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CONVERGENCE ANALYSIS OF MIXED NUMERICAL SCHEMES FOR
REACTIVE FLOW IN A POROUS MEDIUM
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1 CASA,TECHNISCHE UNIVERSITEIT EINDHOVEN, EINDHOVEN, THE NETHERLANDS
2 INSTITUTE OF MATHEMATICS, JOHANNES BRUNS GT. 12, UNIVERSITY OF BERGEN,

NORWAY

Abstract. This paper deals with the numerical analysis of an upscaled model describing the reactive flow in a
porous medium. The solutes are transported by advection and diffusion and undergo precipitation and dissolution.
The reaction term and, in particular, the dissolution term has a particular, multi-valued character, which leads
to stiff dissolution fronts. We consider the Euler implicit method for the temporal discretization and the mixed
finite element for the discretization in time. More precisely, we use the lowest order Raviart-Thomas elements.
As an intermediate step we consider also a semi-discrete mixed variational formulation (continuous in space). We
analyse the numerical schemes and prove the convergence to the continuous formulation. Apart from the proof for
the convergence, this also yields an existence proof for the solution of the model in mixed variational formulation.
Numerical experiments are performed to study the convergence behavior.

Key words. Numerical analysis, reactive flows, weak formulation, implicit scheme, mixed finite element
discretization

AMS subject classifications. 35A35, 65L60, 65J20

1. Introduction. Reactive flows in a porous medium have a wide range of applications
ranging from spreading of polluting chemicals leading to ground water contamination (see [41]
and references therein) to biological applications such as tissue and bone formation, or pharma-
ceutical applications [27] or technological applications such as operation of solid batteries. A
common feature of the above applications is the transport and reactions of ions/solutes. In this
work, we deal with the transport of ions/solutes taking place through the combined process of
convection and diffusion. For reactions, we focus on a specific class, namely the precipitation and
dissolution processes, where the ions undergo combination (precipitation) to form a crystal. The
reverse process of dissolution takes place where the crystal gets dissolved.

In this work, we consider an upscaled model defined on a Darcy scale. This implies that the solid
grains and the pore space are not distinguished and the equations are defined everywhere. Conse-
quently, the crystals formed as a result of reactions among ions and the ions themselves are defined
everywhere in the domain. Such models fall in the general category of reactive porous media flow
models. For Darcy-scale models related directly to precipitation and dissolution processes we refer
to [7, 29, 33, 34] (see also the references therein). Here we adopt the ideas proposed first in [23],
and extended in a series of papers [15, 16, 17]. These papers are referring to Darcy scale models;
the porescale counterpart is considered in [18], where distinction is made for the domains delineat-
ing the pore space and the solid grains. The transition from the porescale model to the upscaled
model is obtained, for instance, via homogenization arguments. For a simplified situation of a 2D
strip, the rigorous arguments are provided in [18]; see also [28, 1] for the upscaling procedure in
transport dominated flow regimes. For a similar situation, but tracking the geometry changes due
to the reactions leading to the free boundary problems, the formal arguments are presented in [24]
and [30].

We are motivated by analyzing appropriate numerical methods for solving the reactive flows for
an upscaled model. Considering the mixed variational formulation is an attractive proposition
as it preserves the mass locally. Our main goal here is to provide the convergence of a mixed
finite element discretization for such a model for dissolution and precipitation in porous media,
involving a multi-valued dissolution rate. Before discussing the details and specifics, we briefly
review some of the relevant numerical work. For continuously differentiable rates the convergence
of (adaptive) finite volume discretizations is studied in [22, 32]; see also [10] for the convergence
of a finite volume discretization of a copper-leaching model. In a similar framework, discontin-
uous Galerkin methods are discussed in [40] and upwind mixed FEM are considered in [11, 12];
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combined finite volume-mixed hybrid finite elements are employed in [20, 21]. Non-Lipschitz, but
Hölder continuous rates are considered using conformal FEM schemes in [4, 5]. Similarly, for
Hölder continuous rates (including equilibrium and non-equilibrium cases) mixed FEM methods
are analyzed rigorously in [36, 39], whereas [37] provides error estimates for the coupled system
describing unsaturated flow and reactive transport. In all these cases, the continuity of the reac-
tion rates allows obtaining error estimates. A characteristic mixed-finite element method for the
advection dominated transport has been treated in [3] and characteristic FEM scheme for contam-
inant transport giving rise to possibly non-Lipschitz reaction rates are treated in [13] where the
convergence and the error estimates have been provided. A parabolic problem coupled with linear
ODEs at the boundary have been treated in [2] using characteristic MFEM method. Conformal
schemes both for the semi-discrete and fully discrete (FEM) cases for the upscaled model under
consideration have been treated in [26].

The main difficulty here is due to the particular description of the dissolution rate involving differ-
ential inclusions. To deal with this, we consider a regularization of this term and the corresponding
sequence of regularized equations. The regularization parameter δ is dependent on the time dis-
cretization parameter τ in such a way that as τ ↘ 0, it is ensured that δ ↘ 0. Thus, obtaining
the limit of discretized scheme automatically yields, by virtue of the regularization parameter also
vanishing, the original equation. In proving the convergence results, the compactness arguments
are employed. These arguments rely on a priori estimates providing weak convergence. However,
strong convergence is needed to deal with the non-linear terms in the reaction rates. Translation
estimates are used to achieve this.

We consider both the semi-discrete and the fully discrete cases with the proof for the latter case
following closely the ideas of semi-discrete case. However, there are important differences partic-
ularly in the way the translation estimates are obtained. Whereas in the semi-discrete case, we
use the dual problem for obtaining the translation estimates; in the fully discrete case, we use
the properties of discrete H1

0 norm following the finite volume framework [19]. The convergence
analysis of appropriate numerical schemes for the problem considered here is a stepping stone
for coupled flow and reactive transport problem (for example, Richards’ equation coupled with
precipitation-dissolution reaction models).

The paper is structured as follows. We begin with a brief description of the model in Section 2
followed by Section 3 which deals with the notations used in this work. We proceed to define the
mixed variational formulation in Section 4 where we prove the uniqueness of the solution with
the existence coming from the convergence proof. Next, in sections 5 and 6 the time-discrete,
respectively fully discrete numerical schemes are considered and the proofs for the convergence
are provided. The numerical experiments are shown in Section 7 followed by the conclusions and
discussions in Section 8.

2. The mathematical model. We consider a Darcy scale model that describes the reactive
transport of the ions/solutes in a porous medium. The solutes are subjected to convective transport
and in addition they undergo diffusion and reactions in the bulk. Below we provide a brief
description and the assumptions of the model; we refer to [15], or [16] for more details.

Let Ω ⊂ R2 be the domain occupied by the porous medium, and assume Ω be open, connected,
bounded and with Lipschitz boundary Γ. Further, let T > 0 be a fixed but arbitrarily chosen
time, and define

ΩT = (0, T ]× Ω, and ΓT = (0, T ]× Γ.

At the outset, we assume that the fluid velocity q is known, divergence free and essentially bounded

∇ · q = 0 in Ω.

Usually, two or more different types of ions react to produce precipitate (an immobile species). A
simplified model will be considered here where we include only one mobile species. This makes
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sense if the boundary and initial data are compatible (see [15], or [16]). Then, denoting by v the
concentration of the (immobile) precipitate, and by u the cation concentration, the model reduces
to  ∂t(u+ v) +∇ · (qu−∇u) = 0, in ΩT ,

u = 0, on ΓT ,
u = uI , in Ω, for t = 0,

(2.1)

for the ion transport, and ∂tv = (r(u)− w), on ΩT ,
w ∈ H(v), on ΩT ,
v = vI , on Ω, for t = 0,

(2.2)

for the precipitate. For the ease of presentation we restrict to homogeneous Dirichlet boundary
conditions. The assumptions for the initial conditions will be given below. In the system considered
above, we assume all the quantities and variables as dimensionless. To simplify the exposition, the
diffusion is assumed 1, the extension to a positive definite diffusion tensor being straightforward.
Further, we assume that the Damköhler number is scaled to 1, as well as an eventual factor in the
time derivative of v in (2.2)1, appearing in the transition form the pore scale to the core scale.

The assumptions on the precipitation rate r are
(A.r1) r(·) : R→ [0,∞) is Lipschitz in R with the constant Lr.
(A.r2) There exists a unique u∗ ≥ 0, such that

r(u) =

{
0 for u ≤ u∗,
strictly increasing for u ≥ u∗ with r(∞) =∞. (2.3)

The interesting part is the structure of the dissolution rate. We interpret it as a process encountered
strictly at the surface of the precipitate layer, so the rate is assumed constant (1, by scaling) at
some (t, x) ∈ ΩT where the precipitate is present, i.e. if v(t, x) > 0. In the absence of the
precipitate, the overall rate (precipitate minus dissolution) is either zero, if the solute present
there is insufficient to produce a net precipitation gain, or positive. This can be summarized as

w ∈ H(v), where H(v) =

 0, if v < 0,
[0, 1] if v = 0,

1 if v > 0.
(2.4)

In the setting above, a unique u∗ exists for which r(u∗) = 1. If u = u∗ for all t and x, then
the system is in equilibrium: no precipitation or dissolution occurs, since the precipitation rate is
balanced by the dissolution rate regardless of the presence of absence of crystals (see [26], Section
5 for some illustrations). Then, as follows from [23, 18, 31], for a.e. (t, x) ∈ ΩT where v = 0, the
dissolution rate satisfies

w =

{
r(u) if u < u∗,

1 if u ≥ u∗. (2.5)

Since, we will work with the model in the mixed formulation, we define the flux as

Q = −∇u+ qu. (2.6)

Except for some particular situations, one cannot expect the existence of classical solutions to (2.1)-
(2.2). To rectify this, we resort to defining appropriate weak solutions which implies satisfying
the equations in some average sense. Formally, these solutions are obtained by multiplying by
smooth functions and using partial integration wherever required thereby reducing the regularity
of solutions otherwise needed in the strong form. In this work, we write the equations in a mixed
variational form which means that we separate the equation for the flux Q and retain the local
mass conservation property (see [36, 37, 38] for similar problems).
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3. Notations. We adopt the following notations from the functional analysis. In particular,
by H1

0 (Ω) we mean the space of functions in H1(Ω) and having a vanishing trace on Γ and H−1 is
its dual. By (·, ·) we mean L2 inner product or the duality pairing between H1

0 and H−1. Further,
‖ · ‖ stands for the norms induced by L2 inner product. For other norms, we explicitly state it.
The functions in H(div; Ω) are vector valued having a L2 divergence. Furthermore, C denotes
a generic constant and the value of which might change from line to line and is independent of
unknown variables or the discretization parameters.

