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SUMMARY

This study concerns the coherence and variety in parameter- and
order estimation methods, which are basic in system identification.
For the estimation of the parameters of dynamical systems, several
methods have been proposed 1in the last decade on a rather ad-hoc
basis. '~ These methods are all attempts to ensure the consistence qf
the estimates, which for convenient parametrizations 1s usually not

achieved with common least squares estimators.

The present study aims to present a coherent picture of this field.
Therefore three basic components of existing estimators are recog-
nised. These three basic components are: filtering, model extension
and use of an (extra) instrumental variable signal. A general scheme

is pregented containing these three basic components.

It is shown that the existing estimators like Generalized Least
Squares, Extended Matrix Méthod, Approximate Maximum Likelihood,
Implicit Quasi Linearization, Prior Knowledge Fitting, Instrumental
Variable Estimator and Suboptimal Instrumental Variable Estimator are
special cases of this general scheme. The advantage of such a pres-
entation is twofold: it gives a better understanding of the inter—
relations of the existing estimators, and computer programs for .such
estimators can be designed in such a way that one program can rep—

resent all estimators considered.

Based on these concepts, several estimators are proposed for situa—
tions where both input— and output signalsare noise corrupted. These
estimators have in common that two of the basic components are com—
bined to obtain consistence.

No additional knowledge of noise covarlance is needed or assumptions
concerning equal colouring, as in the existing literature, are made.
It 1s indicated that the choice of the instrumental variable quanti-
ty, which is one of the two basic components for these estimators,
can be improved if extra measurements of the input~ or of the ouiput
signal or signals, which are related to the input or output, can be
made available. 1In such a way, existing information concerning the
process, which 1s usually at hand in practical situations, can be
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exploited easily. The algorithms that have been proposed are simple
and fast. Experiments with simulated processes show the usefulness

of these estimators.

The present study also includes an extensive discussion of order
testing methods from a point of view of é potential user. Order
testing methods are of prime iImportance in system identification as
usually the order of the desired model 1is unknown, e.g. for control
purposes. Furthermore, if high order models are wanted, containing -
detailed information of the process under study, then order tests can
be used to decide whether the measured signals available contain

sufficient information for producing these models.

In the given discussion, the close relations between different order

testing methods are shown.

The above mentioned estimation and order testing methods have been
incorporated within an extensive interactive computer package SATER.
Special attention has been given to the interactive aspects of this
package and its modular design. This package 1s useful for research
and educational purposes.
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CHAPTER ONE:
PRELIMINARIES

System identification covers, by definition, all possible methods
which provide (aggregated) knowledge of a (partly) unknown system
based on observations. It follows directly from this rather broad
definition that numerous activities of model building are included
as, generally, the knowledge of processes 1s concentrated in their
corresponding models. These models may be of widely varying struc—
ture, ranging from exclusively verbal to strictly formal mathematic-
al. Also the class of possible processes to be described by models
is, ip. principle, unlimited and of a strongly varying nature.

For a systematic presentation of system identification as a coherent
sclence, this extréme variety of possible processes, of possible mod-
els and of possible methods is still prohibitive at present. Even
for the class of mathematical models, such a coherent picture is not
yet well-established. In this context, a characterization of the
field of estimation by "a bag of tricks™ (cf. Eykhoff, Van den Boom
and Van Rede, 1981) has been appropriate for the past decade; see
algso fig. l.1. The introduction of "template functions”, provides a
powerful tool for a more systematic classification of the field if
mathematical models are comsidered. The fundamentals of this classi-
fication are indicated in fig. 1.2; cf. op.cit.

The aim of the present study is to provide a more concise classifica~
tion and ordering of the elements in the blocks II and III of fig.
1.2, as well as an extension of the concepts. This orderlng is
based on three aspects: . a) choice of the measurables (& in fig.
1.2), denoted as model extension, b) interpretation of the template
function (Z in fig. 1.2) as filtering bl) or correlation b2). This
will be explained in detail in chapters 3 and 4. This classification
provides a better insight into the relations among the different
estimators in blocks II and III of fig. 1.2.

In chapter 2 some general notions "pertinent to model bu'ilding in a
technical sense are given as an introduction to chapters 3 and 4,
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Fig. 1.1 A "bag of tricks”

a priori knowledge
(signals /parameters)
minimum Bayes maximum ‘ {generalized
risk/costs likelihood loast squares
nonlinear-in- / \ Hnear-in-
g -the-parameters
i
ii-chimbi 3
i 2]

examples

Fig. 1.2 The "bag of tricks” ordered

where estimators are discussed for which only one set of measurables
(either input of output) are contaminated by noise.

In chapter 5 the results of chapters 3 and 4 are used to propose
several estimators for the situation where all measurables of the
process are noise corrupted. In chapter 6 results of the estimators
proposed in previous chapters are given, mainly based on simulations,
to make an evaluation of the quality of the estimators possible.
Finally, in chapter 7, the problem of order testing 1is discussed and

several - practical - order tests are compared.

14



CHAPTER TWO:

A RECAPITULATION OF BASIC CONCEPTS:
MODELLING, PARAMETRIZATION, ORDER, IDENTIFIABILITY AND
IDENTIFICATION PROTOCOL

2.1 Introduction

The aim of this chapter is to discuss briefly the principles of model
building in relation to identification. We will start with a few
remarks on model bullding in a general setting, i.e. the meaning of
the concept of models used by human beings, but we shall restrict
ourselves, quite early on, to model building in an engineering sense.
Aspects like parametrization, order and identifiability will be re-
viewed, in order to provide an adequate basis for the following chap-

ters.,

2.2 Some general notions

Modelling 1s one of man's oldest activities. The image that man
forms of his surrounding world, based on observations, 1is the result
of "model building”™. 1In fact, all notions about what is often refer—
red to as "REALITY" or "NATURE" or "TRUTH", are models of varying
complexity. Im communicating with others, e.g. by using words, re-
ferring to some consensus of these words, an individualistic inter=
pretation of this consensus cannot be avoided. These interpretations
are personal images or models. This personal interpretation can lead
‘to misunderstanding, but on the other hand it introduces variability,
which can result in evolution of the consensus itself.

An important aspect of modelling should be stressed here, i.e. its
intended use. The comnstruction, the form and the complexity of a
model should be mainly determined by those aspects of the "real sys-
tem” or object which are relevant, or are believed to be relevant,
for the intended use of the model.

15



The appearance and the form of a model and of the studied object are -
not equal. Models for weather forecasting may consist, for example,
of a very complex set of non-linear differential equations, which can
be solved only by very large computers, or may consist of a few gim-

ple principles in the mind of a farmer.

In general, the validity of a model will be limited. If a model has
become too réstricted, e.g. due to increased demands, it has to be
replaced by a (more) complicated one, explaining more aspects of the
object.

Scientific theories are, in fact, also models which are valid until
they can be“falsified". Extension or adaptation of the existing theo-
ries usually follows such a falsificatlion, or sometimes a new theory
is proposed with widely different aspects, which remains valid wntil,
in turn, it too can be falsifiedy; cf. Popper (1959). The falsified
model often can serve as a good approximation of the newly developed

model, under certain restrictions.

2.3 Technical modelling and parametrization

As we are interested in engineering methods of model building and
identification which are sgulted for algorithmization, we ghall re-
gtrict ourselves here to models which can be treated mathematically.
These models are not only useful for the description of industrial
objects but also for objects that are not necessarily technlcal, such

as a variety of bio-medical, social and economic objects.

The first principal decision that has to be made with respect to
modelling, concerns the way of parametrization of the model, i.e.
the form of the mathematical description of the input—output rela-
tionship. WNiederlinski and Hajdasinski (1979) formulate three impor-
tant objectives for a convenient parametrization:
1) universalitz, i.e. it should be applicable to all objects in
the class of interest.
2) limited number of (un)known parameters. This is related to
the principle of parsimony, formulated by William of Ockham

16



(1285 - * 1349) and known as Ockham's razor: "Non sunt multi-
plicanda entia praeter necessitatem”; it 1is applicable to

model building as well.

3) identifiability of (unknown) parameters of interest.

Parzen (1974) wmakes a distimction between structural and synthetic
models. The parameters of a structural model have a natural struc—
tural interpretation: they will rely on physical laws. These para-
meters provide explanation of the object which generates the data.
Synthetic models are not based on physical laws. Their parameters
need not be physically meaningful. Their interest is in the use for
gimulation, for prediction of future behaviour, for interpretation of
past behaviour, and for (optimizing~ and adaptive) control. 1In tﬁe
literature, the structural model is sometimes also called generic
model- or explanatory model, whereas the synthetic model may be called
non-generic model or input-output model; cf. also Richalet (1981),
and Hajdasinskl, Eykhoff, Damen and Van den Boom (1982).

Besides this distinction among models, a characterization may be
‘based on the following list of adjectives; cf. also Hajdasinski et
al. (1982) for further explanation:

time~continuous ‘ time-discrete
time—invariant time—~variant
linear dynamics non~linear dynamics

single-input single-output (SIS0) multi-input multi-output (MIMO)

lunped parameters : distributed parameters
parametric non—-parametric
deterministic non-deterministic
single layer hierarchical

causal non-causal

one dimensional " more dimensional
non~-fuzzy fuzzy

non~verbal : verbal

17



Note that a model can be characterized by several of these descrip-
tors; even a combination of the two opposing descriptors onm the
game line is possible (e.g. a model may be partly time-continuous,
partly time~discrete).

A crucial choice which has to be made concerns the linearity of the
models, in the sense of whether the output quantity is a linear or a
non—linear dynamic function(al) of the input signal. For linear
models the theory and practice of model buflding and estimation is
far more developed than for non-linear models. This is partly due to
the fact that a coherent and complete description of non-linear sys—
tems does not exist. A rather general description like Volterra
series expansion has, for many practical cases, the drawback of hav-
ing an excessive number of parameters. In many cases, depending on
the intended use, it 13 sufficient to have a model only in a certain
working point. In this case, linearizing can yield a simpler and
more useful model. For an extensive review of non-linear models, see

the survey paper by Haber and Keviczky (1976).

Other types of simplification may occur when systems with distributed
parameters are to be modelled by lumped models, when time-continuous
systemg are modelled by time-discrete models and time-variant systems
by time-invarlant models. For these types of model simplifications
and the general aspect of the construction of lower order models, the

survey paper by Gwinner (1976) gives a good introduction.

In the following chapters we shall concentrate our discussion on

models which are linear—in-the~parameters. The parametrization of

these models may cover many linear, as well as some non-~linear syst-

ems for single-input single-output models, as indicated in table 2.1

From the point of view of applicability of the available parameter—
estimation methods, the property of linearity~in-the-parameters of
models is important. The model error, i.e. some difference between
object and model behaviour can then be expressed .as linear~in=-the-
parameters, so that the gradient of a quadratic performance criterion
with respect to the parameters can be evaluated quite easily. For
this reason much attention will be given to these types of models in

18



=~ linear difference or differential equations
- ARMA, (ARMAX, transfer function)
- impulse response, Markov parameters, Hankel

LINEAR matrix
- Laguerre polynomials
DYNAMICS -~ gtate space models (canonical forms and
others)

- non linear difference or differential

equations
- Volterra kernels Volterra (1959)
NON LINEAR — Chebychev polynomials Smets (1960)
~ dispersion models Rajbman c.s (1980)
DYNAMICS - GMDH models Ivakhnenko (1968)
- Hammerstein models Hammerstein (1930)
- Wiener models Wiener (1958)

~ catastrophe models

Tabie 2.1 Parametrization of models

the followlng chapters. In this context the concept of generalized
models 1is valuable,v as it gives us the possibility of obtaining
linearity~in~the~-parameters in a flexible way. In fig. 2.1, three
distinect types of models are shown, a) the output error model, b) the

‘input error model and ¢} the generalized model.

It will be clear that these types of models are often synthetic mod-
els. Within the field of control engineering they are widespread,
because they can be used satisfactorily for a varlety of applica-
tions. Their way of parametrization can be chosen within broad lim-
its, depending on the particular situation at hand. A few possibili-
ties are; cf., Eykhoff (1974)

output error model:

E =¥

. - F (u ;8') (2.1)

k o' k¥ k

e.g. ~ moving average model
impulse response model

Hankel model

F = :}i: 8] ey (2.2)



- transfer function model
(b +B(z=1)]

F.= H(z- Dy, = ——— (2.3)
° ko [1+a(z-h) ] e

input error model:

S = o T P8 ' 2.4
e.ge. — autoregressive model
F, = ) 0.y (2.5)
i k~
3 k-3

~ inverse transfer function model

p = llaGDh] v (2.6)

i
[b +B(z-1)] ¥
o]
lnolu
. [0 ¥i
a) . PROCESS k
MODEL )T
k
output error modet
l noise
b) e PROCESS *,
-- MODEL
* input error model
1 noise
(]
c) PROCESS L v

MODEL O MODEL .J
€x

generalized model

Fig. 2.1 Distinct types of model errors
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generalized model:

= - . .
e.g. = autoregressive - moving average model (ARMA)
F = ] 8 ; =
° E 4 %-3 ° Fy jZ 873 (2.8)

-~ gtate space models

A few remarks can be made:

-

a purely autoregressive model and a purely moving average (or
Hankel, or impulse response) model usually needs a (very) large
number of parameters for an adequate representation of the dynam—
ics of the system, In the sense that the resulting error is small
or negligible.

transfer function models or inverse transfer function models may
have a smaller number of parameters but these models are not

linear-in~the~parameters.

First we consider the synthetic input-output models. Several wvari-

ants have been proposed in the identification literature:

Moving Average (MA) models:

Ve = [Bl4Br(amh Ju (2.9)

stochastic: cf. Levin (1960)

Yy = [b:)w'(z-l)]uk + ey (2.10)

where ey is the modelled noise. 1In eq. (2.9) and eq. (2.10)
[b;+B'(z'1)] is a polynomial operator, which may have arbitrary

length. These models are also called impulse response models or

Markov models. They usually need a very large parameterset, which is

often a drawback, so that the following models have been proposed.

Autoregressive Moving Average (ARMA) models:

deterministic
[1+a(z=1) ]y = [b +B(2=1) Juy (2.11)
Stochastic
[1+A(z=1) Iy, = [b0+3(z41)}uk + e (2.12)

21



Here [1+A(z‘1)] and [b°+B(z‘1)] are polynomial operators, with
memory length of resp. q and p. The correct choice of q and p refers
to the problem of order testing, see chapter 7. If we extend this
stochastic model by taking into account the dynamics of the noise, we
have several possibilities: we may use MA, AR (autoregressive) or
ARMA modelling for the noise.

MA e = [_1+C(z-1)] £

1

"7 Ti#p(z-1y ] G e = ~DEDe + 5 (2.13)
ARMA e [i+ecamh | £, >e,==[D(z"D)]e, + [1+c(z"1)]¢
x [140(z-1) ] k k Kk k i

where £y is a (conceptual) white noise input sequence.

This leads to the following models of process— and noise dynamics
which have been proposed in the literature:

ARMAX model; cf. Astrdm and Bohlin (1965)

[1+a¢z=D ]y, = [bo+B(z'1)]uk + [1+C(z-1)]5k (2.14)

Clarke's model; cf. Clarke (1967)

[1+A(z=Y) ]y, = [b 4B(z=1)Ju, + —L1 (2.15)
k [ o™ [1+D(z'1)] Ek
[1+a(z=D) ]y, = [b #B(z~D) o, = [D(z"D)]e, + & (2.16)
Model of Talmon and Van den Boom (1973)
-1
[1+A(z=Y) Iy, = [b *B(z"1) ]u, + [z ] & (2.17)
° [14D(z=1) ]

[1+a(z=H Iy, = [b #B(z"1) Ju, - [D(z"D) Je, + [14c(z"1) ]g,

This model is a generalization of the two previous models. IéziiSZr—
porates the advantages of both models, i.e. by properly choosing the
degrees of the AR and MA parts, one can model the MA part of the
noise by the MA part of the noise model and the AR part of the noise
by the AR part of the noise model. Purely MA noises need not be
modelled by AR models as with Clarke's model. The Talmon and Van den
Boom model gives therefore more flexibility to arrive at a minimal

parameterset.

22



An important observation is that the above models are linear-in-the-
parameters, provided that the signals ex and &k are available.
It 1is obvious that this will not be the case, as only input and out-
put samples up and yi are available. The models which will be
used in practice will then need an estimate of these signals ey and
Exe These estimates can be obtained by making use of previous
estimates of process- and noise parameters. Therefore, the above
models are linear—in—the—process-parameters A and B but are non-
linear—-in-the~-noise-parameters C and D. This will cause the appro-
priate estimation methods to need iterations or recursions to handle
these non-linearities. This will be explained further in chapters 3
and 4. In fig. 2.2 a diagram is given for the most general model,
i.e. that of Talmon and Van den Boom, where it is used for the genera-

-~ -~
tion of the generalized model errors e and &.

Uk PROCESS L
e _LJ
H boe+ B 5k 1 +A L

(]
[ ]
)
~ ]
& :
° t
1+D 1
)
$+ , v
A 3
H
: :
c ]
1
1)
]
1
]

Fig. 2.2 The model of Talmon and Van den Boom

The above given models (2.12),'(2.14), (2.15) and (2.17) are general-
ized models. Also output error models have been proposed in the
past. They do not have the attractive property that the model error
is linear in the parameters. We will give some exampleé:
- Transfer function model

[bo+B(z‘1) ]

y, = ——— u, + e (2-19)
koAl KOk
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~  Box-Jenkins model; cf. Box and Jenkins (1976)

[b,+B(==1) ] [14c(2=1)

[1+A(z-1) ] [1+D(z-1) ]
Output error models have been used by Dugard and Landau (1980) using

™ Kk X (2.20)

the Model Reference Adaptive System (MRAS) techniques.

Lijung (19?9)  proposed a model which contains the Talmon and Van den
Boom model and the Box-Jenkins model as speclal cases

[bt8(z~h) ]
R ——T

-l
[1+agzD Iy, = el
[140(2~1) ]

5 (2.21)

k k

[147(z-1) ]

Next we will consider state space modelling. The general expression

is _

Tl T A T By J

L = % (2.22)
where‘gk is the input vector, x, 1is the state vector and,zk is

the output vector, and the triplet (A,B,C) 1s called the realization
of the dynamical multivariable system. For the state vector, we may
look for a minimal set, i.e. the realization with the lowest possible
order. An infinite number of state vectors can be found; also an
infinite number of triplets'(A,B,C). The realization (A,B,C) 1is not
unique, as the T-equivalent realization (TAT=!, TB, CI™!), T being a
transformation matrix, gives the same transfer function matrix H(z)
or impulse response matrices M. The problem of selection of a
suitable state space realization will not be discussed here. In
Goodwin and Payne (1977) a review is given of the counstruction of
several canonlical state space models; see also Denham (1974) and
Hajdasinski, Eykhoff, Damen and Van den Boom (1982).

The impulse vesponse matrix or Markov matrix for the kP time

instant can be constructed by:
k-

= ca's (2.23)
resulting in the following model
= M ' 2.24

The matrices Mj can be brought into a Hankel matrix, which is a key
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for obtaining a state space realization from the Markov parameters;
cf. Ho and Kalman (1966) for the deterministic case.

The transfer function matrix is found by:
H(z) = C(zI-A) ‘B (2.25)
3

The above relations apply, in principle, for SISO as well as for MIMO
systems. There is a rapidly increasing literature conceruning aspects
of the cholce of parametrization, especially for MIMO systems. In
general, the Markov parameters using the Hankel matrix are widely
accepted. In figure 2.3 the relation between different parametriza-
tions is given; cf. Hajdasinski and Damen (1979).

system
[

frequency ARMA ropres. | Efate space descr. |

hods non- nom-
met unique | wnigue unique | unique

| [

! ] { ]
transfer impuise response] canonical
functions | " J(Hankel model} forms

J

parameter
identifisble formas

overiapping param.

Fig. 2.3 Relations between different parametrizations

From the relations given above it will be evident that the calcu~
lation of the Markov parameters and the transfer function from a
given realization in state s?acé is straightforward. The calculation
of a realization In state space from the transfer function or Markov
parameters, however, ié rather involved and is the subject of the
realization theory; cf. Silverman (1971), Ho and Kalman (1966).
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If uncertainties are present in the measured signals, then the trans—
fer function or the Markov parameters vesulting from an estimation
procedure will be available only as approximations. Tﬁen the algor-
ithms for conmstruction of a realization in the state space have to be

modified; cf. Hajdasinski and Damen (1979), Van Zee (1981) and Damen
and Hajdasinski (1982).

For the parametrization of SISO models, an ARMA representation is
appropriate, as its interpretation is very close to that of a trans—
fer function, consisting of a quotient of two finite polynomials,
which are relatively prime. From a historical point of view, trans-
fer functions have been used extensively in control engineering for
stability considerations and design. Thelr parameters are closely
related to the physically meaningful parameters of generic models,
which can be advantageous for interpretation of results.

State space models are of a more general nature. Their parameters
may only be indirectly related to the physical parameters of the
system. They provide useful Insight iInto properties of controllabil-
ity and observability of the overall system. Their parametrizatioun
may be very compact, depending on the realization chosen, which is
primarily important for MIMO systems.

In the following chapters, we are primarily interested in estimation
methods which yield consistent estimates for a modkel having a para-
metrization with a limited number of parameters. We have already
seen that ARMA models usually have such a limited number of paramet-
ers. It was also mentioned that we will need to extend these models
to stochastic models, i.e. we need an adequate description of the
noise. For thig purpose we will make use of ARMAX models, which have
a moving average, or an autoregressive—, or a mixed autoregressive
moving average parametrization of the nolse colouring. This type of
modelling of the nolse characteristics is motivated by the :spectral
factorization theorem. This theorem gives a unique factorization for
a nolse eg, being wide sense stationary and rational. The spectrum
of this nolse can be interpreted by considering the noise as an out-
put of a time invariant finite dimensional filter‘ H(z) driven by a
white noise input
W= H(z) I, B (z~D) (2.26)
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I, being the covariance of the white noise input. It should be noted
that many different filters H(z) can produce the same spectrum W.
Having this spectrum W, the spectral factorization theorem states

that a unique spectral factorization of W can be found satisfying:
1) W=206(z) I, GT(z‘l)

2) G(2) has all its poles inside the unit circle lzl=1

3) ¢ (z) has all its poles inside the unit circle |zl= 1

4) 1lim G(z) = 1
zZro

Proof cf. Youla (1961), Astrvm (1970).

This theorem is very useful, as it provides a motivation for model-
ling stationary and rational nolse sequences by a stable, minimum~
phase ARMA description. The inverse of the model is then also stable
and minimum—-phase and causally invertible; c¢f. Gevers and Kailath
(1973). We will frequently need this property in the following chap—

ters.

2.4 The notion of order

For noise—-free single-input single~output systems (5IS0) with linear
and lumped dynamics, the notion of system order can be defined quite
easily. For a state space description in canonical form, the order
is defined as the number of independent states. For transfer func—
tion types of parametrization, the order 1is the number of poles of

the system, provided that no pole-zers cancellation occurs.

The notion of the desired order of a model is a more questionable one
however, due to the fact that the model is something that is con—
structed as an image of an unknown process. It need not cover all
agpects of the process itself, so that the model may very well be of
a lower complexity. Therefore a class of models of interest has to
be specified and within this class the most sultable member has to be
found, according to a certain predefined sense. Model validation,
which will be dealt with later in this chapter, then has to be used
in deciding whether this class can be accepted, or whether another,

richer class is to be chosen.
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Let us assume that we have two model structures M; and M, with p;
and p, independent components in the parameter vector 6 respective-
ly; where p; < pp and Mj; < My, i.e. M; is a subset of M,. If in
the class of models Mj (j=1,2) the 1loss function Vj(éj) is
minimal, then the model M5 is considered to be the best. Here
gj is an estimate in My 1f V1(§1) and Vz(@z) are equal
then the extra degrees of freedom in M; do not contribute to the
model in the sense of Ockham's principle of parsimony. The decrease
of the test quantity for increasing model order may be obscured by
noise, especially if the extra degree of freedom gives only a slight-
1y smaller value for the loss function in the noiseless case. This
can lead to a selection of a lower model order. For selection of a
proper.model order, many order test methods have been developed; cf.

Van den Boom and Van den Enden (1973) and chapter 7 of this thesis.

For noise-free MIMO systems the notion of order can be given in an
analogous way. TFor a minimal realization in state space, the order
can be defined as the number of independent states. An alternative
for definition of the order is to use the realizability index r of
the Markov parameters; cf. Hajdasinski and Damen (1979). This is
defined as:

r

- 121 AWM Vyso

This means that r Markov parameters Mj, 1<i<r are sufficient to

Mr+j (2.27)

construct a minimal realizatidn; cf. Ho and Kalman (1966).
With respect to a suitable model order for MIMO systems, the same

remarks apply as for SISO systems; cf. also Hajdasinski, Eykhoff,
Damen and Van den Boom (1982).

2.5 The concept of identifiability

Another fundamentgl problem is the identifiability concept. So far in
literature thlis seems to be more of theoretical than of engineering
interest. Nevertheless, one should not circumvent this aspect as it
determines whether an application of parameter estimation methods
might be successful, given eﬁperimental conditions such as structure

specification, available data, etc.
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So far, several authors have studied the identifiability problem and
consequently several (closely related) definitions have been intro-
duced. Most definitions are based on consistency of the estimators:
the "true" process parameter 6y is said to be identifiable if the
sequence of estimates :G_N coaverges to & in some probabilistic

sense, where N is the number of observations.

Astrtm and Bohlin (1965) use in this respect, consistence with proba-
bility, Staley and Yue (1970) convergence in a mean squares sense,
Tse and Anton (1972) consistence in probability. Tse (1978) intro-
duces a measure of identifiability based on the following. For a
certain identification method, the corresponding identification error
is ¢y, where N is the number of observations. The quantity ey is
then a probabilistic function of :9.N - 5. By bounding ey
above by EN’ and below by €y, identifiability conditions can be
derived by studyiﬁg the asymptotic behaviour of EN and gy for N ~»
o, A resolvability function 1is introduced which describes these
bounds completely. 1In this way a quantitative measure of identifi-
ability is established, which measures the degree of resolvability
between parameters. The asymptotic behaviour of this function gives
necessary and sufficient conditions for global identifiability.

Another attempt at studying (global) identifiability was made by
Bellman and Astrtm (1970). Here a model is said to be (globally)
identifiable 1f the identification criterion has a unique global
minimum. This is interesting as the notion of “"true” parameters is
not used in this definition. The identifiability property is there-
fore an attribute of the specified model. This definition leaves
nuch more freedom for the actual system being studied, as it allows

also lower order models.
For analysis of identifiability conditions for systems (with feedback
control), Ljung, Gustavsson and S8derstrdm (1974) introduce, rather

formally, the following quadruplet of notions:

a) the experimental condition X, referring to the manner in which

the signals are determined
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b) the stochastic system §, given by the general form:

- -1 ~1
Yy Gs(z )uk + Hs(z )ek {2.28)
vhere the output vector yy and the random variable ey are
vectors of dimensien ny and the input vector u(k) has dimen-

sion ng;.

c) the model structure u(#). The model structure 1s obtained by

parametrizing the functions 8(z~') and H(z~1) in a suitable
manner. A model u(f8) is then given by

Yy = Gu(z‘l)uk + Hu(z'l)ek \ (2.29)

dy the identification method J. The parameter estimates at time

N for given S,u,J and X are denoted by EﬁN;S,u,J,X).

With this quadruplet of notlons the following identifiability notions
are given:

I The system $ is said to be system identifiable [SI(u,J,X)] under
"~ 3,J and X, if:

85, 1,9,%) » Di(S,1)  wepilas N+ (2.30)
where

D (S,u) = {QIG (z) = G_{(z) and H (2) = H_(z) at everylz}
T u S u s (2.31)
‘i.e. the set of parameter estimates E, for which the transfer

for process and model are equivalent. This set may contain nu-
merous parameters, including e.g. models with pole~zero cancel-
lations.

I1 The system S5 is said to be strongly system identifiable
[SSI(J,X)], under J and X, if it is SI(u,J,X) for all y such that
Dr(8,u) is non empty.

I1I The system S is said to be parameter—identifiable [PI(u,J,X)]
under u, J and X 1if it is SI(w,J,X) and the set Dyp(S,u) con-

sists of only one element.

Note that a system may be system identifiable, but not parameter
identifiable for a certain type of model. An example is when too
high order models are used so that pole-zerc cancellation in u(8) may

occur; cf. also chapter 7.
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For the class of prediction error estimators, Ljung (1976,1979) de-
rives conditions for consistence and hence for identifiability. We
will consider consistence for ‘different identification methods in

chapters 3 and 4.

2.6  Identification protocol and model validation

After having touched upon some of the cruclal aspects of system iden-
tification, it is now possible to discuss the relation of those as=-
pects within the identification protocol. Three main phases cam be
distinguished in the protocol:

A) preparation

B} estimation

€) wvalidation

In the preparatory phase A, the prerequisites of the estimation phase
should be checked:

Al) Check of time invariancy. For proper model bullding, one

should choose between time~invariant and time-variant models.
Based on possible a priorl knowledge, by careful (visual)
inspection of the data or applying time series analysis rout~-
ines (off-line) for detection (and correction) of trends or
drift, one can decide for time (in)variancy of the models to
be used. v

A2) Check of linearity. The use of linear models greatly simpli-

fies the estimation. Also here, based on a priori knowledge,
and analysis of the measured data (e.g. Rajbman's 1inearity
measure, cf. Rajbman and Chadeev (1980)) one should decide
whether linear models are admissible. 1If the process is ex-
pected to be non-linear, it is worthwhile considering the
possibility of linearizing in a certain working point, if the
use of the model is restricted to the vicinity of this working
point. ’

A3) Check or choice of input‘signals. The frequency coantent of

the imput signals should cover the frequency range of the
process. A "high" frequency process 1is hard to identify by a
"low frequency” signal. For reliable results "persistently
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Ab)

A5)
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exciting” input signals are required; cf. Ljung (1971), i.e.
the input signals should excite all of the (relevant) modes of
the process. In general a “"white” noise input signal is very
attractive as 1t covers the whole frequency range, but is
physically not realistic. In many cases, it is not permitted
or quite impossible (e.g. 1in some bilological processes) to
influence the signals of the process in order to improve the

“identification quality” of the input signals. For these

cases it is good to keep in mind that (as always) the identi-

fication results are dictated, c.q. limited, by the type of
input signals used; cf. Rooijakkers (1982). In some experi-~
mental clrcumstances it is possible, within some margins, to

.select the (type of) input signals. 1In such a case one can

choose an "optimal” test signal., For a survey of this topic

see Mehra (1974, 1981).

- Another point is that the type of (optimal) input signals
used for identification should cope with the type of input
signals of the model when applied within the context of the
intended use of the identificatlion results. This could
otherwise cause problems 1f a linearized or a (deliberately)
lower order model is used.

~ Data should be checked for damage such as outlyers, missing
data points, parts with excessive noise, pertinent distur-
bances etc.

- The choice of the sampling rate is another point of inter-
est, as it can also be a trade-off between accuracy/relia-
bility and costs/technical limitations. Allasing effects
should be avolded; cf. also Goodwin and Payne (1977).

Check of correlation of noise. The prerequisite that the dis-

turbing noise and input signals are uncorrelated should not be
discarded, as it can cause inconsistent estimates.

Choice of model. The model should be chosen with its intended

use in mind. Usually this will be diagnosis or control. This
is a very important point and it should be stressed here, as
the intended use completely dictates, in principle, the extent
and form of the model. A good understanding of the intended
use is a great help iIn choosing a model structure., For con-

trol, several types of synthetic models may be adequate (even



lower order models). The choice then depeands on mathematical
attractiveness of the description and suitability for estima-
tion routines. Also the possibility of incorporating available
a priori knowledge in the model can play a role.

In the estimation phase B, a choice should be made of existing esti-

mation routines and order tests. The availability of software for
those routines can play a role. The use of a general ~ interactive -
computer package for selection of the appropriate routines can be
very helpful; cf. Lemmens and Van den Boom (1977), and chapter 6.

The model validation phase C is perhaps the most difficult one. It

determines whether a model should be accepted or not. A model which
has been chosen in the preparatory phase A can be rejected at this
stage. If the model 1s rejected, one should proceed to the first
phase and start the whole procedure again. In Investigating model
(in)adequacy several aspects are relevant:

cl) Cross-validation. The confrontation of the obtained results

from one set of data with the results from another, independent
set of data is worthwhile. Also the use of different paramet—
rizations and the check of their consistence can give inform~
ation.

