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Chapter 1 

General introduction 

ABSTRACT:  The chapter gives general information about graphene, namely its structure, properties 
and methods of preparation, and highlights the methods for the preparation of graphene-based 
polymer nanocomposites.  
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1.1. Polymeric Composites 
The main reason for the rapid development of polymer composite materials is that the traditional 

"pure" polymers have largely played out their performance capabilities whereas technology requires 
materials with new properties and advances. There are a number of advantages polymeric 
composites have over traditional materials (metals, ceramics, wood, “pure” polymers etc.): 
- a unique combination of properties, not typical for other individual materials (strength, strain, 
thermal, rheological, adhesive, electrical, friction, heat transfer, and other properties); 
- the ability to control composites properties by simply changing the composition and preparation 
conditions. Typically, composite materials are not "champions" with respect to separately considered 
properties. But with respect to the combination of certain properties they have no equal. By definition 
composite materials are made by blending two or more chemically dissimilar components with a clear 
boundary between them. In its structure a composite material can be composed of several phases: a 
continuous phase (matrix) and one or more dispersed phases, or of two or more (co)continuous 
phases with possible dispersed phases in each of the continuous phases. Composite material with a 
continuous phase made of a polymer is called a polymer composite material. In composite materials 
the dispersion medium (continuous phase) is called the matrix, and the dispersed phase is called the 
dispersed or filler material. 
The main types of polymer composites are: 
- Polymers that contain any solid particles or fibers; 
- Polymer blends; 
- Polymers containing liquid in the form of ifillers or plasticizers; 
- Polymers containing gas as a filler;[1] 

A nanocomposite is defined as a composite material where at least one of the dimensions of one 
of its constituents is on the nanometre size scale. Nanocomposites are found in nature, for example 
in the structure of the abalone shell and bone.[2] The use of nanoparticle-rich materials long predates 
the understanding of the physical and chemical nature of these materials. Jose-Yacaman et al. 

investigated the origin of the depth of color and the resistance to acids and bio-corrosion of Maya 
blue paint, attributing it to a nanoparticle mechanism.[3] From the mid 1950s nanoscale organo-clays 
have been used to control flow of polymer solutions (e.g. as paint viscosifiers) or the constitution of 
gels (e.g. as a thickening substance in cosmetics, keeping the preparations in a homogeneous 
form).[2] By the 1970s polymer/clay composites were the topic of textbooks, although the term 
"nanocomposites" was not in common use. In mechanical terms, nanocomposites differ from 

http://en.wikipedia.org/wiki/Clay_minerals
http://en.wikipedia.org/wiki/Maya_blue
http://en.wikipedia.org/wiki/Maya_blue
http://en.wikipedia.org/wiki/Abalone
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conventional composite materials due to the exceptionally high surface to volume ratio of the 
reinforcing phase and/or its exceptionally high aspect ratio.[2] Polymer nanocomposites exhibit 
substantial property enhancements at much lower filler loadings than polymer composites with 
conventional micron-scale fillers such as carbon fibers or glass, which can result in a much lower 
component weight and can simplify processing. A big breakthrough in the field came with the 
discovery of fullerene or carbon black in 1985, the third carbon allotrope in addition to graphite and 
diamond.  

Another breakthrough came a few years later, in 1991, when Iijima discovered carbon nanotubes 
(CNT). Almost immediately polymer/CNT nanocomposites attracted considerable attention owing to 
their unique multi-functional properties such as exceptional mechanical, thermal and electrical 
properties. A large part of the CNT/polymer based composites exploit CNTs as a conductive filler 
dispersed into an insulating matrix. Applications range from electronics to aerospace sectors, such as 
electrostatic dissipation, electromagnetic interference (EMI) shielding, multilayer printed circuits, and 
transparent conductive coatings.[4] 

1.2. Graphene 
Graphene is the name given to a flat monolayer of carbon atoms tightly packed into a two-

dimensional (2D) honeycomb lattice, and is a basic building block for graphitic materials of all other 
dimensionalities (Figure 1).  

Figure 1. Graphene is a 2D building material for carbon materials of all other 
dimensionalities. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or 
stacked into 3D graphite.[5] (Reprinted by permission from Macmillan Publishers Ltd from 
ref. 5. Copyright 2007) 

http://en.wikipedia.org/wiki/Aspect_ratio
http://en.wikipedia.org/wiki/Composites
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It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes or stacked into 3D graphite.[5] Until 
its discovery it was argued that 2D crystals were thermodynamically unstable and could not exist.[6,7] 

The theory of Landau and Peierls stated that thermal fluctuations in low-dimensial crystal lattices 
should lead to such displacements of atoms that they become comparable to interatomic distances at 
any finite temperature.[5] The argument was later supported by experimental observations which 
demonstrated that the melting point of thin films drops down dramatically with decreasing thickness of 
the material, and subsequently films become unstable at thicknesses of a few tens of atomic layers. 
Due to this fact atomically thick monolayers for many years were assumed to exist just as integral 
parts of 3D structures. Without 3D support 2D structures were supposed not to exist, until 2004, 
when the common wisdom was flaunted by the experimental discovery of graphene as well as other 
free-standing 2D atomic crystals, for example, single-layer boron nitride.[8]

In 2007 Meyer’s studies using transmission electron microscopy revealed that suspended 
graphene sheets are not perfectly flat: they exhibit an intrinsic microscopic roughening such that the 
surface normal varies by several degrees along the sheet and out-of-plane deformations reach 1 nm 
(Figure 2).[9]

Figure 2. Geometry of graphene platelets.[9] (Reprinted by permission from Macmillan 
Publishers Ltd from ref. 9. Copyright 2007) 

A graphene single-layer is the strongest material ever measured, exhibiting a Young’s modulus of 
1 TPa and ultimate strength of 130 GPa.[10] It has a thermal conductivity of 5000 W/(m3 K), which is 
more than twice the value of graphite (≈2000 W/(m3 K)) and comparable with the upper bound of the 
highest values reported for SWCNT bundles.[11] An electrical conductivity of up to 6000 S/cm has 
been reported for a single graphene layer.[12] These properties in addition to an extremely high 
surface area (theoretical limit: 2630 m2/g) and gas impermeability indicate graphene’s great potential 
for improving mechanical, electrical, thermal, and gas barrier properties of polymers.[13] 
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The implementation of the huge potential of applications that graphene has, can only become 
reality if the development of simple and relatively inexpensive methods of producing these material in 
macroscopic quantities with the desired characteristics is achieved. For several years since the 
opening of the first method of isolating of graphene based on the mechanical cleavage of graphite 
layers the efforts of many research groups have been focused on the development of more effective 
approaches to solve this problem and to design new technological approaches for the isolation and 
purification of  graphene.  

1.2.1.	Types	of	graphene	edges	

Infinite defects-free graphene sheets do not differ from each other. The real graphene platelets 
differ one from another not only in size but also in the boundaries structure. These differences 
significantly affect the characteristics of graphene and in particular its electronic properties, meaning 
it can exhibit either quasi-metallic or semiconducting behavior, depending on the atomic structure of 
their edges. Cutting a graphene sheet along a straight line produces two typical kinds of peripheral 
shapes called armchair and zigzag, depending on the axial directions of 30° difference.[14] There are 
also intermediate structures for which the angle of chirality is in the range between the specified 
values. 

Figure 3. Different types of edges that can be formed by cutting the graphene plane at 
different angles.[15] (Reprinted with permission from ref. 15. Copyright 2009 American 
Chemical Society) 

This property of graphene is illustrated in Figure 3 which shows fragments of graphene samples with 
different structures of the edges. Raman spectroscopy and Scanning Tunneling Microscopy (STM) 
can be used to study the quality of the edges in graphene.[15, 16]
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1.2.2.	Graphene	structural	defects	

Usually depending on production method and environment conditions the graphene surface 
possesses structural defects which can affect its electrical, mechanical and transport properties to a 
large extent. The unique property of graphene is that it can adjust structural lattice defects in 
reconstructed arrangements. Such a property is not known for any other material. Several 
experimental studies have demonstrated the occurrence of either native or physically introduced 
defects in graphene. Transmission electron microscopy (TEM) and STM have been used to obtain 
images of defective graphene with atomic resolution.[17, 18] The interpretation of the experimental 
results was simplified by the fact that the theory of defects in graphene had already been developed 
to some extent in the context of carbon nanotubes and graphite.[19-27] Defects can migrate from one 
place to another which can significantly influence the properties of a defect crystal. The mobility of 
graphene defects can be immeasurably low or immeasurably high. The migration is governed by an 
activation barrier which depends on the defect type.[19] 

The most essential types of the structural defects in graphene are: Stone-Wales (SW) defect, 
single vacancy, multiple vacancy, and adatoms.  

Stone-Wales defect occurs when four hexagons are transformed into two pentagons and two 
heptagons [SW(55-77) defect] by rotating one of the C-C bonds by 90° (Figure 4).  

Figure 4. Schematic (a) and experimental (b) TEM images of Stone-Wales defect.[17] 

(Reprinted with permission from ref. 17. Copyright 2008 American Chemical Society)

The SW(55-77) defect has a formation energy Ef ≈ 5 eV.[28, 29] The high formation energy of the SW 
defect indicates a negligible equilibrium concentration, at least at typical experimental temperatures 
below 1000 °C. However, once the defect is formed under nonequilibrium conditions (e.g., rapid 
quenching from high temperature or under irradiation), the 5 eV barrier for the reverse transformation 
should warrant its stability at room temperature.[19] A single vacancy defect corresponds to the 
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absence of one carbon atom in a hexagonal graphene lattice (Figure 5). This defect leads to the 
saturation of two out of three dangling bonds next to the missing atom, whereas one dangling bond 
remains because of geometrical reasons. The single vacancy defect has a formation energy Ef ≈ 5 
eV. The migration energy of the defect is about 1.3 eV which allows migration at 100-200 °C. The 
reconstruction behavior, which is influenced by defect migration, has been experimentally studied for 
nanotubes whose structure is related to graphene. It was shown that nanotubes reconstruct in-situ 
under electron irradiation at 200-300 °C remaining the atomic lattice coherent.[30, 31] When the 
electron energy is significantly higher than the displacement energy of carbon atom in graphene, 
irradiation with electrons or ions at room temperature leads to defects formation resulting in holes and 
amorphization.[19]

Figure 5. Schematic (a) and experimental (b) TEM images of single vacancy defect.[17] 

(Reprinted with permission from ref. 17. Copyright 2008 American Chemical Society) 

Multiple vacancies can be created either by removing a few neighboring atoms or by coalescence 
of two or more single vacancies defects. An even number of missing carbon atoms allows a complete 
reconstruction, meaning a complete saturation of dangling bonds, whereas an odd number of missing 
carbon atoms remains an open bond. Therefore structural defects with an even number of vacancies 
are energetically more favorable over defects with an odd number of vacancies.[21]

The energetically favored position of the interstitial atoms is the bridge configuration where a new 
carbon (so-called adatom) atom is located on top of a carbon-carbon bond (Figure 6). When 
interacting with a graphene lattice, the guest carbon atom changes the hybridization of carbon atoms 
in the layer. In addition to the bridge position, other metastable configurations like the dumbbell 
configuration can occur.[32] When two migrating adatoms meet each other and form a dimer, they can 
be incorporated into the graphene lattice.[19] 
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Figure 6. Carbon adatoms: (a, d) single adatom in the bridge; (b, e) single adatom in the 
dumbbell configuration; (c, f) dimmer of two close adatoms. [19] (Reprinted with permission 
from ref. 19. Copyright 2011 American Chemical Society) 

When a foreign atom incorporates into a graphene network various configurations such as on top of a 
carbon atom, on top of the center of a hexagon, or in the bridge position, are possible.

One of the most occurred types of defects are edge defects in graphene. As said above, the 
simplest edge structures are the armchair and the zigzag orientation. They can reconstruct. One of 
the simplest examples of an edge defect is the removal of one carbon atom from a zigzag edge. This 
results in one pentagon in the middle of a row of hexagons at the edge. Other edge reconstructions 
can lead to different combinations of pentagons and heptagons at the edge.[19, 33]

Figure 7. Interlayer defect structures in a graphene bilayer: (a,b) interlayer double vacancy 
with different bond length; (d) the 4-fold coordinated bridge atom.[34] (Reprinted by 
permission from Macmillan Publishers Ltd from ref. 34. Copyright 2003) 

Defects between neighboring graphene single layers, for instance in a bilayer, are also quite 
important. Although defects can exist in both layers independently, it was found that interstitial atoms 
when located between two graphene layers tend to form crosslinks between the atomic layers.[34, 35]

Some of such defect configurations are shown in Figure 7.
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1.3. Methods of Graphene preparation 

1.3.1.	Mechanical	exfoliation.	

In 2004 Novoselov and Geim reported separated single graphene layer obtained by mechanical 
cleavage of graphite. 5 µm-deep mesas on top of the highly-oriented graphite platelets were 
prepared by dry etching followed by pressing against photoresist spun over glass substrate. After 
attaching to the photoresist layer the mesas were cleaved off from the rest of graphite surface. Then 
using scotch tape graphite was pilled off from the mesas following by releasing flakes left in the 
photoresist in acetone.  Si wafer was dipped in the solution to capture the graphene flakes.[36]

Mechanical cleavage allows to obtain 10 µm wide and 100 µm long single graphene layers 
possessing a regular structure. The main problem of this method of graphene sheets production is 
their identification.  Micromechanical cleavage results in a significant amount of fragments which are 
graphene flakes containing a number of layers, from one to hundreds. The share of single layer 
samples in this conglomerate is relatively small, so that the main difficulty of this method of synthesis 
is associated with the detection of a single layer of graphene. 

Figure 8. Optical photo in white light of graphitic films of various thickness.[36] (From ref. 
36. Reprinted with permission of the American Association for the Advancement of 
Science (AAAS)) 

To identify such objects is very difficult using methods of observation based on scanning probe 
microscopy which can not determine the number of layers of a multilayer structure. The crucial factor 
in the considerable progress in obtaining and identifying a graphene single layer was the use of an 
optical microscope (Figure 8). Observations show that a graphene single layer placed on a substrate 
of silicon, coated with a thin layer of Si02, creates an interference pattern, which is the clear evidence 
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for the existence of graphene. The ability to obtain such a picture is very sensitive to the thickness of 
the Si02 layer and to the purity of its surface. To illustrate this, the use of a substrate with an oxide 
layer thickness of 315 nm instead of 300 led to complete disappearance of the interference pattern.[5, 

8, 36]

1.3.2.	Chemical	vapor	deposition	

The method of chemical vapor deposition (CVD) is widely used for the synthesis of carbon 
nanostructures. For example, since 1970s this method has been effectively used for producing 
carbon filaments which are the basis of a composite material with outstanding mechanical 
properties.[37] The CVD of is one of the most common methods for obtaining CNTs on a macroscopic 
scale.[38] It is based on the thermocatalytic decomposition of gaseous hydrocarbons on the surface of 
some metals which leads to the formation of various carbon nanostructures.[39] An example of the 
successful use of CVD for the synthesis of graphene is the work of Kim et al., where the nickel 
substrate of 300 nm thickness acts as a catalyst.[40] Thin layers of nickel of thickness less than 
300 nm were deposited on SiO2/Si substrates using an electron-beam evaporator, and the samples 
were then heated to 1000 °C inside a quartz tube under an argon atmosphere. After flowing the 
reaction gas mixtures (CH4:H2:Ar = 50:65:200 standard cubic centimeters per minute), the samples 
were rapidly cooled to room temperature. The experiments showed that such a rapid cooling is an 
important factor preventing the agglomeration of graphene sheets in an undesired multilayer structure 
and promoting the separation of these sheets from the substrate for further use. 

It was found that the average number of graphene layers and the coverage of the substrate are 
determined by the thickness of the nickel film and the duration of the growth process. Thus, the film 
synthesized within 7 minutes on a nickel substrate of 300 nm thickness contained predominantly two-
layer flakes of graphene. Analysis of images obtained by AFM indicated a bumpy surface structure of 
the graphene sheets. An aqueous iron (III) chloride (FeCl3) solution (1 M) was used as an oxidizing 
etchant to remove the nickel layers. This process allowed to perform the etching of the substrate 
without additional gassing or precipitation. After a few minutes of such an etching process the 
graphene film easily separated from the substrate and floated on the surface of the solution. After 
transfer to the substrate the remaining nickel films were removed using hydrofluoric acid. Also a dry-
transfer process of the graphene films can be used. In this method first a polydimethylsiloxane 
(PDMS) stamp is pressed against the graphene film grown on the nickel substrate. After removal of 
the nickel substrate by etching using FeCl3 the graphene film becomes attached to the PDMS 
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substrate. By varying the shape of the nickel substrate graphene films of different sizes and shapes 

can be prepared and transferred to an arbitrary substrate (Figure 9).

Figure 9. (a) and (b) The dry-transfer method based on a PDMS stamp. After attaching the 
PDMS substrate to the graphene (a), the underlying nickel layer is etched and removed 
using FeCl3 solution (b); (c) graphene films on the PDMS substrates.[40] (Reprinted by 
permission from Macmillan Publishers Ltd from ref. 40. Copyright 2009) 

Further efforts towards improving the CVD method for obtaining graphene sheets resulted in a 
significant increase in the size of the synthesized samples. For example, Li et al. reported about 
single-layer graphene sheets with a transverse size of about 1 cm, which is much higher than 
achieved earlier. In this method graphene was grown on the copper foil of 25 microns thickness at 
1000 °C in a stream of methane and hydrogen.[41] The resulting graphene film of 1 x 1 cm area 
(Figure 10) was investigated using optical, transmission and scanning electron microscopes, as well 
as by Raman spectroscopy. The results of the measurements showed that the films obtained exhibit 
usually a continuous structure and contain mostly single-layer graphene, which is sometimes 
interlaced by two- and three-layered structures. According to the estimations based on Raman 
measurements, the obtained graphene film is composed of more than 95 % of a single graphene 
layer. The estimated proportion of double-layered graphene covers 3-4% of the area, so the amount 
of graphene consisting of more than two layers does not exceed 1%.[41]

It was found that graphene growth on Cu is self-limited; growth that proceeded for more than 60 
min yielded a similar structure to growth runs performed for ~10 min. For growth times much less 
than 10 min, the Cu surface is not fully covered. The growth of graphene on Cu foils of varying 
thickness (12.5, 25, and 50 μm) also yielded similar graphene structures with regions of double and 
triple flakes, but neither discontinuous monolayer graphene for thinner Cu foils nor continuous 
multilayered graphene for thicker Cu foils, as one could have expected based on the precipitation 
mechanism. These observations allow to conclude that graphene is growing by a surface-catalyzed 
process, rather than by a precipitation process, as has been reported by others for Ni.[40, 42, 43] 
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Monolayer graphene formation caused by surface segregation or surface adsorption of carbon has 
also been observed on transition metals such as Ni and Co at elevated temperatures.[44-46] However, 
when the metal substrates were cooled down to room temperature, thick graphite films were obtained 
because of precipitation of excess C from these metals, in which the solubility of C is relatively high. 

Figure 10. (a) SEM image of graphene on a copper foil with a growth time of 30 min. (b) 
High-resolution SEM image showing a Cu grain boundary and steps, two- and three-
layered graphene flakes, and graphene wrinkles. Inset in (b) shows TEM images of folded 
graphene edges. 1L, one layer; 2L, two layers. (c and d) Graphene films transferred onto a 
SiO2/Si substrate and a glass plate, respectively.[41] (From ref. 41. Reprinted with 
permission of the American Association for the Advancement of Science (AAAS)) 

Bae and coworkers were able to increase the size of the graphene sheet up to 75 cm in the 
diagonal.[47] Synthesis of graphene sheets was carried out by CVD in a cylindrical reactor with a 
diameter of 20 cm. Copper foil of 75 cm in the diagonal used as a substrate was rolled into a 
cylinder. In order to provide a uniform temperature distribution along the substrate surface a quartz 
tube of 18.75 cm diameter was inserted inside the foil cylinder. At first the sample was treated with 
hydrogen for 30 min at 1000 °C and 90 mTorr which resulted in increase of the grains size in the 
copper foil structure from a few microns to 100 microns, since it was found that the copper foils with 
larger grain size yield higher-quality graphene films. Graphene synthesis was carried out at the same 
temperature for 30 minutes by flowing a mixture of CH4 and H2 at a 3:1 ratio through the reactor at 
460 mTorr followed by rapid cooling in the stream of hydrogen at 90 mTorr to room temperature. 
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Subsequent separation of the graphene sheet from the copper substrate was carried out in several 
stages: adhesion of polymer supports (polyethylene terephthalate) to the graphene on the copper foil; 
etching of the copper layers; release of the graphene layers and transfer onto a target substrate. In 
the adhesion step, the graphene film, grown on a copper foil, was attached to a thin polymer film 
coated with an adhesive layer by passing between two rollers. In the subsequent step, the copper 
layers were removed by electrochemical reaction with aqueous 0.1 M ammonium persulphate 
solution (NH4)2S2O8.[48] Finally, the graphene films were transferred from the polymer support onto a 
target substrate by removing the adhesive force holding the graphene films. When using thermal 
release, the graphene films were detached from the tapes and released to counter-substrates by 
thermal treatment (Figure 11).[48-50]

Figure 11. Schematic of the roll-based production of graphene films grown on a copper 
foil. The process includes adhesion of polymer supports, copper etching (rinsing) and dry 
transfer-printing on a target substrate.[47] (Reprinted by permission from Macmillan 
Publishers Ltd from ref. 47. Copyright 2010) 

Raman spectroscopy showed that the obtained graphene films have mostly a single layer structure. 

1.3.3.	Epitaxial	growth	

Another effective approach for the synthesis of graphene is based on the thermal decomposition 
of silicon carbide which results in the epitaxial growth of graphene film on the surface of a SiC 
crystal.[5,51-53] The advantage of this approach is that the size of the synthesized sample can be 
comparable to the size of the original SiC crystal if the crystal is of a good quality. In addition to that, 
to study the electrical properties of graphene it should be placed on an insulating substrate, hence a 
considerable advantage of this method is that insulating SiC substrates can be used so that transfer 
to another insulator is not required in contrast to the situations when the sample is produced on a 
metallic substrate. However, the large-scale structural quality is limited by the lack of continuity and 
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uniformity of the grown film.[54, 55] On the Si-terminated basal plane, vacuum annealing leads to small 
graphene domains typically 30–100 nm in diameter, whereas on the C-terminated face, larger 
domains (~200 nm) of multilayered, rotationally disordered graphene can be produced.[54] The small-
grain structure is due to morphological changes of the surface in the course of high-temperature 
annealing. Moreover, decomposition of SiC is not a self-limiting process and, as a result, regions of 
different film thicknesses coexist, as was shown by low-energy electron microscopy (LEEM).[54, 

55] Emtsev et al. were able to achieve a significant improvement in the degree of homogeneity of the 
graphene films obtained by thermal decomposition of silicon carbide.[53] The starting material used in 
the experiment was a highly orientated 6H-SiC wafer. Before the thermal treatment leading to the 
formation of graphene films, the samples were etched in hydrogen at atmospheric pressure and T = 
1550 °C for 15 min to remove surface polishing damage. Graphene growth was carried out in a 
vertical cold-wall reactor comprising a double-walled, water-cooled quartz tube and a graphite 
susceptor in a slow flow of argon. Heating and cooling rates were 2–3 °C per second. The typical 
annealing time was 15 min. A wide range of annealing temperatures from 1500 to 2000 °C and 
reactor gas pressures from 10 to 900 mbar were tested. The authors showed that the growth of 
epitaxial graphene on SiC in an argon atmosphere close to atmospheric pressure provides 
morphologically superior graphene layers in comparison with vacuum graphitization. The key factor in 
achieving an improved growth is the significantly higher annealing temperature of 1650 °C that is 
attainable for graphene formation under argon at a pressure of 900 mbar as compared with 1280 °C 
in high vacuum. Graphene formation is the result of Si evaporation from the substrate. For a given 
temperature, the presence of a high pressure of argon leads to a reduced Si evaporation rate 
because the silicon atoms desorbing from the surface have a finite probability of being reflected back 
to the surface by collision with Ar atoms. The significantly higher growth temperature thus attained 
results in an enhancement of surface diffusion such that the restructuring of the surface is completed 
before graphene is formed. Ultimately, this leads to the markedly improved surface morphology.[53] 

In addition to SiC substrate graphene synthesis by epitaxy on transition metals has also been 
considered.[56-61] Sutter and coworkers used ruthenium as a substrate for graphene growth. The 
authors made use of the temperature-dependent solubility of interstitial carbon in transition metals to 
achieve the controlled layer-by-layer growth of large graphene domains on Ru. At high temperature, 
C is absorbed into the Ru bulk. Slow cooling from 1150 °C to 825 °C lowers the interstitial C solubility 
by a factor of 6, driving significant amounts of C to the surface. The result is an array of lens-shaped 
islands of macroscopic size (>100 µm) covering the entire Ru substrate.[56]
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1.3.4.	Oxidation	and	reduction	

1.3.4.1. Graphene oxide 
Since it was first prepared in the nineteenth century, graphite oxide has been mainly produced by 

the Staudenmaier, Brodie and Hummers methods.[62-66] All three methods involve oxidation of graphite 
in the presence of strong acids and oxidants. The level of the oxidation can be varied on the basis of 
the method applied, the reaction conditions and the precursor graphite used. The structure of 
graphene oxide has been the subject of theoretical and experimental study. The Lerf-Klinowski model 
is believed to be the most likely description of GO structure.[67-82]

Solid-state 13C NMR spectroscopy of graphite oxide and recently of 13C-labelled graphite oxide 
favors the model shown in Figure 12; the sp2-bonded carbon network of graphite is strongly 
disrupted and a significant fraction of this carbon network is bonded to hydroxyl groups or participates 
in epoxide groups.[62, 71, 72, 81] Minor components of carboxylic or carbonyl groups are thought to 
populate the edges of the layers in graphite oxide.

Figure 12. Proposed chemical structure of graphene oxide.[72] (Reprinted from ref. 72. 
Copyright 1998 with permission from Elsevier)

Graphite oxide thus consists of a layered structure of graphene oxide sheets that are strongly 
hydrophilic such that intercalation of water molecules between the layers readily occurs. The inter-
layer distance between the graphene oxide sheets increases reversibly from 6 to 10 Ǻ with increasing 
relative humidity.[83] Graphite oxide can be completely exfoliated to produce aqueous colloidal 
suspensions of graphene oxide sheets by simple sonication and by stirring the water/graphite oxide 
mixture for a sufficiently long time.[62] The measurement of the surface charge (zeta potential) of 
graphene oxide sheets shows that they have negative charges when dispersed in water. This 
suggests that electrostatic repulsion between negatively charged graphene oxide sheets could 
generate a stable aqueous suspension of them.[84]



Chapter 1 

16 

1.3.4.2. Chemical reduction of graphene oxide 
Although oxidation of graphene or graphite can generate homogeneous colloidal suspensions, 

the resulting material is electrically insulating owing to the disruption of the ‘graphitic’ network. On the 
other hand, the reduction of the graphene oxide by chemical methods, using reductants such as 
hydrazine, dimethylhydrazine, hydroquinone and NaBH4, has produced electrically conducting 
material.[62, 85-91] The reduction of an aqueous graphene oxide suspension by hydrazine has resulted 
in agglomerated graphene-based nanosheets, and, when dried, in a black powder (Figure 13) that is 
electrically conductive with a powder conductivity ~2 x 102 S m-1. Elemental analysis (atomic C/O 
ratio, ~10) of the reduced graphene oxides revealed the existence of a significant amount of oxygen, 
indicating that reduced graphene oxide is not the same as pristine graphene. Theoretical calculations 
of the reduction of graphene oxide (the model used for graphene oxide had the graphene decorated 
with hydroxyl and epoxide groups) suggest that reduction below 6.25% of the area of the graphene 
oxide (C/O = 16 in atomic ratio) may be difficult in terms of removing the remaining hydroxyl 
groups.[68] 

Figure 13. (a) Proposed mechanism for reduction of graphene oxide by hydrazine; (b) A 
scanning electron microscope image of aggregated graphene oxide sheets chemically 
reduced with hydrazine monohydrate.[85] (Reprinted from ref. 85. Copyright 2007 with 
permission from Elsevier) 

Homogeneous colloidal suspensions of electrically conducting reduced graphene oxide have 
been produced by chemical reduction with dimethyl-hydrazine or hydrazine in the presence of either 
polymer or surfactant.[88, 92] The reduction of an aqueous suspension containing a mixture of 
graphene oxide sheets and poly(sodium 4-styrene sulphonate) (PSS) afforded an aqueous black 
suspension of reduced graphene oxide sheets coated by the PSS.[92] The reduction of isocyanate-
modified graphene oxide in the presence of polystyrene generated a suspension of reduced 
graphene oxide sheets in DMF.[88]

Reduction of sodium dodecylbenzenesulfonate (SDBS)-wrapped graphene oxide with hydrazine 
and then its chemical modification with aryl diazonium salt produced SDBS-wrapped chemically 
modified graphene (CMG) that was dispersible in DMF, N,N’-dimethylacetamide and NMP at 
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concentrations up to 1 mg/ml.[86] Colloidal suspensions of modified graphenes decorated with small 
organic molecules or nanoparticles have also been reported. Xu and coworkers functionalized the 
reduced graphene oxide sheets using pyrenebutyric acid. The aqueous graphene oxide suspension 
was reduced using hydrazine in the presence of pyrenebutyric acid, yielding a black aqueous 
colloidal suspension (0.1 mg/ml) of reduced graphene oxide sheets covered by pyrenebutyric acid. Its 
paper-like material, prepared by filtration, showed  electrical conductivity of 200 S/m.[93] A suspension 
at concentration of 0.48 mg/ml of gold-nanoparticle-modified graphene sheets in THF was produced 
by the reaction of NaBH4 and octadecylamine-modified graphene oxide followed by the addition of 
AuCl4- to the suspension.[91] The gold nanoparticles (diameter, ~5-11 nm) were anchored to the 
modified graphene sheets.  

