
 

Micro-optical devices for fiber communication

Citation for published version (APA):
Nicia, A. J. A. (1983). Micro-optical devices for fiber communication. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Electrical Engineering]. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR98182

DOI:
10.6100/IR98182

Document status and date:
Published: 01/01/1983

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR98182
https://doi.org/10.6100/IR98182
https://research.tue.nl/en/publications/21b23306-3eda-4973-8686-6e0b959fcd50


MICRO-OPTICAL DEVICES FOR 
FIBER COMMUNICATION 

A.J.A. NICIA 



MICRO-OPTICAL DEVICES FOR 
FffiER COMMUNICATION 

aanHilda 



MICRO-OPTICAL DEVICES FOR 
FIBER COMMUNICATION 

PROEFSCHRIFr 

TER VERKRUGING VAN DE GRAAD VAN 
DOCTOR IN DE TECHNISCHE WETENSCHAPPEN 

AAN DE TECHNISCHE HOGESCHOOL EINDHOVEN, 
OP GEZAG VAN DE RECTOR MAGNIFICUS, 

PROF. DR. S.T.M. ACK.ERMANS, VOOR EEN COMMISSIE 
AANGEWEZEN DOOR BET COLLEGE VAN DEKANEN 

IN BET OPENBAAR TE VERDEDIGEN 
OPVRUDAG 10JUNI 1983 TE 16.00 UUR 

DOOR 

ANTONIUS JOSEPHUS ADRIANUS NICIA 

geboren te Br• 



DIT PROEFSCHRJFT IS GOEDGEKEURD 
DOORDEPROMOTOREN 

Prof. ir. J. van der Plaats 

en 

Prof. dr. G.A. Acket 

Nicia, Antonius Josephus Adrianus 

Micro-optic devices for fiber communication I 
Antonius Josephus Adrianus Nicia. - [S.I. : s.n.J. -
Fig. - Proefschrift Eindhoven. - Met lit. opg., reg. 
ISBN 90·900044 I -6 
SISO 668.2 UDC 621.372.8:621.315.612 UGI 650 
Trefw.: optische communicatie. 



PREFACE 

Optical fiber communication has many outstanding advantages. Its potentially wide 
application ranges from long-distance trunk lines to short-distance subscriber net­
works. This is mainly due to the favorable features of optical fibers, notably low 
loss, wide bandwidth, freedom from electromagnetic interference, light weight and 
small dimensions. To fully utilize these advantages and to further expand the appli­
cation areas, various micro-optical devices are required in addition to those included 
in the basic optical link (source-fiber-detector). 
Among micro-optical devices optical multiplexers and demultiplexers are probably 
the most important ones, because they allow wavelength division multiplexing 
(WDM) at a single fiber. WDM, in particular, makes optical fiber communication 
attractive for subscriber and data networks owing to the system flexibility thus 
introduced. Most of these devices include a lens coupling between a source fiber 
and a receiving fiber. The minimum insertion loss of such a coupling is completely 
determined by the aberrations of the incorporated lenses. 

This thesis develops the relationship between optical aberrations and coupling 
efficiency for multimode fiber devices. Results of this lens-coupling investigation 
are applied in the design of those optical multiplexers and demultiplexers intended 
for WDM transmission, that contain lenses. In addition, the system requirements to 
be met by multiplexers and demultiplexers are studied to facilitate the choice of 
proper input and output fibers for these devices. 
Most of the work presented here has been published before in: 
1. Lens Coupling in Fiber-Optic Devices: Efficiency Limits 

A. Nicia, Appl. Opt. 20,3136 (1981). 
2. Wavelength Multiplexing and Demultiplexing Systems for Single-Mode and 

Multimode Fibers 
A. Nicia, in Technical Digest, Seventh ECOC, Copenhagen (1981), p. 8.1~1. 

3. Loss Analysis of Laser-Fiber Coupling and Fiber Combiner and its Application 
to Wavelength Division Multiplexing 
A. Nicia, Appl. Opt. 21,4280 (1982). 

With respect to notation, little or no attempt has been made to retain uniform 
symbols throughout the thesis. For example, Lis used in one chapter as the radiance 
and elsewhere as one of the optical direction cosines. However, a perceptive reader 
should have no difficulty with changes of this kind. 
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1. LENS COUPUNG IN FIBER.OPTICAL DEVICES 

1.1 Introduction 

Fiber-optical communication systems that fully utilize the possibilities of optical 
fibers use components such as connectors, branch couplers, attenuators, switches, 
isolators and optical (de)multiplexers. To process or manipulate the light between 
fibers at least several millimeters are needed between the endfaces for inserting the 
processing element, which can be an interference filter, a grating, etc. Due to the 
large divergence of the light radiated by fibers (typically 24°) such separations 
would lead to unacceptable insertion losses. This problem can be avoided by using 
a lens system between the fiber ends. Many such structures have been reported. In 
all of them a 1·1 image of the emitting fiber core is made upon the receiving one, 
while the light passes en route to the optical processing element. Coupling efficiency 
is now limited by lens aberrations. As the influence of grating efficiencies or trans­
mission of interference fllters etc. on the insertion loss of fiber-optical devices is 
quite well understood, the only remaining uncertain factor is the aberration loss. A 
recent paper contained some work on the numerical evaluation of the aberration 
loss of one specific configuration using GRIN-rod lenses [ 1] . However, so far no 
systematic approach has been presented, which results in a prediction of the 
coupling efficiency for a specified set of lens and fiber parameters. It is the aim of 
this treatise to remove this deficiency. 
From our study and experiments, presented here, it follows that homogeneous 
single-element lenses and equivalent GRIN-rod lenses cause almost the same aberra· 
tion loss. For a well-designed lens this results in a coupling efficiency of 95% 
(0.2 dB insertion loss) in the case of typical communication fibers. 
The basic structure appearing in most devices is shown in Fig. 1.1. It is a centered 
optical system with a collimating and a focusing lens. (The optical processing 
elements are always omitted in the figures.) Some devices use off·axis fiber ends. 

t 
input 
fiber 

collimating 
lens 

' 
focusing 

lens 

~ 

Fig. 1.1 Basic structure of lens coupling 

t 
output 
fiber 
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Since the spherical aberration is dominant [2], in these devices too there is no loss 
of generality if we only consider the centered system. Another advantage of this 
lens coupling configuration is the possibility of using angular-dispersive elements, 
because of the collimated beam between the lenses [3]. 
Three types of single-element lenses for fiber-optical devices have been proposed: 
(1) quarter-pitch GRIN-rod lens [4], (2) ball lens [5), (3) rod lens [6]. The 
paraxial characteristics of the lens system and of each lens type are reviewed in 
Sec. 1.2. Their spherical aberration is studied in Sec. 1.3 and a detailed description 
of aberration loss is presented in Sec. 1.4. Discussions of the sensitivity to mis­
matches in Sec. 1.5 and experimental results in Sec. 1.6 complete the picture of 
lens coupling. 

1.2 Paraxial Lens Characteristics 

For a paraxial description of the lens system it is sufficient to represent the lenses 
in terms of their principal planes and focal points. 

A. GRIN-Rod Lens 

The refractive index in a GRIN-rod lens is given by [7]. 

where 
n(r) 
no 
g 
h4,h6 

= refractive index at distance r from the axis, 
= refractive index on the axis, 

focusing constant, 
= higher order constants. 

(1.1) 

For paraxial rays the higher order terms with coefficients h4 , h6 can be neglected. 
A meridional ray incident on a GRIN-rod lens travels along a sinusoidal curve with 
a periodic length [8] , pitch, 211/g. For the usual quarter-pitch lens the focal length f, 
and the position of the principal points Hare [8] (see Fig. 1.2a) 

B. Ball Lens 

(1.2) 

(1.3) 

A ball lens is completely described by its refractive index n and radius R. Applica­
tion of the thick lens formula [9}leads to (Fig. 1.2b) 

n 
f= ---R, 

2(n -1) 
(1.4) 

h=R. (1.5) 
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C RodLens 

One focal point of the rod lens is chosen at the plane face of the lens, so the only 
independent parameters are the refractive index n and radius of curvature R (Fig. 
1.2c). Using the thick lens formula we get 

I f = -
1
R, 

n-

h 
I 

-IR. n-

quarter -pitch 

1· ·1 
H H' 

-· ·-X-·""*·--
/ 

focal 
point Lt 

Q 

(1.6) 

(1.7) 

-/~JL _H' --
tocat J 
point f t' 

Fig. 1.2 Fundamental imaging parameters of the (a) GRIN-rod lens, (b) ball lens, 
(c) rod lens 

D. Complete Lens System 

In lens connectors it is required that all assemblies containing one lens and one fiber 
end be identical in order to be interchangeable. For a maximum coupling between 
the fibers a 1-1 image should be made of the emitting fiber core upon the receiving 
one, and the launching angle with the fiber endfac~ has to be the same at the 
receiving fiber end. All these conditions are satisfied only if the ends are positioned 
in the focal plane, while the foci of the l~nses coincide (Fig. 1.3). 

principal 
plane 

principal 
plane 

Fig. 1.3 Universal arrangement for optimal/ens coupling 
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The incoming light cone is tilted if the foci of the lenses do not coincide. In a 
proper design this tilt angle should always be small compared with the numerical 
aperture of the fiber. Some applications allow the use of oversized output fibers for 
reducing the losses [ 10]. This aspect will be discussed in Sec. 2.4.2. 

1.3 Spherical Aberration of the Lens System 

We shall now .investigate the spherical aberration of the lens system given in Fig. 1.3 
when the above-mentioned types of lenses are inserted. As suggested in Fig. 1.4, the 
spherical aberration is the distance in the receiving focal plane between focused rays 
emitted at vanishing angles and at the outer region of the numerical aperture of the 
fiber. 

Fig. 1.4 The effect of spherical aberration 

A. GRIN-Rod Lens 

blur 
circle 

A lens with a sech distriblftionfor n would not suffer from spherical aberration [11]. 
This requires tha.t h4 and h6 in Eq. (U) equal2/3 and -17/45 respectively. How· 
ever, as most GRIN-rod lenses are produ9ed by means of ion-exchange techniques, 
the range of profiles is limited [12]. Although the diffusion and thus the pttofile 
can be influenced by applying electric fields [13], this method has not yet resulted 
in a good control of h4 and h6 . At present, therefore, most available GRIN-rod 
lenses are best described by parabolic distributions, i.e. 

n(r) = n0 [1 -(gr)2
] *. (LS) 



s 

In Sec. 1.2 we point out that the focal points of the two lenses should coincide. As 
these points are at the flat planes of the lens, the cQmplete lens sys*em is equivalent 
to one half-pitch lens. Application of third-order aberration th~ry (see Appendix 
A) leads to 

11' 1 3 
e = ---fNA 

2 nol 

where 
e = radius of aberration circle, 
n0 = on-axis refractive index, 
NA = numerical aperture of the fiber, 
f = focal length, given by Eq. (1.2), 

IJ. Ball Lens 

{1.9) 

In Appendix B we use third-order ~ben-ation thoory for !feriVing an expression for 
the spherical aberration of the ball lens syHem. The result is 

1 n 
3 e = [ 

2 
-1] f NA , 

4 (n -1) 

where 
e = radius of aberration circle, 
n = refractive index of the ball lens, 
NA = numerical aperture of the fiber, 
f = focal length, given by Eq. (1.4). 

C. RodLens 

Following the same path given in Appen~Ux B, ~me can derive for the rod lens 
system 

e = 

(1.10) 

(1.11) 
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where 
€ 

n = 
NA = 

radius p.f aberr~tion. ~ifcle, . • · 
refractt,veJndex ~[the rod ,lens, 
numerical ape~ture ofthe fib-er, 
focal length, given by Eq. (1.6). f = 

D. General Considerations 

·Since the focal length in all fiber-optical devices is very large with respect to the 
fiber core dimensions, other lens aberrations have a negligible influence. The quality 
of the imaging is thus fully determined by the spherical aberration. This statement 
has been confirmed by exact ray-tracing, and was also established in some other 
work [2]. · · 
In an optical communication system the fiber parameters are determined by the 
required coupled input power, bit rate etc. On the other hand, the minimum focal 
length fin fiber-optical devices is determined by requirements ·of the width 2.f.NA 
of the collimated beam, and/or its divergence 2.a/f (a= fiber core radius). For a 
realistic compaii.sonoftlie three lel){t'ypes we the.reforehave to take equal focal 
lengths and use the lenses at equal numerical apertures, as both are prescribed by 
system demands regardless of lens type. Keeping this in mind we then see from 
Eqs. (1.9) (1.11) that the characteristic aberration parameter e/fNA3 depends 
only on the refractive index. Fig.1.5 shows a plot of e/fNA3 as a function of 
refractive index, making use of Eqs. (1.9)- (1.11). From Fig. 1.5 we see that, 
choosing n,n0 > 1.75, we have almost equal imaging qualities for each type. 
Commercially available GRIN-rod lenses [14] have n0 !!!! 1.55. On the other hand, 
there is a wide range of optical glasses available for producing high-quality homo­
geneous lenses [15], with an upper limit n E!:l 1:9. 

i 1.6 \ ,. 
\ 

1.2~. ', 

'· ' ' ' 0.8 ....... ' 

rod--­
ball-·-·-
_grin~ 

0.4 

!---.._ ...... ' 

! ------...::· '-.:'::::...."R'::~-J ·- -----
OL-----------------~~ 

1.5 1.6 1.7 1.8 1.9 2.0 
-n,n0 

Fig. 1.5 Influence of material refractive index on the characteristic transverse 
spherical aberration of the lens coupling system. 
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Typical communication fibers have NA == 0.2, whereas in most fiber-optical devices 
the focal length is - 3 mm. For these parameters the spherical aberration causes a 
blur circle with 31 J.!m diam if use is made of a GRIN-rod lens (n0 = 1.55). This blur 
circle has a 16 J.!m diam in the case of a ball lens or rod lens (n = 1.9). These blur 
circles are certainly not small in comparison with the usual fiber core dimensions of 
50 Jtm. From Appendices A and B it follows that rays launched at nonvanishing 
angles cross the optical axis before the focal point. If the emitting point source and 
the receiving plane are at a distance f-z from the principal plane, where lzl<< f, 
the paraxial image will be at f+z and thus at a distance 2z behind the receiving 
plane. These considerations suggest that when the fiber ends are placed at a distance 
slightly smaller than the paraxial focal length, the spherical aberration may be 
partially compensated by a virtual negative endface separation between the image 
of the transmitting fiber and the receiving fiber. 
Let us see how this defocusing affects the imaging of the ball lens system. The 
virtual separation causes a blur circle with radius 2.1zi.NA. (For the two other lens 
types the refractive index of the embedding medium should be taken into account.) 
Using this effect and Eq. (1.10) we get a more general expression for the place 
where the refocused rays arrive at the receiving plane: 

1 n 
3 e(0)""-2z8+ [ 

2 
-1]f0, 

4 (n-1) 
(1.12) 

in which 
e(O) = distance to the optical axis where refocused rays arrive at the receiving 

plane, positive if rays cross the axis before this plane, 
0 = launching angle, 
z = defocusing, positive if the fiber ends are at distances shorter than the focal 

length. 

