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ABSTRACT 
Multi-objective optimization algorithms are used in 
the building design process to find optimal solutions 
for design problems. Typically, these algorithms 
provide the decision maker with a Pareto front 
containing trade-off solutions. Since these solutions 
are equally good, the decision maker needs a method 
to select the most appropriate solution. In this paper, 
we propose a selection method that ranks the Pareto 
solutions according to their performance robustness. 
This allows the decision maker to select the most 
robust design solution. The proposed method is 
applied to an optimization problem of a building 
case study. The building performance robustness of 
this building is assessed for uncertainties in user 
behavior, since, for many buildings, that is a 
parameter with a high uncertainty and a high 
influence on the building performance. Our study 
shows that the proposed method provides the 
decision maker with useful information for the 
decision making process. 
 
INTRODUCTION 
During the last decade, there has been an increasing 
interest in using optimization algorithms in the 
building design process, e.g., (Emmerich et al., 
2008, Hopfe, 2009). These algorithms are used to 
find design solutions with the best possible building 
performance. In many cases, the optimization 
problem consists of two (or more) conflicting 
objectives, e.g. minimizing the energy demand while 
maximizing thermal comfort. It is impossible to find 
one best design solution (or design alternative) for 
these so-called multi-objective optimization 
problems (Deb et al. 2002, Coello Coello, 2005). 
Instead, a set of ‘trade-offs’ or good compromise 
solutions between the objectives are found. All 
solutions of this set are equally good, and the 
solutions are all Pareto optimal (meaning that an 
increase of one objective would simultaneously lead 
to a decrease of the other objective). The decision 

maker should select one of these Pareto optimal 
solutions. Typically, multi-criteria decision making 
(MCDM) methods are used to support the decision 
maker in this selection process, e.g., using utility 
functions. In this paper, we propose a method based 
on the performance robustness of the Pareto 
solutions. 
We define performance robustness as the ability of a 
building to handle changes (or disturbances) in the 
building’s environment and maintain the required 
performance, based on Ferguson et al. (2007). 
Therefore, it is important to take performance 
robustness into account during the design process 
(Leyten and Kurvers, 2006). The proposed MCDM 
method ranks the Pareto solutions according to their 
performance robustness. This allows the decision 
maker to select the most robust solution. 
In the present study, the performance robustness of 
the design alternatives is assessed by investigating 
the sensitivity of the building performance to 
changes in the behavior of the building users. We 
focus on user behavior because recent studies show 
that building performance can be highly sensitive to 
user behavior (Macdonald, 2002, Hoes et al., 2009). 
Moreover, according to the literature, the prediction 
of user behavior shows a high uncertainty 
(Andersen, 2009, Macdonald, 2002). This high 
sensitivity and high uncertainty makes user behavior 
an important parameter to take into account when 
assessing performance robustness. 
The proposed MCDM method is applied to an 
optimization problem of a building case study. We 
show how it is implemented in the optimization run, 
and how this implementation can be used to 
optimize the building design under uncertainty of 
user behavior. 
 

ROBUSTNESS INDICATOR 
The performance robustness of each Pareto solution 
is assessed by investigating the sensitivity of the 
building performance to changes in the building’s 
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environment. These changes are of an uncertain 
(aleatory) nature and are represented by uncertainty 
scenarios (described in more detail in the next 
section). The uncertainty scenarios are used to 
simulate the building performance of each Pareto 
solution. The influence of the uncertainty scenarios 
on the building performance indicators is assessed 
by investigating the variation of the performance 
indicators. The variation is defined using the relative 
standard deviation (RSD): 

    (1) 

with   the estimated mean of the performance 
indicator with m samples (uncertainty scenarios) of 
the performance indicator (x): 

   



 (2) 

and SD the estimated standard deviation of the 
performance indicator with m samples (uncertainty 
scenarios) of the performance indicator (x): 

   
    




 (3) 

The RSD is a dimensionless quantity of the 
variation, so it can be used to compare performance 
indicators with different units. In terms of 
robustness, we seek the smallest RSD in all 
performance indicators. 
 
