
 

Modeling of magnetized expanding plasmas

Citation for published version (APA):
Peerenboom, K. S. C. (2012). Modeling of magnetized expanding plasmas. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Applied Physics and Science Education]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR733452

DOI:
10.6100/IR733452

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR733452
https://doi.org/10.6100/IR733452
https://research.tue.nl/en/publications/27239bb1-94b8-4a81-b1bb-71a192af5a80


Modeling of Magnetized Expanding
Plasmas

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn,
voor een commissie aangewezen door het College voor Promoties

in het openbaar te verdedigen
op donderdag 5 juli 2012 om 16.00 uur

door

Kim Stephanie Cathelijn Beks-Peerenboom

geboren te Eindhoven



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. G.M.W. Kroesen
en
prof.dr. W.J. Goedheer

Copromotor:
dr.ir. J. van Dijk

CIP-DATA TECHNISCHE UNIVERSITEIT EINDHOVEN

Beks-Peerenboom, Kim Stephanie Cathelijn

Modeling of Magnetized Expanding Plasmas / by Kim Beks-Peerenboom. -
Eindhoven : Technische Universiteit Eindhoven, 2012. - Proefschrift.

A catalogue record is available from the Eindhoven University of
Technology Library.
ISBN: 978-90-386-3177-6
NUR 928
Subject headings: plasma physics / plasma modeling / computational fluid
dynamics / Stefan-Maxwell equations / fusion

Copyright c© 2012 Kim Beks-Peerenboom

All rights reserved. No part of this book may be reproduced, stored in
a database or retrieval system, or published, in any form or in any way,
electronically, mechanically, by print, photo-print, microfilm or any
other means without prior written permission of the author.

Printed by Ipskamp Drukkers B.V.



Contents

1 Introduction 1
1.1 Fusion energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Modeling of Magnum-PSI . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Magneto-hydrodynamic equations 5
2.1 Conservation equations . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Mass and charge conservation . . . . . . . . . . . . . . . . . . 6
2.1.2 Momentum conservation . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Energy conservation . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Transport fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 The isotropic case . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The anisotropic case . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Final form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Numerical strategies 13
3.1 Numerical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Finite volume discretization . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Scalar convection-diffusion equations . . . . . . . . . . . . . . 15
3.2.2 Systems of convection-diffusion equations . . . . . . . . . . . 18

3.3 Source term linearization . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 The source dominated limit . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Linearization of the chemical sources . . . . . . . . . . . . . . 23
3.3.3 Linearization of the energy sources . . . . . . . . . . . . . . . . 25

3.4 Iteration and underrelaxation . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Matrix conditioning and solving . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Multicomponent diffusion in neutral mixtures 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Continuity equations and constraints . . . . . . . . . . . . . . 31
4.2.2 Stefan-Maxwell equations . . . . . . . . . . . . . . . . . . . . . 32



iv CONTENTS

4.3 The flux diffusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Calculation of M̃ . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Calculation of D̃ . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Calculation of R . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Analytical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Discrete mass conservation . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Test case: Mixing of H2O, H2 and N2 . . . . . . . . . . . . . . . . . . . 42
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Ambipolar diffusion 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Constraints and singularities . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 The ambipolar diffusion matrix . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Analytical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Discrete mass and charge conservation . . . . . . . . . . . . . . . . . . 53
5.7 Test case: drift in a H, H+, electron mixture . . . . . . . . . . . . . . . 55
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Diffusion in magnetized plasmas 57
6.1 Stefan-Maxwell equations in a magnetic field . . . . . . . . . . . . . . 58

6.1.1 Along, across and around the field lines . . . . . . . . . . . . . 58
6.1.2 The quasi-neutrality constraint . . . . . . . . . . . . . . . . . . 61

6.2 Analytical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Supersonic expansion of argon in Magnum-PSI 65
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Underexpanded jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3 The SIMPLE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3.1 Incompressible flows . . . . . . . . . . . . . . . . . . . . . . . 69
7.3.2 Compressible flows . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 Numerical model of the source and the expansion . . . . . . . . . . . . 74
7.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.5.1 The free expansion . . . . . . . . . . . . . . . . . . . . . . . . 76
7.5.2 Shock position . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.5.3 Influence of nozzle geometry . . . . . . . . . . . . . . . . . . . 79

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Effects of magnetization on the expanding argon jet 83
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Numerical model for the magnetized expansion . . . . . . . . . . . . . 83

8.2.1 Anisotropic transport coefficients . . . . . . . . . . . . . . . . 84
8.2.2 Flow field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2.3 Electromagnetic field . . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS v

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3.1 Flow field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3.2 Potential distribution . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.3 Source output . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9 The expanding hydrogen plasma - comparison with experiments 93
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 Setup and operating conditions . . . . . . . . . . . . . . . . . . . . . . 94
9.3 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.4.1 Comparison to pressure measurements . . . . . . . . . . . . . 97
9.4.2 Comparison to I-V measurements . . . . . . . . . . . . . . . . 97
9.4.3 Comparison to Thomson measurements . . . . . . . . . . . . 99

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10 General conclusions 103

A Linear algebra overview 105
A.1 The generalized inverse . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2 Oblique projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

List of symbols 109

Bibliography 111

Abstract 117

Dankwoord 119

Curriculum Vitae 121



vi CONTENTS



Chapter 1

Introduction

1.1 Fusion energy

Climate change, shortage of fossil fuels and geopolitical considerations pose the need
for alternative energy sources. Nuclear fusion energy could possibly provide this alter-
native for fossil fuels. One of the methods to generate fusion is based on the magnetic
confinement of the fusion plasma. This method underlies the ITER [1] project, which
aims to demonstrate the feasibility of fusion power. However, for fusion power to
become a success, many difficulties still have to be overcome. One of the issues is the
Plasma Surface Interaction (PSI) in the exhaust, the divertor, of the fusion reactor. A
photograph of a divertor can be seen in Figure 1.1.

Figure 1.1: Divertor plates in the bottom of JET, currently the largest device producing fusion
relevant plasmas. Photograph from EFDA (European Fusion Development Agreement).

The task of the divertor is to remove helium, the end product of the fusion reac-
tion, and other impurities from the fusion plasma, since they cool down the plasma
and dilute the deuterium-tritium fuel mixture. To this end, the magnetic field is con-
figured to have closed field lines within the so-called ‘separatrix’ and open field lines
outside the separatrix, see Figure 1.2. The plasma in the center of the reactor is thus
confined, while the edge of the plasma is in contact with the divertor plates.
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Open magnetic field line

Separatrix

Closed magnetic field line

Divertor plates

Figure 1.2: Separatrix. The magnetic field lines are closed within the separatrix and open
outside the separatrix.

In the divertor, the wall of the fusion reactor is exposed to very high flux den-
sities (1024 ions m−2s−1) and energy fluxes (10 MW/m2), despite the relatively low
temperature (<10 eV) [2]. Due to the high heat flux, problems as melting and evap-
oration can occur. The particle fluxes can cause chemical and physical erosion and
retention of fusion fuels by implantation or redeposition of eroded materials. These
issues may limit the operational lifetime of the fusion reactor and can reduce fusion
performance, since the eroded materials cool down the fusion plasma.

1.2 Modeling of Magnum-PSI

To obtain insight in the chemical and physical processes in the divertor, the lin-
ear plasma experiment Magnum-PSI (Magnetized Plasma Generator and Numerical
Modeling for Plasma Surface Interaction studies) has been built at the FOM Insti-
tute for Plasma Physics in Rijnhuizen. In Figure 1.3, a side view of the Magnum-PSI
experiment can be seen. The plasma in Magnum-PSI is created by a cascaded arc
[3, 4] plasma source. After the source the plasma enters a vacuum chamber which is
surrounded by a superconducting (3 Tesla) magnet to confine the plasma beam. In
the target analysis chamber materials exposed to the plasma beam can be analyzed.

There have been a number of simulations with different codes on different as-
pects of Magnum-PSI. Simulations of the expansion into the source chamber have,
for example, been carried out with gas dynamics and MagnetoHydroDynamic (MHD)
approaches [5]. The interaction of the plasma with the target is modeled with Molecu-
lar Dynamics (MD) [6, 7, 8]. The plasma in the heating chamber and around the tar-
get have been modeled with the B2-EIRENE and B2.5-EUNOMIA codes [9, 10]. These
codes use a fluid dynamic approach for the charged particles and a Monte Carlo solver
for the neutrals. They can give a detailed description of the plasma in front of the tar-
get, but are less suited for simulation of the plasma source and expansion of the
plasma into the source chamber.
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Figure 1.3: The Magnum-PSI experiment. The total length of the setup is about 15 meter. At
the left the plasma is created by a cascaded arc. The magnet was not yet installed when this
picture was made.

1.3 Outline

The focus of this thesis is the development of a numerical model for studying the
plasma creation in the source and the consecutive magnetized expansion in Magnum-
PSI. The numerical model is constructed using the modeling platform Plasimo [11].
In Chapter 2, the fluid equations describing the plasma are derived. The numerical
strategies for solving these equations are introduced in Chapter 3. Special attention
is is paid to the system of continuity equations for the species in the plasma. To deal
with the coupling between the species, a new finite volume discretization method
is introduced to discretize this system of coupled continuity equations. Addition-
ally, source term linearization of strong chemical sources, necessary for plasma near
chemical equilibrium, is discussed.

To describe the behavior of the different species in the whole range of condi-
tions in the magnetized expanding plasma – from gas to fully ionized, from non-
magnetized to strongly magnetized – a multicomponent diffusion description is
needed. Multi-component diffusion is discussed in Chapters 4, 5 and 6. We start
by first considering a mixture with only neutral species in Chapter 4. For numerical
stability, the mass constraint is not explicitly applied. Instead, all species mass frac-
tions are treated as independent unknowns and the mass constraint is a result of the
continuity equations, the boundary conditions, the diffusion algorithm and the new
discretization scheme from Chapter 3. With this method, the mass constraint can be
satisfied exactly, although it is not explicitly applied.
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In Chapter 5, this method is extended to ambipolar plasmas with charged species.
In addition to the mass constraint, there is now also a charge constraint. Further-
more, the diffusion algorithm is coupled to the electromagnetic calculation in case of
ambipolar plasmas. Since mass and charge conservation constraints are not applied
a priori, utmost care has to be taken in this coupling to obtain a consistent set of
equations.

In magnetized plasmas, discussed in Chapter 6, multicomponent diffusion be-
comes even more involved since the flow directions across and around the magnetic
field lines are coupled by the Lorentz force. Coupling is taken into account by using
complex arithmetic in the diffusion algorithm.

With the numerical model, a number of case studies are carried out. Chapter 7
presents a study of an unmagnetized argon arc to validate the flow calculation. Addi-
tionally, the effect of the nozzle geometry on the plasma beam is studied. In Chapter
8 the argon model is extended with a magnetic field. The effect of this magnetic
field on the flow pattern and plasma production is investigated. Chapter 9 presents
a model of the expanding hydrogen plasma in a magnetic field. The results of this
model are compared to experiments on Pilot-PSI, the forerunner of Magnum-PSI.
Finally, the conclusions are summarized in Chapter 10.



Chapter 2

Magneto-hydrodynamic equations

The description of the magnetized plasma in this thesis is based on the multi-fluid
approach. The conservation equations in this multi-fluid approach are derived from
the Boltzmann transport equation which gives the density distribution of particles in
phase space. By taking successive moments of the Boltzmann transport equation,
conservation equations for mass, charge, momentum and energy are obtained.

The species distribution function fi(~r, ~w, t) is defined such that the number of
particles of species type i within a volume element d~r around ~r and within a velocity
space element d~w around ~w at time t is given by fi(~r, ~w, t)d~rd~w. The evolution of the
distribution function in time can be described by the Boltzmann transport equation
[12, 13]:

∂fi
∂t

+ ~w · ∇~rfi +
~Fi
mi
· ∇~wfi =

(
∂fi
∂t

)
c

, (2.1)

where the first term on the left hand side represents the temporal evolution, the sec-
ond term the change because of spatial gradients and the third term describes the
change in the distribution function due to forces ~Fi acting on the species of mass
mi. The gradient operator in position space is denoted by ∇~r, whereas ∇~w gives
the gradient operator in velocity space. The right hand side gives the source term
for the distribution function due to elastic and inelastic processes like excitation and
de-excitation.

2.1 Conservation equations

We consider a multicomponent medium composed of different species i with num-
ber densities ni, massesmi and velocities ~ui. The species’ mass densities are denoted
as ρi = nimi. The total mass density of the plasma is then defined by:

ρ =
∑
i

ρi, (2.2)

and the species mass fractions by:

yi =
ρi
ρ
. (2.3)
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By their definition, the species mass fractions should obey the following mass con-
straint: ∑

i

yi = 1. (2.4)

The mass averaged velocity field ~v is defined as:

~v =
∑
i

yi~ui. (2.5)

The diffusion velocity ~vi of species i is defined as the species velocity relative to the
mass averaged velocity field, i.e.,

~vi = ~ui − ~v. (2.6)

From the definition of the mass averaged velocity field it follows that∑
i

yi~vi =
∑
i

yi~ui −
∑
i

yi~v = ~0. (2.7)

We will refer to this constraint on the diffusion velocities as the mass flux constraint.

2.1.1 Mass and charge conservation

Mass conservation on the species level can be described by the species continuity
equations. The species continuity equations are obtained by multiplication of (2.1)
with mi and integration over velocity space:

∂ρyi
∂t

+∇ · (ρyi~v) +∇ · (ρyi~vi) = miωi, (2.8)

where ωi is the density production rate of species i due to volume production pro-
cesses. Summation of equation (2.8) over all species gives the global mass balance of
the plasma:

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.9)

where the right hand side is zero since no net mass is created in chemical reactions.
Likewise, the global charge balance can be obtained by multiplication of (2.8) by qi/mi

and summation over all species:

∂ρσc

∂t
+∇ ·~j = 0, (2.10)

with σc =
∑

i qiyi/mi and ~j =
∑

i niqi ~ui the current density. Again, the right hand
side is zero since no net charge is created in chemical reactions. It can be seen that
charge density can only build up when the current is not divergence free. This charge
density leads to an electric field, which can be calculated from Poisson’s equation:

∇2φ = −ρσc/ε, (2.11)
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with φ the electrostatic potential and ε the permittivity. The typical length scale over
which charge separation is present is called the Debye length λD [14, chapter 3, sec-
tion 2]. In plasmas where λD is small, resolving the charge density σc is not very
efficient, since it requires excessively fine meshes. In these plasmas, it is more ap-
propriate to consider the electric field in the limit of vanishing Debye length. In the
limit of vanishing Debye length, the plasma becomes quasi-neutral: σc = 0. The
electric field necessary to maintain this situation is called the ambipolar field ~Eamb.
The assumption of an ambipolar plasma puts extra constraints on the mass fractions
and the diffusion velocities. Ambipolar diffusion will be the topic of Chapter 5.

2.1.2 Momentum conservation

The first moment of the Boltzmann Transport equation, the momentum balance, is
obtained by multiplying (2.1) by mi ~w and integrating over velocity space:

∂ρi~ui
∂t

+∇ · (ρi ~ui ~ui) = −∇p∗i −∇ · π
∗
i + ~RFi + ~Fi, (2.12)

where the term ~RFi is the friction force which gives the momentum exchange be-
tween species i and all the other species due to collisions. The term ~Fi represents the
volume forces, for example, the electric field, magnetic field or gravitational field. The
pressure and viscous stress tensor are given by p∗i and π∗i , respectively. The ∗ means
that the pressure and viscous stress tensor are defined in the system of species i and
give the rate at which momentum is transferred across a surface moving with the
mean velocity ~ui of the species. In contrast, the quantities pi and πi give the rate at
which momentum is transferred across a surface moving with the mass averaged ve-
locity ~v. As a consequence, summation of p∗i and π∗i over all species i does, in general,
not give the total pressure p and viscous stress tensor π. The pressure and viscous
stress tensor can be transformed to the bulk system via [12, 13]:

(πi)kl − (π
∗
i )kl = nimi

(
〈(~ci)k〉〈(~ci)l〉 −

1

3
〈ci〉2δkl

)
, (2.13)

pi − p∗i =
1

3
nimi〈ci〉2, (2.14)

with ~ci the peculiar velocity of a particle of species i with respect to the bulk velocity
and 〈〉 denoting integration over velocity space. Summation of the transformed pres-
sure and viscous stress tensor does yield the total pressure p and viscous stress tensor
π: ∑

i

πi = π, (2.15)∑
i

pi = p. (2.16)

Since in a collision dominated plasma the differences between the two velocity rep-
resentations are small [12], the viscous stress tensor and pressure in the bulk velocity
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frame can be substituted in (2.12). Summation of the momentum balances over all
species gives the global momentum balance or Navier-Stokes equations:

∂ρ~v

∂t
+∇ · (ρ~v~v) = −∇p−∇ · π +~j × ~B + ρσc ~E, (2.17)

with ~B the magnetic field and ~E the electric field. The global momentum balance
is solved together with the mass balance (2.9) to calculate the velocity field and the
pressure. The solution procedure of these flow equations is explained in Chapter
7. The species momentum balances (2.12), are often not solved in the multi-fluid
approach. Instead, the diffusion velocities necessary for solving (2.8), are calculated
from a simplified version of (2.12). In this thesis we will use the Stefan-Maxwell
diffusion model, which will be further discussed in Section 2.2 and Chapters 4, 5 and
6.

2.1.3 Energy conservation

The second moment of the Boltzmann Transport equation, the energy balance, is
obtained by multiplying (2.1) by 1

2miw
2 and integrating over velocity space. Written

in terms of the species specific enthalpy hi the energy balance for species i reads:

∂

∂t
(ρyihi) +∇ · (ρ~vyihi) +∇ · ~qi + π : ∇~v − ~v · ∇pi = Qi, (2.18)

with ~qi the heat flux andQi the exchange of heat between the different species. When
it is assumed that the specific heat of a species is constant over temperature, the
specific enthalpy hi of species i can be written as:

hi = h0i + cpiTi, (2.19)

with h0i the specific enthalpy of formation at reference temperature T0, cpi the specific
heat of the ith species and Ti the temperature of species i. The assumption that cpi
is constant is not a fundamental restriction. In cases where the assumption that cpi
is constant is not accurate enough, it is possible to use accurate polynomial fits from
literature. Note that there are no source terms explicitly describing the energy gain
or loss through inelastic processes in equation (2.18). These loss terms are hidden in
the transport terms ∇ · (ρ~vyihi), ∇ · ~qi and Qi. The source terms will appear when
we rewrite equation (2.18) in terms of the temperature.

In practice, the energy balances are not solved for all species separately. It is
assumed that the electrons, due to their light mass, will pick up the energy of electro-
magnetic fields QOhm and that viscous dissipation can be neglected for the electrons.
By collisions, electrons transfer part of their energy to the heavy particles. However,
due to the ineffective energy transfer between the electrons and the heavy particles,
the electron and heavy particle temperature will differ. Therefore, separate balances
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are solved for the electron and the heavy particle enthalpy:

∂

∂t

∑
i 6=e

ρyihi

+∇ ·

∑
i 6=e

ρ~vyihi

 = −∇ · ~qh − π : ∇~v + ~v · ∇ph +Qeh,

∂

∂t
(ρyehe) +∇ · (ρ~vhe) = −∇ · ~qe + ~v · ∇pe +QOhm −Qeh,

(2.20)

where ~qh is the heavy particle heat flux, ~qe the electron heat flux, ph and pe the heavy
particle and electron partial pressure respectively and Qeh the energy exchange be-
tween the electrons and the heavy particles.

To solve for the heavy particle and electron temperatures Th and Te, the balances
(2.20) need to be rewritten in terms of the temperatures, rather than the enthalpies.
However, to do so, the expressions for the heat fluxes ~qe and ~qh must be known. The
expressions for the transport fluxes will be discussed in the next section.

2.2 Transport fluxes

To close the system of equations for mass, momentum and energy transport, the
diffusion velocities ~vi, the viscous stress tensor π and the heat fluxes ~qe and ~qh must
be specified. They are defined as:

~vi = 〈~ci〉,

(πi)kl = −nimi〈(~ci)k(~ci)l −
1

3
ci

2δkl〉,

~qi =
1

2
nimi〈c2i~ci〉.

Note that the influence of the internal degrees of freedom on the transport fluxes is
not taken into account in a formal way. However, the internal degrees of freedom
are taken into account in the calculation of the heat capacity in a more pragmatic
way, as in [15]. Above expressions are not useful for simulation purposes. Instead,
expressions for the transport fluxes in terms of yi, ~v, Te and Th are required. Since
the distribution function fi is normally not known, approximations to the distribution
function have to be made to obtain manageable expressions for the fluxes. When the
plasma is in equilibrium, there are no gradients in the composition, velocity and
temperature of the plasma. In this case the distribution function is given by the
Maxwellian distribution:

fi = ni (mi/2πkT )3/2 exp
(
−miv

2
i /2kT

)
. (2.21)

When the plasma is not in equilibrium, the distribution function fi satisfies the Boltz-
mann transport equation as given in (2.1).

If the conditions in the plasma are only slightly different from equilibrium, the
distribution function is nearly Maxwellian and a perturbation method can be used to
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solve the Boltzmann transport equation (2.1). The solution can then be used to obtain
expressions for the fluxes and the transport coefficients. Only in near-equilibrium
conditions the usual definitions for the transport coefficients are valid, which means
that the fluxes are linear in the gradients of the composition, velocity and tempera-
ture.

2.2.1 The isotropic case

In an unmagnetized plasma, the first approximation in the Chapman-Enskog expan-
sion gives the following expression for the diffusion velocity [16]:

~vi = −
∑
j

Dij
~dj , (2.22)

where Dij is the multicomponent diffusion coefficient matrix and ~di is the diffusion
driving force for species i. The diffusion driving force is given by:

~di = ∇xi + (xi − yi)
∇p
p

+
ρ

p

∑
j

yiyj

(
~bi −~bj

)
, (2.23)

where xi is the mole fraction of species i and ~bi the body force acting on species i.
The viscosity tensor is given by the following expression:

π = −µ
(
∇~v + (∇~v)T − 2

3
∇ · ~vI

)
, (2.24)

where µ is the dynamic viscosity. Finally, the heat flux can be expressed as:

~qh = −λh∇Th +
∑
i 6=e

ρyihi~vi (2.25)

~qe = −λe∇Te + ρyehe ~ve, (2.26)

with λh and λe the heat conductivity of the heavy particles and the electrons, respec-
tively. With these expressions for the heat flux, we can now rewrite the enthalpy
balances to equations for the heavy particle and electron temperature. By substitut-
ing (2.25) and (2.26) in the enthalpy balances (2.20) and using the species continuity
equations (2.8), we obtain:

∂

∂t

∑
i 6=e

ρyicpiTh

+∇ ·

∑
i 6=e

ρ~vyicpiTh

−∇ · (λh∇Th) =

−π : ∇~v + ~v · ∇ph +Qeh +
∑
i 6=e

miωih
0
i , (2.27)

∂

∂t
(ρyecpeTe) +∇ · (ρ~vyecpeTe)−∇ · (λe∇Te) =

~v · ∇pe +QOhm −Qeh. (2.28)
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Note that the contributions
∑

i 6=e ρ~viyicpiTh and ρ~vehe are neglected.
To obtain the coefficients Dij , µ, λh and λe in the transport fluxes above, trans-

port linear systems have to be solved. For the diffusion system this is discussed in
Chapters 4 and 5. For all other coefficients simpler approximations are used. Unless
stated otherwise, Frost mixture rules [17] are used for the transport properties of the
electrons and the mixture rules of Mitchner and Kruger [14] are used for the heavy
particle properties.

