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Rejection-free Monte Carlo sampling for general potentials
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A Monte Carlo method to sample the classical configurational canonical ensemble is introduced. In contrast
to the Metropolis algorithm, where trial moves can be rejected, in this approach collisions take place. The
implementation is event-driven; i.e., at scheduled times the collisions occur. A unique feature of the new method
is that smooth potentials (instead of only step-wise changing ones) can be used. In addition to an event-driven
approach, where all particles move simultaneously, we introduce a straight event-chain implementation. As proof
of principle, a system of Lennard-Jones particles is simulated.
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I. INTRODUCTION

The most commonly used methods for simulating particle
systems in accordance to classical statistical mechanics are
molecular dynamics (MD) and Monte Carlo methods (MC)
based on the Metropolis scheme [1–5]. For systems with
impulsive interactions, such as hard-sphere systems, a time-
driven MD approach does not work and an event-driven
approach can be used. In fact, the pioneering work of Alder
and Wainwright used an event-driven molecular dynamics
(ED-MD) scheme [6].

In the Metropolis MC scheme, trial moves are either
accepted or rejected. In highly concentrated systems, the
acceptance rate can be very low, and simulating using MD
requires very small time-steps. In dilute systems, the time-scale
in MD or step-size in MC is determined by the molecular
collision process, and simulation time is wastefully spent on
flying through empty space. In both cases, an event-driven
approach can speed up the computation.

ED-MD can be generalized to hard spheres to potentials
built up by a sequence of steps [7]. Clearly in this case an
event takes place at each step. The method we derive in this
paper differs in several aspects from ED-MD: Collision-events
are determined by means of a stochastic process. Potentials are
not necessarily step-wise. There is no exchange of kinetic and
potential energy. In fact, momentum is not relevant and the
configurational canonical is sampled directly.

Instead of rejecting moves as in the Metropolis scheme
a collision takes place. There is quite some freedom to model
a collision event. One possibility is to model it as a Newtonian
collision. Another possibility is to move one particle at a time
where, at collision, another particle takes over. This is similar
to the straight event-chain collision in hard-sphere simulation
[8,9].

On an algorithmic level, there is some similarity with kinetic
(or dynamic) MC [10] and n-fold way MC simulations [11,12].
In these methods there is a finite number of (classes of) moves
modeled as Poisson processes. Using the rates corresponding
to these Poisson processes, the moment in time a next event
occurs can be computed. The efficiency of these methods is
determined by the fact that the number of moves is finite,
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which is not the case in a particle system. Also in these kinetic
MC simulations nothing happens in between two subsequent
events. In the method we will outline below, however, particles
will move linearly in between subsequent collision events.
Therefore, even when no events occur the system is evolving.
The present method, which is surprisingly simple, is a unique
event-driven Monte Carlo method.

II. AN EVENT-DRIVEN STOCHASTIC SCHEME

The prototypical Monte Carlo scheme for sampling a
configurational canonical distribution generates “moves” from
an old state, xn

old, to a new state, xn
new, according to a conditional

probability density T (xn
new|xn

old). The transitional probabilities
are forced to obey the detailed-balance relation:

T (yn|xn) exp[−β U (xn)] = T (xn|yn) exp[−β U (yn)]. (1)

In the Metropolis scheme, we decompose the transition
probability density as

T (yn|xn) = acc(yn,xn) a(yn|xn), (2)

where a(yn|xn) is the probability density for generating a trial
move from xn to yn and acc(yn,xn) is the probability that this
move will be accepted. The Metropolis form for the acceptance
probability equals

acc
(
xn

new,xn
old

) = min(1, exp[−β �U ]), (3)

if a(yn|xn) = a(xn|yn) ∀ xn, yn. When a move is not accepted,
the positions remain unchanged: xn

new := xn
old.

Now, let’s consider a simple one-dimensional potential
step of height �U . In this case, detailed balance Eq. (1)
can be obeyed in a different way. Instead of rejecting a
move, if a random number is below the Metropolis acceptance
probability, it will collide. So, let’s consider a trial move from
a position xold to xnew. If both positions are at the same side of
the barrier, the move will be accepted. If the move descends
the barrier, i.e., �U < 0, then the move is also accepted. If the
move is up the barrier, i.e., �U > 0, it will only sometimes
be accepted. If it is not accepted, it is not rejected, but the path
is changed by means of a collision against the “wall” of the
barrier (see Fig. 1). Clearly, a position xnew that is on the other
side of the barrier as xold can only be sampled if no collision
has taken place. For the probability that no collision occurs we
use Eq. (3), Pno−coll(xnew,xold) = acc(xnew,xold).
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FIG. 1. (Color online) A trial move that moves upward to the
higher energy state may give rise to a collision.