C2) Check of residuals. The residuals should usually be white and

not contain signals such as peaks, sines etc.
C3) Consistence with a priori knowledge. The coufrontation of the
properties of the model with possibly available knowledge of

the process can give insight. Also other types of input sig-
nals can be applied to the model and the resulting output sig-
nals can be compared with known behaviour of the process in
similar circumstances. Usually, if possible, it is wise to
investigate the sensitivity of the identiffcation results to a
change of the type of input signal.
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2.7 Conclusions

In this chapter, we have discussed the most important aspects of
modelling in relation to identification. We have given several types
of parametrization of synthetic models, which will be the basis for
the discussion in the following chapters. We have discussed aspects
of choosing a suitable parametrization and aspects of model valida-
tion. It will become clear that for almost all aspects that we have
reviewed, we have not given strict, hard and fast rules on how to
proceed, but rather we have presented how these aspects are inter-
related and what possibilities exist. The main conclusion can there-
fore be that modelling and validation cannot be mechanized complete-
1y, bué that good engineering intuition and experience are needed for
handling practical problems. Nevertheless, the majority of papers on
modelling and identification deal with the pure estimation phase
(phase B 1in paragraph 2.4). This aspect 1in the whole
identification protocol is often the least cumbersome, as nowadays,
good estimation packages exist. A practical experience is therefore
that a relatively small amount, say approximately 15 per cent of the
time devoted to, or the costs spent on modelling, estimation and
validation 1is for the estimation itself, which still means, of

course, that the utmost care has to be given to the estimation phase.
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CHAPTER THREE:

EXPLICIT LEAST SQUARES ESTIMATORS

3.1 Introduction

The basic principle of the least squares method was introduced in
1795 by K.F. Gauss for the estimation of the parameters of planetary
orbits. 1In the last few decades the method has become popular for
the estimation of parameters of earthly dynamical systems based on
observations of input—~ and output signals. The broad application was
a.0. stimulated by the availability of digital computers for the -
sometimes — excessive amount of number crunching.

At this moment several methods based on the least squares principle
are available. Some methods, like the instrumental variable method,
were originally proposed outside the framework of the least squares
prineiple, but finally it turned out that they also belong to this

class.

This chapter is set out as follows. In paragraph 3.2 the weighted
least squares estimator will analysed and the appropriate signal- and
process definitions will be given. In paragraph 3.3 the weighting
matrix will be considered in more detail and, as a consequence of
this, we will distioguish between the "correlative” and the "filter-—

{ng"
will yield two elements of the concept of three basic operations by
which the estimation methods will be classified later. The combina-

tion of these two basic operations results in the set of {explicit)

type of weighting matrix. This distinction is important as it

instrumental variable estimators, including the Tally estimator.
Also the third basic operation of estimation schemes will be dealt
with: model extension. In paragraph 3.4 the combined application of

the three basic operations are reviewed and a general scheme for
explicit estimators will be given. Known explicit schemes like the
implicit quasi 1linearization (IQL) and the suboptimal instrumental
variable estimator (SIV) fit into this scheme. In chapter 4, this
concept of three basic operations will be used for

classification of the recursive estimators. Schemes like the approx-~
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imate maximum likelihood (AML), the extended matrix method (EMM) and
combined schemes like IV-AML will also fit into this general scheme.

In paragraph 3.5 the maximum likelihood estimator will be dealt with
briefly, due to its relation with the AML scheme. In paragraph 3.6
the accuracy of the estimators 1s discussed, based on the Cramé&r—Rao

results.

3.2 The ordinary least squares method (LS), the weighted least

squares method (WLS)

Conslder the following conceptual description of the process P. We
asgume that P can be described by the following I1nput-output rela-

tion, cf. figure 3.1

Fig. 3.1 Process, model and disturbing noise

y= ﬂ(u,y)_fjgg 3.1
with

T

y = (Yq_,_l,-no,?n)

T

e = (eq+1,oooo,‘eN) (302)
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_e_'g = (b seeesb -2 yeensma ), (3.3)

q

Q(u,y) = . . (3.4)

oot Yep -1 "0 Vg
Here yi is the output sample at the k-th instant of time. The
vector e is denoted as the equation error, and 6; denote the true

parameters of the dynamical gystem. A corresponding output‘noise

g, i.e. the noise considered is concentrated at the output
of the process,can be defined implicitly as:

where Xy 1s the undisturbed output. The relation between the equa-
tion error eg and this corresponding output noise ng can be giv-
en; cf. eq. (3.16).

The input-output relation can also be written in polynomial form:
-1 - -1
[1+az=1) |y, = [bytB(z"D) | u, + (3.6)

where the polynomials are defined as:

[144], = [1+a,z 4 a,z 2 + wuet a 2 9]
t 1 2 q t (3.7

b4B] = [b4b.z L + b,z 2
[+ t [s]

) ~P
12 - 2 +o0ot bpz ]

t
For notational simplificiation, further on we will omit the argument

z'1 in the expressions for the polynomials.

‘For asymptotic stability of the signals involved, it is assumed that
the roots of zq[1+A]t and zp[b°+B]t all lie inside the umit circle
of the complex z-plane. We assume here that a part of the relation-
ship between the measured input-output samples may not be represent—
able by the dynamical part of the difference equation (3.6), but that
some uncertainty can be admitted. This may be interpreted in differ-
ent ways:

a) system noise: insufficlent wmodelling of the dynamical part

(non-linearities, too low order, etc.);
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b) measurement noise: contaminated measurements of the output

signal, poorly observed input signals.

The parametrization of the quantity e can be done along the lines
indicated in chapter 2, where MA, AR and ARMA descriptions were giv-

en.

1f a delay is present in the system, it is wise to shift the input
samples in time so that the description (3.6) is valid. For the
determination of this delay, in case it is unknown a priori, see
chapter 7.

The generalized model M which is built will be fed by the measured
signals ug and yx as indicated in figure 3.1. Based on N observ-
ations of input and output signals, an esttmate{é of B using a
least squares criterion is found. The input—output description of
the model is written as:

Y= fu,y)t+ :3:_ (3.8)

where O represents the parametrization of the model set. It is assu-
med that O; lies inside this modelset.

A quadratic error criterion is defined, based on the estimated equa-

~

tion ertor_g; which will be called residual.

_ 1 3T (3.9)
Veggses

Minimizing ‘this with respect to 8, we obtain the least squares esti-

mator in an explicit form?
-l
8o = [Famnaen] ey (3.10)

In figure 3.2 a schematic diagram of this estimator 1is given, where

used

jo»

the signals, the choice of model involved and the quantity

for the criterion {3.9) are shown.

In many cases it will be desirable that the estimators are unbiased,
at least asymptotically. This aspect is given much attention in
literature. It seems reasonable that an estimation algorithm should

aim at the "right" parameter value, but 1in the case of some adaptive
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control schemes, it is not always necessary to provide the controller
with unbiased estimates. 1In such cases, simple and fast estimators,
which may have bias, e.g. LS estimators combined with minimum vari-
ance control, can often be used fruitfully. Moreover the concept of
Yright” parameter values is doubtful. We can only think of “"best”
parameter values within a certain class of models, given a certain
minimization criterion. Comparison of estimated model parameters
with process parameters 1s only feasible in simulated experiments

where model~to~model estimations are being performed.

T—
[

=
=<

estimator

1
bk

Fig. 3.2 Least squares estimator

+
{
Y, -1

The asymptotical blas can be investigated by taking the probability
limit of E and using Slutsky's theorems, cf. appendix V:

1
plin [8] = ¢+ plim [[27(u,)00u,y) " 87 (s,y) e] =

N | ke

= o +{plim [X 9% (u,y)9u,y) ]}~ lplin [mi- 95 Cu,y)e]
* w4 N N4 TS 40y

if

I plim [ﬁL‘ RT(u,y)SZ(u,y)] =T I is non-singular
—-q
Koo
(3.12)
I plim [ 6" (u,y)e] = 0
N+ q
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then plim [E] = 6, so the estimator is asymptotically unbiased
(consistent). Condition I assures that the measured signals u and y
contain sufficient degrees of freedom to make the estimation meaning-
ful. This condition is related to the requirement of persistently
exciting input measurables. Condition II gives insight into the

required colouring of e for obtaining consistent estimates:

ER S
qzluiei Yue(o)

.

1 T 1 N
plim[r 2 (u,y)e] = plim = )
Nreo 4 N N9 g4

1D
L]

&
~
o
~—

u e
i-pd (3.13)

N-1

Lvs 8 ¥ye(1)

N-1
c21 Yi-q®1 ¥ o (@)

If u and e are independent, which also implies that the two signals
do not both have a non-~zero mean value:

¥ (1) =0 Vo1 (3.14)
The same holds for x, the undisturbed part of the output signal of

the process:

0 0
: 0
plinfer dfuye) = | L W+ Y @] = | ¥ @ |@.15)

N>oo

Y (D + ¥ (@)

¥ (D

From this relation it can be observed directly that the estimation of

the AR process parameters will cause complications, as the right-hand
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term of eq. (3.15) is usually not zero, except for very specific
colouring of ek, which will be investigated soon. If a pure MA
parametrization of the process dynamics is used, then consistence of
the estimates 1is guaranteed, if (3.14) is fulfilled. This implies
that the various techniques for obtaining consistent estimates, which
will be dealt with in this chapter and chapter 4, are not needed.

This is an interesting advantage for MA models. The drawback is that
a greater number of parameters is necessary for MA models, leading
often to approximated models, with, in practice, a limited number of
parameters. This will also cause inconsistence of the estimated

parameters.

A relationship exists between the process noise eyx, which can be
seen from figure 3.1, and an equivalent output noise ny.

e, = [1+aln,

This can be interpreted as an input-output relationship where ey is

(3.16)

the input signal and ng the output signal:

e [1+a ]I o, (3.17)

1f {ex} 1s a white noise sequence, then Yeld) = 0; 1 > 0.
This means that in this case

plin [gi- o (u,m)e] = 0 (3.18)
N

so that
plim [B] = 8 o (3.19)
N+oo

The requirement imposed on nyx is rather sgevere: the output noise
ng is an autoregressive (AR) type of filtering of a white noise
sequence, using the AR parameters of the process as AR parameters of
the noise filter. This will, of course, seldom occur in practical
situations, hence the simple least squares estimator (3.10) is usual-

ly asymptotically biased.

By using a weighting on the measurements, we can arrive at the

weighted least squares estimator. Define the weighted error criter-

ion:
1 AT. 2
M =R ’ (3.20)
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where W is an appropriate weighting matrix of dimension (N-q)x(N-q)

't Y-

We |- . (3.21)

. .

Yin-q)1 " ¥(N-q)(N~q)

Minimizing (3.20) with respect to 9, ylelds the weighted least squar-

es estimator

S = (9" (a,7)W0(0,9) -1 2" (u,ydWy (3.22)

It will be obvious that the properties of this estimator highly de-

pend on the choice of the weighting matrix W.
For the estimator (3.22), the probability limit can be given:

plim [—WLS = 8+ plim[ QT(u,y)WQ(u,y)] plim[ Q (u,y)We]

e (3.23)
where the second term of the right hand side gives the asymptotical

bias. 1In the next paragraph, it will be shown that this can be made
zero by the proper choice of W.

3.3 Development of the concept of three basic operations

In this paragraph we will introduce three basic operations related to
the least-squares estimator. The first two operations, filtering and
correlative weighting, will be derived from the weighting matrix, as

already encountered in the previous psragréph. The third basic oper-

ation, model extension, will also be discussed.

In the forthcoming paragraphs the possible combinations of these
three basic operations will be discussed and the existing, explicit
estimation methods will then appear to be constructed by using ome or

more of these three operations.

3.3.1 The filtering type of weighting matrix

Consider the (N—q)x(N-q) weighting matrix
W= gl : (3.24)

where
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R = Ele g?} (3.25)

We will also assume an ARMA parametrization for the signal ¢ in the
following way:

[1+c],
e, = 13 (3.26)
k [1+D] k
t
where £y represents a white noise sequence, and
- -1 ~8
[1+c], [1+c1z teanet ez ),
(3.27)

[140], = [14d,271 #ueeuit a2 7]

1
In appendix I it is shown that a good approximation for R-! can be

t

given by{if there are no poles and zeros on the unit circle):

-1 o 1 Toe 2
R DDy o (3.28)
where the matrix D! is related to a finite polynomial [1+n']t of

the pure autoregressive parameters, approximating the ARMA modelling
of the noise filter:

4]
[140]

[14D7] =

t (3.29)

1],
The matrix D; is then a (N-q)x(N-g) lower triangular band matrix.

D! = | (3030)

containing the AR parameters of the filter defined by (3.29).
The matrix D{ causes a filtering of the signals in the matrix Q{u,y),
ylelding (a,¥y):

Q(H,3) = DIAu,y) « (3.31)
with
g 1 t
uk \lk"‘dluk.l""oo.-....-c'.'dv -y
~ ' (3.32)
= M e R ES eSO ES N
Ve = NVt H Vv
This filtering can only be perfbrmed if the AR nolse parameters are
known a priori. The estimator (3.22) can now be written as:

3= [¢'@ P e, FaE,NE (3.33)
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For this weighting the probability limit is:

- 1 T~ o o aa 1 T.~~
plim [8] = o+ {plim[g= @ (8,7)8(3,7) |}~ olin g (u,9)E]
N+= N+ j Rad
(3.34)
Now 1 T~ o~
plinfg= @ (e, NE] =0 (3.35)

N+

Conseqhently, the estimator (3.33) 1s consistent.

Analogously to the common least squares estimator, a schematic dia-
gram of this estimator can be given; cf. fig. 3.3, where the known
filters F, are used to pecform the filtering given by eq. (3.32).

estimator

i1
<

1Dy

Fig. 3.3 Schematic diagram of a least squares estimator
with weighted filtering

This estimator, using known noise parameters, 1s usually referred to
as the Markov estimator. For models with only MA parameters, it can

easily be proved that this estimator 1s unbiased for all N and that
it ylelds a minimum variance estimate; cf. - Goldberger (1964),
Eykhoff (1974).

So far we have assumed that the filter parameters are known, so that
the filtering will yield white residuals £. The variant where an
approximation or estimation of the AR fllter parameters _g_;: 'is used
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also belongs to the class of filtering type of weighting. This is
necessary when exact knowledge about these parameters is lacking.

These estimates can be obtained in an iterative estimation scheme

where the available data are used several times successively, usually
off-line. The results from a previous iteration are then used in the
next iteration. In the case of filtering, the estimation results of
noise parameters in a previous run are then used as filter paramet-

ers in the next run, which yields new estimates of noise parameters.

Clarke (1967) describes a method where the estimates g'of gk are
used to filter the measurables u and y along the lines given in

(3.32). This method is known as the generalized least squares esti-

mator (GLS). The outline of the method is as follows:

ith iteration:

a) from the previous iteration i-1, the estimate §}_1 and

the filtered signals ii_l and ii_l are avail-
able.
~i-1 ~i-1

b) perform (3.33) wusing u and y and ylelding
81,

c) generate the sequence
2~ M-l -1 2l .
E=y -ou T,y )8 (3.36)

d) estimate d'i-py: -

1 21TAL 21T%

at - (TR HTH (3.37)

where
21
E2 \¢

~ = 38

a1 _ i & (3.38)
a1 li
EN EN—v

e) filter éi-l and ii—l by [1+D'1] yielding

ul and i}.
f) go to a) and proceed until convergence of the estimates oc-

curs.

For starting this scheme the ordinary least-squares estimator can be

used. Usually a first order model for the filter [1+ﬁ'] is used,
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as from step e) in the iterative scheme after a few iterations, a

higher order modelling of the noise filter occurs.

Another version of this algorithm also exists, where no higher order
modelling of the noise occurs after several iterations. In this
version, in step e, the unfiltered signals u and y are filtered by
the filters defined by the estimated AR noise parameters of the pre-
vious iteration. - A higher order noise filter model can therefore
then - be necessary for obtaining reasonable noise whitening. The
first version is capable of modelling higher order noise filters
after some iterations, or wmodelling filters which are not purely
autoregressive. Hastings-James and Sage (1969) proposed a recursive
(and approximate) form of the GLS, which will be dealt with in chap-
ter 4.

Stoica and Stderstrdm (1977) proposed a GLS variant where MA noise
parameters are estimated. Introduce:
af~1 -1 ~=2
[ ™ =
(3.39)

1-1pi-1 | -2
[14C ]yk Yy

The MA noise parameter estimates are being used here for AR filtering
of the measured signals, whereas in the scheme of Clarke the AR noise
parameter estimates are being used for MA filtering of the measured

signals; cf. eq. (3.32). Starting from
[1ealy, = [b#8]u, + [14c]E, (3.40)

the following model will be formed by AR filtering of the signals
al2 ana 7172; c£. eq. (3.39):

af -1 Al af =l | Ri1
(1487 ]y, = [ #B" o + & (3.41)
with
gi-1 [1c],
R (3.42)
TT [1489]
i=1
If Eki‘l has nearly white properties, the ARMA oprocess

parameters will be estimated consistently, allbwing proper estimation

of the MA noise parameters.
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A separate estimator 1is being used in all these variants to obtain
the desired filter parameters using the estimates E;, generated by

the estimator of the process parameters. Estimation schemes, which
use in one iteration (or in one recursion step, as will be indicated
in chapter 4 ) different estimators for different parameters will be

denoted by bootstrap estimators. The results of one estimator is

hereby used by the other estimator.
Due to the fact that only the output signal Ei of the (conceptual)

noigse filter is available, the corresponding schemes of the
estimator are very simple; cf. fig. 3.4 for the two cases where AR
or MA noise filter modelling is used. Here Ei denotes the corres-

ponding input of the estimated noise filter.

a: [']E - E (3.43a)
MA: B o= peel]E (3.43b)
Ei zb1 S
estimator estimator
ai e:

12

Fig. 3.4 LS estimators for AR or MA noise parameters.

A straightforward exteunsion of the concept of GLS is to combine the
parametrization of the noise, as used in the schemes considered.
Such an ARMA modelling for GLS has not yet been proposed. For an-

other (recursive), estimator the extended matrix method (EMM), such
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an ARMA modelling for the noise has been used; cf. paragraph 4.4.4..

3.3.2 The correlative type of weighting matrix

Consider the (N-q)x(N-q) weighting matrix

1 T
W sz (3.44)
The loss function is then
vy =L T (3.45)
(N-q)2

The estimator with this type of weighting is then, cf. White (1971)
and Van den Boom (1976):

3 = ("ol ofzly (3.46)

T
if the matrix-?:é is non~gingular for all N not too small, then

8= @'~y (3.47)

It can easily be shown that the minimum of this weighted loss func~-
tion is zero. To this end recall §_and substitute (3.47)

t=y-ad=y-azlo)-zly (3.48)

Substitute this in (3.45):
vt [yyTaa" sy tet 2t [g-aiT o) 2Ty ] -
(N—q)2
1
(N-q)
As V 1is a quadratic scalar, this means that
1 T2

Fq 2&°7

(3 2372y (z%5-2Ty) = 0 (3.49)

2

(3.50)

-

For asymptotic unbiasedness the following two conditions should be
fulfilled:

Iplim [2z'o] =T T non-singular

N N.q

(3.51)

II plim [ﬁ-l— ze] = 0
N+»oo —q

These two conditions are of the same form as already seen in (3.12)

and (3.35), but they are also the conditions that Z has to fulfill in

order to be an instrumental variable (IV); cf. Wong (1966), and Wong
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and Polak (1967). These two conditions for Z indicate that zg
should be a quantity that 1is correlated with the process signals uy
(and hence yy) but uncorrelated with the disturbances eg.

A usual choice for 2zx is the output of a (fixed) filter whose input
is the process input ug. The parameters of such a filter can be
chogen rather freely. Often (delayed) estimates of the process para-
meters are used to generate the instrumental variable, which can then
be seen as estimates of the undisturbed output signal. This requires

that a few iterations have to be doune.

Wouters (1972) proposed the use of delayed process inputs and Gersch
(1970) the use of delayed process outputs. Stoica and S8derstrdm
(1979) used a combined scheme where both delayed inputs and outputs
were used. In appendix II we investigate the feasibility of the use
of such IV quantiiies and conclude that the delay should be chosen
with care, as too large a delay can give numerical problems and too
small a delay can vioclate the consi’stence demand for the choice of

IV quantities.

Another possibility for choosing IV quantities, is making use of anm
extra signal, if available, which fulfills condition (3.51). Such a
signal counsists of an extra measurement with another independent
measurement noise or a signal which constitutes the main characteris~
tics of the measured signal, e.g. (an average over) signals measured
previously over comparable "batches” or a normalized reference signal
(e.g. in biomedical applications). This class can be widely extended
to standard deterministic signals which are already known as a basis
for analysis, e.g. sine/cosine, orthogonal functions or Walsh func~
tions. For a more detailed description of this class of estimat—
ors, using so-called template functions, c¢f. Eykhoff (1980) and
Eykhoff, Van den Boom and Van Rede (198l).

In fig. 3.5, the IV estimator is shown schematically. Here the IV

filters ‘i'l and ¢; are introduced, which produce the above mentioned
1V quantities using the input— or output signal or external signals.
The estimator block is more complicated than in the previous figures

as 1t processes the Iinput-output measurables and the IV quantities.
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ternal : external
:End.:x‘ z z ‘JFQS&i
! 1 V estimator !
8
e
Fig. 3.5 Simple 1V estimator
3.3.3 The model extension

As already mentioned, the estimator (3.10) will usually be blased due
to the non-white equation error e. By enlarging the model, the bias
problem can be tackled as follows. Consider the following modelling:

”~

1 ,
[14A]y, = [by#BJu, +{T_Fﬁ]§k (3.52)
?:k being a white noise sequence. Multiplication with [14D] yields:

[14at ]y, = [bl+3" Ju, + (4 . (3.53)
with

(3.54)

[14at] = [1+a][14D] }

[br+87] = [b +8][14D]

Estimation of the enlarged parameter vector (b;,,..,b;,,-ai,...,—a&,)t

will be comsistent if (3.53) has a white residual error ﬁk. An

estimate of the original parameter vector (bo,...,bp,,-al,...,—aq,)t

can be found by determining the common factors of the estimated poly-
nomials [I1+A'] and [bi+B' ]. This can give problems as, due
to the uncertainties in the estimated parameters, the "common™ poly-
nomials in [1+§'] and [ﬁ&+ﬁ'] are not exactly equal but close
to each other. The problem of determining‘the common factors in this
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context has been studied by several authors; cf. S8derstrdm (1975)
and Stoica (1976).

The above described method of estimatlion of process parameters using
an over-parametrized model is of limited interest in practice, due to
the (excessive) amount.of computation involved. 'Fof unkﬁown model
otders;vhowevef, the use of over-parémetrizéd models and detetminaQ
tion of the common factors give a good and relisble order testing
method; c¢f. chapter 7.

If we consider the model (3.53) in somewhat more detail, we come to
the following schematic diagram; cf. eq. (3.54) and fig. 5.6&, where

M; and M; represeat the MA and AR parameters and M3 the common fac~
tors.

[
-
=

<

P P

estimator

|

sy

Fig. 3.6 LS Estimators with model extension

If we start from fig. 3.6a, it is easy to arrive at fig. 3.6b, as we
are dealing with linear filters. Nevertheless there is a difference.
In the case of fig. 3.6a an extended ARMA model of the process para-
meters is constructed, whereas, in the case of fig. 3.6b, a ﬁodel of

the noise is constructed. This means that these noise signals should
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also be fed to the estimator block as indicated. These noise signals
are not available, so they should be generated using estimation res—-
ults of prior iterations. PFor a recursive estimation scheme, this is
quite straightforward, as during the recursion, the estimates of
these nolse signals can be made available. This will be dealt with
in detail in chapter 4.

A more general representation of the dynamical characieristics of the
noise is the ARMA model

[14D e, = [r+c]g, , (3.55)

This means that: the model block M3 in fig. 3.6b has to be split into
two parts, as will be indicated in some of the forthcoming schemes.

3.4 General scheme for explicit estimators

In this paragraph we will present a comprehensive view of existing
explicit estimation methods based on the classification according to
the three basic operations. 1In figure 3.7 a general diagram is giv-
en, which presents the dJdifferent expllicit methods as particular
cases. In table 3.1 these methods are summarized. They are subdivi~-
ded into levels of complexity 0,1 and 2 according to the number of
basic operations involved. The estimators belonging to thé levels O
and 1 have been mainly dealt with in the previous paragfaph. The
estimator which utilizes model extension - the over—pérametrized
least squares — is listed in the table for completeness, but is not
important as an explicit estimator. For a recursive scheme, this
principle is attractive, yielding the important Extended Matrix
Method estimator (EMM).

The estimates with combine two of the three basic operations discus-
sed in the previous paragraph will be dealt with in this paragraph,
where they represent existing explicit estimation schemes. -~ These
combinations are:

- filtering and instrumental variéble

- filteringAand model extension
The third combination, instrumental variable and model extension, has
not been proposed as an explicit scheme. We will meet this combi-
nation among the implicit estimators in the next chapter.
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Fig. 3.7 General diagram for explicit estimators

3.4.1 Filtering and instrumental variable combined
Wong (1966) showed that the estimator

8= [nT(u,x)R-ln(u,y)]-l szT(u,x)a-lx ' (3.56)

is optimal with respect to its behaviour of the covariance for large
N. This estimator, nevertheless, is only of theoretical importance,
as the undisturbed output signal xi 1s not available, and fhe co~
variance matrix R is usually not known. Therefore an approximated
but useful version is given by estimator (3.57) where a model'output

zi is used as an estimate for the undisturbed process output xg.
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s

Method Model signal filters Instr. Var. filters .
M M) My ¥ ) % %
Least Squares [ﬁo+ﬁ] [1+4] - - - - -
Generalized ~ ~
Least Squares 2) [go+B] [1+A] - [1+D] - - - zzgi;zzir cor
[14D]
b) [b +8] [144] - [+e]? - - -
° " for [14€]
Instrumental A . a) fixed -
Variable [6+8] [1+4] - - - b) [6 +8] -
[1+4] -
¢) delay -
4y - delay
e) delay delay
Least Squares, (Bobr | [1+#47] - - - - - ;;m:onaigc;ors
overparametrized 1 2
TOL/AML a) [6§+ﬁi] [+ad] | [+8!] | [eetr) =] - - _
by [BhB iy | [&'] | [148] | [1e€™7M] 2| (1 45'7) - -
[1+D1] [s +§i-1]
Suboptimal IV Bleal] | [14a}] - T S - separate
° : (14277 ] estimator for

[145]

Table 3.1




This estimator is called the suboptimal IV estimator.
a T AT A T AT
8 = [27(u,z)D DR(u,y) I! @ (u,z)D Dy (3.57)

Here also, estimates g' of the AR parameters of the noise filter
are used to filter the signals 2z, ugp and yig as an

apprdximation for the weighting function rR-L.

3.4.2 Filtering and model extension combined

In paragraph 3.3.1 we ‘have argued that iteration of the solution can
improve the estimates substantially. If we consider an MA descrip-

tion after the i-th iteration:
(148t ly, = (62480 ] + [14¢1]E (3.58)

we see that the product of the estimated terms [1+ﬁi] and £ causes
a non—-linearity in the parameters.

Schultz (1968) used a quasilinearization technique to estimate the

[b+8]

denominator polynomial of the transfer function Ty . in a noise-
free experiment, which 1s a nonlinear estimation problem. Fuhrt
(1973a, 1973b) applied this technique to the nonlinear estimation
problem of (3.58). He presented his method, the Implicit Quasi-Line-
arization (IQL), within the framework of maximum likelihood estima-
tors, but the method can also be presented within the scope of least
squares estimators. The error is linear in the parameters aj and

biy but nonlinear in the noise parameters cj. Applying Gauss-~-

Newton technique for minimalization of §i+1 is then linearizing
this equation around the solution of the i-th iteration. This yields

an expreésion for the i+l-st iteration:

(et JE) + [t IR+ (et (R

i+l i+l ~i+1
= [ ]y, = [B, 487 Ju, (3.59)
This can be rewritten:
adt+l 1+1  ad+l i+l
a4l _ [144777] . [6,7 +87"" ] ) [1+E7 ] T
[1+ei] k [1+ei] Yk [1+ai] k k
(3.60)
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Introduce:

o —r v, |

kooaet] R
o 1

k [H_éi]uk
o 1 51
.g=

k [1+éi] E |

Equation (3.61) can then be rewritten as:

~i 2i4l Ad4l »i+].
v = [6, 7 Ju -[A
Now define:
ok p
1
\{;’i-
~ o~ o~
Yu,y ,£) =
~1 ~f
A} “N-p
and
R

[Ai+1]

':4&0

1" /75?

K3

N1

so that (3.62) can be written in matrix form:

= at, i,

«4
Minimizing
1 §£+1

yields

§i+l = [ T

Q

~ ~1 %i+1

T
a1+
Eil

§i+1

@7 et it - of@t T

Brh-

”~
~

(3.61)

i + §1+1

(3.62)

L]
\

% )
g
1
:::::::::: )
%
&
~ ~
ENT ty-
(3.63)
(3.64)
(3.65)
© (3.66)
Bt ¢.en

Fuhrt (1973a) shows results which are good for a varlety of simulated

conditions.

iteration,

preceeding sectio
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convergence 1s not guaranteed.

Te

Due to the linéarizing around the solution of the i~th

Therefore he proposes a
start up of his method by using Clarke's method, as explained in a




This method is rather time consuming due to the filtering operations
combined with the extended matrix 9(81,§i,€i). Van den Hoven (1978)
extended this principle of quasi-linearization to the more general

wmodels of the form:

[+et] .
o1 o sl 21
[144 ]yk = [bo-rs ]uk+ _[I:ﬁTT oy (3.68)
Linearizing yields:
i al
31+l 1 [1457] 141, oa41 (D]
£ = [1#77] v, - [6 +87] w -
¢ [1e81] 7% 7O [1+6']
- [1+ei+1] 1 3 + [1+ﬁi+1] 1 34 .
[1+ei] Ek [1+ﬁi] Ek (3.69)
Define the following filtered variables:
[1+51] T
Y * T 7
k (147 ] k
[145]
Uy = e (3.70)
k [148%] %
52 8 1 31
%7 e
i 1 21
T Tt _

Equation (3.69) can then be written as:

~ =i UL

~f e14]l ai+l ad+1 9 ad+1 ai¥]l i
Ve = [B) T Ju - AT Iy 4 [E JE - BT I + B - g E
(3.71)
in matrix notation:
P A .
&= ot gt E R At B (3.72)

57



wi
a5t ELEY -
PR N LA . SN
1 Y
- N 1
~ ~i ~ ~i o ~1 sl
| Uy Y%-p!  TN-I n-q | SnT by-s S
(3.73)
Minimizing the loss function:
~ TA
v = }1T‘§1+1 i+ (3.76)

yields:

- = ~i mi T o~ ~ owd s ~
o @A o LB @ 5T B
(3.75)

3.5 Relation with the Maximum Likelihood Estimator (MLE)

Although an extensive treatment of the maximum likelihood estimator
lies outside the scope of this chapter, it is interesting to discuss
the relationship between the Maximum Likelihood Estimator (MLE) and
the Least Squares Estimators (LSE). The principle of the MLE was
already pointed out by Gauss (1809), also stating that MLE and LSE
are two basic methods, closely related but independent.

The MLE maximizes a llkelihood function of a random variable x with
respect to 8, whose probability density function 1s p(x; 8); 6 being
an unknown parameter. The likelihood functiom 1is essentially this
probability density function. Fishar (1922) investigated the MLE and
showed its favourable properties like consistence, asymptotic effici-
ency and asymptotic normality under very general conditions. .

Astrdm and Bohlin (1965) used the MLE for the estimation of paramet~

ers of dynamic systems and showed the usefulness and reliability of
the method.
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As log likelihoodfunction we choose:

L = In{p(}|n,0)} = kil 1n{p(,|u. 0} (3.76)

where £ is the model residual and is assumed to be an independent
random variable so that the probability density function p(:a u,8) can
be written as a product of the probability densities p(?i]:iag).
This can be achieved by proper modelling of the nolse parameters.
Maximization of L leads to the following equation:

= L ¥ et |u9)
= Ini{p(& |u,0) =0 3.77)
5 lo=t 8 =1 kL‘ =Nt ~—

e — —

This equation 1s valid for any probability denéity function. In the
literature the solutlon of (3.77) is worked out for a normal density,
leading to:

L(® = (2= & exp(—X)} =
{ PRZL | ﬁl 02
g 3
=-_L.I§§§- Nlncg-glnh T (3.78)
202 k=1

An estimate of o2 can be obtained by putting

3
3L
= 0 (3.79)
50 ~
? Ug cg
yielding
’ N
@ = 2 |t (3.80)
k=1 :
Maximizing eq. (3.78) with respect to 8 is equivalent to minimizing
N .
V(o) = %,- 1 &2 : (3.81)
k=1

where from

KM =0 . (3.82)

the expressions for the estimator E follow.

FPor a modelling of the noise with an autoregressive model [1+D], the

2
residual £ is nonlinear in these parameters. This will also be
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the case for a modelling with pure MA parameters. Due to such a non-

linearity, linearization of the loss function V will be necessary:

V(8+A8) = V(OY+V'T(8)A8 + BADTVI1(8) A8 + .... (3.83)
where
Tooy o (OV v
AR (‘-3‘61’““”’—33& (3.84)
30, 96, 36,96,
v = | ) (3-83)
vy,
3630 30 30
| " n 1 n n |

Now several gradient methods can be used in order to find iteratively
the estimated parameter vector §. For a review of these possible
methods; cf. Eykhoff (1974). Usually a Newton-Raphson algorithm is
used; cf. AstrBm and Bohlin (1965). The expression for the i-th
iteration is:

It can easily be shown that this reduces to the general expression
(3.10) for least squares estimatlion 1f only process parameters are

involved. In this case, the algorithm (3.86) converges in one step.

