
Visualisation of Two-Dimensional
Volumes

vorgelegt von
Sebastian Löbbert, Bachelor of Science

aus Dernbach/Westerwaldkreis

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuß:
Vorsitzender: Prof. Dr. Hellwich
Berichter: Prof. Dr. Lemke
Berichter: Prof. Dr. Santos (Universidad Politécnica de Madrid)

Tag der wissenschaftlichen Aussprache: 14. Juli 2004

Berlin 2004
D 83





I

Zusammenfassung

In dieser Arbeit wird ein neues Verfahren zur Visualisierung zweidimensionaler Vo-
lumen vorgestellt. Der Begriff multidimensionales Volumen wird dabei definiert
als eine Menge von räumlich dreidimensionalen Datensätzen, die jeder eine andere
Eigenschaft (eine physikalische Qualität, z.B. Dichte oder Temperatur) desselben
Objekts beschreiben. Zweidimensionale Volumen beschreiben also zwei verschiedene
Eigenschaften eines Objekts. Sie entstehen z.B. in biomedizinischen Anwendungen,
wenn gleichzeitig funktionale und anatomische Datensätze untersucht werden.

Zunächst wird der Stand der Technik in der Visualisierung zweidimensionaler Vol-
umen dargelegt. Dabei sind besonders die folgenden Schwächen bestehender Ver-
fahren erkennbar:

• Schlechte räumliche Darstellung und schlechte Lokalisierbarkeit von Ausprä-
gungen (bemerkenswerte Quantitäten einer Eigenschaft an einer Stelle).

• Beschränkung auf Datensätze aus speziellen Quellen oder spezielle Kombina-
tionen von Datensätzen.

• Prinzipbedingte Beschränkung einer Eigenschaft auf wenige kleine Regionen
innerhalb der anderen Eigenschaft.

Basierend auf diesen Defiziten werden die Anforderungen für ein besseres Visuali-
sierungsverfahren herausgearbeitet, anhand derer ein neues Verfahren, dependent
rendering genannt, entwickelt wird. Das Verfahren basiert auf der Annahme, dass
bei der Visualisierung mehrerer Eigenschaften immer eine Eigenschaft als Referenz
zur Lokalisierung dienen kann. Abhängig von der ersten kann eine weitere Eigen-
schaft visualisiert werden.

Es werden drei Implementierungen des Verfahrens vorgestellt, die ersten beiden
sind Prototypen, die dritte eine spezialisierte Anwendung für eine biomedizinische
Visualisierungsplattform. Die Implementierungen veranschaulichen, dass sich das
vorgestellte Verfahren gegenüber bestehenden Ansätzen besonders durch folgende
Punkte auszeichnet:

• Gute Lokalisierbarkeit von Ausprägungen bei gleichzeitiger guter räumlicher
Darstellung des Objekts (z.B.: “Ist es auf der Oberfläche heiss oder innerhalb
des Objekts?”).

• Gleiche räumliche Ausdehnung beider Datensätze möglich.
• Genereller Ansatz: Keine Beschränkung auf Datensätze aus speziellen Quellen

oder auf spezielle Kombinationen von Datensätzen.

Das vorgestellte Verfahren stellt daher einen bedeutenden Fortschritt in der Technik
der Visualisierung zweier Eigenschaften eines Objekts dar.



II

Abstract

In this thesis, a new technique for the visualisation of two-dimensional volumes is
presented. The term multi-dimensional volume is defined as a set of spatially three-
dimensional data sets, each of them describing another property (a physical quality,
e.g. density or temperature) of the same object. Thus, two-dimensional volumes
describe two different properties of an object. They are used e.g. in biomedical
imaging, where anatomical and functional data are examined jointly.

First, the state of the art in the visualisation of two-dimensional volumes is pre-
sented. In the course of this, the following deficiencies of existing approaches become
apparent:

• Unsatisfactory 3D impression (it is difficult to mentally reconstruct the spa-
tially three-dimensional object from the rendering) and difficult localisation
of features (i.e. remarkable characteristics in the quantity of a property at a
given location).

• Restriction to data sets from particular origins or particular combinations of
data sets.

• By design, one property is restricted to only a few small regions inside the
other property.

Starting from these deficiencies, the requirements for a visualisation technique that
overcomes these limitations are elaborated. These are then used to develop a new
technique, called dependent rendering, which is based on the assumption that, when
visualising two properties of an object, there is alway one property that can serve as
a spatial reference for the other. The other property is then visualised in dependency
on this reference.

Three implementations of the technique are presented, the first two are prototypes,
the third one is a specialised application for a biomedical visualisation platform.
The implementations show that, compared to existing approaches, the presented
technique especially stands out because of the following features:

• Precise localisation of features combined with good 3D impression of the object
(e.g. “Is it hot on the surface or only inside the object?”).

• Both data sets can be extended over the same region.
• General approach: No restriction to data sets from particular origins or par-

ticular combinations of data sets.

The presented technique therefore represents an important advancement in the joint
visualisation of two properties of an object.



III

Acknowledgements

This research was carried out during my time as an external doctoral student at the
department of Computer Graphics and Computer Assisted Medicine of Professor Dr.
H.U. Lemke at the Technische Universität Berlin and supervised by Dr.-Ing. Steffen
Märkle. To him, I am especially grateful for the many discussions and valuable
suggestions. During this time, I was employed as a part-time software developer
at Infopark AG, Berlin, which allowed me to conduct the research independent of
financial aids.

A significant part of the work described in this thesis (the research and implemen-
tation described in section 5.2) was carried out during my 6-month stay as a Marie
Curie fellow at the biomedical imaging group of Professor Andrés Santos at the
Universidad Politécnica de Madrid. This fellowship was financed by the European
Union. I thank Professor Andrés Santos for inviting me to Madrid and supervising
my work from this time onwards. I also wish to thank Javier Pascau and Manuel
Desco from the Hospital General Universitario Gregorio Marañón in Madrid for dis-
cussions on what visualisation features are important for their work with biomedical
data.

Special thanks go to Ursula Passing for continuous proof-reading and many dis-
cussions on how to structure scientific work and how to explain complex matters
understandably. It is also her achievement that I was able to enjoy this demanding
time.

Parts of the work presented in this thesis have already been presented on inter-
national conferences: [LM02b] (see section 5.1.2), [LM02a] (see section 6.1) and
[LPDS03] (see section 5.2).



Contents

List of Figures VII

List of Tables IX

Abbreviations X

1 Introduction 1

1.1 Research question and motivation . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The background: Volume rendering 3

2.1 Volumetric data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Voxel representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Volume visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Visualisation techniques for volumetric data sets . . . . . . . . 4

2.3.2 Volume rendering . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Multi-dimensional volumes 11

3.1 Definition of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Property and feature . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Multi-dimensional volume . . . . . . . . . . . . . . . . . . . . 11

3.1.3 Multi-dimensional vs. multi-modal volumes . . . . . . . . . . 12

3.2 Origins and applications of multi-dimensional volumes . . . . . . . . 12

3.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 2D approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1.1 2D Image gallery . . . . . . . . . . . . . . . . . . . . 14

3.3.1.2 Interactive orthogonal slice viewers for fused images . 15

3.3.1.3 Evaluation of 2D techniques . . . . . . . . . . . . . . 16

3.3.2 Hybrid 2D/3D approaches . . . . . . . . . . . . . . . . . . . . 16

IV



CONTENTS V

3.3.2.1 The corner cube approach . . . . . . . . . . . . . . . 17

3.3.2.2 The slicer approach . . . . . . . . . . . . . . . . . . . 17

3.3.2.3 Evaluation of hybrid 2D/3D techniques . . . . . . . . 18

3.3.3 3D approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3.1 Surface rendering . . . . . . . . . . . . . . . . . . . . 19

3.3.3.2 Direct volume rendering (DVR) . . . . . . . . . . . . 19

3.3.4 Summary of the current techniques . . . . . . . . . . . . . . . 22

4 The new dependent rendering algorithm 24

4.1 Reference and dependent structures . . . . . . . . . . . . . . . . . . . 24

4.2 Requirements for an improved algorithm . . . . . . . . . . . . . . . . 25

4.3 Development of the dependent rendering algorithm . . . . . . . . . . 31

5 Implementations 35

5.1 Prototype implementations . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Initial prototype . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1.2 Description of the implementation . . . . . . . . . . 35

5.1.1.3 Evaluation of the initial prototype . . . . . . . . . . 40

5.1.2 Shear-warp prototype . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2.2 Description of the implementation . . . . . . . . . . 44

5.1.2.3 Evaluation of the shear-warp prototype . . . . . . . . 46

5.1.3 Conclusion for the prototypes . . . . . . . . . . . . . . . . . . 48

5.2 Implementation for a biomedical imaging platform . . . . . . . . . . . 49

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Extension of the requirements . . . . . . . . . . . . . . . . . . 49

5.2.3 Description of the implementation . . . . . . . . . . . . . . . . 50

5.2.4 Additional requirements and their implementation . . . . . . . 55

5.2.5 Evaluation of the implementation . . . . . . . . . . . . . . . . 57

6 Conclusion and Outlook 62

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1 A field study . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.2 Application to other domains . . . . . . . . . . . . . . . . . . 64

6.2.3 Improved image fusion . . . . . . . . . . . . . . . . . . . . . . 64



VI CONTENTS

References 66



List of Figures

2.1 Basic setup of coordinate systems and viewing rays for volume rendering 4

2.2 Volume rendering pipeline . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Optical model for volume rendering . . . . . . . . . . . . . . . . . . . 7

2.4 Sketch of a viewing ray traversing a volume . . . . . . . . . . . . . . 8

2.5 Phong illumination model: diffuse reflection . . . . . . . . . . . . . . 10

2.6 Phong illumination model: specular reflection . . . . . . . . . . . . . 10

3.1 Image gallery approach . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Orthogonal slice viewer for fused images. . . . . . . . . . . . . . . . 16

3.3 Corner cube approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Slicer approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Surface rendering approach. . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Volume rendering using transfer functions. . . . . . . . . . . . . . . 20

3.7 Volume rendering using multiple views. . . . . . . . . . . . . . . . . 21

3.8 Volume rendering using data intermixing . . . . . . . . . . . . . . . . 22

4.1 Use case diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 The dependent rendering pipeline . . . . . . . . . . . . . . . . . . . . 33

5.1 Plot of the material probability equation . . . . . . . . . . . . . . . . 37

5.2 Volume rendering pipeline when using opacity weighted interpolation 38

5.3 Dependent volume rendering. Images created using the initial proto-
type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Shear-warp algorithm: Transform factorisation . . . . . . . . . . . . . 45

5.5 Shear-warp algorithm: Voxel and pixel skipping . . . . . . . . . . . . 45

5.6 Shear warp prototype: Interaction of reference volume, depth buffer
and dependent volume. . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Two example renderings created with the shear-warp prototype . . . 47

5.8 Screen shot of the fusion interface’s 2D display widgets. . . . . . . . 50

5.9 Screen shot of the transfer functions dialogue for the functional volume. 52

VII



VIII LIST OF FIGURES

5.10 Biomedical imaging platform: Interaction of reference volume, z-
buffer, background surface and dependent volume. . . . . . . . . . . 53

5.11 Biomedical imaging platform: Adapted dependent rendering pipeline. 54

5.12 Standard clamped window/level function . . . . . . . . . . . . . . . . 56

5.13 Window/level function with values at both borders set to zero and
scaled to the range [0..1] . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14 3D rendering with clearly recognisable ventricles . . . . . . . . . . . . 57

5.15 3D rendering with emphasis on the cortex . . . . . . . . . . . . . . . 57

5.16 2D fusion interface with pathological data set . . . . . . . . . . . . . 58

5.17 3D rendering, with the same pathological data set as in Fig 5.16. . . 58



List of Tables

4.1 Requirement “3D impression” . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Requirement “Exploration of data sets” . . . . . . . . . . . . . . . . . 28

4.3 Requirement “No segmentation neccessary” . . . . . . . . . . . . . . 28

4.4 Requirement “Interactivity” . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Requirement “Any property can be an entire volume” . . . . . . . . . 29

4.6 Requirement “Arbitrary properties” . . . . . . . . . . . . . . . . . . . 30

4.7 Requirement “Data sets of different sizes and resolutions” . . . . . . . 30

4.8 Requirement “Relations between properties” . . . . . . . . . . . . . . 31

4.9 Requirement “Localisation of features” . . . . . . . . . . . . . . . . . 31

IX



Abbreviations

2D two-dimensional (in space)
3D three-dimensional (in space)
aka also known as
AUC Area Under the Curve

CIE Commission Internationale de L’Éclairage
CT Computed Tomography
DVR Direct Volume Rendering
EEG ElectroEncephaloGram
FFT Fast Fourier Transform
fMRI functional Magnetic Resonance Imaging
FVR Frequency domain Volume Rendering
GUI Graphical User Interface
HGUGM Hospital General Universitario Gregorio Marañón (Madrid)
HSV Hue-Saturation-Value
IDL Interactive Data Language by Research Systems Inc.
LUT Look-Up Table
MEG MagnetoEncephaloGram
MIP Maximum Intensity Projection
MRI Magnetic Resonance Imaging
NMR Nuclear Magnetic Resonance
PET Positron Emission Tomography
QFD Quality Function Deployment
RGB Red-Green-Blue
RGBA Red-Green-Blue-Alpha
ROC Receiver Operator Characteristic
SPECT Single Photon Emission Computed Tomography
UML Unified Modeling Language

X



Chapter 1

Introduction

1.1 Research question and motivation

Volume visualisation is a method for the visualisation of spatially three-dimensional
data sets of arbitrary objects with applications in medicine, engineering, science
and other fields. Its purpose is to “extract meaningful information from volumetric
datasets through the use of interactive graphics and imaging” [KCY93, p. 51].

Unfortunately, many properties of an object, like for example the temperature dis-
tribution, cannot be visualised meaningfully without using a second property, like
the matter distribution, as a spatial reference.

While visualising a single property of an object, especially the matter distribution,
using volume rendering is well researched, little is known about how to visualise
several properties, like the matter and the temperature distribution, at the same
time.

The ability to visualise two or more properties of an object is crucial for correctly
interpreting data sets, for example in order to precisely locate the epileptic sources
in epilepsy patients’ brains. For this purpose, two data sets, one for the anatomical
structure of the brain and one for the electrical signals inside the brain, must be
jointly visualised.

There are some approaches to jointly visualise two data sets, but they have signifi-
cant shortcomings, for example many techniques require the second property to be
restricted to few regions that cover only a small fraction of the extension of the first
property.

The goal of the work presented in this thesis is to develop a method which is suit-
able for visualising two properties of one object in a single projection, enabling an
observer to recognise relations between the two properties. This method shall be
as generally applicable as possible. Therefore is should not be restricted to a spe-
cial application domain (like biomedical imaging), but be applicable to data sets
representing arbitrary properties.

1



2 CHAPTER 1. INTRODUCTION

1.2 Outline of the thesis

After presenting some background information on volume rendering in general, so-
called multi-dimensional volumes, i.e. data sets that represent several properties of
an object, are introduced. Then the term ”multi-dimensional volume” is defined
formally. Both the origin and possible uses of multi-dimensional volumes are pre-
sented. Common methods for visualising multi-dimensional volumes are introduced
and their advantages and shortcomings are discussed. Based on this discussion,
requirements for visualising multi-dimensional volumes are derived.

From these requirements, a new method to visualise multidimensional volumes is
developed, named ”dependent rendering”. This approach is explained in depth.

The algorithm is then evaluated by three implementations: A general purpose pro-
totype implementation, a second prototype that overcomes deficiencies in the first
prototype and a specialised implementation for biomedical imaging.

Finally, some conclusions are drawn and an outlook to further research is given.



Chapter 2

The background: Volume
rendering

In this section, first a short introduction to volumetric data and where it originates
from is given. In this context, the concept of a voxel is introduced. Then the pur-
pose of volume visualisation is outlined and some of the most common techniques
are introduced with emphasis on the volume rendering approach. The techniques de-
scribed in this chapter are the foundation for the algorithm and the implementations
used for the work described in this thesis.

2.1 Volumetric data sets

Volumetric data sets describe a property of a spatially three-dimensional object by
sampling this property’s underlying function on a discrete three-dimensional grid.
These data sets usually stem from simulation or measurement, examples for the
latter being CT (Computed Tomography) or MRI (Magnetic Resonance Imaging,
also known as NMR, Nuclear Magnetic Resonance).

After the raw data have been acquired, they are usually transformed such that they
fit on a rectangular grid. In the context of this thesis, such data sets are also called
a volume. To simplify the discussion, it is assumed throughout this chapter that the
property described by the data set can be mapped to the matter distribution of the
object. E.g. using CT, the electron density inside the object is measured, which can
at least partially be mapped to the materials the object consists of.

2.2 Voxel representation

Each sampling point on the data set grid contains a discrete scalar value. This value
is called a voxel (short for volume element) and can be interpreted in two different
ways (see [LCN98, pp. 15–16]):

• A voxel is a size-less point in space representing the scalar value of the de-
scribed property’s underlying function at this sample point.

3



4 CHAPTER 2. THE BACKGROUND: VOLUME RENDERING

• A voxel is a small cube of constant value with its edges’ length given by
the sampling distance. The voxel’s value represents the average value of the
underlying function in this cube.