Note that Eq. (1.12) concerns one single ray launched at an angle 8. 
The effect of defocusing is shown in Fig. 1.6. The solid curves were obtained by 
means of exact ray-tracing, the dashed ones with the aid of Eq. (1.12). The para· 
meters of the ball lenses which we used in our experiments were taken for Fig. 1.6a, 
and for Fig. 1.6b we used a ball lens with low refractive index. It can be seen that 
the spherical aberration can be remarkably reduced by this defocusing. How far the 
defocusing has to go for optimal coupling will be discussed in the next section. 
Studying Fig. 1.6 we also see that third-order aberration theory gives a satisfactory 
description of all cases of interest. For GRIN-rod lenses and rod lenses this 
defocusing means that the lens thickness should be slightly less than a quarter-pitch 
or the paraxial focal length, respectively. 
Without presenting the relations explicitly, it will be clear that in the case of 
GRIN-rod lens or rod lens, Eq. (1.12) has exactly the same form. 
Finally we note that the diffraction limit (diameter of the Airy disk) for A = 
0.85 .Jtm and NA = 0.2 is about 2.5 Jtm. In view of the numerical examples given 
above we may disregard these diffraction effects when using multimode fibers. 
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30 
e 
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e 
(pm) 

20 
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-5 

60 
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z = 30pm 
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Fig. 1.6 Relationship between transverse spherical aberratione and launching 
angle 0, showing the effect of defocused fiber ends. 
Solid curves were obtained by exact ray-tracing, the dashed ones by third­
order aberration theory. 
(a) Using high-refractive index ball lenses. 
(b) Using low-refractive index ball lenses. 

1.4 Coupling Efficiency 

It has been estimated by several authors [ 16-18] that splice losses strongly depend 
on input power distribution. In all these papers it is pointed out that the uniform 
distribution causes the highest sensitivity to mismatches in practice. This can also 
be expected in a lens connection, for as we have seen in Sec. 1.3 the spherical 
aberration strongly depends on the launching from the input fiber. In this section 



we will determine the coupling efficiency of the lens connection described in the 
previous sections, assuming a uniform distribution in the input fiber. The results 
will indicate a worst case for practical fiber systems. 
The index profile of the fiber is assumed to be [see also Eq.(l.l)] 

n(r) = llo [1 g2 a2 (r/a)a] *, r<a, 

9 

= llo (1 gz az )* 
(1.13) 

,r~, 

where a is the core radius and a is a parameter describing the proftle: a= oo repre­
sents a step-index fiber, a f::! 2 a graded-index fiber. 

Each point of the emitting fiber end causes a light spot at the receiving fiber end. 
Due to rotational symmetry only the on-axis point causes a circular light spot. 
However, the distance between all points and the axis is very small compared with 
the focal length. Therefore, we assume that the light spot is circular for all points 
and has the same diameter at equal NA (remember also the remarks concerning the 
off-axis lens aberrations in Sec. 1.3). We can consider, in good approximation, the 
coupling problem in the same way as an end face separation in a butt-joint connector 
(see Fig. 1.7). The only difference is that in the case of separation the diameter of 
the spot is proportional to (). 

separation 

-r -- lens 
___j ':::::: .. system 

aberration 

Fig. 1. 7 Co"espondence between separation mismatch in butt-joint connections 
and ab~ation in a lens coupling 

For the guided power we have (see Fig. 1.8) 

P = L f f cos6 dA d.Q , (1.14) 

where dAis an elemental source with radiance L, and d.Q is an elemental solid angle. 
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Fig. 1.8 Visualization of ray angles 

Lis a constant for uniform distributions. For LEDs Lis usually expressed in 
W/Sr/cm2 • Next we have to express dA and dil in terms of ray angles and coordi· 
nates. From Fig. 1.8 we see that 

dil = sinO dO d.lp . (1.15) 

Consider a parallel beam leaving the fiber end at an angle () and having an azimuth 1/) 

(see Fig. 1.8). All the rays of this beam originate from a circle with radius r1 (0) at 
the endface. r1 (6) is the maximum distance from the fiber axis at which rays with 
angle fJ are present. Using Eq. (1.13) we get 

where 

NA = n0 ga 

is the on-axis numerical aperture of the fiber. 
According to these considerations we can derive for the guided power 

21T (Jc 

P = L f f 1rr1 
2 (fJ) sinO cosO dfJ dlfJ, 

0 0 

where 

(J c = arcsin(NA) 

is the critical angle. 

(1.16) 

(1.17) 

(1.18) 

(l.l9) 

A straightforward integration of Eq. (1.18) results in the well-know expression for 
the guided power 

p = (1.20) 
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In the model mentioned before and shown in Fig. 1.7 aberration causes a lateral 
shift of the circle with radius r1 (0) in the image plane. Considering the lens 
coupling problem between two identical fibers, we have to replace the term 7Tr 1 

2 (0) 
in Eq. {1.18) by the overlap 0 of two circles with radius r1 (0), whose centers are at 
distance e(O). 
The coupled power P in this model is obtained from 

xl 
P=27TLNA2 I Osinxcosxdx, 

0 

where we have introduced 

sin x = sinO I NA . 

(1.21) 

(1.22) 

Due to rotational symmetry, the integration of cp resulted in a multiplication by 
21T in Eq. (1.21). Furthermore, x1 is the value of x beyond which there is no over­
lap between the circles. x1 is obtained by solving the equation 

le(O)I = 2r1 (0) . (1.23) 

e(O) is given by Eq. (1.12) or the corresponding relations for the GRIN-rod lens or 
rod lens. 
Using definition (1.22) in Eqs. (1.16) and (1.23) we obtain for Eq. (1.23) 

(1.24) 

where 

C(x) = l€(x)l I 2a . (1.25) 

€(x) is the counterpart of e(O) if use is made of the variable x. 
The coupling efficiency 1'/ is determined by division of Eqs. (1.21) and (1.20): 

0' + 2 2 xl 
1'/ = -- --

2
-IOsinxcosxdx. 

0' 7Ta o 
(1.26) 

Finally, we insert the explicit expression for the overlap 0 in Eq. (1.26), which can 
be calculated by simple planimetry: 

4 0' + 2 xl 
11 = - -- I sin x cos x [cos41ax arccos(C.cos-2lax) 

1T 0' 0 

(1.27) 
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Assuming C(x)<<l we can approximate Eq. (1.27) by 

8 a+2 1r/2 · 
rt = 1 - J sin x cos1 +2/ax C dx. (1.28) 

1r a o 

At this stage we have to specify C(x). We can write it in the form 

{1.29) 

This can be seen from Eqs. (1.12) and (1.22). Aa is the maximum blur circle radius 
at the receiving fiber end relative to the core diameter in the case of spherical 
aberration with focused endfaces. Aa is obtained by. division of Eqs. (1.9), (1.10) or 
(1.11 ), as the case may be, and the fiber core diameter. Ag is the maximum sp.ot­
radius at the receiving fiber end relative to the core diameter in the case of separa­
tion 2z. We have 
(1) A

8 
= (z I a.n0 ) NA 

(2) As= (z I a) NA 
(3) As= (z I a.n) NA 

for GRIN-rod lenses, 
for ball lenses, 
for rod lenses. 

Inserting Eq. (1.29) in (1.28) we finally get 

8 a+2 1r/2 
f1 = l - - J sin x cos1 +2/ax I-A sin x +A sin3 xl dx 

1T a o s a 
(I .30) 

The integration in Eq. (1.30) cannot be carried out analytically for arbitrary values 
of a. Fortunately it is possible for the two most interesting cases, i.e. step index: 
a oo and graded index: a= 2. 

A. Step index-profile 

For step index Eq. (I .30) tends to 

8 1T/2 

- J sin x cos x I-A
8 

sin x + Aa sin3 xl dx . 
1T 0 

A straightforward integration gives 

rt·=l-~ [__!_ 
Sl 1T 5 

(1.31) 

(1.32) 
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The coupling efficiency is optimal if the term between brackets in Eq. (1.32) is 
minimal. This is obtained for ti

8
/ti

8 
= 2-2/3. In that case we find 

'11si = 1 - 0.19tia, 

tis= 0.63 aa . 

B. Graded index-profile 

For graded index we get [see Eq. (1.30)] 

16 rr/2 
1lgi = 1 - - I sin X cos2 x I-ds sin X+ aa sin3 xl dx 

1( 0 

A straightforward integration gives 

16 1( 

1lgi = 1 - 1( [ 32 
Xo rr 
8 - ( 16 

Xo)·2 (1. sm Xo + -smx0 
4 8 

1 1 
sin3 Xo + - sin5 Xo ) cos Xo ] aa , 

6 6 

where sin2 x0 = .!l
8
/.!la. 

(l.33a) 

(1.33b) 

(1.34) 

(1.35) 

The coupling efficiency is optimal if the term between brackets in Eq. ( 1.3 5) is 
minimal. This minimum is reached for Xo e:: 0.79. 
In that case we get 

'11gi = 1 - 0.21.!la, 

as= 0.5tia . 

(1.36a) 

(1.36b) 

Equations ( 1.33) and (1.36) are powerful tools in designing lens couplings for fibers. 
For a specified lens and fiber the value tia is found from Fig. 1.5. Next 11 is calcu­
lated with Eq. (1.33a) or (1.36a). Finally the defocusing is determined from 
Eq. (1.33b) or (1.36b). In the case of GRIN-rod lenses and rod lenses, the lens 
thickness should be smaller by values obtained from Eq. (1.33b) or (l.36b) than 
the paraxial lens design. We will illustrate the procedure with a numerical example. 
For a typical graded-index fiber with NA = 0.2, a = 25 f.l,m and a GRIN-rod lens 
with f = 3 mm, n0 = 1.55 we have 
e = 0.65 x 3000 x (0.2l = 15.6 fJffi (see Fig. 1.5), 
aa = €/ 2a =0.312, 
11gj = 1 - 0.21 X 0.312 = 0.934, 
~s = 0.5x0.312=0.156, 
z = (25 X 1.55 I 0.2) X 0.156 = 30 f.!,ffi. 
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n :1.83 
r = 2476tJm 

a 

I I I 

0 25 50 75 
distance to focus (tJm) 

q n:1.6 ro r :2500 tJm 

0.8 b -

0 50 
distance to focus {IJ.m) 

Fig. 1. 9 Relationship between coupling efficiency 'Y/ and defocusing of the fiber 
ends, for a step-index fiber with a core diameter of 100 p.m and NA = 0.3. 
Solid curves were obtained by exact ray-tracing, the dashed ones by using 
the approximations derived in Sec. 1.4. 
(a) Using high-refractive index ball lenses. 
(b) Using low-refractive index ball lenses. 

In this case, then, the GRIN-rod lens should have a length of a quarter-pitch minus 
30 IJITI. 
Note that Eqs. (132) and (I .35) are only valid if 0 <; A

8
/t:.a <; 1. 



15 

Outside this region one fmds in a similar way 

11si = 1 (1.37) 

(138) 

where positions larger than the focal length should be expressed by negative values 
ofz. 

n = 1.83 
r =2476 Jim 

a -

0 10 
distance to focus (Jim) 

n = 1.6 
r • 2500 Jim 

b 

20 40 60 
distance to focus (Jim) 

Fig. 1.10 Relationship between coupling effzciency 11 and defocusing of the fiber 
ends, for a graded-index fiber with a core diameter of 50 pm and NA = 
0.21. Solid curtles were obtained by exact ray-tracing, the dashed ones 
by using the approximations derived in Sec.l.4. 
(a) Using high-refractive index ball lenses. 
(b) Using low-refractive index ball lenses. 
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In Figs. 1.9 and 1.10 the coupling efficiency is shown as a function of defocusing. 
The solid curves were obtained with a computer program using exact ray-tracing 
techniques and are accurate to within 0.2%. The dashed curves were obtained with 
the aid of the approximations derived in this section. We see that the approxima­
tions lead to results that are in good agreement with the exact values. 
If a lens connection is used for a wide range of wavelengths, the focal length of the 
lens will vary due to the dispersion of the glass. This means that when the wave­
length is changed the fiber end will be defocused. Knowing the dispersion, one can 
calculate the actual focal length and compare it with the one at the wavelength at 
which the alignment has taken place. The defocusing is then known, and the 
decrease in coupling efficiency can be calculated with Eqs. (1.32) or (1.35). 

l.S Sensitivity to Mismatches 

Tolerances of the adjustment of the fiber ends are the same as in butt-joint connec· 
tions, due to the fact that a l·l image is made by the lens system. Relations for 
these tolerances are well known in literature [16 -19]. Another problem is the 
mismatch between two lens-fiber assemblies. In the following we will investigate 
the lens coupling in the case of three basic mismatches, i.e. separation, offset and 
tilt. 
Assume that the fiber ends in both assemblies emit light, and that this light is 
projected upon an imaginary screen in the back focal plane. We now consider this 
projection as a fiber endface. (In Fig. 1.11, this is shown in the case of an offset.) 
This imaginary fiber has a core radius a: 

a= fNA, (1.39) 

and a numerical ape.rture NA : 

NA =a /f . (1.40) 

We will now use the first-order approximations given by di Vita et al. (19] for the 
coupling efficiency between two fiber ends in the case of a fiber with core radius 
a and numerical aperture NA. 
If there are no mismatches, the coupling efficiency is limited by spherical aberration. 
We thus have to multiply the above-mentioned approximations by 'rlopt· 
The resulting formulas are: 
Offset d: 

'rlsi = 'rlopt [1 0.64 d /(f.NA)] , 

1lgi = 1lopt [1 0.85 d /(f.NA)] . 

(l.41a) 

(1.41b) 
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Fig. 1.11 Visualization of the model used for deriving approximated relations 
between coupling efficiency and mismatch in lens connections 

Tilt 6: 

11si = 11opt (1 0.64 6 f I a) , 

t'lgi = flopt (1 0.85 8 f I a) . 

Separations: 

11si = flopt [1 -0.43 sa /(f2NA)] , 

'11gi = '11opt [1 - O.S sa /(f2NA)] . 

