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SUMMARY 

This study concerns the coherence and variety in parameter- and 

order estimation methods, which are basic in system identification. 

For the estimation of the parameters of dynamical systems, several 

methods have been proposed in the last decade on a rather ad-hoc 

basis. These methods are all attempts to ensure the consistence of 

the estimates, which for convenient parametrizations is usually not 

achieved with common least squares estimators. 

The present study aims to present a coherent picture of this field. 

Tberefore three basic components of existing estimators are recog

nised. These three basic components are: filtering, model extension 

and use of an (extra) instrumental variable signal. A general scheme 

is presented containing these three basic components. 

It is shown that the existing estimators like Generalized Least 

Squares, Extended Matrix Method, Approximate Maximum Likelihood, 

Implicit Quasi Linearization,. Prior Knowledge Fitting, Instrumental 

Variable Estimator and Suboptimal Instrumental Variable Estimator are 

special cases of this general scheme. The advantage of such a pres

entation is twofold: 1t gives a bet ter understanding of the inter

relations of the existing estimators, and computer programs for .such 

estimators can be designed in such a way that one program can rep

resent all estimators considered. 

Based on these concepts, several estimators are proposed for situa

tions where both input- and output signalsare noise corrupted. These 

estimators have in common that two of the basic components are com

bined to obtain consistence. 

Nó additional knowledge of noise covariance is needed or assumptions 

concerning equal colouring, as in the existing literature, are made. 

It is indicated that the choice of the instrumental variable quanti

ty, which is one of the two basic . components for these estimators, 

can be improved if extra measurements of the input- or of the output 

signal or signals, which are related to the input or output, can be 

made available. In such a way, existing information concerning the 

process, which is usually at hand in practical situations, can be 

1 1 



exploited easily. The algorithms tbat have been proposed are simple 

and fast. Experiments with simulated processes show the usefulness 

of these estimators. 

The present study also includes an extensive discussion of order 

testing methods from a point of view of a potential user. Order 

testing 111.ethods are of prime importance in system identification as 

usually the order of the desired model is unknown, e.g. for control 

purposes. Furthermore, if high order models are wanted, containing 

detailed information of the process under study, then order tests can 

be used to decide whether the measured signals available contain 

sufficient information for producing these models. 

In the given discussion, the close relations between different order 

testing methods are shown. 

The above mentioned estimation and order testing methods have been 

incorporated within an extensive interactive computer pack.age SATER. 

Special attention bas been given to the interactive aspects of this 

pack.age and its modular design. This pack.age is·useful for research 

and educational purposes. 

12 



CHAPTER ONE: 

PRELIMINARIES 

System identification covers, by definition, all possible methode 

which provide (aggregated) knowledge of a (partly) unknown system 

based Ón observations. It follows directly from this rather broad 

definition that numerous activities of model building are included 

as, generally, the knowledge of processes is concentrated in their 

corresponding models. These models may be of widely varying struc

ture, ranging from exclusively verbal to strictly formal mathematic

al. Also the class of possible processes to be described by models 

is, in principle, unlimited and of a strongly varying nature. 

For a systematic presentation of system identification as a coherent 

science, this extreme variety of possible processes, of possible mod

els and of possible methods is still prohibitive at present. Even 

for the class of mathematica! models, such a coherent picture is not 

yet well-established. In this · context, a characterization of the 

field of estimation by "a bag of tricks" (cf. Eykhoff, Van den Boom 

and Van Rede, 1981) bas been appropriate for the past decade; see 

also fig. 1.1. The introduction of "template functions", provides a 

powerful tool for a more systematic classification of the field if 

mathem.atical models are considered. The fundamentals of this classi

fication are indicated in fig. 1.2; cf. op.cit. 

The aim of the present study is to provide a more concise classifica

tion and ordering of the elements in the blocks II and III of fig. 

1.2, as well as an extension of the concepts. Tbis ordering is 

based on three aspects: a) choice of the measurables {O in fig. 

1.2), denoted as model extension, b) interpretation of the template 

function (Z in fig. 1.2) as filtering bl) or correlation b2). This 

will be explained in detail in chapters 3 and 4. Tbis classif ication 

provides a better insight into tbe relations among the different 

estimators in blocks II and III of fig. 1.2. 

In chapter 2 some general notions ·pertinent to model building in a 

technica! sense are given as an introduction to chapters 3 and 4, 

13 



Fig. 1.1 A "bag of tricks" 
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Fowier EMM 
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Slrej<: LS ·like 

rr m 

Fig. 1.2 The "bag of tricks" ordered 

where estimators are discussed for which only one set of measurables 

(either input of output) are contaminated by noise. 

In chapter 5 the results of chapters 3 and 4 are used to propose 

several estimators for the situation where all measurables of the 

process are noise corrupted. In chapter 6 results of the estimators 

proposed in previous chapters are given, mainly based on simulations, 

to make an evaluation of the quality of the estimators possible. 

Finally, in chapter 7, the problem of order testing is discussed and 

several - practical - order tests are compared. 

14 



CHAPTER TWO: 

A RECAPITULATION OF BASIC CONCEPTS: 

MODELLING, PARAMETRIZATION, ORDER, IDENTIFIABILITY AND 

IDENTIFICATION PROTOCOL 

2.1 Introduction 

The alm of this chapter is to discuss briefly the principles of model 

building in relation to identification. We will start with a few 

remarks on model building in a general setting, i.e. the meaning of 

the concept of models used by human beings, but we shall restrict 

ourselves, quite early on, to model building in an engineering sense• 

Aspects like parametrization, order and identifiability will be re

viewed, in order to provide an adequate basis for the following chap-

ters. 

2.2 Some general notions 

Modelling is one of man's oldest activities. The image that man 

forms of hls surrounding world, based on observations, is the result 

of "model building". In fact, all notions about what is often refer

red to as "REALITY" or "NATURE" or "TRUTH" , are models of varying 

complexity. In communicating with others, e.g. by using words, re

ferring to some consensus of these words, an individualistic inter

pretation of this consensus cannot be avoided. These interpretations 

are personal images or models. This personal interpretation can lead 

to misunderstanding, but on the other hand it introduces variability, 

which can result in evolution of the consensus itself. 

An important aspect of modelling should be stressed here, i.e. lts 

intended use. The construction, the form and the com:plexity of a 

model should be mainly determined by those aspects of the "real sys

tem" or object which are relevant, or are believed to be relevant, 

for the intended use of the model. · 
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The appearance and the form of a model and of the studied object are 

not equal. Models for weather forecasting may consist, for example, 

of a very complex set of non-linear differential equations, which can 

be solved only by very large computers, or may consist of a few sim

ple principles in the mind of a farmer. 

In general, the validity of a model will be limited. If a model has 

become too restricted, e.g. due to increased demands, it has to be 

replaced by a (more) complicated one, explaining more aspects of the 

object. 

Scientific theories are, in fact, also models which are valid until 

they can be "falsified ". Extension or adaptation of the existing theo

ries usually follows such a falsification, or sometimes a new theory 

is proposed with widely different aspects, which remains valid until, 

in turn, it too can be falsified; cf. Popper (1959). The falsified 

model often can serve as a good approximation of the newly developed 

model, under certain restrictions. 

2.3 Technical modelling and parametrization 

As we are interested in engineering methods of model building and 

identification which are suited for algot"ithmization, we shall re

strict ourselves here to models which can be treated mathematically. 

These models are not only useful for the description of industrial 

objects but also for objects that are not necessarily technica!, such 

as a variety of bio-medical, social and economie objects. 

The first principal decision that bas to be made with respect to 

modelling, concerns the way of parametrization of the model, i.e. 

the form of the mathematical description of the input-output rela

tionship. Niederlinsk.i and Hajdasinski (1979) formulate three impor

tant objectives for a convenient parametrization: 

16 

1) universality, i.e. it should be applicable to all objects in 

the class of interest. 

2) limited number of (un)known parameters. This is related to 

the principle of parsimony, formulated by William of Ockham 



(1285 - ± 1349) and k.nown asOckham's razor: "Non sunt multi

plicanda entia praeter necessitatem"; it is applicable to 

model building as well. 

3) identifiability of (unknown) parameters of interest. 

Parzen (1974) makes a distinction between structural and synthetic 

models. The parameters of a structural model have a natural struc

tural interpretation: they will rely on physical laws. These para

meters provide explanation of the object which generates the data. 

Synthetic models are not based on physical laws. Their parameters 

need not be physically meaningful. Their interest is in the use for 

simulation, for prediction of future behaviour, for interpretation of 

past behaviour, and for (optimizing- and adaptive) control. In the 

literature, the structural model is sometimes also cal led generic 

model or explanatory model, whereas the synthetic model may be called 

non-generic model or input-output model; cf. also Richalet (1981), 

and Hajdasinski, Eykhoff, Damen and Van den Boom (1982). 

Besides this distinction among models, a characterization may be 

. based on the following list of adjectives; cf. also Hajdasinski et 

al. (1982) for further explanation: 

time-continuous 

time-invariant 

linear dynamica 

single-input single-output (SISO) 

lumped parameters 

par ametrie 

de terminis tic 

single layer 

causa! 

one dimensional 

non-fuzzy 

non-ver bal 

time-discrete 

time-variant 

non-linear dynamica 

multi-input multi-output (MIMO) 

distributed parameters 

non-parametric 

non-determinist ic 

hierarchical 

non-eaus al 

more dimensional 

fuzzy 

ver bal 

17 



Note that a model can be characterized by several of these descrip

tors; even a combination of the two opposing descriptors on the 

same line is possible (e.g. a model ma.y be partly time-continuous, 

partly time-discrete). 

A crucial choice which has to be ma.de concerns the linearity of the 

models, in the sense of whether the output quantity is a linear or a 

non-linear dynamic function(al) of the input signa!. For linear 

models the theory and practice of model building and estimation is 

far more developed than for non-linear models. This is pa~tly due to 

the fact that a coherent and complete description of non-linear sys-

tems d!>es not exist. A rather genera! description like Volterra 

series expansion has, for ma.ny practical cases, the drawback of hav

ing an excessive number of parameters. In ma.ny cases, depending on 

the inteoded use, it is sufficient to have a model only in a certain 

working point. In this case, linearizing can yield a simpler and 

more useful model. For an extensive review of non-linear models, see 

the survey paper by Haber and Keviczky (1976). 

Other types of simplification may occur when systems with distributed 

parameters are to be modelled by 1U111ped models, when time-continuous 

systems are modelled by time-discrete models and time-variànt systems 

by time-invariant models. For these types of model simplifications 

and the general aspect of the construction of lower order models, the 

survey paper by Gwinner (1976) gives a good introduction. 

In the following chapters we shall concentrate our discussion on 

models which are linear-in-the-parameters. The parametrization of 

these models may cover many linear, as well as some non-linear syst

ems for single-input single-output models, as indicated in table 2.1 

From the point of view of applicability of the available ,parameter

estimation methods, the property of linearity-in-the-parameters of 

models is important. The model error, i.e. some difference between 

object and model behaviour can then. be expressed as linear-in-the

parameters, so that the gradient of a quadratic performance criterion 

with respect to the parameters can be evaluated quite easily. For 

this reason much attention will be given to these types of models in 

18 



- linear difference or differential equations 
- ARMA, (ARMAX, transfer function) 
- impulse response, Markov parameters, Hankel 

LINEAR matrix 
- Laguerre polynomials 

DYNAMICS - state space models (canonical forma and 
others) 

- non linear difference or differential 
equations 

- Volterra kernels Vol terra (1959) 
NON LINEAR - Chebychev polynomials Smets (1960) 

- dispersion models Rajbman c.s (1980) 
DYNAMICS - GMDH models Ivakhnenko (1968) 

- Hammerstein models Hammerstein (1930) 
- Wiener models Wiener (1958) 
- catastrophe models 

Table 2.1 Parametrization of models 

the following chapters. In this context the concept of generalized 

models is valuable, as it gives us the possibility of obtaining 

linearity-in-the-parameters in a flexible way. In fig. 2.1, three 

distinct types of models are shown, a) the output error model, b) the 

input error model and c) the generalized model. 

It will be clear that these types of models are of ten synthetic mod

els. Within the field of control engineering they are widespread, 

because they can be used satisfactorily tor a variety of applica

tions. Their way of parametrization can be chosen within broad lim

its, depending on the particular situation at hand. A few possibili

ties are; cf. Eykhoff (1974) 

output error model: 

e.g. - moving average model 

impulse response model 

Hankel model 

F 
0 

(2.1) 

(2.2) 

19 



- transfer f unction model 

(b +B(z-1)] 
0 

input error model: 

a) 

b) 

c) 

20 

u 

e.g. - autoregressive model 

- inverse transfer function model 

F = 
i 

Uk 

uk 

MODEL 

(l+A(z-1) J 
[bo+B(z-1)] Yk 

nol se 

PllOCESS 
Yk 

MODEL 

k 

output error mOdet 

noise 

PllOCESS 

MOOEL 

input error model 

noise 

PROCESS 

MODEL 

generalized model 

Fig. 2.1 Distinct types of model errors 

(2.3) 

(2.4) 

(2.5) 

(2.6) 



generalized model: 

e; " k (2.7) 

e.g. - autoregressive - moving average model (ARMA) 

Fo = l 6j ~-j Fi" l 6jyk-j (2.8) 
j j 

- state space models 

A few remarks can be made: 

a purely autoregressive model and a purely moving average (or 

Hankel, or impulse response) model usually needs a (very) large 

number of parameters for an adequate representation of the dynam

ics of the system, in the sense that the resulting error is small 

or negligible. 

transfer funct1on models or inverse transfer function models may 

have a smaller number of parameters hut these models are not 

linear-in-the-parameters. 

First we consider the synthetic input-output models. Several vari

ants have been proposed in the identification literature: 

Hoving Average (MA) models: 

~~!~!!!!!!!!ic 

yk = (b~+B'(z- 1)]~ 

~!!!Si..J:!~-1!lY!~_i!2~Ql 

(2.9) 

(2.10) 

where ek is the modelled noise. In eq. (2.9) and eq. (2.10) 

[b'+B'(z-1)] is a polynomial operator, which may have arbitrary 
0 

length. These models are also called impulse response models or 

Markov models. They usually need a very large parameterset, which is 

often a drawback, so that the following models have been proposed. 

Autoregressive Hoving Average (ARMA) models: 

~!!_t'!!!!!;iS!_!!; 

[l+A(z-l)]yk • [b0+B(z-1)]~ 
~toc!!!stic 

(2.11) 

(2.12) 
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Here [l+A(z- 1)] and [b0+B(z- 1)] are polynomial operators, with 

memory length of resp. q and p. The correct choice of q and p refers 

to the problem of order testing, see chapter 7. If we extend this 

stochastic model by taking into account the dynamica of the noise, we 

have several possibilities: we may use MA, AR (autoregressive) or 

ARMA modelling for the noise. 

MA ek = [l+C(z-1)] ~ 

AR e = k 
1 ~ 

[l+D(z-1) J k 
+ ek = -[D(z-l)]ek + ~k (2.13) 

ARMA e = k 
[l+C(z-1)] ~ 
[l+D(z-1)] k 

+ ek = -[D(z- 1)]ek + [l+C(z- 1 )]~k 

where ~kis a (conceptual) white noise input sequence. 

This leads to the following models of process- and noise dynamica 

which have been proposed in the literature: 

~-~2~~!i-~!~-~!E~~-!~~-~~!!~_i!2~~2 

[l+A(z-l)]yk = [b0+B(z- 1 )]~ + [l+C(z- 1 )]~k 

f !!E~~:~-~2~~!l-~!~_f!!E~~-i!2~r2 
1 

[l+D(z-1)] ~ 
[D(z-1) ]ek + ~k 

[l+C(z- 1)] ~ 
[l+D(z- 1)] 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

[l+A(z-1) ]yk = [b
0
+B(z-l)]uk- [D(z-l)]ek + [l+C(z- 1 )]~k 

(2.18) 
This model is a generalization of the two previous models. It incor-

porates the advantages of both models, i.e. by properly choosing the 

degrees of the AR and MA parts, one can model the MA part of the 

noise by the MA part of the noise model and the AR part of the noise 

by the AR part of the noise model. Purely MA noises need not be 

modelled by AR models as with Clarke's model. The Talmon and Van den 

Boom model gives therefore more flexibility to arrive at a minimal 

parameterset. 

22 



An important observation is that the above models are linear-in-the

parameters, provided that the signals ek and ~k are available. 

It is obvious that this will not be the case, as only input and out

put samples uk and Yk are available. The models which will be 

used in practice will then need an estimate of these signals ek and 

~k· These estimates can be obtained by making use of previous 

estimates of process- and noise parameters. Therefore, the above 

models are linear-in-the-process-parameters A and B but are non

linear-in-the-noise-parameters C and D. This will cause the appro

priate estimation methods to need iterations or recursions to handle 

these non-linearities. This will be explained further in chapters 3 

and 4. In fig. 2.2 a diagram is given for the most general model, 

i.e. that of Talmon and Van den Boom., where it is used for the genera

tion of the generalized model errors ê and€. 

Fig. 2.2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
l 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

bo+ B 

1 model 

'------------

The model of Talmon and Van den Boom 

The above given models (2.12), (2.14), (2.15) and (2.17) are general

ized models. Also output error models have been proposed in the 

past. They do not have the attractive property that the model error 

is linear in the parameters. We will give some examples: 

Transfer function model 

[b +B(z-1)] 
0 

(2.19) 
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Box-Jenkins model; cf. Box 

[b +B(z-1)] 
y = 0 u + 
k [l+A(z-1)] k 

and Jenkins (1976) 

[ l+C( z-1)] 

[l+D(z- 1)] 
(2.20) 

Output error models have been used by Dugard and Landau (1980) using 

the Model R.eference Adaptive System. (MR.AS) techniques. 

Ljung (1979) proposed a model which contains the Talmon and Van den 

Boom model and the Box-Jenkins model as special cases 

(b +B(z- 1)] 
0 [ 1 +c( z-1) ] ~ 

[l+D(z-1)] k 
(2.21) 

Next we will consider state space modelling• The general expression 
is 

~+ B~ J 
.q._ c..!.tt (2.22) 

where ~k is the input vector• .!.k is the state vector and l.k is 

the output vector, and the triplet (A,B,C) is called the realization 

of the dynamica! multivariable system. For the state vector, we may 

look for a minimal set, i.e. the realization with the lowest possible 

order, An infi11ite number of state vectors can be found; also an 

infinite number of triplets· (A,B,C). The realization (A,B,C) is not 

unique, as the T-equivalent realization (TAT-1, TB, CT-1), T being a 

transformation matrix, gives the same transfer function matrix H(z) 

or impulse response matrices Mtt• The problem of selec tion of a 

suitable state space realization will not be discussed here. In 

Goodwin and Payne (1977) a review is given of the construction of 

several canonical state space models; see also Denham (1974) and 

Hajdasinski, Eykhoff, Dainen and Van den Boom (1982). 

The impulse response matrix or Markov matrix for the kth time 

instant can be constructed by: 

~ = C Ak-lB (2.23) 

resulting in the fóllowing model 

(2.24) 

The matrices Mj can be brought into a Hankel matrix, which is a key 
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for obtaining a state space realization from the Markov parameters; 

cf. Ho and Kalman (1966) for the deterministic case. 

The transfer function matrix is found by: 
-1 H(z) • C(zI-A) B (2.25) 

The above relations apply, in principle, for SISO as well as for MIMO 

systems. There is a rapidly increasing literature concerning aspects 

of the choice of parametrization, especially for MIMO systems. In 

gener al, the Markov parameters using the Ha.nkel matrix are widely 

accepted. In figure 2.3 the relation between different parametriza

tions is given; cf. Hajdasinski and Damen (1979). 

frequency 

methods 

tranefer 
fUnctions 

MIMO 
system 

parameter 
ldentlfiable forma/ 

overtappïng param. 

Fig. 2.3 Relations between different parametrizations. 

From the relations given above it will be evident that the calcu

lation of the Markov parameters and the transfer function from a 

given realization in state spacè is straightforward. The calculation 

of a realization in state space from the transfer function or Markov 

parameters, however, is rather invol ved and is the sub jee t of the 

realization theory; cf. Silverman (1971), Ho and Kalman (1966). 
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If uncertainties are present in the measured signals, then the trans

fer function or the Markov parameters resulting from an estimation 

procedure will be available only as approximations. Then the algor

ithms for construction of a realization in the state space have to be 

modified; cf. Hajdasinski and Damen (1979), Van Zee (1981) and Damen 

and Hajdasinski (1982). 

For the parametrization of SISO models, an ARMA representation is 

appropriate, as its interpretation is very close to that of a trans

fer function, consisting of a quotient of two finite polynomials, 

which are relatively prime. From a historica! point of view, trans

fer functions have been used extensively in control engineering for 

stability considerations and design. Their parameters are closely 

related to the physically meaningful parameters of gener ic models, 

which can be advantageous for interpretation of results. 

State space models are of a more genera! nature. Their parameters 

may only be indirectly related to the physical parameters of the 

system. They provide useful insight into proper.ties of controllabil

ity and observability of the overall system. Their parametrization 

may be very compact, depending on the realization ehosen, which is 

primarily important for MIMO systems. 

In the following chapters, we are primarily interested in estimation 

methods which yield consistent estimates for a model having a para

metrization with a limited number of parameters. We have already 

seen that ARMA models usually have such a limited number of paramet

ers. It was also mentioned that we will need to extend these models 

to stochastic models, i.e. we need an adequate description of the 

noise. For this pur.pose we will make use of ARMAX models, which have 

a moving average, or an autoregressive-, or a mixed autoregressive 

moving average parametrization of the noise colouring. This type of 

modelling of the noise characteristics is motivated by the spectra! 

factorization theorem. This theorem gives a unique factorization for 

a noise ek, being wide sense stationary and rational. The spectrum 

of this noise can be interpreted by considering the noise as an out

put of a time invariant finite dimensional filter H(z) driven by a 

white noise input 

W - H(z) E1 HT(z- 1) (2.26) 
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E1 being the covariance of the white noise input. It should be noted 

that many different filters H(z) can produce the same spectrum w. 
Having this spectrum W, the spectral factorization theorem states 

that a unique spectral factorization of W can be found satisfying: 

1) W = G{z) ~2 GT(z-1) 

2) G(z) has all its poles inside the unit circle lzl= 1 

3) c- 1(z) bas all its poles inside the unit circle lzl= 1 

4) lim G(z) = I 
z+oo 

Proof cf. Youla (1961), Astr~ (1970). 

This theorem is very useful, as it provides a motivation for model

ling stationary and rational noise sequences by a stable, minimUID'"'." 

phase ARMA description. The inverse of the model is then also stable 

and minimUID'"'."phase and causally invertible; cf. Gevers and Kailath 

(1973). We will frequently need this property in the following chap-

ters. 

2.4 The notion of order 

For noise-free single-input single-output systems (SISO) with linear 

and lumped dynamica, the notion of system order can be defined quite 

easily. For a state space description in Cli!-nonical form, the order 

is defined as the number of independent states. For transfer func

tion types of parametrization, the order is the number of poles of 

the system, provided that no pole-zero cancellation occurs. 

The notion of the desired order of a model is a more questionable one 

however, due to the fact that the model is something that is con

structed as an image of an unknown process. It need not cover all 

aspects of the process itself, so that the model may very well be of 

a lower complexity. Therefore a class of models of interest has to 

be specified and within this class the most suitable member has to be 

found, according to a certain predefined sense. Model validation, 

which will be dealt with later in this chapter, then has to be used 

in deciding whether this class can be accepted, or whether another, 

richer class is to be chosen. 
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Let us assume that we have two model structures M1 and M2 , with Pl 

and p 2 independent components in the parameter vector J!. respective-

ly; where Pl < P2 and Mi 

the class of models ~. 

< Mz, i.e. M1 is a subset of M2 • If in 

(j=l ,2) the loss function Vj(,!j) is 
J 

minimal, then the model Mj is considered to be the best. Here 

~- is an estimate in MJ·· -J If and V 2<12> are equal 

then the extra degrees of freedom in M2 do not contribute to the 

model in the sense of Ockham' s principle of parsimony. The decrease 

of the test quantity for increasing model order may be obscured by 

noise, especially if the extra degree of freedom gives only a slight

ly smaller value for the loss function in the noiseless case. This 

can lead to a selection of a lower model order. For selection of a 

proper model order, many order test methods have been developed; cf. 

Van den Boom and Van den Enden (1973) and chapter 7 of this thesis. 

For noise-free MIMO systems the notion of order can be given in an 

analogous way. For a minimal realization in state space, the order 

can be defined as the number of independent states. An aiternative 

for definition of the order is to use the realizability index r of 

the Markov parameters; cf. Hajdasinski and Damen ( 1979). 

defined as: 

M 
r+j 

r 

l 
i=l 

a(i) M . 
r+ri vj> 0 

This is 

(2.27) 

This means that r Markov parameters Mi, l<i<r are sufficient to 

construct a minimal realization; cf. Ho and Kalman (1966). 

With respect to a suitable model order for MIMO systems, the same 

remarks apply as for SISO systems; cf. also Hajdasinski, Eykhoff, 

Damen and Van den Boom (1982). 

2.5 The concept of identifiability 

Another fundamental problem is the identifiability concept. So far in 

literature this seems to be more of theoretical than of engineering 

interest. Nevertheless, one should not circumvent this aspect as it 

determines whether an application of parameter estimation methods 

might be successful, given experimental conditions such as structure 

specification, available data, etc. 
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So far, several authors have studied the identifiability problem and 

consequently several (closely related) definitions have been intro

duced. Most definitions are based on consistency of the estimators: 

the "true" process parameter ~ is said ·to be identifiable 1f the 

sequence of estimates ~ converges to ~ in some probabilistic 

sense, where N is the number of observations. 

AstrUm and Bohlin (1965) use in this respect, consistence with proba

bility, Staley and Yue (1970) convergence in a mean squares sense, 

Tse and Anton (1972) consistence in probability. Tse (1978) intro-

duces a measure of identifiability based on the following. For a 

certain identification method, the corresponding identification error 

is EN, where N is the number of observations. The quantity EN is 

then a probabilistic function of ~ - ~· By bounding EN 

above by ~. and below by .!:li• identifiability conditions can be 

derived by studying the asymptotic behaviour of EN and .!:li for N + 

00 • A resolvability function is introduced wh:ich describes these 

bounds completely. In this way a quantitative measure of identifi

ability is established, which measures the degree of resolvability 

between parameters. The asymptotic behaviour of this function gives 

necessary and sufficient conditions for global identifiability. 

Another attempt at studying (global) identifiability was made by 

Bellman and Astrl:Sm (1970). Here a model is said to be (globally) 

identifiable if the identification criterion has a unique global 

minimum. This is interesting as the notion of "true" parameters is 

not used in this definition. The identifiability property is there

fore an attribute of the specified model. This definition leaves 

much more freedom for the actual system being studied, as it allows 

also lower order models. 

For analysis of identifiability conditions for systems (with feedback 

control), Ljung, Gustavsson and Sl:Sderstrl:Sm (1974) introduce, rather 

formally, the following quadruplet of notions: 

a) the experimental condition X, referring to the manner in which 

the signals are determined 
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b) the stochastic system S, given by the general form: 

(2.28) 

where the output vector Yk and the random variable ek are 

vectors of dimension ny and the input vector u(k) bas dimen

sion nu. 

c) the model structure µ(8). The model structure is obtained by 

parametrizing the functions G(z-l) and H(z- 1) in a suitable 

manner. A model µ(!) is then given by 

y = G (z- 1)u + H (z- 1)e k µ k µ k (2.29) 

d) the identification method J, The parameter estimates at time 

.N for given s, µ,J and X are denoted by !<N;S, µ,J,X). 

With this quadruplet of notions the following identifiability notions 

are given: 

I The system Sis said to be system identifiable [SI(µ,J,X)] under 

µ,J and X, if: 

w.p.l as N + oo (2.30) 

where 

DT(S, µ) = f!I G (z) = G
8

(z) and H (z) = H
8

(z) at every z} 
µ µ (2.31) 

i.e. the set of parameter estimates ]., for which the transfer 

for process and model are equivalent. This set may contain nu

merous parameters, including e.g. models with pole-zero cancel

lations. 

II The system S is said to be strongly system iden~ifiable 

[SSI(J,X) ], under J and x, if 1t is SI(µ,J,X) for all µ such that 

l>r(S,µ) is non empty. 

III The system S is said to be parameter-identifiable [PI( µ,J ,X)] 

under µ, J and X if it is SI( µ,J ,X) and the set Dt(S, Il) con

sists of only one element. 

Note that a system may be system identifiable, but not parameter 

identifiable for a certain type of model. An example is when too 

high order models are used so that pole-zero cancellation in µ(!) may 

occur; cf. also chapter 7. 
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For the class of prediction error estimators, Ljung (1976, 1979) de

rives conditions for consistence and hence for identifiability. We 

will consider consistence for ·different identification methode in 

chapters 3 and 4. 

2.6 Identification protocol and model validation 

After having touched upon some of the crucial aspects of system iden

tification, it is now possible to discuss the relation of those as

pects within the identification protocol. Three main phases can be 

distinguished in the protocol: 

A) preparation 

B) estimation 

C) validation 

In the preparatory phase A, the prerequisites of the estimation phase 

should be checked: 

Al) Check of time invariancy. For proper model building, one 

should choose between time-invariant and time-variant models. 

Based on possible a priori knowledge, by careful (visual) 

inspection of the data or applying time series analysis rout

ines (off-line) for detection (and correction) of trends or 

drift, one can deelde for time (in)variancy of the models to 

be used. 

A2) Check of linearity. The use of linear models greatly simpli

fies the estimation. Also here, based on a priori knowledge, 

and analysis of the measured data (e.g. Rajbman's linearity 

measure, cf. Rajbman and Chadeev (1980)) one should decide 

whether linear models are admissible. If the process is ex

pected to be non-linear, it is worthwhile considering the 

possibility of linearizing in a certain working point, if the 

use of the model is restricted to the vicinity of this working 

point. 

A3) Check or choice of input signals. The frequency content of 

the input signals should cover the frequency range of the 

process. A "high" frequency process is hard to identify by a 

"low frequency" signal. For reliable results "persistently 
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exciting" input signals are required; cf. Ljung {1971), i.e. 

the input signals should excite all of the (relevant) modes of 

the process. In general a "white" noise input signal is very 

attractive as it covers the wbole frequency range, but is 

physically not realistic. In many cases, it is not permitted 

or quite impossible (e.g. in some biologica! processes) to 

influence the signals of the process in .order to improve the 

"identification quality" of the input signals. For these 

cases it is good to keep in mind that (as always) the identi

fication results are dictated, c.q. limited, by the type of 

input signals used; cf. Rooijakkers (1982). In some experi

mental circumstances it is possible, within some ma'rgins, to 

select the (type of) input signals. In such a case one can 

choose an "optima!" test signal. For a survey of this topic 

see Mehra (1974, 1981). 

- Another point is that the type of (optimal) input signals 

used for identification should cope w1 tb the type of input 

signals of the model wben applied within the context of the 

intended use of the identification results. This could 

otherwise cause problems if a linearized or a (deliberately) 

lower order model is used. 

- Data should be check.ed for damage such as outlyers, missing 

data points, parts with excessive noise, pertinent distur

bances etc. 

- The choice of the sampling rate is another point of inter

est, as it can also be a trade-off between accuracy/relia

bility and costs/technical limitations. Aliasing effects 

should be avoided; cf. also Goodwin and Payne (1977). 

A4) Check of correlation of noise. The prerequisite that the dis

turbing noise and input signals are uncorrelated should not be 

discarded, as it can cause inconsistent estimates. 

AS) Choice of model. The model should be chosen with its intended 

use in mind. Usually this will be diagnosis or control. This 

is a very important point and it should be stressed here, as 

the intended use completely dictates, in principle, the extent 

and form of the model. A good understanding of the intended 

use is a great help in choosing a model structure. . For con

trol, several types of synthetic models may be adequate (even 
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lower order models). The choice then depends on mathematical 

attraetiveness of the description and suitability for estima

tion routines. Also the possibility of incorporating available 

a priori knowledge in the model can play a role. 

In the estimation phase B, a choice should be made of existing esti

mation , routines and order tests. The availability of software for 

those routines can play a role. The use of a general - interactive -

computer package for selection of the appropriate routines can be 

very helpful; cf. Lemmens and Van den Boom (1977), and chapter 6. 

The model validation phase C is perhaps the most difficult one. It 

determines whether a model should be accepted or not. A model which 

bas been chosen in the preparatory phase A can be rejected at this 

stage. If the model is rejected, one should proceed to the first 

phase and start the whole procedure again. In investigating model 

(in)adequacy several aspects are relevant: 

Cl) Cross:..validation. The confrontation of the obtained results 

from one set of data with the results from another, independent 

set of data is worthwhile. Also the use of different pa.ramet

rizations and the check of their consistence can give inform

ation. 

C2) Check of residuals. The residuals should usually be white and 

not contain signals such as peaks, sines etc. 