Throughout this chapter, the first of these interpretations is used. It allows to
interpolate the values of samples not falling on the grid points from its neighbours.
Besides the underlying functions’ value, further attributes like materials or flow
directions can be associated with a voxel.

2.3 Volume visualisation

The goal of volume visualisation is to produce a two-dimensional rendering of a
three-dimensional object conveying as much information as possible on the inner
parts and on the three-dimensional structure of the object. An overview of differ-
ent volume visualisation techniques is given in [Yag93], while [Kau91] contains a
selection of fundamental articles on volume visualisation. In the next section, some
common techniques for volume visualisation are presented. Thereafter, one of these
techniques, namely volume rendering, is described in more detail.

2.3.1 Visualisation techniques for volumetric data sets

The general setup valid for all techniques described here is depicted in figure 2.1:
Two coordinate systems are set up: The first one is the image space coordinate

Image plane
Pixel

Sample point

Viewing ray

Object space
Object space 

coordinate system

Image space 
coordinate system

x
y

z

t
u

v

Figure 2.1: Basic setup of coordinate systems and viewing rays for volume rendering
(The y-axis and u-axis in the coordinate systems is perpendicular to the paper and points to the

reader: right-handed coordinate system)

system of the resulting projection image (coordinates x,y and z), and the second
one the object space coordinate system of the volume data set representing the object



2.3. VOLUME VISUALISATION 5

(coordinates t,u and v). It is common to denote the two axes of the projection image
as x and y axis while the axis perpendicular to the image plane is the z axis, which
is parallel to the viewing vector. To view the volume from different directions, the
object is rotated and, if necessary, translated and scaled. A transformation matrix
allows to transform one coordinate system’s coordinates into the other’s coordinates.

Volume visualisation techniques can be classified as two groups, image space and
object space based techniques. For object space based techniques, also called for-
ward mapping techniques, the volume is traversed and for each of the voxels the
contribution to the projection image is calculated. When using image space based
techniques, also called inverse mapping techniques, for each pixel in the projection
image the appropriate voxels’ contributions are combined to form the pixel value.

A common volume visualisation technique is the ray casting approach, which is a
image space based technique. In ray casting, for each pixel in the projection image,
a viewing ray is sent into the volume and the voxels along this ray are combined
according to a certain composition function. In the following, common volume
visualisation techniques are presented.

Surface rendering An iso-surface (i.e. a surface along which the voxel value is
constant, an iso-surface can, for example, describe the boundary of a region made
up from a specific material) of the object is extracted from the data set and then
visualised. A common algorithm for extracting surfaces from volumetric data is
the marching-cube algorithm described in [LC87]. Although being computationally
inexpensive once the surface has been extracted, this technique has the decisive
drawback of giving no information of what is inside the object (see [KCY93]), which
is what the observer is interested in, therefore this method is not further discussed
here. It is possible to extract the surfaces of several regions of the object, and render
these surfaces semi-transparently, such that surfaces that are inside the object shine
through those that are near to the border of the object.

Maximum intensity projections MIP project the three-dimensional data set
on a two-dimensional plane by taking into account only the maximal voxel value
along each viewing ray. Although containing information about the interior of an
object, the resulting images are visually flat and contain no depth information (see
[MHG00]), therefore it is not further discussed here.

Average or X-ray composition These techniques calculate the average over all
voxels along each viewing ray to form the projection image. The resulting projection
image looks quite similar to conventional X-ray images, it contains information of the
object’s inner parts and has, at least for the trained user, some depth information.

Volume rendering using the over operator This technique tries to discretise
the ray casting integral introduced in section 2.3.2. There are several variations of
this very common approach. For fundamental articles on volume rendering, see e.g.
[DCH88], [Wes89], [Lev88]. A book on volume rendering covering many aspects is
[LCN98]. Volume rendering is also the approach which is used for the work presented



6 CHAPTER 2. THE BACKGROUND: VOLUME RENDERING

in this thesis and will therefore be further described in the next section. The term
volume rendering is often used to implicitly denote this technique.

2.3.2 Volume rendering

The steps performed during volume rendering can be ordered in the volume rendering
pipeline which is briefly introduced in this section.

The volume rendering pipeline (see figure 2.2) discussed here was first introduced by
Levoy (see [Lev88],[Lev90]). Although actual implementations do not fully adhere
to this pipeline, it is well worth studying because it clearly shows the principles.
While the data are prepared, they are brought on a rectangular grid. Thereafter

Acquired values f(x)

Prepared values f(x)

Data preparation

Voxel colors C(x) Voxel opacities α(x)

Shading Classification

Ray tracing/resampling

Sample colors C(x)

Ray tracing/resampling

Sample opacities α(x)

Compositing

Image pixels C(u)

Figure 2.2: Volume rendering pipeline
(Adapted from [Lev88])

two processes are performed independently of one another:

In the shading process, illustrated in the left branch in figure 2.2, the volume is
shaded. In volume rendering, each voxel is considered as a primitive object with
its own surface. The direction of the surface is determined by calculating the local
gradient of the voxel values. Each voxel is shaded by taking its surface direction,
the viewing vector and virtual light sources and applying a shading operation, like
e.g. Gouraud [Gou71] or Phong [Pho75] shading (see below). The resulting grey
values or colours can be stored in a separate data set for later retrieval.

In the classification process (the right-hand branch), the volume is classified, i.e.
to each voxel an opacity and a colour is assigned according to its value and some
classification function. By changing the classification function, it is possible to



2.3. VOLUME VISUALISATION 7

deliberately hide or highlight certain materials. As with shading, the resulting
opacities can be stored in a separate data set for later use.

Finally, for each pixel in the projection image, a viewing ray is cast into the data
set, and for each sample point on this viewing ray, the colours and opacities from
shading and classification are combined. These sample values are then composed to
yield the pixel value.

This simple volume rendering pipeline has been refined in many ways (see e.g.
[MWG98]), but the basic steps remain the same: data preparation, shading and
classification, composition.

Several techniques exist for the composition step. The simplest ones are MIP, which
just takes the highest sample value on the viewing ray, and average or X-ray com-
position (see above), which sums up all sample values on a viewing ray and finally
divides this sum by the number of samples on the ray. Unfortunately, the images
generated by these composition techniques contain no or only little depth informa-
tion. Therefore it is very hard or even impossible to receive information about the
three-dimensional structure of the object from these images..

A composition operator that overcomes these shortcomings is the over operator
developed by [PD84]. In the following, a short introduction to an optical model for
the interaction between light and matter is given and it is shown how this model
can be applied for volume rendering. A survey of different optical models for the
interaction of light and matter is given in [Max95]. For a sketch illustrating the
model, see figure 2.3. When a beam of light hits a piece of matter, parts of the

l

r1

r2

r3
r4

material1
material2

Figure 2.3: Optical model for volume rendering

light are scattered or reflected from the matter’s surface, while other parts enter
the matter. The scattered parts can be detected by an observer. In figure 2.3, only
light reflected in direction to the observer, denoted by r1 through r4, is shown, but
in reality the light is scattered in all directions. The parts that enter the piece of



8 CHAPTER 2. THE BACKGROUND: VOLUME RENDERING

matter travel on and are absorbed by the matter. Eventually the remaining light
hits a surface inside the matter (e.g. a material boundary) and again parts of the
light are scattered and parts pass through the surface and travel on.

The final colour and intensity I of a viewing ray which extends from a point a to
another point b is given by the ray casting integral (see [LCN98, pp. 122-128]):

I(a, b) =
∫ b

a
g(s) exp−

∫ s

a
τ(x)dx ds (2.1)

In the above equation, ds is the direction of the viewing ray. The source term
g(s) is a surrogate for an illumination model such as the Phong or the Gouraud
illumination model (see [Pho75] or [Gou71], respectively), which describes how light
reflected from surfaces together with the ambient light contributes to the viewing

ray. The term exp−
∫ s

a
τ(x)dx describes the fraction of the initial light still available at

a distance s from the starting point a. The extinction coefficient τ(x) describes how
much the light intensity decreases per unit length due to extinction and scattering.

For each (infinitesimally small) point on the viewing ray, the ray casting integral
calculates how much light is still available, and applies an illumination model at this
point using the remaining light as input. The ray casting integral can be discretised

Viewing ray

I0
aVolume 

data set

α0

Ii

In

αi

αn

b

Figure 2.4: Sketch of a viewing ray traversing a volume
(Adapted from [Lev88])

to the following sum:

I(a, b) =
n∑

i=0

Ii

i−1∏
j=0

(1− αj) (2.2)



2.3. VOLUME VISUALISATION 9

= I0 + I1(1− α0) + I2(1− α0)(1− α1) + . . . + In(1− α0) . . . (1− αn−1)

= I0 over I1 over I2 over . . . over In

As before, I(a, b) denotes the final intensity of a viewing ray going from point a to
point b, a sketch of the setup is shown in figure 2.4. The viewing ray is divided in
n parts of equal length, each containing one sample point marked with the indices i
and j. The absorption at the sample point with index i is described by the sampling
point’s opacity αi. For each sample point, both the intensity Ii and the opacity is
calculated. The opacity is calculated by the product of the opacities of all sample
points encountered so far on the ray. Originally, the over operator introduced in
[PD84] had been developed to calculate the resulting picture when combining a
foreground and a background picture: The over operator combines two pictures A
and B such that A over B places the foreground picture A in front of the background
picture B.

The intensity Ii at a sample point with index i on the viewing ray is usually defined
as the product of the opacity αi and the colour Ci at this point:

Ii = Ci · αi. (2.3)

The sample point’s colour Ci and opacity αi result from the shading and classification
operation.

In the following, the basics of the Phong illumination model (see [Pho75]), which
is used for implementations described in this thesis, is shortly described. The aim
of an illumination model is to simulate the reflection of light on surfaces and to
calculate the colour and the intensity of the light perceived by an observer. The
Phong illumination model describes reflected light by three categories: ambient
light, diffuse reflection and specular reflection. These three categories are combined
to yield the colour of a point on the surface. Each surface point is associated with
several properties that depend on the materials at this point.

Ambient light describes a non-directional light source that is constantly distributed
over the scene and does depend on neither the observer’s viewing point nor on the
angle between the light’s direction and the surface normal. When only ambient light
of the colour Ca shines on a surface point with an ambient reflection coefficient ka

and a diffuse colour Cd, this point’s colour C is

C = CakaCd. (2.4)

Diffuse reflection characterises how light coming from a point light source with colour
Cp that radiates uniformly in all directions is diffusely reflected in all directions. This
is illustrated in figure 2.5.

The colour of a surface point depends both on the distance between the light source
and the surface point and on the angle θ between the light vector ~L and the surface
normal vector ~n at this point, but not on the position of the observer. Often it is
assumed that the light source is infinitely far away and the distance between the
light source and the surface point is not taken into account. Such light sources



10 CHAPTER 2. THE BACKGROUND: VOLUME RENDERING

L n

Cp

ϑ

Surface point 
kd, Cd 

Figure 2.5: Phong illumination model:
diffuse reflection

L n

Cp

ϑ ϑ

R

V
ϕ

Surface point 
ks, Cs, n

Figure 2.6: Phong illumination model:
specular reflection

are called directional lights. In this case, the diffuse reflection’s contribution to the
point’s colour is calculated by

C = CpkdCd cos θ, (2.5)

where kd is the point’s diffuse reflection coefficient, which is a property of the material
at this point.

Specular reflection simulates the highlights which are caused by light reflected in a
certain direction dependent on the angle between the incident light and the surface
normal, as shown in figure 2.6. The specular reflection’s contribution to the point’s
colour is calculated by

C = CpksCs(cos φ)n. (2.6)

Again, Cp is the colour of the point light source. Cs is the point’s specular colour
and ks is the point’s specular coefficient, both are properties of the material at this
point. The specular exponent n simulates the fact, that specular highlights can only
be seen when the observer’s viewing direction and the direction of the reflected light
are nearly the same.

Combining these three contributions to the final colour of the surface point yields:

C = CakaCd + CpkdCd cos θ + CpksCs(cos φ)n. (2.7)



Chapter 3

Multi-dimensional volumes

In this chapter, first the terms property, feature and multi-dimensional volume are
defined for this thesis. Then, the term multi-dimensional volume is differentiated
from the term multi-modal volume, which is sometimes confusingly used in the con-
text of multi-dimensional volumes. Thereafter, sources and applications of multi-
dimensional volumes are presented. Finally, the state of the art in visualising such
volumes is presented and discussed.

3.1 Definition of terms

3.1.1 Property and feature

The terms property and feature are used to denote two different things in this the-
sis: The term property denotes a physical quality of an object, e.g. its density or
temperature. The term feature is used to describe a remarkable characteristic in the
quantity of a property at a given position or region, e.g. a region of high density
or a hot spot. A position or region where the relation between two properties is
remarkable is also called a feature, e.g. a region where both density and temperature
are high.

3.1.2 Multi-dimensional volume

In the context of this thesis, the term multi-dimensional volume is used for a data
set that describes not only one but multiple properties of an object. Therefore, the
term multi-dimensional refers not to the spatial dimensions but to object property
dimensions. In contrast, in this thesis, the abbreviations 2D and 3D (two- and
three-dimensional in space, respectively) always refer to the spatial dimensions of
an object.

In Cartesian coordinates (x, y, z), a scalar property p (like density, temperature or
pressure) of an object can be described by a function p = f(x, y, z). The volumetric
data set of this property consists of a set S of samples (x, y, z, p) representing either
the value p of this property at the sampling point (x, y, z) or the mean value of
this property in the volume element between the eight sampling points (x, y, z),
(x, y, z +1), (x, y+1, z), (x, y+1, z +1), (x+1, y, z), (x+1, y, z +1), (x+1, y+1, z)

11



12 CHAPTER 3. MULTI-DIMENSIONAL VOLUMES

and (x + 1, y + 1, z + 1), corresponding to the two possible definitions of the term
voxel in section 2.2.

The term ”n-dimensional volume” denotes a volumetric data-set consisting of a set
S of samples (x, y, z, p1 . . . pn) representing not only one scalar property p1 but n
properties p1 . . . pn, which are described by n functions pi = fi(x, y, z), i = [1 . . . n].

Although it is possible to think of non-scalar properties of an object (like the velocity
of a fluid, which clearly is a vector), these are not discussed in this thesis.

3.1.3 Multi-dimensional vs. multi-modal volumes

The frequently used term multi-modal volume data is closely related to the term
multi-dimensional volume data, but they denote two different things. Two or more
data sets that describe the same object but are acquired using different devices (or
modalities) are called multi-modal. In the notation of this thesis, two or more data
sets describing different properties of the same object are called multi-dimensional.

It is perfectly imaginable (and in fact quite common) to have a single-dimensional
but multi-modal data set, e.g. a CT and an MRI data set of one object (thus multi-
modal), both describing the matter distribution of the object (thus only one property
dimension).

3.2 Origins and applications of multi-dimensional
volumes

There are two main origins of multi-dimensional data sets: simulation and measure-
ment.

A typical example for simulation is a fluid simulation yielding data sets containing
information about pressure and velocity of particles. An advantage of simulation is
that it can be set up such that the different properties’ grids exactly match. The
registration precision is then only limited by the simulation’s error.

A good example for measurement is medical imaging. Two common imaging fa-
cilities are CT and MRI. CT data sets represent the object’s electron density (see
e.g. [Vog97], p. 641) which can be mapped to a matter distribution. MRI data
sets usually represent the object’s water distribution (the nuclear magnetic reso-
nance signal from humans mainly comes from water protons, see e.g. [CMP99]),
which can also be mapped to a matter distribution. Both techniques deliver struc-
tural information of the object. Additionally, by using functional MRI (fMRI), it
is possible to obtain functional information about an organism, like for example
cerebral activity. Other means of taking functional information are, for example,
electroencephalography (EEG), magneto-encephalography (MEG), positron emission
tomography (PET) and single photon emission computed tomography (SPECT). Fur-
thermore, both structural and functional information can be gathered using ultra
sound (US).



3.3. STATE OF THE ART 13

Compared to data from simulations, data sets of physically measured data are more
difficult to handle as the data sets for two different properties usually have to be
mapped to a rectangular grid (interpolation). Afterwards, they must be mapped to
a common grid (registration), which is a difficult task that is prone to errors (see
[SLPB96]). Additionally, the resolutions of the data sets representing the different
properties of an object often differ, for example CT and MRI data sets usually have
a much higher resolution than PET data sets of the same object.

An example for the use of multi-dimensional data in medicine is the research and
diagnosis of epilepsy (see [RDC96]). The physician is interested in knowing exactly
at which location in the brain the electrical currents are pathologically high and
where the current’s source is. In this example, one property dimension is the matter
distribution of the brain acquired by CT and/ or MRI. The other property dimension
is the electrical current distribution acquired by EEG or MEG.

For some applications, two data sets of the same object are combined to form a new
data set (see e.g. [NBC+00]), which is then visualised. This process is called fusion.
A common problem in medical imaging is the fusion of high quality static data
acquired before an intervention with low quality data acquired during intervention,
for example in image guided neurosurgery (see e.g. [WTT+02], [GNK+01], [JFS+00])
or in radiotherapy (see e.g. [RKC+01]).

Additionaly, some applications make use of image sequences: For example, to re-
search the relation between coronary artery disease and myocardial dysfunction,
it is of high interest to visualise information about both the myocordial function
(obtained from MRI) and the coronary vasulature (obtained from computed to-
mographic angiography data) as a sequence over the time of a heart beat (see
[SPHW02]).