2.2.2 The anisotropic case

The behavior of a plasma is strongly affected by the presence of a magnetic field.
Magnetic fields make the transport phenomena of the plasma direction dependent:
they introduce anisotropy. Normally, without a magnetic field, particles in a plasma
move randomly with their thermal velocity. Due to collisions, mass, momentum
and energy of these particles is redistributed. In a magnetic field, charged particles
spiral around the magnetic field lines. This spiraling motion causes the anisotropy
in transport along, across and around the magnetic field lines. The motion of the
particles across and around the field lines is coupled by the Lorentz force.

Consider the motion of electrons and ions in a plasma. In a magnetic field, elec-
trons and ions spiral around the field lines with the Larmor frequency Ωi due to the
Lorentz force. The Larmor frequency is determined by the charge qi of the particle,
the magnetic field strength B and the mass mi of the particle:

Ωe = qeB/me, Ωp = qpB/mp. (2.29)

Electrons are indicated by the subscript e, while ions are indicated by a p. The spiral-
ing motion of the electrons and ions with mean energy kTi around the field lines has
Larmor radius `i, which is given by [18]:

`e =

√
2kTe/me

Ωe
, `p =

√
2kTh/mp

Ωp
, (2.30)

where Te and Th are the electron and heavy particle temperature, respectively. If a
particle can make more than one turn around the field line before having a collision,
the particle is called magnetized. For a strongly magnetized electron this means:
Ωe � νe, with νe the electron collision frequency.

In a plasma without a magnetic field, particles can move in a certain direction
until they collide with another particle. Therefore, the typical step size in the random
walk motion is the mean free path for collisions. When the plasma is magnetized this
situation is different. In the direction along the magnetic field the mean free path still
determines the typical step size. Across the magnetic field the charged particles are
confined within the Larmor radius around the field lines. Therefore, the typical step
size for transport across the field is the Larmor radius.

As a result of the anisotropy, the components of the multicomponent diffusion co-
efficient matrix are no longer scalars but tensors. The diffusion velocity is expressed
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in terms of these tensor components along (‖), across (⊥) and around (�) the mag-
netic field lines as:

~vi = −
∑
j

(
D
‖
ijd
‖
j +D⊥ij

(
d⊥j + d�j

)
+D�ij

(
d⊥j − d�j

))
. (2.31)

In the above expression, use has been made of the cylindrical symmetry of Magnum-
PSI and the fixed (axial) magnetic field. In this situation, the fixed cylindrical
basis (~er, ~eφ, ~ez) can be introduced and any vector ~x can then be written as
~x = x⊥~er + x�~eφ + x‖~ez , where x⊥, x� and x‖ are scalars. Note this is not the usual
notation that can be found in for example Ferziger and Kaper [19]. Usually, x⊥, x�

and x‖ are vectors since it is not possible to fix the magnetic field. In Chapter 6 calcu-

lation of the tensor components D‖ij , D
⊥
ij and D�ij is discussed. Again, for the other

coefficients we use a simpler approach. The isotropic heat conduction coefficients are
adjusted to take into account the effect of magnetization in the following manner:

λ⊥i =
1

1 + (Ωi νi)
2λ
‖
i . (2.32)

When there is no magnetic field, these expressions yield the normal (parallel) co-
efficients. Since the momentum is mainly carried by the heavy particles, the effect
of the magnetic field on the viscosity is ignored. This is a reasonable assumption
when the ion density is low compared to the neutral density or when the ions are not
magnetized.

2.3 Final form

To conclude this chapter, we will give an overview of the equations to be solved. In
this thesis, we restrict ourselves to steady, quasi-neutral plasmas. In this case the
balances for mass, charge, momentum and energy conservation read:

∇ · (ρyi~v) +∇ · (ρyi~vi) = miωi, (2.33)

∇ · (ρ~v) = 0, (2.34)

∇ ·~j = 0, (2.35)

∇ · (ρ~v~v) = −∇p−∇ · π +~j × ~B, (2.36)∑
i 6=e
∇ · (ρ~vyicpiTh)−∇ · (λh∇Th) = −π : ∇~v+~v · ∇ph +Qeh +

∑
i 6=e

miωih
0
i , (2.37)

∇ · (ρ~vyecpeTe)−∇ · (λe∇Te) = ~v · ∇pe +QOhm −Qeh. (2.38)

The next chapter is devoted to the numerical strategies needed for solving this set of
partial differential equations.



Chapter 3

Numerical strategies

The coupled discretization scheme presented in this chapter is based on:
Extension of the Complete Flux Scheme to Systems of Conservation Laws,
Ten Thije Boonkkamp, J.H.M., Dijk, J. van, Liu, L., Peerenboom, K.S.C.,
Accepted for publication in Journal of Scientific Computing

In this chapter the numerical strategies for solving the equations as presented in
Chapter 2 are described. Special attention is paid to the discretization of the system
of species continuity equations.

3.1 Numerical modeling

As discussed in Chapter 2, the plasma that we want to model can be treated with
the fluid description. In this fluid description, finding a numerical solution involves
solving the set of partial differential equations (PDE’s) for mass, momentum and
energy conservation, as derived in Chapter 2. The first step in numerically solving
these PDE’s is discretization. By discretization the continuous equations, describing
the variables on all points in space and time, are transformed to discrete equations
describing these quantities only on a finite number of grid points and time levels.
The resulting algebraic systems for the variables on all grid points need to be solved.
Iterations of the above steps are performed until a converged solution is obtained.

3.2 Finite volume discretization

In general the balance equations as presented in Chapter 2 cannot be solved analyti-
cally; the equations need to be discretized. In this section we will discuss discretiza-
tion of scalar stationary continuity equations and systems of stationary continuity
equations with cell-centered finite volumes on a one-dimensional grid.

For discretization in Plasimo, a grid with boundary fitted ortho-curvilinear (OCL)
coordinates is used. This means that the boundaries of the regions of interest co-
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Figure 3.1: Control volume in ortho-curvilinear coordinates.

incide with coordinate lines of the coordinate system that is used. In this coordi-
nate system an arbitrary geometry is mapped onto an equidistant computational grid.
Plasimo uses an elliptic grid generation module [20], which constructs such meshes
in two dimensions. In addition, it supports the usual standard coordinate systems
(Cartesian, cylindrical, spherical) for one-, two- and three-dimensional simulations.
In order to control the grid density on a per-coordinate basis, the code allows the user
to specify stretch functions, as discussed in [21].

For clarity, only one (Cartesian) coordinate will be considered in the presentation
of the discretization schemes in Section 3.2.1 and 3.2.2. The schemes are, however,
not limited to 1D Cartesian grids, as will be briefly motivated here. The continuity
equations that need to be discretized have the general form:

∇ · ~J = s, (3.1)

with ~J the total flux and s the source. Integration of this continuity equation over a
volume V and applying Gauss divergence theorem gives:∮

∂V

~J · ~ndA =

∫
V
sdV. (3.2)

Consider the control volume in ortho-curvilinear coordinates as given in Figure 3.1.
Since the control volume boundaries are perpendicular to the coordinates, equation
(3.2) reduces to:

JeAe − JwAw + JnAn − JsAs = sC∆V, (3.3)

where the subscripts e, w, n and s refer to the east, west, north and south interface
of the control volume, respectively. The volume of the control volume is denoted by
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∆V , while the areas of the east, west, north and south interfaces are given by Ae, Aw,
An and As, respectively. In 1D and 3D the results are similar:

JeAe − JwAw = sC∆V, (3.4)

JeAe − JwAw + JnAn − JsAs + JuAu − JdAd = sC∆V, (3.5)

with u and d indicating the up and down interface of the control volumes. The dif-
ference between 1D, 2D and 3D in OCL coordinates is thus that the flux differences
have to be considered and summed in 1, 2 or 3 directions1, respectively. Furthermore,
the calculation of the lengths, areas and volumes is different. For example, in 1D
Cartesian coordinates the areas Ae and Aw have value 1 m2, while in 3D Cartesian
coordinates these areas are calculated as ∆y∆z. Since, by the above considerations,
the extension of the discretization schemes to higher dimensions and general ortho-
curvilinear coordinates is relatively simple, only one (Cartesian) coordinate will be
considered.

For time dependent problems, integration over the time step ∆t has to be done in
addition to integration over the control volumes. Both for the scalar and the coupled
case this time integration can be done using the usual methods (implicit, explicit,
Crank-Nicolson) [22, 23]. Therefore this extension is omitted as well. We will focus
on the spatial discretization, which cannot be done with the usual methods [22, 23]
for the case the fluxes are coupled.

3.2.1 Scalar convection-diffusion equations

In the one-dimensional case, the scalar continuity equation can be written as:

dJ
dx

= s, J = ρuφ− Γ
dφ
dx
, (3.6)

where J and u are the flux and the velocity in the x direction, s is the source, ρ the
mass density and Γ is a scalar transport coefficient. Figure 3.2 gives the stencil used
for discretization; C,W and E denote the central, west and east nodal grid points,
respectively. The west and east cell interfaces are denoted by w and e. Integration of
equation (3.6) over the control volume shown in Figure 3.2 gives:

Je − Jw = sC∆x, (3.7)

where sC is the source term at the central point C. When the flux Je is expressed lin-
early in φC and φE , and the flux Jw is expressed linearly in φC and φW , the following
discrete equation is obtained:

aCφC = aEφE + aWφW + sC∆x. (3.8)

1When cross-fluxes are taken into account the different directions cannot be be considered indepen-
dently.
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Figure 3.2: Stencil used for discretization. C,W andE denote the central, west and east nodal
grid points, respectively. The west and east cell interfaces are denoted by w and e.

The discretization coefficients aC , aE and aW depend on the expressions for the flux.
The most straightforward choice for expressing the fluxes Je and Jw in φE , φC and
φW is to assume a piecewise linear profile for φ, which results in:

Je =
1

2
(ρu)e (φE + φC)− Γe

φE − φC
δxe

, (3.9)

Jw =
1

2
(ρu)w (φW + φC)− Γw

φC − φW
δxw

. (3.10)

The discretization coefficients are then given by:

aE =
Γe
δxe

(
1− 1

2
Pe

)
,

aW =
Γw
δxw

(
1 +

1

2
Pw

)
,

aC = aE + aW + (ρu)e − (ρu)w, (3.11)

with Pe = (ρu)eδxe/Γe and Pw = (ρu)wδxw/Γw the Péclet number at the east and
west interface, respectively. This scheme is usually referred to as the central difference
scheme. It can be seen that in the case of dominant advection when the Péclet number
|P | > 2, aE or aW can become negative. This is a violation of the basic rules for
discretization [22] and will result in unphysical solutions. This can be explained as
follows. If we assume that there are no sources, then we expect that φC is a weighted
average of φE and φW . However, since φC is expressed by:

φC =
aW

aE + aW
φW +

aE
aE + aW

φE ≡ fφW + (1− f)(φE), (3.12)

this is only an interpolation when 0 < f < 1. This requires that all discretization
coefficients have the same sign. The convention is to choose all coefficients positive.

Since one of the features of Magnum PSI is the transonic flow field, the central
difference scheme cannot be used for our application. Instead the exponential scheme
[22, 24] will be used. In the exponential scheme, the flux expression is not based on a
piecewise linear profile for φ, but on a local exact solution of the homogeneous equa-
tion with constant coefficients. When Γ is constant the exact solution of the scalar
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convection-diffusion equation is known. This knowledge can be used to construct a
discretization scheme. To derive an expression for the flux Je, the following boundary
value problem for the unknown φ is solved:

dJ
dx

=
d

dx

(
(ρu)e φ− Γe

dφ
dx

)
= 0, xC < x < xE ,

φ(xC) = φC ,

φ(xE) = φE . (3.13)

The flux is then given by:

Je =
1

δxe
Γe

(
B (−Pe)φC −B (Pe)φE

)
, (3.14)

where the Péclet number Pe is defined as Pe = (ρu)e δxe/Γe and the Bernoulli func-
tion is given by:

B(z) =
z

ez − 1
, B(0) = 1. (3.15)

The Bernoulli function is plotted in Figure 3.3. A similar expression can be obtained
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Figure 3.3: Bernoulli function.

for the flux at the west interface. Substitution of the expressions for the fluxes in
equation (3.7) gives the discretization coefficients:

aE =
1

δxe
ΓeB (Pe) ,

aW =
1

δxw
ΓwB (−Pw) ,

aC = aE + aW + (ρu)e − (ρu)w. (3.16)
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The exponential scheme does not produce unphysical solutions for dominant flow
since all discretization coefficients are positive. The positiveness of the coefficients
for all Péclet numbers can be directly deduced from the plot of the Bernoulli function
in Figure 3.3. However, the suppression of unphysical oscillations is at the expense
of the order of the scheme. For dominant flow, the exponential scheme reduces to
the upwind scheme and is only first order accurate as opposed to the second order
accuracy of the central difference scheme.

3.2.2 Systems of convection-diffusion equations

The species mass fractions cannot be described by a scalar continuity equation for
each species separately. Instead, they are described by a system of coupled continuity
equations. In the steady, one-dimensional case, this system of continuity equations
(4.10) can be written as

d
dx

J = s, J = ρuφ− Γ
d

dx
φ, (3.17)

where the different species in the vector φ are coupled by the non-diagonal elements
of Γ. The grid stencil used for discretization is again given by Figure 3.2. Integration
of equation (3.17) over the control volume shown in Figure 3.2 gives:

Je − Jw = sC∆x, (3.18)

where sC is the source term at the central point C. When the flux Je is expressed
in φC and φE , and the flux Jw is expressed in φC and φW , the following discrete
equation is obtained:

ACφC = AEφE + AWφW + sC∆x. (3.19)

The discretization matrices AC , AE and AW depend on the expressions for the nu-
merical flux.

Section 3.2.2 will describe the discretization of the fluxes with the traditional
(scalar) exponential scheme as discussed in the previous section. With this scalar
exponential scheme, unphysical oscillations cannot be excluded. To overcome this
problem, a more general, coupled form of the exponential scheme is introduced.

The scalar exponential scheme

Since traditional discretization schemes are designed for scalar convection-diffusion
equations, they cannot directly be applied to the fluxes Je and Jw, but they can be
applied to the individual components Ji,e and Ji,w of the flux. The flux at the east
interface Ji,e of species i can be approximated by applying the exponential scheme
[22, 23] to the different contributions of the flux:

Ji,e =
1

δxe

∑
j

Γij (B (−Pij,e)φj,C −B (Pij,e)φj,E) , (3.20)
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where the Péclet number Pij,e is defined as Pij,e = ρuδxe/Γij . A similar expression
can be obtained for the flux at the west interface. Substitution of the expressions for
the fluxes in equation (3.18) gives the discretization coefficients:

AE,ij =
1

δxe
ΓijB (Pij,e) ,

AW,ij =
1

δxw
ΓijB (−Pij,w) ,

AC,ij = AE,ij +AW,ij . (3.21)

Note that in the expression for AC,ij , it is assumed that the mass flux density ρ~v is
divergence free. Although the exponential scheme does not produce unphysical oscil-
lations for scalar convection-diffusion equations, unphysical oscillations can occur for
systems of equations in the case of dominant advection. We found that oscillations
appear when the discretization matrices contain negative eigenvalues. This restric-
tion on the eigenvalues can be seen as the generalization of the positive coefficients
restriction [22] to systems of convection-diffusion equations.

The reason that negative eigenvalues can occur is that the exponential scheme is
based on the exact solution of a local boundary value problem of a scalar convection-
diffusion equation without sources and constant coefficients. To avoid oscillations in
the system case, the scheme must be based on the exact solution of a local bound-
ary value problem of a system of convection-diffusion equations without sources and
constant coefficients. Such a scheme will be presented in the next section.

The coupled exponential scheme

In this section, a generalization of the exponential scheme will be introduced. The
scheme is a special case of the scheme presented in [25]. In [25] the representation
of the flux is based on the solution of a local boundary value problem for the entire
system of equations, including the source terms. In the present work, the flux repre-
sentation is based on the homogeneous solution of the local boundary value problem;
i.e. without sources. The difference between the discretization scheme in this work
and [25] can be compared with the difference between the exponential scheme and
the complete-flux scheme for scalar advection diffusion reaction equations ([22] vs
[26]).

To derive an expression for the flux Je, the following system boundary value prob-
lem for the vector φ of unknowns is used:

d
dx

J =
d

dx

(
(ρu)eφ− Γe

d
dx
φ

)
= 0, xC < x < xE ,

φ(xC) = φC ,

φ(xE) = φE , (3.22)

where (ρu)e and Γe are assumed to be constant on (xC , xE). Note that (3.22) is equal
to (3.17) in case s = 0. It is important to mention here that neglecting the source in
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the derivation of the flux, does not limit the application of the discretization scheme
to problems without sources. The only consequence is that uniform second order
convergence is not guaranteed by the discretization scheme. Integration of (3.22)
from xe to x gives:

J(x)− Je = 0. (3.23)

If we define Ke = (ρu)e Γ−1e , the flux can be written as2:

J(x) = −Γee
xKe

d
dx

(
e−xKeφ

)
. (3.24)

Substitution of this expression for the flux in (3.23) yields:

−Γee
xKe

d
dx

(
e−xKeφ

)
− Je = 0. (3.25)

After multiplication with e−xKeΓ−1e we obtain:

d
dx

(
e−xKeφ

)
+ e−xKeΓ−1e Je = 0. (3.26)

Integration from xC to xE gives:

e−xEKeφE − e−xCKeφC +

(∫ xE

xC

e−xKedx

)
Γ−1e Je = 0. (3.27)

After left multiplication3 with Ke and calculation of the integral we find:(
e−xCKe − e−xEKe

)
Γ−1e Je = Ke

(
e−xCKeφC − e−xEKeφE

)
. (3.28)

Introducing the Péclet matrix Pe = δxeKe, the following expression for the flux is
obtained: (

ePe − I
)
Γ−1e Je = Ke

(
ePeφC − φE

)
, (3.29)

which can be rewritten as:

Je =
1

δxe
Γe

(
B(−Pe)φC −B(Pe)φE

)
. (3.30)

The Bernoulli function of the Péclet matrix is calculated by diagonalization of the
Péclet matrix:

P = VΛV−1 = V

 λ1
. . .

λN

V−1, (3.31)

B(P) = VB(Λ)V−1 = V

 B(λ1)
. . .

B(λN )

V−1, (3.32)

2The following properties are used: 1) Γ is regular, 2) K and e−xK commute, 3)
(
exK

)−1
= e−xK.

3Note that multiplication with K can only be performed when K is non-singular. A more rigorous
derivation (allowing for singular K) is done in [25] and shows that the final result presented here is valid
for singular K as well.
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with V the matrix containing the eigenvectors of P as its columns and Λ a diagonal
matrix with the eigenvalues λi of the Péclet matrix. Likewise, B(−P) can be com-
puted. Note that for the diagonalization, it is required that P has a complete set of
linearly independent eigenvectors. In Cullinan [27] it is proven that for Péclet matri-
ces resulting from multi-component diffusion problems this is indeed the case.

For the flux at the west interface, an expression similar to the east interface can
be obtained. Substitution of the expression for the fluxes in equation (3.18), gives the
following expressions for the discretization matrices:

AE =
1

δxe
ΓeB(Pe), AW =

1

δxw
ΓwB(−Pw), AC = AE + AW . (3.33)

Similar to the scalar discretization, we have used the fact that the flow field ρ~v is
divergence free in the expression for AC . From (3.32) it can be seen that the coupled
exponential scheme guarantees that the eigenvalues of the discretization matrices are
positive, since the eigenvalues of B(P) are given by B(λi), which are always positive.

As can be seen in Table 3.1, the coupled exponential scheme and the traditional
scalar exponential scheme have quite some similarities. In fact, the coupled ex-
ponential scheme decouples the system by changing to the basis of eigenvectors
(P = VΛV−1). In the decoupled system, the scalar exponential scheme is applied,
B(P) = VB(Λ)V−1. Application of other scalar discretization schemes (power law,
hybrid [22, 23]) to the decoupled (diagonalized) system is possible as well.

Coupled Scalar

Je = 1
δxe

Γe (B(−Pe)φC −B(Pe)φE) Je = 1
δxe

Γe (B(−Pe)φC −B(Pe)φE)

Jw = 1
δxw

Γw (B(−Pw)φW −B(Pw)φC) Jw = 1
δxw

Γw (B(−Pw)φW −B(Pw)φC)

AE = 1
δxe

ΓeB(Pe) aE = 1
δxe

ΓeB (Pe)

AW = 1
δxw

ΓwB(−Pw) aW = 1
δxw

ΓwB (−Pw)

AC = AE + AW aC = aE + aW

Table 3.1: Comparison of the traditional exponential scheme and its generalization to systems
of convection-diffusion equations.

3.3 Source term linearization

In the previous section on discretization, the source term sC was treated as a con-
stant. However, in many cases the source term depends on the variable φ itself. The
production rate of electrons is, for example, dependent on the electron density. To
take into account this dependency, the source term is linearized as follows:

sC = C + PφC , (3.34)

where C is the constant part of sC and P is the part of the source proportional to φC .
For numerical stability, the coefficient P must always be less than or equal to zero.
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φ̃C

sC = C + PφC

Figure 3.4: The solution in the source dominated limit.

Since convergence problems often arise when the source terms are very large, it is
useful to consider source term linearization in the source dominated limit.

3.3.1 The source dominated limit

In the source dominated limit, transport can be neglected and the discrete equation
(3.8) reduces to:

sC = C + PφC ≈ 0. (3.35)

The source dominated limit leads to the solution:

φC = −C
P
. (3.36)

The source dominated limit can be used to design the linearization such that φC stays
within reasonable limits [22]. If we want the next iteration value of φC to be close to
a given value φ̃C , this can be arranged through the linearization:

C =
s∗C φ̃C

φ̃C − φ∗C
, P = −

s∗C
φ̃C − φ∗C

. (3.37)

Here s∗C and φ∗C denote the current value of the (non-linearized) source term and φC
respectively. In Figure 3.4 the linearization is schematically depicted. The desired
value φ̃C can be determined from physical considerations, for example that the mass
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fractions of all the species must lie between 0 and 1. Because the linearization is
based on the source dominated limit, the next iteration will not be exactly φ̃C , since
also the transport terms in the discrete equation will influence it. Furthermore, by
considering the source for the converged solution φC = φ∗C , it can be seen that the
linearization does not influence the final solution:

C + PφC =
s∗C φ̃C

φ̃C − φ∗C
−

s∗C
φ̃C − φ∗C

φ∗C = s∗C . (3.38)

The linearization only changes the convergence path. It avoids rapid changes during
the iteration process and physically unrealistic values. We will now use the source
dominated limit to construct the linearization for the chemical source terms.

3.3.2 Linearization of the chemical sources

The chemical source terms in the continuity equations are non-linear functions of the
species densities and can therefore vary strongly from iteration step to iteration step,
causing poor convergence behavior. The strong variations can even lead to negative
densities, thereby ruining the calculation. To prevent this, the source term lineariza-
tion introduced in this section is constructed such that physically unrealistic results
during iteration are avoided. The method is a generalization of [22], which is based
on the source dominated limit of the discretized equations.

Physically realistic results need to fulfill the following two conditions:

1.
∑

i yi = 1,

2. 0 ≤ yi ≤ 1.

