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Summary 

With standard methods for the determination of material parameters, the loading conditions and 

the geometry of specimen are generally chosen such that measured boundary loads and displace­

ments can easily be translated to local stresses and strains, which are subsequently used to deter­

mine the parameters in a material model. If the material is inhomogeneous, or if manufacturing 

of specimen is difficult or undesirable, then these methods are unsuitable and the numerical­

experimental technique may be used. This technique uses of experiments where as much field 

information (displacement fields , pressures, velocities) as possible is measured in stead of bound­

ary information only. By confronting this information with (numerical) calculations on the basis 

of an assumed material model and initial guesses for the material parameters, the parameters 

are iteratively adapted via an estimation algorithm until convergence is achieved. This method 

offers much more freedom than standard experimental methods, but until now it was particularly 

applied to materials showing time-independent behaviour. 

The objective of this thesis was to study several algorithms that can be applied to materials show­

ing time-dependent behaviour. A fully recursive and an integral estimation algorithm have been 

implemented and investigated. The algorithms have been applied to mixture materials consisting 

of a porous solid, saturated by a fluid. The interaction between solid and fluid leads to viscoelas­

tic behaviour. 

The differential and algebraic model equations, describing this behaviour, are nonlinear in the 

displacements and the parameters and linear in the pressures. The used field information con­

sists of displacements and pressures. The algorithms have been tested by means of simulations. 

The results of an analysis with an assumed material model and chosen parameters, are disturbed 

by noise to represent observations out of an experiment. Subsequently, the estimation model is 

initialised with different values of the material parameters. The difference between the 'exper­

imental' results and the results of analyses with the model is used to determine the material 

parameters by means of the estimation algorithm. The estimation process is considered to be 

verified if these parameters converge on the values used to generate the 'observations'. Analyses 

with and without model errors have been performed. 
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The most important conclusion is that both algorithms can be used to determine the material 

parameters for this type of material. The recursive algorithm is extremely efficient. The time re­

quired to estimate the material parameters is of the same order as the time required for a single 

analysis with given parameters. The integral algorithm is very time-consuming and leads to a dif­

ficult two-point-boundary-value problem. At the moment no generally applicable and satisfying 

solution strategy to this problem has been found. 



Notation 

a scalar 

g column of scalars (g);= a; 

A matrix of scalars (A);J = A;J 

AT transpose of matrix CAT)ij = Aji 

A-1 inverse of matrix A.d.- 1 =I 
I unit matrix AI =A. 
ii vector 

iJ column of vectors @; = ii; 

J matrix of vectors CA);1 = A;1 

A second order tensor 
Ac conjugate of tensor 

A - 1 inverse of tensor A·A- 1 =1 

I unit tensor A·l=A 

a estimate of a 

ii true value of a 

a total time derivative of a 

oajot spatial time derivative of a 



Chapter 1 

Introduction 

The research presented in this thesis concerns the development of algorithms to estimate pa­

rameters in the constitutive models for time-dependent materials. Starting point has been the 

numerical-experimental method as developed by Hendriks [1991 ]. In this chapter firstly this 

method will be described . Then , some of its accomplishments and shortcomings will be given. 

This will suppl y arguments to put effort in the development of estimation algorithms for time­

dependent materials. The research is focused on two-component fluid-solid mixture models, i.e. 

a subclass of the models used to describe time-dependent material behaviour. Many of the ideas 

put forward in this thesis can be generalised to other classes. The chapter will finish with a brief 

outline of the thesis . 

The introduction of the numerical-experimental technique was initiated by difficulties with the 

characterisation of complex materials, in particular soft biological tissues, which show inho­

mogeneous, anisotropic, time-dependent, and both physically and geometrically nonlinear be­

haviour (Hendriks [ 1991], Oomens et al. [ 1993]). To distinguish these phenomena, experiments 

on specimens have to yield sufficient information . With standard experiments for the characteri­

sation of materials, in particular global and boundary information , such as measured forces and 

boundary displacements, is used. For example, in solid mechanics the geometry of the specimen 

is often chosen such that in a substantial part of the specimen a homogeneous stress and strain 

field is present. Then, in that part of the specimen the stress and strain can be derived from the 

force and displacement measured on the boundary. The result is used to determine the model 

parameters. 

The numerical-experimental technique makes use of experiments where as much field informa­

tion as possible is measured , instead of boundary information only. Measured quantities may be 

displacements, velocities, strains, forces, pressures , or stresses. A constitutive model, which is 



12 Chapter 1 

already pointed out that modelling of boundary conditions can be rather difficult, e.g. due 

to slip in clamps. In that case the relation between the input and the boundary conditions 

is not straightforward . 

The numerical-experimental technique has major advantages compared to standard material 

identification methods, since it can handle inhomogeneous stress and strain fields. It is no longer 

necessary to manufacture specimens and to apply loads in such a way that a homogeneous stress 

and strain field is realised in a well-defined region of the specimen. Experiments can be designed 

for specimens with rather arbitrary geometry, and cutting specimens of a specific prescribed 

geometry is no longer required . Even testing in-situ becomes possible. The latter is especially 

important for materials with long fibres , such as soft biological tissues, because the internal 

structure of the material can be maintained and there is no loss of interaction between different 

material directions. Moreover, application of the numerical-experimental technique may lead to 

an accurate estimation of the model parameters, as much information becomes available from 

measurements. 

Hendriks [ 1991] successfully applied the numerical-experimental technique in an experiment 

with a synthetic membrane. The material was modeled as an orthotropic linear elastic membrane 

with local axes of symmetry varying with the position in the material. Breukink [1994] and van 

Ratingen et al. [ 1993] used this technique to determine the mechanical properties of human skin 

in-vivo and canine skin in-vitro respectively, using the same elastic model. 

Many complex materials, such as soft biological tissues , polymer melts and solutions , or ther­

moplastics, show time-dependent behaviour. Then , the current stress in the material not only 

depends on the current strain but on the entire strain history and purely elastic models are unsuit­

able. 

Originally, the numerical-experimental technique according to Hendriks was developed to be 

universally applicable to any type of material, including time-dependent materials . For the anal­

yses of the experiment, the estimation algorithm was coupled to a finite element code. For each 

of the material models included in the code, the numerical-experimental technique should be 

applicable and the estimation algorithm should be able to determine the model parameters from 

the measured and computed field quantities. 

However, previous research (Hendriks [1991], van Ratingen [1994]) has brought up several is­

sues which have to be investigated before the numerical-experimental technique is applied to 

time-dependent materials: 

• For the identification, field quantities are measured at subsequent points of time for a 
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given load history. Per point of time, the parameters are determined such that the residuals 

between measured and computed quantities are minimised. This requires the solution of 

a set of nonl inear algebraic equations in the mode l parameters. Therefore, a Newton­

Raphson iterative procedure is used . As will be shown in Chapter 3, this leads to a set of 

linear equations in which two distinct parameter estimates show up: the estimate based on 

all measurements up to and including the previous time point and the estimate resulting 

from the last iteration at the current time point taking the most recent measurements into 

account. The algorithm according to Hendriks [ 1991] however did not distinguish between 

these estimates (van Ratingen [ 1994]). 

• The algorithm according to Hendriks is rather inefficient. For each step in the estimation 

of the parameters, the numerical analysis using the updated parameter values is repeated 

over the total time interval up to the current point of time instead of over the last time step 

only. Furthermore, the sensitivity matrix is determined numerically. For these reasons, the 

identification of complex materials is often very laborious. 

• The experiments have to provide as much information as possible on the material be­

haviour. One of the challenging aspects of the numerical-experimental technique is the 

opportunity to use this information to improve on model errors, especially errors in the 

constitutive model. 

For the moment, the idea of one estimation algorithm for all material models in the finite element 

code is abandoned. Instead, algorithms for a specific class of material models are developed. Per 

class, the algorithms have to meet particular requirements. The research in this thesis focuses on 

adapting the numerical-experimental technique for the study of time-dependent materials. 

To describe time-dependent behaviour, many constitutive models, varying from phenomenolog­

ical models to detailed micro-structural models, can be used. This research focuses on two­

component fluid-solid mixture models (Bowen [ 1976, 1980], Oomens et al. [ 1987], Huyghe 

et al. [ 1992]). A mixture consists of a solid matrix with interconnected pores, saturated with 

fluid. Due to mechanical loading, the interstitial fluid is forced to move through the matrix and 

across the mixture 's surface. The interaction between the components induces a flow resistance, 

which depends on the permeability of the mixture and on the velocity of the fluid relative to the 

solid. Therefore, the stress in the material is not only a function of the solid deformation but also 

of the velocity of the fluid and the solid. This results in time-dependent behaviour. 

There are several arguments to focus on mixture models: 

• Mixture models have successfully been used in biomechanics to describe biological tis­

sues such as articular cartil age and the meniscus (Mow et al. [1980], Lai and Mow 
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[ 1980], Spilker et al. [ 1988]), skin and subcutis (Oomens et al. [ 1987]), myocardial tis­

sue (Huyghe et al. [ 1992], Bovendeerd et al. [ 1992]), and the intervertebral disk (Snijders 

[1994], Simonet al. [1985]) . 

• The model equations for two-component fluid-solid mixtures can easily be written in a 

state-space formulation which allows the use of estimation techniques originating from 

system and control technology. 

In this thesis, a mixture of an elastic solid and an ideal fluid is considered. Aspects like ag­

ing, adaptation (for biological materials) and damage are not included. Therefore, the a priori 

unknown model parameters are considered to be constant, so 

e=o - _, ( 1.2) 

where ~ is the time derivative of ~- In continuum mechanics, the parameter equation ( 1.2) is 

considered trivial and is rarely used. When parameter identification is concerned, the param­

eter equation is explicitly given to denote that estimation is aimed at finding constant model 

parameters. However, during estimation this requirement can be slightly released by allowing a 

small residual on ~-Then, this residual and the residual on the measurement equation ( 1.1) are 

minimised simultaneously. In this way the identification algorithm is given the opportunity to de­

termine parameters as a function of time. Significant time-dependent behaviour of the parameter 

estimates may be an indication for the presence of model errors. 

The objective of the present research is to develop identification algorithms for a two-component 

fluid -solid mixture model. In particular two issues are studied, i.e., efficiency of the algorithm 

and the ability to detect errors in the constitutive model by use of the algorithm. For this purpose 

no real experiments, but simulations of some relevant tests are performed. 

Chapter 2 concerns the analysis of an 'experiment' on a specimen of mixture material. Given 

a set of parameters and the model input, the analysis has to prov ide the model output and the 

sensitivity matrix (see Figure 1.1 ). Therefore the model equations for a fluid-solid mixture are 

derived and a solution strategy is presented. If the solution to the model equations is known , the 

output can be determined . Furthermore, a pseudo-analytical method to determine the sensitivity 

matrix , is introduced. 

In Chapter 3 and 4, estimation algorithms are di sc ussed. Chapter 3 dea ls with a recursive estima­

tion algorithm. Measurements at subsequent time points are sequentially used by the algorithm. 

This is shown to contribute to efficiency. A scalar measure of the residual on the parameter 
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equation and the difference between the measurements and the computed output is defined at 

each time point where measurements become available. The parameters at that time point are 

determined by minimising this measure with respect to the parameters, assuming that the model 

equations are satisfied exactly. This requires the solution of a set of algebraic equations in the 

model parameters. In combination with the pseudo-analytical method to determine the sensitivity 

matrix, a highly efficient identification technique results . 

Chapter 4 presents an integral estimation algorithm, which uses all measurements of the total ex­

periment simultaneously. It is not assumed that the model equations will be satisfied exactly. To 

account for model errors, residuals are accepted on both the model equations and the parameter 

equation. Therefore, straightforward solution of the model equations as discussed in Chapter 2, 

is not possible. Consequently, analysis and estimation are combined and a strict distinction be­

tween these two components of the numerical-experimental technique can no longer be made. 

After all measurements are available from an experiment, a scalar measure of the residuals on the 

model equations, on the parameter equation ( 1.2) and on the measurement equation ( 1. 1) is set 

up once. Minimisation of this measure leads to a boundary value problem that is at the moment 

only solvable for a subclass of experiments. In contrast to the recursive algorithm, this method is 

time-consuming. However, the integral algorithm provides much information on the estimation 

process via the residuals after identification. 

Finally, in Chapter 5 conclusions are drawn and some recommendations for future research are 

given. 



Chapter 2 

Analysis of fluid-solid mixtures 

2.1 Introduction 

Fluid-solid mixture models are used as an example to study the characterisation of time­

dependent materials. The objective of this chapter is to determine the output and the sensitivity 

matrix for a fluid-solid mixture, given a set of parameters and the input as a function of time. 

Starting from the conservation laws and the constitutive relations for the mixture components, 

the model equations for the total mixture are derived in Section 2.2. 

A numerical method has to be used to solve the resulting set of first order partial differential equa­

tions in the solid displacement and the fluid pressure. In Section 2.3 the equations are spatially 

discretised by means of the finite element method and a time discretisation scheme is applied. 

An iterative procedure to solve the resulting nonlinear discretised model equations is elaborated. 

The solution strategy is discussed in detail, since the finite element method and the iterative pro­

cedure provide intermediate results which are required to determine the sensitivity matrix in an 

efficient way. 

Section 2.4 focusses on the model output and the sensitivity matrix. The determination of the 

output is generally straightforward if the solution for the displacement and the pressure is known 

in every point of the specimen. For the efficient determination of the sensitivity matrix a pseudo­

analytical technique is discussed. 

2.2 Formulation of the model equations 

A mixture of a solid with interconnected pores, saturated with fluid, is considered. This mix­

ture is seen as a superposition of two continua, each occupying the total mixture volume. The 
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behaviour of the mixture is the result of the behaviour of the distinct components and the inter­

action between the components. 

All properties are averaged over an elementary volume. The dimensions of this volume are cho­

sen sufficiently large to allow a continuum representation of all discontinuous properties, and 

sufficiently small to avoid that macroscopic variations of the properties throughout the material 

are smoothed out (Biot [ 1941], Bowen [1976], Oomens et al. [1987], Huyghe [ 1986]). The com­

ponents are seen as continua. Conservation Jaws will be applied to each of the components. 

Let C(t) be the current configuration. The configuration C(t0 ) at some reference time t0 is called 

the reference configuration C0 . The volume of the mixture in C(t) and C0 is equal to V(t) and 

V0 = V(t 0 ) respectively. The position vector of a particle of component a: (a:= s for the solid and 

a:= f for the fluid) in C0 , with respect to a fixed origin 0, is denoted xg. Each position in the 

mixture is occupied by a solid and a fluid particle. The current position vector :ra of a particle of 

component a: with reference position vector i 0"' is given by 

i"' = i 0"' + q"'(i0, t) , (2.1) 

where q"' is the displacement vector. The velocity v"' is the material time derivative of q"', i.e. 