A few methods for creating colloidal suspensions of graphene sheets without the help of 
stabilizers or surfactants have been reported. An aqueous suspension (0.5 mg/ml) of reduced 
graphene oxide sheets under basic conditions (pH 10) was described by Li and coworkers.[84] The 
graphene oxide was reduced by hydrazine, and excess hydrazine was removed by dialysis. It was 
suggested that shifting the pH to 10 converts neutral carboxylic groups to negatively charged 
carboxylate groups, so that when the interior of the graphene oxide sheets are reduced by hydrazine, 
the negatively charged particles do not agglomerate.

1.3.4.3. Thermal reduction of graphene oxide 
Thermally reduced graphene oxide (TRGO) can be produced by rapid heating of dry GO under 

inert gas and at high temperature.[67, 94-96] Heating GO in an inert environment at 1000 °C for 30 s 
leads to reduction and exfoliation of GO, producing TRGO sheets. Exfoliation takes place when the 
pressure, generated by the gas (CO2) evolved due to the decomposition of the epoxy and hydroxyl 
sites of GO (see figure 12) exceeds the van der Waals forces holding the graphene oxide sheets 
together. About 30% weight loss is associated with the decomposition of the oxygen groups and 
evaporation of water.[95] The exfoliation leads to a volume expansion of 100-300 times producing very 
low-bulk-density TRGO. Because of the structural defects caused by the loss of CO2, these sheets 
are highly wrinkled as shown in Figure 14.[67] 
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Figure 14. SEM image of dry, as-produced TRGO powder. The sheets are highly 
agglomerated, and the particles have a fluffy morphology.[67] (Reprinted with permission 
from ref. 67. Copyright 2007 American Chemical Society) 

80% of the TRGO sheets are single layers with an average size of about 500 nm, independent of the 
starting GO size.[95] The advantage of the thermal reduction methods is the ability to produce 
chemically modified graphene sheets without the need for dispersion in a solvent. TRGO has a C/O 
ratio of about 10/1 compared to 2/1 for GO.[13, 67] This ratio has been increased up to 660/1 through 
heat treatment at higher temperature (1500 °C) or for longer time.[97] TRGO sheets have a high 
surface area, 1700 m2/g, as measured in methylene blue and can be well dispersed in organic 
solvents such as N,N-dimethylformamide (DMF) and tetrahydrofuran. The thermal reduction also 
leads to restoration of the electrical conductivity with reported electrical conductivity of a compacted 
film with density 0.3 g/(cm3) ranging between 10 and 20 S/cm, compared to 6000 S/cm for defect-free 
single graphene sheets.[13, 94] 

1.3.5.	Liquid-phase	exfoliation	of	graphite	

One of the most efficient ways to exfoliate graphite into individual sheets of graphene is based on 
the use of surfactants when exfoliating in water or on the use of organic solvents whose surface 
energy matches the surface energy of graphene when exfoliating in organic media. Such an 
approach utilizes a layered structure of crystalline graphite, which gives a possibility for the atoms or 
molecules of different nature to penetrate into the space between the layers. This increases the 
distance between the layers and thus reduces the interaction energy between them. As a result it 
opens a way to separate graphite layers by sonication. Such an approach utilizing sonication had 
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resulted before in sufficient exfoliation of carbon nanotubes bundles in a small number of solvents 
such as N-Methylpyrrolidone (NMP).[98-102]  Such exfoliation occurs because the strong interaction 
between solvent and nanotube sidewall means that the energetic penalty for exfoliation and 
subsequent solvation becomes small.[103] Coleman and coworkers exfoliated graphite in NMP by a 
long bath sonication treatment, followed by centrifugation to remove non-exfoliated graphite particles, 
resulting in a black homogeneous suspension of graphene flakes in the solvent.[103, 104] This 
procedure was repeated for three other solvents known to successfully disperse nanotubes: N,N-
Dimethylacetamide (DMA), gamma-butyrolactone (GBL) and 1,3-dimethyl-2-imidazolidinone 
(DMEU).[103] Characterization of the suspensions revealed the presence of defect- and oxide-free 
mono- and bilayer graphene flakes as well as multilayer structures.  

Since water has a surface energy that is much too high to work on its own as an exfoliant for 
graphene utilization of surfactans is required. Exfoliation of graphite resulting in thin graphene sheets 
can occur in water in the presence of surfactants such as sodium dodecylbenzene sulfonate (SDBS) 
and sodium cholate (SC) under similar conditions as described above for organic solvents.[105, 106]

Green et al exfoliated graphite in SC/water solution applying horn sonication and density gradient 
ultracentrifugation (DGU) to isolate graphene sheets with controlled thickness.[107] It resulted in stable 
graphene dispersions with graphene concentrations of 90 μg/ml. Lotya et al. exfoliated graphite by 
bath sonication in water/surfactant solution followed by centrifugation, resulting in graphene 
dispersions in water at concentration up 0.3 mg/ml.[106] Depending on the sonication and 
centrifugation time different concentrations of graphene sheets can be obtained. Transmission 
electron microscopy showed the dispersed phase to consist of small graphitic flakes. More than 40% 
of these flakes had <5 layers with ~3% of flakes consisting of monolayers. Free-standing films 
prepared out of graphene/SC dispersions by vacuum filtration exhibit an electrical conductivity of 
7000 S/m before annealing which is comparable to films made from reduced graphene oxide. The 
mean conductivity rises to 17500 S/m after annealing at 500 °C for 2 h under argon/hydrogen 
atmosphere. 

The methods discussed above have been very successful and have led to a number of advances 
including the preparation of polymer-graphene composites, facile production methods for transparent 
conductors, and sorting of graphene by layer number. However, these methods still face some 
problems. For example, when processing graphene from surfactant dispersions, it can be difficult to 
remove residual surfactant. Alternatively, the best solvents tend to be nonvolatile, causing problems 
with processing. This can make it difficult to remove solvents when processing graphene into films or 
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composites.[108] In particular, it is virtually impossible to deposit individual flakes from solvent-
exfoliated graphene, as aggregation tends to occur during the slow solvent evaporation. While 
graphene dispersions in high boiling point solvents have been transferred into low boiling point 
solvents by solvent exchange, it would be preferable to have a method which allows direct exfoliation 
of graphite to give stable dispersions of graphene in low boiling point solvents.[108, 109] O’Neill and 
coworkers were able to identify such low boiling point solvents and optimize the dispersion conditions 
which resulted in stable graphene dispersions obtained in chloroform, acetone and isopropanol. 
Depending on the preparation conditions, which include low energy bath sonication and 
centrifugation, dispersions with graphene concentration as high as 0.5 mg/ml can be obtained.[108]

1.3.6.	Graphite	intercalation	compounds	

Many exfoliated graphite fillers are derived from graphite intercalation compounds (GIC) which 
are compounds of graphite with atoms or molecules of alkali metals or mineral acids intercalated 
between the carbon layers.[110-113] The intercalation increases the interlayer spacing of graphite, 
weakening the interlayer interactions and facilitating the exfoliation of the GIC.[114] Varying structural 
arrangements of the intercalant are possible, such as alternating layers of graphene and intercalant 
(referred to as firststage GICs), as well as multiple (two to five) adjacent graphene layers between 
intercalant layers (higher-stage GICs).[115] It is the former arrangement, however, which is preferred 
for the complete exfoliation of these materials into monolayer platelets.[111] Intercalation of graphite by 
a mixture of sulfuric and nitric acid produces a higher-stage GIC that can be exfoliated by rapid 
heating or microwave treatment of the dried down powder, producing a material commonly referred to 
as expanded graphite (EG).[113, 115] EG retains a layered structure but has a slightly increased 
interlayer spacing relative to graphite, consisting of thin platelets (30-100 nm) which are loosely 
stacked.[113] Notably, an acid treatment may also oxidize the platelets, but to a far lesser degree than 
GO.[115, 116] EG itself has been investigated as a composite filler, although its effectiveness in 
enhancing properties compared with GO-derived fillers is limited by its layered structure and relatively 
low specific surface area, generally less than 40 m2/g.[117-120] Recently, a thinner form (~10 nm) of EG 
known as graphite nanoplatelets (GNP) was produced by either microwave radiation of acid-
intercalated graphite followed by pulverization using ball milling or ultrasonication, or by thermal 
expansion of fluorinated graphite intercalation compounds (FGIC).[121-123] Lee et al prepared GNP 
from the FGIC C2F·nClF3 containing the inorganic volatile intercalating agent ClF3. The composition 
of FGIC in mass percentages was C 44, F 44, Cl 12. The main difference in preparation methods 
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between GIC and FGIC is the thermal decomposition of GIC and FGIC. In the case of GICs C·xR, 
expansion of the matrix occurs only as a result of the rapid increase in the vapor pressure of the 
volatile intercalated substance R (the regime of thermal shock). In the case of the FGIC C2F·nClF3, 
expansion of the graphite layers occurs as a result of both the rapid increase in the vapor pressure of 
the volatile intercalated substance and the formation of gaseous fluorocarbons (mainly CF4) and 
other gaseous products by interaction between the matrix and intercalant. This severe expansion 
process not only makes a large number of defects in the exfoliated graphite but also gives material 
properties essential for easy dispersion. Dispersion of the material in water with the aid of SDBS 
gave sheets with a thickness of down to 5 nm.[123] Smaller platelet thicknesses have been obtained 
by re-intercalation of EG or co-intercalation of GIC with organic molecules prior to exfoliation. For 
instance, mixing potassium with EG yielded a stoichiometric first-stage GIC (KC8), which was 
reported to be exfoliated into GNPs with thicknesses as low as 2 nm upon reaction with water or 
alcohols, along with sonication.[111, 115] To make high-quality graphene sheets, Li et al started by first 
exfoliating expandable graphite by brief (60 s) heating to 1000 °C. Then graphite was reintercalated 
with oleum (fuming sulphuric acid with 20% free SO3), and  tetrabutylammonium hydroxide (TBA, 
40% solution in water) was inserted into the oleum-intercalated graphite in N,N-dimethylformamide 
(DMF). The TBA-inserted oleum-intercalated graphite was then sonicated in a DMF solution of 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-5000] for 60 min to 
form a homogeneous suspension. Centrifugation was used to remove large pieces of material from 
the supernatant. This method resulted in large amounts of graphene sheets suspended in DMF and 
can be transferrable to other solvents including water and organic solvents.[116]

1.4. Characterization of graphene  
It is important to verify that the preparation methods described above do in fact produce 

graphene since properties of the nanofiller are important for its application, for instance for the 
preparation of the polymer composites. The usual methods include optical microscopy, SEM, TEM, 
AFM, Raman spectroscopy, X-ray diffraction and XPS. 

X-ray diffraction is used to demonstrate that graphite has been intercalated. For example, the 
sharp reflection at 2θ = 26.3 º (Cu Kα radiation, X-ray wavelength = 0.154 nm) in graphite shifts to 
14.1º-14.9º in graphite oxide. However, X-ray diffraction disappears as the sheets of GO exfoliate into 
single sheets.[13, 67, 95]
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Surface area has been used as an indicator of degree of exfoliation. Since theoretically the 
specific surface area is inversely proportional to the thickness of disk-like particles, well-exfoliated 
sheets will have a higher surface area. The surface area can be determined by N2 or methylene blue 
adsorption.[13, 67, 95] However, Schniepp et al. noted that N2 adsorption measurements were highly 
dependent on the compressibility of TRGO.[13, 95]

The identification of graphene sheets, down to one layer in thickness, can be realized through 
optical microscopy via the color contrast caused by the light interference effect on the SiO2 substrate, 
which is modulated by the graphene layer.[124, 125]

AFM is an effective way for the characterization of graphene. Though graphene is very thin, it can 
give the morphological information using AFM. From the step height of graphene on the substrate, it 
is possible to estimate the number of graphene layers in the sheet. Due to the differences in tip 
attraction/repulsion between the insulating substrate and graphene it is hard to measure the 
theoretical thickness of 0.34 nm which results in a typical thickness ranging from 0.6 to 1.0 nm for 
single layers.[126] Also folded or wrinkled sheets as well as adsorbed solvents or moisture can 
complicate the measurements.[13, 67, 85, 95]

SEM can give qualitative insight into the three-dimensional structure of graphene sheets.[67]

TEM can observe the morphology of graphene as well as determine lateral size and count a 
number of graphene layers quite accurately. In addition to that electron diffraction patterns can clearly 
differentiate single from bilayer sheets.[9] High-resolution TEM (HR-TEM) can identify atomic bonds 
on functionalized sheets (C-OH vs C-O-C) and atomistic defects.[75]

Standard elemental analysis is applied to estimate the degree of oxidation of graphene oxide.  
X-ray photoelectron spectroscopy can determine an amount of oxygen on the graphene surface 

as well as identify the types of the bonds. 
Raman spectroscopy can provide a quick and effective way for structure and quality 

characterization of graphene. It can quantify the transformation of sp3-hybridized carbons back to sp2

on reduction of GO and indicate the presence of disordered stacking in graphite samples. The 
transformation of sp3 to sp2 restores electrical conductivity; thus, conductivity is also a valuable 
qualitative measure of the conversion of graphene oxide to graphene.[13, 85]

1.5. Graphene/polymer nanocomposites 
Graphene which is used for the preparation of graphene-based polymer nanocomposites is 

mainly produced via either chemical reduction or thermal reduction of graphite oxide due to the 
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advantage of these methods of graphene production over the others with respect to the scale on 
which graphene can be prepared. Most of graphene/polymer nanocomposites have been developed 
utilizing three strategies: 1) solvent processing; 2) in-situ polymerization and 3) melt processing.[127]

1.5.1.	Solvent	processing	

The method consists of three steps: dispersion in a suitable solvent by, for example, 
ultrasonication, addition of the polymer, and removal of the solvent by evaporation or distillation. 
Stankovich et al. treated graphite oxide with organic isocyanates.[88] The isocyanate treatment 
reduced the hydrophilic character of graphene oxide sheets by forming amide and carbamate ester 
bonds to the carboxyl and hydroxyl groups of graphite oxide, respectively. As a result, such 
isocyanate-derivatized graphite oxides no longer exfoliate in water but readily form stable dispersions 
in polar aprotic solvents DMF, consisting of completely exfoliated, functionalized individual graphene 
oxide sheets with thickness 1 nm. The nanocomposites prepared by solution-phase mixing of the 
exfoliated phenyl isocyanate-treated graphite oxide sheets with polystyrene, followed by their 
chemical reduction exhibited a percolation threshold of 0.1 vol % and ultimate conductivity of 1 
S/m.[88]

Ansari and coworkers dispersed both TRGO and graphene, produced by exfoliation of graphite 
by tip-sonication in DMF by sonication, followed by adding poly(vinylidene fluoride) (PVDF).[128] The 
composite solutions were then coagulated by adding water and the precipitated composites were 
dried in vacuum. Samples were prepared by compression molding. The TRGO-filled PVDF 
nanocomposites showed percolation around 2 wt % compared to 5 wt % for the graphene produced 
directly from graphite-filled composites. The lower percolation threshold was attributed to the higher 
aspect ratio of TRGO compared to the graphene produced directly from graphite, which leads to easy 
connectivity and better conductivity.[128]

Nanocomposite films of a TRGO and poly(ethylene oxide) (PEO) were cast from the physical 
blend of an aqueous TRGO dispersion assisted by PSS and an aqueous PEO solution and exhibited 
a percolation threshold at about 1.5 wt % and a conductivity of 1 S/m at 4 wt % loading of 
graphene.[129]

Pang et al. utilized a water/ethanol-assisted dispersion process under ultrasonication to disperse 
the graphene obtained via chemical reduction of GO and to coat the conductive filler on the surface 
of ultra-high molecular weight polyethylene (UHMWPE) particles.[130] During mixing, GO was reduced 
to graphene with hydrazine. On evaporation of the solvents, only UHMWPE particles covered with 
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layers of graphene remained. The graphene-coated UHMWPE particles were subsequently 
compression-molded into boards at 200 °C for electrical conductivity measurements. The obtained 
segregated structure with graphene as conductive filler and UHMWPE as matrix exhibited a very low 
percolation threshold, namely ca. 0.070 vol.%, in the resultant composites.[130]

Graphene/waterborne polyurethane nanocomposites were prepared by adding graphene 
dispersed in acetone to the pre-synthesized polymer dissolved in water. The percolation threshold of 
the composites occurred at about 2 wt % and the exhibited conductivity values are higher than those 
of CNTs/waterborne polyurethane nanocmposites at the same loading of nanofiller.[131]

Poly(vinylalcohol)/reduced graphite oxide nanocomposites were synthesized by reducing graphite 
oxide in the presence of the final polymer matrix material and coagulating the system with 2-
propanol. It was observed that some interactions occur between the polymer and the reduced 
graphite oxide layers, mainly by hydrogen bonding. The electrical conductivity achieved at 
concentrations beyond 7.5 wt % of reduced graphite oxide was as high as 10 S/m, whereas a 
percolation threshold occurred between 0.5 and 1 wt%.[132]

Due to the simplicity of this solvent processing method for graphene/polymer nanocomposites 
preparation, it is expected that graphene/polymer composites will continue to be developed using this 
methodology.

1.5.2.	In-situ	process	

In this strategy, the graphene sheets are usually mixed with monomers or pre-polymers, 
sometimes in the presence of a solvent, and then the polymerization reaction proceeds by adjusting 
parameters such as temperature and time.[127]

Graphene/thermoplastic polyurethane (TPU) nanocomposites were prepared in DMF via in situ 
synthesis of TPU in the presence of TRGO using chain extension reactions involving surface 
functional groups. The percolation threshold of in-situ polymerized composites was found to be 
slightly greater than that of the same composites prepared by solution mixing, both being between 
0.3 and 0.5 vol %. The origin of the difference is that covalently-grafted TPU chains on the TRGO 
surface may hinder direct contacts between platelets, and in addition reduce the effective particle 
aspect ratios.[133]

It was demonstrated that poly(ethylene oxide) (PEO) can be easily intercalated into the GO 
gallery .[134]  Jang et al. prepared GO/poly(methyl methacrylate) (PMMA) nanocomposites by a 
method utilizing macroazoinitiator (MAI). The MAI, which has a PEO segment, was intercalated 
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between the lamellae of GO to induce the inter-gallery radical polymerization of methyl methacrylate 
(MMA) and exfoliate the GO platelets. The prepared GO/PMMA nanocomposites were crushed into 
powder and dried at 65 °C under vacuum conditions for 24 h to remove low molecular weight 
components followed by compression molding at 190 °C and a pressure of 22 MPa. The measured 
conductivity of the composites reached as much as 10-3 S/m at 4.2 wt % loading of GO.[135] So 
although no special GO reduction step was used the composites were slightly conductive. This is due 
to thermal induced reduction. 

In addition to the solvent processing method graphene/waterborne polyurethane nanocomposites 
could be prepared by in-situ polymerization of diisocyanate with polycaprolactone diol and 
poly(tetramethylene glycol).[136] The percolation threshold occurred at 2 wt % which is comparable to 
that achieved for the waterborne polyurethane nanocomposites prepared by solvent processing.[131]

Liang and coworkers prepared completely exfoliated partially reduced graphene-based sheets in 
water.[137] An epoxy/hardener (4:1 weight ratio, in acetone) solution was added to the suspension of 
partially reduced graphene-based sheets and then sonicated and stirred for hours. After that, the 
mixture was poured into suitable molds to let the solvent evaporate completely at 60 °C. All the 
samples were cut into slabs and were then annealed at 250 °C for 2 h to fully reduce the partially 
reduced graphene-based sheets and increase the conductivity. The percolation threshold was found 

to occur at 0.1 wt % and the ultimate conductivity achieved was 0.1 S/m.[137]

1.5.3.	Melt	processing	

Melt processing is much more commercially attractive than the other two methods, as both 
solvent processing and in-situ polymerization process are less versatile and environmentally friendly. 
This strategy involves the direct inclusion of the graphene sheets into the melted polymer using a 
twin-screw extruder and adjusting parameters such as screw speed, temperature and time.[127] The 
drawbacks of this procedure are the low bulk density of thermally exfoliated graphene that makes 
extruder feeding a troublesome task and the lower degree of dispersion compared to solvent 
blending.[133] This reduced dispersion degree can then result in poorer properties, implying higher 
percolation thresholds and lower conductivities. On the other hand this approach provides 
manufacturers many degrees of freedom with regard to the selection of polymer grades and choice of 
the graphene content.[138]

Kim et al. used this method to prepare graphene/TPU nanocomposites. TRGO platelets were fed 
into a twin-screw extruder at 180 °C and blended under dry N2 for 6 min. Melt-blended samples were 



Chapter 1 

26 

further processed into ∼0.1 mm thick films by hot pressing (140 kPa for 2 min) at 180 °C. The 

percolation threshold of the composites occurred at a loading of graphene slightly higher than 0.5 vol 
%, which is higher than the value for the same composites prepared by the in-situ process.[133]

Zhang et al. successfully dispersed TRGO in polyethylene terephthalate (PET) by melt 
compounding at 285 °C using a Brabender mixer.[138] Compounding was performed with an initial 
screw speed of 50 rpm/min for 4 min, after which the screw speed was raised to 100 rpm/min within 1 
min and the compounding was conducted at this speed for 5 min. Graphene nanosheets were 
homogeneously dispersed in the PET matrix with almost no large agglomerates observed. The good 
dispersion of graphene sheets should be due to the good interaction between the oxygen- and 
hydroxyl-functional groups present on the surface of graphene and the polar carboxyl and ester 
groups of PET. The electrical conductivity quickly rises to 7.4 × 10−2 S/m from 2.0 × 10−13 with a slight 
increase in content from 0.47 to 1.2 vol.%. With only 3.0 vol.% graphene, the conductivity 
approaches to 2.11 S/m. On the contrary, PET/graphite composites show a higher percolation 
threshold of 2.4 vol % and a broad percolation transition within a range of graphite content from 2.4 to 
5.8 vol %. The conductivity of PET/pristine graphite composite with 7.1 vol % of graphite is only 2.45 
× 10−4 S/m.[138]

Steurer et al. used the solvent processing and melt processing techniques for preparation of 
nanocomposites with the following polymer matrixes: poly(propylene), polycarbonate, polyamide 6, 
and poly(styrene-co-acrylonitrile) SAN.[139] Because of the low bulk density of TRGO, solution blends 
of TRGO with the polymer were prepared to obtain homogenous polymer/filler compound. These 
premixed compounds were first dried and then melt compounded in a minicompounder. The following 
solvents were used: acetone for SAN/TRGO, dichloromethane for PC/TRGO, both at room 
temperature, and boiling xylene for iPP/TRGO. In the case of PA6, the filler was dispersed in acetone 
and then polyamide powder was added. The polymers and their corresponding nanocomposites were 
processed using a twin screw minicompounder with a mixing chamber volume of 5 ml. All the 
samples were compounded at 100 rpm for three minutes. The melt mixing temperature was 210 °C 
for SAN and iPP, 250 °C for PA6 and 280 °C for PC. The percolation thresholds occurred at 4 wt %, 
2.5 wt %, 5 wt % and 7.5 wt % for SAN, PC, iPP and PA6, respectively. In the case of PC and iPP 
matrixes the percolation thresholds are the same as those obtained for MWCNT-based composites 
utilizing these polymers, whereas for graphene/SAN and graphene/PA6 nanocomposites the 
obtained percolation thresholds are significantly lower than that obtained for the MWCNT-based 
nanocomposites using the same polymers as the matrix material.[139]
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In this work we utilized the enviromently friendly latex-technology for the preparation of graphene-
based polymer nanocomposites. The concept is explained in chapter 2.

1.6. Outline of the thesis 
Polymer nanocomposites based on carbon black and carbon nanotubes have been used for 

improved mechanical, thermal, electrical, and gas barrier properties of polymers.[140, 141] The 
discovery of graphene with its combination of extraordinary physical properties and ability to be 
dispersed in various polymer matrices has created a new class of polymer nanocomposites.[13] The 
goal of the work described in this thesis was to develop grapheme-based polymer nanocomposites 
with different levels of nanofiller loading using the latex technology, to optimise the electrical 
properties of grapheme-based nanocomposites and to establish if such nanocomposites can 
compete with CNT-based polymer nanocomposites in terms of conductivity. 

Chapter 2 describes preparation of the polystyrene nanocomposites based on graphene 
prepared via oxidation of graphite with subsequent exfoliation and chemical reduction of graphite 
oxide.   

Chapter 3 covers and discusses the main approaches recently used to produce CNTs/graphene 
dispersions and conductive CNTs/graphene-based polymer composites with the help of surfactants. 
The main focus is given to water-based systems. 

Chapter 4 studies the effect of the dispersion state of graphene as a factor influencing the 
electrical percolation threshold of graphene/polystyrene nanocomposites. 

Chapter 5 compares the ability of some conventional surfactants such as sodium 
dodecylbenzene sulfonate (SDBS), sodium cholate (SC), sodium poly (styrene sulfonate) (PSS) and 
Tween-80 to disperse graphene in water. Percolation thresholds and ultimate conductivity values of 
the composites based on graphene dispersed in the presence of these surfactants are compared. An 
influence of utilizing conductive surfactants for graphene dispersion in water on percolation threshold 
and conductivity of the corresponding nanocomposites is discussed. 

Chapter 6 deals with the systems consisting of a nanofiller and a conductive surfactant. For 
evaluation of the contribution of these two components to the overall conductivity of the composites 
one of them, i.e. the CNTs, is replaced with a non-conductive analogue with a similar aspect ratio, i.e.

cellulose whiskers. 
Chapter 7 gives an overview and presents a technological assessment of the work described in 

the thesis. Different aspects of upscaling of this work are addressed.
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Chapter 2 

Latex-based concept for the preparation of 
graphene-based polymer nanocomposites  

ABSTRACT. The latex technology concept was applied for the preparation of 
graphene/polystyrene nanocomposites. Aqueous dispersions of graphene were obtained via 
oxidation and exfoliation of graphite and subsequent reduction in the presence of poly(sodium 
4-styrene sulfonate) (PSS) acting as a surfactant. The quality of the prepared nanofillers was 
characterized by atomic force microscopy (AFM). Different amounts of aqueous graphene 
dispersions were then mixed with polystyrene (PS) latex and composites are prepared by 
freeze-drying and subsequent compression molding. The final bulk and local conductivities of 
the composites were respectively measured by a four-point method and by means of 
conductive AFM (C-AFM) analysis. The morphology of the conductive nanocomposites was 
studied with charge contrast scanning electron microscopy imaging (SEM). The percolation 
threshold for conduction was found to be below 1 wt% of graphene in the composites, and a 
maximum conductivity of about 15 S/m could be achieved for 1.6-2 wt% nanofiller.  

This chapter has been published: E. Tkalya, M. Ghislandi, A. Alekseev, C. Koning, J. Loos, Journal of 

Materials Chemistry 2010, 20, 3035. 
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2.1. Introduction 
Various methods have been developed in recent years to efficiently disperse individual graphene 

platelets in a polymer matrix. Direct mixing of the graphene and the polymer, with or without the help 
of a solvent, has proven to be efficient and appears to be the easiest and least laborious way to 
achieve this goal. On the other hand, in the case of utilizing carbon nanotubes as a conductive filler 
for conductive polymer nanocomposites latex-based methods showed their versatility resulting in low 
percolation thresholds and high ultimate conductivities.[1-4] The basic concept consists of the 
generation of a stable, mixed colloidal system containing both a suspension of individual graphene 
sheets stabilized by surfactant molecules in water and polymer latex particles, also stabilized by 
surfactants. After the removal of water, the resulting powder can be processed by e.g. compression 
molding into a desired shape, preserving in most cases the dispersion and exfoliation of the filler in 
the polymer matrix. The advantages of this technique are obvious: it is easy, versatile, reproducible 
and reliable. This approach allows nanocomposite production with a relatively homogeneous 
dispersion of the nanofiller in the polymer matrix, low percolation thresholds and high conductivity 
levels. It is very flexible with respect to the choice of the polymer matrix: it can be applied to any 
polymer that can either be synthesized by emulsion polymerization, or brought into a polymer latex 
form in an artificial way. It does not require the use of toxic and inflammable solvents and is safe and 
environmentally friendly. In this study, graphene/polystyrene nanocomposites were fabricated using 
latex technology and characterized with respect to morphology and conductivity properties. Graphene 
was prepared via oxidation of graphite by Hummers’ method followed by reduction of the water-
soluble graphite (GO) platelets with hydrazine hydrate in the presence of surfactant to prevent 
aggregation of the resulting graphene platelets.  

2.2. Results and discussion 

2.2.1.	Preparation	of	graphite	oxide	

Graphite oxide produced by Hummers method (see experimental part) has a layered structure.[5]

It was readily exfoliated in water by a gentle sonication process at a concentration of 1 mg/ml. Most 
of the graphite oxide platelets analyzed exhibit a thickness below 1 nm, corresponding to 2-3 atomic 
layers, which clearly indicates the successful exfoliation driven by sonication (Figure 1). There is 
always a compromise between the sonication time and the final graphene surface area and 
surface/thickness ratio, which is obtained after reduction of the graphite oxide. 
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Figure 1. Tapping mode AFM analysis of graphite oxide sheets after sonication, showing 
platelets surface topography and average thickness. 

The optimum sonication time in order to prevent extensive breaking and destruction of the 
sheets, but still providing good exfoliation, was found to be 12-15 min. The average surface 
area of the graphite oxide platelets ranged from 1 to 3 µm2. 

