EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A generalised approach to gate array layout design
automation

Citation for published version (APA):

Slenter, A. G. J. (1990). A generalised approach to gate array layout design automation. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR342622

DOI:
10.6100/IR342622

Document status and date:
Published: 01/01/1990

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR342622
https://doi.org/10.6100/IR342622
https://research.tue.nl/en/publications/7ca0b4ca-1c0d-47e2-9306-be0c4ff868ba




A
GENERALISED APPROACH
TO
GATE ARRAY LAYOUT DESIGN AUTOMATION



Dit proefschrift is goedgekeurd door de promotoren

Prof.dr.-ing. J.A.G. Jess en Prof.dr.ir. R.H.J.M. Otten

© Copyright 1990 André G.J. Slenter
All rights reserved. No part of this publication may be reproduced stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission from the copyright owner.

Druk: Dissertatiedrukkerij Wibro, Helmond

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Slenter, André Guillaume Joseph

A generalised approach to gate array layout design automation/

André Guillaume Joseph Slenter. - [S.I. : s.n]. - Fig., tab.

Proefschrift Eindhoven. - Met index, lit.opg., reg.

ISBN 90-9003442-0

SISO 663.43 UDC 621.382:681.3.06 (043.3) NUGI 832

Trefw.: geintegreerde schakelingen; computer aided design / algoritmen.



A
GENERALISED APPROACH
‘ TO
GATE ARRAY LAYOUT DESIGN AUTOMATION

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag
van de Rector Magnificus, prof. ir. M. Tels, voor
een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op
dinsdag 11 december 1990 om 14.00 uur

dbor
André Guillaume Joseph Slenter

geboren te Kessel



Contents

Abstract .
Samenvatting .

1.

Introduction

1.1 Layout design automatlon

1.2 Generalisation versus speclahsatlon
1.3 A system concept . ..
1.4 Relevance of the research

A Gate Array Layout Model
2.1 Grid representation
2.2 Wiring space description

2.3 Wiring patterns and wiring const:ramts

2.4 Net modeling -
2.5 Design rule modeling .
2.6 Implementation aspects .

Gate Array & Design Characterisation
3.1 The master slice e e
3.2 The macro library . .
3.3 Design characterisation .
3.4 Implementation aspects .

A Placement Strategy
4.1 The placement problem
4.2 Global placement

10
11
13
15
17

20
21
23
25
27
30
33

42

47
50
b2

56
57
58



Contents

4.3 Detailed placement

5. A Routing Strategy .
5.1 Global routing
5.2 Detailed routing
5.3 The modified Lee-algonthm .
5.4 Combined global and local routing
5.6 Concurrent detailed routing .

6. GAS: an evaluation .
6.1 Evaluated gate arrays

6.2 Gate array & design charactensatlon

6.3 Layout design
Conclusions and Recommendations
References .
Index . .
Biography

» 0=
g

68

74
76
82
85
89
91

96
96
103
106

110
114
118
122



Abstract

The topic of this thesis concerns layout design automation for gate
array IC’s. It presents a conceptual framework that provides a
generalised approach to gate array design automation. The presented
concepts are new because the intended generality is defined as the
center point around which a consistent framework is developed.

Up to now, generality of gate array layout design systems is achieved
as a, sometimes unexpected, side effect. The implication of a general
approach is that all aspects concerning the customisation of gate array
IC’s must be reconsidered. These aspects can be summarised by the
modeling of the layout patterns, the characterisation of the gate array
families and designs to be implemented on a chosen gate array IC, and
the applied placement and routing strategies. This indicates the
elementary problem of gate array layout design: most algorithms
developed do not provide solutions in the general case and can
therefore be applied in a very limited range of layout design problems.

The solution, presented in this thesis, gives the user the capability to
equip his design environment with a layout design system of an
enormous generality. Virtually any layout style can be supported in
almost any technology. The adjustments are achieved by a
standardised user interface and don’t require any intrusion into the
software code of the system. The presented solution has two faces. The
first face concerns the formulation of the gate array and design data,
based on a generalisation of gate array design by inclusion of details.
Further, only one abstraction is defined to eliminate the direct link to a
specific technology. The space-graph is introduced as a new way to
describe layout patterns and related information. Based on this space-
graph, a precise, yet compact and general description of gate array and



Abstract 7

design data is defined. The second face concerns the embedding of
layout design algorithms in the general context at hand. The
placement problem is divided into two phases, referred to as global and
detailed placement. It is shown that by a simplification of the global
placement problem, known placement algorithms can be used with
minimal modifications. A new algorithm is presented for detailed
placement. The routing problem is also solved in two stages, generally
referred to as global and detailed routing. Global routing is done
hierarchically in successively smaller but more detailed areas.
Detailed routing consists of a maze runner principle tuned to the
description of the design area by the space-graph. An important aspect
of the detailed routing is that placed modules are transparent for
routing. The outline of an overall routing strategy, incorporating both
global and detailed routing, is presented. It is shown that this strategy
can solve some of the problems occurring with separate global and
detailed routing. Those problems are associated with the requirement
of an accurate definition of the global routing boundary capacities on
one hand, and with the cpu-time and memory requirements for detailed
routing on the other hand.

In order to evaluate the concepts presented in this thesis, a prototype
Gate Array design System (GAS) has been implemented. The basics of
this system are that the gate arrays to be used are described in a
specially developed language (GADL) and are next compiled into a
common data base. The second part of the system consists of a small
selection of coherent placement and routing algorithms.

Up to now, five different gate arrays have been used for evaluation.
These experiments reveal that tuning GAS to a new gate array requires
about one month. Further, the amount of data required by GAS for
gate array and design descriptions is in the order of 10 Kbytes to 1
Mbytes, which is acceptable throughout the industrial world. These
experiments also show that the design algorithms need further
consideration. Although the incorporated placement strategy has
proven to be very flexible, better algorithms are required in order to
achieve higher area utilisations within acceptable design time. The
current routing strategy is capable to deal with large and complex
designs occupying more than 90% of the available design space.
Further improvements can be achieved by a combined global and
detailed routing strategy.



Samenvatting

Het onderwerp van dit proefschrift betreft het automatisch ontwerpen
van bedrading voor gate array IC’s. Er wordt een raamwerk gepresen-
teerd dat een generalisering van dit ontwerpprobleem realiseert. De
gepresenteerde concepten zijn nieuw omdat de flexibiliteit het uit-
gangspunt is geweest bij de ontwikkeling van een consistent raamwerk.

Tot op heden wordt flexibiliteit van gate array ontwerpsystemen be-
reikt als een, soms onverwacht, neveneffect. De implicatie van een ge-
generaliseerde aanpak is dat alle aspecten betreffende de personalise-
ring van een gate array IC heroverwogen moeten worden. Samengevat
zijn deze aspecten: de modellering van de layout patronen, de karakte-
risatie van de gate array families en de te realiseren ontwerpen, en de
toegepaste plaatsings- en bedradings-algoritmen. Dit geeft tevens een
indicatie van het gegeneraliseerde gate array layout-ontwerp-probleem:
de meeste algoritmen geven geen oplossingen voor de gegeneraliseerde
situatie en zijn daarom slechts beperkt toepasbaar.

De oplossing, zoals gepresenteerd in dit proefschrift, biedt de gebruiker
de mogelijkheid om zijn ontwerpomgeving uit te rusten met een layout-
ontwerpsysteem met vrijwel ongelimiteerde mogelijkheden. Bijna elke
layoutstijl in iedere technologie kan ondersteund worden. Aanpassin-
gen worden bereikt door een gestandariseerde user-interface, en vergen
géén ingrijpen in de software-code van het systeem. De gepresenteerde
oplossing is tweeledig. Het eerste deel betreft de formulering van gate
array en ontwerp data, gebaseerd op een generalisering van gate array
ontwerpen door detaillering. Verder is er slechts één abstractie gedefi-
niéerd om de directe link met een specifieke technologie te elimineren.
De space-graaf wordt geintroduceerd als een nieuwe manier om layout
patronen en gerelateerde informatie te beschrijven. Gebaseerd op deze
space-graaf wordt een precieze, doch compacte en algemene beschrij-



Samenvatting 9

ving van gate array en ontwerp data gedefiniéerd. Het tweede deel be-
treft de inpassing van layout ontwerp-algoritmen in de gegeneraliseer-
de context. Het plaatsings-probleem is gesplitst in twee fasen, ge-
naamd globale en gedetailleerde plaatsing. Door een simplificatie van
bet globale plaatsings-probleem kunnen bekende algoritmen worden
ingepast met minimale modificaties. Voor gedetailleerde plaatsing
wordt een nieuw algoritme gepresenteerd. Het bedradingsprobleem
wordt ook in twee fasen opgelost, genaamd globale en gedetailleerde
bedrading. De globale bedrading wordt hierarchisch gedaan in succes-
sievelijk kleinere, meer gedetailleerde regio’s. De gedetailleerde bedra-
ding is gebaseerd op een "maze-runner”" principe, toegespitst op de be-
schrijving van de ontwerp-ruimte door de space-graaf. Een belangrijk
aspect hierbij is dat de geplaatste modules transparant zijn. Een laat-
ste aspect betreft de integratie van zowel globale als gedetailleerde be-
drading in één, consistente, bedradings-strategie. Deze strategie is in
staat om een aantal problemen op te lossen die zich voordoen bij sepa-
raat globale en gedetailleerde bedrading. Deze problemen zijn geasso-
ciéerd met de noodzaak van een accurate definitie van de globale bedra-
dings-capaciteiten enerzijds, en met de rekentijd en geheugen-behoefte
van de gedetailleerde bedrading anderzijds.

Ter evaluatie van de in dit proefschrift gepresenteerde concepten is een
prototype Gate Array ontwerp Systeem (GAS) geimplementeerd. Het
basis concept van dit systeem is dat gate arrays worden beschreven in
een daartoe speciaal ontwikkelde taal (GADL) en vervolgens gecompi-
leerd in een algemeen data bestand. Het systeem bestaat verder uit
een kleine selectie van coherente plaatsings- en bedradings-algoritmen.

Tot op heden zijn een vijftal verschillende gate arrays geévalueerd.
Hieruit blijkt dat het aanpassen van GAS aan een nieuw gate array on-
geveer één maand in beslag neemt. Verder is de hoeveelheid data, no-
dig voor de beschrijvingen van gate arrays en ontwerpen, in de orde
van 10 Kbytes tot 1 Mbytes, wat acceptabel is voor industriéle toepas-
singen. Tevens blijkt dat de plaatsings-algoritmen een nadere beschou-
wing behoeven. Alhoewel de gebruikte plaatsings-strategie zeer flexi-
bel is, zijn betere algoritmen nodig om een hogere benuttingsgraad te
bereiken. De bedradings-strategie is in staat om oplossingen te vinden
voor ontwerpen die meer dan 90% van de beschikbare oppervlakte in
beslag nemen. Verdere verbeteringen zijn mogelijk door de gecombi-
neerde globale en gedetailleerde bedradings-strategie.



1. Introduction

This thesis is about layout design automation for gate array IC’s. Gate
arrays are application specific IC’s (ASICS) with preprocessed layout
patterns, so-called "master slices”. Customisation of a gate array is
achieved by designing the application specific interconnections of the
preprocessed layout patterns. Gate arrays differ in many aspects. The
differences are in the logic family they implement, the geometry of the
preprocessed patterns and the technology. All these aspects must be
taken into account while customising a gate array IC.

The great variety in gate arrays reflects-the trade offs that can be made
between technical and economic aspects. The two ‘most important
technical aspects concern the performance required of the designs
[Beresford84] and the relation between the preprocessed patterns and
the designs that can be implemented on a gate array IC [Gagliardi84].
An economic aspect concerns the number of interconnect layers
available for customisation, which determines the processing cost of the
IC and thus the break even point.

This thesis presents a conceptual framework that provides a
generalised approach to gate array design automation. The presented
concepts are new because the intended generality is defined as the
center point around which a consistent framework is developed. Up to
now, generality of gate array layout design systems is achieved as a,
sometimes unexpected, side effect. The implication of this general
approach is that all aspects, concerning the customisation of gate array
1C’s, must be reconsidered. These aspects can be summarised by the



Chapter 1 Introduction 11

modeling of the layout patterns, the characterisation of the of gate
array families and designs to be implemented on a chosen gate array
IC, and the applied placement and routing strategies. The relation
between these four aspects is shown in figure 1.1.

Figure 1.1. Conceptual overview of a generalised gate array layout
design automation approach.

The generality provided by layout modeling is in the definition of the
transformation of abstract layout pattern descriptions to a specific
processing technology. This eliminates the necessity of technology
specific information in the remaining customisation stages. Gate array
and design characterisation provides a wuniform description that
captures all essential information required for customisation of gate
array ICs. The definition of placement and routing strategies is
essential in order to provide correct design solutions without
introducing unnecessary constraints by ignoring the available
information.

1.1 Layout design automation

Although customisation of gate array IC’s only concerns the
application specific interconnection patterns, it is still a complex task.
Without claiming to be complete, four aspects can be mentioned that
are essential for gate array layout design. A first aspect concerns the
design space. Due to the preprocessed master slice, the available space
in which the application specific interconnection patterns must be
designed, is fixed. This implies that design decisions that determine
the distribution of the interconnect patterns determine also whether a



12 Introduction Chapter 1

design can be implemented in the given design space or not. A second
aspect is to maximise the utilisation of the available design space. This
is in principle an economic aspect. The cost of a gate array IC is,
amongst others, determined by the size of the IC, in that smaller sized
chips result in lower production cost. This implies that the smallest
sized chip on which the design can be implemented is the optimal
choice. A third aspect is the library of wiring patterns usually provided
with every gate array master slice. When properly mapped onto the
master slice, these wiring patterns perform a desired function at their
terminal pins. More than one pattern may be given that implement
the same function, yet differ in shape or in the positions where it may
be mapped onto the master slice. The wiring patterns depend on the
preprocessed structure of the master slice, as illustrated in figure 1.2,

C R ) 2 & 5 253 Q8 wrga-nx Don
L3 [ T PH o Bl E | 1 Y
ZoT o it Gite £l Az k> 3 o= g = ¢ 4
ol 33 g = g . : - 2 0 ? vr;
RE Tk BB B L R S0 B e e e R T e et
H o 3 - g o u‘f—_s ﬁ 'u of D ) ' - = 3 E o v i T
ey Tt LRGP 2 S :
g e B i 5 I .
e 'B’! HE n © -E oo oo o CI% 7: T X ol -1 \:' ~
H 5-: .:qcnjgﬁgnphnhmgﬂg S 3 5 _55:1 [ £~ & d Eﬂjﬁ? ] 51 _’ :

Figure 1.2. Example of two wiring. patterns perfofming the same
function for two different master slices.

The fourth and last aspect concerns the organisation of the routing
area. Given a master slice, the routing area is fixed. Gate arrays differ
in the organisation of routing area. In principle three different
organisations can be recognised:

1) A row oriented structure, where routing channels are defined
between other rows hosting the predefined wiring patterns. :



§1.1 Layout design automation 13

2) An island oriented organisation, where routing areas are around
islands containing the predefined patterns.

3) Sea-Of-Gates organisation, where no a priori routing areas are
defined, but are determined by the unoccupied area after the
predefined wiring patterns are placed.

Other important aspects are whether the predefined wiring patterns
are regarded as transparent for routing, or routing may occur over the
module area, or must be placed around the module areas. All these
aspects determine the exact proceeding of the actual interconnect
design.

The actual layout design problem is denoted by placement and routing.
The placement and routing problems to be solved are known to be NP-
complete [Garey79)]. The restrictions mentioned above concerning the
limited number of positions available for placement and the fixed
routing areas, introduce additional complications. Under very special
conditions those restrictions and the resulting limitation of the solution
space can be used to develop algorithms that perform reasonably well
under these circumstances. For placement, the most frequently used
restriction is the assumption that modules to be placed have uniform
shapes, resulting in a row oriented placement. For routing, the most
frequently used assumption is that routing areas are organised in
channels with no routing obstacles. In this situation efficient
algorithms can be used that provide fast solutions, provided that the
channels are not saturated.

Obviously, the major advantage of the placement and routing
algorithms mentioned above is that they provide solutions for special
cases within short time. The disadvantage of these algorithms is that
they only can be applied if all the assumptions are valid. This indicates
the elementary problem of gate array layout design: most algorithms
developed do not provide solutions in the general case and can
therefore be applied in a very limited range of layout design problems.

1.2 Generalisation versus specialisation

The complexity of the gate array layout design automation is reflected
by the commercial gate array design systems available [VLSI87]. An
overview of these systems clearly shows that they are dedicated to a



14 Introduction Chapter 1

very small range of different gate array families. The major advantage
of these systems is that they produce high quality design solutions for
the gate array IC’s they are intended for. This is achieved by
development of design algorithms incorporating many assumptions of
the gate array IC’s on which designs must be implemented. Obviously,
the incorporation of constraints in the design algorithms that reduce
the solution space and indicate preferred solutions, accounts for fast
design time and high quality solutions. But it also indicates the
limited problem range for which these algorithms provide good
solutions. This is shown by the resfrictions on the range of possible
applications of these systems. The most important restrictions are the
number of interconnect layers, the presence of interconnect channels
and the pin positions of the predefined wiring patterns. The most
severe restrictions are in the routing capability of these systems. This
was clearly shown with the introduction of the Sea-Of-Gates gate
arrays around 1982. The switch to a channelless architecture, together
with the application of gate isolation, marked the start of these second
generation gate array IC’s. The lack of good design software was
clearly shown in some publications [Hsu86, Kubosawa87], revealing
that channel routing algorithms were used for interconnect design, It
took several years to develop software that was capable to deal with the
second generation gate arrays. With a more generalised approach to
gate array layout design these problems never would have existed.

In principle two approaches are possible to achieve a general approach
to gate array layout design. The first approach is by abstraction of the
problem. This implies that the eliminated details must be replaced by
abstract constructs. The success of this approach is completely
determined, and at the same time limited, by the number of constructs
"introduced. This also indicates the possible failures of the approach.
The first failure is that with the introduction of new gate array types,
new abstractions must be defined in order to capture the essential
features of the new gate array types. This implies a software redesign
because algorithms must be extended in order to interpret the newly
introduced construct. A second failure occurs if an abstract construct
can not discriminate a newly introduced design feature, which may
result in wrong design solutions. The conclusion of this discussion is
that abstraction not always provides the intended generality. The
second approach to achieve generality is by inclusion of all the details.
In this way, no additional restrictions are introduced that may limit



§1.2 Generalisation versus specialisation 15

the application range. The first disadvantage of this method is that
special care must be taken to limit the amount of data required. A
second disadvantage is that relations are maintained that may imply
unnecessary constraints, eg. the technology descriptions.

The approach presented in this thesis is, in principle, based on a
generalisation of gate array layout design by inclusion of details.
Further, only one abstraction is defined to eliminate the direct link to a
specific technology. As will be shown in the rest of this thesis, this
approach results in the intended generality of the gate array layout
design.

1.3 A system concept

In order to evaluate the concepts presented in this thesis and to
demonstrate the feasibility of these concepts, a prototype Gate Array
design System (GAS) has been implemented. The architecture of GAS
is outlined in figure 1.3.

The basics of this system are that the gate arrays types are described
in a specially developed Gate Array Description Language (GADL) and
these descriptions are compiled into a common data base. The
structure of GADL reflects the organisation of the data within the data
base and provides a flexible and natural way to describe gate arrays.
The resulting data base is unique for every gate array family, and is
built only once for every gate array description. The second part of the
system consists of a design street, which is a small selection of coherent
placement and routing algorithms. The data base contains sufficient
information for the design algorithms to assure that the provided
flexibility is used and that constraints are satisfied such that correct
designs are obtained. Another important fact of the current
implementation is the flexibility with respect to the design algorithms.
Whenever possible, design algorithms are implemented as single
programs, thus constructing a modular system that is easy to maintain
from a software view, but is also easy to modify because a change of
design strategy is achieved by a run-time-selection of design programs.
GAS provides thus a gate array design framework, as shown in
figure 1.3.

