.

From Fig. 5(a) the alternative occurrence of peaks and troughs
(characteristic of a guided wave) is quite evident along the central row
of “defects”. In this region the electric field also seems to take on
its largest values. Farther off in the y-direction and on either side
of the waveguide, close to the sharp material boundaries of the slab,
two other waves may be spotted. Nevertheless, the maximum field
level appears to be roughly half the value of the maximum in the
waveguide. Hence, we are led to conclude that the two rows of holes
are able to effectively confine the field in the y-direction, while vertical
confinement is afforded by classical total internal reflection.

From Fig. 5(b) we notice that the wave launched at port 1 dies out
as it travels towards port 3, while a specular wave gradually appears in
the parallel (not excited) waveguide. Most likely, the two waveguides
are coupled as a consequence of the non-perfect isolation brought in by
the holes. Apparently, contrary to one’s expectations, stacking more
rows of holes does not improve the wave confinement (at least at this
frequency) inasmuch as the maximum field level in Fig. 5(b) is about
one third of the maximum value in Fig. 5(a).

For the two problems in Fig. 4 the algebraic counterpart of (4) is

Table 2. Computed electric fields inside probe bricks.

Structure Port Ex [V/m] Ey [V/m] Ez [V/m]

Fig. 4(a) 2 0.138− 0.282j 0.243 + 0.044j −0.046− 0.002j

Fig. 4(b) 4 −0.245 + 0.050j 0.001− 0.059j −2.68− 1.91j
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Figure 6. Convergence pattern of the current coefficients as in the
basis of the ABFs (cf. [8, Eq. (17)]) for the problems of Fig. 4.
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a linear system of rank 2NF ND = 120960 which is reduced by using
nA = 1000 and nA = 750 ABFs respectively. The distributions of
the Arnoldi coefficients as are plotted in Fig. 6 versus s: Apparently,
regardless of the problem, the as’s decrease exponentially after a
threshold. As the convergence properties, though, are presumably
related to the spectrum of Tdiag{Snn} in (4) [9, Section 4.3], the onset
of exponential decay occurs at different indices most assuredly because
the two LEGO models comprise unlike numbers of the three basic brick
types. In truth, for a given level of accuracy one would expect the two-
waveguide problem to require more ABFs than the other one, on the
grounds that in the former the multiple scattering between the bricks
must be more intricate due to the presence of many more embedded
objects. However, this hypothesis may not be entirely justified, as the
“objects” in question here are actually holes (ε3 < ε2). In conclusion,
predicting which structure should exhibit the faster convergence is
not simple without comparing the eigenvalues of Tdiag{Snn} (which
is outside the scope of the paper).But then, since the effect of the
generator bricks only shows in the forcing term of (4), we can rightfully
claim that in this respect the presence of generators does not affect
the convergence pattern of a given structure. Yet, it is true that if the
source is changed, the ABFs have to be determined over again, as they
are obtained from Tqg in (4) (cf. [8]).

On the positive side, the modularity of LEGO makes it efficient
to tackle the problems of Fig. 4 (and many similar more in succession)
in that some intermediate results can be re-utilized, thus saving on
computational time. For a start, we need to compute the scattering
operators of the three brick types only once. Then, we can re-use
them regardless of a brick’s actual position in the model. Next, if a
limited translational symmetry can be invoked, the transfer operators
are known to come in groups of identical specimens [7]. The practical
consequence is that the number NT of Tkn’s we have to calculate is
most likely far smaller than NT,max = ND(ND − 1). For the two slabs
of Fig. 4, NT = 376 whereas NT,max = 10920. What’s more, since the
models of Fig. 4 solely differ for the content of the bricks, we determine
the minimum number of transfer operators only the first time.

For completeness, we mention that the time spent‡ to compute
the Tkn’s is about 98 s, whereas it took 23 s on average to generate a
single ABFs.
‡ Calculations run on Linux-based x86 64 work-station equipped with an Intel Xeon 2.66-
GHz processor and 8-GB RAM.
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5. CONCLUSION

In the context of the LEGO method, we have discussed the definition
and usage of generator/probe bricks to account for sources inside a
composite dielectric structure. Basically, a generator/probe brick is no
different than an ordinary one, except for its role in the model. Since
formulating a problem with LEGO ultimately boils down to combining
various types of bricks, the functional equation stays essentially the
same. As a result, the numerical solution can be carried out with the
MoM and the ABFs as before. Actually, we have demonstrated that
the insertion of generator bricks is inconsequent for the convergence
properties of the ABFs. Finally, we have shown how scattering and
transfer operators — the building blocks of LEGO — can be re-utilized
to tackle multiple problems while saving on computational time.
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