2.2.2.	Reduction	of	graphite	oxide					

Reduction of graphite oxide with hydrazine at 120 C in the presence of poly(sodium styrene 

sulfonate) PSS resulted in a stable dispersion of graphene nanoplatelets in water. After filtering, 
the graphene covered with PSS could be easily redispersed in water (1 mg/ml) by a second 
ultrasound treatment, remaining stable for a few days, after which some sedimentation 
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occurred. Elemental analysis showed that the graphene/PSS ratio after filtering was 70/30 (wt 
/wt). The reduction of graphite oxide was carried out for 72 hours, since electrical 
measurements of ‘buckypapers’ (graphene/PSS films prepared by vacuum filtration)  indicated 
differences in conductivity depending on reduction time, probably due to different degrees of 
oxygen removal and reformation of double bonds. The maximum conductivity (5500 S/m) was 
achieved for 72h reduction time, after which no increase was observed anymore. We also 
employed X-ray photoelectron spectroscopy (XPS) to analyze the GO and GO that had been 
reduced for 72 hours (Figure 2). The spectrum of GO clearly indicates a considerable degree of 
oxidation with components which correspoind to carbon atoms in different oxygen 
functionalities: C–O bonds, C=O and O–C=O. Although the XPS spectra of the graphite oxide 
reduced for 72 hours (Figure 2b) also exhibit the same oxygen functionalities that have been 
assigned for graphite oxide, the peak intensities of these components in the reduced samples 
are much lower than those for the graphite oxide, indicating considerable, though incomplete, 
de-oxygenation by the reduction process. One can see that the reduction enhances the amount 
of C–C and graphitic carbon (Cg) over time, which gives arise to conductivity. 

Figure 2. XPS data: (a) graphite oxide; (b) graphite oxide reduced during 72 hours. 

The sonication process, which drives the redispersion of graphene/PSS aggregates, can easily 
be monitored by UV-Vis spectroscopy. The maximum achievable exfoliation (which does not 
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mean that 100 % of platelets are effectively exfoliated) corresponds to the maximum achievable 
UV-Vis absorbance of the filler dispersion. The reasoning behind this statement is that 
individualized and very thin graphene sheets exhibit a UV-Vis absorption spectrum whereas 
bundled or stacked sheets don’t. The absorbance increases continuously with increasing 
sonication energy-input. Time and energy provided for maximum exfoliation of graphene/PSS 
vary usually from 30 minutes to 1 hour, which corresponds to 30,000-60,000 J, respectively.  

2.2.3.	Graphene/polystyrene	nanocomposites	

After the maximum obtainable exfoliation was achieved, the dispersion of graphene/PSS 
was mixed with polystyrene latex, followed by freeze-drying and compression molding, resulting 
in a composite film. For clarity, the entire process is illustrated in Figure 3a. We analyzed 
graphene used for the preparation of the nanocomposites with Transmission Electron 
Microscopy (TEM). In the figure 3b one can see well-exfoliated graphene flakes in the presense 
of PS latex particles. The flakes are hardly visible, which confirms that exfoliation was 
sucessful. When performing TEM we didn’t observe any agglomerations of graphene sheets.  
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Figure 3. (a) Schematic description of the multi-step process for preparation of 
graphene/polymer composites using latex technology; (b) TEM of aqueous dispersion of 
graphene sheets stabilized with PSS and mixed with PS latex particles.  

The electrical conductivity of the nanocomposites as a function of the nanofiller content is shown 
in Figure 4. At low graphene concentrations, as long as no conductive network of nanoplatelets is 
formed in the PS matrix, the conductivity of the nanocomposites remains very close to the 
conductivity value of the pure insulating PS matrix. 

Figure 4. Electrical conductivity of graphene/PS composites as a function of graphene 
weight fraction. 
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The composites exhibit a conductivity percolation threshold when the filler content is still below 0.8 
wt%.  At concentrations between 0.9 and 1.2 wt% the conductivity increases drastically up to 2 S/m. 
At higher graphene loadings of about 2 wt%, the conductivity level is ca. 15 S/m, which is, to the best 
of our knowledge, the highest value measured for graphene/PS nanocomposites with low graphene 
loadings. MWD (molecular weight distribution) of the matrix material can strongly affect the 
percolation threshold of a nanofiller within PS matrix. For instance for carbon nanotubes, a significant 
decrease in the percolation threshold was observed upon the introduction of low molecular weight 
polymer, the shift being most pronounced for higher amounts of low molar mass polymer. The origin 
of this affect can be twofold: changes in MWD leads to rheological changes of the melt (i.e. decrease 
in melt viscosity) and low molecular weight polymer may replace surfactant from the carbon 
nanotubes surface (thereby changing the inter-tube distances and/or electrical conduction across 
junctions).[6] In this work high molecular weight PS latex was used with Mw 944 kg/mol. 

Table 1 compares conductive properties  of graphene/ nanotubes nanocomposites obtained 
via latex technology, using PS latex with same MWD and the same processing conditions.

Nanofiller Graphene SWCNT MWCNT 
(Long) 

MWCNT 

Percolation 
threshold, wt% 

0.6 0.4[7] 0.15[8] 1.5[9]

Ultimate 
conductivity, S/m 

15 20[7] 1000[8] 13[9]

Table 1. Conductive properties of nanocomposites produced via latex technology.  

For the final application of graphene in nanocomposites, detailed knowledge on platelets dispersion 
and organization in the polymer matrix is most important to understand the properties and 
performance of the nanocomposites. To obtain this information, we have applied various microscopic 
techniques.
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Figure 5 shows a charge contrast SEM image of the surface of a graphene/PS composite film 
with a graphene concentration of 1.9 wt%. 

Figure 5. High-resolution SEM charge contrast showing fairly straight and bended 
graphene sheets. The filler concentration is 1.9 wt%. Attention should be paid to curved 
lateral cross section sheets (marked by arrow), and to the different brightness of the 
graphene. Scale bar is 2μm in both images. 

Besides a more or less dark background, bright areas are visible, which represent graphene 
sheets distributed in the polymer matrix. Because of the different capability for charge transport 
of the conductive graphene and the insulating polymer matrix, the secondary electron yield is 
enriched at the location of the graphene, which results in the contrast between the graphene 
network and the polymer matrix.[4]

Therefore, using charge contrast imaging at high acceleration voltage, we are able to gain 
representative information on the three-dimensional organization of a conductive network of 
graphene sheets in a polymer matrix. The brightness variations visible in the SEM charge 
contrast images can be related to the position of the graphene in the sample: high brightness 
means a position of the sheets at or near the surface, whereas sheets located deep in the 
nanocomposite appear darker.[10]

The local organization of graphene sheets in the conductive Gr/PS nanocomposites and 
their conductivity distribution has been also analyzed with nanometer resolution by means of 
conductive atomic force microscopy (C-AFM). Using a conductive AFM probe, in our case a 
gold-coated silicon tip, the local electrical conductivity can be measured at exactly the same 
area of the specimen subsequent to the topography and phase contrast imaging. The C-AFM tip 
measures the current throughout the volume of the nanocomposite specimen at a given voltage 
which is running via the graphene network to the ground contacts. Only platelets that are 
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connected with the ground contacts can be monitored, and the observed differences in current 
are determined by the intra-network graphene junctions with highest resistivity. Graphene 
contributing to sub-networks without connection to the ground contacts show no current. In this 
way, a current distribution image is obtained and the conductive platelets can be distinguished 
from the insulating polymer matrix. Figure 6 shows that most of the bright (white) areas 
corresponding to graphene in the cross-section topographic image (left) feet with the higher 
current level seen on the right mapping, indicating the presence of conductive pathways. The 
analyses of several images show that these networks were observed mainly in the central 
region of the cross-sections if compared to the edges.

Figure 6. C-AFM images of the PS/graphene samples containing 1.9 wt% graphene 
obtained in topography (left), and as electrical current distribution image (right), showing 
the graphene platelets that are connected with the ground electrode. 

There have been few reports utilizing in-situ thermal reduction of graphite oxide, i.e. during 
polymerization of monomers for composite preparation in the presense of GO at high temperatures. 
[11-13] Liu et al. prepared polyester/reduced graphene oxide composites via in-situ polymerization at 
elevated temperature of terephthalic acid and ethylene glycol containing well-dispersed GO. The 
composites exhibited maximum conductivity of 0.5 S/m.[12] Here, as a special and very easy way of 
preparing conductive PS-based nanocomposites, we mixed well-dispersed GO (without any 
surfactant present) with PS latex and after freeze-drying prepared composite films by compression 
molding at 180 °C. This high temperature molding step can partially reduce the GO. The conductivity 
curve is presented in Figure 7. As one can see the reduced GO platelets in the composites percolate 
at 0.7 wt % of graphene oxide loading and a conductivity of 0.3 S/m is achieved at 3.5 wt %. This 
percolation threshold is lower that that obtained for the composites utilizing graphene obtained by 
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chemical reduction of GO. This can be attributed to the higher aspect ratio of in-situ reduced GO 
sheets in comparison to graphene platelets used for the preparation of graphene/PS composites 
described earlier in this chapter due to the fact that for dispersion of GO in water just gentle 
sonication is required whereas when GO is reduced chemically and then mixed with the PS latex 
additional sonication step has to be applied to redisperse graphene platelets after filtration (see 
experimental part). 
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Figure 7. Electrical conductivity of in-situ reduced GO/PS composites as a function of GO 
weight fraction.  

The additional sonication step can break graphene sheets and reduce their aspect ratio, thereby 
enhancing the percolation threshold. The conductivity achieved for the composites based on in-situ 
reduced GO is much lower than that achieved for the composites based on the chemically reduced 
GO. This is attibuted to the incomplete reduction of the in-situ reduced GO. To prove that the 
conductivity does not come from GO we prepared a bucky-paper out of GO and measured its 
conductivity which we found to be only 1×10-6 S/m. Thus it can be assumed that higher conductivity 
values can be obtained by using the in-situ reduction process provided that the polymer used as a 
matrix can stand higher processing temperatures. 

2.3.	Conclusions	

For the first time highly conductive graphene/PS nanocomposites with a low percolation 
threshold have been prepared by latex technology.  
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The study demonstrates that it is possible to apply latex technology for the preparation of 
graphene-based nanocomposites. PSS-covered graphene platelets were successfully prepared 
via a known oxidation/reduction method and dispersed in water by means of sonication. PSS 
stabilizes the platelets and prevents their aggregation, but at the same time, because of its 
bulkiness and non-conductive character, probably limits the electron transport at the graphene 
junctions in the final nanocomposites.   

AFM shows that the thickness of the oxidized graphite platelets is around 1 nanometer, 
indicating approximately 2-3 graphene layers. Relatively well-dispersed graphene sheets in a 
PS matrix could be visualized using a high charge contrast scanning electron microscopy 
imaging technique. Probably due to the application of the relatively new latex technology the 
distribution and homogeneity of the graphene filler inside the polymer could be improved in 
comparison to other standard nanocomposite manufacturing techniques. 

The final conductivities of the graphene/PS nanocomposites, obtained by both four point and 
local current measurement techniques, reveal interestingly high values up to 15 S/m, which can be 
achieved for low nanofiller loadings (1.6-2 wt%). A pronounced percolation threshold exhibiting a 
quite low value around 0.8-0.9 wt% was observed for the produced PS/graphene nanocomposites. 

We have also demonstrated that conductive polymer composites can be prepared by thermal 
reduction of GO in the final step of the “latex technology”, namely during compression molding. This 
makes preparation of graphene-based polymer composites very easy, since the laborious and time 
consuming chemical reduction of GO in a separate step is skipped. An additional advantage of this 
method is that a dispersion of graphene oxide in water is very stable over time and can be kept for 
months, whereas a dispersion of graphene/PSS sedimentates after a few weeks due to 
reaggregation of graphene platelets. 

2.4.	Experimental	

Chemicals
Sodium dodecyl sulfate (SDS) (90%, Merck), sodium carbonate (SCa) (99%, Aldrich), 

sodium peroxodisulfate (SPS) (90%, Merck) and poly(sodium 4-styrene sulfonate) (PSS) 
(Aldrich, Mw 70000 g/mol) were used as received. Styrene (99%, Merck) was passed over an 
inhibitor remover column. The inhibitor-free monomers were kept under refrigeration for later 
use. Water used in all reactions was double de-ionized water obtained from a purification 
system. SP-2 graphite from Bay Carbon was used as filler. 
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Preparation	and	characterization	of	PS	latex
PS latex was synthesized via conventional free radical emulsion polymerization. The 

reaction was performed at 70º C with an impeller speed of 400 rpm. The reactor was charged 
with the following: styrene (252 g), SDS (26 g, 0.09 mol), SCa (0.7 g, 6.6 mmol) and H20 (712.2 
g). The reaction mixture was degassed, by purging with argon, for 30 min. A solution of SPS 
(0.45 g, 1.9 mmol) in H2O (10 g) was also degassed. The reaction was started upon the 
introduction of the initiator solution, and the reaction time was roughly 1 hour. The average 
particle size determined by dynamic light scattering was 90 nm. Size exclusion chromatography 
analysis showed Mn, Mw and PDI values of 495 kg/mol, 944 kg/mol and 1.9, respectively. 

Graphene/PS	composites	processing
Graphene was synthesized via oxidation of graphite (Hummers method) , followed by 

ultrasonication and subsequent reduction following the method described by Stankovich et al.[5, 

14] The oxidation of graphite to graphite oxide was accomplished by treating graphite with 
essentially a water-free mixture of concentrated sulfuric acid, sodium nitrate and potassium 
permanganate. The entire process requires about three hours for completion. The obtained 
graphite oxide was exfoliated in order to generate graphene oxide sheets by tip sonication with 
a horn sonicator Sonic Vibracell VC750 with a cylindrical tip (13 mm end cap diameter). The 
frequency was fixed at (20+/- 2.0) kHz with an amplitude of 30%. The sheets were reduced for 

72 h with hydrazine at 120 C in the presence of a ten-fold excess (wt/wt) of PSS. After its 

preparation, graphene covered with PSS was filtered off and dried under vacuum. The final PSS 
content (30%) was determined by elemental analysis. The product was then redispersed in 
water by a 40 minutes sonication process and then mixed with PS latex, the mixture was frozen 
in liquid nitrogen for several minutes and the frozen water was removed with a Christ Alpha 2–4 
freeze dryer operated at 0.2 mbar and 20 ºC overnight. The resulting composite powder was 
compression molded into films for 20 min at 180 º C between Teflon sheets with a Collin Press 
300G. 

When preparing nanocomposites based on graphene oxide reduced in-situ graphene oxide 
(without surfactant) was mixed with PS latex followed by freeze-drying and compression 
molding as described above. 

UV–Vis	spectroscopic	measurements
UV–Vis absorption spectra were recorded with a Hewlett–Packard 8453 spectrometer 
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operating between 200 and 1100 nm, following a procedure described in literature for carbon 
nanotube dispersions. Small sample volumes (about 30 µl each, thus the sonicated volume 
under investigation is almost unchanged during the whole experiment)  were taken regularly 
during the second sonicating process of the reduced graphene loaded with PSS and diluted, 
resulting in a graphene concentration of 0.03 mg/ml.  

Electrical conductivity measurements  
The electrical conductivity was measured using a standard four-point method. Parallel 

contact lines 1 cm in length and with a 1 cm interval were drawn with conductive-silver paint 
(Fluka) on the composite film, and all conductivity measurements were performed at room 
temperature with a Keithley 6512 programmable electrometer. For each sample, conductivity 
data represent the average value of 10 consecutive measurements.

Scanning Electron Microscopy Analyses 
The images of Gr/PS composite films were obtained with a Quanta 3D FEG (Fei Co.) 

equipped with a field emission electron source. High vacuum conditions were applied and a 
secondary electron detector was used for image acquisition. No additional sample treatment, 
such as surface etching or coating with a conductive layer, has been applied before surface 
scanning. Standard acquisition conditions for charge contrast imaging were used.[4]

Atomic force microscopy (AFM) Investigations 
AFM characterization of graphite oxide platelets was performed with a Nanoscope 3A 

instrument (Veeco) operated in normal tapping mode. The substrate used for filler deposition 
was mica. The conductive AFM (C-AFM) measurements on composites cross sections were 
performed by an NTEGRA Tomo (NT-MDT Co.). The device is a combination of a microtome 
EM UC6-NT (Leica) and an SPM measuring head. Such design allows for alternate microtome 
cutting and SPM measurements of the sample block-face.[15] The local current measurements 
were performed in C-AFM mode with a gold-coated silicon cantilever NSC36/Cr-Au 
(Micromash). The sample was electrically connected to a grounded holder; a bias of 2 V was 
applied. 
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Chapter 3 

The use of surfactants for dispersing 
carbon nanotubes and graphene to make 

conductive nanocomposites. 

ABSTRACT: Applications of composites based on carbon nanotubes and graphene require their 
exfoliation and dispersion in a polymer matrix. One of the main approaches to disperse and exfoliate 
carbon nanotubes and graphene is based on the use of surfactants. Here we review the surfactants 
utilized for dispersing carbon nanotubes and graphene, the mechanisms of filler stabilization and the 
methods for composites preparation based on the use of surfactants to get conductive polymer 
composites with minimum nanofiller loading.    
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 3.1. Introduction 
In the field of conductive polymer nanocomposites researchers are usually aiming at a controlled 

and low percolation threshold and a satisfactory overall conductivity combined with enhanced 
mechanical properties. Tuning these properties is always a challenge, as many parameters are 
involved and play a role in the system, starting from the selection of the components (filler, polymer 
matrix plus optional surfactant), passing through the optimum ratio filler/matrix or 
filler/surfactant/matrix and finishing with one of the known methods used for obtaining a good 
nanofiller dispersion and processing of the composite.  

A great deal of attention has been given to the use of carbon nanotubes (CNTs), and more 
recently to graphene, in composite materials to harness their exceptional mechanical and electrical  
properties.[1-3] A large part of graphene/CNTs polymer composites exploits these fillers, dispersed in 
an insulating matrix, to provide a conductive path for applications ranging from electronics to 
automotive and aerospace sectors, such as electrostatic dissipation, multilayer printed circuits, and 
transparent conductive coatings.[4-7] The aims are to develop easily processable materials for future 
applications in which metals and/or semiconductors are currently preferred. 

Important points when using CNTs or graphene in nanocomposites are the dispersion of the filler 
in a polymer matrix as well as the quality of the filler–matrix interface; the bottleneck is that as-
produced fillers tend to be held together in bundles/agglomerates by very strong van der Waals 
interactions and/or entanglements.  

Various methods have been developed in recent years to efficiently disperse individual CNTs in a 
polymer matrix. Direct mixing of the CNTs and the polymer, with or without the help of a solvent, has 
proven to be efficient and appears to be the easiest and least laborious way to achieve this goal.[8, 9]

On the other hand, the dispersion of the nanotubes in a polymer matrix is often rather 
inhomogeneous, even sometimes with formation of millimeter-scale inhomogeneities. However, the 
existence of a certain amount of agglomerates can be a key factor in considerable lowering the value 
of the percolation threshold and increasing the conductivity.[10-13] Modifying either the nanofiller 
surface itself or the polymer matrix by functionalization improves the quality of the interface between 
two components of the nanocomposite by enhancing the interfacial interactions, but this approach 
has some drawbacks. In one possible case, the interaction of the filler with the polymer is realized by 
covalent binding, and in another case, by means of π – π stacking. Both approaches lead to 
disturbances of the π-electrons delocalization of the graphene/CNTs surfaces, which results in a 
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significant deterioration of its electrical properties. Another main approach to incorporate a nanofiller 
into a polymer matrix is based on the use of a third component, i.e. a surfactant.  

In this review the main approaches recently used to produce graphene/CNTs dispersions and 
conductive CNTs/graphene-based polymer composites with the help of surfactants are discussed 
and highlighted in terms of importance according to the authors. The main focus is given to water-
based systems.  

The methods for nanocomposite production inspired by the strategy utilizing surfactants are 
mainly based on the so-called latex-technology, although in-situ emulsion polymerization and 
spraying of surfactant-aided exfoliated nanofiller on polymer powder followed by dispersion in xylene 
and solution-casting have been also utilized.[14-16] The basic concept consists of the generation of a 
stable, mixed colloidal system containing both a suspension of individual CNTs/graphene sheets 
stabilized by surfactant molecules in water and polymer latex particles, also stabilized by surfactants. 
After the removal of water, the resulting powder can be processed by e.g. compression molding into 
a desired shape, preserving in most cases the dispersion and exfoliation of the filler in the polymer 
matrix. The advantages of this technique are obvious: it is easy, versatile, reproducible, and reliable. 
This approach allows composite production with a relatively homogeneous dispersion of the nanofiller 
into the polymer matrix, low percolation thresholds and good conductivity levels. It is very flexible with 
respect to the choice of the polymer matrix: it can be applied to any polymer that can either be 
synthesized by emulsion polymerization, or brought into a polymer latex form in an artificial way. It 
does not require the use of toxic and inflammable solvents and is safe and environmentally friendly. 
Furthermore, since the CNT walls are not chemically modified, their properties are preserved. A 
drawback is that the mechanical properties of the nanocomposite deteriorate because of the high 
amount of surfactant necessary for the particles stabilization and realizing that the surfactant remains 
present in the final polymer nanocomposite. The tensile strength and modulus after processing are 
below the values for the neat polymers, but this seems to be not a major problem if one focuses on 
electrical properties.

3.2. Mechanism of stabilization  
In a typical dispersion procedure, horn or bath sonication for a determined period of time 

debundles CNTs or exfoliates graphene platelets into individual tubes or sheets and/or thin bundles 
respectively, which subsequently are stabilized by the surfactant by steric and/or electrostatic 
repulsions. During sonication, the mechanical energy provided overcomes the van der Waals 
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interactions between the CNTs bundles or graphene platelets leading to filler exfoliation, whereas at 
the same time surfactant molecules adsorb onto the surface of the filler.[17]

Colloidal particles stabilization mechanism is described by the Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory and usually relies on the presence of a surface charge which can be due to 
deprotonation of surface groups or adsorption of ions from the solvent to the surface of the colloid. 
The surface charge attracts a diffuse layer of counter-ions from the solvent forming an electric double 
layer which has a diffuse nature due to Brownian motion. It results in a creation of an effective 
surface charge which in turn results in Coulomb repulsion between nearby charged colloidal 
particles.[18, 19] This can be applied to CNTs and graphene, introducing a temporary and removable 
surface charge, by allowing surfactant molecules to adsorb onto the filler surface via their 
hydrophobic tails. Usually an ion becomes dissociated from the hydrophilic head groups and acts as 
a counter-ion. The adsorbed molecular ions then interact with water.[20] The magnitude and sign of 
the effective charge is associated with the double layer through the zeta potential ζ. This is the 
electrostatic potential at the edge of the layer of bound tail groups.[20, 21] When dispersing CNTs the 
surfactant concentration generally needs to be above the critical micelle concentration (CMC) and the 
surfactant concentration also needs to exceed the CNTs concentration.[22-27] The latter condition is 
not always justified when dispersing graphene as some surfactants perform better at concentrations 
below the CMC and not exceeding the graphene concentration.[28] The dispersion quality improves as 
the filler concentration decreases.[24] The dispersion quality and degree of the 
exfoliation/individualization of CNTs and graphene scale with ζ. Interestingly, that in contrast to CNTs 
for graphene this occurs within two separated groups of ionic surfactants: the sulfids (sodium 
dodecylbenzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), lithium dodecyl sulfate (LDS)); and 
other ionic surfactants. As ζ represents the electrostatic potential at the edge of the layers of bound
ions, one can imagine that ζ can be increased by maximizing the surface charge in this layer.[21, 22]

This tempts one to predict that low molecular surfactants, that pack tightly on the CNTs and graphene 
surface, are ideal.[21, 22] Non-ionic surfactants used for CNTs and graphene dispersions have a 
hydrophobic tail and a long hydrophilic part. For these surfactants the stabilization mechanism tends 
to be based on steric effects. However additional stabilization factors were found for non-ionic 
surfactants, i.e. based on the presence of acid groups and ether linkages interacting with water and 
on the presence of a negative ζ values due to adsorbed impurities.[21]

Surfactant adsorption at interfaces has been widely studied because of its importance. SDS is 
one of the most frequently used surfactants. Various configurations of SDS molecules on the surface, 
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e.g. of the CNTs, can be envisioned. O’Connel et al. proposed a perpendicular orientation of SDS 
molecules to the surface of nanotubes (Figure 1).[29] However, other studies showed that both 
anionic and cationic surfactants, strong aligning along the graphite symmetry axis, self-assemble into 
so-called half-cylinder structures on a graphite surface, in that case the hydrophobic part is adsorbed 
on the graphite by Van der Waals interactions following the carbon network and the hydrophilic part 
of the surfactant is oriented towards the aqueous phase.[30, 31] Similar half-cylinder structures 
perpendicular to the tube axis were found on the surface of CNTs when utilizing ionic surfactants for 
their dispersion (Figure 1).[32] Unlike ionic surfactants, Triton X-100, a non-ionic surfactant with a 
polyoxyethylene chain linked to an aromatic ring, is physically adsorbed on the surface of the CNTs 
through π-stacking interactions, leading to a full coating of the tube without any structural 
organization.[32]

Figure 1. Different possible organizations of the SDS molecules on the surface of a CNT. 
(a) The SDS molecules adsorb perpendicular to the surface of the nanotube, forming a 
monolayer. (b) The SDS molecules organize into half-cylinders oriented parallel to the tube 
axis. (c) The SDS molecules form half-cylinders oriented perpendicular to the tube axis.[32] 

(From ref. 32. Reprinted with permission of the American Association for the 
Advancement of Science (AAAS)) 
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3.3. Dispersion of Graphene/CNTs in polymer matrix using 

water-based systems 

3.3.1.	Surfactants	

A variety of common ionic surfactants such as SDBS, SDS, LDS, tetradecyl trimethyl ammonium 
bromide (TTAB) and sodium cholate (SC) have been shown to have the ability to stabilize exfoliated 
CNTs. The dispersion quality of these surfactant-CNTs dispersions varies as SDS > LDS > SDBS > 
TTAB > SC.[22] SDS and SDBS are mainly used to decrease the aggregative tendency of CNTs in 
water. Among the non-ionic surfactants Triton X-100, Tween-80, Tween-60, Tween-20 were found to 
efficiently disperse CNTs in water.[33, 34] Non-ionic surfactants lack the advantage of Coulomb 
repulsion to prevent CNTs from aggregating. Therefore, in this case the main factor determining the 
dispersability of carbon nanofillers in water is the presence of long and/or branched disordered polar 
chains, typically poly(ethylene glycol) chains. This results in a general trend of increasing efficiency 
with increasing molecular weight of the surfactant.[33] The presence of an unsaturated carbon bond 
will provide a further advantage. This is due to the π-electronic affinity of the surfactant toward the 
CNTs benzene rings.[35] According to the so-called “unzipping” mechanism the surfactant molecules 
intrude in the small spaces between individual tubes or sheets in the bundle and prevent them from 
re-aggregating.[17] Accordingly, surfactants with too bulky hydrophobic groups less easily penetrate 
into the inter-tube or inter-platelet region, and show reduced debundling efficiency.[34]

Mainly ultrasonication is applied for CNTs exfoliation, although gentle stirring was utilized for 
CNTs dispersion as well.[33] The obvious disadvantage of the stirring procedure is that it takes a long 
time in comparison to the more efficient sonication procedures. Grossiord et al. mixed 0.5 wt % 
bundled single-walled carbon nanotubes (SWCNTs) with 20 mL of an aqueous solution containing 1 
wt % of SDS. The resulting mixture was then tip-sonicated under mild conditions, i.e., at a power of 
20 W. A total amount of energy of 100000 J and 5000 J was needed for complete exfoliation of 
HiPCO and Carbolex SWCNTs, respectively. This result implies that HiPCO CNTs exhibit stronger 
van der Waals attractions when bundled than the Carbolex CNTs. This difference in behavior might 
stem from the fact that Carbolex CNTs contain more amorphous carbon and/or catalyst impurities. 
These impurities can be present between the CNTs in the bundles, decreasing the contact area 
between CNTs in comparison with “cleaner” CNTs.[26] Bergin et al. obtained debundled HiPCO 
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SWNTs at a concentration as high as 0.28 mg/ml by 1 hour bath sonication of CNTs in 5 mg/ml 
SDBS water solution.[24]

Graphene, depending on the exfoliation procedure, can be dispersed with the aid of a range of 
surfactants. When obtained via liquid phase exfoliation of graphite in water graphene can be obtained 
and dispersed with the following surfactants: SDS, SDBS, LDS, cetyltrimethyl ammoniumbromide 
(CTAB), TTAB, SC, sodium deoxycholate (DOC), sodium taurodeoxycholate (TDOC), IGEPAL CO-
890, Triton X-100, Tween 20 and Tween 80.[21] Lotya et al. produced stable graphene dispersions of 
concentrations up to 0.3 mg/ml by 400 hours bath sonication of graphite in water in the presence of 
SC at a concentration of 0.1 mg/ml, which is below the CMC.[28] When exfoliating graphite via an 
oxidation/reduction procedure with the aid of hydrazine, poly(sodium 4-styrene sulfonate) (PSS) of 
70000 g/mol molecular mass is used, whereas it was shown that SDS and Triton X-100 do not 
prevent graphene reaggregation.[36, 37] At first graphite is oxidized to graphite oxide and stirred to 
produce graphene oxide (GO). GO is reduced by hydrazine hydrate in the presence of PSS at a 
PSS:GO ratio of 10:1 followed, first, by filtration to remove the excess of PSS and, second, by tip-
sonication to redisperse the PSS-covered graphene platelets and piles in water.[36]

Conductive polymeric surfactants can be utilized to decrease the contact resistivity between the 
CNTs or graphene platelets in the final polymer nanocomposite. Poly(3,4-
ethylenedioxythiophene)/poly(styrene sulfonate), also known as PEDOT/PSS, has successfully been 
used for dispersing CNTs in water. For complete exfoliation and for obtaining a stable aqueous 
dispersion of the CNTs a minimum PEDOT/PSS:CNTs ratio of 4:1 is required.[38]

3.3.2.	Composites	

The first known reported latex-based process to disperse multi-walled carbon nanotubes 
(MWCNTs) into a polymer matrix has been described by Dufresne et al.[39] MWCNTs dispersions 
were obtained by sonication of purified MWCNTs in an aqueous SDS solution. After a centrifugation 
step, the resulting supernatant was mixed with latex obtained by the copolymerization of styrene 
(35wt %) and butylacrylate (65 wt %). Films were made by casting in a mold and storing the mixture 
at a temperature allowing both the water to evaporate and the polymer particles to aggregate and to 
form a thin polymer film. The conductivity behavior was found to be characteristic for a very 
anisotropic behavior of the conducting filler network, with a percolation threshold at around 2.5 wt % 
and a maximum conductivity of about 1 S/m. 
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Another similar method was reported by Grunlan et al., in which poly(vinyl acetate) (PVAc) latex 
was used as a matrix. Untreated SWCNTs produced via the HiPCO process were exfoliated by 
sonication.[40] Gum Arabic (GA) was used as a stabilizing agent. Once stabilized, the SWCNT 
dispersion was mixed with a PVAc emulsion to create a stable mixed colloidal system leading to 
conductive composites after drying. The percolation threshold measured was about 0.04 wt % with 
maximum conductivity around 30 S/m at 4 wt % of SWCNT loading. According to Grunlan et al. latex-
based filler-polymer composites are expected to have a lower percolation threshold than similar 
composites of which the preparation method is based on polymer solutions or melts. Polymer 
solutions and melts are fundamentally different to emulsions due to their liquid-like ability to envelop 
added filler. During drying or cooling of a melt-based system, the CNTs or graphene sheets can 
freely organize themselves resulting in a relatively homogeneous conductive network and elevated 
percolation threshold. On the other hand a polymer emulsion consists of microscopic solid polymer 
particles suspended in water prior to film formation. The solid particles create excluded volume and 
essentially push the filler particles into the interstitial space between them. This mechanism 
dramatically reduces the space available for the CNTs or graphene to form conductive networks, 
which can result in a significantly reduced percolation threshold. In the presence of CNTs or 
graphene a “segregated network” evolves due to the inability of the filler to penetrate the polymer 
particles (Figure 2).[40]

Figure 2. Schematic illustration of the drying process for SWCNTs-filled polymer 
emulsion. Initially the CNTs and polymer particles are uniformly suspended in water (1). 
Once most of the water has evaporated, the polymer particles assume a close-packed 
configuration with the CNTs occupying the interstitial space (2). Finally, the polymer 
particles will interdiffuse (i.e., coalesce) to form a coherent film, locking the SWCNTs 
within a segregated network.[40] (From ref. 40. Copyright Wiley-VCH Verlag GmbH&Co. 
KGaA. Reproduced with permission) 
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Very similar to the described latex-based method the so-called latex technology was applied to 
make conductive polymer nanocomposites based on water-dispersed nanofillers and other polymer 
matrixes.[14, 37, 41] Regev et al. compared percolation thresholds of polystyrene (PS)- and poly (methyl 
methacrylate) (PMMA)-based composites containing SWCNTs first dispersed in water with the aid of 
SDS and GA. SWCNTs were dispersed with the aid of the mentioned surfactants by tip-sonication 
and then mixed with a polymer latex prepared by emulsion polymerization followed by freeze-drying 
and subsequent compression molding, giving finally a composite film (Figure 3).[42] Percolation for 
SDS-dispersed SWCNTs occurred at 0.28 wt % exhibiting a conductivity of 1 S/m just above 1 wt % 
loading and showing no significant difference in behavior between the composites based on PS and 
PMMA latexes.  

