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Selecting Uncertainty Structures in
Identification for Robust Control with an

Automotive Application

Tom Oomen ∗ Okko Bosgra ∗

∗ Eindhoven University of Technology, PO Box 513, Building WH, 5600
MB Eindhoven, The Netherlands.

Abstract: The selection of uncertainty structures is an important aspect in system identification
for robust control. The aim of this paper is to investigate the consequences for multivariable
systems. Hereto, first a theoretical analysis is performed that establishes the connection between
the associated model set and the robust control criterion. Second, an experimental case study
for an automotive application confirms these connections. In addition, the experimental results
provide new insights in the shape of associated model sets by using a novel validation procedure.
Finally, the improved connections are confirmed through a robust controller synthesis. Both
the theoretical and experimental results confirm that a recently developed robust-control-
relevant uncertainty structure outperforms general dual-Youla-Kučera uncertainty, which in
turn outperforms traditional uncertainty structures, including additive uncertainty.

1. INTRODUCTION

Attempts to connect system identification and robust
control have led to many new results. First, it has led
to approaches that consider deterministic assumptions on
the noise, see Chen and Gu [2000]. Second, in a stochastic
setting, connections between prediction error identification
and robust control have been developed, and also the role of
experimental conditions and experiment design have been
investigated, see, e.g., Hjalmarsson [2005], Gevers [2005].
Third, iterative identification and control design approaches
have been developed. Initially, these iterative approaches
were based on nominal models, see Schrama [1992], Gevers
[1993], and later extended in, e.g., de Callafon and Van den
Hof [1997], to iterative identification and robust control
design with guaranteed monotonic convergence.

An essential aspect in all these system identification ap-
proaches for robust control is the choice of uncertainty struc-
ture. Besides the use of parameter uncertainty, uncertainty
structures in robust control have been further developed
towards system identification. First, (inverse) additive and
multiplicative uncertainty structures have been extended
towards (normalized) coprime factor perturbations, see
McFarlane and Glover [1990], to deal with closed-loop
operation and to accommodate the control goal. These
coprime factor-based uncertainty structures have been
further refined towards dual-Youla uncertainty structures
in, e.g., Anderson [1998], Douma and Van den Hof [2005],
that improve the connection between identification and
control by explicitly considering the closed-loop operation
of the system. Recently, in Oomen and Bosgra [2012], these
coprime factor-based uncertainty structures are further
refined to explicitly connect the size of uncertainty and
the control criterion. An essential advantage of the latter
structure is that it provides an inherent scaling of the un-
certainty channels that is essential for the nonconservative
identification of model sets.

Although several uncertainty structures have been proposed
in the area of system identification for robust control and
several theoretical properties have been proved, at present
a thorough comparison, especially taking into account
experimental data, has not yet been established. In Jung

et al. [2005], several uncertainty structures are experimen-
tally compared on an automotive application. However, no
explicit connection is established with identification and
the results are not theoretically supported. In Douma and
Van den Hof [2005], it is observed that if the nominal model
and the weighting filters are allowed to vary, then many
of these uncertainty structures can be explicitly related in
terms of circular bounds in the frequency domain. However,
such a frequency domain analysis does not explicitly address
stability aspects, which is essential if H∞-norm-bounded
uncertainty is used. In addition, the present paper aims to
analyze the consequences of uncertainty structures for a
fixed nominal model.

The main contribution of this paper is to provide a
theoretical and experimental comparison of uncertainty
structures in robust control for a multivariable automotive
application. To enable a fair comparison, the nominal model
is pre-specified and identical experimental data is used for
uncertainty modeling. To provide a solid theoretical frame-
work to support the results, the identification and control
criteria are connected using results from iterative identifi-
cation and robust control (Sec. 2). Then, an overview of
uncertainty structures in identification for robust control is
provided and their properties are thoroughly analyzed from
a theoretical perspective (Sec. 3). Next, these structures
are experimentally compared from a system identification
for robust control perspective (Sec. 4). Specifically, (i) the
robust-control-relevant identification criterion, see Sec. 2, is
evaluated; (ii) a novel visualization procedure, see Oomen
et al. [2010a], is employed to generate Bode diagrams,
providing insight in the characterization of control-relevant
system properties; and (iii) the model sets are evaluated in
their ability to deliver a high performance robust controller.
Finally, the obtained results are discussed (Sec. 5).