In Chapter 4 it will be proven that when
∑

imiωi = 0 and transport is dealt with
correctly, condition 1 is fulfilled. However, this is true for constant sources miωi
and we have to be aware that this condition is not automatically guaranteed when the
sources are linearized. Furthermore, there is no guarantee that condition 2 is fulfilled
when chemical sources are present. The composition calculation can perfectly satisfy∑

i yi = 1, while not satisfying 0 ≤ yi ≤ 1. A mixture of two species with mass
fractions of 1.5 and -0.5 respectively, is not physical. The linearization method should
therefore linearize the sources in such a way that both condition 1 and 2 are fulfilled
every iteration step.

In Figure 3.5 the solution domain that satisfies both condition 1 and 2 is graphi-
cally depicted by the dark gray triangle for a three species mixture. A correct solution
lies on the part of the constraint plane

∑
i yi = 1 that is bounded by the planes yi = 0.

The current values of the source and mass fraction vector are denoted by s∗C and y∗,
respectively. Both s∗C and y∗ are in the plane

∑
i yi = 1. From the direction of the

source vector s∗C and the current value of the mass fraction y∗ we can determine
which of the planes yi = 0 is encountered first. The intersection of s∗C with this plane
becomes the target ỹ for linearization.
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y3

y1 + y2 + y3 = 1

y3 = 0

y2 = 0

y2

ỹ

s∗C

y∗

y1 = 0

y1

Figure 3.5: Constraint planes in a mixture with three species.

ForN species, the constraint plane
∑N

i=1 yi = 1 is bounded by theN hyperplanes
yi = 0. The linearization target ỹ can be determined by calculating the intersection
of the source line with all the bounding hyperplanes. The points y on the source line
can be parametrized as follows:

y = y∗ + ζs∗C , (3.39)

where s∗C is the source vector determining the direction of the line and y∗ is a point
on the line. Because the origin is a point on all the bounding hyperplanes yi = 0, the
points y on these planes can be described by:

ni · y = 0, (3.40)

with ni the normal of the ith bounding hyperplane. The intersections of the source
line with these planes are given by:

ζi = −ni · y∗

ni · s∗C
. (3.41)

For all N planes ζi can be determined. The smallest positive ζi gives the plane that
should be aimed at in the linearization procedure. The target is then ỹ = y∗ +
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ζmins
∗
C . Since differences in ζmin from grid cell to grid cell can lead to a spiky mass

fraction field when the sources are large, ζmin is the minimum from all the bounding
hyperplanes as well as from all the grid cells. Note that ζmin also has a physical
interpretation. When we consider the time dependent species continuity equations in
the absence of transport, ∂ρy∂t = s∗C , the maximum time step that can be taken in an
explicit time stepping method before the species mass fractions get negative is given
by τ = ρζmin.

To avoid strong variations within one iteration step, we can use an underrelaxation
factor α and calculate ỹ according to:

ỹ = α (y∗ + ζmins
∗
C) + (1− α)y∗ = y∗ + αζmins

∗
C . (3.42)

For example, for α = 0.5 the linearization target ỹ lies halfway between the current
value y∗ and the physical limit. The target value ỹ can now be used in the lineariza-
tion coefficients for the different species:

Ci =
s∗C,iỹi

ỹi − y∗i
=

ỹi
αζmin

, Pi = −
s∗C,i

ỹi − y∗i
=

1

αζmin
, (3.43)

where the subscript i refers to the ith species.

3.3.3 Linearization of the energy sources

Chemical reactions not only influence the chemical composition, but also contribute
to the source terms for the energy equations. For the purpose of the discussion,
it is assumed that only chemical reactions contribute to the energy sources for the
moment. Similar to the chemical sources, the energy sources can give unrealistic
solutions during iteration. For example, the energy gained by an association reaction
can never be more than the number of atoms present times the association energy.
Therefore, when the species mass fractions get negative, also the resulting energy
source term will be unphysical. In the previous section, it was observed that the
maximum time step that can be taken in an explicit time stepping method before the
species mass fractions get negative is given by τ = ρζmin. Unphysical situations for
the energy sources can therefore be prevented by taking the same time step.

Consider the electron temperature. In the source dominated limit, the tempera-
ture change as a result of the time step τ will be:

T̃e − T ∗e = τ
s∗C
ce
, (3.44)

where ce is the electron heat capacity and s∗C now contains the energy source term
for the electrons due to chemical reactions. The value T̃e gives the physical limit for
the electron temperature. Using T̃e as the target for linearization and making use
of the same underrelaxation factor α as in the previous section gives the following
linearization coefficients:

C = s∗C +
ceT

∗
e

ατ
, P = − ce

ατ
. (3.45)
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The coefficients for the heavy particle temperature can be obtained similarly. The
linearization presented prevents unphysical solutions where more chemical energy
is added than is available in the plasma. Furthermore, by basing the linearization of
the chemical and energy sources on the same time step, consistency between these
sources is established.

3.4 Iteration and underrelaxation

The partial differential equations as presented in Chapter 2 are strongly non-linear.
Furthermore, the different PDE’s are coupled via the transport coefficients and source
terms. Therefore, the equations are solved iteratively. The equations are linearized
and the coefficients and source terms are calculated from the previous iteration. The
model is said to be converged when the residual is below a preset tolerance, where
the residual ξ is defined as:

ξ = max
i,j,N

∣∣∣∣∣∆ΦN
i,j

ΦN
i,j

∣∣∣∣∣ , (3.46)

with ΦN
i,j the solution of equation N at gridpoint (i, j). In this thesis the tolerance

used is typically 10−6. To prevent divergence in the iterative solution it is often neces-
sary to slow down the changes from iteration to iteration. This can be done with un-
derrelaxation. In Plasimo, a relaxation factor, as described in Patankar [22] for scalar
continuity equations, is used. This underrelaxation method is extended to systems of
continuity equations.

Underrelaxation is taken into account by modification of the discretization coef-
ficients and matrices. Starting from the discretized equation, for both the scalar and
the system case:

aCφC = aEφE + aWφW + b,

ACφC = AEφE + AWφW + b, (3.47)

where b and b contain the constant part of the linearized sources. The above equa-
tions can be reorganized as follows:

φC =
aEφE + aWφW + b

aC
,

φC = A−1C (AEφE + AWφW + b) . (3.48)

Let φ∗C and φ∗C be the values from the previous iteration. By adding and subtracting
this value from equation (3.48) we get:

φC = φ∗C +
(aEφE + aWφW + b

aC
− φ∗C

)
,

φC = φ∗C +
(
A−1C (AEφE + AWφW + b)− φ∗C

)
. (3.49)
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The expression between the parentheses gives the change in the current iteration.
To slow down this change, an underrelaxation parameter α (0 < α ≤ 1) can be
introduced:

φC = φ∗C + α
(aEφE + aWφW + b

aC
− φ∗C

)
,

φC = φ∗C + α
(
A−1C (AEφE + AWφW + b)− φ∗C

)
. (3.50)

It can be seen that for α = 0 the solution does not change, while for α = 1 the whole
modification is taken into account. The case 0 < α < 1 gives the intermediate situa-
tion where only part of the modification is taken into account. Rearranging equation
(3.50) gives the modified discretization coefficients and matrices:

aC
α
φC = aEφE + aWφW + b+ (1− α)

aC
α
φ∗C ,

AC

α
φC = AEφE + AWφW + b + (1− α)

AC

α
φ∗C . (3.51)

Note that when the iterations converge and φC becomes equal to φ∗C , the original
equation is satisfied. This should of course be a property of underrelaxation.

3.5 Matrix conditioning and solving

The discrete equations per control volume as presented in Section 3.2 can be assem-
bled into a system matrix A, from which the quantity x on all the grid points can be
computed:

Ax = b. (3.52)

The vector b contains the sources and the boundary conditions. In Plasimo, a number
of solvers are available for solving the system (3.52). There are a number of iterative
solvers such as BiConjugate Gradient(BiCG) and Quasi-Minimal Residual (QMR),
that can use a preconditioner. Apart from the iterative solvers, two direct solvers
are available: BandMatrixLU and SuperLU. When solving the pressure correction
equation (see Chapter 7) and the system of mass balances of all species (Chapters
4, 5 and 6) it is crucial that mass conservation is fulfilled exactly. Therefore we use
SuperLU for these equations, instead of (faster) iterative solvers.

To solve (3.52) for the mass fractions, an additional conditioning step is needed.
Since the charge constraint is not applied explicitly, as will be discussed in Chapter
5, also the electron mass fraction is part of the solution vector x. Due to the large
mass ratio between the electrons and the heavy particles, the system matrix will be
ill-conditioned. As a result, the mass and charge neutrality constraint, which are not
explicitly applied, are not fulfilled satisfactory when electrons are present. To improve
the conditioning of the system matrix, scaling of rows and columns is performed to
obtain the modified system:

Ãx̃ = b̃, (3.53)
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where Ã = R (AC), x̃ = C−1x and b̃ = Rb. The matrix C scales the columns of
the matrix with the mass of the corresponding species:

C = diag(mi/mp), (3.54)

where mp is the proton mass. The matrix R scales the rows such that every diagonal
element of the modified matrix Ã will be unity:

R = diag(1/(AC)ii). (3.55)

After the solution of the modified system has been obtained, the modified solution x̃
is transformed back to the original solution vector x. In simulations of mixtures with
electrons, the preconditioning step typically reduces the condition number from 1021

to 106.

3.6 Concluding remarks

In this chapter we explained how the equations as presented in Chapter 2 are dis-
cretized and solved. However, nothing was said about the implementation of the
presented numerical strategies. We will not go into much detail, but to conclude
this chapter we will give a small example on the implementation of discretization in
Plasimo.

A key infrastructural component of Plasimo is the LinSys class template library.
LinSys provides support in C++ for tensor values, tensor fields and systems of equa-
tions involving such fields. In addition, LinSys facilitates the discretization of (cou-
pled) field equations. Discretization of the coupled system of equations for the mass
fractions, for example, is done with the following C++ code:

/ / loop over a l l s p e c i e s
f o r ( unsigned i =0; i ! = num_part ; ++ i )
{

(
/ / the s u r f a c e i n t e g r a l o f the f l u x
s u r f _ i n t ( c d _ f l u x ( y , conv , d i f f , i ) )
−
/ / the volume i n t e g r a l o f the s o u r c e s
( nonl in (C( i ) ) + l i n ( y _ i ) ∗ P ( i ) ) ∗ volume ( )

) . a p p l y _ f o r e a c h _ i n t e r n a l ( y _ i ) ; / / f o r a l l c o n t r o l volumes
}

As can be seen, this code closely resembles equation (3.18). In general, discretization
can be achieved with LinSys by composing expressions that consist of a number of
discretizer primitives such as surf_int , which provides the surface integral of a flux.
In addition to the usual arithmetic and vectorial operators (divergence, gradient and
curl), LinSys provides discretizers for convection-diffusion fluxes. Various schemes
are offered, in the above example cd_flux gives the expression for the flux in the
coupled exponential scheme.



Chapter 4

Multicomponent diffusion in
neutral mixtures

This chapter is based on:
Mass conservative finite volume discretization of the continuity equations in multi-
component mixtures, Peerenboom, K.S.C., Dijk, J. van, Ten Thije Boonkkamp, J.H.M.,
Liu, L., Goedheer, W.J., Mullen, J.J.A.M. van der, Journal of Computational Physics,
230(9), 3525-3537, 2011

Abstract. The Stefan-Maxwell equations for multi-component diffusion result in
a system of coupled continuity equations for all species in the mixture. We use
a generalization of the exponential scheme to discretize this system of continuity
equations with the finite volume method. The system of continuity equations in this
work is obtained from a non-singular formulation of the Stefan-Maxwell equations,
where the mass constraint is not applied explicitly. Instead, all mass fractions are
treated as independent unknowns and the constraint is a result of the continuity
equations, the boundary conditions, the diffusion algorithm and the discretization
scheme. We prove that with the generalized exponential scheme from Chapter 3, the
mass constraint can be satisfied exactly, although it is not explicitly applied. A test
model from literature is used to verify the correct behavior of the scheme.
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4.1 Introduction

In numerical simulations of multi-component mixtures, the diffusion model is one
of the key aspects of the calculation. In plasmas in local thermodynamic equilibrium
(LTE), where both the internal and reactive processes are at equilibrium, the diffusion
model is used to account for the effects of elemental demixing or to calculate the reac-
tive contribution to the thermal conductivity [28, 29, 30]. In combustion simulations
and simulations of plasmas that are not in local thermodynamic equilibrium (NLTE),
the diffusive flux is needed in the species continuity equations.

Because of its simplicity, the Fick diffusion model [31, 32] is often used. However,
the validity of this diffusion model is restricted to cases of binary and dilute mixtures.
In the more general case, when the Stefan-Maxwell relations [33, 19] are used, the
diffusive flux of a species depends not only on its own concentration gradient but
also on the concentration gradients of other species.

Consequently, in contrast to the Fick diffusion model, the Stefan-Maxwell model
results in a coupled set of continuity equations for all species, in which the diffusive
fluxes are described by matrices rather than scalar coefficients. Recent work on the
discretization of these equations has focused on the finite difference [34] and the fi-
nite element methods [35]. So far, little attention has been paid to the finite-volume
discretization. This is most likely because the usual (scalar) finite volume discretiza-
tion schemes [22, 23] are not directly applicable when the diffusive fluxes are coupled.
Pope and Gogos [36] addressed the discretization issue by artificially decoupling the
governing equations. Only the self-diffusion operator was treated implicitly, while
the diffusion in the other species was treated explicitly as a convection term. As a
consequence, this method fits nicely in the traditional (scalar) finite volume schemes
as presented in [22, 23]. However, as shown in [37], ‘segregated solution of the gov-
erning equations, wherein only the self-diffusion operator is treated implicitly, while
the diffusion due to the other species is treated explicitly, results in an iterative al-
gorithm whose convergence depends on the strategy used to conserve overall mass’.
Furthermore, according to [37], ‘for multi-dimensional problems, convergence is not
guaranteed even with severe under-relaxation, and is dependent on the mesh size’. In
[37], Mazumder proposes a fully implicit approach, which is, however, only suitable
for simulations without convection.

Another issue in the implementation of the Stefan-Maxwell equations is the appli-
cation of the mass constraint

∑
i yi = 1 for the mass fractions yi. A straightforward

approach is to single out one species and calculate the mass fraction of this species
from the mass constraint instead of from the continuity equation. However, this ap-
proach can give cancellation problems when the selected species is not present in
excess everywhere in the plasma and can even lead to negative mass fractions. For
these reasons, an approach where all species are treated as independent unknowns
and the constraint is not explicitly applied is preferred. Such an approach is, e.g.,
described by Giovangigli [38] and Magin and Degrez [15]. Although the mathematical
background is extensively studied in those papers, no attention is paid to the effect
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of the discretization scheme on mass conservation. This issue is addressed in [34]
for diagonally implicit integration with the finite difference method, and it is shown
there that this method does not guarantee that the mass constraint will be satisfied.

In this chapter, we apply the generalization of the exponential discretization
scheme as introduced in Chapter 3 to the fluxes obtained from the Stefan-Maxwell
equations. The coupling between the fluxes is taken into account, while staying as
close as possible to the formulation of the traditional finite volume schemes. To our
knowledge, this is the first time a coupled finite volume scheme is applied to the
Stefan-Maxwell diffusive fluxes.

Regarding the mass constraint we will follow the formulation of the Stefan-
Maxwell equations as described in [38, 15], but extend the idea to the discrete level
and make the connection with the discretization scheme. We will prove that with the
proposed coupled exponential scheme, the mass constraint can be satisfied exactly1.

The structure of this chapter is as follows. Section 4.2 shortly summarizes the
equations involved. In Section 4.3, we explain how the flux diffusion matrix can be
obtained from the Stefan-Maxwell equations. Then, in Section 4.4 it is shown that
for a dominant background gas the complex formalism of multicomponent diffusion
reduces to the simple Fick law. Section 4.5 discusses the discrete mass conservation,
while test results are given in Section 4.6. This chapter ends with a short discussion
in Section 4.7.

4.2 Governing equations

4.2.1 Continuity equations and constraints

The composition of a multi-component mixture can be described by the continuity
equations for the different species. Expressed in terms of the species mass fraction
yi, the continuity equation for species i reads:

∂

∂t
(ρyi) +∇ · (ρ~vyi) +∇ · (ρ~viyi) = miωi, (4.1)

where ρ is the mass density, ~v the mass averaged velocity of the plasma, ~vi the dif-
fusion velocity and miωi the mass production rate per unit of volume. The diffusion
velocities can be obtained from the Stefan-Maxwell equations, which will be presented
in Section 4.2.2. As discussed in Section 2.1, the diffusion velocity ~vi is defined as the
velocity of species i with respect to the mass averaged velocity ~v. As a result of this
definition, no net mass is transported by the sum of the diffusive fluxes:∑

i

yi~vi = ~0. (4.2)

1Throughout this thesis, the term ‘exact’ means ‘up to the order of the machine accuracy’.
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Since the mass fractions are defined as the ratio between the species mass density ρi
and the total mass density, yi = ρi/ρ, the mass fractions are constrained as well:∑

i

yi = 1. (4.3)

Since no net mass is produced in reactions, the sum of the mass production rates
satisfies the relation: ∑

i

miωi = 0. (4.4)

It is important to note that, analytically, constraint (4.4) is automatically satisfied since
no net mass is created or destroyed in reactions, while constraints (4.2) and (4.3) need
to be imposed. Section 4.3.2 discusses how these constraints can be imposed in a
symmetric way, such that all species are treated as independent unknowns.

4.2.2 Stefan-Maxwell equations

The diffusion velocities ~vi are described by the Stefan-Maxwell equations, which can
be deduced from the kinetic theory of gases [33, 19]. Alternatively, the Stefan-Maxwell
equations can be obtained from momentum conservation considerations [39]. The
derivation in [39] corresponds to the first order Sonine polynomial expansion [40] of
the exact kinetic theory of gases. In this case the Stefan-Maxwell equations are given
by: ∑

j

Fij ~vj = −~di ⇔ Fv = −d, (4.5)

where F = (Fij) is the friction matrix, v = (~vi) is the vector of diffusion velocities
and d = (~di) is the driving force for species i. Alternatively, the formulation from the
kinetic theory of gases can be used. This results in the equations:

~vi = −
∑
j

Dij
~dj ⇔ v = −Dd, (4.6)

with D = (Dij), the multicomponent diffusion coefficient matrix. To keep the fol-
lowing discussion as simple as possible, we will take into account only ordinary con-
centration diffusion as a driving force, in which case:

~di = ∇xi, (4.7)

with xi the mole fraction of species i.
An important difference between the two formulations (4.5) and (4.6) is that the

elements of the (first order) friction matrix are explicitly known, while the elements of
the multicomponent diffusion coefficient matrix are not. The elements of the friction
matrix are given by:

Fij =

{∑
k fik if i = j,

−fij if i 6= j,
(4.8)
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with fij the mutual friction coefficient between species i and j, which can be ex-
pressed as:

fij =
xixj
Dij

, fii ≡ 0, (4.9)

with xi the mole fraction of species i and Dij the usual binary diffusion coefficient
[33, 19]. The friction coefficients are symmetric: fij = fji, and positive for i 6= j:
fij > 0. Note that these friction coefficients are only valid for first order diffusion
velocities. In more accurate Stefan-Maxwell equations, the friction coefficients are
not explicitly known. In this case the Stefan-Maxwell equations result from block
elimination of larger systems and then the coefficients Dij are no longer the binary
diffusion coefficients [16].

If we take a closer look at the mathematical properties of the two diffusion for-
mulations, we can see that F is singular, the nullspace2 of F is spanned by the vector
u = (1, . . . , 1)T. The range of F is given by the orthoplement u⊥. Any solution
v of the Stefan-Maxwell equations can be split in two components: v = vu⊥ + vu,
with vu⊥ ∈ u⊥ and vu ∈ u. The solutions given by the Stefan-Maxwell system are
not unique since v is a solution if Fvu⊥ = −d regardless of vu. Physically, this is
because one may add a constant velocity to all diffusion velocities, since these are
relative. Likewise, the nullspace of D is y = (y1, . . . , yN )T and the range y⊥. Or, in
other words, one may add any multiple of the mass fractions to the driving forces and
still have a valid solution. The properties of F and D are summarized in Table 4.1.

Stefan-Maxwell Kinetic theory

system Fv = −d Dd = −v
nullspace N(F) = u N(D) = y
range R(F) = u⊥ R(D) = y⊥

constraint 〈y,v〉 = 0 〈u,d〉 = 0

regularization F̃ = F + αy ⊗ y D̃ = D + βu⊗ u

regularized system F̃v = −d D̃d = −v

Table 4.1: Properties of the two diffusion formulations. The matrices F and D are each others
generalized inverses with prescribed range and nullspace.

The two diffusion formulations seem each others inverse. The matrices F and
D, however, are both singular and do not have an inverse. Instead, they are each
others generalized inverses3 with prescribed range and nullspace [41]. The following
properties hold:

FDF = F, DFD = D,

2The nullspace of a matrix A is the set of all vectors x for which Ax = 0.
3See appendix A for a more thorough discussion on generalized inverses in relation to constrained

systems.
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FD = I− y ⊗ u

〈u,y〉
, DF = I− u⊗ y

〈u,y〉
,

with ⊗ denoting the dyadic product: a⊗ b = (aibj). To obtain suitable expressions
for the diffusion velocities the matrices D and F need to be regularized. The next
section will discuss how this is done.

4.3 The flux diffusion matrix

To solve for the species mass fractions, an expression for the diffusive mass fluxes
in terms of the gradients of the mass fractions is needed. However, we have an ex-
pression for the species diffusion velocities in terms of the gradients of the mole
fractions, given by (4.6). The diffusion velocities, therefore, need to be converted to
mass fluxes. An additional conversion is needed to obtain the gradients of the mass
fractions from the gradients of the mole fractions. Furthermore, the matrix D needs
to be regularized.

We seek an expression of the form:

∂

∂t
(ρyi) +∇ · (ρ~vyi)−∇ ·

∑
j

Γij∇yj

 = miωi, (4.10)

where the coefficients Γij denote the elements of the flux diffusion matrix Γ, which
expresses the diffusive mass fluxes in terms of the gradients of the mass fractions.
The matrix Γ is in fact the product of three matrices:

Γ = RD̃M̃. (4.11)

The matrices are:

1. A matrix M̃, relating the gradients of the mole fractions to the gradients of the
mass fractions. The driving forces ~di are given in terms of the gradients of the
mole fractions ∇xi. Since equation (4.10) is solved for the mass fractions, the
gradients of the mole fractions∇xi need to be converted to the gradients of the
mass fractions∇yi. This conversion is discussed in Section 4.3.1.

2. A matrix D̃, relating the diffusion velocities to the gradients of the mole frac-
tions. The coefficients of F are explicitly known, while the elements of D are
not. However, to substitute (4.6) in (4.1) we need the formulation where the
diffusion velocities are given in terms of the driving forces. Therefore, we have
to calculate the multicomponent diffusion matrix D from the friction matrix
F. Also, matrix D has to be regularized to obtain D̃. Since calculation and
regularization of D are intertwined, both are discussed in Section 4.3.2.

3. A matrix R, relating the diffusive mass fluxes to the diffusion velocities. The
calculation of R is discussed in Section 4.3.3.
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To be able to find a numerical solution of the system of mass balances (4.10), it is
crucial that the flux diffusion matrix is non-singular. Therefore, the matrices M̃,
D̃ and R must also be non-singular. Due to the mass and mass flux constraint,
calculation of these matrices is not trivial, since care has to be taken to avoid that
mass constraints are imposed a priori.

