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Chapter 1

Introduction

This thesis is devoted to the analysis of the pseudo-parabolic equation

ut + ∇ · F(u, x, t) = ∇ ·
(
H1(u)∇u

)
+ τ∇ ·

(
H2(u)∇ut

)
. (1.0.1)

The particularity of this equation is in the higher order terms, where the functions H1,H2

may vanish at certain values of u. Note that for such equations, smooth solutions do not

exist in general. In this thesis, we focus on two kinds of solutions: the travelling wave

solution and the weak solution. Before explaining the results in more details, we describe

the physical model that motivated this work.

1.1 Why non-equilibrium models?

Already for decades there has been considerable interest in understanding and predicting

flow processes (especially of two immiscible fluids) in porous media. Such processes are

encountered in many engineering applications, for instance the transport of dissolved

contaminants in the subsurface system, enhanced oil recovery, paper production and so
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on. Generally, these are multi-phase flow systems, which include many unknowns in the

modelling process.

Multi-phase flow processes are investigated theoretically and experimentally in [1],

[5], [6], [8], [9], [10]. Commonly, these processes are considered under equilibrium

conditions. This means that quantities such as the capillary pressure and the satura-

tion are related to each other by formulae that are determined by experiments carried

out under equilibrium conditions. However, there is also experimental evidence of trans-

port processes where the equilibrium conditions are violated and non-equilibrium effects

need to be considered. For instance in the work of DiCarlo [5], which is shown in the left

picture of Fig. 1.1. There non-monotone saturation profiles are obtained during infiltra-

tion. Standard equilibrium models for porous media flow rule out such profiles. In this

thesis, especially in Chapter 2, we explain the experimental results by means of a ma-

thematical analysis, which is based on a non-equilibrium effect in the capillary pressure.

A numerical example in this sense is presented in the right picture of Fig. 1.1.
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Figure 1.1: Saturation overshoot profiles: experimental results in [5] (left), a numerical
example (right)

In the following section, we will elaborate the corresponding two-phase model.

1.2 The two-phase flow model

When modelling two-phase in porous media, different spatial scales are involved. The

smallest scale is the pore scale, where one distinguishes between the fluid and the solid

matrix. The next scale is the so-called representative elementary volume (REV) scale,
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where an averaging process has been carried out. Finally, there is the macro-scale which

is encountered in the laboratory or beyond. The model that describes two-phase flow on

the REV scale consists of the mass balance equations, and Darcy law for the phases, and

a constitutive relationship between the phases depending on the porous medium. Before

giving the model equations, we start by listing some important properties of the porous

medium and the phases. For more details, we refer to [7], [12].

1.2.1 The porous medium

There is a large body of literature on multi-phase flow in porous media. Some of the

main references are collected in the reference list of this chapter. Here we discuss some

of the main fractures on the scale of a REV.

a. The capillary pressure

With Pn, Pw ([kg·m−1
·s−2]) denoting the non-wetting and the wetting phase pressure,

the capillary pressure is defined as

Pn − Pw = Pc(S w). (1.2.1)

Brooks and Corey developed in [2] an empirical relationship between the effective water

saturation S e and the capillary pressure Pc. They introduced

Pc(S e) = PdS
− 1
λ

e , with S e =
S w − S wr

1 − S wr − S nr
, (1.2.2)

where S w, S wr, S nr are the wetting phase saturation, the irreducible wetting phase satu-

ration and the residual non-wetting phase saturation, respectively. The parameter λ is

related to the pore size distribution. An alternative capillary pressure model was propo-

sed by Van Genuchten in [13] and reads

Pc(S e) =
1
α

(
S
− 1

m
e − 1

) 1
n
. (1.2.3)

However, experimental evidence shows that expression (1.2.1) is only valid under equi-

librium conditions when the fluids are at rest. Alternatively, Hassanizadeh and Gray

suggested in [8] a relation including an extra term to account for non-equilibrium ef-

fects. They proposed

Pn − Pw = Pc(S w) − τ
∂S w

∂t
, (1.2.4)
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where τ ([kg · m−1
· s−1]) is a damping factor.

b. The relative permeability-saturation relationship

The relative permeability krα ([-]) is defined as the ratio of the effective permeability

Kα ([m2]) to the intrinsic permeability K ([m2]),

krα =
Kα

K
, α = n,w. (1.2.5)

Generally, krα is assumed to be a function of S α. For example, in the model of Burdine

(see [4]) one has

krw = S
2+3λ
λ

e , (1.2.6)

for wetting phase and

krn = (1 − S e)2
(
1 − S

2+λ
λ

e

)
, (1.2.7)

for non-wetting phase. Alternatively, Van Genuchten (see [13]) suggested

krw = S l
e

(
1 −

(
1 − S

1
m
e

)m)2
, (1.2.8)

for wetting phase and

knw = (1 − S e)l
(
1 − S

1
m
e

)2m
, (1.2.9)

for non-wetting phase. Here l is a parameter related to the tortuosity of the porous

medium.
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1.2.2 The model equations

Combining the equations describing mass conservation and Darcy law one finds for the

two phases (w=wetting, n=non-wetting phases) the following expressions (see Bear [3],

Helimg [7])

φ
∂S w

∂t
− ∇ ·

(
Kkrw

µw
∇Φw

)
= 0, (1.2.10)

φ
∂S n

∂t
− ∇ ·

(
Kkrn

µn
∇Φn

)
= 0. (1.2.11)

Here φ, S α, K, krα, µα, Φα (α = w, n) denote the porosity [-], the saturation [-], the

intrinsic permeability [m2], the phase relative permeability [-], the dynamic viscosity

[kg ·m−1
· s−1], the phase potential [kg ·m−1

· s−2], respectively. Additionally, Φw and Φn

are given by

Φw = Pw + ρwgz, Φn = Pn + ρngz, (1.2.12)

where Pα, ρα, g (α = w, n) denote pressure [kg ·m−1
· s−2], density [kg ·m−3] and gravity

[m · s−2], respectively. Further z is the vertical coordinator, being position in the upward

direction.

Furthermore, we assume that only two fluid phases are present in the medium, im-

plying

S w + S n = 1. (1.2.13)

Following Hassanizadeh and Gray [8] we use for the difference of the phase pressures

Pn − Pw = Pc(S w) − τ
∂S w

∂t
. (1.2.14)

Adding (1.2.10) and (1.2.11), using (1.2.13), one finds

∇ · Q = ∇ ·

(
Kkrw

µw
∇Φw +

Kkrn

µn
∇Φn

)
= 0, (1.2.15)
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where Q =
Kkrw
µw
∇Φw+

Kkrn
µn
∇Φn ([m·s−1]) denotes the total flow. In one spatial dimension,

equation (1.2.15) implies Q = q (constant w.r.t spatial parameter). Define

f (S w) :=

krw
µw

krw
µw

+
krn
µn

, and H(S w) :=

krn
µn

krw
µw

krw
µw

+
krn
µn

. (1.2.16)

We have for one dimensional (vertical) flow

φ
∂S w

∂t
+ q

∂ f (S w)
∂z

+ (ρn − ρw)g
∂H(S w)
∂z

= −
∂

∂z

(
H(S w)

∂Pc(S w)
∂z

)
+ τ

∂

∂z

(
H(S w)

∂

∂z

(
∂S w

∂t

))
.

(1.2.17)

We put the model in a dimensionless form by introducing the reference quantities T, L, Pd, qc

(characteristic velocity) and redefine

t :=
t
T
, z :=

z
L
, Pc :=

Pc

Pd
, q :=

q
qc
, H := µwH, u := S w.

Then

∂u
∂t

+
qcT
φL

q
∂ f (u)
∂z

+
(ρn − ρw)gKT

Lφµw

∂H(u)
∂z

= −
PdTk

L2φµw

∂

∂z

(
H(u)

∂Pc(u)
∂z

)
+

τK

L2φµw

∂

∂z

(
H(u)

∂

∂z

(
∂u
∂t

))
.

(1.2.18)

Four dimensionless numbers can be identified:

the Péclet number: Pe =
qcT
φL ,

the gravity number: Gr =
(ρn−ρw)gKT

Lµwφ
,

the capillary number: Ca =
PdT K
L2µwφ

,

the dynamic number: Dy = τK
L2µwφ

.

Here we use the notations introduced in [10], [11]. After defining these dimensionless

numbers, we have

∂u
∂t

+Peq
∂ f (u)
∂z

+Gr
∂H(u)
∂z

= −Ca
∂

∂z

(
H(u)

∂Pc(u)
∂z

)
+Dy

∂

∂z

(
H(u)

∂

∂z

(
∂u
∂t

))
.(1.2.19)
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Then equation (1.0.1) can be seen as a general form of equation (1.2.19) with Pc(u) = u.

Note the ‘τ’ (to avoid confusion we denote τnew in the following) in the equation (1.0.1)

can be formulated by

τnew :=
Dy

Ca2 =
τL2µwφ

P2
dT 2K

=
τµwq2

c

Pe2P2
dKφ

.

In this way, if we denote Ca as ε, we make a connection between equation (1.2.19)

and equation (2.0.4) in Chapter 2. Further, if we choose Pe=1 and fix the quantities

τ, µw, Pd,T,K, then τnew is increasing as qc is increasing, for more qualitative analysis,

we refer to [10], [11].

1.3 Overview and main results of this thesis

In this thesis we mainly investigate travelling wave solutions and weak solutions of equa-

tion (1.0.1). We prove the existence of travelling wave solutions. These solutions depend

on the left and right states as well as on the parameters of the model. Next we define a

weak solution, for which the existence and uniqueness are proved under certain assump-

tions. Inspired by the definition of the capillary pressure, we also transform the equation

(1.0.1) into a system by introducing an extra unknown p (the capillary pressure), and

prove the equivalence between different formulations for the continuous and the semi-

discrete cases. At the end, we give some numerical results using the numerical scheme

based on the different formulations. In detail, this thesis is organized in the following

way.

In Chapter 2, we investigate (1.0.1) in one spatial dimension with H1(u) = H2(u) =

H(u). The particularity of this equation is that H becomes 0 for u ≤ 0 or u ≥ 1, which

makes the model degenerate. In this chapter, we study the existence of the travelling

wave solutions, based on several parameters: the left state u`, the right state ur and the

damping coefficient τ. Two extra parameters α and β are defined, the existence of the

travelling wave solutions is proved for the non-degenerate case. Further, the travelling

wave solution is unique and decreasing. Inspired by the monotonicity of the solution u,

we introduce w = −u′ and obtain one ordinary differential equation. The existence of

travelling wave solutions for degenerate case is proved by a shooting method. Moreover,

we show that there exists a threshold value of τmax, such that whenever τ is beyond τmax



8 1 Introduction

classical travelling waves do not exist anymore. Therefore we introduce the definition of

sharp travelling wave solutions, including a discontinuity point in the function u′. Figure

1.2 gives an example of classical (smooth) and sharp travelling wave solutions. In the

last part of Chapter 2, we use a semi-implicit Euler finite volume method to solve the

equation (1.0.1). The smooth and sharp travelling wave solutions are confirmed by the

numerical computations.
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Figure 1.2: An example of two kinds of travelling wave solutions: smooth (left), sharp (right)

In Chapter 3, we deal equation (1.0.1) with H1(u) = H(u), H2 = 1 and focus on

weak solutions. In this case, no assumption on the sign of H is needed, enlarging the

context that is usually encountered in physical models, where H ≥ 0. The existence

of weak solutions is proved by the method of Rothe, based on the Euler implicit time

stepping. Further, we prove the uniqueness of weak solutions by constructing suitable

Green functions as test functions. The error estimate for the time discretization is also

derived. Then two numerical examples (one with positive H, one with negative H) are

given to verify the theoretical results.

In Chapter 4, we consider the degenerate case H1(u) = H2(u) = H(u), where H

vanishes when u is outside (0, 1). As in Chapter 3, we focus on weak solutions. To

prove their existence, we adapt a regularization approach based on perturbating H by

Hδ = H + δ with δ > 0, and prove the existence of weak solutions to the regularized

problem firstly. Then we pass δ ↘ 0, which gives the the uniform bounds for uδ in the

space H1 as well as for Hδ(uδ)∂t∇uδ. However, this is not sufficient for identifying the

equation that is satisfied by the limit u, as one needs the weak convergence of ∂t∇uδ.

To overcome this difficulty, we decompose the spacial variable x and use the Div-Curl

Lemma and the Vitali Convergence Theorem to prove the existence of weak solutions
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for the original problem. Finally, we prove that the solution u is essentially bounded by

0 and 1.

In Chapter 5, we continue the investigation of (1.0.1) with H1(u) = H2(u) = H(u).

However, in this chapter we assume the function H is essentially bounded by m and M

(m ≤ H ≤ M). We introduce an extra unknown ‘pressure p’ and transform the equation

(1.0.1) into different systems. The equivalence of different formulations for both conti-

nuous and semidiscrete cases is proved. Finally in Chapter 6, a fully discrete scheme

to solve the equation (1.0.1) is described inspiring from the formulations introduced in

Chapter 5. Several numerical results are also given and compared with the numerical

results in Chapter 2.
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Chapter 2

Travelling wave solutions

In this chapter, we discuss non-classical solutions of the Buckley-Leverett (BL) equation

from the perspective of a regularization derived from two-phase flow through porous

media. In particular, we study an equation arising in a model for oil recovery by water-

drive in a one-dimensional horizontal flow:

∂u
∂t

+
∂ f (u)
∂x

= ε
∂

∂x

(
H(u)

∂pc

∂x

)
. (2.0.1)

Here u stands for water saturation, which is expected to take values in the interval [0,1];

when u = 0 there is no water, and when u = 1 there is no oil. The function pc stands for

the capillary pressure expressing the difference between phase pressures:

pc = po − pw, (2.0.2)

where po and pw are the oil pressure and the water pressure respectively. Typically, pc

is determined experimentally as a function of u. However, in this chapter we consider

This chapter is a collaborative work with C.J. van Duijn, L.A. Peletier, I.S. Pop
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the dynamic extension suggested by Hassanizadeh and Gray in [16], where the capillary

pressure has a relaxation term:

pc = pstatic
c + pdynamic

c = pstatic
c + ετL(u)ut, (2.0.3)

where pstatic
c and pdynamic

c are the static, respectively the dynamic components in the

capillary pressure. For simplicity we put pstatic
c (u) = u and L(u) = 1. In this expression,

τ is the relaxation parameter and ε is a small positive constant. With these assumptions

about the pressures, equation (2.0.1) becomes

∂u
∂t

+
∂ f (u)
∂x

= ε
∂

∂x

H(u)
∂u
∂x

+ ετ
∂2u
∂x∂t

 . (2.0.4)

The functions, f and H in equations (2.0.1) and (2.0.4) are the water fractional flow

function and the capillary induced diffusion function. They are given by

f (u) =
λw(u)

λw(u) + Mλo(u)
, and H(u) =

λw(u)λo(u)
λw(u) + Mλo(u)

, (2.0.5)

where M is the water/oil viscosity ratio, while λw and λo are the normalized relative

permeabilities. Commonly accepted in the engineering literature is the Brooks-Corey

model in which λw and λo are defined by:

λw(u) = up+1, and λo(u) = (1 − u)q+1, p > 0, q > 0. (2.0.6)

In this chapter, we restrict the analysis to the functions of the Brooks-Corey model in

order to avoid non-essential technical difficulties. The functions H and f are then given

by

H(u) =
up+1(1 − u)q+1

up+1
+ M(1 − u)q+1 , and f (u) =

up+1

up+1
+ M(1 − u)q+1 . (2.0.7)

Their graphs are shown in Figure 2.1. Note that

H(u) > 0 and f (u) > 0 for 0 < u < 1, and

H(0) = 0, H(1) = 0 and f (0) = 0.
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Figure 2.1: The functions H (left) and f (right) for p = 0.5, q = 0.5 and M = 2.5

Remark 2.0.1 The definitions in (2.0.6) and (2.0.7) make sense only in the physically

relevant regime 0 ≤ u ≤ 1. For mathematical completeness we extend λw and λo by

continuity with constant values 0 or 1 whenever u is outside [0, 1]. The functions f and

H are extended accordingly.

For ε = 0, (2.0.1) becomes the non-viscous BL equation

∂u
∂t

+
∂ f (u)
∂x

= 0, (2.0.8)

a hyperbolic conservation law that can be seen as the limit (ε → 0) of a family of

extended equations of the form

∂u
∂t

+
∂ f (u)
∂x

= Aε(u), ε > 0. (2.0.9)

Here, Aε(u) is a regularization term involving second or higher order derivatives. Clas-

sical entropy solutions to the BL-equation are constructed as limits of travelling wave

(TW) solutions to (2.0.9), whenAε(u) is defined by

Aε(u) = ε
∂2u

∂x2 .

A non-classical regularization is given in (2.0.4), which is motivated by dynamic capil-

larity effects, as mentioned in (2.0.3). For the case H = 1, we have the following linear

pseudo-parabolic regularization of the BL equation

∂u
∂t

+
∂ f (u)
∂x

= ε
∂2u

∂x2 + ε2τ
∂3u

∂x2∂t
,
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for which the existence of TW solutions has been studied in [11]. In the limit ε → 0,

these TW solutions become shocks, which are weak solutions to the non-viscous BL

equation. These shocks violate the Oleinik entropy condition, and therefore are called

non-classical. TW solutions to (2.0.9) and the relation with non-standard shock solu-

tions to (2.0.8) are analyzed in [22], see also [2], [3], [17], [19]. The regularization there

involves higher order spatial derivatives, but no mixed terms. Furthermore, non-local

regularization operators and their effects on shock solutions to hyperbolic conservation

laws are studied in [21], [31]. The TW approach for degenerate pseudo-parabolic pro-

blems modelling one phase flow in porous media is considered in [4], [6], [13], [28]. In

a similar context, a fourth order regularization is studied in [9] .

This chapter deals with (2.0.4), which is a non-linear and degenerate regularization

of (2.0.8). In the spirit of [11], we seek TW solutions connecting a left state u` to a

right state ur. Here we only consider the case ul > ur, but in the degenerate context.

As will be seen below, the degeneracy can lead to the so-called “sharp TW solutions”,

which are non-smooth solutions, see [1], [23], [24], [32]. The case ul < ur in the dege-

nerate context is left for a future investigation. For linear regularization, this has been

thoroughly analyzed in [11].

Qualitative properties of solutions to pseudo-parabolic problems are discussed in

[20], where the small and waiting-time behavior of solutions to a Darcy type model

involving a dynamic pressure saturation is analyzed. A non-linear model involving me-

mory terms is investigated in [30]. Short time existence is obtained in [12], whereas

global existence results can be found in [26], [27], [14] and [5]. We refer in particular

to the existence results in [26] and [5], which can be applied directly to the present si-

tuation. Besides, in these papers it also proved that the solution is bounded essentially

by the degeneracy values. This chapter is also motivated by the experimental results

in [10]. We further refer to [15] for a review of experimental work on dynamic effects

in the pressure-saturation relationship, and to [25] for a dimensional analysis of such

models.

This chapter is organized in the following way: In Section 2.1 we investigate the

non-linear, non-degenerate case where 0 < ur < u` < 1. Then the results are similar to

the ones for a linear regularization (see [11]). In particular, a monotone and continuous

dependence of τ on u` is shown. Section 2.2 includes degenerate cases, but is devoted to

smooth TW, defined in the classical sense. The focus lies on the case ur = 0. Depending
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on the parameters, two situations are encountered. These are described in terms of two

constants α ∈ (ur, 1) and β ∈ (α, 1] that will be defined below. In the first situation, β < 1

and for any u` ∈ (α, β), there exists a τ > 0 s.t. TW solutions connecting ul to ur are

possible. Whenever β = 1, smooth TW solutions are only possible if τ < τ∗, here τ∗ is

the threshold value of τ. In the limit case τ ↗ τ∗ , the corresponding ul approaches 1.

Section 2.3 continues the investigations in Section 2.2 by considering the case τ > τ∗,

when smooth TW solutions are not possible. Then we consider the notion of TW in

a larger sense, allowing for discontinuities in the derivatives and connecting u` = 1

to ur > 0. In the spirit of [1], [23], [24], [32], such solutions are called “sharp front

solutions”. These fronts are encountered due to the degeneracy at u = 1 and appear at

the transition from regions where u = 1 to values of u below 1. At the end of Section 2.3

we also consider two degenerate points. Specifically, we take u` = 1 and ur = 0. Then

we give a selection criterion leading to sharp TW’s that are continuously differentiable

whenever u < 1. In particular, the transition u > 0 to u = 0 is smooth and encountered

at some finite coordinate. Finally, Section 2.4 presents some numerical examples to

illustrate the theoretical results.

2.1 Travelling waves: the non-linear, non-degenerate case

Entropy shock solutions to BL equation are based on TW solutions to (2.0.9) and their

limits as ε→ 0. A TW solution has the form

u(x, t) = u(η), where η =
x − st
ε

. (2.1.1)

Note that the TW solution is still denoted by u to avoid unnecessary notations. Applying

this into (2.0.4) we obtain

−su′ +
(
f (u)

)′
= {H(u)(u′ − τsu′′)}′. (2.1.2)

With given 0 ≤ ur < u` ≤ 1, these waves are connecting the left state u` to the right state

ur,

u(−∞) = u`, and u(+∞) = ur. (2.1.3)
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Remark 2.1.1 Values outside [0, 1] are physically unrealistic. From the mathematical

point of view, if one of the states is outside [0, 1], the problem degenerates and the solu-

tion remains constant, so no connection with different states is possible. This is why we

only consider the case 0 ≤ u ≤ 1.

Integrating (2.1.2) over R and assuming that H(u)(u′ − τsu′′)(η)→ 0 as η→ ±∞ gives

−s(ur − u`) + { f (ur) − f (u`)} = 0.

This leads to the Rankine-Hugoniot (RH) condition relating the speed s with the limiting

values u` and ur:

(RH) s = s(ur, u`) =
f (ur) − f (u`)

ur − u`
. (2.1.4)

Note that since f is a strictly increasing function, it follows that s > 0.

Remark 2.1.2 Instead of assuming H(u)(u′ − τsu′′)(η) → 0 as η → ±∞, we can just

assume u′(η)→ 0 as η→ ±∞, then we have u′′(η)→ 0 and H(u)(u′ − τsu′′)(η)→ 0 as

η→ ±∞ automatically.

Furthermore, integrating (2.1.2) over (η,+∞) and using the condition at η = +∞, we

obtain

s(u − ur) − { f (u) − f (ur)} = −H(u)(u′ − τsu′′). (2.1.5)

Dividing by H(u) and rearranging the terms we obtain the following equation

sτu′′ − u′ − g(u; ur, u`) = 0, (2.1.6)

where the function g, depending on the parameters ur, u`, is defined as

g(u; ur, u`)
def
=

1
H(u)

{
s(ur, u`)(u − ur) − [ f (u) − f (ur)]

}
. (2.1.7)

Clearly, in light of the Rankine-Hugoniot condition (2.1.4), the function g(u) = g(u; ur, u`)

vanishes at the limit values:

g(ur; ur, u`) = 0, and g(u`; ur, u`) = 0.
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In summary, with the wave speed s defined in (2.1.4), we seek a solution u of the

problem

(TW1)

 sτu′′ − u′ − g(u; ur, u`) = 0, η ∈ R,

u(−∞) = u`, u(+∞) = ur.
(2.1.8)

For some purposes it will be convenient to reformulate problem (TW1) into a more

conventional form and introduce a new spatial variable:

ξ = −
1
√

sτ
η, u(η) = u(ξ) and c =

1
√

sτ
. (2.1.9)

Then Problem (TW1) becomes:

(TW2)

 u′′ + cu′ − g(u; ur, u`) = 0, ξ ∈ R,

u(−∞) = ur, u(+∞) = u`.
(2.1.10)

We start with a necessary condition for the existence of travelling wave solutions

with the prescribed limiting values:

Lemma 2.1.1 A necessary condition for the existence of a travelling wave solution of

Problem (TW1,2) is∫ u`

ur

g(u; ur, u`) du > 0. (2.1.11)

Proof Multiplying the differential equation in (2.1.10) by u′ and integrating over R yield

c
∫
R

(u′)2dξ −
∫ u`

ur

g(u; ur, u`) du = 0.

Since c = 1/
√

sτ > 0, the assertion follows. �

We now make an additional assumption about the function f :

Assumption 1: There exists a unique u∗ ∈ (0, 1) such that f ′′(u∗) = 0, f ′′(u) > 0 for

0 < u < u∗ and f ′′(u) < 0 for u∗ < u < 1.
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Remark 2.1.3 Assumption 1 is satisfied for the f with p > 0 and q > 0. The proof will

be given in Appendix A.

For classical entropy solutions of the BL equation, i.e., when τ = 0, an elementary

analysis shows that Problem (TW1) has a solution if and only if f and two limit states u`
and ur satisfy the Oleinik Entropy condition:

(E)
f (u`) − f (u)

u` − u
≥

f (u`) − f (ur)
u` − ur

for ur < u < u`.

Since f ′(0) = 0 and f ′′(0) > 0, the Oleinik entropy condition (E) is satisfied in a right-

neighbourhood of ur, provided ur is chosen small enough. Hence, it is natural to define

α(ur) > ur such that

α(ur) = sup
{

u > ur : f ′(u) >
f (u) − f (ur)

u − ur

}
, (2.1.12)

Because f ′(1) = 0 and f satisfies Assumption 1, it follows that α < 1 and that

f ′(α) =
f (α) − f (ur)
α − ur

.

To investigate the non-standard case τ > 0, Lemma 2.1.1 suggests the second critical

value β(ur):

β(ur) = sup
{
α < u < 1 :

∫ u

ur

g(t ; ur, u) dt > 0
}
. (2.1.13)

Plainly, the left state u` is bounded from above by β(ur).