From this short review of the maximum likelihood estimator it will be
clear that this is a method which, in principle, 1is suited for any
specific distribution but which, in practice, 1is discussed oaly for
normally distributed signals. However, in this limited case it coin-
cides with the least squares estimator. To this end it is necessary
to choose such a type of model from which 1ndepenéént residuals are
obtained. Generally, the minimization of the quadratic loss function
leads to a non~linear problem due to the noise parameters encounter—
ed. Iterative solutions are then necessary, such as Newton~Raphson
schemes or the scheme as proposed by Fuhrt or (larke, to find the
minima of this loss function.

60



It is a pity that a confusion can be noticed in the literature with
respect to the use of the terms maximum likelihood estimators, ap~
proximate maximum likelihood estimators and (weighted) least squares
estimators. Usually these terms are used for situations where noise
modelling is used, leading to the filtering concepts as treated be~
fore. Then no speclal atteantion is paid to the requirements of
gaussian distribution with respect to the maximum likelihood method.
It would give a clearer pleture if the term (weighted) least squares
estimators were used for cases where no special attention is paid to
the distribution of the signal, i.e. when dealing with a distribution

free method.

3.6 The accuracy of the least squares and maximum likelihood.

estimators

For a process, which can be modelled by a (limited) number of MA
parameters, useful expressions for the covariance of the estimate
exist; cf. Eykhoff (1974).

Starting from

1=tb+e (3.87)

The weighted least squares estimate 1is

§ = [vwul-! uTwe (3.88)
If E{g} = 0 and e and u are mutuvally uncorrelated:

E{B} = L (3.89)

cov b = [vTwu [-luTwE e e Jwu[vTwy ]~} | (3.90)

For a Markov estimator the weighting matrix is the inverse covariance

matrix of the noise:

W= [Ele "}l = r-? ' (3.91)
then
cov b = [0TR-lp ]! (3.92)

The importance of this estimator lies in the fact that it yields amn
unbiased minimum variance estimate. For this reason it is also the

bagis for the concept of the filtering type of weighting using

th= -1
Dt Dt R (3.93)



For models where ARMA parametrization has to be used, no expres—
sions for the covariance for finite N are known to us, nor expres—
sions for the expectation of the estimate for finite N.
Nevertheless the ideas with respect to filtered weighting, correspon-
ding to a Markov type of weighting matrix, are for this type of
modelling widely accepted, as they also yleld consistent estimates.

For consistent estimators, a lower bound for the covariance of the
estimates can be given. This is the Cramér—-Rao lower bound (CRLB)
due to Cramér (1946) and Rao (1945). Introducing the Fisher inform-

ation matrix J:

2
J= —e{2L ) (3.94)
2098 | g
-t
where L i{s the log likelihood function, we find the Cramér-Rao ine~
quality:
= 3 T -1
cov 3 = E{(3-8,)(B-8)"} > (3.95)

AstrBm and Bohlin (1965) and Astrdm (1970) used this result for situ—
ations where an ARMA modél is used for the process dynamicg and a MA
model for the noise dynamics. Costongs (1979) used the Cramér-Rao
lower bound formulas for the general model where the process dynamics
and the noise dynamics are modelled by ARMA models of the following

form:

%—}%} A = [ty - [b°+3 Ju, ©(3.96)

where ﬁk is assumed to have normal N(0,1) statistics. Introduce the
variable Ek defined by:

o g = [1+aly, - [o 48 ]u, (3.97)
The logarithm of the likelihood function is; cf. eq. (3.78):
N ,
L = constant - Nlnl -1 X Eﬁ {3.98)
232 k=1

Taking the expectation of the second partial derivatives ; cf. Appenw
dix IV: '

2 ,
2y --E s, L (3.99)
anzy_, A2
t
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a1 _
E W )‘ak ) e —e - 0 (3-100)
£’ 1 it
N 9t ot
3% 1 k k
E{ } --= I Elyg—- 35— (3.101)
geiwj 0 =8 18 =8 A2 k=1 i j
1 4,67 7) 4.t
T5b Tba Tbe Jba Tba
Jab Jaa Jac ‘Iad Jaa (3.102)
I= Jcb Jca Jcc ch Jc;\
Jab Yda Jac Jad Jaxr
[T Toa Tae Taa Tan

From eq. (3.100) it follows that

J.=J, ,=J =J  =J, =]
c

ai I T T Y

= J. =0

bA e ad

and Jy4 {s given in eq. (3.99). Eq. (3.101) determines 16 sub-

matrices in eq. (3.102). In appendix IV the computation of these

submatrices 1s performed for normal distributions. As a result of
this it can be stated that J can be computed if all the parameters of

the polynomials [1+A}t, [bo+B :It, [1+C]t, [l-i-D]t and A

are known and 1if the autocorrelation of the input signal wy is

known. Consequently, in practical cases, this lower bound 1is not
applicable without modification. From various experiments, cf.

Cogtongs (1979), it has been shown that

a) the use of estimated parameters instead of the true parameters
does not affect the reliabllity of the approximated lower bound
very much;

b) the existing (recursive) estimation schemes, which will be dealt
with in chapter 4, give estimation results with a quality which
is very close to the (real) CRLB; )

c) the assumption of gaussian data does not seem to be very crucial.
Simulation with rectangular distributions gave comparable re~
sults.

These observations make the approximate CRLB a very useful tool in

interpreting the estimation results of these methods.
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From appendix IV it follows further that:

(or,, (=01 {52r (-0} ¢ ¢ 0

(g, (=D} fg2ry, Grdreg(i=D ) [Fas(t=D}  {ryet=D} 0

J =N
¢ {rg3(1-D] frgs-nt {r,(-n} 0
8 {r,4(1-9} {r,s(1-p} {r,@-n} o
i 4] 0 0 1] g%%
(3.103) ~
where the correlation functiong are defined as:
. ¥
rij('f) - X kzl xi,kxj,kﬂ'r i,j = {1,2}
Ti¢0 = ElRy %y ) 1,3 = {3,4,5} (3.104)
with:
[b+8 ][14D] 7
x s
Lk " Trajlwe] €
[1+¢]
x =
2,k [14D] %
(3.105)
1
X =
3% Theal %
1
X =
4,k [1+p] %
1
X =
3k [1+c] g .

In order to gain insight into the accuracy of the different estimated
parameters for various signal-to-noise ratlos, we will assume that
the input signal is a white nolse signal and we will consider the

different parameters separately. The matrix inversion in
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cov B » 37! (3.106)

causes Interference of the different parameters.

a. The A-parameters

The covariance, when estimating only A-parameters, is given by:
1

cov & » T (3.107)
N{'le'll(i”j)+r33( i“j) }ij
We can distinguish two cases
a.l
1
ra,(i-1) K g r,,(1-3) (3.108)

This is the case for high S/N ratios, i.e. for rather uadis-
turbed output signals. Inequality (3.108) can be rewritten:
AZ
N{rll(i_j)}ij

cov o #

(3.109)

which means that the cov a will increase for increasing 22
a.2

. 1
ra3(1-1) > 32 ¥, (1-3) (3.110)
This is the case for low 8/N ratios, i.e. very disturbed out-
puts. Eq. (3.107) is then:

1
N{r33(i—j)}ij
which is constant for all A2, 1In this case the component of

the process output in the signal yr is no longer dominating
for identification of the A-parameters, but the corrupting

cov a » {3.111)

noise.

b. The B-~parameters

The covariance, when estimating only B-parameters, is given by:
A2 4
N{ry (-0}

which is increasing for increasing A2,

cov § »

—

(3.112)
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¢« The C- and D-parameters

The covariances, when estimating only C~parameters, or only D-

parameters are given by resp.:

covyr — L (3.113)

N{rss(i—j) }13

1
N{ru’(i-j) }13

cov § > ,(3'114)

These lower bounds are conmstant for all A2,

In figure 3.8 this behaviour for the different covariances is sketch-
ed. In Talmon and Van den Boom (1973), this behaviour has already
been presented, but based on simulation results. In chapter 6 we
will present, in more detail, comparable results obtained from simu-
lations with different estimation methods and confronted with the
real and the approximated Cramér-Rao lower bounds. From these simu-
lations it can be concluded that, if all A, B, C, D parameters are
estimated simultaneously, the above mentioned behaviour for separate

estimation of the parameters will also occur.

° cov
g p
:
covd
covy \
covey

e G N

Fig. 3.8 Typical behaviour for the covariances of the different

parameter estimates as a function of the noise level.



3.7 Conclusions

In this chapter we discussed the explicitr least squares estimation
schemes and met -the consistency problem of the common least squares
estimator. Two basic conditions for consistence are mentioned;
these conditions also coincide with the definitions which character-
ize the‘class of instrumental variable estimators. Therefore a close
link between the instrumental variable estimators and the 1least
squares estimators can be found, and for several instrumental vari-
able estimators proposed in the past the corresponding weighted loss

function in the least squares sense is given.

For the counstruction of consistent least squares estimators, three
different approaches can be distinguished.
A. the correlative weighting, leading to the instrumental vari-

ables estimators. .

B. the filtered weighting, leading to filtered observation data.

C. the model extension, leading to an extended parameter set.

These three basic approaches can be used separately for tackling the
consistence problem, but two or even three approaches can be combined
within one scheme. This will be more apparent when we consider the

recursive schemes in the next chapter.

For the correlative weighting an instrumental variable has to be
generated. This can be done by making use of the measured input or
output signals or by making use of an extra measurement. This gives

the possibility of introducing extra (a priori) information.

For the filtered type of weighting, a priori knowledge of the noise

characteristics has to be available. This can be obtained by apply-~
ing the type C approach, which is model extension, as already seen in
the methods of Fuhrt and S8derstrdm. Now fecursive methods are in-
teresting as they deliver this wanted information  during the

estimation process.

The model extension is an efficient method for obtaining white resi-

duals 5y filtering the correlated noise through the extended
model .,
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The expression for the Cramér-Rac lower bound for the variance of the
estimated parameters was given. 'This lower bound is derived within
the context of the maximum likelihood estimator. Due to the close
relationship of this estimator with the least squares estimafor, this
lower bound 1is applicable for Gaussian conditions for the least
squares estlmators as well.

For a general situation where ARMA process parameters and ARMA noise
parameters are estimated, expressions are given which give insight
into the behaviour of the covariance for different parameters if
different signal-to-noise ratios are considered. This typical beha—
viour shows a maximum value for the lower bounds for all parameters,
except for the MA parameters of the process, whose varlances continue

to increase for decreasing signal-to—-noise ratios.
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CHAPTER FOUR:
RECURSIVE LEAST SQUARES ESTIMATORS
4.1 Introduction

In the'previous chapter the basic idea of least squares estimation
has been considered. No attention was paid to requirements and prob-
lems which arise when applying these techniques in practical situa-
tions, like, for example, the need for permanent availability of an
updated estimation result for control purposes, based on the already
processed data samples,and the necessary a priori knowledge of stati-
stical properties of the disturbances for obtaining consistent esti-

mates of the process parameters.

In this respect, recursive estimators, as discussed in this chapter,
are more practically applicable. Some of them are mathematically
equivalent to explicit estimators; others are approximate versions
of explicit estimators, the approximation being made mostly for comp-
utational reasons. For example, the recursive variant of the weight-
ed least squares estimator usually starts without knowledge of the
nolse parameters but during the estimation, estimates of noise para-—
meters of increasing reliability become available for the necessary
filtering. Thus, during the estimation process, this estimator
shifts from a (non-consistent) common least squares to a (consistent)

Markov type of weighted leaSt'squares estimator.

The study of these types of estimators, however, is rather compli-
cated as usually both model parameters and noise parameters have to
be estimated simultaneously. For reliable estimation of the noise
parameters, the corresponding input-output signals of the noise fil-
ter would have to be available. But actually only approximated

(=estimated) signals are available, based on previous estimates of
the process parameters and previous estimates of the noise paramet—

ers.

Due to this complexity, it 1s rather difficult to derive the proper-

ties of these estimators for a fimite number of samples. Therefore
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in the literature the attention is focused on the investigation of
the asymptotic convergence properties of such recursive estimators.
For some estimators (which will be dealt with also in this chapter)
the convergence cannot always be guaranteed; examples show that di-
vergence may exist for such schemes. 1In such cases, the behaviour of
the estimators for finite sample 1length has mostly been studied

through practical examples and simulations.

This chapter is set out as follows. 1In paragraph 4.2 some general
notions and definitions related to recursive estimators are given,
whereas the general classification of recursive estimators, based on
the three basic operations which we have already met in chapter 3
will be given in paragraph 4.3. In paragraph 4.4 we will discuss, in
some detail, the different estimators which appear in the classifica-
tion of paragraph 4.3. Finally, in paragraph 4.5, we will comment on

the convergence properties of the estimators.

4.2 The concept of recursive estimation

In paragraph 3.2 we met the expression for the explicit estimator

3= [2"Cu, 7)Ao, 10T (u, 1)y (4.1)

The corresponding estimate 1s based on N samples, and is calculated
after these N samples have been acquired. When collecting these
samples, such a type of explicit estimator gives no intermediate
estimation results. We can construct a recursive estimator which,
after the acquisition of the new measurements (ug, yk), updates

~

the previous estimate Ek—l’ with k < N. This implicit or

recursive estimator ylelds results identical to the explicit form
(4.1), if initiated appropriately; cf. Eykhoff (1974).

B = By + Pyl 1+i‘-’1T<Pk-1i‘k)-l(yk'2E§k-1) (4.2)

- _ T -1.T
P = Py T Prop 8 (P9 Py 90T Py
where Ek is the estimate after k samples and

k-1 = [ni-l(u’}’)ﬂk—l(“’y) ]—1 (4.3)

g
I

with:
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uq+1 2 = s uq+1_p yq . » » yl

. »

.

.

Qk-l(u’Y) = - : ' o8

. .

Yg-1" " Ukep=l | Yk=2 * Yk=g-1

T
R CPRTRI NS SEPRIPPIS S (4.5)

go that _gii is the last row of Qk(u,y).

If we consider the expression for the recursive estimator in more

detail, we notice the term yk-g'r%l -1 which i8 usually referred to as

the prediction error. This prediction error is the difference bet~-

ween the next measurement ¥y and its one~step~ahead prediction
based on the model using the previous parameter estimates. The pred-
iction error is used to evaluate the gradient direction for
obtaining the next model setting. Dependent on the extent of the
model used (leading to extended expressions for (4.4), cf. (4.9) and
(4-10)), we have the cholces ey and Ey.

- 2k~1 k=1, k=1

e, = [ Iy - [B 748 ]

ko To * (4.6)

- Ak'-l ~ ‘\k“‘}' %

g = [ - BT,
where [1+§k.1], [§§_1+ﬁk-1], [l+ék-1] and [1+ﬁk_1] are the polynomi-

als containing the estimated parameters after the k-1%% recurs-

ion step.

We shall alse need the residuals gk and %k which can be
computed in the k-th recursion when the k~th estimate has become

available:
N a k, a2k
= (1A%, - [BR48%)
ek k [+ Y (4.7)

CHEN T o -l

To complete the notions related to the errors involved, we will

recall the equation error ey as discussed in chapter 3:
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e, = [1+a] y, - [b 48] u,

E = {1+D}tek - [c]tgk

(4.8)

Taking gk as prediction error, i.e. modelling only the ARMA (pro-

cess) part of the model, yields the result of eq. (4.2).

of the model with noise parameters yields the following:

u B

q+l

T

&

Qk_l(“’Y:é’é) =

* o Ygrl-p

T2 * " Timg-1

. .

. .

»
a

ek—-r—-l

[ 2

.

k-2

(4.9

(uk""’uk—p’yk-l""’yk—q’ gk*l""’gk—s’ ek-l""’ek~r)

(4.10)

Applying a minimalization procedure to winimize in the k-th recurs-

ion, based on the k-18¢ model setting, the criterion

= 332
v = %€l
using
5 =5, - % 75
B
we find

B

S = S Y QG

where the gradient direction is:

with

~T

& =-

where
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&

.

~

(4.11)

(4.12)

(4.13)

(4.14)

3
;g% = (uk,...,uk_p,yk_l,...,yk_q,gk_l,....,gk_s,ek_l,...,ek_r)

(4.15)

Extension




~ _ [14h] i
k" Twe] k
T _ [148]
¥y, * ¥
ko] E
ék“ 1A ék (4.16)
[145]
~ 1 ~
= g
& [1+E] k i

For the choice of Q, various possibilities have been proposed,
ranging from a scalar quantity, as in the stochastic approximation
schemes, to a matrix quantity meant for orthogonalization of the
scheme such as the Newton-Raphson variants where Qg can be inter—

preted as the (matrix) second derivative of the criterion function.

4.3 General classification of recursive estimators

In this paragraph we will classify the various recursive estimation
schemes as presented iIn the literature. We will use the concept of
three basic operations for this classification. We will present
diagrams similar to those in the previous chapter, although the in-
terpretation is within the context of the recursive character of

these estimators.

A block representing the recursive estimator 1is used. It makes a
recursion from step k-1 to step k using the necessary (filtered)
input~ouput slgnals, the IV quantities, the signals gained from the
model extension and the prediction error, cf. £fig. 4.1. The pre-
diction error quantity is denoted by a dot in the forthcoming fig-

urese.

The diagrams of the various estimation schemes consist, apart from
the recursive estimator block as shown in fig. 4.1, of the following
elements, cf. flg. 4.2: ‘

- the model blocks M;, My, M3 and M; having the values of
the previously estimated parameters as model sétting. The model
has, in its most extended version, the form of the model of
Talmon and Van den Boom; c¢f. chapter 2
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signals from prediction
error

del extension

e M
IV quantity . 1V quantity
derived from — - -f— derived from
input signal . . output signal
(pm ? Recursive estimator (ﬂ:’ued)
filtered ilter
input signal % output signai

v 1 vy

AA AB AC AD

Fig. 4.1 Recursive estimator block

the filters F; and Fy for the additional noise whitening
filtering as already seen iIn chapter 3. The parameteré of these
filters may be tuned according to any available a priori inform—
ation of the noise colouring, but usually they will follow from
recently, l.e. in previous recursion steps, estimated noise para-
meters, e.g. from the model extension part.

the Iv filiters ¢; and %. They generate the 1IV. quantity
using the ianput- or the output signal or both, or using extra
signals, which are additionally available. The possibility of
using additional signals is not indicated in fig. 4.2.

From fig. 4.2 it can also quite easily be seen how the noise is hand-

led in the estimator. In chapter 3 we have already seen that the

correlation between the resulting error and the (shifted) input-out-

put samples should be zero. This can be done in two ways:

a)

b)
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operations which affect the noise colouring.

Here we have two possibilities of making the resulting error
white: al) add extra filtering and/or a2) through the model
extension resulting also in additional filtering. Depending on

the choice of prediction error among (?;é, Eﬁ, Ea) the path for

the equation error contained in ygx through Fj, M;, My and M,
should be noige~whitening.

substitute the process signals by a related signal which contains
no (or less) noise components. This 1is the IV approach and is

realized by the filters &, and/or ¢,.



The approaches listed under a) and b) may be combined, resulting in a
family of estimators.

Uk : Yk

"
-n
N

Uy fad A: g:( Y«
i k o
Zy Zx
o‘ — " et @2 ——
Recursive estimator k- step

ALA'f Als“ zjc" A‘n“

Fig. 4.2 The general recursive estimator

Fig. 4.3 shows the relationships between different recursive estima-~
tors. They will be discussed in more detail in the next paragraph.
It follows from this diagram that estimators can be distinguished at
four levels of complexity. The simplest estimator, LS, is very effi-
cient with respect to computer time, but gi‘fes biased results, parti-
cularly for low S/N ratios. 1In cases where this is unwanted, the
estimators of level 1 are of interest. They are more expensive with
respect to computation time, but yield better results for low S/N
ratios. Only in very specificv cases, as will be shown in the sequel,
will these estimators diverge. The estimators of level 2 and 3 are

75



Method Model
! ) My Y,
0 Least Squares [S§*1+“k~1] [1+“k-1] - -
la GLS [Gk‘-l +§k—l ] [1 +Ai k-1 ] - -
0
16| oLs [ °'1+§1"1 1] [R5 - -
ibj  EMM a) [$§'I+ﬁk”1 1| [+a*] | (87 -
o B ] | a1 | - [1+851 ]
)| (85718 ] | [1d*T] | [T | [T
ak=1 ak~ 2k- Ak k=1 =1
1b|  EECM [BE7Les ] | (& 7] | [T ] | [T
lef * 1v [BE g ] [ (a7 | - -
2ab|  AML/IQL [ﬁ‘;'l...ﬁk‘l 1] (25T - [+EF 1T
2ab Appr . Markov [S§-1+§k"1] [1+;kf1] [L+ﬁk‘1] [1+ﬁk‘1]‘1
2ac Subopt. IV [ﬁ§°1+§k'1} [1+3k‘1] - _
 2ac|  Iv-am e | (5L | (14857 _ )
AML: [1+ﬁk‘1] [1+ek-1]-1
2be IVEMM [gt‘l +§k*l ] [1 +z‘k-'1 ] [1 +ﬁk—1 1 [1 +Ak—1 ]-1
3abe general [S§'1+§k'1] [1+gk‘1] [1+§k'1} [1+ak-1]~1

Table 4.1 Choice of Model, Signal Fllters and Instrumental Variable
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Signal filters Instr. Variable Filters|prediction
F1 F2 01 @2 error remarks
separate est.
[l+ﬁk-1] - - - Eg for [l+ﬁ]
i ) i i %
- - - - 22 common fac—
tors in MI'M2
=~ - - = £l 2 = g3
S
- - - - 51
- - - - 23 separate est.
for [14D] and
- - [1+8
a) fixed - Eﬁ
b) (6:"14-31",‘1 ] N
[1+4%7T]
¢) delay - Eﬁ
d) - delay £3
e) delay delay g3
[1 +6k-1 ]—1 _ _ N 43
[ (b7 - - £z
Sk-l k=1
[1+§k-1] - [ o +z ] - %3 separate est,
————
(1427 ] For [145]
N
2k-1 ak=1 1=l - E3
[1+D ] [1+C [1+4 - ]
[+~ 7 v
%1
- - see cholces a~e under lcf Ek
[1+ﬁk~l] [1+§k*1]-1 gee cholces a-e under 1d gi

Filters for different Estimators;

see also fig. 4.2
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level of complexity

GENERAL
ESTIMATOR 3
1
APPRMARKOVY FILTERED IV )
AML- 10L. OPTIMAL IV IVEMM
A 4
A A
GLS EMM ' w 1
EECM
A
A
o4 fi4tErING
e +exlonsion L8 . 0

——  +IV

Fig. 4.3 Relation between recursive estimators

even more complex and time consuming. With respect to noise sensi~-
tivity in relation to consistence, these estimators are superior to
the estimators of level O and 1. Those estimators are not easy to
apply as they have to be started by estimators of class 1 which, in
their turn, have to be started by the LS estimator, except some vari-

ants of the IV estimator.

In the next paragraph we will show that all these estimators fit very
well into the general scheme of figure 4.2. It can be observed that
some schemes have a bootstrap nature, as they use separate estimators
for obtaining the necessary informatiom for the filtering, such as
GLS and suboptimal IV, or for the necessary compensation as in EECM.
These extra estimators are usually simple LS estimators for obtaining

the AR or ARMA parameters of the model of the noise.

In table 4.1 a summary of the iImportant aspects of the different

recursive estimators is given. Here the particular choices for the

model parts M, Mz, M3z and M,, the filters F; and F; and the IV fil-
ters ¢, and ¢, are indicated.
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4.4 Details of the different recursive estimators

In this paragraph we shall discuss, in more detail, the recursive
estimators which have been summarized already in table 4.1. We will

consider the schemes in order of increasing complexity.

4.4.1 The recursive least squares estimator

This estimator is the recursive form of the LS estimator (3.10). The

expressions are:

- T -1 ]

B = b+ P ry P )T le

p =P . -P (1+u P -1al p (4.17)

R T L RS- I . Y y

~ - - T oé

T T T & X A

where

T 2~ ~ ~

_%_k- (bo,...,Sp,-al,...,—aq)k (4.18)

T _

2&»- (uk’""uk-p’yk-l""’yk—q) (4.19)

The expression is mathematically equivalent to the implicit estimatof
(3.10) 1f initiated properly; cf. Eykhoff (1974). The diagram of
this estimator is shown in fig. 4.4

Ui ¥k

Recursive estimator

' )

ARk aB*

Fig. 4.4 The recursive least squares estimator
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4.4.2 The Generalized Least Squares estimator (GLS)

Based on the Markov type of weighting, a recursive algorithm has been
proposed by Hastings~James and Sage (1969) where filtering of the
measurables is performed by a MA filter consisting of the AR paramet-

ers of the noise:

1 ”~
1+Aly, = |b +B |u,_ + . (4.20)
[ ] k [ o ] k [1+D]t gk
[14a]5, = [ #8]5 + & (4.21)
where
e = [0l
(4.22)
l’Ik‘- {l-l'D]tuk

The estimator for the ARMA process parameters is then:
I ~ ~T ~
Bo= By v R m QR 00718

_ ~ ~T -~ _1“' T
P = Py Prq @ (O Py 007w By (4.23)

| =3 - ard
LA L
where
P C - (4.24)
o Mpseees k=p*Tk=17""" V=g v .

Usually, as the knowledge of [1+D]y is lacking, we willuse a separ-
ate scheme to estimate these noise parameters. In the k~th recurs-

ion, we generate the residual, using the newly available estimate

B

~

~ T
e * Vi T -ﬂkﬁk (4.25)
This leads to the estimator for the AR noise parameters:

. _ - 2T - _1p

& = 4y~ 8 (080N,
B ~ T A 21T

QG = Qo " Qo S (e Q1807 80 (4.26)
-2 -

& kT Sk-15k-1
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In figure 4.5 the schematic diagram for this bootstrap estimator is

given.

Uy Yk
1*6‘(-1 1+W
fooTTorTo oo ommEmaE s Ee e H

; .
i l/ !
o
H ]
_ / 7
ukl : yk
B o oo e o - - e W fom T - - o oy - -
ng
Recuwrsive estimator
AR ag*
- ~p - + ~
i O
R
&,
ng

Recursive estimator

ADX

Fig. 4.5 The GLS estimator

4,4.3 Over—parametrized lLeast Squares estimator (OLS)

If we model the noise with an AR model, and if we estimate ARMA proc-

ess parameters with an over—-parametrized model, we have:

[1+ar ]yk = [b(';l-B' ]uk + ?k (4.27)
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where )
[14ar] = [1+a][1+D]

{b(')-l»B‘] = [b0+3][1+1)] (4.28)

If we make the model order sufficiently large, we can attain a white
predictioﬁ error so that conslstent estimation may be performed. The
problem is then to calculate the "common” factors in the polynomials
W0+'I;‘] and [1+ﬁ‘] as, due to the disturbing noise, these factors
are not exactly equal; ef. StderstrBm (1975) and Stoica (1976). Hsia
(1975) proposes a method, the so-called Multl Stage Least Squares
Estimator (MSLS), where in the first stage the polynomials [1—&-}:'] and
' [’1\)'0+ﬁ‘] are estimated, in the second stage the parameters [1-%—3] and
[?)O-I-ﬁ] are estimated from the the estimated over-parametrized model
[%0+ﬁ‘} and [14-3' ], and in the third stage the parameters
[1+ﬁ] from the parameters found in the two previous stages. Another
approach is to use an over~parametrized MA model for the process.
The estimated MA parameters of such a model are unbiased if we take a
model of sufficient length; c¢f. Van den Boom and Melis (1968). Hsia
(1981) gives a method to derive the ARMA parameters from these esti~-
mated MA parameters. Also the Ho~Kalman algorithm can be used to
find the ARMA realization from the estimated MA parameters, as these
are equivalent to the Markov parameters; cf. Hajdasinski (1980).
For these methods we can give the following schemes:

Uy _.._..__.._...-__......___._... __________ Y

3h
£
R

[/

Recursive estimator

aR* ag*

Fig. 4.6a Over-parametrized Least Squares
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4.4.4 The Extended Matrix Method (EMM)

Another way of obtaining white residuals using the concept of model
extension, is the extended matrix method EMM, where a single stage
estimator 1s used for the estimation of process and noise parameters
together. The vector of parameters § and the vector of measurables.g
is extended to contaln the nolse quantities as well. The method was
originally proposed by Panuska (1969) within the context of Stochas-
tic Approximation (SA) for the estimation of the A, B, D parameters,
and has been generalized by Talmon (1971) and Talmon and Van, den Boom
(1973) for the more general case of A, B, C, D parameters and within
the context of prediction error estimators. The élgorithm is:

, . i
Bo= by * B a (rap 007t &

T -'IT '
P = Per™ P9 (P Py 907 9Py (4.29)

- T
R A
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where
T ~ o~ ~ -~ ~
Ek = (bo,.-.v,bp,'-al,...,-ﬁq,cl,...cs,-al,...—ar)k
T = ( u. Ek. s £ é 0.; é\ )
L o T SR (M O L W W AR
(4.30)

The noise signals e and ‘z‘;’ can be obtained using prior estimated

parameters:

e s s OO

A

ek = Yk-(uk)"’auk,_p!yk_l"":yk_q) _”p
* -a; (4.31)

a ~ ”~

Ek = ek- (gk—l’".’Ek-'s’ek*l’”"ek-r) 3 (4.32)

L P

The schematic diagram of this estimator is given in fig. 4.7.

Indeed, it would be possible to replace, at each recursion step, all
s +sesy k=1 by
new updates based on the most recent parameter estimates., The qual~

ity of the sequences 3:1 and gi would improve in such a case,

but this would give rise to an enormous increase in computational

previously generated estimates 31 and gi, i =1

effort. The schemes that have been used successfully in the past use

the samples ey and &g (which were generated as prediction
error in the recursion from k-1 to k) as samples of measurables in
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Fig. 4.7 The Extended Matrix Estimator (EMM)

the v vectors of the succeeding recursions. The starting procedure of

this estimator is then as follows:

d.

First apply common least squares to a limited number of samp-
les N, and generaie 31, i=l,¢4.s, N5, where N, >
phgtl.

Extend the parameter vector with one parameter 31,
i=l,...¢,r per recursion step and generate 21 until all r
AR noise parameters are estimated. )

Extend the parameter vector with one parameter 31,
i=1,444., 8 per recursion step until all s MA noise parameters
are estimated. ’

Continue recursion with all ptqtr+s+l parameters.

This EMM method proved to be a reliable method for the majority of

cases,

like the GLS method, although in exceptional cases divergence

has been reported. This will be dealt with in section 4.5.
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In the above given recursion step, two calculations take place:
calculation of the prediction error and calculation of the new para-
meter estimate. With this new estimate the residual of this recurs~
ion step can be calculated and the residuals of the successive
recursion steps can be transferred to the vector of measurables =-
instead of the prediction errors. There 1s a small increase of comp~-
utational burden. In this case we have

“

= ~ T A 1
LML WL ST bl

(4.33)

P, = P, -P._ & (1+@P, _ &)~ lap
S 5 R W0 - P P B S P P |

with
AT a - - -
2& = (“k"'"uk-p’yk-l"'"yk-q’gk-l"'"Ek*s’ek-l"°°’ek-r)
~ C AT
B = T 7 BB (4.34)

and for the residual we find:

2 5 '

ek = yk - (uk,-..,uk_P,yk_l,...,y‘k-q) __a. N ({4-35)

a

-~ -~ ~ -~ -~ ~ e
S el (gk-l""’gk—s’ek-l”"’ek—r)[-_c'_i_]k -

AT a - -aT ~ - AT A nlt -
s & = e B B Orar 00718 ]

a AT ~ AT ~_1n AT - _n :
= G Py S P )T = va Ry e )T (4.36)
This formula shows that a very efficient calculatidn of the residual

from the prediction error can be performed as the scalar
AT ~
(iR, &)
is available during the recursion. If only MA noise parameters have
to be estimated, this is a minor increase in computational. burden.
If AR noise parameters are estiméted, eqs. (4.35) has to be performed
during each recursion step. This modification of the EMM algorithm
is of interest, as its convergence can be proved, without the need of

monitoring the estimates, 1i.e. checking the stability of the
estimated model; c¢f. Solo (1979).
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4.4.5 The Equation Error Compensation Method (EECM)

Another possibility of model extension 1is with the use of separate
estimators for process and nolse parameters. This scheme was propos—
ed by Talmon (1971), who reported good results with this estimator.
The estimated parameters of the recursion block for 'the noise para-
meters are used for compensation of the prediction error 'ék in the

process parameter block:
~
[1+aly, = [bo+B o + e (4.37)

Now we have for the kth recursion:

step a) first an estimate of the process (PR) parameters 1is made:

T
sPR _ PR PR,.. PR PR, _1a¥
& i * P (e T P9 )7

(4.38)
P, = P__,-P, . (l+ PRY P Ry-1 PR,
k k-1 k=15 T P12k 4 S Frel
where
PRT
_%‘ = (uk,"’>uk_ptyk_,1)'":yk_q) (4.39)
T
PR A
-Qk = (so,...,sp,—al,-..,'aq)k
PRT PR &
g - el N (a.40

where gk* is the compensation based on k-1 samples
resulting from the k~l-th {teration. See also step c.

step b) using ik construct: )
~ T
2 _ . _ PRUAPR (4.41)
& = new &
2 2 2 .
with this ex and with e and & obtained from previ-
ous recursion, an estimate of the noise (W) parameters

N .
Ek can be made:

~

T T
: NN N 12
8 = g—f‘” Q8 ey o w18,

T T T
) _ NN Ne_1 N (4.42)
Qe = Qg ~ Qg (Fyy Q007 Q)
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NT A S A 2 . .
@ a (E‘k_i,.:T,‘Ek_s,ek_l,u.,ek_r) - (4.43)
T i
—g-z = (61,.‘..,88,-31,u-,-ar)k
"'NT
8 = & 4 B (440

In this rvecursion we use the residual ék, as Eﬁf is availa-

ble, but we have to use the prediction error %k’ because E:

1s available after execution of eq. (4.42).

