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Abstract

We generalize the standard multi-class queueing network model by allowing both
standard queues and infinite virtual queues which have infinite supply of work. We pose
the general problem of finding policies which allow some of the nodes of the network to
work with full utilization, and yet keep all the standard queues in the system stable.
Towards this end we show that re-entrant lines, systems of two re-entrant lines through
two service stations, and rings of service stations can be stabilized with priority policies
under certain parameter restrictions. We further establish simple diffusion limits for the
departure and work allocation processes. The analysis throughout the paper depends
on model and policy and illustrates the difficulty in solving the general problem.

1 Introduction

Stability and performance analysis of multi-class queueing networks (MCQN) is by now
a well researched field. While there are established theoretical foundations with respect to
stability, diffusion approximations and near optimal control, many challenging theoretical
open problems remain unsolved. Some notable papers which have set the tone of this
research field in the past 25 years are [7], [8], [15] and [23]. Notable contributions with
respect to stability analysis are [3], [10], [27] and [33]. Landmark contributions with respect
to heavy traffic diffusion approximations are [4] and [37]. Many additional contributions
are summarized in the books [5], [9] and [26], as well as mentioned further below.

In the next paragraphs we give an informal overview of the purpose and contribution
of this paper, the reader will find further details and exact definitions in Section 2. The
dynamics of a standard multi-class queueing network (MCQN) are given by:

Qk(t) = Qk(0) +Ak(t)− Sk(Tk(t)) +
∑
k′∈K

Φk′,k

(
Sk′(Tk′(t))

)
≥ 0. (1)
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Here k ∈ K = {1 . . . ,K} denote the queues (classes, buffers) in the network, Qk(t) records
the number of customers in queue k at time t, which equals the initial queue level Qk(0)
plus the exogenous input count up to time t, Ak(t), minus service completions at the queue,
counted by Sk(Tk(t)), plus feedback from other queues, where Φk′,k(Sk′(Tk′(t))) counts the
customers that upon completion of service at queue k′ were routed to queue k. Buffer
contents are required to be non-negative. Tk(t) is the total cumulative processing time
devoted to queue k over (0, t]. Processing of the queues is provided by service stations
(servers, machines, nodes) i ∈ {1, . . . , L}, with i = s(k) the server of queue k, and C(i) =
{k : s(k) = i} the queues served by i, the constituency of server i. The L×K constituency
matrix C has Ci,k = 1 if node i serves k, and is 0 elsewhere. This is a discrete event system,
with buffer levels changing by 0,±1, at each exogenous arrival or service completion, and
it is controlled at each time t by the assigning of servers to customers, summarized by the
Tk(t). We assume each server can serve only one customer at a time, and that service may
be preemptive, but it is head of the line (HOL), so that only the first customer in each
queue is being served or has been preempted at any time.

Harrison defines a static planning problem that involves the average rates at which
the system operates (c.f. [16] or [35] and references there-in). For the standard MCQN
Harrison’s static planning problem is the linear program:

min
u

ρ

s.t. R u = α,

Cu ≤ 1ρ,

u ≥ 0.

Here α is the vector of exogenous input rates, and the K×K matrix R is the input output
matrix, determined by the processing rates of the queues, µk, and the routing fractions
Pk′,k, so that Rk′,k measures the rate of decrease in buffer k′ due to processing of customers
at buffer k. The unknown uk is the fraction of time that server s(k) devotes to buffer k,
equivalently it is the average rate of increase of Tk(t). The static planning problem calculates
the workload of the busiest servers. For the standard MCQN its solution does not involve
optimization (it does for networks with discretionary routing, or for more general processing
networks). The workloads ρi of the servers are given by the elements of the vector CR−1α,
and

ρ = max{ρ1, . . . , ρL} = max{CR−1α}.

The main result on standard MCQN, stated here in a way to be made more precise in
Section 2, is that ρ ≤ 1 is a necessary condition for stability, that stability depends on
the policy, and that if ρ < 1 then there exist policies for which the MCQN is stable. In
particular, the maximum pressure policy [11] (to be discussed in Section 2.5) will achieve
stability if ρ < 1, and (weaker) rate stability if ρ = 1. Nevertheless, as ρ approaches
1 the standard MCQN becomes more and more congested, typically with queues of size
O(1− ρ)−1.
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In this paper we consider a generalization of MCQN in which some of the queues have
infinite supply of work. We call these queues infinite virtual queues (IVQ) to distinguish
them from the remaining standard queues. This is motivated by the observation that
in many systems arrival of items for the various queues is not entirely random and can
be monitored and regulated in such a way that the queue never runs out. This is in
particular the case for manufacturing systems, where it is desired to achieve high utilization
of machines, and one can control the inputs of raw material and of partially processed items.
With the queues now partitioned into standard queues K0 and infinite virtual queues K∞,
with K = K0 ∪ K∞, the dynamics of MCQN with IVQs (MCQN-IVQ) are:

Qk(t) =
{
Qk(0)− Sk(Tk(t)) +

∑
k′∈K Φk′,k

(
Sk′(Tk′(t))

)
≥ 0, k ∈ K0,

Qk(0) + αkt− Sk(Tk(t)), k ∈ K∞. (2)

The dynamics of the standard queues are as before, except that there is no exogenous input
— input is now provided by the IVQs. For the IVQs there is no real level of the queue,
instead we define a level which records the deviation between production at a nominal
input rate αk, and the actual number of departures from the IVQ given by Sk(Tk(t)). Note
that Qk(t) of an IVQ is not sign restricted. MCQN-IVQ is a generalization, since standard
MCQN can be regarded as a special case in which the external arrivals are generated by
additional nodes, each with a single IVQ operating non-stop.

In this formulation αk can be viewed as decision (planning) variables, which set the
desired rate at which customers enter the system via IVQ k. In the service context this
is the service provided to type k ∈ K∞, in the manufacturing context it is the rate of
production of type k items. For MCQN-IVQ we formulate the following static production
planning problem which generalizes the static planning problem of Harrison:

max
α,u

w′α

s.t. R u = α, (3)

Cu ≤ 1,

αk ≥ 0, k ∈ K∞, αk = 0, k ∈ K0,

u ≥ 0.

Here, instead of determining the workload imposed by external input α, we impose a
constraint of 1 on workloads, and determine nominal input rates α that will maximize the
revenue w′α where wk, k ∈ K∞ are the rewards per customer from the IVQs. Let α∗ denote
the optimal nominal production rates obtained from solving (3). The resulting workloads
are then the elements ρi of the vector CR−1α∗. Typically, in this optimization some of the
resource constraints Cu ≤ 1 are binding, in which case we get a workload of ρi = 1 for
those servers. Thus, in order to produce at optimal nominal rates we need to achieve full
utilization of some of the resources. While this cannot be achieved without congestion in
standard MCQN, it may well be possible to achieve it in MCQN-IVQ. We define ρ̃i as the
workload of server i restricted to standard buffers only, i.e. ρ̃i =

∑
k∈C(i)∩K0

uk. We now
pose our key research question:
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Key Research Question: For MCQN-IVQ with ρ̃i < 1, i = 1, . . . , L, find a policy under
which IVQs produce at the nominal rates, and all the standard queues are stable.

We believe that this is a hard problem in general. We have as yet no indication whether
this is possible always, or if it is not always possible, what are the networks for which such
policies exist, and what are the policies which need to be used.

To illustrate the question, and a possible solution, we now describe an example taken
from [30] (see also [17, Section 12.2.4], [21] and [22]). They analyze a MCQN-IVQ which
they name the push-pull network, illustrated in Figure 1. In this figure as well as in the
following Figures 3, 4 and 5, the rectangles denote servers and the circles denote queues,
those with incoming arrows are standard queues, while those marked ∞ are IVQs. The

i = 1 i = 2

∞

∞

1 2

34

Figure 1: The push-pull network.

push-pull network has two nodes i = 1, 2, two routes, two IVQs, k = 1, 3 and two standard
queues k = 2, 4. Items move from IVQ 1 to queue 2 and out, and items move from IVQ
3 to queue 4 and out. This is in fact the KSRS network of Kumar and Seidman [24] and
of Rybko and Stolyar [33], with IVQs replacing the random input streams. The dynamics
here are:

Qk(t) = αkt− Sk(Tk(t)), k = 1, 3,

Qk(t) = Qk(0) + Sk−1(Tk−1(t))− Sk(Tk(t)), k = 2, 4.

We assume that the average service requirements per customer at the queues are mk =
µ−1
k , k = 1, . . . , 4. The static production planning problem for the push-pull network is

then:

max
u,α

w1α1 + w3α3

s.t.


µ1 0 0 0
−µ1 µ2 0 0

0 0 µ3 0
0 0 −µ3 µ4



u1

u2

u3

u4

 =


α1

0
α3

0

 ,
[

1 0 0 1
0 1 1 0

]
u1

u2

u3

u4

 ≤ [ 1
1

]
,

u, α ≥ 0.
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The solution of this linear program is easily read from Figure 2 or similar figures for any
parameter values. According to the values of the parameters w, µ the optimal nominal
inputs can be one of three:

(i) either α1 = min{µ1, µ2}, α3 = 0,
(ii) or α1 = 0, α3 = min{µ3, µ4},
(iii) or α1 = µ1µ2(µ3−µ4)

µ1µ3−µ2µ4
, α3 = µ3µ4(µ1−µ2)

µ1µ3−µ2µ4
.

Figure 2: The static production planning problem for the push-pull network.

If we exclude the singular cases of µ1 = µ2 or µ3 = µ4, we then have the following
results: In (i) only queues 1 and 2 are processed, and ρ1 = 1, ρ̃1 = 0 while ρ2 = ρ̃2 = µ1

µ2

and this is clearly stable for µ1 < µ2. The case (ii) is similar, with only queues 3, 4 being
processed. Case (iii) is the interesting one: We have ρ1 = ρ2 = 1, while,

ρ̃1 =
µ3(µ1 − µ2)
µ1µ3 − µ2µ4

< 1, ρ̃2 =
µ1(µ3 − µ4)
µ1µ3 − µ2µ4

< 1.

A policy that stabilizes the push-pull network in case (iii) was indeed found in [30] (see also
[21]). Case (iii) has two sub-cases: (iii a) If µ2 > µ1 and µ4 > µ3 then this system is stable
under a policy which gives priority to processing of the queues 2 and 4. We call this policy
a pull priority policy, since it gives priority to pulling items out of the standard queues.
In contrast to that, we call the processing of items at an IVQ push activities, as it pushes
work into the standard queues. (iii b) If on the other hand µ2 < µ1 and µ4 < µ3, then pull
priority is unstable (this is similar to what happens in the KSRS network). However, a
policy which processes items out of buffer 2 only when buffer 4 is above a certain threshold,
and similarly processes items out of buffer 4 only if buffer 2 is above a certain threshold,
achieves full utilization of both nodes and is stable. Note that here we use push priority to
reach the required thresholds. Similar threshold policies for the KSRS network are discussed
in [18].

Following this overview and motivation we now state our contributions in this paper:
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− We introduce MCQN with infinite virtual queues, as a means to achieve full uti-
lization without congestion. This is particularly important in manufacturing and
communication systems, where control of input and monitoring of system state is
available.

