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Normal stresses in elastic networks
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When loaded in simple shear deformation, polymeric materials may develop so-called normal stresses: stresses
perpendicular to the direction of the applied shear. These normal stresses are intrinsically nonlinear: basic
symmetry considerations dictate they may only enter at O(γ 2), with γ the dimensionless shear strain. There
is no fundamental restriction on their sign, and normal stresses may be positive (pushing outward) or negative
(pulling inward). Most materials tend to dilate in the normal direction, but a wide variety of biopolymer networks
including fibrin and actin gels have been reported to present anomalously large, negative normal stresses—a
feature which has been ascribed to the intrinsic elastic nonlinearity of semiflexible fibers. In this work, we present
analytical results on a model nonlinear network, which we expand to the required nonlinear order to show that
due to geometric, rather than elastic, nonlinearities (negative) normal stresses generically arise in filamentous
networks—even in networks composed of linear, Hookean springs. We investigate analytically and numerically
how the subsequent addition of elastic nonlinearities, nonaffine deformations, and filament persistence through
cross-linkers augment this basic behavior.

DOI: 10.1103/PhysRevE.88.052601 PACS number(s): 61.41.+e, 83.10.−y, 87.16.Ka, 83.60.Df

I. INTRODUCTION AND SUMMARY

The world, natural as well as man-made, abounds with
materials composed of interlinked filamentous units. The cy-
toskeleton, the extracellular matrix, cartilage, but also rubbers
and plastics owe their mechanical properties predominantly
to networks of large aspect ratio polymers which, in many
cases, are joined together by cross-links. This general motif
allows for significant stiffness, strength, and resilience—even
in lightweight, open geometries, and even in the presence
of significant disorder, and thus represents a particularly
economical and robust design principle for soft materials,
biological and synthetic.

Their abundance in nature, combined with the possibility
of precision mechanical manipulation of single molecules, has
spurred a renewed interest in the structure-property relation-
ships for these filamentous materials: how the mechanical
properties relate to the microscopic structure. While this
interest previously focused predominantly on explaining or
understanding emergent mechanical properties given a certain
microscopic structure, the insights its questions have provided
is increasingly put to use to purposely target specific mechan-
ical properties in designer (soft) materials or metamaterials,
obtained by directing the spatial arrangement of fibers, by
manipulating the mechanical properties of fibers, or by the
addition of active, nonequilibrium components.

Many of these efforts are, in one form or another, bioin-
spired: the properties of self-assembled biological materials
offer unique functionality and the ability to copy (some
of) them in synthetic or reconstituted matter would open
up interesting new opportunities for industrial and medical
materials.

Many of these sought-after mechanical properties involve
the nonlinear regime of elastic response. The tendency to
strain stiffen [1–4], for instance, has been well documented
and researched in biological gels and tissues, and has been
observed in similarly constituted gels of both reconstituted
proteinaceous fibers and synthetic polymers [5–7]. In this

article, we focus on another striking nonlinear feature of
biopolymer gels: negative normal stresses. When deformed
in shear, these gels exhibit inward normal thrusts, strongly
pulling inward on the upper and lower surfaces. While negative
normal stresses are the exception, rather than the rule, in
soft materials (foams [8] and sphere packings [9] exhibit
positive normal stresses) the effect has been reported in a
wide variety of systems, including liquid crystalline polymers
[10], suspensions [4,11,12], emulsions [13], marginal solids
[9], clays [14], some granular systems [15], and carbon
nanotubes, both single walled [16] and multiwalled [17,18].
Moreover, negative normal stresses are a promising feature
for the creation of mechanical metamaterials, along with other
unusual mechanical response such as negative compressibility
[19] and negative Poisson’s ratios [20,21].

Here, however, we focus on semiflexible (bio)polymer
gels, where negative normal stresses were recently reported
to feature generically and very prominently [22]. For this class
of systems the effect was ascribed to the typical asymmetry
in the force-distance curve of semiflexible polymers [23,24],
which strongly resist extension but remain relatively soft in
compression. Indeed, buckling of a significant fraction of the
constituent polymers was shown to occur in numerical and
analytical work. In this paper, we argue that such buckling
need not be the only explanation for negative normal stresses
and that, indeed, the effect is even more generic. In addition to
elastic nonlinearities of the filaments, geometric nonlinearities
of the network as a whole also very naturally give rise to
negative normal stresses. We demonstrate this analytically
for affinely deforming systems, but show, numerically, that
the effects survive when nonaffine deformations are allowed.
Our work complements earlier work by Janmey and others,
but presents a crucial extension to the theory by expanding
to the requisite nonlinear order all important contributions,
geometrical and elastic, for an analytically tractable polymer
model that allows one to disentangle the effects of both. For
stiffer semiflexible networks, we find that indeed the elastic
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nonlinearity dominates, but very soon—when the persistence
length �p becomes of the order of the contour length �c—
geometric and elastic nonlinearities acquire similar magni-
tudes. Our work provides a more complete understanding of
the different effects at play in the normal stress response of
network materials, allowing for more precise control over these
properties in synthetic designer materials.