-~

Here Ek is the residual, as explained in the previous

paragraph. The use of the previous residual %k_linstead

of the previous prediction error gk-l is not strictly

necessary but it can be obtained very easily by a scalar

multiplicatien, see the previous paragraph. In the diagram

‘we will denote the generation of the residual Ek
from the prediction error %k by a block R.

step ¢) Construct (for use in the next recursion)

- T
2 2 N . (4.45)
Be= &- & 8 :

i.e., the prediction error Ek is here replaced by the

residual %g for the next recursion. Using
o "

NT N 2 N 2
ﬁi"'l = (Ek, see ’gk‘*’l-s"ek’ sne ,ek_’_l__r) (4“6'6)

a prediction 8*k+l for the next recursion is made:
" NT »
1 = Ben ﬁ (4-47)

The diagram of this estimator 1s given in fig. 4.8.
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Fig. 4.8 The Equation Error Compensation Method

4.4.6 The Instrumental Variable Method (IV)

In chapter 3 we introduced the basic concepts of the imstrumental
variable estimators. We reviewed some important (practical)
instrumental variable estimators, which were non~recursive. In this
paragraph we will extend this list of instrumental variables by in-

cluding the recursive variants.
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By writing the explicit expression of the IV estimator in a recursive

way, we obtain:

A .03 . T -1 T
S = B B (TP 507 (e B y)
(4.48)

e L T 1T
P = P P B (P P 2077 9Py

In this expression P, , 1is a non-symmetrical matrix.  The
vector -‘i’k contains the measurables {uk} and {yk}, as with the
least squares estimators, and the vector 2z contains the IV

_.k
quantity.

Because of the recursive character of the estimator, we can generate
the IV quantity along with the recursion, so that estimation results
can be used for this purpose.

Due to the non-symmetrical form of the matrices P, and the presence
of an additional signal Zs v have a slightly modified recurs-
fon block, which will be denoted "IV recurgion”. The schematic dia-

gram for this IV estimator is given ian figure 4.9.

Uk 7

Yk

IV recursive estimator

1 !

ARK AB*

Fig. 4.9 The Instrumental Variable Estimator (IV)
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Possible choices for simple IV estimators are:

¢ %, | Literature
a)| fixed filter within -~ | Young (1968)
bandwidth of Finnigan and Rowe (1973)
process
b)| model of process - Young (1965)
Wong (1966)
Smets (1970)
c)| delay - Wouters (1972)
- delay Gersch  (1970)
delay V delay Stolca + Stderstrdm (1979)
d)| template function - Eykhoff (1980)

Finnigan and Rowe (1973) showed that the use of a fixed stable filter
provides IV quantities satisfying the consistency conditions. Pandya
(1972) and Pandya and Pagurek (1973) proposed a bootstrap estimator
where separate estimators are used for the estimation of the para-
meters and for the estimation of the incidental parameters (i.e. the
clean output signal or the noise signal). Their results are to be
compared with those of Wong (1966) and Young (1965) where models of

the process are used for the estimation of the clean outputs.

For a particular realization of the data, these instrumental variable

estimators can show instabilities. This is caused, when (usually
slightly) unstable estimates are delivered. These estimates are used
for the generation of the IV quantity, being therefore also unstable.
To avoid this, a Jury stability test was used by Wong (1966) and

Young (1965). Furthermqre, delayed estimates were used

3 .
s
for the generation of the IV quantity. Smets (1970) could not notice
that a removal of the delay caused problems.

When setting up a recursive scheme, it is always a difficult task to

decide whether newly available estimates have to be used to improve
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all old quantities which were generated by previous estimates. Also
in the case of generation of an instrumental variable using an adapt-
ive model, recalculations of previous samples can be done when a new
estimate becomes available. Usually, this decision is a trade-off
between accuracy and speed of calculation. Smets (1970) uses the
newly up~dated estimate for calculation of only the next IV sample.
Sometimes it is suggested to recalculate as many previous samples of

the IV quantity as parameters to be estimated. When an ARMA type
of model 13 used, the extra amount of recalculations can be reason-
able. With such an ARMA model previous ux and 2zx are used to
generate 21 As the previous zig all depend on previous
Uk, all samples z depend on the input signal u. Rowe (1970) calls
this “"feed forward information” leading to the calculation of an
instrumental wvarilable. He suggests a closer connection of the IV
quantity with the output quantity and uses a few previous output
samples to start the ARMA filtering calculations for each recursion
step. In principle there 1s little difference between this approach
and the use of input signals only.

4.4.7 The Approximate Maximum Likelihood estimator and the
Implicit Quasi Linearization scheme (AML/IQL)

The (IQL) methods, which are based on linearization of the loss func~-
tion Vv, have also been presented in recursive form. Fuhrt (1973a,
1973b), who modelled the disturbing noise by MA parameters, used the
game matrix lemma as Eykhoff (1974) to derive the recursive estimator

from the one~shot expression as given in eq. (3.67):
_ A ~ ~T ~ ol _"‘T‘
B = Bt u Qra R e end )

= - ~ ~T. ~ _1~T
P " P P W (G Py 0 )T T Py (4.49)
where

S e ~ ~ ~ N N
% = (‘-‘k"'"uk_p_lsyk_l:""yk_q’gk_lt‘°°:gk_s) (4.50)

This vector is obtained by filtering uwg as will be indicated soon.
v, = yk-§k+§k (4.51)
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The recursive procedure is as follows:
1) calculate {Ek’?’k—l""'gk-s} using the previous
estimate E-k—l :
T
g = yi-gigk_l 1= kes,e00,k (4.52)

2) filter the signals {yk,...,yk_q},{uk,...,uk_p} and
{Baeeeerns 8} by the filter [1487 -1
This filter 1is the most receant estimate of the MA noise
parametersg.
3) comstruct _é( and W
4) use the recursion formula (4.49)
In step 1 many previous samples of the “prediction” error have to be
recalculated. Further, many previous samples of the three signals,
u, vy and & are filtered in step 2. Moreover, in step three a compen-
sation action takes place, leading to enlarged matrices to be hand-
led. PFor these reasons this method is rather time consuming.

The schematic diagram of this estimator is shown In fig. 4.10. Here
it is depicted according to the original formulation of the estimator
by Fuhrt. By shifting some of the filters [1+§k’1]‘“1 and
combining the results of the two summation points we can rearrange
this diagram drastically. The prediction error in (4.49) can be
rewritten (and therefore be simplified):

~ T ~ &% & AT ~ o~ T s s ~Ta .

vl By = nebrhoad o - v Bt B d - 8

(4.53)

This leads to the simplified diagram of fig. 4.11.

Sderstrdm (1973) used also a Taylor expansion of the loss function
and a Newton~Raphson technique. The wminimization of the loss
function

1
v, (8) =

k b3 =

is considered. A relation between vk(e) and vk_l(e) can

2
29 (4.54)

Il (A

be given:
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k-1 1 22

V(O = =V, O + g 8O (4:35)
Take the derivatives of this expression with respect to 8:

vy (o) = —-v 11(® +-§_k(e)e;kg (4.56)

V"(G) -1—‘—-}-v" 9 + (0) %6) +—- (9) 8) (4.57

k-1 o CHOINONIR )

As approximation we take in the point §k-1 which minimized kal(jp:

!é—l(ék-l) =0 (due to the minimum)

2 Qtl =

GG ) RGB D=9 (4.58)

Véliiﬁk_l) =Vl (§k ) (Ek-z close to ék-l)

1f we substitute Ek—l in (4.56) and (4.57), taking care of (4.58) we

get:
i) = éi‘f’k.ﬁ%k(ﬁk » (4.59)
W) = LG e E G Ejﬂéﬁk-l) (4.60)
Define ‘
Rle 5V | (4.61)
G =f @ o (4.62)

Equation (4.61) can be rewritten

1. -1 ‘ ,
P‘}; = + &gk {4.63)
which can be written as

- o T, a1 L <
B ™ P P S (1 P 87 BBy (4.64)

This 1s one part of the already known type of recursive formulae;
for obtaining the other part, remember the Newton Raphson formula:

o= B, -G R G (4.65)
Substitute (4.61), (4.62) and (4.59) in (4,65)

B = By + R854 (4.66)
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which can then be rewritten using (4.64)
- 2 ~ ~T ~ o] 2
B = Bt Pl vy pumt B (4.67)
Sdderstrom (1973) applied these formulae on-a model of the form:
[14a]y = [b#B]u + [1+c]E, (4.68)

He used a state space description associated with this modelling and
"
solved the state equation to obtain &g, It can easily be seen

In eq. (4.62) that the vector wg contains the derivatives of the

prediction error gk with respect to the parameters. These
derivatives are given by:
3t 7
[148] —% =
24 k-1
i
%
[1+c]-;g- = vy ' (4.69)
i
ot
a k N
[#8] — = -3,
E)ci K

These equations can also be brought into a state space description as
a solution for the derivatives. The diagram of this method is also
shown In figure 4.11.

From the considerations given above, it can be concluded that Fuhrt's

IQL method and StderstrBms AML method are very closely related to

each other.

The minor differences are:

-~ the amount of old samples that will be recalculated;

~  filtering is performed as AR filtering by Fuhrt (or its approxi-
mated MA version) while SBderstrdm obtains the filtered quanti-
ties by solving a state spaée equation;

- small differences of approximation.

Goedheer (1976) generalized the approximate maximum likelihood esti-
mator for wmodels where ARMA modelling for the nolse 1s wused. His
algorithm, the approximate Markov estimator, has the same form as’

Stderstrtm’s estimator, cf. eq. (4.64) and (4.67) but the parameter
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vector Bk is extended with AR nolse parameters and consequently the

vector gk is extended accordingly:

~p ~ ~ e ~
Ek (“k," "uk-p’yk-l"'.’yk'q ’€k—1 s .’gk‘S’Ek*l preey ,r)
(4.70)
Uk yl(
1 N
1+C"" 1+ck—1

i 1
' |
i
i i
l
i ]
¢ t
1 1
t [}
I I
1 ]
i :
~ | "
1+p*1 : : 1+Dk'1
] [}
] I
] [}
i I
i [}
i t
i i
i i
i i
1 i
i 1
1 i
t

recursive estimator
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ARC AB*  AC* AD*

Fig. 4.12 The approximate Markov estimator

The filtered quantities in this vector are again found by taking the

derivatives of the prediction error:

Y3 14D
'aﬁk;‘ = Sl k-1 ;k-i
3y [14€]
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o, (1] . | (4.71)

._.5.5.; = o ,,]uk—i—uk-i
1 1
e = [ ] St ™ gk-i

1+D

. =“[—};-']gk"i = gk“'i .

The diagram of this estimator is given in figure 4.12

4.4.8 The Suboptimal IV estimator (SIV)

The above given si.mplev IV estimators yield, in general, consistent
estimates. No special extra filtering or extension of matrices, as
we have seen in previous paragraphs, is necessary. Nevertheless more
complex IV schemes have been proposed to improve the quality of the
estimate. Young (1965) proposed, om a rather heuristic basis, the
use of fixed pre~filters to filter the input- and output signal,
prior to feeding them into the model and the IV generating :filters.
These filters were oot updated during the recursion, and their band-

pass was chosen within the bandpass of the system itself.

We have already seen in chapter 3 that Wong (1966) proposed an “opti-

mal” estimator:

8= [8(u,00R"100u,y) I} QT (u,mR"ly (4.72)

Here the pre-filtering of the different signals is determined by the

noise characteristics. Smets (1970) used this princiiple}for a recur-
14C
sive estimator with fixed, a priori kmown, filters -[.._.—]-t-, according
1+D
t

to diagram 4.13, in order to realize the weighting by the  inverse
covatiancé of the mnoise. An estimate ;‘k of the clean output =xk
was generated using an adaptive model. Young (1976) presented, in
fact, the same scheme and called it "yrefined IV algorithm;'. The
complication with these latter schemes is that knowledge of the noise
spectrum should be available.
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Fig. 4.13 The Suboptimal IV estimator

As we have already seen in previous paragraphs, this will not usually
be the case. To gain this knowledge, along with the estimation of
the process parameter, a separate estimator, which is capable of
estimating noise parameters from the residuals, can be used. A vari-
ety of possibilities for this purpose has been mentioned already in
the previous paragraphs. Young and Hastings-James (1970) proposed

the use of an AML estimator for this purpose.

4.4.9 The IVEMM estimator

Smets (1970) proposed an extended IV algorithm'along the lines of
the extended matrix method. Here the IV estimator using an adaptive
model is extended, i.e. the vectors wg and zi contain samples of

ék and :Ek as already seen with the EMM.
The expression for the estimator is also given in eq. (4.48), with

the appropriate extensions of wy and zgk. The diagram of the
estimator is given in figure 4.14.
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4.4.10 The general estimator

By comparing the diagrams of the approximate Markov estimator, the
suboptimal IV estimator and the IV extended matrix estimator, we may
propose a general diagram for these types of advanced estimators,

leading to an even more versatile estimator: the gemeral estimator.

This estimator is, ian fact,

- the IV variant of the approximate Markov estimator or

- the extended model variant of the optimal IV estimator or
- the filtering variant of IVEMM.

We have already given the diagram of the general estimator in fig.
4.2. For the choices of the model blocks Mj, 1 = 1,2,3,4 and the
filters Fj and %;, 1 = 1,2 we refer to table 4.1. This estimator
and its properties ‘have not yet been proposed in the literature.
From the general framework within which we have presented the current

estimation schemes, we can conclude that the various estimators are
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very much related and can be considered as special cases of this

general estimator.

The main distinction is in the exteant of the parameter vector to be
éstimated. If all A,B,C,D parameters are estimated, the availability
of the noise parameters can be used to apply weighted loss functions
with optimality properties like the AML, Markov estimator and the
(sub)optimal IV estimator. The weighting of these estimators is
identical. It can also be seen that the EMM estimator is a simpli-
fied version of the AML and the approximated Markov estimator. The
filtering is then indeed not essential for obtaining a white predict-
ion error, but can help to prevent divergence as we will see in sec-
tion 4.5. In the same way, the IVEMM is the simplified version of
the general estimator. ‘

For the design of computer programs for estimation algorithms, it is
very helpful to use the concepts of the general estimator, as the
different functions of the general estimator, indicated by the blocks
My, Fi and 93, can; be incorporated in one program, which allows

the use of various estimation schemes.

4.4.11  The Stochastic Approximation algorithm (SA)

From a historical and a computational point of view, the class of
stqchastic approximation algorithms is of interest. It can be seen
as a simplified version of the recursion algorithm that we have al-
ready met in the preceeding paragraphs. Tsypkin (1966) gives a re~
view of this class of methods and analyses their convergence propert-
ies. TFor our type of application, the estimation of process para-
meters, the requirement of indepéadent noise is usually not met.
This can be compared completely with the conditions for consistent
estimation for the common least squares estimator. The basic idea is

the following: For some convex loss function V e.g.
T .
Vo= (e B2 , O (4.73)

the gradient of V with respect to the parameter vector is computed.
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The recursion formu;a for updating the parameter estimate is then:
S, =8 -p VV 2 (4.74)
g1

where pyx is some positive number. In Tsypkin (1966) the conditions
can be found for convergence of this algorithm. They dictate the
choice of pr, and usually a choice like pg = k-1 wili satisfy.
Comparison of those stochastic approximation algorithms with the
types of weighted least squares methods already met, shows that the
main difference 1is the choice of the scalar py instead of the mat-
rix Py for the weighted least squares algorithms. 1In this sense
the stochastic approximation algorithms can be seen as a slaplified
version of the weighted least squares algorithms. In principle all
modifications as displayed for weighted least squares estimation
could be of interest for the stochastic approximation algorithm as
well. Nevertheless, in the more recent literature, the stochastic
approximation does not play an important role. The extra amount of
computations 1avolved with handling the matrix Py instead of a
scalar py is for the modern, very fast and relatively large (even
for mini’g) computers usually not prohibitive.

An  interesting development within the stochastic approximation
algorithm is worth mentioning, as it also influenced the development
of the weighted least squares estimators. This is an 1dea attributed
to Panuska (1969), who observed the incomsistence properties of the
stochastic approximation algorithm when dealing with coloured equa-

tion errors. He proposed to estimate the MA parameters of the noise
along with thefproceés parameters, introducing an enlarged parameter
vector O and corresponding vector B His results were promis—
ing. Valis and Gustavsson (1969) compared this method with Astrim's
maximum likelihood algorithm and found that more passes through the
data were necessary in order to obtain estimates having nevertheless

a worse variance than the maximum likelihood estimator.

4.5 Convergence aspects of recursive estimators

In the previous paragraphs we reviewed several recursive estimators
and concluded that these estimators are based on one or more of the

three principles for prediction error whitening: filtering, model
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‘ exﬁensiqn or use of IV quantities. We have also seen that several of
these estimators are approximate versions of (possibly more favour—
able) variants, where for example filtering with filters, containing
recently estimated parameters is performed over a larger amount of
past data than in the more currently used versions, where only the
last sample 1s filtered with the newly obtained filter to avoid ex~
cessive compuation times. Because of this, the signals contained in
the vector Ek are ‘not statistically stationary, which makes a
convergence analysis rather hard. Nevertheless it is important to
know, or at least to have an idea, under which experimental condi-

tions an estimator may have consistence properties.

For studying the convergence aspects of prediction error estimators,
an analysis method has been proposed by Ljuﬁg (1§77a,b), based on the
concept of an ordinary differential equation (QODE), associated with
the recursive estiﬁation algorithm. We will give here only a brief
outline of this method.

The recursive estimator is in its general form:

T 1
& =B ) *rd Qe e
(4.75)

, T 14T
B = Py < Bndd gt ab-labe

where gk is the one step ahead prediction error, depending on
all previous estimates §i° It isv_specified for the different
methods in thé previous section. It contains the (filtered) measur-—
ables of the (extended) model. The quantiiy wt is any of the
vectors of (filtered or extended) measurements met in the previous

paragraphs. If we write:

i=]

then it follows: : )
1 T
Re = Rp = g (o 0 Rey) TN

~and for §k

k

* >

&

. {(k~1)+(k-1)g$TRgilg§]'1 &8 (4.78)
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Now the following 1dea1isatious are made:

a) the term [(k—1>+(k-1)£§ L up]"! will be approximated by k-1

b) the prediction error Ek, which is dependent on all previous

estimates 3& is thought to be dependent only ou the previous

estimate gk 1° The same holds for the wvector giA These new

quantities will be denoted by e and gi

¢) introduce

HOR E{uf ,%k}

G(@) = E@gg_ﬁk } . . . V('z;.?g)

VThis means that we will replace texms in the abeve given ‘equa~

tions by their expectations’
S = S FRRL £C8 )

Ry - Ry =Ila [G(Ek-l);ﬂk_ll 1 - (4.80)

d) instead _of the above difference equatidn which ié'time'vari- i

ant, we consider the time invariant difference equation

Ek- 8- =Rk LE8 )

R - R, "G(Ek—l)_Rk-l - - (4.81)

The ODE associated with this recnrsive estimator is then

‘“"T’ Ry £
D = e(A(DI-R(D) | | (4.82)

with

£ = E@® 2D}

o® = et d #®} 1 S (483

where Ek and E? are obtained by using a constant parameter .ﬁ

instead of the sequence'of estimates that become évaiiable‘during the

estimation. So the quantities ek and Ekv may be considered as

gtationary stochastic processes. -
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For stability analysis of the ODE choose a Lyapunov function:

v =gfale} (4.84)

The relation with the function £(8) is:

£ = E{a(®EN (O} = -% .:_g. EEe) - 8 (4:85)

Then it follows that:

T T
F-G) £ -G rio gam =

i

T
-5(Gg) U () <o (4.86)

It can be concluded that the ODE has stationary stability points to
which all solutions converge. An important observation 1s that the
quantities gk and .‘”-k"' have to be statlonary. If the previous
egtimate 1is used to generate these quantities this assumption might
be wviolated as the previous estimate might cause even an unstable
process. Therefore the obtained estimates have to be monitored a@
converted into stable estimates before being used to generate ék
and wet, This is a weak point of the prediction error algorithms.
Ljung's analysis method using the ODE requires this stability.

The relation between the recursive estimation algorithm and the ODE
has been worked out by Ljung (1977b). He showed that convergence
with probability one of the estimation algorithm is associated with
stability of the ODE:

- only stable stationary points of the ODE are possible couvergence
polnts of the estimation algorithm. This implies that if the

estimated parameter Oy converges to 6% then

a) f(8) =0 | (4.87)

d£(9)
b) M) o | g . e (4.88)

has all eigenvalues in the left half plane. This can be
understood by linearizing the ODE around 6* vhere (&%) =
0. This yields:
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R = G(ﬁ?). (4.89)

df(8)
B(BY) = —p— o= o (4.90)
46 =9 - &
leading to
Lo = ¢ l(ex) n(eh) se : (4.91)

~ global asymptotic stability of the solution &% of the ODE

implies that the estimate §k converges to 8% with probabil-
ity one, as k + .

the trajectorles of the ODE can be interpreted as the "asymp~-
totic paths” of the algorithm.

After this review of the (commonly accepted) convergence analysis of

Ljung, we may review the consistence properties of the estimators of

levels of complexity O and 1, as presented in the recent literature.

Level O

The LS estimator. 1In chaper 3 we have already seen that

Level 1

consistence only occurs for a specific colouring of the
error. The equation error has to be a white nolse signal.
This leads to the requirement:

[1+c],
Ti:rﬁ-]— = 1 (4.92)
t
This requirement is a severe limitation and is, in fact,

responsible for the development of the estimators of the

other classes.

The GLS estimator: S8derstrtm (1974) showed that for low
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gignal-to-nolse ratios this algorithm can converge to other
local minima instead of to the global solution. TFor high
signal~to-noise ratios this algorithm gives, in general,
reliable results.

The EMM estimator: This method has been used with success
by a wide variety of authors, in spite of the fact that

consistence 1is not guaranteed in all cases. Ljung,

Stderstrvm and Gustavsson (1975) constructed counter-exam-—



ples to convergence and showed also the possibility for
divergence. Goedheer (1976) gives simulation results,
showing also the possibility of divergence for this method.
A nice explanation for this phenomenon can be given, based
on the ﬁarticular choice of the experimental conditions and
the structure of the EMM algorithm. This explanation fits
very well with the remedy which Ljung, Stderstrtm and
Gustavsson (1975) proposed to overcome the divergence prob-
lems of the EMM. The explanation is based on the follow-
ing: create an experimental condition where
in the input (and/or output) signal one frequency, or a
small frequency band, 1is dominant. If the inverse noise
filter (in the diagram of EMM) for this particular frequ-
ency glves a phase shift between 90° and 2709 then the
gradient of the loss function with respect to the
parameteré (this 1is the product Ek%k in eq. (4.29))
will be directed in the wrong direction. So therefore
divergence can be expected.

T 1
In this reasoning, the term Pk_1(1+2kP is not

k1%
taken into account. ‘

This term gives an orthogonalization to the adjustment
scheme. Using simulations, Goedheer (1976) Investigated
the influence of the cross terms in the Pk—l matrix
‘for the divergence effect for this type of experimental
conditions and found that the presence of these cross terms
indeed improved the behaviour of the adjustment, but the
resulting quality of the adjustment remained very poor.
From this type of simulation and the counter examples glven
by Ljung, Sﬁdefstram and Gustavsson (1975) we can conclude
that we may expect divergence, or poor convergence, only

for very restricted types of experimental counditions.

Based on the observation that for a stable solution the
matrix G"l(jy)ﬂ(g?) in eq. (4.91) shogld have stable eigen~
values, i.e. in the left half plane of the s-plane, Ljung
(1977a,b) shows that this can be guaranteed for this esti-
mator if [1+6]”1~% is positive real.

It 1s worth noticing that stable noise processes exist
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where this condition is not fulfilled. Based on the cou-
cept of extra phase-shift between the signals uyp and

Ex, it 1s easy to understand the remedy to prevent diver-
gence, as proposed by Ljung, Stderstrtm and Gustavsson

(1975), which they concluded from the already mentioned

. theoretical analysis. They propose the use of an extra

filtering of the signals contained in the extended vector
of wmeasurables By by the inverse (estimated) noise
filter. In figure 4.15 a diagram of this modified EMM
estimator is drawn for the case of A, B, C parameters. In
this diagram it can easily be seen that a phase shift bet-
ween G‘k and Ek, due to the inverse noise filter,

does not occur.

T T S e e 1
U ' i Yk
| O %/ / i
| [
] I
i ]
H H
i i
] M|
1 ]
TR P
]
1 1 1
1 ,,Ek-ﬂ 1 *ekd 1+ ék-1
u, fk ik Yk
recursive estimator

Lo

AA¥ AB* ACH

Fig. 4.15 Modified EMM estimator

If we shift the filters properly, we arrive at the same
diagram as for the AML/IQL estimator (cf. fig. 4.11).



This means that this modified EMM estimator belongs to
class 2 estimators as it contains two extra operations
(model extension and filtering) to obtain consistent esti-
mates. If we extend the iInterpretation of phase shift
between u and Ek caused by the inverse noise filter
for the common EMM estimator, for cases where the phase
shift 1is not between 90° and 270° but between 270°
and 909, then we may expect fast counvergence to occur
when the phase shift is zero and slower convergence when
there 1s a component iIn the error signal Ek with a
phase shift of 900 or 2709°. This component will not
contribute to the adjustment and the in-phase component

will be therefore smaller.

An important cont;ibution to the discussion of the converg-
ence of ihe extended matriz method has been given by Solo
(1979), who considered a MA modelling of the noise. He
analyses an interesting version of the EMM, already intro-
duced by Young (1974), where the prediction error is re-
placed by the residuals, which are obtained by using the
estimated ARMA parameters of the process of the same recur-
sion step, cf. paragraph 4.4.5. For this type of modified
EMM estimator, Solo proved counvergence by using the mar-
tingale éonvergence theorem, provided that the following
condition is fulfilled:

[14€]"! -% is positive real.

The main difference for this type of EMM-scheme is that no
monltoring of estimation results 1s necessary, as in the
case where past prediction errors are used in the extended

vector of measurables.

The IV estimator: Sdderstrdm, Ljung and Gustavsson (1978)

showed that convergence occurs for the IV estimator if,

again, the matrix G=1(6*)f'(6*) is stable, 1f a fixed model
[b,+8]
[ _] 1s used to generate the IV quantity. The estimates
1+A

need to be monitored in this case as well. Solo (1981)
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shows that, using residuals instead of prediction errors,
the convefgence of the IV algorithm can be guaranteed prov-
ided that [1+A]"! -% is positive real.

This means that for some stable systems, which do not ful~-
£111 this condition, divergence may occur.

Until now, it is an open question under what conditions a
recursive IV estimator with an adaptive model has converg-

ence properties.

For the more complex estimation schemes, only a thorough
convergence analysis has been done for the AML estimator;
cf. Astrdm and S8derstrdm (1974). It can be pfoved that
the matrix G‘l(jﬁ)f‘(ﬁﬁ) for this estimator is always as-
ymptotically stable so that no restrictive conditions for

noise dynamics and/or process dynamics may be expected.

4.6 Conclusion

In this chapter we have presented a general set-up for simple and
more complicated least squares estimators. We showed that within
this general framework the recursive estimators can be classified.
This framework 1s based on the distinction of three basic ppetations
related to estimation: correlative weighting, filtered weighting and
model extension. Based on these three main operations, a general
estimator could be proposed, such that the existing recursive estima~-
tors are speclal . cases of this general estimator. From this general
concept, the relationship between the existing estimators can then be
shown. A short discussion of existing literature is given concern-
ing the convergence analysis of these estimators; this is still a

popular topic in the very recent literature.
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CHAPTER FIVE:

ESTIMATORS FOR NOISE CORRUPTED INPUT-OUTPUT MEASUREMENTS

5.1 Introduction

In the preceeding chapters we discussed the estimation of model para-—
meters In the case where uncertainties can be modelled as an equation
error, which can be treated as disturbances on the output signal. 1In
this case measurement data of the undisturbed input signal are assum~
ed to be available.

Often it will occur that both input- and output measurements are
disturbed to such an extentx that the previously described estimation
algorithms will produce biased results. Such disturbances can be
inherently due to the wmeasuring principles used. For instance in
biological systems often only signals with a bad signal-to-noise
ratio can be obtalned, e.g. when meagsurements have to be restricted
to non-invasive ones only. TFor such cases it is of interest to wmodi-
fy the existing algorithms in such a way that also disturbed input-

output data can be processed.

The problem of estimating parameters using disturbed input-output
measurements has received rather little attention in literature,
compared to many papers devoted to the simpler problem of output
noise contamination. A few solutlons have been proposed but, unfor-
tunately, considerable a priori knowledge 1s assumed or restricting
conditions are imposed on the disturbances. Akashi and Moustafa
(1975) use an EMM approach for estimation of process and unoise para-
meters, but they assume equal colouring for both the input and output
noises. _

With this restrictive assumption the EMM approach, as discussed in
the previous chapter, can be used, assuming also that by = 0. An
estimator for the case that b, # 0 is also proposed, but then it
is assumed that the covariance matrix of the noise 1is known.
Roosdorp (1974) proposes a combination of two 1V estimators, which
have to be performed successively. The technique is rather involved



and works well only for first order processes with white disturbanc-
es.

However, b, # 0 is possible in this approach. Stderstrdm (1979)
suggests an IV approach, which, again, is useful for white disturban-
ces. For this case, he proposes a different type of parametrization
using innovations form, and shows that the parameters of this para-
metrization can be Identified. Klijn (1977) also assumes white dis~
turbances and gives an implicit quadratic expression for an estima-
tor. This expression can be obtained from the common least squares
estimator, if the matrix £TQ is replaced by #TQ - I, where I 1s a
diagonal matrix containing the noise variances.

Rogers and Steiglitz (1970) propose a maximum likelihood épproach,
but the solution for non-white noise is numerically prohibitive, so
that they only present simulation results for white disturbances. A
promising method has been proposed recently, cf. wvan den Dungen
(1978) and wvan den Dungen and Eykhoff (1981). This method is called
the Least Squares Like method (LSL) and does not impose iimiting
assumptions on the colouring of the nolses. On the other hand, it
assumes that two independent measurements of both input- and output
signals are available. This may be a practical limitation, depending
on the circumstances. Using these independent méasurements, IV-like
estimators can be constructed, where the extra available measurements
serve as IV signals. Simulation results show a good performance of
this estimator. ‘

In the following paragraphs we will propose two estimators. for the

case of input-output disturbances, where different noilse colouring is

allowed. Each of these estimators can be presented in two variants.
These estimators are involved IV-estimators, where each estimator
contains two IV-operations and an extra operation which is either
model extension or filtering. For a suitable choice of the IV quan~
tities an extra measurement of either the input signal or the'.output
signal (or measurements of signals which are related to the input- or
output signalsg) will be appropriate. This type of extra necessary
measurements is, in many cases, practically feasible and less rest-
rictive than the a priori information needed for the schemes discus-
sed in the chaptersbefore. The design of these estimators is a dir-
ect result of the concept of designing estimation schemes, consisting
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of three basic operations, as introduced in chapters 3 and 4.

5.2 Problem formulation

Assume for the process description, the situation of fig. 5.1.

Uy Xy

Sk Mg 3 Mok | ok

+ +

A\ Y

Fig. 5.1 Corrupted input and output measurements

Analogously to the formulation 1n the previous chapters, we can

write:
X = -th-l- U-bt’ S!(u,x)_@t

‘=X 4+ n

L=x7L, (5.1)
y=u+na

where we assume that ng and nj are mutually uncorrelated, zero

mean, stationary noise sequences.

The vectors X, ¥, 0g, n4, ¥, §, & and f are signal vectors, all
defined like y3

T
z = (yq+1"”‘) yN) (502)
T_ T _ T\ _ - _
Et (P_ »a )t (bos""bp; al"‘.’ 8q>t (5.3)
Yerrt Tt Vgrep | X0 T R
u,x) = [v]x] = |- . ' . (5.4)
g YN-p 81" " *N-q

The matrix $(v,y) has dimensions equal to ((u,x):

»

v,y) = [v]¥] | (5.5)
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The matrix N, has dimensions equal to Y, whereas the matrix Ng
has dimensions equal to U (and V).

The set of equations (5.1) can be rewritten:
= R(v,y)_elt-i-go‘i-)logt— Nil’*!: (5.6)
Introducing:

(5.7

L= ALY +E ’ (5.8)

In this description we have an equation error gy which consists of
two components. The quantity ep is well known from previous chap~
ters; it is the equation error due to the output disturbances. It
is essentlal for our forthcoming comsiderations that ex is indepen—
dent of the measured input signal vg. Further we have fy, which
is the equatfon error due to the input disturbances; fy has to be

independent of the measured output signal.