− We formulate a static production planning problem which is a generalization of Har-
rison’s static planning problem, to obtain optimal production rates.

− We pose the key research question: can we always stabilize a MCQN-IVQ with ρ̃i < 1
for all servers.

− We establish a framework for verifying stability of MCQN-IVQ under given policy,
via fluid models.

− We discover that maximum pressure policies while rate stable, do not in general
provide a solution to the key research question.

− We analyze the stability of an IVQ re-entrant line, with full utilization and ρ̃i < 1,
under various policies (Section 3, Figure 3). We show stability for last buffer first
served (LBFS). We find that unlike standard re-entrant line, stability under FBFS
is not guaranteed. We find sufficient conditions for stability under first buffer first
served (FBFS), which are also necessary for two server lines.

− We extend the results to two re-entrant lines on two servers, and show stability of a
pull priority policy, (Section 4, Figure 4).

− We analyze a ring of machines (Section 5, Figure 5), and show stability under pull
priority policy for a range or parameter values. The proof is based on consideration
of the system in various modes and construction of a novel sharp Lyapunov function.

− We provide a diffusion approximation to the time allocation and departure processes
of stable MCQN-IVQ, and point out that control over input introduces correlations
between time allocation at the various IVQs, which in turn introduces correlations
between the departure processes.

The rest of the paper is structured as follows: In Section 2 we present the general
method, assumptions, and techniques which we use. We give further details of the definition
of MCQN-IVQ, and specify the primitives of the probability model under which our results
are derived. These lead to an associated Markov process that describes our system, and
the definition of stability (e-stability) of the MCQN-IVQ as positive Harris recurrence
(ergodicity) of the Markov process. We also define the weaker notion of rate-stability. We
then present a brief overview of the fluid stability framework, adapted to accommodate
IVQs. We further discuss the special cases of networks with deterministic routes, and pull
priority policies, and the role of maximum pressure policies. The following three sections
are devoted to the three structured models, mentioned above. These are in essence fluid
stability proofs, each time tailored to network and policy. The ability to fully utilize some
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of the servers and keep the standard queues stable is the result of our freedom to control
the input from the IVQs. This is reflected in correlations between time allocated to IVQs
at different server nodes, and this in turn affects the output processes from the queue.
We discuss this in Section 6 where we present diffusion limit results for approximating the
output and resource allocation processes of MCQN-IVQ.

1.1 Notation

We use Rd
+ and Zd+ to denote the sets of all d-dimensional non-negative real and integer

vectors respectively. For a vector x ∈ Rd1
+ × Zd2+ we let |x| denote the `1 norm, given by

sum of absolute values of the components. For a finite set A we use |A| to denote the
number of elements of A. We use I{·} for indicator function of event {·}. For a metric
space S, we denote by B(S) the Borel sets of S. In general, when no ambiguity may arise,
we omit index subscripts when we refer to vectors. For index sets D and D′ and a matrix
A, let AD,D′ denote the associated sub-matrix. We denote the identity matrix by I and for
a vector a we let diag(a) be a diagonal matrix with a on the diagonal. The transpose of
a matrix A is A′. We let 1 denote a vector of 1’s. We use Dd[0,∞) to denote the set of
functions f : [0,∞) 7→ Rd

+ that are right continuous with left limits. For f ∈ Dd[0,∞), we
let ||f ||t = sup0≤s≤t |f(s)|. We endow the function space Dd[0,∞) with the usual Skorohod
J1-topology. For a sequence of stochastic processes {Xr} taking values in Dd[0,∞), we
use Xr ⇒ X to denote that Xr converges to X in distribution as r → ∞. A sequence of
functions {fr} ⊂ Dd[0,∞) is said to converge to f ∈ Dd[0,∞) uniformly on compact sets
(u.o.c.), if for each t ≥ 0, limr→∞ ||fr − f ||t = 0.

2 Associated Markov process, fluid model, and stability

2.1 The discrete event stochastic model

As introduced in Section 1, our MCQN-IVQ consist of standard queues k ∈ K0 and
IVQs k ∈ K∞, with dynamics given by (2). Note again that while Qk(t) for standard
queues counts actual customers in the queue, the quantities Qk(t) for the IVQ are more
arbitrary, and measure the deviation of the actual processing of customers from a nominal
input rate αk. The nominal input rates may be obtained from the optimal solution of a
static production planning problem, or they may be chosen in some other way, as far as the
modeling of MCQN-IVQ is concerned this is immaterial. Apart from the nominal input
rates, the primitives of this system are the routes and the processing times of individual
customers, starting from their processing at an IVQ, and moving through the network.
We make the usual probabilistic assumptions about processing and routing: All processing
times and routings are independent. The n’th item in queue k requires processing for
duration ξk(n), which are non-negative i.i.d for n = 1, 2, . . ., with mean mk = µ−1

k . Upon
completion of service the n’th item moves from queue k to queue k′ ∈ K0 with probability
Pk,k′ or leaves the system with probability 1−∑k′∈K0

Pk,k′ . It is assumed that PK0,K0 has
spectral radius < 1. We define the random renewal counting processes Sk(s) as the number
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of service completions at queue k over service duration s, and Φk,k′(n) as the number of
items among the first n items departing queue k which are routed to queue k′. Note that
we do not model items that move from k to k′ ∈ K∞, since they become indistinguishable
from the infinite supply. The input output matrix for MCQN-IVQ is

R = (I − P ′)diag(µ) =
(
I 0
−P ′K∞,K0

I − P ′K0,K0

)
diag(µ).

The cumulative processing times are determined by the scheduling policy (control).
Recall that each server i can serve only one item at a time, and service is preemptive HOL,
so that in each of the queues k, at any time t there is only one customer that is either
waiting for service to start, or is being served, or has been preempted. Thus Tk(t) are
constrained by the requirement that servers serve one customer at a time, that no service
is allocated to empty queues, and that Qk(t) ≥ 0, k ∈ K0. The capacity constraints on the
allocation of service to the constituency of each node are summarized by:

Tk(0) = 0, Tk(t) non-decreasing, C
(
T (t)− T (s)

)
≤ (t− s)1, 0 ≤ s ≤ t.

2.2 The associated Markov process

To analyze the MCQN-IVQ one associates a Markov process with Q,T , as follows: The
state of this process keeps track of the number of items in each of the standard queues,
the residual processing times of all classes, and any additional state information needed
by the policy. Denote by Uk(t), k ∈ K the residual processing times of the head of the
line customers at time t. Denote by G(t) ∈ G the additional policy information. We now
denote the network state process by X (t) =

(
QK0(t), U(t), G(t)

)
. The state space for this

process is S = Z|K0|
+ × RK

+ × G, in general the state space is uncountable. We assume
that it is a piecewise deterministic strong Markov process (c.f. [13]). For specific policies
(e.g. preemptive priority policies), we have that G = ∅. For such cases, [5] (for example),
provides a rigorous treatment and construction of X , where it is shown that it is indeed a
strong Markov process. The adaptation from MCQN to MCQN-IVQ is immediate.

Stability: We say that the network is stable if X is positive Harris recurrent. We further
say that a stable network is e-stable if the Markov process is ergodic. The main consequence
of these properties is: If the Markov process is positive Harris recurrent then X possesses
an invariant measure (a stationary distribution). If it is also ergodic then X converges in
distribution to this stationary distribution as t → ∞, from every starting state. For the
definition of positive Harris recurrence and ergodicity in the context of queueing networks
see [5]. Further details are in [28]. A brief description applicable to our context is in
Section 5 of [30]. Note that in case of memory-less exponential processing times (and under
the assumption that G is at most countable), S is countable and positive Harris recurrence
is simply positive recurrence (c.f. [32]).
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Rate Stability: In addition to the above definitions of stability, a weaker notion, rate
stability, is defined path-wise for each coordinate separately. We say that Qk, k ∈ K, is
rate stable if limt→∞Qk(t)/t = 0, a.s. For k ∈ K0 this implies that there is no linear
accumulation of items over time. For k ∈ K∞ (as can be seen from (2)), this occurs
if and only if the departure rates from the IVQs equal the nominal input rates, that is:
limt→∞ Tk(t)/t = αk/µk a.s. for k ∈ K∞.

2.3 The key research question

We return to the question of finding policies that achieve full utilization, and keep
all standard queues stable. Recall the definition of the K dimensional vector of static
resource requirements, u = R−1α, from which we have for nodes i = 1, . . . , L workloads
ρi =

∑
k∈C(i) uk, and standard queues workloads ρ̃i =

∑
k∈C(i)∩K0

uk. Assume that ρi ≤ 1
and ρ̃i < 1 for all nodes i = 1, · · · , L. Let X be the associated Markov chain, and let
Qk(t), k ∈ K∞ be the IVQ levels. We are looking for policies under which:

(i) Qk(·) is rate stable for all k ∈ K∞.

(ii) X is positive Harris recurrent / ergodic.

The first requirement ensures that the IVQs produce at the nominal production rates, αk.
The second requirement implies that the standard queues are stable. In this case we say
that the MCQN-IVQ is stable / e-stable.

It seems that essentially we should focus on more restricted problems, in which we
consider MCQN-IVQ which have ρi = 1 and a single IVQ at every node and all the routes
are deterministic. We argue as follows: Nodes which have ρi < 1 can be considered as a
subnetwork, with random exogenous inputs, and stabilized by standard methods, without
any IVQs. Remaining then only with nodes that have ρi = 1 and ρ̃i < 1 we must have at
least one IVQ at each node. If we can stabilize such nodes with a single IVQ at each, then
we should certainly be able to do so with several IVQs. Finally, as pointed out by Kelly
[20], using only deterministic routes is essentially without loss of generality, as one can
imitate probabilistic routing by splitting items into more classes which have deterministic
routes.

For these more restricted problems we can formulate the key research question differ-
ently. We are now looking for policies which:

(i) Are work conserving, so the servers which have IVQs work all the time and are fully
utilized.

(ii) X is positive Harris recurrent / ergodic.

2.4 Fluid stability framework

To study the question of ergodicity or positive Harris recurrence of the associated
Markov process of a MCQN, the current commonly used approach is via a fluid frame-
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work. We briefly survey this approach, and its extension to MCQN-IVQ. For a thorough
discussion see [5] and for a quicker introduction see [11].

