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 

Abstract—In previous work, a Linear Discriminant (LD) 

classifier was used to classify sleep and wake states during 

single-night polysomnography recordings (PSG) of actigraphy, 

respiratory effort and electrocardiogram (ECG). In order to 

improve the sleep-wake discrimination performance and to 

reduce the number of modalities needed for class discrimination, 

this study incorporated Dynamic Time Warping (DTW) to help 

discriminate between sleep and wake states based on actigraphy 

and respiratory effort signal. DTW quantifies signal similarities 

manifested in the features extracted from the respiratory effort 

signal. Experiments were conducted on a dataset acquired from 

nine healthy subjects, using an LD-based classifier. Leave-one- 

out cross-validation shows that adding this DTW-based feature 

to the original actigraphy- and respiratory-based feature set 

results in an epoch-by-epoch Cohen’s Kappa agreement 

coefficient of κ = 0.69 (at an overall accuracy of 95.4%), which 

represents a significant improvement when compared with the 

performance obtained without using this feature. Furthermore 

it is comparable to the result obtained in the previous work 

which used additional ECG features (κ = 0.70). 

I. INTRODUCTION 

BJECTIVE assessment of sleep quality is often based on 

monitoring sleep and wake phases at night. Overnight 

polysomnography recordings (PSG) with manually annotated 

hypnograms are considered a “gold standard” for objectively 

analyzing sleep architecture and occurrence of specific 

sleep-related problems [1]. They are usually performed and 

analyzed in sleep laboratories, and are typically split into non 

overlapping epochs (i.e., time intervals) of 30 seconds [1].  

The use of actigraphy has been shown to be very useful in 

sleep-wake discrimination, but there is an evident limitation 

of only being able to detect wake states which correspond to 

obvious body movements [2], [3]. Therefore, by extracting 

features from respiratory and cardiac activities containing 

relevant information about sleep stages, it may help to better 

discriminate between sleep and wake states at night [4]. 

Different sleep stages modulate autonomous nervous system 

functions (e.g., respiration and heart rate) differently, so that 

by measuring the functions it is possible to infer the sleep 

stages based on the corresponding data [5]. However, 

including more modalities brings higher cost in acquiring 

physiological data because, for instance, cardiac activity is 

notoriously difficult to capture in good conditions, especially 

in an unobtrusive manner, compared with body motion and 

respiratory activity. Thus, we examined the possibility of 
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achieving a comparable performance when the number of 

modalities used is reduced, and ECG signals were excluded. 

Although the actigraphic and respiratory data theoretically 

contains information from which the sleep or wake state can 

be derived, classifiers require that this information is first 

extracted from the original signals as “features”. A number of 

features have been previously explored in the context of 

sleep-wake discrimination [2], [4], [6]. In order to provide an 

opportunity of improving the discrimination performance, a 

Dynamic Time Warping (DTW) method [7], [8] that assesses 

the similarity of time series was proposed to discriminate the 

respiratory effort patterns between a sleep and a wake state. 

DTW is a technique for aligning signals that searches for 

similarity, allowing variations in both the horizontal (e.g., 

scaling or shifting of the time axis) and the vertical (e.g., 

amplitude or offset) aspects. It may potentially provide a 

good shape matching between two similar series, such as two 

sleep respiratory effort series in this study, because it offers 

flexibility to compensate for signal variations. It may not find 

a good shape matching between two dissimilar or less similar 

series such as a sleep and a wakeful series, or two wakeful 

ones, even when the signal variations are able to be 

compensated. This is because the respirations of a human in a 

wake state are usually not as regular as in a sleep state, and 

they may contain unnatural respirations or even body motion 

artifacts. So extracting a feature from respiratory data based 

on DTW is promising for sleep-wake discrimination in terms 

of similarity in signal level. Figure 1 indicates the respiratory 

effort differences between sleep and wake states. 