In the current implementation, the placement shell consists of an



16 Introduction Chapter 1

GADL-
compiler

net-
compiler

Figure 1.3. Overview of GAS.

“interface to global placement tools. The two sample global placement
algorithms implemented are based on simulated annealing [Otten84]
and eigenvalue decomposition [Frankle86]. The routing shell is
currently established by three routing tools, defining two routing
strategies. The first strategy consists of a separate global routing tool,
based on [Burstein83] and a maze runner [Lee61] for detailed routing.
The second routing strategy is the combination of the two algorithms,
mentioned above, into one consistent routing approach.



§1.4 Relevance of the research 17

1.4 Relevance of the research

The relevance of the research presented in this thesis is indicated by
an evaluation of the possible users of a commercial version of GAS. An
evaluation of the IC market shows that there are in principle three
groups: the customer, the broker and the foundry.

The customer, or client, specifies the design to be implemented in an
IC. The specification concerns, amongst others, the functional
specification of the design, the performance requirements, and the final
product cost in order to make the IC profitable. The interface level
between the customer and the broker is relatively high in that the
functional description will not be more detailed than a net-list with
elementary functions. The actual layout design is normally of no
concern to the customer, as long as the specified requirements are met.

The broker acts as a representative between the customer and the
foundry. At the moment, the most important task of the broker is seen
as making customers less dependent of foundries. The expected effect
will be that low budget customers are more willing to use the
possibility of circuit integration. The advantage of GAS in the broker’s
situation is that a consistent customer interface can be maintained,
while on the other side the flexibility towards the foundries is
guaranteed. A broker will typically use GADL descriptions of gate
arrays from different foundries, which can then be offered to customers
for selection.

The foundry is the actual plant where gate arrays are developed and
processed. The value of GAS in this environment is that newly
developed master slice structures can easily be evaluated. This
eliminates the necessary development of new design software and
replaces this development with the formulation of a GADL description
of the master slice, which is easier and faster.

The current implementation of GAS is already used at several places.
At the Twente University of Technology, GAS is used for student
training courses but also for the development of new Sea-Of-Gates
structures. Another installation of GAS is at Philips Research Labs in
Eindhoven, where also Sea-Of-Gates master slices are developed. At
both sites, designs made with GAS have been processed successfully.
Recently, GAS is installed at Sagantek, a CAD development and IC



18 Introduction Chapter 1

design house in Eindhoven. To conclude, the extreme flexibility of GAS
is used at the Design Automation Section, where GAS was developed,
to implement an arithmetic chip in a standard cell design. The routing
capabilities of GAS to deal with three interconnect layers, together
with transparent routing through modules were the main reasons for
outdating the other available design software.



2. A Gate Array Layout Model

A first step towards general layout design is the definition of an
abstract layout description model. The essence of such a model is that
it eliminates any direct relation between the described layout patterns
and the silicon integration technology, with minimal restrictions
imposed on the possible layout patterns that can be captured. Further,
a solution for the technology related design rules must be provided,
such that the application specific layout patterns are correct by design.
The layout pattern descriptions must be compact to minimise the
amount of data stored, while the overhead for data retrieval, during the
actual layout design, is kept to a minimum. -

The layout patterns that must be captured for gate array layout design
are the preprocessed and the application specific layout patterns.
Because gate array layout design is only concerned with interconnect
design, the preprocessed patterns need not to be described exactly. The
essential information of the preprocessed patterns for a correct layout
design, is in the connectivity relations introduced by these patterns.
This implies that all layout patterns can be regarded as connectivity
relations and = described accordingly. The description of the
preprocessed patterns implies that the complete design space must be
formulated in terms of this model. }

In the next section the grid representation of a design space is
introduced which defines an abstract coordinate system and eliminates
most of the technology related information. In section 2.2 the space-
graph is introduced as the basic layout description model of the design



Chapter 2 A Gate Array Layout Model : 21

space. The modeling of elementary wiring patterns and constraints in
terms of the space-graph is presented in section 2.3. The description of
the application specific interconnections is defined in section 2.4.
Section 2.5 describes the abstract modeling of the design rules. The
last section of this chapter deals with some implementation aspects of
the presented layout model.

2.1 Grid representation

Assume the wiring space of a gate array is defined by a rectangle, in
which the application specific interconnections must be designed in an
arbitrary number of wiring layers. The positions of these
interconnections can be formulated in terms of a grid if the following
two conditions are satisfied:

- The prepi-ocessed patterns are regular [Jess84].
- The wire widths and via sizes are not subject of design and are
uniform for every single wiring track.

The grid with origin (0,0) and dimensions dy x dy is defined by a tuple
of horizontal and vertical grid lines:

Grid( dy, dy ) = (HGL(dy), VGL(dy)) dx,dye N @2.1n

with:

HGL(dx) = lo, h, -, lg.-1, the sequence of horizontal grid lines, and

VGL(dy) = lo, I, -, lg 1, the sequence of vertical grid lines.
A grid line |; is associated with a set of grid points, where a grid point is
defined as the intersection of a horizontal and a vertical grid line.

Wires are required to run along grid lines and bend at grid points and
the center points of vias are required to coincide with grid points, as
denoted in figure 2.1.

The link with a specific technology is defined by associating a layout
coordinate ¢; e N and a width-set with every grid line. The layout
coordinate denotes the vertical (y)-coordinate for a horizontal grid line |;



22 A Gate Array Layout Model ~ Chapter 2

WWhor

Figure 2.1. Wire segment and via with corresponding grid line
definitions.

and the horizontal (x)-coordinate for a vertical grid line.

The width-set associates for every wiring layer the wire widths,
denoted by ww, of wires that may run along the grid line and the
widths of via overlaps and contact holes, denoted by vo and ch
respectively, that may placed at grid points along the grid line:

N

WidthSet; = (wwip,v0io,Chip) , -, (WWid,—1,VOid,1,Chig,1) (2.2)

with d; the number of wiring layers. As denoted in figure 2.1, wwp,, i
the wire width associated with a wire running in the y-direction, as is
WW,o, for a wire running in the x-direction. The same applies to via
overlaps and contact hole widths.

The resulting tuble associated with a grid line |; is denoted by:
li = (¢, WidthSet; ) 2.3)

The important complexity reducing choice made is that the WidthSet
does not depend on the x-coordinate of the segment of a horizontal grid



§2.1 Grid representation 23

line, or the y-coordinate of the segment of a vertical grid line. Another
complexity reducing choice is that the grid definition is identical for the
different wiring layers, which implies that the layer with the highest
grid resolution dictates the grid resolution in the other wiring layers.

It should be stressed that these choices are a priori difficult to
motivate. However, these decisions have a posteriori proven to viable
after investigating a number of gate array structures. This is one of
the major results of this thesis: namely that the complexity reducing
choices did not affect the applicability of the concept. To find the right
compromise was one of the more heuristic parts of the research.

Note that by associating a layout coordinate c¢; with every grid line |;,
the grid lines need not to be equidistant, but are determined by the
condition that every possible via and terminal position must be covered
by a grid point. This condition defines a lower limit on the distance
between two adjacent grid lines. Higher grid resolutions are allowed at
the cost of introducing design rules between grid lines. These design
rules: are necessary to avoid the situation that designed
interconnections on adjacent grid lines, which are regarded as
unrelated, overlap if the actual grid line distances and interconnect
widths are taken into account. Higher grid resolutions also imply that
. not every grid line is capable to represent a possible wiring track in
every wiring layer and not every grid point may represent a possible
via or terminal position.

The technology link is not considered during the construction of the
application specific interconnections. All relevant information, such as
design rules, is formulated in terms of the grid. The technology link is
only maintained to provide a consistent transformation from the
abstract interconnect descriptions to a correct mask layout definition.

2.2 Wiring space description

Given a grid to represent positions in the wiring space, let the wiring
space be described by a space-graph with origin (0,0,0) and dimensions
dy xdy xd;:



24 A Gate Array Layout Model - - Chapter 2

G ( dx, dy, d;) = (V,E) dx;‘dyy d;eN i _(2-4)

The first two dimensions of G represent the wiring area. The third
dimension is determined by the condition that every available wiring -
layer is represented by a vertex plane, and an extra vertex plane is
added for a description of the preprocessed layout patterns..

The vertices of the space-graph coincide with the grid points deﬁned
before, and are labeled accordingly:

V={vxyz|0$x<dx,05y<dy,oéz<dz} Xy, zeN - 2.5)

The origin (0,0,0) is defined as the lower left corner of the top wiring
plane, where a wiring plane p i defined by:

V(p)='{vx;zIOSX<dx.OSy<dy,'Z=p} ' (2.6)

A set of edges is incident with every vertex, representing the possible
wiring directions from a vertex to its adjacent vertices.

For a so-called manhattan-style wiring, six wiring directions exist from
every vertex, as shown in figure 2.2. For a 45 degree wiring style, four
additional wiring directions, and thus edges, must be incorporated.
These edges can be denoted as the north-east, south-east, south-west
and north-west edge. In the following the manhattan-style wiring is
assumed.



§2.2 Wiring space description 25

Up
y North
X West East
South
z Down

Figure 2.2. Wiring directions associated with every vertex for a
manhattan-style wiring.

Let v; denote the vertex vy, € V, then the distance between two
vertices V;, vj € V is defined as the manhattan distance :

dvi, vi) = Ixi—x;| + lyi—yjl + |z — 7| 2.7
. Ifv, v; are adjacent d(v;,v)) = 1.
Given the wiring style, the edge set E of G is defined by:

E= {{vi, Vil | vi,vje VAad(v, v)) =1 } 2.8)

An edge {v;,vj} of E will be denoted as e.

2.3 Wiring patterns and wiring constraints

Given an edge set E, wiring information is provided by assigning
status labels to every edge. The possible edge status labels and
interpretations are listed in table 2.1.



26 A Gate Array Layout Model Chapter 2

edge-status . interpretation
INITIAL not connected, free wiring direction
INHIBIT | not connected, illegal wiring direction
IMAGE predefined connection
ROUTER _router made connection

Table 2.1. Enumeration of edge status labels and interpretations.

The assignment of status labels to every edge of E is denoted by an
edge labeling function {s, which is defined as: .

fs :E — ES, ES={INITIAL, INHIBIT, IMAGE, ROUTER} 2.9)

The edge labeling function is used to describe wiring patterns and
constraints along the principal wiring directions.

A different approach is used for the description of the preprocessed
patterns in the bottom plane. Because these patterns are preprocessed,
an exact modeling in terms of wires and vias is not required and would
impose unnecessary constraints on the possible geometries that can be
described.

Further, the number of pbsitions at which these patterns are accessible
for wiring purposes, are restricted by preprocessed vias or predefined
positions at which programmable vias may be placed.

By definition of the grid, these access positions are covered by grid
points. The observation that these grid points can be electrically
equivalent, leads to the introduction of an equivalence relation between
vertices. Let v; and v; denote two vertices in the space-graph. Then v;
and v; are defined to be electrically equivalent if they represent two
positions in the wiring space that are unconditionally on the same
potential level in the original grid, that is, this relation is not
established in the wiring space by some settings of the edge status
labels.

The equivalence relation is denoted as: v; Req vj. An equivalence set of
vertices Eq with respect to a vertex v;, is defined as:



§2.3 ‘Wiring patterns and wiring constraints 27

Eq(vi)= {v | v Req vi} (2.10)

The equivalence relation is symmetrical. Thus every vertex is
equivalent with itself. This implies that this relation also is also an
equivalence relation in the mathematical sense. An equivalence set
with exactly one vertex is called a singleton equivalence set. In general
the singleton equivalence sets are omitted for convenience.

Although the equivalence relation is introduced for the description of
the preprocessed layout patterns, this is not a limitation. In general, in
any wiring plane the equivalence relation is used to describe fixed
connections that are not described by an appropriate labeling function.

For a space-graph G, the set of equivalence sets is defined as:
EQ={Eqy, Eqp, ... Eqn} ' (2.11)
assuming that n such sets exist.

2.4 Net modeling

Electrical connections in the space-graph are described by WiringSets.
For a given space-graph Gg, a WiringSet is defined as a sub-graph:

WiringSet = Gy = (Vw, Ew) (2.12)

which is the union of components called "wiring patterns”. Any wiring
pattern is a maximal connected sub-graph of G,. A graph G is
connected if there is a path of edges labeled IMAGE (in the case of a
predefined connection, not made by the router) or ROUTER (in the case
of connections made by the router) between any pair of vertices in V,,.
A path P is defined as a sub-graph of G,:



28 A Gate Array Layout Model Chapter 2

P=(XU) (2.13)
with
X = {Vg, Vi, «» Vo' } . (2.14)

an ordered set of pairwise distinct vertices of V,, and
U= {ene.,en}, (2.15)

an ordered set of pairwise distinct edges of E,,, satisfying the following
two conditions:

Vie {1,2,..n) [ei = { Vi1, Vi}] (2.16)

Vv.,v,e V., [Vi #Vjp & ( Vi Req Vi,)] ‘ 2.17)

The laét condition implies that a path contains no loops due to some
equivalence relations between the vertices of the path. :

The wiring patterns of G, can be linked together by equivalences.

kS
A "net" is defined as a set of unconnected WiringSets. A net with one
wiring set i8 defined as "complete”. Before any routing procedure has
been applied, a net is assumed to have more than one wiring set. These
wiring sets are then connected by router made connections.

In order to distinguish the vertices of the space-graph belonging to
different nets, a net-number is associated with every vertex.

Two special values are used to indicate that a vertex does not belong to
any net and is available for future use, or to indicate that a vertex is
blocked for some reason.

This is denoted by the labeling function f,e4:



§2.4 Net modeling ' 29

fret =V —> NN, NN= {FREE, BLOCKED, 1, 2, ..,#nets } (2.18)

The vertices of the different wiring sets of the same net are also
distinguished by associating a wiring-set-number with every vertex.

In this way, the creation of loops by a routing procedure can be detected
by inspection of the wiring-set-number of a vertex in the space-graph.

The labeling function is denoted by fse; and defined by:
fwset =V >N (2.19)

The initial wiring sets of a net are called the terminal wiring sets. The
task of a routing procedure is to construct paths in the space-graph
that connect these terminal wiring sets.

In order to distinguish the terminal wmng sets from the constructed

wiring paths, the vertices of a net are marked, which is denoted by the
labeling function figrm:

flerm = V s Bl B = {07 1 } (2.20)

The value "1" is used for the vertices of the terminal wiring sets, the
value "0" for vertices of constructed wiring paths.

Concluding, a net is completely defined by the following 4-tuple:
Net = ( WiringSets, fnet, fwsets fterm ) (2.21)

with:



30 A Gate Array Layout Model - Chapter 2

WiringSets = {WiringSet1, WiringSetn} - (2.22)

the set of unconnected wiring sets associated with the net.

2.5 Design rule modeling

For a description of design rules in terms of the layout model, the term

design rule is interpreted rather literally as defining a set of guidance
rules for a routing procedure. The rules indicate preferences or
limitations.

The preference rules often indicate preferred wiring directions and are
described by means of a cost function fyg;.

The cost labels are associated with edges:
feost =E >N (2.23)

The so-called - “critical" design rules may never be violated during
wiring construction. These design rules define illegal wiring patterns.
Given the fact that wiring patterns and vias are both denoted by edges,
any illegal wiring pattern can be described by sets of edges exhibiting a
connection status. All design rules can thus be formulated as sets of
edges sets, where every edge set denotes an illegal wiring pattern.

However, for the router, a more convenient way is to formulate design
rules with respect to a reference edge e,, where a basic wiring action is
taken. A wiring action on e, changes the status label of e, from
INITIAL to ROUTER. Now, a design rule is said to "shadow" the wiring
action on e, by a "shadowing" set of edges, denoted as Sh(e,), if
{ea} U Sh(ea) denotes an illegal wiring pattern if all edges exhibit a
connection status.

In this concept, the router can determine rwhether or not a wiring
action on an edge e, is allowed by inspection of the edge status labels of
the edges in the shadowing set Sh(e,) as follows:



§2.5 Design rule modeling : 31

Ve eShiey) [fs(e) =IMAGE v fg(e) = ROUTER] => wiring not allowed

and:
Jo eShioy) [fs(e) «# IMAGE A f,(e)  ROUTER ] = wiring allowed

In general, one design rule may introduce multiple illegal wiring
patterns. Two example design rules are given below.

Example 2.1 :
Assume a design rule, specifying that wires may not be placed at
adjacent grid lines. The typical situation where this rule applies
to is denoted below:

y

‘f €. |€a |[€R
x

With respect to edge e,, the design rule specifies two wiring
patterns that are illegal. One pattern is defined by the two edges
e; and e exhibiting both a connection status, the other
analogous for e; and er. This design rule leads to the following

sets Sh{e,):
Shy={e_}
Shy ={eR}

and the complete design rule for e, is given by:

DR(e,) = {sm, snz}

Example 2.2 :
The second example is a design rule, specifying that a
combination of three stacked vias is not allowed. Any



32 A Gate Array Layout Model - Chapter 2

combination of two vias above each other is correct. A typical
situation is denoted below: -

€
7]
z |e3
This design rule leads to one set Sh(e,):
Sh(éa) ={e2, e3}
and the complete design rule for e, is given by:

'DR(ea)= {Sh(ea)}

An analogous design rule can be formulated with reépect to e,
and e3.’
As shown above, together with the reference edge e,, every set Sh(ey)
enumerates an illegal wiring pattern. This is convenient in case more
than one design rule is formulated, for the same edge. All the sets

Sh(eg) of all the design rules for an edge e; can be stored in a single
set, thus defining the design rules associated with the edge e;:

Dr(ey )= {sm, Shy, .., Shy } , (2.24)

The set of all design rules for a space-graph is denoted by:
DR = {Dn, Drs, .., Dry } ) (2.25)

Given the definition of the design rule sets, a design rule function fq,
that operates on these sets, is defined to indicate for every edge if a



§2.5 - Design rule modeling 33

wiring action on that edge is allowed or not:

fqe :E—>B, B={0,1} (2.26)
and consequently:

tar(ew) = 0 © sh eDrien) [ve “sh [fs(e) = IMAGE v f(e) = ROUTER] ]

far(€w) =1 Von eDriey) [3eeSh [fs(e) £ IMAGE A f(e) # ROUTER] ]

2.6 Implementation aspects

The implementation of the modeling concepts, presented in the
previous sections, is critical in the sense that a trade off must be found
between minimising both the amount of data required and the
overhead for data access. The most important structure in this context
is the space-graph together with the design rule and equivalence sets.
In principle, the space-graph and the sets describe the complete design
space and should therefore require a minimal amount of data. On the
other hand, the description of the design space is used during the
detailed interconnect design and should therefore be accessed with a
minimal overhead. Only the manhattan-style layout design is
considered in the current implementation.

For a given master slice, the maximal design space is fixed. This
implies that also the space-graph description of the design space is
fixed and therefore the vertex and edges sets of the space-graph.

The overhead to access the vertex set of a space-graph is minimised by
implementing the vertex set as a 3-dimensional array of vertices with
dimensions dy x dy x d;. Every array element, or vertex, consists of a
data record in which the labels associated with a vertex are stored.
Vertices are thus identified by the three carthesian coordinates:



34 A Gate Array Layout Model Chapter 2

ze N, (2.27)

The presentation of the outline of the data record is deferred until the
implementation of the edge cost labels, the equivalence sets and the
design rule sets is discussed.

Because the edges associated with every vertex are fixed for a given
layout design style, these edges are not implemented explicitly, only
the edge labels are stored. In the current context, it is sufficient to
associate the labels of three edges with every vertex, which is shown
by:

|E| = (de —1)dyd; + (dy - 1)0x0; + (dz — 1)dydy
< 3dydyd; = 3|V|

The three edge status labels stored with every vertex are the North,
East and Down edge labels, and are identified by:

fs(e) = ts(x,y,z,d) , de { North, East, Down } (2.28)

As an example for the other three direcﬁons, the edge status label for
the South-direction is defined as follows:

fs(xy —1,z,North) it (x,y-1,2)e V

fs(South) = {INHIBIT _ otherwise - (2.29)

The analogous holds for the West- and Up-directions.

