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Abstract
A chiral organogelator has been synthesized that can be racemized and self-assembled in apolar solvents whilst at higher concentra-

tions organogels are formed. Field emission scanning and transmission electron microscopy revealed the formation of bundle fibrils

that are able to gelate the solvent. 1H NMR studies showed hydrogen-bond interactions between the peptide head groups of neigh-

bouring organogelator molecules. The enantiomerically pure organogelator can be racemized by the base DBU (1,8-diazabi-

cyclo[5.4.0]undec-7-ene) as was evident from chiral high-performance liquid chromatography analysis.
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Introduction
Gelation represents a macroscopic manifestation of self-assem-

bled molecules. Impressive supramolecular architectures have

been reported in which the self-assembled molecules immobi-

lize solvent to produce a gel phase. Carefully designed self

complementary building blocks with co-added organizational

information can make these gels responsive. In recent years,

much effort has been devoted to the design and characterization

of chiral self-assembled fibrillar networks that form organogels

[1,2]. In such systems the chirality within a molecular building

block is transcribed to nano- or mesoscale fibrous assemblies.

These chiral structures represent excellent models for studying

the emergence of specific shapes at a macroscopic level through

cooperative interactions between molecules. In addition, helical

assemblies possess a potential for applications in advanced ma-

terials and constrained media for chiral synthesis and sep-

aration [3-5].

The development of systems where the chiral supramolecular

assembly responds to specific triggers, should facilitate the

design of smart functional materials in which subtle molecular-

scale changes have an impact on the macroscopic behavior.

Most of the earliest stimuli-responsive gels undergo a
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Scheme 1: Synthesis of R-3 and S-3.

UV-induced transformation, which can be reversed by visible

light. For example, Shinkai and coworkers demonstrated that

trans-cis isomerization of gelator compounds by UV/visible

light could induce a gel-sol transition [6]. Feringa and

coworkers have reported a chiral gelator in which the supra-

molecular organization of the chiral assemblies can be switched

using UV/visible light combined with heating and cooling [7].

Chiral gels that respond to other stimuli such as metal ions [8],

guest molecules [9] and temperature [10] have also been

reported.

In recent years, racemic gel fibers assembled from mixtures of

enantiomeric building blocks have been described [11-14]. In

most cases, the racemates were less efficient gelators than the

pure enantiomers, and sometimes lead to crystallization [7].

Interestingly, Higashi and coworkers have observed that the

separate enantiomers assemble into fibers with opposite helicity

while the racemic mixture yield nanoscale, spherical structures

[15]. In order to create chiral response materials based on such

systems, it would be interesting to develop organogelators that

can be racemized by a stimulus [16,17]. In the current manu-

script we report our attempt to synthesize a racemizable chiral

organogelator (Scheme 1). The molecular design of our

organogelator (3) is based on a finding that the imine of

2-methylbenzaldehyde and phenylglycinamide can be race-

mized in the presence of the base DBU (1,8-diazabi-

cyclo[5.4.0]undec-7-ene). Interestingly, a single solid chiral

state from a nearly racemic mixture of this phenylglycinamide

derivative was observed by so-called attrition-enhanced solid-

phase enantioenrichment [18]. In order to obtain a molecule that

Figure 1: Concentration-dependent 1H NMR spectra of R-3 in chloro-
form (CDCl3). The red colours indicate the hydrogen resonances of the
amide unit.

is able to form a gel, 3,4-didodecyloxybenzaldehyde [19] was

used in place of 2-methylbenzaldehyde.

Results and Discussion
Synthesis
The synthesis of R-3 and S-3 is outlined in Scheme 1. First,

concentrated aqueous ammonia was added to ester 1 to yield

pure phenylglycinamide 2 [18]. Reaction of 2 with 3,4-didode-

cyloxybenzaldehyde [19] led to compound 3 in 50% yield

(Scheme 1). Both R-3 and S-3 were purified by recrystalliza-

tion and fully characterized. Chiral high-performance liquid

chromatography (HPLC) showed an ee of more than 99% for

the enantiomers. Interestingly, 1H NMR spectroscopy in chloro-

form revealed that the two amide protons of 3 behave differ-

ently at different concentration (Figure 1). The signal from one

of the amide protons remains the same, even on the addition of

a small amount DMSO-d6, indicating intramolecular hydrogen

bonding. The other amide proton signal was downfield shifted
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Figure 2: a) R-3 gel in octane (5 mM); b) octane solution containing a mixture of R-3 (2.5 mM) and S-3 (2.5 mM) after cooling from 80 °C to room
temperature; c) TEM image of the xerogel of R-3 in octane; d) the surface morphology of the dried gel obtained from R-3 in octane (15 mM) observed
by FESEM.

upon increasing the concentration, in accord with intermolec-

ular hydrogen bonding.