Another, more general example is the heat distribution in an object where the
observer is interested in knowing what the temperature at a given location is. Again,
one property dimension is given by the matter distribution, the other is given by
the heat distribution.

3.3 State of the art

This section describes the current state of the art in the visualisation of multi-
dimensional volumes. The techniques presented describe available methods, not
particular programs. The critical review provides the basis for the development of
the dependent rendering algorithm in chapter 4.

The methods commonly used to display multi-dimensional volumes are presented
by starting with the simple and proceeding to the more elaborate approaches. The
visualisation techniques can roughly be classified into three groups: Pure 2D tech-
niques (see section 3.3.1), hybrid techniques combining 2D and 3D elements (see
section 3.3.2) and 3D techniques (see section 3.3.3).



14 CHAPTER 3. MULTI-DIMENSIONAL VOLUMES

While discussing the approaches, special attention is given to the following criteria:

• Localisation of features: How precisely can features found in the renderings
be located, both relative to a coordinate system and relative to landmark
features in both properties?

• 3D impression: Is it easy for the user to mentally reconstruct the 3D struc-
ture of the object from the renderings?

• Arbitrary properties: Is the technique restricted to an application domain
or can it be used for data sets representing other properties?

• Exploration: Is it possible to explore data sets of unknown objects or is
a-priori knowledge of the structure of the object required?

The section concludes with an evaluation of the presented techniques.

The need for displaying multi-dimensional volumes is high in the field of biomedical
imaging, especially in the functional imaging area where both anatomical and func-
tional data of humans are measured and visualised. Therefore the examples for the
techniques described in this section all come from biomedical imaging applications.

It is usually necessary to visualise multiple properties jointly, where one property
(usually the density) serves as spatial reference for the others. This is explained
in more depth in section 4.1. For all examples in this section, the first property
is given by the anatomy of the human brain, acquired by either CT or MRI. The
second property is some kind of functional data.

3.3.1 2D approaches

3.3.1.1 2D Image gallery

The simplest approach in visualising multiple properties is using a 2D image gallery,
which is a static set of 2D slices of the data set where interesting features are
highlighted. In the top two rows of figure 3.1, two different variants of this technique
are shown: In the upper row, the slices from the anatomical data set are fused
with the corresponding slice from the functional data set. The anatomical data is
displayed in grey levels and the functional data in shades of red.

There are several techniques for fusing 2D images of anatomical and functional data,
here a pixel interleaving method as described in [RSA+94] is used. Displaying just
parallel slices of the data sets is very similar to the conventional presentation of
X-ray images on a light board.

In the second row, Talairach coordinates (see [TT88]) are displayed instead of the
anatomical data, and a maximum intensity projection of the functional data is
overlaid. By integrating the functional information with Talairach coordinates, the
user can localise features in one data set and transfer this localisation to other brains
in terms of the Talairach coordinates. The use of Talairach coordinates is special to
brain imaging, therefore it will not be considered further.



3.3. STATE OF THE ART 15

Figure 3.1: Image galleries for anatomical and functional data of the human brain.
Top row: Fused slices of functional and anatomical data. Middle row: Functional data integrated

with Talairach coordinates. Bottom row: Functional data projected onto surface rendering of
anatomical data. Source: [RLF+98]

But the concept of a specialised coordinate system which allows the mapping of
points in one object to points in another similar object could also be applied in
other fields. The bottom row of the figure contains surface renderings, which are
described in section 3.3.3.1.

3.3.1.2 Interactive orthogonal slice viewers for fused images

Orthogonal slice viewers for fused images as depicted in figure 3.2 allow the user to
interactively browse through different slices of the brain. The technique used to fuse
the two properties for this image is described in more detail in section 5.2.3.

To help the user navigate through the slices, often markers with the position of the
corresponding other two slices are displayed on each slice. The advantage over the



16 CHAPTER 3. MULTI-DIMENSIONAL VOLUMES

static image gallery approach is that the user can interactively choose different slices
and thus better explore a data set.

Figure 3.2: Orthogonal slice viewer for fused images.
Screen shot of the program described in section 5.2

3.3.1.3 Evaluation of 2D techniques

In general, the technique for displaying fused 2D slices is computationally inexpen-
sive. This technique is not restricted to medical imaging in can be used for arbitrary
properties.

The advantage of the 2D slice images is their precision, which is due to their high
spatial resolution. Therefore, features can be localised precisely. However, this
technique makes it hard for the observer to mentally reconstruct the 3D structures
of the object. Another drawback is that only little context information is displayed,
i.e. when the observer examines one slice, he receives no information on the adjacent
slices. This makes it very hard to overview the object as a whole and difficult to
explore data sets of objects of unknown structure.

Usually, only one property is displayed in its full extension, while the other prop-
erty is only displayed in parts. This is especially true for image fusion techniques
where one property is opaquely overlaid over another property. To visualise both
properties in their full extension, the slices from both images must be fused non-
opaquely, a process which often causes loss of information in at least one property
(see e.g. [RSA+94]).

3.3.2 Hybrid 2D/3D approaches

To improve the understanding of the 3D structure of the object, the 2D approaches
have been extended by 3D elements in several ways.



3.3. STATE OF THE ART 17

3.3.2.1 The corner cube approach

In the corner cube technique described by [RLF+98] and shown in figure 3.3, a cubical
scene is created which is bounded by displaying three orthogonal landmark slices
from the anatomical data. In the middle of the scene, the functional data is rendered
and additionally projected onto the anatomical slices. The functional information is

Figure 3.3: Corner cube approach.
Source:[RLF+98]

either rendered as special glyphs (“A glyph is a graphical object designed to convey
multiple data values” [War99, p. 152].) or as a a surface rendering of the previously
extracted regions of activation.

3.3.2.2 The slicer approach

In the slicer technique described in [GNK+99] and shown in figure 3.4, a scene is
created by displaying three orthogonal slices through the anatomical dataset.

Further applications of this approach are described in [GNK+01] and [TOW+03].
The position of each slice can be varied, and the whole scene can be rotated, thus
allowing a better understanding of the 3D structure of the data set. The functional
data is either displayed by fusing the slice images of both data sets or by displaying
glyphs or surface renderings of the functional data, like in the corner cube approach.



18 CHAPTER 3. MULTI-DIMENSIONAL VOLUMES

Figure 3.4: Slicer approach.
Image created using the slicer program [MS]

3.3.2.3 Evaluation of hybrid 2D/3D techniques

Images generated by the hybrid techniques are generally less precise than images
of 2D slices, because the 2D slices used in the hybrid approaches are distorted due
to the viewing transformation applied to them. Additionally, parts of one slice can
be occluded by the other two slices and by the rendering of glyphs or surfaces of
regions of the second property. The overall 3D impression is a little better than with
the pure 2D approaches, because the slices are displayed in the correct geometrical
relation to one another. This helps the user to reconstruct the 3D structure of the
object. The techniques are not restricted to medical imaging.

A severe problem is the extension of the second property: If rendered as glyphs
or surfaces of regions, the regions must be small and not too numerous, otherwise
they would fill the whole rendered image and the renderings of the first properties
would be hidden. This would make it impossible to examine the first property or
localise features found in the second property. This problem can be avoided by using
the slicer approach with fused image slice using a non-opaque fusion technique. To
create surfaces or glyphs for regions of the second property, these regions have to
be extracted before rendering, which makes these techniques useless for exploring
unknown data sets.



3.3. STATE OF THE ART 19

3.3.3 3D approaches

3.3.3.1 Surface rendering

A very common approach (see e.g. [RDC96] or [Dim95]) is to visualise a surface in
the reference structure, e.g. the surface of the brain, and project the other property
onto this surface, as in figure 3.5 or in the bottom row of figure 3.1. Although
this approach is computationally quite inexpensive, the images generated by surface
rendering give no or little information about the inner parts of the object, therefore
this technique is almost useless for investigating the inner structure of the objects.

Figure 3.5: Surface rendering approach.
Source:[KDG99]

3.3.3.2 Direct volume rendering (DVR)

DVR has already been presented in detail in section 2.3.2. For one-dimensional
volumes, this technique has proven to provide good hints on the location of features
in objects, therefore it seems reasonable to enhance and use it for multi-dimensional
volumes, too. Besides being computationally expensive, nearly all currently existing
volume rendering systems have no support for multiple property dimensions.

One drawback of volume rendering is that it makes use of transparencies and there-
fore some precision may be lost [HP96]. Two extensions to conventional volume
rendering systems are presented in the following paragraphs.



20 CHAPTER 3. MULTI-DIMENSIONAL VOLUMES

DVR using transfer functions To visualise activated regions in the human
brain, this method was introduced in [KDG99]. Besides the matter distribution as
reference data, a second property has been highlighted using transfer functions as
shown in figure 3.6. In the figure, red and green denote different materials in the

Figure 3.6: Volume rendering using transfer functions.
Source:[KDG99]

brain while the blue spots indicate regions of high activity. This method seems quite
suitable for a second property that is only defined in certain areas inside the object
and that only has a few distinct values (in the article, only two states are mentioned:
activated or not activated). For a second property defined over the whole object, this
method appears not appropriate because highlighted regions by themselves contain
no spatial information. This approach requires the exact locations of the second
property to be known in advance in order to create a transfer function volume for
the highlights, therefore this technique might be useful for displaying an already
examined data set but not to explore an unknown data set.

Multiple views The DVR using transfer functions technique has been extended
into the multiple views technique to improve the understanding of spatial relation-
ships by placing additional projection planes “behind” the volume as in figure 3.7
(see e.g. [KDG99]). This technique is an enhancement to the corner cube technique
described in section 3.3.2. A further extension of the multiple views approach is
the magic mirrors approach that uses a different transfer function for each of the
additional projection planes to improve the spatial localisation of the highlighted
regions relative to the anatomical volume. Besides improving the 3D impression a



3.3. STATE OF THE ART 21

little bit, the same advantages and shortcomings found for the DVR using transfer
functions approach apply here.

Figure 3.7: Volume rendering using multiple views.
Source:[KDG99]

DVR using data intermixing In the basic data intermixing approach as de-
scribed by [MFOF02], the two volumes are traversed similar to Levoy’s classic ap-
proach [Lev90]. For each pixel in the rendered image, two rays are cast simultane-
ously, one into each volume. During composition, the opacities are calculated from
one volume, and the colours are calculated from the other volume, an example is
shown in figure 3.8. Although this approach allows both properties to have the same
extensions and is not specialized for a particular application domain, it has a funda-
mental drawback: There are no colour contributions from regions, where the opacity
is low. This implies that, if regions in the volume that determines the opacity are
hidden by the opacity transfer function, no information from the other volume will
be shown for this region. In general, volume rendered images can provide the user
with a very good 3D impression of the structure of the object. The techniques are
not restricted to any special combination of properties and can potentially be used
for arbitrary properties.

As already stated for the other approaches, the extension of the second property
is a problem: The second volume must not be defined over the whole extension of
the first one but merely “scattered” over some small regions. If the second property
was defined over the whole extension of the first property, its “highlighting” in
the rendered images would overlay the information from the first property and all
structural information would be lost. Additionally, the second property is limited to
a small dynamic range: For all images shown in this section except those in figure



22 CHAPTER 3. MULTI-DIMENSIONAL VOLUMES

Test volumes rendered separately: (a) Spheres and (b) cube

Test volumes rendered using intermixing (a) The sphere determine the opacity,

and the cube determines the colour. (b) The spheres determine the colour and the
cube determines the opacity. In the left image of (b), an additional cutting plane is

used to look inside the object.

Figure 3.8: Volume rendering using data intermixing.
Source:[MFOF02]

3.8, the second property is represented by only two possible states (activated or
not).

Although there are 3D approaches to visualise a second property with a high dy-
namic range (see e.g. [RDC96]), these approaches use surface rendering which is
considered inadequate for exploring unknown data sets as surface renderings con-
tain no information on the parts behind the surface.

3.3.4 Summary of the current techniques

The 2D techniques, especially the interactive orthogonal slice viewer technique, can
provide the observer with very precise information about the localisation of features
in both properties, but it is hard for the user to mentally reconstruct the spatial
structure of the object from the 2D slices. Additionally, the exploration of unknown
data sets is difficult because the slices do not show context information from the
directions orthogonal to the displayed slice. Thus the 2D techniques, especially the
interactive orthogonal slice viewers, are very useful for precisely examining features
that have already been located, but they are unsatisfactory when the observer wishes



3.3. STATE OF THE ART 23

to explore an unknown object.

The advantage of the 3D volume rendering techniques is that they show the 3D
structure of the object very well. The user needs no or little a-priori knowledge
about the structure of the object to localise features in both properties, both relative
to other features in the same property (e.g. “feature A in the first property is located
in front of feature B in the same property”) and relative to features in the other
property (e.g. “feature A in the first property is located in the same location as
feature C in the second property”).

The hybrid approaches are not satisfactory: The precision of the images is worse
than that of the 2D techniques they are based on, and the 3D impression is worse
than that of volume rendered images.

All these approaches have a general limitation in common: The second property
is not regarded as a volume on its own but merely as an“accessory” to the first
one, which is often only defined in some small regions. The only technique able to
handle two volumes where the second property is defined over the whole extension of
the first property are the 2D slice viewer techniques with an appropriate no-opaque
fusion and techniques that directly derive from this like the slicer approach.

However, there are many problems in science and engineering where one is interested
in a second property that is extended over the whole range of the first one (e.g. the
heat distribution of an object or the pressure distribution).

Therefore, there is a need to develop a technique that is as powerful as volume
rendering for the localisation of features and the 3D impression, but that allows the
use of a second property that has the same extension as the first property. Such a
technique is developed in the next chapter.



Chapter 4

The new dependent rendering
algorithm

In this section, the problem of visualising multiple properties of an object is first
re-formulated and then approached in a step-by-step fashion. In this context, the
notation of reference and dependent structures is introduced. Then, the requirements
for an algorithm for visualising two-dimensional volumes are identified, which finally
leads to the development of the new dependent rendering algorithm. The developed
algorithm will be evaluated by three implementations described in chapter 5.

4.1 Reference and dependent structures

To begin with, it is briefly recapitulated what the starting point to the development
of the new algorithm is and what the new algorithm is expected to achieve. The
starting point is a data set describing two properties (say: density and tempera-
ture) of an object. The observer is interested to see how these two properties are
distributed in space, i.e. what kind of material and what temperature is present at
a given point inside the object. Moreover, it would also be important to know how
these two properties are related to one another.

Visualising only the object’s density using volume rendering would be quite straight-
forward, but visualising only the temperature incorporates a problem: Although the
overall characteristics of the temperature distribution can be recognised, one criti-
cal information is missing (see figure 5.3 a): It is not possible to precisely localise
a given temperature inside the object because there is no reference to the object’s
”real” structure, i.e. the density distribution.

This leads to the conclusion that it is necessary to visualise both properties together,
with the first property providing a precise localisation of features of the second
property.

In the following, the property that serves as the reference is called a reference struc-
ture and the other properties dependent structures. This does not imply a mathemat-
ical dependency between these two properties, although this can be easily imagined
(e.g. an insulated object with a heat source somewhere inside: The heat distribution
t = fT (x, y, z) directly depends on the matter distribution d = fD(x, y, z)).

24



4.2. REQUIREMENTS FOR AN IMPROVED ALGORITHM 25

4.2 Requirements for an improved algorithm for
the visualisation of two-dimensional volumes

In this section, the requirements for an improved algorithm for visualising two-
dimensional volumes are derived. These requirements relate to the core algorithm
only, not to a complete system, because the focus of this research is on the de-
velopment of an algorithm, not a system. It should be possible to implement the
algorithm and plug it into a customisable 3D volume visualisation system which pro-
vides common basic features including editing of rendering parameters (like transfer
functions) and arbitrary rotation of the data set. Therefore these basic features are
not modeled here. That it is sensible to focus the requirements definition on the core
algorithm only is demonstrated in section 5.2, where a successful implementation of
the algorithm as a module for an existing visualisation platform is described.

According to [Hru97, p. 26], a requirement is “a statement in the format of the chosen
method of requirements representation, describing one ore more related characteris-
tics that the system is required to have“. So, requirements describe what a system is
supposed to do, but not how.

To develop the requirements, first use cases for the visualisation of two-dimensional
volumes are developed. Use cases are a fundamental element of object-oriented anal-
ysis. For a treatment of object-oriented analysis, see e.g. [Oes01]. For each use case,
the functional requirements are derived. Additionally, non-functional requirements
are added where neccessary.

As mentioned in the introduction, volume visualisation is ”a method for extracting
meaningful information from volumetric data sets through the use of interactive
graphics and imaging” [KCY93, p. 51]. Based on this definition, a hypothetical
use case scenario is created which consists of the examination of a two-dimensional
volume by a user. This scenario is depicted in figure 4.1, using the Unified Modeling
Language (UML). It is as follows:

The process of examining the data set is an abstract use case. Abstract use cases
describe in a general way the characteristics several concrete use cases share. This
use case can be further sub-divided:

• Localise finding: While examining the data set, the user finds an interesting
feature in one or both of the data sets. To further examine and localise his
finding, he has two possibilities:

– Localise in absolute coordinates: The user wants to localise the find-
ing in absolute coordinates, i.e. in terms of the reference property.

– Localise relative to other property The user wants to localise the
finding relative to the other property (e.g. “it is hot on a surface”).