It is illustrative to consider the situation of fig. 5.2 where an
input disturbance 1s not measured but is fed into the process; i.e.

the case of incomplete input observation.

Fig. 5.2 Incomplete input observation
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This situation can be handled by treating this type of input disturb-

ance as coloured output disturbance:

]
= Q(V,y)gt-!- %moét+ Ni-b-t (5.9)
The equation error
g=n, + No_a_t-l' N:‘lkt (5.10)
is independent of the input measurement v, _, 1if Y and ng o, are
L]

mutually iIndependent, so that this type of input disturbance can be

treated as coloured output disturbance.

It would seem attractive to model the imput disturbance nj, as in
fig. 5.1, in such a way that it can be treated, as in fig. 5.2, as
output disturbance, so that existing estimation schemes sulted for
output disturbances could alsc be used for ilnput-output disturbances.

Therefore consider fig. 5.3.

Fig. 5.3 Input measurement noise modelled as output noise

If the disturbance -ni’k is modelled as an output disturbance
as explained in eq. (5.10), then the resulting equatlon error ey is
not independent of the input measurement vy as can be seen from
fig. 5.3. This violation of the independence tequiremént of output
disturbance and input measurement will cause inconsistence of the

resulting estimates.

Now we return to the scheme given in fig. 5.1. 1In the description
(5.8) we have now an equation error e + f, which is generated from
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two independent white noise sources E£{ and §; through shaping
filters. There is~the possibility of modelling the noise shaping
filters in different ways, using AR, MA or ARMA descriptions. It
will turn out that AR descriptions will be convenient: ’

1
% T (N 3
[14D ], (5.11)
1
£, == E
k 1,k
[1+p, ],

50 that the input and output noises are derived from the mutually

independent white sources §

0,k and gi,k in the following

way:
-1
[+]
[1+a }t [1+D0 ]t ’
1
[b+8], [+, ]

where the polynomials are defined as:

no,k = k

(5.12)

ni’k -

Bk

[iea], = [1+ alz—l-b cevees * aqz‘q]
-1
[bo-ﬂ! ]c = [b +b,z

t
P

+ seeses + bpz ]t

-r

-1 : o
’12 + vess + doiroz ]t

[14p ], = [1 + 4, (.13

-
z 1+ sees + 4, z 1]
,1 '1,ri t ]

[14-%]t =[1+4q

For asymptotic stability of the signals involved, it is assumed that
the roots of zq[L+A]£, zp[b°+B]t, zro[hI-Do]t and zri[lﬂ)i]c all lie

inside the unit circle of the complex z-plane.

After this notational introduction of the situation with corrupted
input and output measurements, the estimation task is formulated as:

"Find a (recursive) algorithm such that the process parameters 6;
will be estimated consistently; 1if it is necessary to estimate (some

of) the nolse parameters for this goal, they should also be inclu-
ded”.
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5.3 Estimators for disturbed input—-output data

In this paragraph we will propose two different types of estimators
which are suited for corrupted input-cutput data as specified in the

previous paragraph.

In chapter 3 and chapter 4 we have seen.that three basic operations
for obtaining consistent estimates can be distinguished. In prin-
ciple, each of these basic operations 1is capable of converting the
inconsistent common least squares estimator into a consistent estima-
tor of higher complexity. 1In these cases we were dealing with a
coloured equation error, which was obtained by filtering a single

white noise source.

From eq. (5.6), (5.7) and (5.11) we can conclude that the resulting
equation error gi originates from two Independent white noise sour—
ces, £y and &,;, which are both filtered by different filters:

gk.e+f=__1__g 1 ¢ (5.14)

ko k 0,k 1,k
(14D ], (40, ], ™

The main idea of the proposed estimators will be a combination of two

€

different basic operations within one estimator to obtain consistent
results. One operation has to be tuned to the {ioput noise fy and
the other operation to the output noise eyx.

5.3.1  The IOIVEMM approach

With this estimator we combine, within one estimator, the model ex~
tension and the instrumental wvariable approach. FEach of these two
operations will be tuned to one of the noises, which means that we.

have two ways of applying this algorithm.

The estimatfion of noise parameters Iin the case of input-output dis-
turbances 1s more complicated compared to the case of only output
disturbances. This is due to the fact that no good estimates of the
two equation errors ey and fx can be made available separately.
Only the quantity g = ex + fx can be used, but this implies

that, for estimation of output nolse parameters, the quantity £y

acts as a disturbance.
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For consistent estimation of the output noise parameters, we have to
aim at a white residual due to ey. This implies that, because of
the different colouring of input— and output noigses, the residual due
to fx will be coloured. ‘

If a least squares type of estimator is applied then, because of the
symmetric form of this estimator, this will lead to quadratic terms
in 8ke This will then cause inconsistent estimates. An IV type of
estimator allows us to make use of an extra signal which, in this
case, may not be correlated with the input disturbance.

Again ey, or a good estimate of it, could be used for this but,
unfortunately, this signal is not available. Signals which are cor-
related with ey, but uncorrelated with £y, are available, e.g.
Yk - Then an extra quantity is introduced implicitly, viz. xy,
whose correlation with fy is zero, as yyx = =xy + no,k‘
This 1is indeed true but, for finite data sequences, the sample
correlation

function is not equal to zero. Moreover, as an estimate Ek of
gk has to be used, this estimate %k. will be correlated with the
input signal, which 1s also the case for xi, leading to a non-zero
correlation of these two signals. This introdﬁces an extra error
cause to the estimatlion result. The use of extra output measurements
can be advantageous. The IV quantity, for estimating output noise

parameters, could then be:

Y7 Y2,% T Poi,k” Po2,k

leading also to a vanishing sample covariance of n

02,k and fk'

5.3.1a First variant of the IOIVEMM approach

In this section we will propose aun IVEMM estimator, where the IV part
is used to tackle the input disturbance and the model exteunsion to
tackle the output disturbance. For explanatory ”reasons, we will
first derive an explicit version of this estimator. As with all EMM
estimators, a recursive version is more appropriate. This will be
dealt with at the end of this section.
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Combining (5.8) and (5.11) yields:
= %v,8+g

1 1
= S — -+
" S0,k

(5.15)
(140 ]

Pre-multiply this equation by [14D,]¢

o k
tgk 0, IPD ‘

In vector-matrix notation:
(14 ]
0

8= Ot E ¢t

(5.17)

where

T
& = (Byyyreenrity)

w3

& = Gy g5 W)
(5.18)

3

B = By oo By )

dT
—ot

S S
q q+1 r,

G = . . (5.19)

. .

By-1 * * * Byer
e}

Combining (5.8) and (5.17) yields:
[ ],

[1+D, ],

Applying the matrix extenslon principle:

1= 8v,y8-6d +E 4 & (5.20)

8, [14D, ]

3= Uv,y,8) (5.21)

2o
e
where
2v,y,8) = [v,mlec] = [vlyle] (5.22)
The quantity g will not be avallable, so that an iterative or recurs~

ive scheme has to be used to generate an estimate of this signal
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based on previous estimates and using eq. (5.15) where 6; s sub-
stituted by an estimate :é_

Pre-multiplying eq. (5.21) with 21T yields:

8 [1+D ]
T T -t T T oit
le Zl Uv,y,8) + 2 £ + Z1 [1+D

(5.23)

1% &y

Lot 11 t

Now we will take as IVEMM estimator:

[}

-— 1
L I N G (5.24)

-0

This estimator will be consistent if

1 T
1 pli Z, (v 1 ~gingular
plin [f=5 21 %v»7:8)] 1s non-singula

1 T
I1 plim z; E|=0 (5.25)
[1+D_]
III plim [_I_ZT_.‘?..E E]=0
N-q "1 wed P-4
N+ [1,+Di]t

-

From the discussion in previous chapters concerning the choice of the
IV matrix, we know that several possibilities exist: the use of
delayed signals, use of fixed filters or use of wvarying filters based
on previous estimates. We will give here an example of such a
choice:

z = [0z |27 -

A

Ugrl® " ?q-!-l-p Yoot " T1en Y=t " " ‘yq+1-r°-‘r'
U T " Ynep -1-1° " VN-get | TN-1-v"* YN-ro--‘t'

(5.26)

In this matrix Z;, all submatrices are IV quantities: the matrix
U and both shifted submatrices Y. The entries to the submatrix U
can be comstructed using the output signal y as the input to a fixed
or varying filter, e.g. previous lnverse model of the process. This
filter needs to have a delay in order to fulfill condition II. The
submatrix z * Y is suited as IV quantity for the noise £y, as
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it 18 not dependent on 4. The submatrizx z Y is an IV mat-
rix for the output signal. The reason for the introduction of the
time ghifts z ' and z ' is that condition I has to be
fulfilled, which is not the case if t=1t'=0. A c¢hoice of =0 and
T'=q+l satisfies condition I, but problems can occur as explained in
appendix II. An alternative choice, especially when r, < q, can be
T'=0 and T = rotl. The choice of a suitable IV matrix is for this
type of application somewhat more difficult as three conditions
(5.25) have to be fulfilled, where two similar conditions appear for
the case of only output nolse. The extra complication is now that
for the model extension an IV approach also has to be followed (i.e.
the cholce of the last submatrix z ' Y instead of G).

The use of the choice of eq. (5.26) for an IV quantity is oanly feas-
ible close to the correct parameter value 6;. This is due to the
use of gk instead of gk. Far from the true parameter 9,
this §k will contain remnants which are related to ug. Also in
z-T'Y, which 18 used as an IV quantity for gk, the component
X 1s related to ug. The correlation of both signals will result
in an extra term, ylelding a blas for the estimates. This may even

lead to divergence, as has been noticed in simulations.

If a second independent measurement of the input signal or the output
signal 1is available, the choice of a proper IV matrix is easier with
respect to the three consistence conditions (5.25). We will consider
two cases:
1) Two independent measﬁrements of the input signal are avail~-
able and one measurement of the output signal:

ik~ %t iy
v2,k =u + °1z,k (5.27)
e T Ttk

The disturbances a and n may have different

11,k M2,k 0,k
colouring but are mutually independent.
A possible cholice is now:

Q(Vle’g) - [VI'Y lél]

z = [v2|§2|62] (5.28)
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& =¥- v,

_§,2 =y~ R(vzv}’)&*
where Ef is an estimate of & from a previous iter-

ation, and Ez is generated by using v2.

2) Twoe independent measurements of the output signal are

available and one measurement of the input signal:‘

Vi T Wt By

yl,k = x + nol,k (5.29)
Yo,k T %t o2,k

Also here, the disturbances ni,k’ nol,k and “oz,k may have

different colouring, but are mutually independent.

A possible choice is now:

v,y ,8) = [v]|y, | &]
z, = [ﬁz]z-TYzlz_T’(Yl-Yz)J (5.30)
=3 - v,y

where EQ is generated from I

This is an interesting cholce as the conditions (5.25) can
be fulfilled quite easily.

The requirement for a second independent measurement of the input~ or
output signal can be weakened slightly if we recognize its purpose,
which is removal of those components which are related to wug, in
the IV quantity. For this we do not exclusively need measurements of
the input-or output signal, but also signals which are closely rela-
ted to the input— and output signals can be used, e.g. an electrical
signal, which controls a valve, instead of the flow itself. Depend-
ing on the circumstances, these signals may be readily available,
which extends the applicability of the method of eq. (5.30) conmsi-
derably.

As mentioned already, an iterative or recursive version of this esti-~
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mator has to be chosen, as the quantity g is not available. The

formulation of the recursion for the k-th step is as follows:

a o T -1 T A
t = B - '
S = Bt Py B Bz O g Sy)
(5.31)

T -l
P = Py T P F (e Pz o9 By

where, for the case of one input- and two output measurements:

T - ~
ﬁ( (vk". . ’vk_p’ yl’k_l"" ’yl,k-q’ gk_li" . ,gk-ro)

Ze ™ (goeessBepr I 10" Y2 kgm0 P11t By o)

2k-1
- 144

- =l——11,. 1 Y9 1o (5.32) -
Ug-1 [bo+Bk ] 2,k-1 _

~ ak=1 o ~k=-1
By = A ] vy g m[bgBT I
Ze-1 T Y1,k-1 T Y2,k-1 .

A schematic diagram of this estimator is given in fig. 5.4.

In this figure the three IV generating filters ¢ , <I>2, <I>3 for the

respective IV quantities in the IV matrix Z; are shown. In eq.

—? 2k-1 -
(5.26) and (5.30) & =z ', ¢ ’Jik—l]— and ¢ =z are

(b 8" ]

chosen.

ve e e e m e oo Yik Yok

1V Recursive estimator

T L T

AR AB AD}

Fig. 5.4 IVEMM estimator for noisy input-output data -
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5.3.1b Second variant of the IOIVEMM approach

A sgecond variant of the IVEMM estimator can be constructed when the
rdles of the twoe operations are interchanged. The model extension
will be used now to take care of the input disturbance, and the IV is
used to take care of the output disturbance.

Analogous to eq. (5.20) we can write:

[1+D, ],
L= Wv,y)8.-cd, + ErE (5.33)
[1+p_]
o't
where
dT = (d assa,yd ) (5&34)
—-it 1,170 i,ri t
Equation (5.33) can be rewritten:
) [14p, ]
t
¥ = &v,v,8) —t +-_~}"-§-o+-§i (5.35)
4 [vo]
An explicit IVEMM estimator can be given now
A ) T LT
L Br=l = s Zpatve)] 2, 3 (5.36)
~d
i
This estimator is consistent if
T plim [ L 2T a(v,y,8)] is non-singul
" feg “2 sY:8 8 non—-gingular
Noos
1 T
II plim [ 2 & ] = © 5.37
owall =S 2 , (5.37)
[14D,]
II1 plim [.ﬁéiz";__ii £l =0
N+ (14D, ], |
An example of a possible choice for Zp is: ’
- PS -t
22 = [z TVIle t z] =
v - - v § . e s s S; 4 . . Z
qtl-1 gtl-p-t| g 1 g~ qtl-r -1’
v s . v § .« e e ; z *» Z .
N~T N-p-1 N~1 N-q Nel-T* N-r,-'
(5.38)
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Here the submatrix Z contains IV quantities for proper estimation of
gﬂ,see e.g. eq. (5.41) and (5.42).
The recursive estimator is given also by eq. (5.31), and (5.32),

except the expression for the IV quantity, which is in this case:

T A~ ~
zZ. = (vk_z_, oo ’vk—-p—’t’yk-l gres ’yk—q’zk-l-r' N ’zk-ri-t' )
o (5.39)
The expression for the estimated model output is:
X [543 ]
= v (5.40)
‘v-k—l [1 +§k-i ] k-1 ]

A schematic diagram for this estimator is given in fig. 5.5 for the

case of two input— and one output measurements.

Vi [Vak o Yi
! t
1 -
S oA '~ K
i \.H t
1 i
hY H
N H
‘\\ l
1] ~ !
bl \\ M.
| TR —— o] - - - 1
. Bk
] — ®2 =
IV recursive estimator

&1 -

AR a8 abf

Fig. 5.5 IVEMM estimator for noisy lanput-output data

._.{l [ °+§k_1} -F
In eq. (5.38) @1 =2z, @2 = —T and 03 = z 18 chosen.
[14257%]

For multiple measurements, as indicated in eq. (5.27) or eq. (5.29),
we may have the following choices for the IV matrix:
1) two inputs vi and vy, one output A

v, ,y,8) = [v,]2[& ]
— ~ -t
zy = [27V,|8, |27 (v,-v) ] (5.41)

& =X v,
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where 32_ is generated from v2.
2) one input _\:, two outputs y, and p 2

g(v’yl'él) = [lellcl]
z, = [0,]Y,18,] A (5.42)

gz = _22 - g(v$Y2)_?_*

543.2 Filtering and IV-approach combined

The next combination of two basic operations is the combination of
filtering (to obtain white residuals) and the IV-approach. For the
same reasons as in the previous paragraph, we can find two alterna-
tives for thls scheme as well.

5.3.2a First variant

For the first variant we choose the IV operation to tackle the input
disturbance and the filtering to take care of the output disturb-

ance.

Starting with eq. (5.8) we can apply filtering of the signals invol-
ved by using a filter [1+D, ¢

i‘k = {1+l')0 ]tyk.

~ (5.43)
L [1+Do]tvk
Then (5.4) can be rewritten
I = ALY grE +E (5.44)
where
I N
f = —— & (5.45)
[1+1)i ]t»
Now, take as IV estimator for the process parameters:
" T o~ oqml T
8 = [z avn] 233 (5.46)
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This estimator is consistent if:

I plim [Ki_q zg Q(;,;)] is non-gingular
N
1 T
II  plim [r_ z2, £E] = 0 (5.47)
Nao 4 3—0] -
1 T«
111 plim [z—2Z, £] = 0O
oo N-q 3 - -4 i

As possible choices there are:

z, = [U1Y]
o (5.48)
z, = (617%]

where the submatrix U can be comstructed using as input, the output
signal y and a fixed or varying filter, e.g. previous inverse model

of the process; cf. eq. (5.32) for the recursive case.

For proper application of this algorithm the parameters of the AR
filter [“’Di]t are needed. They can be obtained by using a sep~
arate estimator. For this purpose we use the result of eq. (5.17):
[14p ]
[

g= -6 + £ +——2F¢ (5.49)

-0f -0 B
[14D, ]t
The idealized IV estimator for the AR parameters of the output noise
would be:

T 11T
4, -lz, 6T 7z, 8 (5.50)
In practice, the precise signals g (and G) are not available, so
therefore they will be estimated. The estimates g will be obtained

by using eq. (5.32); cf. also eq. (5.57)« The resulting estimator
will then be:

w1 a
a, = -[z6] 7 & (5.51)

This estimator 1is consistent if the following three conditions are
fulfilled:

1,7 y
I  plim |2, G is non-singular
pitn [ 25 o]
o pa oz 5] = 0 C(5.52)
N+
[14D ]
1 LT 0t
III plim = 2 £l =0
N+ N-q “4 [I'H)i R =4
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A possible cholce for Zi is:

Z, =Y ' (5.53)
Y having proper dimensions (N-q) X rp. As both estimators (5.46)
and (5.50) use each other's results, an iterative or a recursive
scheme has to be developed.
For a recursive scheme the formulation is as follows:
step k a) Filter the new samples Vo Y using the estimates

§§-1 of the previous recursion step.

~ ak=1
v = [, ]y
k °o 7k (5.56)
~ k-1
Vi [145, ]vk
b) Form the vectors o and 53,1(:
W - (vk’.."vk—p’ yk“l"..’yk-q)
(5.55)

~

Sl ETITI NG SSPELE

¢) Apply the recursive algorithm )
- ~ ~T ~ - ~ -nII'
Bem Bt P E (E R 2y 00 g b )

- _ ~ N~ =l
By = Py T Py gy (AR 2500 W P,
(5.56)
d) Generate
g = [1#h'ly, - [S§+n I (5.57)
e) Form
& ~ (gk-1’°'°’gk-ro)
(5.58)

E-é,k = (yk—l”"’yk-r )
[+]

f) Apply the recursive algorithm
d . =4 +Q, .z (1+§TQ z )'1(: ~5Ta )
Sok T So,k-1 T Ye1Za kW B R-15 K0 B RS k-1
(1+2 % -lar
Q = Y1 7 U Ze kB Uz ) B Wt
(5.59)
A schematic diagram of this recursive estimator is given in fig. 5.6
for the case of one input~ and two output measurements. In this

diagram the IV generating filters ®; and ®3 are shown.
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R {D1 -
IV recursive estimator
AB* AR
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b:*Bk —bQ 1+ A
9
[l Ay
: / 1 —
Al @
: /é?% i :
‘ M;
e e mie [ - -
*

1V recursive estimator

A DX

Fig. 5.6 First variant of filtering - IV combination

(148571
$, = in eq.
L ety

The choices for these filters are resp.

(5.48) and ¢, = 1 in eq. (5.53).

Using this estimator, only the AR parameters of the output noise will
be estimated. TIf for some reason one iz interested in the AR para-
meters of the input noise, a similar approach can be followed, lead-
ing to an extra, separate estimator for these parvameters. For de-

tails see the next section, where these parameters are estimated
separately.
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1f multiple measurements are available we may have the following

choices for the IV matrix:

1) two inputs, one output
a(v,,y) = [7,|¥]
2y = [V,]Y]

2) one input, twe outputs

av,yy) = [T1%,]
3 = [ﬁ§l§§]

where ﬁz is generated using y,.

5.3.2b Second variant

(5.60)

(5.61)

A second variant can be constructed if we interchange the rBles of

the filtering and the IV operation. The measurables
filtered by the filter [14Dy J¢:

;k = [, ]3
;k = [H'Di]tvk

Then (5.8) can be rewritten:

E 4

y= AVDEFE+E
where
. [1+D, ],
- -0
[+ ],

The IV estimator for the process parameters is
T o5 1 T =
@. = [ZS Q(Va}’)]— 25 A

This estimator is consistent, 1f:

1 plim [’ﬁi— Z§ 9(@,;;)] is non-singular
Noveo 4
I plim {K%zg_s_i] =0
Noo
1 T =
III plim [— Z. &] = 0
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The recurslive version proceeds along the lines indicated for the
first variant. We will not explain this procedure in detail here.
The schematic diagram 1is given in fig. 5.7, for the case of two

input~ and one output measurements.

Vik |Vex Y

Akl Akt
1+ D; 1+ D

= I iyt | =
Vo T TTTTT pe ¥
- e
pind
IV recursive estimator

1V recursive estimator

L

AD|

Fig. 5.7 Second variant of filtering-IV combination

Some possible cholces are
Zg = [vit] ]

zo = [V 1]

(5.67)
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the IV estimator for the AR parameters of the input noige is

2= 12
4, = -[z6] Zeg (5.68)
where ; is again generated using previous estimates :q. . This

estimator is consistent if the following conditions are fulfilled:

1 plim [N'}T' Zg ¢] is non-singular
N
1 T
Il plim [R._? Z, 5] =0 (5.69)
Novoo
1+D ]
1 T [ o-t -
I plim [p— 2z £E] = o
=g “6 29 -
N+ [l-i-Di ]t J
A possible cholce for Zg is
26 = Y (5.70)
The IV generating filters & and 02 in this diagram are chosen as
k-1
(5,487 ]
resp. QI- —T in eq. (5.67) and @2 = 1 in eq. (5.70).
[1+8°7* ]
5.4 Conclusions

In this chapter we have proposed several related estimators for situ-
atlons where both input- and output measurements are corrupted by
mutually independent additive disturbances.

These estimators are involved IV estimators,. and they combine the IV
approach with the filtering approach or with the model extension
approach. Therefore also AR noise parameters are estimate& along
with the process parameters. The interesting feature of these esti-
mators 1s the fact that no rather restrictive assumptions, such as
equal colouring for the input~ and the output disturbance, need to be

made.

The selection of a proper IV gquantity may cause problems for the
convergence of the estimator. If additional measurements of the
input signal or the output signal are available, or a signal which is
closely related to one of those signals but independent of the dis-
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turbances, then proper selection of the IV quantity is possible.
This is, in many practical situations, a less restrictive experiment—

al condition than the necessary a priori knowledge of existing esti~

mation schemes.
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CHAPTER SIX:
EXPERIMENTAL RESULTS
6.1 Introduction

In previous chapters we have investigated the asymptotic properties
of the estimators, viz. blas and variance. Often, for practical
applications, it is important to know - or at least to have an idea -
whether these asymptotic properties are also attained for finite, and
often for very small, sample size. At this moment a theory which
describes this small sample behaviour is lacking and its development
and potential result cannot be predicted, but in any case the devel-
opment of such a theory will need considerable effort. Therefore
the experimenter who applies parameter estimation methods in a prac-
tical situation has to have experience with these wmethods. This
experience should be gained from other (previous) experiments and
from simulation activities which are related to the problem at hand.
Many simulation runs, whose conditions are based on those of the
practical experiment under study, can then give insight into which
estimation properties may be expected. The availability of an inter-
active package, as described in the next paragraph, will be of great
help.

In this chapter we will discuss several properties of estimation
schemes, and we will draw conclusions which are based on practical
experience. The blas and varlance properties will be investigated
in paragraphs 6.3 and 6.4, whereas the divergence aspects are consid~
ered in paragraph 6.5. In paragraph 6.6 we will present simulation
results of estimators for input-output corrupted measurements as

dealt with in chapter 5.

6.2 The interactive program package SATER

Interactive program packages become more and more standard tools in
control research and development. The availability of such a package
has several advantages: no tedious programming work, the time
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available can be devoted to the control or estimation problem, stu-
dents can galn experience by using these programs, several (estima-
tion) methods can be compared in a universal framework, etc.; cf.
Lemmens and Van den Boom (1977). Many interactive packages which
have been developed recently, are more or less machine or application
oriented. With the development of SATER this drawback was avoided as
much as possible; cf. Van den Boom and Lemmens (1977).

The SATER package has primarily been developed to make the well-known
estimation and order test routines available to a large group of
users. The package can be used to become familiar with these tech-
niques using simulated data or {(for analysis of real processes) using
recorded data.

Due to the interactive character of the program package, it is desir-
able that the computer has quick response times. Usually this can
only be achieved satisfactorily using a dedicated minicomputer. In
our system we now use a PDP 11/60 computer with RSX 11, 32k core
partitions and a RKO5 back-up memory. Other peripherals are a visual
display unit TEKTRONIX 4014, an LA36 Decwriter and an LPS analog to
digital converter.

As an interactive program contains a large number of program state~
ments (e.g. about 10 000 FORTRAN), it cannot be loaded into the core
at once, so the core memory has to be loaded by the proper software
parts from the back-up memory. This back-up memory is also used for
the storage of the internal datasets (like signal samples, Bode
plots, estimated parameters etc.), for the messages and questions
which appear on the séreen and for the tables which determine the
relatlonships between the operations and datasets, as will be ex~
plained later. 1In this paragraph we will only highlight the main
features of the SATER system. For details cf. Lemmens (1979) and
Bollen and Van den Boom (1982).

The software of the SATER system conslsts of three main parts. The
supervisor, the application programs and the service routines as
indicated in figure 6.1.
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application

SUPERVISOR ,
program 1

. executive
' application

program 2

/interrogator

interpreter
logbook -

application
program 3

routines application

program n

Fig. 6.1 Structure of the SATER Systen

- The supervisor can be divided into aa executive, an interrogator/
interpreter and -é logbook updating device. The task of the executive
is to start the right application programs indicated by the demands
of the user. It checks the availability of the pecessary datasets
and suggests the creation of the missing datasets using otﬁer appli-
cation programs. By means of the ‘interrogator/interpteter it asks
for the necessary data and parameters to run the wanted application
'program. After‘having finished that application program, it updates
the logbook. This logbook ,contains the information concerning avail-
able datasets and how they have been created.

The application programs form the largest parts of the SATER system,

but in fact, they do not contribute to the basic framework of the
SATER system. The number of these application programs can be exten-
ded at will, depending on the interest of a group of users. In our -
SATER version, various parameter estimation routines, order test
routines’ ah& bagic control theory routines like Nyquist and Bode
‘plots, as well as root loci have been iImplemented. Other application
pfograms are sampling of. continuous signals and file 1/0.

The service routines consist of three main parts: the I/0 subsystem,

the question/answer subsystem (which displays the questions, accepts
the answers and checks them) and the graphical subsystém (which faci~
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litates the graphical display of data and the acquirement of data
coordinates from the screen of the visual display).

The application programs available in the package constitute a set of

algorithms/operations, operating on input data sets. The data set

produced by one operation may be a necessary input data set for an-

other operation. 5o a graph may be drawn repfeéenting the relation~

ships between all data sets and all operations of the package. An -
example of a possible graph of this type is given in figure 6.2.
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Tables are used to describe the relations In the above graph: one
table for the datasets where all operations producing the same data—-
sets have been gathered and a table of operations indicating which
datasets are needed for each operation. These tables are used by the
executive. In many cases more paths In the graph can be found from
one dataset to another. The executive can detect these paths and can
give suggestions to the user as to how to arrive at the desired data-

set.

A program package like the one described here is not a rigid and
fixed construction. It will be subject to continuous change, as new
numerical programs become available and old programs become obsolete.

By updating the tables, the structure can be modified easily.

All messages and questions that can be displayed on the screen are
contained in one file on disk, the message file. This 1is done for
two reasons: it contributes to the flexibility if messages and ques—
tions can be changed easlily, without changing the program

software; furthermore, it saves memory if those memory consuming
texts are resident on disk. ’

The way in which the interaction between the machine and user has
been realized, highly determines the usefulness and flexibility of
the program package. Numerical programs, converting input data into
output data, usually have to be coatrolled by a set of additional
parameters. These parameters determine aspects such as, for example,
which part of the fanput data has to be used, weighting factors of the
estimation algorithm etc.

There are two ways of collecting these data: the question and answer
method and the command language. The question and answer method,
where questions are successively put to the user and answers gathered
and checked for their correctness, is a straightforward method which
is specially suited for non~experienced users. On the other hand,
the interpretive command language puts obstacles in the path of the
user because commands and the syntax of the command language have to
be learned. [Experienced users can mostly operate faster with the

latter type of interaction.
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The SATER system is a sort of intermediate between these two possibi-
lities. It has a few commands: for asking for further explanation,
for return to some starting points and for closing the sessions. The
parameters of the numerical programs are clustered in. blocks of rela-
ted questions, which have pre-programmed default answers. It is
important that these default answers are correct aanswers for the
majority of uses. So the wuser should only change those default
answers to suit his own needs if he 1s unable to make use of them.

1f his answer is beyond predefined limits, the system will not accept
it and will ask for a new answer. It is not possible to force the
system to execute a numerical program when the values of the control
parameters are beyond the predefined limits. All these aspects are
covered by a question-answer subsystem. By calling a few sub-
routines, the questioning, gathering of data and checking for cor-
rectness is done automatically. Another aspect of interaction is the
“choice of the operation that has to be performed or the datasets that
have to be created. For operations the system accepts a code
(which is the number of the operation) and for datasets a name which
is a standard name for the user (e.g. NYQUIST DIAGRAM). Synonyms are
also allowed (e.g. POLAR-FIGURE). If the user is not familiar with
the codes of the operations he can give the naﬁe of the wanted data-
set. The system responds with a 1list of all operations and their
codes producing this dataset.

If the necessary input datasets are missing, the system will detect
this and give a summary of all operations capable of producing the
missing datasets. For the recognition of dataset names a vocabulary
is used, containing all relevant words and their synonyms; cf. Escher
(1980). '

For inexperienced users a HELP facility is provided which gives addi-
tional explanation or suggestions if a question is not well under-
stood. By typing a "?" instead of the expected answer, the HELP'
mechanism 1is activated and a message containing  helpful information
is displayed. The contents of all HELP messages is also stored sep—
arately on disk so that changes and addj.;tic_ms can be made very easi-

ly.

In the following paragraphs we will proceed with some examples of

experimental results, obtained by using SATER.
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6.3 Bias for finite sample size

The behaviour of the bilas 1s iovestigated for a first order process;

corrupted by first order ARMA noise ey:
Y + 0.7 Vel = % + € ]
e ~ 0.5 ey = &k + 0.3 gkwl

where {uk} and {Ek} are white and gaussian, with N(0,1) and

N(O,OE ) resp., and are mutually independent. For Ué = 0.25 and

G% = 4 the following results were obtained for the means of the

(6.1)

estimates and the 95 per cent confidence interval using 10 runs EMM.

>
0>
=93

A
N bo 1 1 1

+

125 10.999 % 0.026 |0.684 % 0.019 |0.317 % 0.116(~0.429 =

250 |0.995 * 0,013 |0.692 * 0.010 |0.231 * 0.050(-0.543 * 0.049
500 }0.992 £ 0,013 [0.700 * 0.011 |0.272 % 0.029(-0.513 £ 0.036
1000 {1.004 £ 0.013 [0.698 % 0.008 [0.285 * 0.033|-0.508 % 0.024
2000 (0.998 * 0.009 |0.702 * 0.005 |0.298 % 0.026|-0.501 * 0.023

[ S

+

true |1.000 0.700 0.300 -0.500

Table 6.1 Means and 95 per cent confidence intervals;

a§ = 0.25 , S/N = 8.38 dB
125 |1.018 * 0.102 i 0.118 @ £ 0.171]-0.593 * 0.134
250 [0.950 + 0.089 | 0.546 * 0.163 |(0.103) * 0.165|-0.640 + 0.224
500 [0.997 £ 0.036 | 0.566 * 0.154 @ £ 0.104]|-0.460 * 0.172

+

0.095]~0.529 * 0.041
0.087]-0.530 * 0.037
0.0271~0.498 % 0,023
0.031 | 0.305 % 0.033|~0.497 * 0.012

1000 [1.024 * 0,057 | 0.663 * 0.049 | 0.207
2000 [0.996 % 0.050 | 0.680 * 0.038 | 0.232
4000* 10.994 % 0.052 } 0.706 * 0.018 | 0.302
8000%*10.993 £ 0.021 | 0.705 *

I+
+

4+
+

true |1.000 0.700 0.300 -0.500

Table 6.2 Means and 95 per cent confidence intervals;

of; = 4, $/N = -3.66 dB
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The means aund confidence intervals for N = 4000 and N = 8000 were
obtained from 6 resﬁ. 3 runs EMM; this is denoted in tables by * and
%%, TFrom these tables it folklows that the hypothesis that the true
parameters can be accepted as mean values with a risk of 5 per cent
is quite acceptable in all cases except for the encircled ones, which
occur for relatively small sample sizes.

