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How does development lead time affect performance over the ramp-up lifecycle? 
Evidence from the consumer electronics industry 

 

Abstract 
In the fast-paced world of consumer electronics, short development lead times and efficient product 

ramp-ups are invaluable. The sooner and faster a firm can ramp-up production of a new product, the 

faster it can start to earn revenues, profit from early market opportunities, establish technology 

standards and release scarce development resources to support new product development projects. 

Yet, many companies fail to meet their time-to-market and time-to-volume targets and the complex 

interrelationships between product characteristics, development lead time and ramp-up performance 

are largely unexplored. In response to these limitations our study focuses on three research questions: 

(1) To what extent is ramp-up performance determined by development lead time and product 

complexity? (2) How do these relationships change in the course of the ramp-up lifecycle? and (3) 

How can the results be explained? Our results contribute to the field of operations management in 

three ways. First, we offer a more comprehensive and enriched analysis of the drivers for 

development lead time and ramp-up performance in the cell phone industry. Second, we demonstrate 

that late schedule slips – although disastrous for customer relations in which due dates are crucial – 

provide the opportunity to build up (semi-finished) product buffers which in turn increase the initial 

ramp-up performance. Third, we show that it is important to take these effects into account in a jointly 

and lifecycle-dependent manner. Thus, our insights support management efforts to anticipate the 

consequences of product design decisions, predict development schedule risk levels, and make 

informed decisions about production volume commitments. 

Keywords 
New product development, development lead time, product complexity, ramp-up performance, PLS 

path model 

1 Introduction 
The speed and efficiency with which new products are developed and introduced into large-volume 

production has an important influence on competitiveness in manufacturing (Hatch and Mowery 

1998). Particularly in the field of consumer electronics where product lifecycles shrink, technology 

advances and competition intensifies, short development lead times and efficient ramp-ups are 

invaluable for several reasons. First, the faster a company can ramp-up production of a new product, 

the more quickly it can begin to earn significant revenues from the new product and recoup its 

development investments (Pisano and Wheelwright 1995). Secondly, fast ramp-ups enable firms to 

profit from early market opportunities, set technology standards and accumulate experience with 

volume production. Finally, scarce product development and manufacturing engineering resources 

can be released to support subsequent product development projects instead of solving production 

problems. From an operations management perspective, product ramp-up marks the transition 

between product development and mass production – or as Wheelwright and Clark (1992, p. 8) detail: 

“In ramp-up the firm starts commercial production at a relatively low level of volume; as the 

organization develops confidence in its (and its suppliers’) abilities to execute production consistently 

and marketing’s abilities to sell the product, the volume increases. At the conclusion of the ramp-up 
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phase, the production system has achieved its target levels of volume, cost and quality.” Yet many 

companies fail to meet their targets regarding product volume, cost, and quality (Kuhn et al. 2002, 

Schuh 2005). Prior research has identified time related variables and other characteristics as 

determinants of ramp-up performance. However, most of these studies have examined development 

lead time (time-to-market) or ramp-up performance (time-to-volume) separately, while their 

interrelationship has received only little attention (Terwiesch et al. 1999, Gerwin and Barrowman 

2002). 

 

For example, Clark and Fujimoto (1991) investigated the effect of strategy, organization and 

management on lead time, quality and productivity in a field study within the automotive industry. 

They found that among other drivers the development process, product complexity and manufacturing 

capabilities relate closely to superior development lead time and ramp-up performance. In a large 

German case study, Kuhn et al. (2002) provide an analysis of the problems, influential factors and 

processes during the ramp-up period of mass volume products. They confirm the influence of product 

characteristics, manufacturing capability, people and organizational issues as well as the used 

methods and tools on ramp-up performance in terms of cost, quality and time. Another study in the 

automotive industry (Almgren 2000) identified the relevant types of disturbances at the manufacturing 

start and categorized them into four groups: product concept, material flow, production technology, 

and work organization. Additional influential factors are proposed by Keil et al. (2007) as a response 

to differences in the manufacturing setup of semiconductors compared to automobiles. They 

categorize the relevant factors into internal (company, organization, technology, people) and external 

(market and competitive environment, customers, suppliers) factors.  

 

A longitudinal study by Terwiesch et al. (1999) provides a detailed description of the ramp-up period 

in the data storage industry and sheds light on the various aspects (e.g., organizational learning, 

experience transfer, problem solving pattern) that are crucial for time-to-volume. Langowitz (1987) 

observes that an atmosphere of high communication and coordination, together with clear definitions 

and the use of milestones from the beginning of a project have a positive effect on the initial 

commercial manufacture of products. Also, companies should attach high emphasis to the 

manufacturability of their products by including the manufacturing departments in the development 

process. According to Vandevelde and Van Dierdonck (2003), design teams with empathy towards 

manufacturing and who employ a formal approach face smoother production start-ups even under the 

circumstances of increased product complexity and newness. In addition, Pisano and Wheelwright 

(1995) reinforce the link among manufacturing process innovation, productive product launches and 

enhanced product functionalities. Matsuo et al. (1997) illustrate how process improvements can lead 

to significant financial rewards through the use of time-to-volume and break-even time metrics in the 

capital intensive semiconductor industry. Van der Merwe (2004) proposes a conceptual model that 

supports the association between different types of novelty (product, personnel, supplier, and process) 

and learning types that drive ramp-up performance. Finally, Berg (2007) provides a comprehensive 

literature review of factors that influence production ramp-up performance. Despite these studies and 

although researchers and practitioners recognize the potential impact of accelerated product 

development and efficient ramp-up on organizational success (Clark and Fujimoto 1991) the 

quantitative relationships between the vast number of influential factors and ramp-up performance 

have only been investigated partially and insufficiently (Krishnan and Ulrich 2001, Kuhn et al. 2002). 
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In response to these limitations our empirical study extends the work of Pufall et al. (2012) who 

consider ramp-up performance as being dependent on product complexity with the inclusion of 

development lead time in order to address three research questions: (1) To what extent is ramp-up 

performance determined by development lead time and product complexity? (2) How do these 

relationships change in the course of the ramp-up lifecycle? and (3) How can the results be explained? 

We take a confirmatory and exploratory approach in order to answer these research questions. First, 

we operationalize development lead time, product complexity and ramp-up performance based on our 

conceptual framework (Figure1), then we integrate them into a partial least squares (PLS) path model. 

Before we explore how these relationships change over time by modifying the time horizon of our 

dependent variables we are testing our fundamental hypotheses with operational data from a case 

firm. Finally, we contextualize both findings in order to provide holistic and quantitative insights into 

the combined and time dependent relationships. 

 

 
Figure1. Conceptual Framework 

2 Measurement Model Operationalization 
We begin with the operationalization of development lead time, an endogenous construct predicted by 

the product complexity framework that also acts as a predictor for ramp-up performance. The logic 

derives from prior research that regards development lead time as a resource (Mallick and Schroeder 

2005) and hence as a critical predictor for ramp-up performance and also as a factor that is dependent 

on product complexity (Griffin 1993, Murmann 1994, Griffin 1997, Swink 2003). 

2.1 Development Lead Time (DevLT) 

Framed broadly, product development in the case firm involves five distinct activities: concept 

development; product planning; several cycles of design, build, integrate and test activities; product 

acceptance and production ramp-up. Due to general uncertainties at the start of the concept 

development for a particular product and due to the inherent dynamics in this phase (i.e., 

cancellations, redefinitions) our development lead time construct represents what Myers and Marquis 

(1969) call the problem-solving stage of development. This stage is separated into three key 

development phases. Each phase is framed by milestone reviews that denote business decision points 

in order to determine whether the previous development phase is completed against a set of clearly 

defined deliverables. Figure1 outlines the different development phases with their respective 

milestones and outputs. 
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Figure1. Definitions of Major Development Phases 

 

M0toM1. This variable represents the elapsed time – measured in days – between the M0 milestone 

(i.e., the end of the concept development stage) and the start of the product integration and 

verification phase. It characterizes the efficiency of the product planning phase. 

 

M1toM2. The product integration stage measured as the elapsed time in days between the M1 and M2 

milestone involves several cycles of design, build, integrate and test activities. This is also known as a 

spiral product development process because the building and testing of prototype models has become 

such a rapid process that the design-build-test cycle can be repeated many times (Ulrich and Eppinger, 

2008). 

 

M2toM3. During the product acceptance phase, engineering prototypes are assembled using the final 

assembly line and testing processes in the target factory in order to verify the performance of the 

production system (including supplier operations). These prototypes are also used to verify product 

reliability and to obtain all necessary regulatory and customer approvals. We measure this variable as 

the elapsed time in days between the M2 and M3 milestone. 

 

With the approval of the M3 milestone, the production ramp-up finally starts. During this phase, the 

production output is determined by a push plan since detailed knowledge about sales demand does not 

exist at this stage. As soon as there is enough confidence to execute production according to sales 

forecasts, the ramp-up execution concludes. As the transition between ramp-up and mass-production 

is fluent, we consider different time horizons in our analysis as presented in section 5.4. 

2.2 Hardware Complexity (HWC) 

We consider hardware complexity in structural terms and hence as a property of the product 

(Rodriguez-Toro et al. 2004). Accordingly we apply Novak and Eppingers’ (2001) definition that 
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consists of three elements which serve as the indicators for our hardware complexity construct: (1) the 

number of product components to specify and produce, (2) the extent of interactions to manage 

between these components (parts coupling), and (3) the degree of product novelty. 