In the following the short notation e, is used to denote an arbitrary
edge associated with a vertex v, and ey, eg and ep are used to denote
respectively the North, East and Down edges, if the edges or edge
labels are regarded independently of the vertices.



§2.6 Implementation aspects 35

For implementation, a wiring pattern is decomposed into a set of paths.
The paths are further decomposed until all edges in-any path have the
edge status label IMAGE or ROUTER. For every wiring pattern, two
distinct lists are maintained, one for paths with the IMAGE label, and
one for paths with the ROUTER label. In this way, these labels need
not to be stored explicitly. The paths are implemented as an ordered
list of vertices of the path. Data reduction is straightforward by storing
only the start end end points, as well as the positions where the path
changes direction. With this implementation, the distinction between
wires in a plane and vias is made implicitly by two consecutive points
in the vertex list.

Note that in this way paths with the other two edge status labels can
also be stored, which is used in the case of adjustment of edge status
labels in "stamps”, as discussed in the next chapter.

Efficient implementation of the edge cost labels, the equivalence sets
and design rule sets is obtained by using an indirect addressing
scheme. The essential observation leading to significant savings in
store is that all three data items appear in the form of a few
characteristic patterns that are repeated many times over the total
area of the gate array. So those patterns are stored in a table of
. relatively small size. At the vertices of the grid only the identifiers of
those patterns are stored. The method requires an offset mechanism
for all three data items. For instance while dealing with the edge cost
labels, triples of values of the north, east and down edge are stored,
assuming that only very few of those triples exist. At any vertex a
pointer to that particular triple of edge cost values valid for that vertex
is stored. The first reduction is that only one value is stored at a vertex
compared to three values if all cost labels are stored. The second
reduction is obtained by elimination of table entries having equal cost
labels for the three edges. The access is efficient by implementing the
table as a one dimensional array, as denoted in figure 2.3.

A similar approach is used to implement the equivalence sets. Because
vertices are identified by tuples (x,y,z), an equivalence set is
implemented as a circular list of these tuples. This allows to store
these sets as offsets between the equivalent vertices, rather then using
absolute coordinates. The details are explained with the aid of the
following example:



36 A Gate Array Layout Model
) feost(€N)

cost-index [ ------~~---1

— | foostle)
feost(eD)

. Figure 2.3. Implementation of cost table entry.

Example 2.3 :

Chapter 2

Assume an equivalence set of three vertices: v, vo and v3. The
three vertices are given as vectors of the three pnnmpal

carthesian coordinates x, y and z. This set is stored as:

Eqg-offset
—_—
0 1 2
Eg-set —= Avq Avy Avj

T

with Avq, Avo and Avj defined by:

Avy = (v2 = vq)
Avp = (v3 - Vp)

Avz = (v1 —v3)

The two equivalent vertices ev; and ev, with respect to v; are

given by:



§2.6 Implementation aspects : 37

evy = Vo = Vq + Avy

evy = V3 = evy +Av,

The analogous equivalence set with respect to v,
starts at offset 1:

evy = Vg = Vo +Avs

€Vo = V4 evy + Avg

From the example follows that for a minimal overhead two entry points
must be provided with every equivalence set: one to access the complete
equivalence set and one to access the correct offset position within the
set. The table implementation is thus a 2-dimensional array, with the
first dimension determined by the total amount of equivalence sets
defined and the second dimension determined by the size of the
corresponding equivalence set.

From the example described above it will be clear that the order of the
stored vertex offsets is essential. Data reduction is obtained by
elimination of sets exhibiting equal vertex offsets. An equivalence set
is associated with a vertex by storing the corresponding table index and
set-offset at the vertex.

Note that by this implementation only one equivalence set may be
associated with any single vertex.

To conclude the discussion of the implementation of the equivalence
sets, the following example is given.

Example 2.4 :
Consider the example layout pattern of figure 2.4 and the
corresponding space-graph representation denoted in figure 2.5.

It can easily be verified that 49 vertices have an associated
equivalence set following from definition 2.10. The number of
equivalence sets if absolute coordinates where used is 22. In the
current implementation only 5 equivalence sets need to be



38 A Gate Array Layout Model

stored, shown in figure 2.6.

Figure 2.4. Example layout pattern.

i)

Chapter 2

Figure 2.5. Wiring graph representation of the layout pattern shown
above. The equivalence relations between the vertices are

denoted by dotted lines.



§2.6 Implementation aspects 39

offset
0 1 2
inde: 1 = (050 |—= (0,60 (0,0,-11)

A - |
0 1 2

2 |- (06,00 -~ (05,0 (0,0,-11)
[ |
0 1

3 (= (0,-5,0) 0,5,0)
]
0 1

4 |- (-2,11,0) (2,-11,0)
]
0 1

5 (0,-3,0) (0,3,0)
]

Figure 2.6. Equivalence table resulting for the space-graph in figure
2.5.

The design rule sets are also implemented by using a table. Every
table entry denotes the design rule sets Dr(ey), Dr(eg) and Dr(ep), as
indicated in figure 2.7. The design rule sets Dr(e,) are simply a list of
the edge sets Sh(e,). The implementation of an edge set Sh(e) is
further similar to the equivalence sets in that again relative
coordinates are used. This has the same advantages as for the
equivalence sets, namely that the number of edge sets stored can be
minimised.

Figure 2.8 shows how the design rules of examples 2.1 and 2.2 are
stored in a table entry.



40 A Gate Array Layout Model Chapter 2

design-rule-index|--~-;-----

Figure 2.7. Implementation of design rule table entry.

Sh(en)1 Sh(en)z

s R B—

(-1,0,0),North (1,0,0),North

Sh(ep)

Df<eo)—’$

(0,0,1),Down

!

(0,0,2),Down

Figure 2.8. Table entries for design rules of example 2.1 (upper) and
example 2.2 (lower). ‘

As with the edge cost labels, a table index is stored at a vertex to
associate the corresponding design rule with the three principal edges
associated with the vertex. '



§2.6 implementation aspects 41

fs(en) 2 bits
fs(eg) | 2bits
fs(ep) | 2 bits
fret(v) |14 bits

fwset(v) | 8 bits
flerm(v) | 1bit
cost-index | 8 bits
eqg-index | 8 bits
eq-offset | 6 bits
dr-index | 8 bits
router-data| 5 bits

Figure 2.9. Implementation of compacted vertex data record.

With the discussion of the implementation of the design rules sets, the
principal values stored in a vertex data record are presented. The size
of this record is reduced by a combination of limited value ranges and
the application of a compacted data record. The final result is shown in
figure 2.9. The field "router-data” is reserved for values that might be
used by a routing procedure. ,



3. Gate Array & Design Characterisation

In the previous chapter the gate array layout model was introduced as
the first step towards general layout design. The second step is to
formalise descriptions of gate arrays and designs in terms of the layout
model.

The formal descriptions, introduced in this chapter, provide maximal
flexibility by capturing all relevant data at the most detailed level. In
this way no restrictions are introduced limiting the application to gate
array types. Further, no preference is incorporated for specific design
algorithms.

The amount of data required for descriptions of gate array types and
designs is controlled by using hierarchy and repetition. The application
of a 2-level hierarchical description of the master slice, accounts for an
amount of data that depends on the complexity of the preprocessed
structures, rather than the actual size of the master slice. Further,
predefined and application specific patterns are also stored
hierarchically. ’

The advantage of a formal design description is in the uniformity of the
stored data. The design is regarded as the top hierarchical level, the
master slice as the bottom. Intermediate hierarchical levels are
provided by the predefined wiring patterns stored in the library,
usually provided with every gate array. An additional advantage is
that completed designs can easily be added to a library, thus allowing
hierarchical design.



Chapter 3 Gate Array & Design Characterisation 43

The most intensive data access is defined at the detailed routing level,
where the most detailed information is required for the interconnect
design. This requires that the space-graph representation must be
accessible at the top hierarchical level. The overhead in the space-
graph access is minimised by providing a space-graph expansion
procedure that constructs the complete space-graph at the top level for
a requested region on the master slice.

The formal description of a gate array is presented in the following two
sections. In section 3.1 the description of the master slice is presented.
The formulation of the gate array data is completed by the description
of the gate array macro library in section 3.2. The formal descriptions
are concluded with the characterisation of the design data in
section 3.3. The last section of this chapter discusses some
implementation aspects, amongst others the space-graph expansion
procedure mentioned above.

3.1 The master slice

The master slice defines the initial wiring space. This wiring space is
usually partitioned into an internal area and a peripheral area. The
internal area, also referred to as core area, is highly regular, and can
easily be described in terms of the space-graph. The peripheral area
consists of bonding pads, for off-chip connections, and input/output
buffers to protect the chip’s circuitry. By its nature, this area is not
easy to describe by a space-graph. If connections to the peripheral
circuits are subject of a design, a minimal requirement is that the
terminals of the peripheral circuits are placed at grid points. The
space-graph description of the core area must be extended to
incorporate these grid points.

Besides the initial wiring space, the master slice description may also
involve predefined nets. These nets are not subject of the layout
design, but must be taken into account by every design made on the
master slice.

By convention, predefined nets are complete, independent whether this
is reflected in the net description or not. This allows to take into
account connections that are realised outside the wiring space
described by the master slice space-graph. The edge status label for






§3.1 The master slice 45

to describe the master slice, by using its structure, is now presented.

Inspection of a wide range of gate arrays leads to the observation that
repetition is the key notion for most gate array master slices. Usually,
the core area of the master slice consists of an arrangement of a very
small set of different layout patterns, the core cells. The core cells
represent areas that are small compared to the complete core area.

This observation leads to the description of the master slice by a
floorplan. The floorplan provides a space-graph description of the
master slice that is partitioned into the space-graphs of the core cells.

The core cells are thus described by their space-graph representation,
together with the labeling functions fg, f.ost and the sets EQ and DR,
forming the following 5-tuple:

cc=(G, fs, feost, EQ, DR) 3.1

Every different pattern, defining a part of the wiring space, is defined
as a separate core cell, and described accordingly.

. 'This holds especially for the peripheral areas, which are also regarded
as core cell areas.

Now, an arrangement of a specific core cell on the master slice is
described by a repetition of instances of that core cell.

An easy way to describe a repetition is by means of a translation in a
plane. A translation in two dimensions is completely specified by the
following 6-tuple:

fr = ( fromy, stepy, toy, fromy, stepy, toy ) 3.2)

from,, stepy, toy, fromy, stepy, to, € N

Application of this translation function to a core cell, gives the (x, y)
positions of the instances of that core cell in the plane:



46 Gate Array & Design Characterisation Chapter 3

x = fromy +ixstepy, ix =0, 1, .., (to, —from, ) / stepy (3.3)
y = fromy +iystepy, iy =0, 1, .., (toy — fromy ) / stepy v (3.4)

In general, more than one translation function may be associated with
a core cell. These functions define the translation set for the core cell:

FT= {fTo, 1, oo 1, } (3.5)

With the. definitions given above, the description of the complete
floorplan of the gate array master slice is defined by:

FloorPlan = {( cc(l), FTo), (ccy, FTq ), ..., (cCp, FTy )} (3.6)

It is important to note that, in this concept, the floorplan description of
the wiring space is required to be a complete cover of the wiring space.
This implies that every vertex of the explicit space-graph description of
the complete wiring space, belongs to exactly one instantiation of a core .
cell. Stated in other words, the floorplan description leaves no "holes"
in the wiring space description, and the core cells do not overlap at any
position in the wiring space. So, no vertex is left undefined and no
vertex is defined more than once.

Returning to the previous example, the same master slice is now
described by one core cell, requiring 27 vertices, and one translation
function, requiring 6 values. The reduction in the amount of data is
obvious. Note that, by definition of the translation function, this
amount of data in independent of the size of the master slice.

An important consequence of the decomposition of the space-graph into
its floorplan is that not all edge labels are covered by the core cell
descriptions. More specific, all edge labels between two adjacent core
cells are undefined in the floorplan description, while they would be
defined in the explicit space-graph representation of the wiring space.
Therefore, the floorplan description of the wiring space can not be
complete with respect to the edge set E.



§3.1 The master slice 47

The consequence of this observation is that the wiring space description
of the master slice must be completed by the inclusion of the overall
labeling functions f; and fy,e. Further, the sets EQ and DR must be
taken into account and the predefined nets, which gives the complete
space-graph description of the master slice:

MasterSlice = ( Nets, FloorPlan, fs, fest, EQ, DR) 3.7

3.2 The macro library

Usually, together with a gate array, a library of elementary,
predesigned macros is provided. The functions performed by the
macros can range in complexity from a simple inverter to a master-
slave flipflop, or even more complex functions such as multiplexers.
The macro library is denoted as a set of macros:

MacroLib = {Macro1, Macros, .., Macro, ]» (3.8)

Given a master slice pattern, the function of a macro is defined by its
interconnection pattern. When mapped onto the master slice at an
appropriate location, this pattern creates a circuit that performs the
desired function at its terminal pins. The positions where a pattern
may be placed, are called the "legal positions" of that pattern.

More than one wiring pattern can be given, performing the same
function, yet with different terminal positions, aspect ratios,
orientations or legal positions on the master slice. The different wiring
patterns that implement the same macro-function are called the
"stamps” of the macro. A macro is thus denoted by the following tuple:

Macro = ( Pins, Stamps ) (3.9)

The essential information of a stamp, for placement and routing, is in
the positions and the signals assigned to the pins, the wiring patterns
of the stamp, and the legal positions of the stamp.



48 Gate Array & Design Characterisation Chapter 3

The wiring space occupied by a stamp is limited by a bounding box,
denoting the shape of the stamp. This wiring space can be described by
a gpace-graph G, with x- and y-dimensions equal to the shape of the
stamp. The z-dimension is given by the number of wiring layers
available. In general, the amount of data required for the stamp can be
reduced by taking into account that the internal area of the stamp is
strongly related to the master slice layout patterns. If the underlying
master slice patterns are identical for all the legal positions of the
stamp, the stamp can be described by a sub-graph Gg of G.

The wiring patterns of a stamp are described by nets. The nets can be
partitioned into terminal nets and internal nets. The terminal nets of
the stamp are related to the pins of the macro, and are used for
interconnections at higher hierarchical levels. The internal nets of the
stamp define those nets required to achieve its functionality.

A stamp is allowed to contain modules. These modules are instances of
other functions in the library. Every library is required to have macros
with stamps containing no modules. A module is thus specified by the
selection of a macro, a stamp associated with that macro, the nets
connected to the pins of the macro, and the coordinates of the stamp
within the area of the calling stamp.

The nets (or signals) assigned to the pins of the macro are required to
be a sub-set of the nets of the calling stamp. Because modules refer to
functions contained in the library, a module is described by references
to these functions, rather then a full function description:

Module = ( Macro—call, Stamp—call, (x, y), PinSignals ) (3.10)

A very compact description of the legal positions of a stamp can be
given by using the translation functions introduced for the definition of
the floorplan. The set of legal positions of a stamp is thus denoted in
the same way as the translation set for a core cell:

Legals = {fTo, f'r1 A an } (3.11)



§3.2 The macro library 49

As mentioned before, the space-graph description of the stamp consists
of a sub-graph of the space-graph for the internal area of the stamp.
This sub-graph is already partly introduced by the definition of the nets
of the stamp, which are in fact sub-graphs.

The main importance of using sub-graphs, is that labeling values of
edges at any hierarchical level are always overruled by higher
hierarchical levels. This increases the flexibility of the description,
where labels may be adjusted to take into account the effects of wiring
patterns at higher hierarchical levels.

An example of this effect concerns the cost labels assigned to edges.
Due to some specific wiring patterns of a stamp, it can be advantageous
to change the cost labels, defined at the master slice level, of some
edges internal to the stamp, to give a router procedure specific
guidance within the area.

This concept can be further extended to the status function in general,
but also to the sets EQ and DR.:

For example, if a stamp contains connections that are not described by
wires, these connections can be described by equivalence sets. This
situation occurred for the stamps of the HDGA gate array, which is
described in more detail in chapter 6, were internal stamp connections
are realised with straps. Because for this gate array the width of the
straps is half the width of an ordinary wire, the choice was to describe
the straps as equivalence sets rather than using a higher grid
resolution, at the cost of more complicated gate array description,
without gaining additional wiring space. A requirement concerning the
EQ and DR sets is, that they present extensions to, or merge, the
already given sets for the master slice. Reduction on previously
specified sets is not allowed. A reduction of an equivalence set would
imply that a previously defined connection between vertices is
eliminated by placement of a stamp. Because equivalences are
normally used to describe preprocessed patterns, elimination of these
patterns will never occur in practice. The reduction of a design rule set
at a higher hierarchical level would imply that, due to a specific wiring
pattern in a stamp, an illegal pattern defined at a lower level would not
be illegal any more, which is also assumed to have no practical
meaning.



50 Gate Array & Design Characterisation Chapter 3

The complete definition of a stamp is denoted below, by the followmg
8-tuple:

Stamp = ( Shape, Nets, Modules, Legals, fg, f;ost, EQ, DR) 8.12)

A last issue concerns the level of detail of the stamp description. It is
by no means required to describe stamps as detailed as above.

The idea of the stamp definition is to provide a stamp description model
containing all essential information for placement and routing. The
minimal description of a stamp is given by the shape and the legal
positions for placement, and, for routing, the position of the stamp’s
terminals. This indicates a choice, concerning the level of detail used,
to describe a stamp.

If details, concerning the stamp’s internal structure, are described, a
routing procedure can use this information to construct wiring patterns
through the stamp’s internal area. A stamp specified in this way is
thus transparent for routing.

However, a stamp may also be described by a black box with terminals
on the boundaries. In this case, routing through the stamp is
prevented by an appropriate labeling of the internal edges of the
stamp.

Any form of detailed descnptlon between the two extrema mentioned
above is also possible.

3.3 Design characterisation

Together with a master slice, and a macro library, a design is regarded
as the instance of a layout problem to be solved. It consists at least of a
set of modules and a net-list. Additional information, such as net
weights, can be supplied to guide the layout design. The design
specification is very closely related to .the macro and stamp
descriptions. A design is regarded as a macro definition, and the design
implementation reflects the nature of a stamp:



§3.3 Design characterisation 51

Design = ( Piné,Net—weights, implementation ) (3.13)

A rectangular window is associated with every design implementation
that bounds the area in which the design must fit. This window defines
the shape of the design implementation.

The nets of a design are associated with the pins of the modules of the
design. The main difference between design nets and the nets of the
stamps is, that the design nets are not complete. Before a routing
procedure is applied, the wiring sets of the nets only consists of their
terminal wire sets. These sets are the wiring patterns of the terminal
wires of the stamp to which the net is connected. The wiring patterns
constructed by a router, to connect the terminal wires, are labeled with
the value ROUTER, in order to distinguish them from the predefined

wiring patterns.

The modules of the design are defined according to the definition given
previously. Before a placement procedure is applied, the module
consists only of the macro-call. It is the task of the placement
procedure to determine, for every module, an optimal stamp and legal
posmon of the stamp.

This resu]ts in the following implementation definition:
Implementation = ( Window, Nets, Modules ) (3.149)

A given macro library can be extended with a completed design in the
following way. A function must be associated with a design, and the
pins of the design define the pins of the associated macro. The design
implementation defines a stamp definition for the macro.

The design implementation must be transformed into a stamp
definition. Therefore, the net labels are changed from ROUTER to
IMAGE. The labeling functions f; and fg are taken to be trivial
functions, and the sets EQ and DR are empty.

In this way, hierarchical levels are added by incorporating completed
designs as macros in the library, and use these macros in subsequent



52 Gate Array & Design Characterisation Chapter 3

designs.

3.4 Implementation aspects

The implementation of the gate array and design descriptions
presented in the previous sections is based on the stamp
definition 3.12. The importance of the stamp structure is determined
by the fact that part of the master slice and design data can be
arranged in terms of a stamp.

The master slice structure is partioned into its floorplan and the
remaining data. The implementation of the floorplan is
straightforward according to definition 3.6. The core cells are
implemented as 3-dimensional arrays. Note that, with the chosen
implementation of the vertices, the edge labels at the boundaries can be
stored within the core cells, and are not required to be kept explicit at
the master slice level. The remaining data is stored in an additional
stamp structure, the so-called master stamp. The size of this stamp
equals the size of the master slice.