(1.42a) 

(1.42b) 

(1.43a) 

(1.43b) 

The most critical point in the construction of butt-joint connectors is the transverse 
alignment [20]. From Eq. (1.41) we se that for a specified fiber this alignment is 
easier if the focal length is large. Though separation is not a problem in a lens 
connector, for some fiber-optical devices separations up to 25 mm are needed. This 
also requires a large focal length. If angular-dispersive devices are used, then the 
linear dispersion (see chapter 2) is proportional to f. For a high wavelength 
selectivity f should again be large. On the other hand to make 11opt as high as 
possible f should be chosen small. Thus, it is always necessary to compromise in 
order to reconcile these contradictory requirements. In Fig. 1.12 a comparison has 
been made between approximations (1.41)- (1.43) (dashed curves) and exact 
results. From this we see that for very small mismatches the behavior of the 
approximated curves differs from that of the exact ones, but outside this region 
their slopes are the same. This is typically the effect of mismatches between to un­
equal fibers. In our case this means that the image is slightly larger than the receiving 
fiber, owing to aberrations. In Eqs. (1.41)- (1.43) this effect was neglected. For 
practical purposes, however, the approximations give a satisfactory indication for 
tolerances. 
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tilt (m rad) 

11 

t 

0 25 50 75 100 

separation ( mm) 
Fig. 1.12 Relationship between coupling efficiency and basic mismatches if ball 

lenses with R = 2476 pm, n = 1.83 and graded-index fibers with a core 
diameter of 50 pm, NA = 0.21 are incorporated. Solid curves were ob· 
tained by exact ray-tracing techniques, the dashed ones by using the 
approximations derived in Sec. 1.5. 
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1.6 Experimental Results 

In previous sections we have seen that the attainable coupling efficiency of lens 
connections is nearly the same for the GRIN-rod lens, ball lens and rod lens. The 
lens type chosen for an actual device will depend on mechanical requirements and 
optical configuration. For a lens connector we believe that ball lenses are very 
attractive because they have no orientation dependence and their shape is un­
complicated. These advantages allowed us to design a lens connector that does not 
contain any precision parts. An initial construction was published some time ago 
[5]. The present one can be seen in Fig. 1.13. Extended and cutaway views are 
shown in Fig. I .14. The principle of alignment is not changed. With the apparatus 

Fig. 1.13 Photographs of the lens connector. 
(a) Separated. 
(b) Connected. 
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Fig. 1.14 (a) Extended view of the lens connector. 
(b) Cutaway view of the lens connector. 

based on this principle of alignment the complete procedure takes about five 
minutes. 
The present connector was made in a factory-type of production line and equipped 
with ball lenses that have n = 1.83 and R = 24 76 Jlm. Fig. 1.15 shows the statistical 
results of measured efficiencies of 70 connectors incorporating step-index fibers 
with a 100 Jlm core diam and numerical aperture of 0.3. All surfaces were anti-re­
flection coated and use was made of a LED (A.0 = 835 nm) for the measurements. 
The results are seen to be in good agreement with the theoretically predicted 
efficiency. In Fig. 1.16 a histogram of 68 measured efficiencies is shown. 
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Fig. 1.15 Coupling efficiency of 70 lens connectors, using ball lenses with R = 
2476 pm and n = 1.83, and incorporating step-index fibers with core 
diameter of 100 pm, NA = 0.3. 
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Fig. 1.16 Coupling efficiency of 68 lens connectors, using ball lenses with R = 

2476 pm and n = 1.83, and incorporating graded-index fibers with core 
diameter of 50 pm, NA = 0.26. 

These lens connectors incorporate graded-index fibers with a 50 pm core diam and 
a numerical aperture of 0.26. The most remarkable difference between Figs. 1.15 
and 1.16 is the deviation. When the fiber end is imaged on a screen a sharp core­
cladding boundary is seen in the case of a step-index fiber, whereas with a graded­
index fiber this boundary is imaged very unclearly. In the latter case, then, the focal 
alignment is less accurate, which causes a larger deviation in the coupling efficiencies. 
Here again it should be noted that the LED excitation gives the worst case results 
in practice. Measurements with steady-state excitation by means of a mode 
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scrambler showed that the mean value of the coupling efficiencies increased to. 90% 
if graded-index fibers were incorporated (compare with Fig. 1.16). 
We also performed some bench experiments with GRIN~rod lenses. These had 
g = 0.3 mm- 1

, n0 = 1.616 and f = 2.06 mm. The length was a quarter·pitch, so 
proper defocusing was not possible: .t!l

8 
= 0, and for this case Eq. (1.35) reduces to 

11gi = 1 -0.5 Aa. (1.44) 

From Fig. 1.5 we see that these parameters yield Aa = 0.45 (a= 25 p.m., NA = 0.26), 
giving a coupling efficiency with a value of 77 .5%. The measurements resulted in a 
value of 80%, which is very close to the theoretical value .. 
Note that the efficiency could be improved to 96% if the length of the lenses was 
decreased by 3 5 pm. 

APPENDIX A 

In this Appendix we investigate the spherical aberration of a half-pitch GRIN-rod 
lens with a parabolic distribution given by Eq. (1.8). For such a profile the ray 
trajectories are described by [7] 

where the constant M0 is given by 

M0 = n(r) cosO . 

The ray angles and coordinates are defined in Fig. 1.17. 
For rays emitted on the optical axis at z = 0, we have 

where 90 is the launching angle. 
The solution of Eq. (A3) is 

sin80 . gz ) 
r = --sm(-- . 

g cos6o 

(Al) 

(A2) 

(A3} 

(A4) 
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Fig. 1.17 Ray-path in a GRIN-rod lens with a half-pitch length 

In the receiving focal plane the distance to the axis (at half-pitch z = 1r/g) is 

sin80 1r 
e=--sin( ). 

g cos8o 

Third-order approximation of Eq. (AS) gives 

1 1( 3 
- 8o 
2 g 
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(AS) 

(A6) 

Taking into account the refraction at the front face of the lens, we finally obtain 
Eq. (1.9). 

APPENDIXB 

In this Appendix we investigate the spherical aberration of the ball lens system 
shown in Fig. 1.18. We frrst calculate the place B where a ray emitted at focal 
point E with angle 8 crosses the optical axis. The sine rule applied in triangle EA01 

gives 

sin8 1 = (f/R) sinO , (Bl) 

where f is the focal length given by Eq. (1.4). After some manipulation we find for 
the deviation angle o with the optical axis 

(B2) 
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Combination of Eqs. (B 1) and (82) 'and Sttells law gives 

!; = 2 {arcsin{ (f/R)sin8 ] - arcsinf(f/ nR)sin8] .} - 8 

Fig. 1.18 Ray·path in the baOlens system 

. Taking into account only terms up to third order in 8, Eq. (B3}reduaes to 

1 n 
3 8:::!! [ 2 -1]6 . 

8 (n-1) 

For the angle r.p a relation similar to Eq. (B2) holds: 

(B3) 

(84) 

(BS) 

From Fig. 1.18 we see that r.p1 :::!! (} 1 because {:i << :tp1 , 81 • Keeping this in mind we 
can approximate Eq .. (BS) by 

'{J = 8+2{:i. 

Application of the sine rule in triangle 0 2 CB leads to 

s~ 
b = R --. 

sin.p 

Thus for the transversal aberration e in.the focal plane we. get 

sin.p1 
e = (f R-.-)tanr.p. 

sm.p 

(B6) 

(B7) 
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Using Eqs. (Bl) and (B6) we can approximate Eq. (B8) by 

sinO 
e = [ 1- ---] ftan(0+2o), (B9) 

sin(0+2o) 

which can be rewritten to 

€ e:: 20f. (BlO) 

The combination of Eqs. (B4) and (BlO) finally leads to Eq. (1.10). 
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2. GENERAL CONSIDERATIONS FOR WAVELENGTH DMSION 
MULTIPLEXING 

2.1 Introduction 

Wavelength Division Multiplexing (WDM) is a technique in which a number of 
signals, each carrying its own information, are transmitted over a single fiber at 
different wavelengths [1]. The technique has attracted much attention since the 
first experimental results were reported in 1977, because WDM will become in· 
dispensable for the local network. Recent studies have shown that it is possible 
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to have very elegant fiber-optical subscriber loops with WDM, showing a high degree 
of integration for telephone, TV, and data services [2]. Another important aspect is 
the increased transmission capacity of a single fiber. Trunk transmission in the 
long-wavelength region, where cable costs are dominant, can effectively use WDM 
for economy. 

A general scheme for a WDM system is shown in Fig. 2.1. These systems can operate 
with one-way or two-way transmission. Many variants are conceivable, but only 
one-way transmission will be considered here. For most of the feasible WOM systems 
the considerations have only to be adapted slightly. 

CHn 

0/E(X;) 
--====4=====lE/O(X;} 

+ 
CCU'll 

Fig. 2.1 General structure of a WDM system 

The functions needed are: 
(a) transmitter side: E/0 transduction (11) plus coupling to transmission fiber, 
(b) receiver side: 0/E transduction plus coupling to photodiode, where Ai is the 

parameter. 
In future these functions should be realized by means of electro-optical integrated 
circuits. In the present state of the art, however, only two alternatives are available: 
(I) one transducer for all channels, 
(2) one transducer for each channel plus optical (de)multiplexers. 
As far as the first alternative is concerned, this aspect ofWDM has not attracted 
much attention, due to the considerable technological problems involved. Mono­
lithically integrated DFB lasers with different grating periods and passive wave­
guides on a GaAs substrate were reported in Ref. 3. The wavelength separation 
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obtained was only 2 nm. Some work has also been done on dual-wavelength LEDs 
and wavelength demultiplexing photodiodes [4- 6]. At present, however, 
practical WDM transmission is only possible using the approach mentioned in (2), 
where all the work has been concentrated on the optical multiplexer and demulti­
plexer (see Fig. 2.2). 

transmitter nne receiver 

Fig. 2.2 Schematic diagram of a WDM system using optical multiplexers and 
demultiplexers 

2.2 Optical Multiplexers 

At the transmitter end of a system (see Fig. 2.2), the power distribution in the fiber 
greatly depends on the launching conditions, and will be different for each laser 
pigtail. For this reason we assume a uniform distribution, this being the worst case 
in practice. In the case of wavelength-independent structures, the intensity law of 
geometrical optics tells us that the fundamental insertion loss of anN-channel 
multiplexer is 10 logN dB if input and output fibers are identical. The minimum 
loss of, for example, a four-channel multiplexer would be 6 dB, which is unaccept­
able high. This limitation due to the intensity law can be avoided in two ways, by 
using: 
(1) wavelength-selective components, 
(2) input fibers, that are undersized as regards the core and/or numerical 

aperture. 
An overview of wavelength-selective devices, mainly intended for demultiplexing, 
is given in section 2.3. Although such devices can also be used for multiplexing, other 
structures are often preferable because a multiplexer has no wavelength-discrimina­
ting function. This will be explained in the following. Without going into detail now 
(details are given in section 2.3), it is noted that wavelength-selective multiplexers 
are hampered by the following disadvantages: 
(a) High lens-coupling losses can hardly be avoided if the input fibers and the 

output fiber are all identical. 
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(b) Wavelength-selective components cause additional loss (Peak transmission of 
interference fllters is- 85% maximum, grating efficiency is limited to "'80%). 

(c) The last source of insertion loss we mention is the spectral behavior of such 
multiplexers. Any deviation from the desired laser peak wavelength will 
increase the loss, because it is not possible to have a flat pass band as it is in a 
demultiplexer, where large step-index output fibers are used. 

The losses mentioned under (a) and (c) are eliminated or reduced if undersized 
input fibers are used. The above-mentioned considerations indicate that every 
multiplexer has to contain undersized input fibers. However, when such fibers are 
used it is possible for one-way transmission to design low-loss multiplexers without 
wavelength-selective components, as will be discussed in the chapter dealing with 
the design of optical multiplexers. It will be clear that such multiplexers have the 
advantage ofbeing independent of the operating wavelength. 
In the following we derive some fundamental limits for insertion loss in wavelength­
independent multiplexers. 
Assuming a uniform distribution, one can easily derive for the guided power Pin a 
graded-index fiber with a parabolic index-proflle 

(2.1) 

where a is the core radius, NA is the on-axis numerical aperture, and Lis the 
radiance, which is assumed to be a constant. For LEOs Lis usually expressed in 
W /Sr/cm2

• At any point of a passive optical system the spectrum of L cannot 
exceed the spectrum of L at the input. Keeping in mind this fundamental law, we 
apply Eq. (2.1) to wavelength-independent multiplexers. For the total input power 
Pi of an N-channel multiplexer we have 

P. = (N/2\..2 a-2 LNA.2 

1 '" 1 1 , 
(2.2) 

where ai is the core radius and NAi is the on-axis numerical aperture of the input 
fibers. A lower bound for the insertion loss I of the multiplexer under uniform 
launching conditions can be obtained by division of Eq. (2.1 ), applied to the output 
fiber, and Eq. (2.2): 

I = 10 logN - 20 log ao NAo ) dB , 
ai NAi 

(2.3) 

where a0 and NA0 are the parameters of the output fiber. Eq. (2.3) concerns the 
loss of each channel if the structure, seen from each input fiber, is the same. Loss­
free operation is only possible if 

(2.4) 
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In practice the requirement for loss-free operation will be stricter than condition 
(2.4), because of the circularity of fibers and lenses. 

2.3 Optical Demultiplexers 

Demultiplexers, of course, have a wavelength-discriminating function. Because light 
rays are characterized by: (I) direction, (2) intensity, and (3) wavelength, it is 
necessary to insert between input and output fibers wavelength-selective compo­
nents, a principle of operation which is based on dispersion of the refractive index 
(bulk property), or on interference effects. These components change the direction 
and/or intensity of the incident light with the wavelength as the parameter. As all 
these components are sensitive to the direction of the incident light the divergent 
light radiated from the fiber end is collimated before impinging upon the dispersive 
element, and decollimated after leaving it. In Table 2.1 a classification is made 
according to the principle of operation. The corresponding elements are listed at 
the cross-points of the matrix. In the following each of these principles will be 
reviewed briefly. 

~ Material Interference 
Properties Effects 

Direction Prism Grating 

Intensity Junction Thin Film 
Glass· 1 Filter 
Glass- 2 

Table 2.1 Classification of wavelength selection according to the principle of 
operation 

All angular-dispersive devices can be represented schematically as shown in Fig. 2.3. 

Fig. 2.3 Schematic drawing of a demultiplexer using an angular-dispersive element 
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The signal from the input fiber is collimated, passed through the dispersive element, 
and the resulting beams are then focused on the output fibers. The linear dispersion 
at the position of the output fibers is 

dx dO 
:::: f 

dX dA.' 
(2.5) 

'where f is the focal length of the focusing optics and dO /dA. is the angular dispersion 
of the dispersive element. For angular·dispersive devices the outputs (or inputs in 
the case of a multiplexer) are located physically close together. Their precise 
spacing is an important parameter, because it affects the insertion loss and cross­
talk of the pass bands. 
Prism: Typical schematic designs for prism demultiplexers are shown in Fig. 2.4. 

lal 

(b) 

Fig. 2.4 Demultiplexers using a dispersive prism. 
(a) Transmission mode 
(b) Reflection ( Littrow) mode 

The two designs are nearly equivalent optically, but the Littrow configuration 
(Fig. 2.4b) is most attractive because it requires only one lens. For a prism the 
angular dispersion is given by 

dO dO dn 

dA. = dn dA. ' 
(2.6) 

where the first factor depends on the geometry of the configuration, and the 
second factor is an intrinsic property of the material. To minimize astigmatism it is 
necessary to operate close to the minimum deviation angle, and in this case dO/dA. is 
given by 
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d8 tan(o/2) dn 
d"A = .,-[l---n-;;2c:-si--,n2::-(-o /-2)--:1-n* d"A ' (2.7) 

where o is the refracting angle of the prism {according to the configuration shown 
in Fig. 2.4a), With highly dispersive materials, dispersion up to de /d"A sa 2~10-4 

rad/nm can be obtained (o =45°). 
Grating: A blazed or holographic reflection grating is the best choice with respect 
to the diffraction efficiency. For demultiplexers using a reflectionograting asthe 
wavelength-sensitive device it is probably most co.nvenient to use: the Littrow 
mounting, as illustrated in Fig. 2.5. 