Objectives vector 

In this paper, the multi-objective optimization is 
based on two objectives (the building performance 
indicators, which are described in the next section). 
For every Pareto solution, we use the RSDs of both 
objectives to describe a vector v = (x,y) = 
(RSDobjective1,RSDobjective2) (Figure 1). From here on, 
we refer to this vector as the objectives vector. The 
length of the objectives vector is a quantified 
indicator for the robustness of the solution: the 
smaller the objectives vector length, the more robust 
the solution. Therefore, the length can be used to 
rank the Pareto solutions according to their 
robustness. 

 

Comparing solutions with the same objectives 

vector length 

The angle of the objectives vector can be used to 
support the decision making process between 
solutions with the same objectives vector length. 

This angle gives information about the balance of 
the robustness between both objectives. An angle of 
45° indicates that the RSDs of the two objectives are 

the same; this is regarded as balanced robustness 
(Figure 1). An angle not equal to 45° indicates that 
one of the RSDs is larger than the other; this is 
regarded as unbalanced robustness (Figure 1). We 
define the robustness balance (α) as: 

α = β - 45° (4) 

with β the objectives vector angle:  

tan β =  
RSD2 

RSD1 
 

(5) 

 
Figure 1: Example of an objectives vector. The length of 
the objectives vector is an indicator of the solution’s 
performance robustness. The angle of the objectives vector 
gives information about the balance of the robustness 
between both objectives. 
 
Selection criterion based on α 

The decision maker (DM) can use α as a secondary 
selection criterion when he has to choose between 
solutions with the same objectives vector length. For 
example, if the DM requires a solution with 
balanced robustness, then he should select the 
solution with α closest to 0°. Or, if the DM is 
interested in a solution with one of the objectives 
being more robust than the other, then he should 
define a selection criterion of unbalanced robustness, 
e.g., α < 0° or α > 0°.  
 
Selection criterion based on preferred α 

The DM can also decide between solutions by 
regarding the impact of the RSD on the objective 
values in the objective space. For example, the DM 
wants to minimize both objectives and he is 
confronted with two Pareto solutions which are 
positioned exactly at the same position on the upper-
left side of a convex Pareto front (this position is 
marked with number 1 in Figure 2): the first solution 
shows α = 0° and the second solution α < 0°. 
Because of the position, these solutions show low 
values for objective 1 and high values for objective 2 
compared to the maximum objective values. 
Regarding objective 2, this means that when the 
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solution shifts to the right on the Pareto front, the SD 
will get smaller with the same RSD (compare 
position 1 with position 2 and 3 in Figure 2). If we 
assume that the DM is searching for a solution with 
small SD’s, then he will prefer the smallest available 
RSDobjective2 for a solution at position 1. While he 
allows a larger RSDobjective2 at position 3. Following 
the same reasoning, the DM would prefer the 
smallest available RSDobjective1 for a solution at 
position 3. In the example with the two solutions at 
the same position, the DM should prefer the solution 
with RSDobjective2 < RSDobjective1, thus the second 
solution with  α < 0°. 
 

 
Figure 2: Example of how the position of a solution on the 
Pareto front influences the performance robustness. A 
solution is plotted at three different positions. The bars 
show the solution’s performance uncertainty (SD) for 
objective 2. Position 3 shows the most robust performance 
(i.e. the smallest SD).  
Generally, every solution has a preferred α which 
depends on the position of the solution on the Pareto 
front. Since we assume that both objectives are 
equally important to the DM, we can calculate the 
preferred α by first normalizing the objective values 
as follows: 

objectivej
* =  

objectivej 

maxj 
 

(6) 

and: 

SDj
*= 

SDj 

maxj 
 

=  
RSDj 

  objectivej

maxj 
 

(7) 

with j is 1 or 2, and max is the maximum value 
of the objective on the Pareto front. We want to 
minimize both SD*’s. However, since we can only 
change α to influence the SD*’s, it is impossible to 
minimizing both SD*’s at the same (e.g. when SD1

* 
increases, SD2

* will decrease). Thus, the trade-off is 
to find the α when the SD*’s are equal: 