For an arbitrary function Z(t), t > 0 and an integer N , define the fluid scaling Z̄N (t) =
Z(Nt)/N , and similarly for Z(m),m = 1, 2, . . . define Z̄N (t) = Z(bNtc)/N . For a MCQN-
IVQ assume a sequence of starting values QN (0), and assume a common (coupled) sequence
of processing and routing random variables for all N , so for eachN we have different starting
conditions but the same S,Φ. We now look at the network processes for this sequence,(
QN (t), TN (t)

)
, and their fluid scalings

(
Q̄N (t), T̄N (t)

)
. We assume for simplicity that

UN (0) = 0 (no started jobs), and that for all N we have Q̄N (0) = Q(0).
Next we define fluid limits: We say that the deterministic function

(
Q̄(t), T̄ (t)

)
is a fluid

limit if there exists a sample path (an ω in the sample space) and an increasing divergent
sequence of integers r such that limr→∞(Q̄r(t, ω), T̄ r(t, ω)) = (Q̄(t), T̄ (t)) u.o.c. Such fluid
limits exist, by the following argument: Under any policy, for every sample path ω, Tn(t, ω)
are Lipschitz continuous with Lipschitz constant 1, hence so are also T̄N (t, ω), so they form
a sequence of equicontinuous functions, and hence there exists a divergent sub-sequence
of r such that T̄ r(t, ω) converges u.o.c. to a Lipschitz continuous deterministic function.
Next, for the sequence of primitives we have the functional strong law of large numbers
(FSLLN), and we now consider only sample paths for which strong law convergence holds.
This excludes a set of events of measure zero. By the FSLLN convergence we have that
limN→∞ S̄

N
k (t) = µkt and limN→∞ Φ̄N

k,k′(t) = Pk,k′t, u.o.c. It can now be shown (c.f. [5])
that convergence of S̄r, Φ̄r, T̄ r implies convergence of Q̄r.

Since the fluid limits are Lipschitz continuous they are absolutely continuous and so they
have derivatives almost everywhere. For every fluid limit (Q̄(t), T̄ (t)) we will call points t
at which all the derivatives exist regular points, and denote the derivatives at regular points
by
( ˙̄Q(t), ˙̄T (t)

)
. We will have

(
Q̄(t), T̄ (t)

)
=
(
Q̄(0), 0

)
+
∫ t
0

( ˙̄Q(s), ˙̄T (s)
)
ds.

Next we define fluid model equations: these are equations which must be satisfied by
every fluid limit. They include, analogous to (2):

Q̄k(t) =
{
Q̄k(0)− µkT̄k(t) +

∑
k′∈K Pk′,kµk′ T̄k′(t) ≥ 0, k ∈ K0,

Q̄k(0) + αkt− µkT̄k(t), k ∈ K∞. (4)

Taking derivatives of (4) we obtain at all regular points a dynamic version of the static
production planning constraints (3):

R ˙̄T (t) + ˙̄Qk(t) = α,

C ˙̄T (t) ≤ 1, ˙̄T (t) ≥ 0.

The fluid model equations also include additional equations that follow from the policy
which determines TN (t). In particular we encounter in the following sections that work
conserving nodes with IVQs are busy at all times, hence

∑
k∈C(i) T̄

N
k (t) = t and so for the

fluid limit: ∑
k∈C(i)

T̄k(t) = t. (5)
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We also encounter model equations that relate to priority policies. If node i gives priority
to queue k over queue k′, then work is allocated to k′ only when Q̄Nk (t) = 0:∫ t

0
Q̄k(t)dT̄k′(t) = 0.

One refers to the set of fluid model equations as the fluid model.
We now define fluid stability: Let |Q̄(0)| = ∑

k∈K0
Q̄k(0), and assume that |Q̄(0)| = 1.

We say that the fluid model associated with the network under a given policy is stable if
there exists a constant t0 so that for all such Q(0) and for every solution of the fluid model
equations Q̄(t) = 0 for all t > t0.

A theorem of Dai [10] for MCQN shows that fluid stability implies positive Harris
recurrence, see [5] for an up to date account, some further historical notes, and an extension
of this to ergodicity. An adaptation of this to MCQN-IVQ is discussed in [30, Theorem 2].
We state this as a theorem:

Theorem 1. Consider a MCQN-IVQ under some given policy. Assume that every closed
and bounded set of states in X is uniformly small. If the fluid model for this network is
stable, then the network is e-stable.

This theorem allows us to largely ignore the stochastic discrete event system, and to
study instead the deterministic continuous solutions of the fluid models. In fact the proofs
in Sections 3–5 are proofs of fluid stability. We discuss the requirement of uniformly small
in Section 2.6.

The notion of weak fluid stability requires that if Q̄(t0) = 0 then Q̄(t) = 0 for all t > t0.
It is easily seen (see [11]) that weak fluid stability implies rate stability.

2.5 Maximum pressure policies

Maximum pressure policies were introduced in [34] and adapted to MCQN and to more
general processing networks by Dai and Lin [11]. Maximum pressure policy, at any time t,
with queues given by Q(t), allocates servers to customers by choosing uk(t) = 0 or uk(t) = 1,
so that uk(t) is an extreme point solution of the maximization problem:

maxu(t)∈A(t) Q(t)′Ru(t)

s.t. Cu(t) ≤ 1, u(t) ≥ 0,

where A(t) are available actions, defined by the requirement that uk(t) = 0 if Qk(t) = 0,
i.e. no service is allocated to empty queues.

Dai and Lin [11] prove that for standard MCQN under maximum pressure policy, ρ ≤ 1
implies weak fluid stability and hence implies that the MCQN is rate stable, while ρ < 1
implies fluid stability, which with additional technical assumptions implies also stability or
e-stability of the MCQN. In [29] it is shown that the same results apply to MCQN-IVQ.
Hence, for MCQN-IVQ with ρi < 1, i = 1, . . . , L, maximum pressure achieves stability
while maintaining the nominal input rates α. However, if ρi = 1 for some buffers, maximum
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pressure only guarantees rate stability. In fact, for the push-pull network, simulations in
[21] show that under maximum pressure policy the push-pull network is not stable.

A natural candidate to replace maximum pressure policies for MCQN-IVQ is the follow-
ing policy: Use the maximum pressure allocation calculated only for the standard queues,
and allocate a server to an IVQ only if all the standard queues of the server are empty.
Unfortunately this policy is not successful in general. For the push-pull network, in case
(iii b), it causes the queues to diverge, and is not even rate stable.

2.6 Technical requirements

To establish positive Harris recurrence or ergodicity using the fluid limit framework, we
need some further technical concepts (which occur when S is uncountable) : For x ∈ S,
B ∈ B(S), let P t(x,B) be the transition probability of X . Let ν be a nontrivial measure on
(S,B(S)). A non-empty set, A, is said to be uniformly small with respect to ν if for some
s1 < s2 and for all t ∈ [s1, s2], and for all x ∈ A:

P t(x,B) ≥ ν(B), for all B ∈ B(S).

Theorem 1 requires for e-stability that every closed and bounded set of states in S should
be uniformly small. This is best described in [5, Section 4.1]. One way to formulate results
is to simply assume that this is the case, i.e. assume that every closed and bounded set
of states is uniformly small. Unfortunately there is no easy general way to verify this
assumption, and therefore it is preferable to specify an assumption in terms of the model
primitives and the properties of the policy. Such a result appears in [27] and is generalized
in [5].

In the context of MCQN-IVQ, one can indeed guarantee uniform smallness for some
policies, under some assumptions on the distribution of processing times at the IVQs.

For MCQN-IVQ we define a work conserving policy as a policy in which a server does
not idle if there are customers in one of its queues. In particular this means that a server
with an IVQ never idles. We define a weak pull priority policy as a policy which at all times
allocates processing capacity to some standard queue, unless all the standard queues are
empty.

We say that the distribution of X has unbounded support if P (X > x) > 0 for all x > 0.
We say that the distribution of X is spread out if there exists an integer l and non-zero
density q such that P (a < X∗l ≤ b) ≥

∫ b
a q(x)dx, where X∗l is the l fold convolution of X

(c.f. [2, Section VII.1]).
Lemma 2 from [30] then states:

Lemma 1. If a MCQN-IVQ is operated with a work conserving weak pull priority policy,
and if processing times at all the IVQs have unbounded support and are spread out, then
every closed and bounded set of states is uniformly small.

In the next sections we shall assume that every closed and bounded set of states in X
is uniformly small and utilize Theorem 1 in reducing the problem of proving e-stability to
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that of showing that the fluid model is stable. Note that all of the control policies that we
use are in fact weak pull priority policies, so with the right assumptions on processing times
we can use Lemma 1 to show that Theorems 2, 4, 5, 6 imply e-stability of the MCQN-IVQ.

The weaker requirement that closed and compact sets of states are petite rather than
uniformly small implies positive Harris recurrence of the process X rather than ergodic-
ity. To guarantee petiteness one may relax some of the requirements on processing time
distributions for some models.

3 Re-entrant lines

We consider a single re-entrant line with infinite supply of work as in Figure 3. Buffers
are numbered k = 1, 2, . . . ,K and items start in the virtual infinite buffer 1, then move
from buffer k to k + 1, and leave the system from buffer K. Nodes i = 1, . . . , L serve the
various buffers, and for simplicity we take s(1) = 1, i.e. 1 ∈ C(1). Without loss of generality
we let

∑
k∈C(1)mk = 1, and we assume max{∑k∈C(i)mk, i = 2, . . . , L} < 1. We refer to

this system as the IVQ re-entrant line.

i = 1 i = 2 i = 3

i = 4

i = 5

∞ 1 2 3

45

6

7

8

9 10

Figure 3: An IVQ re-entrant line.

Re-entrant lines were introduced by Kumar [23], as models for manufacturing systems,
notably for semi-conductor wafer fabrication plants, see also [6]. It is well know that a
standard re-entrant line with random input at rate α < 1 is stable under the policies of
LBFS (last buffer first served), FBFS (first buffer first served), and maximum pressure (c.f.
[5, Section 5.2], [11] and [12]).

In this section we investigate the stability of the IVQ re-entrant line under full uti-
lization, with nominal input rate α = 1. We then have ρ1 = 1, ρi = ρ̃i < 1, i 6= 1, and
ρ̃1 < 1. This is the general case of a multi-class queueing network with a single IVQ, and
with fixed routing. Some explicit results on a 2-server 3-queue IVQ re-entrant line, with
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C(1) = {1, 3}, C(2) = {2}, and with exponential service times, under LBFS, are derived in
[1, 36].

We obtain the following results: The network is stable under LBFS policy. It is stable
under a policy which gives lowest priority to the IVQ, and uses FBFS for all other buffers,
if some additional necessary and sufficient conditions on the parameters hold. In general it
is not stable under pure maximum pressure policy, and it is not stable under a policy which
gives lowest priority to the IVQ, and uses maximum pressure for the standard queues.

3.1 The IVQ re-entrant line under LBFS

In this and the following sections we let Dk(t) = Sk(Tk(t)) denote the departure process
from buffer k, with the fluid scaled departure process D̄N

k (t) and fluid limits D̄k(t). The
following lemma is useful when considering fluid models of MCQN-IVQ with deterministic
routing:

Lemma 2. For a network with deterministic routes, let k′, k ∈ K0 be two successive buffers
on one of the routes. Assume that t is a regular time point. If Q̄k(t) = 0 then ˙̄Dk′(t) =
˙̄Dk(t), or alternatively µk′ ˙̄Tk′(t) = µk

˙̄Tk(t).

Proof. Since Q̄k(t) is non-negative, whenever Q̄k(t) = 0 it is a local minimum, and hence if
t is a regular point then by Fermat’s theorem on stationary points, ˙̄Qk(t) = 0. The result
follows from ˙̄Qk(t) = ˙̄Dk′(t)− ˙̄Dk(t) as seen in (4).