2. PROBLEM FORMULATION

2.1 Setup

Throughout, the control criterion
J (P,C) := ‖WT (P,C)V ‖∞ (1)

is considered, where W = diag(Wy,Wu), V = diag(V2, V1),
and W,V,W−1, V −1 ∈ RH∞ are user-defined weighting
filters. In addition,

16th IFAC Symposium on System Identification
The International Federation of Automatic Control
Brussels, Belgium. July 11-13, 2012

978-3-902823-06-9/12/$20.00 © 2012 IFAC 601 10.3182/20120711-3-BE-2027.00204



T (P,C) =

[
P
I

]
(I + CP )−1 [C I] ,

where T (P,C) :

[
r2
r1

]
7→
[
y
u

]
, see Fig. 1. The criterion (1) in

conjunction with the four-block encompasses many relevant
H∞-design problems, including the loop-shaping approach
in McFarlane and Glover [1990], and facilitates the synthesis
of internally stabilizing controllers. The criterion (1) is
formulated such that it is to be minimized for the true
system Po, i.e., Co = arg minC J (Po, C).

The key idea in robust control is to consider a model set
P such that

Po ∈ P. (2)
Consequently, the robust performance controller design

CRP = arg min
C
JWC(P, C) (3)

JWC(P, C) : = sup
P∈P
J (P,C),

is considered, leading to the performance guarantee

J (Po, C
RP) ≤ JWC(P, CRP). (4)

The main motivation for this paper stems from the
observation that the resulting performance guarantee in (4)
hinges on the shape and size of the model set P. The key
aspect in identification for robust control is to identify a
model set P such that the bound (4) is as small as possible.

Throughout the paper, it is assumed that a nominal model
P̂ that approximates Po is given. In addition, it is assumed
that the model set P is constructed by connecting an H∞-
norm-bounded perturbation ∆u ∈ ∆u ⊆ RH∞ to the
nominal model, i.e.,

P =
{
P
∣∣P = Fu(Ĥ(P̂ ),∆u),∆u ∈∆u

}
, (5)

where Ĥ(P̂ ) contains the nominal model P̂ and the
uncertainty structure, see Sec. 3 for details. The model
uncertainty set

∆u := {∆u|‖∆u‖∞ ≤ γ} (6)
is considered. It is assumed that ∆u contains multivariable
operators with suitable dimensions. Furthermore, to facil-
itate the exposition and to enable a fair comparison, no
additional weighting filters are assumed in (6). The aspect
of weighting filters is further discussed in Sec. 5.

Notation. The pair {N,D} is an RCF of P if i) P = ND−1,
ii) N,D ∈ RH∞, and iii) ∃X,Y ∈ RH∞ such that XN +

Y D = I. The pair {Ñ , D̃} is an LCF of P if {ÑT , D̃T } is

an RCF of PT . In addition, the pair {Ñ , D̃} is an LCF
with co-inner numerator of P if it is an LCF of P and, in
addition, ÑÑ∗ = I.

2.2 Problem formulation

The goal of this paper is to analyze the consequences of
the choice of uncertainty structures in the identification
of a multivariable system from experimental data in its
ability to deliver a small upper bound in (4). An approach
to address this problem is to compute CRP, see (3), for
various uncertainty structures and to compare the achieved
robust performance in (4). However, the results of such an
approach will highly depend on the considered application
and do not provide insight in the underlying mechanism.