Having introduced these notations we can state the assumptions on the initial conditions:

(A.I1) The initial data uI and vI are non–negative and essentially bounded.
(A.I2) uI , vI ∈ H1

0 (Ω).

We have taken the initial conditions in H1
0 to avoid technicalities. Alternatively, one can approx-

imate the initial conditions by taking the convolutions with smooth functions. The H1
0 regularity

for vI is used for obtaining strong convergence results, for which L2 regularity is not sufficient.

We furthermore assume that Ω is polygonal. Therefore it admits regular decompositions into
simplices and the errors due to nonpolygonal domains are avoided. The spatial discretization
will be defined on such a regular decomposition Th into 2D simplices (triangles); h stands for the
mesh-size. We provide the exposition for 2D but extending the results to 3D is similar.

We define the following sets

V := {v ∈ H1((0, T );L2(Ω))},
S := {Q | Q ∈ L2((0, T );H(div; Ω))},
W := {w ∈ L∞(ΩT ), : 0 ≤ w ≤ 1}.

In addition, for the fully discrete situation, we use the following discrete subspaces Vh ⊂ L2(Ω)
and Sh ⊂ H(div; Ω) defined as follows

Vh := {u ∈ L2(Ω) | u is constant on each element T ∈ Th}
Sh := {Q ∈ H(div; Ω) | Q|T = a + bx for all T ∈ Th}.

In other words, Vh denotes the space of piecewise constant functions, while Sh is the RT0 space.
Clearly from the above definitions, ∇ ·Q ∈ Vh for any Q ∈ Sh.

We also define the following usual projections:

Ph : L2(Ω) 7→ Vh, 〈Phv − v, vh〉 = 0

for all vh ∈ Vh. Similarly, the projection Πh is defined on (H1(Ω))d such that

Πh : (H1(Ω))d 7→ Sh, 〈∇ · (ΠhQ−Q), vh〉 = 0

for all vh ∈ Vh. Following [35], p.237 (also see [9]), this operator can be extended to H(div; Ω)
and also for the above operators there holds

‖v − Phv‖ ≤ Ch‖v‖H1(Ω) (3.1)

and further,

‖Q−ΠhQ‖ ≤ Ch‖Q‖H1(Ω)

‖∇ ·Q−∇ · (ΠhQ)‖ ≤ Ch‖Q‖H2(Ω).
(3.2)

For the spatial discretization we will work with the approximation qh of the Darcy velocity q,
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defined on the given mesh Th. For this approximation we assume that there exists a Mq > 0 s.t.
‖qh‖L∞ ≤Mq (uniformly in h; the same estimate being valid for q), and as h↘ 0

‖qh − q‖L2(Ω)2 → 0. (3.3)

Having stated the assumptions, we proceed by introducing the mixed variational formulation and
analyzing the convergence of its discretization.

4. Continuous mixed variational formulation. A weak solution of (2.1)–(2.2) written
in mixed form is defined as follows.

Definition 4.1. A quadruple (u,Q, v, w) ∈ (V × S × V × W with u|t=0 = uI , v|t=0 = vI
is a mixed weak solution of (2.1)–(2.2) if w ∈ H(v) a.e. and for all t ∈ (0, T ) and (φ, θ,ψ) ∈
H1(Ω)× L2(Ω)×H(div; Ω) we have

(∂tu, φ) + (∇ ·Q, φ) + (∂tv, φ) = 0,
(∂tv, θ)− (r(u)− w, θ) = 0,

(Q,ψ)− (u,∇ ·ψ)− (qu,ψ) = 0.
(4.1)

The proof for the existence of solution for (4.1) is obtained by the convergence of the numerical
schemes considered below. Therefore, we give the proof for the uniqueness of the solution. The
following lemma shows the uniqueness without further details on w. As mentioned in (2.5) the
inclusion w ∈ H(v) can be made more precise.

Lemma 4.2. The mixed weak formulation (4.1) has at most one solution.

Proof. Assume there exist two solution quadruples (u1,Q1, v1, w1) and (u2,Q2, v2, w2), and
define

u := u1 − u2, Q := Q1 −Q2, v := v1 − v2, w := w1 − w2.

Clearly, at t = 0 we have u(0, x) = 0 and v(0, x) = 0 for all x.
Subtracting (4.1)2 for u2, v2 and w2 from the equation for u1, v1 and w1 and taking (for t ≤ T
arbitrary) θ = χ(0,t)v, using monotonicity of H and the Lipschitz continuity of r(·) leads to

‖v(t, ·)‖2 =

t∫
0

∫
Ω

(r(u1)− r(u2))v(s, x)dxds−
t∫

0

∫
Ω

(H(v1)−H(v2))v(s, x)dxds

≤ 1

2

t∫
0

L2
r‖u(s, ·)‖2ds+

1

2

t∫
0

‖v(s, ·)‖2ds.

Then Gronwall’s lemma gives

‖v(t, ·)‖2 ≤ Cet
t∫

0

‖u(s, ·)‖2ds ≤ C
t∫

0

‖u(s, ·)‖2ds. (4.2)

Next, we choose for φ = χ(0,t)u(t, x) in the difference between the two equalities (4.1)1 to get

‖u(t, ·)‖2 +

 t∫
0

∇ ·Q(s, ·)ds, u(t, ·)

+ (v(t, ·), u(t, ·)) = 0. (4.3)
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Similarly, choosing ψ =

t∫
0

Q(s)ds in (4.1)3 (written for a.e. t) yields

∫
Ω

Q(t, x)

t∫
0

Q(s, x)ds

 dx−
∫
Ω

u(t, x)

 t∫
0

∇ ·Q(s, x)ds

 dx

−
∫
Ω

qu(t, x)

 t∫
0

Q(s, x)ds

 dx = 0.

(4.4)

Combining (4.3) and (4.4) we have

‖u(t, ·)‖2 +

∫
Ω

v(t, x)u(t, x)dx+

∫
Ω

Q(t, x)

t∫
0

Q(s, x)dsdx =

∫
Ω

qu(t, x)

t∫
0

Qdsdx

≤ 1

4
‖u(t, ·)‖2 +M2

q

∥∥∥∥∥∥
t∫

0

Q(s, ·)ds

∥∥∥∥∥∥
2

,

which implies,

‖u(t, ·)‖2 + (Q(t, ·),
t∫

0

Q(s, ·)ds) ≤ 1

2
‖u(t, ·)‖2 +M2

q

∥∥∥∥∥∥
t∫

0

Qds

∥∥∥∥∥∥
2

+ ‖v(t, ·)‖2.

Using (4.2) we obtain

1

2
‖u(t, ·)‖2 + (Q(t, ·),

t∫
0

Q(s, ·)ds) ≤ C
t∫

0

‖u(s, ·)‖2ds+M2
q

∥∥∥∥∥∥
t∫

0

Q(s, ·)ds

∥∥∥∥∥∥
2

. (4.5)

Defining,

E(t) :=
1

2

t∫
0

‖u(s, ·)‖2ds+
1

2

∥∥∥∥∥∥
t∫

0

Q(s)ds

∥∥∥∥∥∥
2

we have E ≥ 0 and E(0) = 0 because of initial conditions.Then (4.5) rewrites

dE

dt
≤ CE.

This immediately gives E(t) = 0 for all t implying

t∫
0

‖u(s, ·)‖2ds = 0, and

t∫
0

Q(s)ds = 0

for all t. Hence u = 0,Q = 0 and using this in (4.2) we conclude v = 0.
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5. Semi-discrete mixed variational formulation. As announced, to avoid dealing with
inclusion in the description of dissolution rate, the numerical scheme relies on the regularization
of the Heaviside graph. With this aim, with δ > 0 we define

Hδ(z) :=

 1, z > δ,
z
δ , 0 ≤ z ≤ δ,
0, z < 0.

(5.1)

Next, with N ∈ N, τ = T
N and tn = nτ, n = 1, . . . , N , we consider a first order time discretiza-

tion with uniform time stepping, which is implicit in u and explicit in v. At each time step
tn we use (un−1

δ , vn−1
δ ) ∈

(
L2(Ω), L2(Ω)

)
detemined at tn−1 to find the next approximation

(unδ ,Q
n
δ , v

n
δ , w

n). The procedure is initiated with u0 = uI , v
0 = vI . Specifically, we look for

(unδ , v
n
δ ,Q

n
δ ) ∈ H1(Ω), L2(Ω), H(div; Ω) satisfying the time discrete

Problem Pmvf,n
δ : Given (un−1

δ , vn−1
δ ) ∈

(
L2(Ω), L2(Ω)

)
, find (unδ ,Q

n
δ , v

n
δ , w

n
δ ) ∈

(
L2(Ω), H(div; Ω),

L2(Ω), L∞(Ω)
)

such that

(unδ − un−1
δ , φ) + τ(∇ ·Qn

δ , φ) + (vnδ − vn−1
δ , φ) = 0,

(vnδ − vn−1
δ , θ)− τ(r(unδ ), θ)− τ(Hδ(v

n−1
δ ), θ) = 0, (5.2)

(Qn
δ ,ψ)− (unδ ,∇ ·ψ)− (qunδ ,ψ) = 0

for all (φ, θ,ψ) ∈
(
H1(Ω), L2(Ω), H(div; Ω)

)
. For completeness we define

wnδ = Hδ(v
n
δ ).

This is a system of elliptic equations for unδ ,Q
n
δ , v

n
δ given un−1

δ ∈ H1
0,ΓD

(Ω), vn−1
δ ∈ L2(Ω). For

stability reasons, we choose δ = O(τ
1
2 ) (see [14, 26] for detailed arguments) which implies that

τ
δ goes to 0 as τ ↘ 0. This in turn allows us to consider the solutions along the sequence of
regularized Heaviside function with the regularization parameter δ automatically vanishing in the
limit of τ ↘ 0.

The existence of a solution for Problem Pmvf,n
δ will result from the convergence of the fully discrete

scheme, which is proved in the Appendix by keeping τ and δ fixed, and passing to the limit h↘ 0.
Note that it suffices to compute unδ , as vnδ can be obtained straightforwardly. For now, we prove
the uniqueness of the solution.

Lemma 5.1. Problem Pmvf,n
δ has at most one solution triple (unδ ,Q

n
δ , v

n
δ ).