Theorem 2. The fluid model for the IVQ re-entrant line with ρ1 = 1 and ρ̃i < 1, under
LBFS policy, is stable

Proof. We denote m−1 =
∑

k∈C(1), k>1mk, and m̃ = max{m−1,
∑

k∈C(i)mk, i = 2, . . . , L}.
Define τ = inf{s : |Q̄(s)| = 0}. We show that τ is bounded. Observe from (4) that,

|Q̄(t)| = |Q̄(0)|+ D̄1(t)− D̄K(t).

Assume that k is the last non-empty buffer in the line, Q̄k(t) > 0, Q̄k′(t) = 0, k′ > k at a
regular time t, with k ∈ C(i). Then by Lemma 2:

˙̄Dk(t) = ˙̄Dk+1(t) = · · · = ˙̄DK(t) =

 ∑
k′∈C(i), k′≥k

mk′

−1

.

We now argue:
(a) While |Q̄(t)| > 0 we have outflow from the last non-empty buffer, at rate

˙̄DK(t) ≥ 1
m̃
> 1.

(b) Outflow from buffer K is head of the line, so all of the fluid in Q̄(0) will be cleared
before any new fluid flows out. By (a) we therefore have that at time 1 all the fluid originally
in the system must have left the system.
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(c) Any unit of fluid that was not originally in the system but entered after time 0
requires m−1 processing from server 1. By (b), D̄K(t) − D̄K(1) is all of it outflow of fluid
that was not originally in the system. Hence it requires an amount of service from server
1 which is ∑

k∈C(1)

T̄k(t) ≥ m−1(D̄K(t)− D̄K(1)) > m−1(t− 1),

where (a) is applied in the last inequality.
(d) Since T̄1(t) +

∑
k∈C(1) T̄k(t) = t we get, by (c), that

T̄1(t) < t−m−1(t− 1) = 1 +m1(t− 1).

Since the rate of processing of buffer 1 is 1/m1, we have that

D̄2(t) <
1−m1

m1
+ t.

(e) We therefore obtain that for t < τ ,

0 < |Q̄(t)| = 1 + D̄2(t)− D̄K(t) < 1 +
1−m1

m1
+ t− 1

m̃
t =

1
m1
− t1− m̃

m̃
.

We conclude that if the system stays non-empty on the time interval [0, τ) then

τ <
m̃

m1

1
1− m̃ .

(f) Next we prove that if |Q̄(t0)| = 0, then |Q̄(t)| = 0 for t ≥ t0. Suppose contrariwise
that there exists a δ > 0 such that |Q̄(t)| > 0 for t ∈ (t0, t0 + δ]. By (a) and (c),∑

k∈C0(1)

[T̄k(t0 + δ)− T̄k(t0)] ≥ m−1[D̄K(t0 + δ)− D̄K(t0)] > m−1δ.

By (d),

[T̄1(t0 + δ)− T̄1(t0)] = δ −
∑

k∈C0(1)

[T̄k(t0 + δ)− T̄k(t0)] < (1−m−1)δ = m1δ,

and therefore D̄2(t0 +δ)−D̄2(t0) < δ, while D̄K(t0 +δ)−D̄K(t0) > δ, but this is impossible
since we assume that |Q̄(t0)| = 0.

3.2 The IVQ re-entrant line under pure maximum pressure policy

We now consider the IVQ re-entrant line, with ρ1 = 1, ρ̃i < 1, i = 1, . . . , L, with
a pure maximum pressure policy. Under this policy, we calculate the pressure of each
buffer k, including the IVQ buffer 1, as Pk(t) = µk(Qk(t) − Qk+1(t)), k = 1, . . . ,K − 1,
PK(t) = µKQK(t), and we allocate server i to serve buffer k if k ∈ arg maxj∈C(i) Pj(t) and
if Pk(t) > 0 (breaking ties according to some arbitrary rule, say priority to lowest index
k). If no buffers have pressure > 0, then server i idles. Recall that for the IVQ buffer 1,
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Q1(t) = α1t−D1(t), the difference between the nominal input and the departure process,

where α1 =
(∑

j∈C(1)mj

)−1
.

Under maximum pressure the re-entrant line will be rate stable. This follows from the
general result of Dai and Lin [11] and its adaptation to MCQN-IVQ in [29]. We now show:

Proposition 1. The IVQ re-entrant line with ρ1 = 1, ρ̃i < 1, i = 1, . . . , L, is in general
not stable under pure maximum pressure.

The reason for this is quite simple: under maximum pressure, in steady state, the IVQs
will have a positive probability of idling. But in that case we cannot have ρi = 1. We
perform an exact analysis for a simple example now.

Proof. In this proof we consider the stochastic system directly, and not the fluid model.
We look at the simplest re-entrant line, with 2 servers and 3 queues, so that C(1) =
{1, 3}, C(2) = {2}, with queue 1 an IVQ. We assume that processing times at the 3 buffers
are exponential random variables, with rates µ1 = µ2 = µ3 = 2α1 = 1. Under max-
imum pressure policy the state of this system will be described by the Markov process
X =

(
Q1(t), Q2(t), Q3(t)

)
, where Q2(t), Q3(t) are non-negative integers, and Q1(t) is a real

number. Because the processing times are exponential, there is no need to keep U(t), the
residual processing times of the head of the line items, as part of the state. However, to
implement the maximum pressure policy we need to know Q1(t), which in this case is the
G(t) part of X .

If the system is stable under maximum pressure, then an invariant distribution exists
for X , so we can consider the stationary process, starting at time 0. For some integer M
there will be a positive probability π1 that the process has Qi(0) ≤M, i = 1, 2, 3. Let N(t)
be a rate 1 Poisson process modeling successive processing times on server 1. Let A be the
event that N(4M) > 4M , and that the first service of server 2 is longer than 4M + 1, and
let δ1 = P (A). Note that while Q1(t)+Q3(t) > 0, server 1 never idles, so the number of job
completions is N(t). Also, note that while Q3(t) > 0, the IVQ Q1(t) will never go below
1. Under A there will be a time t0 < 4M at which for the first time Q1(t0) = Q3(t0) = 0.
This is because the total number of jobs to be served before all jobs are exhausted includes
no more than the original ≤ 2M jobs in Q1 and Q3, plus the 1/2t0 nominal input to Q1,
so indeed all jobs can be exhausted before 4M , and since Q3 will empty first and stay
empty, at t0 both queues will be empty. At t0+ server 1 will start serving the IVQ, and
will complete a job before time 4M + 1/2 with probability δ2. This will be followed by
idling of server 1 for at least 1/2 time units. Hence, for the stationary process there is a
probability ≥ π1δ1δ2 that in time period of length ≤ 4M + 1 server 1 idles for at least 1/2
time unit. This gives a lower bound of π1δ1δ2/8M for the long term fraction of time that
the stationary process idles server 1. But if server 1 idles a fixed fraction of the time then
with nominal input α1 we have Q1(t) → ∞ almost surely. This is a contradiction to the
assumption that an invariant distribution exists.
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3.3 The IVQ re-entrant line under maximum pressure with low priority
to the IVQ

We next consider a modified version of the maximum pressure policy, in which server
1 is fully utilized but work on the IVQ has low priority. The modified policy is defined as
follows: Pressure is calculate as in Section 3.2 only for buffers k = 2, . . . ,K. Allocation of
server i 6= 1 is done as in Section 3.2. Server 1 is allocated to the highest pressure buffer in
C(1) if the pressure is ≥ 0 and the buffer is non-empty. Otherwise server 1 is allocated to
the IVQ.

We now show that this policy is not stable. As an example consider a network with
L = 2, K = 4 and C(1) = {1, 4}, C(2) = {2, 3}, similarly to the well-studied network in
[25]. Take m1 +m4 = 1, m2 +m3 < 1 and m1 <

m2m3
m2+2m3

. For example we can take m1 =
1
8 , m2 = 2

5 , m3 = 1
2 , m4 = 7

8 . The initial condition is Q̄2(0) = 1 and Q̄3(0) = Q̄4(0) = 0.
We claim that the maximum pressure policy with low priority to the IVQ will use the

allocations:
u1(t) = 1, u2(t) = 1, u3(t) = u4(t) = 0, (6)

for all t ≥ 0. To see this we note that under this allocation:

Q̄2(t) = 1 + µ1t− µ2t, Q̄3(t) = µ2t, Q̄4(t) = 0,

which are all non-negative so the policy is feasible. Furthermore, the pressures are:

P2(t) = µ2(1 + µ1t− 2µ2t), P3(t) = µ3µ2t, P4(t) = 0,

and we can see that P2(t) ≥ P3(t), so that indeed the allocation (6) is according to the
policy. Under this policy we have that Q̄2(t), Q̄3(t) → ∞ as t → ∞, i.e. the fluid model
diverges.

3.4 The IVQ re-entrant line under FBFS

We now consider the first buffer first served (FBFS) policy for the IVQ re-entrant line.
Under FBFS each server gives preemptive priority to work on the lowest index buffer that
it can serve, except that the IVQ has lowest priority. The example discussed in Subsection
3.3 showed instability. We observe that the policy that was used in that example is in fact a
FBFS policy. Hence we see that unlike the LBFS case, an IVQ re-entrant line under FBFS
discipline may be unstable when ρ1 = 1, ρ̃i < 1, i = 1, . . . , L. In this section we derive a
sufficient and a partial necessary condition for stability under FBFS. To characterize the
sufficient condition, we introduce

Definition 1. For an IVQ re-entrant line, we say that buffer k1 joins buffer k2 without
loops if for any two buffers k3 and k4 with k1 ≤ k3 ≤ k4 ≤ k2 we have s(k3) 6= s(k4).
Otherwise, we say that buffer k1 joins buffer k2 with loops.

Write C(1) = {`1, · · · , `|C(1)|}, with `1 = 1, for convenience we denote `0 = 0, `|C(1)|+1 =
K + 1. By the Definition 1, we know that for all i, k where `i < k < `i+1, if buffer k
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joins buffer `i+1 without loops, then any buffer k′ with k < k′ < `i+1 also joins buffer
`i+1 without loops; if buffer k joins with buffer `i+1 with loops, then any buffer k′′ with
`i < k′′ < k also joins buffer `i+1 with loops. Define

Hk = {` : ` ≤ k and s(`) = s(k)}, H−k = Hk\{k},
cn = max{l ∈ Z+ : `n+l = `n + l}, n = 1, . . . , |C(1)|.

Theorem 3. We consider a fluid model for the IVQ re-entrant line with ρ1 = 1 and ρ̃i < 1
under FBFS policy. The fluid model is stable if the following conditions hold.

For buffer k with `l < k < `l+1, if k joins `l+1 with loops, then

l∑
i=1

m`i >
∑
i∈Hk

mi; (7)

if k joins `l+1 without loops, then

l+1+cl+1∑
i=1

m`i >
∑
i∈Hk

mi. (8)

Furthermore, when the number of servers L = 2, the conditions (7), (8) are necessary.