Next, let’s consider a number of potential steps in a
sequence. For a trial move from xold to xnew we compute
the probability to not collide at each individual barrier that
is crossed by means of Eq. (3). In this case, the probability
to still have not experienced any collisions when reaching
position xnew equals

Pno−coll(xnew,xold) =
∏

i

min(1, exp[−β �Ui])

= exp

[
− β

∑
i

max(�Ui,0)

]
, (4)

where the index i labels the barriers crossed when moving
from xold to xnew. For every change in potential, we decide
to count it or not depending on whether it is increasing the
potential energy or not. Going down the barrier is free, every
uphill motion counts and accumulates until a collision becomes
inevitable (or until the potential no longer grows).

We could approximate a continuous potential by a sequence
of barriers and do our calculation accordingly, but we will
proceed differently. If we take the limit to indefinitely small
potential steps, we obtain

Pno−coll,α(s) = exp

(
− β

∫ s

s0

max

{
d

ds̃
Uα[xn(s̃)],0

}
ds̃

)
,

(5)

which is the conditional probability that a particle moving
in a linear motion from xn(s0) to xn(s) did not experience a
collisions along the way. Here we presented the formula for
a general n-particle system, and a potential Uα , where the
subscript α is just a label to identify the potential (which is
useful for reasons that will become apparent below).

In practice, computation of the integral is trivial if one has
an expression for the potential Uα[xn(s)]. One needs to know
the location maxima and minima of the potential along the
path, xn(s), to be able to extract increasing contributions only.
With this accumulative probability, the position at which the
particle does collide can be determined as follows: Draw a
uniform number, u, between 0 and 1. The collision takes place
at time s, for which u = Pno−coll(s), or equivalently,

∫ s

s0

max

{
d

ds̃
Uα[xn(s̃)],0

}
ds̃ = −kT ln u. (6)
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FIG. 2. (Color online) The upper-left graph shows the relevant
part of the potential for motion to the right starting at x = −1.5
and the upper-right graph for motion to the left. The cumulative
probabilities of no collision are shown in the second row of graphs.
In the lower-left corner a typical time series is depicted. The symbols
indicate equidistantly spaced points along the s axis. These points
sample the canonical ensemble as shown in the lower-right graph
(solid line). When making a histogram of the collision points, one
finds the dashed curve.

A. 1-D proof-of-principle

To prove that the scheme correctly works in practice, we
consider the motion in a harmonic well: U = 1

2 x2. Here we
use dimensionless units kT = 1 and the characteristic length
scale equals 1.

The motion of x is linear dx/ds = v (constant v) and at a
collision: v := −v. Note that after the collision also dU/ds

has changed sign. At this point, say at position xcoll and time
scoll, we proceed with the linear motion and determine the new
cumulative probability of no collision by means of Eq. (5)
and integrating from an initial position xcoll. Using this new
cumulative probability, the next collision is determined by
means of solving Eq. (6) with s0 = scoll.

To illustrate the process, in Fig. 2 the particle starts to
move at x = −1.5. First, the collision “time” and position are
determined, then the collision is performed by reversing the
“velocity.” Here quotation marks are used because not “time”
but contour length s is the relevant parameter. The “velocity”
does not have physical significance, e.g., as used for a kinetic
energy. It is, however, more intuitive to speak in terms of time
as the variable that parameterizes the path.

To generate the canonical ensemble, the positions, x,
need to be sampled at equidistant points in time. If
we define a time-step, say �s, at every time sn = n�s,
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the distribution is sampled. In the lower-left graph of
Fig. 2, the data points corresponding to �s = 2 are shown
in the time-series. When collecting these points to form
a histogram, the correct canonical ensemble is sampled as
is shown in the lower-right graph. It is a rigorously valid
procedure, obeying detailed balance, if a new velocity v is
drawn from a probability distribution, which is even in v, at
equidistantly spaced times. In the series generated to produce
the bottom graphs, however, we do not do this and just proceed
along the path until the next collision occurs. The dynamics
have enough inherent randomization to cause ergodicity. The
velocities are −1 or 1 with equal statistical weight and clearly
not distributed according to, e.g., a Maxwell-Boltzmann
distribution.

III. A 3-D MULTIPARTICLE SYSTEM

Let’s consider a particle system. Here the total potential
can be decomposed as a sum of potentials: U = ∑

α Uα .
Figure 3 shows a particle moving in the fields of two potentials.
Now, assume for a moment that the potentials do not increase
smoothly but stepwise at every depicted equipotential contour.
Using the same reasoning as before, at every step that is crossed
by the path of the particle a collision can take place. The
probability that a path of the particle crosses a step of both
potentials exactly at the same time is zero. Therefore, in the
stepwise case, it is clear that the influence of each potential
Uα can be considered separately and this remains valid in the
limit of smooth potentials. For each potential Uα individually,
Eq. (5) can be used.