This is a remarkable result if we congider the actual signal~to-noise

ratios. As for the given experimental condition:

02 = 1.9608 o + 1.1397 o2 . (6.2)
y u g
we find for c§ = 0.25: 8/N = 8.38 dB
cf; = 43 S/N = ~3.66 dB

In order to gain more experience, we present in fig. 6.3 ahd fig. 6.4
the adjustments of 10 independent runs of 2000 samples each, starting
value E)_ = 0 for each run, for the cases d% = 0,25 (fig. 6.3) and
6‘2 = 4 (fig. 6.4). The true parameter values are also given with
the figures. It can be observed that for a% = (.25 reasonably
fast and smooth adjustments for the process parameters occur in all
10 cases. The noise parameters which were estimated after 20 recurs-
ions of the process parameters show a much slower convergence. How~
ever, it can be observed that the convergence takes place from both

sides of the actual parameter values.

From fig. 6.4 it is clear that much slower convergence occurs for
this lower S/N ratio, In fig. 6.5 and fig. 6.6 it 1is shown that for
this S/N ratio correct convergence will occur for increased sample
lengths (N = 4000 and N = 8000 respectively).

For low S/N, the observed output signal yi is mainly determined by
the noise E£r. This noise is transferred to the output through a
system which consists of two poles, determined by the parameters
a1 and dp and one zero. As these parameters are estimated separ—
ately from each other in the EMM algdr:lthm, the true numerical values
could be interchanged for small sample sizes, i.e. 31 estimates
dy and 31 estimates aj. This can be observed a few times in
the fig. 6.4 and 6.5 and very nicely in the third adjustment of fig.
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6.7, where three adjustments are shown for 0% = 16, i.e. S/N ratio
= 9,68 dB. In such a case, the presence of the small influence of

the input signal in the output, nevertheless, finally forces the
interchange of the roles of 31 and 31. The adjustment of

c¢1 1s hereby affected.

-1 _

i i Koot PR VPP RR'Y PP S YN SOV SR Y E S SV ST SV AP SRV SUO

£ 08 § 8 8 8 § §8 8 §8 § 8

Fig. 6.7 Parameter-adjustment of 3 independent runs;
S/ N = -9 .68 4B

From comparison of fig. 6.3, '6.6 and 6.7 it 1s clear that the conver-
gence depends on the S/N ratio. This convergence can be accellerated
by imposing a weighting on the observables, but this will increase
the variance of the estimates; cf. Goedheer (1976).

A further example, of different character, conéerns the following
process:

T T O eg < et o A
and the disturbing noise dynamics of the previous example

e, - 0.5e _, = +0.35 (6.4)

145



The signals {ux} and {£x} are white and uniformly distributed,
between (~1,1) and (-A,)\) respectively. For X = 0.25 and X=1 the
following results were obtained for the means and the 95 per ceat
confidence intervals, using 10 runs EMM.

A ~ -~ a
N bo a; CH 1

125 |0.999 + 0.018 {-0.615 * 0.035 | 0.220 + 0.089-0.558 % 0.084
256 11.002 £ 0.012 |-0.617 % 0.021 | 0.264 * 0.061{-0.510 % 0.062
500 [1.003 * 0.007 |-0.609 % 0.013 | 0.293 % 0.064(-0.506 + 0.052
1000 11.002 * 0.005 |~0.604 % 0.010 | 0.287 * 0.040{-0.513 % 0.036
2000 |1.002 * 0.003 |~0.606 + 0.008 | 0.292 % 0.022)-0.505 % 0.017

3

I+

true |1.000 1-0.600 0.300 -0.500

Table 6.3 Means and 95 per cent confidence intervals;
A= 0.25, 8/N = 5.97 dB

[
)

A
» .
N bo a4y 1 1

125 |1.007 £ 0.059

250 11.026 * 0.054 |~0.652

500 |[1.006 * 0.029 @A
d:l ’t

+

0.063 | 0.262 % 0.108]-0.437 % 0.122
0.061 | 0.301 * 0.106|~0.454 £ 0.098
0.029 | 0.252 * 0.053[-0.462 + 0.048
0.023 | 0.277 % 0.039]~-0.504 % 0.033
0.020 | 0.287 + 0.029]{~0.500 % 0.028

1000 |1.996 * 0.030
2000 |0.995 * 0.012 |-0.619

oM

true 1.000 ~0.600 0.300 -0.500

Table 6.4 Means and 95 per cent confidence intervals;
A= 1, 8/N = -6.07 dB

From these tables it follows that the hypothesis that the true para-
meters can be accepted as mean values with a risk of 5 per cent is
acceptable in all cases, except the encircled ones. As a practical
result from ihese tables and the two tables of the previous example,
we may find that the small sample behaviour of the estimates, with
respect to the bias behaviour, is quite good. However, it is depend-

ent on the signal-to—noise ratio.
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As a third example, we consider the bias for different types of mod-

els for the following second order process:
Vi = LSyt 07y, = w4 + 050, + e ] (6.5)
e O.Sek_1 = Ek + 0.3 Ek-l
The process is identical to that proposed by Astrtm (1968) as test
process; the noise filter is identical to that propsed by Talmon and
Van den Boom (1973). The corresponding pure MA viz. AR noise models
are:
MA: e = Ek + 0.8F,k_1 + 0.4gk_2 + O.ZEk_3 Feoes

AR: e ~ 0.8ek_1 + 0.24e - 0.072e +esee = (6.6)

k-2 k-3 £
The input signal ugp and disturbing noise &y were here indepen-
dent, white noise sequences, uniformly distributed between -1 and +1.
This implies that S/N = -3.7 dB. We will consider the following

cases for the model:

a) proc: ARMA-model; no noise param: fig. 6.8

b) proc: ARMA-model; MA-nolse param: 1MA fig. 6.9
2MA fig. 6.10

c) proc: ARMA-model; AR-noise param: 1AR fig. 6.11
2AR fig. 6.12

d) proc: ARMA-model; ARMA-noise param: 1MA,1AR  fig. 6.13

In these figures the development of the average adjustment as func-
tion of N is shown. The average was taken over 10 runs. The true
parameter values are also gi&en; these figures give then an indica-

tion of the bias.

According to paragraph 3.2, it can be observed that in case a) the
process parameters will be estimated with bias. The inclusion of MA-
noise parameters decreases the bias, and the parameters of the pure
MA-noise model are estimated satisfactorily. Nevertheless, even for
two additional MA noise parameters, a remaining bias can be observed.
This is due to the fact that the remaining residual has been coloured

by the non-modelled part of the pure MA-noise model.
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The 1inclusion of pure AR-noise parameters 1is more successful with
respect to bias. This 1s because the non-modelled part of the pure
AR-noise model is of less importance than in the pure MA case. This
would suggest a preference for a low order AR-noise model in this
case. But for another noise filter (e.g. the inverse of the consid-
ered one) a low order MA-noise filter would be preferable. Therefore
ARMA noise models are more generally applicable. The results of such
a noise modelling are very attractive for this specific example, as

can be seen from fig. 6.13.

6.4 The variance of the estimators

For the second order process and the noise process of the previous
paragraph, the behaviour of the variance is investigated. For the
input signal ugx and the disturbing noise £, white gaussian noise
was taken with N(0,1) and N(O,A2) statistics, where A ranged as
256=1, 64~1, 16~1, 4=1, 1, 4, 16, 64.

This implies a §/N ratio ranging from 44.3 dB to -39.7 dB, which
covers the majority of practical disturbance ratios. The estimation
method was again EMM and N = 400. In the figures 6.14, 6.15 and 6.16
the estimates of the standard deviations (s.d.), obtained from 10
independent estimation runs, with their 95 per cent confidence
intervals, are given for all estimated parameters. In the figures,
the results for the different parameters are shifted over one decade
in order to make comparison possible. Besides the observed standard
deviations, the range of the 10 corresponding approximated Cramé&r-Rao
bounds are given which are calculated, based on the estimated

parameters.

From the figures we can observe the following:-
a) the standard deviations for the different parameter esti-
mates behave qualitatively as indicated in paragraph 3.6.
b) the standard deviations for the a parameters change in
behaviour between A = 1 and A = 4 which is in accordance
with eq. (3.108) and (3.110).
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c) the observed standard deviations are close to the Cramér—
Rao bound; the deviation from the Cramé&r—Rao bound can be
explained as follows:

- EMM, as applied, is a fast, and therefore, approximate
algorithm; wno recalculation of all previous prediction
errors are performed.

- 10 independent runs are used for the calculation of the
standard deviation; i.e. 10 independent realizations of
the input signal, which also contributes to the variance,
due to the increase of degrees of freedom in the experi-

nent .

These results suggest that EMM is a very attractive estimator, both

with respect to speed and results.

Bosch (1978) compared the behaviour of different estimators of the
SATER package, viz. EMM, GLS, PKF (=Tally) and three IV estimators.

These three IV estimators are

1) Iv~-1 use of model output as instrumental variable
2) Iv-2 ugse of shifted inputs
3) IVEMM

These results are given in fig. 6.17, 6.18 and 6.19. Note that all
curves are shifted with respect to each other over one decade each
time, as indicated. Bosch used white uniformly distributed signals
with almost the same S/N ratios as in the previous experiment and N =
200. From these experiments we can conclude the following:

a) the standard deviations of the differeat parameters show,
the behaviour as qualitatively indicated in paragraph 3.6.,
for all estimators. :

b) the use of uniformly distributed signals seems not to in-
fluence the results which, also quantitatively, can be
compared with the results of the previous experiment.

c) GLS and FEMM give highly comparable results. We have al~
ready seen in patagraph 6.3 that the simulated noise of
this example can be very well modelled by a second order

AR-model so that GLS is also appropriate.
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the IV methods show a worse behaviour for the A parameters.
This is due to the fact that IV is not very‘sensitive to
noise, so that the estimation of A parameters due to the
noise as information carrier for bad $/N ratios, is worse.
The use of model extension shows improvement. This 1s
because the model extension acts as an inverse nolse fil—
ter, as with the suboptimal IV estimator.

The Tally estimator is only useful in a part of the whole
S/N range. The reasons for this are explained in appendix
II.
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65 Divergence of the estimators

In order to illustrate the discussion in paragraph 4.5 concerning the
possibility of divergence of the EMM estimator, the following experi—»
ment was performed. Varilous types of input signals were applied to a
simulated process; the disturbance was filtered by a noise filter;

process and noise filter are given by:

process: Y = 02y, = w * e ] (6.7)
2™ %

noise filter: - 1.9ek_1 - 0.93ek_

®k
The noise filter was excited by a white noise sequence, uniformly
distributed between -0.05 and 0.05. The input signal was a white
noise sequence, uniformly distributed between -1 and 1, or a sine
(of different frequencies) or combinations of both. The following
results were obtained; cf. table 6.5. All cases are with N = 2000
and a weighting factor p = 1, unless otherwise stated. It should be
mentioned that the transient response is not discarded in all cases.
This ylelds good initial estimates. The following remarks can be

made

- case 1 gives good estimates and a smooth adjustment, as can be
expected.

~ cases 2 and 3 give also good estimates, although the adjust-
ment of the d parameters is slower. The results are somewhat
weaker than those of case 1, alihough the signal-to-noise
ratio is actually improved.

- cases 4 and 5 give good initial estimates, due to the transi-
ent phenomenon, but exhibit a slow drift of the process para-
meters and an adjustment of the noise parameters towards wrong
values; cf. fig. 6.20. The choice of these values can be
understood as follows:

For the chosen frequency (= 1/8) the transfer of a second
order noise filter can be found:

i s [ i | ; 22 = -] (6.8)
2
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case| input b, & dl 32 remarks
1 |white noise [0.998 |~0.185 |~1.862 | 0.900] smooth adjustment
2 Jwhite noise

+ sin 0.785k {0.992 [~0.172 |~1.844 | 0.868] smooth adjustment

d-parameters slow

3 |white noise

+ 4sin 0.785k|0.985 [-0.196 |~1.809 | 0.832 "
4 |sin 0.785k 1,090 [-0.017 [~1.446 | 0.448| see fig. 6.20
5 sin 0.785k 1.177 |-0.107 |-1.411 0.497 "

N = 10000
6 |sin 0.785k 1.015 |-0.299 |-.1.357] 0.486] see fig. 6.21

N = 10000

p = 00991
7 |sin 0.785k 0.787 |~0.520 — — no noise par.

estimated

8 |sin 0.3k 0.945 |-0.192 [-1.906 | 0.930| smooth ad justment
9 lsin 1.2k 1.058 [-0.223 |~1.504 | 0.594] slow adjustment
10 |sin 1.2k 0.936 |-0.198 | -1.639 | 0.638] see fig. 6.22

p = 0.991 '
11 |sin 5k 1.046 |~0.224 |-1.547 | 0.628] slow adjustment
true parameters 1.000 {~0.200 {-1.900 | 0.930

Table 6.5

Influence of input signal
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(6.9)
For dy = -VE, the transfer is imaginary, i.e. there is a 900
phase shift; and if dy < -/3, the real part 1s negative.
The noise filter in this example has a negative real ipart fo%'x
this frequency, due to the fact that ' dy = -1.9.
This would, therefore, according to the theory of paragraph
4.5, lead to a divergence ofvihe estimate, if the noise filter
is fixed. But in this algorithm there is freedom to give
different settings to the noise parameters. If 31 = -2 is
taken as estimate, then there is a 907 phase shift for the
adjustment caused by frequency 1/8, leading to non-divergence,
but this also implies a very slow adjustment if no other com-
ponents are present in the input signal. As the estimates of
the noise filter are not fixed at‘the value -YZ but are wan~
dering around thls value, a slow divergence may occur.
in case 6, the weighting factor p 1s smaller than one. This
implies an artificial increase of the variance of the estima~-
tor. In this case this is sufficient for an unstable beha-
viour of the estimates. Here aiso, the 31 parameter is
oscillating around the value =v2; cf. fig 6.21.
case 7 shows the necessity of estimating nolse parameters.
in case 8 no sufficient phase shift 1s obtained in order to
make the estimates unstable.
in cases 9 and 10 a different value for the estimate for the
noise parameters Is achieved. For this frequency, the follow-

ing can be found:

27l = 0.362 - 0.932] 3 272 = ~0.737 - 0.675j - (6.10)
H = 1
NOISE 140.362d, = 0.737d, + (-0.932d, - 0.675d,)

C(6.11)



The transfer 1s purely imaginary if

1+ 0.362d1 - 0.737d2 =0

This equation 1s, in a good approximation, fulfilled for the
estimates found in cases 9 and 10.

~ cage 11 shows behaviour comparable to the two previous cases.

As a summarizing practical conclusion, we find that divergence may
occur in very specific cases, where poor information contents of the

input signal coincides with unfavourable noise filter dynamics.
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Fig. 6.20 Divergence of estimates
input signal: sin 0.785k; p= 1’

159



160

-1

.
By
.
. &
o} 5
AVAVAVAVAVAVAVAVANE
;

-2 . L . . . L .

Fig. 6.21 Non~convergence of estimates
input signal: sia 0.785k; p = 0.991

8>

1600
2000+

G :

Fig. 6.22 Non~convergence of estimates
input signal: sin 1.2k; p = 0.991



6.6 Estimators for input— and output corrupted data

The following system is considered:

$ok 1+03Z"
1-052"
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1-3Z" 042”2 (O] 1

115240772

Sink 1 +
-a3z’0a2)+077) € C)

far 20O

1-a32- 0adr073")

Vo  Vik Yk

Fig. 6.23 Block diagram of the disturbed input-output experiment

In this experiment a second, independent measurement v2,k of
the input is available as indicated in eq. (5.41). This measurement
serves as instrumental variable, and its colouring is therefore not
essential.

It is assumed that the white noises {§° k}’ {Eil k} and {512 k} are
’ ’ »

mutually independent. The 1input {uk} is a white signal, with a
uniform distribution between (-1,+1). The disturbing noises are
uniformly distributed between (-A,+A). For N = 2900 and A = 0.25 we
find for the different estimators:

bo b b, 1 P20 [, S,1 %,

I0IVEMM|0.990|-0.302|-0.406(-1.508|0.703[0.702| -~ —_—
IVEMM (0.901]-0.241]|-0.445|~-1.501{0.697{ -~ |-0.878|-0.89%6
Ivl 0.908]|-0.393|-0.565|-1.677(0.775| — } -- -—
Iv2 0.900|-0.242]-0.450|-1.505|0.693| —— ~= —
true 1.000|-0.300]-0.400]-1.500]0.700]|0.700] — —
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where IOIVEMM IVEMM for input-output corrupted measurement

IVEMM see chapter 4
i IV, with use of model output as instruments
1v2 IV, with use of delayed inputs as instruments

" The methods IVEMM, IVL and 1V2 use only Vi g 38 input measure-
3

ment. The results show that TOIVEMM gives better estimates for the

MA process parameters than the other methods, and the input noise

parameters are estimated well.

For worse S/N ratios we have the following results; (i = 0.5, N =
2900)

g
o
=23

by | by b, 2, |% 1,1 %,1| %,

IOIVEMMI0.989!-0.331]|-0.411}|-1.539|0.719|0.685| -~ —

IVEMM |0.727|-0.154|-0.474|~1.486]/0.688| -~ |-0.735|-0.892
v 0.754|~0.281|-0.599{=1.700{0.760| == | == [ —

1v2 0.737|~0.151|~0.486|-1.508|0.676| — | - —

true  [1.000]-0.300]-0.400{-1.500/0.700{0.700| —- -

Here we also find better estimation of the MA process parameters and
a reasonable estimation of the AR noise and AR process paraieters.
The adjustments of IOIVEMM and IVEMM are shown in fig. 6.24 and fig.
6.25 resp.

For X = 0.5, two other cases are considered, where the first order
colouring [140.7z=!] of the input noise is changed; N = 2900

a) v,, coloured by [1+0.7z‘1]*1, Vo by [1+0.4z”1]-1

b) v,, coloured by [140.4z71]"", v, by [140.7271]7

i2

=5

b ) b Py a d &
0 1 2 1 2 41,1 | %,1 | %o,

a) |IOIVEMM{0.970]~0,247|-0.418]~1.489{0.692 0.649}] = -
b) [IOIVEMM|1.000]|~0.282|~0,386-1.498{0.696 0.294] - —
b) |IVEMM [(0.798{-0.223|-0.415|-1.505|0.704 ~= [-0.354]|-0.630

true 1.000}-0.300|-0.400]|-1.500/0.700]a} 0.700
b) 0.400
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The results of the adjustments are shown in fig. 6.26, 6.27 and 6.28

resp. It may be concluded that an improvement of the estimates is

obtained, especially for go, and that the various input-noise para-

meters are

estimated reasonably.
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Fig. 6.24 Adjustment using IOIVEMM (X = 0.5)

T

Fig. 6.25 Adjustment using IVEMM (X = 0.5)
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As a general conclusion of the results of this paragraph, it can be
stated that the proposed algorithm IOIVEMM provides better results,
at the expense of an extra measurement and slightly more computation-

al effort.

6.7 Concluding remarks

In this chapter we have presented several results which support the

theory of chapters 3, 4 and 5. We will not repeat the conclusions in

detail as they have already been drawn in the previous paragraphs of

this chapter, but we will restrict ourselves to the following summar—

izing remarks:

a) Based on simulations, it is shown that for small sample sizes
the asymptotic properties of the estimators are reasonably
achieved. The dependence of the comvergence on the 5/N ratio

is clearly noticeable.
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b)

e)

d)

e)
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The Cram&r~Rao lower bounds are approximately reached by sim-
ple estimators such as EMM and GLS. Unless divergence of
these estimators occurs, which rarely happens, these estima-
tors are therefore attractive in terms of quality and cost.
EMM is often favourable due to its flexibility of noise model-
ling.

Divergence can often be expected or predicted from the experi-
mental conditions and monitored during execution of the esti~
mation algorithm. The use of a more sophisticated algorithm
like AML is then appropriate. ' ‘

A consistent estimation of process parameters in cases of
corrupted input—ouput measurements is feasible. The results
are weaker than for the non-corrupted input case, but one
should realize that there i8 a worse overall signal-to—noise
condition. Usually many measurables are necessary for a good
convergence of the estimates. The algorithm, however, is
simple and fast.

The availability of extra information, e.g. an extra measure-
ment of the input- or output signal or quantities that are
related to the undisturbed process signals, replaces the ne-
cessity of a priori information about the disturbances or
assumptions about colouring of the disturbances as' assumed

in the literature.



CHAPTER SEVEN:

ORDER TESTS
7.1 Introduction

In this chapter we will study, in some detail, order testing methods
for SISO systems. Based on own experience and on reports in litera~
ture we will give emphasis to those methods which have proved to be
practically applicable.

As already mentioned in chapter two, the notion of desired order of a
model is difficult to define satisfactorily in general terms. This
is due to the fact that a wmodel itself always remains a subject for
discussion because it has been constructed based on past observations
of the process and not on exact theoretical knowledge. 1If a prede~
scribed set of wmodels is defined, o.a. based on physical reasoning
and/or previous observations of the process and on intended future
use of the model, then the problem of finding a suitable model order
within this set 1s more tractable. The models within the given set
can now be examined with respect to various aspects like
a) are the assumptions of the estimation algorithm met?;
e.g. white residuals, minimum of loss function, no correlation
between residuals and input signal, good resemblance between
process~ and model output etc.
b) is the principle of parsimony met?; i.e. is the resulting

model not over—parametrized.

From a careful analysis of the estimation algorithm, one can deduce
quantities, like the ones listed under a), that will show a pronoun—
ced behaviour around the “"true" order of the system. This is the
basis of order testing methods. Such quantities are used as indica-
tors for the desired model order. For a noise free case, the situa-—
tion is straightforward: for the correct model order, the loss func-
tion is minimal and equal to zero; the process— and model responses
coincide, the product moment matrix of the measurables still has full
rank, and the residuals are zero. In a stochastic case, these
indicators will be less pronounced, but still useful: the loss
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function will be minimal, the process- and model responses are
"cloge”, the residuals are white and there is no correlation between

residuals and input signal.

The parsimony principle can cause some problems because the over-fit-
ting of models may not be very easily detectable, due to noise
effects. Two effects are relevant in this respect, demonstrating the
ambiguous rBle of the noisge.

1 Depending on the (lack of) noise modelling in the estima-

tion algorithm, the noise dynamics may be (partly) modelled
as part of the model of the process.
These noise parameters are estimated as a pole~zero pair,
which is more or less cancelling. If this cancelling is
obvious, then no problem will arise in recognizing these
parameters as being induced by the noise dynamics. 1In a
poorly defined situation (small sample size, bad S/N ratio,
non~stationarity of parameters, existence of non~lineari-
ties in the process), this cancellation will be hard to
detect and will lead to a too high order of the model.

1T It may happen that a less important part of the process,
e.g. a pole with a small residual value, giving a relative-
ly small contribution to the process output, will cause
only a small decrease of the loss function, when taken into
account in the model. This small effect may very well be
blurred by the disturbing noise if the S§/N ratio is bad.
This will cause a too low order determination of the
model.

From these considerations we may conclude that for a good interpret—
ation of the diagrams and test quantities, a good understanding of
what is going on in the estimation and order testing algorithm fg
necessary. This implies that the choice of a model order is often a
subjective decision, which is not suited for complete algorithmiza-
tion. A fast and on~line order test 1is therefore not wusually
feasible, ‘

This chapter is set out as follows. In paragraphs 7.2 to 7.5 the

different families of tests based on the aspects listed under a) and
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b) will be discussed in detail, and the close ties between these
tests will be shown. In paragraph 7.6 a review will be given of the

stochastic order tests as proposed in the literature.

7.2 The loss functions

Least squares estimators deal with the minimization of a quadratic
loss function for a given order. The idea of using the loss func~
tions for the determination of the parameters can be extended to the
selection of the model order within the chosen model set. This ap-

proach provides a family of loss functions tests. Usual test quanti-

ties are:
1 AT -
AT (7.1)
= L T
=5 8¢

where _3_ and '_é_ are the prediction errors; E is used only 1if the
process dynamics is being modelled, and :E;_ if the noise dynamics is
also being modelled. The magnitude of these signals :_;_ and }; is
dependent on the model order, which is illustrated in fig. 7.1.

For too low order models, we can observe that V will decrease for in-
creasing order, as not enough degrees of freedom have been inserted
in the model; cf. Van den Boom and Van den Enden (1973).

This can be explained as follows. Suppose that Ek is a non-white
sequence. If this is observed one has to decide whether the model,
which generates this sequence of non-white prediction errors is ac~
ceptable. If there is a remalning colouring in the predicti(;n error,
it implies that Iinformation is still contained in the prediction
error, which 1s not used for modelling. The deciéion not to look for
another ~ possibly more extensive - model is then governmed by some
prejudice, because it is arbitrary as to .which type of remaining
colouring is acceptable and which type is not. Therefore, one should
then proceed by looking for wmodels which yield white prediction
errors., This can be done by parametrizing the non-white error

%k by a sultable parameterset, e.g.
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gk =g+ elgk-l + Ezgk_z + eee 8n§k_n + ... (7.2)

where Ek is a white sequence. Then:

B{v } = ek 878} = ek (& 18 (E + e 4] -

3 N

ap 4 22 1 :T; %
(+e2 + e2+ ... Elp B} > Bl ETE] E{VE}
(7.3)

This result is important as it provides a motivation to look for
models with a white prediction error, as they lead to a smaller value
of the loss function. Moreover, from eq. (7.3), the relation between
the loss function test and the whiteness test, viz. paragraph 7.4, is

apparent.

1.
—»order q

i 1000 sampl

1.
— order q

Fig. 7.1 é.andlé for different model order.

For over-parametrized models, it has been observed that the loss
functions are still - slightly - decreasing. This has led to several

adaptations of the loss function as a test quantity, such as Average
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Information Criterion (AIC) and several variants of it. They will be
dealt with in paragraph 7.6.

A typical behaviour characteristic of the loss function is shown iIn
fig. 7.2, where several cases are given: situation a and b show
.comparable behaviour; the difference is the worse S$/N ratio for
situation a. Situation ¢ refers to a process where a part is of
lower importance, as discussed in paragraph 7.1. In such a case,
dependent on the intended use of the model, one might choose a lower

order model, according to the principle of parsimony.

ViV

) :
c
b

4 & " PRI 1
* v

e OF AT

Fig. 7.2 Typical behaviour of loss functions

Now a simple order test can be constructed using the by-products of
the estimation algorithm for the calculation of the loss function.
Van der Sommen (1971), Gustavsson (1972), and Van den Boom and Van
den Enden (1973) give very satisfactory results for these tests,
using Vi even for bad S/N ratios. In the last reference, good re-
sults are reported using the test quantity Vp for determination of
the order of the process polynomials [1+A] and [bo+B], as
well as the order of the noise polynomialhs [1+E] and [1+ﬁ]. in
fig. 7.3 and 7.4 results are shown using these test quantities Vi
and Vo for determining process order for different S/N ratios. The
process was identical to that proposed by Astrtm (1968); the noise
filter was identical to that proposed by Talmon and Van den Boom
(1973):
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process: y, = 1-5yk__1 + O.Yyk_z = oy, t G.Suk_z + e

noise: e - O.Sek_l = gk + 0.3£k_1 (7.4)

The signals wugx and £ were white noise sequences (500 samples)
which were uniformly distributed between (-1,1) resp. (~A,A). This

results in the following S/N ratios at the output
1

r = T 8/8 = 8.3 48
A=1 8/N = -3.7 dB (7.5)
A= 4 $/N = ~15.7 dB
— - e
o 1 2 3 a 5 1 2 3 4 5 o 1 2 3 4 §
o4 o4 o4
=0 Bt E=2
- ] - Ty g
q ! ' 4 5.y
w2 Sallals Faliak ® \=
z g g .Y
b - b —ad f s
-4 — —_ e
Fig. 7.3 Test of process order using V)
-4
] 1 b4 3 4 5

| PPN S

-2 ® A=)

¥ AN MEEL
A

Fig. 7.4 Test of process order using V)

The parameter estimation method was EMM, which enables the use of a
noise model which has an order (=§) different from the process

model (=§); The results are very satisfactory even for bad S/N
ratios.
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In many practical applications a time delay is an iInherent part of
the process. Often this time delay parameter is not well~known or
may even be unknown. In such cases the time delay parameter has to
be estimated, which can be done in a way analogously to the order
tests using the loss functions. If the time delay is not treated
geparately, then a model has to be used which does not assume that
the leading MA parameters are zero. This would imply that a
substantial amount of MA parameters, which are in fact zero, has to
be estimated. Therefore, the quality of the other parameters will
deteriorate considerably. A better approach is to calculate the loss
function Vi as a function of the delay parameter, i.e. the time
shift of the input sequence. It has been shown that Vj will attain
a minimum for the correct value of the delay parameter, if the data
sequence is sufficiently large; cf. White (1971). A problem may
arise when the time delay is not some integer of the sample period, as
the minimum of Vl will be less pronounced 1in such a case.
Therefore a high sample frequency is advisable if a time delay is
expected; c¢f. Rooijakkers (1982).

Woodside (1971) proposed a powerful method for calculating the loss
function Vi using the matrix of observables Q, without performing a
parameter estimation. We will consider the noise-free case first.
The loss function Vi can be expressed as a ratio of the determi-
nants of data product-moment matrices related with models of order
§+1 and 3 resp. This can be derived from the matrix
Q(u,y;q+1), which, for this purpose, is constructed in a way which
is slightly different from the matrix 2(u,y) in previous chapters:

ot | T e 7| Yk-g "x-q

* . . N

-

Qu,y;q+1) =

.

” " * .

s 2 & e *
-
.

. - R 13 .

YN | Ter-1 VN1t TkaN-g-1  VkiN-g-l
= [E’.k.,.] l)iklﬂ(u,}’;ﬁ)] {7.6)
Now define:

Qu,y33H1) = 2 (u,y3d+1)R(u,y;341) (7.7)
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The matrices H(u,y;§+1) and Q(u,y;a) can now be found from the
following equation, giving an implicit definition for H(u,y;a+1)and £

-

T T
Yyt —
Q(u,y3a+l) = H(u,y;q+1) = L QCu,y3d)| [(7.8)

l

The matrix H(u,y;&+1) can be constructed %y removing the élrst row

and column from Q(u,y;a+1); and Q(u,y;a) can be constructed by
removing the first row and column from H(u,y;a+1).

It can be recognized that:

t = al(u,yd) y (7.9)
so that .

8=0q (uy;)t , (7.10)

In the parametervector E& the parameters appear in a different
sequence than In the previous chapters due to the different ordering
of the observations in the matrix Q(u,y;a). Using the result V.3
of Appendix V:

-~ -1 -~ -~
det H(u,y;q+l) = [_sz - _t_TQ (u,y;Q)t ]-det Q(u,y;3)  (7.11)

The loss function V], related to a model of order 3, can be writ-

ten as (based on residuals):
v, = %.‘?.‘:3 = f]&'LZT‘@T“T(u,y;i) Hz - «w,y;9) 3] =
= %’&T}I - BT - £78 + 3Tl (u,y3)00,y;0)8] =
- 5lr'y - 270" (u,ysde +
+ _ETQ_I(u,y;ﬁ)Q(u,Y;ﬁ)Q-l(u,y;&)g] =
= %,-[XTJ: - ETQ_I(u,y;&)_t_] (7.12)
This is exactly the term in brackets in eq. (7.11), yielding:

_ 1 det H(u,y;3+l)

v = : =
det Q(u,y;q)

1 (7.13)

In noise~free cases the use of this expression for the calculation of

Vi may gilve numerical problems for over-parametrized models, as the
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determinants become zero, due to the linear dependence of the sam~
ples, as can be verified by eq. (2.11). The collapse of the determi-
nants can, therefore, be the basis for other order tests: they will

be discussed in paragraph 7.3.

For cases where input and output samples are disturbed by noise, the
decrease of the quantity Vi will be less pronounced than in the
noise-free case, due to the fact that the minimum of Vi is now
dictated by the variance of the noise. This contribution of the
noige to Vi may be larger than the contribution originating from a
model migmatche.

In such a case it 1is worthwhile using estimates a(u,y;a) and
ﬁ(u,y;a+l) 0of the non-corrupted matrices H(u,x;a+1) and
Q(u,x;9) '
Q(v,%;8) = Qu,y;@) - 3R (7.14)

The matrix ﬁ(u,y;a+1) iz a submatrix of a(u,x;a+1) as defined
in eq. (7.8). 1In eq. (7.14) R is the noise covariance matrix, which
needs to be known. This enhancement of the Q-matrix can be combined
within a parameter estimation scheme where estimated noise filter
parameters become available, e.g. EMM, GLS, AML, and IVEMM. This
test received considerable appreciation, due to 1ts reliable re~

sults.