Proof. To prove the sufficiency we show that if (7) and (8) hold then there exist 0 ≤ t2 <

· · · < tK <∞ such that

Q̄k(t) = 0 for t ≥ tk. (9)

By convention we take t1 = 0. Assume as an induction hypothesis that at time tk−1 all
the buffers j < k are empty and that they shall stay empty for t ≥ tk−1 (no assumption
needed for k = 2). The content of buffer k at time tk−1, is bounded by Q̄k(tk−1) ≤∑k

i=2 Q̄i(0) + µ1tk−1. Since we assume Q̄j(t) = 0 for j = 2, · · · , k− 1 and all t ≥ tk−1, and
Q̄k(tk−1) > 0, buffer k will be the first nonempty buffer. Therefore, for t ≥ tk−1,

Q̄k(t) =
k∑
i=2

Q̄i(t) =
k∑
i=2

Q̄i(0) + µ1T̄1(t)− µkT̄k(t). (10)

Also, these assumptions imply that for j = 2, · · · , k − 1 and all t ≥ tk−1

˙̄Tj(t) = mjµ1
˙̄T1(t). (11)

We now consider three cases, and construct tk for each.
Case 1 k = `i:
While Q̄k(t) > 0 we have ˙̄T1(t) = 0 and by (10), we have ˙̄Qk(t) = −µk. Hence,

tk = tk−1 +mk

( k∑
i=2

Q̄i(0) + µ1tk−1

)
.
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Case 2 `i < k < `i+1 and buffer k joins buffer `i+1 with loops:
By
∑i

h=1
˙̄T`h(t) ≤ 1, and by (11) we have

˙̄T1(t) ≤ m1∑i
h=1m`h

. (12)

While Q̄k(t) > 0 we have
∑

j∈Hk

˙̄Tj(t) = 1. It follows from (11) and (12) that

˙̄Tk(t) ≥ 1−
∑

j∈H−k
mj∑i

h=1m`h

. (13)

Using (10), combining (12)-(13) yields that if t ≥ tk−1 and Q̄k(t) > 0, then

˙̄Qk(t) ≤
∑

j∈Hk
mj −

∑i
h=1m`h

mk
∑i

h=1m`h

,

which is < 0 by (7). Hence we have

tk = tk−1 +
mk
∑i

h=1m`h∑i
h=1m`h −

∑
j∈Hk

mj

( k∑
j=2

Q̄j(0) + µ1tk−1

)
.

Case 3 `i < k < `i+1 and buffer k joins buffer `i+1 without loops:
In this case we have condition (8), which is weaker than condition (7). Define

L̄k(t) = Q̄k(t) + · · ·+ Q̄`i+1−1(t) =
k∑
i=2

Q̄i(0) + µ1T̄1(t)− µ`i+1−1T̄`i+1−1(t). (14)

To get an upper bound of the derivative of L̄k(t), we let k̃ be the last nonzero buffer
among buffers k, · · · , (`i+1 − 1). Note that for all buffers k, · · · , (`i+1 − 1), each is the first
non-empty buffer for its server. By (11), we have( ∑

j∈H−
k̃

mj

)
µ1

˙̄T1(t) + ˙̄Tk̃(t) = 1. (15)

If we assume that ˙̄T1(t) > 0 we get:

1 ≥
i+1+ci+1∑
h=1

˙̄T`h(t)

= µ1
˙̄T1(t)

i∑
h=1

m`h + ˙̄Dk̃(t)
i+1+ci+1∑
h=i+1

m`h , (16)

and

˙̄Dk̃(t) = µk̃

(
1− µ1

˙̄T1(t)
∑
j∈H−

k̃

mj

)
. (17)
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Combining (16), (17) and rearranging we get:

(
1− µ1

˙̄T1(t)
i∑

h=1

m`h

)
≥

(
1− µ1

˙̄T1(t)
∑
j∈H−

k̃

mj

)∑i+1+ci+1

h=i+1 m`h

mk̃

. (18)

By (7) this is only possible if mk̃ >
∑i+1+ci+1

h=i+1 m`h .

Hence, if mk̃ ≤
∑i+1+ci+1

h=i+1 m`h then ˙̄T1(t) = 0 and

˙̄Lk(t) = −µk̃. (19)

If mk̃ >
∑i+1+ci+1

h=i+1 m`h we get from (18) that:

µ1
˙̄T1(t) ≤

mk̃ −
∑i+1+ci+1

h=i+1 m`h

mk̃

∑i
h=1m`h −

∑
j∈H−

k̃

mj
∑i+1+ci+1

h=i+1 m`h

. (20)

Combining (17), (20) we also get:

˙̄Tk̃(t) ≥ 1−
(
∑

l∈H−
k̃

ml)(mk̃ −
∑i+1+ci+1

l=i+1 m`l)

mk̃

∑i
l=1m`l − (

∑i+1+ci+1

l=i+1 m`l)
∑

l∈H−
k̃

ml

. (21)

Finally, from (20), (21) and (14) we have:

˙̄Lk(t) = µ1
˙̄T1(t)− ˙̄Dk̃(t)

≤
∑

l∈Hk̃
ml −

∑i+1+ci+1

l=1 m`l

mk̃

∑i
l=1m`l −

(∑i+1+ci+1

l=i+1 m`l

)∑
l∈H−

k̃

ml

. (22)

Let

∆k = min
k≤k̃<`i+1

min
{ ∑i+1+ci+1

l=1 m`l −
∑

l∈Hk̃
ml∣∣∣mk̃

∑i
l=1m`l −

(∑i+1+ci+1

l=i+1 m`l

)∑
l∈H−

k̃

ml

∣∣∣ , 1
mk̃

}
.

In view of (8), (19) and (22), we always have ˙̄Lk(t) ≤ −∆k. Therefore, also for this case:

tk = tk−1 +
( k∑
l=2

Q̄l(0) + µ1tk−1

)/
∆k.

Note that by our convention of `|C(1)|+1=K+1, for all buffers k > `|C(1)| conditions (7)
and (8) are the same, and the proofs for both case 2 and 3 are valid. This completes the
proof of sufficiency.

Now we consider the case of two servers, L = 2, and prove necessity of (7)-(8) . Let
buffer k be the first buffer to violate one of (7)-(8). We consider the case of `i < k < `i+1
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and k joins `i+1 with loops. The other cases can be proved similarly. Then

i∑
h=1

m`h ≤
∑
j∈Hk

mj , (23)

ĩ∑
h=1

m`h >
∑
j∈Hk̃

mj for k̃ < k, ˜̀i < k̃ < ˜̀i+1 and ĩ = 1, · · · , i. (24)

Assume Qk(0) > 0 while Qj(0) = 0, j 6= k. In that case the flow into buffer k is:

µ1
˙̄T1(t) =

1∑i
h=1mlh

and the service rate to buffer k is:

˙̄Tk(t) = 1− µ1
˙̄T1(t)

∑
j∈H−k

mj

and by (24) we then have for t ≥ t0 that:

˙̄Qk(t) = µ1
˙̄T1(t)− µk ˙̄Tk(t) > 0

and the fluid solution diverges. This proves that the fluid model can diverge, so it is not
stable. Thus the necessity for L = 2 is proved.

4 Two servers and two re-entrant lines

Consider now a network with two servers and two re-entrant lines, as in Figure 4. The
buffers are numbered (r, 1), (r, 2), . . . , (r,Kr) for the two routes r = 1, 2 and we assume
s(1, 1) = 1 and s(2, 1) = 2, i.e. each of the servers has a single IVQ. We denote all classes
(1, k) ∈ C(1) as G1 (group 1), and similarly, G2 consists of the classes (1, k) ∈ C(2), G3 is
the set of the classes (2, k) ∈ C(2) and similarly G4 is the set of the classes (2, k) ∈ C(1). We
will refer to G1, G3 as push groups, and to G2, G4 as pull groups. This is a generalization
of the push-pull network where we now have two general routes rather than two step routes
— in the push-pull network each Gj consists of a single buffer.

Denotem+
j =

∑
(r,k)∈Gj∩K0

mr,k for j = 1, 2, 3, 4 and denote m̃ = max{m+
1 ,m

+
2 ,m

+
3 ,m

+
4 }.

We change the unit of measure for the fluids in both routes and assume without loss of gen-
erality that

∑
(1,k)∈G1

m1,k =
∑

(2,k)∈G3
m2,k = 1. So we have m+

1 ,m
+
3 < 1. We have that

the workload per customer in the buffers of the four groups Gj , j = 1 . . . , 4 is 1, m+
2 , 1, m+

4 .
The corresponding quantities in the push-pull network are µ−1

j . We now assume that server
1 is bottleneck for line 1, and server 2 is bottleneck for line 2, so that m+

2 ,m
+
4 < 1. This is

analogous and generalizes case (iii a) of the push-pull line, with µ1 < µ2 and µ3 < µ4, for
which pull priority is stable.

The following result is on the one hand analogous to the corresponding push-pull net-
work result, and at the same time it generalizes the result on re-entrant lines, in Section 3.1.
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i = 1 i = 2

∞

∞

1, 1 1, 2

1, 3 1, 4

2, 6 2, 5

2, 4 2, 3

2, 2 2, 1

G1 G2

G4 G3

Figure 4: An example of a two re-entrant lines network with IVQs.
.

Theorem 4. Consider the two re-entrant line network with m(1,1) +m+
1 = m(2,1) +m+

3 = 1
and m+

2 , m
+
4 < 1. The fluid model for this network, under work conserving policy with

priority to G2, G4 over G1, G3, and LBFS for buffers in the same group, is stable.

Proof. We classify the states of the system into several modes. According to the status of
queues in the various groups our LBFS pull priority policy implies the following processing
rules, for the various modes of the system:

Possible modes of the system

G1 G2 G3 G4

(i) ≥ 0 > 0 ≥ 0 > 0 Work on G2, G4, no input, possibly no output
(iia) > 0 > 0 ≥ 0 = 0 Work on line 1, line 2 frozen, no input,

output from line 1
(iib) ≥ 0 = 0 > 0 > 0 symmetric to (iia)
(iiia) = 0 > 0 ≥ 0 = 0 Work on line 1, line 2 frozen, input into line 1,

output from line 1
(iiib) ≥ 0 = 0 = 0 > 0 symmetric to (iiia)
(iv) > 0 = 0 > 0 = 0 Work on line 1 and line 2, no input,

output from both lines
(va) > 0 = 0 = 0 = 0 Work on line 1, no input to line 1,

output from line 1,
also work on line 2 with input equal to output

(vb) = 0 = 0 > 0 = 0 symmetric to (va)
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We note that (i) can only happen initially. Once either G2 or G4 become empty at some
time t0, at all times t > t0 either G2 or G4 will be empty. To see this note that if G4 is
empty at t0 and G2 is not, then until G2 becomes empty there will be no processing at G3,
and so G4 will remain empty.

In the modes (iia), (iib), (iiia), (iiib) both servers are working on just one of the re-entrant
lines, line 1 for (iia), (iiia), line 2 for (iib), (iiib).

In the mode (iv), (va), (vb) the servers are working on both lines, and for groups G2,
G4 the flow in equals the flow out.