Fiber array Groling 

~ 
a 

Fig. 2.5 Demultiplexer: using a blazed plane reflectiOn grating 

This mounting minimizes astigmatism and utilizes the· same optics. for. input and 
output [ 1] . The angular properties of a grating in a first order Littrow mounting 
are described by 

dO 
dA 

(2.8) 

where A is the grating period, and "A is the operating wavelength. For commonly 
used 1200 grooves/mm gratings one can obtain dfJ /d"A sa lo-a rad/nm; which is one 
order of magnitude higher than the maximum. values occurring with prisms. 
Glassl-glass2 junction [7] : This principle of operation is illustrated schematically 
in Fig. 2.6. Wavelength selection is achieved by a junction of two types of glasses 
whose refractive indices satisfy two conditions, viz. 

(2.9) 

and 

(2.10) 
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i·· 
C> 

0 ;.,, ;.2 
n2li.l 0 ;., -= =-

n1 !A) 

Fig. 2.6 Wavelength selection by a boundary between two different glasses 

Thus, at X1 the light does not see the junction and is coupled to fiber 1. For the 
other wavelength, X2 , condition (2.10) is such that the light is totally reflected at 
the junction and coupled to fiber 2. Owing to the absence of suitable materials, no 
practical devices have so far been constructed. 
Interference filter: Such fllters usually consist of a stack of thin dielectric layers, 
with alternating high and low refractive index, which are evaporated onto a 
transparent substrate. Filter designs of up to 40 layers are technologically possible, 
and use is currently being made of 'A/4 and 'A/2 optical layer thicknesses. The 
available dielectric materials show no absorption, so the reflection curve plus trans­
mission curve is everywhere 100%. For the sake of illustration one of the many 
possible structures is shown in Fig. 2. 7. 

r-2 r-4 

~ c;=> 
I I 
A ~ I 
I I 

Filter ~----0 

Fig. 2. 7 Demultiplexer structure using dichroic beam splitters 
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2.4 External Conditions for Multi/Demultiplexers 

In section 2.2 it was pointed out that with decreasing values of the input fiber para­
meters a higher attainable multiplexer efficiency will be found. In addition, the 
influence of these smaller values of the fiber parameters on the coupling efficiency 
with the light source should also be considered. Another aspect in micro-optical 
multi/demultiplexers is the lens coupling between unequal input and output fibers. 
For a better understanding of the behavior of multi/demultiplexers it is necessary 
to study the influence of lens aberrations in these devices. 

2.4.1 Laser-Fiber Coupling 

At this stage we will investigate how the fiber parameters affect the laser coupling. 

A. Field Distributions of Laser and Fiber 

In the TEM approximation all field components satisfy the scalar wave equation. 
Both in free space and ,in a medium with a radial parabolic-index distribution, 
separation of the variables is possible. For this reason we have only to consider 
2-D beams and modes in the plane either perpendicular or parallel to the junction 
plane of the laser diode. The total field is then obtained by multiplication of these 
2-D field expressions. 
The radiated light in laser diodes in normal operation is satisfactorily described by a 
fundamental Gaussian beam [8, 9]. However, the nature of this beam is rather 
complex. The field pattern of the laser is characterized by three geometrical para­
meters (and in addition by the emitting wavelength Ao)· Most commonly used are: 
( 1) 01 =full width at half maximum (FWHM) of intensity of the far field perpendi­
cular to the junction plane (see Fig. 2.8), (2) o

11 
= FWHM of intensity of the far 

field parallel to the junction plane, (3) ..:1 = astigmatism, that is, when gain-guiding 
predominates in the junction plane, the beam waist parallel to the junction is virtual, 
and it is displaced by a virtual distance A behind the laser facet. At the same time, 
the waist perpendicular to the junction plane remains at the laser facet due to 
index-guiding in this plane. In other words, the astigmatism A is defmed as the 
virtual distance between the beam waists in both planes having a width of 2w 1 and 
2w1J (virtual) (see also Fig. 2.9). 
In Cartesian coordinates the transverse field distribution of the 2-D fundamental 
Gaussian beam in free space is described by [10] 

1/Ji(x)=(.JI_ 
1 

)*exp( 
1f wz 

(2.11) 

where the beam width 2wz at a distance z from the beam waist (Fig. 2.10) is 
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-- current 

Fig. 2.8 Radiation pattern of a laser diode. 01 and o11 are FWHM of intensity of the 
far-field, perpendicular and parallel to the junction plane, respectively 

virtual 
waist 

-­epitaxial :---
layers ~ 

side view 

Fig. 2.9 Phase fronts of an astigmatic laser diode 

and the wave front curvature R is 

(2.12) 

(2.13) 
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I 

).- -phase front 

Fig. 2.10 Contour of a Gaussian beam 

Here 2wi is the beam width at the waist(z = 0), and k0 = 2TT[A.0 is the free-space 
wave number. The z-axis is chosen along the direction of propagation of the beam 
but has different origins for the 1 and II planes. Furthermore the field amplitude has 
been normalized: 

(2.14) 

It is assumed that the fiber has a parabolic refractive index distribution. As far as 
the launching efficiency is concerned a nonparabolic index does not significantly 
alter the following results and conclusions if the deviation from a parabolic index­
profile is small. 
Consider an infinite-parabolic medium, whose refractive index is given by 

(2.15) 

where n0 is the on-axis index, and g is a constant. 
Bounded modes in an infinite-parabolic medium, after separation of the variables in 
the scalar wave equation, are expressed as [ 11] (in one transverse direction) 

(2.16) 

where Hm(x) is the Hermite polynomial of order m, one of the transverse mode 
numbers, and w0 is the characteristic spot size of the fiber defmed by 

(2.17) 
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The propagation constants of these modes are 

2 _ 2 2 4(m+n+l) 
Pmn- ko no [I- 2 2 2 ] ' 

k0 n0 Wo 
(2.18) 

where m and n are the transverse mode numbers. 
The finite core radius of the fiber, however, limits the permissible number of 
propagation modes. The condition for the modes that are propagating without 
radiation loss due to the finite core radius is given by [12] 

(2.19) 

where a is the core radius. 
From Eqs. (2.18) and (2.19) it follows that 

21T 
2(m+n+1)< aNA. 

Ao 
(2.20) 

NA is the on-axis numerical aperture of the fiber: 

(2.21) 

Apart from the fundamental Gaussian mode, as in a single-mode fiber, several 
higher-order Gaussian modes can propagate in the multimode graded-index fiber. 
For this reason, the beam emerging from the endface can be described by Gaussian 
beams of an order corresponding to the associated fiber mode and with a waist w0 

located at the endface. Condition (2.20) prescribes the permissible orders that 
correspond to bounded modes of the fiber. 

B. Excitation of the Fiber Modes by a Gaussian Beam 

It is assumed that the input beam is launched centrally along the axis of the fiber 
and that reflections from the fiber endface can be neglected due to a proper anti­
reflection coating. 
The power transfer from an incoming fundamental Gaussian beam (laser diode) to a 
set of Gaussian fiber modes is described by coupling and conversion coefficients, 
which have been evaluated analytically by Kogelnik [13]. In the following we 
apply some of his results. 
To evaluate the coupling coefficients, the field distributions of the laser and fiber 
are equated in the input plane of the fiber: 

(2.22) 
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(Remember also the remarks concerning the separation of the variables.) Here 
l/11(x).l/lu(Y) represents the incoming laser field, of which each term represents a 
2-D beam in the plane perpendicular and parallel to the junction plane, respectively, 
described by Eq. (2.11). Similarly l/lm(x).l/ln(Y) is the fiber mode (m, n) given by 
Eq. (2.16). cmn denotes the corresponding excitation coefficient. Invoking the 
orthonormality of the mode functions given by Eq. (2.16) in Eq. (2.22), one notes 
that 

1cmn12 = I ~ 12 
• I aU 1

2 
, (2.23) 

which describes the power coupling of the laser field with the fiber mode (m, n). 
I ~ rz and I all 12 can be calculated from 

-111 z m! ~ m/2 
I 'fn' I = v "1.11 (1 - "111) ' 

2m [(m/2)!] 2 ' 

m=even. (2.24) 

Due to the axial launching only even fiber modes are excited. K. J.,,l is the fraction 
of power transferred from a symmetric laser beam with waist w l.ll at a distance 
z1,11 ~ro~ the fiber endface into the fundamental mode of the fioer. 
K l,lllS gtven by 

4Wi,u 
"1.11 = ----------­

(1 +Wi, 11 )
2 + [2z1,11 J (k0 wij) P 

where 

Next, the overall launching efficiency 11 of the fiber is expressed as 

m,n=even, 

with 

M = entier [aNA 11'/(2Ao)- l/2] 

M is the number of degenerate mode groups. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

In Eqs. (2.27) and (2.28) use has been made of the cut-off condition given in 
Eq. (2.20). Note that in the case of a single-mode fiber only the first term of the 
summation in Eq. (2.27) is present, where we have m = n = 0. 
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We now apply in Eq. (2.27) the explicit expression for coupling coefficients (2.24): 

M-m (2n}! 
X l: 2 (1 "ll)n ' 

n=o 4n(n!) 
m, n = 0,1,2, ... , M. (2.29) 

C. Optimal Laser-to-Fiber Coupling 

The laser parameters w1, w
11 

always differ remarkably from the characteristic spot 
size w0 of the fiber. For this reason it is necessary to have coupling optics for 
transformation of w 1, w

11 
with respect to w0 • Although the laser beam is generally 

axially nonsymmetric (w1 +w11), rotationally symmetric lenses are the best choice 
having regard to ease of fabrication. This aspect has been discussed by several 
authors [14 16]. Throughout this section we will assume round thin lenses 
without aberrations. We start the calculation of the optimum coupling conditions, 
concerning the focal length and setting relation between laser, lens and fiber, by 
formulating the physical aspects of the problem. 
The optical diagram of this coupling problem is shown in Fig. 2.11. Consider the 
infinite-parabolic medium, defined by Eq. (2.15), instead of the actual index profile. 

Fig. 2.11 Lens coupling of the light radiated from an astigmatic laser diode into a 
fiber 

A Gaussian beam impinging on the input plane of the medium (corresponding to the 
fiber endface) gives rise to a Gaussian beam whose contour is a spatial oscillating 
function, which is shown in Fig. 2.12. 
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free space infinite parabolic medium 

Fig. 2.12 Undulating Gaussian beam in an infinite parabolic medium, which i3 
excited by an incoming Gaussian beam in free space 

The maximum and minimum widths of the beam are closely related to each other 
[17]: 

wmax . wmin = Wo 2 (2.30) 

Assume that the incident beam has a waist wi, located at a distance zi from the 
input plane. Then (see Appendix C) 

(2.31) 

offers two solutions for wm, corresponding to the maximum and the minimum 
width respectively. 
We assume by hypothesis that coupling to a fiber with finite core radius is as high as 
possible when the mihimum radial field extension occurs from the optical axis of 
the infinite parabolic medium. Considering the oscillating beam only in the plane 
perpendicular to the junction, one notes that, from Eq. (2.30), the minimum field 
extension requires wmax = wmin = w0 , that is, the incoming beam is perfectly 
matched to the fundamental mode of the medium. However, in the plane parallel 
to the junction the corresponding beam will at the same time be mismatched to the 
fundamental mode, because the incoming laser beam is elliptical and astigmatic. 
If wioax and w~ax are the solutions of Eq. (2.31) perpendicular and parallel to the 
junction plane respectively, the minimum field extension is obtained when the 
condition winax = w~ax = minimum is fulfilled. This situation is visualized in 
Fig. 2.13, where projections in a transverse plane of the beam contour are made at 
subsequent stages along the propagation axis. The smallest enclosing circle is 
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obtained if the above-mentioned condition is satisfied. In this situation, reduction 
of w~ax gives rise to an increment of w~ax and vice versa. Thus the overall field 
extension increases as well. Using Eq. (2.31) the mathematical formulation of the 
above-mentioned conditions is: 

I 

/ 
/ 

I 

/ 
/ 

radial field 
extension 

---! 
' ' ' '\ 

\ 

\ 
\ 
I 

(2.32) 

Fig. 2.13 Projections of the beam contour at subsequent stages along the axis of 
the infinite parabolic medium at optimum coupling conditions 

Investigation of Eqs. (2.32) and (2.25) tells us that maximum coupling efficiency 
requires 

Kl = KJI = Ko (2.33) 

In that case Eq. (2.29) reduces to 

M m (2n)! (2m-2n)! 
1lo = Ko L: 4-m (1 - Ko )m L; -- -----:---::-

m=O n=O (n!)2 [(m-n)!] 2 
(2.34) 

Application of the identity [18] 

m (2n)! (2m-2n)! m 
L: -- ----=4 

n=O (n!)2 [(m-n)!] z ' 
(2.35) 
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leads to an important simplification: 

M 
flo = Ko k (1 - Ko )m 

m=O 

Summation of the power series in Eq. (2.36) finally gives 

flo = 1 (l - Ko)M+l . 

(2.36) 

(2.37) 

As mentioned before, the laser beam and the fundamental fiber mode are strongly 
mismatched. To achieve the best mode-matching, we use an ideal lens with focal 
length f. A beam transformation by such a lens is described by [ 19] . 

w2,1 = ± (£2 - fo 2 )* 

wl,2 dl,2 f 
(2.38) 

with 

(2.39) 

where the quantities have been defined in Fig. 2.14. 

Fig. 2.14 Matching of Gaussian beams by means of a lens 

For practical configurations we have only to consider the positive sign in Eq. (2.38). 
The optimum coupling efficiency can be obtained with a matching lens of arbitrary 
focal length. It is only required that f;;;.o f0 • To calculate the value of the optimum 
coupling efficiency we choose for convenience f>> f0 , which is allowed because 
the optimum coupling efficiency does not depend on the actual value of f. The 
transformation formulas now simplify remarkably: 

wll 
-- = ---

f 
(2.40) 

v-f 
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where w 1 and wll are the transformed beam waists of the laser and v is the distance 
from the laser facet to the principal plane of the lens (see Fig. 2.11 ). Another 
important aspect of the transformation is its influence on the astigmatism 1::.. For 
the transformed astigmatism 3: one can derive 

- f2 
1::. = --1::.. 

(v- f)2 

Optimizing the coupling efficiency requires [compare with Eq. (2.32)] 

w1 Wo 2y3: 
(- + -=-- )2 + ( )2 = 
w0 w1 ko Wo wl 

(2.41) 

(2.42) 

where the unknown quantity y introduced in Fig. 2.11 indicates that the best 
position of the fiber endface will be between the two transformed beam waists. 
Next, we define 

x = (v- f) If , 

b =(hot:.) I (1rw1 w 11
) • 

Insertion of Eqs. (2.43) and (2.44) into Eq. (2.42) gives 

W1 X Wu ( _._ i + { - )2 + (yb _J.I. )2 = 
X W1 X 

W11 x w1 
( _J.L )

2 + ( )2 + [ (1 - y)b - ] 2 =minimum . 
X w

11 
X 

(2.43) 

(2.44) 

(2.45) 

The two unknown quantities x andy in Eq. (2.45) can be solved by using the 
following procedure: first, xis eliminated. We therefore express x as a function of y: 

(1 y)2a.2 -y2 
2 - w w [ 1 + b2 - ] * x- 1 II • 1-o.l ' (2.46) 

where 

(2.47) 
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Next, putting 

(2.48) 

where x(y) has been defined by Eq. (2.46), yields an equation for y only. The 
solution of Eq. (2.48) is 

The associated value of x can be obtained by substitution of Eq. (2.49) into 
Eq. (2.46): 

(2.49) 

(2.50) 

Finally, the optimal coupling factor "o with the fundamental mode of the fiber 
follows from insertion of Eqs. (2.49) and (2.50) into, for example, the left-hand 
~ide of Eq. (2.45), which in turn is closely related to Eq. (2.25) of K !,II· The result 
IS 

4 
(2:51) Ko= 

The attainable coupling efftciency flo is determined by application of Eq. {2.51) in 
Eq. (237). 