 

Increased product functionality requires a larger number of components to be integrated into the 

architecture. Features like global positioning services (GPS), dual display functionality or hands-free 

stereo audio – to name just a few – cannot be implemented by means of software alone. However, the 

addition of extra components rises product complexity as a result of the more complex manufacturing 

process (Boothroyd et al. 1987), supply logistics (Fisher et al. 1999) or verification efforts (Novak and 

Eppinger 2001). While the definition of Ulrich (1995) states that a component can be any distinct 

region of the product, we divide our first indicator – the number of product components – into two 

parts to identify the relevant components in the context of ramp-up performance: common component 

count and product specific component count.  

 

Common component count comprises all components from the product’s bill of material list like 

resistors, capacitors, transistors, connectors, shields and integrated circuits, which are assembled onto 

the printed wiring board. These components are freely available on the market and hence also used in 

other products from the case company or competitors. Product specific component count refers to 

components in the bill of materials list that are specifically developed for the use in a dedicated 

product. Hence, the options to use these components in other products or industries are very limited. 

Examples are plastic covers, antenna elements, stickers, foams, gaskets, displays and cables.  

 

Please note that our definition does not include any sub-components that are inseparably embedded in 

advanced components (i.e., optical lenses in camera modules or glass layers in display units) as these 

components are not under managerial control or technically observable. 

The second indicator of our hardware complexity construct is parts coupling. According to Novak and 

Eppinger (2001), parts coupling increases complexity because an increased number of interconnected 

parts within a system results in additional development risks, verification efforts and side effects. In 

other words: the more complex the interdependencies are, the greater is the added complexity 

(Williams 1999). In our operationalization of parts coupling, we measure the number of signal 

networks across all electrical and electromechanical components (i.e., components that carry any 

electrical functionality and account for around 70% of all components) within a product. R&D teams 

have confirmed that the reliable integration of components does not only require expert knowledge 

regarding the components themselves but also firm understanding of their simultaneous interactions. 

This definition acknowledges the fact that development teams must understand and integrate 

arrangements of interlinked signal networks – a task that is much more challenging than the simple 

understanding of component pairs (i.e., individual point-to-point connections). 

 

The third indicator of our hardware complexity construct, product novelty describes how much of the 

product must be redesigned compared to previous products. It can either be conceptualized as the 

percentage of new designs comprised in the product (Swink 1999) or as the degree of similarity 

between a certain product and other members of its product family (Coughlan 1992). Our 

operationalization enriches these existing concepts by measuring the percentage material value within 

a product that is new to the responsible development center. Products may exhibit unique 
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characteristics depending on whether we observe them at the overall final assembly level or as 

individual parts and subassemblies (Ulrich 1995). Since most of the components in our study are only 

observable on the first layer of abstraction (e.g., cameras, displays, processors, etc.) we consider them 

on a macro level. In this case, any definition based on the simple percentage of new parts would 

regard the contribution of each component to novelty as equal. However, the integration and testing 

effort as well as the supply risk during ramp-up for complex cameras, displays or processors is not 

comparable with the risks and efforts related to simple screws, foams or stickers. 

2.3 Software Complexity (SWC) 

The increasingly dominant role of software in modern consumer electronics products and its impact 

on product complexity, development schedules and budgets (Rauscher and Smith 1995, Blackburn et 

al. 1996) underlines the necessity to treat software complexity as a separate construct within our 

product complexity framework. Because software complexity is multidimensional in nature (Banker 

et al. 1998, Zuse 1991), several complexity measures have been proposed. Examples are McCabe’s 

(1976) cyclomatic complexity, Wood’s (1986) component/coordination/dynamic dimensions and 

Halstead’s (1977) effort metric. Previous research, however, has found that these measures only vary 

on a small number of orthogonal dimensions (Banker et al. 1993, Munson and Koshgoftaar 1991) and 

that they incorporate common properties (Weyuker 1988). Since this would lead to multicollinearity 

problems we apply a combination of indirect measures – calculated from the design specifications – 

and direct measures – calculated from the program code (Sunohara et al. 1981). Consistent with our 

approach to describe hardware complexity, we define software complexity as (1) the number of 

executable lines of code = SW code size, (2) the degree of software newness = SW newness, and (2) 

the number of software errors = SW error count. These measures refer only to the operating and 

application software modules that are under direct control of the firm (i.e., in-house developments). 

We exclude any software modules that are embedded in advanced components like displays or 

cameras (e.g., embedded driver software) and optional third-party applications that are not mandatory 

for the product launch. Thus we focus on the core elements of product software that the company has 

to provide timely, error free and in compliance with regulatory requirements. 

 

SW code size. According to Huang (1998) the size of a program is one of many factors affecting its 

complexity. Lines of code measures have been widely discussed in the literature on embedded 

systems (Broy et al. 2007, Lee 2000) due to the importance of SW code size on system performance 

and costly memory size decisions. Within this paper we measure SW code size as the number of 

executable lines of code. All products in our sample are based on identical engineering tools and 

programming languages (i.e., a proprietary language for lower-level signaling functions and C/C++ 

for higher-level code). Thus, the number of executable lines of code can be counted in a consistent 

manner and is hence unbiased within the sample (Krishnan et al. 2000). 

 

SW novelty. The software engineering literature argues that adding more features or increasing the 

newness of a software product usually increases its complexity (Zuse 1991, Krishnan and Zhu 2006, 

Laird and Brennan 2006). This is plausible as new software features may have lower design integrity 

and quality – all else being equal – than existing software code that has already been tested and 

debugged across existing products. Hence, we operationalize SW novelty as the number of new 

software features in a product that have not been included in previous products or in the existing 
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software baseline. A new feature is characterized by the necessity to either develop/implement new 

software components or to modify existing components instead of reusing existing software 

components. 

 

SW error count. Both, SW newness and SW code size do not sufficiently account for differences in 

the individual product configuration as these measures regard software components as having in-built 

complexities that are static and independent of their context. For example, products that contain a 

decent amount of SW newness and consist of a trivial code size may still require a disproportionate 

amount of development effort since interactions and side effects in a particular product configuration 

may result in a large number of errors. Because errors are strongly related to complex programs 

(Basili and Perricone 1984) and defects are strongly associated with software complexity (Harter and 

Slaughter 2003, Kafura and Reddy 1987), we include a measure of SW error count (identified during 

the product integration and acceptance phase while the product passes through a series of standardized 

acceptance tests) as our third indicator of software complexity. 

2.4 Ramp-Up Performance (RP) 

Based on the existing ramp-up literature there seems to be a broad consensus to measure ramp-up 

performance in terms of output against time or plan (Langowitz 1988, Clark and Fujimoto 1991, 

Terwiesch 1999, Almgren 2000, Kuhn et al. 2002, Merwe 2004, Schuh 2005). For other measures like 

quality, time, yield or cost there seems to be little – if any – common norm. This is partly due to the 

fact that each study measured ramp-up performance according to its own specific situation, 

characterized by different competitive priorities. For example, unit cost might be a negligible 

performance measure in cell phone projects as the profits gained due to successful early sales (enabled 

by reliable output against plan) – customers are most willing to pay premium prices during the early 

product lifecycle – typically outweigh all other cost related drivers. Also, it is economically unwise to 

focus on absolute ramp-up speed or time because quality and other cost drivers can accumulate to 

levels that sustainably affect the overall company competitiveness (Voigt and Thiell 2005). Hence, 

our second endogenous construct represents output against plan, frequently cited as effective 

utilization (Konopka 1995, Matsuo et al. 1997, Terwiesch et al. 1999). We measure it as the ratio 

between produced quantity during the ramp-up period and planned quantity at the beginning of the 

ramp-up period. 

2.5 Control Variables 

We control for several other variables to strengthen non-spuriousness between the complexity 

constructs, development lead time and ramp-up performance. First, we control for learning effects 

with the supposition that a firm gains development experience and hence the performance regarding 

development lead time and ramp-up will increase over time. We label this variable linear trend and 

measure it as the number of days elapsed between the ramp-up start of each new product versus the 

ramp-up start of the first product in the study. Second, we control for differences in the planning 

approach and the number of design-build-test cycles, which may dictate development lead time to a 

certain extent. We label this variable planned development lead time. It represents the number of 

workdays from concept approval to ramp-up start, estimated at the time of concept approval. Third, 

we control for whether the project experienced any delay during the product acceptance phase. We 

measure slip as the number of workdays between the estimated (provided at the M2 milestone) and 
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the actual ramp-up start. Compared to projects that are able to ramp-up on time, delayed projects are 

more likely to face problems during the ramp-up phase that are related to the cause of the original 

delay. However, project delays can also allow program teams and suppliers to utilize the gained time 

productively and hence to be more successful regarding ramp-up performance. Forth, we include a 

sequence of seven dummy variables that are tested one after the other in order to control for plant 

specific effects. Although the plants in our study represent a standardized and homogeneous capacity 

pool, empirical studies have reported that factory characteristics may influence production 

performance (Hayes and Clark 1986, Langowitz 1987, Clark and Fujimoto 1991, Kuhn et al. 2002). 

Each of these variables is coded as one for the focus factory, zero otherwise and labeled as factory 

ID1…7. Fifth, we control for two additional plant specific effects. In order to measure the level of 

experience in any given plant we include a variable labeled years in operation. This variable 

represents how long a plant has been in operation prior to the ramp-up start of each product. 

Furthermore, we capture differences in work force culture and supply network structure that originate 

from differences in the physical location of each factory with regard to their main supply base that is 

located in China. The dummy variable factory location is coded as one if the plant in question is 

located in Asia (China and Korea) and zero if it is located in Europe (Germany, Hungary, Finland). 