• Examine relations between properties: The user is interested in a broader
overview on the relations between the two properties (e.g. “the upper left part
of the object is colder than the rest”).

To derive and formulate the requirements for the algorithm based on these use
cases, a well-defined requirements analysis technique shall be applied. Three types



26 CHAPTER 4. THE NEW DEPENDENT RENDERING ALGORITHM

Examine

data set
User

Localise

finding
Examine relations 

between properties

Localise in abso−

lute coordinates

Localise relative

to other property

Figure 4.1: Use case diagram.

of approaches have been considered for use in the context of this thesis: The Vol-
ere approach [RR99], Agile techniques [PEM03], and Quality Function Deployment
(QFD) [MA94]. The goal was to find a technique that allows the structured analy-
sis of requirements, is appropriate to the anticipated relatively small number of re-
quirements for the algorithm, and does not require direct involvement of customers,
because customers were not available.

The Agile techniques were not considered further because they do not document
requirements in a structured manner but rather rely on direct and continuous cus-
tomer involvement (“joint application development”).

The rationale of QFD is to develop or improve products to better meet customer
needs. For how to adapt QFD for software engineering, see [HSM99]. While pro-
viding a structured and documented approach, QFD is not applied here because it
is focussed on customer input, which was not available.

The Volere approach provides a structured documentation of the requirements using
a standard template (“requirement shell”). Due to its simple structure, it seemed
applicable for this project. Also, it does not require direct user participation. There-
fore, an adapted “Volere requirement shell” is used to define the requirements for
each use case. Each requirement is identified by a unique number and a name. The
relevant use case(s) and the requirements type (here: functional or non-functional)
are noted. Additionally, the requirement shell contains the following fields:

Description A short description of the requirement.
Rationale Gives a justification for the requirement.
Source Who raised the requirement (e.g. from literature).
Fit criterion Describes how the requirement can be tested.
Dependencies Lists other requirements that have dependencies on this one.
Conflicts Lists other requirements with which this one can possibly conflict.

The origininal Volere requirement shell also contains fields for the customer satisfac-
tion or dissatisfaction in case the requirement is fulfilled or not fulfilled, respectively.
These fields are left out here because customers were not available, but if the algo-



4.2. REQUIREMENTS FOR AN IMPROVED ALGORITHM 27

rithm is implemented for a broader user group, they can be added and used in an
evaluation.

To derive the requirements for the algorithm, several types of sources have been
used: The first source is represented by the research goal for this work, i.e. to
develop a visualisation technique for two-dimensional volumes that is as generally
applicable as possible (see section 1.1). Moreover, the shortcomings of other tech-
niques, which have been identified in section 3.3, are translated into requirements.
Also, known problems discussed in the literature are taken into account. Further-
more, the use case scenario described above is used as a source. In addition, some
technical requirements have been defined by the author.

The requirements are as follows:

1.0 Abstract use case “Examine data set”: This abstract use case describes
the general functionality: Visualise the two-dimensional volume such that a
user can examine it. All use cases that are derived from this one inherit the
requirements defined for this use case. Several non-functional requirements
that are special to two-dimensional volumes are associated to this use case:

1.1 3D impression: An important goal of all hybrid 2D/3D approaches
and the 3D approaches presented in section 3 was to support the user
in building a mental 3D model of the object under study. It is desirable
that 3D impression obtained from the renderings of the two-dimensional
volume is comparable to that of standard volume rendering. Table 4.1
provides the complete requirement specification:

Requirement # 1.1

Use case Examine data set
Name 3D impression
Type Non-functional

Description The rendering must provide good hints on the 3D
structure of the object.

Rationale To improve the spatial understanding of the ob-
ject under study, the user must be supported at
building a mental 3D model.

Source Obvious problem that is also stated in the litera-
ture, e.g. [KDG99], [RLF+98].

Fit criterion Visual verification, ideally requires a user test.

Dependencies -

Conflicts May conflict with requirement # 2.0

Table 4.1: Requirement “3D impression”

1.2 Exploration: The exploration of unknown content must be supported
(see table 4.2):



28 CHAPTER 4. THE NEW DEPENDENT RENDERING ALGORITHM

Requirement # 1.2

Use case Examine data set
Name Exploration of data set
Type Non-functional

Description The user must be able to explore possibly unknown
data sets.

Rationale As the algorithm should not be specialised to a
particular application domain, it must be possible
to apply it to many different data sets.

Source Research goal “as generally applicable as possible”.

Fit criterion -

Dependencies Directly depends on requirements # 1.2.1 and #
1.3

Conflicts -

Table 4.2: Requirement “Exploration of data sets”

1.2.1 No need for segmentation The algorithm should be suitable for
unsegmented data, as segmentation requires a-priori knowledge about
the structure of the data set (see table 4.3):

Requirement # 1.2.1

Use case Examine data set
Name No need for segmentation
Type Non-functional

Description The algorithm must not rely on segmented
data, but it should work with segmented data
if available.

Rationale The a-priori knowledge needed to segment a
data set is specific to particular application
domains.

Source Research goal “as generally applicable as pos-
sible”.

Fit criterion Must be achieved by design.

Dependencies -

Conflicts -

Table 4.3: Requirement “No segmentation neccessary”

1.3 Interactivity: To efficiently examine a data set, the algorithm must
allow interactive rendering rates, as specified in table 4.4.



4.2. REQUIREMENTS FOR AN IMPROVED ALGORITHM 29

Requirement # 1.3

Use case Examine data set
Name Interactivity
Type Non-functional

Description The algorithm must allow for interactive use.

Rationale For efficient examination, especially of unknown
data sets, the user must be able to interactively
view the data sets from different angles and with
different rendering parameters.

Source Typical requirement for a volume visualisation
technique, see e.g. [KCY93].

Fit criterion Time for rendering a frame must allow interactive
use.

Dependencies Requirement # 1.2 depends on this.

Conflicts High quality renderings may take long to render.

Table 4.4: Requirement “Interactivity”

1.4 Any property can be an entire volume: The algorithm must allow
both properties to be an entire volume, having the same extensions and
comparable dynamic ranges (see table 4.5).

Requirement # 1.4

Use case Examine data set
Name Any property can be an entire volume
Type Non-functional

Description Both properties must be regarded as an entire vol-
ume.

Rationale It is possible that both properties have the same
extension, so the algorithm must support this.

Source In section 3.3.4, it has been shown that it is a fun-
damental conceptual limitation of many existing
techniques to assume that the dependent property
has a much smaller extension than the reference
property.

Fit criterion Must be achieved by design.

Dependencies -

Conflicts -

Table 4.5: Requirement “Any property can be an entire volume”

1.5 Arbitrary properties: As the algorithm should not be restricted to a
particular application domain, it must not be restricted to certain kinds
of properties (see table 4.6):



30 CHAPTER 4. THE NEW DEPENDENT RENDERING ALGORITHM

Requirement # 1.5

Use case Examine data set
Name Arbitrary properties
Type Non-functional

Description The algorithm must not be restricted to data sets
of specific properties.

Rationale The algorithm should be as generally applicable
as possible, therefore it must not be a-priori spe-
cialised to specific properties.

Source Research goal “applicability to data sets of arbi-
trary properties”.

Fit criterion Must be achieved by design.

Dependencies -

Conflicts -

Table 4.6: Requirement “Arbitrary properties”

1.6 Different sizes and resolutions: The algorithm must be able to handle
data sets of different sizes and resolutions (as specified in table 4.7):

Requirement # 1.6

Use case Examine data set
Name Data sets of different sizes and resolutions
Type Non-functional

Description The algorithm must allow the use of datasets of
different sizes and resolutions.

Rationale Data sets from different modalities often have dif-
ferent sizes and resolutions.

Source Own requirement.

Fit criterion Must be achieved by design.

Dependencies -

Conflicts -

Table 4.7: Requirement “Data sets of different sizes and resolutions”

2.0 Relations between properties (use cases “Examine relations between
properties” and “Localise feature relative to other property”): The
user wants to recognise relations between properties and to determine the
values of one property at the location of a feature in the other property (see
table 4.8):



4.3. DEVELOPMENT OF THE DEPENDENT RENDERING ALGORITHM 31

Requirement # 2.0

Use case Localise a feature in one property relative to the other
property. Examine relations between properties

Name Relations between properties
Type Functional

Description The algorithm must allow the user to recognise relations
between properties.

Rationale It is of little value to the user to know that there is
a certain feature in one property unless he also knows
the corresponding values of the other property at the
location of this feature.

Source Use case analysis.

Fit criterion Visual verification, ideally requires a user test.

Dependencies

Conflicts

Table 4.8: Requirement “Relations between properties”

3.0 Localisation of features (use case “Localise finding”): It must be pos-
sible to spatially localise a finding in either property (specified in table 4.9):

Requirement # 3.0

Use case Localise a feature
Name Localisation of features
Type Functional

Description After discovering an interesting feature in one or both
of the properties, the user needs to spatially localise it.

Rationale To fully understand a feature and to start further ac-
tions, it is neccessary to localise it.

Source Use case analysis.

Fit criterion Visual verification, ideally requires a user test.

Dependencies -

Conflicts May conflict with requirement # 1.1.

Table 4.9: Requirement “Localisation of features”

Throughout the remainder of the thesis, these requirements will be regularly referred
to. In the next section, they are employed to develop a new algorithm for the
visualisation of two-dimensional volumes.

4.3 Development of the dependent rendering al-
gorithm

In this section, a new algorithm is developed that is designed to fulfil the require-
ments set in the last section.



32 CHAPTER 4. THE NEW DEPENDENT RENDERING ALGORITHM

In the following, it is assumed that the data sets for both properties are registered on
the same rectangular grid. Furthermore, it is assumed that the reference structure
is given by some representation of the matter of the object. This is a sensible
assumption because this is the property we are most familiar with to look at as
most of the things we see is light reflected by matter and all other properties first
have to be made visible by special aids.

The idea is to start by visualising the reference structure and keeping track of the
depth at which each of the viewing rays becomes fully opaque (the very same point
that is used in early ray termination (originally described in [Lev90], see section
5.1.1.2 for more details) to stop further processing of this viewing ray and to go
on with the next one). The location where a viewing ray gets fully opaque can be
understood as an opaque “wall” the observer cannot look through.

The next step is to render the dependent structure, but stopping the viewing ray
at the “walls” in the reference structure. This is necessary because information
originating from locations behind the reference structure’s “wall” in the dependent
structure cannot be matched with structural information from the reference struc-
ture.

A simple algorithm that represents this process using a ray casting technique is as
follows:

for each pixel in the image:
{
set depth_until_wall to zero
start a viewing ray in the reference structure:
{
initialize colour and opacity
for each sample point on the viewing ray:
{
update colour and opacity
if the ray is fully opaque:
{
set depth_until_wall to the current depth
stop the viewing ray

}
}

}
start a viewing ray in the dependent structure:
{
initialize colour and opacity
for each sample point on the viewing ray:
{
if the current depth equals depth_until_wall:
{
stop the viewing ray

}
update colour and opacity

}
}

compose pixel’s colour from both structures’ viewing rays’ colours
}

The “walls” can be made transparent by changing the opacities assigned to the
materials in the reference structure. So, it is possible to explore regions at different
depths inside the volumes. There are different possibilities for handling the colours



4.3. DEVELOPMENT OF THE DEPENDENT RENDERING ALGORITHM 33

returned by the viewing rays. One approach would be to compose the two rays’
colours to the pixel’s final colour, as indicated in the above algorithm sketch. A
more flexible approach, which is used in the implementation described in section 5,
is to create separate images for both volumes and then fuse these images together
with a user-defined weighting for both images.

A general rendering pipeline for the algorithm is depicted in figure 4.2. This figure
intentionally does not refer to any specific rendering technique: Although the algo-
rithm has been designed with direct volume rendering in mind for rendering both
structures, any rendering technique can be used as long as it is possible to obtain
the depth information from the reference structure and feed this information in the
renderer for the dependent pipeline. It is even imaginable to use different rendering
techniques for both structures.

Reference 
volume

Render 

Dependent 
volume

Render everything
in front of

termination depth

Intermediate
image

Intermediate
image

Image
fusion

Joint
image

Information about 
termination depth

Figure 4.2: The dependent rendering pipeline

This algorithm does not represent a strict mathematical algorithm, so it cannot be
assessed in terms of function errors, error propagation characteristics or precision. It
is assessed by evaluating the results of an implementation against the requirements
derived in section 4.2. To do so, the algorithm has been implemented in two proto-



34 CHAPTER 4. THE NEW DEPENDENT RENDERING ALGORITHM

types and a module for a biomedical imaging platform, which are described in the
next chapter. By evaluating each of these implementations against the requirements,
the algorithm itself is evaluated.



Chapter 5

Implementations

In this section, implementations of the dependent rendering algorithm developed in
chapter 4 are presented. First, two prototype implementations are described and
discussed. Thereafter, a more sophisticated implementation of the algorithm for a
module for a biomedical visualisation platform is described and discussed. Each of
the these implementations is evaluated against the requirements derived in section
4.2.

5.1 Prototype implementations

5.1.1 Initial prototype

5.1.1.1 Motivation

As a proof of concept for the algorithm, an initial prototype has been implemented
and tested with artificial data sets.

The purpose of the first prototype was to analyse whether the algorithm would
be able to fulfil the requirements defined in section 4.2 at all. The speed of the
algorithm was not important.

5.1.1.2 Description of the implementation

This prototype is a straightforward implementation of the dependent rendering vol-
ume rendering pipeline shown in figure 4.2. To improve the performance, the vol-
ume’s normal vectors and gradient magnitudes are pre-calculated. The normal vec-
tors are then encoded into indices to allow the use of a look-up table (LUT) for the
shading (see below). The goal when designing an indexing function for LUTs is to
use as little indices as possible to keep the LUT small while keeping the precision
of the encoded normals as high as possible. The indexing technique used here is a
variation of the technique used in the VolPack volume rendering library [Lac] and
described in [Lac95]. The normal vectors are encoded to 13-bit values using the
following rationale: By definition, any normal vector ~n = (x, y, z) has a magnitude

of 1 =
√

x2 + y2 + z2. It follows ‖z‖ =
√

1− (x2 + y2), therefore only one bit is

35



36 CHAPTER 5. IMPLEMENTATIONS

needed to encode the sign of the z-component of a normal vector. Furthermore,
x2 + y2 ≤ 1, which implies that the vector (x, y) describes a point inside a unity
circle. Thus, the vector (x, y) can be described by an angle φ ∈ [0 . . . 2π] and a

length r ∈ [0 . . . 1] with r =
√

x2 + y2 and φ = signum(y) · arccos
(

x
r

)
. Both r and

φ are encoded with 6 bits each, which has been found to be sufficiently precise (see
[Lac95], chapter 7.1.2).

The core volume rendering engine is based on material weight maps for the material
classification and a pre-calculated colour LUT for the indexed volume normals: The
user can define a set of different materials for the volume. The materials are stored
in a data structure containing information about the voxel values occupied by this
material and the material’s optical properties:

struct Rgb {double red, double green, double blue};
struct Material {

Rgb ambientColour;
Rgb diffuseColour;
Rgb specularColour;
double specularExponent;
double opacity;
int center;
int width;};

The three colours ambientColour, diffuseColour and specularColour and the
value specularExponent describe the colour properties of the material in Phong’s
illumination model (see equation 2.3.2). The opacity of the material is described
by opacity. The values center and width describe by which voxel values the
material is represented: Usually, a material occupies not only one voxel value, but
extends over several values around a centre voxel value. In this implementation, it
is assumed that the probability that a given voxel value belongs to a given material
depends on both this voxel value’s distance to the material’s centre voxel value and
the material’s voxel value width, which describes over how many voxel values the
material is extended to both sides of the centre value. The centre value and the
width are set by the user, either by experimenting with different values or by using
a-priori knowledge about the data set. For each material, a weight map is built. This
weight map contains a factor for each possible voxel value denoting the probability
that a voxel value belongs to the material. The centre voxel value and the voxel
value width must be supplied by the user.

For a material with central voxel value c and width w, where c, w ∈ [0, . . . , 255], the
probability p for voxel value v to be part of this material is calculated as follows:

if
∣∣∣∣c− v

w

∣∣∣∣ > 1 : p(v) = 0 (5.1)

else p(v) = 1−
(
|c− v|

w

)

This equation is plotted in figure 5.1 for materials with different widths and the
same central voxel value. When all materials and their respective weight maps are



5.1. PROTOTYPE IMPLEMENTATIONS 37

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

pr
ob

ab
ili

ty
 

voxel value

width = 50
width = 100
width = 150

Figure 5.1: The material probability equation (see equation 5.1) plotted for
three materials with the same central voxel value (c=100) but different widths
(w={50,100,150})

set, these weight maps have to be normalised such that for no given voxel value the
sum of the different materials’ weights is greater than 1.

This weight map approach is derived from the material percentage volumes technique
described in [DCH88]. It corresponds to the classification branch in Levoy’s classical
volume rendering pipeline (see figure 2.2). The pipeline’s other branch, the shading,
is implemented as follows:

At the beginning of the rendering process, the viewing vector is calculated and the
lights are rotated according to the current viewing direction such that the lights’
direction and magnitude remain constant in image space.

For each material and for each possible normal index, a resulting colour is calculated
by applying the Phong illumination model (see section 2.3.2), using the current
view point vector, the surface normal corresponding to the normal index and the
material’s ambient, diffuse and specular colours.