So far we have not considered loss function tests, which are put in a
statistical framework. Astrvm (1968) describes a test based on the
statistical 4independence of the gquantities Vz(az) and
V2(q1) -V2(az), where V2(a1) and Vz(§z) are
loss functions based on models with order ¢ and qp respect=-
ively and assuming normal residuals. 1f az > 31 # q, then
Vz(az) and Vz(&l) - Vz(ag) are independent random
variables with 2 distributions and- N-(2q2+¢1) and 2(q2-
31) degrees of freedom respectively. The test quantity
.. 5@&&9' N - (2q,1) 715
V,(3y) 2(3,-q;)
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has then F(2§2-2§1, N—Zag-l) distribution. For a risk
level of 5 per cent and N > 160 we test for t < 3. 1In table 7.1
results are given for A = 1/4, with N = 200, using data samples 301
to 500. Note that, as in previous examples, we are dealing here with
uniformly distributed random variables. 1In practical situations we
found no difference in results when testing with normally distributed

noise.

3 4 5

N
]
w

0
N

610 6955 8088 6004 4963
— 1859 1653 1091 846
- 734 363 26-4

1
@
1
2
3 - - 000 209
4] — = — — 417
0 119 1352 883 687 544
1 — 2402 1176 814 604 t~values
1 2 — o -0:97 i77 i-17
3 — — — 455 225
4 — — e — 000
0 |—262 718 506 375 320
1 — 1988 1049 692 553
2 2 — - 609 302 445
3 — —_ - 000 347
4 —

— — e 694

Table 7.1 F=test, A = 1/4

for s = 0, we choose a third order model, although the Increase in
order from 4 to 5 gives some improvement. This 1s because for s =
0, higher order models of the process are necessary for( obtaining
independent residuals. These higher order models have (almost) pole-
zero cancelling pairs, which result in a contribution to the loss
function of this pair which is less relevant. For s = 1, we select
a = 2, although the same problem arises at the iIncrease of model
order from 3 to 4. For s = 2 we have problems in selecting model
order 2; here also orders 3 and 5 give some improvement.:‘ From the
principle of parsimony we could neglect this slight decrease; but
this depends highly on the intended use of the model.

As a conclusion we can state that the F-test ylelds somewhat less
impressive results. Also here, there is the phenomenon: that for
improper modelling of the noise dynamics, too high order models of
the process may be expected. The tendency of selecting far too high
order models can be understood by realizing that a slight decrease of
the loss function 18 qualified by the F-test as a significant im-
provement. If Vz(az) = 0.96\?2(31), then t = 4, which is
significant. ’
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7.3 The rank of the data product moment matrix

Several tests are based on the behaviour of the data product moment
matrix Q(u,y;a).» In the noise-free case the matrix Q(u,x;a) will
become singular for a > g The rank of this matrix is then
a+q+1, if the input signal has sufficient degrees of freedom and
assuming S = a+1 and p = qtl; cf. Lee (1964).

An appropriate method for detecting this singularity for a > q is
by observing the determinant of this matrix for several values of
a. In noisy cases, we have to deal with Q(u,y;a) instead of
Q(u,x;a), so we will consider near-singularity. Therefore, take
amax’ the maximal order chosen for testing, and construct the
matrix Q(u,y;qmax). A R R

The corresponding matrices Q(u,y;q) for q < Uax 20 then
easily be obtained by removing appropriate rows and columns from
Q(u,y;amax). The matrix Q(u,y;amax) can be decom~—
posed into an upper triangular matrix A, according to Schur, using

unitary transformations Ug; cf. Zurmithl (1950)

T =
U Qu_ =4 (7.16)

This can be done recursively, starting from Q(u,y;amin),

which is related to A . . By adding new rows and columns to

in
Q(u,y3;q) a new A can be constructed, with previous A's as submat-

rices. As det Q(u,y;a) is 1invariant for this transformation,
we find:
2g+1
det Q(u,y3q) = T{ 6y (7.17)
i=1

where Gii are the diagonal elements of A. If we consider these
elements in more detail, we can find a nice relation between this
type of determinant and the loss function test of paragraph 7.2.
From eq. (7.13) we have:

2q+2
- [
v (a) 1 det H(u,y;q+l) _ 1 i=1 i1 _ 1 5
¥ .~ ¥~ N 2q+2,2q+2
1 N det QCu,y;d) 2a1 49
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This implies that the loss function Vl(a) for different values of
a can be found onalternate poinﬁs of the maindiagonal of A, as shown
in eq. (7.19), while on the remaining poiants of the main diagonal *
indicates non-relevant information in this respect.

% .. e e e e e e e e e e T

Vl(q) .

%
Vl(q~1)

A=N x| ¢

v,(2) .

* -

0 v, (1) )

*
V1(0)

*

i (7.19)

Instead of the determinant, the trace of Q(u,y;ﬁ) can be investi-

gated:
2q+1
trace Q(u,y3;q) = 1 Ai (7.20)
whereas =1
2941
det Q(u,y:q) = 371 A (7.21)

A{ being the elgenvalues of Q(u,y;q)-.

For near singularity, trace Q(u,y;a) will hardly increase for in-
creasing a. This test can be performed without parameter estima-
tion; cf. Unbehauen and GShring (1973). Woodside (1971) calculated

~
a determinant ratioc DR for successive values of q:

pR = -det Q(u,3;3)
det Q(u,y;qtl)

(7.22)
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or an enhanced determinant ratio EDR if the noise covariance matrix
is available:

DR = det E‘z(u,y;?) (7.23)
det Q(u,y;q+l)

where Q(u,y;q) = Q(u,y;q) - o2 R(n;q) (7.24)

The close similarity between DR, EDR and the test of eq. (7.18) is
apparant. In DR and EDR one row and one column extra are used but
they represent the Iinput signal, which does not contribute to the
singularity phenomenon. Van den Boom and Van den Enden (1973) calcu-

lated a relative determinant:

“ det .q
rel.det Q(u,y;d) = m:x‘gg;‘ggg)of 2 (7.25)

The use of a relative determinant instead of the determimant itself
is important, as the determinant is a function of the "power"” of the
signals:
det = f(power 241y (7.26)

In paragraphs 7.1 and 7.2 we have already met the phenomenon that,
for improper noise modelling, a too high order model of the process
may be found. Therefore it is important to have separate order tests
for the noise dynamics. Only Van den Boom and Van den Enden (1973)
give tests for a separate detection of the noise order. They use the

EMM estimator. From the following data product moment matrix:

Qu,5,8,8) = & F(u,7,8,8)9u,5,2,8) (7.27)

the following sub-matrices Qll and Q,, are interesting
f o r separate order determination of process and nolse dynamics:

vly ofy | T8 ¢T3
T N
Quy, 8,8y = |EU_Y¥ | T |
A gTy  efy [ eTa &Tg |
AT ~
v 8Ty | g g%

During estimation, however, Py is available:
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P=Q = (7.29)

where, from result V.4 of appendix V:

_ -] T -1
C11 = Q= Q559,595

€22 = @y~ szQIiQ12>'l o

As ug and &g are mutually independent:
L [e 0
-] |
¢ @
and for Qll:
-1 g 0
Qp "~ Gy * [o M] (7.33)

where M is a submatrix, which is only Important if the signal-to-
noise ratio is bad. This will be indicated later in this section.

If we neglect M for good signal-to-nolse ratios, then C11 can
be used as an indicator for the order of the process. Now, if
Qll is near singular, it has some eigenvalues which are small
compared to the others. As the eigenvalues of C11 are,
approximately, the inverse of the eigenvalues of Qll’ c11
also has eigenvalues which are stropngly different in magnitude. So
C11 can als€~ be used as an indicator for near singularity,
occuring for q > q. This can be done in several ways. Van den
Boom and Van den Enden defined a relative determinant:

det C11

max.content of C (7.34)

rel.det Cll = o

motivated by the fact that the determinant is a function of the
"power” of the signals: :

det C = f( power ) (7.35)

Iin fig. 7.5 the behaviour of rel.det C11 is shown for s =
0,1,2 1leading to & = 2 for A = 1/4, and XA = 1 and a doubtful

determination a'u 2 for X = 4. In practice, we found also that
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rel.det sz is a ugeful indicator for the order of the noise

dynamics; cf. fig. 7.6.

~
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¥
e

Fig. 7.5 Test of process order using rel.det. C11

§2_‘
= A oy
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—a- .-y

i
P
i

—= lag rel.det. sz

Fig. 7.6 Test of noise order using rel.det. C22

Since det Qll is small 1if a > q, the quantity det Ciy
will be large. However, as the maximum content of C11 is
increasing more ‘fapidly than det Cll’ then rel.det C11
will decrease for q > q. The amount of increase can be defined
by:

det € ,(d)

Ac (@) = - (7.36)
det cll(q-l)

Now, by observing for which 3 a significant inecrease occurs, the
order of the process can be found; cf. fig. 7.7. 1In this figure an
increase of AEll can be observed for 3 = 3, corresponding to

a model order q = 2. The increase is dependent on the signal~to-
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noise ratio, and 1s limited by the matrix M, which has been neglect-
ed; cf. eq. (7.33). If the signal-to—noise ratio is very large (XA =
1/64) this increase is more apparent; cf. fig. 7.7.

J -0 o o 122
4 4] ] A x=4
® x=1
2 2 2= TR
- - - 1
o <7 © v /GA
@ G ; 1 Qe <@ O]
& s o ®
5 4 K] A
l-om Feomg 1'2'—1—1—1—!—1
o 1 2 3 4 5 c 1 2 3 4 5

Fig. 7.7 Test of process order using Acu

As mentioned before, the rank tests are obscured by the disturbing
nolse, which converts the singularity test into a test of ill-condi-
tionedness. By making use of the instrumental variable estimator,
one can make the data product moment matrix less sensitive for the
disturbing noise. Wellstead (1978) reported an improved discrimina-
tory power for this type of test. For a system where the input and
output signals are disturbed by noise, the test quantity is:

AWv,y,238) = 5 87(v,2;9) 007,75 (7.37)

where 2z is the IV quantity. Then, due to the independence of the
disturbance on the output and the IV quantity:

E{Q(v,y,z;0)} = E{Q(v,x,z;q)} (7.38)

For large N, the rank of Q(v,y,z;a) is, therefore, equal to
min(a+q+1,za+1) and 1is not dependent on the properties of the
output noise. The input noise is not important in this respect, due
to the necessary persistently exciting property of the input signal
ug, yilelding sufficient degrees of freedom to make the rows ug in
the matrix Q(u,x) independent. The disturbing noise cannot change
this. For testing the rank condition of this instrumental variable
product moment matrix, it 1s not necessary to execute an IV estima-

tor, but an IV signal is needed; which can be generated using a (fix-
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ed) auxiliary model. As this is an iIncrease in computational burden,
this method is only interesting where the previous methods are lack-—
ing 1in discriminatory power, 1l.e. for very bad signal-to~noise

ratios.

Young, Jakeman and McMurtrie (1980) proposed the use of the inverse
of the above~discussed IV product moment matrix, which is availlable
during the estimation. We have discussed this idea before in the
context of least squares estimators with extended models; cf. eq.
(7.33) and Van den Boom and Van den Enden (1973).

So far we have discussed the behaviour of some quantities, when the
model order is varying. These quantities showed a tendency towards a
different behaviour for a > q. In cases where bad signal-to-noise
ratios occur, it is often difficult to notice this change in beha-
viour. Consequenﬁly, so far, the order test algorithms have been
treated as a decision problem relying on human judgement, where ulti-
mately the experimenter decides. Attempts to construct an automated
model order testing algorithm have not been very successful so far.
A necessary condition for such an automation is putting the order

testing algorithm in a statistical framework; cf. paragraph 7.6.

A recent proposal for such a statistical treatment of the determinant
test, as discussed above, has been given by Stoica (1981). 1In this
approach, a Taylor serles expansion is performed for the determinant
of the product moment matrix Q(i), where.E is the vector contain-
ing all the sample covariances which appear in the matrix Q, and ¥

the true covariances

det Q) = det Q) + ﬂ%‘l@_) W + ... (7.39)

Denoting

Ty = ddetaw) (7.40)

we can write for the distribution of é:g:

¥ - ¥ ~As N(O,P) ' (7.41)
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and for

det Q(P) - det Q(¥) ~ As N(0,tTPt) (7.42)
Testing the null hypothesis Hy
Hy:  det () =0 (7.43)

yields a test quantity with a risk of 5 per cent:

det Q) < 1,95[tTpe ]® (7.44)

vhere f’ is an estimate of P. A drawback of this method is its
limited applicability for small sequences.

A different approach to rank determination is by making use of the
singular value decomposition (SVD) of the data product moment:matrix
Q(u,y;a). This matrix {s constructed for too high a model order
a. The SVD algorithm factorizes Q as:

Qu,y3@) = Uy AUy (7.45)

where U; and Up are orthonormal matrices and A is a diagonal
matrix containing the singular values in a decreasing order; cf.
Golub and Reinsch (1970). Inspection of the numerical values of the
singular values obtained, gives a possibility for order test, as
those singular values which are close to or identical to zero,
compared to the others, do not contribute to the model behaviour. 1In
modelling MIMO systems, the SVD has become popular for the
factorization of the Hankel matrix, which contains the Markov
parameters of the process. For more details cf. Hajdasinski and

Damen (1979).
From a numerical point of view, the calculation of the singular val-

ues 1is attractive due to the robustness of the algorithm; cf. Klema
and Laub (1980).

7.4 Whiteness of‘ residuals and correlation of disturbances .

From the discussions concerning the variety of estimation schemes in
previous chapters, it will be clear that by proper modelling of the
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process~ and noise dynamics, g may tend to an acceptable estimate
of the equation error. If the models are adequate, E has near
white noise properties. This implies that estimation algorithms have
to be used, which result in white prédiction errors, such as EMM,
IVEMM, GLS and AML/IQL.

The motivation to look for models with white prediction errors is
twofold:

1) Estimation schemes, as mentioned above, will produce incon-
sistent estimates 1f the prediction errors are non-white, due
to improper modelling.

2) Coloured prediction errors contain information which is not
represented in the model. . It is rather prejudicial to allow a
part of the available information to be immodelled.

The same reasoning _holds for residuals, which can also be tested

for whiteness.

For testing the "whiteness” of residuals or prediction errors, the
Q -~
sample autocorrelation function of £, resp. £, can be used. We will

show this here for prediction errors:
N

thll-i-i Crten (7.46)

1
(™ = ¥,

Laning and Battin (1956) show that the variance of the sample corre-
lation function Q‘( 1) of white gaussian noise, calculated by using N

samples, 1is:
2 ‘
var{¥(1)} = %"1 TEO (7.47)

Now define a normed correlation function:

3oy = XD (7.48)
2(0)
Then var {f(0)} = 3 (7.49)

This property can be used as an order test:

calculate ;(‘t) for some range of 1, for different model orders and
check whether '1:(1:) corresponds to an impulse, with a majority of
the values for T > 0 below the value given by eq. (7.49), orwithina
confidence bound based on eq. (7.49). An example is given in fig.
7.8. If the signals have ergodic properties we can compress the
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Fig. 7.8 Whiteness test

information as fellows:

for each value of the model order calculate ,var{;(t)} using all
avallable t > 0. 1In this way the information contained in one plot
of fig. 7.8 can be compressed into one point of fig. 7.9. For cor-
rect model order this point should be close to the theoretical value
of (7.49). This also holds for model orders which exceed the true
order.

—a
3 4 5

Fig. 7.9 Whiteness test, compression of information of fig. 7.8

It is not possible to use this test for estimation of noise order as
well. This test can be regarded as an extension of the tests using

the loss function Vi and V2; as
1 - %
A Nizlgi g = o (.50

For safe results, stationarity of the signals % has to be guaran-~
teed, otherwise N should be replaced by aN, 0 < a < 1, leading to a
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decrease of accuracy and reliability of the test. As the successive

samples of %1 are usually generated during execution of the

recursive algorithm, this may cause problems In practical situations.

This implies that the Ei in the sample record are all generated

by making use of estimated parameters that are changing during that

record, due to the recursive character of the estimation algorithms.

For reiiable results, this change may not be too pronounced. Other-

wise, the resulting estimate of the total record has to be used for

recalculation of previous %1, which implies an increase in compu~
tational burden.

A quick check, using this test, can be executed during the recursive
estimation, when dealing with algorithms with extended models.

In these algorithms, e.g. the EMM estimator, a submatrix of the P
matrix deals with the sample covariances of the signal E. For
models with proper order, the order of magnitude of the elements on
the main diagonal of this matrix, which denote ?55(0) should
differ a factor N°? in magnitude with the off-dlagonal terms,
which denote ?Eg(t), T > 0. Usually, the number of MA-noise-
parameters incorporated in extended models is limited, so that this

check gives only partial insight.

In paragraph 7.2 the loss function V7 was also used for construc~
tion of a test quantity t with Fisher statistics under the null hypo-
thesis az > 31 > q. In an analogous way, the correlation

function ?gg(t) for T > 0 can also be used for construction
of a Flsher statistic under the above null hypothesis.

An order test which is closely related to this whiteness test is the
test of Independence of the input signal ug and the error signals
Qk and gk- This can be done in an analogous way as with the
whiteness test, by constructing the sample correlation function

@ug(T) and comparing its magnitude with the value
% % (7.51)
[?uu(O) %23(0) ]’ﬁr . ;

Another possibility is the construction of a test gquantity t, which,
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under the null hypothesis Hy = [uk, Ek are uncorrelated] has
a Fisher statistic, as with the F-test of paragraph 7.1; cf. Bohlin
(1971).

7.5 Over-parametrized models

An interesting class of order testing methods can be constructed by
using a simple estimation algorithm, e.g. LS, in combination with
over—parametrized models. This might seem to.be quite time consum~
ing, but applying a simple estimator in a form which is recursive in
the order, cf. also Astrvm (1968), need mot be expensive; cf. Hofman
(1976).

The general form for the model was given by Talmon and Van den Boom
(1973); cf. also chapter 2

[t+Aly, = [b+B]u, + J-—-—l (7.52)
[14D]

The ARMA noise dynamics can be modelled by a pure AR model [1+D']-!
which can be separated into two parts [14D'']~1[14D''']-1, where
[14D"'] represents the dominant poles of [14D']. The resulting ex~
pression for the model iz then )
- A

[1+a' ]y, = [bo#8'Ju, + [ue0'v'] & (7.53)
with

[14at] = [1+a][1+D'*]

[bi+8'] = [b+ B][14D'"] (7.54)

The parameters [A'] and [bi+B'] of this model can be estimated by
an ordinary least squares estimator. For over—parametrized models,
[14D**" ] has 1little importance for dincreasing order; but
nevertheless it cannot be neélected as it causes (slightly) biased

egstimates.
_ [b'+B']
The new transfer function [ ° } has common factors for over-—
1+A' '

parametrized model orders, which can be detected quite easily. This
effect we will call the pole~zero cancellation of the first kind
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which means due to the nolse effects. Apart from these nolse

effects, a second type of pole zero cancellation occurs due to the

fact that a lower order process may be represented by an infinite
number of higher order processes. The class of transfer functions of

a particular order a of the following structure:

-~

* * K -
[b +B][1+D" ] [b+ bzl + oo + baz ]
2 ~ o 1 9 (7.55)
. * -
[1+a][1+D ] [1+ a:z"l + oaee + agz 9]

contains infinite elements, due to the fact that [1+D*] may be chosen
rather arbitrarily. This Ilmplies that an estimation algorithm will
have problems in finding stable estimates. During the estimation
procedure, it can be observed that the estimates of all parameters
are wandering in relation to each other. For one shot estimates this
results in pole-zero plots with pole~zerc cancelling pairs. This
will be discussed later in this paragraph. For recursive estimators,
this wandering behaviour is very pronounced, as may be seen from fig.
7.10 and fig. 7.11; the parameter adjustments are shown for

200 samples

06

004

2 3 4
e Order §

Fig. 7.10 Adjustment of AR parameters for different model orders
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Fig. 7.11 Adjustment of the MA parameters for different
model orders

different orders of the model, while the actﬁal process order is 2.

From these figures, it can be seen that the adjustments of the esti-
mates of the MA parameters are less smooth than those of the AR para~
meters. This indicates a bad S/N ratio; cf. also paragraph 3.6 and
fig. 3.3 of chapter 3. It can also be seen that the adjustment of
the third order model is smoother that that of the fourth order
model. This is because a pole-zero cancellation of the first kind is
occurring in the third order model. This pole-zero pair is not wan~
dering, but is determined by the noise dynamics’[1+D"]. This effect
will also be apparent from the pole~zero plots later on in this para-
graph.

From these considerations, we may conclude that with over—paramet-

rized models the system is not parameter—identifiable (PI). but only
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system—-identifiable (8I) in the sense of Ljung's definitions, as
given in chapter 2.

For the detection of common factors of [1+A'] and [bo+' ], usually
the pole-zero plot will be drawn. Due to the effects of the additive
noise, no exact cancellation of the pole-zero pairs will occur; cf.
fig. '7.12. It can be noticed that the non-cancelling poles and
zeros for a # 2 remain constant for the different model orders.

_ [b +B]
Apparently these belong to the wanted transfer function °

[14a]

§1

A
N
(~
N

Fig. 7.12 Development of the pole-zero pattern (i=1/4)

Furthermore it can be observed that one pole—zero cancelling pair in
z = 0.75 remains fairly constant for 3 #» 3. This can be identified
as the pole-zero cancellation of the first kind. 'The noise colouring

as given by eq. (7.4) can be rewritten as

e = — 1 £, (7.56)
1-0.82~1 + 0.24z~2 - 0.0722"% + ...0. «
This may be approximated by
ey ® —r & : (7.57)
1-0.8z~1
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which corresponds fairly to the observed pole-zero cancellation of
the first kind. The other cancelling pairs are wandering for differ=-
"ent orders and they can be identified as pole-zero cancellations of
the second kind.

A comparable result can be obtained i{f a more sophisticated estima-
tor, e.g. the EMM, is used in coonnection with over-parametrized mod-
els. The noise parameters will be identified for too low order mod-
els as ARMA noise parameters, but will shift, for over—parametrized
models, to pole—zero cancelling pairs of the first kind. This re-
sults in pole-zero cancelling pairs close to z = ( as estimated ARMA
noise parameters; cf. Koenraads (1978).

Results of pole-zero cancellation tests are given by Van den Boom and
Van den Enden (1973), Unbehauen and GShring (1973). They are usually

very satisfactory.

There are also methods which avoid the calculation of the poles and

zerogs of the transfer function. The following matrix may be
constructed:
p- 1 ai i a“ ¢ -y
\ \ q \
9 1 R a'
R= | b b d (7.58)
o 1 ~
\\\\\\\\ q\\\\\\g\\
¢ \" b' bl
n o] 1 q

It is pointed out by Loonstra (1967) that det R=0 if [1+A'] aund
[b°+B’] have common zeros. Due to the corrupted signals det R will
become small for (nearly) cancelling pairs. In this way, however,
the number of cancelling pairs present cannot be determined. - Vogt
and Bose (1970) offered an alternative method based on the theorem
that 1f A is the companion matrix of f(z)‘and B the companion matrix
of g(z) then f(z) and g(z) have common factors if det £(B) # O or
det g(A) # 0. Cullen and Hall (1971) investigated the amount of

elementary arithmetic operations to determine the common factors for
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these methods and found that making use of a modified structure of R

yields a minimum amount of

Lq3+52- lﬁ - 1) operations.
3 3

Séderstrdm (1975) described, in a general way, the problem of deter-
mnining - common factors in two polynomials, where the parameterg have

some uncertainties. He proposed a method which, in fact, 1s an
alternative and more efficlent way to obtain a generalized least
square model. The covariance matrix of the estimates of the coeffi-
cients of the transfer function is assumed to be known or, at least,
an estimate of it 1s available. The algorithm for testing common
factors of the two polynomials can be formulated as a minimization of

a quadratic loss function under a complicated constraint.

7.6, Stochastical tests

In contrast to the above mentioned classes of order tests, which were
proposed on a rather heuristical basis, another class of tests has
been introduced in the literature, which has a more fundamental bas~

is, e.g. information theory.

Akaike proposed two tests, the final prediction error (FPE), Akaike
(1970), and the Average Information Criterion (AIC), Akaike (1973).
We will not derive these tests here, but we will limit ourselves to a

few comments.

The FPE is given by

FPE = N+3g de:[.l. bi g(_é_n) AL 7] ‘ (7.59)
N - g N a1 N
where the expression between the parentheses is the estimate of the
mean square one-step-ahead prediction error based on a maximum like—
lihood estimate §N of order a (= number of independent paramet—
ers 1in the model). If gg@m) is a (goo& estimate of) white
noise then the close relatlion with the loss function will be appar=~

ent.
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Akaike's Average Information Criterion (AIC) 1s defined as
AIC = 2q - 2log L(B(q)) (7.60)

where L(B(q)) is the likelihood function based on a MLE 8(q).
The fact that the term 2& appears in this criterion can be seen as
an attempt to follow the principle of parsimony for models, as dis-
cussed in chapter 2. The relation of AIC with the loss function test
is apparent as the secound term of AIC in (?.60)'is equivalent to the
loss function V. The first term is introduced by Akaike to compen~
sate for the (slight) decrease of V for over-fitted models.

Shibata (1976) studied the asymptotic distribution of AIC and found
that asymptotically, there 1is a probability that this estimator of
the order will deliver a too high value compared to the true order.
Hipel (1981) gives and extensive survey of practical applications of
these tests (FPE and AIC) and also concludes that there is a tendency
to over—fit. Krolikowski (1982) glves a survey of the variants of
AIC that have been proposed recently as attempts to obtain comsistent
estimators for the order:

AIC = 2(N)§ - log L(B(Q))

(7.61)
AIC = £(N)q - 2 log L(B(3))

where f is dependent on N.

This area of research is still in development and the construction of
tests of order, which are theoretically well-founded and which deli~-

ver low order models, is still a paradise for theoreticians.

7.7 Conclusions

In this chapter we discussed several order tests which are of prime
practical interest. We showed that there is a close relationship
between the tests which are based on the loss-function and the (rela-
tive) determinant tests. Also the relation between the losgs function

test and the whiteness test has been shown.
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6l

, par. est. |proc.order B+ input + overfitting
Name Test quantity| Test criterion needed noise ofder Nloutput noise | necessary experience
’ 1 aTa
loss function V, | V.= e'e min. V, N N N Y good
~ Y (EMM) X N Y good
T g
loss function V, | Vzvc 7 E E min. v, Y Y N Y good
signal errors e, t significant
change Y Y N b4 good
whiteness £( 1) T(1) *> dirac Y N N b4 good
!
F-test t | risk /N N N Y doubtful
significant
determinant rel. det Q change N N N ¥ good
" det. ratio " N N N Y good
" IV det ratio - N N Y good
" rel. det C;, " Y Y N good
- rel. det C,, " Y 1 N Y good
" eigenvalues Aminflmax* 0 N N N b4 good
svD svD - . sminfsmax+ 0 N N N Y good
5 no change for
trace trace n N N N Y poor
9> 49
pole zero cancellation | different types
of cancellation b Y N Y good
‘parameters behaviour stability Y N N Y good
FPE FPE FPE /8 N N Y good
AIC AIC AIC Y/N N N Y good

Table 7.2




Some tests are suited for separate discrimination of process and
noise order, and some tests are suited for use in situations where

input~output disturbances occur.

In order to facilitate the comparison, we have composed table 7.2
where the most important aspects of the different tests are listed.

As can be seen from the given examples, it 1s important thaﬁ a good
man~algorithm interaction exists and that for a good appreciation of
the different order tests the aspect of experience cannot be exclud-
ed. Therefore, an interactive package like SATER, containing many of
the afore-mentioned order tests, has proved its feasibility in prac—~
tical situations. 4
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CHAPTER EIGHT:

GENERAL CONCLUSIONS

In the present study we have Investigated several aspects of estima-

tors for 8IS0 processes with disturbed outputs. The main conclusions

are:

8)

b)

c)

A géneral scheme has been presented. Its main feature is that
three basic operations can be distinguished to ensure consis-
tence of estimators, viz. filtering, model extension and use
of an IV quantity. These three operations may be combined
within one general estimator. Existing estimators like LS,
GLS, EMM, IV, AML, IQL, IVEMM, sub-optimal IV and Tally, all
fit into this scheme as‘special cases of this general estima~

tor. The availability of such a general scheme is very at-
tractive forl’ various reasons: it gives better insight into
the mutual relationships of existing estimators, it gives a
nice connection between the LS- and IV-oriented estimators and
computer programs for estimators can be designmed in such a way
that different estimators cam be incorporated into one pro-
gram. :
As the AML/IQL schemes are part of this scheme, the relation
with ML (for gaussian disturbances) 1is then trivial.
Expressions for the Cramér-Rac bounds uéing the Talmon and Van
den Boom model, as introduced iIn chapter 2, are given. From
these relations it can be concluded that qualitatively there
exists a different behaviour for the variances of the
different kinds of parameters as functions of S/N ratios. The
qualitative behaviour has been confirmed by simulation, where
the S/N ratio varied between extreme low and high values.
Quantitatively these lower bounds are reasonably well appro=-
ached by relatively simple estimators like EMM and GLS over
the whole range of $/N values. Estimators like Tally and IV~
oriented schemes showed less impressive results for bad S/K
ratios.

The small sample behaviour was investigated experimentally

with reéspect to blas and variance of the estimators. It was

 found that for high S/N values the bias was negligible for
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d)

e)

£)

198

small sample size (N = 200). Also the covariance of the esti-
mates for semall sample sizes was close to the Cramér-Rao
bound. For low S/N ratios the convergence towards the true
parameter values was evidently slower.

Relatively simple estimators like EMM, which we proposed ear-
lier, and GLS proved to be reliable schemes with respect to
bias and variance. In rare cases divergence may occur, but
this can usually be expected/predicted from the experimental
circumstances. The attractiveness of these schemes 1s also
due to thelr simplicity and speed. In addition, the EMM al-
gorithm is very flexible with respect to types of noise models
that can be used.

Several estimators have been proposed in chapter 5 for cases
where both input- and output signals are noise corrupted.
These estimators allow the use of possible extra available
information, e.g. an extra independent measurement of the
input- or the output signal, or other signals which, as IV
quantities, are related to the process signals. Such extra
information is often practically more often available than a
priori information such as known covariance of the noise as
in schemes proposed in literature. It is also applicable mbte
generally in practice than schemes that assume white distur—-
bances, as alsoc proposed in literature.

Simulations show that process~ and noise parameters can be
estimated without bias.

The behaviour is less favourable than in the case of only
output disturbances which, of course, may be expected due to
the worse overall signal-to-noise condition.

Based on observations of simulated experiments, the small
sample behaviour is poor: many measurements are necessary for
the convergence of the estimates.

An extensive review of order tests, which are practically
applicable, has been presented and the close relations among
these tests have been indicated. Also order tests which allow
the distinct determination of the orders of process-~ and noise
dynamics have been presented. Simulations show the applicabi-
1ity for these order tests for an exteansive range of S/N

ratio’s.



8)

An interactive program package SATER has been designed, which
is described briefly in chapter 6. The availability of such
an interactive package for identification purposes gives the
experimenters much freedom in applying the different estima-
ting- and order testing schemes.
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Appendix I  Approximation of the covariance matrix of the noise

Using the spectral factorization theorem for signals with rational
spectra we find that the following unique parametrization 1is appro~

priate:
[1+C(z‘1)]
(Ol T — (1-1)
[14D(z"1)] ‘
where G(z'l) is stable and minimum phase (if the spectrum has no

singularities on lz] = 1), and hence causally invertible.
The following representations can also be given, which are degenera-

tions of (I-1); where for notational simplicity the argument z-! ig

dropped:
[1+p]
[14D'] = vy (1-2)
[1+ct] = i (1-3)
[14D]

The polynomials [1+C] and [1+D] are of finite order, but [1+C'] and
[1+D'] have, in principle, infinite length. We consider, however,
stable and physically realizable systems so that for some v,u the
‘tails

ow L4

ciz-i and § djz
i=v+l =l

of the polynomials [L+C'] and [1+D'] do not give any measurable con-
tribution to the transfer of the system.

From the descriptions
[14D" Je, = £ (1-4)
e, = [1#+¢' Jg, (1-5)

we construct the matrix notation:

5 ' ar T
dy—9 Cq-vil _
Eq-’-l
e
& .S._- ™
v .41
¢
L Jlew )
which can be written as: (1-6)
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e*
oAt ]|~ |= & (1-7)
e

where D' is a lower triangular matrix, or alternatively:

-

[ — LA -
e ! 'E ]
q+l o q=wtl
1 ] ‘
] c‘ E
. . -
e ¢ Cu gq+1
| |
PR 4 1]
| 0 0 "5 Y5 |
or: £ ,
e=[c*fcr] |7 (1-8)
£
where C!' is a lower triangular matrix.
For the covariance matrix of the equation error we find:
cov e = Ele 3T = E{(C*' EXHC! EY(EX C*’T+€TC'T)} =
= coefgrert for Tacre (g £l joT
= (crrert Tage c'T)og (1-9)

Neglecting, for N >> u, the initial conditions, i.e. E* we find
cov e = C‘C'Tc§ (1I-10)

For the autoregressive description we have:
E{(D**e*+D'e) (e* D*' T4eTD' ) } = o§1

D*' cov e* D*'T+D*'E@*3T}D'T+ D'E{g _g*T}D*T-b-D' cov e p'T
(I-11)
= 21
%
Neglecting, for N >> v, the initial conditions:
D'cov e D'T = ofT (1-12)
and consequently ‘
R~! = (cov 3)‘1 = D'TD'(}EZ (1-13)
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Appendix 11 Practical cholces of the instrumental variable

For explicit estimation schemes, the generation of an instrumental
variable such as the output of a model gives problems, as several
iterations for obtaining reasonable model parameters are needed.
Therefore other choices for the instrumental variable have been pro-
posed. Wouters (1972) proposed the use of delayed inputs andgoutputs
and Gersch (1970) the use of delayed outputs as an easy-to-implement
instrumental variable. These choices can easily be motivated by the
following reasoning.