The continuity equations (4.1) are constrained by (4.3), while the Stefan-Maxwell
equations (4.5) are subject to constraint (4.2). As a result, there are N − 1 inde-
pendent continuity equations and N − 1 independent Stefan-Maxwell equations in
a system with N different species. Therefore, it is possible to single out one species
and calculate the mass fraction of this species from (4.3). However, this approach is
asymmetric, since one species is treated differently from the other species. Further-
more, this approach can give cancellation problems when the selected species is not
present in excess everywhere in the plasma.

For the above mentioned reasons, we follow the strategy of [38], where all mass
fractions are considered as independent unknowns and the constraints are not im-
posed explicitly. Then, since all N species mass fractions are treated as independent
unknowns, the constraints must be a result of the continuity equations, the boundary
conditions, the initial conditions and the diffusion algorithm. We will show that the
formulation of [38] leads to an elliptic equation for σm =

∑
i yi. The idea then is that

when σm = 1 is satisfied at the boundary, σm = 1 will be satisfied in the entire do-
main, because of the elliptic nature of the equation. In addition, for time-dependent
problems, σm = 1 will be satisfied for all t > 0, when σm = 1 holds for the initial
condition. In this strategy, special attention has to be paid to the application of the
constraints, since any a priori application of (4.3) or (4.2) gives rise to a singular flux
diffusion matrix Γ, as will be shown in the following sections.

4.3.1 Calculation of M̃

Since the continuity equations are solved for the mass fractions yi of the species, the
driving forces of the Stefan-Maxwell equations need to be expressed in terms of the
mass fractions as well. The relation between the mole and mass fractions is given by:

xi =
m

mi
yi, (4.12)

where mi is the mass of species i and the mixture averaged mass m is defined as:

1/m =
∑
j

yj/mj . (4.13)

Note that m = ρ/n, with n the total number density of the mixture. By taking the
gradient of expression (4.12) the gradients of the mole and mass fractions can be
related as:

∂xx = M∂xy, (4.14)

where
M = diag(x) (I− u⊗ x) diag−1(y), (4.15)
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with x the vector of mole fractions of all the species. The left nullspace of M is given
by u. As a result, the matrix M and the flux diffusion matrix Γ are singular, as shown
in [38].

To eliminate the singularity of M, we adopt the relation between the mass and
mole fractions as proposed in [38]:

xi = σm
m

mi
yi, (4.16)

where σm =
∑

i yi. Note that
∑

i xi =
∑

i yi follows from (4.16). The gradient of
(4.16) is now given by:

∂xx = M̃∂xy, (4.17)

with

M̃ =

(
diag(x) +

x⊗ (y − x)

〈x,u〉

)
diag−1(y). (4.18)

For later reference, note that
uTM̃ = uT, (4.19)

which will be used in Section 4.5. The modified matrix M̃ is non-singular and sum-
mation of (4.17) yields

∑
i∇xi =

∑
i∇yi. The Stefan-Maxwell equations can now be

expressed in terms of the gradients of the mass fractions.

4.3.2 Calculation of D̃

With the result from the last section, we can rewrite the gradients of the mole frac-
tions to the gradients of the mass fractions to express the diffusion velocities as:

~vi = −
∑
j

Dij

∑
k

M̃jk∇yk. (4.20)

It would now seem straightforward to substitute this result in (4.1) and solve for the
mass fractions. However, the elements of D are not explicitly known and therefore
need to be calculated by inversion of F. Since F has nullspace u, and is therefore
non-invertible, F has to be regularized.

Another problem is that y is in the nullspace of D and therefore
∑

i yi~vi = ~0 is
satisfied independent of the diffusion driving forces. That this is a problem can be
made comprehensible by considering the sum of all N species continuity equations
in steady state [38]:

∑
i

(
∇ · (ρ~vyi) +∇ · (ρ~viyi)

)
=
∑
i

miωi. (4.21)

Since only yi and ~vi are dependent on i and chemical reactions do not lead to net
mass production, this sum reduces to:

∇ · (ρ~vσm) = 0. (4.22)
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This equation can be seen as the continuity equation for the ‘species’ σm =
∑

i yi. It
can be seen that (4.22) degenerates for ~v = ~0, due to missing diffusion terms for σm.
As is shown in [38], singularities will appear for flux boundary conditions as well. The
degeneracy of (4.22) is a problem because (4.3) is not applied explicitly and σm = 1
should result from the formulation of the continuity equations.

To solve the above mentioned problems associated with the singularities in F
and D we have to calculate regularized matrices F̃ and D̃. As for the matrix M
from the previous section, the singularities in F and D are due to the fact that mass
constraints are imposed a priori [38]. The regularization of F should preserve the
symmetry and should not change the solution of the problem. This can be established
by introducing:

F̃ = F + αy ⊗ y, (4.23)

where α is a free, positive parameter. The matrix αy ⊗ y projects the diffusion veloc-
ities on the mass flux constraint 4. Likewise, D can be regularized by:

D̃ = D + βu⊗ u, (4.24)

where β is a free, positive parameter. When α and β satisfy αβ(σm)2 = 1, it can
be verified that F̃D̃ = I. Now D̃ and F̃ are true inverses of each other, D̃ can be
calculated as F̃-1 and the velocities can be expressed as:

~vi = −
∑
j

D̃ij

∑
k

M̃jk∇yk. (4.25)

It can be seen that with this new expression (4.2) is no longer satisfied independent of
the driving forces. Substitution of the new expression (4.25) in (4.1) and summation
over all species now gives:

∇ · (ρ~vσm)−∇ · (Dm∇σm) = 0, (4.26)

with Dm = ρβσm = ρ
ασm . The equation obtained is an elliptic convection-diffusion

equation for σm. Under appropriate boundary conditions, the physical solution σm =
1 will be obtained in the entire domain [42, 43].

In order to invert F̃, α has to be chosen appropriately. An appropriate choice for
the free parameter α is α = 1/max(Dij) [15], since it guarantees that the elements of
the matrices F and αy ⊗ y have the same order of magnitude. Note that instead of
direct inversion of the Stefan-Maxwell system, it is possible to use iterative methods
as discussed for example in [44] to obtain D̃. These iterative methods are computa-
tionally cheaper than direct inversion. We will not discuss this method here, since
in our case the largest computational expense lies in solving the discretized species
mass balances, and not in the inversion of the Stefan-Maxwell system at each grid
point.

4See appendix A.2 for a discussion on projectors.
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4.3.3 Calculation of R

The final step in obtaining the flux diffusion matrix Γ is to convert the diffusion
velocities to the mass fluxes ~Ji:

~Ji = ρyi~vi = −ρyi
∑
j

D̃ij

∑
k

M̃jk∇yk. (4.27)

Recalling the definition of the flux diffusion matrix in equation (4.11) it is clear that

R = diag(ρyi). (4.28)

The diffusive mass fluxes can thus be expressed as:

~Ji = −
∑
j

Γij∇yj . (4.29)

For positive mass fractions, R, D̃ and M̃ are non-singular and R and D̃ are even
symmetric positive definite. It can be proven [27] that Γ is positive definite and has
a complete set of eigenvectors, which is a property we need for the discretization
scheme. We have now found the appropriate expression for the flux diffusion matrix.

4.4 Analytical examples

In binary and dilute mixtures the complicated multicomponent diffusion formalism
should reduce to Fick’s law, where diffusion can be described by a coefficient instead
of a matrix. These two limiting cases will be considered here.

Binary mixture To investigate the limit of a binary mixture, consider a gas with two
neutral species: (x1 = x, x2 = 1 − x) In this case there is only one relevant friction
coefficient f = f12 = f21 = x1x2/D12, and (4.8) reduces to:

F =

(
f −f
−f f

)
.

The inverse of the friction matrix is given by:

(F + αy ⊗ y)−1 =

(
f + αy1y1 −f + αy1y2
−f + αy2y1 f + αy2y2

)−1
,

=
1

αf

(
f + αy2y2 f − αy1y2
f − αy2y1 f + αy1y1

)
,

=
1

f

(
y2y2 −y1y2
−y2y1 y1y1

)
+

1

α

(
1 1
1 1

)
.
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The diffusion coefficient matrix is given by:

D = (F + αy ⊗ y)−1 − 1

α
u⊗ u,

=
1

f

(
y2y2 −y1y2
−y2y1 y1y1

)
.

The result is independent of the regularization parameter α, as should it should:
the regularization procedure should not influence the final result. Calculation of the
mass fluxes gives:

J = −RD∂x,

= −ρy1y2
f

∂x,

where ∂x = (∇x,−∇x)T. From this result we can see that diffusion does not lead
to net mass transport: ~J1 + ~J2 = 0. Furthermore, the diffusion coefficient matrix
reduces to a single diffusion coefficient.

Dilute mixture To investigate a dilute mixture with a dominant background gas, a
mixture with three species is considered. The first species is the dominant species,
while species two and three are the traces: y1 ≈ 1, y2 ≈ 0, y3 ≈ 0. We can then
neglect the friction between species two and three (f23 = 0), and the friction matrix
is given by:

F̃ =

(f12 + f13) + αy1y1 −f12 + αy1y2 −f13 + αy1y3
−f12 + αy1y2 f12 + αy2y2 +αy2y3
−f13 + αy1y3 +αy2y3 f13 + αy3y3

 .

Inversion gives:

D = F̃−1 − 1

α
u⊗ u

=


y22
f12

+
y23
f13

−y2(y1+y3)
f12

+
y23
f13

−y3(y1+y2)
f13

+
y22
f12

−y2(y1+y3)
f12

+
y23
f13

(y1+y3)2

f12
+

y23
f13

−y3(y1+y2)
f13

− y2(y1+y3)
f12

−y3(y1+y2)
f13

+
y22
f12

−y3(y1+y2)
f13

− y2(y1+y3)
f12

(y1+y2)2

f13
+

y22
f12

 .

Calculation of the mass fluxes and neglection of quadratic terms in y2 and y3 gives:

J = −RD∂x,

= −ρ


0 −y2y21

f12
−y3y21

f13

0
y21y2
f12

0

0 0
y21y3
f13

 ∂x.
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Again, we can see that the mass flux constraint is satisfied: ~J1 + ~J2 + ~J3 = 0. Further-
more, the diffusion in the trace species is described by a single coefficient, as should
be the case in the limit of Fickian diffusion.

4.5 Discrete mass conservation

In Section 4.3.2 we have shown that analytically, σm = 1 will be satisfied in the entire
domain due to the elliptic nature of (4.26). In this section we will show that when
the coupled exponential scheme from Chapter 3 is used for discretization, this is true
numerically as well. As will be derived, in this case the discrete equation for σm reads:

aCσ
m
C = aEσ

m
E + aWσ

m
W , (4.30)

with σmC , σmE and σmW the values of σm on the central, east and west nodal point,
respectively. The coefficients aC , aE and aW are the corresponding discretization
coefficients and satisfy aE > 0, aW > 0 and aC = aE + aW . The discrete equation
for σm reveals a very pleasant property of the coupled exponential scheme that we
introduced in Chapter 3. Since σmC is a weighted average of σmE and σmW , we can
deduce from the discrete maximum principle that σm = 1 will be satisfied in the
entire domain. Suppose that σmC is a local maximum: σmC ≥ σmE , σmC ≥ σmW . However,
since σmC is a weighted average the following needs to be true: σmC = σmE = σmW . We
can now take σmE or σmW and continue the procedure until we hit the boundary, where
σm = 1. Although the mass fractions of the individual species may be affected by
discretization errors, we are guaranteed to have a mass conserving solution for σm

where all the points in the domain satisfy σm = 1, without discretization error.
To derive this discrete equation for σm, we start with the discretized equation for

the mass fraction vector y. When we apply the coupled exponential scheme from
Chapter 3 to equation (4.10), the following expression is obtained:

ACyC = AEyE + AWyW + sC∆x. (4.31)

Left multiplication with uT = (1, . . . , 1) gives:

uTACyC = uTAEyE + uTAWyW , (4.32)

since uTsC = 0 by virtue of equation (4.4). If uT is a left eigenvector of the discretiza-
tion matrices this can be written as:

amCuTyC = amEuTyE + amWuTyW , (4.33)

which is equivalent to:
amC σ

m
C = amEσ

m
E + amWσ

m
W . (4.34)

In the following subsections, we will prove that uT is indeed a left eigenvector of all
the discretization matrices. The proof consists of three parts:

1. uT is a left eigenvector of the flux diffusion matrix,

2. uT is a left eigenvector of the Péclet matrices ,

3. uT is a left eigenvector of the discretization matrices.
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Eigenvector of the flux diffusion matrix

The matrix vector product of uT and Γ can be written as:

uTΓ = uTRD̃M̃. (4.35)

Since uTR = ρyT by the definition in equation (4.28), this can be written as:

uTΓ = ρyTD̃M̃. (4.36)

Using the definition of D̃ in equation (4.24) we arrive at

uTΓ = DmuTM̃. (4.37)

Since uTM̃ = uT because of equation (4.19) we can see that uT is a left eigenvector
of Γ:

uTΓ = DmuT. (4.38)

Eigenvector of the Péclet matrices

Since uT is a left eigenvector of Γ it is a left eigenvector of Γ−1 as well:

uTΓ−1 =
1

Dm
uT. (4.39)

As a result, uT is also a left eigenvector of the Péclet matrix P:

uTP = ρuδxuTΓ−1 = ρuδx
1

Dm
uT ≡ PmuT, (4.40)

where we defined the ‘constraint’ Péclet number as: Pm = ρuδx/Dm. Note that this
form of the ‘constraint’ Péclet number can be understood from equation (4.26).

Eigenvector of the discretization matrices

To proceed with the proof, we diagonalize the Péclet matrix using the left eigenvec-
tors:

P = W−1ΛW = W−1

 λ1
. . .

λN

W, (4.41)

B(P) = W−1B(Λ)W = W−1

 B(λ1)
. . .

B(λN )

W, (4.42)

where W contains the left eigenvectors of P as its rows. Multiplying with W gives:

WB(P) = B(Λ)W =

 B(λ1)
. . .

B(λN )

W. (4.43)
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Since uT is one of the rows of W, we can conclude that applying the Bernoulli func-
tion to the Péclet matrix does not change the left eigenvectors, but only the corre-
sponding eigenvalues:

uTB(P) = B(Pm)uT. (4.44)

Since AE , AW and AC are given by (3.33), uT is also a left eigenvector of the
discretization matrices:

uTAE =
1

δxe
Dme B(Pme )uT, uTAW =

1

δxw
DmwB(−Pmw )uT. (4.45)

The discretization coefficients of the discrete equation (4.30) for σm are thus given
by:

aE =
1

δxe
Dme B(Pme ), aW =

1

δxw
DmwB(−Pmw ), aC = aE + aW . (4.46)

It can be seen that this result is the scalar exponential scheme applied to equation
(4.26).

As explained in the beginning of this section, this form of the discrete equation
for σm guarantees mass conservation without discretization error. Note that the so-
lution σm = 1 can only be obtained up to machine accuracy when the discretization
scheme does not change the eigenvector uT of the discretization matrices. This is
guaranteed by the coupled discretization method, but not by the scalar exponential
scheme from Chapter 3. Without flow, both methods are equivalent, in all other cases
mass conservation is not guaranteed by the scalar exponential scheme from Chapter
3 and the coupled discretization method should be used.

4.6 Test case: Mixing of H2O, H2 and N2

As a test for the mass constraint and the discretization scheme the two dimensional
test model as described in [37] was used. The geometry of the domain and the bound-
ary conditions at the inlets can be seen in Figure 4.1. At the other boundaries, homo-
geneous Neumann boundary conditions are applied.

First, the model was run without flow, as in [37]. Subsequently, the model was
run with a constant mass flux ρu in the x-direction of 0.002 kg m−2s−1. Calculations
were performed with the scalar and the coupled exponential scheme on a grid of 80
by 80 gridpoints.

The results of both runs as calculated with the coupled exponential scheme are
shown in Figure 4.2. Comparing the simulations with and without flow, it can be
seen that in the case with flow the mass fractions are more strongly determined by
their upwind values, as expected. In the case without flow, both the scalar and coupled
exponential scheme converged in 19 iterations. The calculation time was 11.19 s for
the scalar scheme, and 10.89 s for the coupled scheme on a regular desktop PC.
As expected, the mass constraint was exactly satisfied without discretization error
in both discretization schemes. In Figure 4.3 the result for the coupled scheme is
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yH2O = 1

yH2
= 1

yN2
= 1

0.1 m

0.04 m0.04 m

Figure 4.1: Geometry of the 2-D test problem.

shown. However, with flow, the mass constraint was not exactly satisfied for the scalar
exponential scheme and no convergence was obtained, showing the incapability of the
scalar scheme for simulations with flow. The coupled exponential scheme converged
in 20 iteration steps in 16.3 s and mass conservation was satisfied. We can conclude
that the computational cost of the scalar and the coupled exponential scheme are
comparable, but the coupled scheme is more robust.

4.7 Discussion

In this chapter, a generalization of the exponential discretization scheme was used
to discretize the fluxes resulting from the Stefan-Maxwell equations. For the Stefan-
Maxwell equations the non-singular formulation of [38, 15] was used. In this formu-
lation, the mass constraint is not applied explicitly, but is a result of the continuity
equations, the boundary conditions and the diffusion algorithm. Since there is no
need to select a species to account for the constraint, this formulation is especially
useful for mixtures without dominant species. It was shown that with the general-
ized, coupled exponential discretization scheme the numerical solution can satisfy
the mass conservation constraint exactly.
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(a) H2O (b) H2O with flow

(c) H2 (d) H2 with flow

(e) N2 (f) N2 with flow

Figure 4.2: Species mass fractions with and without flow as calculated with the coupled expo-
nential scheme. In the case with flow, the scalar exponential scheme did not converge.
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Figure 4.3: The mass constraint 1 −
∑
i yi. As can be seen mass conservation is fulfilled up

to machine accuracy.

The test results confirmed that the mass constraint is indeed satisfied exactly with
the coupled exponential discretization scheme, independent of the Péclet numbers.
Furthermore, the coupled exponential scheme gives physical solutions for all Péclet
numbers. Scalar discretization of the different flux contributions does neither guar-
antee mass conservation, nor physical solutions for simulations with convection. In
some cases, the simulations with scalar discretization did not even converge.

The discretization scheme presented in Chapter 3 makes it possible to actually use
the method as presented in [38, 15] in simulations of mixtures, where the diffusive
fluxes of the different constituents are coupled. Examples of such mixtures can be
found in combustion problems, NLTE plasma models and simulations of elemental
demixing in LTE plasmas. Note that the method presented here is limited to mixtures
with neutral species. In the next chapters, we will extend the non-singular formula-
tion of the Stefan-Maxwell equations to plasmas. This extension is not straightfor-
ward; complications include the mass disparity between electrons and heavy particles
[45], singularities due to the ambipolar constraint [45] and anisotropy of diffusive
fluxes in magnetized plasmas [46].
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Chapter 5

Ambipolar diffusion

This chapter is based on:
On the ambipolar constraint in multi-component diffusion problems, Peerenboom, K.S.C.,
Dijk, J. van, Goedheer, W.J., Mullen, J.J.A.M. van der, Journal of Computational
Physics, 230(10), 3651-3655, 2011

5.1 Introduction

The diffusion velocities in multi-component systems such as plasmas are governed
by the Stefan-Maxwell equations. As discussed in [38], the mass flux constraint on
these diffusion velocities gives rise to a singularity in the resulting set of continuity
equations. In ambipolar plasmas, the current prescription puts an extra constraint on
the diffusion velocities. Similar to the mass flux constraint, this constraint introduces
an extra singularity in the set of continuity equations.

In his extensive paper on ambipolar diffusion [45], Giovangigli identifies this sin-
gularity and hints at a possible solution. Here, we will work out the details and obtain
a regularized (non-singular) form of the ambipolar diffusion matrix. In addition, we
will show that with this regularized ambipolar diffusion matrix and the correct dis-
cretization scheme, quasi-neutrality will follow from the numerical method; it does
not need to be imposed explicitly.

5.2 Constraints and singularities

The mass fraction yi = ρi/ρ of a species i follows from the continuity equation:

∂

∂t
(ρyi) +∇ · (ρ~vyi) +∇ · (ρ~viyi) = miωi, (5.1)

with ρi = nimi the mass density of species i with number density ni and mass mi,
ρ =

∑
i ρi the total mass density, ~v the mass averaged bulk velocity, ~vi the diffusion

velocity and miωi the mass production source term. The diffusion velocity is defined
as the velocity with respect to the mass averaged velocity:

~vi = ~ui − ~v, (5.2)
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where ~ui is the total velocity of species i. By their definition, the mass fractions are
subject to the constraint ∑

i

yi = 1, (5.3)

and the diffusion velocities to the constraint∑
i

yi~vi = 0. (5.4)

As shown in [38], straightforward application of this constraint for the velocities gives
rise to a degenerate set of continuity equations.

In plasmas, the drift of charged particles in electric fields causes charge sepa-
rations over a typical length scale of the Debye length λD. This charge separation
leads to an electric field, which can be calculated with Poisson’s equation. In plasmas
where λD is small, this approach is not very efficient, since it requires excessively fine
meshes. In these plasmas, it is more appropriate to consider the electric field in the
limit of vanishing Debye length.

In the limit of vanishing Debye length, the plasma becomes quasi-neutral and,
as explained in Chapter 2, the current should be divergence free to maintain this
quasi-neutrality. The electric field necessary to maintain this situation is called the
ambipolar field ~Eamb. The assumption of an ambipolar plasma puts extra constraints
on the mass fractions and the diffusion velocities. The quasi-neutrality constraint can
be expressed as: ∑

i

qiyi
mi

= 0, (5.5)

which is the counterpart of (5.3), but now for charge instead of mass. The constraint
for the diffusion velocities is less straightforward. It is often assumed in the ambipo-
lar case that the current is zero, but this is not a necessary condition. Instead, it is
sufficient that the current is divergence free. Therefore we apply the following current
constraint:

~j =
∑
i

niqi~vi = ~jext, ∇ ·~jext = 0, (5.6)

with ~jext the external current density. When we assume Ohm’s law, the external
current density is related to the external electric field ~Eext via:

~jext = σ ~Eext, (5.7)

where σ is the electrical conductivity. Similar to (5.4), the current constraint causes
singular behavior. This can be demonstrated by considering a steady-state situation.
Multiplying all continuity equations with qi/mi and summing over all species gives:

∑
i

(
∇ ·
(
ρ~v
qiyi
mi

)
+∇ ·

(
ρ~vi

qiyi
mi

))
=
∑
i

qiωi. (5.8)
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Since no net charge is produced or destroyed in reactions, the sum on the right
hand side of this equation is zero. Introducing the ‘charge-neutrality species’ σc =∑

i qiyi/mi and applying constraint (5.6) gives:

∇ · (ρ~vσc) = 0. (5.9)

This equation becomes degenerate for stagnation points, where ~v = ~0. As in the mass
constraint, this degeneracy is due to the lack of dissipative terms, but now for the
‘charge-neutrality species’ σc. A solution for this singularity is presented in Section
5.5. The next section will explain how the ambipolar diffusion matrix is obtained.