To avoid the so-called self-occlusion effect (see [MWG98]), the colour is multiplied
by the material’s opacity, this is known as opacity weighted interpolation. The self-
occlusion effect is an error which occurs when interpolating colours and opacities
separately. It causes artifacts such as colour shifting and contributions from empty
space. Using opacity weighted interpolation implies a change in the volume rendering
pipeline, as both branches now are linked (the colours from the shading branch
are multiplied by the opacities from the classification branch to yield the opacity
weighted colours), as shown in figure 5.2. The resulting colour is written to the
colour LUT. Thus, for three colour components (the RGB colour scheme is used),



38 CHAPTER 5. IMPLEMENTATIONS

Acquired values f(x)

Prepared values f(x)

Data preparation

Voxel colors C(x) Voxel opacities α(x)

Shading Classification

Opacity weighting

Opacity weighted colors C’(x)

Ray tracing/resampling

Sample opacity weighted 
colors C’(u)

Ray tracing/resampling

Sample opacities α(u)

Compositing

Image pixels C’(u)

Figure 5.2: Volume rendering pipeline when using opacity weighted interpolation
Source:[MWG98]

m defined materials and i indices for the volume normal encoding, the colour LUT
is a 3 × m × i matrix. Each volume has its own colour LUT, set of materials and
material weight maps.

As sample points on a viewing ray seldom fall on grid points in the volume data
set but in between, the colour at a sample point has to be interpolated from the
surrounding grid points. In this implementation, trilinear interpolation is used. This
method takes a sample point (x, y, z) and calculates the colours for each of the eight
neighbours and interpolates them tri-linearly. A grid point’s colour is calculated
by taking the grid point’s voxel value and surface normal index and calculating the
colour by looking up each defined material’s colours for this normal index from the
colour LUT and multiplying it by the material’s weight from the weight map. The
grid point’s final colour and opacity are the sum of all materials’ weighted colours
and opacities, respectively.



5.1. PROTOTYPE IMPLEMENTATIONS 39

The colours and opacities on the ray are then accumulated using the over operator
as described in section 2.3.2.

To implement the dependent rendering algorithm from section 4.3, both volumes
are traversed with common viewing rays:

for each pixel in the image:
{
start a common viewing ray:
{
initialize colour and opacity for reference structure
initialize colour and opacity for dependent structure
for each sample point on the viewing ray:
{
update colour and opacity for reference structure
if reference structure opacity > threshold:
{
stop the viewing ray

}
update colour and opacity for dependent structure

}
}

compose the pixel’s colour from both structures’ colours
}

For each sampling point on a viewing ray, first the colour and opacity for the ref-
erence volume are calculated and updated. If a viewing ray is nearly fully opaque,
the contributions from further samples do not significantly change the final colour
of the ray. Therefore, the viewing ray can be stopped when its opacity is larger
than a certain threshold, which saves a substantial amount of rendering time. This
technique is called early ray termination and has been introduced in [Lev90]. In
this implementation, the threshold is set to an opacity of 0.97, with 1.0 being fully
opaque and 0.0 fully transparent (this is a little bit more precise than the opacity
of 0.95 reported by [Lev90]).

When the opacity for the reference volume reaches the threshold for the early ray
termination , the viewing ray for both reference and dependent volume is terminated
and the next viewing ray is started. Otherwise the colours and opacities for the
dependent volume are calculated, and the same procedure is started at the next
sample point on the viewing ray.

To test this prototype, a pair of artificial volumes has been created (see figure 5.3
a-d for renderings of these artificial volumes). The reference volume contains two
large hollow cylinders of a high voxel value, which are both surrounded by a grid
of smaller tubes. The dependent volume initially contains only two cubes of a
high voxel value at locations that fall at the centres of the two cylinders in the
reference volume. These data sets may be thought of as a very simple model of
two pots with one heat source in each, surrounded by a cooling system. Using
the cubes from the dependent volume as a constant heat source, a simple heat
distribution is given by Poisson’s equation ∂2T

∂x2 + ∂2T
∂y2 + ∂2T

∂z2 = ρ(x, y, z), where for

the “charge distribution” ρ = − heating
thermal conductivity it is assumed that the heating

is everywhere constant at 1 and the thermal conductivity is equal to the “density”,
i.e. the voxel values from the reference volume. This is an equilibrium problem
and can be solved numerically using the Gauss-Seidel method, which basically tries



40 CHAPTER 5. IMPLEMENTATIONS

to iteratively equalise neighbouring values until the difference of Poisson’s equation
at neighbouring points is below a given threshold. This approach is by no means
physically correct, but is a simple means to create an artificial dependent volume
for testing purposes.

5.1.1.3 Evaluation of the initial prototype

As already mentioned, this initial prototype serves as a proof-of-concept for the
algorithm. Therefore, evaluating the prototype means at the same time evaluating
the viability of the dependent rendering algorithm.

The main goal when designing the algorithm was to be able to localise features in
the dependent structure relative to the reference structure.

A key feature of the dependent rendering algorithm is that it is not possible to see
features of the dependent structure behind “walls” in the reference structure. How
sensible this feature is can be seen in figure 5.3 c: If it had been possible to look
through the green tubes, the (correct) optical impression that the hot parts of the
pots are behind the green tubes would have been destroyed.

A challenge for the algorithm would be to show whether the temperature on the
surface of the pots is constant or not. Displaying the heat distribution only, as
shown in figure 5.3 a, clearly fails to resolve the challenge: Although the general
structure of two warm pots can be recognised, the precise location of features is not
possible, especially the borders of the pots cannot be recognised.

Visualising both structures together using the dependent rendering algorithm, as
shown in figure 5.3 b, nearly solves the problem, but the contributions from the
reference structure are very strong and hide features of the dependent structure.

When using the dependent rendering algorithm and displaying only the dependent
structure, as in figure 5.3 c, the power of the algorithm is clearly visible: No heat
originating from behind the cylinders surface is visible and it is clearly recognisable
that the temperature in the middle of the pots is higher than at the top and the
bottom. The grey parts at the top of both grey tubes are not an artifact or error
but a feature: In the reference structure, the cylinders are classified as being fully
opaque. In the dependent structure, a very low opacity is assigned to the cold parts
(if the cold parts were assigned a high opacity, they would occlude the hot parts)
and a high opacity is assigned to the hot parts. In the grey regions, there is no
contribution from the hot parts in the dependent structure in front of the “wall”
(i.e. the cylinder surface) in the reference structure. Therefore, the viewing ray in
the dependent structure contains only some low opacity samples from the cold parts
and therefore has a colour nearly identical to the background colour. By changing
the voxel values that are classified as being “hot”, the user can explore how the
temperature changes over the cylinder’s surface.

Although the algorithm gives good hints about the localisation of features in the
dependent structure, it cannot provide precise information about which voxel repre-
sents a given feature. For this task, the image gallery technique described in section
3.3.1.1 seems appropriate.



5.1. PROTOTYPE IMPLEMENTATIONS 41

a b

c d

Figure 5.3: Dependent volume rendering. Images created using the initial prototype.

The images show the artificial data sets described in section 5.1.1.3 (the reference property is the
matter distribution and the dependent property the heat distribution of an simulated object). In
image a, only the heat distribution is rendered. In images b,c and d, both properties are rendered.



42 CHAPTER 5. IMPLEMENTATIONS

Thus, for exploring unknown data sets or for searching for features whose location
is unknown, the dependent rendering algorithm seems suitable and superior to all
techniques introduced in section 3.3.

To evaluate the viability of this prototype in a structured manner, the fulfilment of
the requirements defined in section 4.2 is checked.

• Localisation: As shown in figure 5.3, the user can easily and precisely locate
features of the dependent property in relation to the reference property. For a
full understanding of the second property, the user must be familiar with the
first property.

• 3D-impression: The renderings convey a good 3D impression of the structure
of the rendered object, but their quality highly depends on the settings for the
materials. The difficulty of finding appropriate settings for the transfer func-
tions and strategies for efficiently finding appropriate settings are described in
[RT01].

• Arbitrary properties: The reference volume is assumed to be a representa-
tion of the matter distribution. This assumption conforms to the assumptions
made when developing the algorithm in section 4.3. For the dependent vol-
ume, no assumption on what property is represented is made, so arbitrary
properties can be used for the dependent volume.

• Exploration

– No need for segmentation: If volume rendering is used, there is no
a-priori need for segmenting the data sets. By providing facilities for the
user to change the classification of materials in standard volume rendering
techniques, regions of interest can easily be highlighted and other parts
can be faded out. However, if segmented data sets are available, these
can be used.

– Interactivity: This prototype implementation is not interactive, ren-
dering of a pair of 2563 volumes takes about 60 seconds on a standard
1GHz PC. This must be improved.

Thus this requirement is only partially fulfilled: Data sets can be examined
from all directions by rotating the volumes and by changing the material clas-
sifications, arbitrary parts of the volumes can be hidden or highlighted. This
makes it possible to explore unknown data sets. But the rendering time is too
slow for interactive use.

• Relations between properties: For simply localising a feature, it might
be enough to add a coordinate system to the visualisation. But in order to
recognise two properties in relation to one another, it is crucial to visualise
them jointly. This feature is automatically achieved by the algorithm: As
both properties are shown in the same projection image, all local relations are
immediately visible.



5.1. PROTOTYPE IMPLEMENTATIONS 43

• Any property can be an entire volume: From figure 5.3, it can be seen
that the prototype can handle a dependent volume that is extended over the
whole range of the reference volume. In particular, the prototype assumes that
both volumes have the same extensions, so this requirement is fulfilled.

• Different sizes and resolutions of the data sets: As both volumes are
traversed simultaneously with identical viewing rays, both volumes must be
of the same size and the same resolution. If they are not, they must be
transformed to a common grid before rendering. This restriction is not a
general deficiency of the dependent rendering algorithm. The algorithm could
also be implemented such that by using different transforms for the viewing
rays of the two volumes, volumes of different sizes and resolutions can be used.
This option was abandoned because at the time of implementation, all data
sets available to the author were of the same size and resolution.

This evaluation shows that this initial prototype does in fact fulfil the most impor-
tant requirements, especially the localisation of features and the possibility to have
a complete volume for the dependent property. This also implies that the algorithm
itself represents a viable approach to visualise two-dimensional volumes.

The main problem of this prototype is low speed which prevents interactive use.
This solve this problem, a second and faster prototype was developed.

5.1.2 Shear-warp prototype

5.1.2.1 Motivation

The goal of this prototype is to overcome the speed limitation of the initial pro-
totype. Several high-speed volume rendering techniques exist. Some of them need
special hardware, like the VolumePro volume rendering board ([PHK+99], currently
developed and sold by TeraRecon, San Mateo, CA, USA), which is supported by
e.g. the visualisation toolkit VTK (see [Inc], [Sch01]). Other techniques, like texture-
based volume rendering, convert the volume’s slices to textures and use hardware
graphics accelerators for the rendering (see e.g. [VK96]). All techniques that make
use of special hardware have not been considered further for the implementation
because no such hardware was available to the author.

Two techniques that do not depend on special hardware are frequency domain vol-
ume rendering (FVR, see [DNR90], [Mal93], [TL93], [Lic95]) and the shear-warp
technique (see [LL94]).

The FVR technique is based on the projection slice theorem, which says that the
2D image created by taking the line integrals through a 3D volume along rays per-
pendicular to the projection plane, and the 2D spectrum created by extracting a
slice parallel to the projection plane and passing through the origin of the Fourier
transform of the volume, form a Fourier transform pair. The image of line integrals
through a volume is similar to a volume rendered image. Thus, by first Fourier
transforming the volume, then extracting a 2D spectrum through the origin of the
transformed data set and inverse Fourier transforming this spectrum, a projection



44 CHAPTER 5. IMPLEMENTATIONS

similar to volume rendering can be generated. The complexity of volume rendering
a cubical volume with n3 voxels is O(n3) because all voxels must be touched during
rendering. The computationally expensive 3D forward Fourier transform has to be
done only once. For projections to different viewing directions, only the slice with
the 2D spectrum has to be interpolated and inverse Fourier transformed. The 2D
inverse Fourier transform of a slice of n2 samples using the inverse fast Fourier trans-
form (FFT) is O(n2 log n). As the 2D interpolation of the slice from the Fourier
transformed volume is computationally inexpensive compared to the inverse Fourier
transform, the overall complexity of rendering a projection is O(n2 log n). Thus, us-
ing FVR for the rendering is computationally much less expensive than volume ren-
dering in the spatial domain. However, operations like shading and classification are
difficult to use with FVR and changes in the classification require a re-computation
of the forward Fourier transform of the volume, which is computationally expensive.
There are variations of this technique using different transforms to transform the
volume into the frequency domain (see e.g. [Mal93] for a use of the fast Hartley
transform instead of the fast Fourier transform).

The dependent rendering technique relies on the knowledge of the termination of
viewing rays in the reference structure and the ability to stop the viewing rays in the
dependent structure at this termination depth. Unfortunately, the FVR technique
does not provide this information, thus FVR can not be used for dependent volume
rendering.

The shear-warp algorithm does not have the shortcomings of the FVR and has
therefore been chosen for the implementation. It is shortly described, together
with its adaption to the dependent rendering algorithm, in the next section. This
implementation has already been described in ([LM02b]).

5.1.2.2 Description of the implementation

The shear-warp algorithm as described by [LL94] is a high-speed volume rendering
algorithm. The basic idea of this algorithm is to factorise the viewing transform
Mview into three separate transforms:

Mview = P · S ·Mwarp (5.2)

First, the main viewing direction is determined and the coordinate system axes
are permuted such that the z-axis in object space is parallel to the main viewing
direction. This is done using the permutation matrix P . Then, the planes orthogonal
to the main viewing direction are sheared using the shear matrix Mshear. The sheared
data set is projected orthogonally onto an intermediate image plane. This projection
is done front-to-back in a plane by plane fashion. The intermediate image is then
warped using the warp matrix Mwarp to yield the final image. By construction of
the algorithm, scan lines in the intermediate image are parallel to scan lines in the
sheared volume.

The main advantage over the classical image-order ray casting volume rendering
approach as described by [Lev88] is that the volume is traversed slice by slice in
object order (aka. volume order), i.e. voxels are accessed in the order they are stored.
This allows several optimisations, the most important being that coherent runs of



5.1. PROTOTYPE IMPLEMENTATIONS 45

viewing rays

image
plane

volume
slices

shear

project

warp

Figure 5.4: Sketch of the factorisation of the viewing transform (left) into a shear
and a warp transform (right) in the shear-warp algorithm.

Source:[LL94]

transparent voxel run

non-transparent voxel run

opaque image pixel run

non-opaque image pixel run

voxel scanline:

intermediate
image
scanline:

workskip workskip skip

resample and
composite

Figure 5.5: Skipping of transparent voxel runs and opaque pixel runs in the shear
warp algorithm.

Source:[LL94]

transparent voxels (which usually make up a large part of the volume) and voxels
contributing only to opaque pixels can be skipped (see figure 5.5). Furthermore, the
interpolation factors in one slice are constant for all voxels, so they can be computed
for the first voxel of a slice and then reused for all other voxels in this slice.

Besides being very fast, using the shear-warp algorithm appears straightforward
because it uses a map containing the intermediate opacity values for each pixel in
the rendering image to determine the voxel runs that are occluded and can therefore
be skipped. This map can be extended to a depth map to determine whether a given
voxel in the dependent volume has a visible reference in the reference volume.

To use the shear-warp algorithm, the dependent rendering technique has to be
adapted as depicted schematically in figure 5.6: A depth map with one entry for
each pixel in the rendering image is created. First, the reference volume is rendered.
While doing this, the depth map is filled: The first time a pixel becomes opaque,
the depth of the voxels at this step is written to the depth map at the same posi-
tion as the pixel. Then the second property is rendered. To take care of the depth



46 CHAPTER 5. IMPLEMENTATIONS

0

100

D
ep

th
 o

f 
ob

je
ct

Reference property Dependent property

Reference property
pixel scanline

Pixel pr2
Dependent property

pixel scanline
Pixel pd2

Vr2
Vr7

Vd2

Depth map
scanline

Dm 2 Dm 5

83 52 83

Vr5
Vd5

Vd7

Figure 5.6: Shear warp prototype: Interaction of reference volume, depth buffer and
dependent volume.

information while rendering the second property, the aforementioned optimisation
technique of skipping opaque pixels is extended: For each pixel to be updated, it is
first checked if the pixel is opaque. If it is opaque, one skips to the next non-opaque
pixel. If the pixel is not opaque, it is checked whether the current depth is higher
than the corresponding depth in the depth map. If it is not, the pixel is updated as
usual, otherwise the current pixel is marked as opaque. This allows for a seamless
integration into the algorithm for efficient skipping of runs of opaque pixels, which
is described in detail by [LL94].

This depth map approach similar to the classical z-Buffer technique. The conceptual
difference is that the z-Buffer is intended to store the depth of different objects while
the purpose of the depth map is to compare the viewing depth of different properties
of the same object.

Compared to the first prototype implementation described in section 5.1.1, only the
traversal scheme is different, while the same techniques for material classification,
shading and composing are used.

5.1.2.3 Evaluation of the shear-warp prototype

In this section, it is investigated how well the algorithm fulfils the requirements
defined in Section 4.2. Figure 5.7 shows two example images generated by our
implementation using an MRI scan of a human head and an artificial second property
consisting of a small ball of constant density located inside the brain. The reference
volume is an MRI of a human brain (with parts of the skull removed), the dependent



5.1. PROTOTYPE IMPLEMENTATIONS 47

(a) From the right side.

