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Chapter 1 

Introduction 

1.1 AEROACOUSTICS 

The description by Lighthill (1952, 1954) of the phenomenon of sound production by a 
turbulent flow marked the beginning of aeroacoustics as a new field ,<>( research in fluid 
mechanics. Up to that period it was mainly assumed that sound was produced by wall 
vibrations like in loud speakers or in some music instruments. In Lighthill's now classical 
approach the sound is generated by: a fluctuating volume flux, which is a monopole­
like sound source; a fluctuating force, which corresponds to a dipole-like sound source, 
corresponding to two monopole sound sources of opposite strength at a distance apart 
smaller than the wavelength of the generated sound; or higher-order in free space less 
efficient sound sources like quadrupoles, octopoles etc. 

Lighthill (1952) derived his famous aeroacoustic analogy which, in absence of other 
sound sources, describes the quadrupole-like behavior of the sound produced by turbulent 
fluctuations of the velocity field. The success of Lighthill's theory is due to its ability to 
predict the noise generated by subsonic free jets, as well as providing a solution to the 
serious jet-noise problem. 

It was shown later by Powell (1964) that for a low-Mach-number flow the strength of 
Lighthill's sound source could be rewritten explicitly in terms of the vorticity. This led for 
instance to the explanation of the sound generated by telephone wires, studied earlier by 
Strouhal, as being related to the periodic shedding of vortices by the wires, resulting in 
the von Karman vortex street. The sound generated by vorticity is therefore called 'vortex 
sound'. Vortex sound is also responsible for flow-induced pulsations observed in internal 
flows. For example, in a whistling tea-kettle the sound is generated by the coupling of 
an acoustic resonance of a Helmholtz resonator with periodic vortex shedding at the two 
orifice plates at a certain value of the mean flow velocity. This configuration is also called 
Ra.yleigh's bird call configuration (Chanaud (1970)). 

Similar flow-induced coupling occurs in internal flows in the presence of a large variety of 
resonators. The resonator accumulates the acoustic energy which under specific conditions 
can be extracted from the mean flow field by the vorticity field. The difference between 
aeroacoustical sound production in internal flows and sound generation in free space is that 
the amplitude of the periodic velocity fluctuations associated with the acoustic field can 
become of the same order of magnitude as the mean stationary flow. The high amplitude 
of the acoustic velocity field implies that there is a strong feedback from the acoustic 
perturbations to the vorticity generation, subsequently convection of vorticity along the 
shear layer and the formation of concentrated vortex structures in the shear layer. The 
flow depends on the acoustic field which it generates, an interaction which effect is usually 
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assumed negligible in free space. For specific flow conditions the feedback results in a 
control of the vortex shedding process by the acoustic velocity field and into self-sustained 
oscillations. 

1.2 PROBLEM DEFINITION 

Flow-induced oscillations in internal flow systems can cause severe noise and vibration 
problems in a number of engineering applications. For example in the pipe system of a 
compressor station used for the transport of gas by the N.Y. Nederlandse Gasunie strong 
pulsations occurred (Bruggeman (1987a)). In a second example safety relief valves flow 
induced pulsations caused dangerous situations {Baldwin & Simmons (1986) ). An extensive 
review of similar flow-induced vibrations and oscillations induced by impinging shear layers 
is given by Rockwell & Naudascher (1978, 1979) and Rockwell (1983). 

In this thesis flow-induced pulsations are studied which occur at high Reynolds number 
and low Mach number in pipe systems with closed side branches . The intersection of a 
main pipe and a single side branch is further called a T-junction, while the intersection 
of a main pipe with a second pipe will be called a cross-junction. In the present study 
the flow in a tandem T-junction and a cross-junction geometry, as shown in figure 1.1, is 
studied, for pipes with a square and for pipes with a circular cross-section. The cause of 
the pulsations in the pipe system is an acoustic feedback loop in which flow separation 
at the sharp edges of the T-junction or cross-junction couples with the acoustic flow field, 
resulting in an unsteady vorticity field. The feedback loop develops as follows. 

• Due to the flow separation at the sharp edges a free shear layer is formed which is 
unstable to disturbances. 

• For small disturbances the instability occurs only for frequencies which correspond 
to hydrodynamic wavelengths which are large compared to the momentum thickness 
of the shear layer. If an acoustic field of such a frequency acts on the shear layer the 
disturbance grows exponentially until, due to nonlinearity, a region of concentrated 
vorticity is formed, i.e. a vortex core. 

• These coherent vortical structures convect from the upstream to the downstream 
edge of the side branch, see figure 1.1. 

If the time it takes a vortex to travel across the width of the side branch fits the oscillation 
period of an acoustic mode of the pipe system the vortex formation couples with the 
acoustic field and a resonance may occur. For a given source strength the amplitude of 
the pulsations is determined by the so-called quality factor of the resonator. The quality 
factor is determined by the losses in acoustic energy due to radiation, viscous and thermal 
effects occurring at the pipe walls and losses due to the interaction of the acoustic flow 
field with the turbulent mean flow. 

Bruggeman (1987a) studied the self-sustained flow oscillations in a system with single 
and double closed side branches for low and moderate amplitudes of the acoustic field, 
for which Uac/Uo ~ 1 and Uac/Uo = O(M), respectively. Here Uac is a characteristic 
amplitude of the acoustic velocity field and Uo is the main flow velocity. Ziada & Biihlmann 
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(1992) studied the flow-induced pulsations in a cross-junction configuration at moderate 
amplitudes of the acoustic field. 

Bruggeman (1987a) argued that a single closed side branch is a perfect reflector for 
plane acoustic sound waves when the side branch length L is equal to an uneven multiple 
of 'A/4, where ,\ is the wavelength of the sound wave. Two closed side branches an even 
multiple of 'A/2 apart form therefore a resonator in which acoustic energy can accumulate. 

From experimental data Bruggeman {1987a) determined the strength of the sound 
source up to moderate amplitudes of the acoustic field. It was found that the source 
strength is constant, so that the acoustic power generated varies linearly with the acous­
tic amplitude. In this case the total amount of vorticity contained in the shear layer is 
not strongly infl.uenced by the acoustic field. The acoustic field only triggers the insta­
bility of the shear layer and the start of the formation of vortex structures. Assuming a 
weak interaction, and employing a simple model, in which the shear layer is represented 
by a single point vortex and using the vortex sound theory developed by Powell (1964) 
and Howe (1975), Bruggeman (1987a) predicted the order of magnitude of the source 
strength as found in the measurement. However, for high amplitudes of the acoustic field, 
u11c/Uo 0(1), the assumption of a weak interaction between the shear layer and the 
acoustic velocity field is not valid anymore. Bruggeman (1987a) suggested that the highest 
attainable amplitude of the acoustic velocity field corresponds to a net source strength 
equal to zero. 

The aim of the present study is to determine the strength of the source of aerodynamic 
sound at high amplitudes of the acoustic field, i.e. Uac/Uo = 0(1), for cases such as the flow 
in a pipe system with two closed side branches as shown in figure LL The investigation 
has an experimental and a numerical component. 

The investigation is limited to the case that the width H of the side branch is equal to 
the width h of the main pipe. The acoustic field with frequency f is resonating between 
the closed side branches. The walls of the pipe system are assumed to be rigid, so that 
radiation losses of acoustic energy through wall vibrations are negligible. Since for reso-

.....1:!... acoustic wave 

source region 

(a) 
X 

vortex layer YL 
(b) X -H 

FIGURE l.l: Double side branch geometries studied in this thesis. 
(a) tandem T-junction geometry (b) cross-junction geometry 
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nance frequencies of the pipe system shown in figure 1.1 radiation losses into the main pipe 
are negligible, the amplitude of the acoustic velocity field can become comparable to the 
amplitude of the mean flow. 

In the present study only the flow of air is considered, which for the experimental 
conditions considered can be assumed an ideal gas. Within the flow itself it is assumed that 
the material properties of air such as density po, kinematic viscosity 11, thermal diffusivity 
K./ PoCp, where K. is the thermal conductivity and Cp is the specific heat at constant pressure, 
the gas constant Rand Poisson's constant 'Y for the ratio of specific heats ep/Cv and speed 
of sound eo are constant. 

Where needed more accurate data have been used which take into account the depen­
dency of the kinematic viscosity, density, thermal diffusivity and speed of sound on the 
ambient temperature, ambient pressure and on the humidity (see for example chapter 5 
for details). 

The following similarity parameters can be defined, all in absence of a mean flow: 

H 
: ratio side branch width to length £ 

= Pr : Prandtl number 
K. 

= Sh : Shear number 

Srac : acoustic Strouhal number 

=He : Helmholtz number 
Co 

and in presence of a mean flow the additional similarity parameters 

Uo 
Co 

UoH 
II 

M 

=Re 

: acoustic amplitude 

: Mach number 

: Reynolds number 

f H = Sr : mean flow Strouhal number 
Uo 

In the type of engineering applications considered the pulsations occur at high Reynolds 
numbers Re, typically Re > 105 , but at a relatively low Mach number (M ~ 1) of the 
mean flow. The Shear number Sh is usually very small, so that viscous effects associated 
with oscillations of the acoustic \·elocity field are confined to thin boundary layers along 
the pipe waiL 

In the present analysis, we will consider low frequencies of the acoustic field only, i.e. the 
Helmholtz number He is small He~ 1. Under these conditions only plane acoustic waves 



1.3 Vortex methods applied to aeroacoustic problems 5 

will propagate in the pipe system. At resonance conditions the mean flow Strouhal number 
Sr is usually of order one. In the present study we will focus on the case for which the ratio 
between the amplitude of the acoustic velocity field and the amplitude of the mean flow is 
of order one, i.e. Uac/Uo = 0(1}, which corresponds to the high-amplitude case following 
the classification of Bruggeman (1987a). Since the side branch is long compared to its 
width, H / L < 1 and as a result for the first modes of resonance in the system He < 1 
and the flow in the T- or cross-junction is compact. This implies that across the junction 
the phase shift of the acoustic waves due to the compressibility of air can be neglected. 

An incompressible approximation of the unsteady flow in the junction can be coupled 
to the plane-wave approximation for the flow in the side branches. Formally the flow 
in a single side branch could be determined by application of the Method of Matched 
Asymptotic Expansions (see Bruggeman (1987a,b) and Lesser & Crighton (1976)). 

In order to obtain the incompressible flow in the junction the periodic acoustic velocity 
field will be imposed as a boundary condition. At a given amplitude and frequency of 
the acoustic velocity field the interaction of the vorticity generated at the sharp edges 
with the acoustic field then determines the strength of the aero-acoustic source. From an 
acoustic energy balance for the complete resonator the amplitude of acoustic resonance 
can be obtained as the amplitude which is required to maintain the acoustic field at the a 
priori specified amplitude. 

1.3 VORTEX METHODS APPLIED TO AEROACOUSTIC PROBLEMS 

Following Powell's (1964} demonstration that Lighthill's aeroacoustic analogy can in a 
homentropic flow in free space be interpreted in terms of vorticity being the source of 
sound, vortex methods have been used to estimate the acoustic source strength. The sound 
generated by unsteady vorticity is commonly referred to as 'vortex sound' (e.g. Muller & 
Obermeier (1988)). Based on Powell's {1964) theory Stuber (1970) derived expressions for 
the sound produced by two spinning vortices, while Crighton (1972) found expressions for 
the sound generated by a point vortex convecting along a half plane. Cannel and Ffowcs­
Williams (1973) discussed the sound produced by a point vortex pair convected through 
the exit of a two-dimensional channel. Howe (1975) extended the theory of Powell (1964) 
by including the sound produced by entropy inhomogeneities. Furthermore, Howe (1975) 
demonstrated that the vortex sound concept can be generalized to internal flows. Howe 
(1975) applied the theory to the sound production by a region of vorticity or an entropy 
spot convecting through a contraction into a hard-walled duct and along a rigid body. 
Mohring (1978) showed, by defining a vector Green's function that the sound produced by 
vorticity can be described in terms of the vorticity only. 

An interesting application of resonances in an internal flow is the sound production in 
music instruments like a flue organ pipe, a recorder and a flute. In these instruments the 
sound is generated by the interaction of the resonating acoustic field with the vorticity 
generated at the nozzle of the flue channel and the vorticity generated at the sharp edge 
of the labium. Since the impingement of the starting vortex on the labium is of crucial 
importance for the first tones produced by the instrument the transient flow inside these 
instruments is of special interest. However, in the literature (e.g. Fletcher (1990)) this type 
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of flow is usually described by a quasi-steady model, in which a jet is already present during 
the transient period. Furthermore, it has been suggested by Fletcher (1979) that vortex 
shedding at the labium of the flute is a secondary effect. However, Howe (1975) showed, 
by using a single-point vortex method to describe the vortex formation in a flute, that 
vortex sound may play an important role in the transient behavior of a flute. Fabre (1992) 
found indeed that vortex shedding is crucial as a source of sound for higher harmonics of 
the fundamental oscillation mode of the flute but rather as a damping mechanism for the 
fundamental mode. 

The vortex sound theory has been developed by Yates (1978) in order to study vortex 
noise and jet impingement noise. For the sound absorption by the vorticity field generated 
at an open pipe end Disselhorst (1978) and Disselhorst & van Wijngaarden (1980) used a 
multi-point-vortex method to describe the process of vorticity generation and convection. 
They computed the pressure difference due to the generation and convection of vortices 
with which the absorbed acoustic power could be determined. Later, Hirschberg et al. 
(1989) showed that Howe's (1975) vortex sound theory can be used to understand the 
sound production in a 'whistler nozzle' or in a pipe terminated by a horn. 

Vortex sound in internal flows has also been studied extensively. Bruggeman et al. 
(1987a, 1991) employed a single-point vortex method to describe the vorticity generation 
and convection at the sharp edges of a T-junction. Welsh & Gibson (1979), Parker & 
Welsh (1983), Stokes & Welsh (1984, 1986) and Stoneman et al. (1988) investigated the 
interaction of sound waves with vortex shedding from bluff bodies situated within a duct. 
Welsh & Stokes (1984, 1986) used a multi-point vortex method to describe the flow and 
the interaction with the acoustic field and obtained the aeroacoustic power production by 
applying Howe's (1975) vortex sound theory. However, they ignored the problem brought 
to light by Brown and Michael (1954) that a point vortex with time-varying circulation 
cannot be considered as a free vortex convecting with the local flow velocity. This problem 
will be considered in detail in the present study. 

Using the vortex-blob method Thompson et al. (1992) discussed the acoustic sources 
in a tripped flow past a resonator tube. Using the theory of vortex sound to describe the 
interaction between the acoustic field and the vorticity field critical Strouhal numbers at 
which resonances occur could be determined. However, a prediction of the amplitude of 
the periodic pulsations has not been given. 

In this thesis the second-order vortex-sheet method developed at the National Aerospace 
Laboratory (NLR) in the Netherlands and described by Hoeijmakers & Vaatstra (1982), 
has been used as one of the methods to simulate the convection and roll-up of the vortex 
layer in an internal flow. In order to incorporate the generation of vorticity at sharp 
edges the possibility to impose the so-called Kutta condition at a. sharp edge has been 
implemented in the original computational method. Furthermore, imposing the boundary 
condition of zero norma.! velocity at rigid boundaries is made easy by conformal mapping 
of physical flow domain into a computational plane, with the solid boundary along the 
plane of symmetry. 

The results of this method have been compared with results of the vortex-blob method, 
developed at the University of Rome, La Sapienza, in cooperation with the Department of 
Aeronautics and Mechanics. Based on these methods simpler methods have been devel-
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oped, which represent the complete vortex layer by a single point vortex. The generation of 
vorticity in these methods is improved by introducing a so called edge vortex. The strength 
of the a.eroacoustic source can be determined from the results of each of these methods for 
the numerical simulation of the unsteady vortical flow by application of the vortex sound 
theory of Powell (1964) and Howe (1975). 

1.4 THESIS OVERVIEW 

The main text of this thesis comprises chapter 2 to 6. The basic equations describing the 
production of a.eroacoustic sound are derived in the next chapter. Several approximations 
to the basic equations are presented leading to inhomogeneous convected wave equations. 
Also the different models found in the literature to describe the generation and convection 
of vorticity at high Reynolds numbers, some of which are also used in the present study, are 
described in some detail. Special attention will be given to the so-called Kutta condition, 
which in potential flow models accounts for the action of viscous forces at sharp edges. 

In chapter 3 results of the various potential flow methods are compared for starting 
flows such as the starting flow past a wedge, out of a two-dimensional channel exit and in 
a T-junction. For a starting flow the moment of initial separation of the flow is exactly 
known, the flow is initially laminar and vorticity is only present in the shear layer generated 
at sharp edges. For the starting flow past a wedge a self-similar solution can be obtained. 
Therefore the starting flow about a wedge serves as a suitable generic flow problem which 
has been employed extensively to compare the results of the different numerical simulation 
methods. 

Following a period of transient flow in a.eroacoustic problems the flow becomes usually 
periodic. Chapter 4 is devoted to the periodic vortex formation process in several config­
urations. For the periodic flow problems it is assumed that the amplitude of the acoustic 
flow is fixed and not influenced by the interaction with the periodic mean flow field. The 
important parameters of the periodic flow problem appear to be the Strouhal number and 
the ratio of the amplitude of the acoustic field to the magnitude of the mean flow. Also in 
chapter 4 the periodic flow at moderate as well as at high amplitudes of the acoustic field 
is considered, both for a T-junction and a cross-junction. Without mean flow the vortex 
formation induced by a resonating acoustic field is a highly nonlinear process. Such a case 
is studied for the flow out of a sharp-edged two--dimensional nozzle. The conditions chosen 
correspond to two cases, the case of high acoustic Strouhal numbers Srac, and the case of 
Srac of order one. 

Chapter 5 describes the results of an experimental investigation into the propagation 
and reflection of acoustic waves in a long open-ended pipe. Acoustic energy losses due to 
radiation at the open end, losses due to vortex formation at the sharp-edged nozzle and 
visco--thermal losses due to friction and heat conduction at the pipe walls are determined 
experimentally. 

There is only scarce experimental data on the influence of a low Mach number (turbu­
lent) meim flow on the reflection coefficient and damping coefficient. Damping coefficients 
obtained by Ronneberger (1975) are for high frequencies(!:::::: 1000 11 z) and relatively high 
values of the Mach number ( M :::::: 0.2). The results of the effects of a mean flow component 
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on the reflection coefficient of an open pipe predicted by the theories of Munt ( 1977, 1990), 
Cargill (1982) and Rienstra (1981) cannot be validated with the experimental data found 
in literature. In the present study accurate experimental data has been obtained using a 
multi-microphone method. 

As an application of the computational methods chapter 6 deals with flow-induced 
resonances in a system with two side branches, i.e. in a tandem T-junction and in a 
cross-junction. In this chapter experimental data on the influence on the aeroacoustic 
characteristics of the length of the side branch, the geometry of the edges of the junctions 
and the mean flow are presented. Employing the vortex methods the strength of the 
aeroacoustic source can be determined at a given value of both the Strouhal number and 
the acoustic amplitude. By estimating the energy losses due to friction and radiation in 
the resonator the equilibrium amplitude of the acoustic resonance can be predicted. 
Chapter 7 provides a summary, some final remarks and the main conclusions of the present 
investigation. 
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Chapter 2 

Theory 

Abstract 

In this chapter the theory is developed which describes the sound generated by aero­
dynamic sources, in particular the theory underlying the vortex sound phenomenon. 
The source of vortex sound is unsteady vorticity, interacting with an acoustic field. 
For the description of the vorticity in an otherwise irrotational flow several vortex 
methods are discussed which can be used to estimate the intensity of the sources. 

2.1 AEROACOUSTICS 

2.1.1 Governing equations 

At the end of the last century, following the time that Rayleigh published his 'Theory of 
Sound' (1877), it was generally believed that the source of acoustic sound was primarily 
mechanical vibrations of structures. It was not until 1952 that, stimulated by the problem 
of predicting jet noise, Sir James Lighthill presented his famous articles 'On Sound Gen­
erated Aerodynamically' (1952, 1954), which identified unmistakingly unsteady flow as a 
so-called aero-acoustic source of sound. Lighthill (1952) considered a medium with speed 
of sound Co and density po, quiescent everywhere except for a finite region with a fluctu­
ating velocity field. Lighthill considered this region as the region with sources of sound. 
The derivation of Lighthill's equation starts from the general conservation laws for mass, 
momentum and energy, which in Einstein notation read 

ap a 
at + ax; (pv;) = q 

a a at (pv;) + ax j (pv;v;) 

a a 
8t (pE) + 8x; (pEv;) = 

ap ar;; f --+-+. ax; ax; ' 
aQ aqh a a -at - -a - -a (pvi) + -a ( r;;v;) + f;v; 

Xi Xi Xi 

(2.1) 

(2.2) 

(2.3) 

where i1 = (v~,v2 ,v3f is the velocity, p denotes the static pressure, E = e + ~1111 2 is the 
total energy per unit mass, with e the internal energy per unit mass. Qh is the heat flux 
which can be related to temperature T by Fourier's law for heat conduction Qh = -tc ~;: 

where tc the coefficient of thermal conductivity. Furthermore, q is a mass source, j is a 
body force and Q is an energy source. For a Newtonian fluid in thermodynamic equilibrium 
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the viscous stress tensor r;; is given by 

( 
ov; ovi) 

Tij = p. -+­
OXj 8x; 
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(2.4) 

where Stokes' law has been employed to relate the second coefficient of viscosity to the 
dynamic viscosity p. of the fluid. Subtracting the divergence of the momentum equation 
from the time derivative of the mass conservation equation and subtracting ~'\72(p- Po) 
from both sides of the resulting equation, leads to 

2 fP) I coax; p = 
8q 8!· 82T.·· -' +--'1_ 
ot 8x; 8x;ox; 

with T;; = pv;v; + T;; + (p - c'f,p')5;; 

(2.5) 

(2.6) 

where Po and Co are the time-independent density and speed of sound outside the source 
region, respectively. Furt"hermore, T;; is Lighthill's Stress Tensor. 

Equation (2.5) is a inhomogeneous wave equation for the density fluctuations p' = p- Po 
which, in absence of external mass sources and external forces, is Lighthill's wave equation. 
The formal solution of equation (2.5) in free space can be obtained from a convolution of the 
right-hand side of this equation with the appropriate Green's function. It appears (e.g. see 
Crighton (1975)) that a time-dependent mass source acts as an acoustic monopole, while a 
nonuniform body force acts as an acoustic dipole. The term with the second derivative of 
Lighthill's stress tensor represents an acoustic quadrupole. It contains contributions due to 
the fluctuating Reynolds stresses, viscous forces and entropy inhomogeneities in the source 
region. In fact, the contribution due to the viscous forces involves an additional space 
derivative, (see equation (2.4)) and therefore correspond to an octopole. However, entropy 
fluctuations can induce an acoustic monopole. In the present study it is assumed that 
external mass sources are absent and that the influence of external forces can be neglected. 
In that case the Lighthill stress tensor represents the only source of sound. 

Outside the region of sound sources, the flow is described by the homogeneous wave 
equation for the density fluctuations p'. These disturbances propagate in the quiescent 
medium with the speed of sound eo of the ambient fluid. 

In the presence of a body fluctuating forces on the body caused by the unsteady flow 
about the body, possibly in combination with the unsteady motion of the body, may act 
as sound sources which are actually more efficient than the sources of sound due to the 
unsteady flow itself. 
If the surface of the body is given by S(x, t) = 0 where S(x, t) > 0 is defined as the region 
outside the body, it follows that 

oS(x, t) + u, as(x, t) = 0 
ot 8x; 

(2.7) 

where il is the velocity of the point x on the surface. Since the equations for the conservation 
of mass and momentum are valid outside the body only, the wave equation for the density 
fluctuations can be derived for the generalized function p'rt{ S), where 1t( S) is the Heaviside 
step function, which is equal to 1 outside the body and 0 inside the body. Multiplying the 
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equations of the conservation of mass and momentum (2.2), in absence of external mass 
sources and external forces, with rt(S) and allowing a non-zero velocity iJ at the surface 
S(x, t), it is found (Crighton (1975)) that 

( ::2 - c,; ::? ) p'rt(S) :t(Q6(S)) 
a o2 

OX; (F;6(S)) + ox;f)xj (T;;rt(S)) (2.8) 

with Q = (pov; + p(u; v;)] as 

F; 

where T;; is given by equation (2.6) and 6(S) is the Dirac delta function, which is zero 
everywhere except at the boundary S(x, t) = 0 of the body. Outside the surface of the 
body Lighthill's equation (2.5), with q = 0 and f = 0, is retained. However, due to the 
presence of the body, a monopole-like term arises from the rate of displacement of the fluid 
by the body and a dipole-like term due to the stresses exerted by the surface of the body 
on the fluid. Furthermore, when the body is permeable (ii i1), additional monopole and 
dipole terms arise as given by the second parts of Q and respectively. 

Lighthill (1952) showed that the wave equation for the density fluctuations can be used 
to determine for example the sound production of free turbulent jets. This yields the 
famous M 8 law for the increase of acoustic power with the jet exhaust Mach number M. 
Lighthill's theory assumes that outside of the source region the medium is quiescent, so 
that the propagation of density fluctuations into the region exterior to the source region is 
described by the homogeneous wave equation given by the left-hand side of equation (2.5). 
This assumption is not valid for the case of the generation and propagation of sound in 
internal flows, where in absence of acoustic sources, the propagation of sound is described 
by a convected wave equation. A number of theories have been put forward to account for 
the effect of a non-zero mean flow on the propagation of sound. Phillips (1960) derived a 
convected wave equation for the acoustic variable II = ~ ln(p/IJo), 

(2.9) 

where ; = cP/cv denotes the ratio of the specific heat at constant pressure and the spe· 
cific heat at constant volume, c is the local speed of sound and S the specific entropy. 
Furthermore, £t = ft + v; &~; is the substantial derivative. It has been proven by Lilley 
{1972) that the source terms of Phillips' equation still contain first-order terms in the per­
turbations and as a result the source terms do not vanish quadratically outside the source 
region. This implies that the homogeneous wave equation, given by the left-hand side of 
this equation does not accurately describe the propagation of perturbations outside the 
source region. Lilley (1912) presented an alternative third-order equation for II which, 
together with Phillips' equation, is extensively discussed by Goldstein (1976). It appeared 
that both these wave equations are very well suited for many aero-acoustic problems in­
volving supersonic jet flow. For subsonic isentropic flow however, results more useful than 
obtained when applying Lighthill's equation have not been obtained. 
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A more suitable generalization of Lighthill's wave equation allowing convection has 
been derived by Powell (1964) and Howe (1975). 

In his 'Theory of vortex sound' Powell ( 1964) argued that for low Mach number, in viscid, 
isentropic flow the Lighthill tensor (2.6) can be approximated by 

(2.10) 

where v is the velocity of the incompressible flow in the source region. The source term in 
Lighthill's wave equation then can be written as 

opov;vi = Po V · (w x V) + V 2<!Polvl2) 
ox;f)x; 

(2.11) 

The first term on the right contains the vorticity w = V X v. It has been argued by Powell 
(1964), later confirmed by Crow (1970), that in an unbounded domain the second term on 
the .right gives rise to a much less intense sound field than that associated with the first 
term. The first term has the appearance of a dipole-like term, however due to momentum 
conservation (in absence of a rigid body) the net vorticity must be zero, and as a result 
the first term represents a quadrupole source. 

For an inviscid, ideal gas, which satisfies the relation p = pRT, with R the gas constant 
and T the absolute temperature, Howe (1975) showed that the propagation of irrotational 
acoustic perturbations in an irrotational isentropic mean flow is given by the homogeneous 
convected wave equation 

C H=O (2.12) 

with c gt(~gt)+~~:-v V
2 

where H h+ WW, is the total enthalpy per unit mass with h the enthalpy per unit mass. 
For an irrotational flow, in absence of external forces, the total enthalpy can be related to 
the potential of the flow, obtained from v = V'fl, by H -~. 
C is the appropriate wave operator for the propagation of acoustic disturbances into the 
region exterior to the source region. For an inviscid ideal gas, in presence of regions of 
vorticity, but neglecting heat conduction, Howe (1975) showed that the source terms for 
equation (2.12) are given by 

- 1 Dv ~ 
C H = V · L- -- · L 

c2 Dt 

where l is the so-called 'Lamb vector', given by 

l=wxfi-T'VS 

(2.13) 

(2.14) 

which yields a generalization of Powell's (1964) vortex sound theory. Since this convected 
wave equation has proven to be very useful in describing production and propagation of 
sound in internal ducts, it is the basic equation which will be used furtheron in this thesis. 
A detailed derivation of the equation is given in Appendix A. 
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For many low speed aero-acoustic problems, it is much more convenient to solve the 
wave equation derived by Howe (1975), i.e. equation (2.13), than Lighthill's wave equation, 
i.e. equation (2.5). The reason is that in an incompressible high-Reynolds-number flow 
the vorticity is often confined to thin vortex layers and slender elongated vortex cores, 
i.e. vortex sheets and vortex filaments, respectively. These delta-function type of vorticity 
distributions simplify the solution of the equations. Furthermore, by taking the rotation of 
the Euler equations for an incompressible, homentropic flow a purely kinematic equation 
in terms of v and w is obtained. In an inviscid flow the pressure can be obtained after the 
velocity has been determined from the Bernoulli equation. For a low-Mach-number, high­
Reynolds-number, isentropic internal flow a first-order approximation of Howe's equation 
(2.13) has been derived by Bruggeman (1987) for two ranges of values of the amplitude of 
the acoustic field. The first case is the case assuming moderate values of the amplitude 
of the acoustic velocity field Uac, i.e. u,.cfU0 = O(M). The second case corresponds to 
the case of high values of the acoustic amplitude, i.e. u,.0 /Uo = 0(1 ). Because acoustic 
resonances in pipe systems typically occur for a Strouhal number wH/Uo = 0(1), based 
on the side branch width H and the frequency w of the acoustic field, Bruggeman (1987) 
considered this Strouhal number only. 

For the moderate-amplitude case and for a Strouhal number of order unity, the ampli­
tudes of the fluctuating parts of the velocity u,.c. pressure rl and specific enthalpy H' are 
of the order O(MUo), O(poUJ) and O(UJ), respectively. 
The first-order approximation of equation (2.13) is then given by 

( ~ g;2 - \72
) H'(x, t),., v. (w x v) (2.15) 

which is a modification of Powell's (1964) wave equation for the case without a mean 
velocity field into a convected wave equation for the case with a mean velocity field. 