Our paper is organized as follows. In Sec. II, we review the
requisite concepts from finite-strain elasticity theory which we
need to compute stresses from strains beyond linear response.
Section III relates these concepts to discrete spring networks
and derives a general expression for the Cauchy stress tensor
for affinely deforming networks. In Sec. IV, we apply the for-
malism to a simple nonlinear elastic model that allows one to
obtain analytical expressions for shear and normal stresses and
disentangles geometric and elastic nonlinearities. In Sec. V, we
present numerical simulations for the Mikado model [25] to
assess if and how shear and normal stresses are augmented in
the presence of nonaffine deformations. Section VI presents
some general considerations regarding the role of nonaffinity
and the relevance of affine reference deformations. In Sec. VII
we summarize our findings and present some conclusions.

II. STRESSES AND STRAINS: GENERAL FRAMEWORK

A general deformation R maps points x in a reference space
onto their images x′ in a target space as

x �→ x′(x) = R(x). (1)

There is no deformation when R(x) = x. To distinguish
nontrivial deformations, we split off the displacement vector
u:

R(x) = x + u(x). (2)

Assuming that distortions vary slowly in space, we may
linearize this around the origin O to find

Ri(x) ≈ Ri(O) +
(

∂Ri(x)

∂xj

)
xj . (3)

In what follows, we will subtract any uniform translations
(i.e., R(O) = O), and summation over repeated indices will
be implied. The first derivatives appearing in this equation
define the deformation tensor �(x),

�ij (x) = ∂Ri(x)

∂xj

= δij + ∂ui

∂xj

≡ δij + ηij . (4)

The tensor η is called the displacement gradient tensor. A
transformation is called affine when the deformation tensor
is constant throughout the the entire body or volume that is
deformed. In other words, the deformation is affine if and only
if � �= �(x). If this is the case, the constant deformation tensor
� effects a true linear mapping

x �→ x′ = � · x. (5)

While affinely deforming systems are rarely, if ever, encoun-
tered in disordered networks in crystals, affinity is the norm:
the local symmetries, in fact, dictate that it should apply. The
variable that is energy conjugate to the displacement gradient
tensor (and therefore to �, too) is the first Piola-Kirchhoff
stress tensor σ I . The elastic energy required to deform an

infinitesimal reference volume 	 of the system, which may be
computed as

F =
∫

	

f (�)d3x, (6)

may be used to compute the first Piola-Kirchhoff stress tensor
by simple derivation of the energy density

σ I
ij = ∂f (�)

∂�ij

. (7)

Because � is defined by derivatives of R with respect to
positions in the reference volume, σ I is a so-called mixed stress
tensor—it measures the force in target space per unit area in
reference space. Likewise, f (�) is the elastic energy density
defined relative to the reference volume 	. Experiments,
however, typically record the force in deformed space per unit
area in the deformed space. The corresponding stress tensor
is the true or Cauchy stress tensor σC . By using the facts that
upon transforming to the reference space x the total elastic
energy F should not change, that d3x = (det �)−1d3x′ and
that ∂x′ = �T ∂x, we can compute the Cauchy stress from the
first Piola-Kirchhoff stress directly as

σC = 1

det �
σI · �T . (8)

The strain measure conjugate to the Cauchy stress tensor is ∂ui

∂x ′
α
,

which is generally not simple to compute (it leads to the so-
called Almansi strain tensor), and computing the Cauchy stress
in general settings is typically most straightforwardly achieved
by first computing f (�), taking derivatives with respect to the
components of �, and transforming the resultant σ I to σC us-
ing Eq. (8). This is the procedure we will adopt in the following.

Note that this formalism applies equally to linearized
elasticity theories and finite-strain systems. The constitutive
behavior underlying the relation between stress and strain need
not be linear (Hookean)—in fact, Eq. (7) derives from general
thermodynamic considerations [26]. The assumption is made
that the strain varies slowly over 	 but neither it, nor the
stresses, need be small.

III. CAUCHY STRESS TENSOR FOR AN AFFINELY
DEFORMING SPRING NETWORK

Consider now a network of springs subjected to a deforma-
tion �. The elastic energy density f (�) for a volume 	 is then
simply given by the sum of all contributions from individual
springs:

f (�) = 1

	

∑
α

ϕα(�). (9)

The index α labels the springs, and ϕα(�) is the elastic energy
of each single spring subject to �. For central force networks,
this energy is a function of the length of the deformed spring
only: denoting by Lα the undeformed end-to-end vector of
spring α we therefore have

ϕα(�) = ϕα(‖� · Lα‖). (10)

The first Piola-Kirchhoff stress tensor for such a network can
be computed using Eq. (7):

σ I
ij = ∂f (�)

∂�ij

= 1

	

∑
α

∂

∂�ij

ϕα(‖� · Lα‖). (11)
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By the chain rule, the differential appearing in the summation
may be rewritten:

∂

∂�ij

ϕα(‖� · Lα‖) =
(

∂ϕα(‖� · Lα‖)

∂‖� · Lα‖
)(

∂‖� · Lα‖
∂�ij

)
.