To provide an underlying theoretical framework for compar-
ing model sets, use is made of the fact that identification
and uncertainty modeling is generally performed in closed-
loop with a given, non-optimal controller Cexp implemented

C P

−

r2

r1 u

ye

Fig. 1. Feedback interconnection.

to stabilize the system or to meet safety requirements. Next,
suppose that a certain uncertainty structure is selected that
leads to a model set P such that (2) is satisfied. Then, an
approach to compare different model sets is to evaluate
their worst-case performance

JWC(P, Cexp). (7)

The motivation for considering (7) stems from the fact that
(3) directly implies the bound

JWC(P, CRP) ≤ JWC(P, Cexp). (8)

Thus, given two model sets P1 and P2, if JWC(P1, Cexp) <
JWC(P2, Cexp), then (8) implies that P1 has a tighter
upper bound compared to P2 regarding the resulting robust
performance. Note that this upper bound does not imply
an ordering in the robust performance as is achieved by
CRP(P1) and CRP(P2). However, extensive experimental
results, as is also supported by the results in Sec. 4, reveal
that JWC(P1, Cexp) < JWC(P2, Cexp) typically leads to
JWC(P1, CRP(P1)) < JWC(P2, CRP(P2)).

Furthermore, the minimization of (7) over P, subject to
(2), is at the heart of iterative identification and robust
control approaches, including de Callafon and Van den Hof
[1997], Oomen and Bosgra [2012]. An important advantage
of the criterion (7) is that the robust control design (3) and
identification problem (7) may be solved alternately, leading
to a monotonously converging iterative procedure Bayard
et al. [1992]. In this paper, the criterion (7) is adopted
to evaluate the consequences of the choice of uncertainty
structure, see (5), for a pre-specified model P̂ .

As a final aspect, the experimental conditions directly
influence the size of model uncertainty. To enable a
fair comparison, the same data set is used for different
uncertainty structures. It is emphasized that the results
in this paper are largely independent of the employed
uncertainty modeling approach.

Next, several uncertainty structures are surveyed and
evaluated theoretically in their ability to minimize (7).

3. IDENTIFICATION-RELATED UNCERTAINTY
STRUCTURES FOR ROBUST CONTROL

In this section, several uncertainty structures that arise in
system identification for robust control are presented and
analyzed. Each of these uncertainty structures gives rise to
an uncertain model set that can be cast as an LFT, see (5).
Hence, the performance of the model set, interconnected
with Cexp follows from the construction of a generalized
plant, see [Skogestad and Postlethwaite, 2005, Sec. 3.8]

JWC(P, Cexp) = sup
∆∈∆u

‖Fu(M̂,∆u)‖∞, (9)

where

M̂(Ĥ, Cexp) =

[
M̂11 M̂12

M̂21 M̂22

]
. (10)

The matrix M̂ in (10) depends on the uncertainty structure

Ĥ as chosen in (5). In the forthcoming sections, several
uncertainty structures in identification for robust control
are evaluated in their (i) capability to satisfy (2), and
(ii) associated worst-case performance in (7) and (9).
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3.1 Traditional uncertainty structures for robust control

Commonly, (inverse) additive and (inverse) multiplicative
uncertainty structures are used in robust controller designs.
Firstly, consider a multivariable model set based on additive
uncertainty that is given by

PADD := {P |P = P̂ + ∆u,∆u ∈∆u}, (11)

where all considered systems have appropriate dimensions.
The corresponding Ĥ(P̂ ) is given by

ĤADD =

[
0 I
I P̂

]
,

whereas direct computations reveal that the worst-case
performance in (9) is given by

JWC(PADD, Cexp) = sup
∆u∈∆u

∥∥M̂ADD
22 +

M̂ADD
21 ∆u(I − M̂ADD

11 ∆u)−1M̂ADD
12

∥∥
∞
,

(12)

for a certain M̂ADD, see (10), with in general M̂ADD
11 6=

0. Hence, the worst-case performance associated with
PADD, see (12), is thus arbitrary and may in fact become
unbounded for a bounded ∆u ∈∆u. From this perspective,
such additive uncertainty structures do not provide a
useful bound in (8). In fact, similar results hold for all
uncertainty structures in [Zhou et al., 1996, Table 9.1],
including (inverse) multiplicative structures.