For high values of the acoustic amplitude, and Strouhal numbers of order unity, the 
fluctuating parts of the velocity, pressure and specific enthalpy are 0( Uo), O(PoCf>Uo) and 
O(Cf>Uo), respectively. The first-order approximation of equation (2.13) is then given by a 
wave equation for the pressure 

( ~ %t
2

2 - V 2
) p'(x, t) =Po \7 · (w x v) (2.16) 

in which nonlinear effects and convective effects in the wave propagation have been ne­
glected. The case of moderate amplitudes has been studied in detail by Bruggeman et 
al. (1987, 1991) for a pipe system consisting of a main pipe with a single dosed side 
branch. In the present study the case of high amplitude is considered for a pipe system 
with two closed side branches. The side branches can be placed behind each other (tandem 
T-junction configuration), or opposite to each other (cross-junction configuration), e.g. see 
figure 1.1. In both cases a closed acoustic resonator is obtained with a high quality factor 
due to low radiation losses. Powell's theory will be used to estimate the aeroacoustic source 
strength for this high-amplitude case. · 

More extensive reviews of aerodynamically generated sound, i.e. aeroacoustics, can 
be found in Ffowcs· Williams (1972, 1977, 1982), Doak (1973), Crighton (1975, 1981) and 
Powell (1990). 
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2.1.2 Solution for high acoustic amplitudes 

A formal solution of the wave equation (2.16), can be obtained in integral form by using 
Green's theorem. The Green's function associated with the linear wave operator can he 
derived by solving for the pulse response 

( ~ : 2 - \72
) G(x,tiy, r) = o(.i- Y)6(t- r) (2.17) 

where the pulse is released at point y at time r and the Green's function determines the 
pulse response at position x at time t. The causality condition for the Green's function 
requires that the pulse response at time t originates from the pulse at time r and there­
fore G(.i,tly,r) = 0 and ~G(.i,tjy,r) = 0 fort::::; r. By multiplying equation (2.16) 
with G(x, tii, r) and subtracting equation (2.17) multiplied with p'(y, r) and subsequently 
performing an integration in time and space we find (Goldstein (1976)) 

t 

p'(.i,t) = j jjja(!l,tli,r)po\711 ·(wxii)dV(i)dr (2.18) 
-oo V 

t 

j j j j (p(y, r)VZG(x,tly, r)- G(x, t!y, r)VZp(y, r)) dV(y)dr 
-oo V 

where \711 denotes the gradient with respect to y. By performing an integration by parts 
of the last two terms on the right, <tnd using boundary conditions, we find 

t 

p'(i,t) = j jjja(x,tli,r)po\711 ·(wxii)dV(i)dr (2.19) 
-oo V 

+ j JJ(a(x,tli,r)ap~r) -p(y,r)aG(xa~li,r))ds(y)dr 
-oo S 

~ [J[J (a(x,tii,r)ap~r) -p(y,r/G(xa!li,r)) dV(i)Loo 

where fn = ii · \711 denotes the derivative in the direction normal to the surface. The last 
term on the right vanishes at the upper limit due to the causality condition. The lower 
limit represents the initial condition. If we assume that the flow starts from rest or that 
the influence of the initial conditions on the solution at time t is negligible, for example 
such as for a stationary sound field, this term vanishes also. 

The boundary conditions for the pressure p'(x, t) can be related to kinematic boundary 
conditions by using the momentum equation for an isentropic and inviscid flow, i.e . 

..., '(- ) av (- -) '<'7 1-12 v p x, t -Po at -Po w XV - v ~Po v (2.20) 
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If the bounda.ry S is chosen outside the source region then w = 0 and because convective 
effects are neglected, we obtain ii · Vp(i, t) = -Poft · ii. At solid, non-moving boundaries 
the normal velocity vanishes and we find n· Vp(i, t) 0. At an ideal open end, the acoustic 
pressure p'( x, t) = 0. 

Now if for the Green's function we require that ii · VG(i, tly, T) = 0 at rigid walls 
and G(i, tly, T) = 0 at open ends, i.e. similar boundary conditions hold as for p(i, t), the 
fundamental solution is called a 'tailored' Green's function, and the solution is given by 

I 

p1(i,t)= j jjja(i,tlii,T)PoV11 ·(wxii)dV(ii)dT (2.21) 
-oo V 

By integrating equation (2.21) by parts we find 

I 

p'(i, t) j j j j po(w x V)V 11 • G(i, tlii, r )dV(ii)dT (2.22) 
-oo V 

where the surface integral vanishes since w = 0 1
. In a real flow however, viscous effects 

and thermal conduction causes the vorticity to be non-zero at the rigid walls, while the 
pressure is not exactly zero at the open ends. This can be incorporated into the theory 
by considering a boundary just outside the boundary layer near the rigid walls, so that 
w = (),. Due to viscothermal effects, the normal velocity is not zero at this boundary. If the 
Green's function is derived for ideal boundaries, with boundary conditions given above, we 
obtain 

I 

p(i, t) j j j j Po(w x v)Vy · G(i, tlii, T)dV(Y)dT (2.23) 
-oo V 

+ j J J G(i,tly,T)f)p~T)dS(ii)dT 
-¢0 Srigid 

j J J p(fj, T) fJG( ~~~y, 7 ) dS(y)dT 
-oo Sop~tn 

where the first term on the right-hand side describes the effect of the aeroacoustic source, 
the second term describes the viscothermal losses at the rigid boundaries and the third 
term describes radiation at open boundaries. For a periodic flow with stationary amplitude, 
the time average < p'(i, t) > of the left-hand side of equation (2.23) is zero, and we 
obtain an energy balance between the production of acoustic energy by unsteady vorticity 
and dissipation by viscothermal effects and radiation of acoustic energy out of the region 
considered by averaging equation (2.23) over an oscillation period. 

A generalization of this solution for the convected wave equation, equation (2.15), 
obtained for low acoustic amplitudes, can be found in Goldstein (1976). 

1 Here it is assumed that the contribution of the separation point of the boundary where obviously 
w i= 0 does not result into a significant value of the boundary integral. 
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2.1.9 Application to internal flow 

In this section the formal solution of the wave equation for isentropic, inviscid flow will 
be applied to an internal flow with a region of non-zero, unsteady vorticity. The solution 
could be obtained in the time domain by searching for a. periodic solution. In this case 
the frequency as well as the amplitude of the acoustic field could be determined. This 
procedure was used by Hardin & Pope (1992) to determine the sound generation by a 
stenosis in a pipe. Two different grids have been used, a fine grid to calculate the flow 
in the pipe and a course grid to obtain the generated sound field. This procedure of 
splitting the determination of the sound generation from the flow field is only possible at 
low amplitudes of the acoustic field, i.e. when the flow field is not strongly influenced by 
the acoustic velocity field. For high amplitudes of the acoustic field, the splitting of flow 
field and acoustic field is not valid anymore, since the flow field is strongly influenced by 
the acoustic velocity field. 

In the present study acoustic reson11.11ces are studied for which the frequency is usually 
imposed by the acoustical resonator. In that case the amplitude of the acoustic pulsations 
can be obtained for a specific frequency by assuming an harmonic approximation of the 
solution. Balancing the energy of the acoustic sources with the losses by radiation and 
visco-thermal damping at the walls yields the amplitude of the acoustic field at the given 
frequency. 

In absence of a mean flow the acoustic energy balance can be obtained from the energy 
equation (2.3), omitting external energy sources, friction and heat conduction, as 

(2.24) 

By expanding the internal energy e around an equilibrium state e0 , the acoustic energy 
balance can be written as (Pierce (1989), Hirschberg & Rienstra (1992)) 

8Eac 
+ v;:;. L. -V Tt 

with Eac 
f12 1 

(2.25) -- + -PoiV'I2 

2po<'{) 2 

L. = pi! 
v = -il'·i 

where p'(i, t) = p(i, t) - Po(i) is the acoustic pressure, ii'(i, t) = v(x, t) is the acoustic 
velocity. Furthermore, Eac is the acoustic energy, Lc is the acoustic intensity vector and V 
is the dissipation function. If the acoustic field is periodic, the acoustic energy Eac averaged 
over a period is constant. As a result, upon integrating the energy equation (2.25) over a 
fixed closed volume V and averaging over a period, one obtains 

f f < L •. fi> dS = - f f f < 1) > dV (2.26) 
s v 

where <> denotes the average over a period of the acoustic field. The term on the left 
is the acoustic power flux across the surface S of volume V, i.e. the net acoustic energy 
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production during one period of the acoustic field. If the source region contains an un· 
steady vorticity distribution, acting as a sound source, the effective time-dependent source 
strength (acoustic power output) can be determined as follows. The total velocity can be 
decomposed by the Helmholtz decomposition into an irrotational and a solenoidal part, 
i.e. 

(2.27) 

Since \1 · v = \1 · Virr, the compressible part of the flow is described by ii;,., while the 
vorticity w = \1 X ii = \1 X V80z depends only on V80z. Therefore V80z describes the velocity 
induced by the vorticity, while the time-dependent part of Virr is identified as the acoustic 
field. 

The Coriolis force acting on the vorticity embedded in the local velocity field is given 
by p0 (w x v). The Coriolis force is acting as an external force on the acoustic irrotational 
flow field ilac· The rate of production of acoustic energy is then given by 

P(t) -111VdV= 111p0(wxV)·ilaodV (2.28) 
v v 

where ilac is the time dependent part of the potential velocity Virr· This equation for the 
acoustic power produced by unsteady vorticity was first derived by Howe (1975). If it is 
assumed that the resonating acoustic field ilac and the Green's function in equation (2.23) 
have the same spatial distribution it is observed that the time average of equation (2.23) 
is equivalent with equation (2.28). This approximation is obvious if the acoustic pressure 
and Green's function are expanded in modes of the resonator and only a limited number 
of modes are retained. 

In the presence of a mean flow iio the energy conservation law is still given by equation 
(2.3). An acoustic energy balance in the presence of a mean flow in the form of equation 
(2.25) can be obtained in several ways. For low acoustic amplitudes Uac/Uo ~ 1 Myers 
(1986) derived an acoustic energy balance from a Taylor series expansion of the energy 
equation, which agrees with the expression given by Goldstein (1976). However this ex­
pression is not valid for the high-amplitude case which is studied here. Using Howe's (1975) 
definition of the acoustic velocity, namely the time-dependent irrotational part of the total 
velocity, in combination with the solution for the convected wave equation given by Gold· 
stein (1976) it can be shown that in presence of a mean flow the acoustic source strength 
is given by 

P(t) = 111 Po(w X ii) · (uac + p' iio) dV 
v Po 

(2.29) 

This equation is one of the approximations derived by Jenvey (1989) and is an extension of 
the relation derived by Howe (1975) and given in equation (2.28). The correction factor due 
to the presence of a mean flow is of O(M2 ) for low acoustic amplitudes, and of O(M) for 
high acoustic amplitudes. Since for the cases considered in the present study the acoustic 
source is performing work in a density node of the acoustic field, the density fluctuations 
are determined by hydrodynamic fluctuations which are of O(M2

) and negligible for a low 
Mach number flow. 
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2.1.4 Conclusion 

In internal flows self-sustained pulsations are caused by the coupling between vortex shed­
ding and a resonating acoustic field. This phenomenon can be described by the vortex 
sound theory by Powell (1964) and Howe (1975). For high values of the amplitude of the 
acoustic field, when acoustic pressure fluctuations are of the order O(p0eoU0 ), the propaga­
tion of acoustic pressure fluctuations is described to first order by the non-convected wave 
equation (2.16). The aero-acoustic source of the acoustic pressure waves can be obtained 
from the theory of Powell (1964), which implies that the source can only be non-zero in a 
region where vorticity is present. For a periodic acoustic field the acoustic energy generated 
by the aeroacoustic source is dissipated by visco-thermal action or radiated energy from the 
region of interest. When the source region is small compared to the acoustic wave length 
the strength of the aeroacoustic source can be determined from an incompressible flow 
model describing the generation and convection of vorticity in the compact source region. 
In the next section different methods describing flows with vorticity will be presented. 

2.2 VORTEX DYNAMICS 

2.2.1 Introduction 

For a low-Mach-number, isentropic flow we found from equation (2.13) that in absence of 
moving boundaries, non-uniformly distributed unsteady vorticity is the most important 
source of sound. For this reason the sound generated by a region of non-zero vorticity is 
usually called 'vortex sound'. In order to quantify the source term in the wave equation, 
the flow field in the source region has to be determined in detail. 

In this section different methods will be presented which describe the generation and 
convection of vorticity as well as the formation of vortex cores with concentrated vorticity. 
At high Reynolds numbers vorticity is concentrated in thin regions at solid boundaries, i.e. 
boundary layers. However, if separation of the flow occurs at a sharp edge or on a smooth 
part of the surface in a region with a strong adverse pressure gradient, vorticity is convected 
away from the solid surface and can reach a region far removed from the boundaries, i.e. 
shear layers. Since the Reynolds number in our experiments is usually larger that 105 , 

the boundary layers are thin compared to the characteristic dimension of the geometry. 
This implies that the vorticity is initially confined to thin free shear layers. In the limit 
of infinite Reynolds number, which we will consider in the mathematical modeling of the 
flow, vorticity is confined to an infinitesimally thin vortex sheet. The flow is irrotational 
everywhere except at the vortex sheet itself and can therefore be described by a velocity 
potential. The stability of vortex sheets and of finite-thickness vortex layers is discussed 
at the end of this section. 

In real flows, due to the influence of molecular diffusion or turbulence, vorticity is 
diffused in space and annihilates when it merges with vorticity of opposite sign. In the ma­
thematical model of inviscid flow used here, vorticity is not diffused while the annihilation 
of vorticity has to be included artificially in the model for cases where long-time behavior 
is to be investigated. The problem of annihilation of vorticity in the numerical model is 
avoided here. In all numerical simulations the onset of an oscillatory flow is considered 
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during four periods of oscillation at most, and annihilation of vorticity is not considered. 
For the geometries considered the region where the vorticity is an aerodynamic source 

of sound is sma.H compared to the acoustic wavelength. As a result, to first-order approxi­
mation, the source region can be considered as locally incompressible with 

(2.30) 

describing conservation of mass in the source region. Using this relation a stream function 
~ can be defined as iJ "V X ~. The conservation of momentum can then be written, in 
absence of external forces, as 

Dv 1 
2

_ 
- = --\lp + v\l v 
Dt p 

(2.31) 

The static pressure p can be eliminated by taking the curl of the equation, resulting in the 
vorticity transport equation 

Dw (- ""')- ...,2 _ -=w·vv+vvw 
Dt 

where w = "V x i1 is the vorticity vector. 

(2.32) 

Vorticity is a material property, attached to the fluid particles, and convects with the local 
fluid velocity. Taking the surface integral of equation (2.32) shows that the circulation of 
a dosed contour, enclosing a region of non-zero vorticity, traveling with the flow can only 
change by diffusion of vorticity through the contour, so that for negligible viscosity the 
circulation is conserved. 
This was first derived by Kelvin, and is therefore called Kelvin's theorem. 

ar f -- = -v (\J X w) · d[ at c 
(2.33) 

where r = ffA w · n dS Jc iJ · dl is the circulation. In the derivation of equation (2.33) 
we have used Stokes' theorem and that for an incompressible flow "V2w -"V x "V x w. In 
general, the velocity vector v can be written as the sum of an irrotational part if,,, and a 
solenoidal part v80t according to equation (2.27) which can be described by a scalar velocity 
potential ¢and a vector stream function ~, respectively. Substitution of this decomposition 
of the velocity into the conservation of mass, given by equation (2.30), yields the Laplace 
equation for the scalar velocity potential. The vorticity depends only on the vector velocity 
potential, which follows from taking the curl of equation (2.27). 

w \lx\lx~ (2.34) 

In this way the irrotational flow, consisting of a mean flow component and a superimposed 
acoustic field and the flow field induced by the vorticity field can be considered as separate 
contributions in the total velocity. The solenoidal velocity Vsol induced by the distributed 
vorticity can be obtained from the linear Poisson equation 

(2.35) 



2.2 Vortex dynamics 21 

The acoustic flow field is defined by the time-dependent part cPac(x, t) of the scalar velocity 
potential, while the mean flow is described by the time-independent part c/Jo(i) so that 
cjJ(x,t) = c/J0 (x,t) + cPac(x,t). The contribution due to the vorticity is described by the 
vector stream function I)!. 

Since the present study is limited to two-dimensional flows, from now on we will de­
scribe the two-dimensional situation. For this case a notation in complex variables is very 
convenient and will be used throughout. In a two-dimensional flow, the term (w · V)ii, 
which describes the rate of deformation of vortex lines, also called vortex stretching, van­
ishes and the vorticity has only one component w, which is in the direction normal to the 
two-dimensional plane. Also the vector stream function has only one component t/J, also 
in the direction normal to the flow. 
For two-dimensional flow the vorticity transport equation, neglecting viscosity, becomes 

Dw =O 
Dt 

(2.36) 

and the vorticity, which is now a scalar quantity is related to the stream function by 

(2.37) 

The solenoidal part of the velocity, due to the distributed vorticity, can be obtained from 

• 1 {{ w(z) 
vsol(zo) = ~ 11 -- dz 

1ft A Zo- Z 
(2.38) 

where z = x + iy is the complex coordinate with i =A, v(z) = Vx +ivy is the complex­
valued velocity in a point z, with an asterisk denoting the complex conjugate. The inte­
gration is over the region of non-zero vorticity. 

A further simplification is obtained if the vorticity is confined to a number of regions 
A;, j = 1 .. N Reach of uniform vorticity w;, i.e. vorticity distribution w(z) = Ef=,~ w;'H.(A;) 
with 'H.() the Heaviside function which is one inside the region A; and zero outside. Equa­
tion (2.38) then becomes 

NR w· f 
v;ol(zo) = L ~ !n(zo- z)dz 

j=l 1fZ 8Aj 

(2.39) 

where the integration is along the boundary &A; of each region A;. The method of deter­
mining the velocity field due to patches of piecewise uniform vorticity is called the 'contour 
dynamics' method and is described in more detail by Zabusky et al. (1979). 

The vorticity can be confined to a number of curves C;, j = l..N L, given by z = z;( s ), 
with s the arc length along the curve C;, and vorticity distribution w(z) = Ef=I; /';(s) 
o(z - z;(s)), with 6() the Dirac delta function and !';(s) is the vortex distribution on 
curve C;. The velocity, induced by these vortex sheets follows from equation (2.38) 

• NL 1 J /';(s) 
Vsol(zo) = L ~ ( ) ds 

j=l 1fZ Cj Zo - Zj S 

(2.40) 
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where the integration is along the curves C;. and we have used that I~ I = 1. Methods 
based on this kind of vorticity distributions are called 'vortex sheet' methods and will be 
described in the next section. 

Finally the vorticity can be confined to a number of discrete points X;,j = l..NV, 
so that the vorticity distribution is given by w(z) = Ef~ r;o(z- z;), where r; is the 
circulation of the point vortex at position z;. The velocity induced by this vorticity distri­
bution can be obtained from equation (2.38) by performing the integration over the region 
of non-zero vorticity, leading to 

NV 1 f· 
v;o~(zo) =I:; -.--3 -

i=l 2n Zo - z; 
(2.41) 

where the summation is taken over all vortices. Methods based on this kind of vorticity 
distributions are called 'discrete-vortex' methods and will also be described in the next 
section. 

The different ways of representing regions with distributed vorticity are illustrated in 
figure 2.la·c and can be combined to a more complex description of the flow, as for example 
shown in figure 2.1d. The velocity at a point in the flow field is a summation of the local 
potential flow due to the irrotational mean flow and the acoustic flow and finally the 
solenoidal part of the velocity induced by the vorticity distribution. 

·@·--~··· ............ ········ .. . 
C.~-- ro3 ~ i '@. ! ro ............ / 

. 1 . 
\ .......... / (a) 

FIGURE 2.1: Different ways to describe a region with distributed vorticity 
(given by (- - -)). (a) patches of constant vorticity (b) vortex sheets 
(c) discrete vortices (d) combination of vortex sheets, point vortices and 
vortex patches. 

2.2.2 Methods for describing flows with distributed vorticity 

Methods for the description of the motion of thin vortex layers have been developed since 
the thirties. At that time calculations were performed by hand, which restricted the 
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applications of discrete-vortex methods to only a few vortices and a limited number of 
time steps. Since then, computer facilities have offered the possibility to use more vortices 
to describe the vortex layer and to extent the computation to longer times. Also vortex­
sheet methods and vortex-patch methods (i.e. contour dynamics) have become feasible. 
Many reviews of vortex methods for two-dimensional flows have been made by among 
others Clements & Maull (1975), Saffman & Baker (1979), Leonard (1980), Aref (1983), 
Hoeijma.kers (1983) and Sarpkaya (1989). For vortex methods for three-dimensional flow 
we refer to Hoeijmakers (1983, 1990) and Leonard (1985). 

In this section, we will briefly review vortex methods, which are used to describe the 
motion of vortex sheets in a two-dimensional potential flow. Discussed will be the im­
plementation of the boundary conditions and the Kutta condition for the generation of 
vorticity, as well as the stability of the various discrete representations of the vortex sheet. 

Discrete-vortex methods 

An early attempt to compute the motion of vortex sheets was published by Rosenhea.d 
(1931). Rosenhead (1931) introduced the so-called point vortex method to describe the 
Kelvin-Helmholtz instability of a two-dimensional shear layer. Westwater (1935) used a 
point-vortex method involving 20 vortices to calculate the roll-up of a vortex sheet behind 
an elliptically loaded wing. Using early main-frame computers, Hama & Burke (1960) 
showed that the point-vortex method is unstable in the limit that the number of vortices 
NV -> oo and the time step D.t -+ 0. This is due to the singular behavior of the velocity 
induced by a point vortex near its own location, the velocity induced by the vortices on 
themselves increases like (1/d) when the distanced between the point vortices decreases. It 
was shown later by Aref (1983), that point vortices in a two-dimensional free space moving 
under influence of the velocity induced by each other show chaotic behavior if the number 
of vortices is equal to or larger than four. 

Several methods have been proposed to reduce the instability of the point-vortex 
method. A first approach, used by Clements & Maull (1975) in describing vortex for­
mation in the wake behind a square-based body, is amalgamation of two point vortices 
when they have approached each other too closely or when due to stretching of the sheet 
the discrete vortices have to describe a too large part of the rolled-up sheet. In the latter 
case the two vortices are lumped into a vortex core. This technique was also used by Moore 
(1974) to describe the roll-up of a vortex sheet with an initially elliptic distribution of the 
circulation. In the method of redistribution, called the sub-vortex technique, which has 
been proposed by Maskew (1977) a vortex is distributed into sub-vortices, when the portion 
of the vortex sheet it represents is approached too closely. Finally a discrete-vortex vor­
tex sheet rediscretisation scheme is proposed by Fink & Soh (1978). The latter technique 
prevents vortices to approach each other too closely. Although by using the redistribution 
technique, Fink & Soh (1978) were able to obtain a stable solution for long times, Baker 
(1980) showed that this method eventually ends into chaos as well. Moore (1981) showed 
that the chaotic behavior is due to the representation of the vortex sheet by point vortices, 
which causes a discrete form of the inherent Kelvin-Helmholtz instability which we will 
further discuss in the last part of this section. 
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A successful attempt to reduce the instability of the point vortex method has been 
proposed by Chorin & Bernard (1973), the so-called vortex-blob method. The vortex-blob 
method reduces the singular behavior of the velocity field induced by the point vortex, by 
smoothing out the vorticity in a. region around the center of the discrete vortex. 

Consider the velocity induced by a. set of discrete vortices (j l..NV) with the vortex 
center at position Zj and with circulation equal to f;, which can be written in complex 
notation as 

NV 

v*(z) =I: K(z- Zj) rj 
i=1 

where K(z) is the Biot-Savart kernel, which for a point vortex is equal to 

-z 
K(z) = -

2 1rZ 

The velocity field induced by a. set of vortex blobs is given by 
NV 

v*(z) = I.:Ks(z- Zj) rj 
i=l 

(2.42) 

(2.43) 

(2.44) 

where K.s(z) is a desingula.rised kernel which removes the singular behavior of the velocity 
for z -+ Zj. Several methods for the desingularisation of the kernel have been proposed. 
For example Chorin & Bernard (1973) proposed 

{ 
K(z) for lzl > 6 

K.s(z) = K(z) izl/6 for lzl ~ 6 (2.4.5) 

where 6 is a. small cut-off distance, which represents an artificial viscosity which allowing 
the vorticity to have a finite value and to occupy a small but finite region unlike the case of 
point vortices for which the vorticity is zero everywhere except at z Zj where it is infinite. 
The 'diffusion' is artificial, because 6 is a parameter of the computational method and is 
time-independent, so that its effect is not cumulative in time. Also the local deformation 
of the fluid by stretching is not taken into account in this method. 

Using the desingularised kernel the circumferential velocity is equal to the induced 
velocity by a point vortex for the region lzl > 6, and is constant for the region lzl ~ 6. 
The vorticity is zero for lzl > 6 while for lzl ~ 6, Wj = fi/27r61z zji, i.e. algebraically 
singular at the center. The circulation is equal to ri for lzl > 6. 

Chorin & Bernard (1973) found that using the vortex-blob method, instabilities were 
damped, and a regular roll-up process could be obtained. The results were shown to be 
insensitive to the value of 6 within a wide range of 6. Other desingularised kernels have 
been proposed by Beale & Majda (1985) and Krasny (1987). Krasny (1987) proposed the 
desingularised kernel 

I<c(z) {2.46) 

for all z, where 6 is the desingularisation parameter. The vorticity associated with this 
kernel is regular for 6 # 0, and is given by 

r 262 

Wj(z) = 2; (lz ZJI2 + ,52)2 (2.47) 
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Beale & Majda (1985) proposed the alternative kernel 

(2.48) 

which they call a regularised kernel. Depending on the number of terms kmax, the constants 
a~;, b~c have different values, which are summarized by Riccardi & Piva (1992). The vorticity 
distribution of the various vortex-blob methods is shown in figure 2.2. For all vortex-blob 

10 

FIGUR.E 2.2: Vorticity distribution for different vortex blob methods. 
(--) Chorin & Bernard (1973) (---)Krasny (1987) (- · ·-)Beale 
& Majda (1985) for kmax = 1, «t = 1, ht 1/2 

methods, the vorticity distribution approximates a delta function behavior in the limit 
[j ..... 0. 

The vortex-blob method has a number of advantages compared to the point-vortex 
method. The method is stable in the limit NV --+ oo and Llt -+ 0, for 8 f. 0. The 
vortex blobs concentrate in regions of steep gradients, i.e. vortex cores and appears to he 
able to describe the physical Kelvin-Helmholtz instability of shear layers. By choosing a 
finite value for the desingularisation parameter 8 a shear layer of finite thickness can be 
simulated, although it is assumed in the method that each vortex blob convects as a rigid 
body and during convection does not deform nor change its vorticity distribution. Beale 
& Majda (1985) showed that the advantage of the kernel defined by equation (2.48) is 
that, by taking more terms into account, the error induced by the approximation can be 
reduced. 

Chorin & Bernard (1973) and Krasny (1987) found, that the main features of the vortex 
sheet roll-up are not influenced by the value of li, or the kind of desingularised kernel used. 
However the number of turns describing a rolled-up part of the vortex sheet, representing 
a vortex core, is determined by the value of 6. Alternative vortex-blob methods which in 
some approximate form incorporate viscous diffusion are described by Sarpkaya (1989). 

An alternative method ~o reduce the singular behavior of the point vortices is develop!'ld 
by Christiansen (1973) and is called the Cloud in Cell (C.I.C.) technique. It is a method 
which is combination of an Eulerian method in which the space is divided into a grid, on 
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which the equations are solved at each time step and a Lagrangian point-vortex approach 
where the vorticity is convected with the local velocity. The C.I.C. method solves the 
Poisson equation for the scalar stream function t/>, given by equation (2.37). This equation 
is solved on a uniform rectangular grid, where the vorticity W;J at grid point i, j is an area­
weighted value of the circulation of the point vortex r 0 within the cell, see figure 2.3. The 

-+...tj+l 

--4-t-j 
i i+l 

(a) (b) (c) 

FIGURE 2.3: The cloud-in-cell method (C.I.C.) as proposed by 
Christiansen (1973). (a) area-weighted vorticity distribution w;,i = 
A;,irfll.x;l::.yi (b) Vortex roll-up described by C.I.C. method (c) Vortex 
sheet roll-up described by the discrete vortex method 

velocities at the grid points are obtained from the differential form of the definition of the 
stream function u, = otf;jfJy,u!l = -otf>Jox, and finally the velocity at the point vortex 
is obtained by an area-weighted interpolation. Baker (1979) applied the C.I.C. method 
to vortex sheet roll-up and found the development of the Kelvin-Helmholtz instability, 
but only for small values of the grid spacing. The large scale vortical flow structure 
agreed with the results obtained by other discrete-vortex methods. An advantage of the 
C. I. C. method compared to the other discrete-vortex methods is that the computation time 
increases like M log M, where M is the number of grid points, which is usually much larger 
than the number of vortices NV. This may be smaller than the computation time of a 
discrete-vortex method, which increases with (NV)2 , where NV is the number of discrete 
vortices used for the discretisation of the vortex sheet. However, since a first order explicit 
Euler integration method is used for the convection of the vortices, more time steps are 
required to obtain the same accuracy compared to the vortex-blob method. In practice, 
the computation time used for C.I.C. method and vortex-blob method are comparable. 

Vortex-sheet methods 

A more accurate description of a thin shear layer is provided by a continuous vortex-sheet. 
In the vortex-sheet method the sheet is divided into a number of continuous segments 
(panels), and the velocity field induced by the vortex sheet is evaluated as the sum over the 
contribution of each panel. The contribution of each panel is computed to some consistent 
order of approximation. If the coordinates of the points on the vortex sheet are given by 
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z(s) = x(s) + iy(s), where sis the arc length parameter along the vortex sheet and the 
vortex distribution on the vortex sheet is given by 7(s), then z(s) and 7(s) are described by 
piecewise polynomial representations, where the degree of the polynomial determines the 
accuracy of the method. Mokry & Rainbird (1975) have used a first-order panel method, 
in which the panels are straight segments, with a panel-wise constant vortex distribution. 
Hocijmakers & Vaatstra (1983) used a second-order panel method, with curved segments 
and a linearly varying surface vortex distribution on each panel. In complex notation, the 
velocity induced by a vortex sheet is given by 

1 
800 

1 
v*(zo) = -2 . j ( )dr(s) 

7r! zo- z s 
•o 

(2.49) 

where f( s) is the dipole strength of the vortex sheet which is related to the vortex distri­
bution by f. = 1'( s) and so and 8 00 are the first and last point of the sheet, respectively. 
For a point dose to the sheet, the velocity is given by 

• :1: 1 dz* 1 •oo 1 
v (z(so) ) = =f2')'(so)Ts(so) + 27ri f z(so) z(s)df(s) 

so 

(2.50) 

where the integral f denotes the Cauchy principle value of the integral, which is equal to 
the self-induced velocity of the vortex sheet. The vortex distribution on the sheet -y(s) is 
given by the jump of tangential velocity across the sheet 

(2.51) 

where ± denotes the left- and right-hand side when moving along the curve in the direction 
of increasing arc length of the sheet, respectively and IJz( s )/as is the unit tangential vector 
along the sheet. On each panel, we write for the second-order method 

r(s) f(sj) + (s sj) ~~ (sj) + ~(s- sj)2~; (sj) + O(Llsj) (2.52) 

z(s) z(sj) + (s s*) dz (s~) + !(s- s*)2 d'lz (s~) + O(&s3 ) 
3 ds 3 2 1 ds2 1 1 

(2.53) 

where sj is the expansion point, usually the midpoint of the panel and Llsj = s;+l - Sj 

is the panel size in terms of for instance the arc length. For the first-order panel method, 
only the first two terms in equation (2.52) and (2.53) are used. The velocity can be 
calculated everywhere in the flow field, including a.t points situated on the vortex sheet. 
However, for the latter case care must be taken to properly handling the singular character 
of the integrand in equation (2.49). Therefore a small curvature expansion is proposed by 
Hoeijmakers & Vaatstra (1983), in which R(s) = z0 - z(s) is approximated by the distance 
to the tangent of the panel at the expansion point plus a second order term, see figure 2.4. 