The first term between brackets is simply the derivative of the
spring energy with respect to the spring length— i.e., the force
as a function of the length τα(‖� · Lα‖). The second term may
be rewritten as

∂‖� · Lα‖
∂�ij

= ∂

∂�ij

(
�klLα

l �kmLα
m

)1/2

= 1

2‖� · Lα‖
(
δkiδlj Lα

l �kmLα
m + �klLα

l δkiδmj Lα
m

)
= (� · Lα)i(Lα)j

‖� · Lα‖ , (12)

so that the components of the first Piola-Kirchhoff stress tensor
for the network are given by

σ I
ij = 1

	

∑
α

τα(‖� · Lα‖)

(
(� · Lα)i(Lα)j

‖� · Lα‖
)

. (13)

Recalling that we may transform σ I to the Cauchy stress σC

using Eq. (8), we find

σC
ij = 1

	 det �

∑
α

τα(‖� · Lα‖)

(
(� · Lα)i(� · Lα)j

‖� · Lα‖
)

.

(14)

We now pass to a continuum limit, replacing the sum by an
integral over the distribution P(L) of undeformed end-to-end
lengths:

N∑
α=1

g(Lα) −→ N〈g(L)〉 = N

∫
P(L)g(L)d3L. (15)

Letting ρ denote the number density of springs in the reference
configuration, i.e., ρ = N/	, this yields the expression for the
Cauchy stress appropriate for large spring networks:

σC
ij = ρ

det �

∫
P(L)τ (‖� · L‖)

(
(� · L)i(� · L)j

‖� · L‖
)

d3L.

(16)

The integral is over all of 3-space. A nonlinear dependence
of the stress tensor component σC

ij on the strain � may
thus originate from two sources: a nonlinear force-extension
curve or a geometrically incurred nonlinearity arising from
the second bracketed term in the integral—this term does not
depend on the force-extension behavior. The prefactor is ρ�,
the number density in the deformed configuration:

ρ� =
(

N

	

)(
	

	′

)
= ρ

det �
. (17)

Equation (16) does not assume isotropy; in fact,P(L) may take
on any form including the collection of δ peaks appropriate for
crystalline structures. Provided one knows the force-extension
curve, the initial radial distribution of spring end-to-end

vectors, and, obviously, the strain � this expression allows
one to directly compute, to all desired nonlinear orders, the
affine Cauchy stress.

IV. SHEAR AND NORMAL STRESSES FOR AN AFFINE
NETWORK WITH TUNABLY ASYMMETRIC SPRINGS

To investigate the general role of the asymmetry of the
force-extension curve, we consider an isotropic, affinely
deforming network composed of identical nonlinear springs
whose force-extension behavior contains a term quadratic in
the extension. We shall term this model the quad spring. Its
force extension is given by

τ (L) = k1(‖L‖ − �0) + 1
2k2(‖L‖ − �0)2. (18)

The rest length �0 and the two mechanical constants k1 and
k2 fully characterize the spring’s elastic response; k1 is the
familiar linear (Hookean) spring constant. The quadratic term
is introduced to allow for the possibility of breaking the δL →
−δL antisymmetry (δL being ‖L‖ − �0, the deviation from
equilibrium). Mechanical stability requires that

∂τ (L)

∂L
� 0 ⇒ k1 + k2δL � 0 ∀δL. (19)

Which implies that k1 > 0 is always required for mechan-
ical stability, and that negative values for k2 introduce a
maximal extensional strain εmax = (� − �0)/�0 = |k1/(k2�0)|
beyond which an elastic instability occurs. In what follows,
we will consider isotropic, perfectly monodisperse filament
networks—the radial distribution for which is (in three
dimensions)

P(L) = 1

4π�2
0

δ(‖L‖ − �0). (20)

With this choice for the radial distribution, each of the filaments
is at its rest length and the material is thus prepared in a
stress-free reference state. In the following, and in particular in
the numerical simulations, we shall work with such unstressed
reference states unless explicitly stated otherwise. The affine
formalism described here, however, does not assume or require
the absence of prestresses and towards the end of this section
we briefly discuss the effects of pressurizing the system.
Throughout this paper, we will consider the response of
materials to simple shear deformations. These are of particular
relevance, as a standard rheology experiment in cone-plate
geometry imparts this deformation to infinitesimal volumes of
the sample. For a simple shear of dimensionless magnitude γ

(the shear strain) in the x̂ẑ direction, the Cauchy deformation
tensor �(γ ) is given by

�(γ ) =

⎛
⎜⎝

1 0 γ

0 1 0

0 0 1

⎞
⎟⎠ . (21)