DTW has been widely used to recognize time series 

patterns in various areas such as speech processing [7], 

bioinformatics [9], and biometrics [10]. This paper aims to 

investigate how far a DTW-based algorithm can help to 

discriminate between sleep and wake states. For that purpose, 

the feature sets and the Linear Discriminant (LD) classifier 

described in the earlier work [4] are adopted in this study. 
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Fig. 1.  Typical examples of respiratory effort series of wake (upper) 

and sleep (lower) with 2 minutes (i.e., 4 epochs). 
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II. DATA ACQUISITION 

In total 9 healthy subjects (8 females) with age 31.9 ± 12.8 

(mean ± std) participated in an experiment at the Sleep  

Health Center, Boston, USA. Actigraphy (Actiwatch, Philips 

Respironics) and full PSG (Alice 5 PSG, Philips Respironics) 

were recorded for each subject. Actiwatch is a wrist-worn 

device delivering activity counts derived from acceleration 

data, measured with a built-in accelerometer. From the PSG 

data only the ribcage respiratory effort signal (sampled at 10 

Hz), as measured by inductance plethysmography was used. 

Sleep stages were scored by an expert according to the 

AASM guidelines [11]. A sleep efficiency of 91.5% ± 3.7% 

was calculated based on the scores of the subjects.  

Before extracting features, the respiratory effort signal 

went through a low-pass filter for eliminating high frequency 

noise and then was normalized by subtracting the median 

peak-to-trough amplitude estimated over the entire recording 

to remove signal baseline. Note that the recordings from the 

Actiwatch were carefully synchronized with those from the 

PSG, using markers in both PSG and Actiwatch clocks.  

III. FEATURE EXTRACTION 

Similar to the previous work in [4], several features were 

extracted from the data for each epoch of 30 seconds, but only 

a subset of them is considered in this study. They comprised 

an actigraphic feature which contains the sum activity counts 

over 30 seconds recorded from the Actiwatch [4], and 

respiratory features in both the time and frequency domains 

[6]. Note that all the features were normalized or smoothed, 

aiming to increase the robustness against inter-subject 

variation. However, the previous work did not consider much 

about series shapes and variations in the time domain. Thus, 

as discussed in Section I, extracting a DTW-based feature 

from the respiration data that quantifies the shape similarity 

among epochs is promising.  

A. Dynamic Time Warping 

DTW computes a distance between two time series with 

alignment in the time axis, which is called DTW-distance [8]. 

Consider two time series: X = {x1, x2, …, xi, …, xn} of length n 

and Y = {y1, y2, …, yj, …, ym} of length m. The two series can 

be handled to form an n-by-m matrix where each element of 

the matrix, (i, j), corresponds to a distance function D of the 

squared distance between xi and yj: D(i, j) = (xi – yj)
 2. A 

warping path maps the elements of X and Y through the matrix 

so that the total cumulative distance between them is 

minimized. The warping path W is denoted as W = {w1, w2, …, 

wk, …, wK}, where wk = (i,  j)k is the kth element of W. Then the 

DTW-distance between the two series is 
 

1

1
( , ) min

K

kk
DTW X Y w

K 

 
  

 


. (1) 

 

The Euclidean distance between the two series is a special 

case of DTW-distance without alignment in the time axis 

when i = j = k if the two series have the same length but it is 

known to be very sensitive to distortion in the time axis [12].  

Since the nature of DTW-distance searches for an optimal 

warping path through all possible paths, it is combinatorially 

explosive. Hence, reducing the search space served by means 

of conditions helps to effectively mitigate the quadratic 

complexity of the DTW method [8]. Several conditions are 

taken into account to decrease the number of paths [8], [12]. 

They are: continuity – the steps in the matrix are confined to 

the points with ik – ik-1 ≤ 1 and jk – jk-1 ≤ 1; monotonicity – the 

warping path cannot go backward with respect to time; slope 

constraint – the warping paths should not have very large 

movements in the horizontal or vertical direction of the 

matrix; boundary – start and end points of the warping path 

are (i1, j1) = (1, 1) and  (iK, jK) = (n, m), respectively; warping 

band – the path is restricted by a band of size r (i.e., |ik - jk| ≤ r), 

which is also known as the Sakoe-Chiba Band [13]. Here we 

considered the warping band condition where r needs to be 

tuned due to its possible effect on discrimination accuracy. 