R(s) = R,(s)- !(s- sjl~~ (sj) + O(Lls]) (2.54) 

with R,(s) z0 z(sj)- (s- sj)~:(sj) 
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Z(~) 

Iangen! at z(s;') 

FIGURE 2.4: The small curvature expansion used in the second-order panel 
method by Hoeijmakers & Vaatstra (1983). 

Substitution of this approximation into equation (2.49) gives the induced velocity, in 
second-order accurate approximation 

{2.55) 

where 60 is the average panel size and the sum is taken over all panels N P. The second 
derivative of the coordinate z(s) is related to the curvature k,.(s) of the sheet according to 
"'a:';> ik .. (s)~, since the curvature is defined as kn(s) = ~ [ d•;!•l "'d:\•l ]. 
Furthermore Eo, E1 and E2 are given by 

.IJ+t 

Eo 1 f 1 (2.56) - --ds 
21l'i . RJ(s) ., 

Et 
1 •H• Hs- s*)2 

(2.57) - j 1 ds 
21ri R1(s)2 ., 
1 'i+l ( - ~) 

E2 - j .!___ids (2.58) 
21l'i RJ(s) 

8j 

Equations (2.56), (2.57) and (2.58) can be expressed in closed form in a similar fashion as 
given by Hoeijmakers (1989), i.e. 

(2.59) 



(zo- z(sj))2 ( 1 1 )] 
+ *(s7) RJ(Si+t) - RJ(s;) 

E2 -

1 [L\si+zoi.(:~;nln(R~;~::;>)] 
with RJ(Sj+t) = zo z(sj) !L\si*(sj) and RJ(s;) = zo- z(sj) + lL\s;*(sj). 
In the first-order panel method, the approximation for the induced velocity is given by 

NP d[' 
v*(zo) = j; ds (sj)Eo + 0(6o) (2.60) 

where E0 is given by equation (2.59). For points z0 in the far field of a panel j, the 
expression for the induced velocity can be simplified to consistent order of approximation 
by taking for the contribution of panel j in the summation of equation (2.55) 

vj(zo) = 
2

1
. L\s( *) (d['d (sj)) + 0(6~) 

1TZ Zo Z Sj S 
(2.61) 

The velocity induced at a point on the vortex sheet is mainly due to the velocity induced 
by the panel on which the point is situated. The velocity induced at the panel midpoint 
can be derived from equation (2.50) as 

v*(z(sj)) [-t~~(sj)sign(()+ 4~L\Sj~~(sj)k,.(sj) ~:::~(sj)] ~·(sj) (2.62) 

where sign(() = ±1 on the left- and right-hand side of the sheet when progressing along 
the sheet in positive s-direction, respectively. The tangential component of the velocity 
induced by the panel at its own midpoint experiences a jump across the panel of magnitude 
'Y(sj) while the mean tangential velocity is non-zero if the panel has non-zero curvature. If 
the vortex distribution 'Y(s) along the panel varies, also a mean normal velocity is induced 
at the panel midpoint. For a first-order panel method the last two terms vanish, since 
the panel curvature is not accounted for (i.e. kn(sj) 0) and the vortex distribution is 

constant (i.e. f,;(sj) 0) 
In regions of high curvature or high curvature gradients, the accuracy of the approx­

imation decreases, unless locally the panel size is decreased in some proportion to these 
quantities. Therefore, regions where the vortex sheet has rolled-up tightly would require 
a. large number of panels to represent and are usually described by a vortex patch ('finite 
core tnethod') or by a point vortex, connected to the end of the vortex sheet by a so-called 
'feeding sheet' as shown in figure 2.5 for the case of a single-branched vortex. If at other 
parts of the sheet the curvature increases above a critical value, indicative for the forma­
tion of a. double-branched vortex, a point vortex is introduced which replaces the highly 
rolled-up part of the vortex sheet. The point vortex is placed at the center of vorticity of 
the cut-off portion of the vortex sheet, and the circulation of the point vortex is equal to 
the circulation of the cut-off part of the sheet. In both single- and double-branched vortices 
the number of turns around the point vortex can be restricted to a user-specified angular 
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rolational core 

vortex sheet 

(a) (b) (c) 

FIGURE 2.5: Different core representations used to describe a strongly 
rolled-up vortex sheet. (a) rolled-up vortex sheet for Re oo (b) finite 
core method (c) point vortex/feeding sheet method 

extent while the rest of the sheet is amalgamated with the point vortex. The contribution 
of the point vortices to the flow field is given by equation (2.41) with NV= 1. 

During the vortex sheet roll-up, parts of the vortex sheet are stretched, while other parts 
can be compressed. As a result, the accuracy of the calculated induced velocity becomes 
non-uniform along the vortex sheet. In a similar way as ha.<> been proposed by Fink & 
Soh (1978) for the redistribution of the point vortices in the discrete vortex approach, 
Hoeijmakers & Va.atstra (1983) propose a curvature-dependent rediscretisation scheme, 
which is governed by two parameters, namely a maximum permissible panel size 6.s,...., 
and a maximum permissible angular extent Omax/kn, where k,.. is the average curvature 
of the panel. The parameter Omax ensures that on a highly curved pa.rt of the sheet, the 
second-order accuracy of the induced velocity is maintained by reducing the panel size 6.si. 

2.2.3 Boundary conditions 

If fixed, non-porous boundaries are present in the flow problem, two boundary conditions 
should be satisfied on the solid surface. The normal velocity should vanish at the wall 
( v· ii 0) while due to viscous action there should be no slip velocity at the wall ( ii ·f :=: 0). 
However, in a potential-flow model, viscosity is neglected, and the no-slip condition has 
to be relaxed. We will now discuss two methods to satisfy the condition of zero normal 
velocity at the solid wall, namely the conformal mapping technique and the boundary 
element method. 

Schwarz-Christoffel transformation 

The condition of zero normal velocity at a boundary can be satisfied exactly by mirror­
imaging the sources and vortices in the wall. Directly, this is only possible for simple 
geometries like an infinite wall or a circle. For more complex geometries it is sometimes 
possible to map the geometry in the physical domain into a simpler geometry in a compu-
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tational domain by a conformal transformation. In the computational domain the method 
of images can then be applied, again to exactly satisfy the normal-velocity boundary condi­
tion. For a polygon the transformation is given by the Schwarz-Christoffel transformation, 
see figure 2.6. The transformation from the physical plane z = x+iy to the computational 

(a) 

Schwarz-Cbristoffel 
transformation 

~ 

(b) 

FIGURE 2.6: Schwarz-Christoffel transformation of tl1e inside of a polygon 
onto a semi-plane. (a) physiCal plane z = x + iy (b) computational plane 
( = ~ + ilj 

plane ( = ~ + iq is given by z =/((),where 
N 

J'(() f{ fl(( (;){J;/tr 
i=l 

(2.63) 

where the prime denotes the derivative with respect to ( and the angle {3; is denoted in 
figure 2.6. The parameter K is a complex-valued constant and the product is taken over all 
edge points of the polygon. While the derivative of the transformation function/(() can 
be found for any polygon, the function/(() itself and the inverse transformation usually 
cannot be obtained in algebraic form. 

Since the transformation is conformal, the complex potential in the computational plane 
is equal to its value at a corresponding position in the physical plane and if the normal 
velocity boundary condition is satisfied in the computational plane, it is also satisfied in 
the physical plane. The complex potential is defined as <P = ¢ + i!/J, where ¢ and 1/J are 
the scalar potential and scalar stream function, respectively. The velocity v*(z) = ~~(z) 
in the physical plane, at a point where the velocity is not singular, can be obtained from 
the complex velocity potential If> in the computational plane from 

d<P (z) d<P (()/dz (() (2.64) 
dz d( d( 
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However, at points where the complex potential is singular, like at point vortex positions, 
an additional term arises due to the transformation which is known as Routh's correction 
(e.g. Clements (1973)) must be included, e.g. the velocity at a point z = z, where a point 
vortex of circulation r" is located, is 

dii> . { (d<P if11 1 ) dz ifv cfz (dz)
2 

} 
dz (zv) = /:.rr,. d( (() + 211' (- (, / d( + ~ d(?/ d( 

~ 

Routh's correction 

(2.65) 

When analytical solutions of the transformation function are not available, numerical pro­
cedures to find the Schwarz-Christoffel transformation function have been developed by 
Trefethen (1980). When such a transformation cannot be used, the boundary-element 
method is an alternative method to satisfy the boundary condition of zero normal velocity 
at a number of discrete points, i.e. not exactly but approximately. 

Boundary-element method 

In the boundary element method, the boundary of the geometry is divided into elements 
(panels), either straight or curved, depending on the order of accuracy of the method, 
carrying a source and/or vortex distribution, represented by element-wise polynomials. 
On a panel with a source distribution q(s) and vortex distribution -y(s), the normal and 
tangential velocities jump by an amount of q(s) and -y(s), respectively. The velocity at an 
arbitrary point z0 in the computational domain can be obtained from the contribution of the 
vortex and source distribution on the boundary and the contributions of the singularities 
inside the flow field. If the boundary is described by z( s) and the vortex sheet is described 
by discrete vortices, the velocity is given by 

v*(zo) f q(s) i-y(s) 1 ds +I: K(z
0 

zi)ri 
211" zo- z(s) i=l 

(2.66) 

where s is the arc length along the boundary and K(z) is the Biot Savart kernel for 
point vortices given by equation (2.43) or K6 given by equation (2.46) in case of vortex 
blobs according to Krasny (1987). For the velocity at singular points, such as the discrete 
vortices, the infinite or regularised self-induced velocity lim, .... ,; K(z- zi)ri is omitted. In 
order to obtain the velocity in the midpoint of a panel z(sj) of the contour, the principle 
value of the integral has to be taken, according to 

1 fq(s)- h(s) 1 NV 
v*(z(sj)) = =F-

2
(-y(sj)- iq(sj)) + 

2 
( ) ds + 2: K(zo 

1r z0 - z s i=I 
(2.67) 

where f denotes the principle value of the integral. On the boundary either the Neumann 
condition (d<f>Jdn = specified) or the Dirichlet condition ( </> = specified) is used. For an 
internal flow problem, we require that the velocities on the outside contour are zero. This 
requires for a rigid impermeable boundary a zero source strength, while at parts of the 
boundary where there is in- or outflow the source strength is specified, i.e. determined by 
the inflow velocity. 
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As a result, only the vortex distribution is unknown which is obtained by imposing the 
integral equation at a number of collocation points. For the present first order scheme, with 
panel-wise constant vortex and source distribution /j and q;, respectively the collocation 
points are chosen as the midpoints of the straight-line panels. The Dirichlet condition is 
implemented by imposing a zero tangential velocity on the outside of each panel j = l .. N P, 
where N P is the total number of panels. It results in the following form of the discretisized 
integral equation 

1 NP NP NV 

21'; + L _'i'kK.,(j, k) + L qki<q{j, k) + L f"Kr{j, k) 0 for j=l..NP 
k=1,/r4J k=t k=l 

(2.68) 

where the third term is the velocity due to discrete vortices inside the computational region. 
I<(j, k) is the aerodynamic influence coefficient (a.i.c.) which determines the influence of 
the vortex distribution on panel k exercised at the midpoint of panel j. The a.i.c. J{9 and 
I<"' only depends on the geometry and are for panels on a solid boundary time-independent. 
The a.i.c. Kr determines the induced velocity by a discrete vortex of unit circulation at 
position z = Zk at the midpoint of panel j. Since the discrete vortices convect with the 
flow, the a..i.c. Kr is time-dependent and has to be calculated each time step. In general 
the a.i.c. 's can be written as 

~ [-1 (dz) (s*) 1»•+• 1 ds] 
21ri ds 3 •k z(sj)- z(s) 

~[_!_ (dz)(s'~)1••+• l ds] 
21r ds 3 

•• z( sj) z( s) 

Kr{j,k) ~ [-1 (dz) (s~) 1 ] 
2ll'i ds 3 z(sj)- Zk 

In matrix form, equation (2.68) can be written as 

[K-rJ b} 
with {b} = 

{b} 
-[J<q] {q}- (J<r] {r} 

(2.69) 

(2.70) 

where the right-hand side {b} is known, but can be time dependent. This is the case for a 
starting flow or for a periodic acoustic inflow. 

In a zeroth-order approximation, the vortex distribution on a panel is concentrated in 
a single point vortex with circulation ri = -y;t:.si, usually positioned in the midpoint of 
the panel. In that case, the a.i.c. K"' is equal to the a.i.c. of the point vortices inside 
the flow field Kr. In a first-order approximation, the panels are straight line segments, 
with constant source and vortex distribution and the a.i.c. simplifies to K"' = ~[Eo~(sj)], 
where Eo is given by equation (2.56), and furthet K9 = i K-r. The vortex distribution is 
obtained by solving the set of NP linear equations for 'Yhi =::: l..NP. 

This first-order approximation for the panel shape and vortex distribution is used for 
the application of the boundary-element method as described in the following chapters. It 
should be remarked, that in contrast to the conformal mapping method described in the 
previous section in the boundary element method the normal velocity boundary condition 
is not exactly satisfied, but to some order of approximation. 
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Boundary conditions on the vortex sheet 

The boundaxy conditions on a vortex sheet are that the vortex sheet is a stream surface, i.e. 
~ ( v( z) d::) = 0 and that the vortex sheet cannot sustain any forces, so that the pressure 

difference across the sheet is zero, i.e. pwr + lPI'Vcpl2 is identical on both sides of the sheet. 
Combining the two conditions yields that the vorticity once generated at a sharp edge is 
convected with the local flow velocity 

dz0 = d4i (zo) 
dt dz 

(2.71) 

where the local flow velocity can he obtained from equation (2.64}, (2.65) or (2.66). This 
convection velocity is called the free vortex velocity and is used in the numerical scheme 
for the convection of a discrete vortex of constant strength and for the convection of the 
panel midpoints in the vortex-sheet method. 

In the numerical model for the discrete vortex nascent at a sharp edge the circulation 
increases in time from zero to the value reached at the time the next vortex is fotmed. As a 
result the nascent point vortex has to be connected to the edge by a so-called feeding sheet. 
For the point-vortex with feeding sheet combination, Brown & Michael (1954} axgued, that 
the point vortex/feeding sheet system is not force-free if the vortex is assumed to convect 
with the local flow velocity. This is due to the increasing circulation of the point vortex and 
can be understood as follows. The static pressure is continuous across the vortex sheet, so 
that the application of the unsteady Bernoulli equation at points a and b, see figure 2.7, 
yields, with r( s) the circulation along the contour shown 

d 
pdt(Cf'a Cf'b) (2.72) 

dr 
p dt or n(s )vsheet( s) 

where Hlval + lvbl) = Vsheet and 1(s) =f.= lv.l-lvbl· The normal velocity is continuous 
across the sheet, while the tangential velocity is discontinuous. For a nascent point vortex, 
application of the Bernoulli equation gives a uniform time-dependent pressure difference 
across the feeding sheet since the velocity is continuous across the feeding sheet (Ivai = lvbl), 
but the velocity potential is discontinuous, i.e. 

(2.73) 

As a result a. pressure force 
l:' . dfv( ) ( 
L"p = tpdt Zv- Zedge 2.74) 

is acting on the feeding sheet. Brown & Michael (1954) argued that this force is to be 
balanced by a Magnus force acting on the point vortex. This implies that at the nascent 
vortex the velocity is not equal to the local velocity, as would have been the case when 
the vortex convects with the local flow, but due to the imposed Magnus force there is a. 
non-zero slip velocity. 
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control surface 

(a) 

t point vortex 

control surface 

(b) 

FIGURE 2. 7: Derivation of zero-force condition for discrete- vortex/feeding 
sheet system. (a) continuous vortex sheet (b) discrete-vortex/feeding 
sheet combination 

. (dz11 (d({o ( )) *) FM = -zpf11 dt- dz Zv 

Balancing the pressure and Magnus force yields the velocity of the vortex 

dz; = d({o (z ) _ ~=-== 
dt dz " 
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(2.75) 

(2.76) 

The correction on the velocity is directed along the feeding sheet which can be different 
from the direction of the local velocity vector at the vortex position. For a point vortex of 
constant strength f 11 , this relation results in equation (2.71), i.e. the vortex convects again 
with the local velocity just like any other free vortex. However, if the vortex strength 
increases, the vortex is necessarily connected to the edge by a feeding sheet, while the 
vortex convects with a velocity which differs from the local flow velocity. 

The 'force free' Brown & Michael concept has been used in the literature in point-vortex 
methods for predicting the lift and drag coefficient due to the unsteady vortex shedding 
process occurring for instance behind wings or bluff bodies. Using the force-free method the 
spurious forces introduced during the vortex generation process are prevented. However, 
if one is interested in acoustic power absorption by vortices the prime requirement for 
any vortex method must be that no spurious acoustic sources are introduced. Because 
the Magnus force acts on the vortex, while the pressure force is distributed uniformly 
on the feeding sheet, the aeroacoustic source strength related to these forces can differ 
significantly. 

Howe (1975) has shown that the acoustic poWer absorbed by a vorticity field can be 
obtained from equation (2.28). In complex notation the local flow velocity at the vortex 
position can be obtained from (d({ofdz)* and the acoustic velocity is Uac(z) = (d~ac/dz)*. 
For a free point vortex, the instantaneous acoustic power production can be written in 
complex notation as 

(2.77) 
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However, as remarked by Peters & Hirschberg (1993) for a point vortex/feeding sheet 
combination, with external pressure force Fp and Magnus force FMagrum two additional 
acoustic power sources are present, with acoustic power production 

(2.78) 

(2.79) 

for an acoustic velocity field around the edge. These spurious acoustic sources cancel if 

dz, 
dt 

(edge 

f, (dz) dfv 

d( dt 
(2.80) 

(2.81) 

which again agrees with equation (2. 71) for the 'free' vortex if the strength of the vortex 
is constant, but differs from the result obtained for the force-free approximation given by 
equation (2.76) and is therefore called the source-free approach. 

The convection velocity of the vortex sheet in the computational plane is given by 

d( 

dt 

= 

dz l 

dt J'(() 

(
d<I> ) ., 1 1

2 

d( (() f'( () 

(2.82) 

(2.83) 

where the first derivative of the velocity potential <I> can be obtained from equation (2.64), 
(2.65) and (2.63). For a point vortex this results into 

d(, 
dt 

• (d<I> if., 1 if., /"(())*1 1 12 

hm -+---+--- ---<-<• d( 21r (- (., 41r /'(() J'((v) 
(2.84) 

As a result, the first and second derivative of the transformation function /((), not the 
function itself, are required to calculate the convection of the vortex system in the com­
putational plane. The convection of the vortex sheet is performed by an integration in 
time of the convection velocity of the vortex panels and point vortices. In the vortex-sheet 
method the integration in time is performed by a first-order explicit Euler scheme, with an 
error of t:J.t2• The time step !:!.t can be restricted by allowing a maximum displacement of 
each panel as a fraction of its panel size only. In the discrete vortex ~ethods, a multi-step 
Runge-Kutta scheme of second or fourth order is used to convect the vortices. The time 
step is then chosen to be fixed. 
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2.2 . .f Generation of vorticity 

In actual flows, due to the action of viscous forces, vorticity is generated at solid boundaries. 
In a high-Reynolds-number flow, the region with rotational flow is in general limited to a 
thin boundary layer near the wall. However, at sharp corners or on a strongly curved part 
of the wall, the boundary layer containing vorticity ca.n separate from the wall. A free 
shear layer is then formed. In any inviscid model of the flow separation and the associated 
generation of vorticity is not included explicitly. The separation of the flow must be 
imposed through a Kutta condition2 • The Kutta condition requires the velocity to remain 
finite at sharp edges. This usually implies that the flow must separate tangentially thus 
anticipating the effects due to the action of viscosity. 

At sharp edges, in an unsteady potential ftow, this Kutta condition is not fulfilled 
without introducing vorticity in the flow. The velocity induced by the vorticity removes 
the singular behavior of the potential flow around the edge, and a finite velocity at the edge 
remains. Different methods to impose the Kutta condition have been proposed. Related 
to the way in which the boundary conditions are satisfied, either by using a conformal 
mapping or by using a boundary element method, the implementation takes a different 
form. Both methods will be described in detail. 

Using a similarity solution as a procedure for the generation of vorticity 

If the boundary condition of zero normal velocity is satisfied by using a conformal mapping 
of the flow region onto a semi-plane, in combination with image singularities, the Kutta 
condition can best be applied in the computational plane. To determine the initial position 
and the circulation of the generated vorticity, a. local approximation of the flow near the 
edge can be used. Locally, near the edge, the ftow can be considered as the flow around 
a semi-infinite wedge, as shown in figure 2.8. The transformation function z f(() can 
then be expressed as 

f((} (%) 1/n (2.85) 

where D is a complex-valued proportionality constant which depends on the complete 
geometry and n = 11' /(211' - 0) varies between 0.5 and 1 and depends on the interior angle 
0 of the wedge. The origin of both the physical plane and the computational plane are 
taken at the edge point. Near the edge, the attached (irrotational) ma.in flow can be 
split into a component rounding the edge and a component flowing symmetrically towards 
the edge. The first terms in the local expansion of the complex velocity potential in the 
computational plane are then given by 

<Po(() = -iA( + B(2 + ... (2.86) 

where A = at"' and B = btP with a and b real constants and t is the time since the start 
of the flow. Although the theory is not restricted to this case, a and {3 are usually taken 
to be positive. The second term describes the symmetric flow towards the edge. In a 

2Sometimes referred to as the Kutta.-Joukowski condition. 
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(a) (b) 

(c) (d) 

FIGURE 2.8: Local approximation of the Schwarz-Cl!ristoffc/ transforma­
tion of a polygon near an edge. (a) physical plane z = x + iy (b) com­
putational plane ( = f + i1] (c) local approximation in physical plane {d) 
local approximation in the computational plane. 

single-point-vortex method the vorticity generated at the edge is concentrated in a point 
vortex. The velocity potential at a point ( in the computational plane due to the point 
vortex at position (11 and the mirror imaged vortex at ( = -(: is given by 

(2.87} 

where f v is the circulation of the point vortex. The complex velocity potential is the sum 
of the velocity potential due to the attached mean flow (equation (2.86)) and that due to 
the point vortex (equation (2.87)). 

(2.88) 
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The complex conjugate velocity at a point z; in the physical plane is given by 

(2.89) 

The velocity at the vortex position is given by equation (2.65) with the transformation 
function (2.85) and the velocity potential (2.88). The Kutta condition requires the velocity 
to be finite at the edge. Since f'(() becomes unbounded for (-+ 0, it follows from equation 
(2.89) that this condition requires 

d![l (0) = 0 
d( 

From the velocity potential, given by equation (2.88), we then find 

r = 21r A Jf:L 
" (;+(., 

(2.90) 

(2.91) 

In a free-vortex method, the vortex convects with the local flow velocity, expressed in the 
computational plane by equation (2.84). The nonlinear equations for the vortex position 
and circulation, i.e. equation (2.91) a.nd (2.84) can he solved analytically for the case that 
0 < Jal < Jbl as well as for the case that lbl < Ia!, see appendix B. For the case lbl < Ia! 
we obtain with Zv = rv e'"'· 

where Kt 

For 0 < lal < lbl we find 

r, 

tPv 
rv 

where /{2 

I (IAIDKtt)2-n 

1 1 
-arccos--
n 2-.fii 
21r.,fiiADr: 

n(l- n)(2- n)(l- f,j)~ 
l+a 

= (IBID2I<2t) 

= 0 

1rADr: 

= 
4n(l n) 

1+,8 

(2.92) 

(2.93) 

For the latter case the vortex convects along the center line of the wedge, see figure 2.9. 
If a = 0 while b # 0, no vorticity is generated since the edge of the wedge is a stagnation 
point of the flow. 

If the vortex is convected with the local velocity, given by equation (2.84), the point 
vortex/feeding sheet combination is not force-free. For the case the vortex system is repre­
sented by a point vortex/feeding sheet combination according to Brown & Michael (1954) 
again an analytical solution can be obtained. This solution is identical to the solution given 
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in equations (2.92) and (2.93) but with different constants K1 and K2. For the force-free 
feeding sheet/vortex combination with the vortex velocity given by equation (2.76) we find 

Kt = 

= 

n(l- n)(2- n)(l- /,;)! 
3a+n+l 
4n(l- n) 

(1 + P)(n + 1) + 2a(l- n) 

(2.94) 

while for the acoustic source-free feeding sheet/vortex combination with the vortex velocity 
expressed in equation (2.80) we obtain 

I<t = 
n2(1- n)(2- n)(l- ~)! 

(2.95) 
2a+an+2n 

/{2 = 
4n2(1- n) 

2n(l + P) + 2o:(l- n) 

Assuming a starting flow, at each time step the similarity solution near the edge determines 
the initial position and strength of the newly formed point vortex. 

(a) (b) 

FIGURE 2.9: Similarity solutions for the flow around a semi-infinite wedge. 
(a) for lbl <: lal (b) forO< lal <: lbl 

Vorticity generation in a similarity solution; vortex-segment method 

The process of vorticity generation by the calculation of a similarity solution near the sharp 
edge where vorticity is generated cannot be used in the vortex-sheet method, since the 
vortex sheet is connected to the edge and does not allow a local approximation of the flow 
near the edge according to equation (2.86). If, in a numerical scheme, the panels describing 
the vortex sheet are convected, also the vorticity contained in the panel connected to the 
sharp edge is convected, with a finite velocity, away from the edge. After convection, the 
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vortex sheet does not satisfy the Kutta condition, i.e. equation (2.90) at the sharp edge 
since a non-zero velocity remains at the edge point in the computational plane. 

Introducing a point vortex in order to remove the singularity in the velocity at the 
edge implies that the edge point is a stagnation point of the flow. This is not an accurate 
description of the local behavior of the flow near the edge, since the vortex sheet leaves 
the edge either tangentially to the lower surface or tangentially to the upper surface of the 
wedge, and the edge point is then a stagnation point for the flow on the upper or lower 
surface, respectively. The velocity is discontinuous across the vortex sheet which emanates 
from the edge. 

A more accurate description of the flow near the edge would be to add a vortex segment. 
In first-order approximation this vortex segment of length Sz can be assumed to be straight 
with constant vortex distribution lz· In the computational plane, the vortex distribution 
is t.herefore given by I< = /z ~~~· The vortex sheet, and therefore also the present vortex 
segment, is assumed to leave the edge tangentially along the upper surface or lower surface. 
The coordinate of the vortex segment in the computational plane is given by (( s) = se'9' 

for 0 < s < s, withe,= 1rn ~11". The length of the vortex segment in the computational 
plane is equal to s, = DS:. The velocity induced at the origin of the computational plane 
by the single vortex segment and the mirror-imaged segment is given by 

(2.96) 

In order to satisfy the Kutta condition at the edge given by equation (2.90), we require 
that in the origin of the computational plane the velocity induced by the vortex segment 
and the mirror-imaged segment balances the attached flow, which yields 

A sin( 1rn) st-n 
D1r(l- n) /z • 

(2.97) 

If the internal angle of the wedge 8 > 0" the length S, the vortex segment has obtained 
in the time period t - t0 since the formation of the segment started can be related to 
the vortex distribution by S, = tf,(t- to). Since the circulation contained in the vortex 

segment is given by r. = S.-yz, we find S, = J~r.!1t, where !1t = t- t0 . The vortex 
distribution and center of the vortex segment are given by 

2 [1r(l - n) ] 2 !.n - . D A !1t !1t 2sm(n1r) I I 

The vorticity generated in the time interval [to, t] is given by r. = Sz'Yz. 

r. = 2. [1r(l- n) DIAI!1t] 
!1t 2sin(n1r) 

(2.98) 

(2.99) 



42 

The dependence of the circulation on A, D and t:..t = t - t 0 is similar to what has been 
obtained for the single-vortex approximation in case of a dominating flow rounding the 
wedge, equation (2.92), with a different value for the constant I<t. namely 

Kt = ( 
11'(1- n) )2/n 

2"/2 sin( n1r) 
(2.100) 

With the vortex segment attached to the edge, at the edge the velocity is zero on the 
upper side of the wedge, while it is "Yz on the lower side. If a point vortex with circulation 
equal tor. is used to replace the panel, it satisfies the Kutta. condition if it is placed at 
z = l(l- n)kS,ei1112, which is closer to the edge than the midpoint of the original vortex 
segment. If (J 0° (n = 1/2), which is the case for a flat plate, the velocity is non-zero on 
both sides of the plate, and the position and circulation of the vortex segment cannot be 
obtained from equations (2.98) and (2.99). In that case, the length of the segment is given 
by S. = Hv- + v+)6.t, while the vorticity distribution is given by "'• = v-- v+, with v± 
the velocity on the upper and lower side, respectively. Application of the Kutta condition, 
see equation (2.97) for n = 0.5, requires that 

and with I• = f./S. 
1rAD 

iz = 2..;s. 

From application of l'Hopitals rule we find for u± = lilll(uo (~~) / (~) 

as a result 

Vorticity generation in the vortex-sheet method 

{2.101) 

(2.102) 

(2.103) 

(2.104) 

The second-order panel method, used in the present vortex-sheet method, takes into ac­
count the curvature and a linear vortex distribution on the vortex segment connected to 
the sharp edge. The computational procedure in the vortex-sheet method implemented 
in the computational ( (-) plane, in which the Kutta condition is imposed consists of six 
subsequent sub-steps. 

1. Given the position ((s, t) and dipole strength r(s, t) as a function of the arc length 
s along the vortex sheet at time t cubic spline interpolations are computed based on 
discrete values at Bj for j E [1, ... , NP + 1). 

2. A new panel distribution s1 for j E [1, ... , NP + I) is determined by an adaptive 
curvature-dependent scheme, which preserves the second-order accuracy in space. 
Also, if a too strong variation of the transformation function z = f(() occurs on a 
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panel, the panel width is reduced, which restricts the panel width in regions strongly 
deformed by the Schwarz-Christolfel transformation. In the adaptive scheme the 
panel size is further restricted to a maximum value As = min(Asm"'"' AIJm,.:c/kn), 
where k,. is the average curvature of the panel. The maximum panel size Asm,.., is 
also checked in the physical plane. The angular extent IJ, of the vortex sheet around 
the point vortex representing the vortex core can also be restricted. The part of the 
vortex sheet that exceeds the specified angular extent 8, is amalgamated with the 
core vortex. In this amalgamation process, carried out in the physical plane, the , 
center of vorticity of the core vortex before amalgamation and the part of the vortex 
sheet that has been cut off is conserved. 

The result at this sub-step: the position ((sJ,t) and dipole strength r(s;,t) for 
j E [1, ... , NP + l] at the edge points of the individual panels. · 

3. The velocity at the panel midpoints, i.e. ((si> t) for j E [1, ... , NP + 1] , are com­
puted using the second order panel method operating on the vortex sheet in the 
computational plane. This velocity, computed from equation (2.55) with z replaced 
by ( consists of the free stream velocity, the velocity induced by the vortex panels 
and the velocity induced by the core vortices. Using this velocity in the right-hand 
side of equation (2.83), the velocity used to advance the position of the vortex sheet 
in time is obtained. Similarly, the velocity at the core vortex is used to compute the 
right-hand side of equation (2.84), which includes Routh's correction. 