Thus, with τ (L), P(x), and � specified, we may compute the
full nonlinear Cauchy stress tensor. This is most straightfor-
wardly done in spherical coordinates, and amounts to little
more than evaluating Eq. (16). This must be done numerically
for arbitrary shear strain γ , but the high- and low-strain limits
may be obtained analytically. Let us consider small strains.
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Expanding Eq. (16) to first order in γ yields the following for
x̂ẑ stress:

σC
xz ≈

(
ρk1�

2
0

4π

)
γ

∫ π

0
dθ

∫ 2π

0
dϕ[cos2 θ sin3 θ cos2 ϕ]

=
(

1

15
ρk1�

2
0

)
γ ≡ σC

xz,lin. (22)

We recognize here the familiar expression for the shear
modulus of a Hookean spring network, as defined by the
small-strain relation σC

xz = Gγ :

G3D
spring = 1

15ρk1�
2
0. (23)

The appearance of this Hookean modulus makes sense—the
nonlinear effects introduced by a nonzero k2 can enter only at
O(γ 2). We may also compute the first correction term to this
linear response by expanding the entire integrand to third order
in γ (the quadratic term is zero because the x̂ẑ shear stress is
antisymmetric in the strain). This yields a correction

σC
xz − σC

xz,lin = (
2

105ρ(2k1 + k2�0)�2
0

)
γ 3. (24)

If the stress rises faster than linear, i.e., if 2k1 + k2�0 > 0,
the network is said to be strain stiffening; with a differential
modulus that rises with increasing strain. If this condition is
not satisfied, it is strain softening. Since k1 > 0, the generic
tendency is towards stiffening and a network of Hookean
springs will stiffen geometrically. For the normal stresses,
which must be symmetric in γ and therefore can appear only at
O(γ 2), we must expand Eq. (16) to second order. This yields

σC
xx ≈ (

1
210ρ(26k1 + 3k2�0)�2

0

)
γ 2, (25)

σC
yy ≈ (

1
210ρ(4k1 + k2�0)�2

0

)
γ 2, (26)

σC
zz ≈ (

1
70ρ(4k1 + k2�0)�2

0

)
γ 2. (27)

In general, the first normal stress difference σC
xx − σC

zz is
recorded in a rheometer. The curved deformation geometry in
the x̂x̂ direction sets up hoop stresses, which are balanced by a
radial pressure gradient in an incompressible material (giving
rise to the curious rod climbing effect) and thus contribute to
the vertical thrust. However, for the open, semiflexible net-
works that we seek to describe here, we assume that these
hoop stresses—unconstrained by the moving plates of the
rheometer—relax more quickly than the ẑẑ stresses. This, we
speculate, might arise due to a difference in length scales
between the radial and gap directions in cone-and-plate setups,
or to nonaffine motion of the network relative to the solvent
which is most pronounced at low frequencies [27]. In the
Appendix, we show by explicit calculation that allowing
the x̂x̂ stress to relax leads to the same conclusions as
those presented here. Thus, in the limit of slow, quasistatic
driving, we assume the recorded thrust is dominated by
the ẑẑ component of the stress. In this respect, we follow
the conventions in [22–24,28], which were shown to agree
very well with cone-plate rheometry measurements on a
multitude of open semiflexible hydrogels (actin, collagen,
fibrin, neurofilaments, and matrigel). We do note that, although
the models assuming ẑẑ dominance capture the normal stress
measurements quite well, we are not aware of any separate
validation—experimental or theoretical—of the differential
relaxation of hoop and normal stresses. For high-frequency

driving, fast compared even to the relaxation time of the hoop
stresses, we expect to see the thrust crossover from −σC

zz to
σC

xx − σC
zz, the latter of which, generically, is positive rather

than negative. We are not aware of any published experiments
that could confirm this prediction for semiflexible networks,
but it would be very interesting to do so—the driving frequency
might provide yet another handle to manipulate and modify
the normal response of network materials. In what follows,
however, we shall work in the low-frequency limit. A note
concerning the sign of the normal stress: the Cauchy stress
tensor as used here quantifies the force per unit area in the
material’s deformed configuration required to hold it in the
deformed shape. A positive ẑẑ-stress tensor component thus
implies a force in the positive ẑ direction is required to maintain
the sheared shape, i.e., the material itself is pulling the top
surface inward. Materials exhibiting this kind of behavior are
said to display negative normal stress. Evidently, provided that

4k1 + k2�0 > 0, (28)

the quad spring network exhibits negative normal stress—see
Fig. 1. Interestingly, even in the absence of a nonlinear term—
i.e., for a network composed of perfectly linear Hookean
springs—the network displays negative normal stresses: me-
chanical stability of the individual springs requires a positive
k1. Again, this nonlinear effect cannot be due to the force-