Proof. Since wnδ = Hδ(v
n
δ ), it has no influence on the existence or uniqueness of the solution.

Therefore, we consider only the triples (unδ ,Q
n
δ , v

n
δ ). Assume that for the same (un−1

δ , vn−1
δ ) there

are two solution triples (unδ,i,Q
n
δ,i, v

n
δ,i), i = 1, 2 providing a solution to Problem Pmvf,n

δ . Define

unδ := unδ,1 − unδ,2, Qδ
n := Qn

δ,1 −Qn
δ,2, vnδ := vnδ,1 − vnδ,2

We follow the usual approach and consider the equations for the difference above. Taking θ = vnδ
in (5.2)2 gives

‖vnδ ‖2 = τ(r(unδ,1)− r(unδ,2), vnδ ) ≤ τLr‖unδ ‖‖vnδ ‖

as the Hδ terms cancel because of explicit discretization. This gives,

‖vnδ ‖ ≤ Cτ‖unδ ‖. (5.3)

Further, with φ = unδ , θ = unδ ,ψ = τQn
δ , from (5.2) we obtain

‖unδ ‖2 + τ‖Qn
δ ‖2 + τ(r(unδ,1)− r(unδ,2), unδ ) = τ(qunδ ,Qδ

n).

Since r is monotone, the Cauchy inequality and boundedness of q give

‖unδ ‖2 +
1

2
τ‖Qn

δ ‖2 ≤ τ
1

2
M2
q ‖unδ ‖2.
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For τ < 2
M2
q

, we obtain

‖unδ ‖ = 0 and thereby ‖Qn
δ ‖ = 0.

Together with (5.3) we conclude unδ = vnδ = 0 and Qn
δ = 0.

5.1. The a priori estimates. We start with the following stability estimates.
Lemma 5.2. It holds that

sup
k=1,...,N

∥∥ukδ∥∥ ≤ C (5.4)∥∥vnδ − vn−1
δ

∥∥ ≤ Cτ (5.5)

sup
k=1,...,N

∥∥vkδ∥∥ ≤ C (5.6)

sup
k=1,...,N

∥∥∥Qk
δ

∥∥∥ ≤ C (5.7)

N∑
n=1

∥∥unδ − un−1
δ

∥∥2 ≤ Cτ (5.8)

N∑
n=1

∥∥Qn
δ −Qn−1

δ

∥∥2 ≤ C (5.9)

N∑
n=1

τ ‖∇ ·Qn
δ ‖

2 ≤ C (5.10)

N∑
n=1

τ
∥∥∇ · (Qn

δ −Qn−1
δ )

∥∥2 ≤ C. (5.11)

Proof. We start by showing (5.4). To this aim we chose

φ = unδ , ψ = τQn
δ , θ = unδ

as test functions in (5.2), and add the resulting to obtain

(unδ − un−1
δ , unδ ) + τ ‖Qn

δ ‖
2 − τ(qunδ ,Q

n
δ ) + τ(r(unδ ), unδ ) = τ(Hδ(v

n−1
δ ), unδ ). (5.12)

Using the equality

(unδ − un−1
δ , unδ ) =

1

2

(
‖unδ ‖2 − ‖un−1

δ ‖2 + ‖unδ − un−1
δ ‖2

)
since q and Hδ are bounded and r(unδ )unδ ≥ 0, by Young’s inequality we get

‖unδ ‖
2 −

∥∥un−1
δ

∥∥2
+
∥∥unδ − un−1

δ

∥∥2
+ 2τ ‖Qn

δ ‖
2

+ 2τ(r(unδ ), unδ )

= 2τ(qunδ ,Q
n
δ ) + 2τ(Hδ(v

n−1
δ ), unδ ) ≤ τ ‖Qn

δ ‖
2

+ Cτ ‖unδ ‖
2

+ Cτ + Cτ ‖unδ ‖
2
.

Summing over n = 1, . . . , k (where k ∈ {, 1, . . . , N} is arbitrary) gives

∥∥ukδ∥∥2
+

k∑
n=1

∥∥unδ − un−1
δ

∥∥2
+ τ

k∑
n=1

‖Qn
δ ‖

2 ≤ ‖uI‖2 + C + Cτ

k∑
n=1

‖unδ ‖
2
, (5.13)

and (5.4) follows from the discrete Gronwall lemma.

For (5.5) we choose for θ = vnδ − v
n−1
δ in (5.2)2 and apply the Cauchy Schwarz inequality for the

right hand side,∥∥vnδ − vn−1
δ

∥∥2 ≤ τ ‖r(unδ )‖
∥∥vnδ − vn−1

δ

∥∥+ τ
∥∥Hδ(v

n−1
δ )

∥∥∥∥vnδ − vn−1
δ

∥∥ .
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Using (5.4), the boundedness of Hδ and the Lipschitz continuity of r this implies∥∥vnδ − vn−1
δ

∥∥ ≤ Cτ.
To prove (5.6), choose θ = vnδ in (5.2)2 to obtain

(vnδ − vn−1
δ , vnδ ) = τ(r(unδ ), vnδ )− τ(Hδ(v

n−1
δ ), vnδ ).

The left hand side can be rewritten as

(vnδ − vn−1
δ , vnδ ) =

1

2

(
‖vnδ ‖2 − ‖vn−1

δ ‖2 + ‖vnδ − vn−1
δ ‖2

)
.

We write the last term on the right hand side as(
Hδ(v

n−1
δ ), vnδ

)
=
(
Hδ(v

n−1
δ ), vn−1

δ

)
−
(
Hδ(v

n−1
δ ), vn−1

δ − vnδ
)
.

and substitute it in above to obtain

‖vnδ ‖
2 −

∥∥vn−1
δ

∥∥2
+
∥∥vnδ − vn−1

δ

∥∥2
= 2τ (r(unδ ), vnδ )−

(
Hδ(v

n−1
δ ), vn−1

δ

)
+
(
Hδ(v

n−1
δ ), vn−1

δ − vnδ
)
.

Since H(·) is monotone, (Hδ(v
n−1
δ ), vn−1

δ ) ≥ 0, now the Cauchy Schwarz inequality gives

‖vnδ ‖
2 −

∥∥vn−1
δ

∥∥2
+
∥∥vnδ − vn−1

δ

∥∥2 ≤ 2τC ‖unδ ‖ ‖vnδ ‖+ 2τ
(
Hδ(v

n−1
δ ), vnδ − vn−1

δ

)
.

By Young’s inequality this leads to

‖vnδ ‖
2 −

∥∥vn−1
δ

∥∥2
+

1

2

∥∥vnδ − vn−1
δ

∥∥2 ≤ τ ‖vnδ ‖
2

+ Cτ ‖unδ ‖
2

+ 2τ2 ‖Hδ‖2 .

Summing over n = 1, . . . , k (with k ∈ {1, . . . , N} arbitrary) this gives

∥∥vkδ∥∥2
+

k∑
n=1

∥∥vnδ − vn−1
δ

∥∥2 ≤ ‖vI‖2 + τ
k∑

n=1
‖vnδ ‖

2
+ Cτ

k∑
n=1
‖unδ ‖

2
+

k∑
n=1

4τ2 ‖Hδ‖2

≤ τ
k∑

n=1
‖vnδ ‖

2
+ C + Cτ

where we have used the estimates proved before and the bounds on initial data. Now (5.6) follows
from the Discrete Gronwall Lemma.

We proceed with the estimate (5.7). To this aim, we need to specify the initial flux: Q0
δ =

−∇uI + quI ∈ (L2(Ω))d. With φ = unδ − u
n−1
δ , (5.2)1 gives∥∥unδ − un−1

δ

∥∥2
+ τ

(
∇ ·Qn

δ , u
n
δ − un−1

δ

)
+
(
vnδ − vn−1

δ , unδ − un−1
δ

)
= 0. (5.14)

Now take ψ = τQn
δ to get

τ (Qn
δ ,Q

n
δ )− τ (unδ ,∇ ·Q

n
δ )− τ (qunδ ,Q

n
δ ) = 0, (5.15)

and next choose ψ = τQn
δ for the equation corresponding to (n− 1)-th time step

τ
(
Qn−1
δ ,Qn

δ

)
− τ

(
un−1
δ ,∇ ·Qn

δ

)
− τ

(
qun−1

δ ,Qn
δ

)
= 0. (5.16)

Subtract (5.16) from (5.15) to obtain

τ
(
Qn
δ −Qn−1

δ ,Qn
δ

)
− τ

(
unδ − un−1

δ ,∇ ·Qn
δ

)
− τ

(
q(unδ − un−1

δ ),Qn
δ

)
= 0.
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Further, use (5.14) in above to obtain∥∥unδ − un−1
δ

∥∥2
+ τ

(
Qn
δ −Qn−1

δ ,Qn
δ

)
= τ

(
q(unδ − un−1

δ ),Qn
δ

)
− (vnδ − vn−1

δ , unδ − un−1
δ ). (5.17)

As before, we can rewrite
(
Qn
δ −Qn−1

δ ,Qn
δ

)
as

(
Qn
δ −Qn−1

δ ,Qn
δ

)
=

1

2

(
‖Qn

δ ‖2 − ‖Q
n−1
δ ‖2 + ‖Qn

δ −Qn−1
δ ‖2

)
.

Substituting the above in (5.17) we obtain

2
∥∥unδ − un−1

δ

∥∥2
+ τ ‖Qn

δ ‖
2 − τ

∥∥Qn−1
δ

∥∥2
+ τ

∥∥Qn
δ −Qn−1

δ

∥∥2

= 2τ(q(unδ − u
n−1
δ ),Qn

δ )− 2(vnδ − v
n−1
δ , unδ − u

n−1
δ )

The right hand side can be estimated using Young’s inequality in a straightforward manner

2
∥∥unδ − un−1

δ

∥∥2
+ τ ‖Qn

δ ‖
2 − τ

∥∥Qn−1
δ

∥∥2
+ τ

∥∥Qn
δ −Qn−1

δ

∥∥2

≤
∥∥unδ − un−1

δ

∥∥2
+ 2M2

q τ
2 ‖Qn

δ ‖
2

+ 2
∥∥vnδ − vn−1

δ

∥∥2
.