5.3 The ambipolar diffusion matrix

The solution for the singularity induced by the current constraint is found in adding
dissipative (diffusive) terms to the expressions for the diffusion velocities without
changing the solution. First, consider the original expressions for the diffusion veloc-
ities. As in Chapter 4, the Stefan-Maxwell equations can be written as [38, 47]:

Fv = −d, (5.10)

or in the dual formulation:
v = −Dd, (5.11)

with v = (~v1, . . . , ~vN )T the vector of diffusion velocities and d = ( ~d1, . . . , ~dN )T the
vector of driving forces. In the following analysis, we will use the formulation of
equation (5.11). Besides normal concentration diffusion, we will now also take into
account drift in the external and ambipolar electric field in the driving forces:

d = ∂x− z ~Eext/p− z ~Eamb/p, (5.12)

where p is the pressure and z = (n1q1, . . . , nNqN )T. Substitution of the driving
forces in (5.11) gives:

v = −D
(
∂x− z ~Eext/p− z ~Eamb/p

)
. (5.13)

The ambipolar field is still present in this expression for the diffusion velocities, but
can be eliminated by applying constraint (5.6). When we define the inner product
in species space as 〈a,b〉 =

∑
i aibi, the current constraint (5.6) can alternatively be

written as:
〈z,v〉 = σ ~Eext. (5.14)

By taking the inner product of z with (5.13) and using the definition of the conductivity
σ = 〈z,Dz〉/p, the following expression for the ambipolar field is obtained:

~Eamb/p =
〈z,D∂x〉
〈z,Dz〉

. (5.15)
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Backsubstitution in expression (5.13) for the diffusion velocities gives:

v = −
(

D− Dz⊗Dz

〈z,Dz〉

)
∂x + Dz ~Eext/p,

= −D̂∂x + Dz ~Eext/p (5.16)

where⊗ denotes the dyadic product in species space: a⊗ b = (aibj). In the next sec-
tion, we will now demonstrate that the general expression for the ambipolar diffusion
matrix D̂ reduces to well-known results for two limiting cases.

To solve equation (5.1) for the species mass fractions, an expression for the dif-
fusive mass fluxes in terms of (the gradients of) the mass fractions is needed. As
in Chapter 4, the mass fluxes can be obtained by multiplication with the matrix
R = diag(ρyi):

J = −RD̂∂x + RDz ~Eext/p. (5.17)

The gradients of the mole fractions can be converted to the gradients of the mass
fractions by using the matrix M̃ from Chapter 4:

J = −RD̂M̃∂y + RDz ~Eext/p. (5.18)

The drift term Dz ~Eext/p is written in terms of the mass fractions as follows:

J = −RD̂M̃∂y + RDz⊗ uy ~Eext/p. (5.19)

Note that this does not change the solution since 〈u,y〉 = σm = 1.

5.4 Analytical examples

Ambipolar diffusion in a fully ionized plasma Consider the case that the plasma is
fully ionized. In this case there are only two species, electrons and ions, and we know
that the solution must be given by x+ = x− = 1/2. If the ion mass fraction and
charge density are given by y+ = y and z+ = z, respectively, we know from the mass
and charge constraint that the electron mass fraction and charge density are given by
y− = 1 − y and z− = −z. The diffusion coefficient matrix D is the same as for the
binary mixture in Chapter 4:

D =
(
F + αy ⊗ y

)−1
− 1

α
u⊗ u,

=

(
f + αy2 −f + αy(1− y)

−f + αy(1− y) f + α(1− y)2

)−1
− 1

α

(
1 1
1 1

)
,

=
1

f

(
(1− y)2 −y(1− y)
−y(1− y) y2

)
.
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This result is independent of α, as should be the case. Calculation of the ambipolar
diffusion coefficient matrix gives:

Dz =
1

f

(
z(1− y)
−zy

)
,

〈z,Dz〉 =
1

f
z2,

Dz⊗Dz =
1

f2

(
z2(1− y)2 −z2y(1− y)
−z2y(1− y) z2y2

)
,

D− Dz⊗Dz

〈z,Dz〉
=

(
0 0
0 0

)
.

The diffusion velocities are given by:

v = −
(

D− Dz⊗Dz

〈z,Dz〉

)
∂x +

~Eext
p

Dz,

=
z ~Eext
pf

(
1− y
−y

)
.

It can be seen that in the fully ionized case diffusion proportional to concentration
gradients is completely absent and only forced diffusion in an external electric field
is present. The electrons and ions drift in opposite directions and the electrons are
much faster since y � 1 − y. The absence of diffusion is expected since in the fully
ionized case the plasma reduces to one fluid with fixed composition x+ = x− = 1/2.

Classical ambipolar diffusion Consider a plasma with three species: neutrals, ions
and electrons. The neutral species form the dominant background gas, the electrons
and ions are only present in traces: y0 ≈ 1, y+ ≈ 0, y− ≈ 0. The plasma is quasi-
neutral: z+ = −z− = z, x+ = x− = x. In this case it is expected that the multicom-
ponent diffusion expressions reduce to Fickian diffusion, where both the electrons
and the ions diffuse with twice the original ion diffusion coefficient if Te = Th. Ne-
glecting the external electric field, the mass fluxes are given by:

J = −RD

(
I− z⊗Dz

〈z,Dz〉

)
∂x.

Using the results from Section 4.4 for the dilute mixture, we obtain:

I− z⊗Dz

〈z,Dz〉
=

1 0 0

0 f+0

f+0+f−0

f+0

f+0+f−0

0 f−0

f+0+f−0

f−0

f+0+f−0

 ,

J = −ρ


0 −y+y20

f+0
−y−y20

f−0

0
y20y+
f+0

0

0 0
y20y−
f−0


1 0 0

0 f+0

f+0+f−0

f+0

f+0+f−0

0 f−0

f+0+f−0

f−0

f+0+f−0

 ∂x,
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Using the fact that f+0 � f−0, we obtain:

J ≈ −ρy
2
0

f+0

0 − (y+ + y−) − (y+ + y−)
0 y+ y+
0 y− y−

 ∂x.

Both the electrons and the ions diffuse with two times the ion diffusion coefficient.
This is the classical result for ambipolar diffusion for the case Te = Th.

5.5 Regularization

As mentioned in [45], the vectors y and z are in the nullspace of the ambipolar diffu-
sion matrix D̂, which means that the matrix is singular. In the beginning of Section
5.2, we have already diagnosed that this is due to the lack of dissipative terms for the
‘charge neutrality species’ σc and the ‘mass constraint species’ σm. As hinted on the
last page of [45], a possible solution for this singularity is to add diffusive terms. Here
we will work out such an approach in more detail. Regularization of the ambipolar
diffusion matrix can be established in the following way:

v = −D̂M̃∂y − βu⊗ u∂y − γr⊗ r∂y + Dz⊗ uy ~Eext/p, (5.20)

where β and γ are free parameters and r is the vector r = (q1/m1, . . . , qN/mN )T. To
establish that the regularization gives the required diffusive terms for equation (5.9),
the parameters β and γ must be chosen positive. In practice, these parameters are
chosen to be β = max(Dij) and γ = 105〈r,Dr〉/〈r, r〉2. The factor of 105 is of the
order of magnitude of the heavy particle to electron mass ratio.

We will now derive new expressions for the mass flux and the current constraint
based on these regularized expressions for the diffusion velocities. First we take the
inner product of (5.20) with y to obtain the mass flux. The first term on the right hand
side is zero, since y is in the nullspace of D̂. The third term is also zero, because of
quasi-neutrality. Finally, the fourth term is zero since y is in the nullspace of D. As a
result, the mass flux constraint now reads:∑

i

nimi~vi = −Dm∇σm, (5.21)

with Dm = ρβσm. Similarly, we can evaluate the inner product of (5.20) with z. The
first term on the right hand side is again zero, since z is in the nullspace of D̂ as well.
The second term is zero because of quasi-neutrality. This results in the following
expression for the current:∑

i

niqi~vi = −Dc∇σc + σ ~Eext, (5.22)

with Dc = γ〈z, r〉. With the above expressions for the mass flux and current con-
straint, non-degenerate equations for σc and σm can be found. Summation of the
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species continuity equations (5.1) and substitution of (5.21) results in:

∇ · (ρ~vσm)−∇ · (Dm∇σm) = 0. (5.23)

Likewise, multiplication of (5.1) with qi/mi, summation over all species and substitu-
tion of (5.22) gives:

∇ · (ρ~vσc)−∇ · (Dc∇σc) = 0, (5.24)

where we have used ∇ ·
(
σ ~Eext

)
= 0. Note that the equations for σc and σm are

elliptic. Comparing the equation for σc with (5.9), we can see that by regularization,
we have obtained the desired diffusive terms for σc. According to the maximum
principle for elliptic equations [42, 43], the maximum will be taken on the boundary.
When the quasi-neutrality condition is therefore satisfied at the boundary, it will be
satisfied in the entire domain.

5.6 Discrete mass and charge conservation

In the previous section we mentioned that analytically σm = 1 and σc = 0 will be
satisfied in the entire domain due to the elliptic nature of (5.23) and (5.24). In this
section we will show by deriving discrete equations for σm and σc that, when the
coupled exponential scheme from Chapter 3 is used for discretization, this is true nu-
merically as well for systems with ~Eext = 0. The derivation of these discrete equations
for σm and σc will proceed largely along the same lines as the derivation in Chapter
4. We start with the discrete equation for the mass fraction vector y:

ACyC = AEyE + AWyW + sC∆x. (5.25)

Left multiplication with uT = (1, . . . , 1) and rT = (q1/m1, . . . , qN/mN ), respectively,
gives:

uTACyC = uTAEyE + uTAWyW ,

rTACyC = rTAEyE + rTAWyW , (5.26)

since uTsC = 0 and rTsC = 0. If uT and rT are left eigenvectors of the discretization
matrices AE , AW and AC , this can be written as:

amCuTyC = amEuTyE + amWuTyW ,

acCrTyC = acErTyE + acW rTyW , (5.27)

where amE , amW , amC , acE , acW and acC are the corresponding eigenvalues. The above
equation is equivalent to:

amC σ
m
C = amEσ

m
E + amWσ

m
W ,

acCσ
c
C = acEσ

c
E + acWσ

c
W , (5.28)
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with σmE , σmW , σmC , σcE , σcW and σcC denoting the mass constraint and charge neutrality
species at the east, west and central point, respectively. We will now prove that uT

and rT are indeed left eigenvectors of all the discretization matrices. First, we will
focus on the matrix vector product of uT and rT with the flux diffusion matrix:

uTΓ = uTR
(
D̂M̃ + βu⊗ u + γr⊗ r

)
,

rTΓ = rTR
(
D̂M̃ + βu⊗ u + γr⊗ r

)
. (5.29)

By rewriting the vectors uT and rT in terms of yT and zT, and using the fact that the
vectors y and z are in the nullspace of D̂, the following is obtained:

uTΓ = ρyTR−1R
(
D̂M̃ + βu⊗ u + γr⊗ r

)
= DmuT,

rTΓ = zTR−1R
(
D̂M̃ + βu⊗ u + γr⊗ r

)
= DcrT, (5.30)

where Dm = ρβσ and Dc = γ〈z, r〉. We can thus conclude that uT and rT are left
eigenvectors of the flux diffusion matrix. Now, we will consider the product with the
Péclet matrix P = ρvδxΓ−1:

uTP = uTρvδxΓ−1 = ρvδx/DmuT = PmuT,

rTP = rTρvδxΓ−1 = ρvδx/DcrT = P crT, (5.31)

where Pm = ρvδx/Dm and P c = ρvδx/Dc. To prove that uT and rT are left eigen-
vectors of B (P), we have to diagonalize to the left eigenvectors of the Péclet matrix:

P = W−1ΛW = W−1

 λ1
. . .

λN

W, (5.32)

B(P) = W−1B(Λ)W = W−1

 B(λ1)
. . .

B(λN )

W, (5.33)

where W contains the left eigenvectors as its rows. Multiplying with W gives:

WB(P) = B(Λ)W =

 B(λ1)
. . .

B(λN )

W, (5.34)

so we can conclude that applying the Bernoulli function to the Péclet matrix does not
change the left eigenvectors, but only the corresponding eigenvalues. With this result
the product of uT and rT with the discretization matrices becomes:

uTAE = 1/δxeDme B(Pme )uT = amEuT,

rTAE = 1/δxeDceB(P ce )rT = acErT. (5.35)
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Similar expressions for the west and central discretization matrices can be derived,
with which we arrive at (5.28). Note that the discrete equations for σm and σc have
the form as if the scalar exponential scheme was applied to equation (5.23) and (5.24),
respectively.

An interesting consequence of the discrete equations for σm and σc is that the
central grid points are weighted averages of the east and west neighbors. Since σmC is
a weighted average, we can deduce from the discrete maximum principle that σm = 1
will be satisfied in the entire domain. Suppose that σmC is a local maximum: σmC ≥
σmE , σ

m
C ≥ σmW . However, since σmC is a weighted average the following needs to be

true: σmC = σmE = σmW . We can now take σmE or σmW and continue the procedure
until we hit the boundary, where σm = 1. Therefore, all the points in the domain
satisfy σm = 1, without discretization error. Similarly, σc = 0 is satisfied without
discretization error.

Note that the exact solution for the constraints (5.3) and (5.5) can only be obtained
when the discretization scheme does not change the eigenvectors uT and rT of the
flux diffusion matrix. For the scalar exponential scheme, this means that the exact
solution for the constraints can only be obtained in the case without flow. In all other
cases, mass and charge conservation is not guaranteed and the coupled discretization
method should be used.

5.7 Test case: drift in a H, H+, electron mixture

As a test case for the mass and charge constraints, a modified version of the test model
of Chapter 4 is used. The geometry is the same as in Chapter 4, but other species are
used. At the left inlet the H+ mass fraction was set to 0.999, at the bottom and top
inlet the H+ mass fraction was set to 1e-14. At all other boundaries homogeneous
Neumann conditions were used. The H and electron fraction at the boundary were
determined from the mass and charge neutrality constraint, respectively.

First, the model was run without electrical current. Subsequently, an electrical
current was induced by applying a voltage of -100 V at the left inlet and grounding the
right boundary. Calculations were performed with the coupled exponential scheme
from Chapter 3 on a grid of 80 by 80 gridpoints.

In Figure 5.1, the results of the runs with and without applied potential difference
can be seen. Comparing the results with and without voltage, it can be seen that ap-
plying the voltage has no effect on the accuracy of the mass constraint. The accuracy
of the charge constraint, however, decreases by applying the voltage. This can be un-
derstood since there is no guarantee that charge conservation can be fulfilled up to
machine accuracy when an external electric field is present.
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(d) Charge constraint 100 V

Figure 5.1: Mass (1 −
∑
i yi) and charge (

∑
i qiyi/mi) constraints with and without applied

voltage difference.

5.8 Discussion

In this chapter, the multi-component diffusion formulation from Chapter 4 was ex-
tended to quasi-neutral mixtures with charge species. Instead of the usual ambipolar
constraint, where the current is assumed to be zero, we allowed for a divergence free
current. Mass and charge constraints were not applied explicitly, but followed as a
result of the continuity equations, the boundary conditions, the diffusion algorithm
and the discretization scheme. The test results confirmed that mass and charge con-
straints were indeed satisfied.



Chapter 6

Diffusion in magnetized plasmas

This chapter is based on:
A finite volume model for multi-component diffusion in magnetically confined plasmas
Peerenboom, K.S.C., Dijk, J. van, Goedheer, W.J., Degrez, G, Mullen, J.J.A.M. van
der, Journal of Physics D: Applied Physics, 44(19), 194006-1/8, 2011

Abstract. In this chapter the multi-component diffusion algorithm from Chapter 4
and 5 is extended to the case of magnetized plasmas. In magnetized plasmas the
transport becomes anisotropic. The transport along the magnetic field lines does
not change and the formalism of Chapter 4 and 5 can be used. The transport fluxes
across and around the field lines become coupled and must be treated differently.
In this chapter we discuss the strategy for treating the coupling between these direc-
tions.
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6.1 Stefan-Maxwell equations in a magnetic field

In the presence of a magnetic field ~B, the Stefan-Maxwell equations as presented in
Chapter 4 and 5 have additional terms due to the Lorentz force and can be written as
[46]: ∑

l

Fkl~vl −
nkqk
p

~vk × ~B +
yk
p
~j × ~B = − ~dk, (6.1)

with F = (Fkl) the friction matrix as introduced in Chapter 4, ~dk the diffusion driv-
ing force, nk the number density, qk the charge, p the pressure, yk the mass fraction
and ~j the current density. The second term on the left hand side gives the Lorentz
force acting on the diffusion velocity, while the third term appears since the diffusion
velocities are defined with respect to the mass averaged bulk velocity. The diffusion
driving force also has an extra term due to the Lorentz force acting on the mass av-
eraged velocity. In the absence of pressure diffusion and thermophoresis, but in the
presence of an electric field ~E, the diffusion driving force is given by:

~dk = ∇xk −
nkqk
p

~E − nkqk
p

~v × ~B, (6.2)

with xk the mole fraction of species k and ~v the mass averaged velocity of the plasma.

6.1.1 Along, across and around the field lines

In this thesis, we assume that the plasma is cylindrically symmetric and that the mag-
netic field points in the axial direction. As explained in Chapter 2, we can introduce
the cylindrical basis (~er, ~eφ, ~ez) and write any vector ~x as ~x = x⊥~er + x�~eφ + x‖~ez ,
where ‖, ⊥ and � indicate the directions along, across and around the field lines
as given in Figure 6.1. In the direction along the field lines (‖), the Stefan-Maxwell

�

⊥

~B

‖

Figure 6.1: The directions along (‖), across (⊥) and around (�) the magnetic field lines.

equations are not influenced by the magnetic field and can be written as:∑
l

Fklv
‖
l = d

‖
k. (6.3)
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The flow directions across (⊥) and around (�) the field lines are coupled:∑
l

Fklv
⊥
l −

nkqk
p

v�k B +
ykj
�B

p
= −d⊥k , (6.4)

∑
l

Fklv
�
l +

nkqk
p

v⊥k B −
ykj
⊥B

p
= −d�k . (6.5)

The Stefan-Maxwell equations along the field lines can be solved independently from
the other directions. The directions across and around the field lines need to be solved
together, which can be done by putting together the ⊥ and � direction in a 2N × 2N
system, with N the number of species. However, from a computational viewpoint, it
is favorable to use complex arithmetic [48].

To facilitate coupled solving of the directions across and around the field lines, the
Stefan-Maxwell equations are made complex by adding i (i2 = −1) times equation
(6.5) to equation (6.4):∑

l

Fkl

(
v⊥l + iv�l

)
− nkqkB

p

(
v�k − iv

⊥
k

)
+
ykB

p

(
j� − ij⊥

)
= −

(
d⊥k + id�k

)
. (6.6)

Substitution of j⊥ =
∑

k nkqkv
⊥
k and j� =

∑
k nkqkv

�
k gives:∑

l

Fkl

(
v⊥l + iv�l

)
− nkqkB

p

(
v�k − iv

⊥
k

)
+
ykB

p

∑
l

nlql

(
v�l − iv

⊥
l

)
= −

(
d⊥k + id�k

)
. (6.7)

When we introduce the complex diffusion velocity ṽk = v⊥k + iv�k , this can be written
as: ∑

l

Fklṽl + i
nkqk
p

ṽkB − i
yk
p

∑
l

nlqlṽlB = −
(
d⊥k + id�k

)
. (6.8)

Alternatively, matrix notation gives:

(F + i (I− y ⊗ u) B) ṽ = −
(
d⊥ + id�

)
, (6.9)

where B is the matrix taking into account the Lorentz force:

B = diag

(
niqiB

p

)
, (6.10)

and u and y are the vectors u = (1, . . . , 1)T, y = (y1, . . . , yN )T. As pointed out
by Giovangigli [49], this system does not have convenient mathematical properties.
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For example, the nullspace of F + i (I− y ⊗ u) B is not known explicitly. This is
inconvenient when we want to regularize the matrix. To improve the mathematical
structure without changing the solution, the projector I− u⊗ y is used:(

F + iF′
)
ṽ = −

(
d⊥ + id�

)
, (6.11)

where the matrix F′ is given by [46, 50]:

F′ = (I− y ⊗ u) B (I− u⊗ y) . (6.12)

The matrix F+ iF′ is symmetric, singular and has nullspace u. Comparable to Chap-
ters 4 and 5, there is a dual formulation for the magnetized case as well:

ṽ = −
(
D⊥ + iD�

)(
d⊥ + id�

)
. (6.13)

As in previous chapters, the singularity in F + iF′ can be removed by applying the
mass flux constraint

∑
k ykṽk = 0 to the set of Stefan-Maxwell equations [38]. The dif-

fusion matrices D⊥ and D� can then be calculated from F + iF′ using the following
relation [46]: (

F + iF′ + αy ⊗ y
)−1

=
(
D⊥ + iD� + 1/αu⊗ u

)
, (6.14)

where α is a positive parameter. An appropriate choice for the free parameter α is α =
1/max(Dij) [15], since it guarantees that the elements of the matrices F and αy ⊗ y
have the same order of magnitude. Note that instead of direct inversion of the Stefan-
Maxwell system, it is possible to use iterative methods as discussed for example in
[46]. These iterative methods are computationally cheaper than direct inversion. We
will not discuss this method here, since in our case the largest computational expense
lies in solving the discretized species mass balances (Section 3.2), and not in the
inversion of the Stefan-Maxwell system at each grid point.

The real part of expression (6.13) gives the diffusion velocity perpendicular to the
magnetic field:

v⊥ = −D⊥d⊥ + D�d�. (6.15)

The imaginary part gives the diffusion velocity around the field lines:

v� = −D⊥d� −D�d⊥. (6.16)

The parallel diffusion velocity is not changed by the magnetic field and is given by:

v‖ = −D‖d‖. (6.17)

The driving forces still contain the ambipolar field. In the next section, we will explain
how the ambipolar field can be eliminated from the equation.
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6.1.2 The quasi-neutrality constraint

In the previous chapter, ambipolar diffusion for non-magnetized plasmas was dis-
cussed. To eliminate the ambipolar field from the diffusion driving forces, Ohm’s
law was used:

~j = σ ~Eext, (6.18)

with σ the conductivity and ~Eext the external electric field. However, in magnetized
plasmas an additional term is present in Ohm’s law: the Hall current. When this Hall
current is taken into account, Ohm’s law is given by:

~j = σ
(
~Eext + ~v × ~B

)
, (6.19)

with σ the anisotropic conductivity tensor, ~v the bulk velocity and ~B the magnetic
field. We will now derive the expressions for the diffusion velocities using Ohm’s law
including the Hall current to eliminate the ambipolar electric field.

For calculation of the ambipolar field in the presence of a magnetic field, distinc-
tion must be made between the directions along, across and around the magnetic
field lines. Normally, without a magnetic field, the ambipolar field is calculated as the
electric field that is necessary to prevent charge separation. When a magnetic field
is present, this calculation applies along and across the magnetic field. Around the
field lines, it is impossible for the electrons and ions to diffuse together. This can be
explained with Figure 6.2. In the cylindrically symmetric plasma there is a radial gra-
dient of charged particles. The magnetic field points out of the plane. Because of the
opposite charge of the electrons and ions, the circling motion of the electrons is in the
opposite direction of the motion of the ions. This means that their contribution to the
current has the same sign, which is the mechanism behind the diamagnetic current1.
Since current can flow around the field lines without causing charge separation, only
for the direction along and across the field lines, the current constraint is applied:

j‖ = 〈z,v‖〉 = σ‖E
‖
ext, (6.20)

j⊥ = 〈z,v⊥〉 = σ⊥E⊥ext + σ⊥v�B + σ�v⊥B.