(2.2) 

The deformation of the solid from C0 to C is described by the deformation tensor F, 

(2.3) 

where 9 0 is the gradient operator with respect to the reference configuration . 

Let dV be an elementary mixture volume. The part of dV that is occupied by component a: is 

denoted by dV" and the local volume fraction n" of this component is defined by 

dV"' 
n" = --. 

dV 
(2.4) 

The volume fraction of the fluid, nf, is called the porosity of the mixture. The sum of the volume 

fractions of the distinct components must be equal to l, so 

ns(i, t) + n1 (i, t) = l. (2.5) 

Let dm" be the mass of component a: in the considered elementary volume dV. Then the true 

local density p"' is equal to 
dm"' 

p"=dV" ' (2.6) 
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whereas the apparent local density pQ is defined as 

dmQ 
PQ =--=napa. 

dV 

19 

(2.7) 

For the mixtures considered in this thesis, only the balance of mass and the balance of momentum 

are relevant. In the balance equations, inertia effects will be neglected, as only relatively slow 

deformation rates are considered. Furthermore, it is assumed that there is no mass exchange 

between the components and that body forces are negligible. With these assumptions, the local 

balance law of mass for component o: reads (Bowen [ 1976]) 

opa n ( .a-a) 0 Tt+v·pv =, (2.8) 

where V =F-e· V0 is the gradient operator with respect to the current configuration. The local 

balance laws of momentum and of moment of momentum for o: are (Bowen [ 1976]) 

v . O"Q + ifQ = 6, 

u"' = (u")T, 

(2.9) 

(2.10) 

where u" is the Cauchy stress tensor and if"' represents the body force on o: due to interaction 

with the other constituent. The balance of momentum for the total mixture leads to the restriction 

(2.11) 

From (2.9) and (2.11) it is readily seen that 

V · (a- 5 + uf) = 6, V · uf +if! = 6. (2.12) 

To arrive at a complete set of equations for the characterisation of the behaviour of a mixture, 

constitutive relations for the components and for the interaction force between the components 

are introduced: 

• Both fluid and solid are intrinsically incompressible. This implies that the true local den­

sity p"' for each of the components is constant, so 

(2.13) 

As a result, the local balance law of mass becomes 

on"' --- + \7 · (nQv"') = o at ' (2.14) 

and, since n 5 + nf = I, this results in 

(2.15) 

Equation (2.15) can be interpreted as the balance of mass for the total mixture. 
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• According to Oomens et al. [ 1987] , the solid stress tensor 0" 5 equals 

(j s = -nspi + r s. (2. 16) 

Here p is the fluid pressure, I is the unit tensor, and r 5 is the effective Cauchy stress 

tensor. The term -n5 pi results from the intrinsic incompressibility of the solid . 

The proposed elastic constitutive model for the solid, that satisfies objectivity (Hunter 

[1983]), is given by 
I 

r 5 = - F · S(C {}) · F e J , - , (2.17) 

where J = det(F) is the volume ratio of current state and reference state and S is a 

tensor function of the Cauchy-Green tensor C = F e · F and of a priori unknown but 

time-independent local material parameters -(2 , i.e. 

~ = Q. (2.18) 

The function Swill be specified when actual test problems are discussed. 

• The fluid component is ideal as the viscosity of the fluid is attributed to the interaction 

body force if!, so 

O"f = -nfpi. (2 19) 

Substitution of (2.16) and (2.19) into (2.12) yields 

V · ( 7"
5 

- pi) = 0, (2.20) 

which is the balance of momentum for the total mixture. From here, r 5 and if' are replaced 

by r, respectively if. 
• The interaction body forces if' and if! = -i5 depend linearly on the porosity gradient 

'\lnf and on the fluid velocity relative to the solid (Muller [ 1968], Bowen [ 1976]), i.e . 

(2.21) 

The first term in the right-hand-side of (2.21 ), the 'buoyancy force' , originates from the 

phenomenon that a solid body submerged in a fluid experiences a force proportional to 

the difference in density between the solid and the fluid. The second term is known as 

'diffusive drag' and accounts for the viscous effect of the fluid on the solid . 

There are several ways to deal with the balance equations (2. 15) and (2.20). Here a fore 

mutation is used with the solid velocity i? and the fluid pressure p as primary unknown 

variables. To eliminate the fluid velocity iP , the constitutive models for O"f and if! are 

substituted in the balance of momentum for the fluid . This results in Darcy's law 

(2 .22) 
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where"' = (nf)2k- 1 is the permeability tensor. The permeability depends on the defor­

mation of the solid. The chosen model, satisfying objectivity, is g iven by 

(2.23) 

where K is a tensor function of the volume ratio J and the local material parameters 1'!. 
The function K will be specified when actual test problems are discussed. 

• If an initially inhomogeneous mi xture is considered, the local material parameters 1! will 

vary with the position. It is assumed that the components of 1! can be written as known 

functions of the position x0 in the reference configuration and of a set of N9 unknown 

constant (i.e. time and position independent) model parameters~, i.e. 

(2.24) 

When parameter estimation is discussed, it concerns the model parameters ~-

To arrive at unique solutions for the displacements and pressures, specification of boundary 

conditions at the material surface is required. Boundary conditions may have various forms. In 

this thesis only straightforward conditions in terms of displacements, pressures, velocities, and 

stresses will be encountered. Boundary conditions at a surface of discontinuity (Hou et al. [ 1989], 

Saffman [1971]) or in the case of contact problems (Schreppers [1991], van Lankveld [1994]) 

will be left out of consideration. If a fluid-solid mixture model is used, boundary conditions can 

concern either the fluid and solid components separately or both components simultaneously. 

The current boundary of the solid component of the mixture is denoted by B(t), the boundary in 

the reference configuration by 8 0 = B(t0 ) . 

In solid mechanics a Lagrangian formulation is used and boundary conditions are formulated in 

terms of quantities that are known in a moving material point. Prescribed solid displacements 

and velocities are boundary conditions of this type. In fluid mechanics an Eulerian formulation is 

used and boundary conditions are given in fixed spatial positions. Typical boundary conditions of 

this type are prescribed pressures and fluid velocities. However, when mixtures are considered , 

fluid and solid boundary conditions are strongly related, and fluid quantities may be known in 

material points of the solid. 

Let the displacement in the direction of the unit vector e; of a point on the solid boundary be 

known as a function of time, i.e. 

(2.25) 

where qf is known as a function of the input y . This may happen when the solid is fixed on 

supports of a given type, or when an indenter is used to deform the solid component. The stress 
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fat the boundary is given by 

t = ( T- pi) · n, (2.26) 

where ii is the unit outward normal on B. As a rule, the stress f is only given on parts of the 

boundary where q is unknown , or perpendicular to the direction in which q is prescribed, 

~ ~ k 
t · e; = t; (y), (2.27) 

where tf is known as a function of y in the direction of the unit vector e;. This stress can be 

carried by both fluid and solid or by the solid component only. The pressure may be given, e.g., 

at a free surface or at a part of the mixture surface which is in contact with a highly permeable 

sieve, 

(2.28) 

If pk = 0, the stress is applied to the solid exclusively. Finally, boundary conditions in terms of 

the fluid velocity relative to the solid are possible. The fluid flow across the boundary per unit of 

area, s, is equal to 

(2.29) 

The porosity nl appears as a result of the averaging procedure. As a rule, s is only given on parts 

of the boundary where p is unknown, 

s = sk(y). (2.30) 

In general, if the fluid flow is prescribed, then it is equal to zero. 

Summary: 

The relevant equations for a fluid-solid mixture are the total balance of mass 

(2.15) 

and the total balance of momentum 

9 · ( T - pi) = 0. (2.20) 

Since the velocity of the fluid relative to the solid (iJf - V8
) and the pressure p are coupled 

by Darcy's Jaw 

(2.22) 

the model results in a set of first order partial differential equations in the unknown solid 

displacement q and the unknown fluid pressure p. Precise boundary conditions have not 

been specified yet as they depend on the actual experiment. 
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2.3 Solving the model equations 

In this section the solution strategy for the model equations will be discussed. Firstly, the equa­

tions are spatially discretised by means of the finite element method. This will result in the 

state-space formulation of the model equations. Secondly, a time discretisation scheme is intro­

duced. Per time point a set of nonlinear algebraic equations results. Finally, these equations are 

solved using Newton-Raphson iteration. 

Although it has been published previously (Oomens et al. [1987], Snijders [1994]), a detailed 

elaboration of the solution strategy is given, because both the finite element method and the 

Newton-Raphson procedure provide matrices which can be used to study the influence of param­

eter variations on the displacement and pressure solution analytically. This is especially impor­

tant for the determination of the sensitivity matrix in the next section. Some matrices will also 

be used in the optimal estimation algorithm in Chapter 4. 

2.3.1 Spatial discretisation 

To arrive at a weak formulation of the model equations, (2.15) and (2.20) are premultiplied by 

weighting functions and integrated over the current mixture volume, according to the weighted 

residual method. For the actual discretisation, the finite element method is used. The volume is 

subdivided in a finite number Ne of elements with a relatively simple shape. In each element 

displacement and pressure nodes are selected. Within each element, the variables if and p are 

approximated by a linear combination of the nodal displacements, respectively nodal pressures. 

This implies that the original problem of finding if(x0 , t) and p(x0 , t) satisfying the model equa­

tions for all £0 E C0 , is replaced by finding the time-dependent nodal displacements and nodal 

pressures. According to Galerkin 's method, the weighting functions are discretised in the same 

way as the displacement and pressure field. Then, there are precisely as many nodal weighting 

variables as unknown nodal displacements and pressures. From the requirement that the weighted 

residual formulation holds for all possible weighting variables, a set of as many equations as the 

number of nodal unknowns results. After the boundary conditions are accounted for, a solvable 

set of equations with a unique solution results (Appendix A) 

[3_ g + K p = §, 

[-I3_Tp=£. 

(2.31) 

(2.32) 

In this so-called state-space formulation, g and p are the columns of unknown nodal displace­

ments and nodal pressures. The components of [3_, K, [,§,and! are known, smooth, nonlinear 
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functions of their arguments 

B_ = B_(g, y), 

K = K(g, ~, y), 

~ = ~(g, ~. y, y), 

l = [(g, ~. y), 

to = !:(g, y). 

Chapter 2 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

The set of model equations (2.31) and (2.32) is completed with the parameter equation ( 1.2), i.e. 

~ = Q. (2.38) 

Initial conditions are required for both g and~, so 

(2.39) 

where ~ is the a priori estimate of the model parameters. If the parameter equation is satisfied 

exactly, then it suffices to replace~ in (2.33) to (2.36) by~, and (2.38) can be omitted. However, 

allowing a residual on the parameter equation induces some freedom in the estimation of the 

model parameters. Both estimation algorithms presented in this thesis use this possibility. 

2.3.2 Determination of the nodal quantities 

Equation (2.31) represents a set of nonlinear, ordinary, first order differential equations. It can be 

solved by standard numerical procedures. Suppose that the solutions q. and p. of (2.31) and 
-J-1 -J-1 

(2.32) at time tj_ 1 are available as a result of previous calculations and that the solutions q. and 
-J 

p. at time tj = tj_ 1 + i1t must be determined, for instance because they are used for comparison 
-J 

with measured values at time tj. If i1t is sufficiently small, then g(tj) can be approximated by 

means of a simple implicit Euler scheme 

(2.40) 

Substitution of this approximation in (2.31) and (2.32) results in a set of nonlinear algebraic 

equations for q. and p., i.e. 
-J -J 

~tB_i (gj- gj-J) + Kj T!.j = ~J' 
lj - B_jpj = !;j, 

where B_j, Kj, ~)' [j' and !;j represent (approximated) values at time tj, so B_j 

KJ = K(gj, ~, yj) etc. 

(2.41) 

(2.42) 
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For the solution of these equations the Newton-Raphson procedure is used. Let q<mJ and p<mJ be 
-J -J 

available approximations for the solutions q. and p , and let dq and dp be the errors in these 
-J -J - -

approximations, so 

q. = q(m) + dq, p. = p(m) + dp. (2.43) 
-J -J - -J -J -

Substitution in (2.41) and (2.42) yields a set of nonlinear algebraic equations in these errors. If 

dq and dp are sufficiently small, then these equations can be linearised, using Taylor's series 

expansion. Neglecting all terms of second or higher order in dq and dp results in a set of linear 

equations for dq and dp, i.e. 

(~B.J + L'/) dq + KJdl? = rj, 
Ltq dq- BTdp = rt 
-] - -] - -J' 

(2.44) 

(2.45) 

where the lower index j denotes that the associated quantity must be evaluated with q = q<mJ and 
- -J 

1? = pjml, for instance B.J = B.Cqjml, ·y). The so-called tangential stiffness matrices L'/ and L~q 

are discussed in detail in Appendix A. If column k of L<>fJ is denoted by (L0 fJ)k> then it turns out 

that 

L
sq aB.. aK a~ 

(_ )k=-q+-p--, 
aqk- aqk - aqk 

cLtq)k = at - a~, 
aqk aqk 

so the matrices Ljq and L~q follow from 

L~q = L'q (q<m) _..!__(q(m)- q. ) p(m) (} 'U u) 
-] - - J ) Llt -J - J -I ) - J ) -) - J ) - J ) 

Ltq = Ltq (q<mJ (} u ·) . 
-] - -J ) _, -J 

Finally, the residuals rj and r; in (2.44) and (2.45) are defined by 

s _ I B ( (m) ) K (m) 
'l.:j - ~j - Llt-J qj - qj-l - -Jl?y ) 

rt. = t . - f + B TP(m). 
-J -J -J -] -J 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

Solving (2.44) and (2.45) for dq and dp results in approximations for these errors. Substitution 

of the obtained values in q<m+l) = q<mJ + dq and in p<m+l) = p<ml + dp yields new approximations 
' -J -J - -J -J -

for the solutions q. and p. of (2.41) and (2.42). The iteration process is repeated until a predefined 
-J -J 

number of iterations has been executed or until some measure of the errors or of the residuals 

has become smaller than a predefined value f > 0. Possible criteria are given by Bathe [ 1982]. 

To start the iteration process, initial approximations q<'l and pOl must be specified. Here, the 
-J -J 

solutions q. and p. for the previous time point tJ-l = tJ - dt are used, so 
-J-1 -J-1 

(I) - (I) (2 52) 
qj - qj-1) 1?] = 1?]-l . 
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2.3.3 Parameter variations 

The numerical procedure of the previous section can be used only if a set~ of parameters is given. 

However, the parameters are unknown a priori. For future investigations it is important to analyse 

the influence of parameter variations on the nodal displacements and the nodal pressures. 