SD1
* = SD2

* (8) 
From (7) this can be written as: 

RSD1 
  objective1 

max1 
 

= 
RSD2

   objective2 

max2 
 

(9) 

Which can be written as: 
RSD2

 

RSD1 
 

= 
objective1  max2

objective2  max1
 

(10) 

From (6), it follows that: 
RSD2

 

RSD1 
 

= 
objective1

* 

objective2
* 

 

(11) 

Using (4) and (5), we calculate the preferred α as: 

preferred α = arctan 



 - 45° (12)

when objective 2* = 0, then the preferred α = 45°. 
Figure 3 shows the normalized Pareto front of Figure 
2. The preferred α’s are shown for the three 
positions. 
 

 
Figure 3: Normalized Pareto front with three solution 

positions and their preferred α’s. The preferred β for 
position 3 is also shown.  
The solution with an α closest to the preferred α is 
regarded as the preferred solution. The DM might 
want to define constraints on the RSDs to prevent 
them from becoming too large (e.g. maximum 
RSDobjective1 is 1.5). 
 

CASE STUDY 
The Pareto solution selection methodology is 
applied to a design optimization problem of a 
building. The problem consists of finding the 
building’s optimal window size in combination with 
the optimal quantity of thermal mass for the spring 
season1. In this case study, we are using the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) 
(Deb et al., 2002) to find the Pareto solutions. 
NSGA-II is a well-known multi-objective 
optimization algorithm and has already been used in 
building performance simulation (Emmerich et al., 
2008, Hopfe, 2009). 

                                                           
1 This paper is related to the HATS project (Hoes et al., 2011) in 

which we search for the optimal thermal storage capacity of a 

building during the year (e.g. per day, per month or per season). 
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Building case study 

The building case study is defined in cooperation 
with Tata Steel Construction Centre. The building is 
based on the residential houses of the Zonne-entrée 
project (Tata Steel Star-Frame and Courage 
Architecten bna) in Apeldoorn (the Netherlands). 
The building is modelled and simulated with the 
dynamic whole-building performance simulation 
tool ESP-r (Clarke, 2001) using a weather file of the 
Dutch climate. The case study consists of five zones: 
zone A (south orientated) and B (north orientated) 
on the ground floor and zone C, D (south orientated) 
and E (north orientated) on the first floor (Figure 4). 
The building is heated with an all-air system. The air 
temperature heating set points are set to 21oC when 
the room is occupied and 14oC when the room is not 
occupied; more details are given in Table 1 and 
Figure 4. The south façade is provided with an 
external shading device (horizontal venetian blinds). 
During winter months, the blinds are retracted 
making use of solar gains. During summer months, 
the blinds are lowered with slats set to 0 degrees 
(horizontal position). The slats are set to 80 degrees 
when the solar irradiance on the façade is higher 
than 300 W/m2. Two people are using the building 
during evenings (18h to 24h) and nights (24h to 8h). 
 

 
Figure 4: Case study based on Zonne-entrée Apeldoorn, 
facing the south façade. 

 
Table 1: Input parameters of case study Zonne-entrée 
Apeldoorn. 

 Input parameters Value Unit 

1. Occupancy evening [-] 
2. Internal heat gains 4.0 [W/m2] 
3. Window type (U-value) 1.3 [W/m2K] 
4. Thermal resistance façades 5 [m2K/W] 
5. Infiltration (qinfiltration;qv10;spec) 0.08 [dm3/s p.m2] 
6. Heating set point occupied) 21 [oC] 
7. Heating set point unoccupied 14 [oC] 
8. Ventilation 1.0 [dm3/s p.m2] 

 
Design variables 

The optimization algorithm is allowed to change the 
window size to 25%, 50% or 90% of the total north 
and south façades. The algorithm changes the 
thermal mass of the building by altering the density 
of the materials that are in contact with the indoor 
environment. The required density is calculated 

using the effective thermal mass method (in Dutch 
the Specifiek Werkzame Massa or SWM). The 
effective thermal mass is a simplified quantification 
of the thermal mass. It is defined as the mass of the 
thermal-active layers of the surfaces in a room 
divided by the total area of the surfaces; e.g. low 
thermal mass is 5 kg/m2 (lightweight floors and 
walls), medium thermal mass is 50 kg/m2 (concrete 
floors, lightweight walls) and high thermal mass is 
100 kg/m2 (heavy concrete floors and walls). The 
optimization algorithm is allowed to change thermal 
mass per zone between 5 and 100 kg/m2. 
 