The displacement at the begin and end points of the vortex sheet are derived from 
an quadratic extrapolation of the velocity at the first and last three mid points on 
the vortex sheet, respectively. However, if the edge point is connected to the sharp 
edge where, vorticity is generated, the extrapolation of the almost entirely tangential 
velocity is performed in the physical plane, rather than in the computational plane. 
The reason is the following. Although the Kutta condition, given by equation (2.90), 
requires the derivative of the complex velocity potential in the (-plane to be zero, 
it tends to zero in a non-polynomial fashion, i.e. with a second order derivative 
becoming infinite at the edge. However, the velocity on the vortex sheet in the 
physical (z-) plane is finite at the edge, i.e. vorticity convects away from the edge 
with a finite velocity, also enabling a more accurate extrapolation. 

4. The new position of the midpoints of the panels, that of the first and last edge point 
of the vortex sheet and that of the core vortices is found by application of a first-order 
Euler scheme, e.g. 

j = O ... NP (2.105) 

The time step in the Euler scheme used for the convection of the panel midpoints, 
vortex sheet begin and end points and the core vortices is adaptive, in that the time 
step t::.t is limited such that it does not exceed t::.tma,:c and simultaneously such that 
none of the midpoints ((s;, t) is displaced more than a specified fraction :F of its 
own width in terms of the arc length or more than a certain maximum displacement 
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6.Xmax· 6.xmax, 6.tmax and :F are to be chosen such that the accuracy of the time 
integration is preserved in time and also such that it is in balance with the spatial 
accuracy. 

5. A new panel is inserted reconnecting the edge and the convected first edge point 
of the vortex sheet. The 'bridging' panel is not necessarily directed tangentially 
to either side of the sharp edge. The dipole strength f(O, t + 6.t) at the edge is 
determined from the application of the Kutta condition that the velocity induced in 
the computational plane by the sheet in its new position vanishes at the edge. 

6. The new location ((.Sj, t + b..t) of the panel edge points at timet+ b..t is calculated by 
a second-order spline, fitted through the new location of the panel mid points. The 
new value of the dipole strength f(si,t + b..t) at the edge points equals the value at 
time t, i.e. the dipole strength is convected with the sheet. 

Vorticity generation in the boundary-element/vortex-blob method 

If the local expansion of the complex velocity potential in the physical plane given by equa­
tion (2.85) and (2.86), near the edge where the flow separates is unknown, the procedure 
described above cannot be used. The vorticity generation process in the boundary element 
method is accomplished by the introduction of a new vortex at a point which is equal to 
or close to the edge. The initial position of the nascent vortex is either chosen to be fixed 
or determined by the local flow. In the boundary-element method used in the present 
study the position and circulation of the vortex is determined by the local flow field near 
the edge. The local velocity is obtained as the average velocity at the midpoints of the 
two panels adjacent to the edge. The circulation is obtained from the vortex distribution 
on these panels. The vortex distribution on these panels is assumed to convect onto the 
vortex sheet. The vortex distribution in the panels can be obtained from the tangential 
velocity at the panels. 

Vedgeb..t 
Hv- + v+) (2.106) 

(v- · ;- + v+ · :r+)lved9el6.t 

The method of generation of vorticity by introducing a nascent vortex with its position 
determined by the local flow is also used by Sarpkaya (1975). An alternative vorticity 
generation method, in which the position of the nascent discrete vortex is fixed to Zv = 
Zedge + E, where f is small, while the circulation of the point vortex is obtained from 
fv = !U;dgeb..t, where Uedge is the velocity at the point Zv is used by Clements (1973), 
Clements & Maull (1975) and Kiya & Arie (1977). This latter method will be less accurate 
than the first method, since the position of the nascent vortex can be chosen arbitrary. 

2.2.5 Simple vortex methods 

Practical useful methods to represent a vortex sheet embedded in a potential flow can be 
obtained by limiting the number of discrete vortices used to describe the sheet, i.e. use an 
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amalgamation procedure to combine vortices which have convected a certain distance away 
from the edge. Three methods will be described, two employ the most simple from of the 
discrete-vortex approach (single-vortex and two-vortex method) and one utilizes the most 
simple form of the vortex-sheet method (single-panel method). First the amalgamation 
procedure will be described. 

Amalgamation 

If two vortices are combined into a single vortex, the position and circulation of the newly 
formed vortex have to be determined. For the convection of a system of point vortices in 
free space, several invariants have been derived by Lamb (1932): 

NV 

l:rj = ftot : total circulation (2.107) 
i=l 

NV 

2:::: rizi/ftot Zcot> : center of vorticity (2.108) 
j=l 

NV 

2:::: rjzJ/ftol =D2 : dispersion (2.109) 
i=l 

-1 NVNV 

2::::2:::: fjfk log(lz;- Zkl) =H : Hamiltonian (2.110) 
i=lk=i 

all independent of time t. In a discrete vortex approximation, in which the vorticity is 
distributed in a region around the center of each vortex blob, the invariants are slightly 
changed. For example the Hamiltonian of a system of vortex blobs with velocity kernel 
given by equation (2.46) is according to Krasny (1987) given by 

-1 NVNV 

-2::::2:::: rjrk log(lzi- Zkl2 + 82
) = H 

411" j=lk=j 
(2.111) 

Since only three unknowns are involved in the amalgamation process (f """'' Znew), not all 
invariants can be conserved during amalgamation. Usually the circulation is conserved 
(Kelvin's theorem) and the position of the center of ~orticity. However, in the presence 
of a body, the velocity induced by the combined vortex can differ considerably from the 
velocity induced by the original separate vortices, specifically if (one of) the vortices are 
close to the body. 

Furthermore, Disselhorst (1978) argued that in the presence of a sharp-edged body, 
the amalgamation procedure can strongly influence the calculated sound absorption by the 
vortices. Disselhorst (1978) proposed an amalgamation procedure in which the amount of 
absorbed acoustic energy is not influenced. In that amalgamation procedure the velocity 
potential at points far from the vortex system induced by the vorticity is not influenced by 
the amalgamation. For a vortex pair close to a wedge this amalgamation procedure results 
into · 

fnew (2.112) 
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( 
_ (!rl + (2r2 

new - rl + r2 

which is the requirement that the circulation is conserved and the location of the center of 
vorticity in the computational plane are the invariants of the amalgamation procedure. 

For more complex geometries, the amalgamation procedure in which the velocity po· 
tential at a point far away from the vortices is not influenced is more complex. In general, 
such amalgamation procedures allow to choose two points in the far field where the veloc· 
ity potential is not changed by the amalgamation procedure. An example can be found in 
Disselhorst (1978) and Disselhorst & van Wijngaarden (1980) for the problem of the flow 
out of an open pipe, where the velocity potential is not affected at a point far inside the 
pipe and at a point in the far field outside the pipe. 

Single-vortex method 

In a single-vortex method, the whole vortex sheet generated at the sharp edge is repre­
sented by a single point vortex. The circulation of this vortex is determined by the Kutta 
condition, given by equation (2.91), where the value A describing the local flow near the 
edge is determined from the velocity potential of the attached-flow component of the flow 
around the edge (equation (2.86)). Since the vortex convects with the flow the circula­
tion changes in time. As a result, the single vortex is connected to the sharp edge by a 
so-called feeding-sheet. Depending on the conditions required for the point vortex/feeding 
sheet combination, the velocity at which the point vortex convects is different. For the free 
vortex, the force-free vortex and the source-free vortex methods, the convection velocity 
of the point vortex is given by equation (2.71), {2.76) and (2.80), respectively. 

Two-vortex method 

A method ranking between the single-vortex method and the discrete-vortex method is 
the two-vortex method. The whole vortex sheet is described by a main point vortex 
representing the center of vorticity of the vortex sheet away from the edge, while a second 
point vortex, the so-called edge vortex, represents the vorticity close to the sharp edge. 

The single-vortex similarity solution for a. single point vortex determines the initial 
position z. and strength r • of the main vortex at t = t1• To obtain this similarity solution, 
the attached main flow iPo near the edge is approximated by 

iPo( () = -iAo( + B0(
2 + ... (2.113) 

Now each time step the main vortex is convected with the local velocity given by equation 
(2.71). This results in an estimate of the new vortex position 

(
diP ). 

z.(t + 6.t) = z.(t) + dz (z,) 6.t (2.114) 

where· denotes an estimate value. The complex velocity potential is then given by 

iP(() = iPo(()- ir., In (( ~·) 
271' ( + (: (2.115) 
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which near the edge can be expanded &~ 

4>(() = -iA( + B(2 + ... for ( <: (, 

with A and B real constants 

A = A r,(.,+(; 
0- 21T l(ufil 

T J2 ;.2 
B = B t """- "" 

o- 41T Tv! 
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(2.116) 

(2.117) 

(2.118) 

Here, the value of A is zero for t = t1, because the Kutta condition is satisfied by the 
similarity solution. However, also fort> t1 the &~sumption is valid that IAI << IBI, as 
remarked by Graltam {1983). 

The position and strength of the new edge vortex are determined M follows. Assume 
that the vorticity generation process at the edge can be considered M an impulsively started 
flow problem as discussed in section (2.2.4) with A and B given by (2.117) and (2.118). 
The position Zt and circulation r 1 of the edge vortex can be determined from the similarity 
solution given by equation (2.93) with t = llt. Following the generation, the edge vortex 
is combined with the main vortex by an amalgamation procedure. Since the circulation 
of the system must remain constant the circulation of the new main vortex is the sum of 
the strengths of the two vortices. To obtain the position of the new main vortex three 
different amalgamation processes can be defined which correspond to the definition of the 
three different single-vortex methods discussed in the previous section. 

For the free two-vortex method the position of the new main vortex is equal to that of 
the old main vortex, i.e. 

z,(t + D.t) = z,(t + D.t) (2.119) 

For the force-free two-vortex method the position of the new main vortex is equal to 
the center of vorticity of the vortex pair, so that the amalgamation process (in the physical 
plane) is force free, i.e. 

z,(t + llt) (2.120) 

Using equation (2.114) the vortex position of the new main vortex can now he written M 

[(
d4> )* (E,-z1) ft] 

z,(t + llt) = Zv(t) + dz (z,) - fv + rl llt !lt {2.121) 

where ( ~~(z,)) is given by equation (2.65) and the term inside the brackets corresponds 
to the discretisized form of the zero-force condition, i.e. equation (2.76). 

Finally an amalgamation process is defined in which the velocity potential induced at 
two points at infinity in the physical plane is conserved. For the simple case of the flow 
p&~t a wedge this appears to result in a new position of the vortex at the center of vorticity 
in the computational plane, i.e. 

(2.122) 
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after which the new position of the main vortex in the physical plane is obtained from the 
transformation z, = f((v)· For more complex geometries this amalgamation procedure is 
more complicated as we will show later for the flow in aT-junction. It can be shown that 
this amalgamation procedure is the discretisized form of the no-acoustic-source condition, 
i.e. equation (2.80) and therefore this method is called the source-free two-vortex method. 

Single-panel method 

The single panel method is the most simple form of the first-order vortex-sheet method. 
The vortex sheet away from the edge is represented by a point vortex while the portion of 
the vortex sheet attached to the edge is represented by a straight vortex segment with a 
constant vortex distribution. The main point vortex describes the center of vorticity of the 
vortex sheet. The initial position of the main vortex at t = t 1 is again determined by the 
single-vortex similarity solution of the local flow near the edge. Similar to the two-vortex 
method the main vortex is convected by the local velocity while simultaneously a vortex 
segment is generated at the edge. 

The vortex distribution ;. and midpoint z of the vortex segment is determined from the 
local velocity at the edge, given by equation (2.98). Following the generation of the vortex 
segment, the vortex segment and the main vortex are combined into a new main vortex 
during an amalgamation process, which is equivalent to that described for the two-vortex 
method. 

It should be remarked here that both the two-vortex method and the single-panel 
method are essentially single-vortex methods with an improved procedure for generating 
vorticity at the edge, i.e. satisfying the Kutta condition. Furthermore the simplified meth­
ods have only limited applicability because they only converge to a solution different from 
the single-vortex solution, if the circulation of the edge vortex or edge segment increases 
linearly with time. For the two-vortex method this appears to be valid for a 90"-wedge, 
while the single-panel method converges for a 0°-wedge. 

2.2.6 Stability of vortex methods 

The way the stability of vortex layers is handled by vortex methods computing the evo­
lution of vortex sheets is studied for the problem o( a vortex layer between two equal, 
but opposite parallel flows. If the two flows are uniform potential flows the vortex layer 
is infinitesimally thin and is a vortex sheet of uniform vortex strength. It is well known 
that such a vortex sheet is susceptible to the Kelvin-Helmholtz instability. Infinitesimally 
small disturbances of the vortex sheet tend to be amplified, which in the subsequent non­
linear finite-amplitude phase results into a. vortex street with highly rolled-up regions in 
which the vorticity concentrates, see figure 2.10. If the undisturbed twodimensional flow 
u = u(y )€, is disturbed by u' <: u and v1 <: u a perturbation stream function can he 
defined by J = \1 x '1/J'. For a sinusoidal disturbance the stream function can he written as 

'1/J'(x,y,t) = 1R (~(y)ei(k.r-wt)) (2.123) 

where ~(y) is the amplitude and k = k,+ik;. is the complex wave number, while w = w,+iw1 

is the complex frequency. For a spatial instability w1 is set to zero and the disturbance is 
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FIGURE 2.10: The formation of a highly rolled-up region resulting from 
the Kelvin-Helmholtz instability for an initially straight vortex sheet of 
constant strength ; = Uo. 
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spatially amplified if k; < 0. For a temporal instability k; is set to zero, and the disturbance 
is amplified in time if w; < 0. In the present paragraph only a temporal instability is 
considered and the amplification factor of the disturbances is denoted as a:= -w;. 

For a vortex sheet linear stability analysis shows that an initially infinitesimally small 
spatially uniform disturbance amplifies exponentially in time with an amplification factor 
a:, obtained from the dispersion relation 

(2.124) 

where k is the real-valued wavenumber of the disturbance and U0 7 is the strength of 
the sheet, which is equal to the discontinuity in the tangential velocity across the sheet. 
Due to nonlinear effects the initially high rate of growth is reduced and rolled-up vortex 
cores are formed within the vortex sheet (figure 2.10). 

For a vortex sheet the highest amplification factor is found to be for the disturbance 
with the highest wavenumber, i.e. the shortest wavelengths. In real fluids the shear layer 
has a finite thickness, i.e. the action of viscosity spreads the vorticity in a layer of finite 
thickness. Assuming a linear variation of the velocity between the two uniform flows, i.e. 

{ 
lv/l,vl 
iv/L 

the momentum thickness of this vortex layer is 

for IYI > L 
fot IY < L 

0 +j""u(y) (l- u(y)) d(!) = ~ 
L = Uo Uo L 2 

-oo 

(2.125) 

{2.126) 



50 

Drazin & Howard (1966) derived the dispersion relation for small disturbances of this 
velocity profile, which leads to 

(a£)2 
Uo 

(2.127) 

which shows that the layer is unstable (a> 0) for kL < 0.64. The amplification factor a 
is shown in figure 2.11. A maximum amplification is observed for kL 2k0 ~ 0.4, where 
the amplification rate is aL/Uo ~ 0.1. 

Michalke (1964) studied the temporal instability of a shear layer with a more realistic 
velocity profile, i.e. the hyperbolic tangent profile 

u~) = ttanh(y/L) (2.128) 

The momentum thickness as defined in equation (2.126) is again equal to 0 = !L. For this 
problem an analytical solution is not available for the dispersion relation. Michalke (1964) 
derived the temporal growth rate for initial disturbances numerically. The result is included 
in figure 2.11. From this figure we observe a maximum amplification rate for 2k0 ~ 0.44 
of aL/Uo ~ 0.095. Apparently the maximum amplification and the wavenumber at which 
the maximum amplification occurs is not very sensitive for the details of the mean velocity 
profile. Furthermore for low wave numbers the solution corresponds with the instability 
mode of an infinitesimally thin vortex sheet, a/Uo = k/2. 

Michalke (1965) also studied the spatial instability of a hyperbolic tangent velocity 
profile. It could be shown, that the amplification of disturbances as a function of the wave 
number for the spatial instability differs only slightly from the amplification rate for the 
temporal instability. 
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FIGURE 2.11: Temporal growth rates ofinitial disturbances for a. vortex 
la.yer of uniform strength, (- -) obtained by Dra.zin & Howard (1966) 
a.nd for a. undisturbed flow with a. hyperbolic tangent velocity profile (-) 
by Michalke (1964). 

The stability of an infinite vortex sheet of constant strength simulated by a discrete 
vortex method has been addressed by Krasny (1986a). For the evolution of a number 
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of point vortices positioned on a straight line segment with periodic boundary conditions 
Krasny (1986a) showed, using linear stability analysis, that the following discrete dispersion 
relation is valid 

(2.129) 

where NV is the number of point vortices. This shows that in the limit NV -> oo the 
dispersion relation for the continuous infinitesimally thin vortex sheet is recovered. 

Using the vortex-blob method, with desingularised kernel given by equation (2.46), 
Krasny (1986b) found that in the limit of the number of vortex blobs NV -> oo the 
dispersion relation is given by 

(~)2 = k(l _ e-kco•h-1 (t+62))e-koo•h-'(1+52) 

Uo 46yf2 + 62 
(2.130) 

which for 6 -> 0 again tends to the dispersion relation for the continuous infinitesimally 
thin vortex sheet, i.e. equation (2.124). Figure 2.12 presents the amplification factor a for 
6-> 0, equation (2.129) for different values of NV is presented, as well as a for NV -> oo, 
equation (2.130) for different values of 6, all as a function of the wave number k. 
For a finite value of the desingularisation parameter 6, a maximum amplification is obtained 
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k 

FIGURE 2.12: Temporal growth rates for initial disturbances for a discrete 
vortex method with point vortices, for different number of vortices NV, 
and with desingularised kernel according to Krasny (1986b), for different 
wuues of the desingularisation parameter 6. 

at kti::;::: 1 where a6/Uo = 0.2. 
Comparing this with the values (2kfJ ::;::: 0.4, 2afJ /Uo ::;::: 0.1) obtained for a linear or 

a hyperbolic-tangent profile of the velocity across the vortex layer W<' conclude that the 
vortex-blob method results in a similar behavior in the limit NV ...... oo, if the desingulari­
sation parameter is chosen as 6::;::: 40. 

The stability of a vortex sheet between two uniform flows of opposite sign has been 
studied by Hoeijmakers (1989) applying the vortex-sheet method. The amplification rate 
for small disturbances according to the linear stability analysis, given by equation (2.124) 
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could be rea 1ized for the case that of the order of 40 panels per wave length were used to 
discretise the vortex sheet. For the case for which less than 10 panels are distributed on a. 
sinl(le wave length, the wave is not amplified. 

In the computations with the vortex-blob method described in the next chapters the 
vortex sheet is not straight, does not have a constant vortex distribution and has a finite 
ext('nt. As a result a relation between the value of 6 used in the computational scheme and 
the thickness of the shear layer 8 to be simulated by the method is not necessarily given by 
lJ ~ 48. Furthermore, the value of li is taken to remain constant during the calculation, 
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FIGURE 2.13: Onset of instability in the solution o{ vortex methods used 
to simulate the evolution of the wake behind an elliptically loaded wing. 
(a) Point-vortex method by Moore (1974), tUfa 0.5,NV = 98. (b) 
Vortex,blob method by Krasny (1987), tU/a O.l,NV = 2000,c = 
0.003,.6.t = 0.0005. (e) Cloud-in-Cell method by Baker (1979), tU/a = 
0.6,NV = 2000,M = 129 

while of course the value of the momentum thickness 8 usually varies during the evolution 
of a real shear layer. Therefore the value li is taken as c 40, where jj is an estimated 
average value of the momentum thickness of the shear layer during the time of calculation. 
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A posteriori the effect of the choice of fJ on the solution is assessed by varying 8 by a factor 
two up and down. 

e.!J. 7 The roll-up of the wake behind an elliptically loaded wing 

Many of the vortex methods described in this chapter have been used to simulate the roll-up 
of the wake behind an elliptically loaded wing. This basically stationary three-dimensional 
problem can be transformed into an initial-value problem in the two-dimensional Trefftz 
plane (see Batchelor (1967)). The initial vortex sheet strength is 

1(8) = (2.131) 

where the initial position of the sheet is z ::::: 8, with -a < 8 < a. The initial downward 
velocity of the vortex sheet is equal to v -tU uniform along the vortex sheet. However, 
the self-induced (upward) velocity at the tip of the sheet (8 = ±a) is infinite and as a 
result, the two ends of the vortex sheet roll up into two counter-rotating spirals. Using 
a discrete-vortex method Westwater (1935) found that the solution became unstable near 
the highly rolled-up regions of the vortex sheet. Using a discrete-vortex method Moore 
(1974) obtained a smooth solution by introducing an explicit tip vortex to represent the 
tightly rolled-up part of the sheet and an amalgamation procedure to feed the tip vortex. 
However, when increasing the number of point vortices an instability sets in between the 
rolled-up part and the yet straight part of the sheet, see figure 2.13a. 

Using a vortex-blob method Chorin & Bernard (1973) showed that removing the sin­
gular character of the velocity field of the discrete vortices can lead to a stable solution 
near the edges of the sheet. However, Krasny (1987) found instabilities of the vortex sheet 
if the the calculation is performed with single-precision accuracy (7-digit arithmetic). The 
instabilities occur in the same part of the vortex sheet as found by Moore (1974) (see fig­
ure 2.13b ). If the calculations is performed employing double precision accuracy (14-digit 
arithmetic) the instabilities did appear at a later moment in time. 

Application of the Cloud-in-Cell method by Baker (1979) to this problem showed an 
instability similar to the one in the results obtained by the discrete-vortex methods. 

Using a second-order panel method Hoeijmakers & Vaatstra (1983) obtained a stable 
solution of the vortex sheet roll-up. In their solution procedure with a curvature dependent 
adaptive repaneling the maximum panel size was increased during the calculation from 
68max = 0.01 for small times to 0.1 for longer times. However, our present application 
of the method in which the maximum panel size is kept fixed at 68max = 0.01 showed 
that at tU I a = 0.25 an instability sets in for a part of the vortex sheet where the vortex 
strength attains a maximum. The geometry of the vortex sheet at tU I a = 0.30, 0.40 and 
0.48 is shown in figure 2.14, together with the vortex distribution and the curvature along 
the sheet. In the unstable part of the vortex sheet the vorticity concentrates into regions 
where the curvature shows a maximum variation. 

The calculation has been repeated with double-precision arithmetic, see figure 2.15. It 
is observed that the instability sets in at a later moment in time at tU /a = 0.5. At tU I a 
1.62 new, highly curved, rolled-up regions have formed within the unstable region of the 
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FIGURE 2.14: Onset of instability in the vortex sheet computed by the 
second-order vortex-sheet method (Hoeijmakers & Vaatstra (1983)) for 
the evolution of the wake behind an elliptically loaded wing. Solution at 
different moments in time, with maximum panel size ~Smax = 0.01 number 
of panels N P ~ 140; calculation single precision arithmetic. 
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vortex sheet. This suggests that the infinitesimally thin vortex sheet with initial elliptical 
vortex distribution is unstable for infinitesimally small disturbances at the position of 
the vortex sheet where it has still relatively small curvature and ~ == 0, with f. at a 
maximum. 

2.3 CONCLUSIONS 

For incompressible flows at high Reynolds number the vorticity generation at sharp edges 
and the convection of the generated vorticity can be described by a potential flow model, in 
which the spatial vorticity is condensed into vortex sheets. The generation of vorticity is in 
the potential flow model described by the Kutta condition. The normal-velocity boundary 
condition on rigid walls can either be satisfied by a conformal mapping of the physical 
fiow domain onto a half-plane and introducing mirror-imaged vorticity, or by a boundary 
element method with a surface vortex and source distribution. 

The vortex sheets can be discretisized by discrete vortices (discrete-vortex and vortex 
blob method) or vortex segments (vortex-sheet method). A further simplification can be 
obtained if the complete vortex sheet is described by a single point vortex. In that case 
a more accurate description of the vorticity generation can be obtained by introducing a 
so-called edge vortex. Application of the various vortex methods for the roll-up of the wake 
behind an elliptically loaded wing shows that both the discrete-vortex and the vortex-sheet 
method are able to describe the inherent Kelvin-Helmholtz instability of a vortex sheet. 

Results of the various methods described in this chapter are compared with each other 
and with measured data in the next chapter when applied to starting flows and in chapter 
4 when applied to periodic flows. 
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Chapter 3 

Numerical simulation of starting flows 

Abstract 

The two-dimensional potential flow models of the generation and convection of 
vorticity developed in chapter 2 are used to describe the impulsively started flows 
in aT-junction and out of a nozzle. Before these applications are considered the 
generic problem of the starting flow about a wedge is used to compare the results 
of simplified methods with those of more elaborate methods. 
The virtue of simple methods depends on the type of geometry studied. A single 
vortex method usually fails. However, if the vorticity generation near the edge 
is described locally by introducing a second vortex, such as in a so-called two­
vortex method the generation and convection of the center of vorticity is described 
satisfactory during the initial phase. 

3.1 INTRODUCTION 

In this section results of various methods used to describe two-dimensional vortex formation 
at sharp edges will be compared mutually and with results of flow visualization experiments. 
The in viscid, incompressible, starting flow is studied for a number geometries. The primary 
present interest is in the periodic vortex formation at sharp edges in pipe systems, for 
example at T-junctions. However, the starting flow in a T-junction with sharp edges 
is a more suitable test for the numerical methods because in a starting flow the initial 
conditions are well-defined and in contrast to the periodic flow a model for the decay of 
vortex strength by annihilation does not have to be developed. Furthermore the moment 
of the start of the generation of a vortex structure is clearly defined as t = 0. 

The second geometry studied is the flow out of a two-dimensional sharp-edged or square­
edged nozzle. The starting flow is simulated numerically and compared with experimental 
results by Blondeaux & Bernardinis (1983) and Auerbach (1987). The vortex formation 
in this geometry differs from that in the T-junction geometry by the fact that the vortex 
structure does not impinge on a downstream edge at a distance comparable to the channel 
width but forms a free jet with streamwise dimensions much larger than the channel width. 

Before investigating these geometrically and fluid mechanically more complex cases a 
more generic type of flow problem is considered first: the starting flow past an infinite 
wedge of different wedge angles. This flow has been studied theoretically by Rott (1956), 
Blenderman (1969), Graham (1977) and Pullin (1978). In an inviscid flow, if the velocity 
increases as a power of the time (Uo = at<>) the problem admits a self-similar solution, 
this since no characteristic length or time scale are involved in this problem. Experiments 
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on the starting flow past a wedge have been performed by Rott (1956), Pierce (1961) and 
Pullin & Perry (1980). 

Using the single-vortex method proposed by Brown & Michael (1954), Rott (1956), 
Howe (1975) and Graham (1983), the complete vortex layer is modeled by a single point 
vortex positioned at the center of vorticity of the vortex sheet. Using this single-vortex 
method an analytical solution can be obtained. 

For the impulsively started flow (a = 0), the results of the single-vortex method will 
be compared with the results of the more accurate second-order vortex-sheet method, 
developed in the present study and based on the vortex-sheet method proposed by Hoei­
jmakers & Va.atstra (1983) for the evolution of rolling-up vortex wakes behind wings. In 
this method in contrast to Pullin's (1978) approach similarity of the solution is not as­
sumed. As a result the method can also be used for non-similar problems. Also results of 
a vortex-blob method and of a two-vortex method will be discussed. As far as the level of 
complexity and physical relevance is concerned the two-vortex method can be considered 
to be at an intermediate level between that of the single-vortex method and that of the 
more complex vortex-sheet and vortex-blob methods. In the single-vortex method, the 
two-vortex method and the vortex-sheet method all or some of the vorticity is combined 
by an amalgamation process into the main vortex representing the highly rolled-up vortex 
core of the vortex sheet. It will be demonstrated that the vorticity ama.lgamation process 
must be handled with care and the influence of different amalgamation procedures on the 
solution will be discussed. 

3.2 STARTING FLOW PAST A WEDGE 

3.2.1 Infinite wedge of arbitrary included angle 

As a generic model of the type of flows to be investigated the starting flow around an 
infinite wedge is considered. Due to the action of viscous forces the flow separates at 
the sharp edge of the wedge and vorticity is generated. The vorticity generated at the 
edge convects with the local flow velocity away from the edge into the flow field. The 
continuously distributed vorticity is concentrated in the free shear layer emanating from 
the edge. 

For a high-Reynolds-number flow the vorticity in the shear layer near the edge will be 
distributed along a thin vortex layer, across which a rapid variation in tangential velocity 
takes place. Further away from the edge the vortex layer starts to spiral and rolls up into 
a vortical core. Within the core the vorticity is spatially distributed in a smooth fashion 
with a maximum at the center of the vortex core. In the core, the individual turns of the 
spiraling free shear layer cannot be identified anymore. In a potential-flow model of the 
flow the vortex layer is assumed to he infinitesimally thin with all the vorticity contained in 
this vortex sheet. In the potential-flow model the vortex core should ideally he represented 
by a tightly wound spiral of infinite length. In practice the vorticity in the inner spirals 
is concentrated into a single point vortex. The effect of viscosity is accounted for by the 
Kutta condition, which requires the velocity to be finite at the sharp edge, accomplished 
by the introduction of the vortex sheet. 
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Complex function theory is used to find a solution satisfying the normal· velocity bound­
ary condition. By conformal transformation the flow domain in the physical plane z "" x+iy 
is mapped onto a half-plane e > 0 in the computational plane ( = e + i'f/, see figure 3.1. 
The mapping is given by z = f(() with 

Z = (%f/n (3.1) 

with n = ?r /(2?r - fJ) 

D is a complex constant while is the value of n is determined by the included angle f} of 
the wedge and varies between n = 0.5 for included angle (} 0 and n = 1 for (} = r.. 
The attached flow around the edge is described by a complex velocity potential which, in 

(a) (b) 

FIGURE 3.1: Schwa.rz Christoffel transformation ota wedge. 
(a) physical plane z = x + iy (b) computational plane ( ~ + iTJ 

the computational plane, is given by 

<I>o(():::: -iat"( (3.2) 

where a is a real constant and t denotes the time. 
In case the flow separates at the edge the velocity potential at a point (in the computational 
plane is a superposition of the onset flow <1>0 ( ()given by equation (3.2) and the flow induced 
by the vortex sheet <I>.((), i.e. 

l Btot ( ( _ (s( S)) 
<I>.(()= Z1ri j "Y(s)ln (+(;(s) ds 

0 

(3.3) 

where "Y(s) is the vortex distribution and the integration is along the vortex sheet, which 
position is described by ( = (,(s). Note that the boundary condition on the rigid wall 
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in the computational plane ({ = 0) is satisfied by mirror-imaging the vortex sheet in the 
positive half-plane into the vertical plane. The circulation along the sheet is defined as the 
jump in the value of the velocity potential across the sheet. At a point 8 of the sheet it 
can be determined from .. ,. 

f(8)= j "f(8*)ds* (3.4) 

where the integral is taken from the point 8 on the sheet to the endpoint of the rolled-up 
vortex sheet. The circulation f(O) contained within the vortex sheet corresponds to the 
value of the dipole strength at s = 0, where the sheet is connected to the edge of the wedge. 