Besides the absence of a finite upper bound in (8), a key
shortcoming of additive and multiplicative uncertainty
structures involves the fact that the constraint (2) may not
hold if such uncertainty structures are used. For instance,
from (11) it is immediate that the additive uncertainty

structure cannot deal with uncertain unstable poles of P̂ ,
e.g., if Po is unstable, then for a stable model P̂ , it holds
that P̂ + ∆u ∈ RH∞, hence (2) cannot be satisfied.

3.2 Towards coprime-factor based uncertainty structures

To ensure that the constraint in (2) holds for a certain
∆u ∈∆u ⊆ H∞, perturbations on coprime factors can be
considered, i.e.,

PCF
= {P |P = (N̂ + ∆N )(D̂ + ∆D)

−1
, ‖
[
∆

T
N ∆

T
D

]T
‖∞ ≤ γ}, (13)

where {N̂ , D̂} is an RCF of P̂ . In fact, certain coprime
factorizations have a close connection to robustness in the
graph and (ν-) gap metric, see Georgiou and Smith [1990]
and Vinnicombe [2001]. Although these guarantee that the
constraint (2) is satisfied for at least one ∆u ∈ RH∞,
such uncertainty structures lead to the general worst-
case performance expression in (12). This results follows

immediately since if P̂ ∈ RH∞, then {P̂ , I} is an RCF

of P̂ . Hence, the coprime factor uncertainty structure
encompasses additive uncertainty as a special case. Hence,
in general these coprime factor perturbations do not
necessarily lead to finite bounds in the sense of (8).

3.3 Dual-Youla-Kučera uncertainty structures

To ensure that both the constraint (2) holds and that the
bound in (8) is finite, the dual-Youla-Kučera uncertainty
structure has been considered in, e.g., Anderson [1998],
Douma and Van den Hof [2005]. Specifically,

PDY :=

{
P
∣∣P =

(
N̂ +Dc∆u

)(
D̂ −Nc∆u

)−1

,∆u ∈∆u

}
,

(14)

where the pairs {N̂ , D̂} and {Nc, Dc} are any RCF of

P̂ and Cexp, respectively. The key point is that Po by
definition corresponds to a ∆u ∈ H∞. The model set PDY

leads to

ĤDY =

[
D̂−1Nc D̂−1

Dc + P̂Nc P̂

]
and

M̂DY(P̂ , Cexp) =

[
0 (D̂ + CexpN̂)−1

[
Cexp I

]
V

W

[
Dc
−Nc

]
WT (P̂ , Cexp)V

]
(15)

Interestingly, (15) can be written as

JWC(PDY, Cexp) = sup
∆u∈∆u

∥∥M̂22 + M̂21∆uM̂12

∥∥
∞
, (16)

which is an affine function of ∆u and hence bounded for
all ∆u ∈∆u. However, it is emphasized that M̂12 and M̂21
in (16) are frequency-dependent and multivariable transfer
function matrices. Consequently, the bound in (16) and
(8) is finite but in general arbitrary. Thus, the dual-Youla-
Kučera model uncertainty structure, which connects the
perturbations on the coprime factors in (13) through the
controller Cexp, is especially useful from a robust stability
perspective, since it excludes candidate models that are
not stabilized by Cexp.

3.4 Uncertainty structures for achieving robust performance

In Oomen and Bosgra [2012], a new model uncertainty
structure has been presented that has distinct advantages
from a robust performance perspective. A key ingredient
of this uncertainty structure is a new coprime factoriza-
tion that arises in a novel connection between control-
relevant identification of nominal models and coprime
factor identification, extending and providing new insights
in earlier results, including Schrama [1992]. This robust-

control-relevant coprime factorization of P̂ is given by[
N̂RCR

D̂RCR

]
=

[
P̂
I

]
(D̃e + Ñe,2V

−1
2 P̂ )−1,

where the pair (
[
Ñe,2 Ñe,1

]
, D̃e) is an LCF with co-inner

numerator of Cexp, see Zhou et al. [1996]. A second
ingredient is a certain (Wu,Wy)-normalized RCF, see
Oomen and Bosgra [2012]. Specifically, the pair {NW

c , DW
c }

is a (Wu,Wy)-normalized RCF of C if it is an RCR and, in
addition, (WuNc)

∗WuNc + (WyDc)
∗WyDc = I.