Figure 3 – Schematic description of the multi-step process for preparation of CNT/polymer 
composites by using latex technology.[43] (Reprinted from ref. 43. Copyright 2007 with 
permission from Elsevier) 

For GA-dispersed CNTs the percolation threshold occurred further above 1 wt % which can be 
attributed to the high molecular weight and bulkiness of GA (250 kD), which could induce local steric 
hindrance and concomitant contact resistance to the percolating conductive CNTs network.[14] It was 
also found that changing the processing conditions, such as enhancing the temperature and the time 
of compression molding, lowers the percolation threshold and raises the conductivity of the 
nanocomposite by pushing the system towards its equilibrium state. As long as sufficiently high 
temperatures are used and enough time is given to the system to reach its equilibrium, the particle 
size of the polymer latex is expected to have a limited impact on the electrical conductivity of the 
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nanocomposite.[23] The difference with the concept described by Grunlan is that no shear is applied in 
his system, whereas the concept used by Regev et al. introduced some shear during the melt-
processing step, which results in dynamic percolation and in a system with enhanced electrical 
properties.[40] Most probably this shear causes some aggregation of the perfectly dispersed 
nanofillers which seems to be required for the formation of contacts. 

The influence of the characteristics of the CNTs on electrical conductivity of the polymer-based 
composites prepared via latex technology was studied. MWCNTs of different aspect ratio, namely 
400 nm and 1200 nm length on average respectively and a similar 10 nm diameter, were utilized for 
the production of PS composites. Short CNTs were dispersed by tip-sonication with the aid of SDS at 
a weight ratio CNTs:SDS of 1:2, whereas for the exfoliation of long CNTs a weight ratio 
CNTs:surfactant of 1:7.5 was required. The longer MWCNTs had a much more perfect surface 
quality than the shorter ones. It was demonstrated that composites containing longer MWCNTs 
exhibited a lower percolation threshold and a much higher ultimate conductivity than the 
corresponding PS composites based on the shorter CNTs, namely 0.15 wt % vs 0.85 wt % and 103

S/m vs 1 S/m respectively.[44] The difference in the ultimate conductivity can be attributed to the 
difference in structural quality between the two types of CNTs and to the higher length, which results 
in a lower contact resistivity, whereas the difference in percolation thresholds is due to the difference 
in the aspect ratio. It should be noted that the composites containing the long MWCNTs have a very 
high conductivity despite the high weight ratio SDS:CNTs.  

Hermant et al. showed by the applying the latex concept that the molecular weight distribution 
(MWD) of the matrix material can strongly affect the percolation threshold of CNTs within both PMMA 
and PS matrixes. This indicates that the influence of low molar mass matrix material is important for 
different types of matrixes, and most probably can be generalized to other matrices. For both 
SWCNTs and MWCNTs dispersed in either of the matrixes, a significant decrease in the percolation 
threshold was observed upon the introduction of low molecular weight polymer, the shift being most 
pronounced for higher amounts of low molar mass polymer. A critical minimum loading of low 
molecular weight polymer introduced in the matrix by synthesizing a low molecular weight distribution 
next to a high molecular weight distribution of the polymer during emulsion polymerization is required 
to obtain a maximum reduction corresponding to a completely equilibrated network structure. The 
origin of this effect can be twofold: changes in MWD lead to rheological changes of the melt (i.e. a 
decrease in melt viscosity which facilitates the reorganization and the required aggregation) and the 
low molecular weight polymer may replace SDS from the CNTs surface (thereby changing the inter-
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tube distances and/or electrical conduction across junctions). The minimal changes in the ultimate 
conductivity suggest that the tunneling behavior across inter-tube junctions is similar in all systems. 
Rheological changes can influence the extent to which the CNTs reach an equilibrium conformation 
during the processing stages of the composite preparation. Whether this equilibrium conformation is 
more or less aggregated than the initial dispersion state is not really proven, but it can definitely be 
said that allowing the composite to reach this state can be beneficial when trying to minimize the 
percolation threshold value.[45]

Barraza and co-workers prepared SWCNT-PS and SWCNT-styrene-co-isoprene copolymer 
nanocomposites by using an original method based on mini-emulsion technology. SWCNTs were first 
exfoliated in water by sonication with the aid of the cationic surfactant cetyltrimethylammonium 
bromide (CTAB).[15] The initiator (AIBN), previously dissolved in ethanol, was then added to the 
resulting SWCNT suspension. The above mentioned mixture was added under stirring to a mixture of 
solvent (hexadecane)/catalyst (PS-AlCl3 acid complex)/monomer (styrene or mixture of styrene-co-
isopropene). After an additional sonication step to obtain an emulsion, polymerization was finally 
carried out. A layer of polymer adsorbed on the surface of the CNTs bundles contributes to a better 
dispersion of the SWNTs in the polymer matrix. On the other hand, this layer minimizes the maximum 
conductivity value reached. Nevertheless, the resistivity decrease induced by the incorporation of 
SWNTs into the polymer matrix remains significant (from 1016 Ω/cm for the unmodified PS to 106

Ω/cm for the SWNT-PS composite with 8.5 wt % of CNTs). The percolation threshold occurs between 
4 and 8 wt % of CNTs. 

Graphene produced out of graphite via the oxidation/reduction method in the presence of PSS 
has been also used as a filler for PS nanocomposites. The production of graphene was carried out in 
the presence of a ten-fold excess of PSS followed by filtration, which decreased the amount of PSS 
in the system resulting in a graphene/PSS dispersion with a PSS content of 40 wt %. The percolation 
threshold occurred at 0.9 wt % of graphene loading and a maximum conductivity of 15 S/m was 
measured for this system.[37] Use of the conductive surfactant PEDOT:PSS for the preparation of 
stable SWCNTs dispersions decreases the percolation threshold of the PS composites and increases 
the ultimate conductivity for the same type of CNTs in comparison with conventional surfactants like 
SDS. CNTs were dispersed in water using an excess of PEDOT/PSS. It was found that for the 
optimal exfoliation of the CNTs a PEDOT/PSS:CNTs ratio of 4:1 is required. The percolation 
threshold occurred as low as 0.2 wt % of the SWCNTs loading. An ultimate conductivity of 500 S/m 
was reached.[38] Recently Kyrylyuk et al. showed that the percolation threshold can be substantially 
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lowered by adding small quantities of conductive polymer latex to the CNTs/polymer latex system. 
Mixing colloidal particles of different sizes and shapes (in this case spherical latex particles and rod-
like nanotubes) introduces competing length scales that can strongly influence the formation of the 
system-spanning networks that are needed to produce electrically conductive composites.[46] Mixtures 
of SDS-stabilized SWCNTs, PS and PEDOT/PSS latexes were freeze dried and the resulting powder 
was compression molded to form the composite. The interplay between the different species in the 
dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge 
transport between the various conductive components.

3.3.3.	Thin	transparent	films	

Recently in the field of transparent electrodes and conductive coatings, graphene and CNTs 
appeared as promising substitutes for indium tin oxide (ITO). Different approaches have been 
proposed in order to produce thin, transparent and highly conductive films. In general, most of them 
utilize water-based solutions of CNTs/graphene dispersed with the help of surfactants and/or 
conductive polymers as primary stage before casting or spin coating the films. 

Attempts of creating free standing transparent films of pure graphene/CNTs have also been 
reported.[47, 48] Ultrasonication of graphite for 140 min in the presence of surfactant such as SC, 
followed by centrifugation and filtration, yields transparent films with a conductivity up to 1.5 x 104

S/m. Similar results were obtained for SWCNTs/water systems sonicated in the presence of SDS and 
spray-coated on a glass substrate. The balance between the final conductivity values and the 
transparency still needs to be optimized in order to be able to apply these systems commercially in 
efficient way. Probably the presence of remaining surfactant is still an issue hindering conductivity in 
this case. 

Similar methods were used for dispersing nanofillers in water and posterior mixing with polymer 
substrates.  According to Paul et al. spraying of SWCNTs dispersions onto polyethylene 
terephthalate (PET) substrates yields highly transparent films with superior conductive properties as 
compared to similar films obtained via dip coating process.[49] SDS in this case proved to be more 
efficient than SDBS and Triton X-100 in terms of the final conductivity of the composite. 

The largest area dealing with thin transparent conductive films is related to the use of conductive 
polymers, i.e. PEDOT/PSS. The latter system is largely used for conductive coatings and more 
specifically as a thin layer covering ITO in polymer solar cells. Ergo, the idea of substituting ITO with 
transparent films of polymer nanocomposites of graphene/CNTs has recently been largely explored. 
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The advantage of this system is that PEDOT/PSS is commercially available as a water-based latex 
system, where the PSS polymer acts as surfactant, enabling the dispersion of the hydrophobic 
PEDOT particles. However, PSS is the doping agent for PEDOT, required for obtaining conductivity. 
The two aqueous dispersions of the PEDOT/PSS and the carbon nanofillers simply are mixed 
together. SDS was reported to be used for dispersing SWCNTs prior to mixing with PEDOT:PSS.[50, 

51] Still the final electrical resistance of the nanocomposite film surface is higher than that observed 
for ITO, but some other properties such as processability and flexibility of these nanocomposites 
polymer substrates make this approach promising. Similar results were obtained using a 
graphene/SDBS dispersion, which was prepared by SDBS-assisted exfoliation of graphite oxide and 
in-situ chemical reduction to graphene.[6] Spin-coating of the mixed solution of surfactant-stabilized 
graphene and PEDOT/PSS yields a graphene composite electrode without the need for high 
temperature annealing and with a conductivity comparable to ITO systems. The technique shows 
great application potential in low-cost, energy-saving and high throughput manufacturing of 
optoelectronic devices.

3.4. Dispersion of Graphene/CNTs in a polymer matrix using 

organic solvents 

3.4.1.	Surfactants	

Compared to water-soluble systems, thus far only limited research work has been carried out with 
surfactant-assisted dispersions in organic solvents. As opposed to aqueous solutions, hydrophobic 
carbon nanotubes are expected to be wetted by organic solvents and therefore to less self-assemble 
in bundles and ropes. However, carbon nanotubes were shown to exhibit a sufficient dispersibility 
only in a limited number of solvents, namely, dimethylformamide (DMF), dimethyl acetamide (DMAc), 
N-methyl-pyrrolidone (NMP), and chloroform.[52, 53] Graphene has been successfully exfoliated in 
DMF, NMP, and cyclohexanone. The problem with these solvents is their high boiling points which 
requires high temperature for removing the solvent during processing. However, recently graphene 
exfoliation and dispersion in low boiling solvents such as chloroform, acetone and isopropanol was 
also demonstrated.[54]

Most of the reported approaches using surfactants and organic solvents are directed to the 
improvements of thermo-mechanical properties. 
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Pristine MCWNTs were shown to form large agglomerates in polypropylene-decalin solution.[35]

Although surface functionalization of carbon nanotubes somewhat improved their dispersibility, 
additional surfactant assistance was required to obtain individual nanotubes. Within the Span 
(sorbitan) group of surfactants the state of dispersion was enhanced as the degree of tail 
unsaturation increased, reaching a maximum of three C=C bonds per tail in the case of Span-85 
(sorbitan trioleate). This finding supports the assumption that attractive interactions are formed 
between CNT/graphene sheets and unsaturated bonds of surfactant molecules. 

Physical association of polymers with carbon nanotubes surfaces was shown to enhance the 
dispersion of CNTs not only in water (as discussed before) but also in organic solvents.[55] One of the 
mechanisms suggested is “wrapping”, which is believed to rely on specific interactions between a 
given polymer and the tubes.[56] For example, the reversible association of SWNTs with linear 
polymers, namely polyvinyl pyrrolidone (PVP) and polystyrene sulfonate (PSS), in water was 
identified as being thermodynamically driven by the elimination of a hydrophobic interface between 
the tubes and the aqueous medium.[56] A very different, kinetic mechanism suggests that a long-
ranged entropic repulsion between polymer-decorated tubes acts as a barrier that prevents the tubes 
from approaching one another.[57] Non-covalent modification of SWCNTs by encasing the tubes 
within micelles of cross-linked copolymer polystyrene-block-polyacrylic acid (PS-b-PAA) was 
demonstrated.[55] CNTs were first ultrasonicated in a DMF solution of the copolymer and micellization 
of the amphiphile was induced by adding water to the nanotube suspension. Finally, the PAA blocks 
of the micellar shells were permanently cross-linked by adding a diamine linker. This encapsulation 
was shown to enhance the dispersion of SWCNTs in a variety of polar and nonpolar solvents. 

A relatively new class of surfactants, i.e. gemini surfactants, were employed to achieve 
homogeneous and stable dispersions of CNTs in toluene. Gemini surfactants form a class of 
surfactants consisting of at least two hydrophobic chains and two hydrophilic moieties connected by a 
spacer group. Despite its rather complicated structure, a gemini surfactant has attractive properties 
such as a low CMC and a high surface or interfacial activity.[58]

In addition to polymers conventional anionic surfactants such as SDBS have been utilized in 
systems containing organic solvents.[59]

3.4.2.	Composites	

Sun et al. prepared PS composites based on CNTs dispersed in toluene with the aid of 6,6’-
(butane-1,4-diylbis(oxy))bis(3-nonylbenzenesulfonic acid).[58] Its molecular structure was designed to 
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meet the following requirements for a PS/CNT system and a solution mixing process: 1) two phenyl 
rings are introduced since their π – π interaction with CNTs improves the ability of the CNTs 
dispersion and stabilization and, in addition, the interaction with the phenyl rings of PS is also 
favorable; 2) the butyl group in the spacer helps to increase the solubility in toluene (also a good 
solvent of PS) and the hydrophobicity; 3) the long alkyl chains are favorable for increasing the 
hydrophobic interaction and miscibility with PS. Note that the alkyl chain length can be neither too 
short (the extent of increase of the hydrophobic interaction and the miscibility is not enough), nor too 
long (the thermal stability may be deteriorated). The conductivity of the composites was shown to 
reach 4 S/m to which, the surfactant also proved to contribute a little. A PS composite containing only 
surfactant exhibits a conductivity up to 0.006 S/m.[58]

Deng et al. carried out in-situ polymerizations  to produce CNTs-Polyaniline (PANI) 
composites.[59] Under continuous stirring in nitrogen atmosphere, chemicals are incorporated in the 
following order: first the surfactant (SDBS) in solvent (dimethylbenzene) and water, followed by the 
addition of the CNTs.  The monomer (aniline) is then added, and finally the initiator (ammonium 
peroxydisulfate) is dissolved in a small amount of water to start the reaction. The observed 
conductive network of CNTs is partly due to the formation of crystalline PANI-chain bridges between 
the CNTs, which act as additional conductive pathways in the amorphous PANI matrix. The 
incorporation of 10 wt% of CNTs into the PANI matrix was shown to increase the conductivity from 
2.6 x 10-1 S/m to 6.6 S/m with the percolation threshold occurring at 0.2 wt % of CNTs loading. 

3.5. Conclusions and outlook 
This review covers one of the main strategies developed during the recent years for incorporation 

of CNTs and graphene into a polymer matrix based on the use of surfactants for improving the 
nanofillers dispersion. Over the last decade enormous progress in understanding the stabilization 
mechanisms has been achieved and efficient methods to disperse both CNTs and graphene utilizing 
various surfactants have been developed. The composite preparation methods using this strategy are 
mainly based on latex technology. This route to incorporate nanofillers into a polymer matrix appears 
to be very promising since it is simple and environmentally friendly. Furthermore, production at a 
large industrial scale can be expected to be relatively easy to achieve. The technique is very 
successful to produce conductive nanocomposites with low percolation thresholds for both CNTs and 
graphene, as well as good ultimate conductivity levels. Furthermore, it is very flexible with respect to 
the choice of the polymer matrix: it can be applied to any polymer synthesized by emulsion 
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polymerization, or brought into a polymer latex form in an artificial way and can utilize polymers of 
both high and low molecular weight.  

The large area of transparent conductive films utilizes surfactant-stabilized solutions of CNTs and 
graphene, where commonly used anionic surfactants as well as conductive polymeric surfactants are 
applied for stabilizing the carbon nanofillers dispersion. 

The surfactants mainly used for dispersion CNTs and graphene in water for subsequent 
composite preparation are low-molecular weight ionic surfactants. Although investigators aim for as 
much exfoliated material as possible it’s not obvious that a dispersion of perfectly individualized 
carbon nanofillers in a polymer matrix results in a low percolation threshold and in a high conductivity 
above the percolation threshold, since some results indicate the opposite, namely that some limited 
agglomeration favors the formation of a network structure and results in high conductivity values.  

The use of non-ionic surfactants, which were proven to disperse both CNTs and graphene, will 
probably have some disadvantages in terms of both percolation threshold and conductivity values 
due to their long hydrophilic tail and bulky character. The long tails will result in a relatively big 
distance between the tubes/graphene platelets which in turn will result in lack of contact. 
Nevertheless, the advantage of using such surfactants is apparent: when using a polymer latex for 
nanocomposite production, the CNTs/graphene dispersion stabilized with non-ionic surfactant can be 
mixed with any latex, irrespective of the charge of the polymer particles.  

In addition to the mainly used water-based systems, some work has been done on the use of the 
systems where surfactants were applied for dispersion of CNTs in organic solvents. The polymer 
composites based on these dispersions also showed some promising results in terms of conductivity. 
However, the necessity to use surfactants for dispersing carbon nanofillers in organic solvents has 
decreased since it was recently discovered that CNTs and especially graphene can be dispersed not 
just in high boiling point solvents but also in low boiling point solvents, which widens the range of 
solvents to choose from, for composites preparation considerably. However, from environmental 
point of view the water/surfactant-based latex approach to make conductive polymer/carbon 
nanofillers composites seems to be the preferred route. 
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Chapter 4 

Experimental and theoretical study of the 
influence of the state of dispersion of 

graphene on the percolation threshold of 
conductive graphene/polystyrene 

nanocomposites

ABSTRACT. The effect of the dispersed state of graphene is studied as a factor influencing the 
electrical percolation threshold of graphene/polystyrene (PS) nanocomposites. We find the 
percolation threshold of our nanocomposites, prepared with graphene dispersions of different 
thermodynamic stability, degree of exfoliation and size polydispersity, to range from 2 to 4.5 wt %. 
Connectedness percolation theory is applied to calculate percolation thresholds of the corresponding 
nanocomposites, based on the premise that size polydispersity of graphene platelets in the 
corresponding solutions must have a large influence on it. Theory and experimental results agree 
qualitatively. 
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4.1. Introduction 
At the present time, a great deal of attention is being paid to the electrical properties of graphene-

based polymer nanocomposites. The large variation in the reported percolation threshold values, 
which ranges from 0.1 to greater than 2 wt%, indicates that the dispersion states and other properties 
of graphene, affected by different processing conditions, must be important in determining the 
electrical properties of graphene/polymer nanocomposites.[1-6] For carbon nanotubes/polymer 
nanocomposites the dispersed state of CNTs has been recognized as one of the critical factors 
governing the conductivity of composites as well as their physical properties. It is generally accepted 
that well-dispersed CNTs within the polymer matrix enhance the physical properties of the composite. 
However, a few studies suggest that CNT agglomeration could favor the formation of a percolating 
network.[7-10] In this work the dispersed state of graphene in a polystyrene (PS) matrix is discussed as 
a parameter influencing the percolation threshold of the corresponding composites prepared with the 
well-known latex technology. In this work the dispersed state of graphene in a polystyrene (PS) 
matrix is discussed as a parameter influencing the percolation threshold of the corresponding 
composites prepared with latex technology.[2, 11-14]

4.2. Results and discussion 

4.2.1.	Characterization	of	the	nanofiller	and	its	dispersions	

Graphene used in this study was obtained by two different methods: thermal treatment of 
graphite oxide; and liquid-phase exfoliation of graphite.[15, 16] Four aqueous graphene dispersions 
exhibiting different degrees of exfoliation and stability were prepared with the aid of sonication. 
Dispersions A, A-LC (LC standing for “low concentration”) and A-HE (HE standing for high energy) 
were prepared from graphene, produced by thermal reduction of graphite oxide.[15] Dispersions A and 
A-HE were prepared under similar conditions, meaning that the same energy was provided to both 
systems during the sonication process (Table 1). 

The difference between those two are the graphene and surfactant concentrations; 1 mg/ml, 1:1 
weight ratio graphene/sodium cholate (SC) and 0.1 mg/ml, 1:1 graphene/SC weight ratio for 
dispersion A and for dispersion A-HE respectively, meaning that dispersion A-HE was exposed to a 
ten times larger amount of energy per graphene unit than dispersion A. Dispersion A-LC with a 
graphene concentration of 0.1 mg/ml and a ratio graphene/SC 1:1 was exposed to a ten times lower 
amount of energy than dispersions A and A-HE.  
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Sample Concentration, mg/ml 
Energy provided during 

sonication, J 

Added amount of 

energy per mg of 

graphene, J 

A 1  2 200 000 22000 

A-LC 0.1  220 000 22000 

A-HE 0.1  2 200 000 220000 

B 0.1 - -

Table 1. Graphene dispersion used for composites preparation. 

This implies that the absorbed amount of energy per graphene unit was the same as in the case of 
sample A and ten times less than for sample A-HE. Dispersion B was prepared from graphene 
produced by the liquid-phase exfoliation of graphite. Graphene for dispersion B did not have to be 
sonicated additionally, since it had been obtained in the form of a stable aqueous solution after 100 
hours sonication of graphite of concentration 5 mg/ml in 0.1 mg/ml solution of SC, followed by 
centrifugation, resulting in a final concentration of graphene of 0.1 mg/ml.[16] 

The two different kinds of graphene used in this study were characterized by Raman 
spectroscopy. The 633 nm Raman spectra of graphene and bulk graphite are compared in Figure 1. 
The two most intense features for graphite are the G peak at ~ 1575 cm-1 and the 2D peak at ~ 2681 
cm-1. The G band represents a tangential shear mode of carbon atoms that corresponds to the 
stretching mode in the graphite plane. The G peak is due to the doubly degenerate zone center 
mode.[17] The 2D band has nothing to do with the G peak, but represents a second-order process 
from two-zone boundary longitudinal optical phonons. It is an intrinsic property of graphite, and 
present even in defect-free structures. Since zone-boundary phonons do not satisfy the fundamental 
Raman selection rule, they are not seen in first order Raman spectra of defect-free graphite. Such 
phonons give rise to a peak at ~ 1350 cm-1 in defect-containing graphite, called the D peak.[18]



Chapter 4 

72 

 Figure 1. Raman spectra of graphene used for preparation of the aqueous dispersions. 

The conventional Raman spectrum of graphite and graphene layers has been studied in great 
detail by Ferrari et al.[18] Graphene shows a Raman spectrum very similar to that of graphite, and the 
differences observed mirror the missing interaction between the layers. The 2D peak (second-order) 
changes in shape, width, and position with an increasing number of layers, reflecting the change in 
the electron bands via a double resonant Raman process. The G peak should exhibit slight shifts in 
position and a great decrease in the peak intensity of the ratio G/2D. 

The spectra in Figure 1 show a significant change in shape and intensity of the 2D peak of 
graphene compared to bulk graphite. The 2D peak in bulk graphite presents a shoulder with roughly 
one fourth of the height of the G peak followed by a main peak with roughly half of the height of the G 
peak. For graphene sample B a single 2D peak can be observed that is slightly shifted to lower 
wavelengths. The intensity of the peak is never higher than the one obtained for the G peak, as 
expected for single layer graphene. We note that all graphene spectra have D bands significantly 
more intense than that of the graphite powder, indicating that processing, more specifically 
sonication, induces defects. We can divide such defects into two main types: body defects, such as 
point defects on the basal plane, and edge defects. The introduction of edge defects is unavoidable 
during processing as sonication cuts the initially large crystallites up into smaller flakes. These 
smaller flakes have more edges per unit mass resulting in an increase in the edge defect 
population.[16] For the graphene samples A, A-LC and A-HE no clear 2D peak can be identified. 
Chemical modifications like oxidation/reduction can lead to even more severe structural damage to 
the surface of these materials, introducing defects that may disrupt the band structure. The 
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broadness and high intensity of the defect D peak for samples A, A-LC and A-HE confirm this 
assumption.  

During the sonication process the increasing number of exfoliated graphene platelets results in 
an increase of the UV-Vis absorbance due to an increase of the surface area of graphene.[19-22]

Figure 2. UV-Vis spectra of the aqueous dispersions A (2 200 000 J), A-LC(220 000 J), A-
HE (2 200 000 J) and B. 

As one can see in Figure 2 the final aqueous dispersions exhibit different UV-Vis absorbances 
and hence different degrees of graphene exfoliation. The highest absorbance spectrum corresponds 
to dispersion B, whereas dispersions A, A-LC and A-HE exhibit lower absorbance spectra, which 
means that dispersion B contains the  largest number of thin graphene layers in comparison with 
dispersions A, A-LC and A-HE, which in turn contain a higher number of agglomerates. When 
comparing samples A, A-LC and A-HE, one can conclude that apparently samples A and A-LC have 
more agglomerates than sample A-HE, which is in line with the lower amount of energy supplied to A 
and A-LC compared to A-HE. Sample A in turn looks just slightly more agglomerated than sample A-
LC, but the difference is very small, which makes sense in view of the similar amount of energy 
supplied per mg of graphene in both systems A and A-LC. Visually both dispersions A-HE and B 
seem to be stable for a few weeks and months time respectively, whereas in dispersions A and A-LC 
slight sedimentation occurs within 24 hours after preparation. 

The corresponding transmission electron microscopy (TEM) images (Figure 3) of the graphene 
platelets obtained by using the above processing conditions (samples A, A-HE and B) displayed 
some difference in size between the samples. 
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Figure 3. TEM pictures of the aqueous graphene dispersions A, A-HE and B. 

Platelets obtained for dispersion A are slightly larger than those obtained for dispersions A-HE 
and B. This must be due to the different amounts of energy provided per mg of graphene during the 
sonication process. 

The stability of the prepared graphene/SC dispersions was studied by recording UV-Vis 
absorbance spectra over time (Figure 4). 

Figure 4. Stability of the systems A, A-LC, A-HE and B recorded over time by UV-Vis 
spectroscopy. 

As one can see from the Figure 4, the maximum absorbance around 270 nm of both dispersions 
A and A-LC, which had an almost similar degree of exfoliation just after the sonication process, 
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decreases markedly over time, which in all likelihood is due to relatively fast aggregation occurring in 
both dispersions. During the same period of time there is a very slight decrease in the absorbance of 
sample A-HE, suggesting that dispersion A-HE exhibits a higher stability than dispersions A and A-
LC. Sample B shows hardly any decrease in its UV-Vis absorbance maximum around 275 nm over 
long periods of time, indicating an extremely high stability of the dispersion and no aggregation 
processes occurring. 

4.2.2.	Nanocomposites	characteristics

All four graphene/SC dispersions, A, A-LC, A-HE and B, were utilized for the preparation of 
conductive polymer nanocomposites via the so-called latex technology. For that the aqueous 
dispersions of graphene/SC were mixed with polystyrene latex, followed by freeze–drying and 
compression molding, resulting in a composite film.[2] From now on the composites prepared from 
graphene dispersions A, A-LC, A-HE and B and PS latex are respectively indicated as 
nanocomposites A, A-LC, A-HE and B.    