B. DTW-Based Feature 

As mentioned before, the DTW distance between two time 

series represents the shape dissimilarity between them. In 

order to help decide if an epoch of interest is a sleep or a wake 

state, a feature named “minimal DTW-distance” (i.e., 

maximal similarity) can be extracted from the respiratory 

effort signal of a subject based on the DTW method.  

Assume that the respiratory data recorded from a subject 

can be split into N non-overlapping epochs E1, E2, …, EN, 

each of them is a time series with same length of 30 seconds. 

For the pth epoch Ep (p is a positive integer and 1 ≤ p ≤ N) the 

feature value is computed as following two steps: First, 

compute the DTW-distance DTW (Ep, Eq) between the time 

series of the pth epoch Ep and that of the qth epoch Eq (q is a 

positive integer and 1 ≤ q ≤ N); Second, consider the 

DTW-distances between Ep and Eq for all 1 ≤ q ≤ N and q ≠ p, 

the feature value is the minimal one among them. In other 

words, for an epoch of interest (current epoch), it searches the 

most similar epoch from the other remaining ones in terms of 

DTW-distance. Such searching aims to make sure that it can 

find the most similar epoch for the current one.  

There are two cases: the current epoch is “sleep” (case one) 

and the current epoch is “wake” (case two). And the feature 

“minimal DTW-distance” of this epoch contains three 

possible situations where the minimal DTW-distance occurs: 

1) between two sleep epochs, 2) between a wake and a sleep 

epoch, 3) between two wake epochs. Usually, the respiration 

curves of the wake state are less regular than that of the sleep 

state and they often contain many unnatural respirations. 

Therefore, the respiration curves between two sleep epochs 

should be more similar than those between a sleep and a wake 

epoch. Also, they should usually be more similar than the 

respiration curves between two wake epochs, which is caused 

by the inclusion of unnatural respirations in wake state. Then:  

• If the current epoch is “sleep” (i.e., case one), a small value 

of DTW-distance is likely to be obtained by searching the 

similarities between this epoch and others throughout the 

whole signal since situation 1) may happen. 

• If the current epoch is “wake” (i.e., case two), it is not 
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likely to obtain such a small feature value by doing the same 

process since situation 2) or 3) may happen.  

Hence, it yields discrimination of sleep and wake states in 

feature value. This DTW-based feature also needs to be 

normalized as similar as the other features. Figure 2 visually 

describes the alignments between two epochs, as discovered 

by DTW, in the three situations during the DTW warping 

process. It shows that the feature value of DTW-distance 

between two sleep epochs is obviously smaller than the other 

two. Figure 3 clearly indicates the discrimination of sleep and 

wake states, whereas errors may occur due to the overlaps. As 

this feature considers the shape similarity between epochs 

allowing horizontal and vertical variations and searches the 

minimal DTW-distance (i.e., largest similarity) throughout 

the complete recording of a subject, it helps to either decrease 

inter-subject variation or decrease intra-subject variation.   

IV. CLASSIFICATION 

It has been demonstrated that an LD-based classifier is 

appropriate for the task of discriminating between sleep and 

wake states using actigraphy, respiratory and cardiac features 

[4]. In order to verify whether the new DTW-based feature 

described in this paper can help improve the performance in 

this task, the same classifier and feature set extended with the 

new feature was applied. An LD-based classifier 

distinguishes between pre-defined classes (sleep and wake), 

which were considered to follow the Bayesian classification 

rules with linear discriminants. An assumption is that the 

feature values are class-dependent and normally distributed 

per class. The classifier is obtained after a supervised learning 

process, applied on a training feature set that comprises 

annotated “examples” of features for each class, which can 

then be used to classify “unseen” data to one of the 

pre-defined classes. A more detailed description of the LD 

method can be found in [14].  