As we saw in (2.0.7), the diffusion function H(u) vanishes whenever u = 0 or u = 1,

so that the equation becomes degenerate at those values of u. We start by discussing the

non-degenerate case and assume in the remaining of this section that 0 < ur < u` < 1.

Lemma 2.1.2 Suppose that 0 < ur < α < u` < β. Then the function g(u) def
= g(u; ur, u`)

defined in (2.1.7) has three positive zeros:u = ur, u = um and u = u`,

g′(ur) > 0, g′(um) < 0 and g′(u`) > 0,
(2.1.14)

where primes denote differentiation with respect to u.
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The proof is entirely elementary and we omit it. The graph of g is shown in Figure 2.2.
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Figure 2.2: The function g(u) for p = 0.5, q = 0.5, M = 2, ur = 0.1, u` = 0.95 and hence, by
the RH-condition (2.1.4), s = 1.12

As we shall see, an important issue will be whether β(ur) < 1 or β(ur) = 1. In the

next lemma we give a condition on the power q in the relative permeability λo(u) = uq+1

which ensures that β < 1.

Lemma 2.1.3 If q ≥ 1, then β < 1.

Proof Suppose to the contrary that β = 1. Then by Lemma 2.1.1,∫ 1

ur

g(t; ur, 1) dt ≥ 0. (2.1.15)

However, an elementary computation shows that

g(t; ur, 1) ∼ −s(ur, 1)(1 − t)−q as t → 1−.

Therefore we can find a constant C > 0 and a t0 ∈ (ur, 1) such that

g(t; ur, 1) ≤ −C(1 − t)−q for all t ∈ [t0, 1). (2.1.16)

For t0 < u < 1 we write

I(u) def
=

∫ u

ur

g(t; ur, 1) dt =

∫ t0

ur

g(t; ur, 1) dt +

∫ u

t0
g(t; ur, 1) dt = I1 + I2(u).(2.1.17)
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From the upper bound given in (2.1.16) we have

I2(u) < −C
∫ u

u0

(1 − t)−q dt,

and hence, because q ≥ 1, it follows that I(u) = I1 + I2(u) → −∞ as u → 1−. This

contradicts (2.1.15) and thus proves the assertion. �

Remark 2.1.4 The same result holds when ur = 0. This means that if q ≥ 1, the left

state u` can not be 1, so degeneracy may only occur at u = 0.

Whenever β < 1, we can establish the following existence theorem. Its proof goes

along the lines of Lemma 4.1 in [11]. We omit the details here.

Theorem 2.1.1 Let ur > 0 be given so that α is well defined by (2.1.12), and let β be

defined by (2.1.13). Then, for every u` ∈ (α, β) there exists a unique value of τ > 0 such

that Problem (TW1) admits a solution. This solution is unique, decreasing and travels

with speed s(u`, ur) given in (2.1.4).

Collorary 2.1.1 For fixed ur > 0 and given u` ∈ (α, β), Theorem 2.1.1 provides a unique

τ = τ(u`). Thus, we can define the function

τ : (α, β)→ R+.

Lemma 2.1.4 The function τ is continuous and strictly increasing on (α, β).

Proof We follow the proof of Lemma 4.2 in [11] and show first the monotonicity of τ.

Taking two left states α < u`,1 < u`,2 < β, define

si =
f (u`,i) − f (ur)

u`,i − ur
, and gi(u) =

1
H(u)

{si(u − ur) − [ f (u) − f (ur)]}, i = 1, 2.

Observe that
d
du

(
f (u) − f (ur)

u − ur

)
< 0 for α < u < β,

therefore

s1 > s2 and g1(u) > g2(u) for all u ∈ (ur, u`,1).
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Rewriting Problem (TW2) as the first order system u′ = w,

w′ = −ciw + gi(u),
(2.1.18)

we denote by Γi (i = 1, 2) the orbits emerging from the saddle (ur, 0). They do so under

the angles θi given by

θi =
1
2

(√
c2

i + 4g′i(ur) − ci

)
, i = 1, 2.

Plainly,

g′i(ur) =
1

H(ur)
{si − f ′(ur)}.

Define the function

θ(c, s) def
=

1
2

(√
c2

+ 4g′(ur) − c
)
.

Then
∂θ

∂c
< 0 and

∂θ

∂s
> 0,

and we conclude that c1 > c2 as in [11]. This gives

τ2s2 > τ1s1, therefore τ2 >
s1

s2
τ1 > τ1,

as asserted. For the continuity of τ, one can follow the ideas in Lemma 4.3 in [11]. �

2.2 Smooth travelling waves for the degenerate case ur = 0

In this section, we seek standard, smooth TW solutions for the degenerate case ur = 0,

where H vanishes, whereas g becomes unbounded.

Since ul > ur is assumed, we seek monotone decreasing TW solutions of Problem

(TW1). If such solutions exist, a bijection η → u, where η ∈ R and u ∈ (ur, u`), can be

defined. Therefore the functions η : (ur, u`) → R, as well as w : (ur, u`) −→ R, w(u) =

−u′
(
η(u)

)
can be defined. Further, since u is decreasing, we have w > 0 on (ur, u`).

Nevertheless, w(ur) and w(u`) still have to be fixed. To do so we recall that the waves

sought in this section are smooth, monotone, and approaching u` and ur asymptotically.
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Therefore we have lim
η→±∞

u′(η) = 0 yielding w(ur) = w(ul) = 0. In terms of w, Problem

(TW1) introduced in (2.1.8) becomes

(TW3)

 τsww′ + w = g(u), for u ∈ (ur, u`),

w(ur) = 0,w(u`) = 0.
(2.2.1)

Note that this first order equation has two boundary conditions, which will be fixed by

the parameter τ. When seeking monotone TW solutions to Problem (TW3) we in fact

seek a pair (w, τ) ∈ C1(ur, u`) × (0,∞) for which (2.2.1) holds. Once w is known, one

can obtain u from:

η(u) =

∫ u`+ur
2

u

dz
w(z)

, (2.2.2)

defining a TW satisfying u(0) =
u`+ur

2 . This choice of u(0) is a possible normalization of

the TW, any value in (ur, u`) is possible.

We start with a non-existence result, which imposes a restriction on the value of the

power p.

Theorem 2.2.1 If p ≥ 1 and ur = 0, then no TW solutions are possible.

Proof As in (2.1.6), whenever a TW solution exists, it satisfies the equation

sτu′′ − u′ − g(u; ur, u`) = 0. (2.2.3)

The particular forms of f and H allow writing

sτu′′ − u′ ≥ Cu−p, (2.2.4)

for some C > 0, when u is close to 0. This shows that u can not oscillate near u = 0. To

see this, we note that at each (local) extremum, where u′ = 0, we have

u′′ ≥
C
sτ

u−p > 0, (2.2.5)

which implies that u is always convex there. Therefore u can not have a local maximum,

so it is monotone.
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Based on this observation we rule out the existence of a TW solution. To see this we

assume that a TW solution u exists. Then up to a ũ > 0 small enough, u is increasing

from 0 to ũ. This allows rewriting the TW equation into (2.2.1) with ur = 0 and w(0) = 0,

yielding after integration

τs
2

w2(u) +

∫ u

0
w(v)dv =

∫ u

0
g(v)dv, (2.2.6)

for all u ∈ (0, ũ). As g becomes unbounded at u = 0, ũ can be chosen such that w(ũ) <

g(ũ), implying the same ordering everywhere in (0, ũ). This gives∫ ũ

0
g(u)du ≤

τs
2

g(ũ)2
+ ũg(ũ). (2.2.7)

Since the left side is unbounded for p ≥ 1, we obtain a contradiction. �

Remark 2.2.1 No TW solutions exist for u` = 1 whenever q ≥ 1. To see this, one can

follow the proof of Theorem 2.2.1.

In view of the above, no TW solutions exist for p ≥ 1 and ur = 0, or q ≥ 1 and u` = 1.

Therefore in this section we restrict to the cases 0 < p < 1 and 0 < q < 1. In the

following, we present the existence

Theorem 2.2.2 Let 0 < p < 1, ur = 0 and α < u` < β. Then there exists a unique τ for

which Problem (TW1) admits a solution.

Proof The proof is divided into two steps:

Step 1: Existence. We prove that there exists a unique pair (τ,w) such that (2.2.1) is

satisfied. By (2.2.2), this also provides a solution to Problem (TW1).

Observe that, since ur = 0 and u` < 1, we have g(u) → +∞ as u → 0 and g(um) =

g(u`) = 0 for some um ∈ (0, u`). Clearly, for any w̃ > 0, there exists a unique ũ ∈ (0, um)

such that g(ũ) = w̃. For proving the theorem, we consider two cases u > ũ, and u < ũ.

We prove the existence of a pair (w, τ) by a two-way shooting method starting from

the segment of the graph of the function g(u) that lies between u = 0 and u = um. Thus,

fixing ũ ∈ (0, um) we first consider the initial value problem τsww′ + w = g(u), for u > ũ,

w(ũ) = g(ũ).
(2.2.8)
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We denote the solution by w(u; τ). We prove that there exists a τ = τ(ũ) such that the

solution of (2.2.8) also satisfies w(u`) = 0. To this end we define the point

ν+(τ) = sup{ũ < u ≤ u` | w(· ; τ) > 0 on [ũ, u)}.

We make two observations:

(1) If τ → ∞ then w′(u; τ) → 0 uniformly on [ũ, ν] so that if τ is large enough then

w(u`) > 0 and ν+(τ) = u`.

(2) If τ→ 0 then w(u; τ) − g(u)→ 0 uniformly on [ũ, ν] and hence if τ is small enough,

then ν+(τ) < u`.

Due to the continuous dependence of w(u; τ) on τ there exists a τ = τ(ũ) such that

w
(
· ; τ(ũ)

)
> 0 on (ũ, u`) and w

(
u`; τ(ũ)

)
= 0.

Next we turn to the backward problem τ(ũ)sww′ + w = g(u), for u < ũ,

w(ũ) = g(ũ),
(2.2.9)

where we now have fixed the value of τ to the one obtained in the forward problem. Since

the starting value ũ is still not determined, we now denote the solution of the backward

problem in (2.2.9) by w(u; ũ). Proceeding as the forward problem we define the point

ν−(ũ) = inf{0 < u < ũ | w(· ; ũ) > 0 on (u, ũ]},

and we define three sets:

A+

def
= {ũ ∈ (0, um) | ν−(ũ) = 0 and w(0; ũ) > 0},

A0
def
= {ũ ∈ (0, um) | ν−(ũ) = 0 and w(0; ũ) = 0},

A−
def
= {ũ ∈ (0, um) | ν−(ũ) > 0}.

(2.2.10)

Plainly, A+ and A− are open; we shall prove that they are also nonempty. This then

enables us to conclude that the set A0 is nonempty, and hence that there exists a value

of ũ and hence of τ such that Problem (TW3) has a solution if ur = 0. This is proved in

the lemmas below.

Lemma 2.2.1 The setA− is nonempty.



2.2 Smooth travelling waves for the degenerate case ur = 0 27

0 0.5 1
−1

0

4

2
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Figure 2.3: Solutions in the setA− (left), the setA+ (middle) and the setA0 (right)

Proof Suppose to the contrary thatA− is empty and hence ν−(ũ) = 0 for all ũ ∈ (0, um).

Integration of the equation in Problem (TW3) over (0, u`) yields

−
1
2
τ(ũ)sw2(0; ũ) +

∫ u`

0
w(u; ũ)du =

∫ u`

0
g(u)du def

= G(u`). (2.2.11)

Note that in light of Lemma 2.1.1, G(u`) > 0. Since w(u; ũ) < g(ũ), we have

G(u`) − u`g(ũ) < −
1
2
τ(ũ)sw2(0; ũ). (2.2.12)

Since g(u) → 0 as u → um, we can ensure that G(u`) − u`g(ũ) > 0 by choosing ũ

sufficiently close to um. In this manner we arrive at a contradiction. �

Lemma 2.2.2 The setA+ is nonempty.

Before proving this lemma, we establish two auxiliary results.

Lemma 2.2.3 We have

τ(ũ)→ 0 and w(um; ũ)→ ∞ as ũ→ 0. (2.2.13)

Proof Integration of the equation over (ũ, u`) yields∫ u`

ũ
g(u)du = −

1
2

sτ(ũ)g2(ũ) +

∫ u`

ũ
w(u; ũ)du < −

1
2

sτ(ũ)g2(ũ) + u`g(ũ),
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where we have used the fact that by construction w(u; ũ) ≤ g(ũ). Thus,

1
2

sτ(ũ) <
u`

g(ũ)
−

1

g2(ũ)

∫ u`

um

g(u)du.

Since g(ũ)→ ∞ as ũ→ 0, the first assertion follows.

To prove the second assertion we claim that

w′′(u; ũ) < 0 for um ≤ u ≤ ue, (2.2.14)

where ue is the value of u where g(u) reaches its minimum. Accepting this claim for the

moment and observing that w′(um; ũ) = 1/sτ(ũ), we conclude that

w(ue; ũ) < w(um; ũ) −
1

sτ(ũ)
(ue − um).

Since w(ue; ũ) > 0 this implies that

w(um; ũ) >
1

sτ(ũ)
(ue − um),

and hence, in light of the first result, that w(um; ũ)→ ∞ as ũ→ 0.

It remains to prove the claim (2.2.14). We have

w′′ =
1

sτ(ũ)w2 {g
′(u)w − g(u)w′}. (2.2.15)

Because g′ < 0 and g > 0 as well as w > 0 and w′ < 0 on (um, ue) it follows that the

right-hand side of (2.2.15) is negative and the claim is proved. �

We are now ready to prove that the setA+ is nonempty.

Proof of Lemma 2.2.2 We need to prove that there exists a ũ ∈ (0, um) such that ν−(ũ) =

0 and w(0; ũ) > 0.

Suppose to the contrary that for any ũ ∈ (0, um), either ν−(ũ) > 0 or ν−(ũ) = 0 and

w(0; ũ) = 0.

To arrive at a contradiction, we integrate the equation in Problem (TW3) over (ν−, u`):

1
2
τ(ũ){w2(u`; ũ

)
− w2(ν−(ũ); ũ

)
} +

∫ u`

ν−(ũ)
w(u; ũ) du =

∫ u`

ν−(ũ)
g(u)du,
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or, since w vanishes at u` and ν−,∫ u`

ν−(ũ)
g(u) du =

∫ u`

ν−(ũ)
w(u; ũ) du >

∫ um

ũ
w(u; ũ) du > (um − ũ)w(um; ũ).

As ũ → 0, the right-hand term tends to infinity, whilst the left-hand term remains boun-

ded; a contradiction. This completes the proof of Lemma 2.2.2 and thereby of the exis-

tence of a ũ ∈ (0, um) for which the pair
(
w(· ; ũ), τ(ũ)

)
is a solution of Problem (TW3).

�

Step 2: Uniqueness. We assume the existence of (τ1,w1) and (τ2,w2) satisfying (2.2.1),

where τ1 > τ2 > 0. Integrating (2.2.1) over (0, u) yields

sτ1

2
w1(u)2

+

∫ u

0
w1(t)dt =

∫ u

0
g(t)dt =

sτ2

2
w2(u)2

+

∫ u

0
w2(t)dt. (2.2.16)

Since τ1 > τ2, this gives w1 < w2 for u small enough (see the left picture of Figure 2.4).

If w1 and w2 do not intersect inside (0, u`), then w1 < w2 everywhere. Taking u = u` in

(2.2.16) gives ∫ u`

0
w1(u)du =

∫ u`

0
g(u)du =

∫ u`

0
w2(u)du,

which contradicts the ordering in the w′s. Thus w1 and w2 must have at least one in-

0 
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Figure 2.4: Sketched solutions w1 and w2 of (2.2.1) for, respectively, τ1 > τ2: behaviour close
to u = 0 (left), and global behaviour assuming a unique intersection point inside (0, ul) (right).

tersection point inside (0, u`), where w1 and w2 are both positive. No intersection can

occur at points where w1 or w2 is increasing. To see this we let u0 ∈ (0, u`) be the first
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intersection point, so w1(u0−) < w2(u0−) implying that w′1(u0) ≥ w′2(u0). However,

since

w′1(u0) =
g(u0) − w1(u0)

sτ1w1(u0)
, and w′2(u0) =

g(u0) − w2(u0)
sτ2w2(u0)

,

if w1(u0) < g(u0), then

w′2(u0) =
g(u0) − w2(u0)

sτ2w2(u0)
=

g(u0) − w1(u0)
sτ2w1(u0)

>
g(u0) − w1(u0)

sτ1w1(u0)
= w′1(u0),

which contradicts the above. Next, if w1(u0) = g(u0), then w′1(u0) = w′2(u0) = 0,

g′(u0) , 0 and there exists δ > 0 small enough such that

w′1(u0 − δ) > w′2(u0 − δ) > 0, and w2(u0 − δ) > w1(u0 − δ) > 0.

Hence

(w′1 − w′2)|u=u0−δ
=

[
1

sτ1

(
g

w1
− 1

)
−

1
sτ2

(
g

w2
− 1

)] ∣∣∣∣
u=u0−δ

> 0,

therefore
τ2

τ1
>

g
w2
− 1

g
w1
− 1

∣∣∣∣
u=u0−δ

.

As δ→ 0, l’Hôpital’s rule gives

lim
δ→0

g
w2
− 1

g
w1
− 1

∣∣∣∣
u=u0−δ

= lim
δ→0

g′w2−gw′2
w2

2

g′w1−gw′1
w2

1

∣∣∣∣
u=u0−δ

= 1,

thus
τ2

τ1
≥ 1,

contradicting with τ1 > τ2. Thus w1(u0) > g(u0), implying w′1(u0) < 0 and w′2(u0) < 0.

We assume now there exist at least two intersection points inside (0, u`), and let u0

and u1 be the first two of them. We have 0 > w′1(u0) ≥ w′2(u0) and w′1(u1) ≤ w′2(u1) < 0.

However

w′1(u1) =
g(u1) − w1(u1)

sτ1w1(u1)
=

g(u1) − w2(u1)
sτ1w2(u1)

>
g(u1) − w2(u1)

sτ2w2(u1)
= w′2(u1),

contradicting the above.
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It only remains to rule out the possibility of having exactly one intersection point

u0 ∈ (0, u`) (see the right picture of Figure 2.4). Then w1 > w2 for u ∈ (u0, u`). Since

w1(u`) = w2(u`) there exists u2 close to u` such that w′1(u2) < w′2(u2). However, since

τ1 > τ2, w1(u2) > w2(u2) and g(u2) < 0,

w′1(u2) =
g(u2)

sτ1w1(u2)
−

1
sτ1

>
g(u2)

sτ2w2(u2)
−

1
sτ2

= w′2(u2),

which is a contradiction and shows the uniqueness. �

In the following lemma we show that τ(u`) in Theorem 2.2.2 is a strictly increasing

function of u` ∈ (α, β).

Lemma 2.2.4 Let α < u`,1 < u`,2 < β. Then τ(u`,1) < τ(u`,2).

Proof For convenience we write ui = u`,i and gi(u) = g(u; 0, u`,i), τ(u`,i) = τi, si =
f (u`,i)
u`,i

for i = 1, 2. Then wi (i = 1, 2) satisfies τisiwiw
′
i + wi = gi(u), for u ∈ (0, ui),

wi(0) = 0,wi(ui) = 0.
(2.2.17)

Here we prove the statement:

Let τ1 < τ2, then u1 < u2,

which is equivalent to the conclusion of the lemma. The case u1 = u2 is ruled out by the

uniqueness result in Theorem 2.2.2. Assuming u1 > u2 we have

w1(u2) > 0 = w2(u2),

s1 < s2,

g1(u) < g2(u) for u ∈ (0, u2).

(2.2.18)

In the following, we prove the assertion

s1τ1w2
1 ≤ s2τ2w2

2, for all u ∈ [0, u2]. (2.2.19)

This gives

0 ≤ s1τ1w2
1(u2) ≤ s2τ2w2

2(u2) = 0, (2.2.20)
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implying w1(u2) = 0. This contradicts the first inequality in (2.2.18), and therefore the

assumption u1 > u2 is not true.

To prove (2.2.19) we use (2.2.17) and obtain for all u ∈ [0, u2]

1
2

(
s1τ1(w2

1)′ − s2τ2(w2
2)′

)
+ w1 − w2 = g1 − g2 ≤ 0. (2.2.21)

With [z]+ denoting the positive cut of z, we multiply (2.2.21) by [s1τ1w2
1 − s2τ2w2

2]+ and

get

1
2

(
[s1τ1w2

1 − s2τ2w2
2]2

+

)′
+ (w1 − w2)[s1τ1w2

1 − s2τ2w2
2]+

= (g1 − g2)[s1τ1w2
1 − s2τ2w2

2]+.
(2.2.22)

Integrating (2.2.22) from 0 to u (u ∈ [0, u2]) gives

1
2

[s1τ1w1(u)2
− s2τ2w2(u)2]2

+

+
1
√

s1τ1

∫ u

0

(√
s1τ1w1(v) −

√
s2τ2w2(v)

)
[s1τ1w1(v)2

− s2τ2w2(v)2]+dv

+

∫ u

0

(√
s2τ2

s1τ1
− 1

)
w2(v)[s1τ1w1(v)2

− s2τ2w2(v)2]+dv

=

∫ u

0

(
g1(v) − g2(v)

)
[s1τ1w1(v)2

− s2τ2w2(v)2]+dv.

(2.2.23)

Denoting the terms on the left side by T1, T2 and T3, we observe that T1 ≥ 0. Further

T2 =
1
√

s1τ1

∫ u

0

(√
s1τ1w1(v)+

√
s2τ2w2(v)

)
[
√

s1τ1w1(v)−
√

s2τ2w2(v)]2
+dv ≥ 0.(2.2.24)

Since s2τ2 > s1τ1 and w2 ≥ 0, we have T3 ≥ 0.

By (2.2.18) the right hand side is negative. In view of the above, this gives

[
√

s1τ1w1(v) −
√

s2τ2w2(v)]2
+ = 0 for all v ∈ [0, u2], (2.2.25)

implying (2.2.19). �

The proof of Theorem 2.2.2 also provides bounds for the parameter τ in terms of the

function

G(u) =

∫ u

0
g(t) dt,

and the intermediate zero um ∈ (0, u`).
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Lemma 2.2.5 We have

τ <
2
s

(
u`

G(u`)

)2

G(um). (2.2.26)

Proof Recall that ∫ u`

0
w(u) =

∫ u`

0
g(u) du = G(u`).

Let wmax = max{w(u) : 0 < u < u`}. Then
∫ u`

0 w(u) du < u`wmax and it follows that

wmax >
G(u`)

u`

def
= A. (2.2.27)

Let w(u) reach its maximum value at u = umax. Inspection of the function g(u) shows

that 0 < umax < um. Integrating the equation in (2.2.1) over (0, umax), we obtain

τs
2

w2
max <

∫ umax

0
g(u) du <

∫ um

0
g(u) du = G(um). (2.2.28)

Combining (2.2.27) and (2.2.28) yields the desired upper bound of (2.2.26). �

Lemma 2.2.5 can be completed by a lower bound for τ. To this aim we introduce

two particular values of u:

uA : We put

uA
def
= sup{u < um : g(u) < A = u−1

` G(u`)}.

Since wmax > A and wmax = g(umax) it follows that uA exists and that umax < uA < um.

ue : Note that g(u) is negative and has a minimum on the interval (um, u`). The value of

u where g(u) attains its minimum value on (um, u`) will be denoted by ue.

Lemma 2.2.6 We have

τ >
1
s

(ue − um)(um − uA)
G(u`)

. (2.2.29)

Proof Since g(um) = 0 it follows from the equation in (2.2.1) that w′(um) = − 1
τs .

Dividing the equation by w and differentiating the result, we obtain

w′′ =
1
τs

g′w − gw′

w2 .
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Since g′ < 0 on (um, ue) and both g < 0 and w′ < 0 on this interval, it follows that w′′ < 0

on (um, uε). Therefore

0 < w(ue) < w(um) −
1
τs

(ue − um).

Therefore

τ >
1
s

ue − um

w(um)
. (2.2.30)

It remains to establish an upper bound for w(um). Observe that∫ u`

0
g(u)du =

∫ u`

0
w(u)du >

∫ um

umax

w(u)du > (um − umax)w(um).

Hence,

w(um) <
G(u`)

um − umax
<

G(u`)
um − uA

, since umax < uA. (2.2.31)

Combining the inequalities (2.2.30) and (2.2.31) we arrive at the desired lower bound. �

Remark 2.2.2 If β = 1, then the upper bound of Lemma 2.2.5 is uniformly bounded with

respect to u` ∈ (0, 1). This means in particular that

lim sup
u`→1−

τ(u`) < ∞.

Remark 2.2.3 For the non-degenerate case, we can proceed in the same manner to get

similar bounds.

The proof of Theorem 2.2.2 can be extended without major differences to the case

u` = 1, gives the following result:

Theorem 2.2.3 Let ur ≥ 0, u` = 1 and assume
∫ 1

ur
g(t; ur, 1) dt > 0 (thus β = 1). Then

there exists a unique pair (τ,w) solving (2.2.1).

As we can see from Remark 2.2.2 and Theorem 2.2.3, with ur ≥ 0 and u` ∈ (ur, 1], if

β = 1 then travelling wave solutions exist only for finite τ. As mentioned in Remark

2.2.2, together with Lemma 2.2.4 this justifies the following
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Definition 2.2.1 Let ur ≥ 0 and assume
∫ 1

ur
g(u; ur, 1) > 0, define

τ∗ = sup{τ(u`) : u` ∈ (α, 1)}.