The electrical conductivity of the nanocomposites as a function of the nanofiller content is shown 
in Figure 5. At low graphene concentrations, as long as no conductive network of nanoplatelets is 
formed in the PS matrix, the conductivity of the nanocomposites remains very close to the 
conductivity value of the pure insulating PS matrix. The figure clearly shows that the percolation 
thresholds vary quite strongly with dispersion conditions. The percolation threshold of the composites 
prepared from dispersion B is high, about 4.5 wt%, which is related to the fact that graphene platelets 
stay separated one from another in the final composite films just as they were in the aqueous mixture 
of the PS latex and the graphene dispersion due to the very high degree of exfoliation and high 
stability, which brings about a lack of contacts between them. The nanocomposites obtained from 
dispersion A-HE show moderate percolation threshold in comparison with composites based on 
graphene dispersions B, presumably due to the lesser degree of exfoliation of the platelets, reduced 
thermodynamic stability of the dispersion and hence the presence of small agglomerates. The 
attractive interactions leading to the agglomerates plausibly induce additional contacts between 
sheets in the aqueous graphene/PS particle mixtures and hence subsequently also in the composite 
films.  

The nanocomposites based on graphene dispersions A and A-LC exhibit the lowest percolation 
thresholds, viz. 2 wt % for A and 2.3 wt % for A-LC, because of their relatively low degrees of 
exfoliation and significantly reduced stability of the aqueous dispersions compared to the cases 
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discussed above. This results in some agglomeration and hence cluster formation in the aqueous 
graphene/polymer particle mixtures and, following that, in the solid composite too. We would like to 
emphasize that we are not dealing here with the worst possible scenario concerning the dispersed 
state of graphene, which would be the case for completely non-exfoliated graphite in the polymer 
matrix for which the percolation threshold experimentally proved to occur at very high filler loading, 10 
wt %.  When the composites are made from non-exfoliated graphite, then due to macroscopic phase 
separation there might be isolated graphite-rich regions along with a vast majority of composite 
volume that would be largely un-reinforced and polymer-rich. 
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Figure 5. Electrical conductivity of graphene/PS composites A, A-LC, A-HE and B, 
prepared with aqueous dispersions A, A-LC, A-HE and B respectively, as a function of the 
graphene weight fraction in the final nanocomposite. 

The organization of graphene sheets in the nanocomposites and their conductivity distribution 
was analyzed with nanometer resolution by means of conductive atomic force microscopy (C-AFM). 
Using a conductive AFM probe, in this case a gold-coated silicon tip, the local electrical conductivity 
was measured at exactly the same area of the specimen subsequent to the topography and phase 
contrast imaging. The C-AFM tip measures the current throughout the volume of the nanocomposite 
specimen at a given voltage, which is running via the graphene network to the ground contacts. Only 
platelets that are connected with the ground contacts can be monitored, and the observed differences 
in current are determined by the intra-network graphene junctions with highest resistivity. Graphene 
contributing to sub-networks without connection to the ground contacts show no current. In this way, 
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a current distribution image is obtained and the conductive platelets can be distinguished from the 
insulating polymer matrix. 

Figure 6. Conductive-AFM images of the graphene/PS nanocomposites with different 
graphene loadings (indicated in the pictures) obtained as electrical current distribution 
images showing the graphene platelets that are connected with the ground electrode. 

As one can see in Figure 6 at 2 wt% graphene loading, only nanocomposite A that shows some 
small conductive clusters, exhibits some degree of conductivity, whereas both samples A-HE and B 
do not. At a higher loading, 4 wt%, both samples prepared from graphene dispersions A and A-HE 
show conductivity, but samples B still do not exhibit any network formation. Finally at 7 wt% loading a 
conductive network is easily visible in nanocomposite sample B as well.  

4.2.3.	Theoretical	predictions

We also employed dynamic light scattering (DLS) to obtain a rough indication of the size 
distributions in the exfoliated aqueous dispersions of graphene/SC (Figure 7). 
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Figure 7. Dynamic light scattering data of the size distributions of the aqueous graphene 
dispersions A, A-LC, A-HE and B. 

Since DLS analysis assumes that the measured objects are of a spherical shape, whereas graphene 
platelets can be more accurately described as two-dimensional objects, the data obtained from DLS 
measurements are not the real dimensions of the platelets but rather the effective hydrodynamic 
diameter of an equivalent sphere described by tumbling platelets.[23] 
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From the DLS measurements the dispersions turned out to have quite some variation in their size 
distributions with a difference in the average values as well as a difference in the thickness of the tail 
of the distribution for large sheets. In order to rationalize these experimental observations we attempt 
to assess whether the difference in the percolation thresholds could be explained by the variations in 
the size distributions. For this we make use of a recently formulated connectivity percolation theory 
that predicts the effect on the percolation threshold of a size polydispersity of impenetrable and rigid 
plate-like particles.[24]

The theory presumes charge transport to take place via electron hopping if two neighbouring 
particles are sufficiently close to each other, and predicts a very sensitive dependence of the 
percolation threshold on the shape of the size distribution of the plate-like particles. 

We compute the critical volume fraction φp of graphene required to obtain a system-spanning 
network as given by Eq. (24) of the referred paper that reads
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where the angle brackets denote an average over the distribution of thicknesses Lk and diameters Dγ. 
This volume fraction φp is then converted into a weight fraction using a conversion factor of 2, 
because the density of graphene is twice that of the polymer. To determine the required moments of 
the distribution, we presume the thickness of the graphene sheets to be a constant and, hence, the 
diameter and thickness distribution to be independent. This may be a tenuous approximation 
because one might expect that because of the sonication process the probability of a thinner sheet to 
break up into smaller ones is larger than that of a thicker one. However, due to a lack of information 
on this coupling of the distributions, we use this approximation that should allow us to assess whether 
the discrepancies in the observed percolation thresholds are caused by a polydispersity in the 
diameters.  

Given the distributions of diameters there are two tuneable parameters in the model: the sheet 
thickness L and the hopping distance λ, which is the largest separation between two particles that still 
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allows a charge carrier to hop from one graphene sheet to the other. We take L = 0.3 nm as a typical 
value and given the sensitive dependence of the model on λ and the fact that its exact value is not 
known accurately, we take three sensible values for λ to fit the data: λ = 0.9, 1.2 and 1.5 nm.[25] The 
results are shown in Table 2.

dispersion A (wt %) A-HE (wt %) A-LC (wt %) B (wt %)

experiment 2.0 3.0 2.3 4.5

theory (λ = 0.9 nm) 3.4 4.9 4.3 4.6

theory (λ = 1.2 nm) 2.6 3.7 3.2 3.4

theory (λ = 1.5 nm) 2.0 2.9 2.5 2.7

Table 2. Experimentally determined percolation thresholds for PS/graphene 
nanocomposites based on the four aqueous graphene dispersions A, A-LC, A-HE and B and 
the corresponding theoretical predictions for different values of the hopping distance λ. 

The agreement between theory and experiment is remarkably good, considering the crudeness of 
the model.  Indeed, for all three values of the hopping distance λ, the trends fully agree. For λ = 1.5 
nm the numerical agreement between theory and experiment is almost perfect for composites A, A-
HE, and A-LC, but this value underestimates the experimental value of composite B. For λ = 0.9 nm 
nanocomposite B exhibits the best numerical agreement, but the other three theoretical values are 
significantly larger than the corresponding experimental ones. Hence, λ = 0.9 nm and λ = 1.5 nm give 
a lower and upper bound on the hopping distance, whereas the value λ = 1.2 nm provides a 
compromise that fits all four systems reasonably well.  

As already alluded to, we use three values of the hopping distance because its value is not 
known accurately, and the thickness is kept at a constant value L = 0.3 nm. However, nanocomposite 
B shows the highest UV absorbance and therefore has the highest degree of exfoliation. This means 
that the sheets in dispersion B are presumably thinner than those in the other three dispersions and 
that L = 0.3 nm is quite accurate for dispersion B but it may be too low a value for the other three 
systems, i.e., the sheets of the other three may consist of a few layers of graphene and are not 
actually graphene but graphite platelets. However, a larger value of the thickness L as a fit parameter 
would only raise the theoretically predicted values and make the discrepancy larger for any value of 
the hopping distance λ. An interesting point to note here is that the graphene sheets are modelled as 
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flat disks in the model, which obviously is not the case in practice. Indeed, if the sheets in aqueous 
graphene dispersion B are thinner than those in the other three dispersions because of the higher 
degree of exfoliation, their effective diameter as observed in the DLS measurements should be 
smaller, which in fact is the case. The diameter in the model then represents this effective sheet 
diameter, which leads to a good agreement between experiment and theory for the PS/graphene 
nanocomposite based on this dispersion. 

Again, one could argue that even though the theoretical values of the percolation thresholds for 
the nanocomposites based on dispersions A, A-HE and A-LC are too high for λ = 1.2 and λ = 1.5 nm 
and would be even higher with a larger thickness as indicated above, the trend in them agrees with 
that in the experimental values. This means that there could be a systematic deviation in the 
theoretical predictions, which could e.g. be due to attractive van der Waals interactions that are not 
accounted for in the model and that have been shown to lower the percolation threshold of carbon 
nanotubes in a PS matrix considerably.[27]  Here, it must be noted that the attraction should not be too 
large because that would lead to stacking of sheets (or bundling of nanotubes), which would raise the 
percolation threshold of the PS/graphene nanocomposite . So, if the effect of such a systematic 
deviation in nanocomposites A, A-LC and B is the same, then we could argue that the differences 
between their percolation thresholds are indeed related to the polydispersities of their sheet 
diameters.

4.3. Conclusions 
Both experimental and theoretical studies were applied to determine an effect of dispersion state 

on percolation threshold of graphene-based polystyrene nanocomposites prepared with the aid of 
latex technology. Graphene/polystyrene composites were prepared using four graphene dispersions 
with different degrees of exfoliation and stability, and their electrical properties were characterized.  
The degree of exfoliation of graphene and the stability of the dispersions were characterized with UV-
Vis spectroscopy. It was shown that PS/graphene nanocomposites prepared from PS latex and 
aqueous graphene dispersions with relatively low stability and relatively low degrees of exfoliation 
exhibit a lower percolation threshold than the composites based on dispersions with larger degree of 
graphene exfoliation and higher dispersion stability.  

Theoretical predictions were employed to calculate percolation thresholds of the nanocomposites, 
inserting the degree of polydispersity of the graphene platelets as obtained from our DLS 
measurements. Theory and experiments show the same trends for the series of samples, suggesting 
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that size polydispersity is indeed an important factor determining the electrical percolation threshold. 
The comparison provides a lower and upper bound for the hopping distance of λ = 0.9 nm and λ = 1.5 
nm.  We note here, however, that  this was based on the assumption of a constant value of the 
graphene thickness L = 0.3 nm, whereas  nanocomposite B  shows a higher degree of exfoliation, 
both in the aqueous state as well as in the final nanocomposite, and a higher stability than in the 
other composites that exhibit cluster formation. This means that the particles in composite B are 
presumably somewhat thinner than those in the other composites.  

Despite the higher quality of the nanofiller loading of composite B, confirmed by Raman 
spectroscopy, nanocomposites based on aqueous dispersions of graphene of lower quality, but in 
which the nanofiller particles do form clusters in solution, and accordingly in view of our mild and 
almost shear-free compression molding step furnishing the nanocomposite films, also in the final 
PS/graphene nanocomposite, exhibit lower percolation thresholds. This important finding, as far as 
we know demonstrated for the first time for graphene-based polymer nanocomposites, is in excellent 
agreement with the works described by Li, Martin, Aguilar and Hernandez on polymer/carbon 
nanotube composites.[7-10]

4.4. Experimental  

Chemicals 
Sodium dodecyl sulfate (SDS) (90%, Merck), sodium carbonate (99%, Aldrich), sodium 

peroxodisulfate (SPS) (90%, Merck) and sodium cholate (SC) (99%, Aldrich) were used as received. 
Styrene (99%, Merck) was passed over an inhibitor remover column. The inhibitor-free monomers 
were kept under refrigeration for later use. Water used in all reactions was double de-ionized water 
obtained from a purification system. SP-2 graphite from Bay Carbon and natural flake graphite from 
Branwell Graphite Ltd. (Grade RFL 99.5) were used as provided. Graphene was obtained via 
graphite (SP-2 Bay Carbon) oxidation and thermo-expansion process and via graphite (Branwell 
Graphite Ltd) exfoliation in sodium cholate/water solution.[15, 16]

Preparation and characterization of PS latex 
PS latex was synthesized via conventional free radical emulsion polymerization. The reaction 

was performed at 70º C with an impeller speed of 400 rpm. The reactor was charged with the 
following: styrene (252 g), SDS (26 g, 0.09 mol), sodium carbonate (0.7 g, 6.6 mmol) and H20 (712.2 
g). The reaction mixture was degassed by purging with argon for 30 min. A solution of SPS (0.45 g, 
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1.9 mmol) in H2O (10 g) was also degassed. The reaction was started upon the introduction of the 
initiator solution and the reaction time was roughly 1 hour. The average particle size determined by 
dynamic light scattering was 90 nm. Size exclusion chromatography analysis showed Mn, Mw and PDI 
values of 495 kg/mol, 944 kg/mol  and 1.9, respectively.  

Preparation of graphene dispersions 
Exfoliated graphene dispersions from thermally reduced graphite oxide were prepared with the 

use of surfactant and energy supplied by ultrasound. The ultrasound was provided by a Sonics 
Vibracell VC750 horn sonicator with a 10 mm diameter tip. The sonication power was maintained at 
100 W during the exfoliation, and the solution was cooled in an ice-bath. Volumes were kept under 
100 ml to achieve the best sonication for the complete solution. Graphene dispersion made from 
graphite exfoliated via liquid-phase exfoliation route was prepared as described elsewhere.[16]

Composites processing 
The graphene dispersion was mixed with PS latex, the mixture was frozen in liquid nitrogen for 

several minutes and the frozen water was removed with a Christ Alpha 2–4 freeze dryer operated at 
0.2 mbar and 20 ºC overnight. The resulting composite powder was compression molded into films 
for 20 min at 180 º C between Teflon sheets with a Collin Press 300G.

UV–Vis spectroscopic measurements 
UV–Vis absorption spectra were recorded with a Hewlett– Packard 8453 spectrometer operating 

between 200 and 1100 nm. Small sample volumes were taken after the sonication process and 
diluted, resulting in a graphene concentration of 0.0125 mg ml−1. The blank used was the original SC 
solution, diluted and analyzed under the same conditions as the samples themselves. 
Electrical conductivity measurements: The electrical conductivity was measured using a standard 
four-point method. Parallel contact lines 0.5 cm in length and with a 0.5 cm interval were drawn with 
conductive-silver paint (Fluka) on the composite film, and all conductivity measurements were 
performed at room temperature with a Keithley 6512 programmable electrometer. For each sample, 
conductivity data represent the average value of 10 consecutive measurements. 

Atomic force microscopy investigations

The conductive AFM measurements on composites cross sections were performed by an 
NTEGRA Tomo (NTMDT Co.). The device is a combination of a microtome EM UC6-NT (Leica) and 
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an SPM measuring head. Such design allows for alternate microtome cutting and SPM 
measurements of the sample block-face. The local current measurements were performed in C-AFM 
mode with a gold-coated silicon cantilever NSC36/Cr-Au (Micromash). The sample was electrically 
connected to a grounded holder; a bias of 2 V was applied. 

Transmission electron microscopy 
TEM images were taken using a Sphera type Technai 20 (Fei Co.). This was operated with a 200 

kV LaB6 filament and a bottom mounted 1024 x 1024 Gatan CCD camera. A carbon coated gold grid 
was used.  

Raman spectroscopy 
A LABRAM confocal Raman spectroscope equipped with an optical microscope was utilized. 

Samples were irradiated with red high polarized laser (632 nm) supplied by Melles Griot. 

Dinamic Light Scattering

DLS measurements were performed on Nanotrac Particle Size Analyzer (Microtrac Inc).
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Chapter 5 

Dependence of percolation threshold of 
graphene/polymer nanocomposites on 

surfactant used for graphene dispersion in 
the aqueous state of the latex concept. 

ABSTRACT: The composite applications of graphene produced by thermal reduction of graphite 
oxide require its exfoliation and dispersion in a polymer matrix. One of the main approaches to 
disperse and exfoliate graphene in a polymer matrix is based on the use of surfactants in the 
aqueous state of a latex-based concept. Here we compare the ability of some conventional 
surfactants such as sodium dodecylbenzene sulfonate (SDBS), sodium cholate (SC), sodium poly 
(sodium 4-styrene sulfonate) (PSS) and Tween-80 to disperse graphene in water. We determine 
optimum conditions for all the surfactants to disperse graphene at concentration of 1 mg/ml. For the 
ionic surfactants used in this work the same percolation thresholds as well as ultimate conductivity 
values were obtained. The use of Tween-80 for graphene dispersion results in a higher percolation 
threshold and in a lower conductivity compared with ionic surfactants-based systems. A conductive 
polymeric surfactant, namely poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) 
was also used to disperse graphene in water for preparation of the polystyrene (PS)-based 
composites. The use of PEDOT:PSS greatly reduces the percolation threshold in comparison with 
the systems utilizing conventional surfactants. The morphology of the graphene/PEDOT:PSS system 
was investigated and an explanation why it lowers the percolation threshold is given.   
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5.1. Introduction 
One of the most promising approaches to incorporate graphene produced via thermal reduction 

of graphite oxide into a polymer matrix is based on the use of a third component, i.e. a surfactant. 
Surfactant-assisted dispersion of graphene in water is perhaps the most environmentally friendly 
concept because the use of toxic solvents is avoided. Of course the water needs to be eliminated in 
one of the subsequent steps following the water-based step. A drawback is that the mechanical 
properties of the nanocomposite deteriorate because of the high amount of surfactant necessary for 
the particles stabilization, realizing that the surfactant remains present in the final polymer 
nanocomposite. The tensile strength and modulus after processing can be below the values for the 
neat polymers, but this seems to be not a major problem if one focuses on electrical properties. It 
was demonstrated that via liquid phase exfoliation of graphite in water graphene can be dispersed 
with the following surfactants: sodium dodecyl sulfate (SDS), SDBS, lithium dodecyl sulfate (LDS), 
cetyltrimethyl ammoniumbromide (CTAB), tetradecyl trimethyl ammonium bromide (TTAB), SC, 
sodium deoxycholate (DOC), sodium taurodeoxycholate (TDOC), IGEPAL CO-890 
(polyoxyethylene(40) nonylphenyl ether), Triton X-100 (polyethylene glycol p-(1,1,3,3-
tetramethylbutyl)-phenyl ether), Tween-20 (Polyoxyethylene (20) sorbitan monolaurate) and Tween-
80 (Polyoxyethylene (20) sorbitan monooleate), although for most of the surfactants optimized 
conditions were not found and final graphene concentrations obtained in water were quite low.[1] In 
this work we disperse graphene obtained via thermal reduction of graphite oxide using some 
conventional surfactants, namely SDBS, PSS, SC and Tween-80, and compare the conductive 
properties of the prepared PS nanocomposites.  

Conductivity as high as 600,000 S/m was reported for a single graphene platelet.[2] However, 
when conductivities are measured for graphene/polymer composites, and even for graphene bucky-
papers, these are always orders of magnitude lower than the conductivity measured for an individual 
platelet. This is because of imperfect contacts present between adjacent graphene platelets.  For the 
case of polymer-based graphene composites, an additional resistance can arise from interfacial 
polymer layers present within the graphene junctions. A drawback of utilizing conventional 
surfactants for manufacturing polymer/graphene nanocomposites is that, if the surfactant is not 
displaced from the graphene surface after the final processing steps during composite preparation, 
an insulating shell remains around the platelets that could be detrimental for the inter-platelet charge 
transport in the final product as was demonstrated for CNTs in CNT/polymer nanocomposites.[3]

Contact resistance for both CNTs and graphene networks dominates the overall film/composite 
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conductivity. It was shown that in the case of CNTs the presence of conductive polymeric surfactant 
at the intertube junctions can greatly reduce the contact resistance and alter both percolation 
threshold and ultimate conductivity of a single-walled carbon nanotubes network in a polymer 
matrix.[4, 5] Applying these conductive polymers to a water-based system to prepare polymer 
nanocomposites requires the conductive polymer to have a surfactant-like nature. Conductive 
polymeric surfactant poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has 
been used to disperse SWCNTs in water for the preparation of PS nanocomposites.[5] Here we apply 
PEDOT:PSS latex to reduce percolation thresholds of corresponding graphene/polymer composites 
for which conventional surfactants were used for graphene dispersion in the aqueous step of the 
latex concept (see chapter 2). The contact resistivity in the graphene network is decreased by 
replacing an insulating surfactant by a conductive one and by the formation of conductive bridges 
between adjacent graphene platelets in the graphene network.

5.2. Results and discussion. 

5.2.1.	Optimization	of	the	graphene	exfoliation	conditions.	

It was shown that when dispersing CNTs in water the surfactant concentration generally needs to 
be above the critical micelle concentration (CMC) and the surfactant concentration also needs to 
exceed the CNTs concentration.[6-9] The latter condition is not always justified when dispersing 
graphene in water as sodium cholate for instance performs better at concentrations below the CMC 
and when not exceeding the graphene concentration during liquid phase graphite exfoliation.[10] The 
dispersion quality of the CNTs improves as the filler concentration decreases.[8] We also observed 
this for graphene using SC as surfactant, as was shown in chapter 4. For the production of 
nanocomposites with the latex-based concept, it is preferable to be able to work at relatively high 
concentrations of exfoliated graphene platelets for both reproducibility purposes and for commercial 
reasons. That’s why we chose a standard work concentration of graphene 1 mg/ml. This 
concentration allows us to prepare a full series of nanocomposites with different graphene loadings 
by diluting one and the same graphene/surfactant dispersion. We disperse graphene using a 
sonication tip. It was observed for CNTs that, under the same experimental conditions, for the same 
total energy provided to the system, CNTs sonicated at high powers are shorter (so they are more 
damaged) than CNTs sonicated at lower powers.[11] Exfoliation of graphite or a few stacked graphene 
layers obviously requires providing a higher amount of energy due to a bigger interaction surface and 
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subsequently stronger van der Waals forces compared to bundled CNTs. Bearing this in mind, we 
decided to check whether it would result in a different degree of exfoliation when the exfoliations of 
graphene platelets were carried out at different sonication powers, namely 100 W and 50 W. For that 
we prepared two dispersions containing 0.1 wt % of graphene and 0.1 wt % of PSS at different 
sonication powers.  As was demonstrated in the previous chapters UV-Vis spectroscopy can be 
applied to monitor the degree of exfoliation of graphene sheets. During sonication, the increasing 
amount of exfoliated platelets results in an increasing area below the lines representing the 
absorbance. Since the power of sonication is kept constant throughout the experiments there is a 
direct relationship between a specific sonication time and the energy delivered to the sample during 
this time interval. Therefore, it is equivalent to plot the absorbance at a certain wavelength versus the 
time of sonication or versus the energy supplied to the solution. The mixtures were sonicated until the 
maximum exfoliation (or UV-Vis absorbance) was reached (Figure 1a,b,c). The figure shows that 
exfoliation of both graphene/PSS mixtures occurs approximately with the same speed, which can be 
deduced from the very similar absorbance values obtained at very similar amounts of energy 
provided to the systems. The comparison of the evolution of the UV-Vis absorbance at 276 nm 
versus the energy provided to the two graphene dispersions studied, shows that the power of 
sonication used to achieve the maximum exfoliation of the graphene sheets does not significantly 
influence the process (see Figure 1c). In other words, only the energy provided to the system needs 
to be taken into account to reach the maximum exfoliation, since this maximum is reached after the 
same addition of the same amount of energy which was provided to the samples, regardless of the 
value of the power of sonication employed. 
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Figure 1. Evolution of UV–Vis spectra of an aqueous 0.1 wt% graphene/ 0.1 wt% PSS 
solution as a function of energy provided during sonication at a power of: (a) 100 W; (b) 50 
W. (c) The comparison of the evolution of the UV-Vis absorbance at 276 nm versus the 
energy provided to the two graphene dispersions. 

For the practical reasons we chose a sonication power of 100 W for further work since sonication 
at 50 W requires much longer time to complete the exfoliation and the dispersion of graphene in an 
aqueous surfactant solution. We determined the minimum concentration of surfactant, which is 
necessary to exfoliate graphene platelets to the maximum degree by using UV-Vis. If a too small 
number of surfactant molecules is present in solution during the sonication, only a part of the total 
number of graphene sheets, which can potentially be peeled off from the initial graphene aggregates 
or pieces of graphite, can be stabilized. As a result, the exfoliation of the graphene is far from 
complete, and the value of the absorbance at the end of the exfoliation is lower than when all the 
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platelets, which can in principle be exfoliated from the aggregates, are individualized. On the 
contrary, if a big amount of surfactant is present in the final composite it influences its mechanical 
properties. Based on this fact it’s necessary to determine a minimum concentration of surfactant 
required for exfoliation and dispersion of graphene for preparing polymer nanocomposites. We 
determined a required surfactant concentration by comparing the maximum absorbance values of the 
absorbance at the end of the exfoliation as a function of surfactant concentration. We mixed 0.1 wt % 
of thermally reduced graphite oxide with a range of concentrations of SDBS, SC, PSS and Tween-80. 
When measuring the UV-Vis absorbance versus surfactant concentration one obviously should 
observe an increase of absorbance until a critical surfactant concentration is reached, which 
corresponds to the minimum amount of surfactant needed to stabilize graphene platelets (Figure 2). 
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Figure 2. Absorbance at 276 nm of 0.1 wt % graphene dispersions, recorded at the end of 
the exfoliation process when the maximum absorbance was obtained, plotted as a function 
of the surfactant concentration: (a) SDBS; (c) SC; (e) PSS; (g) Tween-80 and evolution of 
UV–Vis spectra of aqueous 0.1 wt% graphene solutions dispersed at optimum 
concentrations of the corresponding surfactants as a function of sonication energy: (b) 
SDBS; (d) SC; (f) PSS; (h) Tween-80. 

A further enhancement of the surfactant concentration does not result in a further increase of the 
absorbance, and a plateau value is reached. Figure 2 shows that for exfoliation and dispersion of 
graphene at a concentration of 0.1 wt % the following minimum surfactant concentrations are 
required: 0.15 wt %, 0.1 wt %, 0.1 wt % and 0.3 wt % for SDBS, SC, PSS and Tween-80, 
respectively. It was shown for ionic surfactants, which stabilize a nanofiller by electrostatic repulsions, 
that the dispersion quality and degree of the exfoliation/individualization of CNTs scale with the zeta 
potential ζ, which in turn scales with surfactant molecular weight, meaning that low molecular weight 
surfactants that pack tightly on the CNTs surface are ideal, since they provide higher absolute ζ

values.[6] Interestingly, this is not always the case for graphene. A graphene/SC dispersion was 
shown to possess a lower absolute value of the zeta potential than a graphene/SDBS dispersion but 
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SC disperses graphene more effectively, as was demonstrated for graphene obtained by liquid phase 
exfoliation of graphite.[1] The same we observe here for graphene obtained by thermal reduction of 
graphite oxide. In Figure 2 one can see that Tween-80 which stabilizes graphene by steric effects, 
seems to be the least effective among the surfactants we used to disperse graphene in water. 

To compare the platelets after exfoliation with different surfactants transmission electron 
microscopy (TEM) was performed on graphene dispersions prepared with PSS, SC and Tween-80. 
The exfoliated platelets exhibit the dimensions of about 0.5 µm in length and width. There is some 
difference in background between the micrographs of ionic surfactants- and Tween-80-stabilized 
graphene, probably due to the fact that Tween-80 is a liquid at room temperature and stays being a 
liquid on the TEM grid after water evaporation, contrary to the other surfactants.

Figure 3. TEM pictures of the graphene platelets exfoliated with the aid of: (a) PSS; (b) 
SC; (c) Tween-80. 

5.2.2.	Composite	conductivities	

After the maximum obtainable exfoliation was achieved, the aqueous dispersions of 
graphene/SDBS, graphene/SC, graphene/PSS and graphene/Tween-80 were mixed with polystyrene 
latex, followed by freeze-drying and compression molding, resulting in a composite film. The 
advantage of a non-ionic surfactant like Tween-80 is the possibility to prepare nanocomposites using 
polymer latexes comprising either positively or negatively charged or even uncharged particles. For 
the systems stabilized with ionic surfactants we used PS latex stabilized with SDS, whereas for 
Tween-80-stabilized graphene we used both a latex containing PS particles stabilized with SDS 
(negatively charged) and a latex containing PS particles stabilized with CTAB (positively charged). 
Moreover, the average molecular weights Mw of the two PS latexes are different: 1,000,000 g/mol for 
the SDS-stabilized PS latex and 150,000 g/mol for CTAB-stabilized PS latex, respectively. This 
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difference was deliberately chosen in order to check whether the difference in molecular weight 
influences the percolation threshold of these graphene/PS nanocomposites. The results of the 
conductivity measurements for all the systems are presented in Figure 4. 
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Figure 4. Conductivity curves of the following systems: (a) the anionically stabilized 
systems (all the composites prepared with the high molecular weight PS latex): 
graphene/PSS/PS, graphene/SC/PS and graphene/SDBS/PS; (b) graphene/Tween-80/PS 
nanocomposites containing high and low molecular weight PS. 

As one can see in Figure 4a all the systems containing high molecular weight PS and graphene 
dispersed with ionic surfactants exhibit the same percolation threshold (at 2 wt %) and the same level 
of conductivity (around 10 S/m) above the percolation threshold, which can mean that all the 
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dispersions possess the same level of exfoliation of graphene. In contrast to that graphene/Tween-
80/PS nanocomposites based on high molecular weight PS exhibit a percolation threshold at higher 
loading level and lower conductivity above the percolation threshold, namely 2.8 wt % and 1 S/m, 
respectively. This can be due to the presense of a big amount (ratio Tween-80:graphene is 3 to 1) of 
very bulky surfactant (which has very long hydrophilic tail) on the surface of the graphene platelets 
which stabilizes the graphene platelets in the aqueous phase by a steric effect and at the same time 
keeps platelets quite far apart from each other in the final nanocomposite.  