The design data is partioned into the incomplete nets, which are stored
separately, and the fixed data, which consists of the placed modules of
the design and the completed nets. The incomplete nets must be stored
separately, in order to keep track of the different wiring sets.
Completed nets on the contrary, can be stored more efficiently because
they are complete like the nets associated with a stamp. This fixed
design data can thus be stored like a stamp. The shape of the stamp is
the supplied design window, the modules of the design stamp are the
instances of the library macros used in the design.

The uniformity in data structure obtained in this way accounts for an
efficient implementation of the complete data structure and limits the
number of procedures required to handle the stored data.

The implemented stamp structure is shown in figure 3.2.

The order of nets stored in the stamp is determined by the terminal
definition of the macro to stamps belongs to. In this way the difference
between terminal nets and internal nets of the stamp is made implicit.
The data field "Default-labels” represents edge labels that are uniform



§3.4 Implementation aspects 53

stamp

shapey, shapey

Nets

Sub-modules

Default-labels
INITIAL-wires
INHIBIT-wires

eq-updates
dr-updates

cost-updates

Legals

Figure 3.2. Implementaﬁon of the stamp data structure.

in a single vertex plane, thus reducing the amount of data required to
store the edge labeling function f;. The description of {5 is completed by
definition of the INITIAL- and INHIBiT-wires. The wupdates for
equivalences, design rules and cost represent the union of these sets for
the first two, and the overruling of the cost labels in the last case. An
update is identified by the coordinates of the vertex and the new index
and/or offset to be associated with that vertex.

The most important action with a stamp is the placing of the stamp
into the space-graph. A stamp is placed at a correct legal position and
the labels fye and fyqet are provided for a correct labeling of the vertices
of the terminal nets of the stamp. The order in which the stamp’s data
is mapped in the graph is not trivial. Assume a space-graph and a
stamp. The actual placing of the stamp is defined by five actions:

1) Setting the default labels for all edges in the stamp’s area. This
action affects all the edge labels in the stamp’s internal area and
must therefore be done before interconnections are inserted.

2) Placing of the sub-modules of the stamp.

3) Placing of the INITIAL- and INHIBIT-wires. Additional edge labels,



54 Gate Array & Design Characterisation Chapter 3

not representing interconnections are also mapped before the nets
are inserted. This allows for efficient storage of these wires, and
allow overruling of the labels by the subsequent insertion of the
nets. By convention, the edge labels may not destroy the
interconnection patterns of the sub-modules mapped before.

4) Placing of the updates. Essential is that the new equivalence
relations are inserted in the space-graph before the nets are
inserted. The reason is that it is assumed that the wiring patterns
of the nets are defined according to the newly defined equivalence
relations, which are thus essential for a correct propagation of the
net signals. The placing of the design rule and cost updates at this
point is not essential.

5) Inserting the nets. The nets of the stamp are inserted last. The net
and wiring set labels assigned to the vertices of the nets are
provided externally. Propagation of the nets accounts for the correct
vertex labels of the nets in the previously placed submodules. In
this way, all the interconnections of the terminal nets of the stamp
get the provided net and wiring set labels and are recognised as
belonging to the same net and wiring set. All the net labels of the
vertices of the internal nets of the stamp are marked as BLOCKED.

Given the data organisation and placing procedure of the stamp, the
most essential actions of the space-graph construction are presented.
Given a rectangular region for which the space-graph must be
constructed, the first action is to copy the data of the core cells into the
requested space. Next the design stamp, which defines the top
hierarchical level is placed. By recursion, this completes in principle
the construction of the space-graph, only the incomplete nets must be
ingerted afterwards.

A final remark concerns the relation between the shape of the
constructed space-graph and the shape of the requested region.
Assume a rectangular region, defined by two corner coordinates as
shown in figure 3.3. Due to the vertex offsets used for equivalence
relations and design rules, vertices and edges outside the window may
be referenced. In order to minimise the overhead in access for these
external references, the actually constructed region corresponds with
the expanded window, as indicated by the dotted lines. The expansions
in the x- and y-directions are easily determined by inspection of the
offsets stored in the equivalence and design rule tables.



§3.4 Implementation aspects 55

E X-expansion E
: I (XR,¥T) .
E I(______{ o [|Y-expansion E
E (xL.y8) N

Figure 3.3. Region expansion required to solve external region
references for equivalence relations (denoted by the dotted
line) and design rule evaluation (denoted by the dashed
arrow). )

The importance of the space-graph construction is in the relation with
the detailed routing, which is discussed in section 5.2. If the detailed
routing solves routing problems in small areas, only a small portion of
the space-graph needs to be present to minimise the overhead in data
access. This portion can be constructed once, before the actual routing
procedure is applied for the first time on the area. After the routing
within the area is completed, the newly added routing patterns within
the routing area are extracted and stored in the wiring list of the
respective net. The current space-graph is not referred to any more,
and can be eliminated. In this way, the space-graphs for the
subsequent areas are constructed one after another, so that, at any
time during the routing process, exactly one, fully expanded, portion of
the space-graph is present. The amount of memory used for the space-
graph is thus controlled by the maximum size of the routing region
used by the detailed router. The complete space-graph is never built
during the detailed routing.



4. A Placement Strategy

In this chapter a placement strategy, based on the gate array and
design descriptions defined in the previous chapter, is presented. The
claim is that the presented placement strategy is general in that it
applies to all placement problems defined by appropriate gate array
and design descriptions. This claim is justified by the fact that no
restrictions are introduced that limit the generality provided by the
gate array and design descriptions.

Although the placement problem has gained a lot of attention in
literature, most strategies proposed are not appropriate to solve the
problem in a general context. The main reason for this shortcoming is
that the restrictions that occur in a general gate array environment,
are not taken into account. These restrictions are the limited area in
which a design must fit, in relation with the limited number of different
stamp shapes that can be used to implement a module, and the limited
set of legal positions associated with a stamp.

Incorporation of the restrictions, mentioned above, in a placement
algorithm results in a significant performance loss due to the increased
problem size. The solution, presented in this chapter, is to compute a
placement in two stages. In the first stage, based on a simplified
module description, well known strategies are applied, requiring a
small modification. A placement solution, found in this stage, is called
a global placement. In the second stage, called detailed placement, the
global placement is adapted by taking into account the different stamps
that can be chosen to implement a module, and the legal positions for



Chapter 4 A Placement Strategy 57

every stamp.

The next section presents a discussion of the general gate array
placement problem. In section 4.2 the simplified module description
and global placement are discussed. The last section of this chapter
presents a detailed placement algorithm.

4.1 The placement problem

For placement, a design specification is given as a set of modules and a
net-list. The modules of a design are instances of macros contained in
the macro library. The placement problem is now defined as follows.

Assume a design, a 2-dimensional space in which the design must fit,
and the macro library, used for the modules, be given. The problem is
now to assign to every module the tuple ( stamp-id, (x,y) ), with (x,y) a
legal position of the stamp, while optimising a given object function.
Modules are not allowed to overlap, implying that different modules
are not allowed to use the same vertices or edges of the space-graph.

The size of a placement problem instance is given by the number of
modules to be placed, the number of different stamp choices for every
. module, and the number of legal positions associated with every stamp.

The restrictions that must be considered are already mentioned and
concern the limited and fixed design space, the stamps available to
implement a module, and the legal positions for every stamp.

"The limitations on the design space lead to two global criteria that
determine the quality of an actual placement. Firstly, the placement
must lead to short nets for timing optimisation. Secondly, the
routability of a design must be guaranteed. This means that, given a
placement of the modules, the interconnect design must be completed
in the available design space. A good measure of the routability of a
design is given by the wire distribution, or wire densities, in the given
design window. Irregular wire distributions lead to congested wiring
areas, implying that certain nets can not be completely wired.

Modifying a known placement strategy, to incorporate all the above
mentioned restrictions and taking the wire distribution into account in



58 A Placement Strategy Chapter 4

the objective function, seems not practical, due to the increase of the
problem size as defined above.

The solution presented in the following sections is to compute a
complete placement in two stages. The first stage determines a global
placement, based on a simplified module description. In this stage, the
different implementations for every module are not considered.
Further, a simplified set of legal positions is associated with every
module. These two assumptions give a considerable reduction of the
problem size. The objective for global placement is to optimise net
length and wire distribution. In the second stage, a detailed placement
is computed, taking into account the different stamp options for every
module, and the legal positions for every stamp. The objective of the
detailed placement is to choose for every module an optimal shape by
selection of a stamp, and to place that stamp at the optimal legal
position, while preserving the positions of the modules relative to each
other.

4.2 Global placement

The first step of the global placement procedure is to derive a
simplified module description, given a design instance. Because all
modules are instances of macros contained in the macro library, the
approach chosen is to derive simplified macro descriptions. Macros
with no associated instances in the design are not considered.

The basic idea of the simplified macros is to create a placement
problem instance that can be used by a wide range of placement
strategies. The derived problem instance approaches an ideal situation
[Frankle86] if all stamps have equal shapes and legal positions.

This ideal situation is defined by a set of n nodes to be placed on a set of
n given legal (x,y) positions and a net-list. The objective is to assign a
unique legal position to every node, while optimising a given object
function incorporating net length and wire distribution.

The reasons that this problem instance is regarded as ideal are:

1) Modules are regarded as nodes, implying that shapes may be
omitted, or are uniform.
2) Nodes placed at adjacent legal positions have no overlap. Thus



§4.2 Global placemént 59

overlap needs no consideration during placement.

3) Any of the legal positions assigned to a node is correct. Further
consideration of other aspects is not needed.

4) By having not more than the exact number of legal positions
available, the problem size is minimal.

Now, the topic of the remainder of this section is to present a simplified
macro description, that approaches the ideal problem instance as close
as possible, starting from a general problem instance.

The first step is to provide uniform module shapes. Therefore, a
simplified macro has no associated stamps, but has a fixed shape. This
shape is defined as the average shape of the stamps associated with the
original macro. It is trivial that in this way, the macro description
approaches the ideal situation if all the stamps of all the macros have
the same shape.

The second step concerns the legal positions. This is a more difficult
problem, because the number- of simplified legal positions must be
minimised, and the legal positions must also approach the ideal
problem instance if the distribution of the legal positions is more
uniform. Note that the ideal situation, having n legal positions for n
nodes, can also be regarded as having n legal positions for every single
node, or at every legal position one of the n nodes may be placed.
However, in the general case, different sets of legal positions are
associated with nodes, and these sets may have a non-empty
intersection.

In the following, an algorithm is presented to compute these sets for
every simplified macro. The objective is to compute a minimal set of
legal positions, represented by grid cells, while satisfying the condition
that every module can be placed.

For every simplified macro m’, the number of instances of the

associated, original macro m in the design is determined. This number
is called the “"demand" for this simplified macre m’, and is denoted by:

Demand(m’) = #instances of associated macro m € MacroLib 4.1)



60 A Placement Strategy Chapter 4

The window in which the design must fit is described by a rectangular
placement grid, denoted as PG. Every grid cell represents a small area
of the window. The shapes of these grid cells are of the same order of
magnitude as the shapes of the stamps in a design. The simplified
legal positions will be denoted in terms of the placement grid, where
one grid cell represents one unit in an associated carthesian coordinate
gystem. If a stamp of the original macro m has a legal position in the
area associated with the grid cell, the grid cell represents a legal
position for the simplified macro m’. A grid cell is denoted by the tuple
(x,y), where x and y are the carthesian coordinates of the respective
location in PG.

Two crucial assumptions are made at this point. - The first is that,
whether or not a macro may be placed at a grid cell, is only determined
by inspection of legal positions of the macro. The second assumption is
that at most one module may be placed at one grid cell at a time. ‘

The first assumption implies that the actual shape of the simplified
macro and the area represented by a grid cell where the macro is
placed, are not considered. Consequently, the area of a macro m’ may
be larger then the area represented by the grid cell (x,y), where the
macro is placed. By associating a shape with every simplified macro
and grid cell, the relation between a simplified macro m’ and the grid
cell (x,y) where the macro is placed, can be incorporated into the object
function for global placement. The crucial point is that the actual
shape of a simplified macro and the area represented by a grid cell are
not used to determine whether or not a simplified macro may be placed
at a certain grid cell (x,y). This is essential for the simplification of the
legal positions of the original macros presented in this the remainder of
this section. :

The second assumption avoids the situation that more modules are
placed in the same grid cell, resulting in, for example, shorter net
length. If more modules could be placed in one grid cell, a detailed
placement procedure must determine whether there exists a choice of
stamps for every module such that all stamps can be placed at one of
their legal positions in the area, represented by the core cell, without
overlap. If this is not the case, one module, or more modules, must be
selected that are removed from the grid cell and placed in other grid
cells. The selection of these modules is not trivial, and will cause



§4.2 Global placement 61

unwanted disturbance of the global placement. Further, it facilitates
the evaluation of the "supply"” of grid cells of a given placement grid, as
will be shown below.

. With every grid cell, the simplified macros that can be placed at that
grid cell are associated. This is defined as the legal set associated with
that grid cell, and is denoted by:

Legals(x, y) = {m'1, m’z, .y m'n} (4.2)

The coordinates of the grid cell in the associated coordinate system
thus represent legal positions for the simplified macros.

Now assume that a placement grid is proposed. Then the number of
legal positions associated with every simplified macro provide a supply
of possible positions where that macro can be placed. However, in
general, more than one macro can be placed at the same legal position.
The possibility that a specific grid cell remains available for a specific
module thus depends on the number of different macros that can be
placed at the same grid cell, but also on the number of instances of that
- macro in the design. So, the supply of grid cells, or legal positions, for
the simplified macro is denoted by the following formula:

' Demand(m’)
Supply(m’) = . y (4.3)
. pPY( ’) (x,y)Ee: PG Z Demand(m i)
m‘eLegals(x,y)

The claim is, that the supply of grid cells approaches the ideal
situation, if the distribution of the legal positions of the original macros
is more uniform. This can be seen as follows. In case of an equal
distribution of the legal position of the original macros, assume that all
macros can be placed in every grid cell. By definition 4.1 the total
demand equals the total number of modules in a design:



62 , A Placement Strategy Chapter 4

3 Demand(m’) = #modules = | Modules |
ol

Assume the dimension of the placement grid PG be given by p, and Py-
Then the total supply for a single smphﬁed macro m’ is given by:

Demand(m’) }= pxPyDemand(m’)

Supply(m7=(x,y)}.;a PG [ | Modules | ~ |Modules |

The supply for all simpliﬁed macros together is now given by:

Ny Do
pxpyDemand(m ) pxpy}:. emand(m’)’
g | Modules | =

|Modules| T Pby

So, the total number of legal positions supplied equals the number of
grid cells of the proposed placement grid. The minimal number of grid’
cells needed is given by the demand for all simplified macros, and is, of
course, equal to the number of modules in the design. Thus if the
dimensions - of the placement grid are chosen such that
PxPy = | Modules |, the minimal number of legal positions is given. '

The demand and supply for every macro, given a placement grid,
determine whether or not a placement grid proposal is accepted. A
placement grid is accepted if the total supply of grid cells for every
macro exceeds the demand of grid cells for that macro. The refinement
of a not accepted placement grid is done by a straightforward bisection
procedure that is applied .in both x- and y-direction. For every
orientation, a grid cell is split into two equal parts. This implies that
both dimensions of the placement grid are increased with a factor 2,
thus after k bisections both dimensions of PG equal 2.

In the following, the differences between the x and y directions are
omitted for convenience, and it is assumed that py equals py. The lower
bound, on the number of bisections required, is determined by the
number of modules used in the design. It is trivial that after k
bisections, the number of grid cells must be greater than or equal to the



§4.2 Global placement 63

number of modules to be placed:
okak = 22 > | Modules |

This defines the lower bound on the number of bisections required:
Kower 2 — 2log | Modules | 4

An upper bound is determined by the minimal shape of the placement
grid cells. If the grid cells become too small, further bisections of the
grid cells can not increase the supply for any simplified macro. This
situation is reached if, for every stamp, at most one legal position
occurs in the grid cell, or if the shape of the grid cells becomes smaller
than the shapes of all the stamps. Assuming equal shapes for all grid
cells, this is denoted for both orientations by:

WindowSize
>k

CellSizex = > CellSizemin

This defines the upper bound on the number of bisections that are
applied for one orientation:

WindowSize ' |
kupper < 2log [m] | (4,5)‘

The algorithm. fails if the upper bound on the number of bisections for
both orientations is exceeded and the supply of grid cells is not
sufficient for all the simplified macros. This indicates the possibility
that the design can not be placed in the given design window.

A last remark concerns the final placement grid PG. By applying the
bisection procedure straightforward for both orientations, rows and
columns of grid cells may be obtained that contain no legal positions for
any simplified macro. These rows and columns need not to be
considered for subsequent bisections and are removed after the
placement grid computation is completed, by merging them with



64 A Placement Strategy Chapter 4

adjacent grid cells. Consequently, the final x and y dimensions of the
placement grid may be smaller than what would result from the
number of bisections applied.

The outline of the algorithm is given below. The differences in the x-
and y-directions are omitted for convenience.

1) PG = DesignWindow ;

2) Vi [compute Demand(m’) ],;

3) compute kmm, Kmax ;

4) for k = 0 to ky;, —1 do bisect (PG ) ;

5) fér K = Kmin t0 kpax do

6) begin

7) bisect (PG ) ;

8) it Vi [Supply(m’) zDemand(m’)] then ready ;
9) end; |

10) cleanup PG ;
Algorithm 4.1. Placement grid computation.

The complexity of the algorithm is determined by the number of
bisections used, and the computation of the supply of grid cells for
every simplified macro. The computation of the supply, after k

bisections, takes O(22¢|Macros|2). Let p denote the maximum size of
the placement grid for both orientations, given by: M, then
CellSizemin



§4.2 Global placement 65

incorporating the maximum number of bisections, as given above, leads
to a worst time complexity of O(p? | Macros | ?).

The performance of the algorithm is measured by comparing the actual
supply of legal positions against the ideal number of legal positions,
denoted by the demand. The optimal supply values are denoted by the
demand values for the macros in a design, which implies that the total
supply of grid cells and the distribution of the supply values must equal
the distribution of the demand values. These distributions are denoted
by the average value (u) and the standard deviation (c). The
experimental results for two designs, Random200 and 9Sym, mapped
onto three different gate array master slices, are summarised in tables
4.1 and 4.2. The master slices are discussed in detail in chapter 6.

Supply | Required | HDGA | UA6 | TALO004

dff 50,00 79.75 59.75 72.50
inv - 48.00 87.12 62.80 | 194.95
nand2 49.00 88.94 64.11 | 14797
nand3 53.00 96.19 69.34 | 154.58
Total 200.00 352.00 | 256.00 | 570.00
u 50.00 88.00 64.00 | 142.50

c 1.87 5.85 3.47 44.23

Table 4.1. Supply values obtained for the macros used in design
RandomZ200 mapped onto three different gate array master
slices with constant occupation rate.

The results denoted in table 4.1 show that the macro "dff" bounds the
supply values for all gate arrays used. The reason is that "dff" is the
largest macro with the least number of legal positions for all three gate
array master slices. Because the refinement of the placement grid
continues until all supply values exceed the demand values, the supply
values for the other macros are larger then strictly necessary. The
results for UA6 are the best because the differences in the shapes of the
four macros are the least and dominate the differences in the
distributions of the legal positions. In case of UA6, part of the wiring
pattern of "dff" is "hidden"” in the channel, which does not influence the
legal position sets of the other macros and reduces the difference in the



66 A Placement Strategy Chapter 4

shapes. For the other two gate array master slices, the channel area is
not used or available, resulting in larger macros that directly influence
the available legal positions. The smoother distribution of legals for
the Sea-Of-Gates gate array HDGA, compared to the channel gate
array TALOOQ4 are clearly shown.