C3) Consistence with a priori knowledge. The confrontation of the 

properties of the modet with possibly available knowledge of 

the process can give insight. Also other types of input sig

nals can be applied to the model and the resulting output sig

nals can be compared with known behaviour of the process in 

similar circumstances. Usually, if possible, it is wise to 

investigate the sensitivity of the identification results to a 

change of the type of input signal. 
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2.7 Conclusions 

In this chapter, we have discussed the most important aspects of 

modelling in relation to identification. We have given several types 

of parametrization of synthetic models, which will be the basis for 

the discussion in the following chapters. We have discussed aspects 

of choosing a suitable parametrization and aspects of model valida

tion. It will become clear that for almost all aspects that we have 

reviewed, we have not given strict, hard and fast rules on how to 

proceed, but rather we have presented how these aspects are inter

related and what possibilities exist. The main conclusion can there

fore be that modelling and validation cannot be mechanized complete

ly, but that good engineering intuition and experience are needed for 

handling practical problems. Nevertheless, the majority of papers on 

modelling and identification deal with the pure estimation phase 

{phase B in paragraph 2.4). This aspect in the whole 

identification protocol is of ten the least cumbersome, as nowadays, 

good estimation packages exist. A practical experience is therefore 

that a relatively small amount, say approximately 15 per cent of the 

time devoted to, or the costs spent on modelling, estimation and 

validation is for the estimation itself, which still means, of 

course, that the utmost care has to be given to the estimation phase. 
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CHA.PTER THREE: 

EXPLICIT LEAST SQUARES ESTIMATORS 

3.1 Introduction 

The basic principle of the 'least squares method was introduced in 

1795 by K.F. Gauss for the estimation of the parameters of planetary 

orbits. In the last few decades the method has become popular for 

the estimation of parameters o~ earthly dynamica! systems based on 

observations of input- and output signals. The broad application was 

a.o. stimulated by the availability of digital computers for the -

sometimes - excessive amount of number crunching. 

At this moment several methods based on the least squares principle 

are available. Some methods, like the instrumental variable method; 

were originally proposed outside the framework of the least squares 

principle, but finally it turned out that they also belong to this 

class. 

This chapter is set out as follows. In paragraph 3. 2 the weighted 

least squares estimator will analysed and the appropriate signal- and 

process definitions will be given. In paragraph 3.3 the weighting 

matrix will be considered in more detail and, as a consequence of 

this, we will distinguish between the "correlative" and the "filter-

3'.' type of weighting matrb::. This distinction is important as it 

will yield two elements of the concept of three basic operations by 

which the estimation methods will be classified later. The combina

tion of these two basic operations results in the set of (explicit) 

instrumental variable estimators, including the Tally estimator. 

Also the third basic operation of estimation schemes will be dealt 

with: model extension. In paragraph 3.4 the combined application of 

the three basic operations are reviewed and a general scheme for 

explicit estimators will be given. Known explicit schemes like the 

implicit quasi linearization (IQL) and the suboptimal instrumental 

variable estimator (SIV) fit into this scheme. In chapter 4, this 

concept of three basic operations will be used for 

classification of the recursive estimators. Schemes like the approx-
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imate maximum likelihood (AML), the extended matrix method (EMM) and 

combined schemes like IV-AML will also fit into this genera! scheme. 

In paragraph 3.5 the maximum likelihood estimator will be dealt with 

briefly, due to its relation with the AML scheme. In paragraph 3.6 

the accuracy of the estimators is discussed, based on the Cram~r-Rao 

results. 

3.2 The ordinary least squares method (LS), the weighted least 

squares method (WLS) 

Consider the following conceptual description of the process P. We 

assume that P can be described by the following input-output rela

tion, cf. figure 3.1 

y :-------------------~~-----------------: l 
---~, _,... bo+ B(Z-1) + ' 

1 1 
1 1 
1 1 
1 1 
1 1 

: p : t _____________________________________ J 

ï-------------------------------------ï 
1 1 
1 1 

1 1 

lM l 
L------------------ ------------------~ ~ 

! 

Fig. 3.1 Process, model and disturbing noise 

-
Y = ~(u,y)6 + e (3.1) 

-t -

with 

(3.2) 
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eT • (b , ••• ,b , -a , ••• ,-a ) 
-t 0 p 1 . qt 

(3.3) 

Sl(u,y) 
(3.4) 

Bere Yk is the output sample at the k-th instant of time. The 

vector e is denoted as the equation error, and ..!!t denote the true 

parameters of the dynamical system. A corresponding output noise 

nk, i.e. the noise considered is concentrated at the output 

of the proeess,can be defined implicitly as: 

where XJt is the undisturbed output. The relation between the equa

tion error ~ and this eorresponding output noise nk can be giv

en; cf. eq. (3.16). 

The input-output relation can also be written in polynomial form: 

(3.6) 

where the polynomials are defined as: 

(3.7) 

For notational simplificiation, further on we will omit the argument 

z-1 in the expressions for the polynomials. 

For asymptotic stability of the signals involved, it is assumed that 

the roots of zq[l+A]t and zp[b
0
+B]t all lie inside the unit circle 

of the complex z-plane. We assume here that a part of the reiation

ship between the measured input-output samples may not be represent

able by the dynamical part of the difference equation (3.6), but that 

some uncertainty can be admitted. This may be interpreted in differ

ent ways: 

a) system noise: insufficient modelling of the dynamieal part 

(non-linearities, too low order, etc.); 
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b) measurement noise: contaminated measurements of the output 

signal, poorly observed input signals. 

The parametrization of the quantity ek can be done along the lines 

indicated in chapter 2, where MA, AR and ARMA descriptions were giv-

en. 

lf a delay is present in the system, it is wise to shift the input 

samples in time so that the description (3.6) is valid. For the 

determination of this delay, in case it is unknown a priori, see 

chapter 7. 

The generalized model M which is built will be fed by the measured 

signals Uk and Yk as indicated in figure 3.1. Based on N observ

ations of input and output signals, an estimate .!, of ..!!.t using a 

least squares cri ter ion is found. The input-out put descript ion of 

the model is written as: ,.. 
z. = n(u,y)! + _! (3.8) 

where ! represents the parametrization of the model set. It is assu

med that ..!!.t lies inside this modelset. 

A quadratic,.. error criterion is defined, based on the estimated equa

tion error.!,; which will be called residual. 

1 ~T~ (3.9) 
V•--ee 

N-q --
Minimizing this with respect to !• we obtain the least squares esti-

mator in an explicit form: 

~s • [nT(u,y)G(u,y)]-
1 

nT(u,y)z. (3.10) 

In figure 3.2 a schematic diagram of this estimator is given, where 
~ 

the signals, the choice of model involved and the quantity !. used 

for the criterion (3.9) are shown. 

In many cases it will be desirable that the estimators are unbiased, 

at least asymptotically. This aspect is given much attention in 

literature. It seems reasonable that an estimation algorithm should 

aim at the "right" parameter value, but in the case of some adaptive 
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control schemes, it is not always necessary to provide the controller 

with unbiased estimates. In such cases, simple and fast estimators, 

which may have bias, e.g. LS estimators combined with minimum vari

ance control, can often be used fruitfully. Moreover the concept of 

"right" parameter values is doubtful. We can only think of "best" 

parameter values within a certain class of models, given a cert~in 

minimization criterion. Comparison of estimated model parameters 

with process parameters is only feasible in simulated experiments 

where model-to-model estimations are being performed. 

! 

p 

estimator 

Fig. 3.2 Least squares estimator 

The asymptotical bias can be investigated by taking the probability 

limit of ],and using Slutsky's theorems, cf. appendix V: 

plim [!] • ~+ plim ((OT(u,y)O(u,y) r\~·T(u,y) .!,] • 
N+oo N+oo 

"~+{plim (~ OT(u,y)O(u,y) ]}-lplim [N~q OT(u,y)_!] 
N+oo -q N+oo (3.11) 

If 

I plim [N:q OT(u,y)Q(u,y)] " r 
N+oo 

II plim [N:q OT( u,y).!,] " 0 
N+oo 

r to non-otngular] 

(3.12) 
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then plim (],] = ~, so the estimator is asymptotically unbiased 

(consistent). Condition I assures that the measured signals ..!;!. and z 
contain suf ficient degrees of freedom to make the estimation meaning

ful. This condition is related to the requirement of persistently 

exciting input measurables. Condition II gives insight ;into the 

required colouring of e for obtaining consistent estimates: 

'l' (0) 
ue 

'l' (1) ye 

(3.13) 

If ..!;!. and ~ are independent, which also implies that the two signals 

do not both have a non-zero mean value: 

v i (3.14) 

The same holds for ~· the undisturbed part of the output signal of 

the process: 

0 0 

From this relation it can be observed directly that the estimation of 

the AR process parameters will cause complications, as the right-hand 
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term of eq. (3.15) is usually not zero, except for very specific 

colouring of ek, which will be investigated soon. If a pure MA 

parametrization of the process dynamics is used, then consistence of 

the estimates is guaranteed, if ( 3 .14) is fulfilled. This implies 

that the various techniques for obtaining consistent estimates, which 

will be dealt with in this chapter and chapter 4, are not needed. 

This is an interesting advantage for MA models. The drawback is that 

a greater number of parameters is necessary for MA models, leading 

often to approximated models, with, in practice, a limited number of 

parameters. 

parameters. 

This will also cause inconsistence of the estimated 

A relationship exists between the process noise ek, which can be 

seen from figure 3.1, and an equivalent output noise nk• 

ek • [l+A]nk (3.16) 

This can be interpreted as an input-output relationship where ~ is 

the input signal and nk the output signal: 

ek~~ (3.17) 

If {ek} is a white noise sequence, then Vne(i) = O; i > o. 
This means that in this case 

plim [w:h- 1lcu,y)e] = o 
N+co -q -

(3.18) 

so that 

plim [!] = ,!: 
N+co 

(3.19) 

The requirement imposed on nk is rather severe: the output noise 

nk is an autoregressive (AR) type of filtering of a white noise 

sequence, using the AR parameters of the process as AR parameters of 

the noise filter. This will, of course, seldom occur in practical 

situations, hence the simple least squares estimator (3.10) is usual

ly asymptotically biased. 

By using a weighting on the measurements, we can arrive at the 

weighted least squares estimator. Define the weighted error criter

ion: 

v = 1 ~T ~ 
--e We 
N-q - - (3.20) 
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where W is an appropriate weighting matrix of dimension (N-q)x(N-q) 

W = [ ~1l • • • :l(N-q) 1 (3.21) 

w ·w 
{N-q)l (N-q)(N-q) 

Minimizing (3.20) with respect to !• yields the weighted least squar

es estimator 

(3.22) 

It will be obvious that the properties of this estimator highly de

pend on the choice of the weighting matrix w. 
For the estimator (3.22), the probability limit can be given: 

plim 
N+m 

where 

bias. 

~S] = !t+ plim~N~ rr(u,y)Wll(u,y) J-1 plim[N:q SlT(u,y)W!:,] 
N+co N+co (3.23) 

the second term of the right hand side gives the asymptotical 

In the next paragraph, it wil! be shown that this can be made 

zero by the proper choice of w. 

3.3 Development of the concept of three basic operations 

In this paragraph we will introduce three basic operations related to 

the least-squares estimator. The first two operations, filtering and 

correlative weighting, will be derived from the weighting matrix, as 

already encountered in the previous paragraph. The third basic oper

ation, model extension, will also be discussed. 

In the forthcoming paragraphs the possible combinations of these 

three basic operations will he discussed and the existing, explicit 

estimation methode will then appear to be constructed by using one or 

more of these three operations. 

3.3.l The filtering type of weighting matrix 

Consider the (N-q)x(N-q) weighting matrix 

W = R- 1 (3.24) 

where 
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(3.25) 

We will also assume an ARMA parametrization for the signal e in the 

following way: 

[l+C ]t 
e " -- ~ 

k [l+D] k 
t 

(3.26) 

wbere ~k represents a white noise sequence, and 

[l+c]t • [l+clz-1 + ••••• + csz-s]t l 
[ ] [ l -r] l+D t l+d1z- + ••••• + drz t 

(3.27) 

In appendix I it is shown that a good approximation for a-1 can be 

given by(if there are no poles and zeros on the unit circle): 

a-1 • D'TD' cr.. 2 (3.28) 
t t ~ 

where the matrix D~ is related to a finite polynomial [l+D' ]t of 

the pure autoregressi ve parameters, approximating the ARMA modelling 

of the noise filter: 

[l+D] 
" t 

[l+c ]t 
(3.29) 

The matrix D~ is then a (N-q)x(N-q) lower triangular band matrix. 

D' • t 

1 

di 0 

l.~ 
v~ d' d' 

v 1 1 

containing the AR parameters of the filter defined by (3.29). 

(3.30) 

The matrix D~ causes a filtering of the signals in the matrix Sl(u.y). 

yielding '2(;;,y): 

with 

;;k"' ~+diuk-1+. • '• • • • • • .+d~~-v ] 

Yk • yk+diyk-1+ •••••••••• +d~k-v 

(3.31) 

(3.32) 

This filtering can only be performed if the AR noise parameters are 

known a priori. The estimator (3.22) can now be written as: 

(3.33) 
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For this weighting the probability limit is: 

Now 

A l T - - - - ]} 1 r l T - - ] plim [!] "..!!t+ {plim[N-q Q (u,y)Q(u,y) - plimtN-qn (u,y)1 
N+m N+= N+m (3.34) 

rl T--] plimLN-q Q (u,y)1 • .Q 
N+m 

(3.35) 

Consequently, the estimator (3.33) is consistent. 

Analogously to the common least squares estimator, a schematic dia

gram of this estimator can be given; cf. fig. 3.3, where the known 

filters F
1 

are used to perform the filtering given by eq. (3.32). 

p 

estimator " -----l u._ ____ "" 

Fig. 3.3 Schematic diagram of a least squares estimator 

with weighted filtering 

This estimator, using known noise parameters, is usually referred to 

as the Markov estimator. For models with only MA parameters, it can 

easily be proved that this estimator is unbiased for all N and that 

it yields a minimum variance estimate; cf. Goldberger (1964), 

Eykhoff (1974). 

So far we have assumed that the filter parameters are known, so that 
~ 

the filtering will yield white residuals .f• The variant ,where an 
' 

approximation or estimation of the AR filter parameters ~ is used 
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also belongs to the class of filtering type of weighting. This is 

necessary when exact knowledge about these parameters is lacking. 

These estimates can be obtained in an iterative estimation scheme 

where the available data are used several times successively, usually 

off-line. The results from a previous iteration are then used in the 

next iteration. In the case of filtering, the estimation results of 

noise i>arameters in a previous run are then used as filter paramet

ers in the next run, which yields new estimates of noise parameters. 

Clarke (1967) describes a method where the estimates d'of !'t are 

used to filter the measurables ~ and z along the lines given in 

(3.32). This method is known as the generalized least squares esti

~ (GLS). The outline of the method is as follows: 

ith iteration: 

a) from the previous iteration i-1, the estimate ]_i-1 and 

the filtered signals ii-l and ~i-l are avail

able. 

b) perform 
··1 ! . 

(3.33) using 

c) generate the sequence 

u ~i-1 "'1-1 "'1-1 ?.i 
,::. = 1.. - O(u ,y ) 1:1 

d) estimate !' i by1-~ 

ii = -[~iT~i )-1 ~Tii 

where 

~i 
e "' 

~i-1 

e) f i 1 ter -i-1 
u and -i-1 z 

ii and ii• 

and and yielding 

(3.36) 

(3.37) 

(3.38) 

by yielding 

f) go to a) and proceed until convergence of the estimates oc-

curs. 

For starting this scheme the ordinary least-squares estimator can be 

used. Usually a first order model for the filter [l+D'] is used, 
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as from step e) in the iterative scheme after a few iterations, a 

higher order modelling of the noise filter occurs. 

Another version of this algorithm also exists, where no higher order 

modelling of the noise occurs after several iterations. In this 

version, in step e, the unfiltered signals u and y are filtered by 

the filters defined by the estimated AR noise parameters of the pre

vious iteration. A higher order noise filter model can therefore 

then · be necessary for obtaining reasonable noise whi tening. The 

first version is capable of modelling higher order noise filters 

after some iterations, or modelling filters which are not purely 

autoregressive. Hastings-James and Sage (1969} proposed a recursive 

(and approximate) form of the GLS, which will be dealt with in chap

ter 4. 

Stoica and SHderstr6m (1977) proposed a GLS variant where MA noise 

parameters are estimated. Introduce: 

[ ... i-1]"'1-1 1+1,, yk 

"1.-2 
~ ] (3. 39) 

The MA noise parameter estimates are being used here for AR filtering 

of the measured signals, whereas in the scheme of Clarke the AR noise 

parameter estimates are being used for MA filtering of the measured 

signals; cf. eq. (3.32). Starting from 

[l+A]yk = [b0+B]~ + (l+c]~ (3.40} 

the following model will be formed by AR filtering of the signals 

~i-2 and y1- 2; cf. eq. (3.39): 

[1+!1 ]~-l = [b!+fi1 ]~-l + Î~-l (3.41) 

with 

"ti-1 
[l+c ]t 

~ k i-l 
TT [1+ej J 

(3.42) 

j=l 

If 
~ 1-1 bas nearly white properties, ç;k the ARMA process 

parameters will be estimated consistently, allowing proper estimation 

of the MA noise parameters. 
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A separate estimator is being used in all these variants to obtain 

'.tl 
the desired filter parameters using the estimates ~k' generated by 

the estimator of the process parameters. Estimation schemes, which 

use in one iteration (or in one recursion step, as will be indicated 

in chapter 4) different estimators for different parameters will be 

denoted by bootstrap estimators. The results of one estimator is 

hereby used by the other estimator. 

'.tl 
Due to the fact that only the output signal ~k of the (conceptual) 

noise filter is available, the corresponding schemes of the 

estimator are very simple; cf. fig. 3.4 for the two cases where AR 
-1 

or MA noise filter modelling is used. Here .;k denotes the corres-

ponding input of the estimated noise filter. 

AR: -1 ç (3.43a) 

MA: (3. 43b) 

t·1 

estimator estimator 

~i 

~---'------- -j 

~ 

Fig. 3.4 LS estimators for AR or MA noise parameters. 

A straightforward extension of the concept of GLS is to combine the 

parametrization of the noise, as used in the schemes considered. 

Such an ARMA modelling for GLS has not yet been proposed. For an

other (recursive), estimator the extended matrix method (EMM), such 
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an ABMA modelling for the noise has been used; cf. paragraph 4.4.4. 

3.3.2 The correlative type of weighting matrix 

Consider the (N-q)x(N-q) weighting matrix 

W = N~ ZZT 

The loss function is then 

. v 1 ~T T~ 
•---eZZe 

(N-q)2 -

(3.44) 

(3.45) 

The estimator with this type of weighting is then, cf. White (1971) 

and Van den Boom (1976): 

(3.46) 

rlz if the matrix N-q is non-singular for all N not too small, then 

! - (ZT0)- 1ZTz (3.47) 

It can easily be shown that the minimum of this weighted loss func

tion is zero. To this end recall ê and substitute (3.47) 

"' T T .& " z - n! = z - oc z nr 1z z 

Substitute this in (3.45): 

v - _1_ lz.T-z.TZ(OTZ)-lnT]zzT[z,-riczTnr1zTz] = 
(N-q)2 

"' _l_ <lz-z.Tz)(zTr-zTz.) = 0 
(N-q)2 

As V is a quadratic scalar, this means that 

1 T~ 
N-q Z ~ = .Q. 

For asymptotic unbiasedness the following two conditions 

fulfilled: 

I plim [.,.,,!...,zTn] = r r non-singular ] N+oo N-q 

[___!_ ZTe] • 0 II plim 
N+oo N-q - -

(3.48) 

(3.49) 

(3.50) 

should be 

(3.51) 

These two conditions are of the same form as already seen in (3.12) 

and (3.35), but they are also the conditions that Z has to fulfill in 

order to be an instrumental variable (IV); cf. Wong (1966), and Wong 
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and Polak (1967). These two conditions for Z indicate that Zk 

should be a quantity that is correlated with the process signals uk 

(and hence Yk) but uncorrelated with the disturbances ek• 

A usual choice for Zk is the output of a (fixed) filter whose input 

is the process input Uk• The parameters of such a filter can be 

chosen·rather freely. Often (delayed) estimates of the process para

meters are used to generate the instrumental variable, which can then 

be seen as estimates of the undisturbed output signal. This requires 

that a few iterations have to be done. 

Wouters (1972) proposed the use of delayed process inputs and Gersch 

(1970) the use of delayed process outputs. Stoica and Söderström 

(1979) used a combined scheme where both delayed inputs and outputs 

were used. In appendix II we investigate the feasibility of the use 

of such IV quantities and conclude that the delay should be chosen 

with care, as too large a delay can give numerical problems and toó 

small a delay can violate the consistence demand for the choice of 

IV quantities. 

Another possibility for choosing IV quantities, is making use of an 

extra signal, if available, which fulfills condition (3.51). Such a 

signal consists of an extra measurement with another independent 

measurement noise or a signal which constitutes the main characteris

tics of the measured signal, e.g. (an average over) signals measured 

previously over comparable "batches" or a normalized reference signal 

(e.g. in biomedical applications). This class can be widely extended 

to standard deterministic signals which are already known as a basis 

for analysis, e.g. sine/eosine, orthogonal functions or Walsh func

tions. For a more detailed description of this class of estimat

ors, using so-called template functions, cf. Eykhoff (1980) and 

Eykhoff, Van den Boom and Van Rede (1981). 

In fig. 3.5, the IV estimator is shown schematically. Here the IV 

filters ié 1 and t2 are introduced, which produce the above mentioned 

IV quantities using the input- or output signal or external signals. 

The estimator block is more complicated than in the previous figures 

as it processes the input-output measurables and the IV quantities. 
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external 
signa& 

p 

1 V estimator 

Fig. 3.5 Simple IV estimator 

3.3.3 The model extension 

As already mentioned, the estimator (3.10) w:l.11 usually be biased due 

to the non-white equation error ~· 

problem can be tackled as follows. 

1 " 
[l+A]yk = [b0 +B]uk +["'I+D]~ 

By enlarging the model, the bias 

Consider the follow:l.ng modelling: 

(3.52) 

~ being a white noise sequence. Multiplication w:l.th [l+D] yields: 

with 

[ l+A' ] • ( l+A ]( l+D ] 

(b'+B'] = [b +B j[l+D] 
0 0 

(3.53) 

] (3.54) 

Estimation of the enlarged parameter vector (b', ••• ,b', ,-a1•, ••• ,-a',)t 
0 p q 

will be consistent if (3.53) has a white residual error~· An 

estimate of the original parameter vector (b , ••• , b , ,-a1 , ••• ,-a , ) 
0 p . q t 

can be found by 

nomials [ l+A' ] 

determining the common factors of the estimated poly-

and [b~+B' ]. This can give problems as, due 

to the uncertainties in the estimated parameters, the "common" poly

nomials in [l+A'] and [b~+B'] are not exactly equal but close 

to each other. The problem of determining the common factors in this 
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context has been studied by several authors; cf. Stsderstr<Sm (197 5) 

and Stoica (1976). 

The above described method of estimation of process parameters using 

an over-parametrized model is of limited interest in practice, due to 

the (excessive) amount of computation involved. For unknown model 

orders~ however, the use ·of over-parametriz.ed models and determina

tion of the common factors give a good· and reliabl!il. order testing 

method; cf. chapter 7. 

If we consider the model (3.53) in somewhat more detail, we come to 

the following sehematic diagram; cf. eq. (3.54) and fig. 3.6a, where 

M1 and M2 represent the MA and AR parameters and M3 the common fac

tors. 

p 

© © 

Fig. 3.6 LS Estimators with model extension 

If we start from fig. 3.6a, it is easy to arrive at fig. 3.6b, as we 

are dealing with linear filters. Nevertheless there is a difference. 

In the case of fig. 3.6a an extended ARMA model of the process para

meters is constructed, whereas, in the case of fig. 3.6b, a model of 

the noise is constructed. This means that these noise signals should 
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also be fed to the estimator block as indicated. These noise signals 

are not available, so they should be generated using estimation res

ults of prior iterations. For a recursive estimation scheme, this is 

qui te straightforward, as during the recursion, the estimates of 

these noise signals can be made available. This will be dealt with 

in detail in chapter 4. 

A more general representation of the dynamical characteristics of the 

noise is the ARMA model 

(l+D ]ek = [l+c ]~k (3.55) 

This means that·the model block M3 in fig. 3.6b bas to be split into 

two parts, as will be indicated in some of the forthcoming schemes. 

3.4 General scheme for explicit estimators 

In this paragraph we will present a comprehensive view of existing 

explicit estimation methods based on the classification according to 

the three basic operations. In figure J.7 a general diagram is giv

en, which presents the different explicit methode as particular 

cases. In table 3.1 these methods are summarized. They are subdivi

ded into levels of complexity 0, 1 and 2 according to the number of 

basic operations involved. The estimators belonging to the levels 0 

and 1 have been mainly dealt with in the previous paragtaph. The 

estimator which utilizes model extension - the over-parametrized 

least squares - is listed in the table for completeness, but is not 

important as an explicit estimator. For a recursive scheme, this 

principle is attractive, yielding the important Extended Matrix 

Method estimator (BMM.). 

The estimates with combine two of the three basic operations discus

sed in the previous paragraph will be dealt with in this paragraph, 

where they represent existing explicit estimation schemes. ·These 

combinations are: 

filtering and instrumental variable 

filtering and model extension 

The third combination, instrumental variable and model extension, has 

not been proposed as an explicit scheme. We will meet this combi

nation among the implicit estimators in the next chapter. 
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p 

IV estlmator 

Fig. 3.7 General diagram for explicit estimators 

3.4.1 Filtering and instrumental variable combined 

Wong (1966) showed that the estimator 

ê " [nT(u,x)rln(u,y) ]- 1 nT(u,x)rlz (3.56) 

is optimal with respect to its behaviour of the covariance for large 

N. This estimator, nevertheless, is only of theoretical importance, 

as the undisturbed output signal Xk is not available, and the co

variance matrix R is usually not known. Therefore an approximated 

but usefnl version is given by estimator (3.57) where a model output 

zk is used as an estimate for the Undisturbed process output Xk• 
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Method Model signal filters Instr. Var. filters 

~ M2 M3 Fl F2 4>1 4>2 

0 Least Squares [S +B] [i+P.] - - - - -
0 

1 Generalized a) ['6o+B] [i+.A] - [i+n] - - - Separate 
Least Squares estimator for 

[l+fi] 

b) [b
0
+B] [i+A.] - [1+êr1 - - -

" for [i+t:l 

1 Instrumental a) f ixed -
Variable ['6 +i] [1+.A] - - - b)[b +Ji] -

0 0 -- -
[1+.A] -

c) delay -
d) - delay 

e) delay delay 

[îi •+S' ] [i+A'] 
common factors 

1 Least Squares, - - - - - in M1 and M2 overparametrized 0 

2 IQL/AML a) [S1+81] [i+.A.1] [l+êi] [1+êi-l] -l - - -0 

b) [S1+8 il [i+.A.1] [l+êi] [1+êi-l] -l [1 +î>1-1] - -
0 

[l+Di) ['6 +ii-1 l 
2 Suboptimal IV [S1+81] [i+.A.1] [1+n1-1] 0 separate - -

[i+A.1-1] 
-

0 estimator for 
[1+6] 

Table 3.1 



This estimator is called the suboptimal IV estimator. 

ê = [OT(u,z)DTDO(u,y)]- 1 OT(u,z)DTD.z. (3.57) 

Here also, estimates d' of the AR parameters of the noise filter 

are used to filter the signals zk, uk and Yk as an 

approximation for the weighting function R-1• 

3.4.2 Filtering and model extension combined 

In paragraph 3.3.1 we 'have argued that iteration of the solution can 

improve the estimates substantially. If we consider an MA descrip

tion after the i-th iteration: 

(3.58) 

i ~i 
we see that the product of the estimated terms [l+ê ] and ~ causes 

a non-linearity in the parameters. 

Schultz (1968) used a quasilinearization technique to estimate the 

[bo+B ]t 
denominator polynomial of the transfer function [l+A]t in a noise-

free experiment, which is a nonlinear estimation problem. Fuhrt 

(1973a, 1973b) applied this technique to the nonlinear estimation 

problem of (3.58). He presented his method, the Implicit Quasi-Line

arization (IQL), within the framework of maximwn likelihood estima

tors, but the method can also be presented within the scope of least 

squares estimators. The error is linear in the parameters ai and 

bi but nonlinear in the noise parameters Ci• Applying Gauss-

Newton technique for minimalization of 
~i+l 
i;k is then linearizing 

this equation around the solution of the i-th iteration. This yields 

an expression for the i+l-st iteration: 

This can be rewritten: 

"'i+l 
~ = 

[i+Ai+l] 

[l+êi] 

(3.59) 

[b~+l+:Bi+l] [l+êi+l] 

yk - -[1-+c--.Ai ...... ]-- ~- [l+êi] 
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Introduce: 

-1 l 
yk - [l+êi] yk 

-1 l (3.61) uk - [1+ai] ~ 

t- = 
1 ~i 

k [1+ai] ~ 
Equation (3.61) can then be rewritten as: 

-1 [bAi+l Ai+l ]-1 (A"i+l ]-1 [c"1+1 ]'é + 'é _ ~~ + ;1k+i yk = o +B uk - Yk.+ ~ ~ ~ ~ 
(3.62) 

Now define: 

-1 ---- -1 r- .,,.----- Ë1: YN-1 YN-q N-1 "N-s 

(3.63) 

and 

(3.64) 

so that (3.62) can be written in matrix form: 

t = ocû'1.Y1 • î:1> !i+1 + 1H1 

Minimizing 

yields 

V • 1 ti+l Tti+l 
If- -

!1+1 
- [oTcû'1.Y1.r-> oeû'1.Y1.r->1- 1 oTcû'1.Y1.r->t 

(3.65) 

(3.66) 

(3.67) 

Fuhrt (1973a) shows results whicb are good for a variety of simulated 

conditions. Due to the linearizing around the solution of the i-tb 

iteration, convergence is not guaranteed. Therefore he proposes a 

start up of bis method by using Clarke' s method, as explained in a 

preceeding section. 
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This method is rather time consuming due to the filtering operations 

combined with the extended matrix n(~i,;1-,'é-). Van den Hoven (1978) 

extended this principle of quasi-linearization to the more general 

models of the form: 

{3.68) 

Linearizing yields: 

[1+:6i] [l+DAi] 
~i+l i+l i+l i+l 
r;k " [i+A. ] -i yk - [S +B ] -- u -

[1+e J 0 [1+ê1J k 

(3.69) 

Define the following filtered variables: 

"'1 [i+6i] 
yk = [1+êi] yk 

"'1 
[l+Di] 

uk = 
[1+e1] ~ 

(3.70) 

~" 
1 ~i 

[1+ei] ç 
"i ç" 

1 "i 
[1+:61] ~ 

Equation (3.69) can then be written as: 

~ " [t!+l+:Bi+1 ]~ - [A.i+l ]Y!_ + [êi+l ]~ - [fii+l ]~ + ~ - ~+ t~+i 

(3.71) 
in matrix notation: 

(3. 72) 
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where 

"'1 "'1 cl "i 
n(u ,y .~ .~ ) = 

Minimizing the loss function: 

V = 1 ii+l Tti+l 
Fr- -

yields: 

"i "i 
~N--1---- ~-r 

(3.73} 

(3.74) 

:; i+ 1 T "'1 "'1 cl "i "'1 "'1 cl '"i ]- 1 T "'1. "'1. cl '"i ~ " " [ n ( u ,y , ~ , t ) nc u ,y , t , t ) o ( u ,y , t , t >.! 
(3.75) 

3.5 Relation with the Maximum Likelihood Estimator (MLE) 

Although an extensive treatment of the maximum likelihood estimator 

lies outside the scope of this chapter, it is interesting to discuss 

the relationship between the Maximum Likelihood Estimator (MLE) and 

the Least Squares Estimators (LSE). The principle of the MLE was 

al ready pointed out by Gauss (1809), also stating that MLE and LSE 

are two basic methods, closely related but independent. 

The MLE maximizes a likelihood function of a random variable x with 

respect to _!, whose probability density function is P(!_; !) ; ! being 

an unknown parameter. The likelihood function is essentially this 

probability density function. Fisher {1922) investigated the MLE and 

showed its favourable properties like consistence, asymptotic effici

ency and asymptotic· normality under very general conditions. 

AstrBm and Bohlin (1965} used the MLE for the estimation of paramet

ers of dynamic systems and showed the usefulness and reliability of 

the method. 
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As log likelihoodfunction we choose: 
A N ~ 

L = ln {P<11~.,!)} = l ln {p( ~ki~·!)} 
k=l 

~ 

(3.76) 

where !, is the model residual and is assumed 

random variable so that the probability density 

be written as a product of the probability 

to be an independent 
~ 

function p(!,j~.,!) can 
~ 

densities p(~il~._!). 

This can be achieved by proper modelling of the noise parameters. 

Maximization of L leads to the following equation: 

3 N " 1 = äë }: in{pakl~·!>} = .Q. 
- k=l 0=Îl 

(3.77) 

This equation is valid for any probability density function. In the 

literature the solution of (3.77} is worked out for a normal density. 

leading to: 

1 =--
2a2 

~ 

N"" 
. l ~ -

k=l 

N 
Nlna~ - '7' ln 211 

An estimate of a; can be obtained by putting 
~ 

3L 1 " 0 äat at" at 
yielding 

(3.78) 

(3.79) 

N 
a2 • .!. I ~2 (3.8o) 

N k=l 

Maximizing eq. (3.78) with respect to 0 is equivalent to minimizing 

V(!) .!. Ï !2 (3.81) 
N k•l 

where from 

:~ I!=! - 0 
(3. 82) 

the expressions for the estimator ê follow. 

Fora modelling of the noise with an autoregressive model [l+D]. the 
~ 

residual ~ is nonlinear in these parameters. This wil! also be 
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the case for a modelling with pure MA parameters. Due to such a non

linearity, linearization of the loss function V will be necessary: 

(3.83) 

where 

(av av ) 
~ •......• 30 

l n 
{3.84) 

a2v a2v 
ae1 aa

1 aa1 aan 

V" {_!) -
(3.85) 

a2v a2v 
aan aal în'6 n n 

Now several gradient methods can be used in order to find iteratively 

the estimated parameter vector ].. For a review of these possible 

methods; cf. Eykhoff (1974). Usually a Newton-Raphson algorithm is 

used; cf. AstrUm and Bohlin (1965), 

iteration is: 

The expression for the i-th 

(3.86) 

It can easily be shown that this reduces to the genera! expression 

(3.10) for least squares estimation if only process parameters are 

involved. In this case, the algorithm.(3.86) converges in one step. 