The value τ∗ can be interpreted as the maximal value of τ for which there exists a travel-

ling wave solution connecting u` to ur. We further have τ∗ = τ(1).

The right state ur is fixed in Definition 2.2.1. Note that the value τ∗ depends on ur, so

the notation τ∗(ur) makes sense. Without doing a rigorous proof on the dependency of

ur, we refer to Figure 2.5, where τ∗ is computed numerically for p = q = 0.5, M = 2.5

and ur ranges from 0.01 to 0.1. This figure suggests that τ∗ is an increasing function

with ur.
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Figure 2.5: The values of τ∗ = τ∗(ur) for ur ∈ [0.01, 0.1] when p = q = 0.5,M = 2.5

2.3 Non-smooth travelling waves

The results proven yet are obtained for smooth C2 travelling wave solutions of (2.0.4).

Following Theorem 2.2.3 (see also Remark 2.2.2), when β = 1 then there is an upper

bound to the values of τ for which such solutions exist. Specifically, given a ur ≥ 0

there exists a critical constant τ∗(ur), such that if τ < τ∗(ur) there exists a unique u` < 1

for which a smooth travelling wave exists which connects the left state u` and the right
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state ur. In the limit when τ = τ∗(ur), we have u` = 1. A natural question is then: what

happens when τ > τ∗(ur)?

An indication of what to expect can be found in the graph presented in Figure 2.6,

which is the numerical solution u(x, t) of the Cauchy-Dirichlet Problem for the original

partial differential equation (2.0.4) on a sufficiently large interval (−1, 19), with initially

a smooth approximation of a jump from the left state u` = 1 to the right state ur = 0.1,

located at x = 0. At the boundaries we consider the limiting values, u` and ur. In this

computation, we took p = q = 0.5, M = 2.5, ε = 1 and τ = 2 which exceeds the critical

value τ∗(ur). Details of the numerical method are provided in Section 2.4. Observe that

∂u/∂x becomes discontinuous at the point where the value of u first changes from u = 1

to u < 1.
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0.6

0.8

1

Figure 2.6: The numerical solution u of (2.0.4), computed for u` = 1 and ur = 0.1. Here
p = q = 0.5, M = 2.5, ε = 1 and τ = 2 > τ∗(ur). Note the kink appears at the transition from
u = 1 to u < 1.

In what follows we consider the two cases: ur > 0, when only one degeneracy value

is achieved, and ur = 0 - the doubly degenerate case in succession. We start by analyzing

the case of a single degeneracy.

2.3.1 The case ur > 0 and u` = 1

The numerical solution in Figure 2.6 suggests a discontinuity of the first order derivative

of u. Consequently, the standard notion of TW is no longer valid. This requires an
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extended definition that allows for non-smooth waves, akin to the so-called sharp TW

introduced in [32]. To define such waves we rewrite (2.0.1) as

∂tu + ∂xF = 0, where F = f (u) − εH(u)∂x pc, and pc = u + ετ∂tu.(2.3.1)

In this way we define explicitly the flux F and the phase pressure difference pc. In terms

of the travelling wave coordinate η the equations of (2.3.1) becomes:

−su′ + F′ = 0, F = f (u) − H(u)p′c, and pc = u − τsu′. (2.3.2)

Physical arguments, as well as the numerical results presented above and in Section 2.4,

suggest that u and F are continuous, whereas their derivatives may become disconti-

nuous. In terms of the travelling wave coordinate η, we denote the point where u first

becomes less than 1, and the derivative is discontinuous, by η1. In view of this, we

propose the following definition:

Definition 2.3.1 Let ur > 0, s =
(

f (1) − f (ur)
)
/(1 − ur) and let η1 ∈ R be an arbitrary

fixed coordinate. A triple (u, F, pc) is a sharp travelling wave solution to (2.1.8) if u, F ∈

C(R), u′, F′, pc ∈ C(R \ {η1}), u is decreasing, and
su′ = F′,

H(u)p′c = f (u) − F,

pc = u − τsu′,

(2.3.3)

for all η > η1, whereas u(η) = 1, F(η) = 1, and pc(η) = 1 for all η < η1.

Since u(η) is monotone and bounded below, it tends to a limit u∞ as η→ ∞. Integrating

(2.3.31) over (η1,∞) and using the continuity of u and F at η1 lead to F(∞) = 1 + s(u∞−

1), whilst taking the limit in (2.3.32) yields F(∞) = f (u∞). In light of the definition

of the wave speed s we conclude u∞ = ur. Therefore, the TW solution introduced in

Definition 2.3.1 connects the two states u` = 1 and ur > 0.

Remark 2.3.1 Definition 2.3.1 requires the continuity of u, but not of its derivative.

As suggested by (2.3.33), pc may become discontinuous at η1. In physical terms, η1

separates a fully saturated region, when only one phase is present, from a partially

saturated one, containing both phases. Then for η < η1 we have a fully saturated region,

where u = 1 and pc = 1, implying the same value for its left limit in η1. In the unsaturated
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region η > η1 we have pc = u − τsu′, with 1 only as an upper bound, but not necessary

as a right limit in η1. However, this does not contradict the concept of the capillary

pressure, since this is defined as the difference between the pressures inside the two

phases. This definition only makes sense for partially saturated regions, where 0 < u <

1. For equilibrium models, when τ = 0, the value of pc in the fully saturated region

is defined by continuity. But this approach does not include any dynamic effects, which

explains the eventual discontinuity of the capillary pressure at the boundaries of partially

saturated regions.

The existence of a travelling wave when ur > 0 and τ > τ∗(ur), and hence u` = 1, is

established by the following theorem:

Theorem 2.3.1 Let ur > 0 and τ > τ∗(ur), implying u` = 1. Then equation (2.0.4)

admits a sharp TW solution in the sense of Definition 2.3.1.

Proof To prove this theorem we proceed as in the previous section and start by seeking

a positive solution of τs(ur, 1)ww′ + w = g(u; ur, 1), u ∈ (ur, 1],

w(ur) = 0,
(2.3.4)

in which (see also (2.1.4) and (2.1.7))

s(ur, 1) =
1 − f (ur)

1 − ur
and g(u; ur, 1) =

s(ur, 1)(u − 1) − [ f (u) − 1]
H(u)

.(2.3.5)

Then, as in (2.2.2), we use w to construct a TW solution u. Note that since τ > τ∗(ur),

we will now have w(u`) > 0.

In the following lemma we demonstrate that Problem (2.3.4) has a unique solution.

Lemma 2.3.1 Let τ > τ∗ and ur > 0. Then there exists a unique w ∈ C1([ur, 1]) such

that w(u) > 0 on (ur, 1], which satisfies (2.3.4).

Proof Existence is proved by means of the shooting method described in Theorem 2.2.2.

We omit the details here.

For the uniqueness, we assume there are two different solutions w1, w2,

sτ
2

(w2
i )′ + wi = g(u), i = 1, 2. (2.3.6)
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Therefore,

sτ
2

(
w2

1 − w2
2

)′
+ (w1 − w2) = 0. (2.3.7)

With [w2
1 − w2

2]+ denoting the positive cut, multiplying [w2
1 − w2

2]+ gives

sτ
4

(
[w2

1 − w2
2]2

+

)′
+ (w1 − w2)[w2

1 − w2
2]+ = 0. (2.3.8)

Integrating from ur to u,

sτ
4

[w2
1 − w2

2]2
+(u) +

∫ u

ur

(w1 − w2)[w2
1 − w2

2]+du = 0. (2.3.9)

Since w1,2 are both non-negative as well, therefore [w2
1 − w2

2]+ = 0, implying w1 ≤ w2.

Similarly, we have w2 ≤ w1. Thus w1 = w2, which provides uniqueness. �

Since w = −u′(η), it follows that u ∈ (ur, 1) is defined implicitly on the interval

(η1,+∞) by:

η(u) = η1 +

∫ 1

u

dz
w(z)

, (2.3.10)

where we have used the fact that u(η1) = 1.

Having obtained u, the other components F and pc are obtained in a straightforward

manner by intergrating the first and the third equation of (2.3.3). �

Remark 2.3.2 Similar arguments can be used to extend the existence and uniqueness

result of Lemma 2.3.1 to the case ur = 0. However, in the next section we will consi-

der an alternative approach based on regularization. Specifically, we take ur = δ and

investigate the limit as δ ↘ 0 of the family of solutions wδ of Problem (2.3.4) of which

existence and uniqueness have been established in Lemma 2.3.1. This approach yields

additional properties of w and u.

In Theorem 2.3.1 we have constructed a sharp TW solution, using ODE arguments

only. It is interesting to return to the simulation shown in Figure 2.6 in which a sharp TW

solution appears as the limit of the solution u(x, t) of a PDE. In Figure 2.7 we show the

same graph side by side with the graph of the corresponding solution w(u) of Problem

(2.3.4).
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Figure 2.7: Left: the numerical solution u of (2.0.4) for u` = 1 and ur = 0.1, yielding u′(η1) ≈
−0.27. Right: the corresponding w solving (2.3.4), with w(1) ≈ 0.266. The calculations are
for p = q = 0.5, M = 2.5 and τ = 2 > τ∗(ur).

In the left figure, the slope of u to the right of the kink was estimated numeri-

cally at −0.27, whilst in the right figure, w(1) was estimated at 0.266. Because w(1) =

−u′
(
η(1)

)
= −u′(η1), we can conclude that w(1) agrees well with the slope of u at the

kink.

2.3.2 The case ur = 0 and u` = 1

In this section we construct a sharp TW solution for the doubly degenerate problem when

ur = 0 and u` = 1 and β = 1 (see (2.1.13)) and τ > τ∗(0). As in the previous section

we do this by constructing an appropriate solution w of Problem (2.3.4) as the limit of a

sequence of solutions wδ which connect u` = 1 and ur = δ, as δ→ 0. Specifically, let

sδ :=
1 − f (δ)

1 − δ
, gδ(u) := g(u; δ, 1),

then wδ is the solution of the problem τsδwδw
′
δ + wδ = gδ(u), δ < u ≤ 1,

wδ(δ) = 0.
(2.3.11)

Lemma 2.3.1 ensures its existence and uniqueness on the interval [δ, 1]. Note that

sδ ↘ 1 and gδ(u)↗ g0(u) =
u − f (u)

H(u)
as δ→ 0, (2.3.12)
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where the convergence of gδ(u)→ g0(u) is pointwise on (0, 1).

As seen in Remark 2.3.2, this result extends to the case δ = 0, when s = 1 and the

function g0(u) := g(u; 0, 1) has two singular points: u = 0 and u = 1. We denote this

solution by w, i.e., τww′ + w = g0(u), u ∈ (0, 1],

w(0) = 0.
(2.3.13)

We begin by establishing an ordering relation between w and wδ.

Proposition 2.3.1 Let τ > τ∗(0), δ > 0, while w and wδ satisfy (2.3.13) and (2.3.11)

respectively. Further let ũ ∈ (0, 1) such that w(ũ) = g(ũ). We have:

wδ(u) < w(u) for all u ∈ (δ, ũ). (2.3.14)

Proof Assume that there exist a first point u∗ ∈ (δ, ũ) such that wδ(u
∗) = w(u∗). Since

wδ < w on (δ, u∗) it follows that w′δ(u
∗) ≥ w′(u∗).

Inspection of the functions gδ(u) and g0(u) shows that

τw(u∗)w′(u∗) + w(u∗) = g(u∗) > gδ(u
∗) = τsδwδ(u

∗)w′δ(u
∗) + wδ(u

∗),

from which we conclude that w′(u∗) > sδw
′
δ(u
∗).

Since u∗ ∈ (δ, ũ), it follows that w′(u∗) ≥ 0 and w′δ(u
∗) ≥ w′(u∗) ≥ 0. As sδ > 1, this

implies that w′(u∗) > w′δ(u
∗), contradicting the previous inequality. �

As stated above, we consider the case τ > τ∗(0), therefore the function w in (2.3.13)

is defined on [0, 1]. Numerical results presented in Figure 2.5 suggest that τ∗ increases

with the right state ur. Therefore taking τ > τ∗(0) does not necessarily imply that τ >

τ∗(δ) if δ > 0. Therefore wδ is only defined on [δ, c(δ)] for some c(δ) defined by

c(δ) = sup{ũ < u < 1 | wδ(u) > 0}.

For practical reasons we extend wδ by 0 on [0, δ], and on [c(δ), 1] if c(δ) < 1, and

investigate its behavior as δ ↘ 0. We do so by considering two intervals, [0, ũ] and

[ũ, 1].
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Proposition 2.3.2 Let w and wδ solve (2.3.13) and (2.3.11). Along any sequence δ→ 0,

the functions wδ converges point-wise to w on [0, ũ].

Proof . Integrating the equations in (2.3.13) and (2.3.11), we obtain

τ

2
w2(u) +

∫ u

0
w(z)dz =

∫ u

0
g(z)dz,

and
sδτ
2

w2
δ(u) +

∫ u

δ
wδ(z)dz =

∫ u

δ
gδ(z)dz.

We subtract the second equation from the first. Since w > wδ on (δ, ũ), we obtain

0 ≤
τ

2
{w2(u) − w2

δ(u)} =
τ

2
(sδ − 1)w2

δ(u) −
∫ δ

0
w(z) dz

+

∫ δ

0
g(z)dz −

∫ u

δ
{w(z) − wδ(z)}dz +

∫ u

δ
{g(z) − gδ(z)} dz.

(2.3.15)

Applying the comparison from Proposition 2.3.1 enables us to simplify (2.3.15) to

0 ≤
τ

2
{w2(u)−w2

δ(u)} ≤
τ

2
(sδ−1)w2

δ(u) +

∫ δ

0
g(z) dz +

∫ u

δ
{g(z)−gδ(z)}dz,(2.3.16)

Plainly, the first term on the right vanishes as δ→ 0 because sδ ↘ 1 by (2.3.12), and the

two integrals in (2.3.16) vanish since∫ δ

0
g(z)dz =

∫ δ

0
{Mz−p

− (1 − z)−q
} dz =

M
1 − p

δ1−p
+

1
1 − p

{(1 − δ)1−p
− 1} −→ 0,

and ∫ u

δ
{g(z) − gδ(z)} dz ≤ Cδ1−p

−→ 0,

in which C is a positive constant.

Since w and wδ are non-negative, we have established the point-wise convergence of

wδ towards w on the compact interval [0, ũ]. �

Now we consider the interval [ũ, 1], where the following proposition holds.

Proposition 2.3.3 Along any sequence δ→ 0, wδ converges point-wise to w on [ũ, 1].
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Proof Let δ > 0 and u < c(δ). Integrating (2.3.13) and (2.3.11) from ũ to u, we have

τ

2

(
w2(u) − w2(ũ)

)
+

∫ u

ũ
w(z)dz =

∫ u

ũ
g(z)dz, (2.3.17)

sδτ
2

(
w2
δ(u) − w2

δ(ũ)
)

+

∫ u

ũ
wδ(z)dz =

∫ u

ũ
gδ(z)dz. (2.3.18)

Subtracting (2.3.18) by (2.3.17), we have

sδτ
2

(
w2
δ(u) − w2(u)

)
=

∫ u

ũ

(
gδ(z) − g(z)

)
dz −

∫ u

ũ

(
wδ(z) − w(z)

)
dz +

τ

2

(
sδw

2
δ(ũ) − w2(ũ)

)
−
τ

2
(sδ − 1)w2(u)

= : T1 − T2 + T3 − T4.

(2.3.19)

By (2.3.12), T1 vanishes as δ approaches 0. Furthermore, Proposition 2.3.2 gives the

convergence of wδ(ũ) to w(ũ). Using (2.3.12) again, since w is bounded we obtain

T4 =
τ

2
(sδ − 1)w2(u) −→ 0, (2.3.20)

as well as

T3 =
τ

2

(
(sδ − 1)w2

δ(ũ) +
(
w2
δ(ũ) − w2(ũ)

))
−→ 0. (2.3.21)

Next, with M := max
z∈[ũ,u]

|wδ(z) − w(z)| one has

|T2| =

∣∣∣∣∣∫ u

ũ

(
wδ(z) − w(z)

)
dz

∣∣∣∣∣ ≤ (u − ũ)M. (2.3.22)

Further, since w is decreasing on [ũ, 1] we have

max
z∈[ũ,u]

|w2
δ(z) − w2(z)| ≥ w(1)M.

Since sδ ≥ 1, by (2.3.19) – (2.3.22)

τ

2
w(1)M ≤

sδτ
2

(
w2
δ(u) − w2(u)

)
≤ |T1| + (u − ũ)M + |T3| + |T4|, (2.3.23)

Taking u = c(δ) and with δ small enough, from (2.3.23) we get

c(δ) > ũ +
τ

4
w(1).
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Further, (2.3.23) also gives(
τ

2
w(1) − (u − ũ)

)
M ≤ |T1| + |T3| + |T4|, (2.3.24)

whenever δ is small enough. As δ → 0, all limits on the right side in (2.3.24) go to

0, which gives wδ(u) → w(u) pointwisely for u ∈ [ũ, ũ + τ
4 w(1)]. Let ∆u = τ

4 w(1). If

ũ+∆u ≥ 1, then the conclusion is shown. Otherwise, if ũ+∆u < 1, notice that ∆u does not

dependent on δ, therefore we can continue the same procedure for u ∈ [ũ + ∆u, ũ + 2∆u]

and further until reaching 1. �

Together, Propositions 2.3.2 and 2.3.3, establish the following theorem:

Theorem 2.3.2 Let τ > τ∗(0), for any δ > 0, wδ solves (2.3.4) with ur = δ. Along any

sequence δ ↘ 0, the sequence {wδ} approaches w solving (2.3.13). In particular, the

limit w satisfies w(1) > 0.

Remark 2.3.3 Theorem 2.3.2 provides a selection criterium for the TW solution to

(2.0.4), in the doubly degenerate case. Specifically, each wδ solving (2.3.4) provides

a TW solution to (2.0.4) connecting u` = 1 to ur = δ. Letting δ ↘ 0, we have seen that

the limit w provides a TW solution to (2.0.4) which connects u` = 1 to ur = 0, i.e. we

can view this sharp TW solution as the limit of ’regular’ TW solutions each having a

kink at u = 1.

The selection criterion introduced above is obtained after giving up the condition

w(1) = 0. However, one can consider a symmetric approach, namely to solve the back-

ward problem τww′ + w = g1(u), u ∈ (u0, 1),

w(1) = 0,
(2.3.25)

with u0 > 0 being the infimum of the interval where w > 0, while g1(u) = g(u; u0, 1)

is defined in (2.3.5). If u0 = 0, this solution w allows defining a travelling wave u

connecting u` = 1 to ur = 0, but having now a kink at the transition from u > 0 to u = 0,

and being continuously differentiable everywhere else.

Theorem 2.3.3 below rules out this possibility. Before stating it we observe that

since g1 becomes unbounded in u = 1, one can use a regularization argument again and
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view w as the limit along a sequence δ↘ 0 of the functions wδ satisfying the regularized

backward problem τsδwδw
′
δ + wδ = gδ, u ∈ (0, 1 − δ),

wδ(1 − δ) = 0.
(2.3.26)

Here we consider ur = 0, while

sδ :=
f (1 − δ)
1 − δ

, and gδ(u) := g(u; 0, 1 − δ).

As before, (2.3.26) is solved backward as long as wδ remains positive.

In case such solutions exist, their limit w would satisfy τww′ + w = g0(u), u ∈ (0, 1),

w(0) = w0,w(1) = 0,
(2.3.27)

for a properly chosen w0 ≥ 0. Moreover, another selection criterion for the sharp travel-

ling waves connecting u` = 1 to ur = 0 could then be defined. However, this possibility

is again ruled out by Theorem 2.3.3 below, implying that w(1) > 0 for any initial condi-

tion w(0) = w0 ≥ 0, so (2.3.27) has no solution.

Theorem 2.3.3 Let ur = 0, τ > τ∗(0), while w and w̃ solve (2.3.25) with initial data w0

and w̃0. If w̃0 > w0 ≥ 0, then w̃ > w for all u ∈ [0, 1].

Proof . Assume w and w̃ intersect. Let u be the smallest intersection point. Since

w̃0 > w0, we know u > 0. We distinguish two cases:

Case 1: u < 1, from

w′(u) =
g(u) − w(u)
τw(u)

, and w̃′(u) =
g(u) − w̃(u)
τw̃(u)

,

we obtain

w′(u) = w̃′(u).

(i) If w′(u) ≥ 0, then w′(u + δ) < w̃′(u + δ), w(u + δ) < w̃(u + δ) and g(u + δ) > 0 for

δ > 0 small enough. However,

w′(u + δ) =
g(u + δ)
τw(u + δ)

−
1
τ
>

g(u + δ)
τw̃(u + δ)

−
1
τ

= w̃′(u + δ),
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which is a contradiction.

(ii) If w′(u) < 0, then w′(u + δ) < w̃′(u + δ) and w(u + δ) < w̃(u + δ) for δ > 0 small

enough. If g(u) ≥ 0, then

w′(u + δ) =
g(u + δ)
τw(u + δ)

−
1
τ
≥

g(u + δ)
τw̃(u + δ)

−
1
τ

= w̃′(u + δ),

which is a contradiction again. If g(u) < 0, we know w′(u−δ) > w̃′(u−δ) and w(u−δ) <

w̃(u − δ) for δ > 0 small enough. However

w′(u − δ) =
g(u − δ)
τw(u − δ)

−
1
τ
<

g(u − δ)
τw̃(u − δ)

−
1
τ

= w̃′(u − δ),

contradicting the inequalities above.

Case 2: u = 1, there exists u0 < 1 close enough to 1 such that w(u0) < w̃(u0) and

w′(u0) > w̃′(u0). note that w′(u), w̃′(u) and g(u) are negative when u is close enough to

1. But

w′(u0) =
g(u0)
τw(u0)

−
1
τ
<

g(u0)
τw̃(u0)

−
1
τ

= w̃′(u0), contradiction,

meaning w̃ > w for all u ∈ [0, 1]. �

2.3.3 Regularity and compact support

As we have seen, u has a kink at the transition from u = 1 to u < 1. In what follows we

study the transition to the other degenerate value u = 0.

Theorem 2.3.4 Let ur = 0 and u` = 1. If τ > τ∗(0), then the travelling wave selected by

Theorem 2.3.2 vanishes at a finite η0 ∈ R, and u′(η0) = 0.

Proof By Theorem 2.3.2, u is constructed from the limit w = lim
δ↘0

wδ. Integrating (2.3.11)

from δ to u > δ yields

sδτ
2

wδ(u)2
+

∫ u

δ
wδ(v)dv =

∫ u

δ
gδ(v)dv ≤

∫ u

δ
g0(v)dv ≤

∫ u

0
g0(v)dv.

From the asymptotic behavior of the function g0(u) as u ↘ 0, we deduce the upper

bound

wδ(u)2
≤

2
sδτ

∫ u

0
g0(v)dv ≤

2
τ

∫ u

0
g0(v)dv ≤

2
τ

C1u1−p,
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where C1 is a positive constant which does not depend on δ. Therefore, with C2 =√
2C1/τ, we have wδ(u) ≤ C2u

1−p
2 and hence

w(u) ≤ C2u
1−p

2 . (2.3.28)

Next, we derive a lower bound for w(u). We integrate equation (2.3.13) over (0, u)

to obtain
τ

2
w(u)2

+

∫ u

0
w(v)dv =

∫ u

0
g(v)dv,

and use the upper bound (2.3.28) for w(u) and the lower bound g(u) ≥ C3u−p for some

C3 > 0 and u small enough to reduce this to

τ

2
w(u)2

+
2C2

3 − p
u

3−p
2 ≥

C3

1 − p
u1−p. (2.3.29)

Because for u sufficiently small,

2C2

3 − p
u

3−p
2 <

C3

2(1 − p)
u1−p,

the second term on the left in (2.3.29) can be absorbed in the term on the right, so that

τ

2
w(u)2

≥
C3

2(1 − p)
u1−p,

and we arrive at the desired lower bound

w(u) ≥ C4 u
1−p

2 , where C4 =

√
C3

τ(1 − p)
, (2.3.30)

for u small enough.

Returning to the variables u and η we conclude from (2.3.30) that

−u′(η) ≥ C4u
1−p

2 (η), for 0 < u < u∗, (2.3.31)

for u∗ small enough. Suppose that u∗ = u(η∗). Then, when we integrate this inequality

over (η0, η) we obtain

u(η) ≤
{

(u∗)
p+1

2 −
(p + 1)C4

2
(η − η∗)

} 2
1+p

, as long as u(η∗) ≥ 0. (2.3.32)

It follows from (2.3.32) that u(η) vanishes at some point η0 < ∞ and from the upper

bound (2.3.28) for w(u) = −u′(η) that u′(η0) = 0. �
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2.4 Numerical results

In this section, we provide some numerical experiments. We solve the full problem

(2.0.4), using a semi-implicit Euler finite volume scheme. This scheme is similar to the

ones investigated in [4], [8], or [18]. There a particular attention is paid to heterogenei-

ties and the conditions at the interface between two homogeneous sub-domains. We also

mention [29] for a review of different numerical methods for pseudo-parabolic equations.