Supply | Required | HDGA | UA6 | TAL0O4
inv 4600 | 4748 | 98.83 | 82.13
nand2 | 120.00 | 123.87 | 257.82 | 162.07
nand3 | 5100 | 52.656 | 49.35 | 65.81
Total | 217.00 | 224.00 | 406.00 | 310.00
M 72.33 | 74.67 | 13533 | 103.33

o 3377 | 34.86 | 8893 | 42.06

Table 4.2. Supply values obtained for the macros used in design 9Sym
mapped onto three different gate array master slices with
constant occupation rate.

The supply values for design 9Sym are dominated by the distribution of
the legal positions. The macro "dff" that dominates the supply in the
previous example is not used in this degign.. The results summarised in
table 4.2 show the superiority of the HDGA for the distribution of the
legal positions. The disturbance of the legal positions is mostly shown
for UA6, where the macro "nand3" has the least number of legal
positions which must all be shared with the other two macros. The
same situation holds for TALOO4, but the structure of this master slice
is more regular than for UAG, resulting in an acceptable solution.

With the computation of the placement grid, the simplified macro
description is completed. Together with the net-list, a problem
instance for placement is given that can be used by a large range of
placement algorithms. No essential agsumptions concerning placement
style have been made. This means, in the gate array context, that no
preference is incorporated for a row-based, island-based or Sea-of-Gates
style placement,

Examples of placement algorithms that can be applied are simulated
annealing, eigenvalue decomposition and min-cut placement, provided



§4.2 Gilobal placement ' 67

that an appropriate object function is formulated. Two example
algorithms have been implemented, one based on simulated annealing
[Otten84]; the other based on an eigenvalue decomposition algorithm
[Frankle86]. The quality of the solutions of both algorithms are
compared by evaluation of the net length and wire densities obtained.
These results are summarised in table 4.3 and table 4.4.

wire densities

net len
gate array gth X-axis y-axis

anneal | eigen | anneal | eigen | anneal | eigen

HDGA 25154 | 33044 91 129 125 131
UA6 42154 | 54486 113 140 106 150

TAL004 26989 | 32365 127 158 103 138

Table 4.3. Evaluation of global placement by simulated annealing and
eigenvalue decomposition for design Random200.

The number of eigenvalues computed for Random200 are 14, leading to
a run time of about 16 minutes for all three gate array master slices.
The run time required for annealing ranged from 21 to 37 minutes. All
runs are timed on an Alliant FX4 computer.

net length . wire densities .
gate array X-axis y-axis

anneal | eigen | anneal | eigen | anneal | eigen
HDGA = | 21567 | 28289 74 141 144 176

UA6 32431 | 49111 94 148 114 163
TAL004 24785 | 31707 124 157 85 153

Table 4.4. Evaluation of global placement by simulated annealing and
eigenvalue decomposition for design 9Sym.

The number of eigenvalues computed for design 9Sym equals that for
Random200, namely 14, which leads in this case to a run time in the
order of 28 minutes. The annealing required in the order of 26 minutes
cpu time for all the three master slices.



68 A Placement Strategy Chapter 4

Both designs clearly show the inferior results obtained by the
eigenvalue decomposition. The principal reasons for this shortcoming
are in the object functions used in both algorithms and the evaluation
of the object functions during the execution of the algorithms. The
object function for the eigenvalue decomposition is fixed by the
weighted entries in the connectivity matrix used by the algorithm. A
further limitation is that the object function is required to be
formulated in a quadratic form in the carthesian coordinates of the
modules to be placed. This limits the flexibility of the object function
with respect to the effects that can be incorporated. During the
execution of the algorithm the values stored in the connectivity matrix
remain fixed and determine the ultimate result. The main difference
with the annealing procedure is that the object function. is more
flexible, by allowing the incorporation of non-linear forms. Further, the
object function is constantly evaluated for many different placements,
thus the link between the objective and a placement is more directly,
compared to the eigenvalue decomposition. This results in the better
global placements obtained by simulated annealing compared to
eigenvalue decomposition. In the rémainder of this thesis, simulated
annealing is used for global placement.

4.3 Detailed placement

In the following it is assumed that a global placement has been found.

Thus every module is associated with a placement grid cell. By
convention, there exists a stamp in the macro library that has a legal
position within the area represented by the placement grid cell.

The goal of detailed placement is to determine the optimal stamp for
the module and to place this stamp at the optimal legal position close
to a reference position. The reference position is the lower left corner of
the area represented by a placement grid cell. The size of the
placement problem is reduced by the fact that the area in which every
module must be placed is bounded by the global placement procedure.

A straightforward approach to solve the detailed placement problem is
to solve an independent problem for every grid cell. The disadvantage
of this approach is that the global effects of a local solution are
completely ignored. A better approach is to regard the problem in a
more global context. The strategy proposed here is based on a one



§4.3 Detailed placement 69

dimensional placement approach. The placement grid is regarded as a
number of strips, where a strip is a single row or column of placement
grid cells. For every strip, the optimal stamp size and legal position in
the direction of the strip are determined. For a row, the optimal width
and x-position and for a column the optimal height and y-position are
determined.

The algorithm proceeds by strip. The order in which the strips are
inspected is determined by the "saturation" of the strips. The
saturation is determined by the minimal size in the direction of the
strip of all modules that are placed in the strip, compared to the size of
the strip. The strips are processed in decreasing value of saturation.

As mentioned before, for every module placed in the strip, the optimal
shape and position must be determined, this is called "module fitting".
The area in which the module must fit is limited by an interval. The
lower bound is determined by the first free coordinate in the strip. The
upper bound is determined by the size of the strip minus the total,
minimal, size of the modules that must be placed in the strip to the
‘right or above the current module. Given this interval, the stamps, in
conjunction with the legal positions, are examined to find a stamp with
a legal position that fits into the given interval. If the module is
already partially fixed, only the corresponding stamps and legal
positions need to be examined.

If the module fitting fails, two escape procedures are at hand. The first
escape is to move the module to an adjacent, parallel strip that is not
already inspected. The module is placed in the optimal, available grid
cell in the strip. The optimal grid cell is defined as the grid cell at
minimal distance from the grid cell where the module was originally
placed. A grid cell is available if no module is placed at this grid cell,
and it has not been previously inspected. In this way, the displacement
of the module is limited, which, in turn, bounds the disturbance of the
placement.

The second escape procedure is used if the module can not be moved to
an adjacent strip. In this case, the module is removed from the
placement grid and put in an overflow list. After all strips have been
inspected, the modules in the overflow list are re-inspected and placed
on a best fit basis. The order in which the modules are placed is based



70 A Placement Strategy Chapter 4

on their shapes, the largest are tried first. The position where the
module will be placed is has a minimal distance to the originally
proposed grid cell position.

The global effect of the algorithm described above is that instead of
fixing the complete module at once, the module is fixed in two steps. A
complete determination of the exact stamp and legal position only
occurs if the module is fixed in two orthogonal strips. This leads to
better results than a complete fix of the module in one step. The
resulting algorithm is shown at the next page.

The complexity of the algorithm is determined as follows. Let M denote
the number of modules used in the design, S the maximum number of
stamps associated with a single macro, L the maximum number of legal
positions of a stamp in the given design window, and p the maximum
strip size for the strips of PG. If the legal positions are uniformly
distributed over the placement grid, a good estimation of the number of
legal positions for one placement grid cell and in one direction is given
o | |
F

The complexity of the first phase of the algorithm, the processing of the
strips, is determined by the number of times one module is inspected,
the number of stamps inspected for every module and the number of
legal positions inspected for every stamp. This leads to a complexity of
O(MSL).

In the second phase, the modules put in the overflow-list are inspected.
For every module all possible stamps and legal positions for every
stamp are inspected to determine the optimal stamp and legal position.
This takes worst case O(MSL) time. '

The practical performance of the detailed placement algorithm is
measured according to placement preserving characteristics, This
means that the quality of a placement computed by the global
placement procedures must be preserved by the detailed placement
algorithm. The quality of a placement is defined by the overall net
length and the maximal wire densities along the x- and y-axis.
Evaluation of these quantities before and after the detailed placement
algorithm is applied, gives a good indication of the placement



§4.3 Detailed placement "

—

2
3) for each stripe PG do
)

) Vstipe PG [compute Saturation(strip)] ;
)

Sort strips according to decreasing value of saturation ;

4 for each module € strip do
5) begin |
6) compute interval [ low, high];
7) if module partially fixed then
8) find optimal matching stamp and legal position ;
9) else
10) find optimal stamp and legal position ;
11) if no solution found then
12) move module to adjacent strip ;
) if module not moved then
) put module in overflowist ;
) adjust strip saturation and strip order ;
16) end ;
7) end ;
) f

it modules in overflow-list ;

Algorithm 4.2. Detailed placement.

preserving characteristics of the detailed placement. Some practical

results are denoted in table 4.5 and table 4.6. The designs used are the

" Random200 and 9Sym, which are introduced earlier in this chapter,

and are globally placed by the simulated annealing procedure discussed
in the previous section.



72 A Placement Strategy Chapter 4

wire densities

net length

gate array X-axis y-axis
before | after | before | after | before | after
_HDGA 25154 | 27677 91 96 125 112
UA6 42154 | 43247 113 114 106 106
TALO004 26989 | 30338 127 123 103 99

Table 4.5. Practical results showing placement quality pfeservi.ng by
detailed placement for design Random200 mapped onto
three different gate arrays.

The results summarised in table 4.5 show that for design Raﬁdom200
the detailed placement the net length increases, while the wire
densities show both improvements and distortions.

net length .wire densities : j

gate array X-axis y-axis

: before | after | before | after | before | after

HDGA 21567 | 20561 74 72 144 144
UA6 32431 | 31932 94 88 114 113

TALO004 25730 | 24499 125 125 90 84

Table 4.6. Practical results showing placement quality preserving by
detailed placement for design 9Sym mapped onto three
different gate arrays.

The results shown in table 4.6 reveal that for design 9Sym
improvements are obtained in all evaluated cases. This is achieved by
the fact that the macros used in the design are more uniform then in
the former design.

Concluding, the detailed placement procedure presented in this section
provides a fast and constructive method for the shape fitting problem
and is capable to achieve placement solutions with a quality close to
that obtained by the global placement procedure.



5. A Routing Strategy

In this chapter a general routing strategy for gate arrays is presented,
based on the gate array and design descriptions as defined in chapter 3.
The generality of the approach is justified by the fact that no
restrictions are introduced that may limit the range of application. By
consequence, this strategy applies to all routing problems defined by
appropriate gate array and design descriptions. The essence of the
presented strategy is to solve the routing problem by a divide and
conquer strategy. A first step in this approach is to solve the routing
problem in two stages, generally referred to as global and local
(detailed) routing.

For global routing, the design space is modeled by a simplified
description, based on a partition of the design space into small sub-
areas, and taking into account the predesigned wiring patterns of the
placed stamps. An important aspect of this model is that it allows to
apply various global routing algorithms with minor modifications.

A global routing solution determines for every sub-area which net must
be routed through this area and which boundaries must be crossed.
This interpretation allows to extend the divide and conquer approach. to
the detailed routing stage. In this stage, every sub-area defines a
switchbox routing problem with possible obstacles within the
represented area. The terminals of the nets, crossing the area’s
boundaries, may be fixed or floating, depending on the predesigned
wiring patterns of the placed stamps overlapping the area, and the
routing of nets in adjacent sub-areas. In this way, a global routing



Chapter 5 A Routing Strategy 75

solution defines a sequence of switchbox routing problems to be solved
in the detailed routing stage. The detailed routing is based on a maze
runner principle which is tuned to the general description of the design
gspace. Two important aspects determining the choice were the
presence of obstacles within the switchbox area, and the capability to
deal with any number of wiring layers.

Although the strategy outlined above provides a general routing
concept, it has also some disadvantages. The two most important are
the accuracy of the global router model used and the memory
requirements during the detailed routing stage. A possible solution of
both problems is to combine the two stages into one routing strategy.

A last topic of this chapter concerns the implementation of a parallel
detailed routing strategy. With the development of modern computer
architectures, the possibility to exploit inherent parallelism in the
various design processes comes within reach. Because in the
automated design process, much time is spent in the detailed routing
stage, it is the most evident stage to exploit the benefits of parallelism.

The next section presents a discussion of the global routing stage.
Main topic of this section concerns the modeling of the design space
used for global routing. The detailed routing is discussed in sections
5.2 and 5.3. The former section presents the general outline of the
detailed routing strategy, the latter outlines the tuned version of the
maze runner algorithm. In section 5.4 the combined routing strategy is
discussed. The last section, 5.5, of this chapter concerns the
implementation of the parallel routing scheme.

5.1 Global routing

A problem instance for global routing is in principle defined by a
design after placement and a netlist. However, for global routing, a
more suitable problem instance is defined by a rectangular grid of cells,
representing the design space. This grid is called the "global router
grid" and is denoted by GG with:

GG = GG(x,y) with: x=1,2,.,nc and y=1,2, ., ny 6.1



76 A Routing Strategy Chapter 5

The global router grid is "uniform", meaning that no distinction is
made between the principal wiring area and the area occupied by
placed stamps. The portion of the design space represented by a grid
cell GG(x,y) is described by the space-graph Gg(x,y) of the area.

The four boundaries of a grid cell are called the North, East, South and
West boundary. On any boundary a "wiring capacity” is defined that
denote the number of nets allowed to cross that boundary. The wiring
capacity of a grid cell GG(x,y) is denoted by:

WiringCap(x,y) = ( NorthCap, EastCap, SouthCap, WestCap ) (5.2)

A set of nets is defined for every grid cell, denoted by Globalﬁets. For
global routing, a net is defined by a net identification, denoted by Netid,
and a GlobalRoute which is a sub-set of:

GlobalWiring = {Terminal, NWired, EWired, SWired, WWired} 5.3)

The GlobalRoute of a net denotes if the net has a terminal in the area
represented by a the grid cell, and the cell boundaries crossed. A net
has a terminal in the area represented by the grid cell, if at least one
vertex of the space-graph Gg(x,y) has a corresponding net label fg. A
global net thus consists of the following tuple:

Net = ( Netid, GlobalRoute ) 5.4)
And a grid cell GG(x,y) is described by the following triple:
GG(x,y) = ( Gg(x,y), WiringCap, GlobalNets ) (5.5)

Initially, GlobalNets contains only those nets that have a terminal in
grid cell. The task of the global router is to find "global routes" that
connect all terminals of the nets, while satisfying the capacities on the
global grid cells. A "global route” of a net is defined by a set of grid
cells and the cell boundaries crossed. In case of gate array layout,



§5.1 Global routing 77

special attention must be paid to find solutions that provide an
acceptable balance between short net length and a smooth distribution
of the wires over the design space, to avoid wire congestion.

The advantages of the global router grid description of the design space
are the simplified problem description, the uniform description of the
design space occupied by placed stamps and the principal wiring area,
and the algorithms that can be applied with this problem description.

The simplification of the problem description is evident by the
association of small areas with every grid cell and the boundary
capacities which take into account various aspects of the detailed
routing. Some examples of these aspects are the number of wiring
layers available and the number of routing tracks available for wires
crossing a cell’s boundary.

The uniform description of the design space is important to achieve a
transparent routing through placed stamps. By incorporation of these
stamps into the global router grid, stamp areas are treated in the same
way as the principal wiring area. The predesigned wiring patterns of
the placed stamps are captured by an appropriate setting of the cell
boundary capacities, which is not simple. In this way, transparent
routing through stamps is achieved naturally. It also implies that at
this stage no restrictions are introduced that are based on any
assumption of the organisation of the principal routing areas in the
master slices used, as well as the wiring patterns of the placed stamps.

The generality of the problem description makes it easy to incorporate
various global routing algorithms with minor modifications

[Ting83, Li84, Parng89].

Although the global router grid has important advantages, there are
also a number of important disadvantages. The most important is that
the final interconnect result of the subsequent detailed routing stages
depends on the resolution of the global grid. The second is that the
capacity definitions are not trivial, as well as the updates on these
capacities as a net is routed across a boundary. The third disadvantage
is that, to exploit the transparency of a predesigned stamp, not only the
terminals of the stamp must be incorporated in the global grid, but also
the predesigned wires.



78 A Routing Strategy Chapter 5

A profound study concerning the definition of the global router grid is
presented in [Saeijs86]. The general conclusion resulting from this
study is that routing obstacles should preferably be placed at the
boundaries of the global grid cells, leaving the center of the cell regions
free for routing. Obstacles in this context concern any limitation of the
wiring possibilities. In the general context at hand, these limitations
may be caused by predefined wires, such as predefined power wires,
predesigned wiring patterns of placed stamps, design rules and local
routing cost functions. This indicates that the global grid definition can
not be defined by considering the master slice structure only. It is
design dependent. An almost trivial example of this situation occurs in
Sea-Of-Gates design, where no predefined, dedicated routing area is
provided. ;
A last issue in relation to the global routing grid concerns the capacity
definitions. A good estimate of the capacity values is essential for the
validity of the global routing result for the detailed routing stage. Too
high capacity values will result in local wire congestion and thus non
routable situations. On the other hand, too low capacity values will
result in unnecessary detours of nets and an increase of the overall net
length. The capacity values are determined by accounting for the
following four aspects. Firstly, the internal cell blockages may limit
the number of wires that can be successfully routed from one boundary
to another. Secondly, design rules may also cause limitations on the
number of wires that can be routed within a predefined region. This
effect is hard to capture in a fixed capacity definition, because wiring
limitations are determined by routes taken by other nets and this
information is not available until the detailed routing within a grid cell
is done. The same holds for the third effect on the capacities, which is
caused by the cost function. The cost function is defined to guide the
detailed routing, and determines more or less the wiring patterns that
are generated by the maze runner. It is obvious that different wiring
patterns have different effects on the overall number of wires that can
be routed within a region and is therefore also difficult to determine
before the actual routing is done. The fourth effect that determines a
good capacity estimation is the performance of the detailed router
itself, If, for example, the detailed router proceeds on a “one-net-at-a-
time" basis, the total wiring result in the region represented by a global
cell depends on the chosen net ordering. Further, if the router exploits
rip-up and re-route techniques, the number of nets that can be



§5.1 Global routing 79

completed within a predefined region can be increased. This implies
that in this situation higher capacity values can be chosen. In general,
the conclusion is that capacity values should also take into account the
wiring performance of the subsequent detailed routing stage. More
about this topic is presented in section 5.4, The general idea of the
discussion presented above is that a good and still generally applicable
estimation of global grid cell capacities is not as straightforward as
suggested in, for example [Burstein83]. In the approach presented
here, capacities are estimated by inspecting the cell’'s region for
positions where nets are allowed to cross a specific boundary. Although
this still-does not take into account all of the effects outlined above,
experiments indicate that these capacity estimates are sufficiently
accurate.

An important consequence of the global grid definition concerns the
general net modeling for global routing. In general, nets have multiple
terminals and every terminal is represented by a single global router
grid cell. However, in the general approach outlined above, a single net
terminal may appear in more than one grid cell, due to the
" predesigned, internal wiring patterns of the placed stamp in relation to
the global grid definition. This situation occurs if a stamp occupies an
area which is represented by more than one global grid cell, and a
terminal wire of this stamp is situated in more than one global grid
cell. In order to model this situation, a distinction is made between
fixed global wires and routed global wires. It is assumed that net
terminals appearing in more than one grid cell are connected by fixed
global wires which are allowed to form "loops' in the global net
representation. Because, by definition, terminal wires of a stamp are
complete, the global representation of these wires concerns a terminal
in every grid cell in which a part of the terminal wire is situated, and
these terminals are already connected by a fixed global wire. By
consequence, if, for example, a terminal wire segment crosses the
boundaries of four global grid cells mutually abutting, a global wire
loop is defined. A global router must take these situations into account.
The advantage of the fixed global wiring is in the reduction of the net
length of the wired connections. To account for the fixed global wiring,
the GlobalWiring as denoted in definition 5.3 is extended with the
following set:



80 A Routing Strategy Chapter 5

FixedWiring = {NFixed, EFixed, SFixed, WFixed} (5.6)

Given a design after placement, a global grid satisfying the
requirements as presented above, is determined by a straightforward
bipartition of the available wiring space. It is assumed that the
bipartition produces a uniform global router grid, which is obtained by
defining subsequent cut lines for the complete wiring space. The cut
lines are determined by using a point configuration of the placed
modules. A vertical cut line for a region is determined by the average
x-coordinate of all the points contained in the region. The analogous
criterion holds for a horizontal cut line. The partitioning terminates if
appropriately sized grid cell are obtained. The appropriate size of the
grid cells is partly determined by the placed stamps, because regions
that do not contain center points of placed stamps are not further
partitioned, and partly user controlled. The importance of a user
controlled cell size is in the time performance and memory usage of the
subsequent detailed routing stage. Because the detailed routing
algorithm has a linear time complexity, with respect to the available
wiring space, smaller routing areas increase the speed of the detailed
routing process. This aspect is discussed in more detail in the next
section. Further, the memory requirements are also directly related to
the global grid cell sizes by the wiring graph representation of the
routing area in a global grid cell. These features are discussed in more
detail in the following sections.