From this short review of the maximum likelihood estimator it wil.l be 

clear that this is a method which, in principle, is suited for any 

specific distribution but which, in practice, is discussed only for 

normally distributed signals. However, in this limited case it coin

cides with the least squares estimator. To this end it is necessary 

to choose such a type of model from which independent residusls are 

obtained. Generally, the minimization of the quadratic loss function 

leads to a non-linear problem due to the noise parameters encounter

ed. Iterative solutions are then necessary, such as Newton-Raphson 

schemes or the schema as proposed by Fuhrt or Clarke, to find the 

minima of this loss function. 
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It is a pity that a confusion can be noticed in the literature with 

respect to the use of the terms maximum likelihood estimators, ap

proximate maximum likelihood estimators and (weighted) least squares 

estimators. Usually these terms are used for situations where noise 

modelling is used, leading to the filtering concepts as treated be-

fore. Then no special attention is paid to the requirements of 

gaussian distribution with respect to the maximum likelihood method. 

It would give a clearer picture if the term (weighted) least squares 

estimators were used for cases where no special attention is paid to 

the distribution of the signal, i.e. when dealing with a distribution 

free method. 

3.6 The accuracy of the least squares and maximum likelihood. 

estimators 

For a process, which can be modelled by a (limited) number of MA 

parameters, useful expressions for the covariance of the estimate 

exist; cf. Eykhoff (1974). 

Starting from 

v=Ub+e 
.... -t -

The weighted least squares estimate is 

.i" [uTwu]-1 UTW!!_ 

If E ~} • Q. and !!. and ~ are mutually uncorrelated: 

EIS}" b 
l!;:. -t 

cov ~ " [ UTWU J- 1u TWE {!_ i }wu [ UTWU J-1 

(3.87) 

(3.88) 

(3.89) 

(3.90) 

For a Markov estimator the weighting matrix is the inverse covariance 

matrix of the noise: 

(3.91) 

then 

(3.92) 

The importance of this estimator lies in the fact tbat it yields an 

unbiased minimum varia.nee estimate. For tbis reason it is also the 

basis for the concept of the filtering type of weighting using 

(3.93) 
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For models where AR.MA parametrization bas to be used, no expres-

si ons for the covariance for fini te N are k.nown to us, nor expres

sions for the expectation of the estimate for finite N. 

Nevertheless the ideas with respect to filtered weighting, correspon

ding to a Markov type of weighting matrix, are for this type of 

modelling widely accepted, as they also yield consistent estimates. 

For consistent estimators, a lower bound for the covariance of the 

estimates can be given. This is the Cramêr-Rao lower bound (CRLB) 

due to Cramêr (1946) and Rao (1945). Introducing the Fisher inform

ation matrix J: 

J " (3.94) 

where L is the log likelihood function, we find the Cramêt'-Rao ine

quality: 

(3.95) 

AstrHm and Bohlin (1965) and Astr6m (1970) used this result for situ

ations where an AR.MA modèl is used for the process dynamics and a MA 

model for the noise dynamics. Costongs ( 1979) used the Cramêr-Rao 

lower bound formulas for the general model where the process dynamica 

and the noise dynamics are modelled by AR.MA models of the following 

form: 

(3.96) 

wbere tkAis assumed to have normal N(O,l) statistica. Introduce the 

variable ~k defined by: 

ti~l ~ • (l+A]yk - (b0 +B]°k (3.97) 

The logarithm of the likelihood function is; cf •. eq. (3.78): 
N 

L • constant - NlnÀ - ~1~ l ~ (3.98) 
v.2 k•l 

Taking the expectation of the second partial derivatives; cf. Appen

dix IV: 
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J = 

0 

Jbb Jba Jbc Jbd JbÀ 

Jab Jaa Jac Jad JaÀ 

J J J J J 
eb ca cc cd cÀ 

Jdb Jda Jdc Jdd JdÀ 

J Àb J Àa J ÀC J Àd J ÀÀ 

From eq. (3.100) it follows that 

JaÀ""' JbÀ = JCÀ= JdÀ"' JÀa= JÀb= JÀC= JÀ<i= O 

(3.100) 

(3.101) 

(3.102) 

and JH is given in eq. (3.99). Eq. (3.101) determines 16 sub
matrices in eq. (3.102). In appendix IV the computation of these 

submatrices is performed for normal distributions. As a re sult of 

this it can be stated that J can be computed if all the parameters of 

the polynomials [l+A]t, [bo+B]t, [l+C]t, [l+D]t and Àt 

are known and if the autocorrelation of the input signal uk is 

known. Consequently, in practical cases, this lower bound is not 

applicable without modification. From various experiments, cf. 

Costongs (1979), it has been shown that 

a) the use of estimated parameters instead of the true parameters 

does not affect the reliability of the approximated lower bound 

very much; 

b} the existing (recursive) estimation scbemes, which will be dealt 

with in cbapter 4, give estimation results with a quality which 

is very close to the (real) CRLB; 

c) the assumption of gaussian data does not.seem to be very crucial. 

Simulation with rectangular distributions gave comparable re

sults. 

These observations make the approximate CRLB a very useful tool in 

interpreting the estimation results of these methods. 
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From appendix IV it follows further that: 

0 

{{2r21 (1-j)} {42r11(i-j)+r33(1-j)} {r35Ci-j)} {r34{i-j)} 0 

J "' N 
{r55(i-j)} {r54(i-j)} ~ {_r53c1-j)} 0 

0 {r43Ci-j)} {r45(i-j)} {r44c1-j)} 0 

0 0 0 0 2N 
'1'2 

(3.103) 

where the correlation functions are defined as: 

wi.th: 

[b +B ][l+D] 
0 

(l+A](l+c] '\ 

[l+C] 

(l+D) '\ 

1 
:x:3,k" -~ 

[l+A] 

i,j = {1,2} ] 

i,j - {3,4,5} (3.104) 

(3.105) 

In order to gain insight into the accuracy of the different estimated 

parameters for various signal-to-noise ratios, we will assume that 

the input signa! is a white noise signa! and we will consider the 

different parameters separately. The matrix inversion in 
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cov § ;i. r 1 (3.106) 

causes interference of the different parameters. 

a. The A-parameters 

The covariance, when estimating only A-parameters, is given by: 

cov a ;i. 
1 (3.107) 

We can distinguish two cases 

a.l 

(3.108) 

This is the case for high S/N ratios, i.e. for rather undis

turbed output signals. Inequality (3,108) can be rewritten: 

cov (l ) (3.109) 

which means that the cov a will increase for increasing À2 

(3.110) 

This is the case for low S/N ratios, i.e. very disturbed out

puts. Eq. (3.107) is then: 

cov (l ) 
1 (3.111) 

N{r33(i-j) }ij 

which is constant for all À2, In this case the component of 

the process output in the signal Yk is no longer dominating 

for identification of the A-parameters, but the corrupting 

noise. 

b. The B-parameters 

The covariance, when estimating only B-parameters, is given by: 

À2 
cov ! " 

N{r22(i-j) }ij 

which is increasing for increasing À2 • 

(3.112) 
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c. The c- and Il-parameters 

The covariances, when estimating only C-parameters, or only D

parameters are given by resp.: 

cov .l ;i. 
l (3.113) 

cov ó ;i. 
1 (3.114) 

These lower bounds are constant for all À2. 

In figure 3.8 this behaviour for the different covariances is sketch

ed. In Talmon and Van den Boom (1973), this behaviour has already 

been presented, but based on simulation re sul ts. In chapter 6 we 

will present, in more detail, comparable results obtained from simu

lations with different estimation methods and confronted wi th the 

real and the approximated Cramêr-Rao lower bounds. From these simu

lations 1t can be concluded that, if all A, B, C, D parameters are 

estimated simultaneously, the above mentioned behaviour for separate 

estimation of the parameters will also occur. 

_ __..,_..,._ S/N 

Fig. 3.8 Typical behaviour for the covariances of the different 

parameter estimates as a function of the noise level. 



3.7 Conclusions 

In this chapter we discussed the explicit least squares estimation 

schemes and met ·the consistency problem of the common least squares 

estimator. Two basic conditions for consistence are mentioned; 

these conditions also coincide with the definitions which character

ize the class of instrumental variable estimators. Therefore a close 

link between the instrumental variable estimators and the least 

squares estimators can be found, and for several instrumental vari

able estimators proposed in the past the corresponding weighted loss 

function in the least squares sense is given. 

For the construction of consistent least squares estimators, three 

different approaches can be distinguished. 

A. the correlative weighting, leading to the instrumental vari

ables estimators. 

B. the filtered weighting, leading to filtered observation data. 

c. the model extension, leading to an extended parameter set. 

These three basic approaches can be used separately for tackling the 

consistence problem, but two or even three approaches can be combined 

within one scheme. This will be more apparent when we consider the 

recursive schemes in the next chapter. 

For the correlative weighting an instrumental variable has to be 

generated. This can be done by making use of the measured input or 

output signals or by making use of .an extra measurement. This gives 

the possibility of introducing extra (a priori) information. 

For the filtered type of weighting, a priori knowledge of the noise 

characteristics bas to be available. This can be obtained by apply

ing the type C approach, which is model extension, as already seen in 

the methods of Fuhrt and Söderstrljm. Now recursive methods are in

teresting as they deliver this wanted information· during the 

estimation process. 

The model extension is an efficient method for obtaining white resi

duals by filtering the correlated noise through the extended 

model. 
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The expression for the Cramêr-Rao lower bound for the variance of the 

estimated parameters was given. This lower bound is derived within 

the context of the maximum likelihood estimator. Due to the close 

relationship of this estimator with the least squares estimator, this 

lower bound is applicable for Gaussian conditions for the least 

squares estimators as well. 

For a general situation where ARMA process parameters and ARMA noise 

parameters are estimated, expressions are given which give insight 

into the behaviour of the covariance for different parameters if 

different signal-to-noise ratios are considered. This typical beha

viour shows a maximum value for the lower bounds for all parameters, 

except for the MA parameters of the process, whose variances continue 

to increase for decreasing signal-to-noise ratios. 
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CHAPTER FOUR: 

RECURSIVE LEAST SQUARES ESTIMATORS 

4.1 Introduction 

In the previous chapter the basic idea of least squares estimation 

bas· been considered. No attention was paid to requirements and prob

lems which arise when applying these techniques in practical situa

tions, like, for example, the need for permanent availability of an 

updated estimation result for control purposes, based on the already 

processed data samples,and the necessary a priori knowledge of stati

stica! properties of the disturbances for obtaining consistent esti

mates of the process parameters. 

In this respect, recursive estimators, as discussed in this chapter, 

are more practically applicable. Some of them are mathematically 

equivalent to explicit estimators; others are approximate verslons 

of explicit estimators, the approximation being made mostly for comp

utational reasons. For example, the recursive variant of the weight

ed least squares estimator usually starts without. knowledge of the 

noise parameters hut during the estimation, estimates of noise para

meters of increasing reliability become available for the necessary 

filtering. Thus, during the estimation process, this estimator 

shifts from a (non-consistent) common least squares to a (consistent) 

Markov type of weighted least squares estimator. 

The study of these types of estimators, however, is rather compli

cated as usually both model parameters and noise parameters have to 

be estimated simultaneously. For reliable estimation of the noise 

parameters, the corresponding input-output signals of the noise fil

ter would have to be available. But actually only approximated 

(=estimated) signals are available, based on previous estimates of 

the process parameters and previous estimates of the noise paramet-

ers. 

Due to this complexity, it is rather difficult to derive the proper

ties of these estimators for a finite number of samples. Therefore 
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in the literature the attention is focused on the investigation of 

the asymptotic convergence properties of such recursive estimators. 

For some estimators (which will be dealt with also in this chapter) 

the convergence cannot always be guaranteed; examples show that di

vergence may exist for such schemes. In such cases, the behaviour of 

the estimators for finite sample length has mostly been studied 

through practical examples and simulations. 

This chapter is set out as follows. In paragraph 4.2 some general 

notions and definitions related to recursive estimators are given, 

whereas the general classification of recursive estimators, based on 

the three basic operations which we have already met in chapter 3 

will be given in paragraph 4.3. In paragraph 4.4 we will discuss, in 

some detail, the different estimators which appear in the classifica

tion of paragraph 4.3. Finally, in paragraph 4.5, we will comment on 

the convergence properties of the estimators. 

4.2 The concept of recursive estimation 

In paragraph 3.2 we met the expression for the explicit estimator 

(4.1) 

The corresponding estimate is based on N samples, and is calculated 

after these N samples have been acquired. When collecting these 

samples, such a type of explicit estimator gives no intermediate 

estimation results. We can construct a recursive estimator which, 

after the acquisition of the new measurements (uk, Yk), updates 

the previous estimate ~-l' with k ' N. This i~plicit or 

recursive estimator yields results identical to the explicit form 

(4.1), if initiated appropriately; cf. Eykhoff (1974). 

l = ~k-1 + pk-l~(l+.!{Pk-l~rl(yk-~l-1> ] 

pk = pk-1 - pk-1~(1+.!{Pk-l~r l~pk-1 

where ~ is the estimate af ter k samples and 

Pk-1 = [~-l(u,y)°'tt-1Cu,y)]-l 

with: 
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(4.4) 

t\:-1 • 

(4.5) 

T 
so that .!!kis the last row of '\_(u>y). 

If we consider the expression for the recursive estimator in more 

detail, we notice the term yk-~-l which is usually referred to as 

the prediction error. This prediction error is the difference bet

ween the next measurement Yk and its one-step-ahead prediction 

based on the model using the previous parameter estimates. The pred

iction error is used to evaluate the gradient direction for 

obtaining the next model setting. Dependent on the extent of the 

model used (leading to extended expressions for (4.4), cf. (4.9) and 

(4.10)), we have the choices ~k and ~k· 

where 

als 

[ Ak-1] ["k-1 Ak-1 ] ] l+A yk - o0 +B t\: 

[ "k-1 ]" ["'k-1 ]" l+D ek - C ~k 

(4.6) 

[l+Ak-l], [Sk-l+Bk-l], [1+ak-l] and [l+Dk-l] are the polynomi
o 

containing the estimated parameters after the k-lst recurs-

ion step. 

We shall also need the 
~ 

residuals ek and 
.... 
tk which can be 

computed in the k-th recursion when the k-th estimate bas become 

available: 

[ l+Ak ]yk - [S!+sk ]t\: ] 

[i+fik ]~k - [êk ]~ 
(4.7) 

To complete the notions related to the errors involved, we will 

recall the equation error ek as discussed in chapter 3: 
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ek '" [l+A]t.yk - [bo+B ]tuk J 
~ = [l+D]tek - [c]t~k 

A 

(4.8) 

Taking ek as prediction error, i.e. modelling only the ARMA (pro-

cess) part of the model, yields the result of eq. (4.2). Extension 

of the model with noise parameters yields the following: 

uq+1 • 

l\-1· 

,.. 
e 

q 

A 

e q-r 

(4.9) 

(4.10) 
Applying a minimalization procedure to minimize in the k-th recurs-

ion, based on the k-1 8 t ~odel setting, the criterion 

i.Î2 vk = "2ït 

using 

we find 

where the gradient direction is: 

with 

where 
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~-1 

(4.11) 

(4.12) 

(4.13) 

(4.14} 

(4.15) 



1 " ~ ·-/;; 
ç,k [i+e] k 

(4.16) 

For the choice of Qk, various possibilities have been proposed, 

ranging from a scalar quantity, as in the stochastic approximation 

schemes, to a matrix quantity meant for orthogonalization of the 

scheme such as the Newton-Raphson variants where Qk can be inter

preted as the (matrix) second derivative of the criterion function. 

4.3 General classification of recursive estimators 

In this paragraph we will classify the various recursive estimation 

schemes as presented in the literature. We will use the concept of 

three basic operations for this classification. We will present 

diagrams similar to those in the previous chapter, although the in

terpretation is within the context of the recursive character of 

these estimators. 

A block representing the rec.ursive estimator is used. It makes a 

recursion from step k-1 to step k using the necessary (filtered) 

input-ouput signals, the IV quantities, the signals gained from the 

model extension and the prediction error, cf. fig. 4 .1. The pre

diction error quantity is denoted by a dot in the forthcoming fig-

ures. 

The diagrams of the various estimation schemes consist, apart from 

the recursive estimator block as shown in fig. 4.1, of the following 

elements, cf. fig. 4.2: 

the model blocks M1, M2, M3 and M4 having the values of 

the previously estimated parameters as model setting. The model 

bas, in its most extended version, the form of the model of 

Talmon and Van den Boom; cf. chapter 2 
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IVquantity 
derived trom 
input signal 

(filtered) 
Input signal 

Fig. 4.1 

prediction 

î• 
Recursive estimator 

' ilA ilB ilC ilD 

Recursive estimator block 

IVquantity 
derived from 
output signa! 

(filtered) 
output signa! 

the filters F1 and F2 for the additional noise whitening 

filtering as already seen in chapter 3. The parameters of these 

filters may be tuned according to any available a priori inform

ation of the noise colouring, but usually they will follow from 

recently, i.e. in previous recursion steps, estimated noise para

meters, e.g. from the model extension part. 

the IV filters ill1 and iti• They generate the IV quantity 

using the input- or the output signal or both, or using extra 

signals, which are additionally available. The possibility of 

using additional signals is not indicated in fig. 4.2. 

From fig. 4.2 it can also quite easily be seen how the noise is hand

led in the estimator. In chapter 3 we have al ready seen that the 

correlation between the resulting error and the (shifted) input-out

put samples should be zero. This can be done in two ways: 

a) operations which affect the noise colouring. 

Here we have two possibilities of making the resulting error 

white: al) add extra filtering and/or a2) through the model 

extension resulting also in additional filtering. Depending on 

Al A2 A3 the choice of prediction error among (~, ;k, ;k) the path for 

the equation error contained in Yk through F 1, M2, M3 and M4 
should be noise-whitening. 

b) substitute the process signals by a related signal which contains 

no (or less) noise components. This is the IV approach and is 

realized by the filters illi and/or iJ12• 
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The approaches listed imder a) and b) may be combined, resulting in a 

family of estimators. 

;-------------------------------ï 
1 1 
1 1 
1 : 

..... ~~+-~""'f' .--....--~~--. 

Fig. 4.2 

"3 
~k 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

M : 
1 
1 

---------------' 
A1 

~k 

Recursive estimator kt.l! step 

The general recursive estimator 

Fig. 4.3 shows the relationships between different recursive estima

tors. They w:l.11 be discussed in more detail in the next paragraph. 

It follows from this diagram that estimators can be distinguished at 

four levels of complexity. The simplest estimator, LS, is very effi

cient w:l.th respect to computer time, hut gives biased results, parti

cularly for low S/N ratios. In cases where this is unwanted, the 

estimators of level 1 are of interest. They are more expensive w:l.th 

respect to computation time, but yield better results for low S/N 

ratios. Only in very specific cases, as w:l.11 be shown in the sequel, 

will these estimators diverge. The estimators of level 2 and 3 are 
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Method Model 

~ M2 M3 M4 

0 Least Squares [tk-l+Bk-1] 
0 

[i+A.k-1] - -

la GLS [Gk-1+8k-1] [i+A.k-1] - -0 

lb OLS [sk-l+BJt-1] 
0 

[i+.t-1] - -
lb EMM a) [Ak-1 Ak-1] b +B 

0 
[i+A.k-1] [i+fik-1] -

[Gk-1+8k-1] [i+A.k-1] [ Ak-1 rl b) - l+C 
0 

e) [Gk-1+8k-1] 
0 

[i+A.k-1] [i+fik-1] [l+êk-1 r1 

lb EECM [Ak-1 Ak-1 l b +B 
0 

[i+A.k-1] [1+Dk-l] [ Ak-1 rl l+C 

le IV [i;k-1+8k-1] [i+A.k-1] - -0, 

2ab AML/IQL [Gk-l+:Bk-1] [i+Ak-1] - [i+êk-1 r1 
0 

2ab Appr. Markov [tk-l+Bk-1] [1+.Ak'"".1] [i+fik-1] [l+êk-1 r1 
0 

2ac Subopt. IV [Sk-1+:Bk-1] [i+A.k-1] - -
0 

2ae IV-AML IV: [Ak-1 Ak-1 l [i+.Ak-1] b +B - -0 
[i+fik-1] [l+êk-1 r1 AML: 

2be IVEMM ["'k-1 Ak-1] b +B 
0 

[i+A.k-1] [i+nk-1] [ Ak-1 rl l+C 

3abe gene ral [Gk-l+:Bk-1] [1+.Ak-1] [l+Dk-1] [i+êk-1 r1 
0 

Table 4.1 Choice of Model, Signal Filters and Instrumental Variable 
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Signa! filters Instr. Variable Filters prediction 

Fl F2 tl •2 error remarks 

- - - - ~ 
[l+Dk-1] t:. 

separate est. 
- - - tor [i+î>] 

- - - - ~ 
- - - -

~ 
common fac-
tors in~ •Hz - - - -

~ Fi :: Ei 
- - - -

~ 
- - - -

~ 
separate est. 
for ~ l+D ] and 

- - [l+ê 
a) fixed - ~ 
b) (Gk-l+Bk-1] 

0 

~ [i+Ak-1] 
-

c) delay - ~ 
d) - de lay ~ 
e) de lay delay ~ 

[l+êk-1 r1 - - - ~ 
[i+êk-1 r1 [i+fik-1] - - ~ 
[1+Dk-l] 

[bk-l+:Bk-1] 
A3 0 separate est. - [i+lk-i] 

- ~ 
Eor [1+:6] 

[$!-1+Bk-1] 

[1+Dk-l] [1+êk-1 r1 "3 
ri+1k-1 l - ~ 

[1+êk-1 rj 
"l - - see choices a-e under lc tk 

[1+nk-1] (I+êk-1 r1 see choices a-e under 1( "l tk 

Filters for different Estimators; see also fig. 4.2 
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level of complexity 

3 

2 

0 

Fig. 4.3 Relation between recursive estimators 

even more complex and time consuming. With respect to noise sensi-

tivity in relation to consistence, these estimators are superior to 

the estimators of level 0 and 1. Those estimators are not easy to 

apply as they have to be started by estimators of class 1 which, in 

their turn, have to be started by the LS estimator, except some vari

ante of the IV estimator. 

In the next paragraph we will show that all these estimators fit very 

well into the general scheme of figure 4.2. It can be observed that 

some schemes have a bootstrap nature, as they use separate estimators 

for obtaining the necessary information for the filtering, such as 

GLS and suboptimal IV, or for the necessary compensation as in EECM. 

These extra estimators are usually simple LS estimators for obtaining 

the AR or ARMA parameters of the model of the noise. 

In table 4.1 a summary of the important aspects of the different 

recursive estimators is given. Here the particular choices for the 

model parts M1, M2, M3 and M1.i, the filters F1 and F2 and the IV fil

ters ~l and ~2 are indicated. 
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4.4 Details of the different recursive estimators 

In this paragraph we shall discuss, in more detail, the recursive 

estimators which have been summarized already in table 4.1. We will 

consider the schemes in order of increasing complexity. 

4.4.1 The recursive least squares estimator 

This estimator is the recursive form of the LS estimator (3.10). The 

expressions are: 

(4.17) 

where 

J 
(4.18) 

(4.19) 

The expression is mathematically equivalent to the implicit estimator 

(3.10) if initiated properly; cf. Eykhoff (1974). The diagram of 

this estimator is shown in fig. 4.4 

• 
Recurslve estimator 

Fig. 4.4 The recursive least squares estimator 
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4.4.2 The Generalized Least squares estimator (GLS) 

Based on the Markov type of weighting, a recursive algorithm has been 

proposed by Hastings-James and Sage (1969) where. filtering of the 

measurables is performed by a MA filter consisting of the AR paramet

ers of the noise: 

where 
~ 

y = 
k 

~= 

The estimator for the ARMA process parameters is then: 

where 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

Usually, as the knowledge of [ 1 +D Jt is lacking, we wi 11 use a separ

ate scheme to estimate these noise parameters. In the k-th recurs

ion, we genera te the residual • using the newly available estimate 

!it 
(4.25) 

This leads to the estimator for the AR noise parameters: 

(4.26) 
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In figure 4.5 the schematic diagram for this bootstrap estimator is 

given. 

y~ 

1 + fj<-1 1 + ff1 

Recursive estimator 

Recursive estimator 

Fig. 4.5 The GLS estimator 

4.4.3 Over-parametrized Least Squares estimator (OLS) 

If we model the noise with an AR model, and if we estimate ARMA proc

ess parameters with an over-parametrized model, we have: 

[l+A' ]y • 
k 

(4.27) 
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where 

[ l+A' ] = [ l+A ][ l+D ] ] 

[b~+B'] = [b
0
+B ][l+D] (4.28) 

If we make the model order sufficiently large, we can attain a white 

prediction error so that consistent estimation may be performed. The 

problem is then to calculate the "common" factors in the polynomials 

[Ît0+B'] and [l+A'] as, due to the disturbing noise, these factors 

are not exactly equal; cf. SBderstrBm (1975) and Stoica (1976). Hsia 

(1975) proposes a method, the so-called Multi Stage Least Squares 

Estimator (MSLS), where in the first stage the polynomials [l+A'] and 

[Î)0+B'] are estimated, in the second stage the parameters [l+A] and 

[b0+B] are estimated from the the estimated over-parametrized model 

[lI0+~' ] and [l+Î.' ] , and in the third stage the parameters 

[l+D] from the parameters found in the two previous stages. Another 

approach is to use an over-parametrized MA model for the process. 

The estimated MA parameters of such a model are unbiased if we take a 

model of sufficient length; cf. Van den Boom and Melis (1968). Hsia 

(1981) gives a method to derive the ABMA parameters from these esti

mated MA parameters. Also the Ho-Kalman algorithm can be used to 

find the ABMA realization from the estimated MA parameters, as these 

are equivalent to the Markov parameters; cf. Hajdasinski ( 1980) , 

For these methods we can give the following schemes: 

1 
'- -------------- _______________ ! 

A 

~k • 

Recursive estimator 

Fig. 4.6a Over-parametrized Least Squares 
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Recursive estimator 

Fig. 4.6b Over-parametrized Least Squares 

4.4.4 The Extended Matrix Method (EMM) 

Another way of obtaining white residuals using the concept of model 

extension, is the extended matrix method EMM, where a single stage 

estimator is used for the estimation of process and noise parameters 

together. The vector of parameters! and the vector of measurables w 

is extended to contain the noise quantities as well. The method was 

originally proposed by Panuska (1969) within the context of Stochas

tic Approximation (SA) for the estimation of the A, B, D parameters, 

and has been generalized by Talmon (1971) and Talmon and Van, den Boom 

(1973) for the more general case of A, B, C, D parameters and within 

the context of prediction error estimators. The algorithm is: 

~ "'~-1 + pk-l~(l+~Pk-l~rl ~ 

(4.29) 

A T->. 
E_ • y - UI. ti. 
K. k -tc-k-1 
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where 

fl.Î "' .... ... A A A a a ) l !.K.= (bo••••,bp,-a1•'''•-aq,c1••••cs•- i•···- r k 

~ = (~, ••• ,uk-p'Yk-1•····Yk-q'~-1·····~-s'êk-l' 0 ' 0 'êk-r) 
(4.30) 

The noise signals e and Î can be obtained using prior estimated 

parameters: 

s .o . 
6 

p 

-ai (4.31) 

A 

-a 
q k-1 

(4.32) 

-d r 
k-1 

The scbematic diagram of this estimator is given in fig. 4.7. 

Indeed, it would be possible to replace, at eacb recursion step, all 

previously generated estimates ;i and ~i. i = 1, ••• " k-1 by 

new uPciates based on the most recent parameter estimates. The qual

ity of the sequences ;i and ti would improve in such a case, 

but tbis would give rise to an enormous increase in computational 

effort. The schemès that have been used successfully in the 'past use 

the samples ~k and tk (which were generated as prediction 

error in the recursion from k-1 to k) as samples of measurables in 
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recursive estimator 

Fig. 4.7 The Extended Matrix Estimator (EMM) 

the .!!!. vectors of the succeeding recursions. The starting procedure of 

this estimator is then as follows: 

a. First apply common least squares to a limited number of samp-

les N0 and 

p+q+l. 

"" generate ei. i•l, ... . ' where N0 > 

b. Extend the parameter vector with one parameter d1, 
i•l, •••• ,r per recursion step and genera te ~i until all r 

AR noise parameters are estimated. 

c. Extend the parameter vector with one parameter c1, 

i=l, •••• , sper recursion step until all s MA noise parameters 

are estimated. 

d. Continue recursion with all p+q+r+s+l parameters.· 

This EMM method proved to be a reliable method for the majority of 

cases, like the GLS method, although in exceptional cases divergence 

bas been reported. This will be dealt with in section 4.5. 
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In the above given recursion step, two calculations take place: 

calculation of the prediction error and calculation of the new para

meter estimate. With this new estimate the residual of this recurs

ion step can be calculated and the residuals of the successive 

recursion steps can be transferred to the vector of measurables -

instead of the prediction errors. There is a sm.all increase of comp

utational burden. In this case we have 

.\_ "' .\.-1+Pk-l~(l+gPk-l~)-l ~ ] 

" "T " l"T 
pk"' pk-l-Pk-l.2!it(l+.!!kpk-l.!!k)- .!!kpk-1 

(4.33) 

with 
A A A A 

g - <~·····Uk-p'Yt-1·····Yk-q'~-1·····~-s.êk-1•····êk-r) l 
""" ATA 
~k "' Yt - ~-1 (4.34) 

and for the residual we find: 

;k"' yk - (uk, ••• ,uk-p'yk-l'····Yk-q)[_f]k (4.35) 

A A A A A [ê] 
~k = ~ - cik-1·····~-s.êk-1·····~-r) -~ k 

• yk-{ 1_"' yk-gf1._1+Pk-l~(l+gPk-l~r 1tk] "' 

This formula shows that a very efficient calculation of the residual 

from the prediction error can be performed as the scalar 

is available during the recursion. If only MA noise parameters have 

to be estimated, this is a minor increase in computational burden. 

lf AR noise parameters are estimated, eq. (4.35) has to be performed 

during each recursion step. This modification of the EMM algorithm 

is of interest, as its convergence can be proved, without the need of 

monitoring the estimates, i.e. checking the stability of the 

estimated model; cf. Solo (1979). 
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4.4.5 The Equation Error Compensation Method (EECM) 

Another possibility of model extension is with the use of separate 

estimators for process and noise parameters. This seheme was propos

ed by Talmon (1971), who reported good results with this estimator. 

The estimated parameters of the reeursion block for the noise para

meters are used for compensation of the prediction error êk in the 

process parameter bloek: 

(4.37) 

Now we have for'the kth recursion: 

step a) first an estimate of the process (PR) parameters is made: 

APR T 

] ~R + P PR(l+ PR P PR)-1~ 
~ - k-1~ :!!k. k-1~ (4.38) 

pk - · PR Pa! PR -1 PRT 
pk-1-Pk-l~ (l+~ k-1~ ) ~ pk-1 

where 
T .{R = (~·····~-p,yk-l'••••Yk-q) ] ( 4 .39) 

PRT <G •••.• s ,-a1 , •••• -a >k ~ --=k 0 p q 

T 

~ " 
PR tiPR "* (4.40) Yk -~ -=it-Cek 

where ~k* is the compensation based on k-1 samples 

resulting from the k-1-th iteration. See also step e. 

step b) using ~R construct: 

~ PRT PR 
~ = yk-~ \ 

(4.41) 

"" with this ek and with e and 't obtained fr~m previ-

ous recursion, an estimate of the noise (N) parameters 

~ can be made: 

T T 
~ - ~-~+ Qk-1{ (l+{ Qk-1{>- 1~ J 

NT NT N NT 
~ = Qk-1 - Qk-1.!!tt <i+!\:. Qk-1.!!ttr 1~ Qk-1 

(4.42) 
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step c) 

A. " ,.. ,.. 

( ~-i' • ~ ~ • ~-s ,êk-1' • • • ,êk-r)· 1 
(êl ••• .,ês,-dl ••• .,-dr)k 

(4.43) 

(4.44) 

" 
In this recursion we use the residual êk, as !p: is availa-

ble, but we have to use the. prediction error ~· 

ïs available af ter execution of eq. ( 4 .42). 

"'N because 2t. 

Here tk is the residual, as explained in the previous 

paragraph. The use of the previous residual ~-1 instead 

of the previous prediction error (k-l is not strictly 

necessary but it can be obtained very easily by a scalar 

multiplicaticm, see the previous paragraph. In the diagram 

. we will denote the generation of the residual ~k 

from the prediction error ~ by a block R. 

Construct (for use in the next recursion) 

(4.45) 

i.e. the prediction error (k is here replaced by the 

residual ~ for the next recursion. Using 

A :· ~ A 

( tk, • • • '~k+l-s'ek, • • • ,êk+l-r) 

a prediction ~k+l for the next recursion is made: 

T 
"'* N aN 
~l = ~+l 4t 

(4.46) 

(4.47) 

The diagram of this estimator is given in fig. 4.8. 
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~k • 

Recll"sive estimator 

Recll"sive estimator 

The Equation Error Compensation Method 

4.4.6 The Instrumental Variable Method (IV) 

In chapter 3 we introduced the basic concepts of the instrumental 

variable estimators. We reviewed some important {practical) 

instrumental variable estimators, which were non-recursive. In this 

paragraph we will extend this list of instrumental variables by in

cluding the recursive variants. 
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By writing the explicit expression of the IV estimator in a recursive 

way, we obtain: 

i = i-1+Pk-l!tt(l+~Pk-1!tt)-l (yk-~êk-1) l 
pk" pk-l-Pk-1.:it<l+SPk-1'!.tt)-l SPk-1 J 

(4.48) 

In this expression Pk-l is a non-symmetrical matrix. The 

vector ~ contains the measurables {uk} and {Yk}, as with the 

least squares estimators, and the vector ~ contains the IV 

quantity. 