The velocity at a point z in the physical plane is given by equation (2.64) applied to 
the total velocity potential4>(() = 4>0 (() + 4>.;((). By using equation (3.1), (3.2) and (3.3) 
we obtain 

[ 

1 •••• ( 
-iat"' + 21ri [ "f(8) ( 1 1 ) ] l. t-l. 

(,(s)- ( + (;(s) ds nDn( n (3.5) 

where the integral is taken over the whole vortex sheet and the value of n depends on the 
interior angle of the wedge 0 according to equation (3.1). To obtain the velocity at a point 
( = (. on the vortex sheet, the Cauchy principle value of the integral in equation (3.5) 
should be taken. 

The Kutta condition requires that the singular behavior of the velocity field due to 
<I?0 ( () at the edge ( 0 is compensated by the velocity induced by the vortex sheet, see 
equation (2.90). Using equation (3.5) one finds 

1 .... ( 1 1 ) 
at"'= j 1(s) (,(s)- (;(

8
) ds 

0 

(3.6) 

Because of the absence of a length scale the problem can be brought in a self-similar form 
in terms of time-scaled variables, both for the coordinates as well as the circulation of the 
vortex sheet (see Pullin (1978)) by 

z 

r(o) 

with C 

· (Cata+l D)..k w(A) 

(Ct)r-n(at"'D)~ J 
(2- n)(l- n) 

1+a 

(3.7) 

where w(A) = p(>.) e'x(.>.) and J are the scaled coordinates and the scaled circulation, 
respectively. The parameter A is one minus the scaled circulation along the vortex sheet 
and is zero at the edge and one at the end of the vortex sheet. If f( s) is a monotonic 
function of the arc length s along the vortex sheet, A can be used as an independent 
variable along the vortex sheet. 

f(8) 
A(s) = 1- f(O) (3.8) 
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The vortex sheet is convected with the local flow velocity according to equation (2.71). 
Equations (3.5), (3.6) and (2.71) form a nonlinear system of equations, which has to be 
solved numerically. 

Pullin (1978) solved the problem of the starting flow around a wedge formulated in 
the similarity variables numerically employing a Newton-Raphson scheme. He discretised 
the portion of the vortex sheet attached to the edge by a number (75) of segments. The 
rolled-up part of the vortex sheet is represented by a point vortex. The single·vortex 
solution from Rott (1956) for the flow with separation about a semi·infinite fiat plate 
(n = 1/2) with a strea.kline of the flow emanating from the edge has been used as an 
initial guess for the position of the vortex sheet and iteratively improved. Subsequently 
the solution for the fiat plate was then used as an initial guess for the solution for the 
flow around a wedge (n > 1/2). For the wedge with interior angle of 90° Pullin (1978) 
obtained for the scaled circulation J = 2.53 and for the scaled position of the core vortex 
w, = p,eix., p, = 0.54 and Xv = 98° (see table 3.1). The scaled circulation of the point 
vortex representing the vortex core was J, = 1.09. 

Single-vortex methods 

If it is assumed that the vortex layer generated at the sharp edge can be modeled by 
a concentrated single point vortex connected to the edge by a cut, the so called feeding 
sheet, the vortex position and its circulation can be determined analytically from the Kutta 
condition applied to the edge and the conditions imposed on the point vortex/feeding sheet 
combination. The form the solution takes depends strongly on these conditions. For the 
conditions corresponding to the free vortex, the force-free vortex and the source-free vortex 
methods, the convection velocity of the point vortex is given by equation (2.71), (2.76) 
and (2.80), respectively. The position of the point vortex in terms of scaled coordinates 
w, = p,e•x. and circulation J, defined by equation (3. 7), can be obtained from the solution 
given by equation (2.92), (2.94) and (2.95), respectively. The result is 

FREE VORTEX : Pv 

FORCE-FREE VORTEX : Pv 

SOURCE-FREE VORTEX : Pv 
(3.9) 

AND FOR EACH OF THE METHODS : 

In figure 3.2 the similarity solutions obtained with the different single vortex methods are 
compared with the position of the core vortex of the vortex-sheet solution obtained by 
Pullin ( 1978). 

From figure 3.2 it is dear, that the free-vortex method strongly overestimates the dis­
tance of the point vortex to the edge and the circulation, i.e. the total vorticity generated, 
while the results of both the force·free and the source-free single-vortex method are much 
closer to the results of Pullin's (1978) first-order vortex-sheet method. 
It should be noted that Pullin's comparison of the position of the vortex of a single-vortex 
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FIGURE 3.2: Influence of wedge angle parameter n = 1r /(21r- 11) on the 
position of the point vortex Wv Pveix. and its circulation J for an im­
pulsively started flow a = 0 past a wedge. Results of the single-vortex 
method are compared with results of a first-order vortex-sheet method VS 
obtained by Pullin (1978). F: free vortex method; FF: force-free vortex 
method; SF: source-free vortex method. 
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method with the position of the point vortex of his vortex-sheet method is not so relevant, 
since the point vortex of the single-vortex method represents the center of vorticity of the 
whole vortex system, rather than that of the rolled-up core of the vortex sheet. However, 
since data on the center of vorticity have not been reported by Pullin (1978), a more 
detailed comparison cannot be made. 

In the following we will only the cases the interior angle of the wedge (J equals 90° and 
0°, corresponding with a value of n 2/3 and n = 1/2, respectively. These two angles 
correspond with the edges occurring in the specific pipe system geometries studied later 
on. 

3.2.2 9(f Wedge 

Single-vortex method 

For the comparison of the results of the different vortex methods discussed in chapter 2, 
we consider the impulsively started flow around a wedge with an interior angle of 90°. The 
single·vortex solution for this problem is given by equation {3.9), with n 2/3, i.e. 

Pv (v: A r'4 
Xv 3 (V6) 

2 
arccos 4 (3.10) 

J 2V'W1rf{ 
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where A = 2/3, 2/5 and 1/3 for the free, force-free and source-free vortex method, res­
pectively. The data are collected in table 3.1. Since only a single vortex is present in these 
methods the position of the center of vorticity Wc.o.v. is equal to that of the point vortex 
center wv, and the circulation J of the vortex system is equal to the point vortex strength 
J ... 

METHOD Pc.o.v. Xe.o.v. J Pv Xv 

free (A= 2/3) 0.62 78.4" 3.72 see 
SINGLE VORTEX force-free (A= 2/5) 0.42 78.4" 2.89 c.o.v. 

source-free (A = 1/3) 0.37 78.4" 2.63 
amalg. vorticity only 0.66 88.8" 3.24 see 

TWO VORTEX amalg. z-plane 0.45 88.8" 2.53 c.o.v. 
amalg. (-plane 0.40 88.8" 2.33 

VORTEX BLOB ANP = 1.00 0.48 93.4" 2.51 - -
VORTEX SHEET ANP = 0.57,8, = 1620" 0.49 94.0" 2.58 0.52 96.6" 
PULLIN (1978) ANP = 0.57,8., = 1620" - - 2.53 0.54 98.0" 

TABLE 3.1: Position ofcenterofvorticitywc.o.v. Pc.o.v.eixco.v., circulation 
J and point vortex position w., = Pveixv and its circulation Jv obtained 
with different vortex methods. Impulsively started flow (a = 0) past a 
wedge with fJ = 90" (n = 2/3). 

Vortex-sheet method 

J., 

-
1.12 
1.09 

In the vortex-sheet method parts of the vortex sheet is modeled by continuous vortex 
sheets, while the highly rolled-up parts of the vortex sheet, representing the vortex cores, 
are modeled by discrete vortices. The latter are connected to the vortex sheet by cuts, so 
called feeding sheets, across which the potential experiences a jump. The angular extent 
of the vortex sheet around the vortex core 8., is a parameter of the vortex-sheet method. 
In general the value of 8v is chosen to be fixed during the computation. 
The complex velocity potential is given by 

(3.11) 

where i1>0 (() is the attached flow component, given by equation (3.2), il>.(() is the potential 
due to the continuous parts of the vortex sheet, equation (3.3), and il>v(() the potential 
due to the point vortices, equation (2.87). 

The circulation of the vortex sheet plus vortex core is equal to the dipole strength r(O) 
at the edge, which can be compared with the circulation of the vortex in the single-vortex 
methods. The center of vorticity of the vortex sheet plus core can be compared with the 
vortex position of the single-vortex methods. 

The initial position of the vortex core is obtained from the force-free point vortex 
similarity solution for the impulsively started, separated flow, discussed in the previous 
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FIGURE 3.3: Development of the vortex sheet computed with the vortex­
sheet method. The vortex sheet geometry is given in similarity coordinates 
w(A). The steady state similarity solution is obtained a.t t = 2.5. 
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section. The initial solution for t ::; t 1 constitutes the point vortex at the location given by 
equation (3.10) with A = 2/5 and a fiat vortex sheet segment of constant dipole strength 
f(s;) J along the extension of the bisector of the wedge, discretised into five panels. The 
vortex sheet starts to convect with the flow and to gain in circulation through the new 
vorticity introduced by the application of the Kutta condition at the edge. 

The results for this similarity problem are presented in the similarity variables w(>.) and 
J for the position of the vortex system and its circulation, respectively. The parameter >. 
along the vortex sheet can be written as, see equation (3.8) 

, f(s;) f . 
A;=1- r(o) orz=l. .. NP (3.12) 

>.; determines the part of the circulation that is contained in the vortex sheet from the 
edge to point number i where i = LNP, with NP the number of panels. ANP is the part 
of the circulation contained in the continuous vortex sheet segment. When AN p is zero, 
all of the circulation is contained in the point vortex, and we have a single-vortex method, 
while for ANP equal to 1 all the circulation is contained in the then infinitely long vortex 
sheet, and a point vortex representing the vortex core is not present. 

Proceeding in time the similarity solution is approached, see figure 3.3. The parameters 
used for the vortex-sheet calculation are given in table 3.2. Following the initial stage with 
a smaller fixed angle 9,, a number of time steps have been performed with larger value 
of .1-s,..., and O,a:e, in order to damp spurious initial disturbances in the vortex sheet 
geometry. 

TIME STEP NR. :F ASmax A9max (), 

1- 250 0.2 0.05 15° 180° 
251 - 350 0.2 0.10 20° 1620° 
351 550 0.2 0.05 15° 1620" 
551 - 3550 0.2 0.04 15" 1620° 

TABLE 3.2: Parameters used for the vortex sheet solution of the flow 
around a wedge with (J 90", see ligure 3.3. 

In figure 3.4 the vortex position and strength are given as a function of time. For t :5 
t1 = 0.1 the values are given by the force-free single vortex solution (see table 3.1). Clearly, 
for the steady state solution, the position of the center of vorticity differs significantly from 
the point vortex position, both for the distance to the edge and for the angle. 

For the converged solution obtained at t = 2.5, the position of the vortex sheet in the 
computational and physical plane, dipole distribution and first and second derivative of 
the dipole distribution along the sheet with respect to the arc length s and the curvature 
of the sheet, all in the physical plane, are presented in figure 3.5. At the edge the direction 
of the first derivative of the position vector corresponds with the tangent of the lower 
side of the wedge. Note that this is not explicitly imposed by the numerical scheme. 
Application of the Kutta condition corresponds in this case to a vortex sheet leaving the 
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FIGURE 3.4: Vortex position W 11 = Pv e'X•, center of vorticity Wc.o.v. = 
Pc.o.v eixc.o.v., point vortex strength Jv and circulation J, in similarity vari­
ables, converge to a. steady-state self-similar solution. The force-free single 
vortex solution given by equation (3.10) with A = 2/5 is used as a start for 
the convergence process. The scaled arc length ,\ increaBes with increasing 
IJ.,. (-) vortex-sheet method (- -) vortex blob method (only for the 
center of vorticity and tqtal circulation). 

wedge tangentially. Regions of high curvature k,. correspond with regions of high values of 
the vortex distribution 7(s). Even in the tightly rolled-up region the vortex sheet appears 
to keep an elliptical shape. At the edge the curvature shows a singular behavior, it tends 
to infinity at the edge. The singular behavior of the vortex sheet near the edge has already 
been proposed by Graham (1977, 1986) and Cla.pworthy & Mangler (1974), who proposed 
that the vortex sheet near the edge should behave as Yn = Cx~l2 , where x.,. and y,. are 
coordinates parallel and normal to the lower side of the wedge, respectively. The vortex­
sheet solution appears to confirm this behavior. 
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FIGURE 3.5: Quantities at midpoints given as a function of the arc length 
s along the vortex sheet for the solution presented in figure 3.3 at t = 2.5. 
(a) solution in physical plane, with enlargement of the region near the 
edge (o =edge points of the panels) (b) solution in computational plane 
(c).dipole distribution r(s) (d) vortex distribution df(s)fds = --y(s) (e) 
derivative of vortex distribution d2 f(s)fds2 (f) curvature kn(s) 
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Vortex-blob method 

The vortex-blob method, applied to the impulsively started flow around a wedge with 
interior angle of 90°, requires the specification of a. closed region which is much larger than 
the dimensions of the vortex sheet. It is assumed that at the far-field boundary of this 
computational region the flow is a.n undisturbed potential flow, i.e. (I = (10 • 

Each time step a. new vortex blob is generated with initial position a.nd strength described 
by equation (2.106). A fourth-order Runge-Kutta integration method is used to convect 
the vortex blobs in spa.ce. 

For the desingularisation of the kernel of the velocity induced by a discrete vortex, 
the method proposed by Krasny (1986), given by equation {2.46) is used. The value of 
the desingula.risation parameter is chosen to be fJ = 0.05, independent of time. However, 
as time proceeds and the dimension of the vortex system grows, the value of {j decreases 
relative to the dimensions of the vortex sheet. In scaled coordinates, the limit t --+ oo 
corresponds with the limit fJ --+ 0. 

In figure 3.6, the result of the vortex blob method is given for different values of time, for 
each time in scaled coordinates. For increasing time the number of turns of the vortex sheet 
increases, which corresponds to the behavior observed by Krasny (1986) for a decreasing 
value of 8. In the vortex blob method, a. core model is not used to describe the highly rolled­
up region of the vortex sheet. Therefore, the solution corresponds to a. value >wp = 1. 
The vortex blobs leave the edge approximately tangential to the lower side of the wedge, 
which corresponds to the behavior observed with the vortex·sheet method. Although the 
number of turns still increases for t > l, the position of the outer turns is fixed. 

In figure 3.4 the center of vorticity and the circulation in scaled coordinates a.re com· 
pared with the results of the vortex·sheet method. From figure 3.4 it can be observed, that 
for the vortex-blob method a converged solution is obtained for t Ri 2.5, and the position 
of the center of vorticity of the vortex sheet and its circulation are not influenced by the 
local behavior near the vortex core anymore. If the value of 6 is scaled with the distance of 
the center of vorticity to.the edge rc.o.v.(t}, it appears that the results become independent 
of the value of fJ for 6/rc.o.v. < 0.1. This corresponds with the influence of fJ observed by 
Krasny {1986). The scaled coordinates of the center of vorticity and the circulation of the 
steady state solution are compared with various methods in table 3.1 

Two-vortex method 

In the two-vortex method, the initial position of the main vortex is given by the single­
vortex solution given by equation (3.10). The complex velocity potential of the attached 
flow a.nd the point vortex is given by 

(3.13) 

with (10 (() and (lv(() given by equation (3.2) a.nd (2.87), respectively. The main vortex 
is convected with the local flow velocity given by equation (2. 71) employing a first-order 
Euler scheme. The position a.nd circulation of the edge vortex is now determined by the 
similarity solution for the local flow near the edge. Assuming a velocity which is impulsively 
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FIGURE 3.6: Development of the vortex sheet computed with the vortex 
blob method. The vortex sheet geometry is given in similarity coordinates 
and a steady state self-similar solution is obtained at t = 2.5. 
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increased during each time step, the position of the edge vortex and its strength are given 
by 

Te (4 r'2 3AIBIL.\t 

4;. = oo (3.14) 

r. 4 
= 3'~~"AAIBIL.\t 

with A equal to 2/3 for the free-vortex method, 2/5 for the force-free method and 1/3 for the 
source-free method. Following the generation of the edge vortex, the convected main vortex 
and the edge vortex are combined by an a.ma.lgamation process. During this ama.lga.mation 
process the circulation of the new main vortex is the sum of the circulation of the two 
vortices. For the free-vortex method, the position of the new main vortex is unchanged, 
while for the force-free method, the new position of the main vortex is the center of vorticity 
of the two vortices in the physical plane. For the source-free method the new position is 
equal to the center of vorticity in the computational plane. As the circulation of the edge 
vortex increases linearly with the time step L.\t, the method converges for decreasing time 
step. 

The position of the point vortex and its strength obtained with the two-vortex method 
are given in table 3.1. For this method the center of vorticity is again identica.l to the 
position of the main vortex. Since the vorticity generation is more accurate described 
compared to the single-vortex method, the results of the two-vortex method are in better 
agreement with results of the vortex-sheet and the vortex-blob method than the single­
vortex method. 

Results and discussion 

In figure 3.7 the self-similar solutions obtained with the vortex-sheet method and the 
vortex-blob method are compared with the analytic solutions obtained with the single­
vortex methods, the numerical solutions of the force-free two-vortex method and the self­
similar solution obtained by Pullin (1978), all in terms of similarity variables. 

For the purpose of the comparison of the results of the single- and two-vortex meth­
ods with the results of the vortex-sheet and vortex-blob methods, for the discrete vortex 
methods the streakline emanating from the edge is calculated. The vortex sheet calculated 
with the other methods is a streakline of the flow. 

In the discrete vortex methods the streakline does not contain any vorticity and the 
velocity is continuous across the streakline. Although the Kutta condition is applied in each 
method the vortex sheet leaves the edge tangentially, while in the single- and two-vortex 
method the streakline leaves the wedge symmetrically. In the case of the vortex-sheet 
method there is a stagnation point at the edge on the upper side of the wedge, while 
simultaneously the velocity is nonzero on the lower side. In the case of a single-vortex 
method, there is a stagnation point on both sides of the wedge and the streakline leaves 
the edge symmetrically. For the converged solution obtained with the force-free two-vortex 
method, presented in figure 3.7c the Kutta condition is only satisfied if both the main 
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FIGURE 3. 7: Comparison of different vortex methods for the impulsively 
started flow around a wedge. (a) single free-vortE>x method (b) single 
force-free vortex method (c) force-free two-vortex method (d) vortex-blob 
method (e) second-order vortex-sheet method (f) similarity solution ob­
tained by Pullin (1978). In (a-c) the streakline emanating from the edge 
is given for a comparison with the vortex sheet, present in (d-f). 
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vortex and the edge vortex are present. Once the two vortices are amalgamated, the Kutta 
condition is not satisfied anymore and therefore the streakline near the edge does not leave 
the wedge tangentially. 

A more quantitative comparison of the different methods, given in table 3.1, lists the 
position of the center of vorticity Wc.o.v. and the circulation J. For the vortex-sheet methods 
also the position w., representing the core of the rolled-up part of the vortex sheet and its 
circulation J., can be compared. Although the single-vortex methods are very simple, the 
center of vorticity and the circulation of the vortex system are fairly well predicted, except 
for the free single-vortex method. However, the center of vorticity is more accurately pre­
dicted by the two-vortex methods, provided that an appropriate amalgamation procedure 
is used. Both the vortex-sheet method and the vortex-blob method agree fairly well with 
the self-similar solution of Pullin (1978). 

3.2.3 rr Wedge 

An interior angle of the wedge(} equal to 0°, corresponds with a flat plate (n = 1/2). The 
flow around a plate differs from the case (} > 0°, because at the edge on either side of the 
plate a stagnation point is not necessarily present. For the flow around a wedge the limit 
(} -+ 0 is apparently a nonuniform limit, since for each (} > 0 a stagnation point is present 
on, one side of the wedge. This singular limit has been discussed by Rott (1954), Smith 
(1966), Graham (1977, 1986) and Pullin (1978). 

Single-vortex method 

For a comparison of the results of the different vortex methods, we consider the impulsively 
started flow (a = 0) around a plate. The single-vortex solution for this problem is given 
by equation (3.9), with n = 1/2, i.e. 

(3.15) 

where II. = 1, 2/3 and 1/2 for the free, force-free and source-free vortex method, respecti­
vely. The data are collected in table 3.3. Again, the position of the center of vorticity 
Wc.o.v. is equal to that of the point vortex center wo, and the circulation J of the whole 
vortex system is equal to the point vortex strength J.,. 

Vortex-sheet method 

The initial position of the point vortex representing the rolled-up part of the vortex sheet is 
determined by the similarity solution of a force-free single-vortex method, given by equation 
(3.15) and the initial position of the vortex sheet segment is a flat segment parallel to the 
plate, with constant circulation distribution equal to r(O). The initial segment is divided 
into five panels. The calculation procedure for the vortex sheet roll-up is similar to that of 
the calculation described for the flow past a 90°-wedge. 
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METHOD Pc.o.v. Xc.o.v. J Pv Xv 
free (A= 1) Q.50 9o.o· 3.14 see 

SINGLE VORTEX force-free (A = 2/3) 0.38 9o.o• 2.74 c.o.v. 
source-free (A = 1/2) 0.32 90.0" 2.49 
amalg. vorticity only 0.32 84.0° 2.94 see 

SINGLE PANEL amalg. z-plane 0.25 84.0° 2.52 c.o.v. 
amalg. (-plane 0.23 84.o• 2.38 

VORTEX SHEET ANP = 0.56,0, = 1620° 0.40 95.8° 2.65 0.42 lOF 
PULLIN (1978) ANP = 0.53,9, = 1620° - 2.64 0.42 102° 

TABLE 3.3: Position of center ofvorticitywc.o.v. = Pc.o.-..e'X••·•·, circulation 
J and point vortex position w., p,e'x• and circulation J, for different 
methods. Impulsively started flow (a = 0) past a plate with 6 = o• 
(n = 1/2). 

75 

J, 

1.16 
1.24 

In figure 3.8 results of the vortex-sheet method are presented for the shape of the vortex 
sheet in similarity coordinates. The vortex sheet leaves the plate tangentially and rolls up 
into a vortex core, which is positioned nearly perpendicular to the edge of the plate, as 
predicted by the single vortex solution. The parameters used to obtain the vortex sheet 
solution are given in table 3.4. The coordinates of the center of vorticity of the vortex-sheet 
solution and its circulation for the self-similar solution are given in table 3.3. Also in this 
table the position of the point vortex representing the core region and its circulation are 
given for the self-similar solution. 

For the self-similar solution at t = 2.5 the vortex sheet in the computational and 
physical plane, the dipole strength and its first and second derivative with respect to the 
a~c length s and the curvature as a function of the arc length along the vortex sheet in 
the physical plane are presented in figure 3.9. Clearly, less panels are present near the 
edge than in the case of a finite wedge angle since now the derivative of the transformation 
function, given by equation (3.1), is not singular near the edge. 

In the highly rolled· up region, the vortex spiral is still slightly elliptic due to the presence 
of the plate, but not as much as for the wedge with interior angle of 90°, shown in figure 3.5. 
Again, the curvature of the vortex sheet shows a singular behavior near the edge, where 
the curvature tends to infinity, which confirms again the prediction of Clapworthy and 
Mangler (1974). 

The position of the point vortex and its circulation computed with the vortex-sheet 
method agree with the similarity solution of Pullin (1978). However, the point vortex 
strength is somewhat higher. In table 3.3 the center of vorticity obtained with the vortex­
sheet method is compared with those obtained with single-vortex methods. Again, the 
free-single vortex method overestimates both the distance of the center of vorticity from 
the edge and the circulation, while the results of the force-free and the power-free single­
vortex methods agree quite reasonably with those of the vortex-sheet method. 
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FIGURE 3.8: Separating flow around a flat plate. Development of the 
vortex sheet computed with the vortex-sheet method. Since the vortex 
sheet geometry is given in similarity coordinates, a steady state self-similar 
solution is obtained at approximately t = 2.5. 
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TIME STEP Nit. 

1- 250 
251 - 1250 

0.2 0.05 
0.3 0.10 

15° 
15" 

TABLE 3.4: Parameters used for the vortex-sheet solution for the impul· 
sively started flow around a plate with 0 = 0°, see figure 3.8. 

Single-panel method 

In the single-pa.nel method, the vorticity generation near the edge is described by intro­
ducing a straight vortex segment with uniform vortex distribution, connected tangentially 
to the plate. The initial position of the main vortex is given by the single force-free vortex 
solution given by equation (3.15). The main vortex is convected with the local flow velocity 
by a second order Runge-Kutta scheme. The edge segment characteristics are obtained 
from the local flow near the edge, given by equation (2.86) where the velocity potential is 
given by equation (2.88). 

The length of the vortex segment is taken to be a relative small fraction (1 %) of 
the dista.nce of the main vortex to the edge. This limits the time step of integration 
during the initial phase of the calculation, according to equation (2.104). The circulation 
of the segment is given by equation (2.101). The edge segment is amalgamated with the 
main vortex where the circulation of the newly formed main vortex is equal to the total 
circulation of the system. The new position of the main vortex depends on the condition 
for the segment/feeding sheet/point vortex combination, similar to the two-vortex method. 

The results of the single-panel method are given in table 3.3 and, similar to the results 
of the two-vortex method for the flow past a 90° wedge, are in better agreement with the 
results of the vortex-sheet method than the results of the single-vortex methods. 

3.3 STARTING FLOW IN AT-JUNCTION 

3.3.1 Introduction 

In order to assess the applicability of the different methods for internal flow problems, 
we consider the invisdd, incompressible starting flow in a two-dimensional T-junction. 
The T-junction has sharp edges and the width of the side branch is H, see figure 3.10. 
Since t.he side branch is dosed, the volume flux per unit length in the third dimension is 
directed through the main pipe with width h. The coordinate z, the volume flux Q = U0 h, 
time t, circulation r, the main pipe width h and the complex velocity potential are non­
dimensiona.lised with U0 a.nd H according to 

z = z•H; t::::: t*H/U0 

Q Q*UoH; h h* H (3.16) 

r 
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In the sequel the non-dimensionalised quantities will he used and the asterisk will he 
omitted. For the purpose of easily satisfying the boundary conditions on the solid walls 

a h 

c 

d 

(a) 

z- plane 

Schwarz-Christoffel 
transformation 

~ 

f 

e 

(b) 

l;; -plane 

FIGURE 3.10: Conformal mapping of region witl1in aT-junction to a half 
plane. 

the inner part of the T-junction in the physical plane (z x + iy) is mapped to the half­
plane ~(() > 0 a computational plane (( e + i7J) as shown in figure 3.10. This is 
accomplished by the conformal mapping z = f( () with 

with a= 
as 

!'{() ihJ(2+l (3.17) 
1r (2 + a2 

< 1. The transformation is obtained from equation (3.17) by integration 

f(() 1 + ih + i.ln (i( + ..j -(2 - 1) - !: In (~) 2 
1r 1r z( +a (3.18) 

_ 2h In (..j(l- a)(i( -1) + i..j(l + a)(i( + 1)) 
7r ..j(l + a)(i(- l) + i..j(l- a}(i( + 1) 

The upstream and downstream edges of the T-junction are mapped onto ( -i and ( = i, 
respectively. Infinite upstream (x = oo) is mapped onto ( = -ia, infinite downstream 
(x = -oo) is mapped onto ( = ia. The uniform flow at infinity, with velocity U0 is 
generated by a. point source of strength Q h at ( -ia and a sink of equal strength at 
( = ia. The dotted line in figure 3.10 separates the flow in the side branch from the flow 
in the main pipe, both in the computational plane as well as in the physical plane. The 
complex velocity potential due to the attached main flow is given by 

41o(() !: In (( + ia) (3.19) 
1r (- za 
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where due to the image sources in ( = ±ia the source strength is doubled. As a result of the 
action of viscosity the flow separates at the sharp upstream edge and vorticity is generated 
continuously at the edge and convected into the flow field. The flow separation at the 
downstream sharp edge can usually be neglected, as will be shown by the visualization of 
the flow inside the T-junction. Therefore in the numerical calculations only flow separation 
at the upstream edge is taken into account. In the next sections the application of different 
methods used to describe the flow will be discussed. 

3.3.2 Similarity solution near the edge 

The different methods used in the previous section to compute the How around a wedge will 
now be used to describe the flow with separation in the T-junction. For the initial stage 
of the development of the flow, when the separated region is still small compared to the 
side branch width H, the position of the tightly. rolled-up vortex sheet and its circulation 
can be estimated by a self-similar solution of the flow past a wedge with interior angle 
equal to the included angle of the upstream edge, i.e. 0 = 90°. Near the upstream 
edge (z = ! + ih, ( = -i) the transformation function given in equation (3.18) can be 
approximated by 

z- t ih = 3'1l'~~ha2 ) ( -i)!(( + i)~ (3.20) 

and the expression for the attached-flow velocity potential (3.19) to 

2iah . 2ah ( . 2 lf>oJ<--•= '11'(1-a2)((+i)+ 11'(1-a2)2 (+l) + ... (3.21) 

Near the upstream edge a self•similar problem of a starting flow past a wedge can be defined 
according to equation (2.85) and (2.86) with parameters 

D c'll'(l a2)r/
3 

2J2h 
(3.22) 

A 
-2ah 

(3.23) 

B 
2ah 

(3.24) 
'11'(1 - a2)2 

The single vortex self-similar solution for ihe flow rounding the edge (assume B = 0) is 
given by equation (2.92), and can be written as 

rv = ~.J61rADr~13 (3.25) 

Zv = ! + ih + rv e'"'· (3.26) 

with: r. = ( AjAj~/iOtr/4 

"' ~ + ~ arcsin ( v'6) 
'f'v 2 2 4 
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and A = 2/3, 2/5 and 1/3 for the free-vortex, for the force-free method and the source-free 
single-vortex method, respectively. 

The single-point-vortex solution determines the initial position of the core and its initial 
strength in the vortex-sheet method and in the two-vortex method. From now on we will 
restrict ourselves to the case that main pipe and side branch have equal width so that 

h = 1 and as a result a = ,jli5. 

3.3.3 Comparison of results of different flow methods 

Single-vortex method 

In the single-vortex method it is assumed that the whole vortex sheet may be represented 
by a single point VOrtex at position Z = Zv With time-dependent circulation r v • It is 
mapped to a vortex of equal strength at ( = (., in the transformed plane. To satisfy the 
boundary condition of zero normal velocity at the solid wall ~ = 0, an image vortex of 
strength -r., at (=-Cis introduced. 
The circulation of the single vortex is determined by imposing the Kutta condition at the 
upstream edge ( = -i. Eliminating the singularity at the upstream edge requires that 

d~l =0 
d( C=-i 

(3.27) 

During the initial stage of the roll-up the flow separation at the edge is only influenced by 
the local flow velocity and can be obtained from the similarity solution. In that case the 
initial position of the point vortex and its circulation are approximated by equation (3.26) 
and (3.25), respectively. 