After the global router grid is determined, the capacity values are
determined as follows. For every global router grid cell GG(x,y) the
space-graph Gg(x,y) of the design space is built, according to the
procedure outlined in section 3.4. Next, the vertices of the space-graph
are partitioned into two disjoint groups, based on the net labels. Those
vertices that are occupied by nets indicate that the global grid cell is a
terminal cell for those nets. If a net has also connections crossing the
boundary of the cell, a fixed global wiring exists. As already outlined in
section 3.4, this situation occurs if an edge from a vertex on the
boundary has a connection status and refers to a vertex outside the
cell’s area. Outgoing connections also occur if vertices inside the grid
cell have equivalent vertices outside this area. The remaining vertices
of G are not occupied by a net and thus free for routing. Those vertices,
which are accessible and have also a free edge or equivalent vertex



§5.1 Global routing 81

outside the cell area, indicate the possibility to route across the cell’s
boundary and therefore add wiring capacity to the boundary crossed.
The total wiring capacity of a cell boundary is taken as the number of
vertices allowing to cross the boundary. This completes the global
router grid definition.

Given this problem instance, general global routing algorithms can be
used. As an example, the hierarchical wire router of Burstein
[Burstein83, Nuijten85] is implemented. Some experimental results
are shown in the table given below. In order to demonstrate the effect
of the transparency of the placed stamps, the estimates for net length
and wire densities after placement of the design are incorporated.

net length ' wire densities :
gate array X-axis y-axis
placed | routed | placed | routed | placed | routed
HDGA 4251 1794 28 24 40 12
UA6 5377 2874 29 20 36 18
TAL004 5056 4466 32 27 42 46

Table 5.1. Practical results comparing net length and wire density
estimates after placement and after global routing for
design Rdc50 mapped onto three different gate arrays.

The global routing results show the effect of the transparency of the
placed stamps, which results in a decrease of both net length and wire
densities. For placement the net length is estimated by half the
perimeter of the bounding box of a net, whereas for global routing the
net length is estimated by the global route of the net and the size of the
corresponding global grid cells. The wire densities along the x-axis are
estimated by the maximal horizontal span of the nets, and the maximal
number of nets crossing any (imaginary) vertical line. The analogous
holds for the wire densities along the y-axis. The differences in the
wire density definition are that after placement the terminals of the
nets are assumed at the center of the placed stamps, and after global
routing at the center of the corresponding global grid cell. An increase
of the wire density along the y-axis for gate array TALOO4 indicates
that the horizontal transparency of the stamps is very low. This, in



82 A Routing Strategy Chapter 5

turn, results in a smaller decrease of netlength, due to the detouring of
the nets around the placed stamps.

In addition to the net characteristics the routability of the design is
also indicated by the resulting global grid capacities. Ideally, the
completion of the subsequent detailed interconnect design is
guaranteed if no boundary capacity shows an overflow by the global
routes. Unfortunately, this guarantee can not be given, due to the fact
that the capacity values are estimates not accounting for all
phenomena given earlier. By consequence, the completion of the design
may fail, contrary to the predictions indicated by the capacities. An
example of the situation is shown in the table below, which compares
the completion of the design documented in table 5.1, against the
predicted routability supplied by the global routing.

boundary nets
gate array cz.ipacities completed
min | ‘max
HDGA 1 11 100 %
UA6 1 | 19 97 %
TALOO4 | -7 | 13 76 %

Table 5.2. Practical results showing routability prediction after global
routing compared to net completion rate for design Rdc50
mapped onto three different gate arrays.

A posgible solution for this problem is presented in section 5.3 and
consists of an iteration between global and detailed routing, where the
results of the detailed routmg are used to update the global grid
capacity values.

5.2 Detailed routing

A problem instance for detailed routing is called a "routing task", and
is defined by a global router grid cell GG(x,y). The "wiring space’,
represented by the grid cell, is described by a space-graph Gs(x,y), as
defined in chapter 2. The space-graph is built from the master slice
and the patterns of the placed stamps that overlap the wiring space.
The global net wiring specifies which nets must be routed within the



§5.2 Detailed routing 83

limited wiring space. Further, the boundaries, at which the nets must
have a terminal, are defined. These boundary terminal positions may
be undefined or fixed due to previously wiring in adjacent grid cells. If
the terminal positions are undefined, the optimal terminal positions
must be determined by the detailed router.

Proceeding by global router grid cell, the detailed wiring of a chip is
completed if all wiring problems for every grid cell are solved. The
order in which the grid cells are processed, is determined by the
boundary capacity values of the grid cells. These capacity values
indicate the difficulty of the detailed wiring problem to solve. The
larger the overflows, the more difficult the wiring problems to solve.
The most difficult wiring problem is solved first, having the maximum
degree of freedom, concerning the boundary terminal positions. The
easiest problems are solved last, having most of the boundary terminal
positions fixed, due to the previous wiring in the adjacent grid cells.

The most important advantages of this detailed routing scheme are:
Firstly, the search space for detailed routing is kept small. The size of
“the search space is independent of the space occupied by a design and
can be user controlled. Compare for example, a strict net-oriented
approach with the search space defined by the bounding box of the net,
or taking rows or columns of global router grid cells. In these
situations, the wiring space depends on the area occupied by the
design, and is difficult to control. Secondly, the freedom, to choose the
order of the grid cells, has a positive effect on the success of the
detailed routing process.

A disadvantage of the routing scheme is that the boundaries introduce
side effects that influence the success of the detailed routing within a
small area. In practice, this means that a wiring solution can not
always be found within the restricted wiring space of a global router
grid cell. One solution that solves this problem is to enlarge the wiring
space, or "routing scope”, by redefining the global router grid. This, so-
called "scope-enlarging” defines a larger search space by combining sets
of global router grid cells into one super grid cell. The global net wiring
is updated accordingly. The super grid cell defines a new routing
problem in the same way as the original global grid cells. The detailed
router can now solve the remaining wiring problems in the larger
wiring space. The disadvantage of the larger wiring space is partly



84 A Routing Strategy Chapter 5

compensated by the wires constructed at earlier stages of the detailed
routing process. These wires introduce more obstacles and thus reduce
the search space. '

The sequence of detailed routing problems to be solved are switchbox or
switchbox-like wiring problems, depending whether the boundary
terminal positions are fixed or undefined. Unfortunately, most
switchbox routing algorithms are not capable to solve this problem.
The main shortcomings of these algorithms are in the number of wiring
layers required and the possibility to handle obstacles in the wiring
space. The same reasons hold for channel routing algorithms. These
algorithms have an extra shortcoming, namely that they do not
guarantee to find a solution, even if one exists, if the wiring space is
fixed. This holds also for line search algorithms. Other difficulties are
introduced by the cost functions and design rules that must guide the
wiring design. A further difficulty is introduced by the equivalence
relations between vertices in the space-graph, which can lead to wiring
jumps.

These considerations lead to the maze runner or Lee-router as the most
appropriate algorithm in this context. Before the algorithm is
explained in more detail in the next section, a further refinement of a
single router task is given.

Given a space-graph Gg(x,y) and the global net wiring, the wiring
problems to be solved by a detailed router can be partitioned into two
types. The first type is determined by the internal wiring problems.
These problems are defined by two or more wiring sets that must be
connected, and that are already present in the window, because of the
fixed wiring of different stamps placed within the window, or
previously routed connections. The second type of wiring problem is
the boundary problem. In this case a wire must be constructed that
connects a terminal at a specified boundary. Given the space-graph
Gs(x,y), a set of vertices in Gg(x,y) can be identified that solve this type
of problem. This means that if a wire is constructed to one of these
vertices, the corresponding boundary problem is regarded as solved.
For convenience, a separate set for every boundary is maintained. The
boundary vertices of the space-graph are called the "trivial boundary
solvers". Not trivial boundary solvers are vertices of Gg(x,y) having
equivalent vertices outside the wiring space. Because the equivalence



§5.2 Detailed routing 85

relation defines a connection of some sort between the equivalent
vertices, a connection, from the vertex within Gg¢(x,y) to one outside
Gg(x,y), must cross a boundary, and thus is the vertex in Gg(x,y) a
boundary solver.

Before a wiring algorithm is applied, the vertices of Gg(x,y) are
partitioned, based on the net labels. For every net, a separate set of
vertices is maintained. Vertices that are free for use are inspected for
boundary solving and updated in the according set for every boundary.
The next step is to inspect the vertices of the nets to determine if
boundary problems given by the global net wiring are already solved,
due to wiring in the adjacent grid cells. The remaining problems are
those wiring problems to be solved by the detailed router.

5.3 The modified Lee-algorithm

The original Lee-algorithm was introduced in 1961 [Lee61] and has
gained a much attention since. Suggested improvements concern the
. memory requirements and certain accelerator schemes.

In the present context, the memory requirements are not the primary
concern, due to the limited wiring space in combination with the
selective space-graph expansion presented in section 3.4. The space-
graph is chosen as the main data structure on which the algorithm
operates.

The problem addressed in this section concerns the selection of start
and target points. The original algorithm finds an optimal cost path
from a given start point to a given target point. However, practical
routing problems concern multi-terminal nets and the terminals of the
nets are not single points or vertices, but wire segments. This holds
especially for situations with transparent routing through predesigned
modules. In this situation, the choice of start and target points is not
trivial and determine the success of the path search algorithm. The
situation becomes even more difficult if design rules must be taken into
account. If the algorithm fails to find a path, some guarantee must be
given that no path can be found for any combination of start and target
points, which is not trivial.

The solution to the problems outlines above, is based on the



86 A Routing Strategy Chapter 5

acceleration schemes proposed in the literature. The main idea of these
schemes is to speed up the path search by preferring path extensions
towards the target, or limiting the search space by starting the path
search from both start and target point [Rubin74, Soukup78, Korn821.

The first type of acceleration involves a modification of the cost
function. This is not preferred in situations where the cost function is
user defined, because the relation between the user supplied cost and
the behaviour of the algorithm becomes unclear. The approach chosen
is to initiate the path search from both start and target point. In the
literature, the distinction between start and target vertices is made
explicitly, by using different lists for start and target vertices. The
reason for this explicit distinction is to retain the minimal amount of
data required. However, in the present context, this limitation is not
necessary. The main difference between the approach presented in this
section and those presented in literature, is that the distinction of
vertices according to wavefront is made implicitly. In fact, the labels
needed to distinguish between the different wavefronts are already
introduced in chapter 2, with the definition of the nets. Recall that for
every net the vertices have an associated wiring set label, indicating
whether or not they belong to the same wiring set. All vertices with the
same wiring set label are connected, independent whether this is
reflected in the current portion of the space-graph. By consequence, the
task of the routing algorithm is redefined to find the optimal cost path
that connects two vertices of the same net but with different wiring set
labels. ‘

The necessary modification of the algorithm is very small in the sense
that the elementary actions taken by the algorithm must inspect the
wiring set labels. In this way, the main behaviour of the algorithm
remains unaltered. The main loop of the algorithm is outlined in
algorithm 5.1.

Note that only one list is used for possible extensions from both start
and target vertex. The basic actions taken by the algorithm are
captured by the routing primitives expand(v) and extend(v,ey). The
primitive expand(v) updates all possible extensions from a vertex v and
Eq(v), together with their cost, in the candidate list. The outline of this
primitive is given by algorithm 5.2. An actual path extension is done
by extend(v,ey), which extends a path from vertex v in the direction



§5.3 The modified Lee-algorithm 87

1) Input: S ; /* set of vertices */

2) CandidateList = & ; Cost = 0;
) Ves [expandy) |;

4) while Candidatelist = & do

wW

5) begin
6) (v, ey, Cost) = cheapest( CandidateList ) ;
7) if extend(v,e,) then
8) begin
9) trace back path ;
10) goto line 14 ;
11) end
12) expand((n=v+ey));
13) end
14) remove unused paths ;

Algorithm 5.1. Outline modified Lee-algorithm.

denoted by e,, to a neighbour vertex n, denoted by: n=v +e,. This
primitive also indicates if two different wiring sets are merged. The
outline of this primitive is given by algorithm 5.3.

The proof that an optimal path is found by the algorithm is trivial
because at any time a cheapest expansion is taken from the list of
possible extensions.

Given the routing algorithm as presented by algorithm 5.1, the key
notion is that the set S, containing the initial vertices, is not required
to contain exactly one start vertex and one target vertex to be
connected. The generality of the algorithm is achieved by putting all
vertices already assigned to the net in the set S. In this way, S may
contain vertices of any number of wiring sets.

This observation is crucial for the solution of the boundary problems, as
defined in the previous section. If a net must cross a boundary, all the



88 A Routing Strategy Chapter 5

1) V={v} y Eav);
2) for each ve V do
3) if vin routing window then

4) for all edges ey € v do

5) - if fs(ew) = INITIAL then

6) if fhet(v) =FREE v

7 [ fret(¥) = net(®) ~ fusot(¥) # fuser(n) | then

8) if fy(ew) = O then

9) if fost(ew) < INFINITE then -

10) CandidateList = CandidateList (_,
11) (v, ey, Cost +fost{ow) ) ;

Algorithm 5.2. Outline routing primitive: expand(v).

vertices in the corresponding boundary set are assigned the net label of
the net under construction. Further, a wiring set label, not used by the
net, is assigned to these vertices. All the vertices of one boundary get
the same wiring set label, in order to prevent unwanted connections
between different vertices of one boundary. Vertices of different
boundary sets obtain different wiring set labels, in order to allow
boundary to boundary connections. Next, these vertices are
incorporated in the start set S, and the routing procedure is entered. If
a boundary problem is solved, the vertices of the path found are
eliminated from the corresponding boundary set and the unused
vertices are blocked to prevent additional paths to the boundary, and
for future use of boundary problems for other nets. The vertices of
boundary sets, not used by a net, are also blocked, to prevent them of
being used for connections while eliminating the possibility of solving
boundary problems for other nets.

By its very nature, the algorithm finds exactly one optimal path,
connecting two wiring sets represented by the vertices in S. By
updating the vertices of the found path in the set S, subsequent
reentering of the procedure will give additional paths for unconnected
wiring sets until all wiring sets are connected or no path can be found.



§5.3 The medified Lee-algorithm 89

1) fs(ew) = ROUTER;
2) if faet((n=v+ey)) = FREE then

3) begin

4) V ={n} y Eqn);

5) for vV, v do

6) begin

7) fret(Vi) = fret(V) ;
8) fwset(Vi) = fwset(V) ;
9) return ( FALSE ) ;
10) end

11) end

12) else

13) return (TRUE) ;
Algorithm 5.3. Outline routing primitive extend(v, e,,).

Because all vertices of S are used for path searching, the proof that no
path exists if no path has been found, independent of the choice of start

and target vertices, is trivial.

5.4 Combined global and local routing

In this section, a combined global and local strategy is presented. The
problems that are solved by this approach are the definition of the
global wiring capacities at the global grid cell boundaries, the scope-
enlarging needed by the local routing to complete unfinished nets, and
the global rerouting of incomplete nets.

With respect to the global wiring capacities, recall that these capacities
should indicate the number of wires that can be routed across the
associated boundary. It will be clear that these capacity values are,
besides others, determined by the capability or "intelligence" of the
detailed router to solve the presented routing problems. Including a
feedback of the actually solved problems has the advantage that a fair



90 A Routing Strategy Chapter 5

indication of the capacity values is obtained, incorporating the wiring
capability of the detailed router.

A second advantage of the feedback relates to the limitation of the
wiring space. The basic idea of the detailed routing was to enlarge the
wiring space to solve unfinished nets. However, the larger the wiring
space, the larger the portion of the space-graph that must be expanded
and the advantage of the hierarchical data structure is lost. Further,
the detailed router has a complexity proportional to the wiring space,
which means a performance drop.

Incorporating both global and detailed routing into one common
strategy solves the above mentioned problems. The approach is to
embed both algorithms into an overall routing framework. In this way,
the algorithms can be replaced by others, without altering the essence
of the strategy.

The initial global wiring is done as before, with a preferably good guess
of the wiring capacities. At the subsequent detailed routing phase, the
global grid cells together with the associated global net wiring and the
resulting boundary capacity values define the detailed routing tasks to
be solved.- Now, after the detailed routing of one global grid cell is
finished, the wiring result is inspected for solved and unsolved routing
problems to update the associated boundary capacities. An outline of
the capacity update is presented in algorithm 5.4.

When all tasks have been processed by the detailed router, the
remaining nets are returned to the global router, which determines a
new global route for these nets with the updated boundary capacity
values. This process continues until all nets are completed or no net is
completed during the last iteration through the detailed routing phase.

Table 5.3 shows some results obtained with an expenmental
implementation -of the combined routing strategy.

As shown in the table, the combination of both routers provided a
complete solution for design Rdc50, where the detailed router alone
was not able to complete the interconnect design. This result also
shows that the solution is achieved with less memory usage and shorter
design time than the detailed router. The performance improvement is



§5.4 Combined global and local routing 91

1) Input: #problems ; /* routing problems solve */
2) Input: #solved ;
3) Input: capacity ; /* original capacity guess */

4) Output: capacity ; /* adjusted capacity guess */

[* routing problems solved */

)

5) if #solved =#problems then

6) capacity = max ( capacity, 0) ;

7)

8) capacity = min ( capacity, —#solved ) ;

else if #solved = 0 then

9) else
10) capacity = #solved — #problems ;

Algorithm 5.4. Qutline capacity update for a single cell boundary.

router nets run memory
completed | time (sec.) | usage (Kbytes)

detailed 97 % 1358 3514.1

combined 100 % 850 117.5

Table 5.3. Practical results showing performance of detailed and
combined routing strategies for design Rdc50 mapped onto
gate array UA6.

the direct result of the limited scope enlarging during detailed routing
which limits the size of the space graphs built (memory) and the search
space (time).

5.5 Concurrent detailed routing

With the introduction of modern computer architectures, the
possibility to exploit the inherent parallelism in the layout design
process becomes interesting. Because most time is spent in the actual
wiring design, the detailed routing is the most evident process to
exploit the benefits of parallelism.



92 A Routing Strategy Chapter 5

Before a parallel execution scheme of the detailed routing process can
be presented, the major data streams within the detailed routing
process must be examined. Due to the organisation of routing tasks
within the detailed routing process, the obvious choice is to execute
these routing tasks parallel. The detailed router as presented in this
chapter, operates on a set of global data and private router data, as
shown in figure 5.1.

Task
Routing

RW

Private Task
Data

Figure 5.1. Main data streams within the detailed routing process. RO
stands for read only and R/W for read and write data
access. The Design Data can be further partitioned into
placement data, which is accessed on a read only basis, and
net list data, which is accessed on a read and write basis.

The global data is partitioned into gate array, design and net routing
status data. The gate array data represents the basic gate array
master slice structure together with the macro library, containing the
predesigned wiring patterns. The router accesses this data on a read
only basis, no information is changed during the routing process. The
design data describes the placement of the stamps used in the design



§5.5 Concurrent detailed routing ' 93

and the net-list definition. The placement data is also accessed on a
read only basis, especially for the mapping of the correct wiring
patterns onto the correct positions in the section of the space-graph
that is built for the detailed routing. The net-list data is accessed on a
read/write basis. The routing status of every net is- maintained
globally, and concerns the already wired connections and the wiring
sets to be connected. If the completed nets are stored in the design
data base at the end of the routing procedure, the net-list data can be
regarded as read only during the wiring design. However, it is
preferred to maintain the completed nets in a database separated from
the incomplete nets. A good solution is to store the completed nets in
the global design database. The last data structure concerns the
private router data. The most important structure in this data
concerns the space-graph used by the detailed router for the actual
wiring design.