We consider the problem (2.0.4) in the domain S = R × R+:

∂u
∂t

+
∂ f (u)
∂x

= ε
∂

∂x

H(u)(
∂u
∂x

+ ετ
∂2u
∂x∂t

)

 , (2.4.1)

with initial value

u(x, 0) = (uB − ur)H̃(−x) + ur, (2.4.2)

where ur is the right state, uB is the inflow value and H̃(x) is a smooth monotone ap-

proximation of the Heaviside function H. By using H̃ instead of H we avoid unneces-

sary technical difficulties due to discontinuities in the initial conditions. As shown in [7],

if the initial data has jumps, these will persist for all t > 0, at the same location. This

would require an adapted and more complicated numerical approach for ensuring the

continuity in flux and pressure (see for example [4], Chapter 3, or [8]).

Remark 2.4.1 We emphasize that uB is an inflow value, which in general is not equal to

the value associated to τ, u` = ū(τ). This value will be an outcome of the calculations.

Since the scaling

x→
x
ε
, t →

t
ε
, (2.4.3)

removes the parameter ε from (2.4.1), we fix ε = 1 here. In the absence of analytic solu-

tions, for verifying the numerical solution we recall the transformation w(u) = −u′
(
η(u)

)
,

based on which a relation between τ and an admissible left state u` can be established.
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As shown in Section 2.2, given ur ≥ 0, a value τ∗ ∈ (0,∞] exists such that to any

τ < τ∗ a unique left state u` = u`(τ) ≤ 1 can be associated. This left state can be connec-

ted to ur through a smooth TW solution to (2.4.1). Whenever τ∗ < ∞, if τ > τ∗ no

smooth travelling waves are possible, but sharp ones connecting u` = 1 to ur, and having

a kink at the point when u becomes less than 1. Figure 2.8 below presents the diagrams

u` - τ for p = q = 0.5, M = 2.5, and for two values of ur: ur = 0.1 (non-degenerate), and

ur = 0 (degenerate). To obtain these diagrams we have solved (2.2.1) numerically with

fixed ur, but for several left states u`, providing different pairs (w, τ) such that w(u`) = 0.

We start with u` = α, which is defined in (2.1.12). In terms of hyperbolic conservation

laws, the shock {α, ur} is an admissible entropy solution to the non-viscous (BL) equa-

tion (obtained for ε = 0). We have α ≈ 0.926 if ur = 0.1, respectively α ≈ 0.936 if

ur = 0. Starting with u` = α, for which a lower value τ = τ∗ is obtained, we increase

u` by a small ∆u` (in this case 5 × 10−4) and determine the corresponding τ value either

until u` = 1 (yielding a finite upper limit τ∗ to τ), or up to a maximal value less than one,

which is attained asymptotically as τ ↗ ∞. The pairs (u`, τ) obtained in this way are

included in the diagram.

Both cases considered here give τ∗ < ∞: τ∗ ≈ 1.37 for ur = 0.1 and τ∗ ≈ 0.22 for

ur = 0. For the lower limits we get τ∗ ≈ 0.067, respectively τ∗ ≈ 0.054. Below we will

present numerical solutions to (2.4.1) for two values of τ: τ1 = 0.1, and τ2 = 2. For both

right states ur mentioned above they satisfy τ∗ < τ1 < τ∗ < τ2. As resulting from the

diagrams, τ1 = 0.1 is associated to the left state u` = 0.9475 if ur = 0.1, respectively to

u` = 0.977 if ur = 0.

To discretize (2.4.1) we take a fixed time step ∆t = tn+1− tn and apply a semi-implict

first order method:
un+1

− un

∆t
+

d
dx

Fn(u) = 0.

Here Fn(u) is the time discrete flux function at t = tn,

Fn(u) := f n(u) − Hn(u)
∂xun+1

+ τ
∂xun+1

− ∂xun

∆t

 .
Similarly, the functions f n and Hn are time discrete variants of f and H. These are not

defined explicitly since we are interested here only in their fully discrete counterparts.

Note that the scheme is explicit in the convective terms, and semi-implicit in the higher
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Figure 2.8: The diagrams u` - τ computed for p = q = 0.5, M = 2.5 and with ur = 0.1 (left)
respectively ur = 0 (right). Numerically we obtain τ∗ ≈ 1.37, respectively τ∗ ≈ 0.22.

order ones.

For the space discretization, we use a finite volume scheme on a dual mesh. Taking

a uniform grid with mesh size ∆x = xn − xn−1 and defining ui = 1
∆x

∫ i+1/2
i−1/2 u(x)dx, the

fully discretized equation becomes

un+1
i − un

i

∆t
+

Fn(ui, ui+1) − Fn(ui−1, ui)
∆x

= 0. (2.4.4)

Here the numerical flux Fn(ui, ui+1) is defined by

Fn(ui, ui+1) = f (un
i ) − Hn

i+1/2
un+1

i+1 − un+1
i

∆x
− τHn

i+1/2
un+1

i+1 − un+1
i − un

i+1 + un
i

∆x∆t
.

For the coefficient Hn
i+1/2, we use the arithmetic average value:

Hn
i+1/2 =

1
2

(
H(un

i ) + H(un
i+1)

)
.

This approach is important when doing calculations with degenerate outflow value,

ur = 0. The numerical diffusion added in this way has regularizing effects, leading

to a numerical solution fulfilling the selection criterion in Remark 2.3.3.

In what follows we present the numerical solutions of (2.4.1) obtained on a spatial

interval (−1, 19) and at time T = 5. As mentioned above, we take p = q = 0.5,M = 2.5,

and consider two right states, ur = 0.1 and ur = 0, as well as two values for τ: τ1 = 0.1

and τ2 = 2. The discretization parameters are ∆x = 5 × 10−4 and ∆t = 10−4, providing
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stable numerical results. On the endpoints of the interval we take value that are com-

patible with the ones appearing in (2.4.2): uB at the inflow, and ur at the outflow. All

calculations are carried out for uB = 1, which is not necessarily equal to the value u`
related to τ. Therefore the numerical solution of the degenerate pseudo-parabolic pro-

blem (2.4.1)–(2.4.2) does not necessarily have a TW profile, but instead will feature a

”plateau” region of constant value ū corresponding to u` related to τ.

The solutions presented in Figure 2.9, computed for τ1 = 0.1 are clearly presenting

this situation: they both decay from 1 to the plateau value u = ū < 1. This value is taken

over an interval that is delimited on the right by a front going down from ū to ur. This

front travels with a constant speed provided by the RH condition in (2.1.4), written for

the states ū and ur. A similar situation is obtained in [11] for the non-degenerate case

H = 1. As in that paper, we associate the plateau value ū with the value u` = ū(τ). The
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Figure 2.9: Left: graph of u for ur = 0.1 and τ = 0.1 < τ∗, containing a plateau at ū = 0.9467.
Right: graph of u for ur = 0, and the plateau value ū = 0.979.

plateau value ū exhibited by the numerical solution is ū = 0.9467 for ur = 0.1, whereas

ū = 0.979 for ur = 1. This agrees well with the value u` = ū(τ) predicted at τ = 0.1

by the u` - τ diagrams discussed above. There we obtained u` = 0.9475 if ur = 0.1,

respectively to u` = 0.977 if ur = 0.

The next numerical results are obtained for τ2 = 2, exceeding τ∗ up to which smooth

travelling waves are possible. Therefore the u` - τ diagrams are not providing any in-

formation that can be used for testing the numerical solutions. However, as discussed in
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Section 2.3, waves connecting the left state u` = 1 to ur are still possible, but these have

a discontinuous derivative (kink) at the transition point from u = 1 to u < 1. Correspon-

dingly, the transformed w solving (2.3.4) on (ur, 1] will remain strictly positive at u = 1.

The value w(1) gives the slope of u at the right of the kink. In this case we compare this

(numerical) slope to w(1) = −u′(η1 + 0).

The left pictures in Figures 2.10 and 2.11 are presenting the numerical results for

ur = 0.1, respectively ur = 0. The kinks encountered at the transition from u = 1 to

u < 1 are estimated to −0.27 for ur = 0.1, and to −1.27 for ur = 0. For w we obtain

w(1) = 0.266 in the first case, and w(1) = 1.266 in the second one. The two functions

w′s are presented in the right pictures of Figures 2.10 and 2.11.
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Figure 2.10: The graph of u for ur = 0.1, and τ = 2 > τ∗, presenting a kink at the transition
u = 1 to u < 1 (left); the slope at the right of the kink is u′ = −0.27. The corresponding w
(right), where w(1) = 0.266.

Finally, we recall that in the doubly degenerate case u` = 1 and ur = 0 the sharp

waves are not unique. Theorem 2.3.2 provides a selection criterion. As follows from

Theorem 2.2.8, this particular sharp wave is smooth everywhere away from the transition

from u = 1 to u < 1. The smoothness includes the transition u > 0 to u = 0, which is

achieved for a finite η0. The same is featured by the numerical solution: Figure 2.12

presents two zoomed views of it. We clearly see a kink also in the left picture, whereas

the transition to u = 0 is smooth, as displayed in the right picture.
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Figure 2.11: The graph of u for ur = 0, and τ = 2 > τ∗, presenting a kink at the transition
u = 1 to u < 1 (left); the slope at the right of the kink is u′ = −1.27. The corresponding w
(right) where w(1) = 1.26.
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Figure 2.12: Zoomed view of u for ur = 0, τ = 2 > τ∗: a kink appears at the transition to u < 1
(left), whereas the transition to u = 0 is smooth (right).
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[12] W. Düll, Some qualitative properties of solutions to a pseudoparabolic equation

modeling solvent uptake in polymeric solids, Comm. Partial Differential Equations

31 (2006), 1117-1138.

[13] A.G. Egorov, R.Z. Dautov, J.L. Nieber and A.Y. Sheshukov, Stability analysis of

gravity-driven infiltrating flow, Water Resour. Res. 39 (2003), 1266.

[14] Y. Fan and I.S. Pop, A class of degenerate pseudo-parabolic equation”: existence,

uniqueness of weak solutions, and error estimates for the Euler-implicit discretiza-

tion, Mathematical Methods in the Applied Sciences 34 (2011), 2329-2339.

[15] S.M. Hassanizadeh M. Celia and H. Dahle, Dynamic effect in the capillary

pressure-saturation relationship and its impact on unsaturated flow, Vadose Zone

J. 1 (2002), 38-57.

[16] S.M. Hassanizadeh and W.G. Gray, Thermodynamic basis of capillary pressure in

porous media, Water Resour. Res. 29 (1993), 3389-3405.

[17] B.T. Hayes, P.G. LeFloch, Nonclassical shocks and kinetic relations: scalar

conservation laws, Arch. Ration. Mech. Anal. 139 (1997), 1-56.

[18] R. Helmig, A. Weiss, B. Wohlmuth, Dynamic capillary effects in heterogeneous

porous media, Comput. Geosci. 11 (2007), 261-274.

[19] D. Jacobs, B. McKinney, M. Shearer, Travelling wave solutions of the modified

Korteweg de Vries-Burgers equation, J. Differential Equations 116 (1995), 448-

467.

[20] J.R. King, C.M. Cuesta, Small and waiting-time behavior of a Darcy flow model

with a dynamic pressure saturation relation, SIAM J. Appl. Math. 66 (2006), 1482-

1511.



REFERENCES 57

[21] F. Kissling, P.G. LeFloch, C. Rohde, A kinetic decomposition for singu-

lar limits of non-local conservation laws, J. Differential Equations (2009),

doi:10.1016/j.jde.2009.05.006

[22] P.G. LeFloch, Hyperbolic systems of conservation laws–the theory of classical and

nonclassical shock waves, Lectures Math. ETH Zürich, Birkhäu ser Verlag, Basel,
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Chapter 3

Existence, uniqueness of weak
solutions to a simplified model

In this chapter, we focus on the following pseudo-parabolic equation:

ut + ∇ · F(u) = ∇ ·
(
H(u)∇u

)
+ τ∆ut. (3.0.1)

This equation is motivated by the model of a two-phase porous media flow, where dy-

namic effects are taken into account in the phase pressure difference. The corresponding

equation is proposed in [12],

ut + ∇ · F(u) = ∇ ·
(
H(u)∇p

)
, (3.0.2)

with p = pc(u) + τ∂tu. Here u stands for the water saturation, F and H are the wa-

ter fractional flow function and the capillary induced diffusion function. The difference

between (3.0.1) and (3.0.2) is that H only appears in the second order term in (3.0.1).

This chapter has appeared as a paper at Mathematical Methods in the Applied Sciences (Fan and Pop,
2011)
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In this case no sign restriction need to be imposed on H. We study the existence and

uniqueness of weak solutions to (3.0.1) in this chapter, complemented with initial and

boundary conditions. We do so by applying a discretization in time, for which we also

give error estimates.

Pseudo-parabolic equations arise in many real life applications such as radiation with

time delay [16], seepage in fissured rocks [3], heat conduction models [26] and models

for lightning propagation [2], etc. Existence and uniqueness of weak solutions to non-

linear pseudo-parabolic equations are proved in [20], while the existence of weak solu-

tions for degenerate cases is studied in [4, 17, 18]. A nonlinear parabolic-Sobolev-type

equation is studied in [28], and the homogenization of a closely related pseudoparabolic

system is considered in [21]. Travelling wave solutions and their relation to non-standard

shock solutions to hyperbolic conservation laws are investigated in [5, 8] for linear hi-

gher order terms. This analysis is pursued in [7] for degenerate situations. Numerical

schemes for dynamic capillary effects in heterogeneous porous media are given in [13].

The case of discontinuous initial data is analyzed in [6]. The super-convergence of a

finite element approximation to similar equation is investigated in [1] and time-stepping

Galerkin methods are analyzed in [10] and [11], where two difference-approximation

schemes are considered. In [25], Fourier spectral methods for pesudo-parabolic equa-

tions are analyzed.

To investigate the equation (3.0.1), we make the following assumptions:

• (A1) Ω is an open, bounded and connected domain in Rd, with Lipschitz conti-

nuous boundary. With T > 0 given, we denote Q = Ω × (0,T ].

• (A2) τ > 0 is a given number.

• (A3) The functions F and H are Lipschitz continuous and bounded, |F| ≤ M,

|H| ≤ M for some M > 0. Moreover, L is an upper bound for the Lipschitz

constants of F and H.

Remark 3.0.2 Observe that since the term involving the mixed derivative is linear, no

assumption on the sign of H is needed, enlarging the context that is usually encountered

in physical models, where H ≥ 0. We also extend the context for F appeared in engineer



61

literature (where F = v f (u) with v a divergence free vector field) to more general cases:

bounded Lipschitz continuous functions.

In this chapter, L2(Ω) stands for the square Lebesgue integrable functions on Ω ,

W1,2(Ω) requests the same also for the derivatives of first order. W1,2
0 (Ω) is a subset of

W1,2(Ω) whose elements have zero boundary values (in the trace sense), and W−1,2(Ω)

is the dual space of W1,2
0 (Ω). Besides, C denotes a generic positive number.

The initial and boundary conditions of (3.0.1) are given as follows:

u(·, 0) = u0, and u|∂Ω = 0, (3.0.3)

where u0
∈ W1,2

0 (Ω). We seek a solution to the following:

Problem P Find u ∈ W1,2(0,T ; W1,2
0 (Ω)

)
such that

∫ T

0

∫
Ω

utφdxdt −
∫ T

0

∫
Ω

F(u) · ∇φdxdt

+

∫ T

0

∫
Ω

H(u)∇u · ∇φdxdt + τ

∫ T

0

∫
Ω

∇ut · ∇φdxdt = 0,

(3.0.4)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
.

The results of this chapter are summarized in the theorem below:

Theorem: Assuming (A1)-(A3), Problem P has a unique solution.

Another result concerns the Euler implicit time discretization of Problem P, for which

we prove the convergence by obtaining optimal error estimates.

This chapter is organized as follows: Section 3.1 provides the existence of solution

to Problem P. The uniqueness of the solution is proved in Section 3.2. In Section 3.3,

some error estimates for an Euler implicit time discretization scheme are obtained, and in

Section 3.4, an iterative approach for solving the time discretization nonlinear problems

is discussed and some numerical computations are given to verify the theoretical results.
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3.1 Existence

We show the existence of a solution to Problem P by the method of Rothe (see [14]),

based on the Euler implicit time stepping. Before defining the time discretization we

mention the following elementary inequality, which will be used several times later:

ab ≤
1
2δ

a2
+
δ

2
b2, for any a, b ∈ R and δ > 0. (3.1.1)

3.1.1 The time discretization

With N ∈ N, let h = T/N and consider the following:

Problem Pn+1 Given un
∈ W1,2

0 (Ω), n ∈ {0, 1, 2, ...,N − 1}, find un+1
∈ W1,2

0 (Ω)

such that

(un+1
− un, φ) + h

(
∇ · F(un+1), φ

)
+ h

(
H(un+1)∇un+1,∇φ

)
+τ

(
∇(un+1

− un),∇φ
)

= 0,
(3.1.2)

for any φ ∈ W1,2
0 (Ω), here (·, ·) means L2 inner product.

Our final goal is to prove the existence of a solution to Problem P. To do so, we

consider a series of time-discrete solutions, and then pass the time step to 0. Therefore

we are only interested in small time step. Particularly, in this section we assume

h ≤
τ

4M
, (3.1.3)

for which the results concerning Problem Pn+1 are obtained.

Lemma 3.1.1 If h satisfies (3.1.3), Problem Pn+1 has a unique solution.

Proof . To prove Lemma 3.1.1, we first define

G(y) :=
∫ y

0

(
H(v) +

τ

h

)
dv, (3.1.4)
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and it satisfies

(
u1 − u2,G(u1)−G(u2)

)
≥

∫
Ω

min
(
G
′(·)

)
· (u1 − u2)2dx ≥ 3M||u1 − u2||

2
L2(Ω)

.(3.1.5)

Further, we have for the function G−1

h
τ + hM

≤ (G−1)′ =
1
G
′ ≤

h
τ − hM

.

Define

a : W1,2
0 (Ω) ×W1,2

0 (Ω)→ R, a(v, φ) =
(
G
−1(v), φ

)
+ h

(
∇ · F(G−1(v)), φ

)
+ h(∇v,∇φ),

b : W1,2
0 (Ω)→ R, b(φ) = (un, φ) + τ(∇un,∇φ).

Clearly, b is a linear bounded functional and for each v ∈ W1,2
0 (Ω), φ 7→ a(v, φ) is a

linear bounded functional. Furthermore, for small enough h,

a(v1, v1 − v2) − a(v2, v1 − v2) ≥
h

τ + hM
||v1 − v2||

2
L2(Ω)

+ h||∇(v1 − v2)||2
L2(Ω)

−
Lh2

τ − hM
||v1 − v2||L2(Ω) · ||∇(v1 − v2)||L2(Ω)

≥

h − Lh2

2(τ − hM)

 ||∇(v1 − v2)||2
L2(Ω)

+

 h
τ + hM

−
Lh2

2(τ − hM)

 ||v1 − v2||
2
L2(Ω)

≥ C||v1 − v2||
2
W1,2(Ω)

,

and it is easy to check that

|a(v1, φ) − a(v2, φ)| ≤ C||v1 − v2||W1,2(Ω) · ||φ||W1,2(Ω).

Therefore, the nonlinear Lax-Milgram theorem ( [30], p.174-175) provides the existence

and uniqueness of a v ∈ W1,2
0 (Ω) such that

(
G
−1(v), φ

)
+ h

(
∇ · F(G−1(v)), φ

)
+ h(∇v,∇φ) = (un, φ) + τ(∇un,∇φ), (3.1.6)
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for any φ ∈ W1,2
0 (Ω). By the properties of G, u = G

−1(v) solves Problem Pn+1, and this

solution is unique. �

3.1.2 A priori estimates

Having established the existence for the time discretization problems, we proceed with

investigating Problem P. To this end, we start with some a priori estimates. Before giving

the estimates, we mention the discrete Gronwall inequality which will be used later.

Lemma 3.1.2 Discrete Gronwall inequality: If {yn}, { fn} and {gn} are nonnegative se-

quences and

yn ≤ fn +
∑

0≤k<n

gkyk for n ≥ 0,

then

yn ≤ fn +
∑

0≤k<n

fkgk exp(
∑

k< j<n

g j), for n ≥ 0.

Lemma 3.1.3 If h is small enough, for any n ∈ {0, 1, 2, ...,N − 1} we have:

||un+1
||

2
L2(Ω)

+ τ||∇un+1
||

2
L2(Ω)

≤ C, (3.1.7)

||un+1
− un
||

2
L2(Ω)

+
τ

2
||∇(un+1

− un)||2
L2(Ω)

≤ Ch2, (3.1.8)

here C is independent of n.

Proof . 1. Taking φ = un+1 in (3.1.2) gives

||un+1
||

2
L2(Ω)

+ h
(
∇ · F(un+1), un+1

)
+ τ||∇un+1

||
2
L2(Ω)

+h
∫

Ω

H(un+1)|∇un+1
|
2dx = (un, un+1) + τ(∇un,∇un+1).

(3.1.9)

Since un+1 vanishes on ∂Ω, with F (un+1) =
∫ un+1

0 F(v)dv and Gauss’ theorem we have

(
∇·F(un+1), un+1

)
= −

∫
Ω

F(un+1)·∇un+1dx = −

∫
Ω

∇·[F (un+1)]dx =

∫
∂Ω

ν·F (0)dx = 0.

By (3.1.1) and |H| ≤ M, this yields

||un+1
||

2
L2(Ω)

+ τ||∇un+1
||

2
L2(Ω)

≤ ||un
||

2
L2(Ω)

+ τ||∇un
||

2
L2(Ω)

+ 2hM||∇un+1
||

2
L2(Ω)

,(3.1.10)
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for all n. Because u0
∈ W1,2

0 (Ω), we have

||un
||

2
L2(Ω)

+ (τ − 2hM)||∇un
||

2
L2(Ω)

≤ C + 2hM
n−1∑
j=1

||∇u j
||

2
L2(Ω)

. (3.1.11)

Recalling (3.1.3) we have

τ

2
||∇un

||
2
L2(Ω)

≤ C + 2hM
n−1∑
j=1

||∇u j
||

2
L2(Ω)

. (3.1.12)

Using Lemma 3.1.2, we obtain

||∇un
||

2
L2(Ω)

≤ C, for any n ∈ N. (3.1.13)

Further, using Poincaré inequality we have

||un
||

2
L2(Ω)

≤ C, for any n ∈ N. (3.1.14)

2. Taking φ = un+1
− un in (3.1.2) gives

||un+1
− un
||

2
L2(Ω)

− h
(
F(un+1),∇(un+1

− un)
)

+h
(
H(un+1)∇un+1,∇(un+1

− un)
)

+ τ||∇(un+1
− un)||2

L2(Ω)
= 0.

(3.1.15)

Using (3.1.1) and the boundedness of F and H, we have

0 ≥ ||un+1
− un
||

2
L2(Ω)

+ τ||∇(un+1
− un)||2

L2(Ω)
−
τ

4
||∇(un+1

− un)||2
L2(Ω)

−
Ch2

τ
−
τ

4
||∇(un+1

− un)||2
L2(Ω)

−
h2M2

τ
||∇un+1

||
2
L2(Ω)

,
(3.1.16)

leads to

||un+1
− un
||

2
L2(Ω)

+
τ

2
||∇(un+1

− un)||2
L2(Ω)

≤ Ch2, for any n ∈ N. � (3.1.17)

Remark 3.1.1 From (3.1.17) one immediately obtains

N∑
k=1

||uk
− uk−1

||
2
L2(Ω)

≤ Ch, (3.1.18)

N∑
k=1

||∇(uk
− uk−1)||2

L2(Ω)
≤ Ch. (3.1.19)
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3.1.3 Existence

To show the existence of a solution to Problem P, we start by defining

UN(t) = uk−1
+

t − tk−1

h
(uk
− uk−1), and UN(t) = uk, (3.1.20)

for tk−1
= (k − 1)h ≤ t < tk

= kh, k = 1, 2...N. We have the following result:

Theorem 3.1.1 Assuming (A1)-(A3), Problem P has a solution.

Proof . According to the a priori estimates in Lemma 3.1.3,

∫ T

0
||UN(t)||2

L2(Ω)
dt =

N∑
k=1

∫ tk

tk−1
||uk−1

+
t − tk−1

h
(uk
− uk−1)||2

L2(Ω)
dt

≤ 2
N∑

k=1

∫ tk

tk−1

(
||uk−1

||
2
L2(Ω)

+ ||uk
− uk−1

||
2
L2(Ω)

)
dt

≤ C.

(3.1.21)

Similarly,

∫ T

0
||∇UN(t)||2

L2(Ω)
dt ≤ C, (3.1.22)

∫ T

0
||∂tUN ||

2
L2(Ω)

dt =
1
h

N∑
k=1

||uk
− uk−1

||
2
L2(Ω)

≤ C, (3.1.23)

and ∫ T

0
||∂t∇UN ||

2
L2(Ω)

dt =

N∑
k=1

∫ tk

tk−1
||

1
h
∇(uk

− uk−1)||2
L2(Ω)

dt

=
1
h

N∑
k=1

||∇(uk
− uk−1)||2

L2(Ω)
≤ C.

(3.1.24)

Therefore {UN}N∈N is uniformly bounded in W1,2(0,T ; W1,2
0 (Ω)

)
, so it has a subse-

quence (still denoted as {UN}) that converges weakly to some U ∈ W1,2(0,T ; W1,2
0 (Ω)

)
.

Again, using the compact imbedding of W1,2(Q) into L2(Q), we have UN converges
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strongly to U in L2(Q).

We now exploit a general principle that relates the piecewise linear and the piece-

wise constant interpolation (see e.g. [15] for a proof of the corresponding lemma): if one

interpolation converges strongly in L2(Q), then the other interpolation also converges

strongly in L2(Q). From the convergence of UN , we conclude that UN also converges

strongly in L2(Q).