FIG. 1. Normal (•) and shear stresses (◦) versus shear strain γ

for the quad spring network. The normal stresses σC
zz in the quad

spring model can be either positive or negative, depending on the
relative magnitude of k1 and k2. Upper image: k1 = 1,k2 = −12
(positive normal stress). Lower image: k1 = 1,k2 = 12 (negative
normal stress). Note the expected symmetries: the normal stress σC

zz

is an even function of the shear strain γ ; the shear stress σC
xz is odd.
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FIG. 2. Scaling plot of the ratio of normal to squared shear
stresses α−1σC

zz/(σC
xz)

2 for k1 = 1, �0 = 1, and k2 = −8(•),5(�),1(◦).

extension relation and is therefore purely geometric in origin.
One may wish to note, also, that even the linear, Hookean
force-extension relation produces higher-order terms when its
network energy is expanded in the node displacements as soon
as the rest lengths are nonzero. In particular, we conclude
that negative normal stresses do not require an asymmetric
force-extension relation. A convenient way to check the small
strain asymptotics is by inspecting the relation between the x̂ẑ

and ẑẑ stresses:

σC
zz = α

(
σC

xz

)2
, with α = 45

14

1

ρ�2
0

(
4k1 + k2�0

k2
1

)
. (29)

Indeed, Fig. 2 shows that the ratio α−1σC
zz/(σC

xz)
2 approaches

unity for small strains. In practice, this may be used to
determine the α factor from experiments and compare it to
single-molecule force-extension data, particularly as k1 may
be extracted from the small-strain behavior of σC

xz.
Equation (16) may also be used to assess the effects of

uniform prestress on affinely deforming spring networks. To
do so, we apply a uniform dilation (or compression) to an
initially stress-free network by replacing �0 → (1 + λ)�0 in
Eq. (20). The same computations as before yield that doing so
produces identical, nonzero diagonal stress tensor components
at zero shear stress:

σC
xx(γ = 0,λ �= 0) = σC

yy(γ = 0,λ �= 0)

= σC
zz(γ = 0,λ �= 0)

≈ 1
3k1�

2
0ρλ ≡ �0(λ) (30)

and is thus equivalent to introducing a uniform pressure �0(λ)
in the system, whose magnitude is proportional to the dilation
λ. At finite shear strain, we may also compute the corrections
to the normal stress which yields, to first order in λ,

σC
zz(γ,λ) − σC

zz(γ,0) ≈ �0(λ) + �2
0ρ

210
(21k2�0 + 12k1)γ 2λ.

(31)

Thus pressurizing the affine system augments the normal stress
response in a strain-dependent manner, at lowest nontrivial
order in γ . Depending on the signs and relative magnitudes
of k1,k2 and the applied strain γ , this correction may be
positive or negative, which opens up interesting possibilities

to manipulate the normal stress response by externally applied
strains.

Summarizing the behavior of the (initially stress-free) quad
spring network, we find that both negative (NNS) and positive
(PNS) normal stresses are possible, as well as both strain
stiffening and strain softening—depending on the values of
k1,k2, and �0:

k2 < −4k1

�0
: softening, PNS,

−4k1

�0
< k2 < −2k1

�0
: softening, NNS,

k2 > −2k1

�0
: stiffening, NNS.

V. NORMAL STRESSES FOR AN AFFINE SEMIFLEXIBLE
WORMLIKE CHAIN NETWORK

To what extent is the negative normal stress exhibited
by biopolymer networks determined by geometry and/or
nonlinear force-extension behavior? In order to address this,
first under the assumption of affine deformations, we consider
the analytical expression for the extension-force relation as
reported in, for instance, Ref. [6],

L(τ ) = �c − kBT

2τ

[√
τ�2

c

kBT �p
coth

(√
τ�2

c

kBT �p

)
− 1

]
,

where �p is the persistence length and �c is the contour length.
The equilibrium length of this polymer is computed as

�0 = L(0) = �c

(
1 − �c

6�p

)
. (32)

While an analytical inversion to obtain the force-extension
relationship τ (L) is impossible, we may systematically obtain
all orders of its expansion around L = �0, from which we can
infer the appropriate expressions for k1 and k2 to compare to
our quad spring network. Doing so yields

k1 = 90kBT
�2

p

�4
c

, k2 = 2700

7
kBT

�3
p

�6
c

= 30

7

�p

�2
c

k1. (33)

Since both k1 and k2 are positive for an affine semiflexible
network, it is expected to exhibit both strain stiffening
and negative normal stresses. The relative contributions of
geometry and nonlinear force extension, from Eq. (27), are
given by the ratio

4k1

k2�0
= 28�c

5(6�p − �c)
. (34)

For polymers that have �p ∼ �c, this ratio is nearly one—for
such networks, the geometric and elastic nonlinearities are of
equal inportance in determining the magnitude of the normal
stress. For actin networks, however, one generally finds that
�c � �p, and the ratio drops rapidly suggesting that in actin
gels the normal stresses are dictated chiefly by the elastic
nonlinearity of the fibers. For the fibrin networks considered
in [22], the persistence length is considerably smaller but the
typical contour length is difficult to estimate.