In laser packages with fiber pigtails it is most convenient to choose the focal length 
of the matching optics as small as possible for two reasons. First, this keeps the 
aberration small, because for simple single-element lenses it is proportional to the 
focal length. Second, the longitudinal alignment condition is then quite simple. For 
such a lens the laser facet must coincide with the focal plane, so that it need only 
be adjusted until the divergence in the l plane of the transformed far field reaches 
its minimum value. According to Eq. (2.38) we then have 

(2.52) 

Application of the transformation Eqs. (2.38) and (2.39) with w1 in the focal plane 
and f given by Eq. (2.52) results in 



wl/ wl = ba-l u-l ' 

wul wll = u-1 [1 +(baf2 r* ' 

where the unknown quantity u is expressed by 

u=il/f. 

Using the same method as before, it can be proved that the requirements for 
maximum coupling efficiency [compare with Eq. (2.42)] are satisfied if 

b2 +a-2 

Y m = 1 + b2 + a-2 ' 

45 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

Here urn andy mare the counterparts of Xo and Yo in Eqs. (2.49) and (2.50) respec­
tively. Using Eqs. (2.57) and (2.58) we can derive exactly the same expression for 
Ko as the one given ir1 Eq. (2.51). Insertion of Eq. (2.56) into Eq. (2.58) firlally 
gives 

(2.59) 

Note that most of the results obtained in this section are also valid for single-mode 
fibers. The maximum coupling, for instance, is Ko given by Eq. (2.51). 

D. Calculation Examples 

Equation (2.51) shows that the maximum fractional power Ko coupled from the 
laser beam to the fundamental mode of the fiber depends only on the three 
geometric parameters of the laser radiation pattern, and the wavelength of emission. 
These parameters are hidden ir1 the beam ellipticity a and the level of astigmatism b. 
Previous sections have shown that it is convenient to use wJ.II for the mathematical 
description instead of o111, which are usually given for a laser diode. From Eq. 
(2.12) one can easily derive a simple relation between these two sets of parameters: 

wl,ll= 
2 1r tan(fJ l,ll/2) 

(2.60) 
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At this point we recall that (} 1,
11 

are the FWHM of intensity of the far field. 

40 

'l!.o= 0.1 

30 
I 
J-l 
I=! 0.15 - 20 
<!, 
t< 

" .0 

10 

'l!.o=Q.9 -,, 

a.=wJ./w, or w11 /WJ. 

Fig. 2.15 Optimum coupling efficiency between laser and single-mode fiber or 
fundamental mode of a multimode graded-index fiber 

In Fig. 2.15 we have plotted the contours of t<o as a function of«= w1/wll and 
b = (Ao~ )/( 1l'W 1 w 11

). These contours of "o are predominantly flat with respect to a, 
indicating that t<o ts most seriously affected by the astigmatism ofa laser. For 
example, commonly used gain-guided lasers have a~ 20 #till (together with 8 J. II= 
55,20° and Ao = 0.83 pm leading to be: 20), allowing a maximum coupling ' 
efficiency Ko ~ 0.2. On the other hand, an index-guided laser with the same far 
field, but without astigmatism, gives rise to l(o e: 0.8. Fig. 2.16 illustrates the effect 
of astigmatism on the maximum coupling efficiency between laser diode and single­
mode fiber. It turns out that even a few microns of astigmatism, which can also 
occur in some types of index-guided lasers [8], already have a noticeable effect. 