Sixth, we add a measure for sales forecast change in order to control for changes in the sales volume 

forecast during the ramp-up execution phase. We use the relative change in the sales forecast between 

the beginning and end of the ramp-up execution period to remove the effects of sales fluctuation on 

production execution. For example, there might be low demand for a product compared to the original 

production plans created at the start of ramp-up. The factories will thus respond with reductions in 

output, which will in turn lead to low effective utilization levels although production performance 

itself is good. Finally, we control for production technology novelty, a dummy variable that is coded 

as one if considerable resource investments (e.g., equipment, engineering labor) are needed and no 

contingency plans exist, zero otherwise. We believe that the combination of resource investments and 

the absence of a back-up plan is of particular interest. We expect that production technology novelty 

has a negative impact on effective utilization as new technologies entail significant fine-tuning and 

testing and may – relative to “proven” technologies – expose a firm to risks of failure in terms of 

durability and reliability (Clark and Fujimoto 1991). Examples that belong to this group are 

decoration technologies (e.g., high-gloss paint effects), manufacturing process technologies (e.g., 

RoHS implementation) or production testing technologies (e.g., WCDMA testing). These 

technologies require considerable resource investments while prevailing technologies cannot be used 

as backup solutions. Table 1 summarizes the various indicators of the constructs described in this 

section, as well as their definitions and formulas. 

 

Table 1. Summary of Constructs, Indicators, and Definitions 

Development lead time (DevLT) 

M0toM1 = elapsed time in days between the M0 and M1 milestone (i.e., the product planning 

phase) 

M1toM2 = elapsed time in days between the M1 and M2 milestone (i.e., the product integration and 

verification phase) 

M2toM3 = elapsed time in days between the M2 and M3 milestone (i.e., the product acceptance and 

delivery capability verification phase) 
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Hardware Complexity (HWC) 

common component count = all components in the product’s bill of material list that are assembled 

onto the printed wiring board 

product specific component count = total component count – common component count 

parts coupling = number of signal networks across all electrical and electromechanical components 

in the product 

RU_EXE

RU_EXE

average over period 

average over period 

material value of new physical components in the product

total material value of the product

T

T

product novelty 

 
Software Complexity (SWC) 

SW code size = source code size in terms of executable lines of code 

SW novelty = number of features in the product that have not yet been included in previous products 

or in the existing software baseline 

SW error count = number of reported errors during the product integration/acceptance phase 

Ramp-Up Performance (RP) 

RU_EXE

RU_EXE

over period 

at M3over period 

 = 
T

T

actual productionoutput
effective utilization

planned productionoutput
 

Control Variables 

linear trend = time in days between the ramp-up start of each new product versus the ramp-up start 

of the first product in the study 

planned development lead time = time in days between concept approval and ramp-up start, 

estimated at concept approval 

slip = elapsed time in days between the estimated (provided at the M2 milestone) and the actual 

ramp-up start. Please note that this indicator becomes positive if the actual ramp-up start is ahead of 

the planned date. 

factory ID1…7 = 
1 for the respective factory
0 otherwise                         

 

years in operation = indicating how many years a plant was in operation before the ramp-up start of 

each product 

factory location = 
1 in case of Asian factories (China, Korea)                              
0 in case of European factories (Germany, Hungary, Finland)

 

RU_EXE

RU_EXE

at M3 over period 

12 weeks before M3 over period 

   = 
T

T

sales forecast quantity
sales forecast change

sales forecast quantity
 

1 considerable resource investments needed and no contingency plans exist

0 otherwise                                                                                        

production technology novelty


              





 

3 Structural Model and Hypotheses 
Figure 2 illustrates our PLS path model including the previously operationalized constructs and the 

hypothesized structural relationships between the constructs. 
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Figure 2. The PLS Path Model 

 

All embedded systems and cell phones in particular are unique because they demonstrate a hardware-

software co-design problem – hardware and software have to be designed together in order to make 

sure that the implementation does not only function properly but also meets all goals regarding 

performance, cost, and reliability (Wolf 1994). A new design is typically started with the creation of a 

requirements specification that includes all functional requirements – in other words the specific 

behavior of the system and nonfunctional requirements, including operability, certification, and cost. 

In a next step, an initial architecture is proposed including functions that are either assigned to be 

directly implemented into the hardware or into the software running on the hardware. Traditionally, 

hardware development dominated system development because of longer lead times and logistical 

dependencies on external suppliers. Consequently, software development started when hardware 

development was already at a stage where changes would be extensive (Graaf et al. 2003). However, 

hardware release cycles are expensive and inflexible, so software based implementations have become 

a more common approach (Lee 2000, Graaf 2003, Sangiovanni-Vincentelli and Martin 2001). 

Additionally, most of the new innovations in cell phone products originate from software features like 

social networking clients, augmented reality, picture processing or games. Hence, the hardware 

configuration (e.g., processor speed, memory size, interfaces, camera pixel size) is determined by a 

rising amount of functional requirements that are implemented into the software. We therefore 

hypothesize the following: 

 

HYPOTHESIS 1. Hardware complexity (HWC) will increase along with higher levels of software 

complexity (SWC). 

 

Several studies in the literature on operations management, product development and software 

engineering have found a positive association between product complexity and development lead time 

(Clark and Fujimoto 1989, Griffin 1993, Callahan and Moretton 2001, Swink 2003). According to 

Swink (2003) this is likely to be a result of the growing size and uncertainty of the design task if 

increasing numbers of interacting components are involved. Completing such a design task requires 

several design-build-test iterations or problem solving cycles until the requirements are met, 

regardless whether they are related to software or hardware. As a result, lead time in a program will 

be affected by the length of each problem solving cycle, the number of iterations and patterns of 

informational linkage among the cycles (Clark and Fujimoto 1989). Although these arguments are 
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valid for both complexity dimensions, hardware complexity may dominate as a result of the longer 

development lead times for components. On the other hand, software can also play a dominate role, 

due to the steady shift of functionality from hardware to software (Lee 2000, Graaf 2003, 

Sangiovanni-Vincentelli and Martin 2001) and due to the tendency to fix hardware errors via software 

solutions (Rauscher and Smith 1995, Graaf et al. 2003). These arguments lead to the following two 

hypotheses: 

 

HYPOTHESIS 2. Higher levels of software complexity (SWC) are associated with longer development 

lead times (DevLT). 

HYPOTHESIS 3. Higher levels of hardware complexity (HWC) are associated with longer development 

lead times (DevLT). 

 

Because the replication process of software in embedded systems is simple (i.e., it typically consists 

of a simple programming step during production) we could conclude that manufacturing performance 

can no longer be adversely affected by the level of software complexity after the software has been 

released for production. However, the manufacturing environment for cell phones is characterized by 

complex multistage assembly lines and includes several test phases. Potential drivers for ramp-up 

performance include the tight interdependence between these automatic test systems and the product 

software as well as the on-time availability of approved software variants. Addressing these issues one 

at a time, we note that complex product software necessarily increases the test software algorithms 

(Schaub and Kelly 2004). Firstly, due to the increased number of test steps in order to calibrate 

wireless protocols or other components and secondly, due to the interactions between the product 

software and the test system that also have to be managed. Both conditions may lead to decreased 

yield and hence to decreased production output. In addition, production output is dependent on the 

scheduled readiness of customer specific software variants. Complex software, however, makes it 

more likely that customers revise requirements (Thomke and Bell 2001), find new errors after 

pretesting or request changes in the customization options. Manufacturers are often forced to adapt or 

lower production plans due to these circumstances. Therefore we state the following: 

 

HYPOTHESIS 4. Higher levels of software complexity (SWC) are associated with lower ramp-up 

performance (RP). 

 

A rich stream of studies has demonstrated that product complexity in terms of physical product 

characteristics is negatively associated with ramp-up performance (Langowitz 1987, Swink 1999, 

Terwiesch et al. 1999, Vandevelde and Van Dierdonck 2003, Keil et al. 2007). Higher levels of 

complexity and uncertainty regarding product and technology will cause more difficulties in the 

attempt to realize a smooth production start-up (Vandevelde and van Dierdonck 2003). Complex 

products may push the limits of manufacturing process capabilities and require more process steps, 

thus opening up more opportunities for process failure (Swink 1999). At the same time extra learning 

efforts regarding manufacturing engineering and improved operator training are required to achieve 

the desired performance level. Engineering changes may appear more frequently and cause the most 

disruptive effects at the very beginning of the manufacturing start (Coughlan 1992). Similar 

challenges are also likely to occur at upstream partners (i.e., suppliers), thereby disturbing ramp-up 
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performance due to problems with material supply and quality (Almgren 2000). For these reasons we 

state the following hypothesis: 

 

HYPOTHESIS 5. Higher levels of hardware complexity (HWC) are associated with lower ramp-up 

performance (RP). 

 

Cell phone projects involve different organizational functions that are concurrently conducting 

development tasks in order to minimize development lead time. However, prior research has been 

inconclusive regarding the actual effectiveness of process concurrency or its accelerating effect on 

operational outcomes (Tatikonda and Montoya-Weiss 2001). For example, Wheelwright and Clark 

(1992) found that concurrency is beneficial to operational outcomes other than lead time because 

more information can be shared between organizational functions. Improved understanding of 

requirements and limitations enables cooperative problem solving activities as well as earlier 

anticipation of project challenges. On the contrary, concurrency may lead to increased risk if the 

downstream function is forced to make decisions (such as orders of product specific manufacturing 

equipment) before final fixed data is available from the upstream function. This can delay production 

line approvals and cause rework — ultimately leading to missed output targets. Furthermore, the 

longer the time available to study user needs and develop and test alternative concepts for technical 

feasibility, the greater is the likelihood that a better solution will be found (Mallick and Schroeder 

2005). Also, extended development lead times may be the result of additional problem solving cycles 

or pilot production rounds that improve product and process maturity levels and hence facilitate a 

smooth production ramp-up. We posit the latter effect and conjecture our last hypothesis: 

 

HYPOTHESIS 6. Longer development lead times (DevLT) are associated with higher ramp-up 

performance (RP). 