It was shown that the viscosity of the polymer melt, which is a function of the molecular weight 
distribution, plays a role in the time it takes for the filler nanoparticles, more specifically CNTs, to 
attain their equilibrium structure in the melt.[7, 12] This implies that the measured percolation threshold 
should be a function of the compression molding time (see experimental part) and of the temperature 
at which the compression molding takes place. If the initial structure does not represent an electrically 
percolating network but the final equilibrium structure does, then the time allowed to the system to 
equilibrate should determine whether or not electrical percolation is actually achieved in the final 
product.[7] For the PS latex of molecular weight of 1,000,000 g/mol it was demonstrated that the 
percolation threshold for both SWCNTs and MWCNTs/PS composites prepared by means of latex 
technology is heavily influenced by the processing time. To be more specific enhancing of the 
processing time (from 2 minutes up to 30, 45 and 60 minutes) lowered the percolation threshold and 
raised the conductivity of the corresponding nanocomposites by pushing the system towards its 
equilibrium state.[7] However, when we raised the time for the final (compression molding) step of 
nanocomposites preparation, from 2 minutes up to 1 hour we didn’t observe any change in the 
percolation threshold, which can be due to the difference in shape between CNTs and graphene. We 
propose that for a system based on large graphene platelets it should take much longer time to 
reorganize itself in a highly viscous polymer matrix in a direction perpendicular to its plane, which 
implies that the earlier mentioned “equilibrium” structure in the melt is much more difficult to achieve 
than for the thin CNTs.  

When replacing the high molecular weight PS latex by the low molecular weight PS latex for 
preparation of the nanocomposites we observe a shift in percolation threshold for the 
graphene/Tween-80 system from 2.8 wt % of graphene loading to 2.5 wt %. It was shown for CNTs 
that an addition of a low molecular weight polymer to a high molecular weight polymer which forms 
the composite matrix can strongly affect the percolation threshold of CNTs within both poly (methyl 
methacrylate) (PMMA) and PS matrixes. A significant decrease in the percolation threshold was 
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observed upon the introduction of low molecular weight polymer, the shift being most pronounced for 
higher amounts of low molar mass polymer.[12] It was speculated that low molecular weight polymer 
can displace the surfactant from the surface of a nanofiller which can induce changes in both 
percolation threshold and ultimate conductivity due to a difference in dielectric constant values of 
surfactant and polymer matrix. The evidence for such a displacement was claimed to be the changes 
in the matrix glass transition temperatures that were observed in CNTs/polymer composites.[13]

However, such a decrease in percolation threshold was also observed for the CNTs-based 
composites for which no changes in glass transition temperatures occurred. In addition to that for the 
latex systems there was no change in the ultimate conductivity of the referred system.[12]  Also in the 
present work no differences in the maximum conductivity values were observed for the 
graphene/Tween-80/PS composites based on the low molecular weight polymer matrix in comparison 
to the composites prepared with high molecular weight matrix. Therefore we doubt that the surfactant 
displacement is really impostant for the percolation threshold and the ultimate conductivity and we 
think that the reason for the decrease in percolation threshold upon addition of low molecular weight 
matrix material is a rheological change of the melt, i.e. a decrease in its viscosity, which in turn can 
influence the extent to which the graphene platelets are able to reach an equilibrium organization 
during the compression molding stage of the composite preparation. Whether this equilibrium 
distribution is more or less aggregated than the initial dispersion state after freeze-drying is not clear. 
The fact that a higher compression molding temperature, implying also a reduced melt viscosity, also 
reduces the percolation threshold supports the importance of a rheological change.[7]

5.2.3.	Lowering	percolation	threshold	using	PEDOT:PSS	as	

surfactant	

5.2.3.1. Graphene exfoliation 

The efficiency of PEDOT:PSS to stabilize graphene sheets was evaluated using UV-Vis 
spectroscopy. We tried different ratios of graphene to PEDOT:PSS, namely 1 to 0.5, 1 to 1, 1 to 1.4 
which corresponds to the ratio graphene:PSS of 1 to 1, 1:2 and 1:3.  The exfoliation profile for the 1 
to 1.4 weight ratio is shown in Figure 5. For the ratios of graphene to surfactant of 1:0.5 and 1:1 the 
maximum absorbance level was lower than for the 1 to 1.4 system, whereas the ratios 1:2 and 1:3 
showed almost no further improvement over the 1:1.4 system.  
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Figure 5. Evolution of UV–Vis spectra of an aqueous 0.1 wt% graphene/ 0.14 wt% 
PEDOT:PSS dispersion as a function of sonication time.  

Comparing the exfoliation profiles of the graphene/PSS (see Figure 2f) and graphene/PEDOT:PSS 
systems one can notice a difference in the final absorbance value between PEDOT:PSS and PSS 
systems, namely the dispersion containing PEDOT:PSS exhibits a higher degree of exfoliation. This 
we can attribute to the fact that PEDOT:PSS can stabilize graphene not just by a electrostatic 
repulsion but also by a steric effect. If PEDOT particles which are covered by PSS adsorbed onto the 
graphene surface due to π-π interaction, they can prevent graphene platelets to come close one to 
another. If graphene particles are stabilized just by PSS whereas PEDOT:PSS particles do not 
adsorb onto graphene surface and stay in solution it still can prevent graphene platelets from 
aggregation because they are separated by PEDOT particles which are also stabilized by PSS.  

 5.2.3.2. Blends of PS and PEDOT:PSS 
A control series of films was prepared by mixing of PEDOT:PSS and high molecular weight PS 

latex to investigate at what loading of conductive polymer the system becomes conductive. Polymer 
blends do not show true percolation thresholds as defined for fillers, but for a combination of two 
polymers at distinct volume fractions the morphology of the blend will be such that at least one phase 
is continuous. If this phase is conductive, an insulator–conductor transition could be observed as 
soon as continuity is achieved.[5, 14] A percolation threshold at a loading of around 20 wt % of 
PEDOT:PSS was reported for a drop-casted blend prepared via solution mixing with 
poly(vinylpyrrolidone).[15] For blends containing polyaniline as a conductive component, based on 
polymer latexes as organic templates, a percolation threshold of 5 wt % was reported.[16] Low 
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percolations values of around 2 wt % of conductive polymer have been reported for polythiophene/PS 
composites in which morphology of polythiophene is whisker-like.[17]

The results of our control experiments are shown in Figure 6. As one can see PEDOT:PSS 
percolates in a PS matrix at around 2.2 wt %, which is in agreement with earlier reports.[5, 18] The 
maximum conductivity achieved for the blend is 600 S/m.  
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Figure 6. Conductivity curve of PEDOT:PSS/PS blends. 

PEDOT:PSS is known to film-form on a substrate it is deposited on. Scanning Electron Microscopy 
(SEM) images of a PEDOT:PSS drop-casted  film on a silicon wafer, as shown in Figure 7, exhibit a 
smooth structured surface with some big PEDOT:PSS particles on top.  

Figure 7. SEM image of PEDOT:PSS on silicon wafer at different magnification. 
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Such a morphology is probably due to the high thickness of the film comprising few layers of 
PEDOT:PSS particles.[19] The PEDOT:PSS film consists of horizontal layers of flattened PEDOT-rich 
particles that are separated by quasi continuous PSS lamellas.[20, 21] Such a pancake shape of 
PEDOT particles, implying an increase of the aspect ratio (L/D>1), can explain a quite low percolation 
threshold of PEDOT:PSS in a blend of PS and PEDOT:PSS. Another factor which induces the quite 
low percolation threshold of PEDOT:PSS in PS composites can be that PEDOT:PSS is pushed into 
interstitial space between PS particles, and stays more or less there even after flow of PS latex.The 
preparation of the PEDOT:PSS/PS blends is performed by mixing PEDOT:PSS latex in the desired 
ratios with PS latex followed by freeze-drying to remove water and compression molding at 180 ºC to 
make the final composite films. To check how the heating up to 180 ºC affects PEDOT:PSS the 
polymer was spin-coated on glass substrate and placed into an oven for half an hour to mimic the 
processing conditions. Atomic Force Microscopy (AFM) analysis of the film before and after 
annealing was carried out (Figure 8). AFM shows that annealing hardly affects the morphology of the 
PEDOT:PSS particles which is also in agreement with an earlier report.[19] 

Figure 8. AFM image of PEDOT:PSS on glass before (a) and after annealing (b) at 180 °C. 
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We also analyzed the morphology of PEDOT:PSS in the PEDOT:PSS/PS powder obtained after 
freeze-drying and deposited on a silicon wafer (Figure 9). For this PEDOT:PSS and PS latexes were 
mixed in such a way that the weight ratio of PEDOT:PSS to PS in the final film would be 1 to 1 in 
order to maximize the visibility of both polymers. As one can see in the major part of the dark PS 
matrix the lighter colored PEDOT:PSS particles have a slightly elongated (oval) shape (Figure 9a), 
which also confirms the earlier assumption that the aspect ratio of the PEDOT:PSS particles 
increases when this soft material is placed on a hard substrate. The film in Figure 9b looks smooth, 
and not any single particle can be distinguished, which can imply that the PEDOT:PSS film on the PS 
particles is quite thick. 

Figure 9. SEM image of the different parts of a freeze-dried PEDOT:PSS/PS powder. In 
the majority of the PS matrix PEDOT:PSS particles have slightly elongated shape (a); PS 
particles are covered with a thick layer of PEDOT:PSS. The film has a smooth surface (b). 

5.2.3.3. Conductivity of graphene/PEDOT:PSS/PS 
The percolation thresholds observed for PEDOT:PSS- and PSS-stabilized graphene are shown in 

Figure 10. Composites prepared with PSS-stabilized graphene have a graphene percolation 
threshold value of 2 wt %. The ultimate conductivity above the percolation threshold is 20 S/m. 
Composites prepared with PEDOT:PSS-stabilized graphene show a clear decrease in percolation 
threshold to 0.5 wt % and an ultimate conductivity level of 550 S/m. This level is comparable with that 
achieved for a PEDOT:PSS/PS blend which exhibits a conductivity of 600 S/m. Thus it can be 
speculated that, based on the fact that the final conductivities achieved for both the PEDOT:PSS/PS 
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blends and the graphene/PEDOT:PSS system are very similar, the origin of the increase from 20 S/m 
for the graphene/PSS to 550 S/m for the graphene/PEDOT:PSS systems, is due to the presence of 
the PEDOT:PSS. 
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Figure 10. Percolation thresholds for composites prepared with PSS-stabilized graphene 
and PEDOT:PSS-stabilized graphene (the weight ratio graphene to PEDOT:PSS is 1 to 
1.4). 

The morphology of the graphene/PEDOT:PSS system can be threefold. In the first scenario 
graphene can be stabilized by PSS molecules which are present in excess in the PEDOT:PSS 
system ( weight ratio PSS to PEDOT is 2.5:1). The result of this can be a system consisting of a 
mixture of conductive rods and spheres. The reduction in percolation is then induced simply by the 
addition of different conductive filler particles to graphene paletelets which are present in the system.  
In this case PEDOT:PSS particles most probably build conductive bridges between the neighboring 
platelets as well as between the platelets which are further apart from each other.  In the second 
possible scenario the sheets are completely covered with PEDOT:PSS pancakes due to π-π 
interactions. By covering the graphene sheets PEDOT:PSS “increases the thickness” of the platelets 
which in turn makes the distance between neighboring platelets smaller and thus decreases the 
percolation threshold with respect to graphene. Free PEDOT:PSS particles can be still present in the 
composite organizing conductive bridges between graphene platelets covered with PEDOT 
pancakes. In the third possible scenario graphene platelets can be just partially covered by 
PEDOT:PSS particles. In this case PEDOT:PSS particles can also organize conductive bridges 
between partially covered graphene platelets. From ultimate conductivity values it is not absolutely 
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clear which scenario is true due to the fact that the intrinsic conductivities of both graphene and 
PEDOT:PSS, are very similar. The conductivity of this type of PEDOT:PSS according to the supplier 
is 1000 S/m, whereas conductivity of bucky papers produced from the graphene/PSS dispersion 
exhibit values up to 5500 S/m.  

We applied TEM to see the level of individualization of graphene platelets in a dispersion 
prepared with PEDOT:PSS (Figure 11a). There is no marked difference between the graphene 
platelets dispersed with the aid of ionic surfactants used described in this chapter and platelets 
dispersed with the aid of PEDOT:PSS. It is impossible to see the extent to which the PEDOT:PSS 
covers the graphene sheets, if this is really the case. We also applied Scanning Electron Microscopy 
(SEM) to check the morphology of the graphene/PEDOT:PSS system prepared by the freeze-drying 
process (Figure 11b). 

Figure 11. (a) TEM micrograph of graphene exfoliated in the presence of PEDOT:PSS; (b) 
SEM image of graphene covered with PEDOT:PSS. 

When looking at the picture shown in Figure 11b one can notice that there is no indication of the 
presence of spherical objects, which could be PEDOT:PSS particles. On contrary we can observe 
graphene platelets having a rough and very bumpy surface, which can be the indication of its 
covering by PEDOT:PSS pancakes. 
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5.2.3.4. Utilizing low conductive PEDOT:PSS 
To find out more about the morphology of the graphene/PEDOT:PSS/PS composites we also 

utilized a different PEDOT:PSS latex exhibiting low conductivity, namely 0.2 S/m according to the 
supplier. From now on we will call this latex LCPEDOT:PSS, which stands for low conductive 
PEDOT:PSS. The weight ratio of PSS to PEDOT in this system is 6 to 1. The exfoliation profile of a 
graphene/LCPEDOT:PSS dispersion with the same weight ratio of graphene to PEDOT:PSS as we 
used in the case of utilizing highly conductive PEDOT:PSS, namely 1:1.4, is shown in  Figure 12. 
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Figure 12. Evolution of UV–Vis spectra of an aqueous 0.1 wt% graphene/ 0.14 wt% 
LCPEDOT/PSS dispersion as a function of sonication energy. 

The graphene/LCPEDOT:PSS system exhibits an absorbance level very similar to the system 
containing highly conductive PEDOT:PSS, which can mean that roughly the same degree of 
graphene exfoliation was achiaved for both systems.  

The results of the control blend of LCPEDOT:PSS and PS are shown in Figure 13. As one can 
see LCPEDOT:PSS in the PS matrix percolates at around 3.5 wt %, which is much higher than the 
value of the percolation threshold for highly conductive PEDOT:PSS in the same PS matrix. The final 
conductivity above the percolation threshold of this system is only 0.14 S/m.  After the maximum 
obtainable exfoliation was achieved, the graphene/LCPEDOT:PSS dispersion was mixed with 
polystyrene latex, followed by freeze-drying and compression molding, resulting in a composite film. 
The conductivity curve is shown in Figure 13b. We compared these data with the data obtained for 
the graphene/PSS system and surprisingly found that whereas the percolation threshold of the 
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system containing LCPEDOT:PSS decreased to the value of 1.6 wt %, which is logical since we 
added a second conductive filler, the conductivity above the percolation threshold also dropped in 
comparison to the values of the graphene/PSS system. 
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Figure 13. Conductivity curves: (a) LCPEDOT:PSS/PS nanocomposites; (b) 
graphene/PSS/PS and graphene/LCPEDOT:PSS/PS nanocomposites. 

We also prepared aqueous dispersions of graphene with two other graphene/LCPEDOT:PSS ratios, 
namely 1 to  1 and 1 to 2.8. The conductivity curves of these systems are presented in Figure 14. 
One can notice that the percolation threshold of the system containing a weight ratio of graphene to 
LCPEDOT:PSS of 1:2.8 went down in comparison to the composites utilizing a 
graphene/LCPEDOT:PSS ratio of 1:1.4 (1.4 wt % vs. 1.6 wt %), but the conductivity values above the 
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percolation threshold also went slightly down (0.3 S/m vs. 1 S/m). The opposite happens if we 
disperse graphene with a ratio to LCPEDOT:PSS of 1 to 1. The decrease in the amount of 
LCPEDOT:PSS raises the percolation threshold to 1.9 wt % but also increases the conductivity of the 
nanocomposites above the percolation threshold up to 7 S/m. To summarize what we observe in the 
systems utilizing low conductive PEDOT:PSS we can state that with increasing amount of 
LCPEDOT:PSS with respect to graphene when making the aqueous graphene dispersion the 
percolation threshold of the final nanocomposites goes to the lower values, but the final conductivity 
also drops. 
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Figure 14. Conductivity curve of the graphene/LCPEDOT:PSS/PS nanocomposites with 
different weight ratios between the graphene and LCPEDOT:PSS. 

The decrease in percolation threshold upon the addition of more and more of the second 
conductive nanofiller to the graphene/PS system is logical, since more conductive material is present 
for building a conductive network in the PS matrix. The fact that by adding more and more 
LCPEDOT:PSS we also lower the conductivity values can be attributed to the fact that if the low 
conductive PEDOT:PSS fully covers the graphene surface, then we predominantly measure the 
conductivity of this low conductive polymer. When graphene is not completely covered with 
PEDOT:PSS it also contributes to the conductivity of the nanocomposites. Thus the higher coverage 
of graphene surface results in a lower contribution of graphene to the conductivity of the 
corresponding nanocomposites. On the other hand one can say that graphene is not necessarily fully 
covered by PEDOT:PSS particles. It can be just partially covered by PEDOT:PSS (which makes 
dispersion of graphene stable) and PEDOT:PSS particles which are still available in the system can 
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“connect” the platelets by forming the bridges and contributing to the formation of a conductive 
network. This can also limit conductivity values in the case of utilizing LCPEDOT:PSS, since partial 
coverage still separates the platelets one from another, preventing them from contacting each other 
and in addition to that the presence of low conductive LCPEDOT:PSS bridges between graphene 
sheets lowers the conductivity due to junction resistivity. We think we can exclude the scenario where 
graphene platelets are covered just by PSS which is present in access in the PEDOT:PSS system, 
since if it was the case graphene platelets would directly contact each other (having just PSS in 
between) and the conductivity values at high loading of graphene in graphene/LCPEDOT:PSS/PS 
systems with a ratio graphene/PEDOT:PSS 1 to 1.4 and 1 to 2.8 respectively would not differ that 
much form the conductivity of graphene/PSS/PS composites.  

5.3. Conclusions
In order to make well performing conductive nanocomposites it is crucial to optimize each step of 

the latex-based process. In particular this is applicable for the first step, which is exfoliation and 
dispersion of a nanofiller in water. In this work we have found optimum conditions for the exfoliation 
and dispersion of graphene obtained by thermal reduction of graphite oxide at a concentration of 1 
mg/ml using conventional surfactants such as SDBS, SC, PSS and Tween-80. We used these 
obtained dispersions for the preparation of nanocomposites. The composites prepared out of 
dispersions stabilized with ionic surfactants exhibit the same percolation threshold and the same 
values of the final conductivity, which means that graphene possesses the same degree of exfoliation 
in all the systems and the dispersion conditions had been optimized for the used surfactants. When 
preparing nanocomposites using Tween-80-stabilized graphene dispersions we observed higher 
percolation thresholds and lower conductivities in comparison with the systems utilizing SDBS, SC 
and PSS. This is due to a big amount of the bulky surfactant present on the graphene surface which 
stabilizes the dispersion by a steric effect. Such a steric effect can increase the distance between 
neighboring graphene platelets. We also demonstrated that applying a polymer of a low molecular 
weight for preparation of the nanocomposites lowers the percolation threshold in comparison with 
high molecular weight matrix but does not increase the conductivity above a percolation threshold. 
This can be attributed to the decrease in melt viscosity during compression molding step of the 
composites preparation, which in turn can influence the extent to which the graphene platelets reach 
an equilibrium organization.  But it is not clear if this equilibrium organization is more or less 
aggregated than the initial state of graphene after freeze-drying just before the compression molding 
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step. For composites prepared by the latex concept and based on aqueous graphene/Tween-80 
dispersions we successfully used both negatively charged and positively charged PS latex, which 
proves the advantage of utilizing this non-ionic surfactant for graphene dispersion, in water, since the 
charge of the latex is not an issue.  

We demonstrated that the introduction of a highly conductive polymeric surfactant in the water 
dispersion step and finally into graphene/PS nanocomposites can significantly lower the percolation 
threshold and increase the ultimate conductivity. By applying SEM and replacing a highly conductive 
PEDOT:PSS by a low conductive one we obtained an idea about the morphology of the 
graphene/PEDOT:PSS system. It looks as if graphene is covered with this conductive polymer. The 
higher the coverage is, lower the contribution of graphene to the conductivity of the composite 
becomes. The use of a low conductive PEDOT:PSS can decrease the percolation threshold but by 
breaking the contacts between the highest conductive particles in this system, namely the graphene 
platelets, can also decrease the conductivity values above the percolation threshold due to the 
“shielding” of the graphene. 

5.4. Experimental 

Chemicals 
Sodium dodecyl sulfate (SDS) (90%, Merck), sodium carbonate (99%, Aldrich), sodium 

peroxodisulfate (SPS) (90%, Merck), sodium cholate (SC) (99%,Aldrich), poly(sodium 4-styrene 
sulfonate) (PSS) (Aldrich, Mw 70000 g/mol) Tween-80 (Acros Organics), N-cetyl-N,N,N-trimethyl 
ammoniumbromide (CTAB) (99%, VWR) and 4,4’-azobis(4-cyanovaleric acid) (ACVA) (98%, Fluka) 
were used as received. PEDOT:PSS dispersions, grade name Clevios P (weight ratio PEDOT to PSS 
is 1 to 2.5) and Clevious P VP AI 4083 (weight ratio PEDOT to PSS is 1 to 6), were purchased from 
H. C. Starck and used as received. Styrene (99%, Merck) was passed over an inhibitor remover 
column. The inhibitor-free monomer was kept under refrigeration for later use. Water used in all 
reactions was double de-ionized water obtained from a purification system. SP-2 graphite from Bay 
Carbon was used as provided. Graphene was obtained via graphite (SP-2 Bay Carbon) oxidation and 
subsequent reduction via thermo-expansion process.[22]

Preparation and characterization of PS latex  
PS latex of high molecular weight was synthesized via conventional free radical emulsion 

polymerization. The reaction was performed at 70º C with an impeller speed of 400 rpm. The reactor 
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was charged with the following: styrene (252 g), SDS (26 g, 0.09 mol), sodium carbonate (0.7 g, 6.6 
mmol) and H20 (712.2 g). The reaction mixture was degassed by purging with argon for 30 min. A 
solution of SPS (0.45 g, 1.9 mmol) in H2O (10 g) was also degassed. The reaction was started upon 
the introduction of the initiator solution and the reaction time was roughly 1 hour. The average particle 
size determined by dynamic light scattering was 90 nm. Size exclusion chromatography analysis 
showed Mw and PDI values of 944 kg/mol and 1.9, respectively.  

Positively charged latex was prepared by means of a batch emulsion polymerizations performed 
in a 250 ml thermostated glass reactor, equipped with a reflux condenser, an argon purge inlet, four 
baffles and a 4-bladed stainless steel pitched blade impeller. The reactor was charged with styrene 
(140.1 g, 1.35 mol), CTAB (5.4 g, 0.83 mol) and H2O (150 g). The temperature was gradually raised 
to the reaction temperature of 75°C and the reactor content was simultaneously purged with argon 
for an hour prior to initiator addition. The injection of an aqueous solution of 4,4’-azobis(4-
cyanovaleric acid) (1.4 g, 5 mmol, in 5 ml of water) started the polymerization. The polymerization 
reached 100% conversion after ten hours. DLS measurements were performed on the final latex to 
determine its particle size distribution (PSD). The recorded average particle size was 380 nm. SEC 
was performed on the final polymer to determine the MWD. An M w value of 150 kg/mol was 
recorded along with a PDI of 4.

Preparation of graphene dispersions 
Exfoliated graphene dispersions from thermally reduced graphite oxide were prepared with the 

use of surfactant and energy supplied by ultrasound. The ultrasound was provided by a Sonics 
Vibracell VC750 horn sonicator with a 10 mm diameter tip. The sonication power was maintained at 
100 W during the exfoliation, and the solution was cooled in an ice-bath. Volumes were kept under 
100 ml to achieve the best sonication for the complete solution.  

Composites processing  
The graphene dispersion was mixed with PS latex, the mixture was frozen in liquid nitrogen for 

several minutes and the frozen water was removed with a Christ Alpha 2–4 freeze dryer operated at 
0.2 mbar and 20 ºC overnight. The resulting composite powder was compression molded into films 
for 2 min at 180 º C between Teflon sheets with a Collin Press 300G (we raise temperature from 160 
º C to 180 º C for 18 minutes and then press the sample for 2 minutes).
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UV–Vis spectroscopic measurements 
UV–Vis absorption spectra were recorded with a Hewlett– Packard 8453 spectrometer operating 

between 200 and 1100 nm. Small sample volumes were taken after the sonication process and 
diluted, resulting in a graphene concentration of 0.0125 mg/ml. The blank used was the original 
surfactant solution, diluted and analyzed under the same conditions as the samples themselves.

Electrical conductivity measurements  
The electrical conductivity was measured using a standard four-point method. Parallel contact 

lines 0.5 cm in length and with a 0.5 cm interval were drawn with conductive-silver paint (Fluka) on 
the composite film, and all conductivity measurements were performed at room temperature with a 
Keithley 6512 programmable electrometer. For each sample, conductivity data represent the average 
value of 10 consecutive measurements.

Transmission electron microscopy 
TEM images were taken using a Sphera type Technai 20 (Fei Co.). This was operated with a 200 

kV LaB6 filament and a bottom mounted 1024 x 1024 Gatan CCD camera. A carbon coated gold grid 
was used.  

Scanning electron microscopy 
SEM images were obtained with a Quanta 3D FEG (Fei Co.) equipped with a field emission 

electron source. High vacuum conditions were applied and a secondary electron detector was used 
for image acquisition. Additional sample treatment, such as coating with a conductive layer, was not 
applied. Standard acquisition conditions for charge contrast imaging were used. 

5.5. References 
[1] R. J. Smith, M. Lotya, J. N. Coleman, New Journal of Physics 2010, 12, 125008. 
[2] X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nature Nanotechnology 2008, 3, 491. 
[3] E. K. Hobbie, J. Obrzut, S. B. Kharchenko, E. A. Grulke, Journal of Chemical 

Physics 2006, 125, 044712. 
[4] Y. Ma, W. Cheung, D. Wei, A. Bogozi, P. L. Chiu, L. Wang, F. Pontoriero, R. 

Mendelsohn, H. He, Acs Nano 2008, 2, 1197. 
[5] M. C. Hermant, B. Klumperman, A. V. Kyrylyuk, P. van der Schoot, C. E. 

Koning, Soft Matter 2009, 5, 878. 
[6] Z. Sun, V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne, J. N. Coleman, Journal 

of Physical Chemistry C 2008, 112, 10692. 



Percolation threshold vs. surfactant used 

111 

[7] N. Grossiord, P. J. J. Kivit, J. Loos, J. Meuldijk, A. V. Kyrylyuk, P. van der 
Schoot, C. E. Koning, Polymer 2008, 49, 2866. 

[8] S. D. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Sun, W. J. Blau, 
J. N. Coleman, Journal of Physical Chemistry C 2008, 112, 972. 

[9] N. Grossiord, O. Regev, J. Loos, J. Meuldijk, C. E. Koning, Analytical Chemistry 
2005, 77, 5135. 

[10] M. Lotya, P. J. King, U. Khan, S. De, J. N. Coleman, Acs Nano 2010, 4, 3155. 
[11] S. Badaire, P. Poulin, M. Maugey, C. Zakri, Langmuir 2004, 20, 10367. 
[12] M. C. Hermant, N. M. B. Smeets, R. C. F. van Hal, J. Meuldijk, H. P. A. Heuts, B. 

Klumperman, A. M. van Herk, C. E. Koning, E-Polymers 2009, 022, 1. 
[13] N. Grossiord, H. E. Miltner, J. Loos, J. Meuldijk, B. Van Mele, C. E. Koning, 

Chemistry of Materials 2007, 19, 3787. 
[14] S. Hotta, S. Rughooputh, A. J. Heeger, Synthetic Metals 1987, 22, 79. 
[15] S. Ghosh, J. Rasmusson, O. Inganas, Advanced Materials 1998, 10, 1097. 
[16] P. Beadle, S. P. Armes, S. Gottesfeld, C. Mombourquette, R. Houlton, W. D. 

Andrews, S. F. Agnew, Macromolecules 1992, 25, 2526. 
[17] G. Lu, H. Tang, Y. Qu, L. Li, X. Yang, Macromolecules 2007, 40, 6579. 
[18] M. C. Hermant, P. van der Schoot, B. Klumperman, C. E. Koning, Acs Nano 2010, 

4, 2242. 
[19] B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. 

Friend, N. C. Greenham, Macromolecules 2009, 42, 6741. 
[20] A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. 

Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, M. M. de Kok, Advanced 
Materials 2007, 19, 1196. 

[21] A. M. Nardes, M. Kemerink, R. A. J. Janssen, Physical Review B 2007, 76, 
085208. 

[22] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, 
M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, I. A. Aksay, 
Chemistry of Materials 2007, 19, 4396. 