While the quad spring network is indefinitely extensible, the
semiflexible wormlike chain exhibits a divergence in both the
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shear and normal stresses as the critical strain γc is approached.
This is the shear strain for which the first filament reaches full
extension. For an affinely deforming semiflexible system, this
critical strain can be computed analytically and equals

γc = �c

6�p

(
12�p − �c

6�p − �c

)
. (35)

For the small strain regime, symmetry still dictates that σC
zz ∼

γ 2 ∼ (σC
xz)

2, but close to the strain threshold the force will
diverge characteristically as

τ ∼ 1

(γc − γ )2
. (36)

The geometric factor in Eq. (16), in the large strain limit,
vanishes as γ −1 for the ẑẑ component, and approaches unity
for the x̂ẑ component. As a result, the ratio of normal to shear
stress has an asymptotic regime in which

σC
zz

σC
xz

∼ lim
γ→γc

(
1

γ (γc − γ )2

)(
1

(γc − γ )2

)−1

= 1

γc

. (37)

In other words, for large strains the normal stress becomes
linearly proportional to the shear stress, and indeed such a
crossover from a quadratic ratio to a linear ratio is observed for
a wide class of biopolymer gels in the experiments reported in
[22]. For stiffer networks, γc decreases rapidly and the normal
stresses may indeed become significantly larger than the shear
stresses. It would be interesting to determine experimentally
whether indeed the stiffer biopolymer networks exhibit the
largest ratios of normal to shear stress, and whether this
increase correlates with the critical shear strain.

VI. NORMAL AND SHEAR STRESSES IN NONAFFINELY
DEFORMING NETWORKS

To assess to what extent our findings for affinely deforming
networks hold up when nonaffinity and bending contributions
are present we turn to numerical simulations. We consider the
so-called Mikado network [25]: a random, two-dimensional
(2D) arrangement of polymers whose energy involves both
bending and stretching:

E =
∑

all chains

⎛
⎝κ

∑
〈ijk〉

�2
ijk

�ij + �jk

+ Y
2

∑
〈ij〉

(�ij − �0
ij )2

�0
ij

⎞
⎠ .

In this expression, �ij is the length of segment ij linking nodes i

and j , and �0
ij is the rest length of this segment. �ijk is the angle

between segments ij and jk, and the summations within each
polymer run over triplets of connected nodes along the same
polymer 〈ijk〉 for the angles and doublets of nodes connected
along the same polymer 〈ij 〉 for the extensions. κ is the
bending rigidity, and Y is the modulus—the spring constant for
each segment is computed as kij = Y/�0

ij . This representation
amounts to the discrete persistent chain model [28], and may
be thought of as a discrete version of an extensible wormlike
chain (WLC). By mapping its linear elastic response onto that
of the WLC the coefficients κ and Y may be matched to the
persistence length and the extensional modulus of a continuum
WLC [28–30].

We generate many different configurations of the Mikado
network [25], and subject its boundaries to the same simple

FIG. 3. Affine and nonaffine energies E versus shear strain γ for
networks with different stiffnesses. The upper curve (�) corresponds
to the affine case, while lower curves correspond to various bending
stiffnesses κ/Y = 10−1(•), κ/Y = 10−2(�), κ/Y = 10−3(�), κ/Y =
10−4(�), κ/Y = 10−5(�), and κ/Y = 10−6(◦). Filament rigidity
decreases from top to bottom. Note that nonaffinity induces a softer
response spanning the entire spectrum of the bending rigidity.

shear deformation �(γ ). The positions of the cross-linkers
are then determined using a nonlinear conjugate gradient
algorithm [31]. This yields the nonaffine energy as a function
of the shear strain ENA(γ ). This energy is graphed in Fig. 3,
which shows the general effect of nonaffinity: as we increase
the ratio κ/Y, the strain energy at a given value of the shear
strain increases towards, but never reaches, its affine value
EA(γ ). This is a crucially important feature: even in the limit
of infinitely stiff segments, the system does not become
affine. While the distinction between affine and nonaffine
is often summarized as bending (nonaffine) vs stretching
(affine) dominated systems, there are additional nonaffine
modes of deformation which do not involve bending: rotation
of filaments and translation. These modes are not suppressed
by increasing the bending rigidity, and therefore even the
infinitely stiff system possesses more degrees of freedom than
its affinely constrained counterpart.