Next, by employing the specific robust-control-relevant
coprime factorization {N̂RCR, D̂RCR} of P̂ in conjunc-
tion with a (Wu,Wy)-normalized RCF of Cexp, and equa-
tion (14), a new model set is obtained:

PRCR
:=

{
P

∣∣P =
(
N̂

RCR
+D

W
c ∆u

)(
D̂

RCR −NW
c ∆u

)−1
,∆u ∈ ∆u

}
,

(17)

The robust-control-relevant model set PRCR leads to

ĤRCR =

[
(D̂RCR)−1NW

c (D̂RCR)−1

DW
c + P̂NW

c P̂

]
and

M̂
RCR

(P̂ , C
exp

) =

[
0 (D̂

RCR
+ C

exp
N̂

RCR
)
−1
[
C

exp
I
]
V

W

[
D

W
c

−NW
c

]
WT (P̂ , C

exp
)V

]
(18)

The result (18) leads to a significantly stronger result when
compared to (16). Specifically, a main result of Oomen and
Bosgra [2012] reveals that
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JWC(PRCR, Cexp) ≤ ‖M̂RCR
22 ‖∞ + sup

∆u∈∆u

‖∆u‖∞

= J (P̂ , Cexp) + γ,
(19)

where γ is defined in (6). The robust-control-relevant model
uncertainty structure associated with PRCR connects the
size of model uncertainty and the control criterion. This has
significant advantages when compared to alternative model
uncertainty structures, including PADD and PRCR. Firstly,
the robust-control-relevant model uncertainty structure
introduces an appropriate frequency scaling of the model
uncertainty channels, hence M̂12 and M̂21 do not appear
in (19). Secondly, the robust-control-relevant model uncer-
tainty structure introduces an appropriate scaling of the
model uncertainty channels for multivariable systems by
scaling these with respect to the control criterion. Indeed,
the scaling of different inputs and outputs is considered
important in control system design, see, e.g., [Skogestad
and Postlethwaite, 2005, Sec. 1.4]. The appropriate scaling
enables the nonconservative use of unstructured model
uncertainty, which has significant advantages for certain
uncertainty modeling procedures, see, e.g., Toker and Chen
[1998], and robust controller synthesis.

4. EXPERIMENTAL COMPARISON FOR AN
AUTOMOTIVE APPLICATION

Although the theoretical analysis in Sec. 3 provides an
ordering of uncertainty structures in the sense of (7), it has
not yet been established whether the differences between
(12), (16), and (19) are significant for an actual experi-
mental application. In addition, it remains to be shown
whether the ordering of uncertainty structures implied by
(7) leads to a similar ordering in terms of achieved robust
performance. These aspects are investigated in this section.

4.1 Experimental CVT setup

The considered continuously variable transmission (CVT)
system is depicted in Fig. 2. The CVT provides a continuous
range of transmission ratios, which enables optimal engine
operating conditions in cars.

For optimal CVT operation, it is of crucial importance that
certain reference pressures are achieved by the closed-loop
system, see Oomen et al. [2010b], van der Meulen et al.
[2012] for details. In view of the signals in Fig. 1, the error

e =

[
ep

es

]
=

[
rp2 − yp
rs2 − ys

]
should be small in some appropriate sense. Hereto, the
measured variables y and manipulated variables u are given
by

y =

[
yp
ys

]
=

[
pp
ps

]
, u =

[
up
us

]
=

[
Vp
Vs

]
,

respectively. Here, Vp and Vs are the voltages corresponding
to the primary and secondary servo valve, respectively.