Gel formation
The gelation ability of R-3, S-3 and racemic 3 was investigated

using the “inverse flow” method. At room temperature, R-3 and

S-3 were insoluble in octane. However, on heating at 80 °C,

both R-3 and S-3 became soluble in octane and when cooled to

room temperature, a stable self-supporting semi-transparent gel

was formed (Figure 2a). For all the samples, the thermo-

reversible gelation process was followed at 0 °C, since the gela-

tion time becomes much longer at lower concentrations at 20

°C. For R-3, the critical gelation concentration (CGC) was

detected by the failure of the whole mass to flow when the vial

was turned upside down. The CGC value was 2.3 mM for R-3,

which means that R-3 can immobilize approximately 2700

molecules of octane per gelator molecule. The gel is thermo-

reversible, indicating that the first order phase transition is asso-

ciated with gel melting and/or gel formation. When the race-

mate (R-3 = S-3 = 2.5 mM) was heated and cooled to room

temperature, precipitation was observed (Figure 2b).

The morphology of the organogel was further characterized by

field emission scanning electron microscopy (FESEM) as well

as with transmission electron microscopy (TEM). The TEM

image (Figure 2c), of the dried R-3 gel in octane (1 mM) exhib-

ited entangled fibrillar network formation although the concen-

tration stays well below the CGC value (2.3 mM) in this

solvent. The critical gelation concentration indicates the

threshold at which, infinite percolation is achieved within a

network system, although microgel network structures can still

be observed below the CGC. The fibers have an average

diameter is 60 ± 10 nm and lengths of tens of micrometers

suggesting effective anisotropic growth. The morphology of the

R-3 organogel in octane at a higher concentration (about 15

mM) also revealed a fibrillar structure, but in this case the

fibrils were much bigger in size (nearly 150 nm in diameter)

and in some parts they seemed to form two dimensional sheet

like lamellar structures (FESEM image, Figure 2d).

In order to investigate the molecular arrangement of the fibers

in apolar solvent, variable concentration 1H NMR measure-

ment were carried out in cyclohexane-d12. In contrast to the

observations in chloroform, in cyclohexane solution upon

increasing the concentration the observed chemical shifts of

both the N–H protons were downfield shifted (Figure 3), consis-

tent with an increased degree of intermolecular hydrogen

bonding suggesting the formation of intermolecular hydrogen-

bond interactions between the amide units. Most likely

hydrogen bonded dimers or tetramers are formed in this apolar

solvent. Our data suggest that these hydrogen-bonded dimers or

tetramers subsequently stack via π-π interaction and via van der

Waals interactions into bundled fibers.

Racemization
The racemization of R-3 was investigated by chiral HPLC.

After adding 1 equivalent of DBU to a solution of R-3 in octane

at room temperature, samples were collected over time and the

enantiomeric purity was measured. Racemization was not

observed in the gel state (5 mM) after 18 hours, whilst after

heating and cooling precipitation was observed. At a concentra-

tion of 1 mM, where self-assembled fibers are present, the ee of

the solution decreased in time. Figure 4 shows a plot of ln(ee ×

100) versus time for the racemization of R-3 [18]. The first

order kinetics expression: ln(ee(t)) = ln(ee(0)) + kt could be

used to fit the experimental results and gave a t1/2 of about
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Figure 3: a) Concentration-dependent 1H NMR spectra of R-3 in cyclohexane-d12 and b) the shift of N–H signal of amide group versus concentration.

Figure 4: The evolution of ln(ee × 100) for the racemization of R-3 (1 mM) in the presence of 1 equivalent of DBU in octane and THF.

177 min. Under the same conditions, the racemization rate in

THF is much faster with a t1/2 of about 37 min. This difference

between the two solvents is most likely due to the difference in

polarity and the fact that R-3 is self-assembled in octane and

molecularly dissolved in the more polar THF.

Conclusion
This work demonstrates a route towards racemizable chiral

organogelators. Remarkably, our pure enantiomeric gelator

could not be racemized in the gel phase, while racemization

takes place in the self-assembled fiber state. We are currently

studying this class of organogelator for the creation of respon-

sive gels and attrition-enhanced solid-phase enantioenrichment

phenomena [20].