As before, Jet q(t) and p(t) be the nodal quantities at time t > t; corresponding to an initial 

condition g(t;) = gi' an input 'IJ(T) I T E [t;, t] and a chosen set of parameters~- Furthermore, let 

g(t) + og(t) and p(t) + op(t) be the nodal quantities at timet for the situation with the same initial 

condition and the same input but with parameters~+ o~ instead of~- Only infinitesimal small 

variations o~ are considered. It can be shown that the variations og and op of the nodal quantities 

are proportional too~, i.e. 

og(t) = Q_(t)o~, op(t) = £.(t)o~. (2.53) 

From (2.31) to (2.37) it is readily seen that the matrices Q_ and£. can be determined from 

(2.54) 

(2.55) 

with the initial condition Q_(t;) = Q. The matrices Lsq and Ltq are defined earlier in (2.46) and 

(2.47). The components of the matrices LsB and LtB represent derivatives with respect to the 

parameters. If column k of Lao is denoted by (L08 )k> then 

sO aK 0§ LsB LsO {} 
(L )k = aBk I.!- aBk' - =- (g, p, ~' y, y), (2.56) 

(Lto)k = :t' Lw = Lw(q, ~' y). (2.57) 

For the actual calculation of Q_J = Q_(tj) and E.J = £.(tj) at time tj = tj-l + tJt again the simple 

implicit Euler scheme is used. This immediately results in 

(LE.j + L'/) Q_j + Kj£.j = -Ls/ + LE.j Q_j-1' 

L~q Q_J - 12.}£.J = - Lj0
. 

2.3.4 Concluding remarks 

(2.58) 

(2.59) 

There is great similarity between the equations (2.44) and (2.45) for the columns tJg and tJp and 

the equations (2.58) and (2.59) for the matrices Q_J and E.J· As a consequence, the matrices used 

in Section 2.3.2 to determine q. and p. can also be used for the calculation of Q. and £.1·. Hence, 
-J -J -] 
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as soon as qi and pi are known, both Q_j and Ei can be determined with very little effort. 

Until now, hardly any attention is given to the matrices L_58 and L_18 in the right hand side of 

equation (2.58) and equation (2.59). A more detailed discussion on these matrices can be found 

in Appendix A. 

In Section 2.3.2 and Section 2.3.3 it is assumed that the length Llt of the time interval [tj - J, til 

is small enough, so that an implicit Euler scheme of the type of (2.40) can be applied. If Llt is 

too large, then this scheme will yield unacceptable results for q , p ., Q . and £.1 . In that case 
-J -J - ] 

the considered interval is divided in k > I subintervals and the procedures of Section 2.3.2 and 

Section 2.3.3 are applied per subinterval. 

2.4 The output equation and the sensitivity matrix 

2.4.1 The output equation 

For the estimation of the a priori unknown model parameters, measured values of system quan­

tities are confronted with the calculated values of these quantities. The calculated quantities are 

seen as the components of the output '!{ Since only displacements and pressures are measured, 

the model output at timet is a function of the nodal displacements q(t), the nodal pressures p(t) 

and the input y(t), i.e. 

(2.60) 

Measurements are only performed at a finite number of discrete points of time t1, t2, . . •• The 

measured value of the output at time t i + l is denoted by 177-i+l whereas the value of the output as 

calculated with the model is denoted by '!t i+i, so 

(2.61 ) 

As shown in the previous section, it is possible to calculate q
1
+

1 
and p

1
+

1 
for t ; +1 > t 1 as soon as 

the initial condition q
1 
= q(t; ), the input y (T) I T E [t;, t1+tl and a value for the parameters~ are 

given. 

2.4.2 The sensitivity matrix 

A variation 68 of the parameters will result in a variation oy . of the model output y . at time 
""' - t+l - t+l 

t;+t· From equation (2 .61) it is seen that 

(2.62) 
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where the matrices Q_q and Q_P represent the derivatives of the output with respect to the nodal 

displacements, respectively the nodal pressures. Using equation (2.53) it is readily seen that 

(2 .63) 

The sensitivity matrix H plays an important role in the procedures to determine the model pa­

rameters. 

The actual determination of the components of the sensitivity matrix H i +l at time t ;+1 can be done 

by numerical differentiation. Then , first the output lti+l is calculated by solving the model equa­

tions (2.31) and (2.32) over the time interval [t ;, t;+ 1], using the given initial condition q(t;) = qi ' 

the given input 1:f(T) I T E [t; , t ;+d and a given set e of parameters. Next, the parameters are 

varied one by one and for each varied parameter the model equations are solved over [t;, t1+ 1], 

using the given initial condition and the given input but with the varied parameters. If parameter 

Bk is varied, then the difference between varied output and the original output, divided by the 

value of the variation MJk, is equal to column k of the sensitivity matrix Hi+ I· This approach to 

determine Hi+l is straightforward but very time-consuming. 

A much more efficient approach is to use (2.63) for H1+1 where 9_
1
+

1 
and £.1+1 are calculated with 

the algorithm from Section 2.3.3. This so-called pseudo-analytical approach (Hsieh and Arora 

[ 1985], Haug et al. [1986] , Kulkarni and Noor [ 1995)) will be used here. It is implemented in the 

commercial finite element code DIANA (de Borst et al. [ 1985)). 

A fast technique to determine the sensitivity is not only valuable during estimation. It is also 

important to study the sensitivity in the numerical model of the experiment before starting the 

estimation procedure, as sensitivity is strongly related to identifiability of parameters. If the sen­

sitivity for a specific parameter in an experiment is very low, then the measurements contain little 

information with respect to that parameter. Therefore, sensitivities are also valuable in designing 

test procedures (Laible et al. [ 1994]). Sensitivity analyses can also be used to reveal interdepen­

dencies between parameters: if two or more columns of the sensitivity matrix are approximately 

dependent, then the corresponding parameters are highly correlated and the material model may 

be over-parameterised (Yin et al. [ 1986]). 
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A recursive estimation algorithm 

3.1 Introduction 

The parameters have to be determined such that the model output corresponds to the measure­

ments as good as possible. For this purpose a scalar measure of the residuals between model 

output and measurements is minimised, while the model equations are satisfied exactly. The es­

timation algorithm primarily depends on the choice for the scalar measure. This chapter deals 

with a recursive estimation algorithm, which is very efficient. 

A modified weighted squares measure of the residuals is introduced in Section 3.2. At each time 

point where measurements become available, the difference between the model output and the 

current measurements is weighted and squared, and the weighted square of the difference be­

tween the current and the previous parameter estimates is added to account for information in the 

parameters as a result of previous measurements. 

Minimisation of this measure with respect to the parameters leads to a set of nonlinear algebraic 

equations in the current estimate. The solution to this problem and the choice of the weighting 

matrices are discussed in Section 3.3. 

The efficiency of the estimation algorithm results from the fact that, to determine the output at 

the current time point, the model equations do not have to be solved over the total time interval 

up to the current time point, but only over the last time step. Also contributing to efficiency is the 

use of the pseudo-analytical technique to determine the sensitivity matrix. 

The proposed recursive algorithm is applied in Section 3.4 to simulations of an 'experiment' 

with a two-component fluid-solid mixture. The influence of 'measurement' and model errors on 

estimation is studied. 
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3.2 The determination of parameters 

It is assumed that displacement and pressure measurements at a number of points on the boundary 

and inside the material are available at N subsequent points of timet 1, t2, ... , tN. At each point 

of time the same quantities are measured. All measurements at timet; are stored in a column 7.!f;· 

The objective is to find estimates of g.p. and e that satisfy the model equations (2.3 I) and (2.32) 

and that minimise the difference between the model output ~i and the measured output 7.!f; for 

i E { l, ... , N}. 

3.2.1 The method of least squares 

The weighted squares measure J N for the residuals (. = 1!}; - y . , i E { l, ... , N} is given by 
-t -t 

N 

JN = L(Tf}; - ~y l:::.; (1!};- ~i) , (3.1) 
i=l 

where l:::.; is a symmetric, (semi-) positive definite weighting matrix . By incorporating a weight­

ing matrix in this measure, it is possible to account for differences in confidence between mea­

surements at distinct time points or between distinct measurement components. The measure 

satisfies the requirement that if JN = 0 then'!/..; = 1!}; for all i E { l , . .. , N}. The estimate~ of e 
has to minimise J N under the constraint that the model equations are satisfied for all t E [t0, tN]. 

Minimisation of J N requires the variation oJ of J N to be equal to 0 for all variations oe of e. 
This necessary but not sufficient requirement leads to a nonlinear set of algebraic equations in e. 
which is solved by an iterative procedure. For every iteration step the model equations have to be 

solved over the interval [t0, tN ]. Therefore , estimation will require much computational effort. 

Moreover, all measurements have to be available during the total procedure, and this requires a 

large amount of computer memory. 

The method has another disadvantage. It assumes that only measurement errors occur and that 

the model equations are satisfied exactly. It would be more realistic to take model errors into ac­

count by allowing residuals on the model equations also. These residuals can be included into J N 

(van de Molengraft [1990]). In Chapter 4 an estimation algorithm of this type will be described. 

3.2.2 The recursive approach 

Suppose that, in one way or another, at time point tr (r < N) an estimate~,. has been determined 

from the measurements 1?} 1, ... , Tf}, .. A new measurement 7Ifr+l of the output becomes available 

at time tr+l and a new estimate ~7'+ 1 can be determined by minimising the scalar measure 

r+l 

1··+l = L(Tf}; - v.Y l:::.; (rv·; - ~;>. (3.2) 
i =l 
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where l::_; is a symmetric, (semi-) positive definite weighting matrix. An estimation procedure, 

based on minimisation of this measure, requires that the model equations are solved over the 

total interval [t0 , tr+l), possibly many times if an iterative procedure has to be used to solve this 

nonlinear minimisation problem. 

A more efficient procedure will result if it is possible to determine a new estimate ~r+l at time 

point tT+ 1 , starting from the previous estimate~,. and the earlier calculated nodal displacements 

q,. and pressures l!.,. at timet,. . Then , the model equations only have to be solved over the last 

time step [t,., t,.+J] instead of over the total interval [to, t,.+J] for each iteration. 

Starting point for such a recursive approach is the assumption that the estimate e,. is fairly reliable 

and that the reliability of Q,. increases with the number r of measurements that have been used 

for estimation. Then, the estimate Q,.+ 1 on the basis of one more measurement will not deviate 

much from Q,.. This is in agreement with the requirement that the parameter equation e = Q has 

to be satisfied as good as possible. Based on these considerations, a modified weighted squares 

measure J;+, is introduced instead of ),.+1 

J* = (B - B )7 W (B - B ) + (m - )7 V (m - ) r+l _ -r - r+l - -r - r+ l ~r+l -r+J - r+ l ~r+l · (3 .3) 

With the weighting matrices l::.r+I and W r+l it is possible to balance between the confidence in 

the previous parameter estimate Q,. and in the new information in the measurements ru,.+ 1• l::.r+l 

is symmetric, (semi-) positive definite and W,.+ 1 is symmetric, positive definite. The modified 

measure J,\, expresses the objective of finding er+l such that the difference with the previous 

estimate is as small as possible, while the model output 1Lr+J matches the measurements 7!1-r+t at 

t,.+ 1 as good as possible. In general, minimisation of J;+t results in another value of the parame­

ters than minimisation of Jr+l · 

Minimisation of J;+l requires the calculation of the model output 1Lr+l and the sensitivity H r+l of 

the model output with respect to the model parameters. The output 1Lr+t is a function of the nodal 

displacements qr+l, the nodal pressures l!.r+l and the input li-r+ I according to (2.61) 

(3.4) 

Attn a solution for the nodal displacements q,. is available on the basis of the previous estimate 

B,.. As shown in Section 2.3.2, q and p can be determined by solving the model equations 
- -r+l -r+! 

(2.31) and (2.32) with initial condition q(t,.) = q,., the input y(r) IrE [t ,., t,.+J] and a value for 

the parameters ~· Since the input is known and variations of qr do not occur, this is denoted by 

(3.5) 
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This equation expresses the fact that it is possible to compute ?tr+l given a set of parameters~­

The sensitivity matrix Hr+l is computed by means of (2.62) 

(3.6) 

where Q_r+l and Er+l are determined by solving (2.54) and (2.55) with initial condition Q_r = Q. 

Main advantage of the recursive approach is that the model equations only have to be solved over 

the interval [t" tr+l] instead of over the total interval [to, tr+d to obtain y and H r+l· 
..... T+l 

3.3 The recursive estimation algorithm 

3.3.1 Solving the minimisation problem 

The requirement that ~r+l minimises J;+l leads to a set of nonlinear algebraic equations 

w (e - e ) - H 7 v (m - y ) - 0 -T+I ..... ..,r -r+i -T+l ..... T+l ..... r+l - ....,l (3.7) 

which resembles a Luenberger observer (Luenberger [ 1966]). To determine ~r+ l, an iterative 

procedure is required. The new approximation ~~:1
1 ) in iteration step lis written as the sum of the 

approximation in iteration step l plus a correction term, i.e. 

e<l+l) = e<o + LJ.e 
..... r+l -r+l - ' 

(3.8) 

Where er iS USed aS the initial apprOXimatiOn e~;l Of er+ 1, SO 

(3.9) 

Substitution of (3.8) in (3.7) results in a set of nonlinear equations in the unknown LJ.~. These 

equations are linearised, using Taylor's series expansion of ?tr+l = 1r+/~) around e:1~ 1 and ne­

glecting all terms of second or higher order in LJ.~. Also the sensitivity matrix H r+l should be 

linearised. As this would lead to the use of three-dimensional matrices, while no significant 

contribution to the speed of convergence of the iterative procedure is expected, a zero order 

approximation is applied for this matrix . Finally, a set of linear algebraic equations results 

(3.10) 

where A.r+1 and l:!r+l are given by 

(3.11) 
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er+l = H~+l .L::r+l ( 7?.1r+l - lr+l (~~~~)) - w r+l ( ~~~~~ - ~r) . (3.12) 

As Wr+l is positive definite and l::.r+l is at least semi-positive definite, A.r+l will be positive 

definite. Therefore, Ll~ can be solved from equation (3.10) and ~~1:1
1 ) can be determined. The 

iteration process is repeated until a predefined number of iterations has been executed or until a 

suitable measure of the correction term or of the right-hand side of (3 .10) has become smaller 

than a predefined value Eo > 0. 

The estimation scheme used by Hendriks [1991] resembles equation (3.10). However, Hendriks 

did not distinguish between ~~~~~ and ~r and it was therefore not possible to perform iterations 

within one time step. 