In this paper, weighting filters W and V , see (1), an
experimental controller Cexp, see Sec. 2.2, and a nominal
model P̂ , see (5), are fixed. Specifically, use is made
of the loop-shaping based weighting filters W and V
in Oomen et al. [2010b] that are aimed at enhancing
CVT performance. Specifically, the weighting filters aim
at a bandwidth of 6 [Hz]. In addition, the experimental
controller Cexp in Oomen et al. [2010b] is employed. Finally,
in Oomen et al. [2010b], the weighting filters W and V
and controller Cexp is used to identify a control-relevant

Á
Ã

À

Â

Fig. 2. Photograph of the experimental CVT system, where À:
primary servo valve Vp, Á: secondary servo valve Vs, Â: pressure
measurement pp at primary hydraulic cilinder, Ã: pressure
measurement ps at secondary hydraulic cilinder.

parametric model P̂ , which is internally structured as a
robust-control-relevant coprime factorization, i.e., P̂ =
N̂D̂−1, see also Sec. 3.1. Hence, by definition, N̂ , D̂ ∈
RH2×2

∞ . In addition, for the specific control-relevant model

of the CVT, it turns out that P̂ = N̂D̂−1 ∈ RH2×2
∞ . It

is emphasized that there are no a priori guarantees with
respect to open-loop stability of the model P̂ , since it
is estimated in a control-relevant manner that enforces
closed-loop stability of the interconnection of P̂ and Cexp.

4.2 Model uncertainty structures

Three important model structures, in particular, (11),
(14), and (17), are compared for clarity of exposition.
As is explained in Sec. 3.1, an additive structure can be
used in this application, since the nominal model does
not contain any open-loop unstable poles, see also [Zhou
et al., 1996, Table 9.1]. It is emphasized that this is
not possible in general, since additive uncertainty cannot
guarantee that the bound in (2) is guaranteed for a finite
γ in (6), as is exemplified in Sec. 3.1. In general, the
minimum norm-bound γ to satisfy (2) is different for

each uncertainty structure in Ĥ. Note that unstructured
perturbation models, i.e., ∆u ∈ RH2×2

∞ , are considered
in all cases without any additional weighting filters to
facilitate the interpretation.

Firstly, the additive uncertainty structure can directly
be considered using the result in (11). Secondly, RCFs

of P̂ and Cexp are required to construct the dual-Youla-
Kučera uncertainty structure in (14). Hereto, observe that

P̂ ∈ RH∞, hence the pair {P̂ , I} clearly is an RCF of

P̂ . Since the controller Cexp contains a pure integrator,
Cexp 6= RH∞. Hence, Cexp cannot be used directly as a
coprime factor. To resolve this, two closed-loop transfer
functions are postulated as a coprime factorization for Cexp,
i.e., [

Nc
Dc

]
=

[
Cexp

I

]
(I + P̂Cexp)−1 ∈ RH∞. (20)

Clearly, by setting X = P̂ , Y = I, it appears that the
Bézout identity XN + Y D = I is satisfied. Hence, the
pair {Nc, Dc} in (20) indeed is an RCF of Cexp. Conse-
quently, all RCFs of Cexp are generated by {NcQc, DcQc},
Qc, Q

−1
c ∈ RH2×2

∞ . Thirdly, the robust-control-relevant
model uncertainty structure in (19) is constructed by
employing the robust-control-relevant coprime factorization
P̂ = N̂D̂−1 as described in Sec. 4.1 in conjunction with
a (Wu,Wy)-normalized RCF of Cexp, which is computed
using the state-space results in Oomen and Bosgra [2012].
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Table 1. Comparison of uncertainty structures.

PADD PDY PRCR

Open-loop uncertain model set (11) (14) (17)
Closed-loop performance bound (12) (16) (19)
γ 1.73 0.55 0.60

J (P̂ , Cexp) 6.14 6.14 6.14
JWC(P, Cexp) ∞ 11.06 6.73
minC JWC(P, C) 3.63 3.20 2.50

The required bound to satisfy (2) is determined individually
for each uncertainty structure. A validation-based uncer-
tainty modeling procedure, see Smith and Doyle [1992]
and Oomen and Bosgra [2009], is employed. This approach
leads to the minimum norm-bound γ such that the model
set is consistent with the data, i.e., such that there are no
indications that, given the data, the constraint (2) does
not hold. The resulting values of γ are given in Table 1.
Note that a static overbound is considered here, instead of
a possibly frequency-dependent function, see Sec. 5.