Further, observe that H(UN)∇UN is bounded in (L2(Ω))d, therefore it has a weak

limit χ. To identify this limit, we take φ ∈ C∞0 (Ω) as test function. Since H(UN)→ H(U)

strongly in L2(Ω) and ∇UN ⇀ ∇U weakly in
(
L2(Ω)

)d, we have(
H(UN)∇UN ,∇φ

)
→

(
H(U)∇U,∇φ

)
.

This implies that H(UN)∇UN ⇀ H(U)∇U in distributional sense. By the uniqueness of

the limit, we have χ = H(U)∇U.

From (3.1.2), we know

∫ T

0

∫
Ω

∂tUN(t)φdxdt −
∫ T

0

∫
Ω

F
(
UN(t)

)
· ∇φdxdt

+

∫ T

0

∫
Ω

H
(
UN(t)

)
∇
(
UN(t)

)
· ∇φdxdt + τ

∫ T

0

∫
Ω

∂t∇UN(t) · ∇φdxdt = 0,

(3.1.25)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
,

Using the weak convergence of UN and UN , we consider a sequence h→ 0 and pass

to the limit in (3.1.25). This shows that U is a solution to Problem P. �

Remark 3.1.2 As will be proved in the following section, the solution of Problem P is

unique. Therefore the convergence holds along any sequence {hn}n∈N ↘ 0.
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3.2 Uniqueness

Here we show that the solution to Problem P is unique. To do so, we use the function

Gg, defined as the weak solution to the Possion equation

−∆Gg = g ∈ L2(Ω) in Ω, (3.2.1)

with boundary condition Gg|∂Ω = 0. It is easy to show that

Gg ∈ W1,2
0 (Ω) and ||Gg||W1,2(Ω) = ||g||W−1,2(Ω) ≤ C||g||L2(Ω). (3.2.2)

For the ease of writing, we define

H(y) :=
∫ y

0
H(v)dv. (3.2.3)

We have the following result:

Theorem 3.2.1 Assuming (A1)-(A3), the solution of Problem P is unique.

Proof . Assume u and v are two solutions, we have (u − v)(·, 0) = 0 and for any t̃ > 0,

∫ t̃

0

∫
Ω

(u − v)tφdxdt −
∫ t̃

0

∫
Ω

(
F(u) − F(v)

)
· ∇φdxdt

+

∫ t̃

0

∫
Ω

∇
(
H(u) −H(v)

)
· ∇φdxdt + τ

∫ t̃

0

∫
Ω

∇(u − v)t · ∇φdxdt = 0,

(3.2.4)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
.

According to (3.2.2), we know that Gu−v ∈ W1,2
0 (Ω) and

(∇Gu−v,∇ψ) = (u − v, ψ), for any ψ ∈ W1,2
0 (Ω). (3.2.5)

Besides,

||Gu−v||W1,2(Ω) ≤ C||u − v||L2(Ω). (3.2.6)
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Note that Gu−v also depends on t implicitly, through u and v. For any t̃ > 0, using (3.2.5)

we have ∫ t̃

0

∫
Ω

(u − v)tGu−vdxdt

=

∫
Ω

[
(u − v)Gu−v

]t̃
0 dx −

∫
Ω

∫ t̃

0
(u − v)∂tGu−vdtdx

=

∫
Ω

[
|∇Gu−v|

2
]t̃

0
dx −

∫ t̃

0

∫
Ω

∇Gu−v · ∇∂tGu−vdxdt

=
1
2

∫
Ω

|∇Gu−v(·, t̃)|2dx,

(3.2.7)

as Gu−v(·, 0) = 0. Further, since F is Lipschitz, we have∫ t̃

0

∫
Ω

(
F(u) − F(v)

)
· ∇Gu−vdxdt

≤ C
∫ t̃

0

∫
Ω

|u − v| · |∇Gu−v|dxdt ≤ C
∫ t̃

0

∫
Ω

|u − v|2dxdt.

(3.2.8)

Next, the boundedness of H implies∫ t̃

0

∫
Ω

∇
(
H(u) −H(v)

)
· ∇Gu−vdxdt

=

∫ t̃

0

∫
Ω

(
H(u) −H(v)

)
(u − v)dxdt ≥ −M

∫ t̃

0

∫
Ω

|u − v|2dxdt.

(3.2.9)

Finally,

τ

∫ t̃

0

∫
Ω

∂t∇(u − v) · ∇Gu−vdxdt

= τ

∫ t̃

0

∫
Ω

∂t(u − v)(u − v)dxdt =
τ

2

∫
Ω

(u − v)(·, t̃)2dx.

(3.2.10)

Therefore taking φ = Gu−v in (3.2.4) gives

1
2
||∇Gu−v(·, t̃)||2

L2(Ω)
+
τ

2
||(u − v)(·, t̃)||2

L2(Ω)
≤ (C + M)

∫ t̃

0

∫
Ω

|u − v|2dxdt. (3.2.11)

By Gronwall’s inequality, ||(u − v)(·, t̃)||L2(Ω) = 0. Since t̃ is arbitrary, this gives unique-

ness.
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3.3 Error estimates

From the above we see that the approximating sequence UN converges strongly to U in

L2(Q). In this section, we will estimate the error UN −U. Recalling (3.2.4), for any t̃ > 0

we have ∫ t̃

0

∫
Ω

∂tUN(t)φdxdt −
∫ t̃

0

∫
Ω

F
(
UN(t)

)
· ∇φdxdt

+

∫ t̃

0

∫
Ω

∇H
(
UN(t)

)
· ∇φdxdt + τ

∫ t̃

0

∫
Ω

∂t∇UN(t) · ∇φdxdt = 0.

(3.3.1)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
. For simple writing, we denote

eu(t) = u(t) − UN(t), and eH (t) = H
(
u(t)

)
−H

(
UN(t)

)
, (3.3.2)

hereH is defined in (3.2.3). Obviously, eu, eH ∈ W1,2
0 (Ω) and eu(·, 0) = eH (·, 0) = 0.

Theorem 3.3.1 The following estimate holds:

||eu||L∞
(
0,T ;L2(Ω)

) ≤ Ch. (3.3.3)

Proof . Subtracting (3.3.1) from (3.0.4) gives

∫ t̃

0

∫
Ω

∂teuφdxdt −
∫ t̃

0

∫
Ω

(
F
(
u(t)

)
− F

(
UN(t)

))
· ∇φdxdt

+

∫ t̃

0

∫
Ω

∇
(
H

(
u(t)

)
−H

(
UN(t)

))
· ∇φdxdt + τ

∫ t̃

0

∫
Ω

∂t∇eu · ∇φdxdt = 0.

(3.3.4)

To estimate the discretization error we proceed as in [19, 22, 23, 27] (where degene-

rate parabolic equations are considered) and test with the function Geu
satisfying

(∇Geu
,∇ψ) = (eu, ψ), for any ψ ∈ W1,2

0 (Ω). (3.3.5)

By (3.2.2), Geu
belongs to W1,2

0 (Ω). Moreover,

||Geu
||W1,2(Ω) ≤ C||eu||L2(Ω). (3.3.6)



3.3 Error estimates 71

As in Section 3 we have for any t̃ > 0

∫ t̃

0

∫
Ω

∂teuGeu
dxdt =

1
2

∫
Ω

(
∇Geu

(·, t̃)
)2

dx. (3.3.7)

Further,

∫ t̃

0

∫
Ω

(
F(u(t)) − F(UN(t))

)
· ∇Geu

dxdt

≤ C1

∫ t̃

0
||eu||

2
L2(Ω)

dxdt +

∫ t̃

0

∫
Ω

(
F(UN(t)) − F(UN(t))

)
· ∇Geu

dxdt

≤ C1

∫ t̃

0
||eu||

2
L2(Ω)

dxdt + C2

∫ t̃

0
||UN − UN ||L2(Ω)||∇Geu

||L2(Ω)dt,

(3.3.8)

Here C1, C2 are two positive numbers. Since UN −UN =
tk−t

h (uk
−uk−1), for t ∈ (tk−1, tk).

By (3.1.18), we get ||UN − UN ||L2(Ω) ≤ Ch, therefore

∫ t̃

0

∫
Ω

(
F(u(t)) − F(UN(t))

)
· ∇Geu

dxdt ≤
(
C1 +

1
2

) ∫ t̃

0

∫
Ω

|eu|
2dxdt +

C2
2h2

2
. (3.3.9)

Similarly,

−

∫ t̃

0

∫
Ω

∇
(
H(u(t)) −H(UN(t))

)
· ∇Geu

dxdt

= −

∫ t̃

0

∫
Ω

∇eH · ∇Geu
dxdt −

∫ t̃

0

∫
Ω

∇
(
H(UN(t)) −H(UN(t))

)
· ∇Geu

dxdt

= −

∫ t̃

0

∫
Ω

eHeudxdt −
∫ t̃

0

∫
Ω

(
H(UN(t)) −H(UN(t))

)
· eudxdt

≤ M
∫ t̃

0

∫
Ω

|eu|
2dxdt +

M
2

∫ t̃

0

∫
Ω

|UN(t) − UN(t)|2dxdt +
1
2

∫ t̃

0

∫
Ω

|eu|
2dxdt

≤

(
M +

1
2

) ∫ t̃

0

∫
Ω

|eu|
2dxdt + C3h2,

(3.3.10)

with C3 a positive number. Further,

τ

∫ t̃

0

∫
Ω

∂t∇eu∇Geu
dxdt = τ

∫
Ω

eu∂teudxdt =
τ

2

∫
Ω

eu(·, t̃)2dx. (3.3.11)
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Using (3.3.7-3.3.11) and taking ψ = Geu
in (3.3.4) give

1
2

∫
Ω

(
∇Geu

(·, t̃)
)2

dx +
τ

2

∫
Ω

eu(·, t̃)2dx

≤

C2
2

2
+ C3

 h2
+ (M + C1 + 1)

∫ t̃

0

∫
Ω

|eu|
2dxdt.

(3.3.12)

Using Gronwall’s inequality, we obtain the estimate

||eu||L∞
(
0,T ;L2(Ω)

) ≤ Ch. � (3.3.13)

Remark 3.3.1 From (3.3.13), since H is Lipschitz continuous, we immediately obtain

||eH (·, t)||L∞
(
0,T ;L2(Ω)

) ≤ Ch. (3.3.14)

3.4 Numerical examples

In this section, we give two numerical examples to verify the theoretical findings.

3.4.1 Example 1

We solve the following equation in Q = (0, 1) × (0, 1]

∂u
∂t

=
1
6
∂

∂x

(
[u]+

∂u
∂x

)
+

1
6
∂3u

∂2x∂t
−

1

2(1 + t)2 , (3.4.1)

with initial and boundary conditions

u(x, 0) = x(1 − x), u(0, t) = u(1, t) = 0. (3.4.2)

Here

[u]+ =

 u if u > 0,

0 if u ≤ 0.
(3.4.3)

For the equation (3.4.1), the analytical solution is

u(x, t) =
x(1 − x)

1 + t
. (3.4.4)
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In the following, we use this solution to test the numerical scheme. Before giving the nu-

merical results, we present an iterative scheme to solve the time discretization problems.

To do so, taking h = 1/N(N ∈ N) and denoting f (t) = 1
2(1+t)2 , formally we get

un
− un−1

h
=

1
6
∂x

(
[un]+∂xun)

+
1
6
∂xx

un
− un−1

h

 − f (tn). (3.4.5)

Define the Kirchhoff transform

v = β(u) :=
1
6

∫ u

0
(h[s]+ + 1)ds =

 h
12 u2

+ 1
6 u, if u > 0,

1
6 u, if u ≤ 0,

(3.4.6)

instead of solving (3.4.5), we seek vn
= β(un) such that

β−1(vn) − ∂xxvn
= un−1

−
1
6
∂xxun−1

− h f (tn). (3.4.7)

with vn
= 0 at x = 0 and x = 1. To solve (3.4.7), we observe that (β−1)′ ≤ 6, and define

an iteration method inspired from [29], pp. 90-100 (also see e.g. [9], [24]):

6vn,i
− ∂xxvn,i

= 6vn,i−1
− β−1(vn,i−1) + α(un−1, tn), (3.4.8)

where i = 1, 2... and

α(un−1, tn) = un−1
−

1
6
∂xxun−1

− h f (tn). (3.4.9)

This iteration requires a starting point vn,0. As will be proved below, the iteration is

convergent for any vn,0. However, for the practical reasons, we choose vn,0
= vn−1

=

β(un−1).

Lemma 3.4.1 The iteration method (3.4.8) is convergent in the W1,2(0, 1) norm.

Proof . We write (3.4.9) in weak form, find vn,i
∈ W1,2

0 (0, 1) such that(
6vn,i, φ

)
+

(
∂xvn,i, ∂xφ

)
=

(
6vn,i−1

− β−1(vn,i−1), φ
)

+
(
α(un−1, tn), φ

)
. (3.4.10)

for any φ ∈ W1,2
0 (0, 1). Similarly,(

6vn,i−1, φ
)

+
(
∂xvn,i−1, ∂xφ

)
=

(
6vn,i−2

− β−1(vn,i−2), φ
)

+
(
α(un−1, tn), φ

)
. (3.4.11)
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Subtracting (3.4.10) from (3.4.11),

6
(
vn,i
− vn,i−1, φ

)
+

(
∂x(vn,i

− vn,i−1), ∂xφ
)

= 6
(
vn,i−1

− vn,i−2, φ
)
−

(
β−1(vn,i−1) − β−1(vn,i−2), φ

)
.

(3.4.12)

Taking φ = vn,i
− vn,i−1 gives,

6||vn,i
− vn,i−1

||
2
L2(Ω)

+ ||∂x(vn,i
− vn,i−1)||2

L2(Ω)

≤ ||vn,i
− vn,i−1

||L2(Ω) · ||6
(
vn,i−1

− vn,i−2
)
−

(
β−1(vn,i−1) − β−1(vn,i−2)

)
||L2(Ω).

(3.4.13)

From the definition of β, we have

β′(u) =

 1
6 (hu + 1), if u ≥ 0
1
6 , otherwise.

(3.4.14)

Therefore

(β−1)′(v) =
1

β′(u)
∈ (0, 6]. (3.4.15)

From (3.4.13), we obtain

6
∥∥∥vn,i
− vn,i−1

∥∥∥2
L2(Ω)+||∂x(vn,i

−vn,i−1)||2
L2(Ω)

≤ 6||vn,i
−vn,i−1

||
2
L2(Ω)
·||vn,i−1

−vn,i−2
||

2
L2(Ω)

.(3.4.16)

Using Poincaré inequality, ||u||L2(0,1) ≤ ||∂xu||L2(0,1) for any u ∈ W1,2
0 (0, 1). Therefore

||vn,i
− vn,i−1

||
2
L2(Ω)

+
1
6
||∂x(vn,i

− vn,i−1)||2
L2(Ω)

≤
1
2
||vn,i
− vn,i−1

||
2
L2(Ω)

+
1
2
||vn,i−1

− vn,i−2
||

2
L2(Ω)

≤
1
2
||vn,i
− vn,i−1

||
2
L2(Ω)

+
3
8
||vn,i−1

− vn,i−2
||

2
L2(Ω)

+
1
8
||∂x(vn,i−1

− vn,i−2)||2
L2(Ω)

(3.4.17)

Define ||vn,i
||

2
= ||vn,i

−vn,i−1
||

2
L2(Ω)

+ 1
3 ||∂x(vn,i

−vn,i−1)||2
L2(Ω)

(equivalent to the W1,2 norm),

we obtain

||vn,i
||

2
≤

3
4
||vn,i−1

||
2, (3.4.18)
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using Banach fixed point theorem, we obtain the convergence of the iteration method

(3.4.9). �

We compute the numerical solution uN of (3.4.1) and estimate the error eu = u− uN ,

with u the exact solution of (3.4.1). For simplicity, we only compute eu at t = 1. To this

aim, finite difference scheme on uniform mesh with ∆x = 10−5 is coupled with different

time stepping h = 10−1, 10−2, 10−3 and 10−4. To solve the nonlinear problem at any two

steps, we perform 3 to 4 iterations. This is sufficient to achieve ||vn,i
−vn,i−1

||L2(Ω) ≤ 10−5.

The numerical results are presented in Table 3.1. As follows from Theorem 3.3.1, the

error satisfies

||eu(·, 1)||L2(Ω) ≤ Ch. (3.4.19)

This is confirmed by the Table 3.1. In particular, we estimate C to 0.066.

h ||eu(·, 1)||L2(Ω)) ratio(||eu||/h)
10−1 6.1997 × 10−3 6.1997 × 10−2

10−2 6.447 × 10−4 6.447 × 10−2

10−3 6.4632 × 10−5 6.4632 × 10−2

10−4 6.5842 × 10−6 6.5842 × 10−2

Table 3.1: Errors eu(·, 1) for different h

Figure 3.1 (left) displays the numerical solutions for u(·, 1) at t = 1, compared to the

analytical solution. Clearly, the numerical solution converges to the analytical solution

when h is small enough.

3.4.2 Example 2

Here we solve the following equation in Q = (0, 2π) × (0, 1] with negative function ‘H’

∂u
∂t

= −
∂

∂x

(
u
∂u
∂x

)
+

∂3u

∂x2∂t
+ 2 sin x + (1 + t)2 cos 2x, (3.4.20)

with initial and boundary conditions

u(x, 0) = sin x, u(0, t) = u(2π, t) = 0, (3.4.21)



76 3 Existence, uniqueness of weak solutions to a simplified model

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 
numerical
analytical

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 
numerical
analytical

Figure 3.1: Numerical solution and analytical solution for Example 1 with ∆x = 10−5, h =

10−2(left) and Example 2 with ∆x = 2π × 10−5, h = 10−2(right)

and the analytical solution is

u(x, t) = (1 + t) sin x. (3.4.22)

Using the similar numerical method in Example 1, here we only give the numerical

results. Again for simplicity, we only compute eu at t = 1, and we take ∆x = 2π × 10−5

coupled with different time stepping h = 0.1, 0.05, 0.01 and 0.005. The numerical results

are presented in Table 3.2. As follows from Theorem 3.3.1, the error satisfies

||eu(·, 1)||L2(Ω) ≤ Ch. (3.4.23)

This is confirmed by the Table 3.2. In particular, we estimate C to 1.45.

h ||eu(·, 1)||L2(Ω)) ratio(||eu||/h)
0.1 0.14386 1.4386
0.05 0.06878 1.3756
0.01 0.013383 1.3383
0.005 0.0067537 1.3507

Table 3.2: Errors eu(·, 1) for different h

Figure 3.1 (right) also displays the numerical solutions for u(·, 1) at t = 1, compared

to the analytical solution. Clearly, the numerical solution converges to the analytical

solution when h is small enough.
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Chapter 4

Existence of weak solutions to the
original degenerate model

Pseudo-parabolic equations appear as models for many real life applications, such as

lightning [2], seepage in fissured rocks [4], radiation with time delay [26] and heat

conduction models [35]. We consider a pseudo-parabolic equation modeling two-phase

flow in porous media, where dynamic effects are complementing the capillary pressure-

saturation relationship. With a given maximal time T > 0 and for all x ∈ Ω a bounded

domain in Rd (d = 1, 2, or 3) having a Lipschitz continuous boundary ∂Ω, we investigate

the equation

∂tu + ∇ · F(u, x, t) = ∇ ·
(
H(u)∇pc

)
, (x, t) ∈ Q := Ω × (0,T ]. (4.0.1)

This equation is obtained by including Darcy’s law for both phases in the mass conser-

vation laws. Here u stands for water saturation, F and H are the water fraction flow

This chapter has been submitted to Mathematical Models and Methods in Applied Sciences, and it is a
collaborative work with C. Cancès, C. Choquet, I.S. Pop
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function and the capillary induced diffusion function, while pc is the capillary pressure

term. Such models are proposed in [19, 31]. For recent works providing experimental

evidence for the dynamic effects in the phase pressure difference we refer to [5, 12, 21].

Similar models, but considering an “apparent saturation” are discussed in [3]. Here we

consider a simplified situation, where

pc = u + τ∂tu. (4.0.2)

Then (4.0.1) becomes

∂tu + ∇ · F(u, x, t) = ∇ ·
(
H(u)∇(u + τ∂tu)

)
. (4.0.3)

The functions H and F depend on the specific model, in particular on the relative permea-

bilities. Commonly encountered in the engineering literature are relative permeabilities

of power-like types, up+1 and (1 − u)q+1, where p and q are positive real numbers. This

leads to

H(u) =
K
µ

up+1(1 − u)q+1

up+1
+ M(1 − u)q+1 ,F(u, x, t) = Q(x, t)

up+1

up+1
+ M(1 − u)q+1 +H(u)ρg,(4.0.4)

where K is the permeability of the porous medium. For the sake of simplicity, we assume

the porous medium to be isotropic. Next, µ and µ̃ are the viscosities of the two phases,

whereas M =
µ̃
µ > 0 is the viscosity ratio of the two fluids, and τ is a positive constant

standing for the damping coefficient. Further, Q is the total flow in the porous medium,

satisfying ∇·Q = 0, and g is the gravity vector. Finally, ρ denotes the difference between

the phase densities.

With the given function H, (4.0.3) becomes degenerate whenever u = 0 or u = 1.

Note that the expression (4.0.4) makes sense only for u ∈ [0, 1]. For completeness we

extend H continuously by 0 outside this interval. Therefore the function H is nonne-

gative, bounded and Lipschitz continuous on the entire R. Similarly, the vector-valued

function F is extended by Q when u > 1 and by 0 when u < 0, leading to a bounded Lip-

schitz continuous function. Note that the functions in (4.0.4) are just typical examples.
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Throughout this paper we assume

H : R→ R is Lipschitz continuous, nonnegative, and satisfies

H(u) > 0 if 0 < u < 1, and H(u) = 0 otherwise;

F : R × Rd
× R+

→ Rd is Lispchitz continuous, satisfying

∇x · F(v, x, t) = 0 for all v ∈ R, (x, t) ∈ Q.

(A1)

Pseudo-parabolic equations like (4.0.3) have been investigated in the mathematical lite-

rature for decades. Short time existence of solutions with constant, compact support is

obtained in [15], whereas a nonlinear Sobolev type equation is studied in [36]. The exis-

tence and uniqueness of weak solutions for some nonlinear pseudo-parabolic equations,

where the degeneracy may appear in only one term, are proved in [17] and [33]. Long

time existence of weak solutions to a closely related model is proved in [27, 28]. We

further refer to [24] for the analysis of a non-degenerate pseudo-parabolic model that

includes hysteresis.

The connection between pseudo-parabolic equations and shock solutions to hyper-

bolic conservation laws is investigated in [14] for the case of a constant function H. The

analysis there, based on travelling waves, is continued in [13]. In both cases, undercom-

pressive shocks are obtained for values of τ exceeding a threshold value. Nonclassical

shocks are also obtained in [6], but in a heterogeneous medium, and in [23], but based

on a different regularization. Travelling wave solutions for a pseudo-parabolic equation

involving a convex flux function are analyzed in [9, 10, 30].

Concerning numerical methods for pseudo-parabolic equations, the superconver-

gence of a finite element approximation of a similar equation is investigated in [1] and

time-stepping Galerkin methods are analyzed in [16] and [18], where two finite dif-

ference approximation schemes are considered. Further, Fourier spectral methods are

analyzed in [34]. For homogeneous media, discontinuous initial data and corresponding

numerical schemes for pseudo-parabolic equations are considered in [11], whereas for

heterogeneous media we refer to [20]. We also mention [32] for a review of different

numerical methods for pseudo-parabolic equations.

In this chapter we prove the existence of weak solutions to the degenerate pseudo-

parabolic equation (4.0.3), which are introduced below. Existence results for closely re-

lated models are proved in [27] and particularly in [28]. Despite the model we consider
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in this paper is slightly different of the one studied in [28] (our problem degenerates both

in 0 and 1 while a single degeneracy in 0 is considered in [28]), both in [28] and in the

present work, a main difficulty is the degenerate nonlinearity characterizing the viscous

term in equation (4.0.1). The existence proof given here applies to a more general fra-

mework, and (thus) involves different mathematical tools. The existence result obtained

in [28] requires stronger assumptions on this degenerate nonlinearity than in the present

work. First, Theorem 5 in [28] applies iff H is some regular function in the form (4.0.4)

with sufficiently large exponents p and q, while our proof works for any nonnegative

function H satisfying (A1). In particular we may consider (4.0.4) with p = q = 0, while

a similar analysis to the one proposed in [28] would require that p, q > 4. Next hypo-

thesis (H6) in [28] means that the initial saturation cannot take any degeneracy value (0

or 1) on a non-zero measure subset of Ω. This assumption is weakened or even removed

in the present work (see assumption (A2) below and the subsequent comments). Finally

we obtain a saturation satisfying the physical property of belonging to [0, 1] while [28]

only ensures that the saturation is nonnegative.

To obtain the existence result we employ regularization and compactness arguments.

The main difficulty appears in dealing with the nonlinear and degenerate term involving

the third order derivative, for which we combine the Div-Curl Lemma (see e.g. [29,37])

with equi-integrability properties. A simplified approach is possible whenever the dege-

neracy H can be controlled by the convective term F, specifically if the product H−1/2 F
is a bounded function. This is obtained, e.g., if Q ≡ 0, as considered in [28]. In this

case one can use the structure of the equation as in [8] to obtain uniform L6 estimates

for ∂tu, and then apply the Div-Curl Lemma directly. Here we consider a rather general

convective flux F that makes this latter strategy fail.