A. Collision rules

Let the particles in the system move with constant veloc-
ity, vn = (v1,v2, . . . ,vn). If a collision due to potential Uα

takes place at time scoll, the velocity after collision changes
as

vn(s+
coll) = (I − 2Pα) · vn(s−

coll), (7)

FIG. 3. (Color online) A particle moving in two potentials
indicated by the two sets of equipotential contours.

where Pα is a projection matrix (Pα · Pα = Pα). A general
form for the projection operator is

Pα = M · ∇Uα ∇Uα

∇Uα · M · ∇Uα

. (8)

Here the potential gradient indicates the direction normal to the
equipotential surface of Uα . One can verify that the collision
leaves the scalar vn · M−1 · vn invariant.

A possible simulation protocol proceeds as follows: Draw
velocities from a Gaussian distribution with a covariance
matrix proportional to M. Next, run the event-driven collision
scheme for a time-interval �s = 1. Last, redraw the velocities
and repeat. This scheme gives rise to a Markov chain that
obeys detailed balance. In our simulation results we find that,
in fact, the velocities do not need to be redrawn. In Appendix
we provide a proof that the algorithm indeed samples the
configurational canonical ensemble.

In the case that a pair-potential acts between particles 1
and 2, Uα(xn) = U (x1,x2), the potential gradient row-vector
only has nonzero entries for particles 1 and 2. For the
simulations we made the simple choice M = I. For pairwise
central potentials, Uα(xn) = U (|x2 − x1|), we find Pα, ij =
1
2 (δi1δj1 + δi2δj2 − δi1δj2 − δi2δj1) erer , with er the radial
direction vector er = (x2 − x1)/|x2 − x1|. This is a formal
notation equivalent to an elastic Newtonian collision between
two particles of equal mass.

The simulation protocol is very similar to event-driven MD
[13]. Initially, for all possible pairs a possible collision event
is computed and stored in a priority queue. If the collision
that involves particles i and j pops up, it is handled. Now,
all previously computed collisions involving i or j become
invalidated and are removed from the queue. So, for all pairs i-k
and j -k, new collision times need to be computed as in Eq. (6),
by inverting Eq. (5). From a computational point of view, it
is most efficient to perform the updating asynchronously; i.e.,
the particles are moved only at the moment they participate
in a collision, otherwise the positions remain fixed at the spot
the last collision occurred. However, to generate the statistics,
we need to sample the system at equidistantly spaced time-
intervals, sstamp = n�s. We also schedule these time stamps,
such that at every time sstamp the positions of the particles,
xn(sstamp), can be computed.

B. Straight event-chain collisions

It has recently been shown that straight event-chain updates
can be very efficient for concentrated hardcore systems
[8,9]. This makes implementation simpler than for the scheme
outlined above because no event-queue is needed. Hence, we
also tested this scheme.

If a particle i that moves with a velocity vi = v collides with
a particle j , it stops (vi := 0) and the other particle takes over
(vj := v). The motion with collisions continue until �s = 1. It
was found that, when this scheme was performed irreversibly,
e.g., by giving particles either one out of three possible
velocities: v = vex , v = vey , or v = vez (and not the negative
direction), the speed up was significant. The reason is that
the dynamics are nondiffusive. Clearly, in this case, detailed
balance is not obeyed, but for hard-sphere systems it was found
that the correct configurational canonical ensemble is sampled.

026703-3



E. A. J. F. PETERS AND G. DE WITH PHYSICAL REVIEW E 85, 026703 (2012)

C. Lennard-Jones interaction

As a second example, we will have a look at the truncated-
shifted Lennard-Jones (LJ) interaction.

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(9)

U trunc
LJ (r) =

{
ULJ(r) − ULJ(rc), for r < rc

0, otherwise.

When particles move toward each other in the repulsive
regime, the pair-potential differences increase. Once beyond
the point of closest approach, and inside the repulsive regime,
the motion is downhill and no collision can occur there. If
particles move away from each other, the potential difference
increases if the particles are inside the attractive regime of
their pair-potential. Here a collision might occur. The parts
that contribute to an increase in the collision probability as
computed from Eq. (5) are illustrated in Fig. 4.

Figure 5 shows the radial distribution function (RDF) for
the density ρ = 0.317 and T = 1.085 in LJ units (and 1000
particles) for the case rc = 2.5σ . This is the critical point of this
truncated-shifted LJ potential [14]. We have chosen this point,
instead of, e.g., a liquid state point, because here there is a clear
influence of the attractive part of the potential on the RDF.

This RDF has been determined with the event-driven
scheme where all particles move simultaneously for two cases.
In the first case, velocities are periodically redrawn from the
correct Gaussian distribution. In the second one, the velocities
are never reset. We also implemented both a reversible and
irreversible version of the straight event-chain method. As
a check the RDF was also computed using the Metropolis
scheme. All curves are identical within statistical errors. The
maximal absolute deviation among the presented curves is
0.006 near r = 1.1.