3.3.2 Specification of the weighting matrices 

A possible choice for the weighting matrices is based on the assumption that the reliability of 

the current estimate Qr+l depends on the reliability of the measurement "!.1r+l and the reliability 

of the previous estimate Q, .. 
Let o~r+l be the variation of ~r+l as a result of a small perturbation ?:!r+l on "!.1r+l and a small 

perturbation o~r on ~r· The varied solution ~r+l + o~r+l has to satisfy equation (3.7). Elaboration 

of this equation, neglecting terms of second or higher order in oQr+l, yields 

(3.13) 

Let .5.;':1 be a quadratic measure of ?:! r+l and let .S.~ be a corresponding quadratic measure of o~r· 
If the cross-products "!!r+l oQ; and o~r y;+l are neglected, .5.~+1 will satisfy 

(3.14) 

If the reliability of 7?.1r+l is high, then only small perturbations ?:!r+l wil.l occur. In that case, the 

norm of Sr":- 1 is small. Likewise, the norm of .S.~ is small if the previous estimate is reliable. 

Moreover, .s_m is constant if subsequent measurements are equally reliable, .5.;':1 = .s_m. 
As mentioned earlier, the weighting matrices l::.r+l and W r+l have to express the confidence in 

the quality of the measurements, respectively of the prior estimate ~r· The norm of l::.r+l and 

W r+l has to be large if confidence is high. Therefore, it is likely to choose 

With these choices for l::.r+l and W r+l, .S.~+I can be determined from 

~+I =A.;+\ = ( H;+l (.S.m)-1 H T+l + (.5.~)-1 r I 7 

(3.15) 

(3 .16) 
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where (3.15), (3.14) and (3.11) are used. It is noted that l:::r+l is constant while W r+l has to be 

updated after each measurement. 

Let 7!1- r +l and ~r be realisations of random variables and let ?:!r+l and b~r be realisations of a 

zero mean normal distribution. As a quadratic measure of 1!r+l and b~r ' the variance s_m of the 

measurements 7!1-r+l, respectively the variance S.~ of the parameters ~r can be used. Then , S.~+l 
according to (3.16) is the variance of ~r+l, and a Kalman-like estimator results. 

Hendriks [ 1991] and van Ratingen [ 1994] already pointed out that in some applications the actual 

error on the parameter estimates exceeds the value that is predicted by the updated variance S.~+l · 

If ~+I is too small, parameters will converge slowly. In that case, Hendriks proposes to replace 

S.~+l by the sum of .5'~+ 1 and a small, constant, symmetric positive definite matrix (Anderson and 

Moore [ 1973]). 

In Appendix B the recursive estimation procedure, including the pseudo-analytical determination 

of the sensitivity matrix, is summarised. Implementation of the recursive estimation algorithm 

in DIANA required some adaptations to the module PAREST, the parameter estimation facility of 

DIANA (TNO Building and Construction Research [1993], Hendriks [1991]) . 

3.4 Testing of the recursive algorithm 

To test the recursive algorithm, laboratory experiments and numerical experiments with fluid­

solid mixtures are required. Performing laboratory experiments is an essential step in the evalua­

tion of an identification technique, as both unknown model errors and measurement errors occur. 

Simulations give the opportunity to separately study the effect of model and measurement errors 

on the identification of the parameters. In the present research, only simulations are performed 

to test the proposed algorithm. 

After the constitutive behaviour is discussed, the set-up of the 'experiment' is described and a 

finite element model is introduced . For the generation of the 'experimental' data and for the 

numerical analyses during identification, the same finite element model is used to avoid model 

errors due to the mesh. Two tests will be performed. In the first test, the influence of measure­

ment errors is studied by adding noise to the generated data. During this test, no model errors are 

present. In the second test, a model error is introduced. 
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Figure 3.1: Dependency of the permeability K on deformation according to Huyghe [ 1986}. 

3.4.1 Constitutive behaviour 

The numerical-experimental technique allows the use of inhomogeneous and anisotropic mate­

rials. Nevertheless, an initially homogeneous, isotropic fluid-solid mixture is considered here. 

Therefore, the local material parameters "12 are independent of the position in the material and 

equation (2.24) reduces to 

(3 . 17) 

For the elastic solid (2.17), a linear relation between the second Piela-Kirchhoff stress tensorS 

and the Green-Lagrange strain tensor E is assumed (Fung [ 1965), Hunter [ 1983)) 

S=2J.LE+Atr(E)l, E=~(C-1), (3.18) 

where I is the second order unit tensor and the Lame constants A and J.1- are related to Young 's 

modulus E and Poisson's ratio v by 

A= Ev 
(I +v)(l - 2v)' 

(3.19) 

As the mixture is isotropic, the permeability is independent of the material direction , so 

K=Kl. (3.20) 

The permeability scalar K is assumed to depend on the volume ratio J of current state and 

reference state according to 

(
] 1 )2 

K=Ko ~+1 , (3.21) 
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Figure 3.2: 'Experimental' set-up. 

where K 0 is the initial permeability and no is the initial porosity of the mixture (Huyghe [ 1986]). 

In Figure 3.1, the influence of n0 and Jon the permeability according to (3.21) is given. 

With (3.19) and (3.21), the column of a priori unknown model parameters becomes 

~ = [E, v, Ko, nof. (3.22) 

3.4.2 'Experimental' set-up 

Both ends of a cylindrical specimen, with initial height H0 = I and radius Ro = 1, are attached to 

rigid impermeable solid plates (Figure 3.2). A time-dependent load F(t) is applied to the upper 

plate along the symmetry-axis of the mixture. The lower plate is fixed on a rigid foundation . 

Fluid flow across the free boundary surface is allowed. 

As the material is assumed to be homogeneous, an axi-symmetric problem results. A vector base 

< eT) eq,, ez > with origin 0 and unit vector ez along the symmetry-axis of the specimen is 

introduced. In the figure, the origin 0 is marked with a dot. With this base, the displacement 

vector if can be written as 

(3 .23) 

where Qr is the radial displacement and Qz is the axial displacement. The tangential displacement 

qq, is equal to zero and qr, Qz and the pressure p do not depend on the circumferential coordinate 

¢. At the lower plate, the displacements in r and z-direction are suppressed, i.e. 

Qr (ro , zo = 0, t) = 0, Qz (ro, zo = 0, t) = 0. (3.24) 
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I nr. I ro zo I position 

I 0.0 0.0 

2 0.36 0.0 at lower plate 

3 0.64 0.0 

4 1.0 0.25 

5 1.0 0.5 at free surface 

6 1.0 0.75 

7 0.0 1.0 at upper plate 

Table 3.1: The positions of the measurement points 

The displacements at the upper plate are suppressed in r-direction, so 

Qr (ro, zo = Ho, t) = 0. (3.25) 

At the free boundary surface the pressure is assumed to be equal to zero, i.e. 

p (ro = Ro, zo, t) = 0. (3.26) 

The measurements have to offer sufficient information to allow a unique identification of the 

model parameters. For this reason, both displacement and pressure measurements are used (Op 

den Camp et al. [1994]). The measured quantities are the axial displacement of the upper plate 

(point 7 in Table 3.1 ), the radial and axial displacements of three points at the outer surface of 

the specimen (points 4, 5 and 6 in Table 3.1 ), and the pressure in three points at the interface 

with the lower plate (points I, 2, and 3 in Table 3.1 ). The 'measurements' are performed at I 00 

equally distributed points in the time interval [0, 1]. 

3.4.3 Finite element analysis 

For the generation of measurement data, a finite element analysis is performed with an arbitrarily 

chosen set ~ of parameters, 

~ = r 1.0, oA, 1.0, o.sr. (3.27) 

This set will be called the true parameter set. The specimen is modelled in DIANA (de Borst 

et al. [1985]) by means of 144, isoparametric, 4-noded, axi-symmetric, mixture elements. The 

nodal displacements at the lower plate are suppressed in radial and axial direction. The nodal 

displacements at the upper plate are suppressed in radial direction and tied in axial direction to 

take into account that the upper plate is rigid. The nodal displacements at the symmetry-axis are 
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Figure 3.3: The finite element mesh in the undeformed state (a) and in the deformed state (b). 

suppressed in radial direction. At the free boundary surface, the pressure is equal to zero. The 

compressive load F on the mixture is a function of time with F(t) = 0 for t < 0. From t = 0 

to t = I the load is applied according to Figure 3.4(a). Finally, F(t) = 0 for t > I. With a 

maximum load F = 0.5, a maximum Green-Lagrange strain of about 0.2 is achieved. For the 

time-discretisation, I 00 equal time steps are used over the interval [0, 1]. 

Figure 3.3 depicts the finite element model before loading -the undeformed state- and after con­

solidation when the pressure is equal to zero and the total external load is carried by the solid. 

The measurement points are marked with a dot. The resulting displacements and pressures in the 

measurement points are shown in Figure 3.4 (b--d). During loading, the pressure increases and a 

negative pressure gradient occurs in the radial direction. According to Darcy's law (2.22), fluid 

flows in positive radial direction and is squeezed out of the mixture. Due to deformation, elastic 

energy is stored into the solid. When the specimen is gradually unloaded (0.25 < t ~ 0.5), the 

pressure decreases fast to negative values as the solid starts to regain its original shape and the 

elastic energy is released. A positive pressure gradient occurs and the fluid is sucked back into 

the mixture. At t = 0.5, when the load is equal to zero, the pressure gradient even causes the 

radial displacement to be slightly negative. For 0.5 < t < I, the same phenomena as described 

above occur. 

The results in the measurement points I - 7 will be used as observations for the estimation pro­

cess. The components of the column of measurements 'r!Ji at timet; (i E {I, ... , 100}) are 3 

pressures, 3 radial displacements and 4 axial displacements. In addition to the case of perfect 

observations, estimations are performed with artificially disturbed data. To each element of the 

computed data, a realisation of a zero mean normal distribution is added. The standard deviation 
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Figure 3.4: Analysis of the 'experiment': (a) the applied compressive load on the specimen versus time; 

(b) the pressure p(t) in 1, 2 arui 3; (c) the radial displacement Qr(t) of4, 5 arui 6; (d) the axial displacement 

Qz(t) of 4, 5, 6 arui 7. 
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Parameters Initial guess Estimation results True value 

(~); IIC.lD;II (~o); Jc~)ii (~ IOQ)i (~)i 
no noise 0.1% noise 1.0% noise 

E 0.4 0.8 0.04 1.0 1.00 I 1.010 1.0 

v 0.2 0.2 0.04 0.4 0.399 0.403 0.4 

Ko 0.05 1.2 0.04 1.0 0 .986 1.058 1.0 

no 0.01 0.6 0.04 0.8 0.799 0.621 0.8 

Table 3.2: Summary of estimation results using perfect observations and observations disturbed with two 

different noise levels. 

of the noise is a percentage of respectively the maximum pressure, the maximum radial displace­

ment and the maximum axial displacement on the interval [0, 1] . Both a 0.1 % and a I% noise 

level are studied. 

3.4.4 Parameter estimation 

Model errors do not occur, since exactly the same model is used for the identification as for the 

generation of 'measurements'. To estimate the parameters, one iteration of the Newton-Raphson 

technique to solve (3.7) is executed. Consequently, equation (3.10) is solved once per time point. 

Initialisation of the algorithm requires an initial guess ~0 for the parameters and an initial guess 

~ for the parameter variance. The initial errors on the parameters are assumed to be mutually 

independent, so ~ is a diagonal matrix. The diagonal elements correspond with the square of 

the expected errors in the initial guess. To prevent that S.~ becomes too small, at each time point 

a small positive definite matrix T. is added to S.~ . During estimation T. is chosen to be equal to 

0.01 x ,2~, which is rather arbitrary. In table 3.2, the values for ~0 , ,s:g, and the true values ~ of 

the parameters are given. The initial guess deviates from the true value with 20% for Young's 

modulus to 50% for Poisson's ratio. Also the maximum sensitivity during the analysis is given 

for each parameter. Here, IICH);II denotes the maximum absolute value of the column of H that 

corresponds to (~);. 

The accuracy of the 'measurements' is taken into account via the variance matrix ,s:m. As the 

errors on the distinct elements of the observations are mutually independent, ,s:m is a diagonal 

matrix. For perfect observations the diagonal elements are set to I o- 10; for observations disturbed 

with 0.1% noise and I% noise, the diagonal elements are set to I o-s and I o-6 respectively, which 

correspond with the square of the expected absolute errors on the observations. 
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The upper graph of Figure 3.5 shows the estimates of the model parameters as a function of time, 

starting with the initial guess ~0 • using perfect observations. The estimation procedu re works 

well , since the estimates converge fast to their true values. The rate of convergence of E and 

v is higher than the rate of convergence of K 0 and n0 . It can be observed that a large rate of 

convergence of a parameter coincides with a large sensitivity of the output with respect to that 

parameter. 

It may be difficult to determine the parameters if observations are disturbed by measurement 

errors. Figure 3.5 shows the estimation results using disturbed observations. The fin al estimates 

are summarised in table 3.2. In case of observations disturbed with 0.1% noise, it is possible to 

determine the four model parameters, although the rate of convergence has decreased. In contrast 

to Young's modulus and Poisson's ratio, the permeability and the porosity can not be determined 

accurately if observations are disturbed with I% noise. These observations apparently do not 

offer sufficient information for the successful estimation of K 0 and n0 . 

In the left-hand column of Figure 3.6, the residuals between 'T!}; and 1!; during estimation are 

given for observations disturbed with 0.1% noise. These figures show that the algorithm gradu­

ally reduces the residuals to the noise level on the observations as the parameters converge. Until 

t = 0 .5, the parameter estimates are adapted as the residuals are relatively large compared to the 

noise level. After t = 0.5, the parameters are only adapted slightly and the residuals no longer 

decrease. 

Tests have also been performed with worse initial guesses for the parameters and different func­

tions of time for the load. These tests showed the same phenomena as the test described above. 

3.4.5 Influence of a model error 

The estimation algorithm has been subjected to a second test, where a model error has been 

introduced as observations have been generated with a constitutive model different from the 

model used for estimation. The observations have been generated with a permeability that is 

given by (3.21). For the estimation, the permeability is assumed to be constant, i.e. 

K =K0 . (3.28) 

Young's modulus, Poisson's ratio and the permeability are estimated, so~ = [E, v, K 0Y and the 

porosity does not play any role in this model. The estimation algorithm is started with the same 

initial guesses forE, v, and K 0 as in the first test and the same matrices~ and T. are used. Since 

observations are not disturbed with measurement errors, the diagonal elements of s_m are equal 

to JO- Io. 