In the free-vortex method, the point vortex is convected with the local velocity, given by 
equation (2.65), taking into account the singular behavior of the expression for the velocity 
a.t the point vortex. In the force-free method, the convection velocity of the vortex is given 
by equation (2.76). The trajectory of the point vortex can be obtained by integration of 
the velocity. Each time step the Kutta condition equation (3.27) determines the time­
dependent circulation of the vortex. The time-wise integration is performed employing a 
two-step explicit Runge-Kutta scheme 

z(t + L\t) 

z(t + L\t) 

z(t) + v(z(t), t)L\t 

z(t) + ~ (v(z(t),t) + v(z(t + L\t), t)) L\t 

(3.28) 

The trajectory of the point vortex and its circulation are presented in figure 3.11. Also 
the results of the single-vortex similarity solution near the edge, given by equation (3.25) 
and (3.26), are given. Similar to the behavior found for the self-similar problem of the 
flow past a wedge, also for the starting flow in aT-junction, the free-single vortex method 
overestimates the circulation and the distance of the point vortex to the upstream edge. 

In the free-single vortex method, the circulation of the vortex a.nd the distance to the 
edge increase dramatically when the vortex approaches the downstream edge. This is 
caused by the dipole-like behavior of the combination of the vortex with its image vortex. 
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While the vortex convects far from the upstream edge, the circulation of the vortex has to 
increa.'le fast to satisfy the Kutta. condition at the upstream edge. The tangential velocity 
induced at the upstream edge due to the vortex and its image decreases as 1/r when the 
vortex is near this edge, where r is the distance between the point vortex and the edge, but 
as l/r2 when the vortex is in the region near the downstream edge. The velocity induced 
by the image vortex tends to force the vortex into the side branch so that the process 
is strongly accelerated. This singular and unrealistic behavior of the circulation in the 
free-vortex method applied to the T-junction has already been observed by Bruggeman 
(1987). The force-free single-vortex method tends to decrease the amount of vorticity 
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FIGURE 3.11: Trajectory of the center of vorticity of the vortex system 
and its circulation as a function of time for the impulsively started flow in a 
T-junction. (··· .. ·, VS) vortex-sheet method (obtained from figure 3.12) 
(-- -) vortex-blob method VB (obtained from figure 3.14) (---) single 
free-vortex method F; (--·--I--) force-free single-vortex method FF; 

two-vortex source-free method TV; (- - - · - · - - -) similarity 
solution SIM (valid for small times). 
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generated, and also the velocity of the vortex. However in this method the vortex velocity 
will become zero when the slip velocity induced on the vortex by the Magnus force balances 
the local velocity and the right hand side of equation (2.76) vanishes. From figure 3.11 it 
follows that the force-free vortex method tends to underestimate the vortex velocity while 
the free vortex method tends to overestimate this velocity. With this latter method, also 
the circulation is overestimated. The single-vortex method therefore must be rejected as 
a simple method to describe the vortex formation process in an internal flow such as in a 
T-junction. 

Two-vortex method 

In the two-vortex method as discussed in the previous section the circulation of the edge 
vortex is determined from a similarity solution of the local flow near the upstream edge. 
The velocity potential due to the main flow and the main vortex at position (v of strength 
r v is then given by 

4>(() =.!,In('+ i/lf5) - ifv In('- (v) 
11' (- i/lf5 211' ( + (~ 

(3.29) 

Near the upstream edge the velocity potential due to the attached main flow and the main 
vortex can be expressed as by 

-iA(( + i) + B(( + i)2 + ... 

with: A --;: + ~; ( -i ~ (v - -i ~ (J 
B = 5/5 if 11 ( 1 1 ) 

811' + 411' ( -i- (.,)2 - ( -i + (~)2 

(3.30) 

(3.31) 

(3.32) 

Because 0 < IAI ~ IBI the similarity solution for the edge vortex is given by equation 
(2.93) 

r. ~1rAAIBID3t:J..t (3.33) 

Ze = ~ + i + reei<l>e (3.34) 
3 

with: r. = (~AIBID2 t:J..t) 
2 

cf>e 225° 

with A = 2/3, 2/5 and 1/3 for the free-vortex, force-free and source-free methods, res­
pectively. Although the edge vortex does not leave the edge tangentially, and does not 
accurately describe the vortex sheet near the edge, the shed vorticity is accurately de­
scribed by equation (3.33) according to Graham (1983). 
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Each time step the main vortex and the edge vortex are combined by an amalgamation 
process in which the potential difference between the main pipe and the side branch is not 
affected and in which the total circulation is conserved. This amalgamation procedure has 
also been used by Disselhorst & van Wijngaarden (1980) to describe the process of vortex 
shedding at an open pipe exit with sharp edges. The amalgamation procedure for the 
T-junction is described by Bastiaans (1991). When the two vortices are near the upstream 
edge, the amalgamation process is identical to the amalgamation in the computational 
plane described for the flow around a wedge, equation (2.122). The newly formed vortex 
at position Zv is then convected with the local flow velocity by a second order explicit 
Runge-Kutta scheme. 

The result of this source-free two-vortex method is included in figure 3.11. While the 
circulation obtained with the two-vortex method corresponds with the result of the force­
free single vortex method, the vortex trajectories differ significantly. During the initial 
phase the circulation of the main vortex and the initial angle of convection correspond to 
the similarity solution. 

Vortex-sheet method 

For the vortex-sheet method the similarity solution for the point vortex is used as an 
initialization for the calculation of the impulsively started flow in aT-junction. In this case, 
zv and r v are given by equation (3.26) and (3.25), respectively and the similarity solution is 
used fort ::; t 1• To start off the vortex-sheet method, five panels with a constant circulation 
f(s) distribution are attached to the upstream edge along a streakline of the flow. The 
velocity due to the vortex sheet and the point vortex core in the computational plane is 
given by equation (2.83) and (2.84), respectively. The derivative of the transformation 
function!'(() is given by equation (3.17) and the velocity potential is given by equation 
(3.11). Since the convection of the vortex system and the Kutta condition are formulated 
in terms of the coordinates of the computational plane, a transformation of the coordinates 
to the physical plane is not necessary during the calculation, except for the amalgamation 
process and for the final result. 

With the application of the Kutta condition vorticity is generated at the edge and is 
convected along the vortex sheet.' The vortex sheet starts to increase in length and to wind 
around the point vortex. During the calculation the angular extent of the vortex sheet is 
limited to a maximum angle Bv· An adaptive panel distribution scheme along the vortex 
sheet is used during the calculation, where the maximum angle subtended by a single panel 
is llBma:r:· The time step is determined by allowing a maximum displacement of a fraction 
:F of each individual panel width. In addition the derivative of the transformation function 
is not allowed to vary more than 20% on each individual panel. 

Figure 3.12 presents the results of the impulsively started flow in a T-junction com­
puted with the vortex-sheet method for 0 < tU0f H < 3.5. During this period the vortex 
sheet grows continuously and reaches the downstream edge. The parameters used for the 
computations are given in table 3.5. · 

When the vortex sheet hits the downstream edge the vortex sheet splits into two parts, 
one convects into the side branch, the other convects into the main pipe. For tU0 / H = 1.5 
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FIGURE 3.12: Impulsively started flow in aT-junction computed with the 
vortex-sheet method. 
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TIME STEP NR.. :F Llsmaz tl.Omax Dv 
1. 250 0.2 0.01 zoo ZZ5° 

251. 500 0.2 0.02 zoo 360° 
501 . 1000 0.3 0.05 zoo 540° 
1001 - 4000 0.3 0.05 zoo 900° 

TABLE 3.5: Parameters used for the application of the vortex -sheet 
method to the starting flow in aT-junction, see figure 3.12 

and tU0 / H = 2.5 the characteristics of the solution of the vortex-sheet method are shown in 
figure 3.13. At tU0 / H = 1.5, the vortex distribution is quite regular, with a local maximum 
value of the vortex distribution corresponding with a local maximum of the curvature of the 
sheet. Furthermore, again the vortex sheet leaves the upstream edge tangentially, while the 
curvature at the edge in infinite, similar to the case of a separated flow around an infinite 
90"-wedge At tU0 / H = 2.5, when the vortex sheet nearly hits the downstream edge, the 
vorticity distribution has a. peak value a.t the point of the sheet closest to the downstream 
edge, while also the curvature has a maximum value at that point. At tU0 / H = 3.5, 
due to the Kelvin-Helmholtz instability of the straight vortex sheet, vorticity starts to 
concentrate into rolled-up regions. The wavenumber of this instability is determined by 
the chosen value of the parameter Llsma:r of the numerical scheme. 

Vortex-blob method 

The results obtained with the vortex-blob method with dcsingularisation parameter o = 
0.05 are presented in figure 3.14. These results show a great resemblance with the results 
of the vortex-sheet method, except for the instability of the sheet which occurs in the 
vortex-sheet solution after the initial vortex hits the downstream edge but not in the 
vortex-blob solution. In the latter solution the instability is determined by the value of 
the desingularisation parameter li. For the vortex-blob solution the instability sets in at a 
later moment in time. 

Discussion 

To compare the results of the vortex-sheet and vortex-blob method with those of the dis­
crete vortex methods, the center of vorticity and the circulation are included in figure 3.11 
as a function of time. The trajectory of the center of vorticity and circulation as a func­
tion of time obtained with the vortex-sheet method are similar to those obtained with the 
vortex-blob method. 

In the two-vortex method the computed vortex path and circulation agree well with 
those computed by the more accurate vortex-sheet and vortex-blob method, primarily 
as a result of the application of the Kutta condition being enforced by the edge vortex. 
Therefore the two-vortex method appears to be the most attractive form of a. simplified 
method to describe the vortex shedding process in a T~junction. However, contrary to the 
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vortex-sheet method, the moment of appearance of a new center of roll-up vortex is an 
empirical factor in the discrete vortex method. 

The moment in time of terminating the amalgamation of vorticity into the main vortex 
and starting a new main vortex has been discussed by Graham (1977, 1986). It is clear, 
that when the sign of the vorticity generated changes, a new center of roll-up will develop. 
However, if the sign of the generated vorticity does not change, Graham (1977, 1986) 
proposes to start a new vortex when the rate of vorticity generation is at a minimum. 
This criterion is supported by the calculations on the roll-up of a vortex sheet behind an 
elliptically loaded wing, discussed in chapter 2, where instabilities occurred at the position 
where di' / ds is at a minimum. 

9.3.4 Experiment 

Flow visualization 

To verify the numerical results of the convection a.nd roll-up of the vortex sheet an exper­
imental setup has been built to visualize the flow in aT-junction. For the starting flow 
experiment, a T-junction has been built consisting of square brass pipes of 3.0 em width 
H. The side branch has a length of 6.0 em, which is twice the side branch width. For 
visualization purposes, part of the side walls of the T-junction are made of glass windows. 
A starting flow is realized by opening a valve within less than I ms. 

A pressure difference over the system is obtained by decreasing the pressure in the 
laboratory with the help of the ventilation system of the building. The room in which 
the experiment has been carried out has a volume of 40 mS, while the laboratory building 
whiCh is used as a high-pressure supply has a volume of 3600 m3 . The maximum pressure 
difference which ca.n be attained in this way is 800 Pa. This pressure difference tlp is 
measured within 2 Pa by means of a Betz water manometer. The experimental setup is 
shown in figure 3.15. The high pressure room is connected to the main pipe by a contrac­
tion which yields an approximately uniform velocity distribution in the upstream part of 
the main pipe. The operating pressure during the experiments was dose to atmospheric 
pressure and the temperature dose to room temperature (295 K). A standard schlieren 
method was used to visualize the flow. By injecting C02 in the side branch a refr:active 
index variation is created across the shear layer enabling its visualization. A nanolite spark 
discharge provides a light pulse of about 80 nanoseconds duration. In order to obtain a 
visualization at a well defined point in time, the na.nolite light source can be triggered 
by a hot wire anemometer, placed just upstream of the side branch. With the hot wire 
anemometer, the development in time of the main flow velocity is measured after opening 
the valve. The rise in the velocity with time since the opening of the valve is for different 
pressure differences given figure 3.16. The measured velocity is compared to the veloc­
ity, estimated from integrating the unsteady Bernoulli equation in time for an impulsively 
increased pressure. The final value of the velocity is equal to the Bernoulli velocity, i.e. 
Uma:r: = J21lp/ po, with tlp the initial pressure difference across the valve. 

Figure 3.17 shows some results of the flow visualization of the starting flow in the 
T-junction for three moments in time for different pressure differences tlp = 50, 199 and 
792 Pa. Separation of the flow at the upstream edge causes the formation of a vortex layer. 
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FIGURE 3.15: Experimental setup used for the visualization of the sepa­
rated flow in a T-junction by a standard schlieren method. 
(a) schlieren visualization setup {h) measurement of unsteady velocity and 
pressure inside the T-junction. 
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Right at the beginning of the motion, the vortex layer rolls up and the shear layer with its 
vortical structure convects with the local flow velocity in the direction of the downstream 
edge. 

Upon reaching the opposite edge, part of the vortex layer is forced into the side branch, 
this under influence of the image vorticity in the walls. Under influence of a Kelvin 
Helmholtz-like instability the not rolled-up part of the vortex sheet in the T-junction 
starts to distort and finally roll-up in secondary vortices. The instability of the vortex 
layer is more pronounced when the experiment is performed at a higher pressure difference 
Ap, i.e. an increased strength of the shear layer and the reduction of its thickness (higher 
Reynolds number). 

Numerical simulation by the vortex-blob method 

Using the precise velocity rise as measured with the hot wire anemometer, see figure 3.16, 
a calculation is performed with the vortex-blob method. The value of the desingularisation 
parameter 6 was estimated from the averaged momentum thickness of the shear layer during 
the convection towards the downstream edge for the lowest value of the pressure difference 
(6 ~ 2..fi/i/ H). The results of the vortex-blob method for the numerical simulation of the 
starting flows is presented in figure 3.18. The value of 6 is given by 0.10, 0.05 and 0.025 for 
a. pressure difference tl.p =50, 199 and 792 Pa, respectively. Due to the decreasing value 
of 6, the vortex sheet becomes more sensitive to instabilities and forms small substructures 
in the vortex sheet in a similar manner as observed in the flow visualization. 

A comparison of the x-position of the vortex core and of the front of the vortex sheet 
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is shown in figure 3.19. Here, the upstream edge is taken to be origin, The resul~s of 
the vortex-blob method agree with the experimental data within the accuracy of the mea­
surement for all three cases. Since in this experiment an external (acoustic)· excitation of 
the vortex sheet is not present the instability most amplified (in absence of shear layer 
stretching and curvature) is determined by the thickness of the shear layer and flow noise 
spectra. However, in case the vortex layer is excited by a resonating acoustic field the de­
velopment of the vortex layer including the periodic formation of centers of roll-up which 
follows the starting phase results in much larger-scale structures. These structures are not 
very sensitive to the shear-layer thickness and therefore amenable to simulation based on 
potential flow models. Chapter 4 is devoted to the case of periodic flow. 

3.4 STARTING JET FLOW 

3 . ..{ .1 Introduction 

In the previous section it was shown, that the starting flow in a T-junction can he rea­
sonably described by a two-vortex method, while single-vortex methods appeared to fail 
in describing the flow. The success of the two-vortex method is due to the fact that the 
distance from the edge of the center of vorticity of the vortex layer is of the same order of 
magnitude as the characteristic dimension of the geometry, i.e. the side branch width H. 
In this section a problem is studied where this is not the case, namely the starting flow 
out of a nozzle. This problem is studied for two nozzle geometries, one with sharp edges 
and one with square edges. 

Experimental investigations into impulsively started flow for these two-dimensional 
geometries have been performed by Auerbach (1987) and Blondeaux &, Bernardinis (1981). 
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(c) 

FIGURE 3.17: Starting flow in a T-junction. 
(a) flow visualization for C:.p =50 Pa, (b) C:.p = 199 Pa, (c) C:.p 792Pa. 

Even during the initial development phase of the vortex layer, Auerbach (1987) found 
deviations from the similarity solutions describing the local flow around a wedge. This 
deviation from the similarity solution was also observed in three dimensions experimentally 
by Didden (1979) and Pullin (1979) and confirmed by numerical simulations of Nitsche 
(1992). 

In this section different vortex methods will be used to compute the development of 
the solution of this non-similar flow problem and results will be compared with flow visu­
alization. The single-vortex methods will not be considered, since in the previous section 
it was shown, that these methods are inadequate in describing the behavior of the vortex 
structure accurately. 
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FIGURE 3.18: Numerical simulation of the starting flow in aT-junction, 
shown in figure 3.17. Vortex-blob solution using the velocity obtained with 
the hot-wire anemometer, see figure 3.16. (a) Ap == 50 Pa (o 0.10), (b) 
Ap = 199 Pa (o = 0.05), (c) Ap 792 Pa. (o = 0.025). 

3.4.2 Sharp-edged nozzle 

Impulsively started flow 

The vortex-sheet and vortex-blob method are used to describe the impulsively started flow 
at a sharp-edged nozzle. The coordinates and velocity are non-dimensionalised with the 
channel width H and the velocity U0 , respectively. Furtheron, only non-dimensionalised 
values will he given. In both methods symmetry with respect to the channel centerline is 
assumed. 

For the vortex-sheet method a conformal mapping z = f(() which transforms the flow 
domain in the physical plane onto the half-space lR(() > 0 in the computational plane 
given by z = J(() with 

-1 i 
f(() = + ln(l - i() (3.35) 
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Ap = 50Pa (6 0.10), (b) Ap = 199Pa (c = 0.05), (c) Ap == 792Pa. 
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see figure 3.20. 

15 20 

The nozzle edge at z = 0 in the physical plane is mapped onto the origin ( = 0 in 
the computational plane, while the mean flow originating from the channel at z = -ioo 
corresponds to a point source positioned ( = -i. The complex velocity potential due to 
the attached flow is given by 

4i0(() = 2~ In((+ i) (3.36) 

while the complex velocity potential due to the attached flow, the vortex sheet and point 
vortex describing the vortex core is given by 

4i(() = 4io(() + 4i,(() + 4i.,(() (3.37) 

where 4i0((), 4i,(() and 4i.,(() are given by equation (3.36), (2.87) and (3.3), respectively. 
The initial position of the point vortex in the vortex-sheet method is again obtained from 
the similarity solution for the local flow at the edge z = ( = 0 with 

A -{;; n = 1/2 (3.38) 

B = ;f;; D = 2-.fi 
The vortex has therefore the initial position Zv = rvei~. fort< it and circulation r, with 

r. = nv0tf'3 
q,, 'If (3.39) 

rv c )1/3 = -'1ft 
2 
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FIGURE 3.20: Conformal mapping of the flow domain of a sharp-edged 
nozzle onto a half plane. (a) physical plane (b) physical half-plane (c) 
computational plane 

which corresponds to the force-free single-vortex similarity solution for an attached im­
pulsively started flow around the edge. The initial (active) vortex sheet consists of five 
panels of zero vortex distribution along the streamline originating from the edge. In the 
computations a second (passive) vortex sheet without a vortex distribution is used to mark 
the evolution of the front of the fluid which at t = 0 was inside the channel. 

The development of the vortex-sheet solution is included in figure 3.22, where it is 
compared with Auerbach's (1987) flow visualization in a water channel with impulsively 
&tarted flow. The p~rameters used in the vortex-sheet method are given in table 3.6. 
It should be noted that the Reynolds number based on the velocity of the main flow and 
channel width of the experiment by Auerbach (1987) is rather low, i.e. Re ~ 80. Therefore, 
in the experiment the vortex layer is much thicker that the dye suggests. 

TIME STEP NR. :F Asm.,., ABma:r ()tl 

1 - 250 0.2 0.05 20° 90° 
251 . 750 0.2 0.05 20° 360° 
751 . 1250 0.2 0.10 20° 720° 
1251 . 6750 0.2 0.15 20° 720° 

TABLE 3.6: Parameters used for the vortex-sheet method for the starting 
flow out of a sharp-edged nozzle, shown in figure 3.22. 

Figure 3.22 also includes the results obtained with the vortex-blob method, with a 
value of the desingularisation parameter {J = 0.05. The symmetrical geometry used for the 
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FIGURE 3.21: Panel distribution used for vortex-blob calculation of the 
outflow at a. sharp-edged nozzle. On the axis x = 0 a symmetry condition 
is used. 

calculation is shown in figure 3.2L Inside the channel, a uniform flow is imposed, while 
at the circular far-field boundary, an undisturbed potential outflow is assumed. Note that 
the geometry used for the vortex-blob method is different from the geometry used for the 
vortex-sheet method. Figure 3.22 shows that again the results of the vortex-sheet and 
vortex-blob method are very similar. The different shape found by Auerbach (1987) in the 
flow visualization is attributed to the viscous effects having a relative large influence at the 
low value of the Reynolds number of the experiment. 

A more quantitative comparison of the results is presented in figure 3.23. The center of 
vorticity of the vortex sheet, the circulation and the position of the front, all as a function 
of time are compared with Auerbach's (1987) experimental data and with the similarity 
solution for a starting flow around the nozzle edge, see equation (3.39), which losses its 
validity for longer times. The calculated position of the vortex center, position of the 
front and circulation are almost the same for the vortex-sheet and vortex-blob method. 
The center of vorticity moves in x-direction according to the similarity solution, while in 
y-direction the position of the center of vorticity increases linearly in time. This behavior 
agrees with the prediction by Blondeaux & Bernardinis (1983). They proposed to relate the 
x-component of the position to the attached flow around the edge, and the y-component 
to the symmetrical part of the attached flow. 

The circulation predicted by this model should increase according to the similarity 
solution, equation (3.39). This is in agreement with the numerical results presented in 
figure 3.23. Initially the circulation obtained with the vortex-blob and vortex-sheet method 
depends on time initially according to the similarity solution, however for longer time, the 
circulation increases linearly in time as one would expect for a straight jet, with drfdt = 
wJ. 

Auerbach (1987) found for the vortex core trajectory both in y- and x-direction an 
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FIGURE 3.23: Position o( center of vorticity of the vortex sheet together 
with its circulation and position of the front for the impulsively started flow 
out of a sharp-edged nozzle. (0) experimental data (Auerbach (1987)), see 
figure 3.22. 
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increase in time according to the similarity solution, equation (3.39). However, from the 
present numerical solutions it is clear, that this is not valid for the position of the center 
of vorticity. 

For the three-dimensional case of the starting flow in an unflanged circular pipe, Didden 
(1979) observed that the axial coordinate of the vortex core does not obey the similarity 
relation either. Nitsche (1992) showed by numerical simulation that the axial position of 
the vortex core increases in time according to t312, which differs from the two-dimensional 
case. This might be due to the self-induced velocity of the vortex rings, which are formed 
in the case of the flow out of a circular pipe. This self-induced velocity is not present in 
the two-dimensional case. 

3.4.3 Square-edged nozzle 

Impulsively started flow 

The flow separation process at the edges of a square-edged nozzle is modeled by using 
the two-vortex method with an amalgamation procedure, the vortex-sheet and vortex-blob 
method. It has been assumed that the flanges of the nozzle are infinitely large and that the 
flow remains symmetrical with respect to the centerline of the channel, so that it suffices 
to use only one sheet. 

For the two-vortex method and the vortex-sheet method, the nozzle geometry is mapped 
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to the half plane lR(() > 0, shown in figure 3.24 by the conformal mapping z f((), where 

/(() = i..fi(- i In (..fi( + 1) + 1/2 (3.40) 
7r ..fi( -1 

The edge of the nozzle ( z = 0) is mapped onto the origin ( = 0 in the computational 
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FIGURE 3.24: Conformal mapping of a square-edged nozzle onto a half 
plane (a) physical plane (b) physical half-plane (c) computational plane. 

plane, while the mean flow from the channel, originating at z = is mapped onto a 
point source at ( = -i. The complex velocity potential of the impulsively started flow is 
given by 

<Po(()= 
1 

ln((+i) (3.41) 

while the velocity potential of the separated flow is given by equation (3.37). For the vortex­
sheet method, the initial position of the point vortex is again obtained from a similarity 
solution near the edge z = ( = 0 with 

A = -};; n = 2/3 (3.42) 

B = ..!... D (3tr)2
'

3 
411"' 

The vortex has therefore the initial position Zv r.,ei<P. fort < tl and circulation r ... with 

( 00 r'4 rv = vra; -5-t 
4 1r 

</>v = 3 . ( vffl) 
2arcsm T (3.43) 

fv ( 400 r'2 311' --t 
270 1r 
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which corresponds to the force-free single-vortex similarity solution for an attached im­
pulsively started flow rounding the square-edge. The initial (active) vortex sheet consists 
of five panels of zero vortex distribution along the streamline originating from the edge. 
Again, a second (passive) vortex sheet without vortex distribution is used to mark the 
evolution of the front of the fluid which at t = 0 was inside the channel. The method used 
to describe the vortex sheet development is similar to the vortex-sheet method used for the 
sharp-edged nozzle. The computed shape of the vortex sheet are presented in figure 3.25. 
The parameters used to obtain this solution are listed in table 3.7. In the numerical sim-

TIME STEP NR. F ~Smax ~()max Bv 
1- 250 0.1 0.025 20° goo 

251 - 350 0.1 0.05 20° 180° 
351 - 600 0.1 0.10 30° 360° 

601 - 1600 0.2 0.10 20° 540° 
1601 - 2600 0.3 0.10 30° 900° 
2601 - 6600 0.4 0.10 30° 900° 

TABLE 3.7: Parameters used for the vortex sheet solution for the impul-
sively started flow out of a square-edged nozzle, shown in figure 3.25. 

ulation symmetry is assumed, which imposes a zero normal velocity at the symmetry axis. 
The center of vorticity of the vortex sheet and the circulation are presented in figure 3.27. 

In the two-vortex method, the main vortex represents the center of vorticity, while the 
generation of vorticity is modeled by the edge vortex, which position and circulation is 
determined by a similarity solution of the separated flow near the edge of the nozzle. The 
velocity field close to the edge is the sum of the flow induced by the attached main flow and 
the velocity field induced by the main vortex, similarly to the procedure followed for the 
case of the starting flow in aT-junction, see section 3.3. In the present case the complex 
velocity potential is given by 

-iA( +B(2 + ... (3.44) 

1 rv ( 1 1 ) --- -----
271" 27r 1 - (v 1 + (: with: A 

B = 1 ifv ( 1 J ) 
47r + 47r (1- (v)2 - (1 + (:)2 

The so found position of the center of vorticity, the position of the front of the contact 
line and the circulation of the rolled-up vortex layer are compared with the results of the 
vortex-sheet method in figure 3.27. Both the position of the front and the center of vorticity 
of the rolled-up vortex sheet obtained with the two-vortex method agree with those of the 
vortex-sheet method as long as the scale of the vortex sheet is of the order of the width 
of the channel (r = O(H)), i.e. for tU0f H < 2. For x > O(H), the velocity at the vortex 
is overestimated due to the velocity induced by the image vortex distribution in the plane 
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FIGURE 3.25: Numerical simulation of the impulsively started flow out of 
a square-edged nozzle. The computations have been carried out for half the 
configuration, imposing symmetry along the line x 0. (-··left-hand side) 
Vortex-blob method (8 = 0.10) right-hand side) vortex-sheet method 
(t::..smo:r = 0.10}. (a-c} are at time tUo/ H = 1.0, 3.0, and 5.0. respectively. 
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FIGURE 3.26: Panel distribution for the simulation of the flow out of a 
square-edged nozzle, using the vortex-blob method. On the axis x = 0 a 
symmetry condition is used. 
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of symmetry. The circulation obtained with the two-vortex method and the one obtained 
with the vortex-sheet method shows a similar behavior. 

The vortex-blob method is also used to describe the impulsively started flow in a nozzle. 
The geometry used for the boundary-element method is given in figure 3.26. On the circular 
far-field boundary, a radial, uniform outflow is assumed in the model, with the total flux 
through the boundary equal to the flux out of the channel. The results, obtained with 
a. value of the desingularisation parameter 8 = 0.10 are compared with the vortex-sheet 
method in figure 3.25. In figure 3.27 the position of the front, the center of vorticity and the 
circulation of the vortex sheet are compared with the results of the vortex-sheet method 
and of the two-vortex method. 

In contrast to the case of a sharp-edged nozzle, for a square-edged nozzle during the 
initial development of the sheet both the x- and y-coordinate of the center of vorticity follow 
the similarity solution given by equation (3.43}. Also the circulation increases according to 
the similarity solution. On a larger time scale, the circulation increases linearly with time 
according to df/dt ~U~. Although the circulation and center of vorticity obtained with 
the two-vortex method deviate from the vortex-sheet method for tU0f H > 2, the front 
position of the vortex sheet is well described by the two-vortex method until tU0 / H ~ 5. 

3 .. ./.4 Experiment 

Flow visualization 

In order to validate the numerical simulations, an experimental setup has been built for 
visualizing the starting flow in a square-edged nozzle. The experimental setup is similar 
to the setup described in section 3.2 for the T-junction geometry. Instead of the T-junction 
geometry, a flue organ pipe is used as the basic geometry. The two-dimensional organ pipe 
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FIGURE 3.27: Position of center of vorticity of the vortex sheet, its cir­
culation and position of the front for the impulsively started flow out of a 
square-edged nozzle. 
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geometry, shown in figure 3.28, has a sidewall with length 283.0 mm and is positioned at 
a distance of 20.0 mm from the flue channel. With this geometry, the transient behavior 
of a flue organ pipe was studied by Mahu et al. (1993), but for the present purpose, the 
labium and the upper wall of the pipe has been removed resulting into a flanged channel 
eTJd. 

Although the resulting geometry is not symmetric, the flow visualization can be used 
to study the initial stage of the symmetric vortex sheet development. The height of the 
flue channel is 1.0 mm. The upper wall of the flue channel has a thickness of 5.0 mm, and 
as a result, the influence of the finiteness of the upper wall and of the sidewall is expected 
to be negligible as long as the vortex layer has a scale which is smaller than a few times 
the channel height. 

The unsteady pressure Po(t) has been measured in the foot of the pipe with an ac­
celeration compensated piezo electrical gauge (type PCB 116) which is mounted flush· in 
the wall. The pressure gauges have a diameter of 10.0 mm. The signal of the pressure 
gauge is amplified by a charge amplifier (type Kistler 5007, with bandwidth 0.1 Hz. to 22 
kHz.) and transmitted to a digital memory (8 bits, 2048 samples) for further analysis by 
a Personal Computer. Pressure supply is provided by the ventilation system of the room, 
like for the starting flow experiments for the T-junction. The velocity at the flue exit Uo(t) 
is calculated from the pressure in the foot of the channel by using the unsteady Bernoulli 
equation. The visualization of the flow has been performed by using a standard schlieren 
method, with a differen.ce in the refractive index provided by injecting C02 in the foot of 
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jet 

FIGURE 3.28: Organ pipe geometry (dimensions in mm). 

the flue channel. The nanolite spark discharge, with a time resolution of 80 ns, is triggered 
by the pressure rise in the foot, while a delay time can be introduced to obtain a snapshot 
of the flow at different moments in time. Further details of the experiment can be found 
in Mahu (1993). In figure 3.29 the visualization of the starting flow in the channel for 
an initial pressure difference of 250 Pa across the valve is compared with the results for 
a pressure difference of 750 Pa. Here, time has been non-dimensionalised as t• =tUB/ H, 
with U B = J2b..p/ pco2 the Bernoulli velocity, based on the initial pressure difference b..p 
across the valve, the density of carbon dioxide in the foot pco, = 1.98 kgfm3 and H the 
channel height. 