Performance indicators 

The performance of the building is assessed using 
two performance indicators: the heating energy 
demand and the summed weighted over- and 
underheating hours. The heating energy demand is 
calculated in kWh/m2 for the simulated spring 
period. The over- and underheating hours (WOH-Σ) 
are weighted with a factor that is a function of the 
PPD (Hoes et al., 2010). 
To ensure a certain level of thermal comfort, a 
constraint is set on the number of WOH-Σ; the 
maximum allowed number of WOH-Σ is 200 hours. 
When solutions are assessed taking into account 
uncertainties, the same constraint is put on the mean 
WOH-Σ of the uncertainty scenarios. This is regarded 
as a loose constraint since it is accepted that in some 
cases the solutions exceed the limit. If we do not 
accepted that the solutions exceed the limit, we can 
also define a stricter constraint by applying a 
constraint on the maximum value of each uncertainty 
scenario. 
 
Uncertainty scenarios 

As mentioned in the Introduction, the uncertainty 
scenarios are based on variations in user behavior 
(or lifestyles). In building performance simulation, 
user behavior is modelled with predefined diversity 
profiles or with more advanced stochastic and 
activity based models (Bourgeois, 2005, Haldi, 
2009, Hoes et al., 2009, Tabak, 2010). Thus, we 
discern two approaches to generate the user behavior 
scenarios: 

• A simplified approach: user scenarios are 
defined based on combinations of 
predefined values for the input parameters 
that describe user behavior, e.g., heating set 
points, internal heat gains and ventilation 
rates. 

• An advanced approach: user scenarios are 
generated with stochastic user behavior 
models or activity based models. 

Rc-value façade and roof: 5 [m2K/W]

- U-value window: 1,3 [W/m2K]

Transparent constructions of façade: 50 [%] 

- G-value window: 0.6 [-]

- Balanced ventilation

- Heating

External shading device
(venetian blinds)
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In this paper we use the simplified approach. The 
values of the input parameters used to generate 
uncertainty variants are shown in Table 2. 
 

Table 2: Parameters of uncertainty variants. 

 Low Mid High 

Heating set point occupied [°C] 20 21 22 
Heating set point unoccupied [°C]:  13 14 15 
Internal heat gains [W/m2] 2 4 6 
Ventilation [dm3/s p.m2] 0.8 1.0 1.2 

 

PERFORMANCE ROBUSTNESS OF 
PARETO SOLUTIONS 
Figure 5 shows the optimization result for the spring 
period. The building design is optimized for one user 
scenario (the ‘middle’ values of Table 2), thus 
without uncertainty scenarios. Shown are the Pareto 
solutions found after 100 generations with a 
population size of 20. The optimization algorithm 
was able to find 166 Pareto solutions. The DM 
should choose one of the solutions. For example, he 
can choose the solution that shows the lowest energy 
demand and still meets the WOH-Σ constraint (the 
solution on the lower-right of the Pareto front). 
However, by doing this, the DM actually transforms 
the problem into a single objective optimization 
problem, and thus, he disregards many interesting 
design solutions (i.e. the other Pareto solutions). 
 

 
Figure 5: Result of the optimization for spring period. 
The dots represent the Pareto solutions. 
 
To provide the DM with more information about the 
Pareto solutions, we define the performance 
robustness of each solution using the robustness 
indicator. To do this, we defined 9 uncertainty 
scenarios based on the ‘low’ and ‘high’ values of the 
uncertainty parameters in Table 2. The performance 
of all Pareto solutions is simulated with these 
uncertainty scenarios. The results for an arbitrarily 
chosen solution are shown in Figure 6. The figure 
shows the values of the normalized performance 

indicator for the uncertainty scenarios. The 
objectives vector of this solution is plotted in the 
same figure; the objectives vector length (R) is 2.04 
and the robustness balance (α) is 12.46°. 
 