In Figure 3.7, the estimates are given as a function of time. Young's modulus and Poisson's ratio 
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Figure 3.5: Parameter estimation in absence of model errors. The initial estimates are marked with o at 

t = 0, and the true values of the parameters are marked with • at t = l. 
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Figure 3. 6: The residuals between 'measured' and computed pressures (upper row), radial displacements 

(center row) and axial displacements (lower row), during estinwtion. In the left-hand column, the residuals 

are given for estinwtion with 0.1 % measurement error in absence of model errors (Section 3.4.4). The 

variance of the measurement error is shown by horizontal solid lines. In the right-hand column, residuals 

are given in case of a deliberate model error in the permeabiliry (Section 3.4.5). 
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Figure 3. 7: Parameter estimation in case of a model error in the permeability. 

can be readily determined although deviations are observed if the load on the specimen is small 

(t = 0.5, t = 1). The algorithm determines a bounded value for K 0 , but K 0 does not converge due 

to the inhomogeneous deformation field in the specimen. Apparently, the algorithm locates the 

model error in the permeability, as E and v are determined correctly. However, it is not possible to 

determine the type of model error in the permeability from Figure 3.7. In the right-hand column 

of Figure 3.6, the residuals between '!!.; and 721; are given. Due to the introduced model error, 

the residuals are periodic with the same period time as the force F. It can be observed that the 

residuals on the pressures are significantly larger than the residuals on the displacements. This 

suggests that pressures are related mainly to permeability, and displacements mainly to Young 's 

modulus and Poisson's ratio. 

3.5 Discussion 

The tests in the previous sections have shown that it is possible to determine the parameters of 

a fluid-solid mixture with the recursive estimation algorithm. The influence of measurement er­

rors and of a model error are studied. Up to a measurement error of 1%, the algori thm is able 

to estimate the parameters, although the rate of convergence of the parameters decreases with 

increasing error. Moreover, a model error with respect to the constitutive model for the perme­

ability can be located with the algorithm. However, the adjustment of the model on the basis 

of estimation results requires additional research. It is noted that for a more general discussion 

on the possibilities of the algorithm, distinct model errors, e.g. in the constitutive model for the 
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solid, have to be investigated. 

Due to the use of recursion and the pseudo-analytical method to determine the sensitivity, the 

method is very fast. A simulation -without estimation- over 100 time steps, with 144 elements, 

takes about 900 CPU-seconds on a Silicon Graphics Challenge R4400( 150MHz)-processor. Esti­

mation with the same number of time steps, and the same mesh, only requires about 300 seconds 

more. The total time required for estimation is of the same order as the time required for a single 

analysis. 

As the standard identification technique in DIANA- PAREST is not fully recursive and because the 

sensitivity is determined numerically in this module, this technique would require a multiple of 

the computational time for one analysis. Application of the pseudo-analytical technique instead 

of numerical differentiation reduces the computational time by a factor (No+ I), where N0 is the 

number of model parameters (van Kemenade [1993]). 

To determine the parameters, the nonlinear equation (3.7) is solved by a Newton-Raphson pro­

cedure. In the current implementation of the recursive algorithm however, only one iteration is 

performed. Therefore, the resulting estimates will deviate from the estimates determined by iter­

ating until (3.7) has been satisfied exactly. To minimise this difference, the time interval between 

estimations has been restricted and estimates are determined at a large number of subsequent 

time points. If measurements are not available at small time intervals, it should be investigated 

whether the effect of performing only one iteration disturbs the estimation process. Consequently, 

the algorithm should be adapted to solve the parameter equations more accurately. 
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An estimation algorithm 

with residuals on the model equations 

4.1 Introduction 

In the previous chapter the model parameters were determined by minimising the residuals be­

tween measurements and model output, while the model equations were satisfied exactly. How­

ever, after estimation the residuals may still be significant due to model errors. One of the ob­

jectives of identification is to improve on model errors on the basis of information from the 

identification procedure. To account for model errors, in this chapter it is not required that the 

model equations are satisfied exactly. 

In Section 4.2 an integral estimation algorithm is presented (Yeldpaus et al. [ 1996]). This algo­

rithm accepts residuals on both the model and parameter equations. The model parameters and 

the displacement and pressure field are determined such that these residuals and the residuals 

between measurements and model output are minimised. For this purpose a scalar measure is set 

up by integrating the weighted squared residuals over the total experiment. Minimisation of this 

measure with respect to the parameters, the nodal displacements and the nodal pressures results 

in a set of differential and algebraic equations, which establishes a boundary value problem. This 

problem can be solved if the number of unknown nodal pressures is equal to the number of un­

known nodal displacements. 

In Section 4 .3 the solution procedure is discussed for experiments satisfying this requirement. 

The resulting algorithm is elegant as it uses all measurements simultaneous ly. Therefore, the so­

lution at each time point within the considered time interval is related to all measurements and 

it is a best fit in the sense that it minimises a measure of all residuals. Moreover, the algorithm 

provides much information via the residuals on the model equations, the parameter equation and 

the measurement equation, which is expected to be valuable for the de tection of model errors . 
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The integral estimation algorithm is applied in Section 4.4 to simulations of a confined com­

pression 'experiment'. The influence of both 'measurement' and model errors on estimation is 

studied. 

4.2 The integral estimation algorithm 

As model errors not only result in residuals between measured and computed output but also in 

residuals on the model equations, an estimation algorithm which incorporates both kinds of error 

is elaborated. In this section the estimation procedure according to van de Molengraft [1990] 

is applied. This technique resembles the Extended Kalman Filtering (EKF) technique, which is 

based on the assumption that all errors are stochastic (May beck [ 1982]). However, in the case of 

material parameter identification, errors are due to, e.g., ill-modelled material behaviour and are 

mainly deterministic. Although the results of the approach presented in this chapter and of EKF 

are very much alike in a mathematical sense, the interpretation of the results is different. 

The estimation procedure is based on an identification model consisting of the model equations 

(2.31) and (2.32), the parameter equations (2.38), and the output equations (2.60). It is assumed 

that for all T E [t0, tN] the input y(T) and a measured value rr;(T) of the output are available. 

The objective is to find for all T E [t0, tN] estimates ~(T) and corresponding estimates q(T) and 

p(T) such that the measured output rr;(T) corresponds best to the model output Jt(T) and that the 

model equations and the parameter equations are satisfied as good as possible. If residuals ~ and 

~ are accepted on these equations 

~ (t) = B.fJ+ K p - ~. 
-1 - -

~/t) = [- B.Tp - ~' 

~3(t) = ~. 
~ (t) = rTJ- fl(q, f!, y), 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

then the objective is to find estimates ~. q and p for which these residuals are minimal in the 

sense of the scalar measure 

(4.5) 

A time integral has been used since the residuals are functions on the interval [t0, tN]. The con­

stant, symmetric, positive definite matrices W 1, W 2 and W 3 express confidence in the model 

and parameter equations while the constant, symmetric, (semi-) positive definite matrix ~ is a 
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measure for the confidence in the measurements . Usually the weighting matrices are chosen di­

agonal, since it is difficult to choose reasonable values for the non-diagonal components. 

A necessary, but not sufficient, condition for J to be minimal is that the variation 61 of J equals 

zero for all variations of Q, ~ and p. 
The identification model (4.1) to (4.4) consists of algebraic and differential equations. The dif­

ferential equations (4.1) and (4.3) are treated as constraints and are incorporated in an augmented 

measure J* using Lagrange multipliers~ and I!; 

(4.6) 

Then, it is allowed to consider { 
1
, {

3
, ~and I!; as additional independent variables. This facilitates 

further elaboration. The requirement that 61* = 0 for all variations of ~. I!;• ~· Q, p. { 
1
, and {

3 

leads to (Appendix C): 

I . A set of differential equations 

E.~=Wj 1 ~-Kp+~, 
~ -1 
Q= w3 1!;, 

ell~+ E.'~) = (L59
)' ~ + (L19 l w 2 ([ - E.'p- f) - (G.9)' L (TIJ - f!.), 

f! = (L.se)' ~ + (L.te)r W 2 ([ _ E.'p _ t), 

with boundary conditions 

E.'~(to) = Q, E.'~(tN) = Q, 

J.L(to) = Q, J.!;(tN) = Q. 

2. A set of algebraic equations 

K' ~-E. w2 ([- E.'p- D- (Q.P)' L(TIJ- f!.) = Q. 

3. A relation between the residuals {
1 

and {
3

, and the Lagrange multipliers~ and I!; 

r: -w-1.-\ '?.J - - 1 _, 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

{
3
=W) 1J.!;, (4.15) 

where L.a/3 (a E {s, t} and (3 E {q,B}) are given by (2.46), (2.47), (2.56), and (2.57) while G.9 

and Q_P are given by (2.62). The given set of equations establishes a two-point boundary value 

problem, since initial and end conditions are given for E.'~ and I!;· 

For a number of reasons, this set of equations is difficult to solve. Firstly, due to the nature of the 

problem, no initial conditions Q(t0) and q(t0) are available, but only initial guesses Q0(t) and ~0(t) 



50 Chapter 4 

fort E [t0, tN ]. The identification algorithm determines estimates of the initial conditions for q 
and ~ such that the boundary conditions ( 4.11) and ( 4.12) are satisfied. Consequently, specific 

techniques for solving nonlinear boundary value problems have to be used (Ascher et al. [ 1988]). 

Secondly, in general the number of unknown nodal pressures nP is smaller than the number 

of unknown nodal displacements nq, so .fl.. is not square as the dimension of .fl.. is nP x nq. 

Consequently, it is not possible to solve ~(t), g(t) and p(t) by integrating (4.7) to (4.10) from t0 

tot, given (4.13). The reason for this is that ~ shows up in (4.7), (4.1 0) and (4.13), while only a 

differential equation in .fl..'~ is available and .fl.. is not invertible. 

4.3 Solving the boundary value problem 

To show the possibilities of the integral estimation algorithm, a simplified problem will be elab­

orated for which finite element modelling, taking the boundary conditions into account, results 

in a square and regular matrix .fl... Then, the discretised balance equations of mass (2.31) can be 

rewritten as 

g =Il-l (§- fS..Jl), (4.16) 

and the nodal pressures 72 are eliminated, using the discretised balance equations of momentum 

(2.32), i.e. 

( 4.17) 

The differential equation ( 4.16) for q and the parameter equations & = Q can be combined to yield 

(4.18) 

where 

(4.19) 

The column q; is called the state or, to emphasise that the unknown parameters are part of q;, the 

extended state. The measurement equation becomes 

TJJ = !J. (q;, y). (4.20) 

The components of ~ and !J. are smooth functions of their arguments. The variations of ~ and !J. 
due to a variation 8q; are written as 

( 4.21) 
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where 
OZ; 

Z;j (~ , y) = <:l • 
UXj 

The residuals on ( 4.18) and ( 4.20) are denoted by ~ and ~ 

~ = ~- ~ (~, y), 

~ = 12'- ~ (~,y). 
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(4.22) 

(4.23) 

(4.24) 

Due to elimination of p. no separate residuals on the balance equations of mass and the balance 

equations of momentum are distinguished. Minimisation of a scalar measure of~ and ~ similar 

to (4.5) leads to a set of coupled differential equations 

~ = ~ + w-1 ~. 
~ = -Z_T ~ _ QT~(12' _ ~) , 

with boundary conditions for the co-state~ 

(4.25) 

(4.26) 

(4 .27) 

Herein, W and ~ are weighting matrices for the errors ~ on the model equations and ~ on the 

measurement equations respectively. It is remarked that w- 1 ~ = ~· These equations establish a 

boundary value problem since no initial condition for ~ is available. To determine the solution for 

~ of this two point boundary value problem, various solvers are proposed, such as the multiple 

shooting algorithm and the collocation algorithm (Ascher eta!. [1988]). Here, an approximating 

linearisation method will be used to decouple the differential equations for~ and ~·This method 

is based on the mathematical transformation 

(4.28) 

and on the observation that, for a perfect model without measurement errors, both ~(t) = w-' ~(t) 
and ~(t) are zero for all t E [t0, tN]. Hence, for a reasonable model with moderate measurement 

errors it seems to be acceptable to assume that ~(t) and ~ (t) are small. The variable c.;} denotes the 

state in the case that no model errors occur. In principle, the choice of the transformation matrix 

fl is still free. 

The time derivative of~ becomes 

(4.29) 

Substitution of (4.28) and (4.29) into (4.25) and (4.26) results in a set of equations that is nonlin­

ear in c.;} and ~·These equations can be solved iteratively. Therefore, the terms in these equations 
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are linearised around'!!. If second and higher order terms in il.~ and products of il.~ and ~ are ne­

glected, it follows that the equations for '!! decouple from the equations for~ if the transformation 

matrix il. satisfies (Appendix D) 

(4.30) 

Then, the resulting equations for'!! and ~ are given by 

0 = ~(f.!!, y) + il. (t(f.!!, y) ~ ( 17J- ~(f.!!, y)) ) (4.31) 

~ = ( Q'(f.!!, y) ~ Q_(f.!!, y) il. - Z.'(f.!!, y)) ~ - Q_'(f.!!, y) ~ ( 17J- ~(f.!!, y)) . ( 4.32) 

The value of'!! at time t0 is unknown a priori. With any guess '!!(to) for this initial value and a 

chosen S2(t0), the equations (4.30) and (4 .31) can be solved simultaneously by forward integra­

tion. After that, equation ( 4.32) can be solved by backward integration, using the end condition 

~(tN) = Q. In general, the obtained solution for ~(t) will not satisfy the initial condition ~(to)= Q. 

The solution ~(t0) depends on the input y(T) and the measurements 77J(T) for T E [t0 , tN] and on 

f.!!(t0). Hence, the problem is to determine f.!!(t0) such that ~(t0) = Q. A simple iterative algorithm 

is used to solve this problem. It is assumed that a 'reasonable' estimate i;0 for the initial state is 

known. With f.!!( to)= :fo the solutions for f.!!, il. and~ are calculated and :f(t0 ) is determined from 

:f(t0 ) = il.(t0)~(t0) + f.!!(t 0). If some measure, e.g. the length of ~(t0), is larger than a predefined 

tolerance, then the next step in the iteration is taken, starting with f(to) as the initial value f.!!(t0). 

If the measure is smaller than the tolerance, then the iteration is stopped and the state :f(T) is 

calcu Ia ted for T E [to, tN], using :f( T) = il.(T )~( T) +f.!!( T ). At the moment no proof of the conver­

gence of this iterative algorithm is available and it remains to be investigated whether or not this 

method is to be preferred to more conventional shooting methods. 

4.4 Testing of the integral algorithm 

A simulation study is performed and the integral estimation method is used to determine the 

unknown parameters from the simulated confined compression test. Since finite element mod­

elling of this 'experiment' results in a regular matrix B, the estimation procedure proposed in the 

previous section can be applied. 