The Reynolds number, based on the same quantities is 1360. A deviation from sym­
metrical flow is observed for dimensionless time t > 30, which is assumed to be due to the 
non-symmetric geometric arrangement. For a pressure difference of b..p = 150Pa the corre­
sponding Reynolds number is 2360. For the higher pressure difference, due to the increased 
Reynolds number, the shear layer thickness decreases, which yields the vortex layer mpre 
sensitive to the Kelvin-Helmholtz instability. Due to this instability, small-scale vortices 
appear in the vortex layer at later times, which are not found in the low-pressure experi­
ment. Deviation from symmetry is observed for tUB/ H > 40 when xf /l > 5. The velocity 
as a function of time, determined from the pressure difference across the flue channel, is 
presented in figure 3.30. 

For a series of experiments the position of the front of the contact line between the 
outside air and the C02 flowing out of the flue channel and the axial position of the center of 
the vortex core is presented in figure 3.31 and 3.32, respectively. Only small differences are 
found for the position of the front for the experiments both at va.rious pressure differences. 
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FIGURE 3.29: Flow visualization of the initial behavior of the starting flow 
from a flanged nozzle. (a) tlp = 250 Pa,Re = 1360 (b) tlp = 750 Pa, Re 
2360. (1·3) are at time tUs/H = 31.2, 40.8, and 51.0, respectively. 
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(a) 

(b) 

For the position of the center of the rolled-up vortex layer, the differences are larger, 
in part attributed to the difficulty in determining accurately the position from the flow 
visualization. Differences between the results at low and high pressure are probably due 
to viscous effects. 

Two limit values of the front position can be deduced, one by assuming that a straight 
jet is formed; a second one by assuming an attached potential flow. For the straight jet 
the front position is obtained by integrating the time-dependent velocity in time, i.e. 

:CJ(iet) l Uo(t*)dt* (3.45) 

where U0 (t) is given in figure 3.30. The position of the front obtained in this way 
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FIGURE 3.30: Main flow velocity, obtained from the pressure difference 
across the flue channel. experimental data,(---) theoretical velocity 
for impulsively increased pressure(--·--·--) Bernoulli velocity UB. 

FIGURE 3.31: Position of the front of the contact line for the flow out of 
a flanged nozzle. Compa.rison with results of the vortex-blob met. hod. 

forms an upper bound, because in reality the flow spreads over a larger region than the 
width of the nozzle. In the second case the flow does not separate and the front position 
can be obtained from the trajectory of a tracer starting on the centerline of the channel 
dxf(pot)(t)/dt U(x(t),t). This velocity is estimated to be U(x,t) = U0(t)/n, where it 
has been assumed that the flow originates from a point source at x = 0 and spreads over 
an angle 1r. This leads to 

Xj(pot) == 
2 rt Uo(t*)dt* 
1r Jo 
2 ;x !(jet) 

(3.46) 

The value obtained from the potential flow is an lower limit for the front position since 
in reality the flow separates and a jet of finite width is formed. IJot.h limit values for the 
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FIGURE 3.32: Position of the center of the vortex core for the flow out of 
a flanged nozzle. Comparison with results of the vortex-blob method. 
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position of the front are shown in figure 3.31. Indeed the experimental data are somewhere 
between the jet limit and the potential-flow limit. 

vortex-blob method 

A numerical simulation of the flow for a geometry closely matching that of the experi­
ment has been performed by the vortex-blob method. The panel distribution used for 
the boundary element method is shown in figure 3.33. On the circular far-field boundary, 
an undisturbed radial potential outflow is assumed with a total flux equal to that of the 
uniform inflow over the channel inlet. The value of o is determined from the value of the 
momentum thickness Om for a fully developed laminar Poiseuille flow in the channel. 'With 
9m = H/15 we estimate 5 ~ 40m/H ~ 0.3. The results of the numerical simulation by the 
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FIGURE 3.34: Starting flow in a flue organ p1pe Wit/lout a /a/Jmm. (a) flow 
visualization for Ap == 750Pa (b) Numerical simulation with the vortex­
blob method (6 = 0.3). (1-3) are at tUa/H = 46.3, 56.5 and 95.3, res­
pectively 

flows 
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vortex-blob method with 6 = 0.3 are compared with the flow visualization for t1p = 750 Pa 
for a longer time period in figure 3.34. 

The predicted position of the center of the rolled-up vortex layer and that of the front 
are compared with the experimental data in figure 3.32 and 3.31, respectively. Due to the 
accurate description of the geometry and the use of the experimentally obtained velocity 
rise, both the position of the front and that of the vortex center a.s a function of time are 
satisfactorily predicted by the vortex-blob method. 

3.5 CONCLUSIONS 

The starting flow in a number of geometries is simulated by potential flow methods devel­
oped in the previous chapter. A single-vortex method usually fails to describe the vorticity 
generation accurately, a.s the total circulation of the vortex layer and its velocity of con­
vection is overestimated. If care is taken to describe the generation of vorticity near the 
sharp edge more accurate, for example by means of an edge vortex or an edge segment, the 
rate of vorticity generation agrees with more elaborate methods such as the vortex-blob 
and the vortex-sheet method. However, in these simplified methods still conditions have to 
be imposed to the point vortex/feeding-sheet combination, in order to obtain a reasonable 
description of the center of vorticity a.s the position of the main vortex. The results usually 
agree with those of other methods and experiments as long a.s the distan,ce of the main 
vortex to the vorticity generating edge is of the same order of magnitude a.s the channel 
width. 

For the generic problem of the flow past a. wedge the numerical simulation by a second, 
order vortex-sheet method has shown, that application of the Kutta condition at the edge 
results in a. vortex sheet which leaves the wedge tangentially, either to the lower or to the 
upper surface. However, the curvature of the sheet at the edge is infinite, in agreement 
with predictions by Clapworthy & Mangler (1974). 

For the starting flow in a. T-junction, a two-vortex method with an appropriate amal­
gamation procedure can accurately describe the evolution of the circulation of the sheet 
and the convection of its center of vorticity ip to the moment that the vortex sheet collides 
with the downstream edge. The two-vortex method fails to accurately describe the jet-flow 
out of a nozzle as soon a.s the distance of the main vortex to the edge is large compared to 
the channel height. 

For the starting flow out of a sharp-edged nozzle, the time history of the axial coordinate 
of the center of vorticity of the vortex sheet does not follow the similarity solution for the 
flow around an isolated wedge of infinite extent. The lateral coordinate ancl the circulation 
do follow the similarity solution, at least during the initial period. This deviation for 
the axial coordinate from the similarity relations has been observed also by Blondcaux & 
Berna.rdinis (1983) for a. two-dimensional sharp-edged channel, and by Didden (1979) for a 
circular pipe. However, for a circular pipe, the axial coordinate increases in time like f!•/2, 
while in two-dimensions it increases like t. This different behavior is probably due to the 
curvature-dependent self-induced velocity of a. vortex ring. 

For a. two-dimensional square-edged nozzle both the axial and the lateral coordinate 
obey the similarity solution, a.s does the circulation of the vortex system. 
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Chapter 4 

Numerical simulation of periodic flows 

Abstract 

Acoustically-induced periodic flows are studied both numerically and experimen­
tally. In the presence of an acoustic field only vorticity generation at a sharp 
edge is a highly nonlinear phenomenon. This phenomenon is studied for a sharp­
edged nozzle. Both the low- and high-Strouhal-number limit are considered. In 
the high-Strouhal-number limit there appears to be a phase shift between the pe­
riodic formation of vortex structures and the periodic acoustic velocity field. In 
the presence of a mean flow the vorticity is convected away from the edge. The 
periodic vortex formation process is triggered by the acoustic field. For this case 
the periodic formation of vortex structures in aT-junction and a cross-junction are 
visualized by means of a schlieren method and simulated numerically by different 
vortex methods. 

4.1 INTRODUCTION 

In this chapter the periodic flow involving generation and convection of vorticity in several 
geometries is simulated for an imposed acoustic velocity field using the vortex methods 
described in chapter 2. 

Vortex shedding from a sharp-edged solid body emerged in an external flow leads to 
time-varying forces on the body and has been studied extensively during the last decade. 
For the flow around a cylinder with a square or a rectangular prism cross-section discrete­
vortex methods have been used by Clements (1973), Nagano et al. (1982) and Sarpkaya 
& Ihrig (1986). The Strouhal number of the vortex formation process as well as the 
lift and drag force coefficient are well predicted by the discrete vortex methods. Similar 
methods have been used by Sarpkaya (1975) and Kiya & Arie (1986) for the periodic vortex 
formation process associated with the flow about an inclined plate in a steady mean flow. 
For these problems with a steady uniform onset flow the qnsteady ch~tracter of the vortex 
formation process is not triggered by an external excitation. 

The interaction between an unsteady flow and flow separation for a plate has been 
studied by Graham (1980) and for an axi-symmetric disc by de Bernardinis et al. (1981). 
The latter studied the flow separation due to an oscillatory potential flow around a disk 
starting from rest. Although using the discrete vortex method a. stable periodic solution 
was not obtained, the unsteady forces compared well with experimental data. Also for the 
periodic flow through an axi-symmetric orifice, the pressure difference across the orifice 
could be accurately predicted. 
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The periodic vortex shedding from a nozzle, induced by a resonating acoustic field inside 
a pipe, in absence of a mean flow has been studied by Disselhorst & van Wijngaarden (1978, 
1980). Describing the vortex shedding by a multi-point-vortex method a periodic solution 
could only be obtained for high acoustic Strouhal numbers. 

In the limit of high acoustic Strouhal number the acoustic energy loss by vortex shedding 
could be predicted reasonably well by this method. However, for acoustic Strouhal numbers 
of order unity, the method failed. 

In the presence of a mean flow component the vortices formed can also transfer kinetic 
energy from the main stream to the acoustic field. This phenomenon has been studied by 
Welsh & Stokes (1984, 1986) for the vortex shedding from a plate inside a duct and for two 
plates in tandem in a duct by Stoneman et al. (1988). The discrete-vortex approach yields 
a prediction of the Strouhal number at which self-sustained resonances occur. However, 
the amplitude of the self-sustained resonance could not be predicted. 

Bruggeman et al. (1989, 1991) studied the periodic vortex formation in pipe systems 
with closed side branches where it is the source of self-sustained oscillations. Self-sustained 
resonances could be obtained in the closed side branches at specific values of the Strouhal 
number. Using a single-vortex method the Strouhal number at which resonance occurs 
could be predicted, although the circulation of the vortices and the strength of the aero­
acoustic source was overestimated by a factor 3. 

In the present numerical analysis of periodic vortex formation, we will consider the 
case of periodic vortex shedding induced by an imposed periodic acoustic velocity field. 
The amplitude of the acoustic velocity field will assumed to be constant. The interaction 
between the velocity field and the acoustic field is considered in chapter 5 for an open pipe 
termination and in chapter 6 for a pipe system with two closed side branches. 

The configurations studied are the following: 

• a sharp-edged nozzle, i.e. similar to the configuration studied by Disselhorst & van 
Wijngaarden (1980) 

• a T-junction with sharp edges, studied experimentally by Bruggeman (1987) 

• a cross-junction with sharp edges, studied experimentally by Ziada & Biihlmann 
(1992). 

For the periodic flow in a sharp-edged nozzle, the results of the numerical simulation of 
the flow will be compared with the flow visualization data obtained by Disselhorst (1978). 
For the T-junction and the cross-junction configuration flow visualization obtained in the 
present study, at high amplitudes of the acoustic field, will be compared with the results of 
the numerical simulation. For the T-junction, at moderate acoustic amplitude, the results 
of the numerical analysis will be compared with Laser Doppler velocity measurements by 
Bruggeman (1987). 
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4.2 SHARP-EDGED NOZZLE 

4.2.1 Introduction 

In this section the periodic flow out of a sharp-edged nozzle of width H is considered. 
The vortices, formed in the shear layer separating from the sharp edges of the channel, 
are described employing the discrete vortex methods described in chapter 2 and used in 
chapter 3 for starting flow problems. The conformal mapping of the geometry of the nozzle 
is shown in figure 3.20. The velocity of the periodic acoustic flow field is u.,c(t) = u.,csin(wt), 
directed into the pipe during the first half period. The acoustic Strouha.l number is defined 
as 

(4.1) 

where T is the period of oscillation of the acoustic velocity field. In absence of a mean flow 
the value of the acoustic Strouhal number determines the convection of a vortex structure 
during a period of the acoustic field. If the Strouhal number is small, and the acoustic 
velocity is directed outward the separated flow forms a free jet flow, while when the acoustic 
flow is directed inward the flow forms a jet with a vena-contracta inside the nozzle. For low 
values of the Strouhal number a quasi-stationary theory can be used. This low-Strouhal­
number limit has been extensively studied by Disselhorst (1978) and van Wijngaarden 
(1968) and will not be discussed here. 

On the other hand, if the Strouhal number is high, the vorticity generated convects a 
distance from the edge small compared to the nozzle width H and the flow can be approx­
imated by the periodic flow around the edge of a single plate in isolation, i.e. neglecting 
the influence of the opposite nozzle edge. This limit has been studied by Disselhorst & van 
Wijngaarden (1978, 1980) using a multi-point vortex method. 

In the intermediate range of acoustic Strouhal numbers of order one, the vortex struc­
tures formed at the opposite edges of the nozzle interact and the complete nozzle geometry 
has to be considered. For Srac 2.54 Disselhorst (1978) visualized the periodic flow using 
a schlieren method. This case of Strouhal numbers of order unity will be considered first 
in section 4.2.2, followed by the study of the high-Strouhal-number limit, see section 4.2.3. 

4-2.2 Strouhal number of order unity 

For the case Srac = 2.54 the visualization of the periodic flow around the pipe exit by 
Disselhorst (1978) is shown in figure 4.1. The flow is visualized by schlieren-interferometry 
which detects gradients in refractive index. The refractive index has been induced by 
slightly heating the walls. The asymmetry of the flow with respect to the nozzle edge is 
due to the influence of the vortex layer at the opposite nozzle edge. The arrows denote 
the total velocity measured by means of a hot-wire (visualized at tfT = 0.71). The 
estimated position of the core center during one period of the rolled-up part of the vortex 
layer is presented in figure 4.2 for the two vortex structures which are present in the flow 
visualization. The :first vortex structure (denoted in figure 4.2 by a x) is generated when 
the acoustic velocity is directed into the channel, while the second vortex structure (denoted 
in figure 4.2 by a o) contains vorticity of opposite sense and is generated when the acoustic 
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velocity is directed out of the channel. At the end of each period the two vortices with 
opposite circulation form a dipole which moves away from the edge. 

The axial and lateral coordinate of the estimated vortex core centers of the two vortex 
structures are presented in figure 4.3. From this figure it is clear that a new vortex structure 
is generated before the acoustic velocity changes sign, both for the first and for the second 
vortex. The vortices are generated approximately 0.1 T ahead of the change in acoustic 
velocity. This is due to the velocity induced by the vortex generated during the previous 
half period. A new vortex is generated when the sum of the acoustical velocity and the 
velocity induced by the vorticity changes sign at the edge. 

For the numerical simulation of the periodic flow in the sharp-edged nozzle the geometry 
used is identical to the one used for the calculation of the starting flow in a sharp-edged 
nozzle, shown in figure 3.20 and 3.21, in which symmetry of the flow with respect to the 
centerline of the channel has been assumed. 

Single-vortex method 

Using a single-vortex method, all the vorticity generated at the edge is concentrated in 
a. single point with, at each point in time, the circulation of the point vortex determined 
by the Kutta. condition. This implies that the circulation of the vortex decreases to zero 
when the acoustic velocity decreases to zero and changes sign. Subsequently a new vortex 
is formed at the edge when the velocity changes sign. As a. result in this method only a 
single vortex is present at any point in time. Depending on the condit.ions for the feeding 
sheet/ point vortex combination in this method the velocity of the point vortex is given by 
the local flow velocity at the vortex position given by equation (2.65), or by the value that 
follows from the conditions given by equation (2. 76) for the force-free method or (2.80) for 
the source-free method. 

For the force-free single-vortex method the trajectory of the vortex during one period 
is presented in figure 4.2. The asymmetry of the vortex trajectory is due to the influence 
of the vortex generated at the opposite edge of the nozzle. The vortex leaves the edge 
approximately perpendicular to the edge according to the similarity solution of the local 
separating flow near the edge (see section 3.2.3). The comparison of these results with 
the experimental data obtained by Disselhorst (1978) shows that for this case the single­
vortex method does not accurately predict the vortex path. This is because in reality the 
vortices do not disappear within half a period of the acoustic field and therefore influence 
the formation and convection of the other vortices. 

In figure 4.4 the circulation of the vortex system is shown. For the free-vortex method, 
the circulation is overestimated compared to the force-free method while for both methods 
the total circulation of a vortex system can decrease and is zero when the acoustic flow 
vanishes. 

Single-panel method 

It is expected that, for Strouhal numbers of order unity, vorticity generated at the beginning 
of an acoustic period influences the formation of a new vortex dnring the second half period 
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FIGURE 4.1: Periodic flow out of a sharp-edged nozzle. Sr.c 2.54 
(a) Flow visualization by a schlieren method by Disselhorst (1978) (b) 
numerical simulation by the single-panel method, (--) strea.k/ine of the 
flow (c) numerical simulation by the vortex-blob metlwd (a= 0.04) (Shown 
is the periodic solution at tjT = 0.33, 0.45, 0.71 and 0.96, m5pcctively) 
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FIGURE 4.2: Positions of center of vorticity during one period of acoustic 
oscillation using different methods. Srnc = 2.54 (-) force-free single­
vortex method (FF) (- -)single-panel method (SP) (· · ····)vortex-blob 
method (VB) (li 0.04). Vortex core for first (x) and second (o) vortex 
structure, obtained from flow visualization by Disselhorst (1978), presented 
in figure 4.1. 

of the acoustic field. 1t is therefore important to take into account the influence of vortex 
structures generated during the previous half period of the acoustic flow. This has been 
accomplished by using the single-panel method, in which also the vorticity generation at 
the nozzle edge is described more accurately (see section 2.2.5). In the method the 
vorticity convected away from the edge is represented by a point vortex at position z.., ((v 
in the computational plane) with circulation r .,. 

The initial position of this main vortex is given by the similarity solution for a force­
free single vortex describing the flow past an infinite plate. A straight vortex. segment of 
length S. with a uniform vortex distribution 'Yz in the physical (z· )plane and connected 
tangentially to the edge represents the vorticity generated during the current time step. 
The length of the segment and its circulation are given by equation (2.104) and (2.101), 
respectively. The flow in the proximity of the edge (( = 0) is described by the following 
parameters 

(4.2) 

with ' { 
n = 1/2· 

D = 2..fi; 

which represents the flow past a semi-infinite plate. 
Each time step a new edge segment is generated and subRequ<>ntly amalgamated with 
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FIGURE 4.3: Position of the vortex center of the vortex sheet, formed at 
the sharp-edged nozzle during one period of acoustic oscillation. (a) axial 
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(SP) (····· ·) vortex-blob method (VB)(Ii = 0.04). Vortex core for first 
(x) and second (o) vortex structure, obtained from flow visualization by 
Disselhorst (1978), presented in figure 4.1. 
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the main vortex to form a new main vortex with circulation equal to the total circulation of 
the system. The new main vortex is placed at the position determined by the requirement 
that the velocity potential far in- and outside the channel is not modified by the amalga­
mation. This amalgamation procedure was proposed by Disselhorst & van Wijngaarden 
(1978, 1980). It turns out that by using such an amalgamation procedure the new position 
of the main vortex is slightly different from the center of vorticity of the combination of 
point vortex and vortex segment. 

The main vortex is then convected with the local flow velocity by a two-step Runge 
Kutta method. The time step is chosen such that the length of the edge segment remains 
a fraction(~ 1%) of the distance of the main vortex to the edge. At the moment in time 
that the circulation of the edge segment is opposite to the circulation of the main vortex, 
the circulation of the main vortex is frozen and a next main vortex is introduced starting 
at the edge. 

Since the circulation of the edge segment depends on the factor A rather than on the 
acoustic velocity only (see equation (4.2)), the newly formed vortex generally appears 
before the acoustic velocity changes sign. The resulting phase shift between the period 
of vortex generation and the acoustic field depends on the distance of the main vortex to 
the edge after one period and as a result depends on the acoustic Strouhal number. This 
phase shift has indeed been observed in the experiments by Disselhorst (1978) and cannot 
be described by single-vortex methods, as discussed in the previous section. 

In figure 4.2 the computed trajectory of the main vortex during one period of the 
acoustic field is compared with the results of the force-free single-vortex method. It is dear 
that the vortex trajectories of the first and second vortex are more accurately described 
by the single-panel method than by the single-vortex method. From the circulation of 
the main vortices, given in figure 4.4, it can be observed that new vortex structures are 
introduced at t/T ~ 0.4 and~ 0.9, which corresponds to the experimental observation by 
Disselhorst (1978), see figure 4.1. 
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FIGURE 4.4: Variation with time of the circulation of the separate vor· 
tex structures generated at a sharp-edged nozzle during one period of the 
acoustic oscillation for different vortex methods. Srac = 2.54 (--) free 
single-vortex method.(F) (-·-·-)force-free single-vortex method (FF) 
(----)vortex-blob method (VB) (li = 0.04) ( ...... )single-panel method 
(SP). 

In order to compare the results of the single-panel method with the results of the 
flow visualization experiments by Disselhorst {1978), the streaklines emanating from the 
nozzle edge have been calculated by introducing each time step a passive tracer particle 
at the nozzle edge, which subsequently is convected with the local flow velocity. The 
streakline obtained in this way can he compared directly with the visualization of the flow 
in the experiment, which shows a streakline of the flow. The difference with the streakline 
obtained by numerical simulation is that the real vortex layer is a streakline which contains 
vorticity. In view of the simplicity of the theory, the comparison in figure 4.1 of the flow 
visualization with the results of numerical simulation shows a remarkable resemblance. 

A more quantitative comparison with the flow visualization is presented in figure 4.3. 
The computed position of the center of vorticity of each vortex structure is compared 
with the position of the vortex core, obtained from flow visualization during one period of 
the acoustic flow. For the axial position of the vortex center a small difference is found. 
Just like found with the single-panel method, the main vortex does not convect towards 
the channel (which is observed experimentally during the first half period of the acoustic 
field). For the lateral coordinate, the agreement between the computed position of the 
vortex center and the position seen in the experiment is satisfactory, both for the first and 
for the second vortex. 

The acoustic energy absorption due to vortex formation obtained from the single-panel 
method by using the vortex sound theory by Howe (1975) has been presented in Peters & 
Hirschberg (1993). 
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Vortex-blob method 

For the vortex-blob method the computational region is equal to that used for the starting 
flow out of a sharp-edged nozzle, shown in figure 3.21. At the pipe entrance a periodic flow 
is imposed with a flux equal to the total flux at the circular boundary of the computational 
region. The results of the vortex-blob method are included in figure 4.1. 

The solution shown is the result during the fourth period of the acoustic field, when 
the solution has become periodic. The value of the desingularisation parameter o 0.04 
has been estimated from the value of the unst~ boundary layer thickness occurring in 
the experiment by Disselhorst (1978), o ~ 4yvfw/H. Variation of the value by a factor 
two up or down does not change the behavior of the vortex formation in a global sense. 
The size of the markers denoting the position of the vortex blobs is linearly related to the 
circulation of the vortex blob, while a 0 and /::;. denote negative and positive circulation, 
respectively. At tfT = 0.45 the vortex sheet leaving the edge has positive circulation while 
in the vortex core the circulation is negative. At tfT = 0.57 the first part of the vortex 
sheet is unstable and a new vortex core is formed. Both vortex structures with circulation 
of opposite sense then convect away from the edge as a vortex pair (dipole). 

The position of the center of vorticity for both structures is compared with the results of 
the single-vortex method and the single-panel method in figure 4.2 and is given as function 
of time in figure 4.3. The position of the center of vorticity obtained by using the vortex­
blob method is in agreement with the estimated position of the vortex center from the flow 
visualization. 

The circulation of both vortex structures is included in figure 4.4. The circulation of the 
vortex structures is overestimated by the single-panel method compared to the vortex-blob 
method. From the circulation it is clear that also for the vortex-blob method a new vortex 
starts to be formed before the acoustic velocity changes sign. The vorticity generated at 
the edge changes sign at tfT ~ 0.4 and~ 0.9, which is in agreement with the single-panel 
method. For this value of the Strouhal number the total amount of vorticity generated 
during one period of oscillation is negative. This is due to the asymmetry of the flow 
induced by the vorticity shed at the other nozzle edge. 

{2.3 High Strouhal number 

For high values of the acoustic Strouhal number the vortex layer remains even in closer 
vicinity of the edge of the nozzle, and is less influenced by the vorticity generated at 
the other edge than for Strouhal numbers of order unity. In this case the periodic flow 
out of a channel can be simplified to the periodic flow around an isolated semi-infinite 
plate. This generic problem was studied numerically by Disselhorst & van Wijngaarden 
(1980) using a multi-point vortex method. If the nondimensionalized coordinates and 
circulation are scaled by the acoustic Strouhal number according to z* = Sr;~3z/ H and 
f* = Sr!{3f /fi. .. cli, the solution presented in scaled coordinates becomes independent of 
the Strouhal number. 

The periodic flow past a wedge is simulated by the vortex-blob method using the 
geometry shown in figure 4.5. On the boundaries attached to the wedge a periodic flow is 
imposed, while the far field boundary corresponds to a streamline of the attached potential 
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with interior angle of 20" using the vortex-blob method. 

02 

flow, which is assumed to be unaffected by the flow separation near the edge. On this 
boundary, a zero normal velocity is imposed. The solution, obtained with the vortex-blob 
method with li = 0.04 after four periods of the acoustic field is presented in figure 4.6. For 
the periodic solution the vortices formed during the first and second period of the acoustic 
field form a dipole which leaves the edge in the direction along the centerline of the wedge. 
Finally, a. von Karman vortex street appears with alternating vortex structures of positive 
and negative circulation. The subsequently formed vortices have equal in strength, but 
opposite circulation. 

The trajectory of the center of vorticity and the circulation, obtained with the vortex­
blob method during four periods, are presented in figure 4.7 and figure 4.8, respectively. 
Initially, vortex trajectory is asymmetric and the circulation of the first and second vortex 
structure are not equal. This is due to the influence of the initial transients, i.e. the vortex 
structure formed when the flow is started is not influenced by vorticity generated earlier, 
which is the case for the vortex formation at later moments in time1• 

After four periods a symmetric solution is obtained for the vortex trajectory while the 
circulation of the vortex system becomes periodic. From the variation of the circulation 
with time, shown in figure 4.8, it is clear that for the periodic solution vorticity of opposite 
sign is generated before the acoustic velocity changes sign, namely at tfT = 0.375 and 
0.875 of each cycle. This is because for the high Strouhal number case during one period 
the vorticity remains in the vicinity of the edge, i.e. influences strongly the generation of 
vorticity. 

When the high-Strouhal number solution of the periodic flow around a wedge is com­
pared with the solution for Srac 2.54, obtained by taking the full geometry of the nozzle 

1 During the first period of oscillation the amplitude of the acoustic velocity field was varied, in order 
to increase the convergence of the solution to a periodic flow solution. 
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FIGURE 4.6: Periodic flow past a semi-infinite wedge with interior angle 
2(1'. Numerical simulation by the vortex-blob method (b = 0.04) (The 
periodic solution is shown in (a-d) at t/T = 2.50, 2.75, 3.00 and 3.25, 
respectively) 

121 

into account, it can be observed, that for Srac 2.54 the circulation of the vortex sys­
tem and the trajectory of the center of vorticity of each vortex structure can be predicted 
reasonably well by the high-Strouhal number solution, i.e. the flow around an isolated 
wedge. 

However, the asymmetry with respect to the edge in the vortex formation observed 
at in- and outflow and the difference in circulation, generated during in- and outflow can 
only be explained by taking the full geometry of the nozzle into account. For even lower 
values of the acoustic Strouhal number the asymmetry is more pronounced, since in such a 
case a free jet flow is observed at outflow and a jet with vena-contracta is formed at inflow. 
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FIGURE 4. 7: Trajectory of center of vorticity for vortex structures with 
positive (--)and negative(---) circulation, during four periods of the 
acoustic velocity field around a wedge. Vortex-blob method (8 = 0.04). 
(a) scaled axial coordinate (b) scaled lateral coordinate. 

4.3 PERIODIC FLOW IN A T-JUNCTION 

4.3.1 Introduction 

The vortex formation process induced in a channel with aT-junction by an imposed pe­
riodically varying acoustic velocity field superimposed on a main flow will be studied in 
this section. The present study is restricted to the case of a constant mean flow moving 
through the main pipe and a time-dependent acoustic field which is resonating between 
the closed side branch and the downstream part of the channel. The periodic flow in the 
T-junction can be produced in an experimental setup if the main pipe with a closed side 
branch terminates downstream of the T-junction as an open pipe (with sharp edges or with 
a horn). In this case the acoustic velocity field resonates between the open end and the 
closed side branch. 

By connecting a horn to the channel exit the pipe system forms a resonator with a high 
quality factor. In such a configuration amplitudes of the acoustic field of Uac/Uo ~ 0.6 can 
be reached. If the main pipe has a sharp-edged open exit the acoustic amplitude Uac/Uo is 
typically of 0(0.1). 

The relevant nondimensionalized parameters of this problem are the nondimension­
alized amplitude of the acoustic velocity field Uac/Uo and the Strouhal number H f fU0 . 

For pipe systems in acoustic resonance the Strouhal number is of order one (Bruggeman 
(1987)). The amplitude of the acoustic field may vary from low amplitude (uac/Uo ~ 1) 
to moderate amplitude (uac/Uo = O(M)) and high amplitude (uac/Uo = 0(1)). This 
sub-division was proposed by Bruggeman (1987). 

The instability of the vortex sheet emanating from the upstream edge of the T-junction 
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t/T t/T 
FIGURE 4.8: Circulation and its time-derivative for the vortex system 
during four periods of the acoustic velocity field around a wedge. Vortex­
blob method (o = 0.04) (a) scaled circulation (b) scaled derivative of the 
circulation with respect to time. 
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is triggered by the acoustic field. The disturbance is amplified while it is convected down­
stream and a coherent vortex structure is formed, which at low and moderate amplitudes 
hits the downstream edge. At low and moderate amplitudes Bruggeman (1984) observed 
that a new vortex structure is formed at the upstream edge each time the acoustic pressure 
at the end of the closed side branch attains its minimum value. This corresponds with a 
change in the direction of the acoustic velocity field; the direction of the acoustic velocity 
changes from out of the side branch to into the side branch. 

However, for the high-amplitude case, i.e. uac/Uo CJ(l), it will be shown that the 
point in time that a vortex structure appears will shift to an earlier point in time, in the 
same way as observed in the previous section for the periodic flow in a sharp-edged nozzle. 

In the single-vortex and two-vortex method the time at which the formation of a new 
vortex structure starts is an input parameter for the numerical analysis which must be 
determined experimentally or estimated on theoretical grounds. In the vortex-sheet and 
vortex-blob method the vortex sheet has retained its inherent tendency Kelvin-Helmholtz 
instability which will induce the formation of a new vortex structure. As a result these 
latter two methods do not require the specification of an input parameter to reach a periodic 
solution for a given value of the Strouhal number and of the acoustic amplitude. 