 

Please note that we explore the effects that are described in hypotheses 4, 5 and 6 under different time 

horizons of the ramp-up execution period in section 5.4. For brevity we do not discuss the related 

hypotheses. 

4 Methodology and Research Setting 
In order to test our hypotheses, we employ a variance based structural equation modeling approach 

known as PLS path modeling. Compared to covariance based structural equation modeling 

approaches (e.g., LISREL), PLS is particularly well suited for studies using operational data and if the 

primary research objective is the maximization of explained variance in the endogenous constructs 

(i.e., prediction) instead of achieving model “fit”. Operational data frequently violates the requirement 

of multivariate normality and sample sizes are limited by the number of real life cases. PLS, however, 

does not make any assumptions of the underlying distribution and provides stable estimates even if 

the ratio of observations to parameters is small (Wold 1982, Fornell and Bookstein 1982, Chin 1998, 

Hair et al. 2011). In addition, PLS allows for the simple configuration of formative measurement 

models. Consistent with the decision rules by Jarvis et al. (2003) and Petter et al. (2006) our indicator 

operationalization advocates a formative coding scheme. Increasing the value of any indicator in a 

construct will directly translate into a higher or lower score for the overall construct scale, regardless 

of the value of other indicators. However, this has methodological implications. The concepts of 
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internal consistency, reliability and convergent validity are not meaningful if formative indicators are 

involved (Hair et al. 2011). Hence, we base our formative indicators on theoretical rationale as 

outlined in section 2 and focus on the pure operational aspects of product complexity, development 

lead time and ramp-up performance. This allows for conceptually rigorous and complete definitions 

supported by statistical criteria. Before we applied the algorithm we standardized our data (mean = 0, 

variance = 1) in order to support the interpretation of the path coefficients. Although not a 

precondition in PLS, data standardization is recommended if the variables are measured with different 

scales as in our case. 

4.1 Research Setting 

The unit of analysis for our study is the individual cell phone, designed and manufactured by Nokia, a 

Finnish corporation headquartered in Espoo, Finland. With its strong R&D presence in 16 countries 

and around 130.000 employees worldwide, Nokia’s strategic direction aims to integrate content, 

applications and services into its mobile computers, smartphones and mobile phones. In 2010, Nokia 

sold 453 million mobile devices and is therefore particularly interested in predictable and rapid ramp-

ups in order to avoid lost sales and to quickly release R&D teams into new product development 

activities. 

4.2 Data Collection 

We collected project data from 46 distinct cell phone projects between 2005 and 2008. In order to 

avoid biased results we randomly draw samples from R&D sites in Denmark, Finland, China and 

Germany to cover a wide variety of price points, form factors and total sales volume ranges. As a 

result of our close cooperation with the case company (one of the authors is employed as a ramp-up 

manager by Nokia) we were able to employ multiple methods of data collection and multiple data 

sources (i.e., interviews, project documentation, data archives, company reports, and questionnaires) 

for each product. Only two projects were dropped because of incomplete data panels. 

 

The data for calculating the product development lead time indicators are taken from a project 

management reporting tool that records all planned and actual milestone dates throughout the project 

lifetime. Programs can only move to the next development phase and update the milestone dates if 

certain, well defined criteria are met and the respective milestone review is approved by the steering 

group. This property allows us to precisely calculate the duration of different development phases and 

other timing related variables (linear trend, planned development lead time, slip). 

 

The data for our hardware complexity indicators – specifically common component count and product 

specific component count – were taken from the product data management system that is used for 

managing the bill of materials list. Our product novelty indicator was calculated with the help of the 

product specification documentation and the sourcing parts lists. The first tool provides an overview 

of the novelty/re-use status of each component while the second provides the material prices. The 

parts coupling indicator originates from the electronic design automation (EDA) tool.  

 

The software related indicators were extracted from the compiler log files (SW code size), the 

requirements management system (SW novelty) and the error management databases (SW error 

count). Nokia products generally follow a highly disciplined and standardized software development 
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and verification process that creates reliable and consistent data regarding the aforementioned 

software characteristics. 

 

The variables regarding effective utilization and sales forecast change were calculated using data from 

a management information system report that contains sales forecasts, production plans and actuals on 

a monthly time scale. As a response to the short-term planning cycle of Nokia that spans a timeframe 

of 12 weeks we decided to peg our ramp-up execution period TRU_EXE to this time horizon in the initial 

model which we relax in section 5.4. During this period most resources are considered to be fixed due 

to equipment and material procurement lead time limitations. 

 

Finally, we enhanced our data with interviews, a written questionnaire that was completed by each 

ramp-up manager and milestone review documentation. Using these sources we were able to gain 

additional insights into the qualitative issues that appear during each ramp-up and to gather data in 

order to operationalize our production technology novelty indicator. Descriptive statistics for our data 

and their correlations are presented in the appendix. All variables were screened for abnormal 

observations to avoid outlier bias in the PLS calculations. Due to confidentiality reasons the variable 

SW error count is normalized to have a mean equal to 1000. 

5 Results 
Following the structural equation modeling logic, the assessment of a PLS model follows a two-step 

approach that involves separate assessments of the measurement model and the structural model (Hair 

et al. 2006, Hair et al. 2011). All parameters within the model were estimated using smartPLS (Ringle 

et al. 2005) and XLSTAT version 2011.2.01. Additional statistics were calculated with Minitab 

version 16.1.1. 

5.1 Validation of the Measurement Models 

Formative measurement models are examined based on their indicator weights, their significance, 

their loadings and the degree of multicollinearity (Chin 1998, Tenenhaus et al. 2005, Hair et al. 2011). 

Significance levels were estimated by means of a t-statistic that is generated by a bootstrapping 

technique (based on 500 resamples). Additionally, we evaluated significance levels by reviewing bias 

and percentile ranges of the bootstrap output. We also used the conservative “construct level sign 

change” option (initial weight setting = 1.0, abort criterion = 1.0E-5) after checking the individual 

bootstrap results and applied two tail tests although the direction of our hypotheses would allow for 

single tail tests. We calculated the variance inflation factor (VIF) for the assessment of 

multicollinearity. As the highest VIF in our measurement model turned out to be around two, 

multicollinearity is not likely to distort the estimates as a result of excess redundancy. In the context 

of PLS, the critical cut-off value for VIF is 5 (Hair et al. 2011). 

 

Table 2 presents the results of our most conclusive measurement model (M10). Other measurement 

models that are part of the structural model variants that will be discussed in the next section are only 

provided in the appendix since their difference is negligible. All formative indicators have strong and 

significant weights – with the exception of common component count – and there is no co-occurrence 

of negative and positive indicator weights in the same construct. Note that single-indicator constructs 

always appear significant (as used for the control variables and ramp-up performance). This suggests 
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that common component count does not provide additional explanatory power beyond the other 

indicators within the hardware complexity construct although it still represents an important aspect 

(the loading or bivariate correlation is substantial and significant). In other words, common 

component count is absolutely important but not relatively (Cenfetelli and Bassellier 2009). Its 

theoretical relevance, however, is justified as there are only few overlaps with the other indicators 

leading us to keep the indicator in the model. The novelty indicators in particular (product novelty and 

SW novelty) deserve closer attention. Their relative contribution to the complexity constructs is 

disproportionally high, emphasizing the importance of novelty as a key characteristic of complexity 

that can be used to predict development lead time and ramp-up performance. In summary, our 

measurement model is characterized by robust and significant indicators that capture the domain of 

our constructs. This provides a strong foundation for construct validity. 

 

Table 2. Measurement Model Results 

 
Notes: N = 46. 

*** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests based on 500 bootstrap resamples. 

5.2 Validation of the Structural Models 

The primary evaluation criteria for the structural model are the R2 measures (=predictiveness) and the 

level and significance of the path coefficients (Chin 1998, Tenenhaus et al. 2005, Hair et al. 2011). 

Goodness of fit (GoF) indices or blindfolding procedures (Q2) are only applied in the presence of 

reflective measurement models as they are based on the portion of explained variance in the indicators 

(see Stone 1974, Geisser 1977, Tenenhaus et al. 2005, Hair et al. 2011). All structural model 

parameters are estimated with the path-weighting scheme (for a discussion of weighting schemes, see 

Chin 1998, Tenenhaus et al. 2005). Despite the slightly increased VIF value of SWC  RP we 

discovered no inconsistency in the results during our multicollinearity assessment. With this 

assessment we tested additional models by removing one complexity construct at a time. 

 

Table 3 reports the results of our hypothesis tests with regard to our most conclusive model (M10). 

Further results related to the models M1 through to M10e are provided in the appendix. In model M1 

t -value Loading VIF

Development lead time (DevLT )
M0toM1 0.62 *** 5.73 0.76 1.05
M1toM2 0.75 *** 3.60 0.59 1.42
M2toM3 0.53 *** 2.79 0.16 1.37

Hardware complexity (HWC )
common component count 0.07 0.56 0.45 1.65
product specific component count 0.28 ** 2.18 0.63 1.53
parts coupling 0.38 ** 2.29 0.68 2.14
product novelty 0.71 *** 4.76 0.84 1.09

Software complexity (SWC )
SW novelty 0.54 *** 3.85 0.77 1.16
SW code size 0.40 *** 3.22 0.52 1.02
SW error count 0.51 *** 5.18 0.74 1.15

Ramp-up performance (RP )
effective utilization 1.00 -- 1.00 1.00

Path weight

M10 (final model)
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we summarize the effects of non-significant control variables (sales forecast change, years in 

operation, production technology novelty and linear trend – which is initially significant but 

disappears in the presence of planned development lead time). In M2 we control for planned 

development lead time and slip. Both variables turned out to be strong and significant. M3 through 

M9 each include one factory ID variable to strengthen our claim of non-spuriousness and to justify the 

inclusion of our last control variable — factory location. In the models M10a through to M10d we 

tested alternative forms of M10. Compared to the original model in M10 we considered time horizons 

of 4, 8, 16 and 20 weeks in M10a, M10b, M10d and M10e for the calculation of effective utilization. 