g 
·~ 0.6 

~ 
"' o§ 0.4 

~ 
E 
~ 0.2 

:g_ 
0 

e. :4o" e,,: 20• 
~1J)Jm 

~~~5---1~0--~1~5--~~~~2~5--~~ 
asligmaiism A in JJm 

Fig. 2.16 Influence of astigmatism on maximum coupling efficiency between 
laser and single-mode fiber when keeping far-field parameters constant 



Additionally, one notes that gain-guided lasers(~:::: 20 J..Lm) are less suitable for 
light injection in single-mode fibers. 
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To investigate the influence of the parameters of a multimode graded-index fiber on 
the maximum overall coupling efficiency 1lo, we have to insert a calculated value of 
Ko in Eq. (2.37). Fig. 2.17 shows 1lo vs the optical througput a.NA of a multimode 
graded-index fiber for laser diodes with various astigmatisms. The staircase curves 

LO 
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1:;' 0.8 c 
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' I 
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e.= 55' e. • 20' 

Ao = 0.83)JIT1 

stondard 
.Lfiber 

8 10 

Fig. 2.17 Optimum coupling efficiency between laser and mutlimode graded­
index fiber for some typical gain-guided lasers 

emphasize the modal behavior of the fiber. For example, in the standard graded­
index fiber (a= 25 ~ NA = 0.21) there are ten mode groups propagating. Each 
jump in the curves means that a (degenerate) mode group has reached its cut-off 
condition. 
We finally note that application of Eq. (2.37) to index-guided lasers(~= 0 J..LID) 
causes hardly any deviation in 1lo from unity when a.NA is varied and for this 
reason it is not indicated in Fig. 2.17. 

2.4.2 Lens Coupling between Unequal Fibers 

Both multiplexers and demultiplexers can contain lens couplings between unequal 
fibers. In these devices the input fiber is graded-index, while at the output an over­
sized graded-index or step-index fiber can be used. 
The starting point of the considerations is the model used in chapter 1, where the 
lens coupling between two identical fibers was studied (see Fig. 1.7). Considering 
the coupling between unequal fibers, we have to replace the term 1rr1 

2 (8) in Eq. 
(1.18) by the relative overlap 0 of two circles with radii r 1 (8) and r2 (8), respective­
ly, whose centers are separated by a distance e(O), the spherical aberration. r2 (8) is 
the counterpart of r 1 (8) for the receiving fiber. 
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Putting 

x = sinO INA , 

y = tp I 2rr , 

we can express the coupling efficiency by 

1 1 

T/ = 4J f O(x,y)x(l-x2 )dxdy. 
0 0 

(parabolic index proftle ). 

(2.61) 

(2.62) 

(2.63) 

In Eq. (2.63) the overlap was taken relative to the emitting circle with radius r 1 (6), 
given by 

(2.64) 

where use has been made of Eqs. (1.16) and (2.61 ). 
Next we consider the overlap functionO(x, y)talcing into.account the.exact ray 
trajectories. 
In this description O(x, y) represents thefractional area.of the circle at the emitting 
fiber that contributes to the lens coupling. The boundary .of this fractional area, 
from which all emitted rays.are .accepted at the outpput, depends in a complicated 
way on the ray angles 6 and IP· For this reason we used a quasi~Monte Carlo method 
to calculate O(x, y). In this method the circle is covered by a set of points at which 
the rays are launched. Counting the number of rays that are accepted and the 
number of all rays that are launched yields.fafter division ofboth numbers, an 
approximate value of O(x, y ). We constructed the lattice points from the Fibonacci 
numbers, because for 2-D areas such.a sequence of.pointsis the best choice [20]. 
Finally, the two-fold integrationin E.q. (2.63) is carried out by using a product rule 
of two Gaussian quadratures of equal order. 



APPENDIXC 

In a medium whose refractive index is given by 

the Gaussian beam 

u(x, z) = q·~(z) exp[ ~ k0 q(z) q- 1 (z)x2 ] exp(ik0 z) 
2 

is in very good approximation a solution of the scalar wave equation, if the 
complex beam parameter q(z) satisfies [ 17] 

The dot means differentiation with respect to z. 
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(CI) 

(C2) 

(C3) 

At the boundary, z=constant, between free space [g( z) = 0] and an infinite parabolic 
medium [g(z) s positive constant] the transverse components must be continuous. 
From Eq. (C2) we see that this boundary condition requires 

at the input plane of the fiber. 
The free-space solution qin(z) is given by 

For the parabolic medium we have 

w 2 

qfz) = wm cos(gz) + i . 0 
sin(gz) 

wm 

(C4) 

(CS) 

(C6) 

By inserting Eqs. (CS) and (C6) into Eq. (C4) and equating the real and imaginary 
parts we obtain two coupled equations for wm and its location zm. Elimination of 
zm then finally gives Eq. (2.31 ). 
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3. DESIGN AND CONSTRUCTION OF MULTIPLEXERS 

3.1 Introduction 

The optical arrangements of two promising types of wavelength-independent multi­
plexers are discussed in this chapter: a structure without lenses, which we name 
butt-joint multiplexer, and a structure using lenses, referred to as a prism multi­
plexer. Based on the same principles more structures are possible, but in all of them 
spatial filtering is essential. 
In addition, the minimization of the overall transmitter end loss of a WDM system 
is dealt with. For this it is necessary to combine the transmission properties of the 
above-mentioned multiplexers with laser/LED-fiber coupling efficiencies, derived in 
chapter 2. 

3.2 Butt-Joint Multiplexer 

3.2.1 Theory according to the Intensity Law 

The structure of a two-channel multiplexer is illustrated in Fig. 3.1, where only the 
bare fibers are shown. Both input fibers are provided with a longitudinal polishing 
plane making an angle of typically 1.5° with the fiber axis, and second, a transverse 
polishing plane perpendicular to the longitudinal one. When two such input fibers 
are composed, and butt-joined to the output fiber, we have the geometry shown in 
Fig. 3 .2 at the junction. At present we adopt a simplified model for the calculation 
of the insertion loss of this multiplexer, i.e. the insertion loss is assumed to be the 
relative amount of light in the fiber cross-section that was removed during polishing 
(see also Fig. 3.2). 

Fig. 3.1 Structure of the butt-joint multiplexer 
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... , 

input fibers 

'....----- output fiber 

' I 

{only fiber coresl 

Fig. 3.2 Cross-section at the junction of the fibers of the two-channel multiplexer 

For the loss factor F(ip), which is the relativ,e amount of light in the Shadowed circle 
segment with respect to the light in the entire cross-section {see Fig. 3.3), we have 

1 { d 2 1 I d 2 . ·} . F(;p) = - ;p+(-) [ -( -
2
-+2 )(-) -2] tan;p. , d<iai. 

1r ai 3 cos ;p ai 
(3.1) 

= 0 'd>ai ' 

where ai is the core radius of the input fibers, and d, !pare geometrical parameters 
defmed in Fig. 3.3. In deriving Eq. (3.1) it has been assumed that the index profile 
is parabolic and that we haw uniform launching conditions. Details of the deriva­
tion can be found in Ref. 1. Keeping in mind the cross-section shown in Fig. 3.2, it 
can easily be seen that the transmission coefficient T ef one channel of the multi­
plexer is 

T = 1- F[ arccos(d/ai)] , if d = ao ai , (3.2) 

where a0 is the core radius of the output fi'Mir. 

Fig. 3.3 Visualization of the loss factor, which is the relative amount of light in the 
shadowed circle segment 
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Using only geometrical considerations, the loss factor F(1,0) can be applied to multi­
plexers with an arbitrary number of channels. The transmission coefficient of such 
a multiplexer is 

T = 1 

T = 1 - 2F[arccos (d/ai)] 

N-2 1r 
T = 1 - F[arccos(d/ai)] - F N '2) 

where 

(3.3) 

(3.4) 

N is the number of channels. In Fig. 3.4 we show a four-channel structure for a 
better understanding of Eqs. (3.3) and (3.4). From these equations it follows that 
loss-free operation requires 

sin(1T/N) 
ai ~ao • -----

1 +sin (1r/N) 

------

...... --- ~' 

\ 
\ 
I 
I 
I 
I 

I 

Fig. 3.4 Cross section of a four-channel butt-joint multiplexer 

(3.5) 

In addition to the loss mechanism described above we have a mismatch in the local 
numerical apertures. This mismatch does not cause any loss if 

(3.6) 
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where NAi and NAo are the on-axis numerical apertures of the input fibers and 
output fiber respectively. 
The combination of Eq. (3.5) with the equal sign, and Eq. (3.6) fmally gives 

sin( 1r /N) 
3 12 ai NAi "'aoNAo [ ] 

1 + sin( 1r /N) 
(3.7) 

It should be noted that condition (3. 7) is stricter than the fundamental limit (2.4). 
For example, a four-channel structure would require aiNAi/aoN.Ao < 0.27 according 
to (3.7) instead of the 0.5 value that follows from the fundamental limit. However, 
a closer approach to this fundamental limit would require noncircular fibers. 
Note that from physical reasoning the multiplexer is affected by the tilt angle 
between the axes of the fibers to be combined. However, fron:i a th~retical point 
of view this tilt angle can be made arbitrarily small. For this reason it is not taken 
into account in this simplified model, but it is in the next section. 

3.2.2 Theory according to Ray-Tracing 

The analysis starts with the determination of ray trajectories in an unperturbed 
graded-index fiber. The basic equation for all possible ray trajectories in a medium 
with a certain index distribution is written in vectorial form as [2] 

d dR 
-(n -=)=grad n , 
ds ds . 

(3.8) 

where~= ~(s) is a position vector of a typical point on a ray and s the length of 
the ray measured from a fixed point on it. As a graded·indexfilier has a radial index 
distribution n and a dielectric constant n2 , Which is a quadratic function of the 
radial distance r from the axis, it is best to adopt Cartesian coordinates (x, y, z) 
with the z-axis chosen along the fiber axis [3]. Eq. (3 .8) is now rewritten in terms 
of its vector components: 

d dx an 
cosO - ( n cosO ) = , 

dz dz ax 

d dy an 
cos8-(ncos8-)=-, 

dz dz ay 

d 
~(ncos8)=0, 

(3.9) 

(3.10) 

(3.11} 

where the derivatives with respect to s are converted to derivatives in z, using the 
angle 0 between the fiber axis and the ray. 
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Eq. (3.11) shows at once that 

n cosO = Mo = constant . (3.12) 

Thus, with the optical direction cosines K, L, M, defined as the product of the 
refractive index and the geometrical direction cosines at a typical point on a 
trajectory, Eq. (3.12) shows that the third optical direction cosine is invariant along 
any ray, M=M0 . 

After multiplication of both sides of Eqs. (3.9) and (3.10) by nand using Eq. (3.12) 
we can reduce these equations to 

(3.13) 

(3.14) 

The index profile of the fiber core is described by 

2 2 
2 2 N 2( X y ) n = n 1 + A. 1 - -- - --

c 1 a.2 a.2 
1 1 

(3.15) 

where ncl is the refractive index of the cladding, ai is the core radius, and NAi is the 
on-axis numerical aperture. 
Insertion of Eq. (3.15) into Eqs. (3.13) and (3.14) gives 

(3.16) 

(3.17) 

At this stage we introduce a normalization: all lengths are expressed relative to the 
core radius ai, and the optical direction cosines are taken relative to the numerical 
aperture NAi. These normalized quantities are provided with a bar above the original 
symbol. 
With this normalization, the solution of Eqs. (3.16) and (3.17) is given by 

(3.18) 

(3.19) 
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with 

n =Mo-l , (3;20) 

(3.21) 

(1.22) 

(3.23) 

tamjly = Yo I Io , (3.24) 

where x0 , Yo, Ko, ~ are the .values ofx, }C, :K, L reflpecfiv:ely when :z = 0.1J'he 
phase angles 1}1 x and 1}1 Y are defined s.w:ih that 'they are in the interval (0.21r). 
The optical direction cosines at a .general p.oint of the .r~y ,are found by differ:entia­
tion of Eqs. (3.18) and (3.19), for 

_ dx _dx 
K =n- =Mo (3.25) 

ds dz 

Hence 

-
K = xmcos(.Q z + l};x) , (3.26) 

-
L = ymcos(.Q z + l};y) . (3.27) 

We finally note that Ko, Lo, M0 have to he determined from the launching con­
ditions at the fiber input plane (Z = O)o~.'l:t the point {X:0 , ¥ 0 ~·The :rzy .is incident at 
an angle 8i with the fiber axis, and its ptojection un:iliei.l~lmt.Jilane'hasanangler.pi 
to the x-axis. Use ofSnells law.at ·the inte.llface'!'esult:sful 

c(3.2:8) 

(3 . .29) 

(3.30) 
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With the help of Fig. 3.5 we will now proceed with the geometrical description of 
the configuration of a two-channel butt-joint multiplexer. The input fibers are 
provided with two perpendicular planes (I and II in Fig. 3.5). The longitudinal 
plane I has an angle ~ to the fiber axis, while the normals of both planes are in the 
x,z-plane. Furthermore, the amount of polishing is described by the parameter d, 
defined in Fig. 3 .5. For the section length z1 of the perturbed fiber we have 

z1 = (1 - d. co~ ) I tan~ , d ;;.. 0 . 

Oj 

I 
I 
I 

Z:O 

I 
I 
I 
I 
I 
I 
I 
I 

Z=ZI 

(3.31) 

X 

Fig. 3.5 Geometry of a polished input fiber in a two-channel butt-joint multiplexer 

A ray striking the longitudinal plane I will continue its propagation in the other 
input fiber (see Fig. 3.6). As both input fibers have the longitudinal plane in 
common, no refraction of the ray occurs. It is only necessary to express the inter­
section point and the corresponding optical direction cosines in terms of the co­
ordinates connected with the other input fiber. The required coordinate trans­
formation for this is equivalent to the change which would take place in ray para­
meters if total reflection at the common plane in the fust fiber occurred. 

I 
I 
I 
I 
I 

,JI 

I 
\ 
\ 
I 
I 

.l 

Fig. 3.6 Composition of two polished input fibers 
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With this equivalency we mean that final acceptanc.e by the output fiber is not in­
fluenced by whether the common boundary is mirrored or not. Because: of the 
simpler geometrical interpretation we shall assume that the longitudinal plane is a 
perfect mirror, and so we have only to consider the propagation in one single 
(perturbed) fiber. 
At each intersection we have to replace 

K---7 -K cos(2a) + M sin (2a) , 

M---31> K sin(2a) + M cos(2a) , 

whereas L remains unchanged. 
In the investigation of the first intersection, several possibilities have to be 
distinguished : 

(3.32) 

(3.33) 

(1) The amplitude x m of the spatial oscillation in the x-dir.ection is so small that 
no intersection with the longitudinal plane is possible. 

(2) The initial phase tPx in Eq. (3.18) is such that intersection with the transverse 
plane (II in Fig. 3 .5) occurs before this would be possible with the longitudi~ 
nal one. This situation can only happen if the section length z1 ofthe 
perturbed fiber is smaller than the undulation period of the ray. 

(3) Finally, intersection with the longitudinal plane takes place. 

It should be noted that calculation of the intersection point leads to the problem of 
solving a transcendental equation of the type sin(x) = 1 - x, which has to be done 
numerically. 
After reflection of the ray at the longitudinaiplane its parameters will be changed. 
Three different kinds of ray continuation are then possible: 
(1) The ray is reflected again at the longitudinal plane. 
(2) The ray reaches the cladding before striking the transverse plane. 
(3) The ray impinges on the transverse plane within the core. 

First of all we have to check if the ray can leave the core after reflection. For this 
purpose we express the distance r from the ray path to the fiber axis as a function 
ofz 

(3.34) 

where Q, xm, y m' t/1 x' t/1 yare given by Eqs. (3 .20) - (3.24) in combination with 
the new initial conditions {3.32) and (3.33). 
It should be noted that all the ray parameters just mentioned are now determined 
at the reflection point zs. 
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With some goniometric manipulation we rewrite Eq. (3.34) 

(3.35) 

with 

tanl/lr = [xinsin(21/lx) + yinsin(21/ly)1/ £Xincos(21/1J + yincos(21/ly)] (3.36) 

The projection of the ray path in the x, y-plane is given by Eqs. (3.18) and (3.19), 
which are the parametric equations of an ellipse. The major axis of this ellipse 
follows from Eq. (3.35) 

z? =r +y2 +['X, +y2 )2 -4x2y2 sin2(1/1 -1/1 )]~ max m m l.:"m m m m x y · (3.37) 

A ray can leave the core only iff. max> 1. In that case we put r = 1 on the left· 
hand side of Eq. (3.35) to determine the location z cat which the ray reaches the 
core-cladding boundary. So one has to solve z c from 

x2 +y-2 -2 m m 
cos[2Q{zc-zs)+l/lr] = - - - -

[(xin +yin)2 -4xinyinsin2(1/lx-l/ly)] * (3.38) 

Another requirement for a ray travelling in the cladding is that it has to reach the 
core-cladding boundary earlier than the transverse plane. If x c is the corresponding 
X·coordinate to z c then the condition 

~ < Zi - d.sina:- xc tana (3.39) 

has to be satisfied for a ray to leave the core. 
Due to the fact that the longitudinal plane is entirely below they, z-plane we note 
that iff max> 1 it is impossible for a ray to have another intersection with this 
longitudinal plane. This is because r max is always reached first. When r max< 1 we 
have a situation similar to the determination of the first intersection with the 
longitudinal plane. As only two ray continuations are possible: 
(1) the ray has another intersection with the longitudinal plane, 
(2) the ray impinges on the transverse plane within the core, 
it is, however, slightly simpler than the first intersection. In case of another inter· 
section the procedure is repeated for the successive intersections until the ray 
reaches the transverse plane or the core-cladding boundary. 
We finally note that calculation of the intersection point with the transverse plane 
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within the core again leads to a numerical solution of a transcendental equation of 
the type sin(x) = 1 x. Intersection with the transverse plane in the cladding can 
easily be calculated analytically, because the ray path is a straight line. 
A ray leaving the core through the core-cladding boundary can reach the longi· 
tudinal plane in the cladding. It is, however, impossible for the ray to re-enter the 
core after reflection. We shall show this by geometrical considerations (see also 
Fig. 3.7). 

' ' 

Fig. 3. 7 Possible ray continuations after reflection at the longitudinalplane 

When the ray leaves the core, three ray continuations have to be considered: 
(I) The initial direction is such that the ray travels first towards the major axis of 

the ellipse. From the point (x
8
, y s) until rmax is reached we have K > 0, and 

so no reflection is possible. 
(2) The initial direction is such that the ray travels ftrst towards the minor axi& of 

the ellipse. From the point (x
8

, y s) until rmax is reached we have K > 0, and 
so no reflection is possible. 

(3) The initial direction is such that the ray travels first towards the minor axis of 
the ellipse. In some cases it is possible that K < 0 when the ray leaves the core. 
As the longitudinal plane is entirely below they, z-plane, rmax is always 
reached above this plane for the first time. The circle describing the core· 
cladding boundary has in this region (above the point where the major axis 
intersects the circle) a tangent which travels away from the x, z-plane when 
going closer to the longitudinal plane. From Fig. 3.7 we can conclude that 
after reflection the ray can never be directed towards the core. 

To provide a better overview of all possible ray continuations, we have summarized 
the results of this section in the flow chart in Fig. 3 .8. 
By means of the previous considerations and calculations, the position and direction 