The available machine architectures can be partitioned into two major
classes based on the memory available for every single processor. The
two classes are called "shared memory" processors and "distributed
"memory" processors. The type dictates how an application must be
implemented. In case of shared memory, the global data is available at
all times for every processor. If the data is accessed on a read only
basis, no special care must be taken. The write access on global data
must be controlled by a semaphore mechanism to guarantee data
consistency. In a distributed memory organisation, every processor
operates on a private memory. All data required by a process must be
stored in the respective processor's memory. This is independent
whether the data is accessed for read actions only, or for read and write
actions. The major drawback of this structure, in case of the detailed
routing procedure as presented in this chapter, is that the most
important data, the net routing status, must be distributed over all the
available processors and the different processors must communicate in
order to keep the data consistent. The conclusion is that the shared
memory architecture has a great advantage over the distributed
memory architecture if processes need large global data structures
which are accessed intensively. In the remainder of this chapter, the
parallel execution of the detailed routing tasks is therefore explained
for a shared memory computer architecture.

Given the organisation of data, as presented in figure 5.1, the parallel



94 A Routing Strategy Chapter 5

execution of routing tasks requires that every task running on a
processor has its own private router data. This implies that for every
processor a separate space-graph must be built for subsequent routing.
In general, routing tasks are data dependent by the definition of a
routing area and a set of nets that must be routed within the area.
These data dependencies must be eliminated or controlled for parallel
processing. The first data dependency is created by the routing area. If
space-graphs for different routing tasks have a non empty intersection,
label changes on vertices and edges may influence corresponding labels
in other space-graphs. The graph intersections are caused by the
equivalence relations between vertices, design rule sets for edges, and
boundary intersections. An extra constraint is added by the linear
order in which the routing tasks must be processed according to their
degree of difficulty, as mentioned in section 5.2. If this order is strictly
maintained, the parallelism that can be exploited is limited by the
number of tasks having the same degree of difficulty. The second data
dependency between different routing tasks is given by the nets that
must be routed per task. In order to avoid the creation of loops, a net
may not be routed in different tasks at the same time.

The data dependencies between different tasks are used to define an
execution schedule. A schedule consists of a set of "time-slots", which
are sequentially processed. A time-slot is defined by a set of routing
tasks that can be processed in parallel. The data dependencies
introduced by the nets are not taken into account for the schedule
definition. The reason is that if nets are taken into account, the
parallelism that can be exploited depends on the net length in the
design under construction. This can lead to a purely sequential
schedule in case of very long nets such as clock or reset nets.
Therefore, exclusive routing of nets is controlled by semaphores and the
net data dependencies are not considered for the schedule definition.
The schedule is defined according to the linear ordering of the routing
tasks to degree of difficulty.



-§55 Concurrent detailed routing 95
Design 9Sym | Random200a | Random200b | Logop |

routing tasks 60 143 151 757
scheduled time 19 38 43 193
speed increase | 3.16 3.76 3.51 3.92

run time (seq) | 1684 2881 2831 29515

run timeé (par) 668 977 993 10533
timed increase | 2.52 2.95 2.85 2.80
overhead 0.64 0.81 0.66 1.12

Table 5.4. Evaluation of overhead during schedule execution on a 4-
processor computer with shared memory.

In order to evaluate the performance increase, some examples are
shown in table 5.4. The table summarises the actual execution of a
single schedule compared to the theoretical execution time of the
schedule. The execution time of a single routing task is set to unit
time. The results indicate that the amount of overhead during the
- execution of a schedule is in the order of one processor.



6. GAS: an evaluation

This chapter presents an evaluation of the most important aspect of
GAS, which is its capability to adapt to various gate array families.
Because this capability is the direct result of the generalised approach
to layout modeling incorporated in the system, the success of this
approach is directly related to the performance of GAS with respect to
this adaptation procedure. The performance in this context is
measured in terms of the time required to derive a GADL description,
the amount of data required to capture the essence of a gate array
family and design mapped onto a gate array, and the performance of
the layout design phase.

Up to now, six gate array families have been evaluated to demonstrate
the extreme flexibility and performance of GAS. These gate arrays
differ in many aspects, such as the number of interconnect layers
available for customisation, the organisation of the wiring area and the
logic family.

In the next section a brief outline of the gix gate arrays is presented.
The following two sections concern a discussion of the experimental
results obtained by adapting GAS to these gate arrays.

6.1 Evaluated gate arrays

The gate arrays presented in this section reflect the rapid changes in
gate array layout design during the last years, which has lead to the
introduction of the Sea-Of-Gates gate arrays. Due to these
developments, the presented gate arrays were not at an equally mature



§6.1 . Evaluated gate arrays 97

Gate Array status #imacros | #gates | year
UA6 commercial 20 1260 82
GA440 educational 52 440 83
TALOO04 commercial 22 500 83
GATE FOREST | experimental 10 > 50K 86
HDGA experimental 5 > 20K 89
OCTAGON experimental 0 > 50K 89

Table 6.1. Global overview of the evaluated gate arrays.

level at the time they were evaluated. A global overview of the used
gate arrays is given in table 6.1. The mature status of the older gate
arrays is clearly shown by the size of the macro library. For the three
Sea-Of-Gates examples, listed at the bottom, only a very small macro
library was used for evaluation. The reason for this is that these gate
arrays were still under development at the time they were evaluated.
Also shown in table 6.1 is the effect of the maturing of the silicon
-integration technology over the last years by the increase of the
number of available gates. In the remainder of this section the core
patterns of the six gate array families are discussed in the same order
as they are listed in table 6.1. The macro libraries are not shown, the
reason is that the wiring patterns of the stamps are mostly regarded as
confidential information. E

UA6

Documentation: see [AMI82].

Customisation: 1 metal layer, contacts to polysilicon and diffusion are
preprocessed.

Core pattern:  see figure 6.1.

Note the use of oxide isolation that creates the transistor islands. In
the right structure the gates of the p- and n-transistors are connected.
Therefore the left structure is provided for an efficient transmission
gate implementation. Routing in channels is preferably horizontal.
For vertical connections the polysilicon underpasses are provided to
avoid channel blocking. Channel switching can be done by using the
polysilicon feedthroughs in the transistor areas. The master
architecture consists of alternating transistor and channel rows. The



98 GAS: an evaluation Chapter 6

Figure 6.1. Basic core cell layout pattern of UAS.

functions in the macro library range in complexity from an inverter to a
master-slave d-type flip-flop with set/reset. The macros are designed
for manual layout design, which is reflected by the terminal
connections that are available at the top and bottom of the stamp, thus
at the channel boundaries. Special stamp wiring patterns are provided
such that adjacent stamps may have overlapping power connections.

GA440

Documentation: see [Leenstra83].

Customisation: 1 metal layer, contacts to polysilicon and diffusion are
preprocessed.

Core pattern:  see figure 6.2.

Compared to UA6, note the use of gate isolation that allows the use of
transistor rows rather then transistor islands as for UA6. An other
important difference is that the gates of the p- and n-transistors are
not connected. The required gate connections must be made in metal,
which causes saturation of the internal area and a reduction of the
routing transparency. The master architecture is again row oriented,
with alternating channel and transistor rows. The functions in the
‘macro library range from a simple inverter to a master-slave d-type
flip-flop with set/reset and some complex logic functions. As with the



§6.1 Evaluated gate arrays 929

4 drain/ L gate
Mig ety ¥y _JL_;L{__[‘L_S:JE]_I LIM} soucce [ 7 omoe

¥ssl drain/ Fpu
B moB

Figure 6.2. Basic core cell layout pattern of GA440.

previous gate array, the macros are designed for manual layout design.
The terminals of most macros are available at the top and bottom of the
macros,

TALOO4

Documentation: see [TI83].

Customisation: 2 metal layers, contacts to gates are in the fixed
predesigned stamps.

Core pattern:  see figure 6.3.

Compared to the previous gate arrays, the most important difference is
in the logic family implemented. The basic core cells are 4-input nand
gates for ECL. This makes this gate array difficult to compare to the
previous two. The master architecture is in principle column oriented,
but, due to the power definition, an island like structure is created. It
is not a true island structure in that islands of gates are surrounded by
wiring area. An island consists of two columns of ten gates, mirrored
around the y-axis. The functions in the macro library are more
complex compared to the previous two gate arrays, due to the 4-input
nand gate as basic core cell. The design of simple gates such as 4-input
nands is left to the designer. Also in this case, the terminals of the
macros are available at the channel boundaries.



100 GAS: an evaluation : Chapter 6

Figure 6.3. Basic core cell layout pattern of TAL0O4.

GATE FOREST

Documentation: see [Beunder87].
Customisation: 2 metal layers, programmable vias and contacts.
Core pattern: . see figure 6.4.

This is the first of the Sea-Of-Gates gate arrays presented. The core
cell is developed for routing transparency and is not optimised for area
utilisation. For example, the track changing capability is seen as an
important aspect of the core cell layout. In principle the core cells
overlap, which makes it difficult to describe the master by a partitioned
floorplan. The master architecture is typical for a Sea-Of-Gates gate
array. Alternating rows of p- and n-transistors are used. Adjacent
rows are mirrored for area reduction by abutment of two p- or n-
transistor rows. The intention was to provide a design specific power
routing, but for the evaluation fixed power tracks were defined. The
macro library is, as for the other CMOS gate arrays, limited to
functions of medium complexity, ranging from inverter to flip-flop. The
library reflects the fact that automated layout design is done by the
restriction to a uniform height for all wiring patterns. In the early
version used, no attention was given to routing transparency of the
macros. All internal wiring of the macro was done in first metal and
the power connections were large wired loops, which did not seem to be



§6.1 Evaluated gate arrays 101

aiat

Figure 6.4. Basic core cell layout pattern of GATE FOREST.

necessary with respect to the required current.

HDGA

Documentation: see [Veendrick90].
Customisation: 2 metal layers, programmable vias and contacts.
Core pattern:  see figure 6.5. '

This very recently developed pattern is designed for efficient
implementation of both memory structures and logic. The non-
orthogonal gate wiring allows for very dense transistor rows. The
master architecture is that of a common Sea-Of-Gates gate array with
the same characteristics as GATE FOREST. As with GATE FOREST,
the adjacent rows are mirrored for space saving by abutment of p- and
n-transistor areas. The power connections occupy predefined tracks in
the bottom metal layer. The advantage of the power in the first metal
layer is that the necessary connections to the transistors do not
introduce blockings in intermediate interconnect layers as for the
GATE FOREST. The macro library is of the same complexity as the
GATE FOREST, although less extensive. The wiring patterns have
again a uniform height to facilitate the automatic placement. Special
care has been take to provide sufficient transparency of the
predesigned wiring patterns. The approach chosen here is different



102 GAS: an evaluation Chapter 6

Q QL QAR

' b 2ym
/ |

prOS —+ 28um
\[ 3 2um

d0aaadadad
Qi SR L 2um
nM({ li?um
Jl2um

daaddddaaaadd

substrote
contacts

Figure 6.5. Basic core cell layout pattern of HDGA.

from the other gate arrays, by the use of straps for internal macro
connections.

OCTAGON

Documentation: see [Koopman90].
Customisation: 3 metal layers, programmable vias and contacts.
Core pattern:  see figure 6.6.

A last Sea-Of-Gates pattern is presented by the OCTAGON gate array.
It differs from the previous two Sea-Of-Gates patterns by an
alternative master and core cell architecture. The core cells are islands
of both p- and n-transistors, separated by oxide isolation. Gate
isolation is used for individual p- and n-transistors. The master
architecture is that of a chess-board by organising the transistor
islands such that p- and n-transistors are adjacent. The power
connections are predefined and occupy tracks in all three metal layers
available. A macro library was not provided, a macro-compiler is under
development that will generate design specific macro libraries.



§6.2 Gate array & design characterisation 103

Zis s
Nl
G
N
Hilais

Figure 6.6. Basic core cell layout pattern of OCTAGON.

6.2 Gate array & design characterisation

The gate array master slices discussed in the previous section have all
been described in GADL, together with a standardised macro library.
The actual GADL descriptions are not discussed here, for a profound
discussion of the various aspects of GADL the reader is referred to
[Lippens87] and [Boogers90]. For an evaluation of the time required to
to derive a gate array and macro library description in GADL, two
aspects must be considered. The first aspect concerns the description of
the actual structure required to construct correct designs, the second
aspect concerns the fine tuning of the GADL descriptions in order to
achieve a desired layout design performance. Given the master slice
‘structure, a typical GADL description required about one day for an
experienced GADL user. More time is required for the description of a
macro library, depending on the size of the library. A typical example
with six macros, each having two stamps, may require about one week.
The fine tuning of a GADL description requires a specification of the
cost function, to guide the detailed interconnect design. This is not a
trivial task because cost indications may be supplied at the core cell
level, the master slice level and the stamp level. Most of the time
required for fine tuning is in the definition of a design implementation
to monitor and to deduct the required cost specifications, which are not
only specific for the design monitored. However, practical results



104 GAS: an evaluation Chapter 6

indicate that the time spent in fine tuning is in the range of one to two
weeks. Concluding, the introduction of a new gate array family takes
about one month, which is still neglectable compared to the effort that
must be spent if a software redesign would be required.

master | EQ-sets | DR-sets

Cate Aray | (Khytes) | (bytes) | (bytes)
UA6 14 144 0
GA440 3 59 0

TALQO4 12 0 1742
GATE FOREST 4 63 0
HDGA 3 1406 45 ~

OCTAGON 16 673 80

Table 6.2. Evaluation of data stored for gate array master slice
description.

The amount of data required for a characterisation of the six gate
arrays is summarised in table 6.2. The first column lists the amount of
data required for the complete master slice description. The data
includes the description of the core cells, the master slice floorplan and
the predefined wiring on the master slice chip. The description of the
equivalence relations and design rule sets are not included in the
master slice description, but listed separately in the following two
columns. The feasibility of the hierarchical description of the master
slice by repetitions of the basic core cell patterns is evident. Also
shown is that the amount of data required is related to the core cell
structures described. The difference between UA6 and GA440 is
caused by the complexity of the core patterns, and the difference
between GA440 and TAL(0O4 is caused by the more complex power net
structure for TALOO4. As expected, regular master slices require in
principle less data than the channel gate arrays. For most Sea-Of-
Gates patterns, a single core cell is sufficient to describe the complete
floorplan, leading to a very small amount of data compared to the size
of the gate array. The fact that the core patterns for the OCTAGON
master slice are more complicated than those for the HDGA and the
GATE FOREST is also reflected in the table. The rather large size of
the equivalence table for HDGA is caused by the fact that equivalence



§6.2 Gate array & design characterisation 105

sets are used to describe internal stamp connections with straps.

In order to compare the different macro libraries of the different gate
array libraries with respect to the description aspects, a standard
library is created. The libraries contain a set of six different macros
which are described for the five gate arrays. Due to the specific master
glice structures the macros may have more than one stamp that
implements the given function. For a correct comparison, the results
shown in table 6.3 below, denote the average amount of data required
for a single stamp of every macro.

Gate Array dff | exor | inv | nand2 | nand3 | nand4
UA6 638 339 | 135. 171 198 283
GA440 371 506 | 155 207 234 276
TALOO4 785 556 | 247 257 282 299
GATE FOREST | 1665 | 967 | 377 560 727 806
HDGA 3196 | 932 | 547 662 766 838

Table 6.3. Data amounts in bytes stored for a single stamp description.

The summarised results indicate that the amount of data required for
the stamp descriptions is kept small by the use of space-graph updates,
which are explained in chapter 3. The differences in the amount of
data required partly reflect the suitability of the master slice structure
to implement the function, and partly the effect of multiple
customisation layers. The first two gate arrays, UA6 and GA440, have
one customisation layer with fixed contacts to polysilicon and diffusion,
whereas the others have two interconnect layers with programmable
vias. Due to to the nand structures on the TAL004 gate array, the
amount of data can be kept small because most functions fit easily on
this gate array. The rather large amount of data required for the
stamps on HDGA is caused by the fact that the earlier mentioned
internal stamp connections with straps are described by equivalence
updates in the stamps.

A last aspect concerns the evaluation of the amount of data required for
the description of actually implemented designs.



106 GAS: an evaluation Chapter 6

Gate Array | initial | placed | routed | netlength un:’tyiil‘;;th
HDGA | 3253 | 3199 | 12695 | 3128 3
TALOO4 | 3254 | 3226 | 11291 | 3098 2.6
UA6 3255 | 3409 | 14418 | 2536 4

Table 6.4. Evaluation of design data (in bytes) of Rdc50 for three gate
arrays.

An indication is given in table 6.4, summarising some experimental
results for a single design, mapped onto three different gate arrays.
The results, shown in this table, indicate that the amount .of design
data is reasonably under control in relation to the total interconnection
length of the design. The first column shows the amount of data
required for an initial design, before placement and routing. The
reduction in data achieved after placement, in case of gate arrays
HDGA and TALQO04, is caused by the fact that default stamp names are
used to indicate that the design is not placed yet. The total net length
denoted in the fifth column includes the vias used for interconnections
between different routing layers. The number of routing layers
penetrated by a via is taken as the length of the via, and is added to the
net length. The "bytes per unit net length" relate the total net length
with the additional amount of bytes, used for a design after placement,
compared to a placed design .after routing of the required
interconnection patterns. Evaluation of other designs confirm the
results summarised in table 6.4. Although larger designs show a light
increase of the number of bytes per unit net length, results obtained up
to now do not exceed the 10 bytes per unit net length.

6.3 Layout design

For a flexible system as GAS, it must be expected that the flexibility
must be paid with a performance loss during layout design.
Performance in this context is usually given in terms of cpu-time and
utilisation of the available design space. In the ideal case, a truly
flexible system should perform equally well for different gate arrays.
However, the key issue is how designs pose equally difficult layout
design problems for different gate array families. Without claiming to
be complete, the following aspects must be considered for a correct



§6.3 Layout design 107

interpretation of the layout design performance:

1) Master slice structures are not equally well suited to implement
designs, and may be designed for efficient implementation of specific
designs. Two examples that influence a design implementation are
the routing transparency of the core cell patterns and the
accessibility of the transistor terminals.

2) The degree of difficulty of a design implementation depends on the
functionality of the suplied macro library. The wiring patterns of
the stamps influence the routing in the same way as the core cell
patterns. Badly designed stamps cause unnecessary routing
limitations and therefore incomplete designs.

3) Design parameters such as aspect ratio and net weights also
determine the completion of a design implementation.

4) If routing guidance is supplied, this guidance must be at an equal
level for the gate arrays compared.

Table 6.5 summarises the design data of a medium-sized random logic
design, implementing the function y = 5x + 1, with the input value (x)
limited to eight bits.

The experimental data shows that, despite the differences of the gate
array master slice patterns and macro libraries, the performance of
GAS is (nearly) the same. This justifies the generality of the presented
placement and routing strategies.

For low area ufilisations, the cpu-times are dominated by the detailed
routing. For all the examples listed in the first column above, the
placement and global routing take each about 1 minute of cpu-time, the
rest is required for detailed routing. This is caused by the scope
enlarging during the detailed routing, which causes long run-times if
the design can not be completed. A solution for this problem is to use
the combined routing strategy with limited scope enlarging.