Because of the recursive character of the estimator, we can generate 

the IV quantity along with the recursion, so that estimation results 

can be used for this purpose. 

Due to the non-symmetrical form of the matrices P, and the presence 

of an additional signal ~, we have a slightly modified recurs

ion block, which will be denoted "IV recur~ion". The schematic dia

gram for this IV estimator is given in figure 4.9. 
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Fig. 4.9 The Instrumental Variable Estimator (IV) 



Possible choices for simple IV estimators are: 

411 412 Literature 

a) fixed filter within - Young (1968) 

bandwidth of Finnigan and Rowe (1973) 

process 

b) model of process - Young (1965) 

Wong (1966) 

Smets (1970) 

c) delay - Wouters (1972) 

- delay Gersch (1970) 

delay delay Stoica + Söderstr!Sm (1979) 

d) template function - Eykhoff (1980) 

Finnigan and Rowe (1973) showed that the use of a fixed stable filter 

provides IV quantities satisfying the consistency conditions. Pandya 

(1972) and Pandya and Pagurek (1973) proposed a bootstrap estimator 

where separate estimators are used for the estimation of the para

meters and for the estimation of the incidental parameters (i.e. the 

clean output signal or the noise signal). Their results are to be 

compared with those of Wong (1966) and Young (1965} where models of 

the process are used for the estimation of the clean outputs. 

For a particular realization of the data, these instrumental variable 

estimators can show instabilities. This is caused, when (usually 

slightly) unstable estimates are delivered. These estimates are used 

for the generation of the IV quantity, being therefore also unstable. 

To avoid this, a Jury stability test was used by Wong (1966} and 

Young (1965). Furthermore, delayed estimates ~~T were used 

for the generation of the IV quantity. Smets (1970) could not notice 

that a removal of the delay caused problems. 

When setting up a recursive scheme, it is always a difficult task to 

decide whether newly available estimates have to be used to improve 
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all old quantities which were generated by previous estimates. Also 

in the case of generation of an instrumental variable using an adapt

ive model, recalculations of previous samples can be done when a new 

estimate becomes available. Usually, this decision is a trade-off 

between accuracy and speed of calculation. Smets (1970) uses the 

newly up-dated estimate for calculation of only the next IV sample. 

Sometimes it is suggested to recalculate as many previous samples of 

the IV quantity as parameters to be estimated. When an ARMA type 

of model is used, the extra amount of recalculations can be reason-

able. With such an ARMA model previous uk and Zk are used to 

generate zk+l. As t~e previous Zk all depend on previous 

uk, all samples z depend on the input signal u. Rowe (1970) calls 

this "feed forward information" leading to the calculation of an 

instrumental variable. He suggests a closer connection of the IV 

quantity with the output quantity and uses a few previous output 

samples to start the ARMA filtering calculations for each recursion 

step. In principle there is little difference between this approach 

and the use of input signals only. 

4.4.7 The Approximate Maximum Likelihood estimator and the 

Implicit Quasi Linearization scheme (AML/IQL) 

The (IQL) methods, which are based on linearization of the loss func

tion V, have also been presented in recursive form. Fuhrt (1973a, 

1973b), who modelled the disturbing noise by MA parameters, used the 

same matrix lemma as Eykhoff (1974) to derive the recursive estimator 

from the one-shot expression as given in eq. (3.67): 

where 

This vector is 

w = 
k 
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<~ •.... ~k-p-1'1k-1·····Yk-q'~-1·····~-s> 
obtained by filtering ~ as will be indicated 

(4.49) 

(4.50) 

soon. 

(4.51) 



The recursive procedure is as follows: 

1) calculate {~k!~-l·····~-s} using the previous 

estimate ~-l : 

ti = yi-.!!!~~-1 i = k-s, ••• , k 

2) filter the signals {yk, ••• ,yk-q},{~, ••• ,uk-p} and 

ftic,•••••••~k-s} by the filter (l+êk-l]-1. 

(4.52) 

This filter is the most recent estimate of the MA noise 

parameters. 
~ 

3) construct ~ and wit 

4) use the recursion formula (4.49) 

In step 1 many previous samples of the "prediction" error have to be 

recalculated. Further, many previous samples of the three signals • 

u, y and ~ are filtered in step 2. Moreover, in step three a compen

sation action takes place, leading to enlarged matrices to be hand

led. For these reasons this method is rather time consuming. 

The schematic diagram of this estimator is shown in fig. 4.10. Here 

it is depicted according to the original formulation of the estimator 

by Fuhrt. By shifting some of the filters [l+êk-l J-1 and 

combining the results of the two summation points we can rearrange 

this diagram drastically. The prediction error in (4.49) can be 

rewritten (and therefore be simplified): 

This leads to the simplified diagram of fig. 4.11. 

SHderstrHm (1973) used also a Taylor expansion of the loss function 

and a Newton-Raphson technique. 

function 
1 k ... 

vk <.!> " 1t l ~f <.!> 
i=l 

The minimization of the loss 

(4.54) 

is considered. 

bè given: 

A relation between Vk(_!) and vk_1 C!> can 
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1 + ê!-·1 

Fig. 4.10 The Implicit Quasi-Linearization Estimator (IQL) 

1 + êk·1 1 + ?-1 

Rea.-sive estlmator 

Fig. 4.11 The IQL/AML estimator (rearranged scheme) 



Take the derivatives of this expression with respect to 6: 

v• (6)=k-1v• (6)+lî'(0)Î(0) 
k - k k-1 - k .l:k - ~k -

(4.55) 

(4.56) 

As approximation we take in the point l-l which minimized vk_1(_!!.): 

Yk-1<l-1> = .!:!. (due to the minimum) 

vk:l <!t-1) = vk:l <!t-2) (~-2 close to l-1) 

If we substitute l-l in (4.56) and (4.57), taking care of (4.58) we 

get: 

De fine 

P-1 
k -

.!.vtt(?! > 
2 k -:::it-1 

Equation (4.61) can be rewritten 

l l ~ -"!' 1k = pk-1 + !lc !lc 

which can be written as 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

This is one part of the already known type of recursive formulae; 

for obtaining the other part, remember the Newton Rapbson formula: 

(4.65) 

Substitute (4.61), (4.62) and (4.59) in (4.65) 

l = l-1 + Pki_~(~-1) (4.66) 
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which can then be rewritten using (4.64) 

(4.67) 

S1Sderstr3nt (1973) applied these formulae on a model of the form: 

(4.68) 

He used a state space description associated with this modelling and 
~ 

solved the state equation to obtain t;k• It can easily be seen 

in eq. (4.62) that the vector ,; contains the derivatives of the 
" pred1ction error t;k with respect to the parameters. 

derivatives are given by: 

atk 
[i+e] - - Ytt-1 

aai 

a'" 
[1+ê] ~ 

afii 

at 
[1+ê] __! 

aê
1 

- -uk-1 

- -Ê ît-1 

These 

(4.69) 

These equations can also be brought into a state space descript1on as 

a solution for the derivatives. The diagram of this method is also 

shown in figure 4.11. 

From the considerations given above, it can be concluded that Fuhrt's 

IQL method and S!Sderstr!Sms AML method are very closely related to 

each other. 

The minor differences are: 

the amount of old samples that will be recalculated; 

filtering is performed as AR filtering by Fuhrt (or its approxi

mated MA version) while S!Sderstr!Sm obtains the filtered quant!

ties by solving a state space equation; 

small differences of approximation. 

Goedheer (1976) generalized the approximate maximum likelihood esti

mator for models where ARMA modelling for the noise is used. His 

algorithm, the approximate Markov estimator • bas the same form as· 

SlSderstr!Sm's estimator, cf. eq. (4.64) and (4.67) but the parameter 
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vector ~ is extended with AR noise parameters and consequently the 

vector .3t is extended accordingly: 

~T= (~, ••• ,;'k-p'yk-l'••••Yk-q'~-1·····~-s•~-1·····~-r) 
(4.70) 

_j__ 
1+êk-1 

r-------------------------------
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
l 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
l----

1 
1 
1 
1 

M : 
1 ______________ _! 

recursive estimator 

Fig. 4.12 The approximate Markov estimator 

1 
1+êk-1 

The filtered quantities in this vector are again found by taking the 

derivatives of the prediction error: 

l 
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[1+6] (4.71) 

[1+ê] ~-i "' ~-i 

. l :> ~ = -c; -[1+ê] k-i -i 

a~ 
äcÇ • [1:fi 1~-1 " ~-1 

The diagram of this estimator is given in figure 4.12 

4.4.8 The Suboptimal IV estimator (SIV) 

The above given simple IV estimators yield, in gener al, consistent 

estimates. No special extra filtering or extension of matrices, as 

we have seen in previous paragraphs, is necessary. Nevertheless more 

complex IV schemes have been proposed to improve the quality of the 

estimate. Young ( 1965) proposed, on a rather heuristic basis, the 

use of fixed pre-filters to filter the input- and output signal, 

prior to feeding them into ~he model and the IV generating filters. 

These filters were not updated during the recursion, and their band

pass was chosen within the bandpass of the system itself. 

We have already seen in chapter 3 that Wong (1966) proposed an "opti

mal" est.imator: 

(4.72) 

Here the pre-filtering of the different signals is determined by the 

noise characteristics. Smets (1970) used this principle for a recur
[l+c ]t 

sive estimator with fixed, a priori known, filters ~~~, according 
(l+D )t 

to diagram 4 .13, in order to realize the weighting by the inverse 
A 

covariance of the noise. An estimate Xk of the clean output Xk 

was generated using an adaptive model. Young (1976) presented, in 

fact, the same scheme and called it "refined IV algorithm". The 

complication with these latter schemes is that knowledge of the noise 

spectrum should be available. 
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Fig. 4.13 The Suboptimal IV estimator 

1 + D 

1+C 

As we have already seen in previous paragraphs, this will not usually 

be the case. To gain this knowledge, along with the estimation of 

the process parameter, a separate estimator, which is capable of 

estimating noise parameters from the residuals, can be used. A vari

ety of possibilities for this purpose has been mentioned already in 

the previous paragraphs. Young and Hastings-James (1970) proposed 

the use of an AML estimator for this purpose. 

4.4.9 The IVEMM estimator 

Smets (1970) proposed an extended IV algorithm along the lines of 

the extended matrix method. Here the IV estimator using an adaptive 

model is extended, i.e. the vectors ~ and ~ contain samples of 

!k and ~ as already seen with the EMM. 

The expression for the estimator is also given in eq. (4.48), with 

the appropriate extensions of ~ and ~· 

estimator is given in figure 4.14. 

The diagram of the 
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Fig. 4.14 The IV Extended Matrix (IVEMM) estimator 

4.4.10 The general estimator 

By comparing the diagrams of the approximate Markov estimator, the 

suboptimal IV estimator and the IV extended.matrix estimator, we may 

propose a general diagram for these types of advanced estimators, 

leading to an even more versatile estimator:. the general estimator. 

This estimator is, in fact, 

the IV variant of the approximate Markov estimator or 

the extended model variant of the optimal IV estimator or 

the filtering variant of IVEMM. 

We have al ready given the diagram of the general estimator in fig. 

4.2. For the choices of the model blocks Mt, i " 1,2,3,4 and the 

filters F1 and ~1. i =- 1,2 we refer to table 4.1. This estimator 

and its properties have not yet been proposed in the literature. 

From the general framework within which we have presented the current 

estimation schemes, _we can conclude that the various estimators are 
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very much related and can be considered as special cases of this 

general estimator. 

The main distinction is in the extent of the parameter veètor to be 

estimated. If all A,B,C,D parameters are estimated, the availability 

of the noise parameters can be used to apply weighted loss functions 

with optimality properties like the AML, Markov estimator and the 

(sub)optimal IV estimator. The weighting of these estimators is 

identical. It can also be seen that the EMM estimator is a simpli

fj:ed version of the AML and the approximated Markov estimator. The 

filtering is then indeed not essential for obtaining a white predict

ion error, but can help to prevent divergence as we will see in sec

tion 4. 5. In the same way, the IVEMM is the simplified version of 

the generai estimator. 

For the design of computer progràms .for estimation algorithms, it is 

very helpful to use the concepts of the general estimator, as the 

different functions of the general estimator, indicated by the blocks 

Mi, Fi and llii , can' be incorporated in one program, which allows 

the use of various estimation schemes. 

4.4.11 The Stocbastic Approximation algorithm (SA) 

From a historical and a computational point of view, the class of 

stochast ic approximation algorithms is of interest. It can be seen 

as a simplified version of the recursion algorithm that we have al

ready met in the preceeding paragraphs. Tsypkin (1966) gives a re

view of this class of methods and analyses their convergence propert

ies. For our type of application, the estimation of process para

meters, the requirement of independent noise is usually not met. 

This can be compared completely with the conditions for consistent 

estimation for .the common least squares estimator. The basic idea is 

the following: For some convex loss function V e.g. 

v " (y -~ê )2 
k ,.::{t (4.73) 

the gradient of V with respect to the parameter vector is computed. 
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The recursion formula for updating the parameter estimate is then: 

1t " 1t-1 - 1\ v VI 'ê 
~-1 

(4.74) 

where Pk is some positive number. In Tsypkin (1966) the conditions 

can be found for convergence of this algorithm. They dictate the 

choice of Pk, and usually a choice like Pk == k- 1 will satisfy. 

Comparison of those stochastic approximation algorithms with the 

types of weighted least squares methods already met, shows that the 

main difference is the choice of the scalar Pk instead of the mat

rix Pk for the weighted least ·squares algorithms. In this sense 

the stochastic approximation algorithms can be seen as a simplified 

version of the weighted least squares algorithms. In principle all 

modif ications as displayed for weighted least squares estimation 

could be of interest for the stochastic approximation algorithm as 

well. Nevertheless, in the more recent literature, the stochastic 

approximation does not play an important role. The extra amount of 

computations involved with handling the matrix Pk instead of a 

scalar Pk is for the modern, very fas.t and relatively large (even 

for mini's) computers usually not prohibitive. 

An interesting development within the stochastic approximation 

algorithm is worth mentioning, as it also influenced the development 

of the weighted least squares estimators. This is an idea attributed 

to Panuska ( \ 969) , who observed the inconsistence properties of the 

stochastic approximation algorithm when dealing with coloured equa

tion errors. He proposed to estimate the MA parameters of the noise 

along with the •process parameters, introducing an enlarged parameter 

vector .!!k. and corresponding vector ~· His results were promis

ing. Valis and Gustavsson (1969) compared this method with AstrHm's 

maximum likelihood algorithm and found that more passes through the 

data were necessary in order to obtain estimates having nevertheless 

a worse variance than the maximum likelihood estimator. 

4.5 Convergence aspects of recursive estimators 

In the previous paragraphs we reviewed several recursive estimators 

and concluded that these estimators are based on one or more of the 

three principles foJ;" prediction error whitening: filtering, model 
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extension or use of IV quantities. We ~ve also seen that several of 

these estimators are approximate verslons of (possibly more favour

able) variants, where for example filtering with filters, containing 

recently estimated parameters is performed over a larger amount of 

past data than in the more currently used verslons, where only the 

last sample is filtered with the newly obtained filter to avoid ex

cessive compuation times. Because of this, the signals contained in 

the vector ,!!k are not statistically stationary, which makes a 

convergenèe analysis rather hard. Nevertheless it is important to 

know, or at least to have an idea, under which experimental condi

tions an estimator may have consistence properties. 

For studying the convergence aspects of prediction error estimators, 

an analysis method has been proposed by Ljuiig Ü977 a, b), based on the 

concept of an ordinary differential equation (ODE), associated with 

the recursive estimation algorithm. We will give here only a brief 

outline of this method. 

The recursive estimator is in its general form: 

i_ = i.-1 + pk-l!t. (l+!t.TPk-lS)-lÊk : ·] 

pk "' pk-1 - pk-1~ (l+~Tpk-1.!!tr~Tpk-l 
,., 

(4.75) 

where E:J.t is the one step ahead prediction error, depending on 

all previous estimates 1., It is . specified for the different 

methods in the previous section. It contains the (filtered) measur

ables of the (extended) model. The quantity ..!:3t + is any of the 

vectors of (filtered or extended) measurements met in the previous 

paragraphs. If we write: 

k 
pkl = l !!t ~T = kRk 

i-1 
(4.76) 

then it follows: 

(4.77) 

and for ~ 

i - i-1 " ik~l [(k-l)+(k-l)~TR.k~1~J-l ~ ~ (4.78) 
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Now the following idealisations are made: 

a) the term [(k-l)+(k-1).!{TRk:~t.!:tJ-l will be approximated by 11:-1 

b) the predic tion error ~,. which is dependent on all previous 

estimates ~· is thought to be dèpendent ortly on the previous 

estimate ~-l. The same holds for the vector ..!:{• These new 

quantities will be denoted by êk and.~. 

c) introduce 

!_(~) = EG{~} ] 

.G(~) " E{~ ~T}. : . (4.79) 

This means that· ~, will replace terms · ii;t the above givei;t equa

tions by their expectatioi;ts: · 

(4.80) 

d) instead _of .the above difference equatión which is time· vari

ai;tt, we consider the time invariant difference equation 

~~ êk-1 ~ Rk~1!.C.~-1> ] 

!\·- 1\-1 • G(~-l)-1\-1 . (4.81) 

The ODE associated with this recursive estilliator. is then 

with 

dê(-r) = . R-1(.-r) f(ê(L)) ]· 
d-r --

_dR_(L_) "' G(_ê(L}}-R(L) 
d-r 

!_(_!) " E@-( ~} ]_(_!) } ] 

G(_!) • E §+(_!) ~+T (_!) } . 

(4.82) 

(4.83) 

wb.ere ~k and ? are obtaii;ted by usfog a coi;tstant parameter ! 
instead of the sequence of est~mat~ that become avaÜable·during the 

estimation. So the quai;ttities ~k and ~+ may be cont,iidered as 

stationary stochastic processes. 
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For stability analysis of the ODE choose a Lyapunov function: 

The relation with the function ..f(~) is: 

T d AT" dV 
!_(!!) = Efw(_~)ä (~)} -\ - {Efê ê}} • -\ -~ d,ê t.=. - d0 

Then it follows that: 
T 

dV _ (dV) d0 
QT- Që r. 

T 
"' (~) R- 1( i:) !_(_!(T)) 

(4.84) 

{4.85) 

(4.86) 

It can be concluded that the ODE has stationary stability points to 

which all solutions converge. An important observation is that the 

quantities ;k and ~+ have to be stationary. If the previous 

estimate is used to generate these quantities this assumption might 

be violated as the previous estimate might cause even an unstable 

process. Therefore the obtained estimates have to be monitored and 

converted into stable estimates before being used to generate êk 

and ~+. This is a weak point of the prediction error algorithms. 

Ljung•s analysis method using the ODE requires this stability. 

The relation between the recursive estimation algorithm and the ODE 

has been worked out by Ljung (1977b). He showed that convergence 

with probability one of the estimation algorithm is associated with 

stability of the ODE: 

only stable stationary points of the ODE are possible convergence 

points of the estimation algorithm. This implies that if the 

estimated parameter ~ converges to 0* then 

a) 

b) 

!<!*) - .Q. 

d!_(~.> 1 
c-1c_01c) 
~ e- 0* - - -

(4.87) 

{4.88) 

bas all eigenvalues in the left half plane. This can be 

understood by linearizing the ODE around 0* where !_(~) = 

o. This yields: 
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R = G(!*) 

H(~*) 
df(!) 1 
"""""ëTr- a = 6* - - -

l16•6-6* 

leading to 

(4.89) 

(4.90) 

(4. 91) 

global asymptotic stability of the solution 6* of the ODE 

implies that the estimate .§s: converges to !!' with probabil

ity one, as k + ~. 

the trajectories of the ODE can be interpreted as the "asymp

totic paths" of the algorithm. 

After this review of the (commonly accepted) convergence analysis of 

Ljung, we may review the consistence properties of the estimators of 

levels of complexity 0 and 1, as presented in the recent literature. 

Level 0 The LS estimator. In chaper 3 we have already seen that 

consistence only occurs for a specific colouring of the 

error. The equation error bas to be a white noise signal. 

This leads to the requirement: 

Level 1 
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[l+c ]t 

îi+DT t 
1 (4.92) 

This requirement is a severe limitation and is, in fact, 

responsible for the development of the estimators of the 

other classes. 

The GLS estimator: Sl:Sderstrl:lm (1974) showed tbat for low 

signal-to-noise ratios this algorithm can converge to other 

local minima instead of to the global solution. For high 

signal-to-noise ratios this algorithm gives, in gener al, 

reliable results. 

The EMM estimator: This method bas been used with success 

by a wide variety of authors, in spite of the fact that 

consistence is not guaranteed in all cases. Ljung, 

Sl:Sderstrl:Sm and Gustavsson (1975) constructed counter-exam-



ples to convergence and showed also the possibility for 

divergence. Goedheer (1976) gives simulation results, 

showing also the possibility of divergence for this method. 

A nice explanation for this phenomenon can be given, based 

on the particular choice of the experimental conditions and 

the structure of the EMM algorithm. This explanation fits 

very well with the remedy which Ljung, Stsderstrtsm and 

Gustavsson (1975) proposed to overcome the divergence prob

lems of the EMM. The 

ing: create an 

in the input (and/or 

small frequency band, 

explanation is 

experimental 

output) signal 

is dominant. 

based on the follo-

condition where 

one frequency, or a 

If the inverse noise 

filter (in the diagram of EMM) for this particular frequ

ency gives a phase shift between 90° and 2700 then the 

gradient of the loss function with respect to the 

parameters (this is the product ~ik in eq. (4.29)) 

will be directed in the wrong direction. 

divergence can be expected. 

So therefore 

In this reasoning, the term Pk-l (l+~Pk-lwk)- 1 is not 

taken into account. 

This term gives an orthogonalization to the adjustment 

scheme. Using simulations, Goedheer (1976) investigated 

the influence of the cross terms in the Pk-l matrix 

for the divergence effect for this type of experimental 

conditions and found that the presence of these cross terms 

indeed improved the behaviour of the adjustment, hut the 

resulting quality of the adjustment remained very poor. 

From this type of simulation and the counter examples given 

by Ljung, Stsderstr"m and Gustavsson (1975) we can conclude 

that we may expect divergence, or poor convergence, only 

for very restricted types of experimental conditions. 

Based on the observation that for a stable solution the 

matrix C-1(!*)H(!*) in eq. (4.91) should have stable eigen

values, i.e. in the left half plane of the s-plane, Ljung 

(1977a,b) shows that this can be guaranteed for this esti

mator if [i+ê]-1-\ is positive real. 

It is worth noticing that stable noise processes exist 
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where this condition is not fulfilled. Based on the con

cept of extra phase-shift between the signals Uk and 

E;k, it is easy to understand the remedy to prevent diver,

gence, as proposed by Ljung, Stlderstrtlm and Gustavsson 

( 197 5), which they concluded from the al ready mentioned 

theoretical analysis. They propose the use of an extra 

filtering of the signals contained in the extended vector 

of measurables ~-l by the inverse (estimated) noise 

filter. In figure 4.15 a diagram of this modified EMM 

estimator is drawn for the case of A, B, C parameters. In 

this diagram it can easily be seen that a phase shift bet

ween ;k and ek. due to the inverse noise filter, 

does not occur. 

r--------------------------------, 
1 1 
1 1 
1 1 

1 

1 

1 +ê;k-1 

ik 
recursive estlmator 

Fig. 4.15 Modified EMM estimator 

lf we shift the filters properly, we arrive at the same 

diagram as for the AML/IQL estimator (cf. fig. 4.11). 



This means that this modified EMM estimator belongs to 

class 2 estimators as it contains two extra operations 

(model extension and filtering) to obtain consistent esti

mates. If we extend the interpretation of phase shift 

between !!k. and tk caused by the inverse noise filter 

for the common EMM estimator, for cases where the phase 

shift is not between 90° and 2100 but between 2100 

and 900, then we may expect fast convergence to occur 

when the phase shift is zero and slower convergence when 
A 

there is a component in the error signal ~k with a 

phase shift of 900 or 2100. This component will not 

contribute to the adjustment and the in-phase component 

will be therefore smaller. 

An important contribution to the discussion of the converg

ence of the extended matrix method bas been given by Solo 

(1979), who considered a MA modelling of the noise. He 

analyses an interesting version of the EMM, already intro

duced by Young (1974), where the prediction error is re

placed by the residuals, which are obtained by using the 

estimated ARMA para.meters of the process of the sa.me recur

sion step, cf. paragraph 4.4.5. For this type of modified 

EMM estimator, Solo proved convergence by using the mar

tingale c·onvergence theorem., provided that the following 

condition is fulfilled: 

[l+ê]- 1 -\ is positive real. 

The main difference for this type of EMM-scheme is that no 

monitoring of estimation results is necessary, as in the 

case where past prediction errors are used in the extended 

vector of measurables. 

The IV estimator: Söders~röm, Ljung and Gustavsson (1978) 