of a ray at the transverse plane of the input fiber are known. At this stage it is 
possible to investigate the acceptance of the ray by the output fiber. This output 
fiber has a core radius a0 , and an on-axis numerical aperture NAo. For this fiber, 



Fig. 3.8 Investigation of ray acceptance by the output fiber 

K0 : =-K0cos2a + M0sin2a 

M0: = K0sin2a + M0cos2a 

compute 

Xm, "'x· ~~'v· Mo. n 

successive 

intersection 
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too, the index proflle is described by Eq. (3.15). The center of the endface of the 
output fiber has the coordinates ( -d . cosar, 0, z1), whereas the ray intersects the 
transverse plane at (x e' Ye' z e). The first requirement for acceptance is that the ray 
should arrive at the output fiber core. This condition can be formulated as 

(3.40) 

Second, the ray direction should be within the local numerical aperture. We note 
that the axis of the output fiber coincides with the normal of the transverse plane 
given by (sina, 0, cosar). The angle (j of the ray with this normal is found from the 
cross product 

n sin(j = I I (Ke, Le, Me) x (sina, 0, casar) I I (3.41) 

In terms of normalized quantities we have 

(3.42) 

As n.sin{) does not change during the passage of the transverse plane, we have for 
the second and final check for acceptance 

(3.43) 

where the right-hand side of (3.43) represents the local numerical aperture. 

According to the flow chart in Fig. 3 .8 we constructed a computer program for the 
ray-tracing in a two-channel butt-joint multiplexer. This ray-tracing program was 
used for the numerical calculation of the insertion loss of the above-mentioned 
multiplexer. 
We checked the validity of the simplified modef described in section 3 .2.1 using the 
numerical calculations of this section. The comparison of both methods was made 
for a multiplexer having input fibers with a core diameter of 33 IIDl and a numerical 
aperture 0.24. For the output fiber these parameters are 50 t.tm and 0.26 respective­
ly. As a matter of fact we used such fibers in our experiments, which will be 
discussed later on. Table 3.1 lists the numerical results of a multiplexer with a 
polishing angle of 1.5° of the longitudinal plane. We see that for the configuration 
given in Fig. 3.2 (corresponding to 2d = 17 pm) the discrepancy between the 
models is only 1.4%. When more of the cross-section is removed two opposite 
trends will appear. First, the mismatch between the local numerical apertures will 
become less, which results in a decrease of the loss. Second, more rays intersect the 
longitudinal plane, causing a possible increase in loss. From Table 3.1 we see that 
removing more from the fiber cross-section than in the design according to the 
simplified model results in a slightly lower insertion loss (optimum at 2d = 13 t.tm). 



2d{~tm) efficiency 

21 0.859 
19 0.883 
17 0.895 
15 0.908 
13 0.911 
11 0.910 
9 0.904 
7 0.891 
5 0.873 
3 0.845 
1 0.825 

"' 1.5. 

approximation : 0.882 

a1"' 16.5pm 

ao 25 pm 

Table 3.1 Numerical results for a multiplexer with a polishing angle of 1.5° 
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This can be explained by the fact that the undulation period of the ray is about 
twice the section length of the perturbed input fiber. Therefore, many rays leaving 
the input core can still reach the output core. For this reason the ftrst trend, less 
mismatch in local numerical apertures, has slightly more influence. 
In Table 3.2 similar results are listed for a polishing angle of 0.1°. For such a 
smooth transition we see that there is hardly any deviation between exact ray­
tracing and the simplified model of the previous section. 

2d (pm) efficiency 

21 0.847 
19 0.871 approximation : 0.882 
17 0.878 
15 0.880 
13 0.859 

Table 3.2 Numerical results for a multiplexer with a polishing angle of 0.1° 

3.2.3 Overan Transmitter End Loss of a WDM-system 

It was pointed out that the transmission of one channel of a butt-joint multiplexer, 
under uniform launching conditions at the input, is described satisfactorily by 
Eqs. (3.3) and (3.4). In Fig. 3.9 this transmission is plotted against the ratio 
a/ao with the number of channels as the parameter. Although low-loss multiplexers 
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Fig. 3. 9 Efficiency curves of two-, three-, and four-channel wavelength-independent 
multiplexers at uniform launching conditions 

can be convieniently constructed, we have to combine the transmission curves of 
Fig. 3.9 with laser /LED-fiber coupling efficiencies, described by Eqs. (2.1) or 
(2.55), respectively, to choose a proper ai and N~. 
As we have already seen, both the above-mentioned coupling efficiencies depend on 
the optical throughput aiNAi of the fiber. When ai/a0 is varied, this optical through­
put is maximum if the equal sign is taken in Eq. (3.6). In that case we have 

(3.44) 

In this section we present transmitter end lq~ses ofsystems incorporating (l) LEDs, 
(2) index-guided lasers, (3) gain-guided lasers, in combination with a buttjoint 
multiplexer. · 
(l) Consider a top-emitting LED with an emitting area equal to the core of the out­
put graded-index fiber, which is standard 50 pm, and a numerical aperture of unity, 
as it emits in a hemisphere. For such a LED the coupling efficiency with the input 
fiber of the multiplexer is given by 

(3.45) 

where use has been made of Eqs. (2.1) and (3.44). 
The overall insertion loss at the transmitter end when using LEDs is shown in 
Fig. 3.10. From this figure we see that there are no advantages in using undersized 
input fibers. Consequently, it is preferable for multiplexing LED signals to be done 
by wavelength-selective devices. Due to the large wavelength separation present in 
LED systems, the insertion loss of interference filter multiplexers can be expected 
to be much lower than the 10 logN dB inherent in wavelength-independent multi­
plexing. 
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Fig. 3.10 Overall insertion loss at the transmitter end of a WDM system using 
LEDs depending on the pigtail core radius a; 
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(2) A completely different situation is found with a WDM system using index­
guided lasers (Fig. 3 .11 ). Here channel attenuations down to 1.5 dB at the trans­
mitter end are possible if four channels with pigtails of 30 p.m (ai/a0 = 0.6), which 
are still easy to handle, have to be multiplexed. In practice, the curves will even be 
flatter, closer to the 0-dB axis, because such lasers certainly do not cause a uniform 
distribution in the pigtails . 

._10 .---,---....--~--...----, 
~ aj, =40° au ::.20° 
i b. =0 }Jm Ao ;0,83 pm 
36 
E 
+ 
0\ 
c: 
'as 

~ 
~4 
0 
Q) 

~2 .. 
Ill 
0 

-0~~~--~--~-~:--~ 
0.5 0"8 0"9 10 

Fig. 3.11 Overall insertion loss at the transmitter end of a WDM system using a 
typical index-guided laser depending on the pigtail core radius a; 
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Fig. 3.12 Overall insertion loss at the transmitter end of a WDM system using a 
typical gam-guided laser depending on the pigtail core radius ai 

(3) Finally, in Fig. 3.12 we show the set of curves when typical gain-guided lasers 
are incorporated. This situation is intennediate between the ones shown in Figs. 
3.10 and 3.11. Here a general answer cannot be given to the question: wavelength­
independent multiplexing or not? Before making a choice, the number of channels 
and the wavelength separation must be considered. 
As discussed in the section dealing with the laser-to-fiber coupling, we see that the 
mode cut-offs in Fig. 3.12 are much more pronounced than in Fig. 3.11, indicating 
that the higher-order mode groups are fairly strongly excited. Use of such lasers 
makes the uniform distribution model more realistic. 
Note that for very small parameters of the input fibers (ai/a0 ~ 0.5) the _geometrical 
optics approach gradually loses its validity,.and so the results for the multiplexers in 
this region are less accurate. 

3.2.4 Experimental Results 

The fabrication of the butt-joint multiplexer is as follows [4]: About 3 em of a 
graded index fiber, with core diameter 33 llffi, are glued into a glass capillary. Next, 
the embedded fiber is polished from a point of the circumference sloping towards 
its end. The polishing angle is 1.5°. The second polishing at the fiber endface is at 
right angles to the surface just obtained. Two of these multiplexer parts are aligned 
under a microscope using a micromanipulator, and are glued in such a way that the 
two ends have the geometry shown in Fig. 3.2. Finally, the output ftber with the 
polished endface is butt-joined to the composite unit thus obtained. In order to get 
a four-channel multiplexer, the fiber parts in the capillary have to be prepared once 
more in the manner described above, so that four quarters are obtained (see Fig. 3.4). 
The resulting multiplexer device is shown in the photograph in Fig. 3.13. It is a 
stable and rugged structure with small outer dimensions, 9 x 15 x SS mm. 



Fig. 3.13 Photograph of a four-channel butt-joint multiplexer 

Furthermore, the fiber pigtails of the multipexer are terminated with lens con­
nectors. 
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Insertion losses of the butt-joint multiplexer were measured with a halogen lamp in 
combination with an interference filter (A.0 = 850 nm, t:..A. = 10 nm). The coupled 
light reaches the multiplexer after transmission through a 1.5 meter input fiber. 
Next, the light power transmitted through the output fiber was compared with the 
light power coupled to the input fiber, which was measured after cutting the input 
fiber in front of the multiplexer. 
Ten samples of a two-channel multiplexer have been constructed. For each channel 
we measured an insertion loss within 0.6 - 0.8 dB. As the theoretical value for this 
multiplexer is 0.55 dB, it can be concluded that the agreement is quite satisfactory. 
The experimental values of several four-channel multiplexers are given in Table 3.3. 

channel loss (dB) 
device 

1 2 3 4 

I 2.3 1.9 1.5 1.3 
II 1.6 1.4 2.3 2.4 
ill 1.6 2.0 1.2 1.6 
N 1.3 1.7 2.2 1.7 

Table 3.3 Experimental results of several four-channel multiplexers 
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Here, the agreement is not as good as in the previous case. The reason for this is the 
increased difficulty of correct polishing, glueing and alignment in a four-channel 
structure. 

3.3 Prism Multiplexer 

3.3.1 Theory 

The optical arrangement of a two-channel prism multiplexer is shown in Fig. 3.14. 

collimator 

prism 

input fibers 

principal plane 

decollimotor 

principal plane 

output 
fiber 

~ = focal point 

Fig. 3.14 Optical arrangement of the prism multiplexer 

The input fibers are coupled to the output fiber by means of a collimator, roof 
prism and decollimator. The endfaces of the input fibers are located in the colli­
mator focal plane. As the optical axes of the input fibers do not coincide with the 
axis of the lens system, the two nearly perfect collimated beams will form an angle 
with each other and with the optical axis. A prism is located at the point where the 
beam overlap is sufficiently small. Its refracting angle is chosen in such a way that 
both light beams are parallel with the optical axis after passing through the prism. 
light in a possible beam overlap hits the wrong facet of the prism and makes no 
contribution to the coupling. Finally, both beams are focused at the endface of the 
output fiber, which is located in the focal plane ofthe decollimator on the optical 
axis of the lens system. 
In this multiplexer the spatial filtering occurs between the collimator and decolli­
mator. As we have pointed out in section 1.5, the light beams between the lenses 
can be conceived of as imaginary fibers. Just behind the prism we have a light 
pattern, which is equivalent to the cross-section at the junction of a butt-joint 
multiplexer shown in Fig. 3 .2. For the determination of the insertion loss of prism 
multiplexers Eqs. (3.3) and (3.4) are still valid. In these equations ai and a0 have to 
be replaced by the radius of the collimated input and output beams, fi.N~ and 
f0 .NAo, respectively. 
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The prism multiplexers offer more freedom in design than the butt-joint multi­
plexer, because additionally the focal lengths of both lenses can be chosen 
arbitrarily. The structure can be extended to an arbitrary number of channels when 
using a prism with a number of facets corresponding to the number of channels. In 
Fig. 3.15 an impression is given of a four-channel multiplexer. 

Fig. 3.15 Impression of a four-channel prism multiplexer 

3.3.2 Design 

The analysis starts with the calculation of the deviation angle for any ray traversing 
a prism. Refraction by a prism is shown in Fig. 3.16, where it has been assumed 
that the prism has a refracting angle 1 while its index is n. The deviation angle 6 is 
calculated from 

6 = cpi -1 + arcsin[n sin {1- arcsin(n- 1 sincpi)}] , (3.46) 

where cpi is the angle of incidence. 

Fig. 3.16 Definition of ray angles in the refraction by a prism 
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When using Eq. (3.46) it turns out that ovaries considerably with the angle of 
incidence <Pi· It is preferable to use prisms at minimum deviation because otherwise 
any slight divergence of the incident light would cause astigmatism in the image. 
Considering the prism configuration in Fig. 3.14 it follows that 'Y =<Pi= o. In that 
case Eq. (3.46) reduces to 

'Y = arcsin[n sin{-r- arcsin(n- 1 sino)}] . (3.47) 

Using some goniometric relations, Eq. (3.47) can be rewritten as 

sino 
tan-y = ----oc------=------=-,------

(n2 -sin2 o)~ - 1 
(3.48) 

At minimum deviation it turns out that <Pi= <Po (see Fig. 3.16). In our configuration 
we then have 

sin o = n sin( 'Y /2) (3.49) 

Substitution of Eq. (3.49) into Eq. (3.48) yields 

n = 2cos(o /2) . (3.50) 

As we always have o << 1, it is required that n = 2 to satisfy all conditions. On the 
other hand, for thin prisms ('Y small) the following approximation is valid 

o e:!(n -l)'Y . (3.51) 

In Eq. (3 .51) the angle of incidence is of no importance, so that the requirement 
n = 2 is not so strong in practice. 

To determine the refracting angle 'Y and the distance s between the back focal point 
and flat side of the prism we use the optical diagram shown in Fig. 3.17. The input 

principal 
ray 

Fig. 3.17 Optical diagram for the design of a prism multiplexer 
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fibers are assumed to have an offset p. By elementary ray-tracing we see that the 
angle of incidence 'Pi' which equals the deviation angle o, is given by 

o == 'Pi == arctan(p /fi) . 

The value of the refracting angle 'Y is obtained by substituting Eq. (3.52) into 
Eq. (3.48). 

(3.52) 

Using Eqs. (3.3) and (3.4) we choose an appropriate value of d. The principal ray 
hits the flat side of the prism at a distance di from the axis: 

di = d (t- d. tan"() tan.p1 , (3.53) 

with 

(3.54) 

Finally the distance s is obtained from 

s = d/tan.pi . (3.55) 

3.3.3 Experimental Results 

We have based the practical construction of the prism multiplexer on the lens 
connector described in chapter 1. It is stretched out axially to create space for 
optical processing elements between the lenses. The modified input plug incorpo­
rates an array of three fibers: two input fibers and a dummy in between. The 
central dummy fiber is used to align the plug to the optical axis according to the 
alignment procedure of Ref. 5. The two input fibers, whose signals should be multi­
plexed, are now located automatically at equal distances from the axis. At the 
output the fiber end is mounted in the usual lens plug. Finally, the prism is 
mounted in an adapter, which is provided with bayonet catches for the lens plugs. 
The parameters of the multiplexer parts listed in Table 3.4 have been chosen in 
accordance with the lines presented in section 3 .3.2. A photograph of the device, 
with the prism in front of it, is shown in Fig. 3.18. The loss estimation is given in 
Table 3.5. Insertion losses were measured under uniform launching conditions. 
A small overlap of the beams did occur, resulting in a loss of 0.2 dB after Eqs. (3.3) 
and (3.4). The coupling between the alignment fiber at the input side and the 
output fiber, using only the two lens plugs, showed a loss of0.3 dB, caused by lens 
aberrations. All surfaces were AR-coated, except those of the prism. This results 
in a loss of 0.35 dB. So, we are left with an additional loss of 0.6 dB due to 
tolerances in the multiplexer parts. 
Using exact ray-tracing by standard methods we obtained numerically an insertion 
loss of0.7 dB. This does not differ too greatly from the essential 0.2 + 0.3 = 0.5 dB 
loss, estimated in the experiment. 
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Finally, we note that perfect channel symmetry can easily be obtained by transverse 
adjustment of the prism. 

Fig. 3.18 Photograph of the multiplexer device, with the prism in front of it 

Ball-lens parameters 

collimating decollimating 

lens lens 

focal length 2.73 mm 3.86 mm 
diameter 4.95mm 7.00 mm 
material LASF 9 LASF 9 

Fiber parameters 

input fiber output fiber 

core diameter 33/Jm 501Jm 
cladding diameter 125 /Jm 125!lm 
index profile graded graded 

Prism parameters 

roof angle 167°42' 
material BK 7 
dimensions: 

base 8x6mm 
height 2mm 

Table 3.4 Parameters of multiplexer parts 
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factors losses 

ing input to 0.3 dB 
tfiber 

beam overlap 0.2 dB 

tolerances in 0.6 dB 
multiplexer parts 

reflection losses 0.35dB 

total 1A5dB 

Table 3.5 Loss estimation of prism multiplexer 
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4. DESIGN AND CONSTRUCTION OF OPTICAL DEMULTIPLEXERS 

4.1 Introduction 

In section 2.3 we have reviewed the principles of optical demultiplexers. It is 
expected that angular-dispersive devices have advantages in that insertion losses and 
the number of basic elements do not increase with the number of channels, as long 
as that number is not too large. Furthermore, it is possible to have closely spaced 
channels with low cross-talk and at the same time a flat pass band. These properties 
are hard to achieve with interference filters. 
A demultiplexer with angular dispresion can advantageously be fabricated as an 
autocollimator in a Littrow mount with a single lens, a grating or prism, and an 
input-output fiber array. Owing to the desired small channel spacing("' 30 nm) a 
blazed reflection grating is the best element for constructing compact demulti­
plexers. Prisms have such a low dispersion that miniaturization and the use of single­
element lenses would not be possible. 

4.2 Ball Lens Demultiplexer 

4.2.1 Theory 

The device configuration is shown in Fig. 4.1. The signal from the input fiber is 
collimated by the ball lens, diffracted at different angles according to the wave­
length on the grating surface, and the resulting beams are then focused on the 
corresponding output fiber by the same ball lens . 

• ~ grating 

V.alllens 

Fig. 4.1 Structure of demultiplexer based on Littrow mounting 
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Relations between the channel spacing, defmed as the wavelength difference 
between adjacent channels, and the element parameters are derived in the following. 
A model for the derivation is shown in Fig. 4.2. A reflection grating with period 
A and blaze angle o8 is positioned in front of a ball lens. The normal of the grating 
plane forms an angle 0 with the optical axis, which is the line through the core 