In order to evaluate the performance of this classifier, 

conventional measures of specificity (proportion of correctly 

identified actual positives) or sensitivity (proportion of 

correctly identified negatives) used in binary classification 

are not the most adequate. The reason is that the number of 

epochs of one class (wake) during a recording of a whole 

night will naturally be much smaller than the number of 

epochs of the other class (sleep), in what is usually called an 

“unbalanced class distribution”. The Cohen’s Kappa 

coefficient κ [15] not only allows for a better understanding 

of the general performance of the classifier in correctly 

identifying both classes, but also allows for a better 

representation of the unbalanced problem when it is used as a 

criterion to optimize performance [4]. Moreover, several 

sleep statistics, typically used to assess several aspects of 

sleep, can be computed when discussing the performance of 

the classifier, such as total sleep time (TST), total wake time 

(TWT), sleep efficiency (SE) which is computed as the ratio 

of TST and total time in bed, sleep onset latency (SOL) which 

is the time a person takes before falling asleep, wake after 

sleep onset (WASO), and snooze time (ST).  

V. RESULTS AND DISCUSSION 

In the experiment, a leave-one-out cross validation 

procedure was conducted to evaluate the performance of the 

sleep-wake classifier. The discrimination performance with 

and without using the DTW-based feature were evaluated. 

Cohen’s Kappa was used as the evaluation criterion of 

discrimination performance. The use of the warping band 

condition helps reduce the quadratic complexity of 

computation of the DTW. The Kappa coefficient can 

optimally reach ~0.69, when the Sakoe-Chiba warping band r 

was globally optimized to be 60 samples in the warping 

process for all subjects. This means that the warping path is 

constrained by a window with a length of 120 (2∙r) samples 

(i.e., 12 seconds) within an epoch of respiratory effort series 

containing a maximum of 300 samples. The parameter r was 

determined that gave the best performance based on the 

training set during the leave-one-out procedure.  

Table I indicates the discrimination performance obtained 

with only the DTW-based feature, with the original feature 

set (from [4]), and with the feature set extended with the 

addition of the DTW-based feature. Here wake and sleep are 

defined as positive and negative class, respectively. As shown, 

the average κ is 0.51 ± 0.10 by using only the DTW-based 

feature. The combination of body motion and respiratory 

activity is useful for better discriminating between sleep and 

wake states. Moreover, an average κ of 0.69 ± 0.15 was 

obtained after incorporating the new DTW-based feature. 

 
Fig. 2.  Examples of two series (30 seconds each) and the alignment 

between them in the three situations (upper: two sleep epochs, middle: 

a wake and a sleep epoch, lower: two wake epochs) during warping 

process. The values of their DTW-distances are indicated. 

TABLE I 

DISCRIMINATION PERFORMANCE COMPARISON 

Feature set Acc. Sens. Spec. κ 

Only DTW-based feature* 91.5% 69.7% 94.1% 0.51 

Original set (without DTW) 95.0% 65.7% 97.5% 0.65 

Extended set (with DTW)* 95.4% 68.1% 97.7% 0.69 

*The warping path is restricted by Sakoe-Chiba band with size r = 60. 

 
Fig. 3.  Means and standard deviations of the minimal DTW-distances 

of sleep and wake epochs for the 9 subjects. 
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Accordingly, an overall accuracy of 95.4% ± 2.6% was 

obtained. Compared with the result obtained using the 

original feature set, there was a significant improvement of 

~0.04, in which the significance of difference was examined 

via a paired t-test where p = 0.045 (p < 0.05) and df = 8. An 

assumption of the paired t-test was that the two variables (i.e., 

Kappa coefficients with and without using the new feature) 

are normally distributed, this was suggested by using a Q-Q 

plot method. The results here are comparable to those 

obtained in the previous study when actigraphic, respiratory, 

and ECG data were used [4]. In that case, a κ of 0.70 and an 

accuracy of 96.1% were obtained. The details of the 

discrimination result of the 9 subjects are summarized in 

Table II. Compared to subject 1-7, the classifier performs less 

well for subject 8 and especially subject 9 where many 

awakenings were not correctly detected. It might result from 

their single-night data having a lack of wake epochs before 

falling asleep and/or after waking up for classifier training.  