Eliminating the ambipolar electric field in the driving forces with the above current
constraints gives the following expressions for the diffusion velocities:

v‖ = −D‖

(
I− z⊗D‖z

〈z,D‖z〉

)
∂‖x + D‖zE

‖
ext/p, (6.21)

v⊥ = −D⊥
(

I− z⊗D⊥z

〈z,D⊥z〉

)
∂⊥x + D⊥zE⊥ext/p+ D⊥zv�B/p+ D�zv⊥B/p,

v� = −D�
(

I− z⊗D⊥z

〈z,D⊥z〉

)
∂⊥x + D�zE⊥ext/p+ D�zv�B/p−D⊥zv⊥B/p.

1This diamagnetic current will also induce a magnetic field. This effect will be neglected here.
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electrons

ions

. ~B
diamagnetic current

Figure 6.2: Diamagnetic current as a result of a radial density gradient. As long as there is a
magnetic field, this diamagnetic current can not be zero.

Note that the matrices relating the diffusion velocities to the driving forces are sin-
gular and the nullspace is spanned by the vectors y and z. Regularization can be
performed in the same way as in the Chapter 5, where the unmagnetized, ambipolar
case was discussed.

6.2 Analytical example

Consider the case that the plasma is fully ionized. In this case there are only two
species, electrons and ions, and we know that the solution must be given by x+ =
x− = 1/2. If the ion mass fraction and charge density are given by y+ = y and
z+ = z respectively, we know from the mass and charge constraint that the electron
mass fraction and charge density are given by y− = 1 − y and z− = −z. What does
the diffusion velocity look like in this case?

The diffusion coefficient matrices across and around the field lines are given by:

D⊥ + iD� =
(
F + iF′ + αy ⊗ y

)−1
− 1

α
u⊗ u.

Inserting the matrix coefficients gives:

D⊥ + iD� =

(
f + iβ + αy2 −f − iβ + αy(1− y)

−f − iβ + αy(1− y) f + iβ + α(1− y)2

)−1
− 1

α

(
1 1
1 1

)
,
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with β = (1− y)2zB/p− y2zB/p. Inversion leads to:

D⊥ + iD� =

(
1
α + (1−y)2

f+iβ
1
α −

y(1−y)
f+iβ

1
α −

y(1−y)
f+iβ ) 1

α + y2

f+iβ

)
− 1

α

(
1 1
1 1

)
=

1

f + iβ

(
(1− y)2 −y(1− y)
−y(1− y) y2

)
.

The real part gives the diffusion across the field lines:

D⊥ =
1

1 + β2/f2
1

f

(
(1− y)2 −y(1− y)
−y(1− y) y2

)
,

and the imaginary part the diffusion around the field lines:

D� = − 1

1 + f2/β2
1

β

(
(1− y)2 −y(1− y)
−y(1− y) y2

)
.

If we compare the result for D⊥ with the analytical example of Chapter 5, we can see
that the transport perpendicular to the field lines is reduced by a factor 1 + β2/f2.
Since β/f is the Hall parameter this is the classical result. For β = 0, the unmagne-
tized result from Chapter 5 is recovered and diamagnetic transport is absent.
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Chapter 7

Supersonic expansion of argon
in Magnum-PSI

This chapter is built on:
Integral simulation of the creation and expansion of a transonic argon plasma, Peeren-
boom, K.S.C., Goedheer, W.J., Dijk, J. van, Mullen, J.J.A.M. van der, Plasma Sources
Science and Technology, 19(2), 025009-1/9, 2010

Abstract. A transonic argon plasma is studied in an integral simulation where both
the plasma creation and expansion are incorporated in the same model. This inte-
gral approach allows for simulation of expanding plasmas where the Mach number
is not known a priori. Results of this integral simulation are validated with an em-
pirical relation for the shock position. Additionally, the effect of the nozzle geometry
on the expansion is studied.
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7.1 Introduction

Expanding plasma flows can be found in different applications. Besides Magnum-
PSI, other examples are low pressure plasma spraying (LPPS) and plasma chemical
vapor deposition (PCVD). Because of this wide occurrence, expanding plasmas are
studied both experimentally and numerically. Numerical modeling of this type of
plasma incorporates a number of challenges. First of all, the transonic flow field in-
cluding one or more shocks must be described correctly. Secondly, due to the large
hydrodynamic speeds, the plasma is most likely not in local thermodynamic equi-
librium (LTE). As a consequence, the different constituents of the plasma will have
different temperatures and the chemical composition can not be calculated using the
laws of Boltzmann, Saha and Guldberg-Waage.

Different approaches have been used for the modeling of expanding plasmas.
Modeling the plasma as a neutral gas, consisting of only one species, with gas dy-
namics equations is the simplest way to get basic insight in the flow field of a plasma
jet. When comparing gas dynamics simulations of the shockwave structure in a su-
personic plasma jet with experiments, gas dynamics simulations [5] show a repetitive
pattern of shockwaves that damps out slowly. However, experiments [51] show a much
smoother velocity field, with a rapid decay of the shockwave structures. This discrep-
ancy can be explained by the fact that heat and momentum transport rates are much
higher in a plasma than in a neutral gas due to the presence of charged particles.
Furthermore, background pressures in expanding plasmas can be as low as a few Pa,
see for example [52]. At such low pressures, gas dynamics equations can not always
give an accurate description of the flow field. The gas dynamics approach is valid only
when the Knudsen number Kn, which gives the ratio of the average mean free path
of the gas atoms or molecules to the characteristic length scale of the flow is much
smaller than unity. When the mean free path is comparable to or larger than the char-
acteristic length (Kn ≥ 1), Direct Simulation Monte Carlo (DSMC) becomes a more
suitable method for calculation of the flow field. DSMC calculations on expanding
jets have been performed in for example [51, 53].

A more complete approach for expanding plasma flows is to combine the flow cal-
culation with a composition calculation, taking into account more than one species.
The composition can then be used to calculate realistic values for the transport co-
efficients like viscosity and heat conduction. However, combining shock wave simu-
lations with a composition calculation in a plasma is far from easy. Most often, the
composition calculation type is therefore chosen to be local thermodynamic equilib-
rium, see e.g. [54, 55]. This is an over-simplification, since due to the large flow
velocities, supersonic plasmas are likely to be out of equilibrium. Furthermore, when
the plasma is out of equilibrium, species can gain (or loose) energy by chemical pro-
cesses at one place in the plasma and transport this energy to another part of the
plasma. This can cause extra broadening of shock waves, which can not be taken into
account by equilibrium calculations.

Only few non-equilibrium calculations, e.g. [56, 57], were carried out on super-
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sonic plasma jets. These non-equilibrium simulations focused, however, on the ex-
pansion region. The plasma production was not incorporated in the models. At the
inflow boundary, temperature and mass fraction profiles were assumed or taken from
another model.

In this chapter we use an integral approach, where both plasma production in
an arc and the consecutive expansion in a chamber are incorporated in the same
model. Integral here refers to global in the sense that the domain is not split on
the interface of the plasma source and the vacuum chamber. With this approach it is
possible to study the effect of the arc on the expansion, and vice versa, without a priori
knowledge of the Mach number and the profiles of the temperature and the chemical
constituents at the inlet of the vacuum chamber. The results of this approach are
validated with an empirical relation for the shock position. Additionally, the effect of
the nozzle geometry on the expansion is studied.

This chapter starts by discussing the shockwave structure of expanding jets. Then,
the solution procedure for flow calculation in Plasimo will be discussed in Section 7.3.
Section 7.4 presents our model and numerical results are given in Section 7.5. This
chapter ends with conclusions in Section 7.6

7.2 Underexpanded jet

The flow of plasma expanding from a nozzle into a vacuum chamber can be fully ex-
panded, overexpanded or underexpanded [58, 59]. If the pressure at the outlet of the
nozzle is lower than the chamber pressure, the flow is overexpanded. If the pressure
at the outlet of the nozzle is higher than the pressure of the vacuum chamber, the
flow is underexpanded. Both underexpanded and overexpanded flows show one or
more shock waves. These shockwaves equalize the jet pressure with the background
pressure. As the flow in Magnum-PSI is underexpanded we will only focus on under-
expanded jets.

In an underexpanded jet, the background pressure is lower than the jet pressure,
causing the jet to expand beyond the nozzle. In Figure 7.1 a photograph of the ex-
pansion in Magnum PSI can be seen. A shockwave pattern is visible. We can see the
expansion as a dark region after the nozzle exit. The shock diamond shows up as a
lighter region after the expansion.

In Figure 7.2 the shock structure of an underexpanded jet is schematically de-
picted. When leaving the nozzle (2), the pressure of the flow exceeds the background
pressure. Therefore, the flow expands outward in the presence of expansion waves
(5) to reduce the pressure. The expansion waves reflect from the jet boundary (6),
forming compression waves (7). These compression waves can merge, creating an
oblique shockwave (3). By passing the normal shock wave or Mach disk (4), which
is oriented perpendicular to the flow direction, the pressure in the jet is increased.
However, the flow may be compressed so much that its pressure exceeds the back-
ground pressure again, after which the cycle of expansion and compression can start
over again. The difference between jet and background pressure becomes smaller
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Figure 7.1: Argon plasma jet in Magnum-PSI. The background pressure is 30 Pa. At the left,
a shockwave can be seen. The feature on the right is the skimmer, which limits the gas flow
to the next chamber. The expansion can be seen as a dark region after the nozzle exit. The
shock diamond shows up as a lighter region after the expansion.
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Figure 7.2: Shock wave structures in an underexpanded jet. (1: High pressure reservoir, 2:
Nozzle exit, 3: Oblique shock waves, 4: Mach disk, 5: Expansion fan, 6: Free jet boundary, 7:
Compression fan, 8: Shock triple point)

with each expansion-compression cycle. This damping is due to viscous dissipation,
which occurs when the expansion fan reflects from the jet boundary.

According to Ashkenas [60], the position of the first shock is given by:

xshock = 0.67d

√
pst
pch

, (7.1)

where xshock is the position of the shock measured from the exit of the arc, d is the
diameter of the arc, pch is the chamber pressure and pst is the stagnation pressure.
Note that (7.1) is an empirical relation for isentropic flows. In plasmas, shock posi-
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tions can shift with respect to isentropic gas flow due to viscosity, heat exchange and
ionization [61]. Therefore, we can expect deviations from (7.1).

7.3 The SIMPLE algorithm

7.3.1 Incompressible flows

To compute an incompressible flow field, the solution of both the momentum and
continuity equation (2.9) and (2.17) has to be found. The difficulty in solving these
two equations simultaneously is the fact that in the momentum equation the pres-
sure gradient acts as a source term. This pressure is not known, because it is one
of the parameters that must be computed. The solution to this problem is given by
the continuity equation. Implicitly, the correct pressure is provided by the continuity
equation: if the correct pressure is substituted in the momentum equation, the re-
sulting velocity field should satisfy the continuity equation. Yet, the pressure does not
occur in the continuity equation. The indirect information in the continuity equation
must thus be converted into a direct algorithm for the calculation of the pressure to
calculate the flow field.

The algorithm that is used for this in Plasimo is the SIMPLE algorithm, which
stands for Semi Implicit Method for Pressure Linked Equations [22, 23]. There are
a number of solution strategies which are closely related to the SIMPLE algorithm,
amongst others SIMPLER, SIMPLEC and PISO [23]. Since these are all variations
based on the same idea, and the SIMPLE algorithm is the algorithm actually used in
Plasimo, the explanation in this chapter is restricted to the SIMPLE algorithm.

The explanation of the SIMPLE algorithm in this chapter will proceed along the
same lines as in [22]. The algorithm starts with guessing a pressure p∗. This pressure
can be put in the discretized momentum equations, after which the velocity field can
be calculated. In general, the velocity field v∗ calculated from this initial guess p∗ will
not satisfy the continuity equation. The next step in the SIMPLE algorithm is to find
a correction p′ to the guessed pressure p∗, such that the resulting velocity field will
satisfy the continuity equation.

Assume that the correct pressure is given by:

p = p∗ + p′, (7.2)

where p′ is the pressure correction. Due to the pressure correction the velocities will
also change:

u = u∗ + u′, v = v∗ + v′, w = w∗ + w′. (7.3)

The question is how to calculate the pressure correction p′ and how to use this pres-
sure correction to calculate the velocity corrections. The relation between the pressure
and the velocity correction will follow from the discretized momentum equation, the
pressure correction is calculated from the discretized continuity equation.

Plasimo uses the finite volume method for discretization. The SIMPLE algorithm
is often used in combination with a staggered grid [22, 23], but Plasimo uses a colo-
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Figure 7.3: Staggered control volumes for the discretization of the momentum equation for
deriving the discretized equations for p′ and u′. Note that for calculation of v∗ from p∗ the
momentum equation is discretized on a colocated grid. The control volume for discretization
in the east-west direction is given by (a), (b) indicates the control volume for discretization in
the north-south direction.

cated grid. The reason is that this is more convenient when orthocurvilinear coordi-
nates are used as curvature terms do not need to be evaluated then. In a colocated
grid, velocities are defined on the nodal points. However, for derivation of the pres-
sure correction equation in Plasimo, the staggered grid of Patankar [22] is used. As
a result, in the discretized pressure correction equation, terms containing the veloc-
ity v∗ defined on the control volume faces occur. Since this velocity v∗ is in Plasimo
calculated on a colocated grid, a special interpolation scheme is needed. This interpo-
lation scheme is discussed in [62] and [63]. In contrast to the calculation of v∗ from
p∗ on a colocated grid, the response of u′ on p′ is determined using staggered control
volumes. In Figure 7.3 these staggered control volumes can be seen.

In the following, it is assumed that the flow problem is two-dimensional, Carte-
sian and stationary. As motivated in Chapter 3, extension to higher dimensions and
general ortho-curvilinear coordinates is relatively simple, therefore it will not be con-
sidered here. In a steady, quasi-neutral plasma, the momentum equations for the
flow as given in Chapter 2 reduce to:

∇ · (ρ~v~v) = −∇p−∇ · π +~j × ~B, (7.4)

with ρ the mass density, ~v the velocity, p the pressure, π the viscous stress tensor,
~j the current density and ~B the magnetic field. Integrating equation (7.4) over the
control volume gives the following result for the east-west direction:

aeue =
∑

anbunb + bew + (pC − pE)Ae, (7.5)

where ae = (ρu)e∆y, Ae = ∆y, the subscript nb denotes the neighbors as indicated
with arrows in Figure 7.3 and bew contains the forces in the east-west direction that
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are not related to the pressure gradient. In this discretization the mass density is
assumed to be constant. When dealing with a compressible flow the effect of the
mass density must be included. How this is done will be discussed in the next section.
The velocity can be computed from the momentum equations if the pressure field is
given or estimated. When p = p∗ is used as the guess for the pressure, the resulting
velocity u∗ will be given by:

aeu
∗
e =

∑
anbu

∗
nb + bew + (p∗C − p∗E)Ae. (7.6)

Unless p∗ was the correct pressure, the resulting velocity field u∗ will not satisfy the
continuity equation. By subtracting (7.6) from (7.5), the following is obtained:

aeu
′
e =

∑
anbu

′
nb +

(
p′C − p′E

)
Ae. (7.7)

As is pointed out in [22], it is possible to leave out the term
∑
anbu

′
nb, since the

converged solution will have u′ = 0. By dropping this term the algorithm becomes
semi-implicit, hence the name SIMPLE. The response of the velocity correction to the
pressure correction becomes:

u′e =
Ae
ae

(
p′C − p′E

)
= de

(
p′C − p′E

)
. (7.8)

This equation shows how the guessed velocity is to be corrected in response to the
pressure correction. The other velocity components are obtained likewise. Now the
pressure correction has to be found, such that the resulting velocity field will satisfy
the continuity equation. This is done by discretizing the mass continuity equation.
Integration over the control volume in Figure 7.4, leads to the following expression:

[(ρu)e − (ρu)w] ∆y + [(ρv)n − (ρv)s] ∆x = 0. (7.9)

Substitution of the relations between the velocity and pressure correction:

ue = u∗e + de
(
p′C − p′E

)
,

uw = u∗w + dw
(
p′W − p′C

)
,

vn = v∗n + dn
(
p′C − p′N

)
,

vs = v∗s + ds
(
p′S − p′C

)
,

gives the discrete equation for p′:

aCp
′
C = aEp

′
E + aW p

′
W + aNp

′
N + aSp

′
S + b, (7.10)

where aC = aE + aW + aN + aS , with aE = ρede∆y (other directions are similar)
and b = [(ρu∗)w − (ρu∗)e] ∆y + [(ρv∗)s − (ρv∗)n] ∆x.

For the calculation of the discretization coefficients the mass density thus has to
be known on the control volume boundaries. To calculate the mass density on these
boundaries, an interpolation scheme is needed. From equation (7.10), it can be seen
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Figure 7.4: Control volume for discretization of the continuity equation.

that b, which is the mismatch from the continuity equation, acts as a source term. If
the starred velocities v∗ fulfill continuity, the b term in the right hand side of (7.10)
will be zero and no pressure correction is needed: the solution of the flow problem
has converged. The SIMPLE solution algorithm for incompressible flows can now be
summarized as follows:

• Guess the pressure field p∗.

• Solve the momentum equations to obtain u∗, v∗.

• Solve the pressure correction equation (7.10).

• Calculate p by adding the pressure correction: p = p∗ + αp′.

• Calculate the velocities with the velocity correction formulas (7.8).

• Solve the other equations that depend on the flow (temperature, mixture, trans-
port coefficients).

• Use the corrected pressure p as the new guess p∗ and repeat the procedure until
convergence.

As can be seen, only part of the pressure correction p′ is added to p∗. This under-
relaxation α is applied to avoid divergence as is pointed out in [22]. In the calculation
of u∗ and v∗ from the discretized momentum balance some under-relaxation can
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also be applied. The solution is considered converged if the residual of both the
velocity and the pressure correction equation are below the specified tolerance. The
residual of the pressure correction equation is defined as the scaled deviation from
mass continuity. The residual of the velocity is defined as the root mean square of
the residual of the velocity components. The residual of the components are defined
similarly to equation (3.46) but scaled with the mean value of the magnitude of the
velocity instead of the velocity at each grid point. The following section will discuss
the modifications in the solution procedure when the flow is compressible.

7.3.2 Compressible flows

The procedure described in Section 7.3 is used when the flow is incompressible: a
change in pressure does not effect the mass density. In compressible flows a change
in pressure will effect the mass density. Karki corrections [64] take into account the
influence of pressure on the mass density. Besides the velocity, the mass density is
now also corrected after the pressure correction is calculated. Note that the calculation
of the pressure correction also changes due to the contribution of the mass density.

For calculation of the pressure correction equation in a compressible flow, the
mass flux is approximated by [22]:

ρu =
(
ρ∗ + ρ′

) (
u∗ + u′

)
= ρ∗u∗ + ρ′u∗ + ρ∗u′, (7.11)

where the second order term ρ′u′ has been neglected [22]. Furthermore, the following
relation between the pressure and the mass density correction is assumed:

ρ′ = Kp′. (7.12)

In principle, the Karki coefficient K can be chosen freely, since the particular form
of the Karki correction does not influence the final solution, but it influences the
convergence path towards the solution. A bad choice for the Karki correction can
therefore lead to divergence. It is therefore best to baseK on an approximate equation

of state. In PlasimoK = ρ/p is used, which is corresponds withK = ∂ρ
∂p

∣∣∣
T

according

to the ideal gas law. The discretization of the continuity equation is now given by:

[(ρ∗u∗)e − (ρ∗u∗)w] ∆y + [(ρ∗v∗)n − (ρ∗v∗)s] ∆x+[
(ρ∗u′)e − (ρ∗u′)w

]
∆y +

[
(ρ∗v′)n − (ρ∗v′)s

]
∆x+[

(ρ′u∗)e − (ρ′u∗)w
]

∆y +
[
(ρ′v∗)n − (ρ′v∗)s

]
∆x = 0 (7.13)

Substituting relations (7.12) and (7.8) gives:

[(ρ∗u∗)e − (ρ∗u∗)w] ∆y + [(ρ∗v∗)n − (ρ∗v∗)s] ∆x +[
(ρ∗de(p

′
C − p′E))e − (ρ∗dw(p′W − p′C))w

]
∆y +[

(ρ∗dn(p′C − p′N ))n − (ρ∗ds(p
′
S − p′C))s

]
∆x +[

(Ke(p
′
C − p′E)u∗)e − (Kw(p′W − p′C)u∗)w

]
∆y +[

(Kn(p′C − p′N )v∗)n − (Ks(p
′
S − p′C)v∗)s

]
∆x = 0. (7.14)
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This can be rearranged to the same form as equation (7.10), where the discretization
coefficients are given by

aC = aE + aW + aN + aS , (7.15)

with
aE = (ρ∗ede +Keu

∗) ∆y. (7.16)

The coefficients aW , aN , aS are calculated in a similar way. As can be seen, Karki
corrections influence the mass density. But Karki corrections also change the equa-
tion from which the pressure correction is calculated. In principle, in a compressible
flow/plasma model the density can also be calculated from an equation of state. How-
ever, when the flow is strongly compressible Karki corrections may be necessary [22].

Underrelaxation As explained in the previous section, the momentum equation
from which v∗ is determined can be under-relaxed for stability reasons. The pres-
sure correction may be under-relaxed as well, by adding only a part of the pressure
correction p′ to the pressure. In Plasimo, one can choose to under-relax the Karki
correction with an under-relaxation factor α:

ρ′ = αKp′ u′ = dp′. (7.17)

This under-relaxation has no consequences for mass continuity, but makes the mass
density correction less important than the velocity correction.

7.4 Numerical model of the source and the expansion

To describe the multicomponent plasma, the fluid equations as given in Section 2.3
are solved. In the simulation it is assumed that the argon plasma is composed only
of argon atoms, ions and electrons. Production and destruction of molecular ions,
doubly charged ions and different excited levels of the argon neutrals are not taken
into account. The production and destruction of argon ions by direct ionization and
three particle recombination, Ar + e � Ar+ + e + e, and stepwise ionization and
recombination via the first excited state Ar∗, Ar + e � Ar∗ + e � Ar+ + e + e,
is taken into account. The effect of stepwise ionization is taken into account via an
effective rate coefficient, where excitation ofAr∗ is taken as the rate determining step.
The species Ar∗ itself is not included in the model. The forward rate coefficient kf
for both reactions is approximated by a modified Arrhenius expression:

kf = c

(
Te
K

)q
exp

(
−E
kBTe

)
, (7.18)

where c is the rate constant, Te the electron temperature and E the reaction energy.
For the direct ionization reaction, cwas obtained by fitting the cross-section data from
[65], which resulted in c = 2.8× 10−16 m3/s, q = 0.5 and E = 15.8 eV. The stepwise
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ionization reaction is described in [66]: c = 6.8 × 10−17 m3/s, q = 0.5 and E is 12.1
eV. The backward reaction rates of both the direct and stepwise process are obtained
via detailed balancing.