Summing over n = 1, . . . , k (k ∈ {1, . . . , N} arbitrary) we obtain

k∑
n=1

∥∥unδ − un−1
δ

∥∥2
+ τ

∥∥∥Qk
δ

∥∥∥2

+ τ

k∑
n=1

∥∥Qn
δ −Qn−1

δ

∥∥2 ≤ Cτ + Cτ2
k∑

n=1

‖Qn
δ ‖

2
+ τ ‖QI‖

2
. (5.18)

The estimate (5.7) follows now by the Discrete Gronwall lemma. Moreover, from (5.18) we also
get (5.8) and (5.9).

Finally, to prove (5.10) we take φ = ∇·Qn
δ in (5.2)1 and use Young’s inequality for the right hand

side to obtain

τ2 ‖∇ ·Qn
δ ‖

2 ≤
∥∥unδ − un−1

δ

∥∥2
+
∥∥vnδ − vn−1

δ

∥∥2
+

1

2
τ2 ‖∇ ·Qn

δ ‖
2
.

Summing over n = 1 . . . , N and using (5.5) and (5.8) gives (5.10).

Finally, to prove the estimate (5.11), we simply use the triangle inequality in (5.10).

5.2. Enhanced compactness. As will be seen below, the above estimates are not sufficient
to retrieve the desired limiting equations. To complete the proof of convergence, stronger com-
pactness properties are needed. These are obtained by translation estimates. To this aim, we
define the translation in space

4ξf(·) := f(·)− f(·+ ξ), ξ ∈ R2.

Further, with ξ ∈ R2 we consider Ωξ ⊂ Ω such that

Ωξ := {x ∈ Ω|dist(x,Γ) > ξ}.

In this way, the translations 4ξf(x) with x ∈ Ω are well-defined.
For reasons of brevity, the norms and the inner products for the translations should be understood
with respect to Ωξ unless explicitly stated otherwise. First, we consider the translation for unδ .

Lemma 5.3. It holds that

N∑
n=1

τ ‖4ξunδ ‖
2 ≤ C|ξ|.
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Proof. For (5.2)3 we have after translation in space

(4ξQn
δ ,ψ)− (4ξunδ ,∇ ·ψ)− (4ξ(qunδ ),ψ) = 0.

We construct an appropriate test function to obtain the estimate above. Take ηn such that{
−∆ηn = 4ξunδ in Ω

ηn = 0 on Γ

and choose ψ = ∇ηn (note that ψ ∈ H(div; Ω)) to obtain

(4ξQn
δ ,∇ηn) + (4ξunδ ,4ξunδ )− (4ξ(qunδ ),∇ηn) = 0. (5.19)

Note that ηn satisfies ‖4ηn‖ = ‖4ξunδ ‖, and therefore

‖ηn‖H2(Ω) ≤ C(Ω) ‖4ξunδ ‖ .

This implies that translations of ∇ηn are controlled,

‖∇(4ξηn)‖L2(Ω) ≤ C|ξ| ‖∇ · (∇η
n)‖ ≤ C(Ω)|ξ| ‖4ξunδ ‖ . (5.20)

Recalling (5.4), this gives

‖∇(4ξηn)‖L2(Ω) ≤ C(Ω)|ξ| ‖4ξunδ ‖ ≤ C|ξ|. (5.21)

Thus we have the following estimate

τ
N∑
n=1
‖4ξunδ ‖

2
= τ

N∑
n=1

(qunδ ,∇(4ξηn)) + τ
N∑
n=1

(Qn
δ ,∇(4ξηn))

≤ τ
N∑
n=1
‖Qn

δ ‖ ‖∇(4ξηn)‖+ τ
N∑
n=1
‖q‖L∞(Ω) ‖unδ ‖ ‖∇(4ξηn)‖

(5.22)

The conclusion follows by (5.4), (5.7), the Young inequality and (5.21).

The translation estimates for vnδ are bounded by those for unδ . This is the essence of the next
lemma.

Lemma 5.4. The following estimates hold true

sup
k=1,...N

∥∥4ξvkδ∥∥2
+

N∑
n=1

∥∥4ξ(vnδ − vn−1
δ )

∥∥2 ≤ C ‖4ξvI‖2 + Cτ

N∑
n=1

‖4ξunδ ‖
2
, (5.23)

N∑
n=1

‖4ξvnδ ‖
2 ≤ C|ξ|. (5.24)

Proof. With θ = 4ξvnδ in (5.2)2, we get(
4ξvnδ −4ξvn−1

δ ,4ξvnδ
)

= τ (4ξr(unδ ),4ξvnδ )− τ
(
4ξHδ(v

n−1
δ ),4ξvnδ

)
The last term in the above rewrites as(

4ξHδ(v
n−1
δ ),4ξvnδ

)
=
(
4ξHδ(v

n−1
δ ),4ξvn−1

δ

)
+
(
4ξHδ(v

n−1
δ ),4ξ(vnδ − vn−1

δ )
)
.

The monotonicity of Hδ implies that the first term on the right hand side is positive(
4ξHδ(v

n−1
δ ),4ξvn−1

δ

)
≥ 0.

For the left hand side, we use the identity(
4ξ(vnδ − vn−1

δ ),4ξvnδ
)

=
1

2

(
‖4ξvnδ ‖

2 −
∥∥4ξvn−1

δ

∥∥2
+
∥∥4ξ(vnδ − vn−1

δ )
∥∥2
)
,
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which, together with the Cauchy-Schwarz inequality for the first term on the right hand side gives

1
2

(
‖4ξvnδ ‖

2 −
∥∥4ξvn−1

δ

∥∥2
+
∥∥4ξ(vnδ − vn−1

δ )
∥∥2
)

≤ τLr ‖4ξunδ ‖ ‖4ξvnδ ‖+ τ
(
4ξHδ(v

n−1
δ ),4ξ(vnδ − v

n−1
δ )

)
≤ Lr τ2 ‖4ξu

n
δ ‖

2
+ τ

2 ‖4ξv
n
δ ‖

2
+ τ2

∥∥4ξHδ(v
n−1
δ )

∥∥2
+ 1

4

∥∥4ξ(vnδ − vn−1
δ )

∥∥2

≤ 1
2Lrτ ‖4ξu

n
δ ‖

2
+ 1

2τ ‖4ξv
n
δ ‖

2
+ τ2

δ2 ‖4ξv
n−1
δ ‖2 + 1

4‖4ξ(v
n
δ − v

n−1
δ )‖2.

Summing over n = 1, . . . , k (k ∈ {1, . . . , N}) yields

∥∥4ξvkδ∥∥2
+

1

2

k∑
n=1

∥∥4ξ(vnδ − vn−1
δ )

∥∥2

≤ ‖4ξvI‖2 + Lrτ

k∑
n=1

‖4ξunδ ‖
2

+ τ

k∑
n=1

‖4ξvnδ ‖
2

+

k∑
n=1

2τ2

δ2
‖4ξvn−1

δ ‖2. (5.25)

Using Lemma 5.3 and Gronwall’s lemma we obtain

sup
k=1,...,N

∥∥4ξvkδ∥∥2 ≤ Cτ
N∑
n=1

‖4ξunδ ‖
2

+ ‖4ξvI‖2 . (5.26)

The estimate (5.23) follows from the above and from (5.25), whereas (5.24) is a direct consequence
of Lemma 5.3 and the assumptions on vI .
From the above we also get

Lemma 5.5. The following estimate holds:

N∑
n=1

∥∥4ξ(vnδ − vn−1
δ )

∥∥ ≤ Cτ. (5.27)

Proof. Testing in (5.2)2 with θ = vnδ − v
n−1
δ gives∥∥4ξ(vnδ − vn−1

δ )
∥∥2

= τ(4ξr(unδ )−Hδ(v
n−1
δ ),4ξ(vnδ − v

n−1
δ ))

≤ τ2‖4ξr(unδ )‖2 + 1
2‖4ξ(v

n
δ − v

n−1
δ )‖2 + τ2‖Hδ(v

n−1
δ )‖2.

(5.28)

Using the Lipschitz property of r and (5.4) we obtain∥∥4ξ(vnδ − vn−1
δ )

∥∥2 ≤ τ2C,

and the conclusion follows by summing over n = 1, . . . , N .

5.3. Convergence. For proving the convergence of the time discretization scheme, we con-
sider the sequence of time discrete quadruples {(unδ ,Q

n
δ , v

n
δ , w

n
δ ), n = 0, . . . , N} solving Problem

Pmvf,n
δ , and construct a time continuous approximation by linear interpolation. In this sense, for

t ∈ [tn−1, tn] (n = 1, . . . , N) we define

Uτ (t) := unδ
(t− tn−1)

τ
+ un−1

δ

(tn − t)
τ

,

V τ (t) := vnδ
(t− tn−1)

τ
+ vn−1

δ

(tn − t)
τ

,

Qτ (t) := Qn
δ

(t− tn−1)

τ
+ Qn−1

δ

(tn − t)
τ

,

W τ (t) := Hδ(V
τ (t)).

(5.29)

The estimates in Lemma 5.2 can be translated directly to (Uτ ,Qτ , V τ ,W τ ):
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Lemma 5.6. A constant C > 0 exists s.t. for any τ and δ = O(
√
τ) the following L2(0, T ;L2(Ω))

estimates hold

‖Uτ‖2 + ‖V τ‖2 + ‖Qτ‖2 ≤ C, (5.30)

‖∂tUτ‖+ ‖∂tV τ‖2 + ‖∇ ·Qτ‖2 ≤ C. (5.31)

Proof. (5.30) follows easily from (5.4). For instance,

‖Uτ‖2 ≤ 2‖unδ ‖2 + 2‖un−1
δ ‖2 ≤ C

and similarly other estimates follow. To estimate ‖∂tV τ‖2L2(0,T ;L2(Ω)) we note that, whenever

t ∈ (tn−1, tn],

∂tV
τ =

vnδ − v
n−1
δ

τ

implying

T∫
0

‖∂tV τ‖2dt =
N∑
n=1

tn∫
tn−1

‖
vnδ − v

n−1
δ

τ
‖2L2(Ω)dt ≤

N∑
n=1

τ‖
vnδ − v

n−1
δ

τ
‖2L2(Ω) ≤ CτN ≤ C,

where we have used the estimate (5.5).
The proof for ∂tU

τ is the same as above and uses the estimate (5.8). The only remaining part
in (5.31) is to show that ∇ ·Qτ ∈ L2(0, T ;L2(Ω)). To see this note that

∇ ·Qτ = ∇ ·Qn−1
δ +

t− tn−1

τ
∇ · (Qn

δ −Qn−1
δ ).