From each of these energy curves, we may directly compute
the x̂ẑ component of the Cauchy stress as

σC
xz = ∂ENA(γ )

∂γ
. (38)

The normal stresses are obtained by superimposing, on the
simple 2D shear deformation �(γ ), an infinitesimal uniaxial
extension in the ẑ direction:

�′(γ,α) =
(

1 γ

0 1 + α

)
, (39)

which yields a nonaffine strain energy function of two variables
E ′

NA(γ,α), from which we compute the ẑẑ component of the
Cauchy stress as

σC
zz = ∂E ′

NA(γ,0)

∂α
. (40)

The results for the shear and normal stresses in the nonaffine
Mikado model are collected in Fig. 4 and Fig. 5. We recover
the surprising behavior also reported by [23]: while the shear
stress σC

xz rises towards its affine value for increasing bend
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FIG. 4. Affine and nonaffine shear stresses σC
xz versus applied

shear strain γ for networks with different stiffnesses. The upper
(lower) curve for positive (negative) applied shear strain (�) cor-
responds to the affine case, while lower (upper) curves correspond to
various bending stiffnesses κ/Y = 10−1(•), κ/Y = 10−2(�), κ/Y =
10−3(�), κ/Y = 10−4(�), κ/Y = 10−5(�), and κ/Y = 10−6(◦).
Shear stresses increase with increasing bending stiffness.

stiffness κ , the normal stress does exactly the opposite and
decreases. These two tendencies may appear, at first sight,
to be contradictory: if the shear stress approaches the affine
result, one might conclude that the network must be deforming
ever more affinely and that, consequently, the normal stress
should also approach its affine limit. This reasoning is flawed
for the same reason as mentioned above: while the energy
of the nonaffinely deforming system increases for increasing
bending rigidity, it does not asymptote to the affine curve for
infinite κ/Y. The remaining nonaffinity due to rotations and
translations of fibers conspire to lower the normal stresses
while raising the shear stresses. Symmetry still dictates that
σC

zz ∼ γ 2 ∼ (σC
xz)

2 for small γ , as depicted in Fig. 6. Although
these networks do not possess a limited extensibility, they still
exhibit a transition from quadratic to a linear normal-to-shear
stress ratio for large strains, but do so dissimilarly to the affine
wormlike chain model. For these networks, softer systems
reach a linear normal-to-shear stress ratio at strains lower than
their more rigid counterparts.

FIG. 5. Affine and nonaffine normal stresses σC
zz versus applied

shear strain γ for networks with different stiffnesses. The lower curve
(�) corresponds to the affine case, while upper curves correspond to
various bending stiffnesses κ/Y = 10−1(•), κ/Y = 10−2(�), κ/Y =
10−3(�), κ/Y = 10−4(�), κ/Y = 10−5(�), and κ/Y = 10−6(◦). Note
that normal stresses decrease with increasing bending stiffness.

FIG. 6. Normal stresses σC
zz plotted versus their corresponding

shear stresses σC
xz for various bending stiffnesses κ/Y = 10−1(•),

κ/Y = 10−2(�), κ/Y = 10−3(�), κ/Y = 10−4(�), κ/Y = 10−5(�),
and κ/Y = 10−6(◦). All networks show a crossover from a quadratic
to linear normal-to-shear stress ratio when transitioning from small
to large deformations.

VII. NONAFFINITY: GENERAL CONSIDERATIONS

Note that while ENA(γ ) � EA(γ ) for all values of the shear
strain γ , a similar relation need not hold for the stresses: it is
possible and allowed for the nonaffine shear or normal stress
to be larger or smaller than its affine counterpart. We may,
however, expand both the affine and nonaffine energies to
second order around their equilibrium, γ = 0 values (which
are zero, in each case) to conclude that

∂2EA

∂γ 2
� ∂2ENA

∂γ 2
, (41)

and therefore that the linear shear modulus G0
A for the affine

material must be larger than that of the nonaffine material G0
NA.

Equality holds only when all nonaffine degrees of freedom
are effectively constrained (this happens, for instance, in the
limit where the filament lengths become of the order of the
system size). Our simulations, however, are well below this
limit. Figure 7 brings out the overall trend: even for very rigid
(averaged) configurations, shear moduli are lower than their

FIG. 7. Affine and nonaffine shear moduli G versus shear strain
γ for networks with different stiffnesses. The upper curve (�) corre-
sponds to the affine case, while lower curves correspond to various
bending stiffnesses κ/Y = 10−1(•), κ/Y = 10−2(�), κ/Y = 10−3(�),
κ/Y = 10−4(�), κ/Y = 10−5(�), and κ/Y = 10−6(◦). Affine shear
moduli are larger than all their nonaffine counterparts.
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affine correspondent, and, in general, even for small strain
the bending, rotational, and translational degrees of freedom
effect a finite drop in modulus, as many previous simulation
studies including our own have confirmed [28]. This reinforces
an essential point: even at infinitesimal strains, the nonaffinity
is not negligible. In the presence of nonaffinity—an all but
unavoidable companion of disorder in network materials—the
linear mechanical response is dictated by the small strain, but
finite nonaffinity, limit of the elastic energy.