To study the influence of the nozzle on the argon jet, simulations are performed
for different cylindrical geometries on a 218 by 318 grid. The different geometries are
schematically depicted in Figure 7.5. The small cylinder on the left represents the arc
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Figure 7.5: The model geometry for different nozzle layouts. The gray shaded area indicates
where the vessel is grounded. (1: Inlet, 2: solid wall, 3: symmetry axis, 4: outlet, a: no nozzle,
b: one step nozzle, c: two step nozzle, d: four step nozzle).

which is 4 cm long and 6 mm in diameter. Grid stretching [21] is applied to increase
the coordinate line densities at the inlet, the outlet and the wall of the arc to resolve
sharp gradients and shockwaves. Note that the stretching at the wall of the arc will
result in grid refinement in the expansion zone as well.

At the walls no-slip boundary conditions are used for both velocity components.
At the inlet of the arc and the outlet of the vessel the pressure is specified, and ho-
mogeneous Neumann conditions are applied for both velocity components. At the
symmetry axis, homogeneous Neumann conditions are applied for the pressure and
the axial velocity, while the radial velocity is set to zero.

For the heavy particles, the temperature is fixed to 500 K at the inlet of the arc and
the walls. On the symmetry axis and the outlet, homogeneous Neumann conditions
are applied. For the electron temperature homogeneous Neumann conditions are
used at all boundaries, since the electrons do not exchange heat efficiently with the
wall due to their small mass.

At the inlet of the arc, the electric current I is specified. This translates to a
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Neumann condition for the potential as follows:

I = −
∫
σ
∂

∂z
φdA ⇒ ∂

∂z
φ = − I∫

σdA
, (7.19)

where it is assumed that the axial electric field is uniform over the inlet of the arc. The
anode is grounded. All other boundaries have homogeneous Neumann conditions
for the potential.

7.5 Numerical results

In this section, plasma creation and expansion is studied first in a geometry without
nozzle, thus simulating a free expansion. The inlet pressure is 11000 Pa, the outlet
pressure 150 Pa, the current 100 A. Then the effect of varying chamber pressure
on the shock position is studied. Finally, the effect of the nozzle geometry on the
expansion is presented.

7.5.1 The free expansion

In Figure 7.6, the results of the simulation with an inlet pressure of 11000 Pa, a cham-
ber pressure of 150 Pa and a current of 100 A in a geometry without nozzle are given.
Inside the arc, the flow accelerates to a Mach number of 1. At the transition from arc
to vessel the plasma expands and accelerates to supersonic velocities. After the shock
the flow becomes subsonic again. The Mach disk can clearly be distinguished. Note
that the condition of M=1 at the arc exit is not imposed on the model, it follows from
the model.

In the heavy particle temperature the effect of the expansion can be seen as a
sharp drop in the temperature. After the shock the temperature rises strongly again
because of compression and viscous dissipation. Note that overall, the calculated
temperatures are higher than expected. The reason is that the plasma is fully ionized
at z ≈ 1.2 cm. Since the effect of doubly charged ions is not taken into account in the
model, energy can not be used for ionization anymore and the temperature rises.

7.5.2 Shock position

When changing the background pressure, we expect that for lower background pres-
sures, the shock location is positioned further away from the arc exit. From Figure
7.7 we can see that this is indeed the case in the simulation. The stagnation pres-
sure found in the simulation is approximately 2890 Pa. Calculation of the shockwave
position with equation (7.1) gives xshock ≈ 18 mm for 150 Pa and xshock ≈ 12 mm
for 300 Pa. From Figure 7.7 it can be seen that this is in good agreement with the
position of the shock from the simulations.

Also for the temperature, the effect of the pressure on the shock can be seen. We
can also see that at 150 Pa, where the shock is stronger, the cooling of the expansion
and the heating by the shock are larger. Furthermore, the difference between the
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(a) Mach number

(b) Heavy particle temperature

Figure 7.6: The free expansion without nozzle. The top part of the plots shows the results
with a gray map, the bottom part shows the mirrored (negative radial positions) results as a
contour plot.

electron and heavy particle temperature is clearly visible: the plasma is in non-LTE.
Upstream of M=1 there are no differences between the two simulations, as should be
the case because of choking of the flow. Decreasing the downstream pressure will not
result in a higher mass flux through the source.
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Figure 7.7: The Mach number and the electron and heavy particle temperature at the sym-
metry axis for two different background pressures. The shock position moves downstream
with decreasing background pressure. The shock positions according to equation (7.1) are
indicated by arrows.
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7.5.3 Influence of nozzle geometry

In Figure 7.8, the Mach number in the different nozzle geometries can be seen. It
is clear that the nozzle has a very large effect on the flow field. Whereas in the free
expansion we can clearly see the features of the underexpanded jet, the results are
totally different when a nozzle is present. The shock wave forming in the nozzle is

(a) No nozzle (b) One step

(c) Two steps (d) Four steps

Figure 7.8: The Mach number for different nozzle geometries. The shock wave is reflected
from the nozzle wall, resulting in a more confined flow field.

reflected from the nozzle wall, resulting in a more confined flow field. Similar results
were found in [5] using gas dynamics simulations. For the two and four step nozzle,
the flow field is also more confined, but sharp reflections on the nozzle wall are not
visible anymore. Note that the nozzles with two and four steps give more or less
the same results. This indicates that the solution converges rapidly towards the case
where the nozzle consists of infinitely many steps.
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This effect can also be seen in the heavy particle temperature and electron density
in Figures 7.9 and 7.10. Both the temperature and electron density become more
confined to the center of the plasma jet when a nozzle is present. Again, we see rapid
convergence to a fixed solution when doubling the number of steps in the nozzle.

(a) No nozzle (b) One step

(c) Two steps (d) Four steps

Figure 7.9: The heavy particle temperature for different nozzle geometries.

7.6 Conclusions

In this chapter, the feasibility of an integral simulation of both plasma creation in
the arc and the consecutive expansion was shown. It was shown that Plasimo can
handle the transition from a subsonic to a supersonic flow field. Expected physical
behavior like the M=1 condition at the exit of the arc and choking of the flow follow
automatically from the model. The model can therefore be used when it is not known
a priori whether the flow is subsonic or transonic. Another advantage of the integral
approach is that the domain of the model does not need to be split on the interface
between the arc and the chamber. This is of particular interest because shock waves
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(a) No nozzle (b) One step

(c) Two steps (d) Four steps

Figure 7.10: The electron density for different nozzle geometries.

can be present in this interface region. Splitting can therefore easily lead to incon-
sistencies. It also facilitates studying the effect of the nozzle geometry and anode
location.

In the expansion the shockwave position was compared with the model of Ashke-
nas. Predicted and simulated positions were in good agreement. Small deviations can
be due to the fact that the plasma in the simulation is heated by Ohmic dissipation
during its expansion.

Finally, the influence of nozzle geometry was studied. It was shown that nozzle
reflections lead to a more confined beam. For an increasing number of nozzle steps,
the solution converged to a ‘fixed’ solution.
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Chapter 8

Effects of magnetization on the
expanding argon jet

8.1 Introduction

An important operational parameter in Magnum-PSI is the magnetic field. The ques-
tion is how this field will influence the efficiency of the plasma production and the
transport of the plasma beam to the target. Several numerical simulations have been
performed to obtain insight in these questions. The effect of the magnetic field on
the plasma production in the source was, for example, studied with a non-LTE model
by Ahmad [67] for an argon / hydrogen plasma. In [67], magnetic confinement is
described by reducing the diffusion by a factor 1 + H2, with H the Hall parame-
ter. However, the influence of magnetic confinement on heat conduction or electrical
conductivity is not taken into account. Furthermore, the magnetic field is ignored in
the flow and electromagnetic calculation. The effect of the magnetic field on the flow
and electromagnetic field is taken into account by Cinalli [5] by MHD calculations.
However, with an MHD approach plasma production can not be studied and no dis-
tinction between the electron and heavy particle temperature can be made since the
plasma is treated as a single fluid.

In this chapter we want to present a more complete approach, where the diffusion,
electromagnetic and flow calculation are self-consistently coupled via the current den-
sity in a non-LTE model. To this end, we extend the non-magnetized argon model
from Chapter 7 with the magnetic field in Section 8.2. We will demonstrate how the
diffusion velocities, electromagnetic field and flow field become coupled when the
plasma gets magnetized. We will then examine the influence of the axial magnetic
field on the flow pattern and electromagnetic power incoupling. Numerical results
are given in Section 8.3. Finally, Section 8.4 presents the conclusions.

8.2 Numerical model for the magnetized expansion

In order to take into account the effect of magnetization, the model discussed in
Chapter 7 is revised. This section will outline these revisions. Unless otherwise
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stated, the model is the same as in Chapter 7. The major difference is in the multi-
component diffusion calculation, where we now use the multicomponent diffusion
theory as described in Chapter 6. In the species mass balances, only the ambipolar
diffusion matrix from Chapter 6 is taken into account. The drift terms are neglected
for numerical stability. As a result, the mean flow velocity is the bulk velocity ~v for
all species. However, in the electromagnetic and flow calculation all terms are taken
into account. In argon, this is a reasonable assumption since convection is dominant
over diffusion.

8.2.1 Anisotropic transport coefficients

Due to application of the magnetic field, the transport coefficients become
anisotropic. Diffusion, conductivity and heat conduction will be reduced in the di-
rection perpendicular to the magnetic field lines. The resulting confined plasma jet
will be quite different from the plasma jet presented in Chapter 7. Especially the
anisotropy in the electrical conductivity will cause large differences in power input
compared to the unmagnetized case.

In contrast to Chapter 7, where the mixture rules of Mitchner and Kruger [14] were
used for the heavy particle thermal conductivity and the Frost mixture rules [17] for
the electron thermal conductivity, thermal conductivities are calculated in a different
way in this chapter. Simple expressions based on random walk estimates are used, as
described in [18]. For the typical step size, the mean free path is used parallel to the
magnetic field, while perpendicular to the magnetic field the Larmor radius is used.
Note that only classical transport is taken into account, anomalous transport due to
microturbulence is ignored.

8.2.2 Flow field

In simulations of magnetized plasmas, the flow calculation is coupled to the multi-
component diffusion calculation. The multi-component diffusion calculation pro-
vides the Lorentz force~j× ~B acting on the flow. The flow calculation in turn provides
the bulk velocity, which is one of the driving forces in the diffusion calculation. By
taking the inner product of equation (6.21) with z, it can be seen that the radial and
azimuthal current are given by:

j⊥ = σ⊥E⊥ +
(
σ⊥v� + σ�v⊥

)
B, (8.1)

j� = −〈z,D�
(

I− z⊗D⊥z

〈z,D⊥z〉

)
∂⊥x〉+ σ�E⊥ +

(
σ�v� − σ⊥v⊥

)
B.

Taking the cross product with the magnetic field gives the Lorentz force in the radial
and azimuthal direction:

F⊥ = j�B, (8.2)

F� = −j⊥B.
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Due to the azimuthal Lorentz force the plasma jet will start to rotate. This rotation
will be most pronounced in the regions where there is a radial component of the
electric field, i.e., E⊥ 6= 0. The radial Lorentz force points inwards since j� < 0 and
limits the expansion of the plasma beam. As a result the jet will be more confined.

The Lorentz force ~j × ~B is added as a force to the Navier Stokes equations. Due
to the azimuthal Lorentz force, an azimuthal component will appear in the velocity
field. Note that this is not in contradiction with our 2D model with axial symmetry,
since the azimuthal velocity does not depend on the azimuthal coordinate. At the
inlet, the symmetry axis and solid walls, the azimuthal velocity is set to 0. At all other
boundaries, homogeneous Neumann conditions are used.

To get an idea of the importance of the Lorentz force, we can calculate the Hart-
mann and Stuart number. The Hartmann number Ha gives the ratio of the Lorentz
force to the viscous force and can be written as:

Ha = BL

√
σ

µ
, (8.3)

where B is the magnitude of the magnetic field, L the typical length scale, σ the
conductivity and µ the dynamic viscosity. In the expansion of Magnum-PSI typical
values are σ = 104 S/m, µ = 10−6 Pa s, B = 1 T, L = 10−2 m. The Hartmann
number then is Ha = 103, which means that the Lorentz force is far more important
than viscous forces. The ratio between the Lorentz force term and inertia is given by
the interaction parameter or Stuart number:

N =
σB2L

ρU
, (8.4)

where U is a characteristic velocity and ρ the mass density. Inserting the same val-
ues as before and ρ = 10−5 kg /m3, U = 103 m/s, gives N = 103. We can thus
expect that in the expansion, the flow field is dominated by the Lorentz force. The
Reynolds number Re, giving the ratio of inertial forces to viscous forces, is related to
the Hartmann and the Stuart number via:

Re =
Ha2

N
. (8.5)

The present values for Ha and N give Re = 103. Turbulence is ignored in the flow
calculation since the plasma jet is expected to remain laminar at this Reynolds num-
ber. A possible onset of turbulence at the transition from the arc to the chamber is
not taken into account.

8.2.3 Electromagnetic field

The multi-component diffusion calculation is also coupled to the electromagnetic cal-
culation via the Hall current. In the previous chapter, the electrostatic potential φ was
calculated from:

∇ · (σ∇φ) = 0. (8.6)
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Since the total current now also includes the Hall current ~jHall, and the conductivity
becomes anisotropic this equation becomes:

∇ ·
(
σ∇φ

)
= −∇ ·~jHall, (8.7)

with σ the anisotropic conductivity tensor. As a result of the inclusion of the Hall
current the Ohmic dissipation density ~j · ~E changes as well.

The work per unit of volume by the external electromagnetic fields ~E and ~B on
charged particles (Ohmic dissipation) is given by:

Qohm =
∑
i

~Fi · ~ui, (8.8)

with ~Fi the electromagnetic force on species i and ~ui the total velocity of species i.
Specifying the force ~Fi and splitting the velocity in a bulk velocity ~v and diffusion
velocity ~vi, we get:

Qohm =
∑
i

niqi

(
~E + (~v + ~vi)× ~B

)
· (~v + ~vi) . (8.9)

Splitting in the components along ‖, across ⊥ and around � the field lines gives:

Qohm =
∑
i

niqi

(
E‖
(
v‖ + v

‖
i

)
+
(
E⊥ + v� + v�i

)(
v⊥ + v⊥i

)
−
(
v⊥ + v⊥i

) (
v� + v�i

))
= j‖E‖ + j⊥E⊥. (8.10)

The magnetic field does no work since the Lorentz force is perpendicular to the ve-
locity. The term Qohm is the Ohmic dissipation and represents the conversion from
electromagnetic energy into kinetic energy. This kinetic energy consists of both ther-
mal and mechanical energy.

Let us now specify the current densities:

j‖ = σ‖E
‖, (8.11)

j⊥ = σ⊥E
⊥ + σ⊥v

�B + σ�v
⊥B. (8.12)

If the above expressions are substituted in equation (8.10), the following expression
for the Ohmic dissipation is obtained:

Qohm = σ‖E
‖2 + σ⊥E

⊥2 + σ⊥v
�BE⊥ + σ�v

⊥BE⊥. (8.13)

Besides the usual contribution σ‖E
‖2 + σ⊥E

⊥2 for non-magnetized plasmas, there
are two additional terms due to the bulk motion in the magnetic field. Since v�

and v⊥ are positive, while E⊥ points in the negative radial direction, the terms
σ⊥v

�BE⊥+σ�v
⊥BE⊥ give a negative contribution to the Ohmic dissipation. When

~j · ~E > 0, electromagnetic energy is converted into kinetic energy. When ~j · ~E < 0,
kinetic energy is converted into electromagnetic energy.
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8.3 Results

In this section, the results for an expanding argon jet for different magnetic field
strengths are presented. As in Chapter 7, the inlet pressure is 11000 Pa, the back-
ground pressure 150 Pa, resulting in a gas flow rate of approximately 1.9 slm. The
applied current is 100 A. Simulations are performed on the grid with a one-step noz-
zle as presented in Chapter 7. The discharge channel has a diameter of 6 mm and is
3.5 cm long.

8.3.1 Flow field

As discussed in the previous section, we expect from the Hartmann and Stuart num-
ber that the magnetic field will have a large impact on the flow field. In Figure 8.1,

(a) 0 Tesla (b) 0.25 Tesla

(c) 0.5 Tesla (d) 1 Tesla

Figure 8.1: Mach number for different magnetic field strengths. With increasing magnetic
field the plasma jet becomes narrower and more confined.
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Figure 8.2: Mach number and heavy particle temperature on the symmetry axis for different
magnetic field strengths. Since the radial Lorentz force prevents the plasma from expanding,
the shockwave structure disappears. In addition, the drop in the temperature after the arc exit
becomes less pronounced. In both plots the gray rectangle indicates the nozzle position.

where the Mach number is plotted, we can see that this is indeed the case. The plasma
jet becomes narrower and more confined. To look in more detail at the effect of the
magnetic field on the flow, the Mach number and heavy particle temperature are also
plotted on the axis in Figure 8.2. We can distinguish several effects of the magnetic
field. With increasing magnetic field the shock position moves upstream towards the
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arc exit. In addition, the shockwave becomes weaker. Also, the Mach number de-
creases with increasing magnetic field strength. This is a result of the radial Lorentz
force on the flow, which decreases the expansion of the flow. Furthermore, the radial
Lorentz force will cause an increased pressure in the plasma beam. Since therefore
the plasma expands effectively in a higher pressure environment, the shock position
will move upstream. In addition, the temperature dip in the expansion becomes less
pronounced. Due to the azimuthal Lorentz force the plasma jet will start to rotate.
This can be seen in Figure 8.3, which gives a radial plot of the azimuthal velocity at
z=6 cm. Depending on the magnetic field, the azimuthal velocity has both positive
and negative values.

-600

-400

-200

0

200

400

600

800

1000

0 0.01 0.02 0.03 0.04 0.05 0.06

az
im

u
th

al
ve

lo
ci

ty
(m

/s
)

Radial position (m)

0 Tesla
0.25 Tesla

0.5 Tesla
1 Tesla

Figure 8.3: Azimuthal velocity for different magnetic field strengths at z=6 cm.

8.3.2 Potential distribution

In Figure 8.4 isocontours for the potential for different magnetic field strengths can
be seen. It can be seen that due to the anisotropy in the electrical conductivity, elec-
trical current extends further into the vessel. This will drastically change the plasma
since energy is now also put into the plasma in the vessel. Figure 8.5 shows a second
characteristic of the potential in magnetized plasmas. In this figure, the potential is
plotted as a function of the radial position at z=6 cm. At the edge of the plasma beam
there is a small wing where the potential is positive. This is due to the Hall current
which is a source term for the potential equation.

8.3.3 Source output

In Figure 8.6, the ion and heat fluxes as function of the magnetic field can be seen.
It is visible that until halfway the source, the magnetic field has no influence on the



90 Effects of magnetization on the expanding argon jet

(a) 0 Tesla (b) 0.25 Tesla

(c) 0.5 Tesla (d) 1 Tesla

Figure 8.4: Isocontours for the potential. Due to the anisotropy in the electrical conductivity,
electrical current extends further into the vessel.
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Figure 8.6: Ion and heat flux densities on the symmetry axis. The gray rectangle indicates the
nozzle position.
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ion flux. After that, differences start to appear due to differences in the pressure and
the flow field. However, overall, the magnetic field does not have a large influence
on the ion flux. In contrast to the ion flux, the heat flux is strongly influenced by
the magnetic field. This is mainly due to the higher temperatures reached in the
magnetized case. Moreover, the conditions reached in this argon simulation are of
the same order of magnitude as expected in the ITER divertor (1024 ions m−2s−1, 10
MW/m2).

8.4 Conclusions

In this chapter the effect of the magnetic field on an expanding argon plasma was
studied. Inside the arc, where the plasma is created, no significant changes were ob-
served compared to the unmagnetized plasma. However, in the expansion the plasma
jet is strongly influenced by the magnetic field. Due to the Lorentz force on the flow
field, the plasma jet becomes more confined and starts to rotate. Also the electromag-
netic incoupling of power changed drastically. With a magnetic field, power input is
not only present inside the arc, but also in the vacuum chamber. Furthermore, with a
magnetic field, ion and heat fluxes were in the same order of magnitude as the fluxes
expected in the ITER divertor.

We can conclude that our model is capable of capturing the characteristic features
of the magnetized plasma jet. With respect to chemistry our model is still relatively
simple: an argon plasma with one ion species. In the next chapter we will switch
to hydrogen, resulting in a more complex chemistry with an increased number of
species and reactions. In addition, the results from the hydrogen model will be com-
pared to Pilot-PSI experiments.



Chapter 9

The expanding hydrogen plasma -
comparison with experiments

9.1 Introduction

The previous two chapters focused on the simulation of argon plasmas to keep the
chemistry as simple as possible. With the argon model the capability to simulate
magnetized expanding plasmas was shown. However, since the main interest for
Magnum-PSI is in hydrogen, we will now switch to hydrogen. Due to its molecular
nature, simulation of hydrogen involves a much more complex chemistry compared
to argon.

In contrast to argon, where the effective radius for the active plasma zone is equal
to the channel radius, the hydrogen arc is thermally constricted. The thermal constric-
tion is visible as a central peak at the symmetry axis of the discharge and a plateau
near the cascaded arc wall. We will refer to this profile as the ‘sombrero’ profile. The
particular shape of this profile is caused by a peak in the thermal conductivity for the
dissociation transition (H2 ↔ 2H). This transition gives the plateau at about 3000 K
near the wall.

Experimentally, the thermal constriction of the hydrogen cascaded arc can be de-
duced from the negative slope of the I − V characteristic, as measured in [52]. The
current is concentrated at the center of the channel where the temperature is high (the
central peak of the sombrero profile). As the current increases, this current channel
becomes wider causing the conductance to increase. As a result, the slope of the I−V
characteristic is flat or even negative.

Numerically, the constricted profile can easily be obtained in LTE simulations;
see e.g. [68]. In non-LTE simulations, however, it has never been clearly observed.
In [67] for example, a constricted profile was completely absent, while a minimal
constriction was seen for the electron temperature in [68]. For the heavy particles,
constriction was absent. Furthermore, no clear plateau at 3000 K was seen.

This chapter presents a hydrogen model capable of simulating the thermal con-
traction. Simulation results are compared to experiments on Pilot-PSI as described
in [52]. In Section 9.2, the setup and operating conditions for both the experiment
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and the numerical model are briefly discussed. After that, Section 9.3 focuses on the
chemical composition, since the species and reaction set are crucial to obtain ther-
mal constriction. The comparison of the simulation results to the experiments is
presented in Section 9.4. This chapter ends with conclusions in Section 9.5.

9.2 Setup and operating conditions

A schematic figure of the cascaded arc plasma source can be seen in Figure 9.1. The
arc consists of five cascade plates that are electrically insulated from each other. A hole
in the center acts as the discharge channel. Both in the model and the experiments
4 and 5 mm wide channels are used. The last plate, which is grounded, acts both as

Anode/nozzle

Gas inlet
Cascade plates (5x)

Cathode (3x)

Cathode chamber

Figure 9.1: The cascaded arc plasma source. Gas flows from the gas inlet through the cathode
chamber into the channel, where it is ionized. In the channel the plasma is accelerated and,
passing the nozzle, the plasma expands into the vacuum chamber. Figure adapted from [52].

the anode and the nozzle. The inner diameter of the anode plate is 6 mm for the 4
mm wide discharge channel and 7.5 mm for the 5 mm wide discharge channel. The
total length of the discharge channel excluding the anode plate is 33 mm. To model
the discharge channel, the anode plate and the expansion, a non-rectangular grid of
44 by 80 cells was used.