Below we use standard notation in the theory of partial differential equations, such

as L2(Ω),W1,2(Ω) and W1,2
0 (Ω). W−1,2(Ω) denotes the dual space of W1,2

0 (Ω), while

L2(0,T ; W1,2
0 (Ω)

)
denotes the Bochner space of W1,2

0 (Ω)-valued functions. By (·, ·) we

mean the inner product in either L2(Ω), or
(
L2(Ω)

)d, and ‖·‖ stands for the corresponding

norm. Furthermore, C denotes a generic positive real number and we define the set

V := CD + W1,2
0 (Ω).
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The equation (4.0.3) is complemented by the following initial and boundary condi-

tions

u(·, 0) = u0
∈ V, and u|∂Ω = CD. (4.0.5)

The initial data is assumed to be in W1,2(Ω). Furthermore, it satisfies 0 ≤ u0
≤ 1 almost

everywhere in Ω, while CD ∈ (0, 1) is a constant. The extension to non-constant boun-

dary data is possible, but requires more technical steps, given in [28]. We eliminate these

here for the sake of presentation. An important requirement here is that CD is neither 0

nor 1. The reason for this will become clear in the proof of the main result.

In this paper, a weak solution satisfies

Problem P Find u ∈ L∞(0,T ; V), ∂tu ∈ L2(Q) such that u(·, 0) = u0,
√

H(u)∇∂tu ∈

L2(0,T ; L2(Ω)d), and such that∫ T

0

∫
Ω

∂tuφdxdt −
∫ T

0

∫
Ω

F(u, x, t) · ∇φdxdt

+

∫ T

0

∫
Ω

H(u)∇u · ∇φdxdt + τ

∫ T

0

∫
Ω

H(u)∇∂tu · ∇φdxdt = 0,

(4.0.6)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
.

As H(u) vanishes at u = 0 and 1, (4.0.3) becomes degenerate. We define the func-

tions

G,Γ : R→ R ∪ {±∞}, G(u) =

∫ u

CD

1
H(v)

dv, and Γ(u) =

∫ u

CD

G(v)dv. (4.0.7)

Clearly, Γ is a convex function satisfying Γ(CD) = Γ
′(CD) = 0, implying

Γ(u) ≥ 0, for all u ∈ R. (4.0.8)

The existence results in the following sections are obtained under the assumption∫
Ω

Γ(u0)dx < ∞. (A2)

For the particular function H in (4.0.4), this assumption is fulfilled if, for example, 0 <

p, q < 1. Whenever p ≥ 1, (A2) requires that meas{u0
= 0} = 0. Similarly, q ≥ 1
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requires meas{u0
= 1} = 0. The construction of Γ is inspired by [27, 28], where a

generalized Kullback entropy is defined. As will be proved below, (A2) implies∫
Ω

Γ
(
u(t)

)
dx < C,

uniformly for t ∈ (0,T ].

The main result of this paper is Theorem 4.2.1, providing the existence of weak

solutions to Problem P. Further, the resulting solution is essentially bounded by 0 and 1.

As mentioned before, a similar existence result is proved in [28], but in a more restrictive

framework. Specifically, the assumptions in Theorem 5 of [28] imply an asymptotic

behavior of the nonlinear function H that can be related to sufficiently large exponents

p, q in (4.0.4). The proof here works for any C1-function H that is non negative. For

example, one can take p, q > 0 in (4.0.4). Further, by Assumption (H6) in [28] the initial

data can not take any degeneracy value (0 or 1) on a non-zero measure subset of Ω,

which is allowed here if H behaves sub-quadratically close to 0 or 1 (p < 1, respectively

q < 1).

Remark 4.0.1 Equation (4.0.3) is a simplified model for two-phase flow in porous me-

dia, where dynamic effects are taken into account in the capillary pressure. However,

this model contains the main mathematical difficulties related to such models: a dege-

nerate nonlinearity in the terms involving the higher order derivatives. More realistic

models are proposed in [19, 31]. With minor modifications, the present analysis can

be extended for dealing with the cases considered e.g. in [9, 10, 30]. For instance, a

capillary pressure of the form

pc = p(u) + τ∂tu

may be treated following the ideas presented below, provided that p is increasing, with√
p′ ∈ L1(0, 1) and H(·)p′(·) ∈ L∞(0, 1). In particular the degeneracy p′(u) = 0 for some

u is allowed, as well as lims→{0,1} p′(s) = +∞. Note that under these finer assumptions,

the definition of the solution to the Problem P has to be modified slightly (see [7]).

We start by studying a regularized problem in Section 4.1, where we replace H by

the strictly positive function Hδ = H +δ. Some a priori estimates are provided in Section

4.1 and the existence of weak solutions for Hδ is proved. In Section 4.2, the existence of

weak solutions to equation (4.0.3) is proved by compactness arguments.
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4.1 The regularized problem

To overcome the problems that are due to the degeneracy, we regularize Problem P by

perturbing H(u):

Hδ(u) = H(u) + δ, (4.1.1)

where δ is a small positive number. Then we consider the equation:

∂tu + ∇ · F(u, x, t) = ∇ ·
(
Hδ(u)∇(u + τ∂tu)

)
, (4.1.2)

and investigate the limit case as δ→ 0. In particular, we seek a solution to the following

Problem Pδ Find u ∈ W1,2(0,T ; V) such that u(·, 0) = u0, ∇∂tu ∈ L2(0,T ; L2(Ω)d) and∫ T

0

∫
Ω

∂tuφdxdt −
∫ T

0

∫
Ω

F(u, x, t) · ∇φdxdt

+

∫ T

0

∫
Ω

Hδ(u)∇u · ∇φdxdt + τ

∫ T

0

∫
Ω

Hδ(u)∇∂tu · ∇φdxdt = 0,

(4.1.3)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
.

Clearly, any solution to Problem Pδ depends on δ. However within Section 4.1, δwill

be fixed. For the ease of reading, the δ-subscript will be omitted. We start by showing

that Pδ has a solution. To do so, we use the Rothe method [22] and investigate firstly a

sequence of time discrete problems.

4.1.1 The time discretization

Setting ∆t = T/N(N ∈ N), we consider the Euler-implicit discretization of Problem Pδ
which leads to a sequence of time discretized problems. Specifically, we consider

Problem Pn+1
δ Let n ∈ {0, 1, 2, ...,N − 1}, and un

∈ V given. Find un+1
∈ V such that

(un+1
− un, φ) + ∆t

(
∇ · F(un+1, x, t), φ

)
+ ∆t

(
Hδ(u

n+1)∇un+1,∇φ
)

+τ
(
Hδ(u

n+1)∇(un+1
− un),∇φ

)
= 0,

(4.1.4)

for any φ ∈ W1,2
0 (Ω).
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For obtaining estimates we will use the elementary Young inequality

ab ≤
1
2δ

a2
+
δ

2
b2, for any a, b ∈ R and δ > 0. (4.1.5)

We have the following result:

Proposition 4.1.1 Problem Pn+1
δ has a solution.

For proving Proposition 4.1.1, we introduce the auxiliary problem:

Problem Paux Given v1, v2 ∈ V , Find w ∈ V such that

(∆t + τ)
(
Hδ(w)∇w,∇φ

)
+ (w, φ) + ∆t

(
∇ · F(w, x, t), φ

)
= (v2, φ) + τ

(
Hδ(v1)∇v2,∇φ

)
,

(4.1.6)

for any φ ∈ W1,2
0 (Ω).

Then we have the following:

Lemma 4.1.1 Problem Paux has a solution.

Proof . Define

G(y) :=
∫ y

CD

Hδ(s)ds, (4.1.7)

then we have

1
1 + δ

≤ (G−1)′ =
1
G
′ ≤

1
δ
. (4.1.8)

and

(u1 − u2)
(
G(u1) − G(u2)

)
≥ δ|u1 − u2|

2, (4.1.9)

Further, define

a : W1,2
0 (Ω) ×W1,2

0 (Ω)→ R,

a(v, φ) =
(
G
−1(v), φ

)
+ ∆t

(
∇ · F(G−1(v), x, t), φ

)
+ (∆t + τ)(∇v,∇φ),

b : W1,2
0 (Ω)→ R, b(φ) = (v2, φ) + τ

(
Hδ(v1)∇v2,∇φ

)
.
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Clearly, b is a linear bounded functional and for each v ∈ W1,2
0 (Ω), φ 7→ a(v, φ) is a linear

bounded functional. Furthermore, for small enough ∆t

a(v1, v1 − v2) − a(v2, v1 − v2) ≥ (∆t + τ)||∇(v1 − v2)||2
L2(Ω)

+
1
δ
||v1 − v2||

2
L2(Ω)

−
L∆t
δ
||∇(v1 − v2)||L2(Ω) · ||v1 − v2||L2(Ω)

≥ C||v1 − v2||
2
W1,2(Ω)

,

and it is easy to check that

|a(v1, φ) − a(v2, φ)| ≤ C||v1 − v2||W1,2(Ω) · ||φ||W1,2(Ω).

Therefore, the nonlinear Lax-Milgram theorem ( [38], pp.174-175) provides the exis-

tence and uniqueness of a solution v ∈ W1,2
0 (Ω) such that

(
G
−1(v), φ

)
+ ∆t

(
∇ · F

(
G
−1(v), x, t

)
, φ

)
+ (∆t + τ)(∇v,∇φ)

= (v2, φ) + τ
(
Hδ(v1)∇v2,∇φ

)
,

for any φ ∈ W1,2
0 (Ω). Taking w = G

−1(v) ∈ V gives a solution to Problem Paux. �

Proof of Proposition 4.1.1. Using Lemma 4.1.1, for given un
∈ V and vi ∈ V (i ∈ N),

there exists a vi+1 ∈ V such that

(∆t + τ)
(
Hδ(vi+1)∇vi+1,∇φ

)
+ (vi+1, φ) + ∆t

(
∇ · F(vi+1, x, t), φ

)
= (un, φ) + τ

(
Hδ(vi)∇un,∇φ

)
,

(4.1.10)

for any φ ∈ W1,2
0 (Ω). Therefore we construct a sequence {vi}i∈N by iteration (for simpli-

city, here we take v1 = un).

Next, taking φ = vi+1 −CD in (4.1.10) leads to

(∆t + τ)||
√

Hδ(vi+1)∇vi+1||
2
L2(Ω)

+ ||vi+1||
2
L2(Ω)

= (CD, vi+1) + (un, vi+1) + τ
(
Hδ(vi)∇un,∇vi+1

)
,

(4.1.11)

where we used(
∇ · F(vi+1, x, t), vi+1 −CD

)
= −

∫
Ω

F(vi+1, x, t) · ∇vi+1dx = −

∫
∂Ω

γ · F (CD)dx = 0,
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with F (w) :=
∫ w

CD
F(v, x, t)dv and γ denoting the outer normal vector to ∂Ω. Therefore,

(∆t + τ)||
√

Hδ(vi+1)∇vi+1||
2
L2(Ω)

+ ||vi+1||
2
L2(Ω)

≤
1
4
||vi+1||

2
L2(Ω)

+ C2
Dmeas(Ω) +

1
2
||vi+1||

2
L2(Ω)

+
1
2
||un
||

2
L2(Ω)

+
(∆t + τ)δ

2
||∇vi+1||

2
L2(Ω)

+
τ2(1 + δ)2

2(∆t + τ)δ
||∇un

||
2
L2(Ω)

.

Using un
∈ V and Ω is bounded domain, we obtain the following:

(∆t + τ)δ
2

||∇vi+1||
2
L2(Ω)

+
1
4
||vi+1||

2
L2(Ω)

≤ C. (4.1.12)

Here C is a positive constant, which does not depend on i. Hence, there exists a v ∈ V

such that vi ⇀ v weakly. Consequently, vi → v strongly in L2(Ω) and for any φ ∈

W1,2
0 (Ω)

(vi, φ)→ (v, φ),(
∇ · F(vi, x, t), φ

)
→

(
∇ · F(v, x, t), φ

)
.

Next, we prove (
Hδ(vi)∇vi,∇φ

)
→

(
Hδ(v)∇v,∇φ

)
.

The idea in proving the above limit will be used again later. We start by observing that

Hδ(vi)∇vi is bounded in (L2(Ω))d, therefore it has a weak limit χ. To identify this in

L2(Ω), we take any φ ∈ C∞0 (Ω) as test function. Since Hδ(vi)→ Hδ(v) strongly in L2(Ω)

and ∇vi ⇀ ∇v weakly in
(
L2(Ω)

)d, we have(
Hδ(vi)∇vi,∇φ

)
→

(
Hδ(v)∇v,∇φ

)
.

This implies that Hδ(vi)∇vi ⇀ Hδ(v)∇v in distributional sense. By the uniqueness of the

limit, we have χ = Hδ(v)∇v. Using the same idea, we prove(
Hδ(vi)∇un,∇φ

)
→

(
Hδ(v)∇un,∇φ

)
.

Passing to the limit i→ +∞ in (4.1.10), we have

(∆t+τ)
(
Hδ(v)∇v,∇φ

)
+(v, φ)+∆t

(
∇·F(v, x, t), φ

)
= (un, φ)+τ

(
Hδ(v)∇un,∇φ

)
.(4.1.13)

Taking un+1
= v gives a solution to Problem Pn+1

δ . �
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In proving the existence of a solution to Problem Pδ, we use the following elementary

results

Proposition 4.1.2 Let k ∈ {0, 1, ...,N},m ≥ 1. For any set of m-dimensional real vectors

ak, bk
∈ Rm, we have the following identities:

N∑
k=1

< ak
− ak−1,

N∑
n=k

bn >=

N∑
k=1

< ak, bk > − < a0,

N∑
k=1

bk >, (4.1.14)

N∑
k=1

< ak
− ak−1, ak >=

1
2

(|aN
|
2
− |a0

|
2

+

N∑
k=1

|ak
− ak−1

|
2), (4.1.15)

N∑
k=1

<

N∑
k=n

ak, an >=
1
2
|

N∑
k=1

ak
|
2

+
1
2

N∑
k=1

|ak
|
2. (4.1.16)

4.1.2 A priori estimates

For the existence of a solution to Problem Pδ, we apply compactness arguments based

on the following a priori estimates.

Proposition 4.1.3 For any n ≥ 1, we have the following:

||∇un
||L2(Ω) ≤ C, (4.1.17)∫

Ω

Γδ(u
n)dx ≤ C, (4.1.18)

||un
− un−1

||
2
L2(Ω)

+ τ||

√
Hδ(u

n)∇(un
− un−1)||2

L2(Ω)
≤ C(∆t)2, (4.1.19)

||un
||L2(Ω) ≤ C. (4.1.20)

Here C does not depend on δ.

Proof . 1. Taking φ = Gδ(u
n+1) =

∫ un+1

CD

1
Hδ(v) dv ∈ W1,2

0 (Ω) in (4.1.4) gives

(
un+1

− un,Gδ(u
n+1)

)
+ (τ + ∆t)||∇un+1

||
2
L2(Ω)

(4.1.21)

−τ(∇un,∇un+1) + ∆t
(
∇ · F(un+1, x, t),Gδ(u

n+1)
)

= 0.
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Define G(un+1, x, t) :=
∫ un+1

CD
Gδ(v)∂vF(v, x, t)dv. By (A1) we have

(
∇ · F(un+1, x, t),Gδ(u

n+1)
)

=

∫
Ω

∇ · G(un+1, x, t)dx =

∫
∂Ω

γ · G(CD)dx = 0.

Here γ denotes the outer normal vector to ∂Ω. Further, as in (4.0.7) we define Γδ(u) :=∫ u
CD

Gδ(v)dv and note that Γ
′′
δ (u) = 1

Hδ(u) > 0, thus

(un+1
− un)Gδ(u

n+1) ≥ Γδ(u
n+1) − Γδ(u

n). (4.1.22)

Summing (4.1.22) in (4.1.21) up from 0 to n − 1 gives

0 ≥
∫

Ω

Γδ(u
n)dx−

∫
Ω

Γδ(u
0)dx+(∆t+τ)

n∑
k=1

||∇uk
||

2
L2(Ω)
−τ

n∑
k=1

(∇uk,∇uk−1).(4.1.23)

By (4.1.15) we have

0 ≥
∫

Ω

Γδ(u
n)dx −

∫
Ω

Γδ(u
0)dx + ∆t

n∑
k=1

||∇uk
||

2
L2(Ω)

+
τ

2
||∇un

||
2
L2(Ω)

−
τ

2
||∇u0

||
2
L2(Ω)

+
τ

2

n∑
k=1

||∇(uk
− uk−1)||2

L2(Ω)
,

(4.1.24)

implying∫
Ω

Γδ(u
n)dx + ∆t

n∑
k=1

||∇uk
||

2
L2(Ω)

+
τ

2
||∇un

||
2
L2(Ω)

+
τ

2

n∑
k=1

||∇(uk
− uk−1)||2

L2(Ω)

≤

∫
Ω

Γδ(u
0)dx +

τ

2
||∇u0

||
2
L2(Ω)

.

(4.1.25)

Recalling (4.0.8) and (A2), as Hδ is bounded and u0
∈ W1,2(Ω), we have

∫
Ω

Γδ(u
0)dx =

∫
Ω

∫ u0

CD

∫ u

CD

1
Hδ(v)

dvdudx ≤
∫

Ω

∫ u0

CD

∫ u

CD

1
H(v)

dvdudx ≤ C,

where C does not depend on δ. Therefore,∫
Ω

Γδ(u
n)dx ≤ C, (4.1.26)

||∇un
||L2(Ω) ≤ C,

n∑
k=1

||∇(uk
− uk−1)||2

L2(Ω)
≤ C. (4.1.27)
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2. Taking φ = un
− un−1

∈ W1,2
0 (Ω) in (4.1.4) written at time tn = n∆t, we have

||un
− un−1

||
2
L2(Ω)

+ ∆t
(
∇ · F(un, x, t), un

− un−1
)
+

∆t
(
Hδ(u

n)∇un,∇(un
− un−1)

)
+ τ||

√
Hδ(u

n)∇(un
− un−1)||2

L2(Ω)
= 0.

(4.1.28)

By (4.1.5) and (A1),

||un
− un−1

||
2
L2(Ω)

−
1
2
||un
− un−1

||
2
L2(Ω)

−
(C∆t)2

2
||∇un

||
2
L2(Ω)

−
(∆t)2

2τ
||

√
Hδ(u

n)∇un
||

2
L2(Ω)

−
τ

2
||

√
Hδ(u

n)∇(un
− un−1)||2

L2(Ω)

+τ||

√
Hδ(u

n)∇(un
− un−1)||2

L2(Ω)
≤ 0.

(4.1.29)

According to (4.1.27), since Hδ is bounded, we obtain

||un
− un−1

||
2
L2(Ω)

+ τ||

√
Hδ(u

n)∇(un
− un−1)||2

L2(Ω)
≤ C(∆t)2. (4.1.30)

As Hδ ≥ δ, we also derive

||un
− un−1

||L2(Ω) ≤ C∆t and ||∇(un
− un−1)||L2(Ω) ≤

C∆t
√
δ
. (4.1.31)

3. Finally, since un
−CD ∈ W1,2

0 (Ω),

||un
||L2(Ω) ≤ ||u

n
−CD||L2(Ω)+||CD||L2(Ω) ≤ C(Ω)||∇(un

−CD)||L2(Ω)+C ≤ C. �(4.1.32)

4.1.3 Existence for Problem Pδ

Using Proposition 4.1.3, we now prove the existence of a solution to the regularized

Problem Pδ.

Theorem 4.1.1 Problem Pδ has a solution.

Proof . We start by defining

UN(t) = uk−1
+

t − tk−1

∆t
(uk
− uk−1), (4.1.33)
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for tk−1
= (k − 1)∆t ≤ t < tk

= k∆t, k = 1, 2...N. Clearly, UN |∂Ω = CD. Then we have

∫ T

0
||UN(t)||2

L2(Ω)
dt =

N∑
k=1

∫ tk

tk−1
||uk−1

+
t − tk−1

∆t
(uk
− uk−1)||2

L2(Ω)
dt

≤ 2
N∑

k=1

∫ tk

tk−1

(
||uk−1

||
2
L2(Ω)

+ ||uk
− uk−1

||
2
L2(Ω)

)
dt

= 2∆t
N∑

k=1

(
||uk−1

||
2
L2(Ω)

+ ||uk
− uk−1

||
2
L2(Ω)

)
≤ C,

(4.1.34)

and

∫ T

0
||∇UN(t)||2

L2(Ω)
dt =

N∑
k=1

∫ tk

tk−1
||∇uk−1

+
t − tk−1

∆t
∇(uk

− uk−1)||2
L2(Ω)

dt

≤ 2
N∑

k=1

∫ tk

tk−1

(
||∇uk−1

||
2
L2(Ω)

+ ||∇(uk
− uk−1)||2

L2(Ω)

)
dt

= 2∆t
N∑

k=1

(
||∇uk−1

||
2
L2(Ω)

+ ||∇(uk
− uk−1)||2

L2(Ω)

)
≤ C.

(4.1.35)

Additionally,

∫ T

0
||∂tUN ||

2
L2(Ω)

dt =

N∑
k=1

∫ tk

tk−1
||

1
∆t

(uk
− uk−1)||2

L2(Ω)
dt

=
1
∆t

N∑
k=1

||uk
− uk−1

||
2
L2(Ω)

≤ C

(4.1.36)

and, by (4.1.31),

∫ T

0
||∂t∇UN ||

2
L2(Ω)

dt =

N∑
k=1

∫ tk

tk−1
||

1
∆t
∇(uk

− uk−1)||2
L2(Ω)

dt,

=
1
∆t

N∑
k=1

||∇(uk
− uk−1)||2

L2(Ω)
≤

C
δ
.

(4.1.37)
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By (4.1.34), (4.1.35), (4.1.36), (4.1.37), there exists a subsequence of {UN} (still

denoted as {UN}) such that, as N → ∞,

UN → U strongly in L2(Q), (4.1.38)

∂tUN⇀ ∂tU weakly in L2(Q), (4.1.39)

∇UN⇀ ∇U weakly in L2(0,T ; L2(Ω)d), (4.1.40)

∇∂tUN⇀ ∇∂tU weakly in L2(0,T ; L2(Ω)d). (4.1.41)

Now we prove that U solves Problem Pδ. Firstly, for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
, (4.1.4)

implies uk
− uk−1

∆t
,

∫ tk

tk−1
φdt

 +

∇ · F(uk, x, t),
∫ tk

tk−1
φdt


+

Hδ(u
k)∇uk,

∫ tk

tk−1
∇φdt

 + τ

Hδ(u
k)∇

uk
− uk−1

∆t
,

∫ tk

tk−1
∇φdt

 = 0,

(4.1.42)

for k = 1, 2, . . . ,N. Define

UN(t) = uk, (4.1.43)

for tk−1
= (k − 1)∆t ≤ t < tk

= k∆t, k = 1, 2...N. Then UN |∂Ω = CD and∫ T

0

∫
Ω

∂tUNφdxdt −
∫ T

0

∫
Ω

F(UN , x, t) · ∇φdxdt

+

∫ T

0

∫
Ω

Hδ(UN)∇UN · ∇φdxdt + τ

∫ T

0

∫
Ω

Hδ(UN)∇∂tUN · ∇φdxdt = 0.
(4.1.44)

We now exploit a general principle that relates the piecewise linear and the piecewise

constant interpolation (see e.g. [25] for a proof of the corresponding lemma): if one

interpolation converges strongly in L2(Q), then the other interpolation also converges

strongly in L2(Q). From the convergence of UN , we conclude that UN also converges

strongly in L2(Q). Then we obtain F(UN)→ F(U) strongly in
(
L2(Q)

)d and Hδ(UN)→

Hδ(U) strongly in L2(Q). Employing the same idea as in the proof of Proposition 4.1.1,

we have

Hδ(UN)∇UN ⇀ Hδ(U)∇U weakly in L2(0,T ; L2(Ω)d), (4.1.45)

Hδ(UN)∇∂tUN ⇀ Hδ(U)∇∂tU weakly in L2(0,T ; L2(Ω)d). (4.1.46)
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Combining the latter results with (4.1.44), we obtain that U is a solution to Problem Pδ.

�

4.2 Existence for Problem P

For any δ > 0, Section 4.1 provides a solution uδ to the regularized Problem Pδ. In

this section, we identify a sequence {δn}n∈N tending to 0, providing the limit u of the

sequence {uδn
}n∈N, which solves Problem P. This involves a compactness argument, and

therefore convergence should always be understood along a subsequence. From As-

sumption (A.2), Proposition 4.1.3 and Theorem 4.1.1, we have the following

Proposition 4.2.1 We have the following estimates:

||uδ||L2(Q) ≤ C, (4.2.1)

||∂tuδ||L2(Q) ≤ C, (4.2.2)

||
√

Hδ(uδ)∇∂tuδ||L2(0,T ;(L2(Ω))d) ≤ C, (4.2.3)

||∇uδ||L∞
(
0,T ;(L2(Ω))d

) ≤ C, (4.2.4)∫
Ω

Γδ
(
uδ(t)

)
dx ≤ C, for a.e. t > 0, (4.2.5)

where C does not depend on δ.

By Proposition 4.2.1, there exists a u ∈ H1(Q) such that,

uδn
→ u strongly in L2(Q), and a.e. on Q, (4.2.6)

∂tuδn
⇀ ∂tu weakly in L2(Q), (4.2.7)

as well as

∇uδn
⇀ ∇u in L∞

(
0,T ; (L2(Ω))d) in the weak- ? sense. (4.2.8)

Further, from (4.2.3) there exists a ζ = (ζ1, ..., ζd) ∈ L2(0,T ; L2(Ω)d) such that,

√
Hδn

(uδn
)∂t∇uδn

⇀ ζ weakly in L2(0,T ; L2(Ω)d). (4.2.9)
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Let ψ ∈ C∞0 (Q), then for all n, uδn
satisfies

An + Bn + Cn + Dn = 0, (4.2.10)

where

An =

"
Q
∂tuδn

ψdxdt,

Bn = −

"
Q

F(uδn
, x, t) · ∇ψdxdt,

Cn =

"
Q

Hδn
(uδn

)∇uδn
· ∇ψdxdt,

Dn =

"
Q

Hδn
(uδn

)∂t∇uδn
· ∇ψdxdt.