Squaring both sides and using the elementary inequality

‖∇ ·Qτ‖2L2(Ω) ≤ 2‖∇ ·Qn−1
δ ‖2 + 2

(t− tn−1)2

τ2
‖∇ · (Qn

δ −Qn−1
δ )‖2,

integrating over t from 0 to T , since ∇ ·Qn−1
δ and ∇ ·Qn

δ are constant in (tn−1, tn) gives

T∫
0

‖∇ ·Qτ‖2dt ≤ 2τ

N∑
n=1

‖∇ ·Qn−1
δ ‖2 + 2

N∑
n=1

tn∫
tn−1

(t− tn−1)2

τ2
‖∇ · (Qn

δ −Qn−1
δ )‖2dt

≤ 2τ

N∑
n=1

‖∇ ·Qn−1
δ ‖2 + 2

N∑
n=1

2τ

3
‖∇ · (Qn

δ −Qn−1
δ )‖2.

Now use (5.10)–(5.11) to obtain

T∫
0

‖∇ ·Qτ‖2dt ≤ C.

Note that the estimates above are uniform in τ , if δ = O(
√
τ) and we have (Uτ ,Qτ , V τ ,W τ ) ∈

V × S × V × L∞(ΩT ). Moreover, we have
Lemma 5.7. A quadruple (u,Q, v, w) ∈ V × S × V × L∞(ΩT ) exists s.t. along a sequence

τ ↘ 0 (and with δ = O(τ
1
2 )) we have

1. Uτ ⇀ u weakly in L2((0, T );L2(Ω)),
2. ∂tU

τ ⇀ ∂tu weakly in L2((0, T );L2(Ω)),
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3. Qτ ⇀ Q weakly in L2((0, T );L2(Ω)d),
4. ∇ ·Qτ ⇀ ∇ ·Q weakly in L2((0, T );L2(Ω)),
5. V τ ⇀ v weakly in L2((0, T );L2(Ω)),
6. ∂tV

τ ⇀ ∂tv weakly in L2((0, T );L2(Ω)),
7. W τ ⇀ w weakly-star in L∞(Ω).

In the above only weak convergence of Uτ in L2(0, T ;L2(Ω)) is obtained, which is not sufficient for
passing to the limit for non-linear term r(Uτ ). To obtain strong convergence, we use translation
estimates as derived in Lemma 5.3.

Lemma 5.8. It holds that

Uτ → u strongly in L2((0, T );L2(Ω)).

Proof. In view of ∂tU
τ ∈ L2(0, T ;L2(Ω)), the translation in time is already controlled. What

we need is to control the translation in space. Due to [8] (Prop. 9.3, p.267), we need to prove that

Iξ :=

T∫
0

∫
Ωξ

|4ξUτ |2 dxdt→ 0 as |ξ| ↘ 0.

The definition of Uτ immediately implies that

|Iξ| ≤
N∑
n=1

τ
(
2‖4ξunδ ‖2 + 2‖4ξun−1

δ ‖2
)
.

Using Lemma 5.3 we find that

|Iξ| ≤ C|ξ|

where C is independent of τ and δ, implying the strong convergence.

To identify w with H(v) we further need the strong convergence of V τ . This ia a consequence of
lemmas 5.4 and 5.8.

Lemma 5.9. For V τ , it holds that

V τ → v strongly in L2((0, T );L2(Ω)).

Proof. Once again, we use the translation estimate and note that the regularity of ∂tV
τ

ensures the control of the translation in time. What remains is to prove the following estimate

Iξ :=

T∫
0

∫
Ωξ

|4ξV τ |2 dxdt→ 0 as |ξ| ↘ 0.

Using the definition of V τ we have

Iξ ≤
N∑
n=1

τ
(
2‖4ξvnδ ‖2 + 2‖4ξvn−1

δ ‖2
)
.

Thanks to Lemma 5.4 we have

Iξ ≤ C|ξ|

where C is independent of τ and δ, thus establishing the strong convergence.
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5.4. The limit equations. Once the strong convergence is obtained, the following theorem
provides the existence of the weak solution in the mixed variational formulation.

Theorem 5.10. The limit quadruple (u,Q, v, w) is a solution in the sense of Definition 4.1.
Proof. By the weak convergence, the estimates in Lemma 5.6 carry over for the limit quadruple

(u,Q, v, w). Moreover, the time continuous approximation in (5.29) satisfies

(∂tU
τ , φ) + (∇ ·Qτ , φ) + (∂tV

τ , φ) = (∇ · (Qτ −Qn
δ ), φ) , (5.32)

(∂tV
τ , θ)− (r(Uτ )−W τ , θ) =

(
Hδ(V

τ )−Hδ(v
n−1
δ , θ

)
+ (r(unδ )− r(Uτ ), θ) (5.33)

(Qτ ,ψ)− (Uτ ,∇ ·ψ)− (qUτ ,ψ) = (Qτ −Qn
δ ,ψ)− (Uτ − unδ ,∇ ·ψ)− (q(Uτ − unδ ),ψ)

(5.34)

for all (φ, θ,ψ) ∈ L2(0, T ;H1
0 (Ω)),V,S). Note that, in fact, (5.32) also holds for φ ∈ V. Here we

choose a better space to identify the limit, where we prove that the term on the right is vanishing
along a sequence τ ↘ 0. By density arguments, the limit will hold for φ ∈ V.

Consider first (5.32) and note that by Lemma 5.7, the left hand side converges to the desired limit.
It only remains to show that the right hand side, denoted by I1, vanishes as τ ↘ 0. Integrating
by parts, which is allowed due to the choice of φ ∈ L2(0, T ;H1

0 (Ω)), one has

|I1| ≤

(
N∑
n=1

τC‖Qn
δ −Qn−1

δ ‖2
) 1

2

 T∫
0

‖∇φ‖2dt


1
2

.

Due to the estimate (5.9),
N∑
n=1

τ‖Qn
δ −Qn−1

δ ‖2 → 0.

Next, we consider (5.33). First we prove that the last two integrals on the right hand side vanish,
denoted by I2 and I3 vanish. For I2 we use the Lipschitz continuity of Hδ and the definition of
V τ to obtain

|I2| ≤

(
N∑
n=1

τ

δ2
‖vnδ − vn−1

δ ‖2
) 1

2

 T∫
0

‖θ‖2dt


1
2

.

Using (5.5) we have

|I2| ≤ C
τ

δ

 T∫
0

‖θ‖2dt


1
2

.

By the choice of δ, τ
δ ↘ 0 as τ ↘ 0, implying that I2 vanishes in the limit.

For I3 we use the Lipschitz continuity of r and (5.8) to get

|I3| ≤

(
N∑
n=1

τLr‖unδ − un−1
δ ‖2

) 1
2

 T∫
0

‖ψ‖2dt


1
2

→ 0.

For the first term on the left in (5.32), the limit is straightforward. For the limit of the second
term, with strong convergence of Uτ and weak-* convergence of W τ we get

lim
τ↘0

(r(Uτ )−W τ , θ) = (r(u)− w, θ) ,

leading to the limiting equation

(∂tv, θ) = (r(u)− w, θ) for all θ ∈ V. (5.35)
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Now we consider (5.34) and denote the corresponding integrals on the right hand side respectively
by I4, I5, and I6. By the definition of Qτ and (5.9), as τ ↘ 0 we obtain

|I4| ≤

(
N∑
n=1

τ‖Qn
δ −Qn−1

δ ‖2
) 1

2

 T∫
0

‖ψ‖2dt


1
2

→ 0.

Similarly, for I5 and I6, using (5.8)

|I5| ≤

(
N∑
n=1

τ‖unδ − un−1
δ ‖2

) 1
2

 T∫
0

‖ψ‖2dt


1
2

→ 0, and

|I6| ≤

(
N∑
n=1

τM2
q ‖unδ − un−1

δ ‖2
) 1

2

 T∫
0

‖ψ‖2dt


1
2

→ 0.

With this the limit equation takes the form

(Q,ψ)− (u,∇ ·ψ)− (qu,ψ) = 0. (5.36)

To conclude the proof what remains is to show that w = H(v). Since we have V τ strongly
converging, we also obtain V τ → v pointwise a.e. and further, as τ ↘ 0, by construction δ ↘ 0.
For the set R+ := {(t, x) : v(t, x) > 0}, let us assume µ := v(t, x, z)/2 > 0. Then the pointwise
convergence implies the existence of a εµ > 0 such that V τ > µ for all ε ≤ εµ. Then for
any ε ≤ εµ we have W τ = 1 implying w = 1. A similar conclusion also holds for R− where
R− := {(t, x) : v(t, x) < 0}.
For the case when v = 0; consider the set R0 := {(t, x, z) : v(t, x, z) = 0}. Now in the interior of
the set R0, ∂tv = 0. Next, from the weak convergence of ∂tV

τ ,W τ , r(Uτ ), we have the following
limit equation

(∂tv, θ) = (r(u)− w, θ) .

Hence, for the interior of the set R0, we obtain w = r(u). Furthermore, the bounds 0 ≤ W τ ≤ 1
with weak- convergence of W τ

h to w imply the same bounds on w and hence w = r(u) with
0 ≤ r(u) ≤ 1.

6. The mixed finite element formulation. Following the semi-discrete scheme, we now
consider the fully discrete system (discretized in both space and time) and show the convergence
of the numerical method. In particular, we consider the mixed finite element discretization in
space and for the time we retain the discretization as in the semi-discrete case. The steps for
the proof of convergence are similar to the semi-discrete situation and where ever the proof is
similar to time-discrete case treated above, we suppress the details. Further, to simplify notation,
henceforth, we suppress the subscript δ.

The fully discrete formulation for the weak solution of (2.1)–(2.2) builds on the time discretization
in (5.2), and consider a uniform time stepping that is implicit in u and explicit in v. For the space
discretization, we have Ω decomposed in 2− dimensional simplices (triangles) denoted by Th and
having the mesh-size h. We assume Ω to be polygonal as has been stated in Section 3. The
function spaces used here are already introduced in Section 3.

Starting with u0
h = uI , v

0
h = vI , with n ∈ {1, . . . , N}, the approximation (unh, v

n
h ,Q

n
h, w

n
h) of

(u(tn), v(tn),Q(tn), w(tn)) at t = tn solves :

Problem Pn
h: Given (un−1

h , vn−1
h ) ∈ (Vh,Vh) find (unh, v

n
h ,Q

n
h, w

n
h) ∈ (Vh,Vh,Sh, L∞(Ω)) satisfying

(unh − un−1
h , φ) + τ(∇ ·Qn

h, φ) + (vnh − vn−1
h , φ) = 0,

(vnh − vnh , θ)− τ(r(unh), θ)− τ(Hδ(v
n−1
h ), θ) = 0, (6.1)

(Qn
h,ψ)− (unh,∇ ·ψ)− (qhu

n
h,ψ) = 0,
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for all (φ, θ,ψ) ∈ Vh × Vh × Sh. For completion, we define

wnh = Hδ(v
n
h).