showed that convergence occurs for the IV estimator if, 

again, the matrix G- 1 (!*).!_'(~*) is stable, if a fixed model 

[b
0
+i] 

~~~ is used to generate the IV quantity. The estimates 
[l+Ä] 

need to be monitored in this case as well. Solo (1981) 
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shows tbat, using residuals instead of prediction errors, 

the convergence of the IV algorithm can be guaranteed prov

ided that [l+A]-1 -\ is positive real. 

This means that for some stable systems, which do not ful

fill this condition, divergence may occur. 

Until now, it is an open question under what conditions a 

recursive IV estimator with an adaptive model bas converg

ence properties. 

For the more complex estimation schemes, only a thorough 

convergence analysis bas been done for the AML estimator; 

cf. Astrtsm and Stsderstrtsm (1974). It can be proved that 

the matrix c;-1(..!°)f' (..!') for this estimator is always as

ymptotically stable so that no restrictive conditions for 

noise dynamics and/or process dynamics may be expected. 

4.6 Conclusion 

In this chapter we have presented a general set-up for simple and 

more complicated least squares estimators. We showed that within 

this genera! framework the recursi ve estimators can be classified. 

This framework is based on the distinction of three basic operations 

related to estimation: correlative weighting, filtered weighting and 

model extension. Based on these three main operations, a genera! 

estimator could be proposed, such that the existing recursive estima

tors are special. cases of this genera! estimator. From this genera! 

concept, the relationship between the existing estimators can then be 

shown. A short discussion of existing literature is given concern-

ing the convergence analysis of these estimators; this is still a 

popular topic in the very recent literature. 
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CHAPTER FIVE: 

ESTIMATORS FOR NOISE CORRUPTED INPUT-OUTPUT MEASUREMENTS 

5.1 Introduction 

In the preceeding chapters we discussed the estimation of model para

meters in the case where uncertainties can be modelled as an equation 

error, which can be treated as disturbances on the output signal. In 

this case measurement data of the undisturbed input signal are assum

ed to be available. 

Often it will occur that both input- and output measurements are 

disturbed to such an extent that the previously described estimation 

algorithms will produce biased results. Such disturbances can be 

inherently due to the measuring principles used. For instance in 

biologica! systems often only signals with a bad signal-to-noise 

ratio can be obtained, e.g. when measurements have to be restricted 

to non-invasive ones only. For such cases it is of interest to modi

fy the existing algorithms in such a way that also disturbed input

output data can be processed. 

The problem of estimating parameters using disturbed input-output 

measurements bas received rather little attention in literature, 

compared to many papers devoted to the simpler problem of output 

noise contam.ination. A few solutions have been proposed but, unfor

tunately, considerable a priori knowledge is assumed or restricting 

conditions are imposed on the disturbances. Akashi and Moustafa 

(1975) use an EMM approach for estimation of process and noise para

meters, but they assume equal colouring for both the input and output 

noises. 

With this restrictive assumption the EMM approach, as discussed in 

the previous chapter, can be used, assuming àlso that ·b0 '" o. An 

estimator for the case that b0 f. 0 is also proposed, but then it 

is assumed that the covariance matrix of the noise is known. 

Roosdorp (1974) proposes a combination of two IV estimators, which 

have to be performed successively. The technique is rather involved 
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and works well only for first order processes with white disturbanc-

es. 

However, b0 :/: 0 is possible in this approach. Sl:Jderstrtsm (1979) 

suggests an IV approach, which, again, is us.eful for white disturban

ces. For this case, he proposes a different type of parametrization 

using innovations form, and shows that the parameters of this para

metrization can be identified. Klijn (1977) also assumes white dis

turbances and gives an implicit quadratic expression for an estima

tor. This expression can be obtained from the common least squares 

estimator, if the m.trix oT 0 is replaced by oT 0 - I:, where I: is a 

diagonal m.trix containing the noise variances. 

Rogers .and Steiglitz (1970) propose a mximum likelihood approach, 

but the solution for non-white noise is numerically prohibitive, so 

that they only present simulation results for white disturbances. A 

promising method bas been proposed recent ly, cf. van den Dungen 

(1978) and van den Dungen and Eykhoff (1981). This method is called 

the Least Squares Like method (LSL) and does not impose limiting 

assumptions on the colouring of the noises. On the other hand, it 

assumes that two independent measurements of both input- and output 

signals are available. This may be a practical limitation, depending 

on the circumstances. Using these independent measurements, IV-like 

estimators can be constructed, where the extra available measurements 

serve as IV signsls. Simulation results show a good performance of 

this estimator. 

In the following paragrapbs we will propose two estimators. for the 

case of input-output disturbances, where different noise colouring is 

allowed. Each of these estimators can be presented in two variante. 

These estimators are involved IV-estimators, where each estimator 

contains two IV-operations and an extra operation which is either 

model extension or filtering. For a suitable choice of the IV quan

tities an extra measurement of either the input signa! or the output 

signal (or measurements of signals which are related to the input- or 

output signals) will be appropriate. This type of extra necessary 

measurements is, iri oany cases, practically feasible and leas rest

rictive than the a priori information needed for the schemes discus

sed in the chaptersbefore. The design of these estimators is a dir

ect result of the concept of designing estimation sc~emes, consisting 
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of three basic operations, as introduced in chapters 3 and 4. 

5.2 Problem formulation 

Assume for the process description, the situation of fig. 5.1. 

p 

si,k so,k 

Fig. 5.1 Corrupted input and output measurements 

Analogously to the formulation in the previous chapters, we can 

write: 
!. = -x!t: + ~" O(u,x)~ J 
.l. ... !. + 2o 

y•.!:_+~i 

(5.1) 

where we assume that .!» and .21 
mean, stationary noise sequences. 

are mutually uncorrelated, zero 

'J'.he vee tors !.• z., !!g, 

defined like z.: 
.21 • .!• .Il• _!:!. and f are signal vee tors, all 

T 1. • 

6T • 
--t 

(Yq+l'" • • • yN) 

T T 
(b ,-a ) = (b , ••• ,b ,-a

1
, ••• ,-a )t 

- - t 0 p q 

[

u:. q+l • . • ~'. q+l-p 

O(u,x) • [ulx] = 

UN • UN-p 

x ••• x ] .Q .1 . . . . 
• "X ~-1 N-q 

The matrix O(v,y) bas dimensions equal to O(u,x): 

O(v,y) = [v!Y] 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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The matrix N0 bas dimensions equal to Y, whereas the matrix Ni 

has dimensions equal to U (and V). 

The set of equations (5.1) can be rewritten: 

z.=n(v,y)0+n +Na-N4 b 
-t -0 o-t .1.-t 

Introducing: 

!, = ~ + No!t 

!. • - NiÊ.t 

.a = .! + ! 
we have: 

z. " O(v ,y}~ + .a_ 

J 

(5.6) 

In this description we have an equation error Sk which consists of 

two components. The quantity E!Jt is well known from previous chap

ters; it is the equation error due to the output disturbances. It 

is essential for our forthcoming considerations that ek is indepen

dent of the measured input signal V'k• Further we have fk, which 

is the equation error due to the input disturbances; fk has to be 

independent of the measured output signal. 

It is illustrative to consider the situation of fig. 5.2 :where an 

input disturbance is not measured but is fed into the process; i.e. 

the case of incomplete input observation. 

+ p 

"o.1< 

Fig. 5.2 Incomplete input observation 
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This situation can be handled by treating this type of input disturb

ance as coloured output disturbance: 

1.. • Sl(v,y)~ +~+NA+ Nf..l?.i: (5.9) 

The equation error 

J." .!!o + No!.t+ Nf.~ (5.10) 

is independent of the input measurement vk' if vk and ni,k are 

mutually independent, so that this type of input disturbance can be 

treated as coloured output disturbance. 

lt would seem attractive to model the input disturbance nio as in 

fig. 5.1, in such a way that it can be treated, as in fig. s.2. as 

output disturbanee, so tbat existing estimation sehemes suited for 

output disturbances could also be used for input-output disturbances. 

Therefore eonsider fig. 5.3. 

p 

no.1< 
+ 

Fig. 5.3 Input measurem.ent noise modelled as output noise 

lf the disturbance -ni,k is modelled as an output disturbanee 

as explained in eq. (5.10), then the resulting equation error ~ is 

not independent of the input measurement Vk as can be seen from 

fig. 5.3. This violation of the independence requirement of output 

disturbance and input measurement will eause inconsistence of the 

resulting estimates. 

Now we return to the scheme given in fig. 5.1. In the description 

(5.8) we have now an equation error .!:. + !.• which is generated from 
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two independent white noise sources 11 and ~ through shaping 

filters. There is the possibility of modelling the noise shaping 

filters in different ways, using AR, MA or ARMA descriptions. It 

will turn out that AR descriptions will be convenient: 

1 

] 
1;0,k (5.11) 

80 that the input and output noises are deri ved from the mutually 

independent white sources l;o ,k and l;i, k in the following 

way: 

1 

'•,k ] no,k " 
[l+A] [l+D ] 

t 0 t (5.12) 
1 

ni,k - - 1;1,k 
[bo +B ]t [l+Di ]t 

where the polynomials are defined as: 

-r . 0] + d z t o,r
0 

(5.13) 

For asymptotic etability of the signals involved, it is assumed that 

the roots of zq[l+A]t' zP[b
0
+B]t, zro[l+D

0
]t and zri[l+Di]t all lie 

inside the unit circle of the complex z-plane. 

After this notational introduction of the situation with corrupted 

input and output measurements, the estimation task is formulated as: 

"Find a (recursive) algorithm such that the process parameters §; 

will be estimated consistently; if it is necessary to estimate (some 

of) the noise parameters for this goal, they should also be inclu

ded". 
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5.3 Estimators for disturbed input-output data 

In this paragraph we will propose two different types of estimators 

which are suited for corrupted input-output data as specified in the 

previous paragrapb. 

In chapter 3 and chapter 4 we have seen. that three basic operations 

for obtaining consistent estimates can be distinguished. In prin

ciple, each of these basic operations is capable of converting the 

inconsistent common least squares estimator into a consistent estima

tor of higher complexity. In these cases we were dealing with a 

coloured equation error, which was obtained by filtering a single 

white noise source. 

From eq. (5.6), (5.7) and (5.11) we can conclude that the resulting 

equation error ik originates from two independent white noise sour

ces, ç;i and ~. which are both filtered by different filters: 

s.t. •e +f" 1 ~ + l ç; 
ït k k [l+Do]t o,k [l+Di]t i,k 

(5.14) 

The main idea of the proposed estimators will be a combination of two 

different basic operations within one estimator to obtain consistent 

results. One operation has to be tuned to the input noise fk and 

the other operation to the output noise et• 

The IOIVEMM approach· 

With this estimator we combine, within one estimator, the model ex

tension and the instrumental variable approach. Each of these two 

operations will be tuned to one of the noises, which means that we 

have two ways of applying this algorithm. 

The estimation of noise parameters in the case of input-output dis

turbances is more complicated compared to the case of . only output 

disturbances. This is due to the fact that no good estimates of the 

two equation errors et and fk can be made available separately. 

Only the quantity Sk • ek + fk can be used, but this implies 

that, for estimation of output noise parameters, the quantity fk 

acts as a disturbance. 
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For consistent estimation of the output noise parameters, we have to 

aim at a white residual due to f!tt• This implies that, because of 

the different colouring of input- and output noises, the residual due 

to fk will be coloured. 

If a least squares type of estimator is applied then, because of the 

symmetrie form of this estimator, this will lead to quadratic terms 

in ik• This will then cause inconsistent estimates. An IV type of 

estimator allows us to make use of an extra signal which, in this 

case, may not be correlated with the input disturbance. 

Again ek, or a good estimate of it, could be used for this but, 

unfortunately, this signal is not available. Signals which are cor

related with ek, but uncorrelated with fk, are available, e.g. 

Yk• Then an extra quantity is introduced implicitly, viz. Xk• 

whose correlation with fk is zero, as y k x k + n 0 , k. 

This is indeed true but, for finite data sequences, the sample 

correlation 

function is not equal to zero. Moreover, as an estimate 8k of 

gk has to be used, this estimate ik will be correlated with the 

input signal, which is also the case for Xk. leading to a non-zero 

correlation of these two signals. This introduces an extra error 

cause to the estimation result. The use of extra output measurements 

can be advantageous. The IV quantity, for estimating output noise 

parameters, could then be: 

Y1,k- Y2,k • nol,k- no2,k 

leading also to a vanishing sample covariance of n
02

,k and fk. 

5.3.la First variant of the IOIVEMM approach 

In this section we will propose an IVEMM estimator, where the IV part 

is used to tackle the input disturbance and the model extension to 

tackle the output disturbance. For explanatory reasons, we will 

first derive an explicit version of this estimator. As with all EMM 

estimators, a recursive version is more appropriate. This will be 

dealt with at the end of this section. 

118 



Combining (5.8) and (5.11) yields: 

z. " S2(v ,y)J?c: + .! 

2. =e +f • 1 ç; + 
-k k k (l+D ] o,k 

0 t 

Pre-multiply this equation by [l+D0 ]t 

(l+D ) 
[l+D]2. • ç; + otç; 

o t-k o,k [l+Di)t i,k 

where 

dT • (d 1••••,d )t -ot o, o,r
0 

G "' 

[

g • 

~-1 
Combining (5.8) and (5.17) yields: 

[l+Do ]t 
z. • S2(v,y)2.t- Gd t+ ,.io + 5.i 

-o [l+Di]t 

Applying the matrix extension principle: 

L • O(v,y,g) [~t~ _\., + 

where 

O(v,y,g) = [o(v,y)lc] • [vlYlc) 

(5.15) 

(5.16) 

(5.17) 

(5~18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

The quantity ,a will not be available, so that an iterative or recurs

ive scheme bas to be. used to generate an estimate of this signal 
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based on previous estimates and using eq. (5.15) where ~ is sub

stituted by an estimate ].. 

Now we will take as IVEMM estimator: 

!' -[-t]· 
This estimator will be consistent if 

I plim [N~q zi G(v,y,g)] is non-singular 
N+co 

Il plim 
N+m 

111 plim 
N+oo 

(5.23) 

(5.24) 

(S.25) 

From the discussion in previous cbapters concerning the choice of the 

IV matrix, we know that several possibilities exist: the use of 

delayed signals, use of fixed filters or use of varying filters based 

on previous estimates. 

choice: 

" " 
~q+l • u 

• q+l-p 

" A 

';{. 'i.-p 

We will gi ve here an example of such a 

Y.q-i:' ' ' y q+l-r -i:' 
• 0 

(5.26) 

In tbis matrix Z1, all submatrices are IV quantities: the matrix 

Û and both shifted submatrices Y. The entries to the submatrix Û 

can be constructed using the output signal y as the input to a fixed 

or varying filter, e.g. previous inverse model of the process. This 

filter needs to have a delay in order to fulfill condition 11. The 
-T' submatrix z Y is suited as IV quantity for the noise t1, as 
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it is not dependent on ~i· The submatrix z-iy is an IV mat-

rix for the output signal. The reason for the introduction of the 
-T -T' time shifts z and z is that condition I has to be 

fulfilled, which is not the case if t-i:'=O. A choice of t-0 and 

•'sq+l satisfies condition I, but problems can occur as explained in 

appendix II. An alternative choice, especially when r 0 < q, can be 

•''"O and T • r 0+1. The choice of a suitable IV matrix is for this 

type of application somewhat more dif ficult as three conditions 

(5.25) have to be fulfilled, where two similar conditions appear for 

the case of only output noise. The extra complication is now that 

for the model extension an IV approach also has to be followed (i.e. _,. 
the choice of the last submatrix z Y instead of G). 

The use of the choice of eq. (5.26) for an IV quantity is only feas

ible close to the correct parameter value ~· This is due to the 

use oAf Sk instead of Ik• Far from the true parameter !J;, 
this ~ will contain remnsnts which are related to Uk• Also in -·· z Y, which is used as an IV quantity for ~. the component 

xk is related to Uk• The correlation of both signals will result 

in an extra term, yielding a bias for the estimates. This may even 

lead to divergence, as bas been noticed in simulations. 

If a second independent measurement of the input signal or the output 

signal is available, the choice of a proper IV matrix is easier with 

respect to the three consistence conditions (5.25). We will consider 

two cases: 

1) Two independent measurements of the input signal are avail-

able and one measurement of the output signal: 

vl,k • ~ + 0 11,k 

v2,k • ~ + 0 i2,k 

1t • ~ + no,k 
] (5.27) 

The disturbances nil,k' ni2,k and no,k may have different 

colouring hut are mutually independent. 

A possible choice is now: 

'1(v
1

,y,g) • [v
1

1Y lê
1

] 

Z1 • [v2IY21°2l l (5.28) 
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i1 • z - G(vl,y)!" 

ia • Y - G(v2,Y>!" l 
where ê• is an estimate of ~ f rom a previous iter

ation, and Î2 is generated by using .!2• 

2) Two independent measurements of the output signal are 

available and one measurement of the input signal: 

vk • ~+nik l 
Yl,k • ~ + :ol,k 

Y2,k • ~ + no2,k 

(5.29) 

Also here, the disturbances ni k' n01 k and n02 k may have 
• • • 

different colouring, but are mutually independent. 

A possible choice is now: 

z1 = [û2 1z-'v21z-''cv1-Y2)] 

i" Z.1 - G(v,yl).!_* 

where ~ is generated from z
2 

• 

(5.30) 

This is an interesting choice as the conditions (5.25) can 

be fulfilled quite easily. 

The requirement for a second independent measurement of the input- or 

output signal can be weakened slightly if we recognize its purpose, 

which is removal of those components which are related to Uk,, in 

the IV quantity. For this we do not exclusively need measurements of 

the input-or output signal, but also signals which are closely rela

ted to the input- and output signals can be used, e.g. an electrical 

signal, which controls a valve, instead of the flow itself. Depend

ing on the circumstances, these signals may be readily available, 

which extends the applicability of the method of eq. (5.30) consi

derably. 

As mentioned already, an iterative or recursive version of this esti-
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mator bas to be chosen, as the quantity ~ is not available. The 

formulation of the recursion for the k-th step is as follows: 

~ = ~-1 + pk-1 ~(l+~ pk-1~)-\yk- .i ~-1> l 
T _l T (5.31) 

pk = pk-1 - pk-1 ~ (l+..!!!it pk-1~ .!!k pk-1 

where, for the case of one input- and two output measurements: 

T 
.!!k " 

T 
~" 

(5.32) 

A schematic diagram of this estimator is given in fig. 5.4. 

In this figure the three IV generating filters w
1

, w
2

, w
3 

for the 

respective IV quantities in the IV matrix Z1 are shown. In eq. 

-T' [l+Àk-l] -T 
(5.26) and (5.30) ~l = z , w2 = - and w3 = z are 

[Go+Bk-1] 

chosen. 

i--- - - - - - - - - - - - - - - - - - - - - -1 
1 1 
1 1 

IV Recursive estimator 

Fig. 5.4 IVEMM estimator for noisy input-output data 

123 



Second variant of the IO~VEMM approach 

A second variant of the IVEMM estimator can be constructed when the 

r6les of the two operations are interchanged. The model extension 

will be used now to take care of the input disturbance, and the IV is 

used to take care of the output disturbance. 

where 

Equation (5.33) can be rewritten: 

[ ~] [l+Di)t 
l. • Q(v,y,g) + - 5o + 5.J. 

-!it (l+DO)t 

An explicit IVEMM estimator can be given now 

!" ·[-tl = 

This estimator is consistent if 

I plim [N_:q z~ n(v,y,g)] is non-singular 
N+<» 

II plim ['N:q zi 1t] - 0 
N+<» 

III plim 
1 ZT [l+Di)t 

~) - 0 [N-q 2 [ ) N+<» l+Do t 

An example of a possible choice for Z2 is: 

z
2 

• [z-'vlilz-•'z] • 

v v 
N-T N-p-T 
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y • 
q 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

• ZN-r -<' 
i 

(5.38) 



Here the submatrix Z contains IV quantities for proper estimation of 

i.t.t,see e.g. eq. (5.41) and (5.42). 

The recursive estimator is given also by eq. (5.31). and (5.32). 

except the expression for the IV quantity, which is in this case: 

(5.39) 
The expression for the estimated model output is: 

[G +Bk-1] 
0 v 

[l+Àk-l] k-1 

A 

lK-1 (5.40) 

A schematic diagram for this estimator is given in fig. 5.5 for the 

case of two input- and one output measurements. 

M• 

IV rec1nive estlmator 

Fig. 5.5 IVEMM estimator for noisy input-output data 

In eq. (5.38) and -T 
t
3 

• z is chosen. 

For multiple measurements, as indicated in eq. (5.27) or eq. (5.29), 

we may have the f ollowing choices f or the IV matrix: 

1) two inputs v1 and vz, one output z: 
n<v1 ,y,g1) = [v11YIG1 ] 

[ -T 1 A 1 -T' ] z2 • z v2 Y2 z (V1-v2) (5.41) 
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where Î2 is generated from..!2• 

2) one input .!.> two outputs z.1 and z.2 

5.3.2 

gcv,Y1Î1> • [vlY1IC1] 

Z2 " [ft2I Y2 I ê2 l 

Filtering and IV-approach combined 

(5.42) 

The next combination of two basic operations is the combination of 

filtering (to obtain white residuals) and the IV-approach. For the 

same reasons as in the previous paragraph, we can find two alterna

tives for this scheme as well. 

5.3.2a First variant 

For the first variant we choose the IV operation to tackle the input 

disturbance and the filtering to take care of the output disturb-

ance. 

Starting with eq. (5.8) we can apply filtering of the signals invol

ved by using a filter [l+Do]t 

v = 
~ 

[l+Do]tyk 

[l+Do]tvk 
] 

Then (5.4) can be rewritten 

where 

f • 

Now, take as IV estimator for the process parameters: 
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T -ê = z3 g(v,y)) z3 z. 

(5.43) 

(5.44) 

(5.45) 

(5.46) 



This estimator is consistent if: 

1 plim [l T --] is non-singular N-q Z3 '2(v,y) 
N......, 

Il plim [N:q z; So] . 0 
N+<» 

(5.47) 

111 plim [ 1 ZT fJ = 0 
N+<» N-q 3 -

As possible choices the re are: 

z - [û 1 y] l 3 -z • [O 1 Y'] 
3 

(5.48) 

" where the submatrix U can be constructed using as input, the output 

signal y and a fixed or varying filter, e.g. previous inverse model 

of the process; cf. eq. (5.32) for the recursive case. 

For proper application of this algorithm the parameters of the AR 

filter [l+Di ]t are needed. They can be obtained by using a sep

arate estimator. For this purpose we use the result of eq. (5.17): 

(5.49) 

The idealized IV estimator for the AR parameters of the output noise 

would be: 

(5.50) 

In practice, the precise signals 

therefore they will be estimated. 

by using eq. (5.32); cf. also eq. 

will then be: 

..& (and G) are not available, so 

The estimates j will be obtained 

(5.57). The resulting estimator 

a: [ T~)-1 T ~ 
-o " - Z41,; Z4 .l (5.51) 

Tbis estimator is consistent if the following three conditions are 

fulfilled: 

1 plim [-1..,. ZT G] is non-singular 
N- N-q 4 

Il plim (N:q z! So] - .2. (5.52) 
N+oo 

(l+D J 
llI plim [l T ot J 0 -z ~ -

N- N-q 4 [l+D ] ~ 
i t 
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A possible choice for Z4 is: 
z

4 
" Y (5.53) 

y having proper dimensions (N-q) x r 0 • As both estimators (5.46) 

and (5.50) use each other's results, an iterative or a recursive 

scheme has to be developed. 

For a recursive scheme the formulation is as follows: 

step k a) Filter the new samples vk' yk using the estimates 
~k-1 !!o of the previous recursion step. 

-v -k 

b) Form the vectors .!!k. and .!a,k: 

• <;k, ••• ,;k-p' Y'k-1·····Yt-q> ] 

.!a,t • <~·····~-p.Y't-1····Yt-q> 

d) Generata 

~ = [l+Ak]yk - [S~+nk]vk 

e) Form 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

A schematic diagram of this recursive estimator is given in fig. 5.6 

for the case of one input- and two output measurements. In this 

diagram the IV generating filters ~l and ti are shown. 
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Y1.k Y2,k 

1+ c;:-1 

.---------------------------i 
1 1 

................... M' 
.!.. - - - - - - - :.. - - - -- - - - - - - - ----- - _j • 

IV recursive estimator 

IV r&C\nive estimator 

Fig. 5.6 First variant of filtering - IV combination 

The choices f or these filters are resp. •1 " 

(5.48) and t 2 • 1 in eq. (5.53). 

[l+Äk-1] 

[S +sk-1 J 
0 

in eq. 

Using this estimator, only the AR parameters of the output noise will 

be estimated. If for some reason one is interested in the AR para

meters of the input noise, a similar approach can be followed, lead

ing to an extra, separate estimator for these parameters. For de

tails see the next section, where these parameters are estimated 

separately. 
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If multiple measurements are available we may have the following 

choices for the IV matrix: 

1) 

2) 

5.3.2b 

two inputs, one output 

ocv1 .Y'~ • - [V11 î] ] 

Z3 = [v2IY] 

one input, two outputs 

oc;,;1 > " [v1ï11 J 
Z3 - [ü2I Y2] 

where n2 is generated using .l.2· 

Second variant 

(5.60) 

(5.61) 

A second variant can be constructed if we interchange the r8les of 

the filtering and the IV operation. The measurables will now be 

filtered by the filter [l+D1]t: 

" y = k 

v " k 

[l+Di]tyk 

[l+Di]tvk 
] 

Then (5.8) can be rewritten: 

where 

The IV estimator for the process parameters is 

T " "' f l T " ~ = [z5 Sl(v,y) z5 z. 

This estimator is consistent, if: 

I plim [ 1 T "' " J is non-singular N-q Z5 Sl(v ,y) 
N+<x> 

II plim [N.:q z~ 1J.] " 0 
N+<x> 

III plim [_!__ ZT ë] 0 
N+<'> N-q 5 -
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(5.63) 

(5.64) 

(5.65) 
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The recursive version proceeds along the lines indicated for the 

first variant. We will not explain this procedure in detail here. 

The schematic diagram is given in fig. 5. 7, for the case of two 

input- and one output measurements. 

V,,k V:!,k 

1 

L------ ----

k -k 
-----o+B 

• 
IV reo.nive estimator 

·~· 
1 1 

: 1 
1 1 

L.-- ~-~· 

IV recll'Sive estimator 

Fig. 5. 7 Second variant of filtering-.IV combination 

Some possible choices are 

z
5 

• [v 1 Î] 

z5 " (v 1 Y] ] (5.67) 
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the IV estimator for the AR parameters of the input noise is 

(5.68) 

where ~ is again generated using previous estimates ê. This 

estimator is consistent if the following conditions are fulfilled: 

I plim [ l ZT G] 
N+<» ttl-q 6 

II plim [tlq z~ !i] = 
N+co 

1 T (l+D ] 
!II plim [ z 0 t 

N-q 6 ( ] N+«> l+Di t 

A possible choice for Z6 is 

z6 " v 

is non-singular 

0 (5.69) 

ioJ 0 

(5.70) 

The IV generating filters t1 and t 2 in this diagram are chosen as 
[S +Bk-1] 

resp. •1· [l:Ak-l] in eq. (5.67) and t 2 1 in eq. (5.70). 

5.4 Conclusions 

In this chapter we have proposed several related estimators for situ

ations where both input- and output measurements are corrupted by 

mutually independent additive disturbances. 

These estimators are involved IV estimators" and they combine the IV 

approach with the filtering approach or with the model extension 

approach. Therefore also AR noise parameters are estimated along 

with the process parameters. The interesting feature of these esti

mators is the fact that no rather restrictive assumptions, such as 

equal colouring for the input- and the output disturbance, need to be 

made. 

The selection of a proper IV quantity may cause problems for the 

convergence of the estimator. If additional measurements of the 

input signal or the output signal are available, or a signa! which is 

closely related to one of those signals but independent of t::he dis-
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turbances, then proper selection of the IV quantity is possible. 

This is, in many practical situations, a less restrictive experiment

al condition than the necessary a priori knowledge of existing esti

mation schemes. 
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CHAPTER SIX: 

EXPERIMENTAL RESULTS 

6.1 Introduction 

In previous chapters we have investigated the asymptotic properties 

of the estimators, viz. bias and variance. Often, for practical 

applications, it is important to know - or at least to have an idea -

whether these asymptotic properties are also attained for finite, and 

of ten for very small, sample si ze. At this moment a theory which 

describes this small sample behaviour is lacking and its development 

and potential result cannot be predicted, but in any case the devel

opment of such a theory will need considerable effort. Therefore 

the experimenter who applies parameter estimation methods in a prac

tical situation bas to have experience with these methods. This 

experience should be gained from otber (previous) experiments and 

from simulation activities which are related to the problem at hand. 

Many simulation runs, whose conditions are based on those of the 

practical experiment under study, can then give insight into which 

estimation properties may be expected. The availability of an inter

active package, as described in the next paragraph, will be of great 

help. 

In· this chapter we will discuss several properties of .estimation 

schemes, and we will draw conclusions which are based on practical 

experience. The bias and variance properties will be investigated 

in paragraphs 6.3 and 6.4, whereas the divergence aspects are consid

ered in paragraph 6.5. In paragraph 6.6 we will present simulation 

results of estimators for input-output corrupted measurements as 

dealt with in chapter 5. 

6.2 The interactive program package SATER 

Interactive program packages become more and more standard tools in 

control research and development. The availability of such a package 

has several advantages: no tedious programming work, the time 
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available can be devoted to the control or estimation problem, stu

dents can gain experience by using these programs, several {estima

tion) methods can be compared in a universal framework, etc.; cf. 

Lemmens and Van den Boom {1977). Many interactive packages which 

have been developed recently, are more or less machine or application 

oriented. With the development of SATER this drawback was avoided as 

much as possible; cf. Van den Boom and Lemmens (1977). 

The SATER package bas primarily been developed to make the well-known 

estimation and order test routines available to a large group of 

users. The package can be used to become familiar with these tech

niques using simulated data or (for analysis of real processes) using 

recorded data. 

Due to the interactive character of the program package, it is desir

able that the computer has quick response times. Usually this can 

only be achieved satisfac torily using a dedicated minicomputer. In 

our system we now use a PDP 11/60 computer with RSX 11, 32k core 

partitions and a RK05 back-up memory. Other peripherals are a visual 

display unit TEKTRONIX 4014, an LA36 Decwriter and an LPS analog to 

digital converter. 

As an interactive program contains a large number of program state

ments (e.g. about 10 000 FORTRAN), it cannot be loaded into the core 

at once, so the core memory has to be loaded by the proper software 

parts from the back-up memory. This back-up memory is also used for 

the storage of the internal datasets (like signal samples, Bode 

plots, estimated parameters etc.), for the· messages and questions 

which appear on the screen and for the tables which determine the 

relationships between the operations and datasets, as will be ex

plained latet'. In this paragraph we will only highlight the main 

features of the SATER system. For details cf. Lemmens (1979) and 

Bollen and Van den Boom (1982). 

The software of the SATER system consists of three main parts. The 

supervisor, the application programs and the service 

indicated in figure 6.1. 
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application 

program 1 

application 

program 2 

application 

program 3 

application 

program n 

Fig. 6.1 Structure of the SATER System 

The supervisor can be divided into an executive, an interrogator/ 

interpreter and a logbook updating device. The task of the executive 

is to start the right application programs indicated by the demands 

of the user. It checks the availability of the necessary datasets 

and suggests the creation of the missing datasets using other appli-

cation programs. By means of the interrogator/interpreter it asks 

for the necessary data and parameters to run the wanted application 

program. After having finished that application program, it updates 

the logbook. This logbook contains the information concerning avail

able datasets and how they have been created. 

The application programs form the largest parts of the SATER system, 

but in fact, they do not contribute to the basic framework of the 

SATER system. The number of these application programs can be exten

ded at will, depending on the interest of a grotip of users. In our 

SATER vers ion, various parameter estimation routines, order test 

routines - and basic control theory routines like Nyquist and Bode 

plots, as well as root loci have been implemented. Other. application 

programs are sampling of- continuous signals and file I/O. 

The service routines consist of three main parts: the I/0 subsystem, 

the question/answer subsystem (which displays the questions, accepts 

the answers and checks them) and the graphical subsystem (which faci-
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litates the graphical display of data and the acquirement of data 

coordinates from the screen of the visual display). 

The application programs available in the package constitute a set of 

algori thms/ operations, operating on input data sets. The data set 

produced by one operation may be a necessary input data set for an

other operation. So a graph may be drawn representing the relation

ships between all data sets and all operations of the package. An 

example of a possible graph of this type is given in figure 6.2. 
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c.m.p. continuous model parameters 

d.p/z.d. discrete pole-zero diagram 

c.p/z.d. continuous pole-zero diagram 

continuous domain 

( operation) 

c::J 
Fig. 6.2 Relations between datasets and operations 



Tables are used to describe the relations in the above graph: one 

table for the datasets where all operations producing the same data

sets have been gathered and a table of operations indicating which 

datasets are needed for each operation. These tables are used by the 

executive. In many cases more paths in the graph can be found from 