In view of the above, An, Bn and Cn converge to the desired limit as n → ∞. We thus

focus on the limit of Dn. To this end, let j ∈ {1, . . . , d} be fixed and decompose the

variable x ∈ Rd into (x j, x̃ j) ∈ R × Rd−1. Define

Ω j(x̃ j) := {x j ∈ R | (x j, x̃ j) ∈ Ω}, and Q j(x̃ j) := Ω j(x̃ j) × (0,T ).

We note that

Dn =

d∑
j=1

∫
Rd−1

D j,n(x̃ j)dx̃ j, (4.2.11)

where, for a.e. x̃ j ∈ Rd−1,

D j,n(x̃ j) =

"
Q j(x̃ j)

Hδn
(uδn

)∂t∂x j
uδn
∂x j
ψdx jdt.

We have the following

Lemma 4.2.1 For almost every x̃ j ∈ Rd−1,

lim
n→∞

D j,n(x̃ j) = D j(x̃ j) :=
"

Q j(x̃ j)
H(u)∂t∂x j

u∂x j
ψdx jdt.
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Proof We deduce from Proposition 4.2.1 that, for almost every x̃ j,

||∂x j
uδn

(·, x̃ j)||L2
(
Q j(x̃ j)

) ≤ C(x̃ j), (4.2.12)

||

√
H(uδn

(·, x̃ j))∂t∂x j
uδn

(·, x̃ j)||L2
(
Q j(x̃ j)

) ≤ C(x̃ j), (4.2.13)

||∂tuδn
(·, x̃ j)||L2

(
Q j(x̃ j)

) ≤ C(x̃ j), (4.2.14)

where C(x̃ j) ∈ L2(Rd−1).

From (4.2.13) and in view of (4.2.9), we deduce√
H(uδn

(·, x̃ j))∂t∂x j
uδn

(·, x̃ j) ⇀ ζ j(x̃ j) weakly in L2(Q j(x̃ j)
)
. (4.2.15)

We define an auxiliary C2 function A : R→ R such that

A
√

H
∈ L∞(0, 1),

A′
√

H
∈ L∞(0, 1), A′′ ∈ L∞(0, 1),

and A(s) > 0 if s ∈ (0, 1).

(4.2.16)

For instance, if H(u) ∼ up+1 in the vicinity of 0 (as encountered e.g. in (4.0.4)), one can

consider A(u) ∼ umax(1,(p+3)/2). The construction in the vicinity of 1 is similar. Note that

(4.2.16) implies that A(·) is 0 outside (0, 1). Furthermore, the fractions in (4.2.16) are

extended by 0 outside (0, 1).

Define the differential operator ∇̃ := (∂x j
, ∂t)

T , and, for fixed x̃ j in a full measure

subset of Rd−1, the two vector-valued functions

Vn(x̃ j) =
(
A′(uδn

(·, x̃ j))∂tuδn
(·, x̃ j), 0

)
, Wn(x̃ j) =

(
∂x j

uδn
(·, x̃ j), ∂tuδn

(·, x̃ j)
)
.(4.2.17)

For reader’s convenience, we remove the parameter x̃ j in the sequel. By (4.2.12)–

(4.2.14) and the properties of A, we obtain that Vn and Wn are uniformly bounded in

(L2(Q j))
2. Since ∇̃ ×Wn = ∇̃ × (∇̃uδn

) = 0, so {∇̃ ×Wn, n ∈ N} is a compact subset of

W−1,2(Q j).

Moreover, the sequence {∇ · Vn, n ∈ N} is uniformly bounded in L2(0,T ; L1(Ω j)
)
, as

∂x j

(
A′(uδn

)∂tuδn

)
= A′′(uδn

)∂tuδn
∂x j

uδn
+

A′(uδn
)√

H(uδn
)

√
H(uδn

)∂t∂x j
uδn
, (4.2.18)
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a.e. in ω j(x̃ j) = {(x j, t) ∈ Q j | u(x j, t, x̃ j) ∈ (0, 1)} and in fact in the entire Q j in view of

the extension of the fractions in (4.2.16). The embedding L2(0,T ; L1(Ω j)
)
↪→ W−1,2(Q j)

being compact (note that Ω j ⊂ R), then, applying the Div-Curl Lemma [29, 37], we get

Vn ·Wn = A′(uδn
)∂tuδn

∂x j
uδn

⇀ A′(u)∂tu∂x j
u weakly in D

′(Q j). (4.2.19)

Finally, letA be a primitive form of A. As before, the equality

∂t∂x j
A(uδn

) = A′(uδn
)∂tuδn

∂x j
uδn

+
A(uδn

)√
H(uδn

)

√
H(uδn

)∂t∂x j
uδn
, (4.2.20)

holding a.e. inω j can be extended to Q j. Since
A(uδn )√
H(uδn )

converges a.e. in Q j to A(u)
√

H(u)
and

is essentially bounded uniformly w.r.t. n, we obtain the strong convergence in L2(Q j).

Together with the weak convergence in (4.2.9), we pass to the limit (n→ ∞) in (4.2.20)

and obtain

∂t∂x j
A(u) = A′(u)∂tu∂x j

u +
A(u)
√

H(u)
ζ j. (4.2.21)

In the distributional sense, this implies

A′(u)∂tu∂x j
u + A(u)∂t∂x j

u = A′(u)∂tu∂x j
u +

A(u)
√

H(u)
ζ j. (4.2.22)

As a consequence, for almost every x̃ j ∈ Rd−1,

ζ j(x̃ j) =
√

H(u(·, x̃ j))∂t∂x j
u(·, x̃ j). (4.2.23)

Because of (4.2.15) and the strong L2(Q j) convergence of
√

Hδn
(uδ(·, x̃ j)) to

√
H(u(·, x̃ j)),

one has for almost every x̃ j in Rd−1,

lim
n→∞

D j,n(x̃ j) =

"
Q j(x̃ j)

√
H(u(·, x̃ j))ζ j(x̃ j)∂x j

ψdx jdt = D j(x̃ j).

Proposition 4.2.2 Let u be the limit in (4.2.6)–(4.2.8). Then, for all ψ ∈ C∞0 (Q),

lim
n→∞

"
Q

Hδn
(uδn

)∂t∇uδn
· ∇ψdxdt =

"
Q

H(u)∂t∇u · ∇ψdxdt. (4.2.24)
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Proof Note that, thanks to (4.2.11), for proving Proposition 4.2.2, it is sufficient to show

that, for any j ∈ {1, . . . , d},

lim
n→∞

∫
Rd−1

D j,n(x̃ j)dx̃ j =

∫
Rd−1

D j(x̃ j)dx̃ j.

Since Ω is bounded, the functions D j,n are compactly supported. Further, the Cauchy-

Schwarz inequality gives

(
D j,n(x̃ j)

)2
≤ C

"
Q j(x̃ j)

Hδn
(uδn

)
(
∂t∂x j

uδn

)2
dx jdt +

"
Q j(x̃ j)

Hδn
(uδn

)
(
∂x j
ψ
)2

dx jdt


≤ C

"
Q j(x̃ j)

Hδn
(uδn

)
(
∂t∂x j

uδn

)2
dx jdt +

"
Q j(x̃ j)

(∂x j
ψ)2dx jdt

 ,
and therefore∫

Rd−1

(
D j,n(x̃ j)

)2
dx̃ j ≤ C

("
Q

Hδn
(uδn

)
(
∂t∂x j

uδn

)2
dxdt +

"
Q

(∂x j
ψ)2dxdt

)
,

≤ C
"

Q
Hδn

(uδn
)
(
∂t∂x j

uδn

)2
dxdt + C.

By (4.2.3), D j,n is uniformly bounded in L2(Rd−1). Hence the sequence {D j,n}n is equi-

integrable. Now (4.2.24) follows by Lemma 4.2.1 and Vitali’s theorem.

Theorem 4.2.1 Problem P has a solution u. Furthermore, this solution is essentially

bounded by 0 and 1 in Q.

Proof Let u be the limit in (4.2.6)–(4.2.8). To show that u is a weak solution of Pro-

blem P, it is sufficient to show that the terms An, Bn,Cn,Dn in (4.2.10) have the desired

limit. Identifying the limits of An, Bn,Cn is straightforward due to (4.2.6)–(4.2.8) and

the strong L2 convergence of Hδn
(uδn

) to H(u). For Dn we recall Proposition 4.2.2.

It remains to prove that 0 ≤ u ≤ 1 a.e. in Q. To this end we consider ε > 0 arbitrary,

take t ∈ (0,T ), and define Ω
−
ε,n(t) := {x ∈ Ω | uδn

(x, t) < −ε}. Then

Γδn
(uδn

) =

∫ uδn

CD

∫ w

CD

1
Hδn

(v)
dvdw =

(CD − uδn
)2

2δn
, (4.2.25)
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a.e. in Ω
−
ε,n(t). Recalling (4.2.5), for all δn > 0 and a.e. t, we write

C ≥
∫

Ω

Γδn
(uδn

(x, t))dx ≥
∫

Ω
−
ε,n(t)

Γδn
(uδn

(x, t))dx ≥
(CD + ε)2

2δn
meas(Ω−ε,n(t)).(4.2.26)

Letting δn → 0, we obtain

lim
n→∞

meas(Ω−ε,n(t)) = 0, (4.2.27)

for a.e. t ∈ (0,T ]. However, by (4.2.13) and (4.2.14), uδn
→ u in C([0,T ]; L2(Ω)), thus

uδn
(·, t) → u(·, t) a.e in Ω, for all t. Passing to the limit ε → 0 gives the lower bound for

u. Similarly, we have u ≤ 1 a.e., and the theorem is proved. �
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Chapter 5

Equivalent formulations and
numerical schemes

In this chapter we study a mathematical model for two-phase flow in porous media,

where dynamic effects are included in the difference of the phase pressure (see [12]).

With a given maximal time T > 0 and for all x ∈ Ω (a bounded domain in Rd), we

consider the following equation

∂tu + ∇ · F(u) = ∇ ·
(
H(u)∇p

)
, (x, t) ∈ Q := Ω × (0,T ]. (5.0.1)

The scalar equation above is a simplified model, resulting from inserting the Darcy law

for both phases into the mass conservation laws (see [2]), with u denoting the water satu-

ration. In physical terms, the functions F and H represent the fraction flow, respectively

the capillary induced diffusion function. Finally, p is the term expressing the pressure

difference between the two phases.

This chapter has been submitted to ACOMEN (Advanced COmputational Methods in ENgineering)
2011, and it is a collaborative work with I.S. Pop
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Based on experimental measurements, a monotonically increasing relationship bet-

ween p and u can be determined (see [2]). In most of the cases, the measurements are

carried out under equilibrium conditions. The models proposed in [12] take the dyna-

mics into account by letting p depend on the time derivative of the saturation. Here we

consider

p = pc(u) + τ∂tu, (5.0.2)

with τ being a positive parameter. Then (5.0.1) becomes

∂tu + ∇ · F(u) = ∇ ·
(
H(u)∇

(
pc(u) + τ∂tu

))
, (x, t) ∈ Q. (5.0.3)

The model is completed by the initial and boundary conditions:

u(·, 0) = u0 in Ω, and u(·, t) = 0 on ∂Ω, for t ∈ (0,T ]. (5.0.4)

Formally, (5.0.3) can be transformed into a system form. First, one can use the

particular form of the phase pressure difference to obtain∂tu + ∇ · F(u) = ∇ ·
(
H(u)∇p

)
,

p = pc(u) + τ∂tu,
for all (x, t) ∈ Q. (5.0.5)

Next, since ∂tu =
(
p− pc(u)

)
/τ, the first equation in (5.0.5) gives an elliptic equation for

p, leading to ∂tu + ∇ · F(u) = ∇ ·
(
H(u)∇p

)
,

p − τ∇ ·
(
H(u)∇p

)
= pc(u) − τ∇ · F(u),

for all (x, t) ∈ Q. (5.0.6)

Note that whereas (5.0.3) is standard (conformal), (5.0.5) and (5.0.6) can be associated

with a mixed formulation: in both cases the first equation is the mass balance equation,

while the second one identifies the capillary pressure. The formulations (5.0.3), (5.0.5)

and (5.0.6) are equivalent from formal point of view. However, these may lead to dif-

ferent numerical schemes, combining conservative approaches for (5.0.3) and the first

equations in (5.0.5) or (5.0.6), and ordinary differential equations methods, respectively

elliptic approaches. Such schemes are discussed in [6]. The aim of this chapter is to give

a rigorous proof for the equivalence of the three formulations, and for the corresponding

numerical discretizations.
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In what follows standard notations in the functional analysis and the theory of partial

differential equations are used: L2(Ω),W1,2(Ω) and W1,2
0 (Ω). Further, W−1,2(Ω) denotes

the dual of W1,2
0 (Ω), and for any Banach space X we let L2(0,T ; X) be the Bochner space

of X-valued functions. By (·, ·) we mean the inner product in either L2(Ω), or L2(0,T ; X)

(if X is a Hilbert space), and ‖ · ‖ stands for the corresponding norm. Furthermore, C

denotes a generic positive number.

The analysis below is carried out under the following assumptions:

• (A1). Ω is an open, bounded and connected domain in Rd (d = 1, 2, 3), with

Lipschitz continuous boundary ∂Ω.

• (A2). τ is a given positive number.

• (A3). F : R → Rd, H : R → R and pc : R → R are Lipschitz and C1. pc is

monotonically increasing and pc(0) = 0. For H, we assume m1 ≤ H ≤ M1, where

0 < m1,M1 < ∞ are given constants. Further, we denote by L a Lipschitz constant

for the functions F, H and pc.

• (A4). The function u0 lies in W1,2
0 (Ω).

Remark 5.0.1 Taking pc(0) = 0 in (A3) is not necessary needed, as only the pressure

gradients are involved in the model. If pc(0) , 0, one can eventually take p = pc(u) −

pc(0) + τ∂tu.

5.1 Equivalent formulations

In this section we introduce three different formulations of the model in weak forms,

consider their time discretization, and study the equivalence in both continuous and time

discrete cases. In doing so we follow the ideas in [17]. Once this is achieved, existence,

uniqueness and convergence results available for the original scalar model (see e. g.

[3–6,9,14–16,18] and the references therein) can be directly transferred to the alternative

system formulations.
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5.1.1 The continuous case

In a weak form the problem (5.0.3)-(5.0.4) reads

Problem 1: Find u ∈ W1,2(0,T ; W1,2
0 (Ω)

)
such that u(·, 0) = u0 and

(∂tu, φ) −
(
F(u),∇φ

)
+

(
H(u)∇

(
pc(u) + τ∂tu

)
,∇φ

)
= 0, (5.1.1)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
.

To avoid the confusion between u given by the conformal formulation, and the so-

lution pair obtained in either of the following two system formulations we denote the

saturation in the latter by v. Then a weak form of (5.0.5) and (5.0.4) is

Problem 2: Find v ∈ W1,2(0,T ; L2(Ω)
)

and p ∈ L2(0,T ; W1,2
0 (Ω)

)
such that v(·, 0) = u0

and

(∂tv, φ) −
(
F(v),∇φ

)
+

(
H(v)∇p,∇φ

)
= 0, (5.1.2)

(p, ψ) =
(
pc(v), ψ

)
+ τ(∂tv, ψ), (5.1.3)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
, ψ ∈ L2(0,T ; L2(Ω)

)
.

Finally, a weak counterpart of (5.0.6) and (5.0.4) is

Problem 3: Find v ∈ W1,2(0,T ; L2(Ω)
)

and p ∈ L2(0,T ; W1,2
0 (Ω)

)
such that v(·, 0) = u0

and

(∂tv, φ) −
(
F(v),∇φ

)
+

(
H(v)∇p,∇φ

)
= 0, (5.1.4)

(p, ψ) + τ
(
H(v)∇p,∇ψ

)
=

(
pc(v), ψ

)
+ τ

(
F(v),∇ψ

)
, (5.1.5)

for any φ ∈ L2(0,T ; W1,2
0 (Ω)

)
, ψ ∈ L2(0,T ; W1,2

0 (Ω)
)
.

Note that in both Problems 2 and 3, v and ∂tv are only assumed in L2(0,T ; W−1,2(Ω)
)
.

However, the equivalence results below provide v = u (and thus ∂tv = ∂tu), implying

that v, ∂tv ∈ L2(0,T ; W1,2
0 (Ω)

)
.
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Proposition 5.1.1 If (v, p) solves Problem 2, then v ∈ W1,2(0,T ; W1,2
0 (Ω)

)
.

Proof . Taking any V ⊂⊂ Ω (meaning that its support is strictly included in Ω), with

i ∈ {1, . . . , d} and ei being the unit vector in the ith direction, if h ∈ R is s. t. |h| <
1
2 dist(V, ∂Ω) one can consider the hei spatial translation for (5.1.3), where the inner

products are restricted to V(
p(· + hei, ·), ψ

)
=

(
pc

(
v(· + hei, ·)

)
, ψ

)
+ τ

(
∂tv(· + hei, ·), ψ

)
, (5.1.6)

for any ψ ∈ L2(0,T ; L2(V)
)
. Given a function g : Ω→ R we denote by

δh,ig(x) =
g(x + hei) − g(x)

h
for x ∈ V,

the extension to time dependent functions being straightforward. Subtracting (5.1.3)

from (5.1.6) and dividing by h, taking ψ = δh,iv and integrating the result in time over

the interval (0, t) with t arbitrary in (0,T ] one gets

τ

2
||δh,iv(·, t)||2

L2(V)
−
τ

2

∥∥∥δh,iu
0
∥∥∥2

L2(V)

+

∫ t

0

(
δh,i pc

(
v(·, s)

)
, δh,iv(·, s)

)
ds =

∫ t

0

(
δh,i p(·, s), δh,iv(·, s)

)
ds.

Since pc is monotonically increasing and Lipschitz, the third term of the left side is

positive. Further, since u0
∈ W1,2

0 (Ω) and p ∈ L2(0,T ; W1,2
0 (Ω)

)
, using the Cauchy-

Schwarz inequality we have

τ||δh,iv(·, t)||2
L2(V)

≤ C +

∫ t

0
||δh,iv(·, s)||2

L2(V)
ds. (5.1.7)

By Gronwall’s inequality we obtain

||δh,iv(·, t)||2
L2(V)

≤ C, (5.1.8)

for any t ∈ (0,T ]. Moreover, the constant C above does not depend on h, the direction

i, or the subset V . According to Lemma 7.24, pp. 169 in [11], v ∈ W1,2(Ω) for any

t ∈ (0,T ], while the uniform estimate in (5.1.8) shows that v ∈ L2(0,T ; W1,2(Ω)
)
.

Furthermore, on ∂Ω we have p = 0 (in the trace sense). Furthermore, u0 vanishes on

∂Ω as well. Note that (5.1.3) can be interpreted as an ordinary differential equation with



112 5 Equivalent formulations and numerical schemes

unknown v and this equation has a unique solution for any given initial data since pc is

assumed C1. Then uniqueness results for ordinary differential equations guarantee that

the trace of v vanishes on ∂Ω for any t ∈ (0,T ].

In this way we have showed that v ∈ L2(0,T ; W1,2
0 (Ω)

)
and pc(v) ∈ L2(0,T ; W1,2

0 (Ω)
)
.

Moreover, from (5.1.3) we have ∂tv ∈ L2(0,T ; W1,2
0 (Ω)

)
, implying v ∈ W1,2(0,T ; W1,2

0 (Ω)
)
.

�

Proposition 5.1.2 Let u ∈ W1,2(0,T ; W1,2
0 (Ω)

)
solve Problem 1. Then (v, p) ∈ W1,2(0,T ; L2(Ω)

)
×

L2(0,T ; W1,2(Ω)
)

defined as

(v, p) =
(
u, pc(u) + τ∂tu

)
(5.1.9)

solves Problem 2. Conversely, if (v, p) ∈ W1,2(0,T ; L2(Ω)
)
× L2(0,T ; W1,2(Ω)

)
solves

Problem 2, then u = v solves Problem 1.

Proof . “⇒” Let u ∈ W1,2(0,T ; W1,2
0 (Ω)

)
be a solution of Problem 1 and (v, p) defined

in (5.1.9). Then (v, p) ∈ W1,2(0,T ; L2(Ω)
)
× L2(0,T ; W1,2

0 (Ω)
)
, and (5.1.2), (5.1.3) are

satisfied straightforwardly for test functions in L2(0,T ; W1,2
0 (Ω)

)
. Moreover, density ar-

guments show that (5.1.3) also holds for test functions in L2(0,T ; L2(Ω)
)
.

“⇐” Let (v, p) ∈ W1,2(0,T ; L2(Ω)
)
× L2(0,T ; W1,2(Ω)

)
solve Problem 2. By Propo-

sition 5.1.1, v ∈ W1,2(0,T ; W1,2
0 (Ω)

)
. Hence u = v has the desired regularity. Therefore,

∇p = ∇pc(v) + τ∇∂tv,

in L2 sense, and for almost every x and t. Inserting the above into (5.1.2) gives (5.1.1).

�

In a similar fashion we have

Proposition 5.1.3 Let u ∈ W1,2(0,T ; W1,2
0 (Ω)

)
solve Problem 1, then (v, p) ∈ W1,2(0,T ; L2(Ω)

)
×

L2(0,T ; W1,2
0 (Ω)

)
defined as

(v, p) =
(
u, pc(u) + τ∂tu

)
(5.1.10)

solves Problem 3. Conversely, if (v, p) ∈ W1,2(0,T ; L2(Ω)
)
× L2(0,T ; W1,2

0 (Ω)
)

solves

Problem 3, then u = v solves Problem 1.
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Proof . “⇒” As for Proposition 5.1.2, if u ∈ W1,2(0,T ; W1,2
0 (Ω)

)
solves Problem 1,

the (v, p) defined in (5.1.10) satisfies (v, p) ∈ W1,2(0,T ; L2(Ω)
)
× L2(0,T ; W1,2

0 (Ω)
)
, im-

plying (5.1.4). Further, ∂tv =
(
p − pc(v)

)
/τ in L2 sense. Then, replacing u by v and ∂tu

by
(
p − pc(v)

)
/τ in (5.1.1) gives (5.1.5).

“⇐” Let (v, p) ∈ W1,2(0,T ; L2(Ω)
)
×L2(0,T ; W1,2

0 (Ω)
)

solving Problem 3 and u = v,

then u ∈ W1,2(0,T ; L2(Ω)
)

and u(·, 0) = u0. Further, since by definition

τ∂tu + pc(u) = p ∈ L2(0,T ; W1,2
0 (Ω)

)
,

Again using Proposition 5.1.1, we obtain u ∈ W1,2(0,T ; W1,2
0 (Ω)

)
, and the validity of

(5.1.1). �

A direct consequence of Propositions 5.1.1 and 5.1.2 is

Proposition 5.1.4 A pair (v1, p1) ∈ W1,2(0,T ; L2(Ω)
)
× L2(0,T ; W1,2

0 (Ω)
)

solves Pro-

blem 2 iff the pair (v2, p2) ∈ W1,2(0,T ; L2(Ω)
)
× L2(0,T ; W1,2

0 (Ω)) defined as

(v2, p2) = (v1, p1)

solves Problem 3.

According to Propositions 5.1.2, 5.1.3 and 5.1.4, we have the following theorem

Theorem 5.1.1 Problems 1, 2 and 3 are equivalent.

We conclude this section with the following observation. The formulations conside-

red here are equivalent only if the solution u of Problem 1 (and the corresponding v’s)

exists in the space W1,2(0,T ; W1,2
0 (Ω)

)
, whereas p ∈ L2(0,T ; W1,2

0 (Ω)
)
. This regularity

holds in the nondegenerate case, when H is bounded away from 0 and ∞. Whenever H

vanishes for some values of u (the degenerate case), this being a characteristic of many

models used in the subsurface, the weak solution has less regularity (see e.g. [5, 14]).

Specifically, ∂t∇u (and further ∇p) may fail belonging to L2 in the regions where u takes

the degeneracy values. Nevertheless, this lacking regularity is compensated by the vani-

shing of H so that the term H(u)∂t∇u still remains L2. As mentioned before, in this case

the equivalence may not hold. An indication in this sense can be found in [7], where
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the existence of travelling waves for (5.0.3) is proved for one spatial dimension. The

degenerate case does not allow for travelling waves in the classical sense, and requires

an extended concept (the sharp waves) where u is continuous, but its derivative can have

a discontinuity at points where u takes the degeneracy value. Consequently, p becomes

discontinuous there. In this case, difficulties appear in the second equation of (5.0.6),

which suggests that p ∈ W1,2. In the one dimensional situation this also implies its

continuity.

5.1.2 The semidiscrete case

In this section we extend the results obtained previously for the three formulations of the

original problem, and show that the equivalence holds for the time discretization as well.

In this sense we only consider the Euler implicit method. For simplicity, the time step is

taken fixed, but the results can be extended straightforwardly to discretizations based on

a variable/adaptive stepping.

Having shown the equivalence of the different time discrete formulations, the conver-

gence results available for the conformal discretization (see e. g. [1, 8–10, 13]) provide

rigorous convergence results for the other two formulations as well.