 

Table 3. Structural Model Results 

 
Notes: N = 46. 

*** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests based on 500 bootstrap resamples. 

5.3 Key findings 

There is support for our hypothesis that hardware complexity is dependent on the level of software 

complexity (H1). This result corroborates the view that feature implementations are gradually shifting 

towards software implementations that can run on more generic hardware. Development still follows 

a hardware-software co-design approach but most of the new innovations in cell-phones originate 

from new software features and hence determine the hardware requirements. We observe a negative 

and significant relationship between software complexity and development lead time (H2) while 

controlling for planned development lead time. This is an interesting observation and it suggests that 

software characteristics determine the time expenditures to develop a cell phone. These two findings 

are important since they demonstrate the important role of software in the development process of 

new cell phones. By contrast, the effect of hardware complexity on development lead time is not 

statistically different from zero (H3). One possible explanation is that software complexity is the main 

t -value VIF
Path coefficients

Direct effects
SWC --> HWC 0.89 *** 30.11 1.00
HWC --> DevLT -0.05 0.36 5.08
SWC --> DevLT 0.36 * 1.93 5.91
HWC --> RP -0.39 * 1.69 5.40
SWC --> RP -0.44 1.47 7.87
DevLT --> RP 0.36 * 1.90 2.02

Control variables
planned development lead time --> DevLT 0.74 *** 7.59 1.40
slip --> RP 0.27 ** 2.30 1.24
factory location --> RP 0.22 ** 2.53 1.20

Total effects
HWC --> RP -0.41 * 1.74 --
SWC --> DevLT 0.31 *** 2.86 --
SWC --> RP -0.68 *** 5.06 --

Coefficient of determination (R
2
)

HWC
DevLT
RP

RP  (R
2 

adj) 0.41

Path weight
M10 (final model)

0.79
0.87
0.48
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and dominant predictor of development lead time. Hence, hardware complexity is downgraded to a 

mere enabler without additional explanatory power beyond the software complexity influence. 

Furthermore, our results indicate, on average, a negative effect of software complexity on ramp-up 

performance (H4) although the replication process was initially considered to be negligible. While the 

direct effect is non-significant there is a significant and negative total effect, suggesting that any effect 

of software complexity on ramp-up performance is mediated by hardware complexity (as illustrated in 

Table 4). We provide data for two commonly used methods, the product-of-coefficients approach 

(Sobel 1982) and the bootstrapping approach (Preacher and Hayes 2008). While the product-of-

coefficients approach requires multivariate normality (Preacher and Hayes 2008) we are in favor of 

the bootstrapping approach that provides a nonparametric approximation of the sampling distribution 

regarding the indirect effect. It is thus more consistent with the nonparametric world of PLS.  

 

Table 4. Results of the Mediator Analysis 

 
Note: * p ≤ .10, two-tailed test based on 500 bootstrap resamples. 

 

As a result, ramp-up performance is dependent on software complexity — e.g. by manufacturing test 

system yield or software variant readiness — but the effect is mediated through hardware complexity. 

This is supported by our finding that hardware complexity has a significant direct effect on ramp-up 

performance (H5). We will discuss this effect in more detail in the next section. In any case, our 

results suggest that the physical characteristics of a cell phone have a negative impact on performance 

levels in the form of material supply/quality problems or more sophisticated and hence error prone 

manufacturing set-ups. Likewise, there is empirical support for hypothesis 6, stating that ramp-up 

performance decreases as development lead time increases. This finding is in line with our argument 

that extended development lead times may allow for additional problem solving or pilot production 

cycles that in turn correspond with improved product and process maturity levels and ultimately result 

in improved ramp-up performance. 

 

Of the significant control variables, planned development lead time has a positive significant 

relationship with development lead time. Because software complexity is still significant while 

controlling for planned development lead time, this suggests that early plans can only provide an 

imperfect prediction of the actual development lead time. Our results also indicate that products 

experience a higher ramp-up performance on average if they are exposed to late schedule slips. This is 

likely due to the instance that this sudden and precious gain of time is used for improvements in the 

material and production status. The results from the factory ID analyses suggest the absence of 

spurious effects related to plant specific effects that may explain the presented results. All path 

coefficients remain stable under the individual insertion of each factory ID variable although we see a 

Mediator SE Z
Percentile 

lower
Percentile 

upper

HWC -0.35 * 0.20 -1.72 -0.71 -0.06

DevLT 0.13 0.11 1.18 0.00 0.35

HWC & DevLT -0.02 0.06 -0.30 -0.12 0.07

Product of coefficients
results

Bootstrapping 
results (90% CI)

Point estimate 
(indirect effect)
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pattern in the relative influence of factory ID on ramp-up performance dependent on the location of 

the respective factory. On average, Asian facilities tend to perform better than their European 

counterparts – a finding which is supported by the significant effect of factory location on ramp-up 

performance. 

5.4 Lifecycle analysis 

Due to the dynamic nature of the ramp-up phase an exploration of the lifecycle behavior is justified. 

We tested several variants of the above model (M10) for which we used different time horizons in 

order to calculate the ramp-up performance indicator. The various model parameters are recorded in 

Figure 3. Starting with the model parameters that are calculated over a ramp-up execution period of 4 

weeks (TRU_EXE = 4 weeks) we find non-significant path coefficients and only a marginal R2 value. In 

other words, our model fails to predict the very early ramp-up phase. This is most likely the result of 

the chaotic and dynamic environment at this stage that is only partially ascertainable by formal 

models. Next, we analyze the parameters over an 8-week period and hence achieve two additional 

insights. First, the increased R2 indicates predictive relevance and second, slip becomes strong and 

significant. Yet, the positive effect of slip on ramp-up performance fades out in subsequent models. 

We will outline the potential mechanism of this effect in the next section but this suggests that 

factories build up product buffer while they are waiting for the final sales start which in turn helps 

them to fulfill higher performance levels during subsequent ramp-up stages. Moving further to the 

right on the figure (TRU_EXE = 12 weeks) we find the model parameters illustrated that were already 

discussed previously. Additionally, this model displays the highest R2 value. In order to explain the 

results beyond the 12 weeks’ time horizon we experimented with additional variables and discovered 

that longer time horizons require additional and slightly different predictors. As an example, 

production plan adaptations and hence production output changes are more likely to occur over longer 

time horizons in comparison to short term plans in which most resource availabilities are rather fixed. 

As one would expect, ramp-up specific difficulties diminish and the focus shifts to factors that are 

related to mass volume planning. 
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Figure 3. Lifecycle Analysis of Different Model Parameters (Total Effects) 

 
Note: bold symbols indicate significance, numerical details are provided in the appendix. 

6 Discussion and Managerial insights 
Although extant operations management and product development literature implies that ramp-up 

performance plays a role in the overall performance of a company (Clark and Fujimoto 1991, Pisano 

and Wheelwright 1995, Hatch and Mowery 1998, Kuhn et al. 2002) we have little systematic and 

quantitative understanding of the factors that are affecting ramp-up performance. Our findings 

contribute to this relatively understudied research area in analyzing the combined and lifecycle 

dependent quantitative relationships between development lead time, product complexity, slip and 

ramp-up performance. 

 

First, our findings suggest that the mechanisms by which complexity characteristics affect ramp-up 

performance differ significantly. Hardware complexity seems to be a continuous and steady source of 

difficulty for manufacturing during the whole ramp-up phase as identified in our lifecycle analysis. 

This suggests that problem solving cycles related to physical characteristics (e.g., design faults that 

create assembly failures or low yield levels at supplier operations) are slow and cumbersome. While 

the root causes might be identified quickly; the actual engineering change is mostly tardy as solutions 

often require new or improved materials but long lead times or excessive pipeline inventory slows 

down the implementation process. Based on our experience this may take up to several weeks or even 

months during which production teams have to cope with the current situation and hence often fail to 

deliver output on plan. Software complexity on the other hand demonstrates a completely different 

lifecycle pattern. After the production release of the initial software and the start of the replication 

process we do not experience any negative effect of software complexity on ramp-up performance. 

However, as soon as the initial phase is over — a phase in which only a limited amount of customers 

have been served — we find a considerable negative influence on ramp-up performance. At least two 

assumptions are consistent with this result. New and complex cell phone software must be compatible 

with other products in the network (Chiesa et al. 2002) and frequently requires changes on the 
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network side. Often, these modifications are not simultaneously available in all networks and hence 

pose a potential delay for second wave approvals. Also, the creation and verification of customer 

specific variants is a more complicated process in the presence of high software complexity. More 

options are available and side effects are more likely to occur thus leading to delays in production 

execution and to decreased ramp-up performance. However, the overall problem solving cycles 

regarding software issues are shorter than those caused by hardware problems since the negative 

effect of software complexity on ramp-up performance fades out rather quickly. This is consistent 

with the software variant creation release cycle in Nokia that may take several days or weeks at the 

most. 