In addition, sleep statistics were estimated. For each 

statistic, an absolute error can be computed as the absolute 

difference value between the reference statistic (computed 

based on the manually annotated PSG data) and the estimated 

statistic (computed based on the results of sleep-wake 

discrimination). Similarly to the criterion used in [4], SOL 

was defined as the first epoch of a block of 17 consecutive 

epochs of which at least 16 were annotated as sleep. 

Meanwhile, ST followed a similar criterion but for wake 

epochs. WASO is equal to TWT excluding SOL and ST. The 

results are summarized and compared in Table III. These 

results show that as a whole, incorporating the DTW-based 

feature leads to obvious decrease of the absolute error in 

estimating SE, TST, TWT, and SOL except WASO and ST 

with actigraphy and respiratory signal. One reason of such 

exceptions may be that the respiration patterns of wake 

epochs during WASO and snooze periods are more similar 

among each other than those during sleep onset period so that 

discrimination ambiguity occurred. 

VI. CONCLUSION 

This paper studied the impact of using DTW in an 

automatic sleep-wake classifier. Combining a new 

DTW-based feature extracted from a respiratory signal with a 

set of existing features based on actigraphy and respiratory 

effort is promising in improving discrimination performance, 

achieving a Cohen’s Kappa coefficient of 0.69 (overall 

accuracy of 95.4%). The performance obtained after 

integrating this new feature is comparable to that obtained 

with a larger set of features extracted from actigraphy, 

respiration effort and ECG. This means that a good 

performance can be obtained with fewer requirements for 

measuring physiological signals during the night, namely 

those arising from the need to record ECG.  

Due to the small size of dataset in this study, it is suggested 

to further investigate the DTW method on a larger sized 

dataset, such as the phase shifting effect of the series on 

computing the DTW-based feature, the correlation between 

this feature and the other respiratory features, and so on.  
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TABLE II 

DISCRIMINATION RESULTS OF ALL THE SUBJECTS BASED ON  

THE EXTENDED FEATURE SET (WITH DTW FEATURE) 

 Acc. Sens. Spec. κ* 

Subject 1 96.5% 79.8% 98.5% 0.81 (0.81) 

Subject 2 94.7% 83.6% 95.8% 0.71 (0.64) 

Subject 3 90.6% 86.4% 91.3% 0.67 (0.64) 

Subject 4 93.3% 66.3% 96.9% 0.66 (0.68) 

Subject 5 95.1% 64.9% 98.6% 0.70 (0.59) 

Subject 6 98.8% 93.2% 99.1% 0.88 (0.76) 

Subject 7 99.3% 68.4% 100.0% 0.81 (0.77) 

Subject 8 94.9% 44.4% 99.9% 0.59 (0.57) 

Subject 9 95.7% 25.6% 99.7% 0.38 (0.39) 

Average 95.4% 68.1% 97.7% 0.69 (0.65) 

*The κ values without DTW-based feature are given in the brackets. 

 
TABLE III 

COMPARISON OF SLEEP STATISTICS – ABSOLUTE ERROR (MEAN ± STD) 

 
Absolute error  

(without DTW feature) 

Absolute error  

(with DTW feature) 

SE (%) 3.0 ± 2.2 2.5 ± 1.7 

TST (min) 12.7 ± 9.2 10.4 ± 7.2 

TWT (min) 12.7 ± 10.0 10.6 ± 7.7 

SOL (min) 4.7 ± 6.9 2.4 ± 1.6 

WASO (min) 8.2 ± 8.4 8.1 ± 6.4 

ST (min) 0.8 ± 1.1 0.9 ± 1.2 
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