4.3 Analysis of identification-related model sets

Skewed-µ analysis The criterion in (8), i.e., JWC(P, Cexp)
is adopted to compare the various model sets. Hereto,
skewed-µ analysis is invoked. The pursued approach is to
perform a sequence of µ-analysis problems, see also Fan
and Tits [1992]. Although in general these computations
involve upper bounds, the results in this paper are exact
since the considered perturbation structure is µ-simple.

Firstly, it is observed that JWC(PADD, Cexp) is unbounded.
Hence, the model set contains at least one candidate model
that is not stabilized by Cexp. By virtue of (8), the model
set PADD does not seem to be a good candidate for robust
control design. Secondly, the controller Cexp stabilizes
all candidate models in PDY, which is also reflected by
the affine function in (16), hence JWC(PDY, Cexp) indeed
is bounded. Specifically, the model set PDY leads to
a worst-case performance JWC(PDY, Cexp) = 11.06. It
is emphasized that this value is arbitrarily large, since
it depends on the transfer function matrices M̂12 and
M̂21 in (16), which in turn depend on the arbitrarily

chosen coprime factorizations of P̂ and Cexp in Sec. 4.2.
By virtue of (8), the dual-Youla-Kučera model set has
advantageous properties when compared to the additive
model set PADD. Thirdly, the robust-control-relevant model
set PRCR achieves the smallest worst-case performance,
i.e., JWC(PRCR, Cexp) = 6.73. In addition, these results
confirm that the bound (19) holds and is tight.

Visualization To further interpret these results, the model
sets PADD and PRCR are depicted in Bode diagrams using
the novel visualization procedure that is presented in
Oomen et al. [2010a]. Similar results are obtained for PDY,
however these results are omitted due to space limitations.

Firstly, it is observed that the additive model set PADD

leads to a relatively small uncertainty in at low frequencies.
In contrast, the robust-control-relevant model set PRCR

leads to an extremely large uncertainty at low frequencies.

Secondly, around the desired bandwidth of 6 [Hz], see
Sec. 4.1, the robust-control-relevant model set PRCR is
very accurate and hence the uncertainty in all the open-
loop transfer functions is small. In contrast, the additive
model set PADD is significantly more uncertain in this
frequency range, especially when considering the elements
P22, P21, and P12. Hence, the uncertainty associated with
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Fig. 3. Nominal model P̂ (solid blue), frequency response function

estimate P̃o(ωi), ωi ∈ Ωid (blue dots), and model set PRCR

(cyan) and PADD (yellow, red dashed).

the additive model set PADD is not only significantly larger,
but also seems to suffer from an inappropriate scaling of
the uncertainty channels. In contrast, the model set PRCR

leads to an optimal scaling of the uncertainty channels
from a control perspective, see (19).

Thirdly, at the higher frequency ranges, both the model
sets PRCR and PADD exhibit a large uncertainty. An
explanation is that in the case of PRCR, the model quality
at the higher frequency ranges typically does not affect the
control performance [McFarlane and Glover, 1990]. In case

of PADD, the gain of the open-loop model P̂ is significantly
smaller at higher frequencies, hence (11) implies that the
model uncertainty has a larger relative effect.

Robust controller synthesis The model sets P and PADD

are further investigated though a robust controller synthesis.
Note that the bound in (8) holds for each of the model sets
in Sec. 4.2. However, no explicit statements can be made
regarding the ordering of the resulting controllers in terms
of worst-case performance.

Firstly, consider CRCR = arg minC JWC(PRCR, C) that
provides the performance guarantees

J (Po, C
RCR) ≤ JWC(PRCR, CRCR) ≤ JWC(PRCR, Cexp) = 6.73.