(b) From the bottom.

Figure 5.7: Two example renderings created with the shear-warp prototype. (MRI
data set of the head courtesy of, and copyright by, Mark Bentum).

volume has been artifically created and is meant to represent regions of suspected
tumour localisations. From image (a) it is perceivable that the right sphere from
the second property is farther to the left side of the skull than the other. This is
confirmed by image (b)

As the shear-warp prototype is an enhancement of the first prototype and uses the
same core classification and composing techniques, most of the evaluation results of
the first prototype in section 5.1.1.3 also apply here. Therefore, the following list
only describes the requirements with differing evaluation results.

4.(b) Interactivity: Compared to the first prototype implementation, this imple-
mentation is significantly faster, although it has not been specifically tuned



48 CHAPTER 5. IMPLEMENTATIONS

for efficiency. Nevertheless, on a standard 1GHz-PC workstation with 512
MB RAM running Linux, the rendering of a pair of 2563 volumes takes about
one second. Thus, interactivity is achieved by this implementation. Further-
more, the algorithm is very well suited for parallel or distributed rendering
(see e.g. [Lac96] or [MS98]), which allows for interactive implementations even
for larger volumes.

7. Data sets of different sizes and resolutions: The algorithm allows the
use of differently sized data sets, as long as no data set’s size is larger than
the reference property’s. Different resolutions and even different coordinate
systems for the data sets cause no problems as long as there is a mapping that
allows the use of the depth map generated using the reference data set together
with the other data sets. It is proposed to interpolate bi-linearly between the
coordinate system of the depth map and that of the dependent property’s data
set, and then to decide on a threshold for whether a point is to be considered
as occluded or not.

The technique of using a depth map provides further flexibility: After generating
the depth map by rendering the reference volume, the dependent volume could then
be rendered using another technique like surface rendering, as long as this other
technique appropriately uses the depth map.

5.1.3 Conclusion for the prototypes

The evaluations of the prototypes show that the algorithm fulfils the requirements
defined in section 4.2.

However, the prototypes have been tested only with (at least partially) artificial
data sets. To test whether the algorithm can be used in a real-world environment,
it must be tested in an application with real data. Such an implementation will be
described in the next section.



5.2. IMPLEMENTATION FOR A BIOMEDICAL IMAGING PLATFORM 49

5.2 Implementation for a biomedical imaging plat-

form

5.2.1 Motivation

The prototypes have shown that the dependent rendering algorithm is promising
for the visualisation of multi-dimensional volumes. Therefore, the algorithm should
be implemented in real-word settings and tested with real data. The algorithm has
been implemented as a module for the biomedical image analysis and visualisation
platform of the medical imaging group at the Universidad Politécnica de Madrid
and the Hospital General Universitario Gregorio Marañón in Madrid (HGUGM).
The implementation has already been partially described in [LPDS03].

5.2.2 Extension of the requirements

The HGUGM already uses a custom-made software package for the analysis and
visualisation of biomedical images which has been described in [DLB+99]. For func-
tional imaging, this program is able to handle two registered volumes (usually one
anatomical and one functional volume) at one time, and employs a 2D slice viewer
to jointly visualise these volumes. Typical anatomical volumes are produced by CT
or MRI imaging facilities, while the functional volumes come from fMRI or PET.
To extend the platform, it was decided to implement a module for the joint 3D
visualisation of anatomical and functional data.

The requirements for this implementation can be classified into two groups: Visuali-
sation requirements that describe what the new visualisation module is supposed to
deliver, and environmental requirements that describe requirements and restrictions
that depend on the already existing implementation.

The visualisation requirements were as follows:

• Joint 3D visualisation of functional and anatomical data;

• Improved mental 3D reconstruction of the context;

• Colouring of properties according to a standard colour table: In the already
existing 2D fusion interface, the values of the functional data are represented
by different colours. This colouring scheme must be maintained in the 3D
rendering to allow easy comparisons between the 2D and the 3D visualisations.

The environmental requirements were:

• The module must be easily integrated in the existing platform with as little
changes to the existing code as possible. The platform is written in IDL (In-
teractive Data Language by Research Systems Inc.), a language for processing
and visualising large data sets. IDL includes a GUI widget collection. This
implies that the module has to be written in IDL, too.



50 CHAPTER 5. IMPLEMENTATIONS

• The module must be integrated such that it does not disturb any existing
workflows of the users of platform.

• The module must be easy to use, especially the setting of the transfer functions
for the 3D renderings must be easy to use.

• The implementation must allow interactive use.

In the next sections, the implementation is described.

5.2.3 Description of the implementation

In the following, the newly developed module for the joint visualisation of functional
and anatomical data will be referred to as just the module. It was decided to use
the dependent rendering technique for the module’s core rendering technique as the
prototypes suggest that it can fulfil the visualisation requirements. The reference
volume is given by the anatomical volume and the dependent volume is given by
the functional volume. The existing joint 2D visualisation interface, called fusion

Figure 5.8: Screen shot of the fusion interface’s 2D display widgets.

interface, is shown in figure 5.8. It consists of a special ortho-viewer, i.e. a widget
that displays three orthogonal slices of a volume: Three images are displayed, each
contains a fused image of the same slice from both volumes. The slices for the
three images are orthogonal to one another. The fused slice images are created in
the HSV (Hue-Saturation-Value) colour space by taking the grey level values from
the anatomical volume for the HSV value channel (thus representing the intensity)
and the grey level values from the functional volume for the HSV hue channel (thus
representing the colour). In the HSV colour space, both the saturation and the value
channel have a range from 0 to 100%. The hue values are represented by the angles
0◦ to 360◦ on the HSV colour circle, where 0◦ and 360◦ are red, 120◦ is green, 240◦

is blue, and the other angles represent mixtures between these colours.

The grey level values from the anatomical volume are linearly mapped to the full
range of [0%..100%] for the value in the HSV space. The grey level values from the
functional volume are linearly mapped to [240..0] for the hue in the HSV space, thus



5.2. IMPLEMENTATION FOR A BIOMEDICAL IMAGING PLATFORM 51

creating a smooth colour map from blue for low functional volume values via green
to red for high functional volume values.

Additionally, the HSV saturation channel is set to a user-defined value (with 100%
as default) everywhere where the functional volume is defined and to 0% at all other
points. This effectively prevents the background from taking the colour defined by
the lowest hue value and thus unnecessarily polluting the rendered image. The fusion
interface contains several controls to set the window/level function parameters for
both volumes.

All settings in the fusion interface are applied in real-time.

The new module is integrated in this fusion interface. It is initialised from the
colour and window/level settings in the fusion interface. One of the difficulties in
volume rendering is to find the appropriate volume rendering transfer function, i.e.
the function that maps voxel values, sometimes additionally considering the local
voxel gradient, to colours and opacities. There is no recipe on how to find the
best transfer function for a given volume, and usually a lot of manual fine-tuning
is needed. In [RT01], the most common techniques to find a transfer function are
compared, with no clear recommendation on which technique to use. The module
uses the information already available from the 2D fusion interface to create sim-
ple yet meaningful transfer functions: Assuming that the user already has set the
window/level settings such that the features he is interested in are displayed, the
opacity transfer function for the anatomical volume is initially set to a simple ramp.
For the functional volume, it is usually desirable to give the regions of low function
signal values (which cover the largest part of the data set) very little opacity and
the smaller regions of high activity a high opacity. Therefore, an S-shaped trans-
fer function is employed for the opacity. The function that creates the S-shape is
f(x) = 1+tanh(slope∗ (x−offset)). The position of the S in the vertical direction
can be changed using the parameter offset, while changing the parameter slope,
the slope of the S can changed. Both the centre point and the slope of the S can be
changed by the user (see figure 5.9).

For both volumes, the colour transfer function is a linear ramp, mapping voxel value
to grey levels. Thus, the intermediate images created are grey level images. The
image fusion technique used to fuse these two grey level intermediate rendering im-
ages to a joint image uses the same technique as the existing ortho-viewer described
above to facilitate the comparison of images created using the 2D technique with
those created using the 3D technique.

The transfer functions can be manually edited and fine-tuned to obtain optimal
results.

IDL’s object graphics interface already contains a volume class with an integrated
volume rendering engine. Although this volume rendering engine supports up two
volumes to be rendered at a time, it is not suitable for the dependent rendering
technique, because its composing technique multiplies the contributions of each voxel
in one volume by the contribution of the according voxel in the other volume. Thus,
supposed in the reference structure a voxel is classified as totally transparent, the
contributions from the dependent volume at this location are discarded. Therefore,
IDL’s multi-volume rendering capability is not considered any further.



52 CHAPTER 5. IMPLEMENTATIONS

Figure 5.9: Screen shot of the transfer functions dialogue for the functional volume.
The colour transfer function is a linear grey level ramp, while the opacity transfer function has

the shape of an S. The slope and the offset of the S can be set using the two sliders at the bottom
of the dialogue.

As IDL is a closed source software, it is difficult to integrate a new volume rendering
system into the existing volume class. Although IDL provides functionality to create
external modules in the C programming language and call these from IDL, there
are several reasons to try to use IDL’s built-in volume rendering engine instead of
implementing a new external volume rendering module:

• The integrated renderer automatically interacts with other objects in the scene,
which is important in case any further objects are placed into the scene, e.g. a
3D cursor.

• It is fully integrated in IDL’s rendering and widget system and provides ready
support for the viewing transformations.

• It is highly optimised and provides out-of-the-box symmetric multi-processor
(SMP) support.



5.2. IMPLEMENTATION FOR A BIOMEDICAL IMAGING PLATFORM 53

• A new external module must be ported and tested for each platform it will be
run on, while IDL code is the same on all supported platforms. As at least
two platforms (Linux and Windows) and potentially a third one (Solaris) are
used, this would be a lot of extra work.

First tests of implementing the dependent rendering algorithm in IDL code without
using IDL’s standard volume renderer made this idea look feasible but extremely
slow. Thus a technique to mimic the behaviour of the dependent rendering algorithm
by using the standard IDL volume renderer had to be developed. This can be done

0

100

D
ep

th
 o

f 
ob

je
ct

Reference property Dependent property and 
surface in the same scene

Reference property
pixel scanline

Dependent property
pixel scanline

Vr2
Vr7

Vd2

Z−buffer

Vr5 Vd5

Vd7

Dm 2 Dm 5

83 52 83

Figure 5.10: Biomedical imaging platform: Interaction of reference volume, z-buffer,
background surface and dependent volume.

by using a depth map similar to the one employed in the shear-warp technique
described in section 5.1.2. The technique is depicted schematically in figure 5.10:
The reference volume is rendered first into a frame buffer and it is kept track of
the termination position of the viewing rays using the z-buffer. From the values in
the z-buffer, a totally opaque surface with the colour of the image background is
created. This surface represents the fully opaque “wall” described in section 4.3. A
new scene is created, in which this surface and the dependent volume are placed.
This scene is rendered into a separate frame buffer, with the surface being rendered
first and then the dependent volume. This ensures a proper termination of viewing
rays of the dependent volume at the same depth as in the reference volume.

The difference between this technique and the technique for the shear-warp algo-
rithm shown in figure 5.6 is that for the shear-warp technique, explicit control code
is necessary to stop the dependent volume’s viewing rays when the depth from the



54 CHAPTER 5. IMPLEMENTATIONS

depth map is reached, while in this approach, the viewing rays “automatically” stop
when hitting the opaque surface.

The frame buffers now contain two images which are equivalent to those created by
the dependent rendering technique. These images are then fused to yield the final
joint image.

The resulting rendering pipeline is shown in figure 5.11. Compared with the original

Anatomical 
volume

Create scene with 
anatomical volume 

and render

Functional 
volume

Scene with
background surface

and
functional volume

Render:
surface first,then 
functional volume

Intermediate
image

Intermediate
image

Image
fusion

Joint
image

Z−Buffer

Create totally 
opaque surface

Figure 5.11: Biomedical imaging platform: Adapted dependent rendering pipeline.

dependent rendering pipeline depicted in figure 4.2, there are only small differences
in the handling of the depth map (which is represented by the z-buffer) and the in-
teraction of the depth map and the dependent volume (instead of direct interaction,
an auxiliary surface is created from the z-buffer and placed in one scene with the
dependent volume).



5.2. IMPLEMENTATION FOR A BIOMEDICAL IMAGING PLATFORM 55

5.2.4 Additional requirements and their implementation

During the development, additional requirements evolved, which will be described
in the following, together with their implementation. These requirements reflect
special needs for the visualisation of human brain volumes where the anatomical
volume is an MRI and the functional volume is a PET. The anatomical volumes
contain only the brain, the surrounding skull and tissue have been removed by
initial segmentation.

Visibility of ventricles The ventricles are an important landmark in the anatom-
ical volume. In the 2D slice images, they are clearly discernable, but in volume
renderings of MRI data sets, they are often difficult to locate (they usually have
the same voxel values as the background and are rendered as totally transparent).
In a first approach, the ventricles had been segmented from the data set using a
simple region-growing technique, converted into a coloured polygon and then ren-
dered together with the reference volume. Drawbacks of this technique are that
segmentation takes additional time and that the rendered polygon representing the
ventricles occludes those parts of the brain that are behind the ventricles.

A more convenient and more flexible approach is to use voxel gradient dependent
classification for the volume rendering of the anatomical volume. In this approach,
the classification is based not only on the voxel value, but also on the local gradi-
ent of the voxel. By increasing the contribution of a voxel’s local gradient to its
classification, surface boundaries can be emphasised.

This technique has been introduced by [Lev88] and [DCH88] and is a standard tech-
nique (see [LCN98], pp. 88-95). Unfortunately, it is not supported in a configurable
manner by IDL. Therefore, the gradient for the anatomical volume is pre-calculated
and the volume is weighted by a user-defined factor, thus giving more or less em-
phasis to surface boundaries like the ventricles. The user can change the gradient-
weighting between renderings. Using this technique, the surface of the ventricles
can be highlighted while the parts of the brain surrounding the ventricles are still
visible.

Display of cortex only In functional biomedical imaging, often the most inter-
esting region is the brain’s cortex. Therefore it is desirable to show only the cortex
and not the white matter. Properly segmenting grey from white matter is non-trivial
and usually requires much manual help from experts, therefore this cannot be used
here.

For volume rendering, a non-perfect but sufficient solution is as follows: Grey and
white matter are represented by slightly different voxel values. It is not possible to
fully separate them using a simple voxel value threshold, as the regions overlap and
due to imaging modality imperfections parts of the grey matter contains voxel values
of white matter and vice versa. When using a voxel value threshold such that all
grey matter and parts of the white matter are selected, the still selected white matter
consists mainly of small chunks. During volume rendering, these chunks are nearly
invisible as the contribution of only a few voxels to the rendered image is small.
The gradient-weighting further improves this effect: The gradient is calculated on



56 CHAPTER 5. IMPLEMENTATIONS

the volume before removing the white matter. The border between grey and white
matter is very blurry and the gradient there is very small, which leads to a small
weight for the remaining chunks of white matter.

This threshold is set by the window/level settings of the anatomical volume. While
the standard window/level function clamps all values outside the window to the
values at the respective window boundary, the module sets all values outside the
window to 0. This is depicted in figures 5.12 and 5.13: For a normalised data set
with voxel values between 0 and 1, the input voxel values from the x axis are mapped
through the window/level function to the output voxel values on the y-axis.

Although this approach is very simple, it is efficient, user-friendly and fulfils its
purpose.

1

0

0 1  Window

Level

Figure 5.12: Standard clamped win-
dow/level function

1

0

0 1  Window

Level

Figure 5.13: Window/level function
with values at both borders set to zero
and scaled to the range [0..1]

Interactive 3D cursor To improve the transfer of knowledge from the 3D to the
2D visualisation and vice versa, it is essential to have a marker that is present in
both visualisations. In the 2D ortho-viewer, in each slice, the position of the other
two slices relative to the current slice is indicated by coloured lines. In a similar
fashion, a 3D cursor has been created that indicates the intersection point of the
three 2D slices in the 3D rendering. This 3D cursor is updated interactively from the
position of the slices, i.e. the cursor position can be changed by scrolling through
the slices.

To be interactive, the 3D cursor has been realized using IDL’s “instancing” feature:
Instancing allows static parts of a scene to be rendered once into a buffer and
changing parts to be rendered afterwards. This greatly improves the performance if
the static part is expensive to render while rendering the moving part is cheap. This
is the case here: Rendering the volumes is very expensive, while the cursor consists
of just three lines.



5.2. IMPLEMENTATION FOR A BIOMEDICAL IMAGING PLATFORM 57

Standard cutting features The module has been extended by two cutting fea-
tures: Cutting planes just cut off parts of the volume parallel to the data set bound-
ary surfaces. Cutting cubes allow the user to cut-off a rectangular piece. The planes
that determine the cutting surfaces can be updated from the positions of the slices
in the 2D fusion interface.

5.2.5 Evaluation of the implementation

In this section, some results are presented and discussed. Based on these results,
the implementation is evaluated.

To show the improvements of the 3D approach over the 2D approach, a 2D visuali-
sation in figure 5.16 is compared to a 3D rendering in figure 5.17. The anatomical
volume is an MRI and the functional volume is a PET of a human brain, where
parts have been removed by surgery.