4.4.1 'Experimental' set-up 

In the confined compression test, a specimen of a fluid-solid mixture is placed in a rigid, im­

permeable, cylindrical container (radius Ro = 1) with a rigid, impermeable bottom and a rigid 



An estimation algorithm with residuals on the model equations 53 

piston at the top (Figure 4.1 ). In the unloaded configuration 80 at time t0 = 0, the specimen is 

homogeneous with height H0 = I . 

z 

F(t) 

piston 

Ho 

r 

container 

Figure 4.1: 'Experimental ' set-up. 

Radial displacements at the cylindrical part of the container and axial displacements of the mix­

ture particles at the bottom are suppressed, so 

qr (ro, zo, t) = 0, qz (ro, zo = 0, t) = 0. ( 4.33) 

The piston behaves as a sieve for the fluid but is impermeable for the solid. Therefore, it is 

assumed that the pressure at the piston is equal to zero 

p (r0 , z0 = H0 , t) = 0. (4.34) 

For t ~ 0 the specimen is loaded by an axial force F(t) on the piston. This force is seen as 

the input of the 'experiment'. The axial displacement qz(H0 , t) of the solid at the top equals the 

displacement of the piston. The load on the piston causes deformation of the solid and squeezes 

fluid through the piston out of the mixture. Friction between piston, container and mixture is 

neglected, so there are no shear stresses at the boundaries of the specimen. Guided by the bound­

ary conditions and by the rotational symmetry of the specimen, it is assumed that the mixture 

particles only move in axial direction. Therefore, a one-dimensional problem results and ij and p 

only depend on the axial coordinate z and on time t but not on the radial or the circumferential 

coordinate. 

The measured quantities are the axial displacement of the piston and the pressure at the bottom 

of the container at 200 equally distributed time points in the interval [0, I]. 
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Figure 4.2: AIUI!ysis of the confined compression 'experiment ': (a) the applied compressive load versus 

time; (b) the pressure p(t) at the bottom (1) and the axial displacement qz(t) of the piston (2). 

4.4.2 Finite element analysis 

The constitutive model for the generation of 'measurement' data is discussed in Section 3.4.1. 

The true parameter set Q is equal to 

Q = [ 1.0, 0.4, 1.0, 0.8f. (4.35) 

The specimen is modelled by 16 elements of equal length H0 / I6. The nodal displacements at 

the bottom are suppressed. Since the piston behaves as a sieve, the nodal pressures at the top 

are equal to zero for all t. Figure 4.2(a) depicts the applied load F(t) as a function of time from 

t = 0 tot= l. With a maximum load F = 1, a maximum Green-Lagrange strain of about 0.2 is 

achieved. 

The computed displacement of the piston and the pressure at the bottom of the container are 

given in Figure 4.2(b) . To study the influence of measurement errors, the analysis results are 

disturbed by noise with a zero mean normal distribution . The standard deviation of the noise is 

equal to I % of respectively the maximum pressure and the maximum displacement occurring on 

the interval [0, 1] . 

4.4.3 Parameter estimation 

Firstly, the method is tested by estimating the parameters from analysis results that are disturbed 

by I% noise. In this first test the identification model equals the simulation model, i.e. there are 

no model errors. In a confined compression test, the measurements are not sufficient to determine 

both E and v. However, they are rich enough to determine the confined compression modulus C 
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which is defined as 

C = E (I- v) 
(I + v)(l _ 2v), C = 2. 143, (4.36) 

where (; is the true confined compression modulus with E = 1.0 and i/ = 0.4. As a consequence, 

the column of unknown, constant parameters reduces to~= [C, K 0 , n0Y. 
The first 16 components of the extended state :r are the unknown nodal displacements. The 

components 17, 18 and 19 are the model parameters. The weighting matrix W for the residuals 

on the model and parameter equations (4.25) and the weighting matrix 1:::. for the residuals on the 

output equations (4.26) are chosen diagonal with 

W = diag( 1, ... , 1, Wn, W1s, W19 ), 1:::. = diag( 1, 1 ), (4.37) 

where, for the moment, W17 = W18 = W19 = l. This means that all extended state equations are 

equally trusted. 

The diagonal initial value [J_(t0 ) for the symmetric transformation matrix D and the first guess 

'o!o for the initial condition £:!(t0) are chosen as 

D(to) = diag( 0 , ... , 0, 105, 105, 105 ), 

'o!o = ( 0, . .. , 0, 3, 3, I )', 

(4.38) 

(4.39) 

where 'o!b = [ g;, ~; ]. In analogy with the EKF-theory, D(t) can be interpreted as a measure of 

the uncertainty of the state estimate :f(t). According to (4.28), il..(t)~(t) is equal to the difference 

between f(t) and 'o!(t). If the components of the diagonal of [J_(t) are large, then the correspond­

ing components of ;f(t) are allowed to deviate much from the components of £:!(t). Consequently, 

the components of the diagonal of []_(to) are a measure for the confidence in the initial state es­

timate £:!(t0) = ;f(t0 ) . The components of il..(t0 ) that weight the initial parameter estimates are 

chosen large to express that these estimates may be very bad. The initial conditions for the nodal 

displacements are assumed to be known exactly. 

The estimation results are shown in Figure 4.3. The estimator provides the best possible con­

stant parameter estimates within 5 iterations. Although I% noise is added to the observations, 

the estimator is able to determine the .correct values for the parameters. The estimator reduces 

the residuals between the ' measurements' and the estimated position and pressure to the level of 

the noise on the observations over the total interval. In contrast to Figure 3.5, this figure does not 

show the convergence behaviour of the estimates as the integral algorithm determines per itera­

tion the time-dependent estimates over the total interval. The results are summarised in Table 4 .1. 
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Figure 4.3: Parameter estimation in absence of model errors, while observations are disturbed with I % 

noise. The initial estimates are 6 = 3, Ko = 3, and no= I. The true values of the parameters are marked 

with • at t = 1.0. 

Parameters Initial guess Estimation results true value 

@i (~0(to)); (~)i (~)i 
I% measurement error model error 

c 3.0 2.137 2.170 2.143 

Ko 3.0 1.004 0.814 1.0 

no 1.0 0.802 n.e. 0.8 

Table 4.1 : Summary of estimation results. The porosity no is not estimated (n.e.) when the permeability in 

the identification model is deformation independent. 
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Figure 4.4: The residuals between measured and estimated position and pressure versus time in case of 

constant material parameters (solid lines) and in case of time- varying parameters (dashed lines). 

4.4.4 Influence of a model error 

For the second test, the deformation dependency of the permeability is not included in the iden­

tification model and the permeability is assumed to be constant (3.28). In this case the observa­

tions, that are generated with the deformation dependent model for the permeability (3 .1 ), are 

not disturbed with noise. Two parameters are estimated , i.e. the confined compression modulus 

C and the permeability Ko. so~ = [ C, Ko Y. The weighting matrices W , 1::. and [.l(t0 ) , and 

the initial state estimate 4do remain unchanged, except for the last component of 4do and of the 

diagonals of W and il.. This component is omitted , as the porosity n0 is no longer part of the 

identification model. 

The estimator yields constant parameter estimates C (t) = 2.170 and K 0(t) = 0.814. This is 

achieved by chosing the components W17 and W18, that weight the residuals on the parameter 

equations, equal to 1. Then , the parameter equations are strictly satisfied. Figure 4.4 (solid lines) 

shows significant residuals between Tl)(t) and ?t(t), which indicates the presence of a model error. 

It is possible to locate this error by repeating the estimation procedure with weighting factors 

W 11 = W 18 = 10- 5, i.e. relaxing the parameter equations. If only one parameter estimate be­

comes time-varying, the error results from either permeability-related phenomena or stiffness­

related phenomena in the model. 

In Figure 4.5, the resulting parameter estimates are shown as a function of time. The estimated 

confined compression modulus 6 is nearly constant, while the permeability estimate k 0 clearly 

shows time-dependent behaviour. If the latter is compared to the deformation dependent per­

meability of the elements at the container bottom surface and the piston respectively, that is 



58 

2.5 
' 

,-, 
2 

c ;::., 
<~! 

</) 
<!) 

<;; 1.5 
E 
</) 
<!) 

..... 
<!) 

v 
E 0.5 C: oj ..... 
oj Ko: 0. 

0 
0 0.25 0.5 0.75 

timet[-] 

Figure 4.5: Parameter estimation in case of a model error in the permeability. 
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calculated according to the permeability model used to generate observations, then it appears 

that the estimate is a good compromise between them (Figure 4.6). The residuals on the mea­

surement equations decrease significantly by allowing the parameters to vary with time (Figure 

4 .4, dashed lines). The estimator located the model error in the permeability and adjusted the 

estimate correctly. 

4.5 Discussion 

The integral estimation method yields good results for a simulation study on a confined compres­

sion test. When observations are disturbed with I% noise, the algorithm is able to determine the 

correct material parameters. An important feature of the method is its potential to locate a model 

error in the permeability. It is even possible to detect how to improve the model by comparing 

the load on the specimen with the time-varying permeability. However, it must be noted that in 

a practical situation, it will be far more difficult to recognise various simultaneously occurring 

model errors in a quantitative sense. 

The method is fast in case of a confined compression experiment, since the model equations are 

programmed directly in FORTRAN-code. A simulation with the model over 200 time steps, with 

16 elements, takes less than one CPU-second on a PC 486-DX2(66MHz) processor. One iteration 

during estimation requires about 300 CPU-seconds . However, the computational time depends 

at least quadratically on the number Nx of state variables, as the number of ordinary differential 

equations to be solved is equal to 2Nx (for the components of the extended state) plus N; (for the 

components of D). Due to the simplicity of the confined compression experiment, the number of 

state variables is limited. For more complex problems computational time is expected to increase 

considerably. 

Still some issues have to be investigated. Firstly, the numerical solution procedure of the two 

point boundary value problem has to be studied to gain insight into efficiency, numerical stabil­

ity and convergence. Secondly, the matrix fi is in general not invertable. The model equations 

consist of a set of first-order differential equations in the unknown nodal displacements and a set 

of a lgebraic equations. Possibly, the column of unknown nodal displacements can be transformed 

in order to reduce the number of differentiated displacement variables to the number of unknown 

nodal pressures np. As a result, np a lgebraic equations will be added to the initial set of model 

equations. These equations will express the displacement variables to be differentiated in terms 

of the unknown nodal displacements. If the matrix fi is no function of the nodal displacements, 

this transformation will be very straightforward. Additional research is required to deal with this 

problem. 
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Discussion, conclusions and recommendations 

5.1 Discussion 

To identify the parameters in constitutive models for complex material behaviour, numerical­

experimental techniques have been developed. The parameters are determined by comparing 

measured field quantities with the outcome of numerical analyses of experiments. Therefore, an 

estimation algorithm is required which adjusts the values of the parameters so that the difference 

between measured and calculated field quantities is minimised. As a result of the large amount 

of information in the measured field quantities material parameters can be determined, even in 

situations where standard techniques fail. 

The objective of the research presented in this thesis was to study estimation algorithms for 

application to materials with time-dependent behaviour. A fully recursive and an integral esti­

mation algorithm were discussed . These algorithms were applied to a material, described by a 

two component fluid-solid mixture model where the interaction between the fluid and the solid 

component gives rise to visco-elastic behaviour. The differential and algebraic model equations 

are nonlinear in the displacements and the parameters and linear in the pressures. Information on 

time-dependent mixture behaviour was obtained by subjecting a specimen of mixture material to 

a time-dependent load while displacements and pressures were 'measured'. 

To test the algorithms, simulations of experiments were performed. The parameters were esti­

mated from observation data that were generated by adding noise to the outcome of the sim­

ulations. Moreover, the influence of a single model error on the results of the algorithms was 

investigated. The model parameters consisted of Young's modulus, Poisson's ration , the initial 

permeability and the initial porosity of the solid. The porosity appears in the model to calculate 

the deformation dependent permeability. 

Firstly, a recursive algorithm has been presented . Measurements at subsequent time points t; are 

sequentially used by the algorithm. Starting from an initial guess for the parameters at t = t0 , the 
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algorithm yields estimates ~i of the parameters on the basis of the difference between the mea­

sured output and the computed model output at time point t;. Information from measurements on 

previous time points is taken into account by incorporating the previous parameter estimate ~i-t· 

To compute the model output at t;, given this estimate of the parameters, the model equations are 

solved over the interval [t;_ 1, t;] only. Weighting matrices are used to balance between the con­

fidence in the measurements rrJ; and the confidence in the previous estimate ~i-t· The algorithm 

also requires the sensitivity matrix which is the derivative of the model output with respect to the 

parameters. This matrix is computed by a pseudo-analytical method. 

Secondly, an integral estimation procedure, which uses the measurements in all measurement 

time points simultaneously, has been studied. In this algorithm (in contrast to the previous) it 

is not assumed that the model and the parameter equations are satisfied exactly. Therefore, it 

accepts residuals on these equations. The parameters, the displacements and the pressures are 

estimated simultaneously over the total time interval. For that purpose, the integral over this in­

terval of a scalar measure of the residuals on the model equations, the residuals on the parameter 

equation and the residual between observations and the model output has to be minimised, which 

leads to a two point boundary value problem. This algorithm yields a smoothed solution for the 

parameters, the displacement field and the pressure field. By specification of weighting matrices, 

the user is able to determine to what extent the model equations, the parameter equation and the 

measurement equation are satisfied. 

Both the recursive and the integral algorithm can be used to determine the model parameters of a 

fluid-solid mixture. The recursive algorithm is very efficient as a result of the pseudo-analytical 

method to determine the sensitivity matrix as specified in Chapter 2 and the recursive approach. 

The required computational time for the identification process, using all measurements over the 

experiment time interval, is of the same order as the time required for a single simulation over 

this interval. 

The integral algorithm involves much more computational effort than the recursive algorithm. 

For a simple problem, such as the confined compression experiment, the required computational 

time is limited. However, for more complex problems, the computational time will increase con­

siderably due to stability problems while solving the boundary value problem. At the moment, in 

case of fluid-solid mixtures, the integral algorithm can only be used if spatial discretisation of the 

model equations results in an equal number of unknown nodal displacements and unknown nodal 

pressures (nq = np). The considered confined compression test is such an experiment. Only then, 

the inverse of the matrix Bin the model equation (4. I) can be computed to solve the boundary 

value problem (4.7) to (4. I 5). It has to be investigated yet how the boundary value problem can 
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be solved if the number of unknown nodal displacements is not equal to the number of unknown 

nodal pressures (nq =I np). 