one dataset to another. The executive can detect these paths and can 

give suggestions to the user as to how to arrive at the desired data-

set. 

A. program package like the one described here is not a rigid and 

fixed construction. It will be subject to continuous change, as new 

numerical programs become available and old programs become obsolete. 

By updating the tables, the structure can be modified easily. 

All messages and questions that can be displayed on the screen are 

contained in one file on disk, the message file. This is done for 

two reasons: it contributes to the flexibility if messages and ques

tions can be changed easily, without changing the program 

software; furthermore, it saves memory if those memory consuming 

texts are resident on disk. 

The way in which the interaction between the machine and ilser has 

been realized, highly determines the usefulness and flexibility of 

the program package. Numerical programs, converting input data into 

output data, usually have to be controlled by a set of additional 

parameters. These parameters determine aspects such as, for example, 

which part of the input data has to be used, weighting factors of the 

estimation algorithm etc. 

There are two ways of collecting these data: the question and answer 

method and the cOOUDand language. The question and answer method, 

where questions are successively put to the user and answers gathered 

and checked for their correctness, is a straightforward method which 

is specially suited for non-experienced users. On the other hand, 

the interpretive command language puts obstacles in the path of the 

user because commands and the syntax of the command language have to 

be learned. Experienced users can mostly operate faster with the 

latter type of interaction. 
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The SATER system is a sort of intermediate between these two possibi

lities. It has a few commands: for asking for further explanation, 

for return to some starting points and for closing the sessions. The 

parameters of the numerical programs are clustered in blocks of rela

ted questions, which have pre-programmed default answers. It is 

important that these default answers are correct answers for the 

majority of uses. So. the user should only change those default 

answers to suit his own needs if he is unable to make use of them. 

If his answer is beyond predefined limits, the system will not accept 

it and will ask for a new answer. It is not possible to force the 

system to execute a numerical program when the values of the control 

parameters are beyond the predefined limits. All these aspects are 

coveted by a question-answer subsystem. By calling a few sub

routines, the questioning, gathering of data and checking for cor

rectness is done ·automatically. Another aspect of interaction is the 

:choice of the operation that bas to be performed or the datasets that 

have to be created. For operations the system accepts a code 

(which is the number of the operation) and for datasets a name which 

is a standard name for the user (e.g. NYQUIST DIAGRAM). Synonyms are 

also allowed (e.g. POLAR-FIGURE). If the user is not familiar with 

the codes of the oper~tions he can give the name of the wanted data

set. The system responds with a list of all operations and their 

codes producing this dataset. 

If the necessary input datasets are missing, the system will detect 

this and give a summary of all operations capable of producing the 

missing datasets. For the recognition of dataset names a vocabulary 

is used,containing all relevant words and their synonyms; cf. Escher 

(1980). 

For inexperienced users a HELP facility is provided which gives addi

tional explanation or suggestions if a question is not well under

stood. By typing a "?" instead of the expected answer, the HELP 

mechanism is activated and a message containirig · helpful information 

is displayed. The contents of all HELP messages is also stored sep

arately on disk so that changes and add~tions can be made very easi

ly. 

In the following paragraphs we will proceed with. some examples of 

experimental results~ obtained by using SATER. 
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6.3 Bias for finite sample size 

The behaviour of the bias is investigated for a first order process; 

corrupted by first order ARMA noise eit: 

yk + o. 7 Yk-1 = ~ + ek ] 

~ - 0.5 ek-l = ~k + 0.3 ~-l 
(6.1) 

where {uk} and {~k} are white and gaussian, with N(O,l) and 

N(O, o~) resp., and are mutually independent. For at = 0.25 and 
2 

ai; "' 4 the following results were obtained for the means of the 

estimates and the 95 per cent confidence interval using 10 runs EMM. 

N 

125 
250 

500 

1000 

2000 

true 

125 

250 

500 

1000 

2000 

4000* 
8000** 

true 

b A " 
A 

al cl dl 0 

0.999 ± 0.026 o.684 ± 0.019 0.317 ± 0.116 -0.429 ± 0.107 

0.995 ± 0.013 0.692 ± 0.010 0.231 ± o.050 -0.543 ± 0.049 

0.992 ± 0.013 0.100 ± 0.011 0.212 ± 0.029 -0.513 ± 0.036 

1.004 ± 0.013 0.698 ± 0.008 0.285 ± 0.033 -0.508 ± 0.024 

0.998 ± 0.009 0.102 ± 0.005 0.298 ± 0.026 -o.501 ± 0.023 

1.000 10.100 0.300 -o.soo 

Table 6.1 Means and 95 per cent confidence interv.:ils; 

a~ = 0.25 , S/N = 8.38 dB 

1.018 ± 0.102 ~± 0.118 ± 0.111 -0.593 ± 0.134 

0.950 ± 0.089 o. 546 ± ö.163 ± 0.165 -0.640 ± 0.224 

0.997 ± 0.036 0.566 ± 0.154 ± 0.104 -0.460 ± 0.112 

1.024 ± 0.057 0.663 ± 0.049 0.201 ± 0.095 -0.529 ± 0.041 

0.996 ± 0.050 0.680 ± 0.038 0.232 ± 0.087 -0.530 ± 0.031 

0.994 ± 0.052 o.706 ± 0.018 0.302 ± 0.021 -0.498 ± 0.023 

0.993 ± 0.021 0.705 ± 0.031 0.305 ± 0.033 -0.497 ± 0.012 

1.000 0.100 0.300 -0.500 

Table 6.2 Means and 95 per cent confidence intervals; 

a€ = 4, S/N = -3.66 dB 
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The means and confidence intervals for N " 4000 and N " 8000 were 

obtained from 6 resp. 3 runs EMM; this is denoted in tables by * and 

**. From these tables it follows that the hypothesis that the true 

parameters can be accepted as mean values with a risk of 5 per cent 

is quite acceptable in all cases except for the encircled ones, which 

occur for relatively small sample sizes. 

This is a remarkable result if we consider the actual signal-to-noise 

ratios. As for the given experimental condition: 

a2 = 1. 9608 a2 + 1.1397 a2 
y u ~ 

we find for a2 "' 0.25: S/N 
~ 

8.38 dB 

S/N = -3.66 dB 

(6.2) 

In order to gain more experience, we present in fig. 6.3 and fig. 6.4 

the adjustments of 10 independent runs of 2000 samples each, starting 

value ê " 0 for each run, for the cases o2 = 0.25 (fig. 6.3) and i;; 
a~ "' 4 (fig. 6.4). The true parameter values are also given with 

the figures. It can be observed that for a2 = 0.25 reasonably 
i;; 

fast and smooth adjustments for the process parameters occur in all 

10 cases. The noise parameters which were estimated after 20 recurs

ions of the process parameters show a much slower convergence. How

ever, it can be observed that the convergence takes place fróm both 

sides of the actual parameter values. 

From fig. 6.4 it is clear that much slower convergence occurs for 

tbis lower S/N ratio. In fig. 6.5 and fig. ~-6 it is shown that for 

this S/N ratio correct convergence will occur for increased sample 

lengths (N • 4000 and N = 8000 respectively). 

For low S/N, the observed output signal Yk is mainly determined by 

the noise i;;k• This noise is transferred to the output through a 

system which consists of two pol es• determined by the parameters 

a1 and d1 and one zero. As these parameters are estimated separ

ately from each otber in the EMM algorithm, the true numerical values 

could be interchanged for small sample sizes, i.e. a1 estimates 

d1 and d1 estimates a1. This can be observed a few times in 

the fig. 6.4 and 6.5 and very nicely in the third adjustment of fig. 

142 



-1 

Fig. 6.3 Par<UD.eter-adjustment of 10 independent runs; 

S/N • 8.38 dB, 2000 samples each 

-1 

Fig. 6.4 Parameter-adjustment of 10 independent runs; 

S/N = -3.66 dB, 2000 samples each 
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0 

-1 

0 

-1 

Fig. 6.5 Parameter-adjustment of 6 independent runs; 

S/N = -3.66 dB, 4000 samples each 

Fig. 6.6 Parameter-adjustment of 3 independent runs; 

S/N - -3.66 dB, 8000 samples each 
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2 6. 7, where three adjustments are shown for 11!; "' 16, i.e. S/N ratio 

• -9. 68 dB. In such a case, the presence of the small influence of 

the input signa! in the output, nevertheless, finally forces the 

interchange of the roles of a1 and d1. The adjustment of 

c1 is hereby affected. 

0 

-1 

Fig. 6.7 Parameter-adjustment of 3 independent runs; 

S/N • -9.68 dB 

From comparison of fig. 6.3, 6.4 and 6.7 it is clear that the conver

gence depends on the S/N ratio. This convergence can be accellerated 

by imposing a welghting on the observables, but this will increase 

the variance of the estimates; cf. Goedheer (1976). 

A further example, of different character, concerns the following 

process: 

(6.3) 

and the disturbing noise dynamics of the previous example 

(6.4) 
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The signals {uk} and {çk} are white and uniformly distributed, 

between (-1.1) and (-À,À) respectively. For À • 0.25 and À•l the 

following results were obtained for the means and the 95 per cent 

confidence intervals, using 10 runs EMM. 

N 

125 

250 

500 

1000 

2000 

true 

N 

125 

250 

500 

1000 

2000 

true 

,.. ,.. ,., a b al cl 1 0 

o.999 ± 0.018 -0.615 ± 0.035 0.220 ± 0.089 -0.558 ± 0.084 

1.002 ± 0.012 -0.617 ± 0.021 0.264 ± 0.061 -0.510 ± 0.062 

1.003 ± 0.001 -0.609 ± 0.013 0.293 ± 0.064 -0.506 ± Q.052 

1.002 ± 0.005 -0.604 ± 0.010 0.287 ± 0.040 -0.513 ± o.036 

1.002 ± 0.003 -0.606 ± o.oos 0.292 ± 0.022 -0.505 ± 0.017 

1.000 -0.600 0.300 -0.500 

Table 6.3 Means and 95 per cent confidence intervals; 

À" 0.25, S/N = 5.97 dB 

A 

" 
.... a1 b 

0 al cl 

1.001 ± 0.059 @ ± 0.063 0.262 ± 0.108 -0.437 

1.026 ± 0.054 -0.652 ± 0.061 0.301 ± 0.106 -0.454 

1.006 ± 0.029 ~ • 0.029 0.252 ± 0.053 -0.462 

1.996 ± 0.030 ± 0.023 0.277 ± 0.039 -0.504 

0.995 ± 0.012 -0.619 ± 0.020 0.287 ± 0.029 -0.500 

1.000 -0.600 0.300 -0.500 

Table 6.4 Means and 95 per cent confidence intervals; 

À = 1, S/N = -6.07 dB 

± 0.122 

± 0.098 

± 0.048 

± 0.033 

± 0.028 

From these tables it follows that the hypothesis that the true para

meters can be accepted as mean values with a risk of 5 per cent is 

acceptable in all cases, except the encircled ones. As a practical 

result from these tables and the two tables of the previous example, 

we may find that the small sample behaviour of the estimates, with 

respect to the bias behaviour, is quite good. However, it is depend

ent on the signal-to-noise ratio. 
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As a third example, we consider the bias for different types of mod

els for the following second order process: 

yk - l.Syk-1+ 0.7yk-2 1\:-1 + O.Suk-2 + ek 

ek - o.sek-l = ~k + 0.3 ~-l 
] (6.5) 

The process is identical to that proposed by Aström (1968) as test 

process; the noise filter is identical to that propsed by Talmon and 

Van den Boom (1973). The corresponding pure MA viz. AR noise models 

are: 

MA: ek = ~k + o.8~_1 + o.4~_2 + o.2~k-3 +.... ] 

ek - o.8ek-l + 0.24ek-2 - 0.072ek-3 + •••• = ~k (6.6) AR: 

The input signal uk and disturbing noise ~k were here indepen

dent, white noise sequences, uniformly distributed between -1 and +l. 

This implies that S/N = -3. 7 dB. We will consider the following 

cases for the model: 

a) proc: ARMA-odel; no noise param: fig. 6.8 

b) proc: ARMA-odel; MA-noise param: lMA fig. 6.9 

2MA fig. 6.10 

c) proc: ARMA-odel; AR-noise param: lAR fig. 6.11 

2AR fig. 6.12 

d) proc: ARMA-model; ARMA-noise param: lMA,lAR fig. 6.13 

In these figures the development of the average adjustment as func

tion of N is shown. The average was taken over 10 runs. The true 

parameter values are also given; these figures give then an indica

tion of the bias. 

According to paragraph 3.2, it can be observed that in case a) the 

process parameters will be estimated with bias. The inclusion of MA

noise parameters decreases the bias, and the parameters of the pure 

MA-noise model are estimated satisfactorily. Nevertheless, even for 

two additional MA noise parameters, a remaining bias can be observed. 

This is due to the fact that the remaining residual has been coloured 

by the non-odelled part of the pure MA-noise model. 
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Fig. 6.8 

Average adjustment; 

no noise parameters 
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Fig. 6.9 

Average adjustment; 

1 MA noise parameter 

-20'1.--L~-'-~-L-__J'---'-~-L-~.l...---L~_,L,.-,,..,..i,,.,,.....,...; 
. 0 100 200 300 400 500 600 700 800 900 1000 1100 

1.5 

'-~~--.......-~~----_..~~~--~~"-"+~ 
•C1 ,...,:;;::="'*-----~ .................. ~.--· ....... :::::;,;--.1 ..................... ~~a:a 

____ ....... ~..;i..~-~--~..a...~~----~ ........ ---~ 
....._~..._~.._~...--..,#----~~~ ......................... __ ~ 

Fig. 6.10 

Average adjustment; 

2 MA noise parameters 
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Ave rage adjustment; 
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Fig. 6.12 

Average adjustment; 

2 AR noise parameters 

Fig. 6.13 

Average adjustment; 

1 MA and 1 AR noise 

parameter 

149 



The inclusion of pure AR-noise parameters is more successful with 

respect to bias. This is because the non-modelled part of the pure 

AR-noise model is of less importance than in the pure MA case. This 

would suggest a preference for a low order AR-noise model in this 

case. But for another noise filter (e.g. the inverse of the consid

ered one) a low order MA-noise filter would be preferable. Therefore 

ARMA noise models are more generally applicable. The results of such 

a noise modelling are very attractive for this specific example, as 

can be seen from fig. 6.13. 

6.4 The variance of the estimators 

For the second order process and the noise process of the previous 

paragraph, the behaviour of the variance is investigated. For the 

input signal Uk and the disturbing noise f;k, white gaussian noise 

was taken with N(O,l) and N(O,À2) statistica, where À ranged as 

256- 1, 64- 1, 16-1, 4-1, 1, 4, 16, 64. 

This implies a S/N ratio ranging from 44.3 dB to -39.7 dB, which 

covers the majority of practical disturbance ratios. The estimation 

method was again EMM and N = 400. In the figures 6.14, 6.15 and 6.16 

the estimates of the standard deviations (s.d.), obtained from 10 

independent estimation runs, with their 95 per cent confidence 

intervals, are given for all estimated parameters. In the figures, 

the results for the different parameters are shifted over one decade 

in order to make comparison possible. Besides the observed standard 

deviations, the range of the 10 corresponding approximated Cramêr-Rao 

bounds are given which are calculated, based on the estimated 

parameters. 

From the figures we can observe the following:· 

ISO 

a) the standard deviations for the different parameter esti

mates behave qualitatively as indicated in paragraph 3.6. 

b) the standard deviations for the a parameters change in 

behaviour between À = 1 and À = 4 which is in accordance 

with eq. (3.108) and (3.110). 



c) the observed standard deviations are close to the Cramér

Rao bound; the deviation from the Cramér-Rao bound can be 

explained as follows: 

- EMM, as applied, is a fast, and therefore, approximate 

algorithm; no recalculation of all previous prediction 

errors are performed. 

- 10 independent runs are used for the calculation of the 

standard deviation; i.e. 10 independent realizations of 

the input signal, which also contributes to the variance, 

due to the increase of degrees of freedom in the experi-

ment. 

These results suggest that EMM is a very attractive estimator, both 

with respect to speed and results• 

Bosch (1978) compared the behaviour of different estimators of the 

SATER package, viz. EMM, GLS, PKF (=Tally) and three IV estimators. 

These three IV estimators are 

1) IV-1 use of model output as instrumental variable 

2) IV-2 use of shifted inputs 

3) IVEMM 

These results are given in fig. 6.17, 6.18 and 6.19. Note that all 

curves are shifted with respect to each other over one decade each 

time, as indicated. Bosch used white uniformly distributed signals 

with almost the same S/N ratios as in the previous experiment and N = 
200. From these experiments we can conclude the following: 

a) the standard deviations of the different parameters show, 

the behaviour as qualitatively indicated in paragraph 3.6., 

for all estimators. 

b) the use of uniformly distributed signals seems not to in

fluence the results which, also quantitatively, can be 

compared with the results of the previous expe~iment. 

c) GLS and EMM give highly comparable results. We have al

ready seen in paragraph 6.3 that the simulated noise of 

this example can be very well modelled by a second order 

AR-model so that GLS is also appropriate. 
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d) the IV methods show a worse behaviour for the A parameters. 

This is due to the fact that IV is not very sensitive to 

noise, so that the estimation of A parameters due to the 

noise as information carrier for bad S/N ratios, is worse. 

The use of model extension shows improvement , This is 

because the model extension acts as an inverse noise fil

ter, as with the suboptilllal. IV estimator. 

e) The Tally estimator is only useful in a part of the whole 

S/N range. The reasons for this are explained in appendix 

n. 
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Fig. 6.17 
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Standard deviations of MA process parameters for 

different estimators 
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6.5 Divergence of the estimators 

In order to illustrate the discussion in paragraph 4.5 concerning the 

possibility of divergence of the EMM estimator, the following experi

ment was performed. Various types of input signals were applied to a 

simulated process; the disturbance was filtered by a noise filter; 

process and noise filter are given by: 

process: (6.7) 

noise filter: 

The noise filter was excited by a white noise sequence, uniformly 

distributed between -0.05 and 0.05. The input signal was a white 

noise sequence, uniformly distributed between -1 and 1, or a sine 

(of different frequencies) or combinations of both. The following 

results were obtained; cf. table 6.5. All cases are with N = 2000 

and a weighting factor p = 1, unless otherwise stated. It should be 

mentioned that the transient response is not discarded in all cases. 

This yields good initial estimates. The following remarks can be 

made 
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case 1 gives good estimates and a smooth adjustment, as can be 

expected. 

cases 2 and 3 give also good estimates, although the adjust

ment of the d parameters is slower. The results are somewhat 

weaker than those of case 1, although the signal-to-noise 

ratio is actually improved. 

cases 4 and 5 give good initial estimates, due to the transi

ent phenomenon, but exhibit a slow drift of the process para

meters and an adjustment of the noise parameters towards wrong 

values; cf. fig. 6.20. The choice of these values can be 

understood as follows: 

For the chosen frequency (= 1/8) the transfer of a second 

order noise filter can be found: 

-2 z = -j (6.8) 



= input b 
0 ai d 1 a2 remarks 

1 white noise 0.998 -0.185 -1.862 0.900 smooth adjustment 

2 white noise 

+ sin o. 785k 0.992 -0.172 -1.844 0.868 smooth adjustment 

d-parameters slow 

3 white noise 

+ 4sin 0.785k 0.985 -0.196 -1.809 0.832 " 

4 sin 0.785k 1.090 -0.017 -1.446 0.448 see fig. 6.20 

5 sin o.785k 1.177 -0.107 -1.411 o.497 Il 

N = 10000 

6 sin o.785k 1.015 -0.299 -.1.357 0.486 see fig. 6.21 

N • 10000 

p" 0.991 

7 sin 0.785k 0.787 -0.520 -- -- no noise par • 

estimated 

8 sin 0.3k 0.945 -0.192 -1.906 0.930 smooth adjustment 

9 sin l.2k 1.058 -0.223 -1.504 0.594 slow adjustment 

10 sin l.2k o.936 -0.198 -1.639 o.638 see fig. 6. 22 

" " o.991 

11 sin 5k 1.046 -0.224 -1.547 0.628 slow adjustment 

true parameters 1.000 -0.200 -1.900 o.930 

Table 6.5 Influence of input signal 
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1 1 

2 2 

(i+ ~)+ (~ +d2) 
-(6.9) 

For d1 = -./2., the transfer is imaginary, i.e. the re is a 90 o 
phase shift; and if d1 < -12, the real part is negative. 

r' 
The noise filter in this example has a negative real part fo~ 

this frequency, due to the fact that·d1 = -1.9. 

This would, therefore, according to the theory of paragraph 

4.5, lead to a divergence of the estimate, if the noise filter 

is fixed. But in this algorithm there is freedom to give 

different settings to the noise parameters. If d1 " -12 is 

taken as estimate, then there is a 900 phase shift for the 

adjustment caused by frequency 1/8, leading to non-divergence, 

hut tbis also implies a very slow adjustment if no other com

ponents are present in the input signal. As the estimates of 

the noise filter are not fixed at the value -12 hut . are wan

dering around this value, a slow divergence may occur. 

in case 6, the weighting factor p is smaller than one. This 

implies an artificial increase of the variance of the estima

tor. In this case this is sufficient for an unstable beha

viour of the estimates. Here also, the d1 parameter is 

óscillating around the value -12.; cf. fig 6.21. 

case 7 shows the necessity of estimatiQg noise parameters. 

in case 8 no sufficient phase shift is obtained in order to 

make the estimates unstable. 

in cases 9 and 10 a different value for the estimate for the 

noise parameters is achieved. For this frequency, the follow

ing can be found: 

-1 
z = o.362 - o.932j z-2 - -0.737 - 0.675j (6.10) 

1 

l+o.362dl - 0.737d2 + j(-0~932dl - 0.675d2) 

(6. 11) 



The transfer is purely imaginary if 

1 + 0.362dl - 0.737d2 ~ 0 

This equation is, in a good approx!mation, fulfilled for the 

estimates found in cases 9 and 10. 

case 11 shows behaviour comparable to the two previous cases. 

As a summarizing practical conclusion, we find that divergence may 

occur in very specific cases, where poor information contents of the 

input signa! coincides with unfavourable noise filter dynamics. 

0 ., 

·1 

Fig. 6.20 Divergence of estimates 

input signal: sin o.785k; p. 1· 
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Fig. 6.21 Non-convergence of estimates 

input signal: sin o.785k; p = 0.991 

0 

Fig. 6.22 Non-convergence of estimates 

input signal: sin l.2k; p • o.991 
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6.6 Estimators for input- and output corrupted data 

The following system is considered: 

fok 1+0.3i
1 

-----i 1- o.sz1 

.Q.3i204z"Ï(1+Q7Z1
) 

Fig. 6.23 Block diagram of the disturbed input-output experiment 

In this experiment a second, independent measurement v2 ,k of 

the input is available as indicated in eq. (5.41). This measurement 

serves as instrumental variable, and its colouring is therefore not 

essential. 

It is assumed that the white noises {~o,k}, {~il,k} and {~12,k} are 

mutually independent. The input {uk} 

uniform distribution between (-1,+1). 

uniformly distributed between (-À,+À). 

find for the different estimators: 

bo bl b2 a1 

IOIVEMM 0.990 -0.302 -0.406 -1.508 

IVEMM 0.901 -0.241 -0.445 -1.501 

IVl 0.908 -0.393 -0.565 -1.677 

IV2 o.9oo -0.242 -0.450 -1.505 

true 1.000 -0.300 -0.400 -1.500 

is a white signal, with a 

The disturbing noises are 

For N = 2900 and À = 0.25 we 

a2· éîil, 1 ê 
o, l 

d 
o, J 

0.103 0.702 - -
0.697 -- -0.878 -0.896 

0.115 -- -- -
0.693 -- -- --
0.100 0.100 - -
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where IOIVEMM 

IVEMM 

IVl 

IVEMM for input-output corrupted measurement 

see chapter 4 

IV2 

IV, with use of model output as instruments 

IV, with use of delayed inputs as instruments 

The methods IVEMM, IVl and IV2 use only v1 k as input measure-, 
ment. The results show that IOIVEMM gives better estimates for the 

MA process parameters than the other methods, and the input noise 

parameters are estimated well. 

For worse S/N ratios we have the following results; (À= 0.5, N = 

2900) 

Go bl b2 
.... ... 811 1 

.... (Î al 82 c 
o,1 o,1 • 

IOIVEMM 0.989 -0.331 -0.411 -1.539 0.719 0.685 -- --
IVEMM 0.121 -0.154 -0.474 -1.486 o.688 - -0.735 -0.892 

IVl o.754 -0.281 -0.599 -1.700 0.760 -- - --
IV2 0.131 -0.151 -0.486 -1.508 0.676 -- - -
true 1.000 -0.300 -0.400 -1.500 0.100 0.100 -- -

Here we also find better estimation of the MA process parameters and 

a reasonable estimation of the AR noise and AR process parameters. 

The adjustments of IOIVEMM and IVEMM are shown in fig. 6.24 and fig. 

6.25 resp. 

For À = 0.5, two other cases are considered, where the first order 

colouring [1+o.1z- 1] of the input noise is changed; N = 2900 

a) vil coloured by [1+o.1z-l]-1 , vi
2 

by [1+o.4z-l]-l 

b) vil coloured by [l+o.4z-l]-1 , vi
2 

by [1+o.1z-l]-l 

" b .... ... 
a2 " 

,.. a bo 1 b2 al dil,l c 
o,l , o,l 

a) IOIVEMM 0.970 -0.247 -0.418 -1.489 0.692 0.649 - --
b) IOIVEMM 1.000 -0.282 -0~386 -1.498 0.696 0.294 - -
b) IVEMM 0.798 -0.223 -0.415 -1.505 0.704 - -0.354 -0.630 

true 1.000 -0.300 -0.4UU -1.500 0.100 a) 0.100 
b) 0.400 
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The results of the adjustments are shown in fig. 6.26, 6.27 and 6.28 

resp. It may be concluded that an improvement of the estimates is 

obtained, especially for b0 , and that the various input-noise para

meters are estimated reasonably. 

0 

-1 

0 

-1 

Fig. 6.24 Adjustment using IOIVEMM (À= 0.5) 

Fig. 6.25 Adjustment using IVEMM (À = 0.5) 

b, 
b2 
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bo 

0 

-1 

a, 

Fig. 6.26 Adjustment using IOIVEMM (À • 0.5); different input noise 

colouring 

bo 

82 

da 

a, 

Fig. 6.27 Adjustment using IOIVEMM (À • 0.5); different input 

noise colouring 
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0 

-1 

bo 
a, 

b, 
b2 

a, 

Fig. 6.28 Adjustment using IVEMM (À= 0.5); different input noise 

colouring 

As a general conclusion of the results of this paragraph, it can be 

stated that the proposed algori thm IOIVEMM provides better resul ts, 

at the expense of an extra measurement and slightly more computation

al effort. 

6.7 Concluding remarks 

In this chapter we have presented several results which support the 

theory of chapters 3, 4 and 5. We will not repeat the conclusions in 

detail as they have already been drawn in the previous paragraphs of 

this chapter, but we wil! restrict ourselves to the following summar

izing remarks: 

a) Based on simulations, it is shown that for small sample sizes 

the asymptotic properties of the estimators are reasonably 

achieved. The dependence of the convergence on the S/N ratio 

is clearly noticeable. 
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b) The Cramêr-Rao lower bounds are approximately reached by sim

ple estimators such as EMM and GLS. Unless divergence of 

these estimators occurs • which rarely happens • these estima

tors are therefore attractive in terms of quality and cost. 

EMM is often favourable due to its flexibility of noise model

ling. 

c) Divergence can often be expected or predicted from the experi

mental conditions and monitored during execution of the esti

mation algorithm. The use of a more sophisticated algorithm 

like AML is then appropriate. 

d) A consistent estimation of process parameters in cases of 

corrupted input-ouput measurements is feasible. The results 

are weaker than for the non-corrupted input case• but one 

should realize that there is a worse overall signal-to-noise 

condition. Usually many measurables are necessary for a good 

convergence of the estimates. The algorithm, however, is 

simple and fast. 

e) The availability of extra information, e.g. an extra measure

ment of the input- or output signal or quantities that are 

related to the undisturbed process signals, replaces the ne

cessity of a priori information about the disturbances or 

assumptions about colouring of the disturbances as assumed 

in the literature. 
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CHAPTER SEVEN: 

ORDER TESTS 

7.1 Introduction 

In this chapter we will study, in some detail, order testing methods 

for SISO systems. Based on own experience and on reports in litera

ture we will give emphasis to those methods which have proved to be 

practically applicable. 

As already mentioned in chapter two, the notion of desired order of a 

model is difficult to define satisfactorily in general terms. This 

is due to the fact that a model itself always remains a subject for 

discussion because it has been constructed based on past observations 

of the process and not on exact theoretical knowledge. If a prede

scribed set of models is defined, o.a. based on physical reasoning 

and/or previous observations of the process and on intended future 

use of the model, then the problem of finding a suitable model order 

within this set is more tractable. The models within the given set 

can now be examined with respect to various aspects like 

a) are the assumptions of the estimation algorithm met?; 

e.g. white residuals, minimum of loss function, no correlation 

between residuals and input signal, good resemblance between 

process- and model output etc. 

b) is the principle of parsimony met?; i.e. is the re sul ting 

model not over-parametrized. 

From a careful analysis of the estimation algorithm, one can deduce 

quantities, like the ones listed under a), that will show a pronoun

ced behaviour around the "true" order of the system. This is the 

basis of order testing methods. Such quantities are used as indica

tors for the desired model order. For a noise free case, the situa

tion is straightforward: for the correct model order, the loss func

tion is minimal and equal to zero; the process- and model responses 

coincide, the product moment matrix of the measurables still has full 

rank, and the residuals are zero. 

indicators will be less pronounced, 

In a stochast ic case, these 

but still useful: the loss 
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function will be minimal, the process- and model responses are 

"close", the residuals are white and there is no correlation between 

residuals and input signal. 

The parsimony principle can cause some problems because the over-fit

ting of models may not be very easily detectable, due to noise 

effects. Two effects are relevant in this respect, demonstrating the 

ambiguous r6le of the noise. 

I Depending on the (lack of) noise modelling in the estima-

tion algorithm, the noise dynamica may be (partly) modelled 

as part of the model of the process. 

These noise parameters are estimated as a pole-zero pair, 

which is more or less cancelling. If this cancelling is 

obvious, then no problem will arise in recognizing these 

parameters as being induced by the noise dynamics. In a 

poorly defined situation (small sample size, bad S/N ratio, 

non-stationarity of parameters, existence of non-lineari

ties in the process) • this cancellation will be hard to 

detect and will lead to a too high order of the model. 

II It may happen that a less important part of the process, 

e.g. a pole with a small residual value, giving a relative

ly small contribution to the process output, will cause 

only a small decrease of the loss function, when taken into 

account in the model. This small effect may very well be 

blurred by the disturbing noise. if the S/N ratio is bad. 

This will cause a too low order determination of the 

model. 

From these considerations we may conclude that for a good interpret

ation of the diagrams and test quantities, a good understanding of 

what is going on in the estimation and order testing algorithm is 

necessary. This implies that the choice of a model order is often a 

subjective decision, which is not suited for complete algorithmiza-

tion. A fast and on-line order test is therefore no~ usually 

feasible. 

This chapter is set out as follows. In paragraphs 7 .2 to 7 .5 the 

different families of tests based on the aspects listed under a) and 
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b) will be discussed in detail, and the close ties between these 

tests will be shown. In paragraph 7.6 a review will be given of the 

stochastic order tests as proposed in the literature. 

7.2 The loss functions 

Least squares estimators deal with the minimization of a quadratic 

loss function for a given order. The idea of using the loss func

tions for the determination of the parameters can be extended to the 

selection of the model order within the chosen model set. This ap

proach provides a family of loss functions tests. Usual test quanti

ties are: 

(7.1) 

where ,! and 1 are the prediction errors; !_ is used only if the 

process dynamica is being modelled, and l if the noise dynamics is 

also being modelled. The magnitude of these signals .!, and .i is 

dependent on the model order, which is illustrated in fig. 1.1. 

For too low order models, we can observe that V will decrease for in

creasing order, as not enough degrees of freedom have been inserted 

in the model; cf. Van den Boom and Van den Enden (1973). 

This can be explained as follows. Suppose that ~k is a non-white 

sequence. If this is observed one has to decide whether the model, 

which generates this sequence of non-white prediction errors is ac

ceptable. If there is a remaining colouring in the prediction error, 

it implies that information is still contained in the prediction 

error, which is not used for modelling. The decision not to look for 

another - possibly more extensive - model is then governed by some 

prejudice, because it is arbitrary as to which type of remaining 

colouring is acceptable and which type is not. Therefore, one should 

then proceed by looking for models which yield white prediction 

errors. This can be done by parametrizing the non~white error 

~k by a suitable parameterset, e.g. 
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ê ~k + n -n (7.2) 

where ~k is a white sequence. Then: 

{ } {l i-T ~} {l ~ A -1 -T - A -1 - } E \ = E N .z .z = E N (_f +cl z 1 +. • • )(_f + cl z 1 +. • •) 

(1 Az A2 > E{.!:. ;:T;:} " E{.!:. ;:T;::} = E{v-} +cl + Cz + • • • N i i N i i ~ 

(7.3) 
This result is important as it provides a motivation to look for 

models with a white prediction error, as they lead to a smaller value 

of the loss function. Moreover, from eq. (7.3), the relation between 

the loss function test and the whiteness test, viz. paragraph 7.4, is 

apparent. 

-100 L-_J ___ _J_ __ --JU----------+-------,2,...----1 
0 1 A 

--.order q 
1-1000 samples -1 

204---------4-l---------+----------t-

10 

0 

-10 

--20.al...!.-------o----l+------1-A--~------2----1 ..... 
- order q 

Fig. 7.1 ~and 1 for different model order. 

For over-parametrized models, it has been observed that the loss 

functions are still - slightly - decreasing. This has led to several 

adaptations of the loss function as a test quantity, such as Average 
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Information Criterion (AIC) and several variants of it. They will be 

dealt with in paragraph 7.6. 

A typical behav:four characteristic of the loss function is shown in 

fig. 7.2. where several cases are given: situation a and b show 

comparable behaviour; the difference is the worse S/N ratio for 

situation a. Situation c refers to a process where a part is of 

lower importance, as discussed in paragraph 7 .1. In such a case, 

dependent on the intended use of the model, one might choose a lower 

order model, according to the principle of parsimony. 

a 

c 

b 

- order 

Fig. 7.2 Typical behaviour of loss functions 

Now a simple order test can be constructed using the by-products of 