Figure 5.14: 3D rendering with clearly
recognisable ventricles, which can be
used as landmarks for the localisation
of features. This is the same data set
as in figure 5.16.

Figure 5.15: 3D rendering where the
cortex is well recognisable while the
white matter has been renderer trans-
parently. This is the same data set as
in figure 5.8

In the 3D rendering in figure 5.17, the 3D structure of the object is easy to perceive.
The 3D cursor is exactly at the same position as the according slices in the 2D
display, which fulfills the “interactive 3D cursor” requirements from section 5.2.4.

As additional requirements for this implementation (see section 5.2.4), two special
visualisation features were implemented: First, the possibility to recognise the ven-
tricles, which are important landmarks for the localisation of features, in the 3D
renderings. This is shown in figure 5.14. Second, as shown in figure 5.15, it is
possible to highlight the cortex by rendering everything else transparent.

To evaluate this implementation under the aspect of the dependent rendering tech-
nique, the fulfilment of the requirements derived in section 4.2 are evaluated.



58 CHAPTER 5. IMPLEMENTATIONS

Figure 5.16: Two orthogonal slices of two data sets jointly visualised in the classical
2D fused view. The anatomical data set is an MRI, the functional one a PET. Note
the pathological asymmetry in the functional data set.

Figure 5.17: The same data sets as in figure 5.16 jointly rendered in 3D using
dependent rendering. The position of the 3D cursor corresponds to the position of
the slices in the 2D view in figure 5.16.

The requirements can be grouped into requirements that are mostly of a technical
nature and can be tested objectively, and requirements where the evaluation is more
subjective.



5.2. IMPLEMENTATION FOR A BIOMEDICAL IMAGING PLATFORM 59

First, the objectively confirmable requirements are considered:

• No need for segmentation: This implementation assumes the reference
structure to contain only a segmented brain, but the brain does not have to
be further segmented (e.g. the ventricles or the cortex do to not have to be
segmented).

• Interactivity: This implementation allows for interactive use by employing
different magnifications and levels of detail: Images with lower quality are
rendered interactively, while large and detailed images take longer.

• Any property can be an entire volume: This implementation assumes
that both volumes are entire volumes.

• Data sets of different sizes and resolutions must be applicable. This
implementation can handle data sets of different sizes and resolutions (MRI
data sets usually have a higher resolution than PET images), but both volumes
must be interpolated onto a common grid.

• Arbitrary properties: This is a specialised implementation which assumes
an MRI data set describing the anatomy of the brain as reference volume and a
PET or fMRI data set describing functional information as dependent volume.
Nevertheless, this implementation could also be used for other combinations of
properties, but some features (e.g. fixed colour map, the special window/level
function) might then be useless.

So, for these technical requirements, it can be concluded that all are fulfilled, consid-
ering that some requirements (arbitrary properties, no need for segmentation) have
been adapted to fit the users’ demands for this specialised implementation.

The evaluation of the requirements that describe what should be perceivable from the
rendered images is partially subjective. The following is the subjective assessment
of the author, which may be biased due to his involvement in the development of
the proposed algorithm. Different users could also come to different conclusions
for the same rendered image because they have different backgrounds or are more
or less experienced or trained. Techniques for a more reliable assessment of these
requirements are suggested below.

• Localisation: Features found in the 3D rendering can be localised in terms of
surrounding anatomical landmarks (e.g. the ventricles), as can be seen in figure
5.14 To further improve the localisation of features found in the 3D rendering,
the 3D cursor can be moved interactively to the point of interest. The cursor
position is synchronised with the cursor and the position of the slices in the
2D ortho-viewer, which allows for a high-precision localisation. This can easily
be recognised in the example rendering in figures 5.16 and 5.17.

• Relations between properties: As both properties are visualised jointly,
features found in one property can directly be localised relative to features in
the other property, as shown in figures 5.14, 5.15 and 5.17.



60 CHAPTER 5. IMPLEMENTATIONS

• 3D impression: The 3D renderings shown in this section also indicate that
the algorithm can generate images that provide a good impression of the 3D
structure of the object.

These last three requirements are concerned with the quality of the rendered images
in terms of the insight a user can draw from them. To determine the quality of an
image, there are two common approaches [Pra91]:

The image fidelity or technical image quality is determined by comparing the ren-
dered image to an ideal image of the object under study. An example is comparing
renderings of CT data directly to the object under study or to photographs thereof
[HT85]. The comparison to an ideal image can either be performed in an objec-
tive way by using a mathematically defined measure, or in a more subjective way
by visual comparions performed by human users [MHB+00]. This approach is not
applicable for two-dimensional volumes as there exists no ideal joint image (like
a photograph) of two properties of an object: The human eye can only perceive
one property (the light reflected by a matter distribution), but not the other one
(e.g. brain activity).

The intelligibility or diagnostic image quality indicates how well a user can recognise
relevant findings in the image. The evaluation of the intelligibility depends not only
on the rendered image itself, but also on the user, and may therefore be partially
subjective. To determine the intelligibility in an objective manner, blind studies
with a large number of expert users have to be conducted [PH02, PH03]. In the
following, a possible evaluation of the diagnostic image quality of the dependent
rendering algorithm is outlined:

First, an application domain has to be chosen (e.g. functional brain imaging) and
the test questions have to be defined (e.g. “Determine the locations of abnormal
functional values in the brains”, where the term “abnormal” has to be clearly de-
fined). Then, test data sets have to be prepared, either by collecting real data sets or
by using simulated or manipulated data. For each test data set, the correct answers
to each test question have to be known, such that the test data sets can be used as
a ground truth.

The test has to be performed by a significant number of experts. A possibility is to
start with a relative small number of experts and then add experts until the result
statistics do not change significantly any more, i.e. a saturation is reached [Mer03].

For analysing the tests, for example receiver operator characteristics (ROC) can be
determined. A ROC consists of a graph plotting the rate of true positive decisions
(e.g. an existing tumor is identified as a tumor) against the rate of false positive
decisions (e.g. a tumor is identified where there is none). To obtain a measure for
the accuracy of the test, the area under the curve (AUC) for the ROCs can be
determined. The AUC for a ROC is a positive number between 0.0 and 1.0, with
1.0 indicating perfect diagnostic quality and 0.5 indicating a worthless diagnaostic
quality.

Additionally, it could be measured how well an implementation of the dependent
rendering algorithm satisfies the demands of users in a specific application domain.
Such quality assurance is, for example, part of QFD and the Volere framework (see



5.2. IMPLEMENTATION FOR A BIOMEDICAL IMAGING PLATFORM 61

section 4.2). To do so, qualified users from this domain would first be asked to
rate the importance of the requirements derived in section 4.2 and possibly add
new requirements (as described in section 5.2.4). Afterwards, they would be asked
how well the implementation fulfils their expectations. This could be rated, for
example using a four-point Likert scale (e.g. “not satisfied at all” – “hardly satisfied”
– “quite satisfied” – “completely satisfied”) [Rob93]. By weighting the level of
fulfilment by the importance of the requirement, it can be determined how well the
implementation fits the users’ needs.

Such user studies have not been conducted here, for two reasons: First, user studies
with expert users are very costly, both in terms of time as well as financial funding,
and especially the last one was not available. Second, the purpose of the work
presented in this thesis was the development of a new technique, and the results of
user studies “give little or no clues on how to choose parameters, or improve imaging
and visualization procedures.” [PH02, p. 600].

To conclude, this implementation indicates that the dependent rendering algorithm
is a powerful technique to visualise two-dimensional volumes. Especially, using a 3D
cursor synchronised to a conventional 2D slice viewer allows high precision for local-
ising features found in the 3D rendering. In order to obtain an objective evaluation,
an assessment strategy involving expert users has been outlined.



Chapter 6

Conclusion and Outlook

In this chapter, the achievements of this work are shortly presented and an outlook
to possible improvements of the algorithm and new fields of research is given.

6.1 Conclusion

A new algorithm for the joint 3D visualisation of two properties of an object has
been developed. This algorithm is called dependent rendering algorithm, because
one of the properties is visualised in dependency on the other. This algorithm has
been implemented first in two prototypes to test its general viability. Then, it
has been specialised for a biomedical imaging application. For this specialisation,
additional a-priori knowledge about the expected data has been used to improve the
visualisation.

The algorithm has already been evaluated together with the implementations in sec-
tions 5.1.1.3, 5.1.2.3 and 5.2.5. These evaluations have shown that the requirements
formulated initially in section 4.2 are met. The evaluation of the algorithm and all
three implementations can be summarised as follows:

• Localisation: As both properties are visualised jointly, the observer can lo-
calise features in the dependent property in terms of references to the reference
property. The precision of the localisation of features in the reference property
is mainly determined by the quality of the rendering, which in turn depends on
the choice of appropriate volume rendering transfer functions. Additionally,
the implementation for the biomedical imaging platform provides an interac-
tive 3D cursor whose position is also displayed in the 2D interface to allow a
very precise localisation of features (see section 5.2.4 and figure 5.17).

• 3D-impression: The renderings allow an easy mental 3D reconstruction of
the scene. The general 3D impression given by the renderings can be further
improved by using a cutting cube as described in section 5.2.4.

• Arbitrary properties: The algorithm allows the use of arbitrary combina-
tions of properties and makes no a-priori assumptions on the properties used.
However, the implementation for the biomedical imaging platform described
in section 5.2 has been specialised for biomedical imaging with a combination
of anatomical data as reference data and functional data as dependent data.

62



6.1. CONCLUSION 63

• Exploration:

– No need for segmentation: The algorithm does not rely on segmented
data. However, the additional requirements for the implementation for
the biomedical imaging platform (see section 5.2.4) expect a segmented
brain as reference data set.

– Interactivity: The interactivity of the algorithm highly depends on the
implementation and the quality of the images. While the initial proto-
type can clearly not be used interactively, the shear-warp prototype can
be used interactively. For the implementation for the biomedical imag-
ing platform, different zoom and image quality levels can be selected,
such that low to medium quality images can be rendered interactively,
while rendering high quality images takes longer. The prototype imple-
mentation can be parallelised and the IDL volume render used for the
biomedical imaging platform implementation already is parallelised, so
using multi-processor computers can further improve the interactivity.

Although it is possible to use this algorithm to explore unknown data sets,
a-priori knowledge of the general structure of the data sets is recommended
because this facilitates the recognition of features.

• Any property can be an entire volume: In contrast to the existing 3D
visualisation techniques for multiple properties of an object (see section 3.3.3),
the dependent rendering technique not only supports but is explicitely designed
to handle several non-sparse volumes with the same extension. This is an
outstanding novelty of the proposed technique.

• Relations between properties: The spatial relations between the proper-
ties are clearly visible because both properties are displayed simultaneously.

• Data sets of different size and resolution: The algorithm imposes only
two restrictions on the size and resolution of the data sets used: First, no
dependent data set must have a larger spatial extension than the reference
data set, because otherwise there would be regions of the dependent data
without spatial reference. Second, there must be a mapping from the grid
points in each data set to the grid points in the other data sets. However, the
implementations use data sets that have the same size and resolution and that
are registered with one another, because this simplifies the implementation.
Where data sets had a different size and resolution (e.g. PET data sets usually
have a lower resolution than MRI data sets) the data sets with the lower
resolution have simply been mapped to the grid structure of the data set with
the high resolution.

The dependent rendering algorithm can also be regarded as a framework for the
visualisation of two-dimensional volumes. As a framework, the dependent rendering
technique describes how to jointly visualise two volumes using volume rendering
or similar volume visualisation techniques. This aspect of the dependent rendering
technique has already been described in detail elsewhere ([LM02a]).



64 CHAPTER 6. CONCLUSION AND OUTLOOK

Hence, the achievement of the work presented in this thesis is the development
of an algorithm, namely the dependent rendering algorithm, that allows the joint
3D visualisation of two properties of an object. In contrast to existing techniques,
this algorithm is not restricted to specific properties. And most important, this
algorithm allows that the second property is extended over the whole range of the
first property.

6.2 Outlook

There are three major areas for further research related to the work presented in
this thesis.

6.2.1 A field study

The evaluations of the implementations of the dependent rendering algorithm in this
thesis suggest that the technique has advantages over the classical 2D visualisation.
However, it would have exceeded the scope of this work to conduct a field study in
order to determine the diagnostic quality of the proposed algorithm.

To find out whether the technique is useful for daily diagnostic use and which parts
need to be further improved, it is suggested to conduct a broader field study. A
possible evaluation procedure has been proposed in section 5.2.5.

6.2.2 Application to other domains

The dependent rendering algorithm itself is generic and not bound to any specific
application. However, the final implementation described in section 5.2 represents a
specialisation to the domain of biomedical imaging and has been further specialised
to the visualisation of anatomical and functional data, with the anatomical data
coming from MRI and the functional one from PET. It would be interesting to
apply the algorithm to other domains, such as fluid dynamics or heat flow research,
and to determine whether it can be used as-is or whether and how it needs to be
specialised.

6.2.3 Improved image fusion

While the fusion of two images in order to enhance the understanding of one property
of an object is an active field of research, there is little systematic research and
literature about how to merge images in order to simultaneously understand two
different properties ([RSA+94] proposes an pixel interleaving technique to solve this
problem, but encounters a camouflage effect which makes this technique difficult
to use). An example of the former is the fusion of visible-wavelength photographs
with infrared photographs in order to improve the perception of shapes of objects.
This is used e.g. for navigation guidance in aviation, where the goal is to obtain the
best perception of the shapes of objects (see e.g. [Sha99]): The observer does not
need to discern information stemming from visible wavelength photographs from
information stemming from infrared photographs.



6.2. OUTLOOK 65

That implies that information from one modality is allowed to hide information from
the other modality. However, for the work presented in this thesis, it is essential
that the user can exactly tell the source of each piece of information, e.g. to discern
anatomical from functional information.

Another well-researched question is how to discern discrete chunks of information
from a background and on how to mark discrete sets of items by different colours or
markers to discern as many different sets as quickly as possible (see e.g. [Hea96] or,
for a general introduction, [War99]). An application domain for this fusion of data
from different sources is the integration of whether forecast data with other data
like infrastructure maps, which is discussed in [Tre00]. Yet, the findings from this
field cannot be applied here as the values of both properties are changing smoothly
and are distributed over the whole scene.

In the final implementation described in section 5.2, this problem has been solved by
creating the final image in the HSV colour space and encoding the grey level values
of one input image in the HSV value channel and the other in both the HSV hue
and saturation channel. This approach works, but still has deficiencies: The human
perception for changes is not the same for these three channels and furthermore is
not linear in any of the channels. Supposed both source images are normalised to
the range [0..1], this has two implications: First, a change of 0.1 in one source image
is perceived differently in the final image than the same 0.1 change in the other
input image. Second, a change of 0.1 between 0.1 and 0.2 is perceived differently
from the 0.1 change between 0.8 and 0.9. These deficiencies might be compensated
for by using normalisation functions or by using a normalised colour space like CIE
Luv (for an explanation of different colour spaces used in computer graphics, see
[FvDFH96, pp. 563–603] ). For a discussion about the human perception of light
intensity and colour see [War99, pp. 73–148]. For images of a single property,
the problem of finding adequate colour maps has been discussed by e.g. [LH92] or
[RT96]. Recent discussions about the evaluation of the intelligibillity of application
domain specific information of different image fusion techniques can be found in
[TF03] and [PSKR01].

Another, much more distorting problem is the fact that the change in one HSV
channel affects the perception of the other channels. For example, if one source
image sets the HSV hue channel to 240 and the HSV saturation channel to 100%,
the perception of the colour varies together with the HSV value channel set by the
other input image from black (value = 0%) to pure blue (value = 100%). This
means that the perception of the two channels is not separated.

Thus, the problem to solve is: How can the information of two distinct source
images be simultaneously displayed in one final image, given that each source image
contains smoothly changing grey level values, and information from both images
must be clearly perceptible and discernable at all locations in the final image with
the perception of one input image not affecting the perception of the other? To solve
this problem, the development of a colour space that allows at least two channels that
are perceived separately and with scales for the channels that change proportionally
to their perception is proposed.



Bibliography

[CMP99] Steven Conolly, Albert Macovski, and John Pauly. Magnetic resonance
imaging. In Joseph D. Bronzino, editor, The Biomedical Engineering
Handbook, volume 1, chapter 63.1. CRC Press, second edition, 1999.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume ren-
dering. Computer Graphics, 22(4):65–74, August 1988.

[Dim95] Leonid I. Dimitrov. Pseudo-colored visualization of EEG-activities on
the human cortex using MRI-based volume rendering and Delaunay
interpolation. In Yongmin Kim, editor, Medical Imaging 1995: Image
Display, volume Proc. SPIE 2431, pages 460–469, San Diego, California,
1995. SPIE—The International Society for Optical Engineering.

[DLB+99] Manuel Desco, José López, Carlos Benito, Andrés Santos,
P. Domı́nguez, Santiago Reig, Celso Arango, and Pedro G. Bar-
reno. A multimodality workstation in practice. In H.U. Lemke, M.W.
Vannier, K. Inamura, and A.G. Farman, editors, Proceedings Computer
Assisted Radiology and Surgery 1999, pages 218–222. Elsevier, June
1999.

[DNR90] Shane Dunne, Sandy Napel, and Brian Rutt. Fast reprojection of vol-
ume data. In Proceedings of the 1st Conference on Visualization in
Biomedical Computing, pages 11–18. IEEE, 1990.