If the residuals between model output (determined with the estimated parameters) and measure­

ments are not satisfactory, then, either the experiment does not provide sufficient information on 

the material behaviour, or the constitutive model is not able to describe the material behaviour 

sufficiently accurate. To prevent the first cause, simulations of experiments can be performed in 

advance . An important tool in these studies is the sensitivity matrix. A small sensitivity of the 

model output for a parameter indicates that the measurements will contain little information with 

respect to thi s parameter and that an adaptation of the experiment (geometry, boundary or loading 

conditions) is required . If unsuccessful identification is due to shortcomings in the constitutive 

model, then one would like to acquire indications for model improvements from the identification 

results . For this purpose, the residuals between measured and computed output after estimation 

of the parameters may be used. Experience and knowledge from previous experiments may yield 

suggestions for model corrections and the sensitivity matrix may be used to determine the influ­

ence of these corrections on the residuals in order to make a selection. 

The estimation algorithms presented in this thesis provide additional information. The recursive 

and the integral method yield the model parameters as a function of time, but the behaviour of the 

parameters in time differs for the distinct methods. This is a result of the different measures that 

are minimised for the determination of the parameters . The algorithms also provide values for the 

residuals between measured and computed output and for the residuals on the model equations . 

For the recursive method, the latter can be determined by substitution of the final set of parame­

ters, the solutions of the displacements and pressures and the input into the model equations. 

It is expected that this information can be used to detect model errors, but it has to be investigated 

yet how to use the information for this purpose. For two simple problems, i.e. a confined and a 

bulge compression test, the influence of a single model error on the model parameters versus 

time has been studied. For that purpose, observations were generated with a deformation de­

pendent permeability, while for identification a model with a constant, deformation independent 

permeability was used. Consequently, the porosity was no longer part of the constitutive model. 

If during identification the parameter equation was lightly weighted compared to the measure­

ment equation, which means that the confidence in the measurements is much greater than the 

confidence in the parameter estimate at the previous time point, both algorithms showed clearly 

time varying behaviour of the permeability parameter, while constant values were found for the 

other parameters (Young's modulus and Poisson 's ratio). The algorithms located the model error 

in the permeability correctly. Consequently, it seems to be worthwhile to investigate how the 
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information originating from the identification procedure can be used in case of various simulta­

neously occurring model errors, with other materials and other constitutive models. 

The derivation of the algorithms was focused on materials whose behaviour can be described by 

the model equations (2.31) and (2.32). Since these equations are given in a general state-space 

formulation and include elastic and time-dependent mixture behaviour, no severe problems are 

expected for the application of the estimation algorithms to other visco-elastic materials. This 

enlarges the field of application of the algorithms considerably. Application to fluids or materi­

als showing elasto-plastic behaviour requires additional research. Elasto-plastic materials do not 

return to their initial configuration after unloading. Therefore, the influence of initial conditions 

at t = t;, which contain errors since they are based on a parameter estimate~, will not decrease 

with time as for visco-elastic materials. The consequences of such behaviour with respect to 

identification will also be subject of future investigations. 

5.2 Conclusions 

• The recursive and the integral estimation algorithm are able to determine the model pa­

rameters of a two-component fluid-solid mixture. 

• The recursive estimation algorithm is very efficient, since the time required for identi­

fication using all measurements is of the same order as the time required for a single 

simulation over the experiment time interval. 

• The integral algorithm is very time-consuming even for simple problems and, at the mo­

ment, can only be used in a situation where spatial discretisation of the model equations 

for an experiment results in an equal number of unknown nodal displacements and un­

known nodal pressures. 

• It is demonstrated that the recursive and the integral estimation algorithm offer new pos­

sibilities in the detection of model errors. Here, the influence of a model error in the 

description of the permeability has been studied. Both algorithms were able to locate this 

error correctly. 

• The sensitivity matrix is important not only during identification, but also in the investiga­

tions on model errors and during the evaluation of experiments. The identifiability of the 

parameters can be studied by use of the sensitivity matrix. Therefore, it is advantageous 

that the sensitivity matrix can be determined very fast by means of the pseudo-analytical 

method. Determination with this method is approximately (N8 +I) times as fast as numer­

ical determination, where N8 is the number of model parameters. 
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5.3 Recommendations 

• It has to be investigated how the infonnation provided by the identification algorithms can 

be used for the detection of model errors . As a first step the influence of distinct, well­

defined model errors on the outcome of the identification procedure should be studied 

by the use of simulations. This may lead to clues how to extract suggestions for model 

corrections from the provided information. 

• During real experiments unknown model errors and measurement errors will occur si­

multaneously. Therefore, performing laboratory experiments is an essential step in the 

evaluation of the identification techniques. As measurement data have to contain suffi­

cient infonnation to detennine all parameters, including those related to time-dependent 

behaviour, time-dependent loading should be applied in the experiments. 

• If the integral estimation algorithm is used, a two point boundary value problem appears. 

To solve this problem without constraints on the number of nodal displacements and nodal 

pressures, the model equations have to be refonnulated. However, the integral algorithm 

does not offer sufficient additional advantages in comparison to the recursive algorithm to 

counterbalance the problems that are expected to make this method practically applicable. 

Therefore, the recursive algorithm is prefered to the integral algorithm. 

• Until now, the numerical-experimental technique has been used mainly for the identifi­

cation of elastic materials. The present research demonstrated the suitability of this tech­

nique for the identification of materials described by a fluid-solid mixture model. It is 

expected that application to fluids or materials described by other visco-elastic models is 

also possible without large modifications. This is a result of the general fonnulation of 

the model equations. Application to materials showing elasto-plastic behaviour requires 

additional research . 

• The technique described in this thesis is designed for biphasic fluid-solid mixtures. This 

offers challenging possibilities in biomechanics because mixtures are sui table to describe 

the material behaviour of biological tissues. An additional advantage is that there exist 

techniques to measure quantities inside tissues (CT, MRI, MRI with tagging). Therefore, 

it becomes possible to perform an in-vivo material characterisation. Since this requires 

three-dimensional modelling, the efficient recursive estimation algorithm will be indis­

pensable. 

• With respect to biomechanical applications, it is worthwhile to extend the algorithm to 

triphasic mixtures of a solid, a fluid, and charged particles . 
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Appendix A 

Finite element formulation of the model equations 

The weighted residual method, combined with spatial discretisation, is used to transform the par­

tial differential equations (2.15) and (2.20) into a set of ordinary first order differential equations 

and algebraic equations (Bathe [ 1982]). 

Multiplication of the equations (2.15) and (2.20) by weighting functions g and hand integration 

over the current mixture volume V results in 

ig (v · q- V · (n1(v1 - v5
))) dV o, (A. I) 

ih·(V·(r-pl)) dV 0. (A.2) 

With Darcy's law (2.22) and Gauss' theorem this leads to 

(A.3) 

[cr- pi): (Vh)c dV = L h · tdA, (A.4) 

where s is the fluid flow across the boundary, tis the boundary stress vector, and A = A(t) 

represents the current surface. Often it is advantageous to evaluate the integrand in the reference 

state. Then the integrals are transformed into integrals with respect to the reference configuration, 

resulting in 

( g(F-c·V0)·q+V0g·F- 1 ·K·F-c·V0pJdV0 = j gs0 JdA0 , (A.5) fv0 A0 

( (r-pl):(F-c·V0h)cJdV0 = j h·toldAo, (A.6) 
~ ~ 

where 

So= nf (vf - V5
) ·(F-e· fio), (A.7) 
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fa = ( r -pi) · (F-e · iio), (A.8) 

and ii0 is the unit outward normal on the reference surface. Equations (A.5) and (A.6) are dis­

cretised in space by means of the finite element method. The reference volume V0 is subdivided 

in a finite number Ne of elements with a relatively simple shape (Bathe [ 1982]). In element e 

(volume V0e and surface A6 in the reference state), nq displacement and np pressure nodes are 

introduced. The displacement vector of displacement node i of element e is denoted by q;", and 

the pressure in pressure node i of element e by p;". Both ii/ and P;e are functions of time. Per 

element, columns f and 72 e are defined as 

(A.9) 

The displacement ijof a material point with position vector foE V0e is approximated by a linear 

combination of the displacements of the nodes of element e 

(A. I 0) 

where 1j:(f0 ) = ['1/1 1 (fo) · · · 'lfn. (f0)] 'is the column of displacement interpolation functions and '1/1; 

is the displacement interpolation function for nodal point i . This function satisfies 'l/l;(foj) = 6;1, 

where ioj is the reference position vector of nodal point j and b;j is the Kronecker function. 

Similarly, the pressure in a material point fo E V0e is approximated by a linear combination of 

the nodal pressures of element e 

p(i o, t) = p'(i o) p •(t) V i o E V0e, (A.ll) 

where p(i0 ) = [¢1(f0) · · · <Pn.(i0)]' is the column of pressure interpolation functions such that 

¢;(Xoj) = bij· 

According to Galerkin 's approximation method, the weighting functions hand g are interpolated 

in the same way as the displacement, respectively the pressure, so 

h(io, t) = Y! T (io) r (t) \;/ io E Voe' 

g(io, t) = ¢.?_ ' (fo) f(t) V foE Voe· 

The gradients t? and If! of the interpolation functions are given by 

The deformation tensor F follows from 

(A.I2) 

(A.I3) 

(A.l4) 

(A.15) 
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and with this result J = det(F), C = Fe· F and V = p-c · V0 can be written as functions off. 

Elaboration of (A.5), using the fact that the integral over V0 is equal to the sum of the integrals 

over the element volumes, yields 

where 

Ne 

~(~e)r [Ee. r( + Kepe _ ze] = o, 
e=l 

§e = 1- ¢so JdAo. 
Ae-

0 

(A.l6) 

(A.l7) 

(A.l8) 

(A.l9) 

Here, Ag is the intersection of the boundary Ag of element e and the boundary A0 of the mixture. 

Similarly, elaboration of (A.6) yields 

where 

Ne 

~C5e)r · [(- CEe) 'pe- f] = 0, 
e=l 

-e 1 -t = _ 1/J to J dAo. 
Ae -

0 

(A.20) 

(A.21) 

(A.22) 

It is noted that E e does not depend on ~ but, similarly to r and K e' on ife. With T and K 
-e ~ -

according to (2.17) and (2.23) respectively, K e and [ can be written as 

1 - -r 
K e = '[? · K · '[? dVo, 

ve 
0 

(A.23) 

(A.24) 

It is assumed that the second Piola-Kirchhoff stress tensor S and the permeability tensor K 

depend on the deformation tensor F and on a set of local material parameters'(!, i.e. 

S = S(C, '(!), K = K(J, '(!), (A.25) 

and that '(! depends on the model parameters ~ via 

(A.26) 
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The terms in the equations (A 16) and (A20) are functions of element quantities. To determine a 

set of equations in system quantities, an assembly process is required. Therefore, columns if, l!• 
6, and rz are introduced 

if== [l]i .. l]N.r, 6 = [h, .. . hN.] 7
, 

1! = [p, · · · PN.] 7
, fl.= [g, · .. gNp] 7

, 

(A27) 

(A.28) 

where Nq and Np are the number of system displacement and pressure nodes, respectively. Com­

ponent i of these columns is equal to the corresponding quantity in system node i. Element 

quantities of element e are related to system quantities via the location matrices J4 and i.e. 

(A29) 

ge=L.eg. 
- p-

(A.30) 

Substitution in (A.I6) and (A20), combined with the requirement that the equations have to hold 

for all rz and lj, results in 

- -r - -t - ll e - r = Q, 

where 
N, 

il Z:.cL.;) 7 ile (Je;), 
N, 

Z:.cL.;) T KeeL.;), 
e=l e=l 

N, 

J = "(Le) 
- L., =q 

e=l e=l 

(A31) 

(A32) 

(A.33) 

(A.34) 

An orthonormal vector base if [ e, e2 e3 ] T with unit vectors e,' and e:1 is introduced. Then 

each nodal vector can be written as a linear combination of the base vectors, i.e. 

- r- B-q; = 1.; ~' ij = (A35) 

Here, q is the column with nodal displacements in the coordinate directions. The column with _, 
components of all nodal displacement vectors is equal to 

(A.36) 

Similarly, f2., [. and t are composed of respectively l}ii• [i' and f;· In the coordinate system 

(A.3l) and (A.32) become 

12. 2 + l!- s = Q, 

l QTl! f: Q. 

(A37) 

(A38) 
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To arrive at a set of equations in the unknown nodal quantities, the boundary conditions are 

accounted for. Part of the components of q, 1!· £,and fare known. If the displacement of a point 

at the surface of the material is prescribed in a certain direction, then in that point the force in 

that direction is not prescribed, and vice versa. In terms of the columns q and!;_, if q; is prescribed 

then t; is unknown, and if t, is prescribed then q; is unknown. Similar considerations hold for 1! 
and£· The columns q and 1! are subdivided in a part with known components (index k) and a part 

with unknown components (index l) 

(A.39) 

Here, qk and pk depend on the input y, which contains all quantities that are set by the experi­

menter, 

(A.40) 

The columns£ and fare subdivided in, l and !;_
1 corresponding to respectively unknown pressures 

and displacements, and l and tk corresponding to prescribed pressures and displacements 

(A.4l) 

Here, ·?.1 and [1 depend on the input y and on the displacements q1
, but not on ~ or on p1, so 

(A.42) 

Dependency on q1 results from the fact that £1 and t1 are determined by integration over the current 

surface A0 of the elements, which depends on the deformation. Partitioning and rearranging 

results in a set of equations, from which q1 and p1 can be solved 

(A.43) 

(A.44) 

with initial condition q1(t0) = q1. When q1, q1, and p1 are computed, £k and tk can be determined 
- -0 - - -

using 

.Zk = Il.ktql + + + K""p\ 
fk = t (Il.lk) T 1!/ (Il.kk) T 1!k. 

(A.45) 

(A.46) 

The distinct terms in (A.43), (A.44), (A.45), and (A.46) are known smooth functions of their 

arguments according to 

(A.47) 
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The components of [ and K depend on ~ since T and "' are functions of the model parameters. 

Furthermore, Kll is symmetric and semi-positive definite 

As an abbreviation, two columns are introduced 

s* = §l _ B..lkt _ KlkT/ = s*(gl, ~, 'IJ:, ij,), 

f = ~~ + (B_kl) TT/ = t<ql ' y). 

(A.48) 

(A.49) 

(A.50) 

For clarity, the indices I, k, and *, will be omitted in the remainder of this thesis. Then, the 

describing set of equations becomes 

B.. q + K l! = §, 
[-B..Tp=~. 