 
Figure 6: Normalized performance indicators of a 
solution for spring period. The objective vector is 

plotted in the same graph (R = 2.04 and α = -12.46o). 
 
In Figure 7, the objectives vectors of all Pareto 
solutions are presented in a scatter plot. The mean 
values of all solutions are plotted. The dot size in the 
scatter plot indicates the robustness (the smaller, the 
more robust); the dot color indicates the α according 
to the color bar on the side of the graph. The three 
solutions with the smallest R and the solution with 
the largest R are marked with numbers (ascending 
from small to large) next to the dots. For these 
solutions, the size of R compared to the smallest R is 
shown between brackets. The performance indicator 
values of these solutions are presented in Table 3. 
 

 
Figure 7: Scatter plot of the mean performance indicator 
values for all Pareto solutions. The dot size is 
proportional to R (smallest R = 1.75, largest R = 2.08), 
and is not related to the scales on the axes! The three 
solutions with the smallest R and the solution with the 
largest R are marked with numbers (ascending from small 

to large). The dot color indicates α according to the bar 
on the right. 
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Table 3: Performance indicators of the three most robust 
solutions and the least robust solution. 

 Mean WOH-Σ 
Mean energy 

demand R α 
 [hours/spring] [kWh/spring] [-] [°] 

Solution 1 191 109 1.75 2.5 
Solution 2 186 110 1.75 2.3 
Solution 3 180 111 1.75 2.2 
Solution 68 10 198 2.08 -8.0 
 
The solution that the DM chose in the example of this 
section’s first paragraph turns out to be unfeasible, 
because the mean number of WOH-Σ is higher than 
the constraint of 200 hours. The solution indicated 
with number 1 shows the most robust performance 
with an R of 1.75. Solution 2 and 3 show only small 
differences of R compared to solution 1 (0.2% and 
0.3%). Because the R’s of these solutions are so close 
together, we rank the solutions based on the 
difference of the α's with the preferred α's (see also 
Figure 8). The α’s of solutions 1, 2 and 3 are 
respectively 2.5°, 2.3° and 2.2°. The calculated 
preferred α’s are 15.5°, 14.7° and 13.8°. Thus, 
solution 3 shows the smallest difference with its 
preferred α: 13.8° - 2.2° = 11.6°. This solution is 
regarded as the most optimal and robust design, it 
shows a mean energy demand of 111 kWh in spring 
and mean WOH-Σ of 180 hours. The solution consist 
of window size: 50% and thermal masses: zone A 5 
kg/m2, zone B 18 kg/m2, zone C and D 100 kg/m2, 
zone E 22 kg/m2. The same solution can be found in 
Figure 5 as the seventh dot from the right. 
 

Figure 8: Scatter plot of the mean performance indicator 
values for all Pareto solutions (see Figure 7). The dot 

color shows the absolute difference between α and the 

preferred α. 

 

OPTIMIZATION WITH 
UNCERTAINTIES DURING THE 
OPTIMIZATION RUN 
In the previous section, the building is optimized for 
one building user only. The optimization algorithm 

did not take uncertainties into account when 
searching for the Pareto solutions. This might lead to 
Pareto solutions with a sub-optimal performance 
(robustness) when the solutions are subjected to 
uncertainties. In this section, we investigate if the 
optimization algorithm will find other solutions when 
uncertainty scenarios are introduced during the 
optimization run (from here on, we call this 
optimization under uncertainty). All designs that are 
evaluated by the optimization algorithm are 
simulated with the user behavior scenarios mentioned 
in the previous section. The objective of the 
optimization algorithm is to minimize the mean 
values of the building performance indicators. As 
mentioned before, we put a constraint on the mean 
values of the uncertainty scenarios: mean WOH-Σ < 
200 hours.  
The results of the optimization are presented in 
Figure 9 and Table 4. Shown are the Pareto solutions 
found after 100 generations with a population size of 
10. 
 