VIII. CONCLUSION

The normal stresses that arise in cross-linked elastic
networks are determined and modulated by three distinct,
but not independent, mechanisms. The first is geometric
nonlinearity: the differential stretching and reorienting of
network constituents depending on their orientation in space.
The second is elastic nonlinearity: The concave (or convex)
nonlinear force-extension relation of polymers as reflected
in models like the FJC and the WLC. The third factor
is nonaffinity: the tendency for bulk cross-linkers to move
relative to the deformation of the boundary.

In a simple nonlinear elastic model that permits the
analytical calculation of (Cauchy) stresses, we observe that at
low frequencies the sign of the normal stress and the nonlinear
shear stress response are not decoupled: depending on the
relative magnitude (and signs) of the second and fourth shear
strain derivatives of the strain energy the stiffening of softening
behavior is linked to positive or negative normal stresses.

Our work suggests that by manipulating the three mech-
anisms giving rise to negative normal stresses the normal
response of network materials may be modulated. In particular,
the driving frequency, prestresses in the form of external
pressures, and the ratio between the stretch and bend stiffness
may each be modified in biopolymeric or synthetic gels to
control their nonlinear mechanical properties.

In numerical simulations of Mikado networks we find
that nonaffine displacements preserve the overall tendencies
observed in the affine system, but that both shear and stress
tensor components are modified by the presence of nonaffinity.
Interestingly, it affects shear and normal stresses in opposite
fashion: shear stresses rise as nonaffinely deforming systems
become increasingly rigid, while normal stresses decrease.
This highlights the importance of nonbending contributions to
nonaffinity, which are responsible for finite shifts even in the
linear elastic response regime. In the presence of nonaffinity,
even the linear theory of network elasticity must therefore be
augmented to allow for a finite amount of nonaffine displace-
ment, which brings into question the relevance of the affinely
deforming system as a meaningful reference configuration, or
as a valid point of departure for perturbative approaches.

ACKNOWLEDGMENTS

We thank F. C. MacKintosh, H. E. Amuasi, M. A. J.
Michels, R. W. Ogden, J. Douglas, E. M. Spiesz, and an
anonymous referee for valuable discussions and suggestions.
This work was generously supported by the Institute for
Complex Molecular Systems (ICMS) at Eindhoven University
of Technology.

APPENDIX: EFFECT OF RELAXING σ C
xx ON σ C

zz

Assuming that the ẑẑ component of the stress tensor
dominates the first normal stress difference—as is routinely
done in modeling normal stresses—presumes that the x̂x̂

component of the stress tensor is able to relax. This relaxation,
in turn, affects the ẑẑ stress. In this appendix, we compute this
effect within the context of the affine quad spring model. To do
so, we consider a wider class of deformations, parametrized
by a deformation matrix:

�̃(ε,γ ) =

⎛
⎜⎝

1 + ε 0 γ

0 1 0

0 0 1

⎞
⎟⎠ . (A1)

The additional parameter ε is used to adjust the length in the
x̂ direction of the system, and will be used in the following
to allow σC

xx to relax to zero. Under the action of �̃, we may
compute the x̂x̂ component of the stress tensor using Eq. (16)
to be, to second order in γ and first order in ε,

σC
xx(ε,γ ) ≈ (

1
210ρ(26k1 + 3k2�0)�2

0

)
γ 2 (A2)

+ ε
(

1
210ρ(42k1 + 28k1γ

2 + 17k2�0γ
2)�2

0

)
.

(A3)

Solving for σC
xx(ε�,γ ) = 0, we find that full relaxation of the

x̂x̂ stress is achieved by choosing

ε� = −26k1γ
2 − 3k2�0γ

2

42k1 + 28k1γ 2 + 17k2�0γ 2
. (A4)

Thus, by deforming the material according to �̃(ε�,γ ), we
may compute the Cauchy stresses as they develop in the strict
absence of hoop stresses. Note that ε is generally negative
(particularly for k2 = 0): while relaxing, the material contracts
along the x̂ direction as was to be expected. We again use
Eq. (16) to find that

σC
zz(ε�,γ ) ≈ (

1
315ρ(5k1 + 3k2�0)�2

0

)
γ 2. (A5)

Evidently, when the hoop stress is relaxed the normal stress,
which is now exactly equal to the first normal stress difference
and −σC

zz, may still be positive or negative, depending on the
sign of the combination (5k1 + 3k2�0). Likewise, for a strictly
linear spring network the geometrical nonlinearity still leads
to generic negative normal stress. Thus, our findings, though
numerically slightly different, remain valid when the stress is
relaxed. A caveat is still in order—what we show here is that
when the x̂x̂ stresses relax the normal stress behavior remains
as we predict. We cannot say whether, in practice, they can
or will relax. For completeness, we note that the remaining
stress tensor components, computed in completely analogous
fashion, read

σC
xx(ε�,γ ) = 0, (A6)

σC
yy(ε�,γ ) ≈ −(

1
45ρk1�

2
0

)
γ 2, (A7)

σC
xz(ε

�,γ ) ≈ (
1

15ρk1�
2
0

)
γ. (A8)
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