To define the time discretization we let N ∈ N, take ∆t = T/N, and tn = n∆t. For the

original formulation in (5.0.3) we consider the following sequence of problems:

Problem 4: Given un−1
∈ W1,2

0 (Ω), find un
∈ W1,2

0 (Ω) such that

un
− un−1

∆t
, φ

 − (
F(un),∇φ

)
+

H(un)∇
pc(un) + τ

un
− un−1

∆t

 ,∇φ = 0, (5.1.11)

for any φ ∈ W1,2
0 (Ω).

Clearly, un approximates the solution u of Problem 1, taken at the time tn. At n = 1

we start with the initial data, u0. In a similar way, for the system in (5.0.5) we have
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Problem 5: Given vn−1
∈ W1,2

0 (Ω), find (vn, pn) ∈ W1,2
0 (Ω) ×W1,2

0 (Ω) such that

vn
− vn−1

∆t
, φ

 − (
F(vn),∇φ

)
+

(
H(vn)∇pn,∇φ

)
= 0, (5.1.12)

(pn, ψ) =
(
pc(vn), ψ

)
+ τ

vn
− vn−1

∆t
, ψ

 , (5.1.13)

for any φ ∈ W1,2
0 (Ω), ψ ∈ L2(Ω).

Finally, the discrete counterpart of (5.0.6) is

Problem 6: Given vn−1
∈ W1,2

0 (Ω), find (vn, pn) ∈ W1,2
0 (Ω) ×W1,2

0 (Ω) such that

vn
− vn−1

∆t
, φ

 − (
F(vn),∇φ

)
+

(
H(vn)∇pn,∇φ

)
= 0, (5.1.14)

(pn, ψ) + τ
(
H(vn)∇pn,∇ψ

)
=

(
pc(vn), ψ

)
+ τ

(
F(vn),∇ψ

)
. (5.1.15)

for any φ ∈ W1,2
0 (Ω), ψ ∈ W1,2

0 (Ω).

As before, when discretizing the system forms the sequence of problems are started

with the initial value, v0
= u0. Note that in Problem 5 it is sufficient to assume that

vn
∈ L2(Ω). Then, (5.1.13) immediately implies that vn

∈ W1,2
0 (Ω). Further, in Problem

6 it is sufficient to assume that vn
∈ L2(Ω) as well.

Similar to the continuous case we have the equivalence of the three formulations in

the time discrete case. To prove these results we only focus on one time step tn and

assume that vn−1
= un−1, i. e. the saturations at tn−1 appearing in Problems 4, 5, and 6

are the same.

Proposition 5.1.5 Let un
∈ W1,2

0 (Ω) solve Problem 4. Then (vn, pn) ∈ W1,2
0 (Ω)×W1,2

0 (Ω)

defined as

(vn, pn) =

un, pc(un) + τ
un
− un−1

∆t

 (5.1.16)

solves Problem 5. Conversely, if (vn, pn) ∈ W1,2
0 (Ω) × W1,2

0 (Ω) solves Problem 5, then

un
= vn solves Problem 4.
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Proof . “⇒” Let un
∈ W1,2

0 (Ω) solve Problem 4 and (vn, pn) be defined in (5.1.16). Since

vn−1
∈ W1,2

0 (Ω), (vn, pn) ∈ W1,2
0 (Ω) × W1,2

0 (Ω). From (5.1.11) and (5.1.16), we have

(5.1.12). Further, (5.1.13) holds for test functions in W1,2
0 (Ω), but this can be extended

to L2 functions by density arguments.

“⇐” Let (vn, pn) ∈ W1,2
0 (Ω) × W1,2

0 (Ω) solve Problem 5 and un
= vn. Note that all

terms in (5.1.13) are in W1,2, therefore the equality holds (in L2 sense and thus in a. e.

sense) for the gradients as well. Since H(un) is essentially bounded, we have

H(un)∇pn
= H(un)

∇pc(vn) + τ∇

vn
− vn−1

∆t

 ,
in L2 sense. Now substituting the above into (5.1.12) gives (5.1.11). �

In the same spirit we have

Proposition 5.1.6 Let un
∈ W1,2

0 (Ω) solve Problem 4. Then (vn, pn) ∈ W1,2
0 (Ω)×W1,2

0 (Ω)

defined as

(vn, qn) =

un, pc(un) + τ
un
− un−1

∆t

 (5.1.17)

solves Problem 6. Conversely, if (vn, pn) ∈ W1,2
0 (Ω) × W1,2

0 (Ω) solves Problem 6, then

un
= vn solves Problem 4.

Proof . “⇒” Let un
∈ W1,2

0 (Ω) solve (5.1.11) and (vn, pn) be defined by (5.1.17). As

for Proposition 5.1.4, (vn, pn) ∈ W1,2
0 (Ω) ×W1,2

0 (Ω) and (5.1.14) holds true. For (5.1.15)

we use the definition of pn into (5.1.11) to eliminate the terms containing the difference

un
− un−1.

“⇐” Let (vn, pn) ∈ W1,2
0 (Ω) × W1,2

0 (Ω) solve Problem 6. Then un
= vn

∈ W1,2
0 (Ω).

Subtracting (5.1.15) from (5.1.14) multiplied by τ gives

(pn, φ) =

pc(un) + τ
un
− un−1

∆t
, φ


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for all φ ∈ W1,2
0 (Ω). Then clearly, pn

= pc(un) + τ un
−un−1

∆t , and the proof is continued as

in Proposition 5.1.4. �

By Proposition 5.1.4 and Proposition 5.1.5, we have the following

Proposition 5.1.7 (vn
1, pn

1) ∈ W1,2
0 (Ω)×W1,2

0 (Ω) solves Problem 5 iff (vn
2, pn

2) ∈ W1,2
0 (Ω)×

W1,2
0 (Ω) defined as

(vn
1, pn

1) = (vn
2, pn

2) (5.1.18)

solves Problem 6.

Therefore, we have the following theorem

Theorem 5.1.2 Problems 4, 5 and 6 are equivalent.
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Chapter 6

A fully discrete scheme

In Chapter 2, we have solved the pseudo-parabolic equation (2.4.1) by using a semi-

implicit Euler finite volume scheme, where a direct approximation of the term involving

the mixed derivative is included. Here we introduce another numerical scheme, which is

inspired by the equivalent formulations given in Chapter 5. We introduce the pressure p

as an additional unknown and solve the equation (2.4.1) as a system, avoiding approxi-

mating the third order mixed derivative directly. In the following, we will describe the

scheme for one-dimensional spatial case in details.

6.1 The numerical schemes

Recalling the scaling (2.4.3) in Chapter 2, we consider the equation

∂tu + ∂x f (u) = ∂x

(
H(u)∂x(u + τ∂tu)

)
. (6.1.1)

In order to make the context complete, we repeat the scheme introduced in Chapter 2

and name it Scheme 1 here. With ∆x,∆t denoting the spatial and time step, the Scheme

1 is described in the following.
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Scheme 1.

un
i − un−1

i

∆t
+

Fn−1(ui, ui+1) − Fn−1(ui−1, ui)
∆x

= 0, (6.1.2)

where the numerical flux Fn−1(ui, ui+1) is defined by

Fn−1(ui, ui+1) = f (un−1
i ) − Hn−1

i+ 1
2

un
i+1 − un

i

∆x
− τHn−1

i+ 1
2

un
i+1 − un

i − un−1
i+1 + un−1

i

∆x∆t
.

For the coefficient Hn−1
i+ 1

2
, we use the arithmetic average value:

Hn−1
i+ 1

2
=

1
2

(
H(un−1

i ) + H(un−1
i+1 )

)
.

Let p = u + τ∂tu, we transform (6.1.1) into a system p − u + τ∂x f (u) = τ∂x

(
H(u)∂x p

)
,

p = u + τ∂tu.
(6.1.3)

We introduce the following

Scheme 2.
−τ

Hn−1
i+ 1

2

pn
i+1−pn

i
∆x − Hn−1

i− 1
2

pn
i −pn

i−1
∆x

∆x
+ pn

i − θu
n
i = (1 − θ)un−1

i − τ
f (un−1

i ) − f (un−1
i−1 )

∆x
,

pn
i = un

i + τ
un

i − un−1
i

∆t
.

(6.1.4)

In this way, we only need to approximate the derivatives up to order two. Note here

we use the upwind discretization of the first order term ∂x f (u). Further, pn
i , u

n
i are the

estimated values of p(i∆x, n∆t), u(i∆x, n∆t) with i = 1, · · · ,N. θ is a positive number

satisfying 0 < θ < 1. For Hn−1
i+ 1

2
we use the same as Scheme 1. Rewriting (6.1.4) gives


−∆tpn

i + (∆t + τ)un
i = τun−1

i ,

−τHn−1
i+ 1

2
pn

i+1 +
(
τ(Hn−1

i+ 1
2

+ Hn−1
i− 1

2
) + (∆x)2

)
pn

i − τHn−1
i− 1

2
pn

i−1

−θ(∆x)2un
i = (1 − θ)(∆x)2un−1

i − τ∆x
(

f (un−1
i ) − f (un−1

i−1 )
)
.

(6.1.5)

In the vector form, this becomes

MUn
= F (Un−1), (6.1.6)



6.2 The test cases 123

where Un
= (un

1, · · · , u
n
N , pn

1, · · · , pn
N)T , and M is a 2N × 2N matrix defined as

M =

 A B

C D

 ,
with A = (∆t + τ)I, B = −∆tI,C = −θ(∆x)2I (I is the N × N identity matrix), whereas

the N × N matrix D is defined by

D1,1 = −τH(un−1
1 ), D1,2 = τH(un−1

1 ) + (∆x)2,

Di,i−1 = −τHn−1
i−1/2, Di,i = τ(Hn−1

i−1/2 + Hn−1
i+1/2) + (∆x)2, Di,i+1 = −τHn−1

i+1/2,

DN,N−1 = −τH(un−1
N ), DN,N = τH(un−1

N ) + (∆x)2,

for i = 2, · · · ,N − 1 and all the other elements of D are zero. Whenever 0 < θ < 1, the

matrix M is strictly diagonal dominant, hence it is invertible. As in Chapter 5, one can

prove the equivalence between Schemes 1 and 2 under the assumption H is essentially

bounded. To test Scheme 2, in the following we will give two numerical results.

6.2 The test cases

The tests are carried out for two situations. In the first case, H is identically 1, so

the higher order terms are linear; whereas the second case is nonlinear and possibly

degenerate.

6.2.1 The linear case

We take here H(u) = 1 for all u. For the function f , we take f (u) = u2

u2
+2(1−u)2 when

u ∈ [0, 1], f (u) = 0 if u < 0 and f (u) = 1 if u > 1. To check the numerical results, we

use the computations in [2] as benchmarks. As in [2], we show the graphs by scaling

the time t here. We compare the results; for τ = 5, ur = 0, with two different inflow

values: uB = 0.9 and uB = 0.55 (see Figure 6.1). The solid line is computed by solving

the equation directly, whereas the dashed line is computed by solving the equation as

a system. The computation time is t = 250. As we can see in Fig. 6.1, the results

computed by Scheme 2 agree well with the benchmarks.
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Figure 6.1: Comparison of the numerical results provided by Schemes 1 and 2, with τ = 5,
ur = 0 and for two different inflow values: uB = 0.9 (left) and uB = 0.55 (right)

6.2.2 The nonlinear case

Here we take H(u) =
u1.5(1−u)1.5

u1.5
+2.5(1−u)1.5 and f (u) = u1.5

u1.5
+2.5(1−u)1.5 for 0 ≤ u ≤ 1. Further

H(u) = f (u) = 0 if u < 1, and H(u) = 0, f (u) = 1 if u > 1. Here we use the

numerical results in [1] (also see Chapter 2) as benchmarks. The two numerical results

shown in Fig 6.2 are computed by taking τ = 0.1, ur = 0.1, with inflow value uB = 1

(left), respectively τ = 0.1, ur = 0 with inflow value uB = 0.9 (right). The solid and

dashed lines are computed by using Schemes 1 and 2 respectively. Here we compute the

solutions on the spatial interval (−5, 25). Again, a good agreement can be observed.
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Figure 6.2: Comparison of the numerical results provided by Schemes 1 and 2: τ = 0.1, ur = 0.1
with inflow value uB = 1 (left), τ = 0.1, ur = 0 with inflow value uB = 0.9 (right)

Based on the tests we compare the two schemes, which are equivalent. However, the

advantages of Scheme 2 are:
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1. There is no need to approximate the mixed third order derivative, we only deal with

first and second derivatives being involved.

2. Scheme 2 is easier to implement than Scheme 1.

The disadvantages of Scheme 2 are:

1. It requires solving a system instead of one equation, which requires more computation

resources.

2. It is not clear whether the equivalence of the schemes still holds in the degenerate

case.
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Appendix A

The proof of Remark 2.1.3

In Remark 2.1.3 of Chapter 2, we mentioned that f is ‘convex-concave’ when 0 < p <

1, 0 < q < 1. Here we prove the result for p > 0, q > 0:

Lemma: Assume p > 0, q > 0,M > 0 and f (u) = u1+p

u1+p
+M(1−u)1+q . Consider u ∈ [0, 1],

then there exists a unique u∗ ∈ (0, 1) such that f ′′(u∗) = 0, f ′′(u) > 0 for 0 < u < u∗ and

f ′′(u) < 0 for u∗ < u < 1.

Proof . Set f1 = u1+p and f2 = M(1 − u)1+q, we have

f1 > 0, f ′1 = (p + 1)up > 0, f ′′1 = (p + 1)pup−1 > 0,

and

f2 > 0, f ′2 = −M(q + 1)(1 − u)q < 0, f ′′2 = Mq(q + 1)(1 − u)q−1 > 0,

whenever 0 < u < 1. Therefore for f , we have

f ′(u) =
f ′1(u) f2(u) − f1(u) f ′2(u)(

f1(u) + f2(u)
)2 > 0. (A.0.1)
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Further,

f ′′(u) =
f ′′1 (u) f2(u) − f1(u) f ′′2 (u) − 2

(
f ′1(u) f2(u) − f1(u) f ′2(u)

)(
f ′1(u) + f ′2(u)

)
(

f1(u) + f2(u)
)3 .(A.0.2)

The above lemma means there is only one zero point for f ′′ when 0 < u < 1. We prove

this by an equivalent statement: for any λ > 0, there exists at most two solutions for

equation f ′(u) = λ in (0, 1).

To do so, define a(u) = f ′1(u) f2(u) − f1(u) f ′2(u), b(u) =
(

f1(u) + f2(u)
)2

. Then

f ′(u) = C iff a(u) = λb(u). (A.0.3)

Consider g(u) = a(u) − λb(u), then

g(u) = M(p+1)up(1−u)q+1
+M(q+1)up+1(1−u)q

−λ
(
u2p+2

+2Mup+1(1−u)q+1
+M2(1−u)2q+2

)
.

Dividing by up(1 − u)q, we have

g(u) = 0 iff M(p+1)(1−u)+(q+1)u−λ
(
up+2(1−u)−q

+2Mu(1−u)+M2u−p(1−u)q+2
)

= 0.

Denote the expression on the left by h, we have

h′′(u)/(−λ) = (p + 2)(p + 1)up(1 − u)−q
+ (p + 2)qup+1(1 − u)−q−1

+(p + 2)qup+1(1 − u)−q−1
+ q(q + 1)up+2(1 − u)−q−2

+M2(p + 1)pu−p−2(1 − u)−q−2
+ M2 p(q + 2)u−p−1(1 − u)q+1

+M2 p(q + 2)u−p−1(1 − u)−q−1
+ M2(q + 2)(q + 1)u−p(1 − u)q

− 4M

> (p + 2)(p + 1)up(1 − u)−q
+ M2(q + 2)(q + 1)u−p(1 − u)q

− 4M

≥ 2M
√

(p + 2)(p + 1)(q + 2)(q + 1) − 4M > 0

Therefore h(u) = 0 has at most two solutions. Therefore the same holds for g,

implying that f ′(u) = λ for at most 2 values of u . �



Appendix B

The Div-Curl Lemma

.

In Chapter 4, we have used an important compensated-compactness argument, the Div-

Curl Lemma. It was introduced by F. Murat1 1978, and has various forms. Here we give

the classical form and the proof, for more details we refer to L.C. Evans2.

Notation. If w ∈ L2(U;Rn), w = (w1, ...,wn), we define curl w ∈ W−1,2(U; Mn×n) by

(curlw)i j := wi
x j
− w j

xi
, for 1 ≤ i, j ≤ n. (B.0.1)

Here Mn×n denotes the set of n × n matrices.

Div-Crul Lemma: Let {vk}k∈N, {wk}k∈N be two bounded sequences in L2(U;Rn) such

that

1. {divvk}k∈N lies in a compact subset of W−1,2(U),

2. {curlwk}k∈N lies in a compact subset of W−1,2(U; Mn×n).
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Suppose further vk ⇀ v, wk ⇀ w weakly in L2(U;Rn). Then

vk · wk → v · w, (B.0.2)

in the sense of distribution.

Proof . Consider for each k = 1 (k ∈ N), the vector field uk ∈ W2,2(U;Rn) solving −∆uk = wk, in U,

uk = 0, on ∂U.
(B.0.3)

in the weak sense. Since {wk}k∈N is bounded in L2(U;Rn), {uk}k∈N is bounded in W2,2(U;Rn).

Now set zk := −divuk, yk := wk−Dzk (k ∈ N). Then {zk}k∈N is bounded in W1,2(U).

Additionally, if 1 ≤ i ≤ n,

yi
k = wi

k − zk,xi

=

n∑
j=1

−ui
k,x j x j

+

n∑
j=1

u j
k,xi x j

=

n∑
j=1

(u j
k,xi
− ui

k,x j
)x j
.

(B.0.4)

In view of hypothesis 2, we infer from (B.0.3) that {curluk}k∈N lies in a compact subset

of W1,2
loc (U; M × M). Thus from (B.0.4) it follows that {yk}k∈N is contained in a compact

subset of L2
loc(U;Rn).

Hence we may suppose, upon passing to subsequences as necessary, that

zk ⇀ z weakly in W1,2(U), yk → y strongly in L2
loc(U;Rn). (B.0.5)

where z = −divu, y = w − Dz, for u ∈ W2,2(U;Rn) solving −∆u = w, in U,

u = 0 on ∂U.
(B.0.6)

Now, if φ ∈ C∞0 (U), we have∫
U

vk · wkφdx =

∫
U

vk · (yk + Dzk)φdx. (B.0.7)



133

According to (B.0.5),∫
U

vk · ykφdx =

∫
U

v · yφdx. (B.0.8)

In addition, hypothesis 1 and (B.0.5) allow us to compute∫
U

vk · Dzkφdx = −

∫
U

vk · Dφzkdx− < divvk, zkφ >

→ −

∫
U

v · Dφzdx− < divv, zφ >=

∫
U

v · Dzφdx.
(B.0.9)

Here <, > is the pairing of W−1,2(U) and W1,2
0 (U). Thus∫

U
vk · wkφdx→

∫
U

v · (y + Dz)φdx =

∫
U

v · wφdx. (B.0.10)
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Appendix C

The Vitali Convergence Theorem

The Vitali Convergence Theorem is a generalization of the Dominated Convergence

Theorem of Henri Lebesgue. It is named after Italian mathematician Giuseppe Vitali.

It is useful whenever a dominating function cannot be found, so the the Dominated

Convergence Theorem cannot be applied directly.

Vitali Convergence Theorem: Let (X,Σ, µ) be a measure space, p ≥ 1 and let

fn : X → R belong to Lp(X,Σ, µ) for each n ∈ N. Then fn → f
(
f ∈ Lp(X,Σ, µ)

)
if and

only if

• fn converges in measure to f .

• | fn|
p are uniformly integrable in the sense that,

for every ε > 0, there exists some t ≥ 0 such that, for all n ∈ N,

∫
| fn |>t
| fn(x)|pdµ(x) < ε, (C.0.1)



136 C The Vitali Convergence Theorem

and for every ε > 0, there exists some measurable set E ⊆ X with finite

µ-measure such that, for all n ∈ N,∫
X\E
| fn(x)|pdµ(x) < ε. (C.0.2)

Proof . “⇒” Fix t > 0, define fmn = | fm − fn| and Emn := { fmn ≥ t}. Then

µ(Emn)
1
p =

1
t
||t1Emn

|| ≤
1
t
|| fmn|| → 0, as m, n→ +∞. (C.0.3)

Here 1 is the characteristic function. Choose N such that || fn − fN || < ε for all n ≥ N,

then the family {| f1|
p, ..., | fN−1|

p, | fN |
p
} is uniformly integrable because it consists of only

finitely many integrable functions. So for every ε > 0, there is δ > 0 such that µ(E) < δ

implies || fn1(E)|| < ε for n ≤ N. On the other hand, for n > N,

|| fn1E || ≤ ||( fn − fN)1E || + || fN1E || < 2ε, (C.0.4)

for the same set E, and thus the entire infinite sequence {| fn|
p
} is uniformly integrable

too.

Select N such that || fn − fN || < ε for all n ≥ N. Let φ be a simple function such that

|| fN − f || < ε. Then || fn − φ|| < 2ε for all n ≥ N. Let AN be the support of φ, which must

have finite measure. It follows that

|| fn1X\AN
|| = || fn − fn1AN

|| ≤ || fn − φ|| + ||φ − fn1AN
||

= || fn − φ|| + ||(φ − fn)1AN
||

< 2ε + 2ε.

(C.0.5)

For each n < N, we can similarly construct sets An of finite measure, such that || fn1X\An
|| <

ε. If we set A = ∪
N
j=1Ai, a finite union, then A has finite measure, and clearly ||| fn1X\A| <

4ε for any n.

“⇐”. For any set B,

|| fmn|| = || fmn1B\Emn
|| + || fmn1Emn

|| + || fmn1X\B||. (C.0.6)

Choose B of finite measure such that || fn1X\B|| < ε for every n. Then || fmn1X\B|| < 2ε.

Let t = ε

µ(B)1/p > 0, choose δ > 0 so that || fn1E || < ε whenever µ(E) < δ. Then take

N such that if m, n > N, we have µ(Emn) < δ. It follows immediately || fmn1Emn
|| < 2ε.

Finally, || fmn1A\Emn
|| ≤ tµ(A)1/p

= ε, since fmn < t on the complement of Emn. Hence

|| fmn|| < 5ε for m, n ≥ N. �



Summary

Dynamic Capillarity in Porous Media - Mathematical Analysis

In this thesis we investigate pseudo-parabolic equations modelling the two-phase

flow in porous media, where dynamic effects in the difference of the phase pressures are

included. Specifically, the time derivative of saturation is taken into account.

The first chapter investigates the travelling wave (TW) solutions, the existence and

uniqueness of smooth TW solutions are proved by ordinary differential equation tech-

niques. The existence depends on the parameters involved. There is a threshold value

for one of the parameters, the damping coefficient. When the damping coefficient is

beyond the threshold value, smooth TW solutions do not exist any more. Instead, non-

smooth (sharp) TW solutions are introduced and their existence is shown. The theore-

tical results for both smooth and non-smooth TW solutions are confirmed by numerical

computations.

In the next chapter, the analysis is extended to weak solutions. In a simplified case

where the mixed (time and space) order-three derivative term is linear, the existence

and uniqueness of a weak solution are obtained. Next, the complex model involving

nonlinear and possibly degenerate capillary induced diffusion function is considered.

Then the existence is obtained by employing regularization techniques, compensated

compactness and equi-integrability arguments.

Further, inspired by the nature of the capillary pressure, different formulations of the

equation are introduced and their equivalence is proved.

Finally, two fully discrete numerical schemes are implemented, and compared to

each other by means of two specific examples.





Samenvatting

Dynamische capillariteit in poreuze media - wiskundige analyse

In dit proefschrift beschouwen we pseudo-parabolische vergelijkingen als
model voor twee-fasestromingen door poreuze media, inclusief de dynamische
effecten als gevolg van drukverschillen tussen de fasen. In het bijzonder model-
leren we deze effecten door de tijdsafgeleide van de verzadiging mee te nemen.

Het eerste hoofdstuk gaat over lopende-golf-oplossingen (LG) van de ver-
gelijking. Het bestaan en de uniciteit van gladde LG-oplossingen wordt bewe-
zen met technieken uit de gewone differentiaalvergelijkingen. Het bestaan van
zulke oplossingen hangt af van de parameters in kwestie. De dempingscoëfficiënt
heeft een kritieke waarde; als deze waarde wordt overschreden bestaan er geen
gladde LG-oplossingen meer. Voor dat geval hebben we niet-gladde (scherpe)
LG-oplossingen geı̈ntroduceerd, en hebben we het bestaan ervan aangetoond. De
theoretische resultaten voor zowel gladde en niet-gladde LG-oplossingen worden
bevestigd door numerieke berekeningen.

In het volgende hoofdstuk breiden we de analyse uit naar zwakke oplossin-
gen. In het gesimplificeerde geval waarin de samengestelde derde-orde (ruimte-
en tijds-) afgeleide lineair is, wordt het bestaan en de uniciteit van een zwakke af-
geleide verkregen. Daarnaast hebben we het uitgebreidere model bekeken waarin
een niet-lineaire en mogelijk gedegenereerde functie voorkomt als gevolg van de
capillariteit. In dat geval wordt het bestaan van zwakke oplossingen verkregen
door middel van regularisatietechnieken, gecompenseerde compactheidstechnie-
ken en equi-integreerbaarheidsargumenten.
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Verder introduceren we verschillende formuleringen van de vergelijking, geı̈ns-
pireerd op de aard van capillaire druk, en hebben we de equivalentie van deze
formuleringen bewezen.

Tenslotte zijn er twee volledig discrete numerieke methoden geı̈mplemen-
teerd, en met elkaar vergeleken aan de hand van twee specifieke voorbeelden.
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