We describe the server allocation for the modes (iv), (va), (vb) in more detail now.
Let (1, k1(t)) be the last non-empty buffer on line 1 at time t. Denote by M1(t) =∑

l∈C(1), l≥k(t)m1,l, and M2(t) =
∑

l∈C(2), l≥k(t)m1,l. Define (2, k2(t)), M3(t), M4(t) simi-
larly. Let θ1(t), θ2(t) be the server allocations to G1 and G3 respectively, with the alloca-
tions 1− θ1(t) to G4 and 1− θ2(t) to G2, since our policy has full utilization. Since buffers
(1, k1) and (1, k2) are non-empty, by the LBFS priority there is no allocation of processing
to queues in (1, l), l < k1 which belong to G1, or to queues in (2, l), l < k2 which belong
to G3, and so there is not input into the empty queues (1, l), l < k1 which belong to G2

or to the empty queues (2, l), l < k2 which belong to G4. Therefore all the allocation of
processing is to queues (1, l), l ≥ k1 and to (2, l), l ≥ k2. Assume that t is a regular point.
Then by Lemma 2, ˙̄D(1,l)(t) = ˙̄D(1,k1)(t), l ≥ k1, and ˙̄D(2,l)(t) = ˙̄D(2,k2)(t), l ≥ k2. From
this we obtain that at a regular time point t the utilizations and the flows have to solve:

θ1(t)
M1(t)

=
1− θ2(t)
M2(t)

,
θ2(t)
M3(t)

=
1− θ1(t)
M4(t)

.

The solution is:

θ1(t) = M1(t) M3(t)−M4(t)
M1(t)M3(t)−M2(t)M4(t) , θ2(t) = M3(t) M1(t)−M2(t)

M1(t)M3(t)−M2(t)M4(t) .

The values of θ1(t), θ2(t) are determined by the solution above for each pair (1, k1(t)),
(2, k2(t)), and so there are only a finite number of them.

As we observed, starting from |Q̄(0)| = 1 in state (i), we leave state (i) at time t0 ≤ 1
and never return, and we will have |Q̄(t0)| ≤ 1. So we may assume that we start with
|Q̄(0)| = 1 with at least one of the groups G2, G4 empty and never visit state (i).

We denote by T̄L1(t) the cumulative time during (0, t] which is spent in mode (iia),
(iiia), when we are working only on line 1 with both servers. T̄L2(t) is defined similarly. We
denote by T̄1&2(t) the cumulative time during (0, t] which is spent in mode (iv), (va), (vb),
and we let Θ̄1(t) and Θ̄2(t) denote the average of the allocations θ1(t), θ2(t) over the time
spent in modes (iv), (va), (vb) during (0, t].

We examine the output from the system, D̄1,K1(t) + D̄2,K2(t). When in modes (iia),
(iiia) line 1 is not empty and has output at rate ˙̄D1,K1(t) ≥ 1

m̃ . Similarly, when in modes
(iib), (iiib) line 2 is not empty and has output at rate ˙̄D2,K2(t) ≥ 1

m̃ . When in state (iv),
lines 1 and 2 are non-empty, with G2, G4 empty and there is output from G1, G3. The rate
of output is then ˙̄D1,K1(t) ≥ θ1(t) 1

m̃ from line 1, and ˙̄D2,K2(t) ≥ θ2(t) 1
m̃ from line 2.
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In state (va) output from line 1 is again ˙̄D1,K1(t) ≥ θ1(t) 1
m̃ , while line 2 is empty, and

has output at the same rate as the input from the IVQ (2, 1), so ˙̄D2,K2(t) = θ2(t). It follows
that in state (va)

˙̄D1,K1(t) + ˙̄D2,K2(t) ≥ (θ1(t) + θ2(t))
(

1 +
θ1(t)

θ1(t) + θ2(t)

(
1
m̃
− 1
))

.

We now define

ε1 = min
θ1(t)

θ1(t) + θ2(t)

(
1
m̃
− 1
)
,

where the minimum is taken over all the values of k1(t) with k2(t) = 1, and similarly

ε2 = min
θ2(t)

θ1(t) + θ2(t)

(
1
m̃
− 1
)
,

where the minimum is taken over all the values of k2(t) with k1(t) = 1. Further, let
ε = min{ε1, ε2} > 0. We then have that ˙̄D1,K1(t) + ˙̄D2,K2(t) >

(
θ1(t) + θ2(t)

)
(1 + ε). It

follows that,

D̄1,K1(t) ≥ T̄L1(t) + Θ̄1(t)T̄1&2(t),

D̄2,K2(t) ≥ T̄L2(t) + Θ̄2(t)T̄1&2(t),

D̄1,K1(t) + D̄2,K2(t) ≥
(
T̄L1(t) + T̄L2(t) + (Θ̄1(t) + Θ̄2(t))T̄1&2(t)

)
(1 + ε). (25)

We now consider the input. Denote by T̄G1(t) the total cumulative time devoted by server
1 to group G1 over (0, t). Let T̄1,1(t) be the time devoted to the IVQ to produce input into
line 1. Let T̄G+

1
(t) = T̄G1(t)− T̄1,1(t) be the time devoted by server 1 to processing fluid in

Q̄G1 . We have: T̄G1(t) = T̄L1(t) + Θ̄1(t)T̄1&2(t), and T̄1,1(t) = D̄(1,1)(t)m1,1. We have the
bound

T̄G+
1

(t) ≥ m+
1

(
D̄1,K1(t)− 1

)
≥ m+

1

(
T̄L1(t) + Θ̄1(t)T̄1&2(t)− 1

)
since all the fluid that comes out of line 1 except for the initial fluid in the system requires
processing m+

1 per unit of fluid, and |Q̄(0)| ≤ 1. It follows that:

T̄1,1(t) ≤ T̄L1(t) + Θ̄1(t)T̄1&2(t)−m+
1

(
T̄L1(t) + Θ̄1(t)T̄1&2(t)− 1

)
= m1,1

(
T̄L1(t) + Θ̄1(t)T̄1&2(t)

)
+m+

1 ,

and hence

D̄(1,1)(t) ≤ T̄L1(t) + Θ̄1(t)T̄1&2(t) +
m+

1

m1,1
= T̄G1(t) +

m+
1

m1,1
. (26)

Similarly

D̄2,1(t) ≤ T̄G3(t) +
m+

3

m2,1
.
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Assume now that for the whole time [0, t] the system is not empty, so that it is in one of
the modes (iia), (iiia), (iib), (iiib), (iv), (va), (vb) throughout [0, t]. Then

0 < |Q̄(t)| = 1 + D̄1,1(t) + D̄2,1(t)− D̄1,K1(t)− D̄2,K1(t)

≤ 1 + T̄G1(t) +
m+

1

m1,1
+ T̄G3(t) +

m+
3

m2,1
− (1 + ε)

(
T̄G1(t) + T̄G3(t)

)
= 1 +

m+
1

m1,1
+

m+
3

m2,1
− ε
(
T̄G1(t) + T̄G3(t)

)
. (27)

It follows that if the system is not empty before time t then

T̄G1(t) + T̄G3(t) <
(

1 +
m+

1

m1,1
+

m+
3

m2,1

)/
ε

so we have a bound on T̄G1(t) + T̄G3(t). However, t = T̄L1(t) + T̄L2(t) + T̄1&2(t), and,

T̄G1(t) + T̄G3(t) = T̄L1(t) + T̄L2(t) + (Θ̄1(t) + Θ̄2(t))T̄1&2(t).

We note that throughout the time in modes (iv), (va), (vb) at least one of θ1(t) or θ2(t) is
positive, and has one out of the finite set of possible values. So if we let δ = min θi be the
smallest of all these values, we will have T̄G1(t) + T̄G3(t) ≥ δt, and we get the bound:

t <

(
1 +

m+
1

m1,1
+

m+
3

m2,1

)/
(εδ).

Next we prove that if |Q̄(t0)| = 0, then |Q̄(t)| = 0 for t ≥ t0. Suppose contrariwise that
there exists a δ > 0 such that |Q̄(t)| > 0, t ∈ (t0, t0 + δ]. By (25),

(D̄1,K1(t0 + δ) + D̄2,K2(t0 + δ))− (D̄1,K1(t0) + D̄2,K2(t0))

≥ (1 + ε)
[(
T̄L1(t0 + δ) + T̄L2(t0 + δ) + (Θ̄1(t0 + δ) + Θ̄2(t0 + δ))T̄1&2(t0 + δ)

)
−
(
T̄L1(t0) + T̄L2(t0) + (Θ̄1(t0) + Θ̄2(t0))T̄1&2(t0)

)]
. (28)

Similar to (26),

D̄1,1(t0+δ)−D̄1,1(t0) ≤ T̄G1(t0+δ)−T̄G1(t0), D̄2,1(t0+δ)−D̄2,1(t0) ≤ T̄G3(t0+δ)−T̄G3(t0).

Thus, similar to (27),

0 < |Q̄(t0 + δ)| = |Q̄(t0 + δ)− Q̄(t0)|
=

(
D̄1,1(t0 + δ) + D̄1,2(t0 + δ)− D̄1,K1(t0 + δ)− D̄2,K1(t0 + δ)

)
−
(
D̄1,1(t0) + D̄1,2(t0)− D̄1,K1(t0)− D̄2,K1(t0)

)
≤ −ε

[(
T̄G1(t0 + δ) + T̄G3(t0 + δ)

)
−
(
T̄G1(t0) + T̄G3(t0)

)]
,

which contradicts with the nonnegativity of
[(
T̄G1(t0+δ)+T̄G3(t0+δ)

)
−
(
T̄G1(t0)+T̄G3(t0)

)]
.

Hence we have that if |Q̄(t0)| = 0, then |Q̄(t)| = 0 for t ≥ t0.

We note that in the case that µ1 > µ2, which is analogous and generalizes case (iii b)
of the push-pull line, with µ1 > µ2 and µ3 > µ4, we have not found a stabilizing work
conserving policy.
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5 A push-pull ring

We now consider deterministic routing networks having an equal number of routes and
servers, L ≥ 2 and each route and each server have exactly one IVQ and one standard
queue. We number the queues as follows: route i has IVQ (i, 1) which is served at server
i, and a standard queue (i, 2) which is served at server i + 1, so that the constituency of
server i is C(i) = {(i, 1), (i − 1, 2)}. For the case of L = 2 this is the push-pull network.
For arbitrary finite L and without loss of generality, this network can be presented as a
ring as in Figure 5. Note that throughout this section, all index arithmetic is modulo L on
{1, . . . , L}.

i =
1

i = 2

i
=

3

3, 2

1, 1

2, 1 1, 2

3, 1

2, 2
∞

∞

∞

Figure 5: An Illustration of a three routes push-pull ring.

We will assume that the average processing times and rewards are such that the optimal
solution to the static production planning problem is to have all resources fully utilized.
In that case the nominal input rates and the time allocations will be given by the solution
of Ru = α, Cu = 1. We assume that this solution is all positive. We are now looking for
policies which are non-idling and which keep all the standard queues stable.

We refer to processing at the IVQs (1, 1), . . . , (L, 1) as push operations and to processing
at the standard queues (1, 2), . . . , (L, 2) as pull operations. We let the average service times
per customer at each of the buffers be mi,1 = λ−1

i for the push operation and mi,2 = µ−1
i

for the pull operation. We denote γi = λi/µi
In the solution of the static production planning problem we will then have from Ru = α

αi = ui,1λi = ui,2µi,
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and substituting this into Cu = 1 we obtain the equations:

λ−1
1 µ−1

L

µ−1
1 λ−1

2 0

µ−1
2

. . .

. . . . . .