In the cathode chamber, three cathodes emit the electron current thermionically.
Hydrogen gas is fed to the discharge channel through the same chamber. The pres-
sure in the cathode chamber is typically 103-104 Pa depending on the gas flow, dis-
charge current and channel diameter. An important difference between the model
and the experiment is that in the experiment the hydrogen gas flow rate is used as one
of the control parameters, while in the model the pressure is set as a boundary condi-
tion for numerical stability. The pressure in the vacuum vessel during experiments is
1-15 Pa, depending on the inlet gas flow rate. In the model, the vessel pressure is set
to 50 Pa, since lower pressures lead to negative pressures at the transition from the
arc to the chamber.

Numerical simulations are compared to pressure measurements, I-V measure-
ments and Thomson scattering. Pressure measurements in [52] were performed as
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function of the inlet gas flow rate between 0.2 and 10 slm for different channel diam-
eters. The discharge current was 100 A and the magnetic field 0.4 Tesla. Opposed to
the experiments, the model was run for different inlet pressures, giving the gas flow
rate as a result.

To eliminate extra power input in the nozzle region, voltage measurements were
carried out for a magnetic field of 0 Tesla. In [52], the I-V characteristic was measured
for a fixed gas flow rate. Since in our model the pressure is used as a boundary
condition and the voltage is more strongly influenced by the flow rate than by the
current, reproducing the exact plots from [52] will be very cumbersome. Instead, we
will look at the effect of the current on the flow rate for a fixed pressure and compare
these results to [52].

To obtain the electron density and temperature in the expansion, Thomson scat-
tering (TS) was performed by Vijvers [52]. Measurements were done at about 4 cm
from the source exit. A magnetic field of 0.2 Tesla was applied to allow for the TS mea-
surements; without magnetic field the plasma does not extend into the vessel. Again,
the measurements and simulations could not be directly compared since measure-
ments were carried out for a fixed flow rate.

9.3 Composition

The hydrogen mixture simulated consists of the species H2, Hν=4
2 , H , H+ and e.

These species are so-called transportable species, for which mass balances are solved.
However, to determine effective reaction rates between these transportable species,
more species need to be taken into account to correctly describe the reaction paths.
These species are called local chemistry or intermediate species. The reaction to and
from these levels are very fast and therefore they can be assumed to have negligible
densities [69]. However, they can not be neglected in the reaction path. As interme-
diate species we take into account H+

2 and H∗. Both the transportable and interme-
diate species and the reaction paths are depicted in Figure 9.2. Vibrationally excited
molecules are important for charge exchange. To take this into account, Hν=4

2 is used
as a representative species for these excited molecules. Charge transfer is most likely
to occur with the vibrational level ν = 4 since the energy difference between H+ and
H+

2 ions is almost equal to the energy of the level ν = 4.
An overview of all the reactions used is given in Table 9.1. The reaction set and

rate coefficients are largely based on the data presented in Ahmad [67]. In our model
a smaller number of species and reactions is used. It was found that with the rate
coefficient in [67] for heavy particle assisted dissociation:

H2 +H ↔ 3H, (9.1)

no thermal constriction could be obtained. This is due to the fact that the effect of
rovibrationally excited hydrogen molecules on the dissociation rate is ignored. This
effect can easily increase the dissociation rate by a factor 104 as is shown by Capitelli
in [70]. Therefore we chose to increase the rate coefficient as used in [67] with a factor



96 The expanding hydrogen plasma - comparison with experiments

E(eV )

13.6

10.9

10.2

0

-2.6

-4.5

H+
2

H2

H+

H∗

H

Hν=4
2

CT

DI

EAD, HADH, HADH2

DR

RVE

SI

EE

RD

Figure 9.2: Processes and levels taken into account in the composition calculation. Levels in-
dicated by a solid line are taken into account explicitly as transportable species. The densities
of the dashed levels are assumed to be negligible. However, they are important as intermedi-
ate species for determining effective rate coefficients between the solid levels.

Name Reaction

EAD Electron Assisted Dissociation H2 + e↔ 2H + e
HADH Heavy Particle Assisted Dissociation H2 +H ↔ 3H
HADH2 Heavy Particle Assisted Dissociation H2 +H2 ↔ 2H +H2

DI Direct Ionization H + e↔ H+ + 2e
EE Electron Excitation H + e↔ H∗ + e
SI Stepwise Ionization H∗ + e↔ H+ + 2e
RVE RoVibrational Excitation H2 + e↔ Hν=4

2 + e
CT Charge Transfer Hν=4

2 +H+ → H+
2 +H

DR Dissociative Recombination H+
2 + e→ H +H∗

RD Radiative Decay H∗ → H + hν

Table 9.1: Reactions used for the hydrogen model. Note that the reaction chain CT-DR-SI/RD
is combined in one effective reaction where the rate is only determined by the first step,
charge transfer. The same is done for the stepwise ionization reaction EE-SI.
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104. In this way thermal constriction could be obtained. Note, however, that this is
a rather crude approximation, not taking into account the spatial and temperature
dependence of the dissociation process by rovibrationally excited molecules. Also for
the direct and stepwise ionization reactions:

H + e ↔ H+ + 2e (9.2)

H + e ↔ H∗ + e↔ H+ + 2e (9.3)

a rate coefficient different from [67] is used. The reason is that with the rate coefficient
of [67] the electron mass fraction was not constricted, leading to a positive current
voltage characteristic. Instead, the rate coefficients for direct and stepwise ionization
as available in the Plasimo demosuite are used. The reaction chain charge transfer,
dissociative recombination, followed by ionization (1 − χ branch) or radiative decay
(χ branch) is described by an effective reaction:

Hν=4
2 +H+ + e→ 2H +H+ + e (1− χ),

Hν=4
2 +H+ + e→ 3H (χ).

Since we assume the reaction rate of this effective reaction is determined by the slow-
est step, the rate is calculated as the rate for charge transfer. As a result, the ionization
and radiative decay transitions have equal probabilities (χ = 0.5).

9.4 Results

In this section we will compare the numerical results to pressure, I-V and Thomson
scattering measurements from [52].

9.4.1 Comparison to pressure measurements

As was discussed in Section 9.2, in the experiment the hydrogen flow rate is used as
a control variable, whereas in the simulation the pressure is specified as a boundary
condition. To see if a specified pressure gives the correct hydrogen flow rate in the
model, we compare our simulations with pressure measurements on Pilot PSI [52].
In Figure 9.3 the pressure in the cathode chamber as function of the hydrogen flow
rate for two different geometries can be seen. It can be seen that the experiments and
simulations are in good agreement with each other. Both in the experiments and the
simulations the pressure increases with increasing gas flow rate and decreases with
increasing channel diameter. The simulations systematically give a slightly lower
pressure at the same flow rate. The fact that the pressure is measured in the cathode
chamber, see Figure 9.1, while the pressure boundary condition is set at the edge of
the first cascade plate can justify a small pressure difference.

9.4.2 Comparison to I-V measurements

In Figure 9.4, the cathode potential as function of the hydrogen flow rate can be seen.
From the experimental data it can be seen that the flow rate has a much stronger
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influence on the voltage than the current. The simulation data show a similar trend.
As explained in the introduction, the current voltage characteristic is flat or negative
because of widening of the constricted temperature profile with increasing current.
This effect can be seen in Figures 9.5 and 9.6. To ensure that the model is capable
of resolving the sombrero, the simulations were repeated on a much finer grid of 170
by 314 cells, which does not significantly alter the sombrero profile.
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Figure 9.5: Heavy particle temperature at z=0.15 cm. The channel diameter was 5 mm and
the magnetic field 0 Tesla. Calculations on the coarse grid of 44 by 80 cells are indicated
with points. Calculations on the grid with four times as many points in both radial and axial
direction are indicated with lines.

Also the plateau at 3000 K due to the dissociation transitionH2 → 2H can clearly
be seen. To our knowledge, this is the first time the sombrero profile is generated
with a complete non-LTE model. The crucial difference between this work and [67]
and [68], where the sombrero is absent, is the rate for the heavy particle assisted
dissociation reaction. In [67] and [68] the effect of rovibrationally excited molecules is
not taken into account, resulting in rates that are approximately a factor 104 ([67]) and
103 ([68]) lower than the rate used here. An explanation for the fact that such high
rates were not used before could be that the resulting strong chemical and energy
source terms are difficult to treat numerically. In this thesis, special measures were
taken in source term linearization (Section 3.3 of this thesis) to avoid problems with
such large source terms.

9.4.3 Comparison to Thomson measurements

In Figure 9.7 the Thomson Scattering and simulation results can be seen. Both the
electron density and temperature in the simulations are significantly lower than the
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direction are indicated with lines.

measured values. A possible explanation could be that in the simulation a back-
ground pressure of 50 Pa was used, while in the experiments, the background pres-
sure was 1-15 Pa. As a result, the effect of the magnetic field on the plasma can be
too small. Another difference between the model and the experiments is that in the
experiment the gas flow rate is used as the control variable, while in the model the
pressure is set as a boundary condition at the inlet. However, these explanations are
not confirmed by additional simulations at different flow rates, background pressures
and magnetic field strengths. A more probable cause of the discrepancies lies in the
crude description of the molecular chemistry. As mentioned in section 9.3 the ef-
fect of rovibrationally excited molecules on the dissociation rate is taken into account
by increasing the rate with a factor 104. This results in the desired behavior in the
source region, but is probably not valid in the expansion region. The temperature de-
pendence and the spatial distribution of rovibrationally excited molecules is not taken
into account.

9.5 Conclusions

In this chapter, simulations of the expanding hydrogen plasma were compared to
measurements on Pilot-PSI by Vijvers et al. [52]. In the source region, where sim-
ulation results were compared to pressure and I-V measurements, good agreement
was found. Both in the experiments and the simulations the pressure increased with
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Figure 9.7: Electron density and temperature at 4 cm from the source exit for a discharge
with d=5 mm and B=0.2 Tesla.

increasing gas flow rate and decreased with increasing channel diameter. The simu-
lations systematically gave a slightly lower pressure at the same flow rate, which could
be attributed to the discrepancy between the location of the pressure boundary condi-
tions and the measurement location. Also for the I-V measurements, good agreement
was found. The model was able to reproduce the sombrero profile for the first time in
a non-LTE simulation. To obtain this result, the dissociation rate was increased by a
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factor 104 to include the effect of rovibrationally excited molecules. To be able to use
such high rates special measures were taken in source term linearization (Section 3.3
of this thesis) to avoid numerical problems. As a result of this approach, thermal con-
striction as present in the hydrogen arc and the resulting flat I-V characteristic were
found in the simulations.

In the expansion region, where simulation results were compared to Thomson
scattering measurements larger discrepancies between model and experiments were
found. Both the electron density and temperature in the simulations were signif-
icantly lower than the measured values. Probably, increasing the dissociation rate
with a factor 104, is not valid in the expansion region, since the spatial distribution
of rovibrationally excited molecules and the temperature dependence is not taken
into account. It is well possible that the amount of rovibrationally excited molecules
sharply decreases in the expansion. Collisions with hot electrons are less frequent in
the expansion, while there is relaxation to lower levels by emission of IR radiation.
With a more detailed description of the molecular chemistry, for example by describ-
ing the rovribational states with a collisional radiative model, realistic simulations of
Magnum-PSI should be possible with the presented model.



Chapter 10

General conclusions

A numerical model for simulation of magnetized expanding plasmas was constructed
using the plasma modeling platform Plasimo. Balances of mass, momentum and en-
ergy were solved using the finite volume method. An important aspect of the numer-
ical model is the multicomponent diffusion calculation. Numerical techniques were
developed to successfully apply multicomponent diffusion to magnetized expanding
plasmas. Simulations of both magnetized and non-magnetized expansions have been
performed to verify the suitability of the numerical techniques.

The multicomponent diffusion model was developed in a systematic way. First,
in Chapter 4, a coupled system of continuity equations was obtained from the Stefan-
Maxwell equations for mixtures with only neutral species. To discretize this set of con-
tinuity equations, the exponential scheme was generalized to systems of convection-
diffusion equations in Chapter 3. It was shown that with this new discretization
scheme, mass conservation can be fulfilled up to machine accuracy without applying
the mass constraint explicitly.

In Chapter 5, multicomponent diffusion was extended to mixtures with charged
species. Instead of the usual assumption of zero current, we allowed a divergence
free current driven by an external electric field to be present. To maintain charge neu-
trality, the calculation of the potential was self consistently coupled to the diffusion
velocity. It was demonstrated that charge and mass conservation can be fulfilled up
to machine accuracy without applying the constraints explicitly.

The multicomponent diffusion model was further extended with the magnetic
field in Chapter 6. In magnetized plasmas, the flow directions across and around the
magnetic field lines are coupled by the Lorentz force. Coupling is taken into account
by using complex arithmetic in the diffusion algorithm. Furthermore, beside the
potential, also the flow field is coupled to the diffusion velocities.

The feasibility of Plasimo’s flow calculation and ambipolar diffusion was shown in
Chapter 7 for an argon plasma. It was shown that Plasimo can handle the transition
from a subsonic to a supersonic flow field. Expected physical behavior like the M=1
condition at the arc exit and choking of the flow follow automatically from the model.
The model can therefore be used when it is not known a priori whether the flow is
subsonic or transonic. Another advantage of the integral approach is that the model
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does not need to be split up on the interface of arc/chamber. This facilitated studying
the effect of the nozzle geometry. It was shown that nozzle reflections lead to a more
confined beam. For an increasing number of nozzle steps, the solution converged to
a ‘fixed’ solution.

The effect of the magnetic field on the expanding argon plasma was studied in
Chapter 8. Inside the arc, where the plasma is created, no significant changes were
observed compared to the unmagnetized plasma from Chapter 7. However, in the
expansion the plasma jet is strongly influenced by the magnetic field. Due to the
Lorentz force on the flow field, the plasma jet becomes more confined and starts to
rotate. Also the electromagnetic incoupling of power changed drastically. With a
magnetic field, power input is not only present inside the arc, but also in the vacuum
chamber. As a result, plasma production cannot be studied considering only the
source region, since plasma production extends into the expansion region as well.
With a magnetic field, ion and heat fluxes were of the same order of magnitude as
the fluxes expected near the ITER divertor.

To keep the chemistry as simple as possible, the feasibility of modeling the mag-
netized expansion was shown in Chapters 7 and 8 for an argon plasma. Finally, a
hydrogen model was presented in Chapter 9. Simulation results of the expanding
hydrogen plasma were compared to experiments on Pilot-PSI. In the source region,
where simulation results were compared to pressure and I-V measurements, good
agreement was found. The model was able to reproduce the sombrero profile for the
first time in a non-LTE simulation. To obtain this result, the dissociation rate was in-
creased by a factor 104 to include the effect of rovibrationally excited molecules. Using
such high rates was made possible by the new source term linearization as presented
in Chapter 3, which ensures physical solutions even in the source dominated limit. In
the expansion region, where simulation results were compared to Thomson scatter-
ing measurements larger discrepancies between model and experiments were found.
This is understandable, since the adhoc factor 104 does not account for the temper-
ature dependence and spatial distribution of rovibrationally excited molecules. The
discrepancies can probably be overcome by using a more complete description of the
molecular chemistry, including rovibrational excitation processes.

To conclude, a numerical model for studying the plasma creation in the source
and the consecutive magnetized expansion in Magnum-PSI has been developed.
This model captures the essential physical mechanisms of the magnetized expand-
ing plasma.



Appendix A

Linear algebra overview

A.1 The generalized inverse

Consider a square matrix A. If there is a matrix B such that BA = I , this is called
the inverse ofA, it is denoted asA−1. If an inverse exists, the matrix is called regular,
otherwise it is called singular. Every matrix A has a unique Moore-Penrose, or pseudo-
inverse [41, section 1.1]. This is the matrixA+ that satisfies all four Penrose equations,

1 : AA+A = A;
2 : A+AA+ = A+;
3 : (AA+)∗ = AA+;
4 : (A+A)∗ = A+A.

(A.1)

It is readily verified that for a regular matrix A+ = A−1 all these relations are satis-
fied: for a regular matrix the Moore-Penrose inverse is just the normal matrix inverse.

Following Ben-Israel and Greville [41], we will also consider generalized inverses
that satisfy some, but not all of the four Moore-Penrose conditions. An inverse of A
that satisfies the conditions (i, j, k, . . .) is denoted asA(i,j,k,...), and the set of all such
matrices asA{i, j, k, . . .}.

As an example A(1) denotes an inverse matrix that satisfies (at least) condition
one. The set of all such matrices is denoted asA{1}. An inverse that satisfies at least
properties one and three is denoted asA(1,3) and is a member of the setA{1, 3}. For
the Moore-Penrose inverse we have A+ = A(1,2,3,4) and since it is unique it is the
only member of the setA{1, 2, 3, 4}.

Consider the constrained system [46, section 5.1]:

Ga = b; (A.2)

a ∈ C,

where G ∈ Rn×n and C is a linear subspace of that space. For subspaces C and
S of Rn such that N(G) ⊕ C = Rn and R(G) ⊕ S = Rn, there exists a {1, 2}
generalized inverse Z of G with nullspace S and range C. In addition to ZGZ = Z
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andGZG = G, this has the properties

GZ = PR(G),S , (A.3)

ZG = PC,N(G), (A.4)

where PR(G),S is the projector onto parallel to S. Likewise, PC,N(G) is the projector
onto C along N(G). In Appendix A.2, projectors will be discussed. The constrained
system above is well-posed only if

N(G)⊕ C = Rn. (A.5)

Then for any S such that R(G) ⊕ S = Rn, we can write a = Zb, where Z is the
unique {1, 2} inverse ofA with range C and nullspace S.

A.2 Oblique projectors

Consider the oblique projection on a along b⊥. The matrix P describing this projec-
tion is given by:

P =
a⊗ b
〈b,a〉

. (A.6)

For an arbitrary x, the projection on a along b⊥ can therefore be written as:

Px = a
〈b,x〉
〈b,a〉

. (A.7)

This projection is schematically depicted in Figure A.1.
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Figure A.1: The matrix P = a⊗ b/〈b,a〉 defines a projection on the vector a along the vector
b⊥.
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From Figure A.1 it can also be seen that the range of P is a and its nullspace is b⊥.
Note that when b = a, the projection is orthogonal, since in this case the range and
the nullspace of P are orthogonal subspaces. The projection then leaves a invariant,
and it annihilates all vectors orthogonal to a. Projector matrices are idempotent; they
can be applied multiple times without changing the result after the first application:

P 2x =
a⊗ b
〈b,a〉

a⊗ b
〈b,a〉

x =
a⊗ b
〈b,a〉

x = Px. (A.8)

Now consider the projector P ′,

P ′ = I − P = I − a⊗ b
〈b,a〉

. (A.9)

The nullspace of P ′ is a, while its range is b⊥. The matrix P ′ is called the comple-
mentary projector to P and gives the projection on b⊥ along a. Since P ′ and P are
complementary, we have:

PP ′ = P − P 2 = P − P = 0. (A.10)

The matrix P ′ is idempotent as well:

P ′2 = P ′(I − P ) = P ′. (A.11)
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List of symbols

Physical quantities

Symbol Unit Definition
α sm−2 free parameter for mass regularization
α - underrelaxation parameter
β m2 s−1 free parameter for mass regularization
~B T magnetic field
~bi N kg−1 body force on species i
~ci m s−1 peculiar velocity of species i
cpi J kg−1K−1 specific heat capacity of species i
γ m2 s−1C−2 free parameter for charge regularization
Dij m2 s−1 binary diffusion coefficient
Dij m2 s−1 multicomponent diffusion coefficient

D
‖
ij m2 s−1 multicomponent diffusion coefficient along ~B

D⊥ij m2 s−1 multicomponent diffusion coefficient across ~B
D�ij m2 s−1 multicomponent diffusion coefficient around ~B
~di m−1 diffusion driving force for species i

d
‖
i m−1 component of diffusion driving force along ~B

d⊥i m−1 component of diffusion driving force across ~B
d�i m−1 component of diffusion driving force around ~B
~E V m−1 total electric field
~Eamb V m−1 ambipolar electric field
~Eext V m−1 external electric field
ε F m−1 electrical permittivity
Fij sm−2 friction matrix
φ V electrostatic potential
fi s3m−6 distribution function of species i
~Fi N m−3 volumetric force on species i
Γij kg m−1 s−1 multicomponent flux diffusion matrix
hi J kg−1 specific enthalpy of species i
h0i J kg−1 specific enthalpy of formation of species i
~Ji kg m−2 s−1 diffusive mass flux of species i
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~j A m−2 electrical current density
`i m Larmor radius of species i
λe J K−1 m−1 s−1 electron heat conductivity
λh J K−1 m−1 s−1 heavy particle heat conductivity
M - matrix relating the gradients of the mole fractions

to the gradients of the mass fractions
mi kg mass of a single particle of species i
µ Pa s dynamic viscosity
ni m−3 number density of species i
p Pa pressure
pi Pa partial pressure of species i
P - Peclet number
P - Peclet matrix
qi C charge of a single particle of species i
~qe Jm−2s−1 electron heat flux
~qh Jm−2s−1 heavy particle heat flux
Qohm Jm−3s−1 ohmic dissipation
Qeh Jm−3s−1 heat transfer between electrons and heavy particles
ri C kg−1 charge to mass ratio of species i
R kgm−3 matrix relating the mass fluxes to the velocities
ρ kg m−3 mass density
ρi kg m−3 mass density of species i
σm - mass constraint species
σc C kg−1 charge neutrality species
σ S m−1 electrical conductivity
Ti K temperature of species i
~ui m s−1 velocity of species i
~vi m s−1 diffusion velocity of species i
~v m s−1 mass averaged flow velocity
xi - mole fraction of species i
yi - mass fraction of species i
zi C m−3 charge density of species i
ωi m−3s−1 production rate of species i
Ωi s−1 Larmor frequency of species i

Mathematical symbols

⊗ dyadic product
⊕ direct sum
〈, 〉 inner product
‖ direction parallel to the magnetic field
⊥ direction perpendicular to the magnetic field
� direction around the magnetic field
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Abstract

Modeling of Magnetized Expanding Plasmas

In fusion reactors, the walls are exposed to very high particle and energy fluxes. To
study the problem of wall erosion and hydrogen retention in these conditions, the
Magnum-PSI experiment at the FOM Institute of Plasma Physics is set up. The
plasma source for Magnum-PSI is a cascaded arc, where a strong magnetic field is
applied to obtain the desired conditions.

The focus of this thesis is the development of a numerical model for studying
the plasma creation in the source and the consecutive magnetized expansion. To
describe the behavior of the different species in the range of conditions in the plasma
– from gas to fully ionized, from non-magnetized to strongly magnetized – a multi-
component diffusion description is needed. Numerical techniques are developed to
successfully apply multicomponent diffusion to magnetized expanding plasmas.

Multi-component diffusion results in a system of coupled continuity equations
for all species. In addition this coupled system is subject to mass and charge conser-
vation constraints. To deal with the coupling between the species a new finite volume
discretization method is introduced to discretize the system of continuity equations.
For numerical stability, mass and charge constraints are not explicitly applied. In-
stead, all species mass fractions are treated as independent unknowns and mass and
charge constraints are a result of the continuity equations, the boundary conditions,
the diffusion algorithm and the new discretization scheme. With this method, mass
and charge constraints can be satisfied exactly, although they are not explicitly applied.

To verify the suitability of the method, simulations of both magnetized and non-
magnetized expansions have been performed. The simulations are able to reproduce
important characteristics of magnetic confinement. Results show that in the mag-
netized case, the plasma production cannot be modeled by considering the source
alone, since plasma production extends into the expansion region.
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