 

Second, this study sheds light on the relationship between product complexity and development lead 

time in the cell phone industry. The context is representative for consumer electronics where the 

influence and importance of software has increased substantially in the past decade and time to market 

is of critical importance. As already lined out in the introduction of this paper, the majority of new 

features are developed in software and hence determine the development schedules to a large extent. 

Examples are browsers, mobile TV, gaming, augmented reality or dual SIM functionality as well as 

the option to provide and access local relevant content (e.g., social networks). Hardware on the other 

hand becomes a commodity available from various sources and in different configurations. This 

circumstance requires the involvement of purchasing managers in the development process. However, 

since purchasing managers have a strong focus on material cost, their involvement can sometimes 

correlate negatively with the adherence to development schedules. For example, the implementation 

of second source components or the adjustments of existing code to cost efficient but slow processors 

require considerable time and effort for coding, testing and the implementation. Another reason for 

the strong effect of software complexity on development lead time – while controlling for planned 

development lead time – might be related to the presence of planning fallacy. Software teams seem to 

make decisions based on delusional optimism rather than on a rational weighting of gains, losses, and 

probabilities (Lovallo and Kahnemann 2003). This often results in planned development lead times 

that accentuate positive assumptions as they were created in an intuitive and unobjectionable process 

and are therefore often unlikely to hold. 

 

Third, the results highlight that the detrimental effects of product complexity are exacerbated by 

shorter development lead times. Since shorter development lead times mean that project activities 

have to be executed faster than normal, project managers are less able to predict activity outcomes, 

thus on-time performance is more difficult to achieve (Swink 2003). In particular and as mentioned 

above, development lead times are driven by software complexity. As a consequence, this drives 

hardware development activities away from the critical path enabling projects to fine-tune hardware 

activities while waiting for the software release. For example, suppliers that are responsible for 

physical parts (e.g., plastic covers) can run multiple test-batches until they are sure that the process 

works faultlessly and that they can match the desired quality levels. This is in contrast to projects with 

highly compressed schedules in which fine-tuning activities often continue during the ramp-up phase, 

hence leading to discontinuous output and quality instabilities. Also, we believe that more design-

build-test cycles or additional time for evaluation activities between the cycles (e.g., for second source 

materials) may lead to higher product maturity levels and ultimately to stronger and more sustainable 

ramp-up performance as indicated by the lifecycle effect of development lead time on ramp-up 
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performance in Figure 3. According to Wheelwright and Clark (1992) prototyping and its role in 

design-build-test cycles is a core element of development and an area that offers major opportunities 

for management to improve the effectiveness and efficiency of their development process. 

 

Finally, we observe a positive relationship between slip and ramp-up performance which supports our 

argumentation that late schedule slips are advantageous for ramp-up performance. There are several 

possible theories for why this relationship exists. Most late schedule slips are the result of delayed 

software approvals or material deficiencies (Almgren 2000, Kuhn 2002). For example, the flexibility 

of software makes it vulnerable to late additions or changes in order to correct for hardware problems 

(Rauscher and Smith 1995) or in order to quick-fix errors that are detected during the product 

acceptance phase. Material deficiencies are more likely to occur at the start of the ramp-up because 

suppliers switch from pre-production tools to mass-production tools for which only limited experience 

exists. In any case, these issues occur late, often unexpectedly and may lead to ramp-up delays. On the 

other hand, there is a strong managerial tendency, motivated by higher gross-margins of new 

products, to start production gradually. Despite lost capacity for existing products and rising inventory 

levels for semi-finished products the potential gains in production experience, material quality and 

new product availability (semi-finished product buffers can be converted into final products via 

simple assembly and “re-programming” steps as soon as the necessary approvals are in place) 

compensate for negative aspects. According to Terwiesch and Bohn (1998), running engineering trials 

and efforts regarding the improvement of yield and production speed at the beginning of the ramp-up 

phase might limit the uptime in the short run, but will often lead to an increased performance during 

the rest of the ramp-up period. In other words, late schedule slips do not only enable factories to 

ramp-up faster after the actual ramp-up start but it also enables them to boost their throughput as 

demonstrated by the strong impact of slack at the beginning of the ramp-up period. However, as soon 

as experience levels saturate and buffers are used up as shown in the lifecycle analysis this positive 

effect on ramp-up performance fades out. 

 

While the primary focus of this research is to predict ramp-up performance levels and to explain the 

phenomena around this subject, several managerial issues and practical implications arise from the 

work. Our findings highlight the drivers of development lead time in cell phone projects. While 

planning accuracy is affected by the presence of planning fallacy in the software domain and while it 

is best tackled by taking an outside view (Lovallo and Kahnemann 2003), the actual development lead 

time is determined by software complexity. Thus, the managerial implication of this finding is that 

shorter development lead times are more likely to be achieved if firms focus on strategies to either 

cope with software complexity or to decrease it instead of decreasing hardware complexity by using 

fewer and less novel components. A common approach in time-paced markets where new products or 

upgrades are released on a regular basis is to slip everything that cannot be completed in time to the 

next product in the sequence (Eisenhardt and Brown 1998). Yet we do not argument that all sources 

of software complexity are counterproductive and must therefore be eliminated or reduced to lower 

levels. We rather claim that firms – especially if operating in highly competitive and dynamic markets 

– need to understand the potential impact of their choices and use available best practices (e.g., Swink 

1998) in order to accommodate to the higher levels of complexity that the market imperatives entail. 

In this sense, software postponement may be a successful approach, although it received only little 

attention. In other words, manufacturing and production testing activities should be independent of the 
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product software. They should rather use a basic core software for manufacturing before the final 

customer specific software package is programmed into the phone at the last possible step in 

production. This allows firms to ramp-up production of semi-finished products as soon as the product 

hardware is ready even if the final software is not yet released for production. This process continues 

until a maximum buffer level is reached or until the final software package is released for production. 

In a next step the semi-finished products are quickly converted into end products via simple re-

programming steps just before packing. While this approach does not necessarily decrease 

development lead time it increases early product availability and hence ramp-up performance. This is 

partly due to the potential consumption of product buffers but also due to advances in pre-ramp-up 

learning. However, this effect is dynamic and diminishes after a 12 weeks’ time horizon. 

 

Also, our conclusions underscore the importance of the right product-factory fit and the relevance of 

software variant management. We feel that the division of complexity into hardware and software 

elements provides a suitable approach to guide management decisions in order to apply the most 

efficient strategy for any particular product. For example, products with high hardware complexity 

may gain considerably from DFM activities, early manufacturing involvement and a careful selection 

of the lead factory with particular focus on the right product-factory fit — the fit between the demands 

a product is likely to make upon a factory and the existing competence of the factory to which it is to 

be introduced (Langowitz 1988). Such an approach, however, is unlikely to be successful in coping 

with software complexity as this would rather require efficient and proactive variant management 

activities. 

 

Finally, our findings underscore the importance of development lead time management with regard to 

ramp-up performance. Managers in the consumer electronics industry are tempted to accelerate 

product development in order to launch products just before special events such as industry trade 

shows or high peak sales periods (e.g., Christmas). While the timing of revenues critically depends on 

development lead time (time-to-market) firms must be careful not to over-accelerate product 

development. Over-acceleration can have a significant negative impact on customer relations and 

competitor market share if firms fail to achieve required ramp-up performance levels (time-to-

volume). Although it is known that the fast introduction of high-tech products to the market helps to 

achieve overall commercial success (Mallick and Schroeder 2005), creating too much overlap 

between phases makes it difficult for teams to anticipate changes possibly resulting in products that 

are not optimized for volume manufacturing by the time of their launch (Krishnan et al. 1997). For 

example, products that are targeted for Christmas sales (i.e., ramp-up start in September) may not gain 

much from overly compressed schedules and an earlier product launch in August when the demand is 

still only moderate. In such a case, firms may gain more if they allow their teams to execute as 

planned and to focus on ramp-up performance since the volumes that are missed during the Christmas 

period are ultimately lost. However, the relationship between gains in ramp-up performance and speed 

of product development is complex and deserves further research attention in order to weigh up 

launch timing against development completeness (Kalish and Lilien 1986). 

7 Conclusions 
This paper examines the quantitative interrelationships between development lead time, product 

complexity, slip and ramp-up performance over different time horizons. We complement previous 
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studies regarding ramp-up performance in three ways. First, we demonstrate that software complexity 

is the dominant driver for development lead time in cell phone projects. Second, we identify 

development lead time as an important predictor for ramp-up performance. While longer development 

lead times facilitate higher product maturity and thus sustained ramp-up performance, later market 

introductions of new products imply a negative impact on revenue inflows. Third, our model also 

suggests that late schedule slips, although disastrous for customer relations in which due dates are 

crucial, provide the opportunity to build up (semi-finished) product buffers which in turn increase the 

initial ramp-up performance. In conclusion, we contribute to the field of operations management by 

offering a more comprehensive and enriched understanding of the drivers for development lead time 

and ramp-up performance in the cell phone industry. We also contribute to the existing research by 

providing an alternative view into the specific and lifecycle dependent effects of development lead 

time, product complexity and slip on ramp-up performance. Thus, our insights support management 

efforts to anticipate the consequences of product design decisions, to predict development schedule 

risk levels and to make informed decisions about production volume commitments. 

 

Although our findings are firm specific we believe that our results can also be generalized to fit the 

wider consumer electronics industry because: (1) modern consumer electronics products like hi-fi 

systems, game consoles, cameras and flat screens share similar product and development 

characteristics with cell phones, (2) our operational data were taken from different geographical 

development centers with different cultural and managerial properties and (3) our results extend 

existing empirical work from other industries. 