 
Figure 9: Pareto front of optimization with uncertainties 
during the optimization run. Shown are the mean 
performance indicator values of the Pareto solutions. The 
dot size is proportional to R (smallest R = 1.61, largest R 
= 2.24), and is not related to the scales on the axes! The 
three solutions with the smallest R and the solution with 
the largest R are marked with numbers (ascending from 

small to large). The dot color indicates α according to the 
color bar on the right. 
 
Table 4: Performance indicators of the three most robust 
solutions and the least robust solution for optimization 
with uncertainties during the optimization run. 

 Mean WOH-Σ 
Mean energy 

demand R α 
 [hours/spring] [kWh/spring] [-] [°] 

Solution 1 31 157 1.61 -3.1 
Solution 2 23 161 1.73 -6.7 
Solution 3 196 109 1.76 2.2 
Solution 38 5 182 2.24 -17.3 
 
The R of the Pareto solution 1 (R = 1.61) is 7% 
smaller than the R of the solution 2 (R = 1.73), thus 
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solution 1 can be regarded as the most robust 
solution. This solution provides a mean energy 
demand of 157 kWh and a mean WOH-Σ of 31 hours 
for spring. The solution consists of 25% glazing and 
the following thermal masses: zone A 5 kg/m2, zone 
B 7 kg/m2, zone C and D 5 kg/m2, zone E 5 kg/m2. 
The difference in R between solution 2 and 3 is 2%. 
If the DM finds this difference too small for ranking 
the solutions, then he can use the preferred α's. 
Solution 2 shows an α of -6.7° and solution 3 an α of 
1.6°, while the calculated preferred α's are -37.0° and 
15.7°. This means that solution 3 shows the smallest 
difference with 13.5° and is preferred over solution 2 
(see Figure 10). 
 

Figure 10: Scatter plot of the mean performance indicator 
values for all Pareto solutions (see Figure 9). The dot 

color shows the absolute difference between α and the 

preferred α. 
 
The solutions found when using optimization under 
uncertainty are more diverse and more uniformly 
distributed over the Pareto front than the solutions 
found by the run with uncertainties after the 
optimization (compare Figure 7 and 9). All solutions 
found by the latter method are also found by the first 
method. However, in addition, the first method also 
explores (Pareto) solutions that were discarded by the 
optimization run without uncertainties. In this case 
study, one of these discarded solutions turns out to be 
one of the most robust solutions (Pareto solution 1 in 
Figure 9). 
 

CONCLUSIONS 
The proposed selection methodology provides the 
decision maker (DM) with information about the 
performance robustness of design solutions. Using 
this information, the DM is able to select the most 
robust solution from a set of (Pareto) design 
solutions. Without the proposed robustness 
indicator, the DM would typically prefer solutions 

on the knee-point of the Pareto front. However, 
using the robustness indicator, it might turn out that 
solutions on the end points of the Pareto front are 
more robust and thus more preferable. 
The simulation results of the case study building 
show that changes in user behavior have a large 
impact on the building’s performance indicators. 
This stresses the importance of taking uncertainties 
in user behavior into account during the design 
process since in many cases the actual user behavior 
is unknown. We showed that it is possible to take 
these uncertainties into account during the design 
optimization process. In combination with the 
proposed selection methodology, this leads to design 
solutions with a robust building performance. 
The results of this case study show that the method 
with uncertainties during the optimization is 
preferred over the method that calculates 
uncertainties after the optimization run. The first 
method provides the DM with a more diverse range 
of solutions. However, this method requires a much 
higher computational load, since every solution that 
the optimization algorithm assesses needs to be 
simulated with all uncertainty scenarios. 
In this paper, we chose to use fixed uncertainty 
scenarios. In the future of this project, we want to 
use stochastic user models and generate a larger 
group of random uncertainty scenarios. Furthermore, 
besides uncertainties in user behavior, we will also 
incorporate other uncertainties, e.g. uncertainties in 
climate scenarios. 
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