(AS\) I 
(A. 52) 

A number of auxiliary quantities are introduced. The components of [, §, and t are smooth 

functions of their arguments. Therefore , the variations o [, O§, and ot of respectively [, §, and~ 

as a result of variations of q and~ can be written as 

where 

o[ = Eqoq + £ 0 o~ , 

0,2 = s_qoq + s_0 o~ , 

ot = roq +':f.0 o~ , 

(A.53) 

(A. 54) 

(A. 55) 

(A .56) 

(A.57) 

(A. 58) 

for o: E { q, B}. As ~ does not depend on the model parameters, T_0 = Q. Variations of y and iJ: 
do not occur, since y is known at every time point t. Also variations oB.. and oK of respectively 

B.. and K are of interest. To avoid the use of three-dimensional matrices, only variations of the 

matrix multiplications B_g and K~ are considered, where g and ~contain the same number of 

components as respectively q and p 

B..<q + oq , y) 12: = B..<q, y) 12: + Dq(q, g, y) oq, 
K(q + oq, ~ , y) ~ = K(q, ~, y) ~ + Mq(q, ~, ~, y) oq, 

K(q , ~ + o~, y) ~ = K(q, ~, y) ~ + M 0(q, ~, ~, y) o~, 

(A. 59) 

(A.60) 

(A.61) 
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with 

(A.62) 

Let bq and bp be variations on q, respectively p as a result of a variation b~ on the model pa­

rameters. The varied solutions q + bq and p + bp still have to satisfy the model equations (A.5l) 

and (A.52). To derive the relation between bq, bp and b~, the varied solutions are substi tuted in 

(A. 51) and (A 52) and subsequently linearised by applying a Taylor's series expansion around q, 
p and~' neglecting all terms of second or higher order in bq, bp, and b~. This results in 

where 

fl_bg + I -'Qbq + ISPbp + I -'8 b~ = Q, 

Itq bq + I tp bp +ItO b~ = Q, 

I-'Q = Dq(q , g, y) + Mq(q, p, ~' y)- S_Q(q, ~' y, y), 

L.tq = Eq(q, ~' y) - ( Dq(q, p, y)) T - T_q(q , y), 

I sp = K(q, ~' y), 

Itp =- (fi(q, y)) T ' 

I se = Mo(q, p, ~' y) _ S_e(q, ~' y, y), 

Ito = Ee(q, ~, y). 

(A.63) 

(A.64) 

(A.65) 

(A.66) 

(A.67) 

(A.68) 

(A.69) 

(A.70) 

The determination of L."8 and Ito, which are required for parameter estimation, is not part of 

the standard protocol in finite element analyses. Therefore, the determination of M 8 will be 

discussed as an example. Likewise 8_8 and E are set up. 

Since K is equal to the assembly of the element matrices K e, the term JS..:e can be written as 

K e = cJ! · K · cJ! dVo, J - - r 

V' 
0 

(A.71) 

using (A.33) and (A.23). Since V0e, I~, ~ and p do not explicitly depend on ~' the derivative of 

JS..:e to component k of~ is equal to 

(A.72) 

where (M8
)k denotes column k of M 0 The derivative of the tensor function K to the model 

parameters can be determined analytically according to 

8K _I: 8K 8w1 
aBk - l = l afJ1 aBk ' 

(A.73) 
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where (2.24) is used. Herein, ni! is the number of local material parameters in 12. Equation (A.72) 

shows that (1\lf0
)k can be assembled from the element contributions fJK / fJfh in the same way as 

K from K. This procedure is repeated for k E { l , ... , N0 }, where No is the number of model 

parameter in ~· 
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Scheme of the recursive algorithm 

I. Start computations 

Set measurement counter r = 0 

II. Elaboration of measurement r +I 

Set initial conditions ~r' gr 

Input measurement "V-r+l 

Set parameter iteration counter l = I 
~) -

Approximate ~r+ l as the previous estimate ~r 

Ill. Solve estimation problem 

Set time step counter j = I 

IV. Execute time step Lit = ~(tr+ 1 - tr ); tr ,j = tr + j Lit 

Set iteration counter m = I 

v. 
Approximate rl_ml as lj . and p<ml as f; . 

-1 1) ,...,r,J~J ....,T 1) - T 1J- ! 

Solve model equations 

Determine Llg and Lip from (2.44) and (2.45) 

Update: q<m+I) = q<ml + Llq and p<m+I) = p<ml +Lip 
.... T 1) -T,J - - T 1) -r1J .... 

If { Llg and Lip not sufficiently small} then { m := m + I, go to V} 

Determine 9.r,j and Er,jfrom (2.58) and (2.59) 

If { j < k } then { j := j + I, go to IV} 

Determine 1ir+I from (2.61) and Hr+l from (2.63) 

Determine Ll~from (3.10) 
• (/+1 ) • (l) 

Update: ~r+I = ~r+l + Ll~ 
If { Ll~ not sufficiently small} then { l := l +I , go to Ill} 

If { r < N - I } then { r := r + I, go to II } 

VI. Stop computations 
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Formulation of the boundary value problem 

In Chapter 4, an identification model, consisting of model equations, a parameter equation and 

a measurement equation, is introduced. Objective of the identification procedure is to find so­

lutions ~(T), q(T) and :[?(T) for T E [t0, tN] which minimise the residuals on the identification 

model. For this purpose, an augmented scalar measure J" (4 .6) of the residuals is introduced . 

The requirement that J* is minimal results in a boundary value problem. 

The augmented measure J* depends on ~(T), q(T), p(T), ~ 1 (T), ~ 3 (T), ~(T), J!:(T) and y(T) IT E 

[to, tN] and is given by 

(N 
J* = }41 W[- B.Tp- f}' w 2 C[- B.Tp-!) + H7JJ- !l)T y_ (7!} - !l) + (C. I) 

g~ W 1 ~I+ g~ W 3 ~3 + ~T ( B.q + Kp- §-~I ] + J!:T ( ~- ~3 l}dT, 

where the accent circumflex on~. q, and 1.? is omitted for clarity. A necessary condition for J* to 

be minimal is that the variation oJ* of J* equals 0. Using (A. 53) to (A.55), (A. 59) to (A.61 ), and 

(2.62), the variation oJ• as a result of variation of~. q, p, ~ , ~ , ~ and J..L is given by 
- - -1 -3 -

oJ• = h:N {o~r [ C£8)' W2 C[- B.7J.?- D + (M0- s._en J + of [ 1!: J + (C.2) 

oqT £CEq- CDQY- T..qY w 2 C[- B.7p_- t>- (QQY K C7JJ- !l> + Cllq + Mq- s._qy~ J + 

of£ B.T~ J + opT£ -B. w2 C[- B.7p- D- (QPY y_ (7!J- !l> + K7~ 1 + 

oc [ Wl{l - ~ l + 0{~ [ W3{3 -I!: l + o~T [ B.q + Kp- §-{I l + OJ!:7 [ ~- ~3]} dT, 

where all terms of second or higher order in the variations are neglected . Since the input is known, 

no variations of y occur. The terms with o~ and oq are partially integrated, i.e. 

(C.3) 
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l:N ofLl:t~J dT = Oq'(tN)[.E_r~(tN)]- Oq'(to)[l;t~(to)]-l:N Oq'[il~ + lt~] dT. (C.4) 

The requirement oJ* = 0 for all o~, oq, op, o~ , o~ , o~ and OJ.L leads to 
- - _, -3 -

-E w2 ([- Erp- tJ- (G_P)T K ('I!}- fi) + Kr ~ = Q, 

w,~,-~=Q, 

w3~3 -I!= Q, 

[j_ q + K p- £-~I = Q, 

& - ~3 = Q, 

(C.S) 

(C.6) 

(C.9) 

(C. I 0) 

(C.ll) 

(C.l2) 

(C.l3) 

where (A.65) to (A.70) are used. These equations can be reordered to yield ( 4.7) to ( 4.15). 
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The transformation matrix 

in the approximating linearisation method 

Substitution of (4.28) and (4.29) in (4.25) and (4.26) followed by linearisation of~ and 2. around 

UJ results in 

~ + il.~ + il~ = ~(UJ, y) + z. il.~ + w-l ~, 

~ = - z.r ~ - GrK ( T[} - !f.(UJ, y)) + GrK G fl ~­

Substitution of~ according to (0.2) in (D. I) yields after reordering 

If f1 satisfies 

(D. I) 

(0.2) 

(0.3) 

(0.4) 

the term between brackets in (0.3) is equal to Q and a nonlinear differential equation in UJ results. 
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Samenvatting 

Standaardmethoden voor het bepalen van materiaalparameters gaan meestal uit van zodanige 

proefstukvormen en belastingen dat gemeten randbelastingen en -verplaatsingen eenvoudig om 

te rekenen zijn naar lokale spanningen en rekken, waaruit vervolgens de parameters in een aan­

genomen materiaalmodel kunnen worden bepaald. Voor vee! (complexe) materialen zijn deze 

methoden lastig of niet te gebruiken, bijvoorbeeld omdat het materiaal inhomogeen is of omdat 

het maken van proefstukken lastig of ongewenst is. In dergelijke situaties kan de numeriek­

experimentele methode bruikbaar zijn. Daarbij wordt naast randinformatie gebruik gemaakt van 

gemeten veldinformatie (verplaatsingsvelden, drukken, snelheden). Door deze informatie te con­

fronteren met (numerieke) berekeningen op basis van een verondersteld materiaalmodel en be­

ginschattingen voor onbekende materiaalparameters kunnen via een schattingsalgoritme para­

meters iteratief worden aangepast tot convergentie wordt bereikt. Deze methode biedt vee! meer 

vrijheid dan standaard experimentele methoden, maar is tot nu toe vooraltoegepast op materialen 

die tijdsonafhankelijk gedrag vertonen. 

De doelstelling van dit proefschrift was om enkele algoritmen te onderzoeken die bruikbaar zijn 

voor materialen die tijdsafhankelijk gedrag vertonen. Een volledig recursief en een integraal 

schattingsalgoritme zijn ge"implementeerd en onderzocht. Ze zijn toegepast op mengselmateria­

Jen, bestaande uit een poreuze vaste stof, verzadigd met vloeistof. De interactie tussen vaste stof 

en vloeistof leidt tot visco-elastisch gedrag. 

De differentiaal- en algebra"ische modelvergelijkingen die het gedrag beschrijven zijn niet-lineair 

in de verplaatsingen en materiaalparameters en lineair in de drukken. De gebruikte veldinforma­

tie bestaat uit drukken en verplaatsingen. De algoritmen zijn getest door middel van simulaties. 

De resultaten van een analyse met een gekozen materiaalmodel en gekozen materiaalparameters, 

representeren na verstoring met ruis, observaties uit een experiment. Het schattingsmodel wordt 

vervolgeris gestart met gewijzigde waarden voor de parameters. Het verschil tussen de 'experi­

mentele' resultaten en de resultaten van analyses met het model wordt gebruikt om de gekozen 

parameters terug te schatten met het schattingsalgoritme. Er zijn analyses uitgevoerd met en zon­

der modelfouten. 
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De belangrijkste conclusie is dat beide algoritmen in principe bruikbaar zijn om materiaalpara­

meters te bepalen voor dit type materialen. Het recursieve algoritme is bijzonder efficient. De 

tijd die nodig is om materiaalparameters te schatten is van dezelfde orde van grootte als de tijd 

die nodig is voor een enkele analyse met gegeven parameters. Het integraal algoritme is nog erg 

tijdrovend en leidt tot een lastig twee-punts-randwaarde probleem, waar op dit moment nog geen 

algemeen toepasbare, bevredigende oplosstrategie voor gevonden is. 



Stellingen 

behorende bij het proefschrift 

Identification Algorithms for Time-Dependent Materials 

I. Het recursieve schattingsalgoritme maakt de praktische toe passing van de numeriek-experi­

mentele methode voor materialen die tijdsafhankelijk gedrag vertonen mogelijk. 

Dit proefschrift: hoofdstuk 3 

2. Wanneer het integraal schattingsalgoritme gebruikt wordt om de model parameters van een 

vloeistof-vaste stof mengsel te bepalen , ontstaat een twee-punts-randwaarde probleem dat 

op dit moment slechts bij uitzondering is op te lossen. 

Dit proefschrift: hoofdstuk 4 

3. ldentificatie is succesvol als het verschil tussen de metingen en de op basis van een veron­

dersteld materiaalmodel berekende waarden voor de gemeten grootheden na schatten van 

de parameters te verklaren is. 

4. Tijdens het recursief schatten moet duidelijk onderscheid worden gemaakt tussen schattin­

gen voor de parameters bij achtereenvolgende iteraties op basis van metingen op een zeker 

tijdstip en schattingen op basis van metingen op achtereenvolgende tijdstippen . Opeenvol­

gende iteratieve waarden geven enkel inzicht in hoeverre aan de niet-lineaire vergelijking 

voor de parameters wordt voldaan. Waarden voor de parameters op achtereenvolgende tijd­

stippen kunnen informatie geven over het hele identificatieprobleem. 

Dit proefschrift: hoofdstuk 3 

5. De mate waarin het schattingsproces is geconvergeerd kan niet zonder meer worden afgele­

zen aan het verschil tussen de parameters die bepaald zUn aan de hand van opeenvolgende 

metingen. Dit verschil is mogelijk klein door een geringe gevoeligheid van de uitgang met 

betrekking tot de parameters. Derhalve moet zowel tijdens het on twerp van een experiment 

als tijdens het schatten zelf de gevoeligheid bestudeerd worden. 

6. De ontwikkeling van snellere hardware moet hand in hand gaan met de ontwikkeling van 

efficientere software om de gebruiker echt tevreden te kunnen stellen. 



7. Ofschoon glas een eeuwenoud produkt is, zal het ook in de toekomst onderwerp van on­

derzoek blijven aangezien de eisen met betrekking tot het produkt en de produktie sterk 

toenemen. 

8. Ondanks uitgebreid onderzoek is er weinig bekend over de diffusie van gassen in een glas­

smelt. 

Kramer, F {1979]. Mathematisches Modell der Veriinderung von Gasblasen in Glas­

schmelzen. Glastechnische Berichte 52(2), 43-50. 

9. De geschiedenis leert ons dat de toekomst anders zal zijn dan we nu denken. 

10. Muziek moet je maken met je hart en je hart kun je maken met muziek. 

Olaf Op den Camp 

Eindhoven, 8 mei 1996 



For many 'complex' materials it is impossible to determine the 

material parameters with standard methods. In these situa­

tions numerical-experimental techniques otter much more pos­

sibilities. By confronting measured quantities. such as dis­

placements and pressures, with calculations on the basis of 

an assumed material model via an identification algorithm, the 

material parameters are determined. 

In this thesis, algorithms suitable for materials showing time­

dependent behaviour have been studied. These algorithms 

have to determine all parameters on the basis of quantities that 

are measured not only at different positions within the material 

(space) but also at subsequent points of time. A fully recursive 

and an integral algorithm have been tested on a mixture of a 

solid and a fluid. Both algorithms appeared to be applicable to 

this type of time-dependent material. Moreover, it is expected 

that the algorithms can be applied to other visco-elastic mate­

rials without many problems. 