 

While this study makes a significant contribution to the academic literature and provides guidance for 

managerial practice, there are also limitations that provide opportunities for further research. First, our 

conclusions are based on a limited number of real life cases that were carried out in a single firm. A 

wider analysis including different firms from the consumer electronics industry utilizing a larger 

sample size might reveal additional effects and thus potentially enhance the capability to make 

generalizations that exceed the scope of the consumer electronics industry. Second, with respect to the 

predictors that are involved in our study we believe that there are further factors such as 

organizational forces or supply chain elements (as outlined in the literature review) that may 

contribute to development lead time or ramp-up performance. A fruitful extension could identify and 

specify these factors and assess their impact on the given model parameters to advance our theoretical 

understanding of the contingent relationships. Third, as we mentioned earlier, firms need to make a 

conscious choice between project acceleration and ramp-up performance. This circumstance prompts 

for formal models to find the optimal level of project acceleration that maximizes the total revenue 

inflow for given levels of product complexity. Finally, future research should revisit the effectiveness 

of knowledge transfer across projects although we did not find an impact of linear trend on ramp-up 

performance in our study. We might expect to find a weak integration of knowledge from past related 

projects, since products develop through a sequence of changes that tend to build on past experience 

(Clark 1985). Therefore, the operational and strategic importance of knowledge management 

(Sherman et al. 2005) deserves special attention, most notably with respect to knowledge transfer 

across projects and across sites. 



Appendix: 

 

Descriptive Statistics and Correlations (Pearson) Between Variables 

 
 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. M0toM1 1.00

2. M1toM2 0.14 1.00

3. M2toM3 0.24 0.23 1.00

4. common component count -0.10 0.19 0.33 1.00

5. product specific component cou 0.31 0.07 0.08 0.36 1.00

6. parts coupling 0.24 0.07 0.22 0.62 0.58 1.00

7. product novelty 0.18 0.55 0.42 0.25 0.22 0.24 1.00

8. SW novelty 0.12 0.65 0.50 0.31 0.28 0.22 0.83 1.00

9. SW error count 0.33 0.26 0.41 0.34 0.28 0.40 0.54 0.36 1.00

10. SW code size 0.44 0.11 0.06 0.18 0.66 0.60 0.12 0.14 0.08 1.00

11. effective utilization -0.08 0.00 -0.12 -0.32 -0.42 -0.52 -0.34 -0.26 -0.53 -0.23 1.00

12. linear trend 0.33 -0.42 -0.30 -0.13 0.31 0.34 -0.29 -0.48 0.03 0.47 -0.03 1.00

13. planned development lead time 0.73 0.58 0.47 0.07 0.12 0.19 0.37 0.38 0.43 0.19 -0.07 -0.10 1.00

14. slip 0.05 0.21 0.61 0.16 0.15 0.05 0.49 0.48 0.28 0.08 0.00 -0.08 0.09 1.00

15. sales forecast change -0.15 0.15 0.01 0.08 -0.24 -0.09 -0.09 -0.01 -0.09 -0.13 0.21 -0.44 0.02 -0.13 1.00

16. years in operation 0.04 -0.10 -0.13 -0.36 -0.39 -0.35 -0.24 -0.18 -0.09 -0.28 0.19 0.09 0.03 -0.07 0.09 1.00

17. production technology novelty 0.06 0.19 0.02 0.21 0.04 0.01 0.20 0.05 0.23 -0.14 -0.14 -0.12 0.20 0.16 0.17 0.10 1.00

18. factory location 0.20 -0.29 -0.31 -0.36 0.08 -0.06 -0.29 -0.46 -0.31 0.25 0.34 0.53 -0.10 -0.17 -0.09 -0.12 -0.15 1.00

84.80 106.83 52.67 350.35 149.70 555.43 0.16 51.48 1000.00 6.2M 0.77 624.02 218.02 7.07 1.07 6.62 0.35 0.72

56.34 42.41 23.58 58.21 59.45 134.34 0.19 61.50 2185.40 4.0M 0.20 295.92 64.08 16.36 0.37 3.08 0.48 0.46

1.00 20.00 1.00 216.00 52.00 287.00 0.00 0.00 -1214.35 0.7M 0.38 0.00 80.00 -18.00 0.36 2.80 0.00 0.00

250.00 227.00 130.00 457.00 294.00 842.00 0.73 242.00 7215.65 20.2M 1.18 1147.00 401.00 91.00 1.91 12.50 1.00 1.00

46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46

Mean

S.D.

Minimum

Maximum

Count
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Detailed Model Results 

 
Notes: N = 46, measurement models for M4 to M9 are left out for clarity as they are in line with M3. 

*** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests based on 500 bootstrap resamples. 

 

t -value Loading VIF t -value Loading VIF t -value Loading VIF t -value Loading VIF t -value Loading VIF

Measurement model
Development lead time (DevLT )

M0toM1 -0.11 0.33 0.11 1.05 0.62 *** 5.27 0.76 1.05 0.62 *** 5.38 0.76 1.05
M1toM2 1.15 *** 3.27 0.72 1.42 0.75 *** 3.43 0.59 1.42 0.75 *** 3.59 0.59 1.42
M2toM3 0.81 *** 3.07 0.22 1.37 0.53 *** 2.68 0.16 1.37 0.53 *** 2.79 0.16 1.37

Hardware complexity (HWC )
common component count 0.18 0.76 0.50 1.65 0.07 0.58 0.45 1.65 0.07 0.66 0.45 1.65
product specific component count 0.12 0.70 0.43 1.53 0.28 ** 2.20 0.63 1.53 0.28 ** 2.25 0.63 1.53
parts coupling 0.10 0.34 0.49 2.14 0.38 ** 2.33 0.68 2.14 0.38 ** 2.45 0.68 2.14
product novelty 0.85 *** 3.33 0.95 1.09 0.71 *** 4.58 0.84 1.09 0.71 *** 4.69 0.84 1.09

Software complexity (SWC )
SW novelty 0.76 *** 3.04 0.92 1.16 0.54 *** 3.81 0.77 1.16 0.54 *** 3.76 0.77 1.16
SW code size 0.12 0.44 0.26 1.02 0.40 *** 3.21 0.52 1.02 0.40 *** 3.41 0.52 1.02
SW error count 0.40 *** 2.97 0.68 1.15 0.51 *** 5.74 0.74 1.15 0.51 *** 5.61 0.74 1.15

Ramp-up performance (RP )
effective utilization 1.00 -- 1.00 1.00 1.00 -- 1.00 1.00 1.00 -- 1.00 1.00

Structural model (path coefficients)
Direct effects

SWC --> HWC 0.90 *** 5.07 1.00 0.89 *** 29.20 1.00 0.89 *** 28.20 1.00 0.89 *** 28.20 1.00 0.89 *** 28.20 1.00
HWC --> DevLT -0.09 0.25 5.17 -0.05 0.36 5.08 -0.05 0.36 5.08 -0.05 0.36 5.08 -0.05 0.36 5.08
SWC --> DevLT 0.70 * 1.74 5.43 0.36 ** 1.97 5.91 0.36 * 1.93 5.91 0.36 * 1.93 5.91 0.36 * 1.93 5.91
HWC --> RP 0.03 0.07 6.96 -0.28 1.09 5.10 -0.39 1.52 5.41 -0.30 1.52 5.16 -0.28 1.52 5.10
SWC --> RP -0.79 ** 2.10 7.81 -0.64 ** 2.04 6.89 -0.49 1.57 7.44 -0.61 1.57 7.09 -0.65 1.57 6.94
DevLT --> RP 0.55 * 1.79 2.66 0.41 ** 2.04 1.95 0.39 ** 2.13 1.96 0.40 ** 2.13 1.98 0.42 ** 2.13 1.96

Control variables
linear trend --> DevLT -0.33 * 1.74 1.12 -- -- -- -- -- -- -- -- -- -- -- --
linear trend --> RP 0.05 0.25 1.71 -- -- -- -- -- -- -- -- -- -- -- --
sales forecast change --> RP 0.12 0.75 1.35 -- -- -- -- -- -- -- -- -- -- -- --
years in operation --> RP 0.11 0.74 1.33 -- -- -- -- -- -- -- -- -- -- -- --
production technology novelty --> RP -0.17 1.26 1.21 -- -- -- -- -- -- -- -- -- -- -- --
planned development lead time --> DevLT -- -- -- 0.74 *** 8.03 1.95 0.74 *** 7.81 1.96 0.74 *** 7.81 1.96 0.74 *** 7.81 1.96
slip --> RP -- -- -- 0.25 ** 1.98 1.23 0.29 ** 2.32 1.26 0.24 ** 2.32 1.28 0.25 ** 2.32 1.25
factory ID1...7 --> RP -- -- -- -- -- -- -0.22 ** 2.00 1.15 -0.09 ** 2.00 1.07 0.02 ** 2.00 1.08
factory location --> RP -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

Total effects
HWC --> RP -0.02 0.06 -- -0.30 1.13 -- -0.41 1.53 -- -0.32 1.53 -- -0.30 1.53 --
SWC --> DevLT 0.62 *** 3.76 -- 0.31 *** 3.04 -- 0.31 *** 2.86 -- 0.31 *** 2.86 -- 0.31 *** 2.86 --
SWC --> RP -0.43 ** 1.98 -- -0.76 *** 5.51 -- -0.72 *** 5.56 -- -0.75 *** 5.56 -- -0.77 *** 5.56 --

Coefficient of determination (R
2
)

HWC
DevLT
RP

RP  (R
2 

adj) 0.26 0.38 0.41 0.37 0.36

0.37 0.44 0.48 0.44 0.44
0.62 0.87 0.87 0.87 0.87
0.80 0.79 0.79 0.79 0.79

Path weight Path weight Path weight Path weight Path weight

M1 (non-sign controls included) M2 (factory ID control excluded) M3 (factory ID1 included) M4 (factory ID2 included) M5 (factory ID3 included)
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Notes: N = 46, measurement models for M4 to M9 are left out for clarity as they are in line with M3. 

*** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests based on 500 bootstrap resamples. 

 

t -value Loading VIF t -value Loading VIF t -value Loading VIF t -value Loading VIF

Measurement model
Development lead time (DevLT )

M0toM1
M1toM2
M2toM3

Hardware complexity (HWC )
common component count
product specific component count
parts coupling
product novelty

Software complexity (SWC )
SW novelty
SW code size
SW error count

Ramp-up performance (RP )
effective utilization

Structural model (path coefficients)
Direct effects

SWC --> HWC 0.89 *** 28.20 1.00 0.89 *** 28.20 1.00 0.89 *** 28.20 1.00 0.89 *** 28.20 1.00
HWC --> DevLT -0.05 0.36 5.08 -0.05 0.36 5.08 -0.05 0.36 5.08 -0.05 0.36 5.08
SWC --> DevLT 0.36 * 1.93 5.91 0.36 * 1.93 5.91 0.36 * 1.93 5.91 0.36 * 1.93 5.91
HWC --> RP -0.26 1.52 5.93 -0.25 1.52 5.14 -0.23 1.52 5.38 -0.29 1.52 5.16
SWC --> RP -0.65 1.57 7.15 -0.59 1.57 7.02 -0.63 1.57 6.90 -0.63 1.57 6.94
DevLT --> RP 0.42 ** 2.13 1.97 0.43 ** 2.13 1.95 0.36 ** 2.13 2.37 0.42 ** 2.13 1.97

Control variables
linear trend --> DevLT -- -- -- -- -- -- -- -- -- -- -- --
linear trend --> RP -- -- -- -- -- -- -- -- -- -- -- --
sales forecast change --> RP -- -- -- -- -- -- -- -- -- -- -- --
years in operation --> RP -- -- -- -- -- -- -- -- -- -- -- --
production technology novelty --> RP -- -- -- -- -- -- -- -- -- -- -- --
planned development lead time --> DevLT 0.74 *** 7.81 1.96 0.74 *** 7.81 1.96 0.74 *** 7.81 1.96 0.74 *** 7.81 1.96
slip --> RP 0.25 ** 2.32 1.25 0.26 ** 2.32 1.23 0.24 ** 2.32 1.27 0.26 ** 2.32 1.23
factory ID1...7 --> RP -0.02 ** 2.00 1.30 0.19 ** 2.00 1.37 0.10 ** 2.00 1.38 0.05 ** 2.00 1.04
factory location --> RP -- -- -- -- -- -- -- -- -- -- -- --

Total effects
HWC --> RP -0.28 1.53 -- -0.27 1.53 -- -0.25 1.53 -- -0.31 1.53 --
SWC --> DevLT 0.31 *** 2.86 -- 0.31 *** 2.86 -- 0.31 *** 2.86 -- 0.31 *** 2.86 --
SWC --> RP -0.76 *** 5.56 -- -0.67 *** 5.56 -- -0.73 *** 5.56 -- -0.76 *** 5.56 --

Coefficient of determination (R 2)
HWC
DevLT
RP

RP  (R 2 adj) 0.370.36 0.39 0.37

0.46 0.44 0.440.44
0.870.87 0.87 0.87

0.79 0.79 0.790.79

Path weightPath weight Path weight Path weight

M7 (factory ID5 included) M8 (factory ID6 included) M9 (factory ID7 included)M6 (factory ID4 included)
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Notes: N = 46. 

*** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests based on 500 bootstrap resamples. 

 

 

t -value Loading VIF t -value Loading VIF t -value Loading VIF t -value Loading VIF t -value Loading VIF

Measurement model
Development lead time (DevLT )

M0toM1 0.62 *** 5.73 0.76 1.05 0.58 *** 4.76 0.73 1.05 0.61 *** 4.74 0.76 1.05 0.62 *** 5.47 0.77 1.05 0.58 *** 4.74 0.73 1.05
M1toM2 0.75 *** 3.60 0.59 1.42 0.79 *** 3.75 0.61 1.42 0.76 *** 3.53 0.60 1.42 0.74 *** 3.77 0.58 1.42 0.79 *** 3.53 0.60 1.42
M2toM3 0.53 *** 2.79 0.16 1.37 0.56 *** 2.79 0.17 1.37 0.53 ** 2.57 0.16 1.37 0.54 *** 2.63 0.17 1.37 0.58 ** 2.57 0.19 1.37

Hardware complexity (HWC )
common component count 0.07 0.56 0.45 1.65 0.04 0.26 0.39 1.65 0.09 0.58 0.41 1.65 0.10 0.81 0.44 1.65 0.08 0.41 0.41 1.65
product specific component count 0.28 ** 2.18 0.63 1.53 0.21 1.38 0.51 1.53 0.20 1.31 0.55 1.53 0.36 *** 2.84 0.69 1.53 0.32 0.62 0.62 1.53
parts coupling 0.38 ** 2.29 0.68 2.14 0.21 1.01 0.52 2.14 0.36 * 1.80 0.62 2.14 0.39 ** 2.18 0.70 2.14 0.29 * 1.80 0.62 2.14
product novelty 0.71 *** 4.76 0.84 1.09 0.85 *** 7.26 0.94 1.09 0.78 *** 5.21 0.89 1.09 0.66 *** 3.57 0.80 1.09 0.75 *** 5.21 0.87 1.09

Software complexity (SWC )
SW novelty 0.54 *** 3.85 0.77 1.16 0.69 *** 4.73 0.88 1.16 0.59 *** 3.53 0.82 1.16 0.53 *** 3.18 0.76 1.16 0.62 *** 3.53 0.83 1.16
SW code size 0.40 *** 3.22 0.52 1.02 0.28 ** 1.98 0.41 1.02 0.33 ** 2.30 0.45 1.02 0.48 *** 3.33 0.59 1.02 0.41 ** 2.30 0.53 1.02
SW error count 0.51 *** 5.18 0.74 1.15 0.41 *** 3.39 0.68 1.15 0.50 *** 4.09 0.74 1.15 0.45 *** 4.88 0.68 1.15 0.40 *** 4.09 0.66 1.15

Ramp-up performance (RP )
effective utilization 1.00 -- 1.00 1.00 1.00 -- 1.00 1.00 1.00 -- 1.00 1.00 1.00 -- 1.00 1.00 1.00 -- 1.00 1.00

Structural model (path coefficients)
Direct effects

SWC --> HWC 0.89 *** 30.11 1.00 0.90 *** 27.34 1.00 0.89 *** 25.83 1.00 0.89 *** 27.78 1.00 0.90 *** 28.21 1.00
HWC --> DevLT -0.05 0.36 5.08 -0.05 0.28 5.41 -0.04 0.27 5.07 -0.09 0.63 5.14 -0.10 0.63 5.41
SWC --> DevLT 0.36 * 1.93 5.91 0.37 * 1.81 6.16 0.35 * 1.86 5.84 0.40 ** 2.10 5.93 0.43 ** 2.05 6.18
HWC --> RP -0.39 * 1.69 5.40 -0.57 1.50 6.04 -0.43 1.35 5.53 -0.42 * 1.77 5.49 -0.28 1.60 5.91
SWC --> RP -0.44 1.47 7.87 0.24 0.49 8.97 -0.19 0.47 8.16 -0.30 1.19 7.84 -0.12 1.15 8.55
DevLT --> RP 0.36 * 1.90 2.02 0.12 0.47 2.10 0.17 0.79 2.03 0.43 ** 2.00 2.01 0.35 ** 2.06 2.09

Control variables
linear trend --> DevLT -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
linear trend --> RP -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
sales forecast change --> RP -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
years in operation --> RP -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
production technology novelty --> RP -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
planned development lead time --> DevLT 0.74 *** 7.59 1.40 0.72 *** 7.47 1.37 0.73 *** 7.80 1.39 0.73 *** 7.75 1.38 0.72 *** 7.59 1.37
slip --> RP 0.27 ** 2.30 1.24 0.03 0.21 1.29 0.35 ** 2.50 1.26 0.12 1.04 1.23 0.04 1.06 1.26
factory ID1...7 --> RP -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
factory location --> RP 0.22 ** 2.53 1.20 0.08 0.52 1.33 0.16 1.38 1.21 0.22 ** 2.28 1.15 0.09 ** 2.49 1.20

Total effects
HWC --> RP -0.41 * 1.74 -- -0.58 1.54 -- -0.44 1.39 -- -0.46 * 1.84 -- -0.32 * 1.69 --
SWC --> DevLT 0.31 *** 2.86 -- 0.33 *** 3.00 -- 0.31 *** 2.89 -- 0.32 *** 2.96 -- 0.34 *** 2.84 --
SWC --> RP -0.68 *** 5.06 -- -0.24 1.09 -- -0.53 *** 2.75 -- -0.54 *** 4.00 -- -0.26 *** 3.95 --

Coefficient of determination (R
2
)

HWC
DevLT
RP

RP  (R
2 

adj) 0.41 0.01 0.21 0.30 0.01

0.38 0.120.48 0.12 0.30
0.87 0.87 0.87 0.88 0.88

0.80 0.810.79 0.81 0.80

Path weight Path weight Path weight Path weight Path weight

M10d (TRU_EXE = 16 weeks) M10e (TRU_EXE = 20 weeks)M10 (final model) M10a (TRU_EXE = 4 weeks) M10b (TRU_EXE = 8 weeks)
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