0
. . . λ−1

L−1

µ−1
L−1 λ−1

L


α = 1,

which are solved by:

αi = λi
di

1 + (−1)L−1
∏L
j=1 γj

,

where we define the coefficients:

di = ((· · · (((γi+1 − 1)γi+2 + 1)γi+3 − 1)γi+4 · · · · · · · · · )γi−2 − 1)γi−1 + 1 (29)

=
L−1∑
j=0

(−1)j
j∏

k=1

γi−k.

We see here that di are proportional to the nominal rates αi.
We also define the coefficients:

ci = ((· · · (((γi−1 − 1)γi−2 + 1)γi−3 − 1)γi−4 · · · · · · · · · )γi+2 − 1)γi+1 + 1 (30)

=
L−1∑
j=0

(−1)j
j∏

k=1

γi+k,

The coefficients ci, di play a key role in our derivations. Observe that for odd L:

If sign(γi − 1) is the same for all i, then sign(ci − 1) = sign(di − 1) = sign(γi − 1) for all i.

This follows from the first form of (29) and (30). Assume all γi > 1, then if (29) is read
from left to right, and the expressions in successive parenthesis are evaluated from inside
to outside, one sees that the expression in each parenthesis ending with −1 is greater then
0, and the expression in each parenthesis ending with +1 is then greater than 1. Similarly
for the other cases.

It is also useful to observe that,

γici + ci−1 = 1− (−1)L
L∏
k=1

γk = γidi + di+1. (31)

In the symmetric case of µi = µ, λi = λ, γ = λ/µ for all i, we have that ci = di =
(1− (−γ)L)/(1 + γ), and αi =

(
λ−1 + µ−1

)−1 for all i.
We now address the question of finding a policy which makes the push-pull ring e-stable,

were we need to show that the network under the policy has a stable fluid model. We were
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not able to do this in general. What we were able to do is to find sufficient conditions under
which pull priority policy induces a stable fluid model.

We define the pull priority policy for the push-pull ring: At any time every server gives
preemptive priority to serving the HOL customer in the standard queue.

We prove two theorems, the first is simply the extension of the result for the push-pull
network case (iii a). We show that if γi < 1 for all i then pull priority is stable. Surprisingly,
pull priority remains stable also when γi > 1 for all i, if L is odd, and if the γi remain in a
certain bounded region. Our method of proof here, which we did not employ for Theorems
2, 4, is the more general method of using a Lyapunov function to prove fluid stability.

Theorem 5. The push-pull ring with γi < 1 for all i operating under a pull-priority policy
has a stable fluid model.

Proof. As in [30] Theorem 1 Case 1, define a simple Lyapunov function, f
(
Q(t)

)
= |Q(t)|.

It is then quite straight forward to see that this Lyapunov function is decreasing at a rate
bounded away from 0 at all times. The analysis parallels [30].

We now look at the case when L is odd and γi > 1 for all i, Denote L̃ = L−1
2 and define,

∆ =
1
L

L∑
i=1

ci
(
L̃(γi − 1)− 1

)
(32)

= L̃
( L∏
i=1

γi + 1
)
−

L∑
i=1

ci. (33)

(The equality between (32) and (33) is established below).

Theorem 6. The push-pull ring with L odd, γi > 1 for all i, operating under a pull-priority
policy has a stable fluid model if ∆ < 0.

We observe that in the symmetric case, for L > 2 the stability condition reduces to,

γ <
L+ 1
L− 1

. (34)

We now assume that µi = 1 for all i, this is without loss of generality, since we are looking
at the fluid model, and so we can change the units of fluid for each route accordingly.

The proof uses f(x) =
∑L

i=1 cixi as a Lyapunov function. This function is designed
based on states (defined below as eventual modes) in which exactly one buffer is draining
at rate 1, L̃ buffers are filling up at rates γi− 1 and L̃ buffers are empty. In the symmetric
case, the rate of change in |Q(t)| for such states is L̃(γ − 1)− 1 which is < 0 if and only if
(34) holds.

We now classify the states of the push-pull ring according to the emptiness or non
emptiness of the queues. The mode is described by the indicator vector:

M(t) =
(
I{Q̄1,2(t) > 0}, . . . , I{Q̄L,2(t) > 0}

)
.
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We refer to M(t) = (`1, . . . , `L) as the mode of the system at time t, it is an element of
{0, 1}L. We say a mode is regular if `i = 0 implies that `i+1 = 1. This indicates that no
two successive standard queues in the ring are empty.

Lemma 3. If L is odd, any regular mode has two consecutive 1’s.

Proof. Assume (`1, . . . , `L) is a regular mode. If `i = 0 we must have `i−1 = 1 and `i+1 = 1.
Hence the number of 1’s is at least as large as the number of 0’s. If L is odd this implies
that there are at least L+1

2 1’s and at most L−1
2 0’s. Clearly this implies that not all 1’s are

isolated.

The next lemma shows that it is enough to consider the drift of f
(
Q̄(t)

)
only on regular

modes.

Lemma 4. Assume that γi > 1 for all i and assume a pull-priority policy. Then for all
regular time points, t, of the fluid model (Q̄, T̄ ), M(t) is either a regular mode or (0, . . . , 0).

Proof. Assume t is a regular time point. Then ˙̄Tk,1(t) + ˙̄Tk−1,2(t) = 1, and if Q̄k−1,2(t) > 0
then ˙̄Tk−1,2(t) = 1. This is because server k is fully utilized and we use pull priority.
Also, by Lemma 2, if Q̄k+1,2(t) = 0, then ˙̄Tk+1,1(t)λk+1 = ˙̄Tk+1,2(t)µk+1. Assume now also
that M(t) has two consecutive zeros but is not all zero. Then there exists k for which
Q̄k−1,2(t) > 0 and Q̄k,2(t) = Q̄k+1,2(t) = 0. Then ˙̄Tk−1,2(t) = 1 (server k is pulling from
buffer (k − 1, 2)), and hence ˙̄Tk,1(t) = 0 (server k is not pushing fluid into (k, 2)). Hence
buffer (k, 2) has no input, and is empty, so ˙̄Tk,2(t) = 0 (server k + 1 is not pulling out of
buffer (k, 2)). But then ˙̄Tk+1,1(t) = 1, and so input into buffer (k + 1, 2) is at rate γk+1,
which would imply γk+1 = ˙̄Tk+1,1(t) but this is impossible since γk+1 > 1.

We say that a regular mode is eventual if it contains exactly two consecutive 1’s. For
each eventual node define the set Fi = {j = i + 2k, k = 1, . . . , L̃}. Denote the eventual
modes by M1, . . . ,ML where Mi = {`1, . . . , `L} with,

`j =
{

1 j ∈ Fi ∪ {i},
0 otherwise.

For example for the case of L = 5, the eventual modes are:

{M1,M2,M3,M4,M5} =
{

(1, 0, 1, 0, 1), (1, 1, 0, 1, 0), (0, 1, 1, 0, 1), (1, 0, 1, 1, 0), (0, 1, 0, 1, 1)
}
.

Heuristically observe that when M(t) = Mi buffers j ∈ Fi are filling up at rate γj−1, while
buffer i is draining at rate −1 and the other buffers remain 0. Consider now the L× L (L
odd) matrix A = (aij) with,

aij =


−1 i = j,
γj − 1 j ∈ Fi,
0 otherwise.
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The i’th row of A signifies the net change of Q̄ in the eventual modes Li. E.g. for L = 5:

A =


−1 0 γ3 − 1 0 γ5 − 1

γ1 − 1 −1 0 γ4 − 1 0
0 γ2 − 1 −1 0 γ5 − 1

γ1 − 1 0 γ3 − 1 −1 0
0 γ2 − 1 0 γ4 − 1 −1

 .
Lemma 5. Assume L is odd. Then x = (c1, . . . , cL)′ is a solution of Ax = ∆1 and further
the equality between (32) and (33) holds.

Proof. We first show that
∑L

j=1 aijcj is independent of i and equals (33):

L∑
j=1

aijcj = −ci+
∑
j∈Fi

(γjcj−cj) = L̃
( L∏
k=1

γk+1
)
−ci−

∑
j∈Fi

(
cj−1+cj

)
= L̃

( L∏
k=1

γk+1
)
−

L∑
j=1

cj ,

yielding (32). The first equality above follows from the structure of the matrix A, the
second follows from (31) and the last equality follows from {i} ∪ Fi−1 ∪ Fi = {1, . . . , L}.
Observe now that for each column j = 1, . . . , L of A,

∑L
i=1 aij = L̃(γj − 1) − 1. Thus

summing over the equations above for i = 1, . . . , L we obtain,
L∑
j=1

cj
(
L̃(γj − 1)− 1

)
= L

(
L̃
( L∏
k=1

γk + 1
)
−

L∑
k=1

ck

)
,

yielding (33).

We note also that ∆ = det(A).

Corollary 1. For eventual regular modes d
dtf(Q̄(t)) = ∆.

Proof. Follows immediately from above lemma.

On the other regular modes that are not eventual, we have:

Lemma 6. Assume ∆ < 0 then for all t such that M(t) is a regular mode, d
dtf(Q̄(t)) < ∆.

Proof. Eventual modes are covered by the previous corollary, we now consider regular modes
that are not eventual. Denote M(t) = (`1, . . . , `L). Denote J = {i : `i−1 = 0} (observe
that since the mode is regular i ∈ J implies that `i = 1).

Consider now the eventual modes Mi+1 for all i ∈ J , for each of these modes:

ci(γi − 1)− ci+1 + Pi < ∆,

where Pi =
∑

j∈Fi+1\{i} cj(γj − 1) > 0. Summing these inequalities over i ∈ J we have,∑
i∈J

ci(γi − 1)− ci+1 < ∆−
∑
i∈J

Pi < ∆.

The left hand side of the above is an upper bound of the drift in M(t).

The proof of Theorem 6 now follows:

Proof. For the mode (0, . . . , 0), f(Q̄(t)) = 0. For regular modes the lemmas above show
that f(Q̄(t)) ≤ ∆ < 0. The non-regular modes do not need to be considered.
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6 Diffusion limits of time allocations and departures

In this section we derive fluid and diffusion approximations for the vector departure
processes D(t) and the vector resource allocation processes T (t) for MCQN-IVQ. We as-
sume we have L nodes each with a single IVQ, that ρi = 1 while ρ̃i < 1 for all nodes,
and that we have some policy which achieves full utilization and stable standard queues,
with nominal input rates αk. For simplicity we assume deterministic routes, with buffers
of route i numbered (i, 1), . . . , (i,Ki), where we also assume s(i, 1) = i. To derive diffusion
approximations we assume that the processing time distributions have finite second mo-

ments, and let d2
i,k =

Var
(
ξi,k(1)

)
E[ξi,k(1)]2

denote the squared coefficients of variations. The results
can be generalized to probabilistic routing.