For stability reasons, as before, we choose δ = O(τ
1
2 ) (see [14, 26] for detailed arguments).

The fully discrete scheme (6.1) seeks solution on a finite dimensional vector space for any given
discretization parameters. From (6.1)1 and (6.1)2, we eliminate vnh , which is computed after having
obtained (unh,Q

n
h) satisfying for all (φ,ψ) ∈ (Vh,Sh)

(unh − u
n−1
h , φ) + τ(∇ ·Qn

h, φ) + τ(r(unh)−Hδ(v
n−1
h ), φ) = 0,

(Qn
h,ψ)− (unh,∇ ·ψ)− (qhu

n
h,ψ) = 0.

(6.2)

In the above formulation, the nonlinearities only involve unh; the Hδ is known, from the previous
time step and is in L∞.

The existence follows from [37], Theorem 4.3, which treats a more general case. Its proof is based
on [42] (Lemma 1.4, p.140). Following the ideas in Section 5, one can prove that (6.2) has a unique
solution pair (unh,Q

n
h). This also determines vnh and wnh uniquely. We summarize the above result

Lemma 6.1. Problem Pn
h has a unique solution pair (unh,Q

n
h, v

n
h , w

n
h).

6.1. The a priori estimates. We proceed with the energy estimates which are analogous
to the semi-discrete case. We simply state the results as their proof follows as in the semi-discrete
case.

Lemma 6.2. The following estimates hold

sup
k=1,...,N

∥∥ukh∥∥ ≤ C (6.3)∥∥vnh − vn−1
h

∥∥ ≤ Cτ (6.4)

sup
k=1,...,N

∥∥vkh∥∥ ≤ C (6.5)

sup
k=1,...,N

∥∥∥Qk
h

∥∥∥ ≤ C (6.6)

N∑
n=1

∥∥unh − un−1
h

∥∥2 ≤ Cτ (6.7)

N∑
n=1

∥∥Qn
h −Qn−1

h

∥∥2 ≤ C (6.8)

N∑
n=1

τ ‖∇ ·Qn
h‖

2 ≤ C (6.9)

N∑
n=1

τ
∥∥∇ · (Qn

h −Qn−1
h )

∥∥2 ≤ C (6.10)

We continue with the steps analogous to the semi-discrete situation. As in (5.29) we consider the
time-continuous approximation by the piecewise linear interpolations of the time discrete solutions.
With t ∈ [tn−1, tn], define

Zτh(t) :=
(t− tn−1)

τ
znh +

(tn − t)
τ

zn−1
h , (6.11)

(6.12)
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where znh , z
n−1
h are the time-discrete solutions from which we construct the corresponding time-

continuous approximation Zτh . The symbol z may be replaced here by either u, v, or Q, and the
same holds for Z. As before, the estimates in Lemma 6.2 carry over for the time-continuous
approximation (the proof is omitted) and we obtain

Lemma 6.3. The time-continuous approximations satisfy the following estimates

‖∂tUτh‖
2

+ ‖∇ ·Qτ
h‖

2
+ ‖Uτh‖

2
+ ‖V τh ‖

2
+ ‖Qτ

h‖
2 ≤ C, (6.13)

0 ≤W τ
h ≤ 1. (6.14)

Here the norms are taken with respect to L2(0, T ;L2(Ω)). The estimates are uniform in τ and
δ and furthermore we have (Uτh ,Q

τ
h, V

τ
h ,W

τ
h ) ∈ V × S × V × L∞(Ω). Clearly, if τ ↘ 0 with

δ = O(τ
1
2 ) implies that both δ, τδ ↘ 0. The compactness arguments from the Lemma 6.3 lead to

the following convergence result:
Lemma 6.4. Along a sequence τ ↘ 0, it holds that
1. Uτh ⇀ u weakly in L2((0, T );L2(Ω)),
2. ∂tU

τ
h ⇀ ∂tu weakly in L2((0, T );H−1(Ω)),

3. Qτ
h ⇀ Q weakly in L2((0, T );L2(Ω)d),

4. ∇ ·Qτ
h ⇀ χ weakly in L2((0, T );L2(Ω)),

5. V τh ⇀ v weakly in L2((0, T );L2(Ω)),
6. ∂tV

τ
h ⇀ ∂tv weakly in L2((0, T );L2(Ω)),

7. W τ
h ⇀ w weakly-star in L∞(Ω).

As in the semi-discrete case, identification of the above limit χ with ∇ ·Q is obtained via smooth
test functions. Note that the above lemma only provides weak convergence for Uτh , V

τ
h ; in the wake

of nonlinearities, the strong convergence is needed. However, the techniques from the semi-discrete
case can not be applied directly. This is because the translation of a function that is piecewise
constant on the given mesh need not be piecewise constant on that mesh. We therefore adopt the
finite volume framework in [19] in order to overcome this difficulty.

6.2. Strong convergence. In what follows, we establish the required strong convergence
of Uτh followed by that of V τh . We provide the notations used below in the framework of finite
volumes. Let E denote the set of edges of the simplices Th. Also, we have that E = Eint ∪ Eext
with Eext = E

⋂
∂Ω and Eint = E \ Eext. We adopt the following notation:

|T | − the area of T ∈ Th,
xi − the centre of the circumcircle of T,
lij − the edge between Ti and Tj ,
dij − the distance from xi to lij ,

σij − |lij |dij
,

(6.15)

In analogy with the spatially continuous case, we define the following discrete inner product for
any unh, v

n
h ∈ Vh

(unh, v
n
h)h :=

∑
Ti∈Th

|Ti|unh,ivnh,i, (unh, v
n
h)1,h :=

∑
lij∈E

|σij |(unh,i − unh,j)(vnh,i − vnh,j). (6.16)

The discrete inner product gives rise to discrete H1
0 norm, which is

‖unh‖1,h =
∑
lij∈E

|σij |(unh,i − unh,j)2. (6.17)

In [19], the following discrete Poincare inequality is proved

‖unh‖ ≤ C‖unh‖1,h, (6.18)

with C independent of h or unh. Based on Lemma 4 in [19], below we show that the translations
are controlled by the discrete ‖ · ‖1,h norm.
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Lemma 6.5. Let Ω be an open bounded set of R2 and let Th be an admissible mesh. For a
given u defined in Ω and extended to ū by 0 outside Ω we have

‖4ξū‖2L2(R2) ≤ ‖u‖
2
1,h|ξ|(|ξ|+ Csize(Th)), for all ξ ∈ R2. (6.19)

This shows that for a sequence {unh} having the discrete H1
0 norm uniformly bounded, the L2−

norm of the translations 4ξunh vanishes uniformly with respect to h as η ↘ 0. This is an essential
step in proving the strong L2− convergence for unh. Here we only need to show that unh has
bounded discrete H1

0 norm
Lemma 6.6. For the sequence unh, the following inequality holds uniformly with respect to h,

‖unh‖1,h ≤ C(‖Qn
h‖+ ‖unh‖). (6.20)

Proof. The approach is inspired from the semi-discrete situation and is adapted to the present
context by defining appropriate test function. Define

|Ti|fnh (Ti) :=
∑
lij

|lij |
dij

(unh,i − unh,j) (6.21)

and note that by the definition of ‖ · ‖21,h ,

(fnh , u
n
h) =

∑
i

Tif
n
h (Ti)u

n
h(Ti) =

∑
lij

|lij |
dij
|unh,i − unh,j |2 = ‖unh‖21,h. (6.22)

Further, by using Cauchy-Schwarz we obtain

‖fnh ‖2L2(Ω) =
∑
i

|Ti||fnh (Ti)|2 ≤
∑
lij

|lij |
dij

(uni − unj )2 1

|Ti|
∑
lij

|lij |
dij

which implies that

‖fnh ‖ ≤ ‖unh‖1,h. (6.23)

Note that fnh ∈ L2(Ω) and hence, there exists ψh ∈ Sh which satisfies

∇ ·ψh = fnh in Ω, (6.24)

ψh = 0 on Γ. (6.25)

By (6.23), it also holds that

‖ψh‖L2(Ω) ≤ C‖fnh ‖L2(Ω) ≤ C‖unh‖1,h. (6.26)

Now choose for the test function ψ = ψh in (6.1)3

(Qn
h,ψh)− (unh,∇ ·ψh)− (qhu

n
h,ψh) = 0.

Note that by (6.22)

(unh,∇ ·ψh) = (unh, f
n
h ) = ‖unh‖21,h.

This implies that

‖unh‖21,h = (unh,∇ ·ψh) = (Qn
h,ψh)− (qhu

n
h,ψh)

≤ ‖Qn
h‖‖ψh‖+Mq‖unh‖‖ψh‖ ≤ C‖Q

n
h‖‖unh‖1,h + CMq‖unh‖‖unh‖1,h

and the conclusion follows.
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In view of the above lemma, obtaining the relative compactness in L2 is straightforward.
Lemma 6.7. Along a sequence (τ, h) converging to (0, 0) (and with δ = O(

√
τ)), Uτh converges

strongly in L2(0, T ;L2(Ω)).
Proof. Since ∂tU

τ
h is in L2, the translation with respect to time is already controlled. What

remains is to consider the translation with respect to space. Take (6.20) and sum over n = 1, . . . , N
to obtain

τ

N∑
n=1

‖unh‖21,h ≤ Cτ
N∑
n=1

(‖Qnh‖2 + ‖unh‖2) ≤ C (6.27)

and using (6.3) and (6.6) gives

τ

N∑
n=1

‖unh‖21,h ≤ C.

Now use Lemma 6.5 to control the translations by the ‖ · ‖1,h norm (after extending unh by 0
outside Ω; for simplicity retain the same notation)

τ

N∑
n=1

‖unh(·+ ξ)− unh‖2L2(R2) ≤ C|ξ|(|ξ|+ size(Th)),

which, in turn, provides similar estimate for Uτh

τ

N∑
n=1

‖Uτh (·+ ξ)− Uτh‖2L2(R2) ≤ C|ξ|(|ξ|+ size(Th)).

The Kolomogorov compactness theorem proves the assertion.