Higher area utilisations are achieved at the cost of a very long
placement procedure. For the examples listed in the second column,
the time required for placement was in the order of 150 minutes cpu-
time. This rather poor performance indicates that a better routing
guidance is required, but also that the current global placement is too
slow for practical use. The design summarised in table 6.6 shows that,
if the routing capability dominates the placement of a design, area



108 GAS: an evaluation Chapter 6

Cost Area Utilisation
Gate array 50% 60%
tate ts i i
(statements) Tu.ne Routed Tu.ne Routed

(min.) (min.)
UAs6 5 9 100% 156 91%
GA440 4 8 100% 113 100%
TAL004 6 9 100% 207 99%
GATE FOREST 6 16 98% 217 63%
HDGA 6 8 100% 155 100%

Table 6.5. Evaluation of design implementation for 5xpl on five
different gate arrays with different area utilisation rates.
Routing guidance is limited to at most 6 cost statements per
core cell pattern. Run times are total design times on an
Apollo DN10000.

utilisation up to 95% can be achieved within acceptable time and with
still the same routing guidance. The results also indicate another
important placement aspect that must be considered for high area
utilisations: due to a chosen aspect ratio of the space on the master
slice in which the design must fit, and the possible shapes of the
stamps, a legal placement solution may not exist.

Another experiment, reported in [Veendrick90] leads to the same
conclusion:
With sufficient routing guidance and a good placement, the routing

strategy incorporated in GAS is cepable to complete designs that
occupy more than 90% of the available design space.



§6.3 Layout design 109

Area Utilisation
Gate array : 80% : 90% : 95%
Time Routed Time Routed Time Routed
(sec.) (sec.) (sec.)

UA6 33 100% 28 100% not placed
'GA440 30 100% 30 100% 36 | 100%
TALO004 44 100% not placed not placed
GATE F. 70 84% 70 56% 59 56%

HDGA 34 100% 35 100% 35 100%

Table 6.6. Evaluation of a random logic implementation of a five-input,
single output exclusive-or on five different gate arrays. Run
times are total design times on an Apollo DN10000.

For placement, these results show that incorporation of a standard cell
placement strategy is essential in order to achieve high area
utilisations without exhaustive fine tuning and with an acceptable
cpu-time. This does not imply that the currently incorporated
placement strategy is outdated. This placement strategy has already
proven itself in situations with differently sized macros [Dewilde86],
and will still be necessary for hierarchical design with differently
shaped (soft-)macros.



Conclusions and Recommendations

In this thesis a first step towards a generalised approach to gate array
layout design automation has been presented. The two major topics
addressed concern the general characterisation of gate array families,
and the embedding of layout design algorithms. The presented
concepts have been implemented in a prototype Gate Array layout
design System called GAS, consisting of 41 thousand lines of source
code, written in the C-language. The evaluation of GAS with five
different gate array families yields the following conclusions and
recommendations:

GAS may be seen as a major contribution to the generalisation of the
gate array layout design problem. The limited amount of data required
for gate array and design descriptions shows that the presented
concepts are not only of academic importance, but are also acceptable
in an industrial environment.

The time required to adapt GAS to new gate array families is
neglectable, because no software re-design is required. This allows for
fast prototyping of new gate array master slice structures.

Although the layout design algorithms incorporated in GAS contribute
to the provided flexibility, more research is required to achieve area
utilisations that are acceptable in an industrial environment. The
major problem is identified at the placement phase, where the
flexibility is paid by a performance loss in both cpu-time required to
achieve a solution, and the routability of the computed solution. It has
been argued in this thesis that a placement object function must at



Conclusions and Recommendations 111

least incorporate net length and wire density penalties, in order to
achieve acceptable results. With the current trend in Sea-Of-Gates
gate arrays to macro libraries with uniform heights, a standard cell
placement seems most appropriate in this context. Recent experiments
done at Philips Research Laboratories confirm this observation, and
show that the routing concepts incorporated in GAS are capable to
solve the interconnect problem for a 10 by 10 bit pipelined multiplier,
which was placed with a standard cell placement, and a high area
utilisation (more than 90%). Embedding of a standard cell placement
algorithm in GAS does not necessarily imply a loss of flexibility if the
placement problem is first analysed. With the analysis of the heights of
the macros to be placed, in conjunction with the legal positions of the
stamps of the macros, it can easily be determined whether the posed
problem is a standard cell placement problem or not. Even some not
standard cell placement problems can be transformed into one, if some
possible stamp choices of macros can be discarded. In this case, the
annealing procedure is kept as backup.

. Although much effort has been spent to develop a gate array design
system which can be used by designers, not all design aspects have
been considered in the current implementation of GAS. An important
aspect of layout design concerns back-annotation. Back-annotation
provides the necessary feed-back of the timing characteristics of the
completely laid out design. In the current implementation the design
specific wiring is directly available in the design description. This
implies that the incorporation of a back-annotation procedure only
requires an extension of the technology description for a gate array
family for a correct determination of wiring resistance and parasitic
capacitance.

In the current implementation of GAS, the routing design is dominated
by the detailed routing. Most of the time is spent in the scope
enlarging phase, where successively larger areas are searched to route
incomplete nets. This phase can be limited by using the combined
global and local routing strategy as presented in this thesis. Additional
advantages of this combined routing strategy are in the feedback of
boundary capacity values and the subsequent detouring of incomplete
nets. The routing can be further extended by ripup and reroute
techniques, which will directly pay off in the combined routing at both
global and detailed routing level.



112 Conclusions and Recommendations -

Although GADL descriptions of the gate array master slice and macro
Library are easily to derive, more feedback should be provided to users.
The main problem is that besides layout patterns, design rules and
router guidance must be incorporated in a GADL-description. A
solution is to provide an interactive graphical tool, such that data
associated with vertices can be shown by different views., Possible
views are associated with information stored with edges and vertices of

the wiring graph.

Because the routing is grid-based, some problems arise if different wire
widths are required in a single design implementation. This can be
solved by extending the router with the capability to introduce routing
specific design rules which account for the fact that a single wire may
occupy more than one track. ' '

A last recommendation is to investigate the possibility to apply GAS for
standard cell and even full custom interconnect design. Although this
may seem rather surprisingly at first, it must be recognised that gate
array interconnect design is in fact the most restrictive case of
interconnect design. With the development of the Sea-Of-Gates gate
_arrays, the resemblance with the standard cell situation is evident.



References

[AMI182] AMI Europe ULA Manual, AMI Microsystems Limited, 1982.
[TI83] TAL Family design Manual, Texas Instruments Limited, 1983.

[Beresford84] Beresford, R., “Evaluating Gate-Array Technologies,”
VLSI Design, pp. 48-52, January 1984.

[Beunder87] Beunder, M., J. Kernhof, and B. Hoefflinger, “Effective
Implementation of Complex and Dynamic CMOS Logic in a Gate
Forest Environment,” Proceedings IEEE Custom Integrated
Circuits Conference, pp. 1-4, 1987.

[Boogers90] Boogers, W.A.P.M.P., “Redesign of the GADL compiler,”
M.Sc. thesis, Eindhoven University of Technology, The
Netherlands, 1990.

[Burstein83] Burstein, M. and R. Pelavin, “Hierarchical Wiring of
Gate-Array VLSI Chips,” Proceedings European Conference on
Circuit Theory and Systems, pp. 198-202, 1983.

[Dewilde86] Dewilde, P. ed., The Integrated Circuit Design Book, Delft
University Press, The Netherlands, 1986.

[Frankle86] Frankle, J. and R.M. Karp, “Circuit Placement and Cost
Bounds by Eigenvector Decomposition,” Proceedings IEEE
International Conference on Computer Aided Design, pp. 414-4117,
1986.

[Gagliardi84] Gagliardi, M.P., “Understanding CMOS Gate-Array Cell
Design,” VLSI Design, pp. 78-80, February 1984,



References 115

[Garey79] Garey, R.G. and D.S. Johnson, Computers and Intractibility,
Freeman, New York, 1979.

[Hsu86] Hsu, C.P., R.A. Perry, S.C. Evans, J. Tang, and J.Y. Liu;
“Automatic Layout of Channelless Gate Array,” Proceedings IEEE
Custom Integrated Circuits Conference, pp. 281-284, 1986.

[Jess84] Jess, J.A.G., R.J. Jongen, P.A.C.M. Nuijten, and J.C. Bu, “A
Gate Array System Adaptive to Many Technologies,” Proceedings
IEEE International Conference on Computer Design : VLSI in
Computers, pp. 338-343, 1984.

[Koopman90] Koopman, R.H.J., R. Peset. Llopis, and H.G. Kerkhoff,

“Digital CMOS Sea-of-Gates Core Cells and Master Images,”

_ Proceedings 16th European Solid-State Circuits Conference, pp.
245-248, 1990.

[Korn82] Korn, R.K., “An Efficient Variable-Cost Maze Router,”
Proceedings 19th Design Automation Conference, pp. 425-431,
1982.

[Kubosawa87] Kubosawa, H., G. Goto, S. Tsutsumi, Y. Suehiro, and T.
Shirado, “Layout Approaches to High-density Channelless
Masterslice,” Proceedings IEEE Custom Integrated Circuits
Conference, pp. 48-51, 1987.

[Lee6l] Lee, C.Y., “An Algortihm for path Connections and its
Applications,” IRE Transactions on Electronic Computers, pp.
346-365, September 1961.

[Leenstra83] Leenstra, J., Designers Guide to Gate Arrays, Twente
University of Technology, The Netherlands, 1983.

[Li84] Li, J. and M. Marek-Sadowska, “Global Routing for Gate Array,”
IEEE Transactions on Computer-Aided Design, Volume CAD-3,
No. 4, pp. 298-307, October 1984.

{Lippens87] Lippens, P.E.R. and A.G.J. Slenter, “GADL: A Gate Array
Description Language,” M.Sc. thesis, Eindhoven University of
Technology, The Netherlands, 1990.

[Nuijten85] Nuijten, P.C.A.M., “Hierarchical Wire Routing of Gate
Arrays,” M.Sc. thesis, Eindhoven University of Technology, The
Netherlands, 1985.



116 References

[Otten84] Otten, R. H. J. M. and L. P, P. P. van Ginneken, “Floorplan
design using simulated annealing,” Proceedings International
Conference on Computer Aided Design, pp. 96-98, Santa Clara,
1984.

[Parng89] Parng, T. and R. Tsay, “A New Approach To Sea-of-Gates
Global Routing,” Proceedings IEEE International Conference on
Computer Aided Design, pp. 52-55, 1989.

[Rubin74] Rubin, F., “The Lee Path Connection Algorithm,” IEEE
Transactions on Computers, Volume C-23, No. 9,, pp. 907-914,
September 1974.

[Saeijs86] Saeijs, R.W.J.J., “Simultaneous Placement and Global
Routing for Gate Arrays,” M.Sc. thesis, Eindhoven University of.
Technology, The Netherlands, 1986.

[Soukup78] Soukup, J., “Fast Maze Router,” Proceedings IEEE Design
Automation Conference, pp. 100-102, 1978,

[VLSI87] Staff, VLSI Systems Design, “A Survey of Automatic Layout
Software,” VLSI Systems Design, pp. 78-89, April 1987.

[Ting83] Ting, B.S. and B.N. Tien, “Routing Techniques for Gate
Array,” IEEE Transactions on Computer-Aided Design, Volume
CAD-2, No. 4, pp. 301-312, 1983.

[Veendrick90] Veendrick, H., D. van den Elshout, D. Harberts, and T.
Brand, “An Efficient and Flexible Architecture for High-Density
Gate Arrays,” Proceedings IEEE International Solid-State Circuits
Conference, pp. 86-88, 1990.



Index

abstraction, 14
accelerator scheme, 85
accuracy, 75
adaptation, 96
adjacent, 25
application specific, 20
area utilisation, 100
ASIC, 10

bipartition, 80

bonding pad, 43
boundary capacity, 83
boundary problem, 84, 87
boundary solver, 84
break even, 10

broker, 17

capacity update, 90
cell blockades, 78
channel, 97 _
channel routing, 84
channelless, 14
channels, 13
characterisation, 11
combined routing, 89
complete cover, 46
complexity, 64

concurrent routing, 91
congested, 57
connectivity, 20
constraints, 11
constructed wiring, 29
contact holes, 22

core area, 43

core cell, 45, 52

cost function, 30, 78, 86, 103
cpu-time, 106

critical design rules, 30
customer, 17
customisation, 10

cut line, 80

data base, 15

data dependent, 94
dedicated, 13

demand, 59

design, 50

design characterisation, 50
design data, 92, 106
design implementation, 50
design rule, 20, 30, 78
design rule function, 32
design space, 11, 20
design street, 15



detailed placement, 56, 68
detailed routing, 16, 74, 82
detouring, 82

distance, 25

distributed memory, 93
distribution, 11, 57

divide and conquer, 74

ECL, 99

edge labeling, 26

edge labeling function, 26
eigenvalue decomposition, 16, 66
electrically equivalent, 26
equidistant, 23
equivalence, 84
equivalence relation, 26
equivalence set, 49
equivalent, 26, 80
execution schedule, 94
execution scheme, 92
execution time, 95
expand, 86

expansion, 85

extend, 86

feedback, 89
feedthrough, 97

fine tuning, 103

fixed global wire, 79
floorplan, 45, 46, 52, 104
foundry, 17

framework, 10, 15

GA440, 98

GADL, 15, 96, 103

GAS, 15, 17, 96

gate array, 10, 96

gate array data, 92

gate array design system, 15
GATE FOREST, 100

Index 119 .

gate isolation, 14, 98, 102
generalisation, 15

global placement, 16, 56, 58
global rerouting, 89
global route, 76

global router grid, 75, 80
global routing, 74, 75
global wire loop, 79

grid, 21

grid lines, 21

grid point, 21

grid representation, 20
grid resolution, 23
guidance rules, 30

HDGA, 101
hierarchical, 81, 90, 104
hierarchical wire router, 81
hierarchy, 42

IC, 10

illegal wiring pattern, 30
implementation, 33, 51, 52
indirect addressing, 35
integration technology, 97
intelligence, 89

internal area, 43

internal nets, 48

internal wiring problems, 84
island oriented, 13
iteration, 82

layout coordinate, 21
layout design, 106
Lee-algorithm, 85
Lee-router, 84

legal position, 47, 48, 60
legal set, 61

limitations, 30

line search, 84



120

local routing, 74
logic family, 10, 96

macro, 43, 47

macro library, 43, 47, 97
macro-compiler, 102
manhattan distance, 25
manhattan-style, 24
mask layout, 23
master slice, 10, 43, 82
maze runner, 16, 75, 84
memory, 85, 93
memory usage, 75, 80
min-cut, 67

modeling, 11

modular system, 15
module, 48

module fitting, 69
multi-terminal, 85

net, 28 -

net label, 80

net routing status, 92
net-number, 28
net-oriented, 83
NP-complete, 13

object function, 57, 60
obstacle, 74, 78
OCTAGON, 102
optimal cost path, 85
overflow, 82

overhead, 33, 95
overruled, 49

oxide isolation, 97, 102

parallel, 75
partition, 80
path, 27

path extension, 87

Index

path search, 85

performance, 10, 56, 80, 106

peripheral area, 43

placement, 11, 13, 15, 51, 56

placement grid, 60
placement shell, 15
placing, 53

point configuration, 80
power, 44

power net, 44, 104
power routing, 100
power wire, 78
predefined, 26
preferences, 30
preprocessed, 20, 26
preserving, 58
problem size, 56
production cost, 12

repetition, 42, 45
re-route, 78

" resolution, 23

rip-up, 78

routability, 57, 82
routed global wire, 79
router task, 84
routing, 11, 13, 16, 74
routing area, 12
routing channels, 12
routing obstacle, 78
routing primitive, 86
routing scope, 83
routing shell, 16
routing strategy, 16, 74
routing task, 82

row oriented, 12

saturation, 69
scope-enlarging, 83, 89

Sea-Of-Gates, 13, 17, 66, 78, 96



Index

search space, 83
semaphore, 93, 94

shadow, 30

shadowing, 30

shape, 13, 48, 51

shared memory, 93

shell, 15, 16

silicon, 97

silicon integration, 20
simplified macro, 59
simulated annealing, 16, 66
singleton equivalence set, 27
golution space, 14
space-graph, 20, 23, 33, 43, 80, 82
stacked vias, 31

stamp, 47, 50, 74, 77, 82
standard cell, 18

start point, 85

status labels, 25

straps, 102

strip, 69

supply, 61

switchbox, 74, 84

TALO004, 99

target point, 85

task, 82

technology, 11
terminal, 74, 79, 83
terminal cell, 80
terminal nets, 48
terminal wiring sets, 29
time complexity, 65, 80
time-slot, 94

timing, 57

track changing, 100
transformation, 11, 23
transistor islands, 97
transistor row, 98
translation, 45

translation set, 46
transmission gate, 97
transparency, 81, 98, 100
transparent, 13, 50, 77
tuning, 103

UAS, 97
underpass, 97
uniform, 42
utilisation, 12, 106

via overlap, 22

wavefront, 86
width-set, 21

wire congestion, 78
wire densities, 57
wire distribution, 57
wire segment, 85
wire width, 22
wiring area, 82, 96
wiring capability, 90
wiring capacity, 76
wiring jumps, 84

wiring pattern, 12, 27, 47, 78

wiring plane, 24
wiring set label, 86
wiring solution, 83
wiring space, 82
wiring style, 24
wiring track, 23
WiringSet, 27

P

wiring-set-number, 29

121



Biography

André Slenter was born on July 26, 1961. He studied electrical
engineering at the Eindhoven University of Technology, the
Netherlands, and graduated with honors on October 24, 1985. Since
then he has been working on a Ph.D. degree in the Design Automation
Section until March 31, 1990. He is now with Philips Research
Laboratories in Eindhoven.

His interests are computer aided design, layout design for digital and
analog intergrated circuits, and software research for parallel and
real-time applications.



1)

2)

3)

4)

STELLINGEN
bij het proefschrift van
André G.J. Slenter

A GENERALISED APPROACH TO
GATE ARRAY LAYOUT AUTOMATION

Gezien de ervaringen met GADL betreffende de terugkop-
peling naar de gebruiker van de ingevoerde gegevens,
zal de vervanging van GADL door een interactief, grafisch
invoerprogramma de gebruikersvriendelijkheid van GAS
verder verbeteren.

[Dit proefschrift]

Om optimaal gebruik te kunnen maken van parallel-
lisme in een programma met een interne, globale data
structuur, die intensief gebruikt en gemodificeerd wordt,
verdient een Yshared-memory” computer architectuur
de voorkeur boven een ” distributed-memory” architec-
tuur.

[Dit proefschrift}

Gezien recente resultaten dient de stelling dat de flexi-
biliteit van GAS ten koste gaat van de maximaal haal-
bare bezettingsgraad van een master-slice, heroverwogen
te worden.
[Dit proefschrift]
[Veendrich, H., D. van den Eishout, D. Har-
berts, and T. Brand, ” An efficient and Flexible
Architecture for High-Density Gate Arrays”,
Proceedings IEEE International Solid-State Cir-
cuits Conference, pp. 86-88, 1990]

De toepassing van CRACKER als detailed routing al-
goritme voor GAS is slechts zinvol, indien de conver-
gentie van het top level iteratie proces kan worden af-
gedwongen.
[Gerez, S.H., ”Local Wire Routing by Stepwise
Reshaping”, proefschrift TU Twente, 1989]



5)

6)

7)

8)

9

Een design data managemeilt systeem met een proce-

durele interface voor de design tools is, gezien vanuit

software management oogpunt, een slecht concept.
[Dewilde, P., ed., "The Integrated Circuit De-
sign Book”, Delft University Press, The Nether-
lands, 1986|

Het succes van CAD-onderzoek zal in steeds grofere
mate bepaald gaan worden door een goed software ma-
nagement beleid en de implementatie van dit beleid.

De toepassing van expert-systemen voor CAD moet
worden gezien als een gebrek aan vertrouwen om tot
een adequate en formele oplossing van de ontwerp-
problematiek te komen en dient daarom te worden
afgewezen.

De behoefte aan dienstplichtige academici, afgestudeerd
in een technische discipline, is niet gebaseerd op het
niveau van de te verrichten technische werkzaamheden
en is daarom een niet goed te keuren verlangen om aan
onderbetaalde werknemers te komen.

Een adequate en milieuvriendelijke oplossing voor het
toenemende forensenverkeer kan alleen worden gevon-
den in een aanzienlijke uitbreiding van het metro-netwerk.