As motivation for these calculations we give the following heuristic discussion. We
consider first the same MCQN-IVQ with exogenous random renewal inputs instead of IVQs.
If the input rates are α̃i < αi, then the MCQN can be stabilized. Consider the system in
steady state. Let Âi(t) be the Brownian motion diffusion approximation of the input process
of route i. In that case, the delay between input to each route and output from each route
will be the sojourn time which will have a stationary distribution. Under diffusion scaling
the output will then differ from the input by o(

√
N). Letting D̂i,Ki(t) denote the diffusion

approximation of the output from route i, we will then have D̂i,Ki(t) = Âi(t). In particular,
because inputs of different routes are independent the output processes from the different
routes will be independent. The case of standard MCQN with non-deterministic routes is
similar, yet the probabilistic routing introduces some dependence between routes, see [31].

If on the other hand the exogenous input will be at rate αi, then the MCQN will
not be stable, though under some policies (e.g. maximum pressure policy) it will be rate
stable. In that case under diffusion scaling the queue length and sojourn times will behave
like reflected Brownian motion, and the limiting departure processes may behave like a
mapping of two or more Brownian Motion processes as in [19], see also [14] and references
there-in.

For the MCQN-IVQ we get an in-between behavior: because the queues are stable the
sojourn time will not affect the diffusion approximations of the departure processes. How-
ever, the stability will be achieved by control of the allocation processes, and in particular
the allocation processes Ti,1(t) which control the input into the routes. The result will
be Brownian motion departure and allocation processes, however they will all be highly
correlated.

In fact, it appears that the added control which the IVQs provide allows us to reduce
variability in the standard queues, by absorbing it in increased variability of the output
processes.

Fluid approximation

We return now to the question at hand. We first obtain the fluid approximation of the
system. Under the assumption that the fluid model is stable, and that all the servers are
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fully utilized we have the equations:

Ru = α, Cu = 1,

which are solved for α, u. These have to be non-negative, or else we cannot have stability
and full utilization. Barring singularity the solutions are unique and positive. We then
have for an arbitrary initial state:

Q̄i,k(t) = 0, k = 2, . . . ,Ki, T̄i,k(t) = ui,kt =
αi
µi,k

t, D̄i,k(t) = αit, k = 1, . . . ,Ki, i = 1, . . . , L.

Diffusion approximation

We now define diffusion scaling and diffusion limits. For an arbitrary function Z(t), t > 0
assume that Z̄(t) = limN→∞ Z̄

N (t) exists u.o.c. Then the diffusion scaling of Z is

ẐN (t) =
Z(Nt)− Z̄(Nt)√

N
.

For a stochastic process Z(t) if the sequence of diffusion scalings converges weakly to a
stochastic process, we denote the limit by Ẑ(t). By the functional central limit theorem
(FCLT), ŜNi,k(t)⇒ Ŝi,k(t) where Ŝi,k(t) is a driftless Brownian motion, with diffusion coef-
ficient µi,kd2

i,k.
We now consider diffusion scaling of Q(t), D(t), T (t), and derive diffusion approxima-

tions. We start with the queue dynamics equations. Without loss of generality, for the
current analysis we can assume that Qi,k(0) = 0 for all standard queues. We have:

Di,k(t) = Si,k(Ti,k(t)),

Qi,k(t) = Di,k−1(t)−Di,k(t),∑
(j,k)∈C(i)

Tj,k(t) = t, i = 1, . . . , L.

Writing the diffusion scaling of these and substituting the fluid approximations we have:

D̂N
i,k(t) = ŜNi,k(T̄

N
i,k(t)) + µi,kT̂

N
i,k(t),

Q̂Ni,k(t) = D̂N
i,k−1(t)− D̂N

i,k(t), (35)

T̂Ni,1(t) = −
∑

(j,k)∈C(i), k>1

T̂Nj,k(t).

Substituting the first equation of (35) into the second we eliminate D̂N
i,k(t) from the

equations. Further substituting the third equation of (35) we eliminate T̂Ni,1(t) from the
equations. We obtain a set of equations from which we can eventually obtain the T̂Ni,k(t), k >
1 in terms of the Q̂Ni,k(t), k > 1 and the ŜNi,k(T̄

N
i,k(t)). We denote S̃Ni,k(t) = ŜNi,k(T̄

N
i,k(t)). We
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also denote:

Q̂N (t) =



Q̂N1,2(t)
...

Q̂N1,K1
(t)

...
Q̂NL,2(t)

...
Q̂NL,KL

(t)


, S̃N (t) =



S̃N1,1(t)
...

S̃N1,K1
(t)

...
S̃NL,1(t)

...
S̃NL,KL

(t)


, T̂N− (t) =



T̂N1,2(t)
...

T̂N1,K1
(t)

...
T̂NL,2(t)

...
T̂NL,KL

(t)


.

We construct the following matrices: With Ai a Ki− 1×Ki and Ai− a Ki− 1×Ki− 1
bi-diagonal matrices given by

Ai =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . . . . .
...

0 . . . 0 1 −1

 , Ai− =


−1 0 . . . 0

1 −1 0 . . . 0
...

. . . . . .
...

0 . . . 0 1 −1

 .
We let A and A− be the K − L×K and K − L×K − L block diagonal matrices

A =


A1 0 . . . 0

0 A2 . . . 0
...

. . .
...

0 . . . 0 AL

 , A− =


A1− 0 . . . 0

0 A2− . . . 0
...

. . .
...

0 . . . 0 AL−

 .
We let M− = diag(µ1,2, . . . , µ1,K1 , µ2,2, . . . , µ2,K2 , . . . , µL,2, . . . , µL,KL

). We let C− be the
constituency matrix, excluding the L columns that belong to buffers (i, 1), i = 1, . . . , L,
and denote by Ci− its ith row. Let B be the K − L × K − L matrix in which rows
1,K1, . . . , 1 +

∑i−1
j=1(Kj − 1), . . . are C1−, C2−, . . . , Ci−, . . ., and all other rows are zero.

Finally, we let M1 be the diagonal matrix in which each element µi,k of M− is replaced by
µi,1. We have:

Q̂N (t) = AS̃N (t) +
(
A−M− −M1B

)
T̂N− (t),

from which we get:

T̂N− (t) = −
(
A−M− −M1B

)−1
AS̃N (t) +

(
A−M− −M1B

)−1
Q̂N (t). (36)

When we let N →∞ we have:

Q̂Ni,k(t)⇒ 0, ŜNi,k(t)⇒
√
µi,kd

2
i,k Bi,k(t), ŜNi,k(T̄

N
i,k(t))⇒

√
αid2

i,k Bi,k(t),

where Bi,k(t) are independent standard Brownian motions. We therefore obtain that
T̂N− (t) ⇒ T̂−(t) where T̂−(t) is a driftless multivariate Brownian motion with covariance
matrix given by: ((

A−M− −M1B
)−1

A
)

Σ
((
A−M− −M1B

)−1
A
)′
,
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with Σ = diag(α1d
2
1,1, . . . , α1d

2
1,K1

, . . . , αLd
2
L,1, . . . , αLd

2
L,KL

).
We now look at the time allocations of the IVQs. We denote the diffusion scaled time

allocations for the IVQs by

T̂N·,1(t) =


T̂N1,1(t)
T̂N2,1(t)

...
T̂NL,1(t)

 ,
and we have, by (35), (36):

T̂N·,1(t) = C−
(
A−M− −M1B

)−1
AS̃N (t)− C−

(
A−M− −M1B

)−1
Q̂N (t), (37)

from which we obtain that T̂N·,1(t)⇒ T̂·,1(t) where T̂·,1(t) is a driftless multivariate Brownian
motion with covariance matrix given by:

C−

((
A−M− −M1B

)−1
A
)

Σ
((
A−M− −M1B

)−1
A
)′
C−
′.

Having determined the diffusion approximations for the time allocation processes, we
now obtain the limiting distribution of the diffusion scaled departure processes. We start
with the departures from the IVQs. We denote

S̃N·,1(t) =


S̃N1,1(t)
S̃N2,1(t)

...
S̃NL,1(t)

 , D̂N
·,1(t) =


D̂N

1,1(t)
D̂N

2,1(t)
...

D̂N
L,1(t)

 .
and let M·,1 = diag(µ1,1, µ2,1, . . . , µL,1), and we have, by (37):

D̂N
·,1(t) = S̃N·,1(t) +M·,1T̂

N
·,1(t)

= S̃N·,1(t) +M·,1

(
C−
(
A−M− −M1B

)−1
AS̃N (t)− C−

(
A−M− −M1B

)−1
Q̂N (t)

)
.

We let Ã be a L×K matrix with unit columns in positions 1,K1 + 1, . . . ,
∑i−1

j=1Kj + 1, . . .
and 0 columns in all other positions. We then have that D̂N

·,1(t) ⇒ D̂·,1(t) where D̂·,1(t) is
a driftless multivariate Brownian motion with covariance matrix given by:[

Ã+M·,1C−

((
A−M− −M1B

)−1
A
)]

Σ
[
Ã+M·,1C−

((
A−M− −M1B

)−1
A
)]′

.

Finally, for all other departure processes, we have by:

D̂N
i,k(t) = D̂N

i,1(t)−
k∑
l=2

Q̂Ni,k(t),

that D̂N
i,k(t)⇒ D̂i,k(t) where D̂i,k(t) = D̂i,1(t).

If higher moments exist we can write strong approximation expressions for D(t), T (t),
as in [9].
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An illustrative example

To understand the significance of these approximations we return to the push-pull net-
work, and consider the case where µ1 = µ3 = λ, and µ2 = µ4 = µ, and all the processing
times have the same squared coefficient of variation, d2. We consider the output processes,
D1,2, D2,2. The following results can be obtained directly from the formulas derived here.
Details of the derivation for this special case appear in [30].

The fluid approximation is

D̄1,2(t) = D̄2,2(t) = νt =
λµ

λ+ µ
t,

so both lines are producing at rate ν.
The diffusion approximation of the total output is a driftless Brownian motion with

variance:
Var

(
D̂1,2(t) + D̂2,2(t)

)
= 4νd2t,

which is exactly the variance of two independent renewal processes, one for each of the
production streams. The total output looks as if we are running two independent produc-
tion lines, with one machine performing on each job its first and second operation, with
independent processing times. This picture is however deceptive as we now see.

It turns out that the correlation between D̂1,2(t), D̂2,2(t) is negative:

Corr
(
D̂1,2(t), D̂2,2(t)

)
= − 2λµ

λ2 + µ2
.

We see that this approaches −1 if λ approaches µ.
For the variance of the individual output processes we then have:

Var
(
D̂1,2(t)

)
= Var

(
D̂2,2(t)

)
=

Var
(
D̂1,2(t) + D̂2,2(t)

)
2
(

1 + Corr
(
D̂1,2(t), D̂2,2(t)

)) t = νd2

(
λ2 + µ2

λ2 − µ2

)2

t.

Our interpretation here is: We are succeeding in full utilization and yet the queues are
stable. This introduces negative correlation between the time allocations to push at the two
stations, and has the effect of increasing the variance of the output. Thus the variance of
the output absorbs what would have been a large variance in queue length for a congested
system with random inputs.

We see also that as λ approaches µ it becomes harder and harder to keep the two queues
stable and the variance of the departure processes grows. If we denote r = min{λµ ,

µ
λ} then

the variance behaves as:

Var
(
D̂1,2(t)

)
= Var

(
D̂2,2(t)

)
= νd2

(
1 + r2

1− r2
)2

t.
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