the estimation algorithm for the calculation of the loss function. 

Van der Sommen (1971), Gustavsson (1972), and Van den Boom and Van 

den Enden (1973) give very satisfactory results for these tests, 

using V1 even for bad S/N ratios. In the last reference, good re

sul ts are reported using the test quantity V2 for determination of 

the order of the process polynomials [ l+A] and [bo+B], as 

well as the order of the noise polynomial.s [ i+ê] and [ l+D]. In 

fig. 7.3 and 7.4 results are shown using these test quantities V1 

and V2 for determining process order for different S/N ratios. The 

process was identical to that proposed by Astrtsm ( 1968); the noise 

filter was identical to that proposed by Talmon and Van den Boom 

(1973): 
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Yk - 1 •5Yk-l + 0•7Yk-2 = 1\:-1 + o. 5uk-2 + ~] 

E\ - o.5ek-l = ~k + o.3~_1 (7.4) 

process: 

noise: 

The signals uk and ~k were white noise sequences (500 samples) 

whic.h were uniformly distributed between (-1,1) resp. (->.,À). This 

results in the following 
1 

À = 7i S/N 

À = 1 S/N 

À" 4 S/N 

_, 

..:- - 2 

! -· 

S/N ratios at the 

8.3 dB 

] -3.7 dB 

• -15.7 dB 

-~ 
0 1 2 3 " 5 

output 

-· 

-. 

-~ 
012345 

Fig. 7.3 Test of process order using V1 

-+ q 
0123,45 

Fig. 7 .4 

-+ q 
012345 

_, 

..... q 
012345 

Î=2 

Test of proc.ess order using Vz 

(7 .5) 

j ~. 4 

• \" 1 

• À ·1.i4 

" l • 4 

• À. 1 

The parameter estimation method was EMM. which enables the use of a 

noise model whic.h has an order (=;) different from the process 

model (=q). 

ratios. 
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In many practical applications a time delay is an inherent part of 

the process. Often this time delay parameter is not well-known or 

may even be unknown. In such cases the time delay parameter has to 

be estimated, which can be done in a way analogously to the order 

tests using the loss functions. If the time delay is not treated 

separately, then a model has to be used which does not assume that 

the leading MA parameters are zero. This would imply that a 

substantial amount of MA parameters, which are in fact zero, has to 

be estimated. Therefore • the quality of the other parameters will 

deteriorate considerably. A better approach is to calculate the loss 

function V1 as a function of the delay parameter, i.e. the time 

shift of the input sequence. It bas been shown that V1 will attain 

a minimum for the correct value of the delay parameter, if the data 

sequence is sufficiently large; cf. White ( 1971) • A problem may 

arise when the time delay is· not some integer of the sample period, as 

the minimum of V1 will be less pronounced in such a case. 

Therefore a high sample frequency is advisable if a time delay is 

expected; cf. Rooijakkers (1982). 

Woodside (1971) proposed a powerful method for calculating the loss 

function V1 using the matrix of observables Q, without performing a 

parameter estimation. We will consider the noise-free case first. 

The loss function V1 can be expressed as a ratio of the determi

nants of data product-moment matrices related with models of order 

q+l and q resp. This can be der ived from the matrix 

Sl(u,y;q+l), which, for this purpose, is constructed in a way which 

is slightly different from the matrix Sl(u,y) in previous chapters: 

~+I yk ~ yk-q uk-q 

Sl(u,y;q+l) • 

~N 1k+N-l ~N-1 •••• yk.+N-q-1 ~N-q-1 

• [~k+l l:l:;:kliî(u,y;q)) (7.6) 

Now define: 

Q{u,y;q+l) 
T A A n (u,y;q+l)il{u,y;q+l) (7.7) 
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The matrices H(u,y;q+l) and Q(u,y;q) can now be found from the 

following equation, giving an implicit definition for H(u,y;q+l)and t: 

lz.-!T-
Q(u,y;q+l) = H(u,y;q+l) t Q(u,y;q) (7.8) 

l 
The matrix H( u,y;q+l) can be constructed by removing the first row 

and column from Q(u,y;q+l); and Q(u,y;q) can be constructed by 

removing the first row and column from H(u,y;q+l). 

It can be recognized that: 
T " t = n (u,y;q) z (7 .9) 

so that 
-1 

ê = Q (u,y;q) ! (7 .10) 

In the parametervector ]., the parameters appear in a different 

sequence than in the previous chapters due to the different ordering 

of the observations in the matrix '2(u,y;q). Using the result v.3 
of Appendix V: 

" r _T T -1 " ] " det H(u,y;q+l) = ll.Z. - ! Q (u,y;q)! .det Q(u,y;q) (7 .11) 

The loss function V1, related to a model of order q, can be writ

ten as (based on residuals): 

1 ~~ lr_T 'AT T " ]f- " ""] Vl = N !. .! " N"LL -_! O (u,y;q) lL - O(u,y;q) .! " 

1 r _T .,..r r.,.. 'JtT T " " ~] • lfl.l. z. - 2..! - ! 2. + 2. '2 {u,y;q)G(u,y;q)_ " 

1 r _T T -l " = lfl.l. z. - 2_!;. Q (u,y;q)! + 
T -1 -1 

+ ! Q {u,y;q)Q(u,y;q)Q (u,y;q)!] = 

1 T T -l " " wb: z. - .! Q (u,y;q)_!.] 

This is exactly the term in brackets 

1 det R(u,y;q+l) 
vl = i' det Q(u,y;q) 

in eq. (7 .11), yielding: 

(7.12) 

(7 .13) 

In noise-free cases the use of this expression for the calculation of 

V1 may give numerical problems for over-parametrized models, as the 
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determinants become zero, due to the linear dependence of the sam

ples, as can be verified by eq. (2.11). The collapse of the determi

nants can, therefore, be the basis for other order tests: they will 

be discussed in paragraph 7.3. 

For cases where input and output samples are disturbed by noise, the 

decrease of the quantity V1 will be less pronounced than in the 

noise-free case, due to the fact that the minimum of V1 is now 

dictated by the variance of the noise. This contribution of the 

noise to V1 may be larger than the contribution originating from a 

model mismatch. 

In such a 

îi<u, 1 ;q+i > 
Q(u,x;q) 

case it is worthwhile using estimates Q(u,y;q) 

of the non-corrupted matrices H(u,x;q+l) 

and 

and 

~(u,x;q) = Q(u,y;q) - &2R (7 .14) 

The matrix H(u,y;q+l) is a submatrix of Q(u,x;q+l) as defined 

in eq. (7.8). In eq. (7.14) Ris the noise covariance matrix, which 

needs to be known. This enhancement of the Q-matrix can be combined 

within a parameter estimation scheme where estimated noise filter 

parameters become available, e.g. EMM, GLS, AML, and IVEMM. This 

test received considerable appreciation, due to its reliable re

sults. 

So far we have not considered loss function tests, which are put in a 

statistica! framework. Ästr6m (1968) describes a test based on the 

statistica! independence of the quantities Vz(qz) and 

V2(q1) -V2(q2), where V2(q1) and Vz(q2} are 

loss functions based on models with order q1 and qz respect-

" ively and assuming normal residuale. If qz > q1 ~ q, then 

V2(q2) and Vz(q1) V2(qz) are independent random 

variables with x2 distributions and· N-(2qz+l) and 2(q2-
A 

ql) degrees of freedom respectively. The test quantity 

t • 
Vz(ql)-Vz(qz) 

v2<q2) 

N - (2q2+1) 

2(q2-éi1> 
(7 .15) 
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For a risk 

level of 5 per cent and N > 100 we test for t < J. In table 7 .1 

results are given for À • 1/4, with N • 200, using data samples 301 

to 500. Note that, as in previous examples, we are dealing here with 

uniformly distributed random variables. In practical situations we 

found no difference in results when testing with normally distributed 

noise. 

... 42 1 2 3 4 s 
s 41 

0 610 6955 8088 6004 4963 
1 - 1859 1653 1091 846 

0 2 - - 73-4 36·3 26·4 
3 - - - 0·00 2-09 
4 - - 4·17 

0 11·9 1352 883 687 544 
1 2402 1176 814 604 t-values 

1 2 - - -0·91 1-77 H7 
3 - - - 4·SS ns 
4 - - - 0-00 -- 0 -26•2 718 506 37S 320 
l - 1988 1049 692 SS3 

2 2 - - 6-09 3-02 4·4S 
3 - - - 0·00 N7 
4 - - - - 6·94 

Table 7.1 F-test. À = 1/4 

For s • O, we choose a third order model, although the increase in 

order from 4 to 5 gives some improvement. This is because for ; • 

0, higher order models of the process are necessary for obtaining 

independent residuals. These higher order models have (almost) pole

zero cancelling pairs, which result in a contribution to the loss 
A 

function of this pair which is less relevant. For s • 1, we select 

q "' 2, although the same problem arises at the increase of model 

order from J to 4. For ~ • 2 we have problems in selec~ing model 

order 2; here also orders J and 5 give some improvement. From the 

principle of parsimony we could neglect this slight decrease; hut 

this depends highly on the intended use of the model. 

As a conclusion we can state that the F-test yields somewhat less 

impressive results. Also here, there is the pbenomenon that for 

improper lllOdelling of the noise dynamics, too high order models of 

the process may be expected. The tendency of selecting far too high 

order models can be understood by realizing that a slight decrease of 

the loss function is qualified by the F-test as a significant im-

provement. 

significant. 
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7.3 The rank of the data product moment matrix 

Several tests are based on the behaviour of the data product moment 

matrix Q(u,y;q). In the noise-free case the matrix Q(u,x;q) will 
A 

become singular for q > q. The rank of this matrix is then 

q+q+l, if the input signal has sufficient degrees of freedom and 
A A 

assuming p = q+l and p = q+l; cf. Lee (1964). 

An appropriate method for detecting this singularity for q > q is 

by observing the determinant of this matrix for several values of 

q. In noisy cases, we have to deal with Q(u,y;q) instead of 

Q(u,x;q), so we will consider near-singularity. Therefore, take 

~ax' the maximal order chosen for testing, and construct the 

matrix Q(u,y;~ ). 
-max 

The corresponding matrices Q(u,y;q) for q < qmax can then 

easily be obtained by removing appropriate rows and columns from 

Q(u,y;qmax)· The matrix Q(u,y;qmax) can be decom

posed in to an upper triangular matrix /:J., according to Schur, using 

unitary transformations Us; cf. ZurmUhl (1950) 

UT Q U = !:J. 
s s 

(7.16) 

This can be done recursively, starting from Q(u,y;qmin), 

which is related to /:J.min" By adding new rows and columns to 

Q(u,y;q) a new /:J. can be constructed, with previous !:J.' s as submat-

rices. As det Q(u,y;q) is invariant for this transformation, 

we find: 

det Q(u,y;q) 
2q+l 

7T l'iii 
i=l 

where l'iii are the diagonal elements of !:J.. 

(7 .17) 

If we consider these 

elements in more detail, we can find a nice relation between this 

type of determinant and the loss function test of paragraph 7. 2. 

From eq. (7.13) we have: 

1 det H(u,y;q+l) v 1 ( q) = - -----""""'-';.....:....--'-
N det Q(u,y;q) 

1 
= N" 62q+2,2q+2 

(7.18) 
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Tbis implies that the loss function V1(q) for different va.lues of 

q can be found on al ternate points of the main diagonal of ti., as shown 

in eq. (7.19), while on the remaining points of the main diagonal * 
indicates non-relevant information in this respect. 

* 

* 

li. = N * 

* 

* 
v

1
(0) • 

* 
(7.19) 

Instead of the determinant, the trace of Q(u,y;q) can be investi

gated: 

trace Q(u,y;q) (7 .20) 

whereas 

det Q(u,y;q) (7. 21) 

Ài being the eigenvalues of Q(u,y;q). 

For near singularity, trace Q(u,y;q) will hardly increase for in

c:reasing q. Tbis test can be performed without parameter estima

tion; cf. Unbehauen and Gl'hring (1973). Woodside (1971) calculated 

a determinant ratio DR for successive values of q: 

DR = 
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det Q(u,y;q) 

det Q(u,y;q+l) 
(7.22) 



or an enhanced determinant ratio EDR if the noise covariance matrix 

is available: 

EDR = det Q{u,y;q) 

det Q{u,y;q+l) 

where Q(u,y;q) • Q(u,y;q) - a2 R(n;q) 

(7.23) 

(7.24} 

The close similarity between DR, EDR and the test of eq. (7 .18) is 

apparant. In DR and EDR one row and one column extra are used but 

they represent the input signal, which does not contribute to the 

singularity phenomenon. Van den Boom and Van den Enden (1973) calcu

lated a relative determinant: 

max.content of Q rel.det Q(u,y;q) • det Q(u,y;q) (7.25) 

The use of a relative determinant instead of the determinant itself 

is important, as the determinant is a function of the "power" of the 

signals: 

det Q = f{power 2q+l) (7. 26) 

In paragraphs 7 .1 and 7. 2 we have al ready met the phenomenon that, 

for improper noise modelling, a too high order model of the process 

may be found. Therefore it is important to have separate order tests 

for the noise dynamics. Only Van den Boom and Van den Enden (1973) 

give tests for a separate detection of the noise order. They use the 

EMM estimator. From the following data product moment matrix: 

...... 1 T AA AA 

Q{u,y,~,e) = N 0 (u,y,~,e)O{u,y,~,e) (7.27) 

the following sub-matrices Q11 and q22 are interesting 

f or separate order determination of process and noise dynamics: 

UTU UTY uTs UTÊ 

Q(u,y,€,ê) 
YTU yTy yTt; YTÊ [ Qll 

Q"J ~TU !;Ty sTs. sTÊ 
Q21 Q22 

ÊTU ÊTY ÊT~ ÊTÊ 

(7.28) 

During estimation, however, Pk is available: 
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(7.29) 

(7. 30) 

As Uk and ~k are mutually independent: 

Ql2 • t [y:~ Y:Ê] (7.31) 

(7 .32) 

and for q11 : 

(7.33) 

where M is a submatrix, which is only important 1f the signal-to

noise ratio is bad. This will be indicated later in this section. 

If we neglect M for good signal-to-noise ratios, then c11 can 

be used as an indicator for the order of the process, Now, if 

Q11 is near singular, it bas some eigenvalues which are small 

compared to the others. As the eigenvalues of c11 are, 

approximately, the inverse of the eigenvalues of Q11 , c11 
also bas eigenvalues which are strongly different in magnitude. So 

c11 can also be used as an indicator for neer singu~arity, 

occuring for q > q. This can be done in several ways. Van den 

Boom and Van den Enden defined a relativa determinant: 
det cll 

rel.det cll - (7 .34) 
max.content of cll 

motivated by the fact that the determinant is a function of the 

"power" of the signals: 

det C = f( l>(>wer 2q+l) (7 .35) 

In fig. 7.5 theA behaviour of rel.det c11 is shown for ; • 

O, 1,2 leading to q " 2 for À • 1/4, and À " 1 and a doubtful 

determination q = 2 for À = 4. In practice, we found also that 
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rel.det c
22 

is a useful indicator for the order of the noise 

dynamics; cf. fig. 7.6. 

-q -<t -~ 
2 3 4 5 0 1 ' 3 4 ' ? 1 

- -· u-
_, 

u- '-' 
~ 

• , 4 
~ ~ -10 -1 ~ -10 
"'! "! 

0 ~ ~ 

" " " -1s ! -15 
_,, ... ... 

1- 0 

! -20 -20 1 -20 

~ !..!J 1-:..l 

Fig. 7.5 Test of process order using rel.det. cll 

Fig. 7.6 

Si nee det Qll 

will be large. 

increasing more 

will decrease for 

by: 

- s 
0 

0 

-2 

N 
N 

u 

0 
~ 

0 

" 
~ 

-e 

Test of noise order using rel.det. c22 

is small if q > q, the quantity det c11 
However, as the maximum content of cu is 

rapidly than det 
A 

q > q. The 

det c11 (q) 

det s_1 ( q-1) 

amount 
cll, then rel.det en 

of increase can be defined 

(7.36) 

Now, by observing for which q a significant increase occurs, the 

order of the process can be found; cf. fig. 7. 7. In this figure an 

increase of ac11 can 

a model order q "' 2. 

be observed for q a 3, corresponding to 

The increase is dependent on the signal-to-
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noise ratio, and is limited by the matrix M, which bas been neglect

ed; cf. eq. (7.33). If the signal-to-noise ratio is very large (À= 

1/64) this increase is more apparent; cf. fig. 7.7. 

s = 0 s = 1 s "' 2 

~ 
4 A • 4 

e A • 1 

-~ 
• A ·• 114 

= u l A " 1164 
'-' ., 0 .., 0 " 0 

"' "' " 0 • 0 0 

1 _, ) _, t _, 
0 1 2 3 4 5 1 , 3 4 5 0 1 3 4 5 

- q -<i -<i 

Fig. 7.7 Test of process order using ~en 

As mentioned before, the rank tests are obscured by the disturbing 

noise, which converts the singularity test into a test of ill-condi-

tionedness. By making use of the instrum.ental variable estimator, 

one can make the data product moment matrix less sensitive for the 

disturbing noise. Wellstead (1978) reported an improved discrimina

tory power for this type of test. For a system where the input and 

output signals are disturbed by noise, the test quantity is: 

A 1 T A A 

Q(v,y,z;q) m No (v,z;q)O(v,y;q) (7. 37) 

where Zk is the IV quantity. Then, due to the independence of the 

disturbance on the output and the IV quantity: 

E{Q(v,y,z;q)} E{Q(v,x,z;q)} (7.38) 

For large N, the rank of Q(v,y,z;q) is, therefore, equal to 

min(q+q+l,2q+l) and is not dependent on the properties of the 

output noise. The input noise is not important in this respect, due 

to the necessary persistently exciting property of the input signa! 

uk, yielding sufficient degrees of freedom to make the rows Uk in 

the matrix O( u,x) independent. The disturbing noise cannot change 

this. For testing the rank condition of this instrum.ental variable 

product moment matrix, it is not necessary to execute an IV estima

tor, but an IV signa! is needed; which can be generated using a (fix-
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ed) auxiliary model. As this is an increase in computational burden, 

this method is only interesting where the previous methods are lack

ing in discriminatory power, i.e. for very bad signal-to-noise 

ratios. 

Young, Jakeman and Mc.Murtrie ( 1980) proposed the use of the inverse 

of the above-discussed IV product moment matrix, which is available 

during the estimation. We have discussed this idea before in the 

context of least squares estimators with extended models; cf. eq. 

(7.33) and Van den Boom and Van den Enden (1973). 

So far we have discussed the behaviour of some quantities, when the 

model order is varying. These quantities showed a tendency towards a 

different behaviour for q > q. In cases where bad signal-to-noise 

ratios occur, it is of ten difficult to notice this change in beha

viour. Consequently, so far, the order test algori thms have been 

treated as a decision problem relying on human judgement, where ulti

mately the experimenter decides. Attempts to construct an automated 

model order testing algorithm have not been very successful so far. 

A necessary condition for such an automation is putting the order 

testing algorithm in a statistical framework; cf. paragraph 7.6. 

A recent proposal for such a statistical treatment of the determinant 

test, as discussed above, bas been given by Stoica (1981). In this 

approach, a Taylor series expansion is performed for the determinant 

of the product moment matrix Q(t), where .! is the vector contain

ing all the sample covariances which appear in the matrix Q, and .i 
the true covariances 

det Q(j) • det Q(1,) + 

Denoting 

d(detQ(_)f)) 
a1 

we can write for the distribution of _i-j: 

j - j, ~As N(O,P) 

(7.39) 

(7.40) 

(7 .41) 
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and for 

det Q(_î) - det Q(j) ~ As N(O,.!_TP.!_) (7 .42) 

Testing the null hypo thesis Bo 

Ho: det Q(j} = 0 (7.43) 

yields a test quantity with a risk of 5 per cent: 

det Q(j) ( 1, 95 f.!.T~.!.]\ (7.44) 

where P is an estimate of p. A drawback of this method is its 

limited applicability for small sequences. 

A different approach to rank determination is by making use of the 

singular value decomposition (SVD) of the data product moment:matrix 

Q(u,y;q). This matrix is constructed for too high a model order 

q. The SVD algorithm factorizes Q as: 

(7.45) 

where U1 and U2 are orthonormal matrices and A is a diagonal 

matrix containing the singular values in a decreasing order; cf. 

Golub and Reinsch (1970)~ Inspection of the numerical values of the 

singular values obtained, gives a possibility for order test, as 

those singular values which are close to or identical to zero, 

compared to the others, do not contribute to the model behaviour. In 

modelling MIMO systems, the SVD bas become popular for the 

factorization of the Hankel matrix, which contains the Markov 

parameters of the process. 

Drunen (1979). 

For more det,ails cf. Hajdasinski and 

From a numerical point of view, the calculation of the singular val

ues is attractive due to the robustness of the algorithm; cf. Klema 

and Laub (1980). 

7.4 Whiteness of residuals and correlation of disturbances 

From the discussions concerning the variety of estimation schemes in 

previous chapters, it will be clear that by proper modelling of the 
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proceas- and noiae dynamics, ~ may tend to an acceptable estimate 

of the equation error. If the model& are adequate, t has near 

white noise properties. This implies that estimation algorithms have 

to be used , which resul t in white prediction errors, such as EMM, 

IVEMM, GLS and AML/IQL· 

The motivation to look for models with white prediction errors is 

twofold: 

1) Estimation schemes, as mentioned above, will produce incon

sistent estimates if the prediction errors are_ non-white, due 

to improper modelling. 

2) Coloured prediction errors contain information which is not 

represented in the model. It is rather prejudicial to allow a 

part of the available information to be unmodelled. 

The same reasoning holds for residuals, which can also be tested 

for whiteness. 

For testing the "whiteness" of residuals or prediction errors, the 
~ ... 

sample autocorrelation function of ~. resp. ~. can be used. We will 

show this here for prediction errors: 
N 

~tt( T) • i l tt+i tt+i+T 
i•l 

(7.46) 

Laning and Battin (1956) show that the variance of the sample corre

lation function i( T) of white gaussian noise, calculated by using N 

samples, is: 

T F 0 

Now define a normed correlation function: 

r(T) • !(T) 
,(0) 

Then var {r( T)} " j 
This property can be used as an order test: 

(7 .47) 

(7.48) 

(7.49) 

calculate ~( T) for some range of T, for different model orders and 

check whether ~( T) corresponds to an impulae, with a majority of 

the values for T > 0 below the value given by eq. (7 .49). orwithin a 

confidence bound based on eq. (7 .49). An example is given in fig. 

7 .8. If the signals have ergodic properties we can compress the 
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Fi,g. 7.8 Whiteness test 

information as folfows: 

for each value of the model order calculate .var{i( T)} using all 

available T > o. In this way the information contained in one plot 

of fig. 7. 8 can be compressed in to one point of fig. 7. 9. For cor

rect model order this point should be close to the theoretical value 

of (7. 49). This also holds for model orders which exceed the true 

order. 

Fig. 7.9 

-êi 
1 2 3 4 5 

- 0 _ _.__,.__,..._.__...___ 

·~ 

Whiteness test, compression of information of fig. 7.8 

It is not possible to use this test for estimation of noise order as 

well. This test can be regarded as an extension of the tests using 

the loss 

v " 2 (7.50) 

For safe results, stationarity of the signals ~ bas to be guaran

teed, otherwise N should be replaced by aN, 0 < a < 1, leading to a 
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decrease of accuracy and reliability of the test. As the successive 

samples of ~i are usually generated during execution of the 

recursive algorithm, this may cause problems in practical situations. 

This implies that the gi in the sample record are all generated 

by making use of estimated parameters that are changing during that 

record, due to the recursive character of the estimation algorithms. 

For reliable results, this change may not be too pronounced. Other

wise, the resulting estimate of the total record bas to be used for 

recalculation of previous ~i, which implies an increase in compu

tational burden. 

A quick check, using this test, can be executed during the recursive 

estimation, when dealing with algorithms with extended models. 

In these algorithms, e.g. the EMM estimator, a submatrix of the P 
A 

matrix deals with the sample covariances of the signal i:;. For 

models with proper order, the order of magnitude of the elements on 

the main diagonal of this matrix, which denote Vi:;i:;(O) 

differ a factor N-\ in magnitude with the off-diagonal 

should 

terms, 

which denote ~ i:;i:;< T), T > o. Usually, the number of MA-noise

parameters incorporated in extended models is limited, so that this 

check gives only partial insight. 

In paragraph 7. 2 the loss function V2 was also used for construc

tion of a test quantity t with Fisher statistics under the null hypo~ 

thesis 

function 

) q. 

for T 

In 

) 0 

an analogous way, 

can also be used 

the 

for 

of a Fisher statistic under the above null hypothesis. 

correlation 

construct ion 

An order test which is closely related to this whiteness test is the 

test of independence of the input signal Uk and the error signals 

This can be done in an analogous way as with the 

whiteness test, by ~onstructing the sample correlation function 

9ui(T) and comparing its magnitude with the value 

(7.51) 

Another possibility is the construction of a test quantity t, which, 
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under the null hypo thesis Ho "' [Uk• ~k are uncorrelated 1 bas 

a Fisher statistic, as with the F-test of paragraph 7.1; cf. Bohlin 

(1971). 

7.5 Over-parametrized models 

An interesting class of order testing methods can be constructed by 

using a simple estimation algorithm, e.g. LS, in combination with 

over-parametrized models. This might seem to. be quite time consum

ing, hut applying a simple estimator in a form which is recursive in 

the order, cf. also Astr~m (1968), need not be expensive; cf. Hofman 

(1976). 

The general form for the model was given by Talmon and Van den Boom 

(1973); cf. also chapter 2: 

[l+A]yk = [b +B]uk + (l+c] ~k (7.52) 
o [l+D] 

The ARMA noise dynamica can be modelled 

which can be separated into two parts 

by a pure AR model [ l+D' 1-1, 
[ l+D" 1-1 [l+D"' ]- 1, where 

[l+D']. The resulting ex-[l+D''] represents the dominant poles of 

pression for the model is then 

[ ] [ 1 [ ]_l" 
l+A' yk = b~+B' ~ + l+D'" l;;k (7.53) 

with 

[l+A'] = [l+A][l+D"] 

(b + B ][l+D"] 
0 

(7 .54) 

The parameters [A' J and [bh+B'] of this model can be estimated by 

an ordinary least squares estimator. For over-parametrized models, 

[l+D'''] has little importance for increasing order; but 

nevertheless it cannot be neglected as it causes (slightly) biased 

estimates. 

[b'+B'] 
The new transfer function __ o __ 

(l+A'] 
has common factors for over-

parametrized model orders, which can be detected quite easily. This 

effect we will call the pole-zero cancellation of the first kind 
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which means due to the noise effects. Apart from these noise 

effects, a second type of pole zero cancellation occurs due to the 

fact that a lower order process may be represented by an infinite 

number of higher order processes. The class of transfer functions of 

a particular order q of the following structure: 

* [b
0

+B](l+D ] 

( l+A ][ l+D * ] 

[b + b* z-1 + 
0 1 + 

+ 

* -q b ... z q (7.55) 
* -éi] aAz q 

contains infinite elements, due to the fact that [l+D*] may be chosen 

rather arbitrarily. This implies that an estimation algorithm will 

have problems in finding stable estimates. During the estimation 

procedure, it can be observed that the estimates of all parameters 

are wandering in relation to each other. For one shot estimates this 

results in pole-zero plots with pole-zero cancelling pairs. This 

will be discussed later in this ·paragraph. For recursive estimators, 

this wandering behaviour is very pronounced, as m.ay be seen from fig. 

7.10 and fig. 7.11; the parameter adjustments are shown for 

1 

2 

-200 samples 

0.0 

-order a 

Fig. 7.10 Adjustment of AR parameters for different model orders 
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-order q 

Fig. 7.11 Adjustment of the MA parameters for different 

model orders 

different orders of the model, while the actual process order is 2. 

From these figures. it can be seen that the adjustments of the esti

mates of the MA parameters are less smooth than those of the AR para

meters. This indicates a bad S/N ratio; cf. also paragraph 3.6 and 

fig. 3.3 of chapter 3. It can also be seen that the adjustment of 

the third order model is smoother that that of the fourth order 

model. This is because a pole-zero cancellation of the first kind is 

occurring in the third order model. This pole-zero pair is not wan

dering, but is determined by the noise dynam.ics [l+D'']. This .effect 

will also be apparent from the pole-zero plots later on in this para

graph. 

From these considerations, we may conclude that with over-paramet

rized models the system is not parameter-identifiable (PI). but only 
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system-identifiable (SI) in the sense of Ljung' s definitions, as 

given in chapter 2. 

For the detection of common factors of [l+A'] and [b0+B' ], usually 

the pole-zero plot will be drawn. Due to the effects of the additive 

noise, no exact cancellation of the pole-zero pairs will occur; cf. 

fig. 7 .12. It can be noticed that the non-cancelling poles and 

zeros for q ) 2 remain constant for the different model orders. 

Apparently these belong to the wanted transfer function 
[b +B] 

0 

[l+A] 

)( 

x 

q•4 q•5 

Fig. 7.12 Development of the pole-zero pattern (À•l/4) 

Furthermore it can be observed that one pole-zero cancelling pair in 

z " O. 75 remains fairly constant for q ) 3. This can be identified 

as the pole-zero cancellation of the first kind. ·The noise colouring 

as given by eq. (7.4) can be rewritten as 

1 (7.56) e • 
k 

This may be approximated by 

1 (7.57) 
1-0.sz-1 
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which corresponds fairly to the observed pole-zero cancellation of 

the first kind. The other cancelling pairs are wandering for differ

ent orders and they can be identified as pole-zero cancellations of 

the second kind. 

A comparable result can be obtained if a more sophisticated estima

tor, e.g. the EMM, is used in connection with over-parametrized mod

els. The noise parameters will be identified for too low order mod

els as ARMA noise parameters, but will shift, for over-parametrized 

models, to pole-zero cancelling pairs of the first kind. This re

sults in pole-zero cancelling pairs close to z 3 0 as estimated ARMA 

noise parameters; cf. Koenraads (1978). 

Results of pole-zero cancellation tests are given by Van den Boom and 

Van den Enden (1973 >. Unbehauen and G6hring (1973). They are usually 

very satisfactory. 

There are also methods which avoid the calculation of the poles and 

zeros of the transfer function. The following matrix may be 

constructed: 

1 a• 

'á~ 0~1
1

~a' a' 
1 A 

R " b' b' b' 
q (7.58) 

"' ·~~ .. q~ 
b' 

0 1 A 

q 

It is pointed out by Loonstra (1967) that det R-0 if [l+A'] and 

[ b0 +B' ] have common zeros. Due to the corrupted signals det R will 

become small for (nearly) cancelling pairs. In this way, however, 

the number of cancelling páirs present cannot be determined. Vogt 

and Bose (1970) offered an alternative method based on the theorem 

that if A is the companion matrix of f(z) and B the companion matrix 

of g( z) then f( z) and g( z) have common factors 1f det f(B) (. 0 or 

det g(A) (. o. Cullen and Hall (1971) investigated the amount of 

elementary arithmetic operations to determine the common factors for 
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these methods and found that making use of a modified structure of R 

yields a minimum amount of 

1A~•"2 lA (-q_,.q - -q - 1) operations. 
3 3 

SBderstrBm (1975) described, in a general way, the problem of deter

mining · common factors in two polynomials, where the parameters have 

some uncertainties. He proposed a method which, in fact, is an 

alternative and more efficient way to obtain a generalized least 

square model. The covariance matrix of the estimates of the coeffi

cients of the transfer function is assumed to be known or, at least, 

an estimate of it is available. The algorithm for testing common 

factors of the two polynomials can be formulated as a minimization of 

a quadratic loss function under a complicated constraint. 

7.6. Stochastical tests 

In contrast to the above mentioned classes of order tests, which were 

proposed on a rather heuristical basis, another class of tests has 

been introduced in the literature, which has a more fundamental bas

is, e.g. information theory. 

Ak.aike proposed two tests, the final prediction error (FPE} • Akaike 

(1970), and the Average Information Criterion (AIC). Akaike (1973). 

We will not derive these tests here, but we will limit ourselves to a 

few comments. 

The FPE is given by 

FPE == N + q det(j Î Î(~) i<~l] 
N - q i•l 

(7.59) 

wbere the expression between the parentheses is the estimate of the 

mean square one-step-ahead prediction error based on a maximum like

lihood estimate ~ of order q (• number of independent paramet

ers in the model). If .Î.(lN) is a (good estimate of) white 

noise then the close relation with the loss function will be appar-

ent. 
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Akaike's Average Information Criterion (AIC) is defined as 

AIC = 2q - 2log LC!Cq)) (7 .60) 

where L(_!(q)) is the likelihood function based on a MLE _!(q). 

The fact that the term 2q appears in this criterion can be seen as 

an attempt to follow the principle of parsimony for models • as dis

cussed in chapter 2. The relation of AIC with the loss function test 

is apparent as the second term of AIC in (7.60) is equivalent to the 

loss function v. The first term is introduced by Akaike to compen

sate for the (slight) decrease of V for over-fitted models. 

Shibata (1976) studied the asymptotic distribution of AIC and found 

that asymptotically • there is a probability that this estimator of 

the order will deliver a too high value compared to the true order. 

Hipel (1981) gives and extensive survey of practical applications of 

these tests (FPE and AIC) and also concludes that there is a tendency 

to over-fit. Krolikowski (1982) gives a survey of the variants of 

AIC that have been proposed recently as attempts to obtain consistent 

estimators for the order: 

AIC • 2(N)q - log L(&(q)) ] 

AIC = f(N)q - 2 log L(9(q)) 
(7.61) 

where f is dependent on N. 

This area of research is still in development and the construction of 

tests of order, which are theoretically well-founded and which deli

ver low order models, is still a paradise for theoreticians. 

7.7 Conclusions 

In this chapter we discussed several order tests which are of prime 

practical interest. We showed that there is a close relationship 

between the tests which are based on the loss-function and the (rela

tive) determinant tests. Also the relation between the loss function 

test and the whiteness test has been shown. 

194 



par. est. proc.or<1er 1"1" 1.nput + overTitting 
Name Test quantity Test criterion needed noise otder N outvut noise necessarv exverience 
loss function vl 1 "T" min. v1 N N N y good V•-ee 

.. 1 N -- y (EMM) y N y· "00d 
loss function v2 V = .!_ tTt 

' 2 N --
min. v2 y y N y good 

signal errors "ê, t significant y y N y good change 

whiteness r('r) r( 'l") + dirac y N N y good . ! 
Y/N N doubtful F-test t risk N y 

determinant rel. det Q significant 
change N N N y good 

" det. ratio " N N N y good 

" IV det ratio ft N N y y good 

" rel. det cll " y y N y good 

" rel. det c22 " y y N y good 

" eigenvalues Àmi/Àmax+ 0 N N N y good 

SVD SVD ö i /ö + 0 N N N y good 
' m n max 

trace trace no cnange f or 

q > q N N N y 

pole zero cancellation different types y y N y 
of cancellation 

·parameters behaviour stability y N N y good 

FPE FPE FPE Y/N N N y good 

AIC AIC AIC Y/N N N y good 
Table 7.2 



Som.e tests are suited for separate discrimination of process and 

noise order, and som.e tests are suited for use in situations wbere 

input-output disturbances occur. 

In order to facilitate the comparison, we have composed table 7 .2 

where the most important aspects of the different tests are listed. 

As can be seen from. the given examples, it is important that a good 

man-algorithm interaction exists and tbat for a good appreciation of 