center of the input fiber and the center of the ball lens. 

principal plane 

)( 
grating 

~---f----~----
output- 1-----------+-­
input - F-0-----~---+--------=~ 

Fig. 4.2 Optical diagram [or the design of a grating demultiplexer 

The grating equation is described as [1] 

a+fj a-(3 
rnA= A (sina + sinJJ) = 2A sin (--)cos( ) , 

2 2 
(4.1) 

where a and (3 are incident and diffracted ray angles respectively, with respect to 
the normal of the grating plane, m is the diffraction order and A is the wavelength. 
We will only consider the first order (m = 1), because it is well-known that this 
order has the highest efficiency. For the Littrow mounting (a= (3 = 6) Eq. (4.1) 
reduces to 

sin 0 = A/(2A) (4.2) 

In reality there always will be a difference of some degrees between a and {3. For 
practical purposes, however, Eq. (4.2) remains valid. Under this condition the 
angular dispersion is given by 

d(3 2 
- =- tanO . 
dA A 

(4.3) 

To obtain the linear dispersion dx/dA we have to multiply Eq. (4.3) by the focal 
length f of the ball lens [see also Eq. (2.5)]. 
The grating period A must be chosen such that the central wavelength Ac of the 
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demultiplexer appears near autocollimation at the blaze angle 8B. This is desirable 
because the highest diffraction efficiency and its smallest polarization dependence 
are then expected [2]. Additional to a certain channel spacing we want to have a 
flat pass band characteristic, so that the demultiplexer can perform without loss 
changes against the emission wavelength variations in laser diodes. Such a flat pass 
band can be obtained by using oversized step-index output fibers. In the following 
we will discuss the choice of output fiber parameters. 
For purely monochromatic light a nearly unbroadened image of the input fiber core 
cross-section appears in the focal plane, where the end face of the fiber array is 
located (see also Fig. 4.2). This image is considered to move on the output fiber 
cores as the emission wavelength changes. Therefore, the width of the flat pass band 
is determined by the linear dispersion and the difference in core diameter of input 
and output fibers. The explicit relation is 

(4.4) 

where 

B = bandwidth of flat pass band, 
ai = core radius of input fiber, 
a0 = core radius of output fiber, 
D = distance between fiber axes of adjacent output fibers, 
tl"A. = channel spacing. 

From Eq. (4.4) it will be clear that maximum bandwidth is obtained ifa0>>ai and 
D ~ 2a0 • The latter requirement indicates that the cladding thickness of the output 
fibers should be as small as possible. A practical limit for this thickness seems to be 
20 p.m. The sensitive area of high-speed photodiodes at the receiver end sets an 
upper limit of about 50 p.m on a0 [3]. As the input fiber is nearly always the 
standard graded-index fiber (ai = 25 p.m) we have, according to Eq. (4.4), for the 
obtainable bandwidth 

Bmax = 0.35 AA. . 

Note that all fibers in the array should be located as closely as possible to the 
optical axis in order to reduce astigmatism of the ball lens. 

(4.5) 

When selecting components for a demultiplexer we have to know the acceptable 
bandwidth and an estimation of the groove spacing of the grating. The connection 
between all element parameters is shown in the flow chart in Fig. 4.3. It is pointed 
out that there is an interaction between focal length and groove spacing. For ball 
lenses the spherical aberration is proportional to f. Thus, f should be chosen in such 
a way that the image of the input fiber does not broaden to much. On the other 
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hand, as a general rule coarser gratings have higher efficiencies. In an actual design a 
compromise should be made between the above-mentioned effects. 
The grating efficiency peak is always found around the Littrow angle. When a 
commercially available grating is used, its blaze angle should be chosen as close as 
possible to this Littrow angle. 

, 
I 
I 

+ 

I 
I 
I • I 
1 
I 

__ ..J 

Fig. 4.3 Connection between element parameters in a grating demultiplexer 

4.2.2 Experimental Results 

It is very convenient to start the design by making a selection table for a demulti­
plexer with a given central wavelength, number of channels, and so on. Table 4.1 
shows such a table for a four-channel device in the 850 nm region. It is based on 
available ball lenses with diameters in the range of interest, fabricated from Schott 
glass LaSF9, and Bausch and Lomb standard gratings. For reasons pointed out in 
the previous section, we use step-index output fibers with parameters of 100 p.mf 
140 p.m. From the selection table we see that with these output fibers a good 
choice is 

grating 1200 grooves/rom 
- ball lens diam. 9 mm 
- linear separation 205 p.m. 
The complete demultiplexer is shown in the photograph in Fig. 4.4, and an end 
view of the fiber array can be seen in Fig. 4.5. 

Grooves/mm 
Ac Neighbouring Grating 

A8 () =arcsin (21\} 
Blaze Angle Os Efficiency .p8 oj>9 

1800 47°57' 26°45' 47% 

1200 29'40' 36'50' 84% 41.4 mRAD 113 140 160 182 205 

1200 26'45' 76% 

630 20°1' 20'34' 85% 26.5 mRAD 72 88 102 117 131 

800 14'20' 176 27' 76% 18.6mRAD 61 72 82 92 

600 13' 72% 

A,~825nm r 1.102 r 

Ail~ 30 nm 
n~ 1.83 

Table4.1 Selection table for the design of a specified demultiplexer 

¢10 

146 

102 
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Fig. 4.4 Photograph of grating demultiplexer 

Fig. 4.5 Micro photograph of fiber array 

Spectral transmission curves were measured using a halogen lamp in combination 
with a monochromator as light source. The spectral width was set at 0.1 nm. 
Absolute transmission curves were measured by comparing the power transmitted 
through each output fiber with the light coupled to the input fiber, which was 
measured by cutting the input fiber pigtail. 
We also calculated the pass bands using numerical integration and ray-tracing. 
Fig. 4.6 shows calculated (drawn lines) and experimental (marks) results. The 
output of each channel corresponds to one of the output fibers. The insertion loss 
in the pass bands is 1.2 - 1.3 dB, which is mainly caused by the grating (-1 dB). 
The residual loss originates from Fresnel reflection at the fiber endfaces in the array. 
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The calculations show that there is no lens coupling loss in the flat pass band. That 
is why we have matched experimental and numerical data in this region. It can be 
concluded that there is excellent agreement between numerical and experimental 
pass bands. 
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Fig. 4. 6 Branching characteristic of a four-channel demultiplexer with anti-reflection 
coated ball lens. (The marks are the experimental values.) 

A proper anti-reflection coating on the ball lens is very important, because a possible 
reflection of the input fiber light is immediately directed towards both central out­
put fibers. This light is not diffracted at the grating, so it will cause cross-talk in the 
central channels. If the front surface of the ball lens is thought of as a perfect 
mirror, then the input fiber couples 4. 7% of its power to each of the inner output 
fibers of the array. 
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Fig. 4. 7 Branching characteristic of a four-channel demultiplexer with an uncoated 
ball lens 
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To visualize this effec.t, we repeated the experiment with an uncoated ball lens. The 
reflection at the boundary is 8.6%, resulting in a direct coupling of 4.7 x 0.086 = 
0.4%, which corresponds to -24 dB. Taking this effect into account, we obtain the 
results shown in Fig. 4.7. 

Finally, we have also constructed a six-channel demultiplexer. Its experimental and 
numerical characteristics are shown in Fig. 4.8. The insertion loss in the flat pass 
band is 1 .4 - 1.6 dB, which is only a slight increase as compared with the four­
channel version. 
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Fig. 4.8 Branching characteristic of a six-channel demultiplexer with anti-reflection 
coated ball lens 

4.3 Linear Polarization Demultiplexer 

In the experiments it turned out that insertion losses are mainly caused by the 
grating. However, the technology of fabricating gratings has reached its theoretical 
limits, and therefore no improvements in the structure shown in Fig. 4.1, are to be 
expected. If we use polarization effects in the diffraction at the grating, then there 
is a possibility of reducing insertion losses reported in the previous section. To 
explain this, we have to consider the behavior of blazed gratings, which is mainly 
determined by the blaze angle. 
From the grating point of view it would be desirable to insert only gratings of the 
very low blaze angle region (1 - 5°). Polarization effects :ue. then negligible, and 
the efficiency peaks towards almost 100%. However, such gratings require a large 
focal length in the demultiplexer, preventing miniaturization. Outside this very low 
blaze angle region the efficiency curves for the p. and S-plames (electric field vector 
parallel (P) and perpendicular (S) to the grooves) are always remarkably different. 
A survey of all blaze angles shows that in the high blaze. angle region (22 38°} 
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the S-plane efficiency is very high and wide-band. In Fig. 4.9 we show the character­
istics of a standard grating in this high blaze angle region [2]. 
Fig. 4.9 indicates that we can get better demultiplexers if the light is linearly 
polarized just before impinging upon the grating. For a loss-free transfer of un­
polarized light into linear polarized light we need two subfunctions: (a) spatial de­
composition of the unpolarized light beams into two linear polarized light beams, 
and (b) rotation of the electric field vector of one of the beams just obtained into 
the direction of the field vector of the other beam. The frrst function can be 
realized by using polarizing interference filters or uniaxial crystals. Rotation of the 
field vector is achieved by half-wave retarders. 
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Fig. 4. 9 Characteristics of a standard grating at Lit trow condition 

A suggested approach is shown in Fig. 4.10. It is the usual concept of a grating 
demultiplexer with a so-called linarizer inserted between the ball lens and grating. 
When the collimated beam is sent into the prism it is reflected or transmitted 
according to its polarization by a multilayer interference fllter. After the total 

fiber array 

Fig. 4.10 Grating demultiplexer with linearizer inserted 
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internal reflection we have two parallel beams with perpendicular polarization, as 
indicated by circles or arrows Jn the ftgure. The half-wave plate, placed in the upper 
beam, rotates the field vector through 90°. The two separat«l beams :thus emerge 
from the prism with the same direction ~f polarization, and are diffracted at the 
grating. After diffraction the linearizeris used in the opposite direction to combine 
both diffracted beams. 
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SUMMARY AND CONCLUSIONS 

The basic structure of most fiber-optical devices can be reduced to a centered 
imaging system with a collimating and a focusing lens. These devices always exhibit 
optical coupling loss, which is completely determined by the degree to which the 
optics depart from ideal, that is, by the aberrations and misalignments of the 
elements incorporated. A systematic approach is presented to predict the coupling 
efficiency for a specified set of lens and fiber parameters. 
GRIN-rod lenses, ball lenses, and plano-convex rod lenses are currently proposed 
for fiber-optical devices. From analyses of the aberrations of these lens types it 
turned out that equivalent lenses in a well-designed coupling cause almost the same 
loss due to aberrations. Results of this theory are used to design a lens connector 
fabricated in a factory-type production line. Its performance reaches the theore­
tical limit. With the usual graded-index fibers this resulted in a mean value of 
0.7 dB of the insertion loss. 
Optical multiplexers and demultiplexers are indispensable in systems using wave­
length division multiplexing (WDM). Because of the importance of WDM, optical 
(de)multiplexers have been investigated in this thesis. The analysis starts at the 
optimizing of the transmitter end (laser-fiber coupling+ multiplexer) of a WDM 
system. To include all types of laser diodes, the current laser-fiber coupling theory 
is extended to include astigmatic laser diodes. Also, some fundamental limits as 
regards the efficiency of multiplexers without dispersive elements are derived. 
The choice between wavelength-selective and wavelength-independent multiplexers 
is discussed. The combination of index-guided laser diodes and wavelength-indepen­
dent multiplexers is shown to be the best one for WDM systems, whereas it is 
preferable for multiplexing of LED signals to be done by means of wavelength­
selective devices. Two novel types of wavelength-independent multiplexers are 
presented: a structure without lenses, which we name butt-joint multiplexer, and a 
structure using lenses, referred to as a prism multiplexer. Loss estimations showed 
that the insertion loss of the butt-joint multiplexer can hardly be reduced. How­
ever, the excess loss of the prism multiplexer, coming to 0.6 dB, is due to fabrica­
tion tolerances. 
Finally, several grating demultiplexers have been constructed. The measured 
insertion losses in the pass bands were entirely determined by the grating efficiency 
(- 1 dB). Furthermore, the cross-talk levels obtained were sufficiently low to 
satisfy all nowadays system requirements. 
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SAMENV ATIING EN CONCLUSffiS 

De basisstructuur van de meeste optische componenten voor glasvezels kan worden 
herleid tot een gecentreerd afbeeldingssysteem met een collimator en een decolli· 
mator. Deze componenten vertonen altijd een optisch koppelverlies dat volledig 
wordt bepaald door de onvolmaaktheid in hetsamenstel van de optische bouwste­
nen, te weten, afbeeldingsfouten en afwijkingen in de positionering. Er wordt een 
systematische aanpak opgesteld om voor een gegeven combinatie van lens- en glas­
vezelparameters een voorspelling van het koppelrendement te kunnen maken. 
In optische componenten voor glasvezels worden meestal staaflenzen met een ge· 
gradeerde index, bollenzen, of platbolle staaflenzen gebruikt. Analyse van de 
afbeeldingsfouten van deze soorten Ienzen toont aan dat in een goed ontworpen 
koppeling equivalente Ienzen nagenoeg hetzelfde koppelrendement mogelijk 
maken. De resultaten van deze theorie zijn toegepast in het ontwerp van een lens· 
connector, die onder produktieomstandigheden wordt vervaardigd. De eigenschap· 
pen van de connector benaderen de theoretische grenzen. Voor de gebruikelijke 
gegradeerde index vezel betekent dit een gerniddeld verlies van 0,7dB. 
Optische multiplexers en demultiplexers zijn onrnisbaar in systemen waarin golf· 
lengtemultiplex (WDM) wordt toegepast. Vanwege het belang van WDM worden in 
dit proefschrift optiscbe (de)multiplexers onderzocbt. Begonnen wordt met de 
optimalisatie van bet zendergedeelte (laser-vezel koppeling + multiplexer) van e.en 
WDM-systeem. Om alle soorten laserdiodes te kunnen toepassen, was het noodzake· 
lijk om de bestaande koppeltbeorie uit te breiden met astigmatische laserdiodes. 
Verder worden er enkele fundamentele grenzen ten aanzien van bet rendement van 
multiplexers zonder dispersieve elementen afgeleid. 
De keuze tussen golflengte-selectieve en golflengte-onathankelijke multiplexers 
wordt besproken. Het blijkt dat de combinatie van index-geleide lasers en golfleng• 
te-onafhankelijke multiplexers bet beste is, t,erwijl bet multiplexen van LEI)..signa· 
len bij voorkeur dient te gebeuren met golflengte-selectieve multiplexers. Twee 
nieuwe typen multiplexers worden voorgesteld: een zonder lenzen, die we direct­
contact multiplexer noemen, en een die we aanduiden als prisma-multiplexer. 
Analyse van de verliezen maakt duidelijk dat de kwaliteit van de direct-contact 
multiplexer nauwelijks kan worden verbeterd. Daarentegen zijn de maakverliezen 
(0,6 dB) in de prisma-multiplexer aan de hoge kant. 
Tenslotte zijn er ook nog diverse tralie-demultiplexers gerealiseerd .. De in de door· 
laatbanden gemeten verliezen worden volledig bepaald door het rendement van bet 
gebruikte tralie (- 1 dB). Verder zijn de verkregen overspraakniveaus ruimscboots 
voldoende om aan alle buidige systeemeisen te kunnen voldoen. 
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Stellingen bij het proefschrift: 

MICRO-OPTICAL DEVICES FOR 
FIBER COMMUNICATION 

1. De beschrijving die Simon e.a. geven van bet 
ontdekken van fysische en cheaische wetten door 
bet computerprogramma BACON, is gebaseerd op de 
veronderstelling dat alle grootheden waarover het 
programma informatie dient te krijgen, relevant 
zijn voor bet probleea. Bij bet ontdekken van 
nieuwe wetmatigheden wordt aan deze 
veronderstelling zelden of nooit voldaan. 

- H •. A. Simon, P.W. Langley, and G.L. 
Bradshaw, Synthese !Z (1981) 1 

2. Bij de bepaling van de modusdispersie van een 
glasvezel volgens de snij-en-meetaethode kunnen de 
resultaten onjuist of zelfs onzinnig worden, 
indien er merkbare kleurdispersie optreedt. 

3. Grau en Lemainger beweren dat de door hen 
afgeleide relatie tussen de verre-veld~ntensiteit 
enerzijds en de vermogensverdeling van modi 
anderzijds geldig is voor glasvezels met een 
willekeurig brekingsindexverloop. De relatie is 
echter alleen geldig indien de brekingsindex wordt 
beschreven door een aonotoon niet-stijgende 
functie. 

- G.K. Grau and O.G. Lemminger, Appl. Opt. n <1981) 457 

4. De aantrekkelijkste methode voor bet lassen van 
aono-aodusglasvezels is die methode, waarbij door 
aiddel van lokale in- en uitkoppeling van licht 
bet koppelrendeaent wordt gemeten. 

S. Funakoshi e.a. kunnen dank zij onjuiste 
veronderstellingen in hun diffusiemodel de 
waargenoaen tijd voor bet vlakgroeien met 
vloeistoffase-epitaxie over een gegroefd 
GaAs-substraat verklaren. 

- K •. Funakoshi .. A. Doi, K. Aiki and R. Ito, 
Journal of Crystal Growth !2 (1978) 252 



6. Bij bet filteren van een verruist harmonisch 
signaal met behulp van een fasevergrendel-lus gaat 
men vaal uit van de onjuiste veronderstelling dat 
bet vermogensspectrum van de ruis wordt gewogen 
met~et kwadraat van bet aaplidudespectrum van'de 
lus. 

' 7. Gezien de eigenschappen van materialen voor 
thermo&agnetische registratie is de benaming 
"amorf" voor structuurloze vaste stoffen 
ontoereikend. 

- J.W.M. Biesterbos, Journal de Physique, !i 
(1979) CS-274 

8. De gangbare beschrijving van de afgescher&de 
&agnetische lusantenne leidt tot een verkeerd 
begrip en in berekeningen tot een veel te grote 
antenne-impedantie in het gebruikelijke 
meetgebied. 

H.W. Ott, Noise Reduction Techniques in 
Electronic Systems, John Wiley New York, 
1976, p.48 

- A. Hoek, Hoehfrequenzmesstechnik 1, 
Kontakt + Studium Lexika band 31, 
Teehnische Akademie Esslingen, Lexika 
Verlag 7031, 1979, p.229 

9. Door een toevallige keuze van de hypotheekbedragen 
in de tarieftabel voor hypotheekaktes is een 
aogelijke dubbelzinnigheid in de bepaling van bet 
hypotheekbedrag, behorend bij een gewenst te 
financieren bedrag, veraeden. 

10. De belangrijkste reden om aulti-modusglasvezel te 
gebruiken in hoogwaardige transmissiesystemen is 
de, als gevolg van de kleine kern. slechte 
hanteerbaarheid van de aono-aodusvezel. Dit nadeel 
is eehter van voorbijgaande aard. 

A.J.A. Nieia 10 juni 1983 