Chapter 5 

112 



113 

Chapter 6 

Conductive cellulose-based polymer 
nanocomposites 

ABSTRACT: The conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) 
(PEDOT:PSS) was used as surfactant for dispersing multi-walled carbon nanotubes (MWCNTs) in 
water. This stable dispersion was mixed with a polystyrene (PS) latex. After freeze-drying and 
compression molding conductive PS composites were obtained. The use of conductive polymer 
decreased the percolation threshold of the composites in comparison to the use of the conventional 
surfactant sodium dodecyl sulphate (SDS). To evaluate the contribution of the two conductive 
components to the overall conductivity of the composites one of them, i.e. the MWCNTs, was 
replaced with a non-conductive analogue with a similar aspect ratio, i.e. cellulose whiskers. PS 
composites based on aqueous dispersions of MWCNTs and cellulose whiskers in the presence of 
PEDOT:PSS were prepared using the same weight ratio of the nanofiller to the conductive polymer 
and both percolation thresholds and conductivity values were compared. The results revealed that 
the role of the MWCNTs and the cellulose is structural, and seems to be that of a scaffold or template 
for the organization of the conductive polymer and the contribution of the MWCNTs to the overall 
conductivity of the system is minimal, even at low loadings of the PEDOT:PSS. Conductive 
cellulose/PEDOT:PSS-based PS composites were developed. The addition of the cellulose whiskers 
allowed to lower the percolation threshold of PEDOT:PSS in the PS matrix drastically.  
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6.1. Introduction 
Carbon nanotubes (CNTs) are quasi-one-dimensional carbon structures with large aspect ratio 

and low density which possess a unique combination of properties such as excellent mechanical, 
thermal and electrical properties.[1] On account of their superior electrical properties CNTs is a natural 
choice for the production of conductive polymeric composites with potentially low percolation 
thresholds.[2] Electrical percolation at very low filler concentration in CNTs/polymer composites leads 
to production of cost-effective composites.[3] The difficulty of utilizing CNTs as a filler for 
nanocomposites is that CNTs as produced are held together in bundles due to van der Waals 
interactions. The challenge is to incorporate individualized CNTs inside a polymer matrix to lower the 
percolation threshold, since CNTs tend to remain bundled. CNTs-based composites prepared via the 
so-called latex technology demonstrated improved percolation behavior, i.e., very low percolation 
thresholds.[2, 4-6]  However processes based on aqueous dispersions have a disadvantage because a 
third component, a surfactant is needed for dispersing and stabilizing the individual or small bundles 
of CNTs in water. If the surfactant is not displaced from the CNT walls during the processing steps of 
the composites preparation, an insulating shell remains around every CNT that could be detrimental 
for the intertube charge transport in the final composite.[2, 7, 8] Also in polymer composites an 
additional resistance can arise from interfacial polymer layers present within the CNTs junctions.[7] It 
was demonstrated theoretically that the presence of a conductive polymer within the intertube 
junctions can decrease the contact-potential barrier significantly which in turn can increase the 
ultimate electrical conductivity of the CNTs/polymer composite.[9] Utilizing of poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a conductive polymeric surfactant 
to disperse CNTs in water for the preparation of polymer composites through a latex-based route was 
shown to both increase the ultimate conductivity of the corresponding composites and alter the 
observed percolation threshold.[2, 7] However, it was argued that the contribution of the CNTs to the 
ultimate conductivity of such a composite should not be overestimated, since the difference in the 
final conductivity of the composites observed for the systems based on CNTs of largely different 
quality, and respectively exhibiting different levels of intrinsic conductivity, was much lower than the 
difference in the intrinsic conductivities of both types of CNTs themselves.[7] The way to investigate 
the contribution of the CNTs to the overall conductivity of CNTs/polymer composites containing an 
additional conductive polymeric component is to replace the CNTs with a non-conductive filler of a 
similar aspect ratio, e.g. cellulose nanowhiskers. 



Conductive cellulose-based polymer nanocomposites 

115 

Cellulose is the most abundant macromolecule on earth, produced at the rate of 1011-1012 tons per 
year by nature.[10] The cellulose nanowhiskers used in this work were obtained from sisal, resulting in 
nanowhiskers with an average cross section of 4 nm and an average length of 250 nm.[11]

Nanocomposite materials based on cellulose nanowhiskers have attracted much attention recently 
due to their mechanical properties.[11-13] The main advantages of cellulose nanowhiskers are their 
renewable nature, the  wide variety of fillers available throughout the world, their nonfood agricultural 
based economy, their low energy consumption, cost and low density, their high specific strength and 
modulus, the high sound attenuation of cellulose-based composites, the comparatively easy 
processability due to their nonabrasive nature, which allows high filling levels resulting in significant 
cost savings and their relatively reactive surface.[12, 14-16]

In recent years, composite materials consisting of cellulose and conductive polymers have 
received significant attention.[17-23] A drawback of many of such composites is that composites 
prepared with conductive polymers as the bulk matrix material often suffer from poor mechanical 
properties and processability. For composite films for which the bulk material properties of conductive 
polymers are not sufficiently good, it is necessary to “dilute” the matrix material with a second 
polymer that has the required mechanical and processing properties.[2] Another drawback of such 
systems is that often very high loadings of conductive polymer, e.g. polyaniline and polypyrrole, are 
required for of the composites to conduct in a satisfactory way. A recent study templated polypyrrole 
onto cellulose nanowhiskers using electropolymerization resulting in a porous network which 
homogeneously grew from the electrode surface.[24] The thin polypyrrole layer (~5nm) on the 
nanowhiskers was found to conduct, it displayed a high capacitance with near-ideal capacitive 
behavor, and the negative surface charge on the oxidized nanowhiskers stabilized the polypyrrole 
more effectively during charge-discharge cycles than the quivalent polypyrrole/carbon nanotube 
composite.[24]

In this study we evaluate the role of multi-walled carbon nanotubes (MWCNTs) and conductive 
polymeric surfactant PEDOT:PSS in polystyrene (PS) composites, prepared via “latex technology” by 
replacing MWCNTs by a non-conductive filler with a similar aspect ratio, namely cellulose 
nanowhiskers, and by comparing electrical percolation thresholds and ultimate conductivities of the 
corresponding PS composites.

6.2. Results and discussion 
Blends of PS and PEDOT:PSS were discussed in chapter 5 in the section 5.2.3.2. 
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6.2.1.	MWCNTs-	and	cellulose	whiskers-based	polymer	

composites	

MWCNTs tend to agglomerate in bundles due to van der Waals interactions and hence 
exfoliation of the nanotube bundles and the incorporation of CNTs as individual entities or as very 
thin bundles into a polymer matrix is an important issue. The sonication-driven exfoliation of 
aggregates and bundles of CNTs in an aqueous surfactant solution can be easily monitored by UV–
Vis spectroscopy.[25, 26] MWCNTs were dispersed in an aqueous sodium dodecyl sulphate (SDS) 
solution at a weight ratio CNTs/surfactant 1:2, which was determined to be optimal for the dispersion 
of these particular MWCNTs.[27] The UV–Vis spectra recorded for aqueous MWCNTs dispersions, 
obtained after different energy-inputs (sonication times), are given in Figure 1. During sonication, the 
increasing amount of exfoliated MWCNTs results in an increasing area below the lines representing 
the absorbance. Since the power of sonication is kept constant throughout the experiments, there is a 
direct relationship between a specific sonication time and the energy delivered to the sample during 
this time interval. Therefore, it is equivalent to plot the absorbance at a certain wavelength versus the 
time of sonication or versus the energy supplied to the solution.  
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Figure 1. Evolution of UV–vis spectra of an aqueous 0.1 wt% MWCNT/ 0.2 wt% SDS 
(diluted 150 times) solution as a function of sonication time at continuous power of 20 W. 

Figure 2 shows the absorbance around 250 nm as a function of the energy supplied to the 
aqueous MWCNTs/SDS solution. After an increase at the beginning of the sonication process, the 
value of the absorbance reaches a plateau value, namely after an energy input of ca. 40,000 J. The 
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leveling off and the ultimate limit of the absorbance, which follows the initial increase, correspond to 
the maximum achievable degree of exfoliation of the MWCNTs.[28] 
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Figure 2. Evolution of the value of the absorbance at wavelength 252 nm for an aqueous 
0.1 wt% MWCNT/0.2 wt% SDS solution as a function of energy provided to the system.  

The efficiency of PEDOT:PSS to stabilize individual or thin bundles of MWCNTs in water was 
evaluated using UV-Vis spectroscopy. It was shown that for the efficient dispersion of the MWCNTs a 
four-fold weight excess of PEDOT:PSS is required, which is similar to what was reported for different 
kinds of single-walled nanotubes.[2, 7] For the MWCNTs dispersion and exfoliation, weight ratios of 1 : 
2 and 1 : 6 of MWCNTs to PEDOT:PSS were attempted. For the 1 to 2 ratio the maximum 
absorbance level reached was lower than that for the 1 : 4 system, whereas for the 1 to 6 ratio there 
was no further  improvement observed. The exfoliation profile for the dispersion of MWCNTs in water 
using PEDOT:PSS as surfactant versus time is given in Figure 3. The evolution of the UV-Vis 
spectra of MWCNTs/PEDOT:PSS at wavelength of 252 nm as function of energy provided is shown 
in Figure 4. The profiles show that the dispersion of MWCNTs as a function of the ultrasonication 
energy input proceeds at somewhat lower rate when using PEDOT:PSS than when applying SDS. 
The final absorbance level reached, after correcting for the absorbance of the PEDOT:PSS surfactant 
at 252 nm, is comparable for both systems.  
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Figure 3. Following the exfoliation process of 0.1 wt % MWCNTs/ 0.4 wt % PEDOT:PSS 
(diluted 150 times)  by UV-Vis.  

The similarity between the two systems (the final absorbance values in Figures 2 and 4 are similar) 
could indicate that the maximum level of individualization for MWNCTs in water when using 
PEDOT:PSS is the same as when using SDS as surfactant. 
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Figure 4. Evolution of the value of the absorbance at wavelength 252 nm for an aqueous 
0.1 wt% MWCNT– 0.4 wt% PEDOT:PSS solution as a function of energy provided to the 
system.  

The percolation thresholds observed for PS nanocomposites based on SDS- and PEDOT:PSS-
stabilized MWCNTs are shown in Figure 5. Composites prepared with SDS-stabilized MWCNTs 
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have a percolation threshold value of 1.1 wt %. The ultimate conductivity achieved above percolation 
is 40 S/m. Composites prepared with PEDOT:PSS stabilized MWCNTs show a clear decrease in 
percolation threshold to 0.3 wt % (almost by factor 4) and an ultimate conductivity level of 500 S/m. 
This level is also comparable to that achieved for the PEDOT:PSS/PS blend (600 S/m, see Figure 6 
in chapter 5). Considering the error in the conductivity measurements, a change in 100 S/m is not 
considered to be significant. This implies that, due to the fact that the final conductivity achieved for 
both the PEDOT:PSS/PS blends and the PEDOT:PSS/MWCNT system is similar, the origin of the 
increase from 40 S/m for the SDS/MWCNT system to 500 S/m for the PEDOT:PSS/MWCNT 
systems, is due to the presence of the PEDOT:PSS. 
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Figure 5. Conductivity curve of MWCNT/SDS/PS and MWCNT/PEDOT:PSS(1:4)/PS. 

The morphology of the MWCNTs/PEDOT:PSS/PS composite can be twofold (Figure 6). In the 
first scenario CNTs can be stabilized by PSS which is present in excess in the PEDOT:PSS system 
(weight ratio PEDOT:PSS is 1 to 2.5). In this case CNTs can be partially covered 1) by both 
PEDOT:PSS particles which can be absorbed on the CNTs surface due to π-π interactions and 
partially by PSS or 2) just by PSS. The result of the first scenario can be a mixture of conductive rods 
and spheres (Figure 6a). The reduction in percolation is then induced simply by the addition of a 
different type of conductive filler particles to the CNTs present in the system, in this case 
PEDOT:PSS particles, which build conductive bridges between the neighboring tubes as well as 
between the tubes which are far apart. This scenario can also be considered as the so-called 
“excluded volume” scenario, since the CNTs, occupying a certain volume in a composite, push the 



Chapter 6 

120 

conductive polymer particles into “free” space and by doing this create a network of conductive 
polymer in addition to the network formed by the CNTs. 

Figure 6. Possible morphologies of the MWCNTs/PEDOT:PSS system in a polymer 
matrix: (a) mixture of the CNTs and PEDOT particles stabilized by PSS; (b) the CNTs are 
covered with PEDOT pancakes.  

In the second possible scenario (Figure 6b) the MWCNTs are nearly completely covered with 
PEDOT:PSS pancakes due to π-π interactions which “increase the diameter” of the tubes and their 
bundles which in turn decreases the distance between the tubes thereby obviously decreasing the 
percolation threshold with respect to the CNTs. Free PEDOT:PSS particles can be still present in the 
composite building conductive bridges between neighboring rods and bundles covered with 
PEDOT:PSS. From ultimate conductivity values it is not apparent which scenario is true due to the 
fact that the intrinsic conductivity of both nanofillers, MWCNTs and PEDOT:PSS, is comparable. 
Conductivity of PEDOT:PSS according to the supplier is 1000 S/m, whereas the conductivity of the 
bucky papers produced form the MWCNTs/SDS dispersions exhibit values up to 6000 S/m.  
In order to understand the role of both conductive nanofillers one of the nanofillers should be 
replaced by a non-conductive one. We decided to replace the MWCNTs by cellulose nanowhiskers. 
A transmission electron microscopy (TEM) micrograph and a Scanning Electron Microscopy (SEM) 
image of dispersion of the cellulose nanowhiskers in water are given in Figure 7. The average 
nanowhisker length and diameter are 250 nm and 4 nm, respectively, resulting in an aspect ratio 
about 60.[11] This close to the aspect ratio of the MWCNTs with an average length of ca. 1500 nm and 
an average diameter of ca. 20 nm.[27]
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Figure 7. (a) TEM micrograph of exfoliated cellulose whiskers; (b) SEM image of 
exfoliated cellulose whiskers covered with gold. 

For the preparation of the cellulose-based nanocomposites the nanowhiskers were mixed with 
PEDOT:PSS latex at 1 to 4 weight ratio. The percolation threshold of the cellulose/PEDOT:PSS/PS 
composites occurs at 0.35 wt % of the cellulose loading, meaning 1.4 wt % of PEDOT:PSS (Figure 
8). The composites exhibit an ultimate conductivity of 500 S/m. The difference between the 
percolation thresholds of the MWCNTs- and cellulose-based systems is very small, 0.30 wt % for the 
CNTs versus 0.35 wt % for the cellulose. Now, one should take into account that cellulose whiskers 
do not conduct and subsequently cellulose-based PS composites do not exhibit any conductive 
percolation threshold. On the other hand MWCNTs/SDS-based PS composites percolate at 1.1 wt %. 
Then, if the conductivity of the conductive network would be composed of a summation of the 
contributions from the PEDOT:PSS and the conductive filler or cellulose whiskers, one might expect 
that the percolation threshold of the MWCNTs/PEDOT:PSS system would differ greatly from the 
cellulose/PEDOT:PSS system and would be significantly lower. However, the observed difference in 
the percolation thresholds is just 14 %! The great similarity in percolation thresholds of both systems 
implies that the electronic contribution of the MWCNTs is negligible in the system involving 
PEDOT:PSS-stabilized MWCNTs,  meaning that the major role of both the MWCNTs and the 
cellulose is a structural one. In addition to that the ultimate conductivities of the PEDOT:PSS/PS, 
MWCNTs/PEDOT:PSS/PS and cellulose/PEDOT:PSS/PS composites are very similar, namely 600 
S/m, 500 S/m and 500 S/m respectively. This is another factor which indicates that the conductivity of 
all the systems is predominantly determined by PEDOT:PSS, whereas the contribution of the 
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percolating MWCNTs is similar to the contribution of the percolating cellulose nanowhiskers, i.e. 
structural, where the rods play the role of a scaffold or template. 
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Figure 8. Conductivity curve of cellulose/PEDOT:PSS(1:4 weight ratio)/PS composites. 

To increase the role of the CNTs and the cellulose whiskers the amount of the conductive 
polymer was decreased to a 1 to 1 weight ratio with respect to the nanofillers. Since for dispersion 
and exfoliation of the MWCNTs a minimum ratio MWCNTs/PEDOT:PSS of 1 to 4 is required (see 
earlier), the CNTs were dispersed with the aid of SDS and then mixed with PEDOT:PSS latex at the 
required ratio.   

As one can see in Figure 9 both the percolation thresholds of the two systems and their ultimate 
conductivities differ more significantly than for the systems where the weight ratio of the nanofillers to 
the conductive polymer was 1 to 4. The MWCNTs-based system exhibits a percolation threshold at 
0.5 wt % and a conductivity of 100 S/m at 2.3 wt % of MWCNTs loading. Percolation of the cellulose 
nanowhiskers-based composites occurs at 0.7 wt % and the maximum conductivity measured is 3 
S/m at 2.3 wt % cellulose loading. The differences in percolation thresholds between these two 
systems as well as in the conductivity values are clearly more pronounced than it was when the 
weight ratio the nanofiller/surfactant was 1 to 4, but still rather small if one takes into account the 
intrinsic properties of the MWCNTs and cellulose. This can indicate that the contribution of the 
conductive filler to the overall conductivity becomes slightly more important but still not very 
significant. Indeed, if the nanofiller is not completely covered with conducting polymer, MWCNTs can 
still provide a charge transfer bridge between discrete conducting polymer sections due to its own 
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conductivity, whereas this cannot occur for the non-conducting cellulose nanowhiskers. This is more 
likely to occur as the conducting polymer content is reduced. 
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Figure 9. Conductivity curves of the MWCNTs- and cellulose-based PS composites 
prepared with a nanofiller/PEDOT:PSS weight ratio of 1 to 1. 

Normally “latex-technology” for preparing electrically conductive nanocomposites consists of the 
following steps: 1) dispersion of the filler in the presence of surfactant (in the case of cellulose it’s 
mixing the cellulose whiskers with PEDOT:PSS); 2) mixing the nanofiller dispersion with polymer 
latex; 3) freeze-drying followed by compression molding. To check how the processing conditions 
influence conductive properties of the composites we performed experiments where we replaced the 
freeze-drying step by a water evaporation step by means of heating the mixture of the dispersed 
nanofiller and the polymer latex at 70 ° C. We did these experiments for the PS composites based on 
merely PEDOT:PSS and for the nanocomposites based on the cellulose/PEDOT:PSS mixture with 
the weight ratio of the cellulose whiskers and conductive polymer being 1 to 1. The results of the 
experiments are present in Figure 10. 
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Figure 10. Conductivity curves of PEDOT:PSS/PS (a) and cellulose/PEDOT:PSS/PS (b) 
after applying different processing conditions for water removal: freeze-drying and drying 
by heating at 70 °C. The curves show that there is no influence of the method of water 
removal from the nanofiller/PEDOT:PSS/PS mixtures. 

During the freeze-drying process the removal of water occurs under vacuum at negative 
temperature values since before placing the system under vacuum we freeze it by means of liquid 
nitrogen. One could suspect that at such conditions all the components of the system, namely the 
PEDOT:PSS and PS particles in one case and the cellulose, PEDOT:PSS and PS particles in the 
other case, are fixed at certain positions in the frozen water and that the PEDOT:PSS particles can 
not film-form and significantly adapt their aspect ratio during the drying process because no 
plasticizing water is present in this case. When drying the systems via water evaporation at elevated 
temperatures water can act as a plasticizer for PEDOT:PSS and thus facilitate the film formation. 
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Having said that one could expect that either freeze-drying or evaporation of water by means of 
heating could result in a different PEDOT:PSS morphology in the corresponding composites which in 
turn would result in different percolation thresholds for the PEDOT:PSS/PS and 
cellulose/PEDOT:PSS/PS composites prepared by the two different processing conditions. However 
there was not any difference observed in percolation thresholds when measuring the conductivity of 
the composites, as shown in Figure 10. Some difference in conductivity values just above the 
percolation thresholds can be seen when comparing the conductivity curves of both PEDOT:PSS/PS 
and cellulose/PEDOT:PSS/PS prepared by the two different methodsThis difference is explained by 
some inhomogeneities observed in the systems when evaporating the water at 70 °C. Thus it’s 
possible to conclude that replacing freeze-drying by heating for water removal from the 
PEDOT:PSS/PS or cellulose/PEDOT:PSS/PS mixtures doesn’t affect the morphology of the 
conductive polymer in the corresponding systems. The reason for that can be that when transferring 
the composites from the freeze-dryer to the pressing machine for production of the composite films 
the hygroscopic PEDOT:PSS can attract some plasticizing water from the air.   

The morphology of the MWCNTs/SDS/PEDOT:PSS and the cellulose/PEDOT:PSS drop-casted 
films and the cellulose/PEDOT:PSS freeze-dried powder was studied by SEM (Figure 11). The films 
and the powder were prepared with CNTs and cellulose concentrations of 1 mg/ml as was used for 
the composites preparation and with the nanofiller weight ratio with respect to PEDOT:PSS being 1 to 
1. When looking at the film the CNTs are invisible, which can mean that they are covered with the 
PEDOT:PSS particles (Figure 11a). PEDOT:PSS is unstable under the laser beam which results in 
its burning when not covered with gold. When focusing a laser beam for a certain time at one spot the 
CNTs become visible due to the disappearing of the PEDOT:PSS layer (Figure 11b). To make the 
cellulose visible for SEM it has to be covered with gold.  As one can see in Figure 11c,d there is no 
any clear indication of the cellulose whiskers being present on the surface or sticking out from the 
surface. Only PEDOT:PSS particles of different shape and size, which can be indication of the 
change of the aspect ratio of the original spherical PEDOT:PSS particles and some agglomeration,  
are visible. The freeze-dried powder of the cellulose/PEDOT:PSS (Figure 11e,f) exhibits a somewhat 
different morphology of the PEDOT:PSS particles in comparison with the drop-casted 
cellulose/PEDOT:PSS film. Individual PEDOT:PSS particles are not distinguishable. Instead one can 
see a smooth film of the conductive polymer. In the freeze-dried powder, both for the gold-covered 
and for the non-covered samples, some parts of the material seem to have some kind of rod-like 
shape, which could be the cellulose whiskers covered with PEDOT:PSS. 
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Figure 11. SEM of drop-casted MWCNT/SDS/PEDOT:PSS film (a and b), drop-casted 
cellulose/PEDOT:PSS film (c and d) and freeze-dried cellulose/PEDOT:PSS powder (e and 
f) on carbon tape: (a) the CNTs are almost invisible due to covering by PEDOT:PSS; (b) 
under affect of the laser beam the PEDOT:PSS layer locally disappears from the CNTs, 
which makes them visible; (c,d) different regions of the cellulose/PEDOT:PSS film 
covered with gold; (e) freeze-dried cellulose/PEDOT:PSS powder covered with gold; (f) 
freeze-dried cellulose/PEDOT:PSS powder not covered with gold. Weight ratio 
MWCNT/PEDOT:PSS and cellulose/PEDOT:PSS is 1:1. 
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On the other hand the conductivity data indicate that the MWCNT and cellulose nanofillers can 
not be fully covered with PEDOT:PSS, since if this was the case there wouldn’t be any difference 
observed in percolation thresholds and conductivity values of the two systems. Apparently the 
MWCNTs contribute to the overall conductivity by contacting each other as well as the PEDOT:PSS 
particles, whereas the cellulose contacts can not at all contribute to the conductivity of the 
corresponding system. Nevertheless, the main role of MWCNTs seems to be the organization of the 
PEDOT:PSS. 

To see if it’s possible to further decrease the percolation threshold of the cellulose nanowhiskers-
based PS composites with respect to the PEDOT:PSS content we prepared composites in which the 
weight ratio cellulose/PEDOT:PSS was 2 to 1. The conductivity curves with respect to both the 
cellulose content and the conductive polymer present in one and the same nanocomposite, are 
shown in Figure 12. As the figure shows the system percolates at 0.8 wt % cellulose loading and 0.4 
wt % of the PEDOT:PSS loading, which is extremely low compared with PEDOT:PSS/PS composites 
without added cellulose whiskers. The conductivity reaches 5 S/m at 2.8 wt % of the conductive 
polymer. 
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Figure 12. Conductivity curves of the cellulose/PEDOT:PSS/PS nanocomposites with the 
weight ratio between the cellulose and PEDOT:PSS of 2 to 1. Data points indicate cellulose 
or PEDOT:PSS content in one and the same nanocomposite. 

We took SEM pictures of the drop-casted cellulose/PEDOT:PSS films with the weight ratio 
cellulose/PEDOT:PSS being 2 to 1. For the sample preparation we diluted the initial mixture from the 
working concentration of the cellulose (1 mg/ml) to 0.05 mg/ml to avoid crowding. The samples were 
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not covered with gold. As Figure 13 shows PEDOT:PSS exhibits a certain network organization, 
which can be due to the fact that it covers cellulose whiskers and thus follows the network formation 
of the cellulose. This is somewhat similar to electrodeposited polypyrrole on cellulose 
nanowhiskers.[24] 

Figure 13. SEM of drop-casted cellulose/PEDOT:PSS film at different magnification (a 
and b), and freeze-dried cellulose/PS powder containing 5 wt % of cellulose at different 
magnification (c and d). 

We also looked with the aid of SEM at the network formed when mixing the cellulose whiskers 
and PS latex (Figure 13c,d). Mixing a nanofiller with a polymer latex, which is one of the steps of the 
latex technology, is the most important step of the process, since it determines the effective 
incorporation of the filler into the polymer matrix. Then, the mixture of the two types of colloidal 
particles, i.e. the cellulose nanowhiskers and latex particles, is freeze- dried. In principle, the 
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sublimation of the water induced by freeze-drying is not expected to significantly modify the 
aggregated state of the cellulose nor the quality of mixing of the cellulose and the polymer latex 
particles.[27] Of course, drying induces a compaction of the nanofiller network that becomes denser 
because of the water removal. After compaction of the powder consisting of submicron polymer 
particles and cellulose whiskers, cellulose whiskers are forced into the interstitial space between the 
polymer latex particles and organize themselves in a network which can be built up from individual 
cellulose whiskers as well as some bundles. If PEDOT:PSS indeed covers the cellulose 
nanowhiskers when mixed with them and follows the cellulose network formation between the PS 
latex particles before these are deformed and fused together in the compression molding step it can 
explain the very low percolation threshold of this conductive polymer in the cellulose/PS composites. 
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Figure 14. Following the interaction process between PEDOT:PSS and cellulose by UV-
Vis. The absorbance is decreasing in time. 

An interaction between cellulose whiskers and PEDOT:PSS can be monitored with UV-Vis 
absorbance measurements.[29] For that we used a dispersion of the cellulose whiskers at a 
concentration of 1 mg/ml with the weight ratio 2 to 1 with respect to the PEDOT:PSS (Figure 14). We 
measured the UV-Vis absorbance in time. As a reference a diluted PEDOT:PSS water dispersion of 
the same concentration as in the cellulose dispersion was taken. When comparing the absorbance 
curves one can see that immediately after mixing the conductive polymer with cellulose the UV-Vis 
absorbance slightly decreases. The decrease continues over time, which indicates that interaction of 
the conductive polymer and cellulose occurs. We didn’t measure the absorbance after more than 1 



Chapter 6 

130 

hour since this is the time we used for mixing the cellulose whiskers with PEDOT:PSS before 
subsequent mixing with the PS latex and freeze-drying of the final mixture. The decrease in the 
absorbance can be attributed to the adsorbance of PEDOT:PSS on the cellulose surface and the 
inherent decrease in the surface area of the PEDOT:PSS particles due to agglomeration around 
individual cellulose whiskers or their bundles. One might expect that this interaction of the cellulose 
whiskers and conductive polymer can be due to the formation of hydrogen bonds between hydroxyl 
groups of the cellulose and sulfonate groups of the conductive polymer. Infrared spectroscopy didn’t 
show any chemical interaction between these two fillers, meaning that PEDOT:PSS physically 
adsorbs on the cellulose surface. The results of the UV-Vis experiments support our hypothesis that 
the cellulose nanowhiskers form a template on which the PEDOT:PSS adsorbs.

6.3. Conclusions 
We investigated the cooperative nature of the two conductive fillers in MWCNTs/PEDOT:PSS/PS 

composites with the focus on the contribution of the CNTs to the overall composite conductivity. For 
that we replaced the CNTs by non-conductive fillers with an almost similar aspect ratio, namely 
cellulose whiskers and the two systems MWCNTs/PEDOT:PSS/PS and cellulose/PEDOT:PSS/PS 
were compared. Cellulose whiskers do not exhibit any conductivity, whereas the bucky papers 
prepared with the MWCNTs exhibit a conductivity up to 6000 S/m. The PS composites based on 
SDS-stabilized MWCNTs percolate at 1.1 wt % and show an ultimate conductivity of 40 S/m. As was 
saw in both systems, when adding a large excess of the conductive PEDOT:PSS to the PS-based 
nanocomposites containing either CNTs or the cellulose, percolation thresholds with respect to the 
MWCNTs and cellulose as well as conductivity values didn’t differ and were not depending on the 
intrinsic conductive properties of the nanofilers, i.e. either MWCNTs or cellulose nanowhiskers. This 
means that MWCNTs didn’t significantly contribute to the ultimate conductivity of the 
MWCNTs/PEDOT:PSS/PS system but played a role of scaffold for the conductive polymer. When 
decreasing the amount of PEDOT:PSS with respect to the MWCNTs and cellulose to the weight ratio 
of 1 to 1 a slight difference in percolation thresholds of the two systems occurs. The difference in the 
conductivity values is two orders of magnitude, which is still much lower than the difference in the 
intrinsic conductivities of the nanofillers. These results imply that even at quite low loadings of the 
conductive polymer it plays the main role in the determining the overall conductivity of the 
corresponding composites whereas the role of the CNTs is that of forming a template, meaning that 
the CNTs can be replaced in this case by the cheap and most abundant natural material, i.e.
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cellulose. By replacing the CNTs in the composites by cellulose nanowhiskers using the four-step 
latex technology utilizing conductive surfactant, PEDOT:PSS, we developed cellulose-based PS 
composites with an extremely low percolation threshold of the conductive polymer. The percolation 
threshold of 2.2 wt % of PEDOT:PSS for PEDOT:PSS/PS composites was lowered to 0.4 wt % by 
adding 0.8 wt % of the cheap cellulose whiskers. Such a low percolation threshold of PEDOT:PSS is 
attributed to the fact that PEDOT:PSS adsorbs on a cellulose surface and by doing that follows the 
network formed by the cellulose whiskers in the PS matrix. UV-Vis experiments indeed point to a 
interaction between PEDOT:PSS and the cellulose whiskers.      