the different order tests the aspect of experience cannot be exclud

ed. Tberefore, an interactive package like SATER, containing many of 

the afore-mentioned order tests, has proved its feasibility in prac

tical situations. 
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CBAPTER EIGHT: 

GENERAL CONCLUSIONS 

In the present study we have investigated several aspects of estima

tors for SISO processes with disturbed outputs. The main conclusions 

are: 

a) A general scheme bas been presented. lts main feature is that 

three basic operations can be distinguished to ensure consis

tence of estimators, viz. filtering, model extension and use 

of an IV quantity. These three operations may be combined 

within one general estimator. Existing estimators like LS, 

GLS, EMM, IV, AML, IQL, IVEMM, sub-optimal IV and Tally, all 

fit into this scheme as special cases of this genera! estima

tor. The availability of such a genera! scheme is very at

tractive for various reasons: it gives better insight into 

the mutual relationships of existing estimators, it gives a 

nice connection between the LS- and IV-oriented estimators and 

computer programs for·estimators can be designed in such a way 

that different estimators can be incorporated into one pro-

gram. 

As the AML/IQL schemes are part of this scheme, the relation 

with ML (for gaussian disturbances) is tben trivial. 

b) Expressions for the Cramêr-Rao bounds using the Talmon and Van 

den Boom model, as introduced in chapter 2, are given. From 

these relations it can be concluded tbat qualitatively there 

exists a different behaviour for the variances of the 

different kinds of parameters as functions of S/N ratios. The 

qualitative behaviour bas been confirmed by simulation, where 

the S/N ratio varied between extreme low and high values. 

Quantitatively these lower bounds are reasonably well appro

ached by relatively simple estimators like EMM and GLS over 

the whole range of S/N values. Estimators like Tally and IV

oriented schemes showed less impressive results for bad S/N 

ratios. 

c) The small sample behaviour was investigated experimentally 

with respect to bias and variance of the estimators. It was 

found that for high S/N values' the bias was negligible for 
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small sample size (N • 200). Also the covariance of the esti

mates for small sample sizes was close to the Cram!r-Rao 

bound. For low S/N ratios the convergence towards the true 

parameter values was evidently slower. 

d) Relatively simple estimators like EMM, which we proposed ear

lier • and GLS proved to be reliable schemes w1 th respect to 

bias and variance. In rare cases divergence may occur • but 

this can usually be expected/predicted from the experimental 

circumstances. The attractiveness of these schemes is also 

due to their simplicity and speed. In addition, the EMM al

gorithm is very flexible with respect to types of noise models 

that can be used. 

e) Several estimators have been proposed in chapter 5 for cases 

where both input- and output signals are noise corrupted. 

These estim.ators allow the use of possible extra available 

information, e.g. an extra independent measurement of the 

input- or the output signal, or other signals which, as IV 

quantities, are related to the process signals. Such extra 

information is often practically more often available than a 

priori information such as known covariance of the noise as 

in schemes proposed in literature. It is also applicable more 

generally in practice than schemes that assume white distur

bances, as also proposed in literature. 

Simulations show that process- and noise parameters can be 

estimated without bias. 

The behaviour is less favourable than in the case of only 

output disturbances which, of course, may be expected due to 

the worse overall signal-to-noise condition. 

Based on observations of simulated experiments, the small 

sample behaviour is poor: many measurements are necessary for 

the convergence of the estimates. 

f) An extensive review of order tests, which are practically 

applicable, has been presented and the close relations among 

these tests have been indicated. Also order tests which allow 

the distinct determination of the orders of process- and noise 

dynamics have been presented. Simulations show the applicabi

lity for these order tests for an extensive range' of S/N 

ratio's. 
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g) An interactive program package SATER has been designed, which 

is descdbed briefly in chapter 6. The availability of such 

an interactive package for identification purposes gives the 

experimenters much freedom in applying the different estima

ting- and order testing schemes. 
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Appendix I Approximation of the covariancematrix of thenoise 

Using the spectral factorization theorem for signals with rational 

spectra we find that the following unique parametrization is appro

pria te: 

(I-1) 
[l+D(z- 1)] 

G(z- 1) == 

where G(z-l) 

singularities 

is stable and minimum phase (if the spectrum bas no 

on lzl = 1), and hence causally invertible. 

The following representations can also be given, whicb are degenera

tions of (I-1); where for notational simplicity the argument z-1 is 

dropped: 

[l+Dt) • (I-2) 
(l+D] 

[l+c] 

[l+c] 
(l+ct] = (I-3) 

[l+D] 
The polynomials [l+c] and [l+D] are of finite order, but [1+c•] ml4 
[l+D'] have, in principle, infinite lengtb. We consider, however, 

stable and pbysically realizable systems so that for some v, µ the 

tails 

" " l c' z -i and l d • z -i 
i•v+l i i•).1+1 i 

of the polynomials [l+c'] and (l+D'] do not give any measurable con

tribution to the transfer of the system. 

From the descriptions 

[l+D' ]~" ~ 

~" [l+c' ]~ 

we construct the matrix notation: 

d' v 

!~ 
which can be written as: 
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(I-4} 

(I-5) 

~q+l 

(I-6) 



[o"lo•] [:l 1 (I-7) 

where D' is a lower triangular matrix, or alternatively: 

c~~cj 1 

eq+l i;;q-µ+l 
c' 

1 

1 

1 
c' ~ µ 

c' i;;q+l 8N 0 
µ 

I~ 1 
c~- i;;N 

or: 

~ • [ C*' 1 c• ] [ ~·1 (I-8) 

where c• is a lower triangular matrix. 

For the covariance matrix of the equation error we find: 
I- T} { T T T T } cov !. = Ei.=,!. = E (C*'_i*+C'_i){_i* C*' +_i C' ) = 

= C*'E{.i*!*T}C*'T+c'E{!l}c'T = 

= (C*'C*'T+c' C'T)a2 
i;; 

(I-9) 

Neglecting, for N >> µ, the initial conditions, i.e. _i*,we find 

cov e "' c•c• Ta2 (I-10) 
- i;; 

For the autoregressive description we have: 

E { (D* '!_*+D '!_)(!_* TD*' T "f:!. TD' T) } = aËI 
D*' cov !.* D*'T+D*'E~*!.T}D'T+ D'E~ !.*T}D*T+D' cov e D'T = 

(I-11) 

Neglecting, for N >> v, the initial conditions: 

D'cov e D'T • a2I 
i;; (I-12) 

and consequently 

R- 1 = (cov !_)- 1 • n• TD' ~2 (I-13) 
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Appendix II Practical choices of the instrUblentalvariable 

For explicit estimation schemes, the generation of an instrumental 

variable such as the output of a model gives problems, as several 

iterations for obtaining reasonable model parameters are needed. 

Therefore other choices for the instrumental variable have been pro

posed. Wouters (1972) proposed the use of delayed inputs and outputs 

and Gersch (1970) the use of delayed outputs as an easy-to-i~plement 

instrumental variable. These choices can easily be motivated by the 

following reasoning. 

Assume the description: 

and 
ek • [i+c]ék 

~ being white noise. 

(II-1) 

(II-2) 

The correlation of the equation error ek with a shifted signal 

yk-t can be given: 

E{ekyk-t} • E{[l+c ]t~yk-t} • 

• E{~yk-t} + c1E{~-lyk-t} + 

For t > s, it can easily be seen that 

E{ekyk-t} = 0 

leading to 

E{[[l+A]tyk - [bo+B]tuk]yk-.t} • 0 

Similarly: 

E{ek~-.t}" 0 

leading to: 

E{[[l+A]tyk - [b0+B]tuk]uk-t} • 0 

(II-3) 

(II-4) 

{II-5) 

(II-6) 

(II-7) 

In principle, from equations (II-5) and (II-7), the parameters can be 

found. Because the exact cross- and autocorrelations, as they appear 

in these equations, are not known, they have to be approximated, 

assuming that the signals are ergodic: 
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1 N 
lf l [ ( (l+A]tyk - [bo +B ]tuk]yk-R) '" 
-lc=l (II-8) 

1 N c 1 N es N 
= lr I ~Yk-t + r I ç;k-lyk-a.+· ••• + N. I ç;k-s1k-t 

k=l k-1 k==l 

1 N 
lf l [[[l+A]tyk - [bo+B]tl\]l\-a.] = 
-1t=l (II-9) 
· N c

1
N c N 

= j l ç;kuk-R. + R l ~-1 uk-t+. • • .+ r l ç;k-suk-t 
k=l k=l k•l 

Only for N tends to infinity are the right hand sides of equations 

(II-8) and (II-9) equal to zero, which, in practice, is assum.ed to be 

true. 

An estimate of the process parameters can then be obtained by solving 

the equations 
N 

j.k~l [[[l+A] yk - [So+i] uk]yk-t] = 0 a. > s (II-10) 

1 N 
ii l [[[l+À] yk - [60+i] uk]uk-t] • 0 
-·k==l 

(II-11) 

Both equations lead to: 

(II-12) 

where 

a) zl • l\; z2 • l\-p-1 cf. Wouters (1972). 

b) z1 = uk; z2 = yk-p-l if p+l > s cf. Gersch (1970). 

The drawback of this method is the fact that the correlation func

tions, which are contained in the matrix, contain considerable time 

shifts. Usually this gives problems for finite data sequences. Let 

us consider, for example, gaussian noise. It can be shown, e.g. 

Laning and Battin (1956), that the variance of the approximated cor

relation function 
A 

'l'XX( T) based on N samples: 
1 N 

t (T) = 1f L xixi+T 
XX i•l 

can be given by: 

(II-13) 

T + 0 (II.14) 

This variance is fairly independent of T for T .f o. The correla

tion functions most frequently encountèred tend to S111all values for 

large shifts -r. 
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If we consider equations {II-8) and (II-9) we can have, in a practi

cal example, e.g. the exact relation: 

'f 2 .a + '1 " ó (II-15) 

where 'Pi. 'f2 are correlations based on N samples for small time 

shift, a is the parameter and o is the right hand term of eq. (II-8) 

or (II-9). Fora practical example with large time shift, we have: 

(II-16) 

where '1'3, '1'4 are correlations based on N samples for considerable 

time shift, so 'f3, '1'4 are one (or several) order(s) of magnitude 

smaller than '!' 1, '!' 2" However ö and ö' are of the same order of 

magnitude. So we have 
'l'l Q A 

a•--+- + a 
'1'2 '1'2 

Af 
+ a 

(II-17) 

(II-18) 

As ö and ö' are unknown, they will be approximated by zero. We see 

that the error in a' is larger than a • 
The method of Gersch can also be used for the estimation of the AR 

parameters of the process only if certain conditions are fulfilled: 

We rewrite the input-output description of the procees: 

z. - - y.!.t + U2.t + .! 

!..- ~+ 1 

Z." - Y!t:+ ~+ ~+ 1 
Premultiply eq. (II-20) with ytT = z-tyT 

Y'Tv = -Y'TYa + Y'TUb + Y'TEc + Y'T~ 
.L. ~ ~ -4: -

so 

(II-19) 

(II-20) 

(II-21) 

.!.t = -(Y'TY)-ly•Tz. + (Y'TY)-lytT~+ (Y'TY)-ly•T~+ (Y'TY)-lY'Ti 

The estimator 

A T l T .!. • -(Y' Y)- Y' z. (II-22) 

is consistent if: 
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a) plim (~Y' TY) ] 
N+<» 

is non-singular 

d) 'pum [(Y'TY)-ly•T_~J " 0 
N+<» 

ad a) For non-singularity of 

(II-23) 

(II-24) 

it is important that the time shift of Y' with respect to Y is not 

too large. This is dictated by the length p' of the MA filter 

( b~ +B' Jt approximating the ARMA process 

(b +B] 
[b~ +B' ] " o t (II-25) 

o t [l+X] 
t 

The MA filter [b0"+B"] with memory length p" is used for shaping 

uk from a white noise source Wk 

uk = [~+B"]wk (II-26) 

So the length of the non zero part of the autocorrelation functions 

of Yk is p'+p". The delay R. should be such that R.+q<p'+p". 

ad b) Write eq. (II-26} in matrix notation: 

So 

Now 

U = WB" 

yw 

1 T • 

[

'f (R.+l) ••• 

plim [N Y' w] = • 
N+oo • 

'f ( R.+q) • • • 
yw 

(II-27) 

(II-29) 

This matrix equals zero 1f t ;> p+p", as Wk is a white noise sequ-

ence. 
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ad c) This situation is identical to the condition t > s in equation 

(II-10). 

For possible estimation of the AR parameters of the process, t should 

be chosen such that 

t < p' + p'' - q (II-30) 

and 

t > max(p+p",s) (II-31) 

Usually p' -q>s so that the method can be used, but, however • with 

great care to avoid inconsistence as indicated by eq. (II-23). 
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Appendix III Relation between Tally estimator and instrumental 

variable estimator 

The same equations (II-4) and (II-6) which led to the already men

tioned instrumental variable variants of Wouters and Gersch, lead to 

an estimation method which is known in the literature as Prior Know

ledge Fitting estimator (PKF) or Tally estimator; cf. Peterka and 

Halouskova (1970), Banyasz and Keviczky (1974) and Bosch (1978). 

If we rewrite these equations as 

'l!eu(-t) = 0 

correlation functions, we have: 

'I! (-t) = 0 ey 

Vt l 
t > s (III-1) 

For given model parameters !* using N observations of input and out

put signals, we can compute estimates of these correlation functions, 

which will be denoted as V ( t; 8" ,u,y) and V ( t; 8" ,u, v). 
eu - -- ey - -"-' 

An estimate ]. is sought for which 

11..!<ê,u,y)-_! Il is minimal (III-2) 

where ! and 'I! are vectors containing points of the above mentioned 

correlation functions for different t. 

As ..! • .Q., eq. (III-2) can be rewritten: 

Il .!cs,u,y) is minimal. (III-3) 

We have already met the following equations cf. (II-8) and (II-9) 
l N CJ ... N ~ ... N 

w ... (-t) = w[ l yk~-t + l aj l yk-j~-t- l bj l ~-j~-tl 
eu k•l j•l k•l j•o k=l 

if ... (-t) -ey 

Now construct 

~. (VA (-1), •••• v ... (-M), '"' (-s-1), •••• ,v ... (-M)) eu eu ey ey . (III-5) 

(III-6) 
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î (-1) uu î (p-1) uu 

w . W (-M) . . • W (p-M) uu uu 

Î (-s-1) . . Î (-s-l+p) 
• uy .uy 

f (-M) uy '! (-M+p) uy 

î (0) 
.yu . 
w (-M+l) yu 

V (-s) . yy 

Îyy(-M+l) 

v (q-1) yu . 
Î (q-M) yu 

v (-s+q-1) 

·" 
V (-M+q) yy 

(III-7) 

M should be chosen such that all equations involved are useful, i.e. the 

auto- and cross- correlations involved should not be too small for M. 

Peterka suggests M ) 3q/2. 

Using the above given notation we have 

'f" i!+l (III-8) 

Minimization of !T! leads to an estimate ê. Peterka and 

Halouskova (1970) use orthogonal triangularization for this minimization 

as already indicated by Peterka and Smuk (1969) and Smuk (1970). Note, 

for example, that (3.82) is an equation in the second order moments of 
A 

the measured data. Differentiation of .!_T.!_ with respect to ~ 

yields: 

(III-9) 

In this expression, fourth order moments of the measured data1 are invol

ved. If M • p+q+l is taken, then matrix iF becomes a square matrix so 

that eq. (III-9) can be rewritten as: 

~. --r11 (III-10) 

At this point the close relationship with the instrumental variable meth

od can be shown; cf. Bosch (1978). If the following instrumental 

variable. matrix Z is used 

r~~ ÏN 
0 -- 0 ul------- uN-M 

î ·~~----- r~-s-1 
(III-11) 

0 0 y1------YN-M 
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then 

w = 

and 

1 TA 
-Ze 
N -

(III-12) 

(III-13) 

which is the instrumental variable criterion, as already met in eq. 

(3.45). It can easily be shown that this choice of instrumental 

variable is a legitimate one, i.e. the conditions (3.51) are fulfil

led: 

I r ,, ~~•ingular ] 
(III-14) 

II plim (j ZT!:,] = .Q. 
N+oo 

'!! is a (p+q+l) x (2M-s) matrix. 

By taking M not too large and using persistently exciting inputs 

uk, condition I can be fulfilled. Condition II is assured as '!' = O 

is a priori information; cf. (III-1). 

The difference between this Tally method and the already met instru

mental variable method is only in the choice of M. For the Tally 

estimator, we will take, as suggested by Peterka, M > 3q/2 leading to 

2M-s ~ 3q-s equations. As P"'Cl"'S, these are 2q equations. The ins

trumental variable estimator with delayed outputs (Gersch) takes 

2p+q+l equations leading to square matrices and simpler programming. 

For high signal to noise ratios the use of more than p+q+l equations 

is not necessary for noise suppression. 
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Appendix IV Derivation of the informationmatriX 

The logaritlnn of the likelihood function is: 
1 N 

L = constant - N ln À - - l ti 
2À2 k•l 

(IV-1) 

For the second derivatives with respect to the parameters and with 

respect to À we find: 

a2L " - 2_ r f{ + !.._ 
n 2 À4 k=l À2 

a2L l N a~ atk 1 N a2~k 
~j • - À2 k!l ~ • ~ - ~ k~l tk ~ 

a2L 2 N A 
3~k 

.......-...---l~ .....,,.-
aoiOA À3 k•l k 001 

If we keep in mind the model: 

[l+C] 
[ l+A ]yk = [ b +B ]uk + .>.--- tk 

o [l+D] 

we find, 

(IV-2) 

(IV-3) 

(IV-4) 

(IV-5) 

[l+C] a~ 

[l+D] äai 

[b
0
+B] [l+c] A 

[l+A] ~-i + À [l+A][l+D]~-i (IV-6) 

-

[l+C] a~ 

[l+D] 3bi 
= -u k-i 

_l_t + 
[l+c] 

[l+D] k-i (l+D] 

[l+c] t + 
[l+c] 

[l+D ]2 k-i (l+D] 

atk 

ac1 
= 0 

atk 
r =O 

i 

(IV-7) 

at 
+ [1+c] a k = - ~ (IV-8) 

ei -1 

-1 A atk 
+ --~ +~ - 0 (l+D] k-i d1 (IV-9) 

This can be rewritten: 

[b
0 

+B ][l+D] À A [l+D] 
---- u + -- ~ = -- y (IV-10) 
[l+Aj[l+C] k-i (l+A] k-i [l+c] k-i 
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a~ [l+D] 
ab

1 - [ l+C ] 1\:-1 
(IV-11) 

a~ __ >._~ 
~ [l+c l k-i 

(IV-12) 

a(k 
_>._~ 

dd. [l+D] k-1 
l 

(IV-13) 

Take the mathematical expectations of eq. (IV-2), (IV-3) and (IV-4): 

(IV-14) 

(IV-15) 

a2L 
Efaa a:>) " 0 

i 
(IV-16) 

Introduce the variables: 

[b +B ][l+D] 
" 

0 
xl,k (l+A](l+c] '\: (IV-17) 

[l+D] 
x2,k - -- '\: [l+c l 

(IV-18) 

- 1 
~ ~.k --

(l+A] 
(IV-19) 

l 
(k x4,k " -[l+D] 

(IV-20) 

" 
1 

~k x5,k --
[1+c l 

(IV-21) 

These variables are stationary random processes, as the polynomials 

[l+A], [l+c] and [HD] have zeros inside the nnit cirele of the z

plane. 

Introduce the correlation functions which we applied to the above 

mentioned variables x1 k, ••• ,x5 k: 
. . . 
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i,j = {1,2} 

i,j " {3,4,5} (IV-22) 

Then we form the following sub-matrices: 

212 

a2L 1 N atk a€k 
(Jaa>ij=-Efaa

1
äaj}= À2 k~lE{äai äaj} 

1 N [b
0
+B][l+D] À [b +B][l+D] 

"' - l E{( ~ + -- t )( o ~ 
>.2 k=l [l+A][l+c) -i (l+A) k-i [l+A][l+c) -j 

+ [l~A] ~-j)} • 

l N 
"' - l xl k-ixl k-j + A

2
E{x3 k-ix3 k-j} • 

)..2 k=l , , • • 

• ...!... {r (i-j) + >.2r (i-j)} 
~ 11 33 

a2L 1 N atk 
- (J ) = - E I~l = - l E {~ 

ah ij oa1 ooj >.2 k=l oa1 

1 N N 
= - - l x x = - - r (i-j) 

À2 k=l l,k-i 2,k-j À2 12 

a2L 1 N atk 
- (Jac>ij = - E{~} • 2 l E{-ra:

i j À k=l i 

(IV-23) 

(IV-24) 

l N [b +B][l+D] 
=- l E{( o u +-À-t ) (--À-t )} = 

2 [ ][ ] k-i (l+A) k-i (l+C] k-j >. k=l l+A 1 +c 

a2L 1 N atk atk 
(J ad) ij - - E {äa":"äa:"} = 2 l EI-ra:- TI:":"} " 

. i j À k=l i j 

(IV-25) 

l N [ b +B ]( l+D) À À 

• - l E { ( o uk-i + -( -] tk-i } (l,..---] tk-j ) } " 
>.2 k=l (l+A](l+c) l+A l+D 



1 N 
= ~ Z: À

2 E{x3 k.-ix4 k-J·} = N r 34(i-j) À2 k=l • . ' 

a21 1 N atk 
(Jbb)ij • - E{li'bä'b} " - l E{ab 

i j À2 k=l i 

N [l+D) [l+D) 
. - l - -- u ·--- u • 

À2 k.=l [1+c] k-i [1+c] k-J 

a21 l N a~k 
(Jbc)ij = - E{îb':1iC:"} "-2 l E{ab 

1 j À k=l 1 

l N [l+D] À 

• - l E{- -- u • --- t } • 0 
À2 k=l [l+c] k-i [1+c] k-j 

a 21 1 N a~ atk · 
- (Jbd)ij = - E{~} = - l E{lJD lhr°} "' 

1 j À2 k=l i j 

l N [l+D] À 
= - l E{- -- u • -- t } • 0 

À2 k=l [l+c] k-i [l+D] k-j 

(IV-26) 

(IV-27) 

(IV-28) 

(IV-29) 

(IV-30) 

(IV-31) 
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= N r (i-j) 
44 

Now construct the Fisher information matrix: 

Jab Jaa Jac Jad JaÀ 

J • Jcb Jca Jee Jcd JcÀ 

Jdb Jda Jdc Jdd JdÀ 

JÀb JÀa JÀC JÀd JÀÀ 

With the above results 111e have: 

J = N 

0 0 
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f/J 

{'r35(i-j)} 

{r
55

Ci-j)} 

{r45 (i-J)} 

0 

(IV-32) 

(IV-33) 

0 0 

{r34Ci-J)} 0 

{r54(i-j')} 0 

{r
44

Ci-j)} 0 

0 ~ 
).2 

(IV-34) 



Appendix V Mathematica! results 

Result V.l: Slutsky's theorem 

If the stochastic process {xk}; k = 1,2, ••• in RP converges 

in probability towards x and if the function g, which is a transform

ation from Rp into Rq, is continuous, then: 

plim [g(xN)] = g(plim [xN]) = g(x) 
N-+<» N-+<» 

If the elements of the matrices Aff and BN have a probability 

limit, then: 

Proof: cf. Goldberger (1964). 

Result V.2: Matrix inversion lemma 

Proof follows from multiplieation by A+BC 

Proof: 

["11 
~l 

"12] 
M22 [ ~l•21 :J -[ •u -M1:•2i•21 M y-1] 

12!22 

So det M.det M:l. 
22 det(Mll-Ml2~iM21> 

The proof follows from MM- 1 = I. 
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Appendix VI Notations, syl!!.bols and abbreviations 

On the notation 

As in many fields, also in identification a characteristic use of 

terminology has been developed through the many papers and other 

contributions. In this dissertation no at tempt has been made to 

polish until textbook-presentation is approximated. 

One term rather loosely used is "model". This has to be seen in the 

light of its context consisting of: 

a real (physical) process, most probably partially known, but 

certainly not fully known, or even knowable. (dimensionality and 

related limitations); 

a theoretical model that would adequately represent the real 

process for the intended use one bas in mind when the identifi

cation task is tackled; 

an estimation model that should approach the theoretical model as 

well as possible, given the theoretical and practical limitations 

imposed by our (a priori) knowledge, experimental capabilities, 

etc. 

From the text this distinction will be clear in the majority of 

cases. 

For the sake of simplicity, it is often assU111ed that the theoretical 

model is available in the set of estimation models; it can be deter

mined/approached by the choice of 'order• and by estimation of the 

parameter values. 

In these cases the notation is such that indicates the 'replica• in 

the estimation model of the corresponding quantity in the theoretica! 

model, e.g. 

theoretica! estimation 
model model 

parameters !e !· ê 

coloured noise " e e 

white noise as the 'origin' 
of coloured noise t ~ 
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Notations 

't/ 
h. = 
p(x) 

E{x} 

plim[x] 
k+oO 
T T e.g. X 

for all 

definition 

probability density function of the random 

variable x 

mathematical expectation of the random 

variable x 

probability limit of the random variable x 

transpose of X 

-1 x-1 e.g. inverse of X 

determinant of X det X 

i e.g. êi 

k e.g. k 

i-th operation; e.g. estimated vector, i-th 
iteration 

do. 
filtering 

e.g. filtered signal u, i-th 

k-th instant of time; e.g. samples of u,y 

at time k 

do. ; e.g. estimated parameter 

t e.g. !t 
vector, k-th recursion. 

"true" parameter vector. 

;.,. " 

1 e.g. 

• e.g • 

' 
e.g. 

" 
" • e.g. 

Symbols 

symbol 

f6 

.!. 
a 

a' 

filtering 

[X11 x
2

] x1 augmented with x2 

Îl estimated parameter vector 

1. " e prediction error 

1. A 

e residuals 

descript ion 

null matrix 

parameter vector; AR param. 

AR param. 

parameter vector; AR param. 

(extended) 

occurs in 

chapter 

3.4,S,7 

3,4,S,6,7 

3,4,S,6,7 
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(l+A) 
[l+A') 
A 

b 

b 

b' 

[b +B] 
0 

(b'+B'] 
0 

B 

.s. 
c 

c' 

[l+c] 
[l+C'] 
c 
c 
d 

d 

d' 

d 
-0 

[l+D] 
(l+D'] 
[l+Di] 

[l+D ] 
0 

D' 

D 

A 

e 

"' e 

E 

Ê 

218 

polynomial in z-1; AR parameters 

do., with model extension 

system matrix state space model 

parameter vector; MA param. 

MA param. 

(extended) parameter vector; MA param. 

polynomial in z-1; MA param. 

do., with model extension 

distribution matrix state space model 

parameter vector; MA noise param • 

MA noise param. 

(extended) parameter vector: MA noise param. 

polynomial in z-1; MA noise param. 

do., extended 

output matrix state space model 

data product moment matrix 

parameter vector; AR noise param. 

AR noise param. 

(extended) parameter vector; AR noise param. 

parameter vector; AR noise param. 

(input noise) 

parameter vector; AR noise param. 

(output noise) 

polynomial in z-1; AR noise param. 

do. 

do. 

do. 

AR noise param. 

AR input noise param. 

AR output noise param. 

noise whitening filter matrix 

set of parameter estimates 

(identifiability conditions) 

modelled noise sample at time k 

equation error, process noise 

(due to output noise) 

prediction error, model error 

residual 

matrix containing !. 
matrix containing ,! 

3,4,5,7 

3,4,5,6,7 

3,4,7 

2,3,4,5,7 
3,4,7 

2 

3,4,7 

3,4,6,7 

3,4 

2,3,4,5,7 

3,4 

2 

7 

3,4,5,6,7 

3,4,5,6,7 

3,4 

5,6 

5,6 

5 

3 

2 

2 

3,4,5,7 

3,4 
3,4,7 

3,4,7 



!< ) 
f 

F 

G( ) 

vector function (convergence discuss.) 

equation error (due to input noise) 

matrix containing .!.. 

function or functional of model, operating 
on process input viz. - output 

equation error (due to input- and output 

noise) 

prediction error (due to input- and output 
noise) 

matrix function (convergence discuss.) 

G(z) transfer function 

- for noise spectral factorization 

- for stochastic system 

H(z} transfer function 

H 

H 

H 

I 

J 

J 

k 

L 

M 

- noise shaping filter 

- of (state space) model 

matrix (convergence discuss.) 

Hankel matrix 

data product moment matrix 

identity matrix 

Fisher information matrix 

identification method (identifiability 

conditions) 

instant of time 

(log) likelihood function 

Mark.ov parameters, -matrix 

impulse response matrix 

do., for the k-th time instant 

model structure 

(equivalent) output noise 

{equivalent) output noise sample 
at time k 

input noise 

output noise 

total number of observations 

matrix containing !!.t 

matrix containing !o 
probability density function 

Pk 'covariance matrix' of an estimate 

at time k 

4 

5 

5 

2 

5 

5 

4 

2 

2 

2 

2 

4 

2 

7 

3 

2 

2,3,4,5,6,7 

3,4 

2 

2 

2,3,4,5 

3,4,7 

3,4,5 

5 

5 

2,3,4,5,6,7 

5 

5 

3,4 

4,5,7 
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p 

p 

Q 

r 

r 
0 

r(T) 

R 

R 

s 

s 

t 

t 

T 

~ 
u 
v 

V' 

V'' 

.!. 
w 
w 

x 

220 

number of components in parameter vector 

degree of polynomial [b
0
+B] 

degree of polynomial [l+A] 

gain constant in recursion 

"covariance matrix" of an estimate at 
time k 

data product moment matrix 

degree of polynomial [ l+D ] 

degree of polynomial [l+Di] 

degree of polynomial [l+D ] 
0 

correlation function 

covariance matrix of noise 

(convergence discuss.) 

degree of polynomial [l+c] 

stochastic system (identifiabilty 

conditions) 

"true" 

test quantity 

transformation matrix realization 

input sample at time k 

input vector 

input vector state space model at time k 

matrix containing ~ 

disturbed input vector 

matrix containing y 
quadratic error criterion at time k 

quadratic error criterion/loss function 

gradient of 

second derivative of 

error 

spectrum of noise 

weighting matrix 

undisturbed output signal 

undisturbed output signal sample at time k 

state vector at time k 

(auxil. var.) 

experimental condition (identifiability 

conditions) 

2 

3,4,5,7 

3,4,5,7 

4 

4 

7 

3,4,6,7 

5,6 

5,6 

3,7 

3,4 

4 

3,4,6,7 

2 

3,4,5 

7 

2 

2,3,4,5,6,7 

2,3,4,5,6,7 

2 

3,4,5,7 

5,6 

5 

4 

3 

3 

3 

3,4 

2 

3 

2,3,4,5,7 

3,4,5,7 

2 

3 

2 



z 

r 

~PR 

À 

µ 

! 
~ 

E .. •' 

Q 

PR 
(Jl 

disturbed output vector 

disturbed output sample at time k 

output vector of state space model 
at time k 

shift operator; Z-transf orm variable 

instrumental variable vector 

instrumental variable sample at time k 

instrumental variable matrix 

template function matrix 

non-singular matrix 

model error sample at time k 

identif ication error f or N observations 

parameter vector of model 

"true" parameter vector 

estimated parameter vector 

estimated process parameter vector 

estimated noise parameter vector 

"power level" of the white noise 

model structure 

input of noise filter; white noise 

do.; at time k 

input of input noise filter;white noise 

input of output nóise filter;white noise 

prediction error 

residual 

covariance matrix of white noise signal 

de lay 

filter producing IV quantities 

(approx.) correlation function 

vector of measurables at" time k 

matrix containing measurables 

vector of measurables, process part 

vector of measurables, noise part 

3,4,5,6,7 

2,3,4,5,6,7 

2 

2,3,4,5,6,7 

3,4,5,7 

3,4,5,6,7 

1,3,4,5,7 

3,5 

2 

2 

2,3,4,5,7 

3,4,5 

3,4,5,7 

4 

4 

3,4,6,7 

2 

2,3,4,6,7 

2,3,4,6,7 

5 

5 

4,7 

3,4,7 

2 

5,7 

3 

3 

4 

1, def.in3,4 

4 

4 
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Abbreviations 

AIC 

AML 

AR 

ARMA 

ARMAX 

CRLB 

EECM 

EMM 

FPE 

GLS 

GMDH 

IOIVEMM 

IQL 

IV 

IVEMM 

LS 

LSL 

MA 

MIMO 

MLE 

MRAS 

MSLS 

PKF 

ODE 

OLS 

RLS 

PI 

SA 

SI 

SIV 

SSI 

SISO 

WLS 
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average information criterion 

approximate maximum likelihood (estimator) 

auto regressive 

auto regressive-moving average 

with noise 

modelling 

Cramêr-Rao lower bound 

equation error compensation method 

extended matrix method 

final prediction error 

generalized least squares (estimator) 

group method of data handling 

IVEMM, suited for noise corrupted input

output measurements 

implicit quasi-linearization (method) IV 

instrumental variable (estimator) 

IV extended matrix method 

least squares (estimator) 

least squares like (estimator) 

moving average 

multi input-multi output 

maximum likelihood estimator 

model reference adaptive system 

multi-stage least squares (estimator) 

prior knowledge fitting (estimator) 

ordinary dif ferential equation 

over-parametrized least squares (estimator) 

recursive least squares (estimator) 

parameter identifiable 

stochastic approximation (estimator) 

system identifiable 

sub-optima! IV (estimator) 

strongly system identifiable 

single input-single output 

weighted least squares (estimator) 
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TEN SLOTTE 

Het onderzoek, waarvan in dit proefschrift verslag gedaan wordt, is 

uitgevoerd .in de vakgroep Meten en Regelen van de afdeling der Elek

trotechniek van de Technische Hogeschool te Eindhoven. 

Het onderzoek is een onderdeel van het onderzoekaccent "systeemiden

tificatie" van de vakgroep. Tot dit onderzoekaccent behoren ook o.m. 

het SATER project en het z.g. MIMO project, dat als uitvloeisel van

en aanvulling op het onderzoekproject SATER enige jaren geleden ge

start is. Beide projecten maken momenteel deel uit van de werkge

meenschappen Theorie en Meten van de Stichting voor Meet- en Bestur

ingstechnologie. 

Aan deelonderwerpen hebben in het verleden vele afstudeerders en 

stageairs hun bijdrage geleverd. Alhoewel ik anderen daarmee ten 

onrechte te kort doe wil ik toch een paar nam.en noemen: Jan Talmon 

(EMM) en Ad van de Enden, Jan Hoffman, Anton Koenraads, ordetesters 

van formaat. Ook aan nauw verwante onderwerpen, die niet in dit 

proefschrift vermeld zijn, zijn door afstudeerders belangrijke bij

dragen geleverd. Te noemen zijn de relatie tussen discrete modellen 

en continue processen - belangrijk voor toepassingen - en verder de 

toepassingen zelf: o.m. Wim Costongs met het dynamisch ged.rag van 

een stationcar en Jan van Miltenburg en John Rooijakkers met hun 

schattingen aan het haemodynamisch gedrag van de aorta; dit laatste 

in plezierige samenwerking met Anton van Steenhoven, de deskundige op 

dit gebied bij de afdeling derWerktuigbouwkunde. 

Ik denk met veel plezier terug aan de samenwerking met hen en alle 

anderen die niet vernoemd zijn. 

Vermeld dienen te worden de activiteiten rond het ontwerp en de rea

lisatie van het interaktieve programmapakket SATER, vanaf het eerste 

Algol SATER' tje op de PDP-8 naar het hudige pakket, een welhaast 

commercieel produkt. De werk.er van het eerste uur Pim Lemmens, die 

de SATER structuur ·ontwierp, Johan Vissers, die de omschakeling naar 

RSX realiseerde en Pim Bollen, die momenteel de laatste hand aan het 

geheel legt, ben ik veel dank verschuldigd voor hun inzet en samen

werking. De bijdragen van de vakgroep Systeem en Regeltechniek van 

de afdeling der Technische Natuurkunde, THE, en de vakgroep 
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Technopsychologie van de subfaculteit der Psychologie, Katholieke 

Hogeschool Tilburg, toen de ontwikkeling noodgedwongen wat trager 

ging, waren zeer welkom. 

Voor de samenwerking met collega's - of liever vrienden - Ad Damen an 

Andrzej Hajdasinski, wat betreft discussies over onderwerpen van 

allerlei aard betreffende parameterschatting maar ook wat betreft het 

opzetten en het starten van het MIMO project prijs ik mij gelukkig. 

In dit vak kun je en mag je niet solitair opereren. 

De vakgroep dank ik voor de mogelijkheid om de resultaten uiteinde-

lijk op papier te zetten; Barbara Cornelissen voor haar doorzet-

tingsvermogen en haar grote deskundigheid bij het uittypen en de 

verzorging van het verslag en Joop van Dinther voor het maken van de 

vele tekeningen op vakkundige wijze. 

Tenslotte wil ik niet onvermeld laten, dat ik tijdens het schrijven 

van dit TEN SLOTTE grote moeite gehad heb om me neer te leggen bij de 

regel die bepaalt dat geen woorden van dank gericht dienen te worden 

aan promotoren. 
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STELLINGEN: 

1. Omdat het merendeel van de benodigde rekenoperaties in de 

recursieve schattingsalgorithmen, zoals in dit proef schrift 

beschreven, in parallel uitvoerbare operaties opgesplitst 

kunnen worden, zijn deze algorithmen uitermate geschikt om 

door rekenmachines met parallel opererende processoren 

verwerkt te worden. Hierdoor neemt de on-line toepasbaarheid 

aanmerkelijk toe. 

2. Indien enige in de praktijk voorhanden a-priori informatie 

omtrent het te schatten proces niet in het schattingsmodel 

en/of het schattingscriterium verwerkt is, is modelvalidatie 

m.b.t. deze informatie extra geboden. In dat geval zal 

automatisering van de schattingen doorgaans niet mogelijk 

zijn. 

3, Bij het toepassen van iteratieve schattingsschema's is het, in 

tegenstelling tot wat steeds in de literatuur gesuggereerd 

wordt, niet nodig om, wanneer grote meetreeksen voorhanden 

zijn, voor de eerste iteraties alle meetwaarden te gebruiken. 

Dit kan tot een aanzienlijke reduktie in rekentijd leiden. 

Literatuur: bijv. Furht, B.P. (1973) 

"Maximum likelihood identification of Äström model 

by quasilinearization", Proc. Third IFAC Symp. on 

Identification and System Parameter Estimation, 

the Hague/Delf t 

4, Het gebruik van interaktieve programmatuur is onontbeerlijk 

bij het onderwijs in de signaalanalyse, systeemtheorie en 

parameterschatting. 

Literatuur: Lemmens, W,J,M, and A.J.W. van den Boom (1979) 

"Interactive programs for education and research; 

a survey", Automatica, vol 15, PP• 113-121. 



5. Door de invoering van de tweede fase opleiding aan de 

Technische Hogescholen zal een nieuw type ingenieur, nl. met 

een hoge initiele specialisatiegraad en een te vrezen 

geringere breedte, zijn intrede in de beroepspraktijk doen. 

6. Een evaluatie van de werkelijke effecten (zowel bedoelde als 

onbedoelde) van opeenvolgende door de overheid opgelegde 

bezuinigingsronden is in een volwassen demokratie geboden als 

verantwoording achteraf aan de bevolking. 

7. De bedreigde cactussoorten dienen door een gezamenlijke 

inspanning van succulentenverenigingen voor ondergang behoed 

te worden. 

Literatuur: Lyons, G. (1980) 

"At long last, protection for endangered cacti", 

u.s. Cactus and Succulent Journal, vol. 52, P• 

229. 

s. De verkeersveiligheid rondom scholen wordt in gevaar gebracht 

door ouders die hun kinderen per auto naar school brengen. 

9. Het projekteren van de evolutionaire tijdschaal op een schaal 

van 0 tot 24 uur suggereert een catastrophe om 24 uur. 

10. Door de sterk wisselende regelingen t.a.v. de woningisolatie

subsidie zijn in het verleden dikwijls huiseigenaren in de 

kou gezet. 

Stellingen behorende bij het proefschrift van A.J.w. van den Boom, 

Eindhoven, 28 september 1982. 