Assume the description:

vhﬂkh-[%ﬂk%+[Hﬂ§k (11-1)

and [ ]
e, = |1+C]| &
k t7k (11-2)
Ek being white noise.
The correlation of the equation error ek with a shifted sfgnal
Yg-g Can be given:

E{ekyk"l} = E{[1+c ]tgkyk-'z} = (11-3)

=e{gy o o Elg v b e emly oy, )

For £ > 8, it can easily be seen that

Eley ¥y} = 0 (11-4)
leading to

E{[[1+a]y, - [b 4Bl Iy, _,} =0 (11-5)
Similarly:

Efeu, _}=0 V2 (11-6)
leading to:

E{[[1+a] y, - [b#B] . Jo,_,} =0 (11-7)

In principle, from equations (II-5) and (II-7), the parameters can be
found. Because the exact cross— and autocorrelations, as they appear
in these equations, are not known, they have to be approximated,
assuming that the signals are ergodic:
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L z [[[1+A]tyk - [bO+B]tuk]yk—£] =

=1 (11-8)
Y o a1

o= y_“"——- i_y_+....+ E;«y_
LRSI A S T L Skea¥kes
N

LY [[[+aly, - [

y b+B]u Ju _,] =

LN ¥k o DM iVe-g (11-9)
1 N clN c8 N

N Elgkuk-k + ﬁkglgk—luk-£+"°'+ ﬁ—kzl k5K~ 2

Only for N tends to infinity are the right hand sides of equations
(11-8) and (1I-9) equal to zero, which, in practice, is assumed to be
true.

An estimate of the process parameters can then be obtained by solving

the equations

N
1 A £ ] -
-ﬁ-kzl[[[u-A] v, = (B8] u s _l=0 2> s (11-10)

N
%kzl[[[m] v - [B,48] o Ju_, 1= 0 Ve o @i

Both equations lead to:

3 = [2(zp.2,) 9w,y T2,z (11-12)
where
a) z; = U3 z, = uk—p-l cf. Wouters (1972).

b) z, = U z, = yk_p_1 if pHl > 8 c¢f. Gersch (1970).

The drawback of this method is the fact that the correlation fumc—
tions, which are contained in the matrix, contain considerable time
shifts. Usually this gives problems for finite data sequences. Let
us comnsider, for example, gaussian noise. It can be shown, e.g.
Laning and Battin (1956), that the variance of the approximated cor-
relation functiomn

QXX(T) based on N samples:

¥ (0= g })Ij XX, (11-13)
1=1
can be given by:
¥2 (0)
var{‘lﬂxx(x)} = n 140 (11.14)

This variance is fairly independent of © for v # 0. The correla-
tion functions most frequently encountéred tend to small values for
large shifts 7.
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If we consider equations (II-8) and (II-9) we can have, in a practiw
cal example, e.g. the exact relation:

‘ifz .a+ ‘I’] = & (11~-15)

where Yy, ¥y are correlations based on N samples for small time
shift, a is the parameter and § 1s the right hend term of eq. (I1I-8)
or {11~9). For a practical example with large time shift, we have:

Y a+ 8y =8 : (11-16)

where ¥3, ¥, are correlations based on N samples for considerable
time shift, so Y3, Y¥; are ome (or several) order(s) of magnitude
smaller than ‘l’l,‘l’z. However § and §' are of the same order of

magnitude. So we have

AN v

aﬂ"v—'i'-‘i— > a ="‘-\l-,— (11-17)
2 % 2
Y, ¥

da-Prg > A= (11-18)
A 4

As § and &' are unknown, they will be approximated by zero. We see
that the error in &' 1is larger than 3 .

The method of Gersch can also be used for the estimation of the AR
parameters of the process only if certain conditions are fulfilled:

We rewrite the input—output description of the process:

y= - Y_a’t+ Ukt-l-_e_ {11~-19)
e= %tk
7= Y£t+ U-b-t+ Eg_c+ £ (11~20)

Premultiply eq. (II-20) with ¥'T = z T

T T. T T, T
1 P t tls t -
'y Y' 'Ya, + Y''Ub 4+ Y + YL {11-21)
80
T T T, T T, T T T
= -{Y? -lot ] -t t -lottg ' - Lt
al {(Y' ' O™y v+ (Y O™ b+ (Y Y)Y s+ (Y Y)Y E

The estimator

a = -(Y‘TY)'lY'T_z (11-22)

is consistent 1f:
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a) plim %(Y'TY)] is non-singular
N+o
P SRS W »
~b) plim [(¥D)" Y 0p, ] = 0 (11-23)
N+

¢) plin [(v' T2y Ta ] =0
N =t =

) plim [(v'Tr)~ v Te] = 0
N+

ad a) For non-singularity of
plin [((v'TD)] (11-24)
N+

it is important that the time shift of Y' with respect to Y is not
too large. This is dictated by the length p' of the MA filter
[bo +B' ]¢ approximating the ARMA process

[b +8]

[bL +8' ], = —2 t

] t T+& lt

The MA filter [bo"-i-B”] with memory length p" 1is used for shaping

(1I-25)

up from a white noise source wy
= " !
. [b‘é«!—B ]wk (11-26)

So the length of the non zero part of the autocorrelation functions

of yx is prp". The delay £ should be such that %Hgq<p'+p".

ad b) Write eq. (II-26) in matrix notation:

U= WB" ‘ (11-27)
So
piin [0 70"y Tup, | = plin [¢ (v'T0)"] plim [T v Tumr, ]
Nowo Nowo N
(11-28)
Now

¥ (&1) . . . ¥ (fHl-pep'
yw( ) yw( pp'D

| N
plim ['ﬁ W] =] . . (11-29)

N+ . N
¥ % e o . ¥ S+q-p~p"
, S +q) yul Hrapp™)
This matrix equals zero if £ » ptp", as wy 1is a white noise sequ~

ence.
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ad ¢) This situation is identical to the condition £ > s ia equation

For possible estimation of the AR parameters of the'process, £ should
be chosen such that :

L<pt+p”-q (11-30)
and

L > max(pp",s) (11-31)

Usually p'-q>s so that the method can be used, but, however, with
great care to avoid 1inconsistence as indicated by eq. (II-23).
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Appendix IIT  Relation between Tally estimator and instrumental

variable estimator

The same equations (II-4) and (I1-6) which led to the already men-
tioned instrumental variable variants of Wouters and Gersch, lead to
an estimation wmethod which is known in the literature as Prior Know-
ledge Fitting estimator (PKF) or Tally estimator; cf. Peterka and
Halouskova (1970), Banyasz and Keviczky (1974) and Bosch (1978).
If we rewrite these equations as correlation functions, we have:

¥ (-2 =0 15

¥ (=) =0 > (11I~1)

For given model parameters ©% using N observations of input and out-

put signals, we can compute estimates of these correlation functions,

which will be denoged as ‘Yeu( 4; 6% ,u,y) and ‘I’ey( 2 0% ,u,y).
An estimate § i1s sought for which

| %®,u,y)=¥ | is minimal (111-2)
where j!_’. and ¥ are vectors containing points of the above mentioned
correlation functions for diffefent Lo
As ¥= 0, eq. (III-2) can be rewritten:

| Ehu,y | is minimal. (111-3)

We have already met the followlng equations cof. (II-8) and (II-9)

¥ "‘1[ I% ‘i a }% E b 1}1: ]
Yo (=) = Y, _, + a Yy W o~ b L
eu N ka1 k%=1 =1 jk—l k juk L =0 jk=1uk juk L

¥ (-2) —l[li + %“ D)‘: %ﬁ g ]
aytT T Y Ym a ST S L S
ay Nkz]_kk£ jsljkclkjkz,kojk-lukjkz

(111~4)
Now comstruct

;J‘[‘ ~ ~ ~ o~
o (B e, B (0, & e,y (a1

~T ~ ~ ~ ~
&= (D, ¥ (W, ¥ (sm) el (W) (11I6)
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¥ LD e ¥ () ‘i‘yu(O) e e e ¥ (q-1)
¥ o= ¥ .. ¥ (o) ¥ (=1) ... w NCE)
‘f’uy(-s-l) .. \f’uy(—s_lﬂ)) ‘f’yy(-s) s e e ‘f’ (-s+q-1)
¥ (-My, . . ¥ (-M+ ¥ o(=Mtl) o0 o ¥ (=Mig
|ty (D uy M) T (ML) i U
(1II~7)

M should be chosen such that all equations involved are useful, i.e., the
auto~ amd cross~ correlations involved should not be too small for M.

Peterka suggests M > 3q/2.

Using the above given notation we have

¥ = ?_@_—i—}f (111-8)
Minimization of ETE leads to an estimate fe.. Peterka and
Halouskova (1970) use orthogonal triangularigzation for this minimization
as already indicated by Peterka and Smuk (1969) and Smuk (1970). Note,
for example, that (3.82) is an equation in the second order moments of
the measured data. Differentiation of ET:‘E: with respect to ?:
yields:

b= (VFH-19] (111-9)
In this expression, fourth order moments of the measured data are invol-
ved. If M = pbg+l is taken, then matrix ¥ becomes a aquare matrix so
that eq. (III-9) can be rewritten as:

8= -¥13 (111~10)

At this point the close relationship with the instrumental variable meth—
od can be shown; cf. Bosch (1978). If the following instrumental

variable. matrix Z is used

(‘) ul\ TN
0— u
2T . N-M (1II-11)
, y]. yN"S“l
.0 0 I-w
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then

¥= 512" (111-12)
and
¥Y - L efuls (111-13)

which is the instrumental variable criterion, as already met in eq.
{3.45). It can easily be shown that this choice of instrumental
variable is a legitimate one, i.e. the conditions (3.51) are fulfil-
led:

1T

1 plim Eﬁ z'e]l=T I' is non-singular
N (III-14)
I plim [% zTg] =0

N >0

¥ is a (ptqt+l) x (2M~s) matrix.

By taking M not too large and using persistently exciting inputs
ug, condition I can be fulfilled. Condition II is assured as ¥ = 0
is a priori information; cf. (I1I-1).

The difference between this Tally method and the already met instru-
mental variable method is only in the choice of M. For the Tally
estimator, we will take, as suggested by Peterka, M » 3q/2 leading to
2M-s = 3q-~s equations. As p~q~s, these are 2q equations. The ins-
trumental variable estimator with delayed outputs (Gersch) takes
2ptqt+l equations leading to square matrices and simpler programming.
For high signal to noise ratios the use of more than ptqtl equations

igs not necessary for noise suppression.
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Appendix IV Derivation of the information matrix

The logarithm of the likelihood function is:
N
L = constant - N 1n A - —_ ) Eﬁ (1v-1)
222 k=1
For the second derivatives with respect to the parameters and with
respect to A we find: ‘

2 ' N
L. -2 T+l (1v-2)
a2 A% k=1 A2
2 N 3, of N a2t
R 23—?-33—“ -2 LS )
1773 A2 k=1 Tt i A2 ksl 1975
a2y, 2 ¥ . %
T Tk o av-H
If we keep in mind the model:
[1oAJy = Toyralg + hrd ¢
1H+Aly, = [b4Blu, + —m (IV-5)
k o k [1+D] k
we find,
[1+¢] azk [bo+n] ‘s (4c] 19-6)
= y _ = ———————— - _.___—_____gk. g
[140] %8¢ k17 Toa] ¥t T[]
[1+c] 98 .
o] B T e v
[14D] et * [1+p] &4 o v Dmel Sy Heeg (1778
[14c] 5 [1+c] &, a4 . 3¢,
- g 4+ =0 > I3 + 0
[14p]2 k-1 [1+] oy [1+p] k=i 7 3y (1Iv-9)

This can be rewritten:

18 [b,+8]{14D]

day [1+Av] [1+c]

A
u + e &
k=1 [14a] *1
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_— = = _ (1v-11)
ob, [1+¢] et

3 ak - - A 2k_i (1v-12)
¢4 [1+c]

1

ok A

= £ _ (1v~13)
d, [14D] k-1

Take the mathematical expectations of eq. (IV-2), (IV-3) and (IV-4):

32 2N
g2t} - & (IV-14)
ax2 A2
22L y N 9h 9f
E } = - = E{ } (IV-15)
¥§62365 22 el Tﬁi” ?Y““
32
{aeLaA} (1v-16)
Introduce the variables:
[bo+8][1+9]
%, . = (Iv-17)
Lk [1+a ][14¢] ik
[14p]
%)k el u (IV-18)
1 a .
- (1v-19)
"3,k [1+a] g
1 -
X, . = £ (Iv=20)
4k [14D] k
1 _
%5 = o] Ek (1v-21)

These variables are stationary random processes, as the polynomials
[1#a], [14¢] and [14D] have zeros inside the unit circle of the z-

plane.

Introduce the correlation functions which we applied to the above

mentioned vgriables xl,k""’xﬁ,k:
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N B
.1
T kzlxi,kxj,k-t-'r 1,3 = {1,2}
T4 = E{xi’k xj’kﬂ} 1,1 = {3,4,5} (1v-22)

Then we form the followlng sub-matrices:

221 oy N g af
Gaad1y = = F W} Y kZl E{"‘E; "5*?"5}
1 g E{[[b°+B][1+D] . A [b+8][1+D]
Pm [ealee] €T (] ¥V mal[e] K
A
+ _Jl =
[1+a] ¥
SR + 22| } =
22 iy Lokl *3, k=173, k-3
N .
= k—z' {rll(i-j) + A2r33(i_j)} (IV"23)
22 T L
_.(J ) = - E{ } E z E =
ab’1j Ba 30 1 a2 k1 B4, ‘55‘1'
N [b +B][14D] [1+D] '

1 o A - ;
== ] E{fl———m— vy gt ——§ )y ]} =
2 weealee] T o] E T [iec) ey}

N
= kzl %] k12, k- = 12U P (1v-24)
L p ¥ % ag
- Uiy B{W} 22 kzl E{E’ -ga;;}
1 N . [b+8][1+D] \ A ;-

A2 kel [14a][14¢] Y1t Trea] bt [ Toedl ey

N
! -
T 2 kzl S E{x3,k—ix5,k~j} = = N rgo(i-3) (IV-25)
2L , N ek b
J = - F T m— E I
(Taa)1j "3{1'333'} v kz,l {E 'ﬁ';}
N [b +8][1+D] ' .

T — e Y - Eilreumu - AW
A2 k=1 [14a ][1+c] k=1 (4] k=178 14p]
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) é kzl W By g%y gt = ¥ Ty (1v-26)
3t ot
Kk %k
1 N [1+D] [14D]
Y o — e — =
e el <1 ]
N
1 N i )
2 kzl *2,k-1"2,k-3 T 2 YA (1v-27)
(J ) = - E{ } [ R z E{— LS
be’1j §b1§cj A2 Koy 9By acj
N [14D]
= —-]—' Z E{... u -X g }a 0 (IV-ZS)
el [e] K [uee] I
- Upgdyy = -E.B?nga—} -1 lf B{;? ;i}g} -
i3 A2 k=1 i 3
N [1+p]
1 A
I v il =0 (1v-29)
A2 k=1 [1ec] ¥ [14p] ¥I
92, , 1 ¥ ahk 3§k
Gty =~ Pl 75, ey )
5 N
IR ST U P S L B i
A2 k=1 [ec] &1 Trac] 1 g Ssk175,kg
Ty ‘ (1v-30)
2 N af €
-y = =B} =L 7 [k _k
't ‘aq&rj- A2 k=1 ‘J— ’M}'}
- 1§ 2g{_ 1 1
R - by E{ g . . g - - . )
M k=l [1ec] 71 [14D] k'j} kgl E{xs,k-—ixa,k-j}
B (1v-31)
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%L 4
Uaadsy = {ad 3 w5

)\2

N
=L 7 At

g -
A2 k=1 [14p] ¥

= N rad(i-j)

[140]

N

k=1

1

3t
PR A

k
i

g,

ng

N
)

k=1

Now construct the Fisher information matrix:

Tb Tba e
Jab Jaa Jac
Jcb Jca Jcc
Jab Yaa Jac

[ I3 Taa Jae

With the above results we have:

214

Li— £, (1=} {X e, (=9}

J

Ipa Tba
Jad Jak
Jed Jea
Jaa Jar

I T

¢

¥} -
3dj

Bl 1%, 3]

(1v-32)

(1v-33)

¢

0

L;; r21<1-j)};L;5 1) (= 04rg,(1-D ) frag(i=0} {ry, (=D} 0

¢ {r55(1=1}
¢ {r,,(-0}
0 0

{rgs(i-n} {rg (-0}

{rstt-D} {r,, (-0}

0

4] —

(1v~34)

0

0

2N
a2

-




Appendix V Mathematical results

Result V.l: Slutsky’'s theorem

If the stochastic process {xk}; k=1,2,v.. in RP converges
in probability towards x and if the function g, which is a transform—
ation from R¥ into Rq, 1s continuous, then:

plim [g(x)] = 8(plin [xgD) = 8(x)

N+

1f the elements of the matrices Ay and By have a probability
limit, then:

plin [a5'3y] = {ggm[ANJ}-‘ plim[B]

N+

Proof: cf. Goldberger (1964).

Result V.2: Matrix inversion lemma
[a+Bc]-1 = A-1 - A-lp[r+ca-lB]~lca™!

Proof follows from multiplication by A+BC

Result V.3:

we M1 M2

My My 1
det M = det M22 det(Mll-Ml2 M22 MZL)

Proof: .
] - 1y M Ml
M, Mp I 0 | M MMM MM
PRV 1
Myy My Mooty My 0 I
1 = " 1
So det M.det Mzl = det(M; -M M-l )
Result V.4:
™M u
- = |1 12
Mo Mo ;
1, =M, M7l )yt -(M, =M Moh i, oMol
thea  wel = | UmiTM2"22 Mo 117M12M22M91 )" MM
- - 1 -1 1 - 1 ~1
(Myy =My My %1907 My My g (M) =My M7 M50

The proof follows from ma-1 = 1,
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Appendix VI Notations, symbols and abbreviations

On the notation

As in many fields, also in identification a characteristic use of
terminology has been developed through the many papers and other
contributions. In this dissertation no attempt has been made to

poligh until textbook-presentation is approximated.

One term rather loosely used is "model”. This has to be seen in the
light of its context consisting of:
- a real (physical) process, most probably partially knowa, but

certainly not fully known. or even knowable . (dimensionality and
related limitations);
- a theoretical model that would adequately represent the real

process for the intended use one has in mind when the identifi-
cation task is tackled;
- an estimation model that should approach the theoretical model as

well as possible, given the theoretical and practical limitations
imposed by our {(a priori) knowledge, experimental cépabilities,

etc.

From the text this distinction will be clear in the majority of

cages.

For the sake of simplicity, it is often assumed that the theoretical
model 1s available in the get of estimation models; it can be deter-
mined/approached by the choice of ‘order' and by estimation of the
parameter values.

In these cases the notation is such that = indicates the ’replics’ in
‘the estimation model of the corresponding quantity in the theoretical

medel, e.g.

theoretical estimation
model model
parameters » 8, 8 8
" coloured noise e &
white noise as the 'origin' .
of coloured noise g 13
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Notations

v for all
4 definition
p(x) - probability density function of the random
variable x
B{x} : mathematical expectation of the random
variable x
plim[x] probability limit of the random variable x
ko
T e XT transpose of X
-1 eege x ! inverse of X
det X determinant of X
i e.8. g} i-th operation; e.g. estimated vector, i-th
iteration
i ~ :
e.g. u do. ; e.g. filtered signal u, i-th
filtering
K e.ge UL,Y, k-th instant of time; e.g. samples of u,y
at time k
k €8¢ Ek do. ;3 e.g. estimated parameter
vector, k~th recursion.
¢ @B 2& “true” parameter vector.
~ o filtering
| e.g. [XIIXZ] X1 augmented with X2
", e.g. B estimated parameter vector
", e.g. &, & prediction error
", e.g. &, & residuals
Symbols
symbol description occurs in
- chapter
¢ null matrix
a parameter vector; AR param. 3,4,5,7
a AR param. 3,4,5,6,7
a' parameter vector; AR param. 3,4,5,6,7

(extended)
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g

LfA] polynomial in z~}; AR parameters 2,3,4,5,7

[I+A‘] do., with model extension 3,4,7

A system matrix state space model 2

b parameter vector; MA param. 3,4,5,7

b MA param. 3,4,5,6,7

b' (extended) parameter vector; MA param. 3,4,7

[bo+B] polynomial in z~1; MA param. A 2,3,4,5,7

[b;+B'] do., with model extension 3,4,7

B distribution matrix state space model 2

< parameter vector; MA noise param. 3,4,7

c MA noise param. 3,4,6,7

c! (extended) parameter vector: MA noise param. 3,4

[14¢] polynomial in z™1; MA noise param. 2,3,4,5,7

[1+c* ] do., extended : 3,4

C output matrix state space model 2

C data product moment matrix 7

d parameter vector; AR noise param. 3,4,5,6,7

d AR noise param. 3,4,5,6,7

a (extended) parameter vector; AR noise param. 3,4

51 parameter vector; AR nolse param. 5,6
(input noise)

éo parameter vector; AR noise param. 5,6
(output noise)

[1+D] polynomial in z~); AR noise param. 2,3,4,5,7

[1+D'] do. ; AR noise param. 3,4

[1+D1] do. ; AR input noise param. 5

{1+Do} do. ; AR output noise param. 5

! noise whitening filter matrix 3

D set of parameter estimates
{(identifiability conditions) 2

e modelled noise sample at time k 2

e equation error, process noise 3,4,5,7
(due to output noise)

e prediction error, model error 3,4,5,7

é residual i 3,4

E matrix containing e 3,4,7

£ matrix containing & 3,4,7
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6( )
G(z)

H(z)

Dt HOH OEom

=S

LR

- "GOZMZ ZAD A:d

=

vector function (convergence discuss.)
equation error {due to input noise)
matrix containing f

function or functional of model, operating
on process input viz. - output

equation error (due to input— and output
noise)

prediction error (due to input- and output
noise)

matrii function (convergence discuss.)
transfer function i

- for nolige spectral factorization
- for stochastic system

transfer function

- nolse shaping filter

- of (state gpace) model

matrix (convergence discuss.)
Hankel matrix

data product moment matrix
identity matrix

Fisher information métrix
identification method (lidentifiability
conditions)

instant of tinme

(log) likelihood function

Markov parameters, -matrix

impulse response matrix

do., for the k—th time instant
model structure

(equivalent) output noise

(equivalent) output noise sample
at time k

ionput noise

output noise
total number of observations
matrix containing o,
matrix containing n

—o
probabllity density function
'covariance matrix’ of an estimate
at time k

(]

~NoN N

2
2,3,4,5,6,7
3,4

2,3,4,5
3,4,7
3,4,5

4,5,7
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=3 T B 2 4

< <4 <o 49 je .

<4
=

<<

] *ﬁ‘wy R o= = =
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number of components in parameter vector

degree of polynomial [b°+Bl

degree of polynomial [1+A]
gain constant in recursion

"covariance matrix” of an estimate at
time k

data product moment matrix
degfee of polynomial [1+D]
degree of polynomial [1+Di]

degree of polynomial [1+D°]

correlation function
covariance matrix of noise
(convergence discuss.)
degree of polynomial [1+C]
stochastic system (identifiabilty
conditions)
“true”
test quantity
transformation matrix realization
input sample at time k
input vector
input vector state space model at time k
matrix containing u
disturbed input vector
matrix containing v
quadratic error criterion at time k

quadratic error criterion/loss function

gradient of - -
second derivative of - -
error

spectrum of noise
weighting matrix
undisturbed output signal

undisturbed output signal sample at time k

state vector at time k

(auxil. var.)

experimental condition (identifiability
conditions)

3,4,5,7

3,4,5,7

3,4,6,7
3,6

5,6

3,7
3,4

3,4,6,7
3,4,5
2,3,4,5,6,7

2,3,4,5,6,7

3,4,5,7



N

e A¢ jo ® N

|a»
g
w

0 A; w 0 ot ey e wa JT’ Fgwlmi = > iq&
~¥

g
w

Isz lg

disturbed output vector
disturbed output sample at time k

output vector of state space model
at time k

shift operator; Z-transform variable
instrumental variable vector

instrumental variable sample at time k

instrumental variable matrix
template function matrix
non-gingular matrix

model error sample at time k

identification error for N observations
parameter vector of model

"true” parameter vector

estimated parameter vector
estimated process parameter vector

estimated nolse parameter vector

"power level” of the white noise
model structure

input of noise filter; white noise
do.; at time k

input of input noise filter ;white noise

input of output noise filter jwhite noise

prediction error

residual

covariance matrix of white noise signal
delay '
filter producing IV quantities
(approx.) correlation function

vector of measurables at time k
matrix containing measurables

vector of measurables, process part

vector of measurables, noise part

3,4,5,6,7
2,3,4,5,6

2
2,3,4,5,6
3,4,5,7
3,4,5,6,7

1,3,4,5,7
3,5
2

2
2,3,4,5,7
3,4,5

3,4,5,7

4

3,4,6,7

2,3,4,6,7
2,3,64,6,7

4,7

3,4,7

2
5,7
3
3

"4

»7

o7

/’,

1, def.in3,4

4
4
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Abbreviations

AIC

CRLB
EECM
EMM

FPE

GLS
GMDH
IOIVEMM

QL
v
IVEMM
LS
LSL

MIMO

MRAS
MSLS
PKF
ODE
OLS

PI
sA
ST
SIV
LD
SISO

222

average information criterion

- approximate maximum likelihood (estimator)

auto regressive

auto regressive-moving average
" * " with noise

modelling

Cramér-Rao lower bound

equation error compensation method

extended matrix method

final prediction error

generalized least squares (estimator)

group method of data handling

IVEMM, suited for noise corrupted input—-

output measurements

implicit quasi-linearization (method) IV

instrumental variable (estimator)

IV extended matrix method

least squares (estimator)

least squares like (estimator)

moving average

multi input-multi output

maximum likelihobd estimator

model reference adaptive system

multi-stage least squares (estimator)

prior knowledge fitting (estimator)

ordinary differential equation

over—-parametrized least squares (estimator)

recurgsive least squares (estimator)
parameter identifiable

stochastié approximation (estimator)
system identifiable

sub-optimal IV (estimator)

strongly system identifiable

single input-single output

welghted least squares (estimator)
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TEN SLOTTE

Het onderzoek, waarvan in dit proefschrift verslag gedaan wordt, is
uitgevoerd .in de vakgroep Meten en Regelen van de afdeling der Elek-
trotechniek van de Technische Hogeschool te Eindhoven.

Het onderzoek is een onderdeel van het onderzoekaccent "systeemiden-
tificatie™ van de vakgroep. Tot dit onderzoekaccent behoren ook o.m.
het SATER project en het z.g. MIMO project, dat als uitvloeisel van-
en aanvulling op het onderzoekproject SATER enige jaren geleden ge-
start is. Beide projecten maken momenteel deel uit van de werkge-
meenschappen Theorie en Meten van de Stichting voor Meet~ en. Bestur—

ingstechnologie.

Aan deelonderwerpen hebben in het verleden vele afstudeerders en
stageairs hun bijdrage geleverd. Alhoewel ik anderen daarmee ten
onrechte te kort doe wil ik toch een paar namen noemen: Jan Talmon
(EMM) en Ad van de Enden, Jan Hoffman, Anton Koenraads, ordetesters
van formaat. Ook aan nauw verwante onderwerpen, die niet in dit
proefschrift vermeld =zijn, 2zijin door afstudeerders belangrijke bij-
dragen geleverd. Te noemen zijn de relatie tussen discrete modellen
en continue processen -~ belangrijk voor toepassingen — en verder de
toepassingen zelf: o.m. Wim Costongs met het dynamisch gedrag van
een stationcar em Jan van Miltenburg en John Rooijakkers met hun
schattingen aan het haemodynamisch gedrag van de aorta; dit laatste
in plezierige samenwerking met Anton van Steenhoven, de deskundige op
dit gebied bi] de afdeling derWerktuigbouwkunde.

Ik denk met veel plezier terug aan de samenwerking met hen en alle
anderen die niet vernoemd 2zijn.

Vermeld dienen te worden de activiteiten rond het ontwerp en de rea-
lisatie van het interaktieve programmapakket SATER, vanaf het eerste
Algol SATER'tje op de PDP-8 naar het hudige pakket, een welhaast
commercieel produkt. De werker van het eerste uur Pim Lemmens, die
de SATER structuur ontwierp, Johan Vigsers, die de omschakeling naar
RSX realiseerde en Pim Bollen, die momenteel de laatste hand aan het
geheel legt, ben ik veel dank verschuldigd voor hun Inzet en samen—
werking. De biljdragen van de vakgroep Systeem en Regeltechniek van
de afdeling der Technische Natuurkunde, THE, en de vakgroep
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Technopsychologie van de subfaculteit der Psychologie, Katholieke
Hogeschool Tilburg, toen de ontwikkeling noodgedwongen wat trager

ging, waren zeer welkom.

Voor de samenwerking met collega's — of liever vrienden - Ad Damen an
Andrzej Hajdasinski, wat betreft discussies over onderwerpen van
allerlei aard betreffende parameterschatting maar ook wat betreft het
opzetten en het starten van het MIMO project prijs ik mij gelukkig.
In dit vak kun je en mag je niet solitair opereren.

De vakgroep dank ik voor de mogelijkheid om de resultaten uiteinde-
1ijk op papier te =zetten; Barbara Cornelissen voor haar doorzet-
tingsvermogen en haar grote deskundigheid bij het uittypen en de
verzorging van het verslag en Joop van Dinther voor het maken van de

vele tekeningen op vakkundige wijze.

Tenslotte wil ik niet onvermeld laten, dat ik tijdens het schrijven
van dit TEN SLOTTE grote moeite gehad heb om me neer te leggen bij de
regel die bepaalt dat geen woorden van dank gericht dienen te worden

aan promotoren.
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STELLINGEN:

1.

2.

3.

Omdat het merendeel van de benodigde rekenoperaties in de
recursieve schattingsalgorithmen, zoals in dit proefschrift
beschreven, in parallel uitvoerbare operaties opgesplitst
kunnen worden, zijn deze algorithmen uitermate geschikt om
door rekenmachines met parallel opererende processoren
verwerkt te worden. Hierdoor neemt de on-line toepasbaarheid

aanmerkeli jk toe.

Indien enige in de praktijk voorhanden a-priori infofmatie
omtrent het te schatten proces niet in het schattingsmodel
en/of het schattingscriterium verwerkt is, is modelvalidatie
m.b.t. deze informatie extra geboden. In dat geval zal
automacisering van de schattingen doorgaans niet mogeli jk

zijn.

Bij het toepassen van iteratieve schattingsschema's 1s het, in
tegenstelling tot wat steeds in de literatuur gesuggereerd
wordt, niet nodig om, wanneer grote meetreeksen voorhanden
zijn, voor de eerste iteraties alle meetwaarden te gebruiken.
Dit kan tot een aanzienlijke reduktie in rekentijd leiden.
Literatuur: bijv. Furht, B.P. (1973)

"Maximum likelihood identification of Astrtm model

by quasilinearization"”, Proc. Third IFAC Symp. on

Identification and System Parameter Estimation,

the Hague/Delft

Het gebruik van interaktieve programmatuur is onontbeerli jk

bij het onderwijs in de signaalanalyse, systeemtheorie en

parameterschatting. )

Literatuur: Lemmens, W.J.M. and A.J.W. van den Boom (1979)
"Interactive programs for education and research;

a survey”, Automatica, vol 15, pp. 113-121.



5.

7.

8'

10,

Door de invoering van de tweede fase oplelding aan de
Technische Hogescholen zal een nieuw type ingenieur, nl. met
een hoge initiele specialisatiegraad en een te vrezen

geringere breedte, zljn intrede in de beroepspraktijk doen.

Een evaluatie van de werkelijke effecten (zowel bedoelde als
onbedoelde) van opeenvolgende door de overheid opgelegde
bezuinigingsronden is in een volwassen demokratie geboden als

verantwoording achteraf aan de bevolking.

De bedreigde cactussoorten dienmen door een gezamenli jke
inspanning van succulentenverenigingen voor ondergang behoed
te worden.
Literatuur: Lyons, G. (1980)
“At long last, protection for endangered cacti”,
U.8. Cactus and Succulent Journmal, vol. 52, p.
229.

De verkeersveiligheid rondom scholem wordt in gevaar gebracht

door ouders die hun kinderen per auto naar school brengen.

Het projekteren van de evolutionaire tijdschaal op een schaal

van 0 tot 24 uur suggereert een catastrophe om 24 uur.

Door de sterk wisselende regelingen t.a.v. de woningisolatie-
subsidie zijn in het verleden dikwijls huiseigenaren in de

kou gezet.

Stellingen behorende bij het proefschrift van A.J.W. van den Boom,
Eindhoven, 28 september 1982.