[FvDFH96] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practise. The systems
programming series. Addison-Wesley, second in C edition, 1996.

[FvKS03] Uwe Flick, Ernst von Kardorff, and Ines Steinke, editors. Qualitative
Forschung. Ein Handbuch. Rowohlt, Hamburg, second edition, 2003.

[GNK+99] David Gering, Arya Nabavi, Ron Kikinis, Eric Grimson, Noby Hata,
Peter Everett, Ferenc Jolesz, and William Wells III. An integrated
visualization system for surgical planning and guidance using image fu-
sion and interventional imaging. In Proceeding of Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), pages 809–819,
September 1999.

[GNK+01] David Gering, Arya Nabavi, Ron Kikinis, Noby Hata, Lauren ODon-
nell, Eric Grimson, Ferenc Jolesz, Peter Black, and William Wells III.
An integrated visualization system for surgical planning and guidance

66



BIBLIOGRAPHY 67

using image fusion and an open MR. In Journal of Magnetic Resonance
Imaging, volume 13, pages 967–975, June 2001.

[Gou71] Henri Gouraud. Continuous shading of curved surfaces. IEEE Trans-
actions on Computers, 20(6):623–629, 1971.

[Hea96] Christopher G. Healey. Choosing effective colours for data visualization.
In Roni Yagel and Gregory M. Nielson, editors, IEEE Visualization ’96,
pages 263–270, 1996.

[HP96] Karl Heinz Höhne and Andreas Pommert. Volume visualization. In
Arthur W. Toga and John C. Mazziotta, editors, Brain Mapping: The
Methods, chapter 17, pages 423–443. Academic Press, San Diego, CA,
1996.

[Hru97] Peter Hruschka. Detailing and deriving system requirements. In Pro-
ceedings of the International Conference and Workshop on Engineering
of Computer-Based Systems, pages 25–32, March 1997.

[HSM99] Georg Herzwurm, Sixten Schockert, and Mellis. Higher customer satis-
faction with prioritizing and focused software quality function deploy-
ment. In Proceedings of the Sixth European Conference on Software
Quality, April 12-16, Vienna, Austria, April 1999.

[HT85] David C. Hemmy and Paul L. Tessier. CT of dry skulls with craniofacial
deformities: Accuracy of three-dimensional reconstruction. Radiology,
157(1):113–116, 1985.

[Inc] Kitware Inc. The visualization toolkit. URL: http://www.vtk.org.

[JFS+00] Pierre Jannin, Oliver J. Fleig, Eric Seigneuret, Xavier Morandi, Mélanie
Raimbault, and Jean–Marie Scarabin. Multimodal and multi-functional
neuronavigation. In H.U. Lemke and al. Editors, editors, Computer
Assisted Radiology and Surgery, pages 167–172, 2000.

[Kau91] Arie Kaufman. Volume Visualization. IEEE Computer Society Press,
first edition, January 1991.

[KCY93] Arie E. Kaufman, Daniel Cohen, and Roni Yagel. Volume graphics.
IEEE Computer, 26(7):51–64, 1993.

[KDG99] Andreas König, Helmut Doleisch, and Eduard Gröller. Multiple views
and magic mirrors - fMRI visualization of the human brain. In Proceed-
ings of Spring Conference on Computer Graphics and its Applications
1999 (SCCG’99), pages 130–139, 1999.

[Lac] Philippe Lacroute. VolPack volume rendering library. URL:
http://graphics.stanford.edu/software/volpack/. Version 1.0beta3.

[Lac95] Philippe Lacroute. Fast volume rendering using a shear-warp factor-
ization of the viewing transformation. PhD thesis, Stanford University,
Stanford, CA, USA, 1995.



68 BIBLIOGRAPHY

[Lac96] Philippe Lacroute. Analysis of a parallel volume rendering system based
on the shear-warp factorization. IEEE Transactions on Visualization
and Computer Graphics, 2(3):218–231, September 1996.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. Computer Graphics,
21(4):163–169, July 1987.

[LCN98] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi. Introduction to
Volume Rendering. Hewlett-Packard professional books. Prentice Hall,
Upper Saddle River, New Jersey, first edition, 1998.

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Computer
Graphics and Applications, 5(4):29–37, May 1988.

[Lev90] Marc Levoy. Efficient ray tracing of volume data. ACM Transactions
on Graphics, 9(3):245–261, July 1990.

[LH92] Haim Levkowitz and Gabor T. Herman. Color scales for image data.
IEEE Computer Graphics and Applications, 12(1):72–80, January 1992.

[Lic95] Barthold B.A. Lichtenbelt. Fourier volume rendering. Technical Report
HPL-95-73, Hewlett Packard Laboratories, July 1995.

[LL94] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation. Computer Graphics,
28(4):451–458, August 1994.

[LM02a] Sebastian Löbbert and Steffen Märkle. Dependent rendering: Visual-
izing multiple properties of an object. In Alfredo Colosimo, Alessan-
dro Giuliani, and Paolo Sirabella, editors, Medical Data Analysis. Pro-
ceedings of ISMDA 2002, volume 2526 of Lecture Notes in Computer
Science, pages 198–209. ISMDA, Springer Verlag, Berlin, Heidelberg,
October 2002.

[LM02b] Sebastian Löbbert and Steffen Märkle. An extension of the shear-warp
volume rendering algorithm for the visualization of multiple proper-
ties of an object. In J.J. Villanueva, editor, Proceedings of the Sec-
ond IASTED International Conference on Visualization, Imaging, and
Image Processing, held September 9-12, 2002 in Malaga, Spain, pages
514–518. IASTED, September 2002.

[LPDS03] Sebastian Löbbert, Javier Pascau, Manuel Desco, and Andrés Santos.
Advanced joint 3d visualization of functional and anatomical data. In
H.U. Lemke, M.W. Vannier, K. Inamura, A.G. Farman, K. Doi, and
J.H.C. Reiber, editors, Proceedings of Computer Assisted Radiology and
Surgery 2003, page 1305. Elsevier, June 2003.

[MA94] Shigeru Mizuno and Yoji Akao. Quality Function Deployment: The
Customer-Driven Approach to Quality Planning and Deployment. Pro-
ductivity Press Inc., April 1994.



BIBLIOGRAPHY 69

[Mal93] Tom Malzbender. Frequency volume rendering. ACM Transactions on
Graphics, 12(3):233–250, July 1993.

[Max95] Nelson L. Max. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 1(2):99–108,
June 1995.

[Mer03] Hans Merkens. Auswahlverfahren, Sampling, Fallkonstruktion, chapter
4.4, pages 286–299. In Flick et al. [FvKS03], second edition, 2003.

[MFOF02] Isabel Harb Manssour, Sérgio Shiguemi Furuie, Śılvia D. Olabarriaga,
and Carla Maria Dal Sasso Freitas. Visualizing inner structures in
multimodal volume data. In 15th Brazilian Symposium on Computer
Graphics and Image Processing (SIBGRAPI 2002), 7-10 October 2002,
Fortaleza-CE, Brazil, pages 51–58. IEEE Computer Society, 2002.

[MHB+00] Michael Meißner, Jian Huang, Dirk Bartz, Klaus Mueller, and Roger
Crawfis. A practical evaluation of popular volume rendering algorithms.
In Proceedings of the 2000 Symposium on Volume Visualization, pages
81–90. ACM Press, 2000.

[MHG00] Lukas Mroz, Helwig Hauser, and Eduard Gröller. Interactive high-
quality maximum intensity projection. In Computer Graphics Forum,
volume 19(3), August 2000.

[MS] MIT Artificial Intelligence Lab and Surgical Planning Lab at Brigham
& Women’s Hospital. Slicer web page. URL: http://www.slicer.org.
Downloaded 2003-11-10.

[MS98] Steffen Märkle and Axel Spikermann. Distributed visualization. how
to improve the quality of medical volume rendering at almost no costs.
In Joaquim Piqueras and Joan-Carlos Carreño, editors, Proceedings of
EuroPACS’98, pages 225–228. EuroPACS-Society, October 1998.

[MWG98] Thomas Malzbender, Craig M. Wittenbrink, and Michael E. Goss.
Opacity-weighted color interpolation for volume sampling. In Proc.
1998 Symposium on Volume Visualization, pages 135–142, New York,
October 1998. ACM. Also as HP Labs Technical Report HPL-97-31.

[NBC+00] Stavri G. Nikolov, Dave R. Bull, Nishan Canagarajah, Mike Halliwell,
and Peter N. T. Wells. Fusion of 2-d images using their multiscale edges.
In Proceedings of the International Conference on Pattern Recognition
(ICPR’00). IEEE, 2000.

[Oes01] Bernd Oestereich. Objectorientierte Softwareentwicklung. Analyse und
Design mit der Unified Modeling Language. Oldenburg, München, Wien,
5th edition, 2001.

[PD84] Thomas Porter and Tom Duff. Compositing digital images. Computer
Graphics, 18(3):253–259, July 1984.



70 BIBLIOGRAPHY

[PEM03] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements en-
gineering and agile software development. In Proceedings of the Twelfth
IEEE Workshops on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises (WETICE’03), Linz, Austria, pages 308–313. IEEE,
June 2003.

[PH02] Andreas Pommert and Karl Heinz Höhne. Evaluation of image qual-
ity in medical volume visualization: State of the art. In Takeyoshi
Dohi and Ron Kikinis, editors, Proceeding of Medical Image Computing
and Computer-Assisted Intervention (MICCAI) 2002, Part II, number
2489 in Lecture Notes in Computer Science, pages 598–605. MICCAI,
Springer, 2002.

[PH03] Andreas Pommert and Karl Heinz Höhne. Validation of medical volume
visualization: A literature review. In H.U. Lemke, M.W. Vannier, A.G.
Farman, K. Doi, and J.H.C. Reiber, editors, Proceedings of Computer
Assisted Radiology and Surgery 2003, pages 571–576. Elsevier, June
2003.

[PHK+99] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer, and
Larry Seiler. The VolumePro real-time ray-casting system. In Alyn
Rockwood, editor, Siggraph 1999, Computer Graphics Proceedings,
pages 251–260, Los Angeles, 1999. Addison Wesley Longman.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Com-
munications of the ACM, 18(6):311–317, June 1975.

[Pra91] William K. Pratt. Digital Image Processing. John Wiley and Sons,
second edition, 1991.

[PSKR01] Nupoor Prasad, Sameer Saran, S. P. S. Kushwaha, and P. S. Roy. Eval-
uation of various image fusion techniques and imaging scales for forest
features interpretation. Current Science, 81(9):1218–1224, November
2001.

[RDC96] C. Rocha, Jean–Louis Dillenseger, and Jean–Louis Coatrieux. Multi-
array EEG signals mapped with three-dimensional images for clinical
epilepsy studies. In Karl Heinz Höhne and Ron Kikinis, editors, Proceed-
ings of the 4th International Conference on Visualization in Biomedical
Computing 1996, number 1131 in Lecture Notes in Computer Science,
pages 467–476. Springer, 1996.

[RKC+01] Nils Riefenstahl, Gerald Krell, Roman Calow, Bernd Michaelis, and
Mathias Walke. A multimodal image fusion framework applied in ra-
diotherapy. In Proceedings of the Fifth International Conference on
Information Visualisation (IV’01), pages 173–180. IEEE Computer So-
ciety, 2001.

[RLF+98] Kelly Rehm, Kamakshi Lakshminaryan, Sally Frutiger, Kirt A. Schaper,
De Witt Sumners, Stephen C. Strother, Jon R. Anderson, and David A.



BIBLIOGRAPHY 71

Rottenberg. A symbolic environment for visualizing activated foci in
functional neuroimaging datasets. Medical Image Analysis, 2(3):215–
226, September 1998.

[Rob93] Colin Robson. Real world research. Blackwell Publishers, 1993.

[RR99] James Robertson and Suzanne Robertson. Mastering the Requirements
Process. Addison-Wesley, London, 1999.

[RSA+94] Kelly Rehm, Stephen C. Strother, Jon R. Anderson, Kirt Schaper, and
David A. Rottenberg. Display of merged multimodality brain images us-
ing interleaved pixels with independent color scales. Journal of Nuclear
Medicine, 35:1815–1821, 1994.

[RT96] Bernice Rogowitz and Lloyd Treinish. How not to lie with visualization.
Computers in Physics, 10:268–274, May/June 1996.

[RT01] Theresa-Marie Rhyne and Lloyd Treinish. The transfer function bake-
off. IEEE Computer Graphics and Applications, 21(3):16–22, May/June
2001.

[Sch01] William J. Schroeder, editor. The Visualization Toolkit User’s guide,
Updated for Version 4.0. Kitware Inc., 2001.

[Sha99] Ravi K. Sharma. Probabilistic Model-based Multisensor Image Fusion.
PhD thesis, Graduate Institute of Science and Technology, Portland,
Oregon, USA, 1999.

[SLPB96] D. Schwartz, D. Lemoine, E. Poiseau, and C. Barillot. Registration of
MEG/EEG data with 3d MRI: Methodology and precision issues. Brain
Topography, 9:159–166, 1996.

[SPHW02] Bernhard Sturm, Kimerly A. Powell, Sandra Simon Halliburton, and
Richard D. White. Image fusion of 4D cardiac CTA and MR images. In
30th Applied Image Pattern Recognition Workshop (AIPR 2001), Anal-
ysis and Understanding of Time Varying Imagery, 10-12 October 2001,
Washington, DC, USA, Proceedings, pages 21–24. IEEE Computer So-
ciety, 2002.

[TF03] Alexander Toet and Eric M. Franken. Perceptual evaluation of different
image fusion schemes. Displays, 24(1):25–37, 2003.

[TL93] Takashi Totsuka and Marc Levoy. Frequency domain volume rendering.
In Proc. SIGGRAPH ’93, pages 271–278. ACM, August 1993.

[TOW+03] Florin Talos, L. O’Donnell, C.-F. Westin, Simon Warfield, Willian Wells
III, S.S. Yoo, L. Panych, A. Golby, H. Mamata, S. Maier, P. Ratiu,
C. Guttmann, P. Black, Ferenc Jolesz, and Ron Kikinis. Diffusion ten-
sor and functional MRI fusion with anatomical MRI for image-guided
neurosurgery. In Sixth International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI’03), pages 407–
415, Montreal, Canada, November 2003.



72 BIBLIOGRAPHY

[Tre00] Lloyd Treinish. Visual data fusion for applications of high-resolution
numerical weather prediction. In Proceedings of the IEEE Computer
Society Visualization 2000, pages 477–480, October 2000.

[TT88] Jean Talairach and Pierre Tournoux. Co-Planar Stereotaxic Atlas of
the Human Brain. Thieme Medical, New York, 1988.

[VK96] Allen Van Gelder and Kwansik Kim. Direct volume rendering with
shading via three-dimensional textures. In Proceedings of the 1996 Sym-
posium on Volume Visualization, pages 23–ff. IEEE Press, 1996.

[Vog97] Helmut Vogel. Gerthsen Physik. Springer, 19th edition, 1997.

[War99] Colin Ware. Information Visualization: Design for Perception. Aca-
demic Press, first edition, 1999.

[Wes89] Lee Westover. Interactive volume rendering. In Proceedings of the
Chapel Hill Workshop on Volume Visualization, pages 9–16, May 1989.

[WTT+02] Simon K. Warfield, Florin Talos, Alida Tei, Aditya Bharatha, Arya
Nabavi, Matthieu Ferrant, Peter Mc. Black, Ferenc A. Jolesz, and Ron
Kikinis. Real-time registration of volumetric brain MRI by biomechan-
ical simulation of deformation during image guided neurosurgery. In
Computing and Visualization in Science, volume 5(1), pages 3–11, Hei-
delberg, 2002. Springer.

[Yag93] Roni Yagel. Volume viewing: State of the art survey. ACM SIGGRAPH
‘93 Volume Visualization Course Notes, 1993.


	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Research question and motivation
	Outline of the thesis

	The background: Volume rendering
	Volumetric data sets
	Voxel representation
	Volume visualisation
	Visualisation techniques for volumetric data sets
	Volume rendering


	Multi-dimensional volumes
	Definition of terms
	Property and feature
	Multi-dimensional volume
	Multi-dimensional vs. multi-modal volumes

	Origins and applications of multi-dimensional volumes
	State of the art
	2D approaches
	2D Image gallery
	Interactive orthogonal slice viewers for fused images
	Evaluation of 2D techniques

	Hybrid 2D/3D approaches
	The corner cube approach
	The slicer approach
	Evaluation of hybrid 2D/3D techniques

	3D approaches
	Surface rendering
	Direct volume rendering (DVR)

	Summary of the current techniques


	The new dependent rendering algorithm
	Reference and dependent structures
	Requirements for an improved algorithm
	Development of the dependent rendering algorithm

	Implementations
	Prototype implementations
	Initial prototype
	Motivation
	Description of the implementation
	Evaluation of the initial prototype

	Shear-warp prototype
	Motivation
	Description of the implementation
	Evaluation of the shear-warp prototype

	Conclusion for the prototypes

	Implementation for a biomedical imaging platform
	Motivation
	Extension of the requirements
	Description of the implementation
	Additional requirements and their implementation
	Evaluation of the implementation


	Conclusion and Outlook
	Conclusion
	Outlook
	A field study
	Application to other domains
	Improved image fusion


	References