The strong convergence of Uτh gives the strong convergence of V τh .
Lemma 6.8. Along a sequence (τ, h) converging to (0, 0), V τh converges strongly to v in

L2(0, T ;L2(Ω)).
Proof. As before, the translations with respect to time are already controlled by virtue of

∂tV
τ
h ∈ L2. We now consider the case for the translation with respect to space. Since both unh, v

n
h

are piecewise constants in each simplex T , we have for every x ∈ T

vnh(x) = vn−1
h (x) + τ

(
r(unh(x))− τHδ(v

n−1
h (x))

)
vnh(x+ ξ) = vn−1

h (x+ ξ) + τ
(
r(unh(x+ ξ))− τHδ(v

n−1
h (x+ ξ))

)
so that for any x ∈ Ωξ we have

4ξ(vnh − vn−1
h ) = τ4ξr(unh)− τ4ξHδ(v

n−1
h ).

Multiplying by 4ξvnh and rewriting the left hand side, we have

1

2

{
|4ξvnh |2 − |4ξvn−1

h |2 + |4ξ(vnh − vn−1
h )|2

}
(6.28)

≤ τLr|4ξunh||4ξvnh | − τ
(
4ξHδ(v

n−1
h )

)
4ξvnh .

The term involving the 4ξHδ can be rewritten as(
4ξHδ(v

n−1
h )

)
4ξvnh =

(
4ξHδ(v

n−1
h )

)
4ξvn−1

h +
(
4ξHδ(v

n−1
h )

) (
4ξ(vnh − vn−1

h )
)

and due to monotonicity of Hδ, we have(
4ξHδ(v

n−1
h )

)
4ξvn−1

h ≥ 0.
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Using above in (6.28) gives

1

2

{
|4ξvnh |2 − |4ξvn−1

h |2 + |4ξ(vnh − vn−1
h )|2

}
≤ τL2

r|4ξunh|2 +
1

4
|4ξvnh |2 +

1

4
|4ξ(vnh − vn−1

h |2 +
τ2

δ2
|4ξvn−1

h |2.

Integrating over Ωξ and summing over n = 1, · · · , k for any k ∈ {1, . . . , N} gives

1

2
‖4ξvkh‖2 +

1

4

k∑
n=1

‖4ξ(vnh − vn−1
h )‖2

≤ ‖4ξvI,h‖2 + τ

k∑
n=1

L2
r‖4ξunh‖2 +

1

4
τ

k∑
n=1

‖4ξvnh‖2 +

k∑
n=1

τ2

δ2
‖4ξvn−1

h ‖2,

where the norms are taken with respect to Ωξ. Choosing δ = O(τ
1
2 ) leads to

1

2
‖4ξvkh‖2 +

1

4

k∑
n=1

‖4ξ(vnh − vn−1
h )‖2 ≤ ‖4ξvI,h‖2 + τ

k∑
n=1

L2
r‖4ξunh‖2 + Cτ

k∑
n=1

‖4ξvnh‖2.

Applying the Gronwall lemma provides

sup
k=1,...,N

‖4ξvkh‖2 ≤ C‖4ξvI,h‖2 + τ

N∑
n=1

‖4ξunh‖2.

The strong convergence of Uτh in L2(0, T ;L2(Ω)) implies that the last term vanishes in the limit
of |ξ| ↘ 0 (see the proof of Lemma 6.7).

To estimate the translations for the initial condition we consider vI,h as the finite volume approx-
imation of vI defined (formally) by

−∆vI,h = −∆vI , in Ω,

with homogenous Dirichlet boundary conditions. This implies

‖v‖1,h ≤ C‖∇vI‖ ≤ C.

Since the translations are approaching 0 if ‖vI,h‖1,h ≤ C (uniformly in h), ‖4ξvI,h‖ → 0 as
|ξ| ↘ 0. From the above we conclude that ‖4ξvkh‖2 → 0 as |ξ| goes to 0.

Finally, note that the definition of V τh implies the rough estimate

T∫
0

‖4ξV τh ‖2dt ≤ 2τ

N∑
n=1

‖4ξvnh‖2 + 2τ

N∑
n=1

‖4ξvn−1
h ‖2,

and the right hand side vanishes uniformly in h as |ξ| ↘ 0, hence V τh converges strongly.

6.3. The limit equations. Up to now we obtained the convergence of the fully discrete
triples (Uτh , V

τ
h ,Q

τ
h) along a sequence (τ, h) approaching (0, 0) with δ = O(

√
τ). Clearly, the (L∞

weakly∗) convergence extends to the sequence W τ
h = Hδ(V

τ
h ). In what follows, we identify the

limit discussed in the preceding section as the weak formulation (4.1).

Theorem 6.9. The limit quadruple (u,Q, v, w) is a weak solution in the sense of Definition
4.1.
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Proof. By the weak convergence, the estimates in Lemma 6.3 carry over for the limit triple
(u,Q, v). By (6.1)1 we have

T∫
0

(∂tU
τ
h , φ)dt+

T∫
0

(∇ ·Qτ
h, φ)dt+

T∫
0

(∂tV
τ
h , φ)dt

=

N∑
n=1

tn∫
tn−1

(∂tU
τ
h , φ− φh)dt+

N∑
n=1

tn∫
tn−1

(∇ ·Qτ
h −∇ ·Q

n
h, φ)dt

+

N∑
n=1

tn∫
tn−1

(∇ ·Qτ
h, φ− φh)dt+

N∑
n=1

tn∫
tn−1

(∇ ·Qτ
h −∇ ·Q

n
h, φh − φ)dt

+

N∑
n=1

tn∫
tn−1

(∂tV
τ
h , φ− φh)dt.

(6.29)

for all φ ∈ L2(0, T ;H1
0 (Ω)), and where φh is the projection φh = Pφ introduced in Section 3. Note

that we assume again an H1 regularity in space for the test function φ. We use this to control the
terms involving ‖φ − φh‖ by using the property (3.1). A usual density argument lets the result
hold for all φ ∈ V.

The left hand side gives the desired limit terms; it only remains to show that the right hand side
vanishes in the limit. Denote the successive integrals on the right by Ii, i = 1, . . . , 5. We deal with
each term separately.

For I1 we use (6.13) to obtain that as h↘ 0

|I1| ≤ ‖∂tUτh‖L2(0,T ;L2(Ω))

 N∑
n=1

tn∫
tn−1

‖φ− φh‖2L2(Ω)dt


1
2

≤ Ch‖∇φ‖L2(0,T ;L2(Ω)) → 0.

Similarly, by (6.8), for I2 one gets

|I2| ≤
(

N∑
n=1

τ‖Qn
h −Qn−1

h ‖2
) 1

2

 N∑
n=1

tn∫
tn−1

‖∇φ‖2L2(Ω)dt


1
2

≤ Cτ 1
2 .

Clearly I2 vanishes in the limit of τ ↘ 0. Next, for I3, we have

|I3| ≤ ‖∇ ·Qτ
h‖L2(0,T ;L2(Ω))

 N∑
n=1

tn∫
tn−1

‖φ− φh‖2dt


1
2

≤ Ch‖∇φ‖L2(0,T ;L2(Ω))

using (6.13). Hence, I3 goes to 0 as h↘ 0. Proceeding in the similar way, for I4

|I4| ≤
(

N∑
n=1

τ‖∇ ·Qn
h −∇ ·Q

n−1
h ‖2

) 1
2

 N∑
n=1

tn∫
tn−1

‖φ− φh‖2L2(Ω)dt


1
2

≤ Ch‖∇φ‖L2(0,T ;L2(Ω))

by using (6.10) implying that I4 vanishes in the limit.

In the same manner, for I5 we use the bounds for ∂tV
τ
h and obtain

|I5| ≤ ‖∂tV τh ‖L2(0,T ;L2(Ω))

 N∑
n=1

tn∫
tn−1

‖φ− φh‖2L2(Ω)dt


1
2

≤ Ch‖∇φ‖L2(0,T ;L2(Ω)).
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Next we consider (6.1)2, which we rewrite as

T∫
0

(∂tV
τ
h , θ)dt−

T∫
0

(r(Uτh )−W τ
h , θ) dt

=

T∫
0

(∂tV
τ
h , θ − θh) dt+

N∑
n=1

tn∫
tn−1

(
Hδ(V

τ
h )−Hδ(v

n−1
h ), θ

)
dt

+

N∑
n=1

tn∫
tn−1

(
Hδ(v

n−1
h ), θ − θh

)
dt+

N∑
n=1

tn∫
tn−1

(r(unh)− r(Uτh ), θ) dt

+

N∑
n=1

tn∫
tn−1

(r(unh), θh − θ) dt.

for θ ∈ L2(0, T ;H1
0 (Ω)) and θh is the Ph projection of θ. A better regularity of θ is again chosen

for identifying the limits and controlling the errors due to the projections. We would retrieve the
desired limiting equations once we prove that the integrals on the right hand side vanish. Let us
denote the successive integrals by Ii, i = 1, . . . , 5 respectively. For I1 we get by using (6.13) and
recalling the projection estimate (3.1)

|I1| ≤

 T∫
0

‖∂tV τh ‖2dt


1
2
 N∑
n=1

tn∫
tn−1

‖(θ − θh)‖2dt


1
2

≤ Ch‖θ‖L2(0,T ;H1
0 (Ω))

which vanishes in the limit as h↘ 0. For I2, we use the definition of W τ and Lipschitz continuity
of Hδ to obtain

|I2| ≤
N∑
n=1

τ
1

δ
‖vnh − vn−1

h ‖‖θ‖ ≤
N∑
n=1

τC
τ

δ
‖θ‖

by using (6.4) and further using τ/δ ↘ 0 by the construction of δ we obtain I2 → 0. Next, we
consider I3

|I3| ≤ C

 N∑
n=1

tn∫
tn−1

‖θ − θh‖2dt


1
2

≤ Ch‖∇θ‖L2(0,T ;L2(Ω)) → 0 as h↘ 0

because of (3.1). To continue,

|I4| ≤

(
N∑
n=1

τL2
r‖unh − un−1

h ‖2
) 1

2
(

N∑
n=1

τ‖θh‖2
) 1

2

and using the estimate (6.7), we obtain I4 → 0.
For I5, as h↘ 0,

|I5| ≤ Lr

(
N∑
n=1

τ‖unh‖2dt

) 1
2

 N∑
n=1

tn∫
tn−1

‖(θ − θh)‖2dt


1
2

≤ Ch‖θ‖L2(0,T ;H1
0 (Ω)) → 0.
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Let us consider the next equation, that is, (6.1)3. We have by realigning the terms,