FIG. 4. (Color online) Particles interact with the central bead by
means of a truncated-shifted Lennard-Jones interaction. The inner
dash-dotted circle indicates the location of the potential minimum.
The outer dot-dashed circle indicates the location of the cutoff radius.
The bold solid pieces of the particle trajectories indicate the parts
where the potential increases when the motion proceeds. These parts
contribute in Eq. (5). In the other sections of the paths, no collision
can occur.
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FIG. 5. The solid line shows the RDF of the truncated-shifted
Lennard-Jones potential with rc = 2.5 at ρ = 0.317 and T = 1.085
(LJ units). The curves computed with the rejection-free method and
the Metropolis method are identical.

IV. DISCUSSION

The event-driven rejection-free MC method outlined in this
paper was successfully applied to a Lennard-Jones fluid. We
only considered pair potentials. If one wants to simulate a
molecular system, angle and torsion potentials also need to be
considered. The collision rule, defined by Eq. (7), can also be
used for these kinds of potentials. In that case, three or four
particles are involved in a collision, but solving Eq. (6) will
require some more computational effort. The generalization of
the straight event chain collisions to these kinds of potentials
seems less trivial.

A priori, it is not clear if for molecular systems the new
method is less efficient than MD or not. As demonstrated
by the harmonic well example in Fig. 2, the motion goes
from one side of the potential to the other. In MD, one needs
to resolve the oscillating motion by using sufficiently small
time-steps. The time that is won in this way can be spent
on the more involved computation of computing events and
maintaining the event queue. Although MD simulation tools
are quite mature, the algorithms for event-driven simulations
are still being improved [15,16]. The method presented in
this paper widens the realm of possible applications of the
event-driven particle because a large class of potentials can be
handled now. It remains to be seen if the application of the
method is suited for niche applications only or if it can rival
with MD and Metropolis-MC for general purpose molecular
simulations.

APPENDIX: PROOF OF CORRECTNESS

In this appendix we will prove the validity of the rejection-
free scheme. We will do this by demonstrating that the
canonical distribution is the invariant distribution of the
dynamics of the system.

The probability distribution to have a particle system
with positions xn and velocities vn at time s is denoted by
ρ(xn,vn,s). The total potential of the system is given by∑

α Uα . The probability to have no collision with a potential
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Uα is given by Eq. (5). The probability density per unit time
to collide with potential Uα when in state (xn,vn) equals

pcoll = − d

ds
Pno−coll,α(s) = β max

{
d

ds
Uα[xn(s)],0

}

= β max(vn · ∇Uα,0). (A1)

Upon collision, the velocity changes according to Eq. (7). As
a shorthand notation for the collision operator, we will use
Rα = (I − 2Pα). Two relevant properties of this operator are

Rα · Rα = I and RT
α · ∇Uα = −∇Uα. (A2)

After a collision, the velocities, vn, become Rα · vn and, vise-
versa, Rα · vn changes into vn.

The change of ρ(xn,vn,s) with time has three contribu-
tions: streaming, creation of states with velocities vn due to
collisions, and annihilation of states with velocities vn,

∂

∂s
ρ(xn,vn,s)

= −vn · ∇ρ + β
∑

α

max
(
vn · RT

α · ∇Uα,0
)
ρ(xn,Rα · vn,s)

−β
∑

α

max(vn · ∇Uα,0) ρ(xn,vn,s). (A3)

In this equation, the gradient operator denotes differentiation
toward positions only and not toward velocities. From the sec-
ond relation in Eq. (A2), we find that vn · RT

α · ∇Uα = −vn ·
∇Uα . Furthermore, from the definition of the projection oper-
ator, Eq. (8), one can derive that the scalar (vn) · M−1 · vn is an
invariant of the collision operator Rα for any α. Therefore, if we
assume the form ρ(xn,Rαvn,s) = ρx(xn,s) f (vn · M−1 · vn),
we find that for the collision terms of Eq. (A3)

β
∑

α

max
(
vn · RT

α · ∇Uα,0
)
ρ(xn,Rα · vn,s)

−β
∑

α

max(vn · ∇Uα,0) ρ(xn,vn,s)

= β
∑

α

[max(−vn · ∇Uα,0) − max(vn · ∇Uα,0)]ρx · f

= −β

(∑
α

vn · ∇Uα

)
ρx · f. (A4)

Using this result, we find that for a canonical distribution, ρx =
Z−1 exp[−β

∑
α Uα], the streaming part and the collision

terms in Eq. (A3) cancel. This concludes the proof that the
configurational canonical ensemble is indeed an invariant
distribution of the dynamics generated by the rejection-free
method.
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