Experimental
General
All chemicals were purchased from Aldrich. Non-deuterated

solvents were purchased from Biosolve. All other solvents and

chemicals were used as received. Deuterated solvents were

obtained from Cambridge Isotope Laboratories, United States.

NMR spectra were recorded with a Varian Mercury NMR Spec-

trometer. IR spectra were measured on a Perkin Elmer 1600

FT-IR. MALDI-TOF MS spectra were measured on a Persep-

tive DE Voyager Mass Spectrometer with α-cyano-4-hydroxy-

cinnamic acid as the matrix.

Synthesis
Phenylglycinamide R-2, S-2: The ester salt R-1, S-1 (5.04 g, 25

mmol) was stirred with concentrated ammonia solution (20 mL)

at room temperature overnight. Subsequently, the product was

precipitated, filtered, and washed with cold water. The resulting

white solid was recrystallized from ethanol to afford 2.65 g of

colourless crystals (71%) of R-2, S-2. 1H NMR (CDCl3, 400

MHz): 7.43 (m, 2H, ArH); 7.31 (m, 3H, ArH); 4.84 (br, 4H,

NH2); 4.44 (s, 1H, COCH). MALDI-TOF MS (calc MW =

150.08, C8H10N2O): 150.97 [M + H]+. IR ν (cm−1): 3339;

3073; 1660; 1454; 1405; 1271; 869; 699.

R-3, S-3: To a solution of 3,4-didodecyloxybenzaldehyde (237

mg, 0.5 mmol) in toluene, was added compound R-2, S-2 (75

mg, 0.5 mmol) and the mixture was refluxed overnight. After
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the reaction was complete, the solvent was removed. The

resulting yellow solid was washed with methanol and n-hexane

to yield 150 mg R-3, S-3 (50%). 1H NMR (CDCl3, 400 MHz):

8.19 (s, 1H, CH=N); 7.48 (m, 2H, ArH); 7.42 (d, J = 1.2 Hz,

1H, ArH); 7.34 (m, 2H, ArH); 7.30 (m, 1H, ArH); 7.23 (dd, 1J

= 6.3Hz, 2J = 1.2Hz, 1H, ArH); 7.03 (d, J = 2.8Hz, 1H,

CONH2); 6.89 (d, J =6.3Hz, 1H, ArH); 5.49 (d, J = 2.8 Hz, 1H,

CONH2); 4.95 (s, 1H, COCH); 4.05 (m, 4H, OCH2, OCH2);

1.83 (m, 4H, CH2) ; 1.58 (m, 4H, CH2) ; 1.46 (m, 4H, CH2) ;

1.83 (m, 32H, CH2) ; 1.83 (m, 6H, CH3). 13C NMR (CDCl3,

100 MHz): 199.20; 174.34; 162.90; 152.33; 149.32; 144.98;

139.45; 128.65; 128.43; 127.83; 127.25; 123.52; 112.46;

111.78; 69.35; 69.07; 31.90; 29.62; 29.42; 29.34; 29.25; 29.08;

26.03; 25.96; 22.66; 14.09. MALDI-TOF MS (calc MW =

606.48, C39H62N2O3): 607.51 [M + H]+. IR ν (cm−1): 3403;

2918; 2849; 1652; 1514; 1263; 1120; 719. M.p. 80.5 °C. (R)-

enantiomer: [α]25
D 4.8 (c 0.01, CHCl3), (S)-enantiomer: [α]25

D

−4.4 (c 0.01, CHCl3).

ee Determination by HPLC [18]: The octane solution (2 mL) of

the imine (1 mM) and DBU (1 equiv) was mixed with 1 mL of

0.25 M HCl solution and the aqueous solution extracted two

times with 1 mL of CHCl3. The remaining aqueous solution of

phenylglycine amide HCl salt was used as such for the ee

determination by the following HPLC method. Column;

crownether Cr (+) 150 x 4.6 mm ID, eluent; aqueous HClO4 pH

= 1.2 / methanol 90/10 v/v %, flow: 1 mL/min, temperature, 25

°C, detection: λ = 220 nm, detection limit: 0.01 area %.

Electron Microscopy: The field emission scanning electron

microscopy was performed on dried gel samples. The samples

(15 mM in octane) were first coated with gold by the sputtering

technique and then observed under a FEI Quanta 3D FEG

microscope. The transmission electron microscopy was carried

out by drop casting a solution (1 mM in octane) on a carbon

coated copper grid and viewed under FEI Tecnai 20. TEM grids

(R2/2 Quantifoil Jena) were purchased from Quantifoil.
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