Indeed, the controller CRCR leads to JWC(PRCR, CRCR) =
2.50 Secondly, recall that the additive model set PADD

leads to an infinite worst-case when evaluated for Cexp,
see Table 1, since the model set is not robustly stable
under closed-loop with Cexp implemented. Since the model
set PADD is open-loop stable, clearly a controller exists
that simultaneously stabilizes all candidate models in
PADD. In fact, C = 0 is such a stabilizing controller.
Hence, CADD = arg minC JWC(PADD, C) always leads to
an bounded worst-case performance. However, the worst-
case performance is arbitrary, since JWC(PADD, Cexp)
is unbounded. Analysis of the optimal controller CADD

leads to JWC(PADD, CADD) = 3.63. For this specific
situation, the controller CADD achieves a reasonably good
performance. It is emphasized that this is to a large extent
attributed to the favorable scaling and specific properties
of the open-loop model P̂ . In general, JWC(PADD, CADD)
may be arbitrarily worse than JWC(P, Cexp).
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Fig. 4. Closed-loop step responses (r2 7→ y): initial controller
Cexp (solid blue), optimal robust controller CRCR (dashed red),
CADD (dash-dotted green), and CDY (dotted).

Thirdly, the controller CDY = arg minC JWC(PDY, C) is
computed, leading to JWC(PDY, CDY) = 3.20. Interest-
ingly, the ordering of PADD, PDY, and PRCR in terms of
JWC(P, Cexp), i.e.,

JWC(PADD
, C

exp
) ≥ JWC(PDY

, C
exp

) ≥ JWC(PRCR
, C

exp
) (21)

corresponds to an identical ordering in terms of the optimal
robust controllers CADD, CDY, and CRCR that are based
on these model sets, i.e.,

JWC(PADD
, C

ADD
) ≥ JWC(PDY

, C
DY

) ≥ JWC(PRCR
, C

RCR
). (22)

It is emphasized that the ordering in (21) and (22) typically
arises in subsequent identification and robust controller
synthesis, but is not guaranteed.

Finally, the resulting controllers are implemented on the
nominal model P̂ , see Sec. 4.1. The resulting step responses
in Fig. 4 confirm that a reduced worst-case performance
leads to a faster response in terms of settling time and less
interaction, hence improved performance.

5. CONCLUSION AND DISCUSSION

In this paper, uncertainty structures in identification for
robust control are thoroughly and experimentally com-
pared. Theoretical and experimental results confirm that
(i) the dual-Youla-Kučera uncertainty structure has sig-
nificant advantages over common uncertainty structures,
including additive uncertainty; and (ii) recently developed
robust-control-relevant uncertainty structures, see Oomen
and Bosgra [2012], have significant advantages compared
to general dual-Youla-Kučera uncertainty structures and
hence also compared to traditional uncertainty structures.
Although not explicitly investigated in the present paper,
commonly used normalized coprime factorizations generally
do not seem to have advantageous properties in identifi-
cation for robust control, see Oomen and Bosgra [2012]
for details. Furthermore, the correspondence between the
partial ordering in (21) and (22) underpins the relevance of
the robust-control-relevant identification criterion (7) and
supports its use in an (iterative) identification and robust
control design approach.

The results in this paper have been restricted to model
uncertainty without commonly used weighting filters.
Indeed, it is common practice to consider ∆W

u :=
{∆u|‖W∆∆uV∆‖∞ ≤ γ} instead of (6), where W∆, V∆,
W−1

∆ , V −1
∆ . These weighting filters W∆ and V∆ can be

used to mitigate the conservatism in, e.g., additive and
dual-Youla-Kučera uncertainty structures. However, the
selection of these weights is not straightforward, especially
for multivariable systems. This is evidenced by the use

of highly structured perturbation models in, e.g., van de
Wal et al. [2002] and de Callafon and Van den Hof [2001]
for additive and dual-Youla-Kučera uncertainty structures,
respectively. In contrast to (6), such an approach leads to
model validation and robust controller synthesis procedures
that are proven to be computationally hard, see Toker and
Chen [1998]. In this respect, the robust-control-relevant
uncertainty structure, see (17), can be considered as an
inherent optimal selection of W∆ and V∆ in view of the
control goal. Indeed, recently in van Herpen et al. [2011],
it is shown that (6) leads to optimal results in view of (7).

In future research, it is of interest to compare the presented
results to other uncertainty structures, including those that
represent uncertainty in a parametric space.
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