T∫
0

(Qτ
h,ψ)dt−

T∫
0

(Uτh ,∇ ·ψ)dt−
T∫

0

(qhU
τ
h ,ψ)dt

=

N∑
n=1

tn∫
tn−1

(Qτ
h −Qn

h,ψ)dt+

N∑
n=1

tn∫
tn−1

(Qn
h,ψ −ψh)dt

+

N∑
n=1

tn∫
tn−1

(unh − Uτh ,∇ ·ψ)dt+

N∑
n=1

tn∫
tn−1

(Unh ,∇ · (ψh −ψ))dt

+

N∑
n=1

tn∫
tn−1

(qh(unh − Uτh ),ψ)dt+

N∑
n=1

tn∫
tn−1

(qhu
n
h,ψh −ψ)dt

(6.30)

for all ψ ∈ L2(0, T ;H2(Ω)) and where ψh is chosen as the Πh projection of ψ. As before the left
hand side converges to the desired limits. This is obvious except for the third term where we use
the L∞ and strong convergence of qh. Indeed,

T∫
0

(qhU
τ
h ,ψ)dt =

T∫
0

(qUτh ,ψ)dt+

T∫
0

((qh − q)Uτh ,ψ)dt (6.31)

and the first term on the right hand side passes to the desired limit. We show that the second
term vanishes in the limit. Note that qh−q ∈ (L∞(Ω))2 and hence, (qh−q)Uτh has a weak limit.
Now choose ψ ∈ L2(0, T ; (C∞c (Ω))d), d = 2 so that ψ ∈ (L∞(Ω))2. Now

‖(qh − q)Uτh‖(L1(Ω))2 ≤ ‖qh − q‖(L2(Ω))2‖Uτh‖(L2(Ω))

and use the strong convergence of qh in L2 (uniform with respect to h) to conclude that the weak
limit is indeed 0.

Now we show that the right hand side of (6.30) vanishes in the limit. Let us denote the integrals
by Ii, i = 1, . . . , 6. The successive terms will be treated as before. We begin with I1

|I1| ≤ ‖ψ‖L2(0,T ;H1(Ω))

(
N∑
n=1

τ‖Qn
h −Qn−1

h ‖2
) 1

2

≤ Cτ 1
2

using bounds given in (6.8). Thus, I1 goes to 0 in the limit. For I2, recalling the bound (6.6) and
the projection estimate (3.2)

|I2| ≤

(
N∑
n=1

τ‖Qn
h‖2
) 1

2

 N∑
n=1

tn∫
tn−1

‖ψ −ψh‖L2(Ω)dt


1
2

≤ Ch‖ψ‖L2(0,T ;H(div,Ω)) → 0

as h↘ 0.
Let us deal with the next term using (6.7),

|I3| ≤

(
N∑
n=1

‖unh − un−1
h ‖2

) 1
2

 T∫
0

‖∇ ·ψ‖2dt


1
2

≤ Cτ

which vanishes in the limit τ ↘ 0. For I4, we have

|I4| ≤

(
N∑
n=1

τ‖unh‖2
) 1

2

 N∑
n=1

tn∫
tn−1

‖∇ · (ψ −ψh)‖2dt


1
2
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and further by using (6.7) and (3.2),

|I4| ≤ Ch‖ψ‖L2(0,T ;H1(Ω))

which tends to 0 as h↘ 0. To proceed,

|I5| ≤Mq

(
N∑
n=1

τ‖unh − un−1
h ‖2

) 1
2

‖ψ‖L2(0,T ;L2(Ω)) ≤ Cτ

with similar conclusion. Finally,

|I6| ≤Mq

(
N∑
n=1

τ‖unh‖2
) 1

2
(

N∑
n=1

τ‖(ψ −ψh)‖2
) 1

2

with vanishing limit due to the projection estimate (3.2) and by (6.3).

The identification of w with H(v) is identical to the semi-discrete case.

Note that the limit quadruple (u,Q, v, w) indeed satisfies (4.1), but for test functions having a
better regularity in space: φ ∈ L2(0, T ;H1

0 (Ω)), θ ∈ L2(0, T ;H1
0 (Ω)) and ψ ∈ L2(0, T ;H2(Ω)).

In view of the regularity of u, v,Q, density arguments can be employed to show that the limit
equations also hold for φ ∈ L2(0, T ;L2(Ω)), θ ∈ L2(0, T ;L2(Ω)),ψ ∈ L2(0, T ;H(div,Ω)), which
completes the proof.

7. Numerical computations. We consider a test problem similar to (2.1)–(2.2), but includ-
ing a right hand side in the first equation (see [25] where we first announced part of these results).
This is chosen in such a way that the problem has an exact solution, which is used then to test
the convergence of the mixed finite element scheme. Specifically, for T = 1 and Ω = (0, 5)× (0, 1),
and with r(u) = [u]2+ (where [u]+ := max{0, u}), we consider the problem ∂t(u+ v) +∇ · (qu−∇u) = f, in ΩT ,

∂tv = (r(u)− w), on ΩT ,
w ∈ H(v), on ΩT .

Here q = (1, 0) is a constant velocity, whereas

f(t, x, y) =
1

2
ex−t−5

(
1− ex−t−5

)− 3
2

(
1− 1

2
ex−t−5

)
−
{

0, if x < t,
ex−t−5, if x ≥ t,

and the boundary and initial conditions are such that

u(t, x, y) =
(
1− ex−t−5

) 1
2 and v(t, x, y) =

{
0, if x < t,
ex−t−1
e5 if x ≥ t,

providing w(t, x, y) =

{
1, if x < t,
1− ex−t−5 if x ≥ t,

form a solution triple.

We consider the mixed finite element discretization of the problem above, based on the time
stepping in Section 6 and the lowest order Raviart-Thomas elements RT0. The numerical scheme
was implemented in the software package ug [6]. The simulations are carried out for a constant
mesh diameter h and time step τ , satisfying τ = h. Further, we take δ =

√
h as regularizing

parameter. We start with h = 0.2, and refine the mesh (and correspondingly τ and δ) four times
successively by halving h up to h = 0.0125. We compute the errors for u and v in the L2 norms,

Ehu = ‖u− Uτ‖L2(ΩT ), respectively Ehv = ‖v − V τ‖L2(ΩT ).
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These are presented in Table 7.1. Although theoretically no error estimates could be given due
to the particular character of the dissolution rate, Table 7.1 also includes an estimate of the
convergence order, based on the reduction factor between two successive calculations:

α = log2(Ehu/E
h
2
u ), and β = log2(Ehv /E

h
2
v ).

For this simple test case, the method converges linearly.

h ‖u− Uτ‖ α ‖v − V τ‖ β

0.2 1.1700e-01 1.8409e-01
0.1 6.414e-02 0.87 9.927e-02 0.89
0.05 3.396e-02 0.91 5.317e-02 0.90
0.025 1.726e-02 0.98 2.785e-02 0.93
0.0125 8.42e-03 1.03 1.420e-02 0.97

Table 7.1
Convergence results for the mixed discretization, with explicit for v; h = τ and δ =

√
τ .

A natural question is to investigate the case when we take the implicit discretization for v.
This leads to a set of coupled nonlinear equation for the triple (unh,Q

n
h, v

n
h). Newton’s iteration

is used to solve the resulting system (see [36, 40] where Newton method is applied to similar
problems). We consider this case for the numerical experiments and the results are tabulated in
Table 7.2. We see that for the test problem, we obtain a linear convergence rate.

h ‖u− Uτ‖ α ‖v − V τ‖ β

0.2 1.031e-01 1.593e-01
0.1 5.925e-02 0.79 9.023e-02 0.82
0.05 3.247e-02 0.87 5.031e-02 0.84
0.025 1.686e-02 0.95 2.703e-02 0.90
0.0125 8.313e-03 1.02 1.3980e-02 0.95

Table 7.2
Convergence results for the mixed discretization, with implicit for v ; h = τ and δ =

√
τ .

8. Conclusions. We have considered the semi-discrete and fully discrete numerical methods
for the upscaled equations. These equations describe the transport and reactions of the solutes.
The numerical methods are based on mixed variational formulation where we have a separate
equation for the flux. These numerical methods retain the local mass conservation property.
The reaction terms are nonlinear and the dissolution term is multi-valued described by Heaviside
graph. To avoid dealing with the inclusions, we use the regularized Heaviside function with the
regularization parameter δ dependent on the time step τ . This implies that in the limit of vanishing
discretization parameters automatically yields δ ↘ 0. For the fully discrete situation, we have used
mixed finite element method. The convergence analysis of both formulations have been proved
using the compactness arguments, in particular the translation estimates. The proof for the fully
discrete situation mirrors the proof for the semi-discrete situation however, there are important
differences especially dealing with the translation estimates where we use discrete H1

0 norm to
obtain compactness.

The work is complemented by the numerical experiments where we study a test case where we
compare the numerical solution to the exact solution. The study provides us convergence rates
for the problem studied here.
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Appendix A. Existence of solution for Pmvf,n
δ .

In this Appendix, we prove the existence of a solution for Problem Pmvf,n
δ . In this respect we

keep τ and δ fixed and let h ↘ 0 in the fully discrete problem Pn
h. The limit will solve Problem

Pmvf,n
δ . All the steps are similar to the fully discrete case discussed before, therefore, we only give

the outline of the proof. Along a sequence h↘ 0, Lemma 6.2 provides the following convergence
results:

1. unh ⇀ unδ weakly in L2(Ω),
2. Qn

h ⇀ Qn
δ weakly in L2(Ω)d,

3. ∇ ·Qn
h ⇀ χ weakly in L2(Ω),

4. vnh ⇀ vnδ weakly in L2(Ω).
As before, identification of χ with ∇ ·Qn

δ takes place via standard arguments. Further, Lemma
6.6 with the estimates (6.3) and (6.6) gives

‖unh‖1,h ≤ C

and after extending unh by 0, Lemma 6.5 implies

‖4ξunh‖L2(R2) ≤ C|ξ|(|ξ|+ size(Th)).

Since the right hand side vanishes uniformly as |ξ| ↘ 0, the use of Kolmogorov compactness
theorem yields strong convergence of unh to unδ . Now one can use the projection properties and

pass h ↘ 0 to show that the limit solves Pmvf,n
δ . Note that having v discretized explicitly in

(6.1)2, no nonlinearities in vnh are involved and therefore there is no need for strong convergence
for vnh .
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