6.4. Experimental 

Chemicals 
Sodium dodecyl sulfate (SDS) (90%, Merck), sodium carbonate (99%, Aldrich), sodium 

peroxodisulfate (SPS) (90%, Merck) and sodium cholate (SC) (99%, Aldrich) were used as received. 
Styrene (99%, Merck) was passed over an inhibitor remover column. The inhibitor-free monomers 
were kept under refrigeration for later use. Water used in all reactions was double de-ionized water 
obtained from a purification system. MWCNTs were produced by Nanocyl Co (Belgium). They were 
made using a CVD-based process (thin MWCNTs Nanocyl-3100, batch 060213) and purified by the 
manufacturer by a mild non-oxidative acidic treatment. These CNTs were used as-received. 

Cellulose nanowhiskers preparation 
Cellulose nanowhiskers derived from sisal were prepared using an earlier published 

procedure.[11] After preparation and purification, they were sonicated with a Branson sonifier at 40W 
for 5 min to obtain a stable dispersion in water. 

Preparation and characterization of PS latex 
PS latex was synthesized via conventional free radical emulsion polymerization. The reaction 

was performed at 70º C with an impeller speed of 400 rpm. The reactor was charged with the 
following: styrene (252 g), SDS (26 g, 0.09 mol), sodium carbonate (0.7 g, 6.6 mmol) and H20 (712.2 
g). The reaction mixture was degassed by purging with argon for 30 min. A solution of SPS (0.45 g, 
1.9 mmol) in H2O (10 g) was also degassed. The reaction was started upon the introduction of the 
initiator solution and the reaction time was roughly 1 hour. The average particle size determined by 
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dynamic light scattering was 90 nm. Size exclusion chromatography analysis showed Mn, Mw and PDI 
values of 495 kg/mol, 944 kg/mol and 1.9, respectively.  

Composites processing

The aqueous MWCNTs/cellulose dispersions were mixed with PS latex, the mixture was frozen in 
liquid nitrogen for several minutes and the frozen water was removed with a Christ Alpha 2–4 freeze 
dryer operated at 0.2 mbar and 20 ºC overnight. The resulting composite powder was compression 
molded into films for 20 min at 180 º C between Teflon sheets with a Collin Press 300G.

UV–Vis spectroscopic measurements 
UV–Vis absorption spectra were recorded with a Hewlett– Packard 8453 spectrometer operating 

between 200 and 1100 nm. Small sample volumes of MWCNTs were taken after the sonication 
process and diluted 150 times. The blanks used were the original SDS or PEDOT:PSS solution, 
diluted and analyzed under the same conditions as the samples themselves.

Electrical conductivity measurement 
The electrical conductivity was measured using a standard four-point method. Parallel contact 

lines 0.5 cm in length and with a 0.5 cm interval were drawn with conductive-silver paint (Fluka) on 
the composite film, and all conductivity measurements were performed at room temperature with a 
Keithley 6512 programmable electrometer. For each sample, conductivity data represent the average 
value of 10 consecutive measurements.

Transmission electron microscopy 
TEM images were taken using a Sphera type Technai 20 (Fei Co.). This was operated with a 200 

kV LaB6 filament and a bottom-mounted 1024 x 1024 Gatan CCD camera. A carbon coated gold grid 
was used. 

Scanning electron microscopy 
SEM images were obtained with a Quanta 3D FEG (Fei Co.) equipped with a field emission 

electron source. High vacuum conditions were applied and a secondary electron detector was used 
for image acquisition. Additional sample treatment, such as coating with a conductive layer, has been 
applied when necessary before surface scanning. Standard acquisition conditions for charge contrast 
imaging were used.



Conductive cellulose-based polymer nanocomposites 

133 

6.5. References 
[1] A. V. Kyrylyuk, M. C. Hermant, T. Schilling, B. Klumperman, C. E. Koning, P. 

van der Schoot, Nature Nanotechnology 2011, 6, 364. 
[2] M. C. Hermant, B. Klumperman, A. V. Kyrylyuk, P. van der Schoot, C. E. 

Koning, Soft Matter 2009, 5, 878. 
[3] M. Arjmand, M. Mahmoodi, G. A. Gelves, S. Park, U. Sundararaj, Carbon 2011, 

49, 3430. 
[4] M. C. Hermant, M. Verhulst, A. V. Kyrylyuk, B. Klumperman, C. E. Koning, 

Composites Science and Technology 2009, 69, 656. 
[5] O. Regev, P. N. B. ElKati, J. Loos, C. E. Koning, Advanced Materials 2004, 16, 

248. 
[6] A. Dufresne, M. Paillet, J. L. Putaux, R. Canet, F. Carmona, P. Delhaes, S. Cui, 

Journal of Materials Science 2002, 37, 3915. 
[7] M. C. Hermant, P. van der Schoot, B. Klumperman, C. E. Koning, Acs Nano 2010, 

4, 2242. 
[8] E. K. Hobbie, J. Obrzut, S. B. Kharchenko, E. A. Grulke, Journal of Chemical 

Physics 2006, 125. 
[9] D. L. Carroll, R. Czerw, S. Webster, Synthetic Metals 2005, 155, 694. 
[10] W. Thielemans, C. R. Warbey, D. A. Walsh, Green Chemistry 2009, 11, 531. 
[11] N. L. G. de Rodriguez, W. Thielemans, A. Dufresne, Cellulose 2006, 13, 261. 
[12] S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. 

Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, 
J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. 
Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, T. Peijs, Journal of 
Materials Science 2010, 45, 1. 

[13] R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chemical Society 
Reviews 2011, 40, 3941. 

[14] M. Samir, F. Alloin, A. Dufresne, Biomacromolecules 2005, 6, 612. 
[15] L. J. Nielsen, S. Eyley, W. Thielemans, J. W. Aylott, Chemical Communications 

2010, 46, 8929. 
[16] S. Eyley, W. Thielemans, Chemical Communications 2011, 47, 4177. 
[17] G. Nystrom, A. Mihranyan, A. Razaq, T. Lindstrom, L. Nyholm, M. Stromme, 

Journal of Physical Chemistry B 2010, 114, 4178. 
[18] J. A. Li, X. R. Qian, J. H. Chen, C. Y. Ding, X. H. An, Carbohydrate Polymers 

2010, 82, 504. 
[19] C. Y. Ding, X. R. Qian, G. Yu, X. H. An, Cellulose 2010, 17, 1067. 
[20] W. Hu, S. Chen, Z. Yang, L. Liu, H. Wang, Journal of Physical Chemistry B 

2011, 115, 8453. 
[21] Z. L. Mo, Z. L. Zhao, H. Chen, G. P. Niu, H. F. Shi, Carbohydrate Polymers 

2009, 75, 660. 



Chapter 6 

134 

[22] M. Micusik, M. Omastova, J. Prokes, I. Krupa, Journal of Applied Polymer 
Science 2006, 101, 133. 

[23] I. Wistrand, R. Lingstrom, L. Wagberg, European Polymer Journal 2007, 43, 
4075. 

[24] S. Y. Liew, W. Thielemans, D. A. Walsh, Journal of Physical Chemistry C 2010, 
114, 17926. 

[25] N. Grossiord, J. Loos, J. Meuldijk, O. Regev, H. E. Miltner, B. Van Mele, C. E. 
Koning, Composites Science and Technology 2007, 67, 778. 

[26] J. Yu, N. Grossiord, C. E. Koning, J. Loos, Carbon 2007, 45, 618. 
[27] N. Grossiord, P. J. J. Kivit, J. Loos, J. Meuldijk, A. V. Kyrylyuk, P. van der 

Schoot, C. E. Koning, Polymer 2008, 49, 2866. 
[28] N. Grossiord, O. Regev, J. Loos, J. Meuldijk, C. E. Koning, Analytical Chemistry 

2005, 77, 5135. 
[29] E. Montibon, L. Jarnstrom, M. Lestelius, Cellulose 2009, 16, 807. 



135 

Chapter 7 

Technology assessment 

ABSTRACT. In this chapter we highlight the main conclusions of the thesis. The advantages and 
disadvantages of using graphene of different types for the preparation of conductive polymer 
nanocomposites in terms of their possible industrial applications are discussed. An outlook for future 
research is presented.    
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7.1. Highlights and industrial application 
Polymer nanocomposites based on carbon black and carbon nanotubes have been used for 

improved mechanical, thermal, electrical, and gas barrier properties of polymers.[1, 2] The discovery of 
graphene with its combination of extraordinary physical properties and ability to be dispersed in 
various polymer matrices has created a new class of polymer nanocomposites.[3] The work described 
in this thesis is a contribution to this research field. For the preparation of conductive polymer 
nanocomposites via latex technology we utilized graphene produced from graphite via three different 
methods, namely 1) via oxidation of graphite and subsequent chemical reduction of graphite oxide 
(GO) in the presence of surfactant (sodium poly(styrene sulfonate) (PSS)), 2) via oxidation of 
graphite and subsequent thermal reduction of GO and 3) via liquid phase exfoliation of graphite by 
bath sonication in the presence of surfactant (sodium cholate (SC)). In general, these methods are 
suitable for large scale graphene production required for industrial polymer nanocomposite 
applications. Starting from graphite or its derivatives offers significant economic advantages over the 
methods like mechanical exfoliation, chemical vapor deposition and epitaxial growth. Graphite is a 
commodity material with an annual global production of over 1.1 million tons at $825/ton in 2008.[3]

The three used methods for graphene preparation provide graphene of different quality, which 
can easily be proven by Raman spectroscopy (Figure 1). 
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Figure 1. Raman spectra of graphene prepared via: oxidation and subsequent chemical 
reduction in the presence of surfactant (PSS); via oxidation and subsequent thermal 
reduction; and via liquid phase exfoliation by bath sonication in the presence of surfactant 
(SC).  Spectra of raw graphite powder and mechanically cleaved graphene are used as 
references. 
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For graphene prepared via both oxidation/chemical reduction (oxi/red chem.) and 
oxidation/thermal reduction (oxi/red therm.), the prominent D peak (absent in mechanically cleaved 
graphene and graphite powder) is attributed to the presence of sp3 carbons in the carbon basal plane 
and different residual functionalities such as carboxylic acid groups, epoxides, or ketones. These and 
other forms of defects can increase the D band intensity. The intensity of the 2D peak with respect to 
the D and G peaks is really small, probably due to the structural disorder. Since it is difficult to 
conclude much from the 2D peak for these samples due to its low intensity and broadness, we only 
note a small Raman shift to a lower wavenumber and absence of any prominent shoulder, indicating 
the proximity of the formation of a single layer of graphene.  

The introduction of edge defects during processing into graphene, prepared via liquid phase 
exfoliation, is unavoidable, since long-term sonication cuts the initially large sheets into smaller 
flakes. However, the majority of the D bands observed for graphene flakes of this type is both 
narrower and less intense in comparison to the graphene produced via oxidation/reduction methods, 
strongly suggesting that the aqueous dispersions produced have flakes with very low defect contents 
and are of a higher quality.[4] This is confirmed by the conductivity measurements of the bucky papers 
produced from the three different types of graphene. The bucky papers produced from the graphene 
made via both oxidation/reduction methods exhibit conductivities up to 6,000 S/m, whereas the 
conductivities of the bucky papers prepared from the graphene produced via liquid phase exfoliation 
reach values up to 17,000 S/m.[5]

Atomic force microscopy (AFM) was extensively applied to determine the sheet thicknesses, 
morphological features and lateral dimensions of the graphene samples (Figure 2). AFM analyses of 
graphene prepared by both oxidation/chemical reduction and oxidation/thermal reduction show that, 
on average, a visible wrinkling of the platelets is present. It was also observed that agglomeration 
and a reduction of the lateral size occurs in comparison to the GO just before the reduction 
processes. This size reduction is just indicative, as the folding/agglomeration of graphene makes it 
difficult to obtain reliable statistical data. It seems that the wrinkling is more severe for the oxi/ therm. 
red graphene. Nevertheless, the measurements on flat areas indicated that the majority of the 
material consists of graphene flakes with a thickness of 1-5 nm for both oxidized/reduced systems. 
Still, the rugosity of both graphene flat surface areas is higher as compared to similar measurements 
done by our group on mechanically cleaved graphene, probably due to defects or unremoved side 
groups on the surface. Differently from results reported elsewhere and controversial to Raman 
analysis, the AFM analysis on the graphene produced via bath sonication of graphite in water in the 
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presence of sodium cholate (SC) shows in addition to thin graphene platelets the presence of some 
thicker platelets, namely sheets with thicknesses between 5 and 25 nm.[4, 5] 

Figure 2.  AFM tapping mode topography of graphene prepared via (1a,b): 
oxidation/chemical reduction; (2a,b):  oxidation/thermal reduction; (3a,b): liquid phase 
exfoliation. 

Also it has to be said that dispersions of graphene produced via liquid phase exfoliation of 
graphite in the presence of surfactant exhibit a higher stability in comparison to graphene produced 
via oxidation/reduction methods.

With a view on industrial application one can say that production of graphene via oxidation of 
graphite with subsequent thermal reduction of graphite oxide is more attractive than the other two 
methods due to the shorter time needed for the preparation of graphene. Oxidation of graphite to 
graphite oxide via the method described by Hummers requires about 3 hours, whereas the 
subsequent thermal reduction and exfoliation of the generated GO requires only a few minutes.[6, 7]
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To complete the exfoliation and to disperse this graphene in water by tip-sonication in the presence 
of surfactant another 3-4 hours are needed.  In contrast, chemical reduction and exfoliation of GO 
can take up to 70 hours depending on the level of reduction needed.[8, 9] Another disadvantage of the 
chemical reduction is that it requires a huge access of a surfactant (namely a weight ratio 
surfactant:GO up to 10:1) which in turn requires filtration of the final product to remove the excess of 
the surfactant. The disadvantage of the graphite liquid phase exfoliation method for the preparation of 
graphene in comparison to the oxidation/thermal reduction method is that, depending on the 
concentration of graphene needed, it requires from 100 up to 400 hours of bath sonication of graphite 
in water followed by centrifugation.[4, 5]

The electrical conductivity of the polystyrene (PS)-based nanocomposites prepared via latex 
technology, utilizing graphene produced via the three mentioned methods, as a function of the 
graphene content is shown in Figure 3. 
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Figure 3. Electrical conductivity of graphene/PS nanocomposites as a function of graphene 
weight fraction. 

As one can see the percolation thresholds differ a lot depending on the type of graphene used for 
the preparation of polymer nanocomposites. A percolation threshold depends mainly on the 
dispersion state, the electron transport mechanism (depending on the presence of surfactant/polymer 
at or around the nanofiller surface or on impurities present in between the platelets) and filler 
morphology/dimensions (in fact the length/thickness or ‘aspect’ ratio). In our work we demonstrated 
that despite the higher quality of graphene itself and the smaller number of defects introduced into 
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the graphene structure during processing, nanocomposites based on graphene produced via liquid 
phase exfoliation of graphite exhibit the highest percolation threshold and the lowest conductivity at 
loadings of graphene up to 12 wt % in comparison to the nanocomposites based on graphene 
obtained by the oxidation/reduction methods. Taking this into account we can assume that for 
production of polymer nanocomposites on an industrial scale graphene produced by thermal 
reduction of GO should be utilized, since it has an important advantage over the other two methods in 
terms of time needed for the preparation of graphene and it also exhibits a clear advantage over 
graphene prepared via liquid phase exfoliation method in terms of a lower percolation threshold and a 
higher conductivity level which can be reached at relatively low loadings of the thermally reduced 
graphene. 

In this work we prepared PS nanocomposites based on graphene obtained by in-situ reduction of 
graphene oxide during the last step of the latex-technology process, namely during compression 
molding. This method for the preparation of conductive graphene/polymer nanocomposites exhibits a 
big advantage over the methods utilizing graphene preliminary produced via the three methods 
discussed above in terms of time consumption and the easiness of the process. GO produced via 
Hummers method can be easily exfoliated and dispersed in water by stirring or by mild sonication, 
giving graphene oxide which can be stored in this state at quite high concentrations, namely up to 1 
mg/ml, for a long period of time without aggregation. Even if slightly aggregated graphene oxide is 
formed during storage this can be easily redispersed. Another big advantage of the in-situ

preparation method is that it doesn’t require sonication of the nanofiller at big sonication power, which 
prevents excessive degradation and accordinly results in larger graphene flakes with higher aspect 
ratios in the final product in comparison to the methods using preliminary produced graphene. Stirring 
when mixing with polymer latex homogeneously distributes graphene oxide in the water-based 
system, which results in its homogeneous distribution in a final nanocomposite film. The reduction of 
graphene oxide in this case is caused by a high temperature (180 °C) treatment during a processing 
step which is required anyway. In our case this method didn’t result in composites exhibiting very 
high conductivity values, but the conductivity levels achieved (0.15 S/m) might be high enough for 
antistatic, and maybe even for electromagnetic interference (EMI) shielding applications.     

In the present work we have also demonstrated that utilizing a conductive surfactant such as 
PEDOT:PSS in the aqueous graphene dispersion step of the latex concept can significantly decrease 
the percolation threshold of graphene/polymer nanocomposites with respect to using conventional 
surfactant for the dispersion of graphene in water. Moreover the addition of the conductive surfactant 
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raises the maximum conductivity up to a few hundreds of S/m at graphene loadings below 5 wt %. 
Graphene can be dispersed in water with the aid of PEDOT:PSS, and the presence of an additional 
surfactant in not needed. PEDOT:PSS is commercially available and extensively used in the 
electrical and electronics industry as well as in the production of solar cells, but it is a relatively 
expensive conductive polymer (200-400 Euros per litter). Nevertheless, since a quite low loading of 
this polymer is required for obtaining high conductivity values for the corresponding nanocomposites 
it can be used on industrial scale for the applications where highly conductive polymer composites 
with high added value are needed. We have also shown that for obtaining highly conductive 
graphene/PEDOT:PSS/PS nanocomposites only PEDOT:PSS exhibiting an intrinsic conductivity 
comparable to or higher than that of graphene should be used, since we have some preliminary 
indications that both in the aqueous graphene/PEDOT:PSS dispersions as well as in the final 
polymer nanocomposite the PEDOT:PSS at least partially covers the graphene sheets and hence 
largely determines the conductivity of the corresponding system. Thus, using a relatively low 
conductive PEDOT:PSS for dispersing graphene in water can limit the conductivity of the graphene 
sheets-based network in the corresponding nanocomposites. 

We have demonstrated that when utilizing a conductive polymer as a surfactant, i.e. PEDOT:PSS 
latex, for dispersing a nanofiller (for example carbon nanotubes) in water for the subsequent 
preparation of the polymer nanocomposites, a conductive filler can be replaced by a non-conductive 
one. We replaced CNTs with an aspect ratio of around 60 by cellulose whiskers with a similar aspect 
ratio of ca. 60. It was shown that even at quite low loadings of the conductive polymer, even quite far 
below the percolation threshold of the conductive polymer itself, it plays the main role in determining 
the overall conductivity of the corresponding composites whereas the role of the CNTs seems to be 
that of forming a scaffold or template for the conductive surfactant adsorbing thereon, meaning that 
the CNTs could in principle be replaced by the cheap and most abundant natural material, i.e.

cellulose. By replacing the CNTs in the composites by cellulose nanowhiskers and using the four-
step latex technology utilizing conductive surfactant, PEDOT:PSS, we developed cellulose-based PS 
composites with an extremely low percolation threshold of the conductive polymer. The percolation 
threshold of 2.2 wt % of PEDOT:PSS for PEDOT:PSS/PS composites was lowered to 0.4 wt % by 
adding 0.8 wt % of the cheap cellulose whiskers. This exciting concept brings commercialization of 
this type of hybrid nanocomposites significantly closer to reality. It has been shown that cellulose 
nanofibres have great potential as reinforcements in nanocomposites.[10] They also, due to their size 
and the ability to chemically modify their surface, have great potential for a wide variety of 
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applications: foams, adhesives, hierarchical materials and electronic display materials.[10] The 
advantages of the cellulose nanowhiskers over CNTs are apparent: 1) cellulose is cheap and 
available throughout the world; 2) non-crystalline nanocomposites based on this material exhibit high 
transparency (Hiroyuki Yano and colleagues have demonstrated experimentally the advantage of 
nanoscale reinforcements using cellulose nanofibres).[11] They obtained transparent composites by 
reinforcing various types of resins even at fiber contents as high as 70 wt%). By applying cellulose 
whiskers and conductive polymer, such as PEDOT:PSS for instance, commercially attractive 
conductive polymer composites with high transparency exhibiting conductivity at very low loadings of 
conductive polymer can be developed. If the system can be further optimized it cannot be excluded 
that these hybrid nanocomposites could play a future role as topcoats on bumpers, fenders and 
hoods in the automotive industry for on-line electrostatic painting.  

For preparing commercially more attractive cellulose/PEDOT:PSS/PS nanocomposites we tried 
to replace the industrially expensive freeze-drying step for the removal of water by a heating process. 
Despite the fact that both processes resulted in quite similar percolation thresholds the composites 
prepared by the method utilizing the heating step exhibited lower conductivity values just above the 
percolation threshold in comparison to the freeze-dried samples. This might be due to some phase 
separation occurring during water removal by the heating process. However, the heating step for the 
water removal can probably be optimized by increasing the surface area for evaporation of water and 
the speed of the evaporation. On larger scale a flash step could be envisaged, which is already in 
use for the work-up of some engineering plastics like Nylon 4.6.

7.2. Summarizing and outlook  
The work presented in this thesis describes a possible route for the preparation of graphene-

based polymer nanocomposites utilizing graphene obtained via different methods on the one hand 
and cellulose-based polymer nanocomposites on the other hand. The advantages and disadvantages 
for using each type of graphene are shown.   

For composites based on graphene prepared from graphite via the oxidation/chemical reduction 
process it would be worth to investigate the use of different surfactants which can be applied for 
graphene stabilization during the reduction of graphene oxide in order to lower the ratio 
surfactant/graphene oxide (we found that for PSS the weight ratio surfactant/graphene can be 
lowered from 10:1 to 4:1, which is still high). The lowering of the surfactant/graphene oxide ratio 
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could possibly avoid a filtration step for the removal of the excess of surfactant, which has to be used 
when applying PSS as a surfactant.  

 For the composites based on graphene produced by thermal reduction of graphite oxide and 
subsequent tip-sonication in water in the presence of surfactants, bath sonication for dispersing the 
graphene can be tried. It can result in a bigger size of graphene flakes and accordingly in higher 
length/thickness ratios, which is favorable for lowering the percolation threshold. In comparison to the 
graphite liquid phase exfoliation method for graphene preparation in this case bath sonication should 
not take that long, since the starting point (flakes consisting of merely a few layers of graphene) is 
much closer to a single graphene sheet, than in the mentioned method. Such a change in processing 
step can significantly affect the percolation threshold. 

In this work we prepared all the nanocomposites using polystyrene as a matrix material. When 
preparing nanocomposites based on in-situ reduced graphene oxide changing the matrix material for 
one which can stand higher temperatures can significantly improve the ultimate conductivity, since 
processing at higher temperatures can result in a higher degree of reduction of graphene oxide and 
hence in higher conductivity values of the corresponding nanocomposites. 

 Cellulose nanowhiskers-based polymer nanocomposites utilizing PEDOT:PSS as a conductive 
filler were described in this thesis and were produced by the latex technology, the two final steps of 
which are the freeze-drying and the compression molding steps. It can be interesting to prepare 
these nanocomposites by replacing these two steps by a spin-coating process. Such a replacement 
can result in thin transparent conductive films with thicknesses in the order of magnitude of 30-50 nm, 
whereas the compression molding step gives films with a thickness of several hundreds of microns. 
Finally it can be worthwhile to try to replace our ‘standard’ freeze-drying step of the latex technology 
for water removal, which is quite expensive for an industrial application in terms of operating costs 
and energy consumption, by a simple water evaporation at elevated temperature.  
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Summary 
Graphene-based polymer nanocomposites 
The latex-based concept to introduce graphene platelets into polymers has been shown to be 

highly versatile and to produce conductive nanocomposites with different loadings of graphene 
depending on the method of graphene preparation. For the preparation of conductive polymer 
nanocomposites via latex technology we utilized graphene produced from graphite via three different 
methods, namely 1) via oxidation of graphite and subsequent chemical reduction of graphite oxide 
(GO) in the presence of a surfactant (poly(sodium styrene sulfonate)  (PSS)), 2) via oxidation of 
graphite and subsequent thermal reduction of GO and 3) via liquid phase exfoliation of graphite by 
bath sonication in the presence of a surfactant (sodium cholate (SC)). The three used methods for 
graphene preparation provide graphene of different quality, which was proven by Raman 
spectroscopy. A Raman study of graphene prepared by both chemical and thermal reduction of GO 
reveals big structural defects which are attributed to the presence of sp3 carbons in the carbon basal 
plane and different residual functionalities such as carboxylic acid groups, epoxides, or ketones. 

Preparation of polystyrene (PS) nanocomposites based on graphene prepared via oxidation of 
graphite with subsequent exfoliation and chemical reduction of graphite oxide is described in Chapter 
2. Aqueous dispersions of graphene were obtained via oxidation and exfoliation of graphite and 
subsequent reduction with the aid of hydrazine in the presence of PSS which acted as a surfactant. 
Different amounts of aqueous graphene dispersions were then mixed with the PS latex and 
composites were prepared by freeze-drying and subsequent compression molding. The percolation 
threshold for conduction was found to be about 0.9 wt % of graphene in the composites, and a 
maximum conductivity of about 15 S/m could be achieved for 1.6-2 wt% nanofiller.  

Nanocomposites via in-situ reduction of graphene oxide were also prepared. The reduction of 
graphene oxide occurred during the compression molding step. This way of preparation allows us to 
eliminate the time consuming chemical reduction step and gives a homogeneous distribution of 
graphene platelets in the composite film due to the ability of graphene oxide to be readily exfoliated 
and dispersed in water because of its hydrophilic nature. Due to incomplete reduction the ultimate 
conductivity of the composites is 0.1 S/m although the percolation threshold is low, namely 0.6 wt%. 
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The main strategies developed during the recent years for incorporation of carbon nanotubes 
(CNTs) and graphene into a polymer matrix based on the use of surfactants for improving the 
nanofillers dispersion are covered in Chapter 3. The main focus is given to water-based systems. 

Chapter 4 studies the effect of the dispersion state of graphene as a factor influencing the 
electrical percolation threshold of graphene/polystyrene nanocomposites. Graphene used in this 
study was obtained by two different methods: thermal treatment of graphite oxide and liquid-phase 
exfoliation of graphite. It was shown that graphene/PS nanocomposites prepared from a PS latex and 
aqueous graphene dispersions with relatively low stability and relatively low degrees of exfoliation, 
exhibit a lower percolation threshold than the composites based on dispersions with a larger degree 
of graphene exfoliation and a higher dispersion stability. This trend is observed despite the fact that 
the dispersion exhibiting the highest stability and degree of graphene exfoliation is based on 
graphene produced by the liquid phase exfoliation method, which gives graphene of higher quality 
than the material produced by thermal reduction of graphite oxide since it contains a lot of defects 
due to the presence of different functional groups on its surface.  

In order to make well performing conductive nanocomposites it is crucial to optimize each step of 
the latex-based process. In particular this is applicable to the first step, which is the exfoliation and 
dispersion of a nanofiller in water. In Chapter 5 optimum conditions for the exfoliation and dispersion 
of graphene obtained by thermal reduction of graphite oxide at a concentration of 1 mg/ml using 
conventional surfactants such as sodium dodecylbenzene sulfonate (SDBS), SC, PSS and Tween-80 
are demonstrated. The obtained dispersions were used for the preparation of nanocomposites. The 
composites prepared from dispersions stabilized with ionic surfactants all exhibit the same 
percolation threshold and the same final conductivity values, which means that graphene possesses 
the same degree of exfoliation in all the systems and the dispersion conditions had been optimized 
for the used surfactants. When preparing nanocomposites using Tween-80-stabilized graphene 
dispersions, higher percolation thresholds and lower conductivities in comparison with the systems 
utilizing SDBS, SC and PSS were observed. This is probably due to a large amount of the bulky 
surfactant present on the graphene surface which stabilizes the dispersion by a steric effect, but 
which acts as a kind of insulating layer between the graphene platelets in the final composite.  

It was demonstrated that the introduction of a highly conductive polymeric surfactant (poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)) in the water dispersion step and 
finally into graphene/PS nanocomposites can significantly lower the percolation threshold and 
increase the ultimate conductivity. By using Scanning Electron Microscopy (SEM) and replacing a 
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highly conductive PEDOT:PSS by a low conductive one, an idea of the possible morphology of the 
graphene/PEDOT:PSS system was obtained. It was shown that the use of a low conductive 
PEDOT:PSS can decrease the percolation threshold but by breaking the contacts between the 
highest conductive particles in this system, namely the graphene platelets, can also decrease the 
conductivity values above the percolation threshold due to the “shielding” of the graphene. It looks as 
if graphene is covered with this conductive polymer. The higher the coverage is, the lower the 
contribution of graphene to the conductivity of the composite becomes.  

In Chapter 6, the cooperative nature of the two conductive fillers in multiwalled carbon nanotubes 
(MWCNTs)/PEDOT:PSS/PS composites with the focus on the contribution of the CNTs to the overall 
composite conductivity was investigated. For that the CNTs were replaced by non-conductive fillers 
with an almost identical aspect ratio, namely cellulose whiskers, and the two systems 
MWCNTs/PEDOT:PSS/PS and cellulose/PEDOT:PSS/PS, were compared. It was demonstrated that 
even at relatively low loadings of the conductive polymer the polymer plays the main role in the 
determining the overall conductivity of the corresponding composites. The role of the CNTs, on the 
other hand, seems to be that of forming a percolating template on which the conductive PEDOT:PSS 
adsorbs, which means that the CNTs can in fact be replaced in this case by the cheap and most 
abundant natural material, i.e. cellulose. By replacing the CNTs in the composites by cellulose 
nanowhiskers using the four-step latex technology utilizing conductive surfactant, PEDOT:PSS, 
cellulose-based PS composites with an extremely low percolation threshold of the conductive 
polymer were developed. The percolation threshold of 2.2 wt % of PEDOT:PSS for PEDOT:PSS/PS 
composites was lowered to 0.4 wt % by adding 0.8 wt % of the cheap cellulose whiskers.
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