In section 4.3.2 a visualization of the periodic flow in aT-junction will be presented for 
three different amplitudes, corresponding approximately with the low, moderate and high 
amplitude cases. In section 4.3.3 different vortex methods, described in chapter 2, will be 
used to describe the periodic flow in aT-junction for the high-amplitude case. The results 
of the periodic solution obtained with different methods will be compared. 

In section 4.3.4 a comparison of the periodic flow in aT-junction for the solution ob­
tained with the vortex-blob method and Laser Doppler velocity measurements of Brugge­
man (1987) will be presented. 
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4.3.2 Flow visualization 

The periodic formation of a vortex structure is visualized using the experimental setup 
shown in figure 4.9. The experimental setup differs from the setup for the starting flow 
experiment in aT-junction in the scale of the experiment which is now somewhat larger, 
with a side branch width H = 0.06m. Since the flow is periodic, a stroboscopic observation 

muv;parant 
window 

valve 

FIGURE 4.9: Experimental setup used for the flow visualization of periodic 
vortex formation in a T-junction by a schlieren method. 
(square cross section H = 0.06 m) 

of the flow becomes possible with by a video recording. The nanolite light source is made 
to generate a light pulse each time that the acoustic pressure at the end of the closed side 
branch exceeds a certain value. An additional delay between the trigger signal and the 
nanolite pulse can he introduced in order to obtain a visualization at a different moment 
in the oscillation period. 

The difference in refractive index necessary for the schlieren technique is obtained by 
injecting C02 near the upstream edge. In some experiments instead of C02 a mixture of 
50% Ar and 50% Ne has been used. This mixture has a density and speed of sound close 
to that of air, however the refractive index is different. Therefore, the acoustic behavior of 
the pipe system is not changed by introducing this mixture in the flow field. 

The main flow is produced by air flowing from a settling chamber with square cross 
section, width 0.35 m, into the pipe through a smooth contraction, placed one side branch 
width ahead of the T-junction. This keeps the upstream boundary layer as thin as possible. 
The magnitude of the velocity of the main flow is calculated from the measured pressure 
difference across the contraction, using the stationary Bernoulli equation. The amplitude of 
the acoustic velocity field at the junction is estimated from the acoustic pressure amplitude, 
measured at the end of the closed side branch by assuming a standing wave inside the side 
branch, i.e. leading to Uac = Pac/ PoCo· The maximum value of the main flow that can he 
reached is Uo ~50 mfs. The experiments have been performed at atmospheric pressure 
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and room temperature (To = 295K). 
In figures 4.10, 4.11 and 4.12 the results of the flow visualization are shown for a low­

amplitude case ua.c/Uo = 0.08 with Sr = 0.44, a moderate-amplitude case Uac/Uo = 0.23 
with Sr = 0.39 and for a high-amplitude case Uac/Uo = 0.62 with Sr = 0.29, respectively. 
The acoustic pressure, measured at the end of the closed side branch for the various ex­
periments is presented in figure 4.13. The time indicated in the flow visualization is the 
time relative to the time 0.25 T before the pressure measured at the end of the closed side 
branch is zero and is going from a negative to a positive value. For low amplitudes of the 
acoustic field, t = 0 corresponds to a. minimum value of the acoustic pressure at the end of 
the side branch. However, since for high acoustic amplitudes the position of the minimum 
in acoustic pressure is strongly influenced by the presence of strong higher harmonics (see 
figure 4.13), t = 0 corresponds to the minimum value of the fundamental harmonic of the 
acoustic pressure in this case. 

For the lowest-amplitude case, the shear layer is only slightly disturbed by the acoustic 
field and only a small coherent vortex structure is formed, which convects at about a 
constant speed Uc Rj 0.4 U0 from the upstream to the downstream edge of the T-junction. 
The pulsation amplitude is not very stable. The pressure pulsation amplitude measured 
at the end of the side branch is tluctuating approximately 10% in value. 

For the moderate-amplitude case a more pronounced spiral vortical structure is formed. 
Furthermore, the vortex layer bends into the side branch during the first half period, when 
the acoustic flow is directed into the side branch, and bends back into the main pipe during 
the second half period when the acoustic field is directed out of the side branch. For low 
and moderate amplitudes the formation of a new vortex structure starts when the pressure 
attains its minimum (t = 0), which was also observed by Bruggeman (1987). 

However, for the high-amplitude case a new vortex structure appears at an earlier 
instant, namely a.t the time the acoustic pressure changes from a positive to a negative 
value. It will be shown that this is due to the inherent instability of the shear layer. For 
the high-amplitude case the vorticity distribution of the shear layer is strongly influenced 
by the acoustic velocity field. At t = 0.75T the acoustic velocity and the velocity induced 
by the vorticity distribution in the T-junction cancel exactly the velocity around the edge 
due to the main tlow U0 • At this moment we expect a stagnation point at the edge. The 
vortex layer is leaving the edge along its bisector and no vorticity is generated at the sharp 
edge. Due to the high amplitude of the acoustic field the vortex layer convects deep into 
the side branch during the first half-period of the acoustic oscillation. During the second 
half period of the acoustic oscillation the vorticity is convected into to main pipe. 

The Strouhal number at which the system resonates is found to decrease with the 
maximum amplitude, which reflects the low convection velocity of the vortex when it is 
convected deep into the side branch. Furthermore it is observed that at the downstream 
edge flow separation is negligible, even for the high-amplitude case. For an increasing 
acoustic amplitude the acoustic pressure signal measured at the end of the side branch 
shown, shown in figure 4.13, starts to contain more uneven higher harmonics. A list of 
amplitudes of the harmonics is given in table 4.1. 

For low and moderate amplitudes the higher harmonics have an amplitude of at most 
4% of the amplitude of the fundamental mode. For the high-amplitude case a value of 9% 



126 Chapter 4: Numerical simulation of periodic flows 

FIGURE 4.10: Flow visualization of periodic vortex formation in a T­
junction for a low amplitude acoustic field, Uac/Uo = 0.08 with Sr 
0.44, U0 = 29.3 mfs,J = 217.6 Hz. (a) - (h) are at t/T = 
0.03, 0.12, 0.23, 0.33, 0.47, 0.61, 0.75, and 0.92, respectively. 
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FIGURE 4.11: Flow visualization of periodic vortex formation in a T­
junction for a moderate amplitude acoustic field, Uac/Uo = 0.23 with 
Sr = 0.39, Uo = 34.1 mfs,J = 218.5 Hz. (a) - (h) are at t/T 
-0.01, 0.12, 0.24, 0.34, 0.49, 0.60, 0.75, and 0.88, respectively. 
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(g) (h) 

FIGURE 4.12: Flow visualization of periodic vortex formation in a 
T-junction for a high amplitude acoustic field, ilac/Uo = 0.62 with 
Sr = 0.29, Uo 45.9 m/s,f = 222.5 Hz. (a) • (h) are at t/T 
0.07, 0.19, 0.32, 0.44, 0.56, 0.69, 0.82, and 0.94, respectively. 



4.3 Periodic flow in a 

tiT tiT tiT 

FIGURE 4.13: Comparison of acoustic pressure signal measured at the end 
of the closed side branch with the fundamental JJarmonic in the pressure 
signal. (-)pressure signal(---) fundamental harmonic (····)differ­
ence between pressure signal a.nd fundamental harmonic. 
(a) low-amplitude case Uac/Uo = 0.08 with Sr = 0.44, see figure 4.10 
{b) moderate-amplitude case Uac/Uo = 0.23 with Sr = 0.39, see figure 4.11 
(c) high-amplitude case Uac/Uo = 0.62 with Sr = 0.29, see figure 4.12. 

Uac/Uo Sr M ft(Hz) A2 "P2 A3 'P3 A4 'P4 
0.08 0.44 0.09 217.6 0.028 -197° 0.040 63° 0.003 -103° 
0.23 0.39 0.10 218.5 0.024 -67° 0.026 -53° 0.002 -87° 
0.62 0.29 0.13 222.5 0.059 -56° 0.089 -75° 0.007 -133° 

TABLE 4.1: Magnitude Aj and phase shift 'Pi of higher harmonics relative 
to the fundamental harmonic contained in the pressure signals for the 
periodic flow in aT-junction, presented in figure 4.13. 
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is reached. For the high-amplitude case the presence of strong higher harmonics causes a 
significant shift in time ( ~ 0.06 T) of the position of the minimum of the acoustic pressure. 
Therefore, for a proper comparison with experimental data of the results of the numerical 
simulation of an harmonically varying flow, the time has been determined relative to the 
zero-crossing of the pressure, which is not strongly influenced by the higher harmonics. 

4.3.3 Numerical simulation at high acoustic amplitudes 

For the case of a high acoustic amplitude, shown in figure 4.12, the flow predicted by 
different vortex methods will be compared to the flow visualization. In the comparison of 
the results of different vortex methods for the impulsively starting flow in chapter 3 it was 
shown that the single-vortex methods cannot describe the vortical flow in a T-junction. 
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Therefore the two-vortex method, described in section 2.2.5, will be used for the numerical 
simulation of the periodic vortex formation in a T-junction. The results of the simple 
method will be compared with results obtained by the more elaborate methods, i.e. the 
vortex-sheet method and the vortex-blob method. 

The complex velocity potential due to the irrotational main flow and the acoustic flow 
is for the periodic flow problem given in nondimen'sionalised quantities by 

cf>o(O ~ [In (~ + !~~) + Uac sin(21rSr t) In((- i/v'5)] (4.3) 

The main flow is mapped to a source of strength 1 in ( = -i/.../5 and a source of strength 
-1 in ( = if.../5. The acoustic source of strength Uac(t)/Uo is positioned at ( = i/.../5 in 
the computational plane, i.e. far downstream in the main pipe. The acoustic source in the 
side branch is mapped to infinity in the computational plane, so that it does not appear in 
above expression. The acoustic velocity field contributes to the potential flow around the 
edge as described by equation (3.31) and (3.32). The parameters A and Bare in presence 
of an acoustic velocity field slightly modified. 

Two-vortex method 

In the two-vortex method the main vortex, representing the center of vorticity of the vortex 
sheet, and the edge vortex, describing the generation of vorticity, are amalgamated each 
time step by a procedure in which the difference in velocity potential between the side 
branch and the downstream part of the main pipe is conserved. A new main vortex is 
formed each time the acoustic velocity changes sign, i.e. changes from going out of to 
going into the side branch. The results of the method are presented in figure 4.14, again 
in the form of the strea.kline emanating from the upstream edge. 

The differences between the results of the two-vortex method and those of the flow 
visualization are caused by the simplified description of the vortex sheet and the uncertainty 
in the moment of the formation of a new vortical structure. In the present application of 
the two-vortex method it has been assumed that a new vortex structure is formed at 
t = 0. However, for this high acoustic amplitude the flow visualization indicates that 
a new vortex starts approximately 0.2 T earlier. From figure 4.15 is appears, that this 
corresponds approximately to the point where ilr fdt = 0, with J.2f /dt 2 > 0. This criterion 
for the formation of a new vortex structure has been proposed by Graham (1977). 

The influence of this empirically determined phase shift of the start of a new vortex 
on the results of the two-vortex method is studied in figure 4.15. This figure shows the 
trajectory of the center of vorticity during one period of the periodic solution. The time of 
formation of a. new vortex structure appears to have a strong influence on the trajectory 
of the center of vorticity during the first half period of the oscillation. During the second 
half period of oscillation the influence is small. 

Vortex-sheet method 

The numerical simulation of the periodic flow a.t high acoustic amplitude in aT-junction, 
obtained with the vortex-sheet method are presented in figure 4.16. The parameters used to 
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FIGURE 4.14: NumericaJ simulation of periodic vortex formation in a T­
junction. Iligh-amplitude acoustic field, Uac/Uo = 0.62 with Sr = 0.29. 
Iresults of the two-vortex method with a streakline emanating from the 
upstream edge. A new vortex is generated each time the pressure is at 
minimum (t 0). (a) - (h are at t T = n 8, with n 0 ... 7 res ecti-
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FIGURE 4.15: Periodic solution of the trajectory of the center of vorticity 
during one period of the acoustic field in a T-junction. High-amplitude 
acoustic field, Uac/Uo = 0.62 with Sr = 0.29. Results of the two-vortex 
method. (-) Start of vortex formation at t = 0 (- - - ). Start of 
vortex formation at t = -0.2T (x) point vortex position estimated from 
flow visualization, shown in figure 4.12. (a) vortex trajectory (zv) (b) 
circulation r v (c) x-coordinate of center of vorticity (d) y-coordinate of 
center of vorticity. 

obtain the periodic solution are given in table 4.2. Initially, in the first period of oscillation, 
the vortex is formed at t = 0, the start of the computation, but due to the instability of 
the vortex sheet, a second center of roll-up is formed before the acoustic velocity changes 
sign. This agrees with the flow visualization of figure 4.12. 

All circulation contained in the part of the vortex sheet connecting the first center 
of roll-up to the newly formed vortex core is convected towards the centers of roll-up 
and at tfT = 0.125 this part of the vortex sheet contains hardly any circulation. The 
coordinates of the center of vorticity of the vortex sheet, and its circulation during the 
first three periods of oscillation are given in figure 4.17. In this figure, also the estimated 
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FIGURE 4.16: Numerical simulation of periodic vortex formation in aT­
junction. Iligh-amplitude acoustic field, Uac/Uo = 0.62 with Sr = 0.29. 
Results of tl1e vortex-sheet method (~smax = 0.10). The main flow and 
acoustic flow have been started at t = 0. (N P denotes the number of 
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TIME STEP NIL tfT :F ~Sma>: ~t1ma:r: 9o 
1-350 0.007 0.2 0.01 20° 225° 

351 600 0.019 0.2 0.04 20° 360° 
601 1100 0.084 0.3 0.05 20° 540° 
1101 2100 0.436 0.2 0.10 20° 900° 
2101- 3100 0.753 0.1 0.10 20° 900° 
3101- 3465 0.876 0.2 0.10 15° 900° 
split segment 
3466-3470 0.877 0.2 0.10 20° 900° 
3471-4220 1.167 0.2 0.10 20° 360° 
4221- 4470 1.241 0.2 0.10 20° 270° 

remove first segment 
4471 5470 1.700 0.2 0.10 20° 900° 
5471-5970 1.797 0.2 0.10 20° 900° 
5971 6220 1.917 0.2 0.10 40° 900° 
6221-6320 1.944 0.2 0.10 20° 900° 
6321 6570 2.013 0.2 0.10 wo 45° 
6570-6820 2.023 0.2 0.10 10° so 
split segment 
6821-6825 2.024 0.2 0.10 20° 900° 
6826-7575 2.236 0.2 0.10 20° 270° 

remove first segment 
7576-8575 2.716 0.2 0.10 30° 900° 
8576-8825 2.861 0.2 0.10 30° 900° 
8826-8925 2.941 0.1 0.10 20° 45° 
8926- 9175 3.041 0.2 0.10 15° 45° 

TABLE 4.2: Parameters used for the simulation of the periodic flow in a 
T-junction with the vortex-sheet method, see figure 4.16. 

flows 

position of the vortex core obtained from the flow visualization shown in figure 4.12 is 
given. There is a large difference between the results of the first period of oscillation and 
the results of the periodic solution. This difference is due to the different moment in time 
of the start of the formation of a new vortex. 

The vortex-sheet method obtains a periodic solution within three periods of oscillation, 
a.nd a new vortex structure is formed a.t t/T R:l 0.8 and again at t R:l n + 0.8 T, with n 
a.n integer number. In the two-vortex method the moment of generation of a new vortex 
structure has been imposed to he at t/T (n + 0.8). 

In figure 4.18 the geometry, the vortex distribution a.nd the curvature of the vortex 
sheet are given for two different points in time: at tfT = 2.74 when the vortex sheet 
hits the downstream edge, and at t/T = 2.02 when a new center of roll-up appears near 
the upstream edge. The vortex distribution for the periodic solution at t/T = 2.74 is 
comparable with the vortex distribution for an impulsively started flow at tU0f H = 5 
in figure 3.13. A peak value of the vortex distribution and the curvature occurs at the 
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FIGURE 4.17: Position of the center of vorticity and circulation of the 
vortex sheet during three periods of the acoustic field in a T-junction. 
High amplitude acoustic field, ii.,.c/Uo = 0.62 with Sr = 0.29. (-) 
vortex-sheet method (1/S), see figure 4.16; ( .. ·· · ·) vortex-blob method 
(VB), see figure 4.19; (- -) two-vortex method (TV), see figure 4.14 
(vortex is formed at t/T -0.2); (x) position of vortex core estimated 
fcom flow visualization shown in figure 4.12. 
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points on the sheet dose to the downstream edge. However, for the present case the vortex 
distribution is negative on part of the vortex sheet, while it is always positive in the case 
of the starting flow. Furthermore, for the high-amplitude case the circulation is mainly 
concentrated in the last part of the rolled-up vortex sheet, while in absence of an acoustic 
field the circulation is more evenly distributed along the sheet. 

At t/T = 2.02, nearly all the circulation is concentrated in the point vortex at the end 
of the vortex sheet, and the sheet hardly contains any circulation, except at the beginning 
of the sheet where a new vortex is formed. In this new center of roll-up the curvature of 
the sheet shows a singular behavior. 

That most of the circulation is contained within the point vortex is partly due to the 
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FIGURE 4.18: Details of the results obtained with the vortex-sheet 
method, presented in figure 4.16, a.t t/T = 2.02 and t/T = 2.74. (a.) 
solution in physical plane (o denote edge points) (b) solution in the com­
putational plane (c) vortex distribution dr /ds = -7(s) (d) curvature kn(s) 
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vortex sheet being cut-off in order to avoid problems when the sheet approaches the point 
( = i/JS in the computational plane too closely. This point corresponds to a point far 
inside the downstream part of the main pipe. 

Vortex-blob method 

Finally, the vortex formation process in a T-junction has been simulated by the vortex­
blob method. The main flow and the acoustic flow have been started at t 0 . and a 
vortex blob is generated each time step. The periodic solution obtained for a value of the 
desingularisation parameter 8 = 0.10 is shown in figure 4.19. The value of 8 is chosen 
on the basis of the estimated average momentum thickness of the vortex layer in the T­
junction as measured in absence of pulsations by Bruggeman (1987). Changing this value 
by a factor two up or down does not change the overall values as for example the position of 
the center of vorticity and the circulation. However, the roll-up of the newly formed vortex 
close to the upstream edge is influenced by the value of 8. Since the shear layer thickness 
in the experiment is initially smaller than the average value, the vortex sheet rolls-up more 
slowly in the results of the vortex-blob method than in the flow visualization. 

In the vortex-sheet method a curvature-dependent panel distribution scheme is used, 
which deereases the panel size at parts of the sheet with high curvature. As a result the 
roll-up of the first part of the sheet is more accurately described by the vortex-sheet method 
than by the vortex-blob method, as can be observed from a comparison of figure 4.19 with 
figure 4.16. In the periodic solution, obtained within three periods, a new vortex is formed 
at tfT::::; (n +0.8), where n is an integer number, which again agrees with the results of 
the vortex-sheet method and the flow visualization shown in figure 4.12. 

The position of the center of vorticity and the circulation obtained by the vortex­
blob method are included in figure 4.17. The results of the simple two-vortex method 
agree with those of the vortex-sheet method and the vortex-blob method for the periodic 
solution if in the two-vortex method the moment of vortex formation is adjusted with the 
experimentally observed or by the vortex-sheet and vortex-blob method predicted phase 
shift (~t::::; ~0.2T). The results of the two-vortex method agree with those of the vortex­
sheet and vortex-blob method for the high-amplitude case because the main part of the 
circulation contained in the vortex system is concentrated around the vortex core, and a 
two-vortex method is a fair approximation for such a vortex distribution. 

{3.4 Moderate acoustic amplitude 

Bruggeman {1987) studied experimentally the periodic vortex formation in a setup with 
two side branches. In the experiment the side branches have a length of 0.645m and 
are placed at a distance of 1.26 m apart. This configuration forms a resonator with the 
acoustic field resonating between the two side branches with few losses due to radiation and 
friction. The maximum amplitude of the resonance was obtained for a main flow velocity 
of Uo = 20.5 m/s and for a Strouhal number of Sr = 0.38. Bruggeman (1987) obtained 
a maximum acoustic amplitude Uac/U0 0.17. From the visualization of the flow the 
trajectory of the vortex core was determined during one period of the acoustic oscillation. 
Also Laser Doppler Anemometry (L.D.A.) velocity measurements were performed and the 
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FIGURE 4.19: Numerical simulation of periodic vortex formation in a T­
junction. High-amplitude acoustic field, V.ac/Uo = 0.62 with Sr 0.29. 
Vortex-blob method (8 0.10, At = 0.01). The main flow and acoustic 
flow have been started at t = 0. 
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time-dependent velocity in the x-direction along the ma.in pipe axis was obtained at specific 
positions in the T-junction. 
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FIGURE 4.20: Position of the center of vortici•y and circulation of the 
vortex sheet for the periodic flow in a T-junction. Moderate-amplitude 
acoustic field, Uac/Uo = 0.17 with Sr = 0.38. (- -) two-vortex method 
(vortex formation at tfT = 0) (-) vortex-blob method (b = 0.10), (x) 
position of vortex core measured by Bruggeman (1987). (a) trajectory of 
center of vorticity (b) circulation (c) x-coordinate of center of vorticity 
(d) y-coordinate of center of vorticity 

Simulating the periodic vortex formation by a vortex-blob method for these conditions 
resulted in a periodic solution within three periods of oscillation. The position of the 
center of vorticity computed by the vortex-blob method is compared in figure 4.20 with 
the measured position of the vortex core by Bruggeman (1987). The vortex core convects 
in the x-direction with approximately a constant velocity: uc/Uo R! Sr. This corresponds 
to a. travel time of the vortex core from the up- to the downstream edge equal to the 
acoustic period. 

The difference between the results of the vortex-blob method and the experimental 
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results during the second half-period of the acoustic field is expected to be due to fact 
that from the flow visualization only the position of the vortex core can be determined, 
while for the vortex-blob method only the center of vorticity is determined. The position 
of center of vorticity and that of the vortex core ca.n differ considerably, specia.lly a.t low 
acoustic amplitudes. 

In contrast to the high amplitude case, it follows from figure 4.].7 that for the moderate 
amplitude case the convection velocity is approximately constant and the circulation in­
creases approximately linearly in time during one period of oscillation. This is due to the 
small influence the acoustic velocity field has on the convection and generation of vorticity 
at low and moderate amplitudes. In contrast to the high amplitude case a. new vortex 
structure is formed a.t the beginning of each cycle of the acoustic field, i.e. at tfT ~ 0. 

The position of the vortex center obtained from the two-vortex method is also given in 
figure 4.20. Even for the periodic solution the y-component of the position of the center 
of vorticity and the circulation are somewhat overestimated by the two-vortex method. 
This is expected to be due to the vorticity being evenly distributed along the vortex sheet 
for moderate amplitudes, a vortex distribution which cannot be handled properly by the 
two-vortex method. 

In figure 4.21 the time-dependent velocities in x-direction at various positions in the 
T-junction computed with the vortex-blob method are compared with the results of the 
L.D.A. measurements by Bruggeman (1987). After two periods the predicted amplitude 
of the velocity signal agrees within 10% with the experimental data. Also the phase of the 
fluctuations are reasonably well predicted by the vortex-blob method. 

4.4 PERIODIC FLOW IN A CROSS-JUNCTION 

4.4 .1 Introduction 

In a pipe system with a. single closed side branch, acoustic resonance of low and moderate 
amplitude have been realized by :Bruggeman et al. (1987, 1991 ). Acoustic resonances with 
high acoustic amplitude can be obtained if two closed side branches are placed in a. tandem 
configuration twice the side branch length or an other even multiple of this distance apart. 
Bruggeman (1987) measured for the double side branch setup with rounded-off edges a 
maximum acoustic amplitude of ilac/Uo = 0.6. The highest amplitudes are to be expected 
if the distance between the side branches is smallest and the side branches are positioned 
opposite to each other. In this case the resonating acoustic field has a wavelength equa.l to 
approximately four times the length of the side branches. 

Such a cross-junction geometry has been studied experimentally by Zia.da & Biihlmann 
(1993). They studied the influence on the pulsation amplitude of the length of the side 
branches, the amplitude of the mean flow and the ambient pressure. In section 4.4.2, a 
visualization of the flow in a. cross-junction at high acoustic amplitude will be presented. 
The vortex formation process will be described numerica.lly by using the two-vortex method 
and the vortex-blob method, see section 4.4.3. The aero-acoustic behavior of such a. config­
uration will be discussed in chapter 6. In this chapter the acoustic velocity field obtained 
from the acoustic pressure signal by assuming standing waves in the pipe system is simply 
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FIGURE 4.21: Velocity in x-direction at a number of locations in the T­
junction. Periodic vortex formation for a. moderate-amplitude acoustic 
field, Uac/Uo = 0.17 with Sr = 0.38. Results of the vortex-blob method 
(o = 0.10), (D) L.D.A. measurements by Bruggeman (1987) 
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superimposed on the mean velocity field. 

,(..4..2 Flow visualization 

The experimental setup used to visualize the flow in a cross-junction is similar to the setup 
used to visualize the periodic flow in a T-junction, see figure 4.9. In order to obtain the 
necessary difference in refractive index a mixture of 50% N e and 50% Ar is injected at the 
upstream edge. In a setup with two closed side branches of equal length (L = 0.564 m), 
opposite to each other and perpendicular to a square main pipe (H 0.06 m), a maximum 
resonance occurs for mean flow velocity of U0 l':;j 35 mfs. 

The visualization of the periodic flow at resonance is presented in figure 4.22. At 
resonance conditions, the Strouhal number has a value Sr = 0.27 while the amplitude 
of acoustic velocity is Uac/Uo = 0.76. The acoustic pressure, measured at the end of 
the closed side branch, is given in figure 4.23a. The corresponding acoustic velocity in the 
source region can be obtained by assuming a standing wave pattern between the closed side 
branches. Only the uneven harmonics of the pressure contribute to the acoustic velocity in 
the source region. The resulting acoustic velocity in the cross-junction, obtained if three 
harmonics are taken into account, is shown in figure 4.23b. 

For this high-amplitude resonance the acoustic pressure and velocity signal are not a 
pure harmonic signal due to the presence of strong higher harmonics. The amplitude and 
phase of the higher harmonics compared to those of the fundamental mode are given in 
table 4.3. Similar to the high-amplitude case for aT-junction the largest amplitude of a 
higher harmonic is approximately 10% of that of the fundamental mode. 

At the two upstream edges free shear layers with vorticity of opposite sign are generated. 
The flow is periodic and there is a phase shift of half a. period between the formation of a 
center of roll-up in the two vortex layers. Because the vortex formation in the shear layer 
emanating from the upper and lower edge is identical but for a phase shift of half a period, 
only the shear layer from the upper edge is visualized. Similarly to the high-amplitude 
periodic vortex formation in aT-junction and in a nozzle, a new vortex structure is formed 
before the beginning of a new period of the acoustic field. At the present high acoustic 
amplitude the vorticity generated at the upstream edge is initially convected into the side 
branch. When the acoustic velocity field changes sign the vorticity turns back towards the 
main pipe and eventually the vortex structure is convected with the main stream. 

Sr M 
0.76 0.27 0.10 0.047 -79° 

TABLE 4.3: Magnitude A; and phase shift '{Jj of higher harmonics relative 
to the fundamental harmonic contained in the pressure signals for the 
periodic flow in a cross-junction, presented in figure 4.23. 
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(g) 

FIGURE 4.22: Flow visualization of periodic vortex formation in a cross­
junction. IIigh-amplitude acoustic field Uac/ Uo = 0. 76 with Sr 
0.27, Uo 35.0 mfs,f = 156.3 Hz. (a) - (h) arc at t/T = 
0.09, 0.23, 0.34, 0.48, 0.58, 0.70, 0.75 and 0.85, respectively. 
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FIGURE 4.23: Acoustic pressure signa/ measured at the end of the 
closed side branch in a cross-junction geometry and corresponding acous­
tic velocity signal in the source region. High-amplitude acoustic field, 
Uac/Uo 0.76 with Sr = 0.27, see flow visualization in figure 4.22. 

4.4.3 Numerical simulation 

Two-vortex method 

flows 

For the numerical simulation of the periodic flow in a cross-junction with the two-vortex 
method, the cross-junction is mapped onto a computational half-plane lR(() > 0. This is 
accomplished by the transformation for aT-junction z f(w), given in equation (3.18}, 
in combination with the transformation w = g( () with 

g(() = ~(( ~) 
2 ( 

(4.4) 

where a = 1/v'f+/i2, with h the width of the main pipe, nondimensionalised with the 
width of the side branch H. With this transformation the lower part of the cross-junction 
(S<(z) < 0) is mapped to the inner part of the semi-circle 1(1 < 1, lR(() > 0, while the upper 
part of the cross junction is mapped to the outer part of the unit circle I( I > 1,~(() > 0. 
For a cross-junction where the width of the main pipe is equal to that of the side branch, 
the value h = 1 and as a result a= 1/../2. The edges of the cross-junction in the physical 
plane at z/ H = ±1/2 ± i/2 are mapped to the points in the computational plane with 
w ±i(1 ± ../2) as shown in figure 4.24. The derivative of the transformation function 
z = f(g(()) is given by 

dz -2 J?:I+7?~ 
d( = 7r ( ( ( 2 + 1) 

(4.5) 

where b ../2-1 and c = ../2+ 1. The acoustic velocity field originating from the lower side 
branch at z -t -ioo is mapped to a point source in the computational plane positioned at 
( 0, while the acoustic flow originating from the upper side branch is mapped to infinity 
in the computational plane. 

The main flow originating from the pipe segment at the right side of the cross-junction 
at z -> oo and vanishing into the pipe sf'gment on the left side at z -> -oo is mapped onto 
point sources of opposite strength at ( = -i and ( = i, respectively. 
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FIGURE 4.24: Conformal mapping of the flow in a cross-junction to the 
flow in a half plane. (a) physical flow domain (b) computational domain. 
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The complex velocity potential of the attached flow is in the computational plane, in 
nondimensionalized coordinates, given by 

~o(w) l (' + i) ln(O+ ;In (i (4.6) 

Since vorticity is generated at both upstream edges, at position ( "' -i( v'2 ± 1) in the 
computational plane, two main vortices with time varying circulation are present during 
each period of calculation. In the two-vortex method the initial position of the main vortices 
is determined by the similarity solution of the flow in the region near the upstream edges 
( "' -i( v'2 ± 1 ). The circulation of the two initial vortices is obtained from the Kutta 
condition applied at the upstream edges 

d~l 0 
d( <=-i(v'2:!:1) 

(4.7) 

where~(() is the complex velocity potential in the computational plane with contributions 
due to the mean flow, the acoustic velocity field and the vortices. Because in the flow 
visualization separation of the flow at the downstream edges ( ( i ( v'2± 1)) is not observed, 
the flow at the downstream edges is assumed to remain attached. 

Each time step the main vortices are convected with the local flow velocity obtained 
from equation (2.65) and the transformation function ( 4.5). Subsequently the edge vortex 
is generated at the upstream edges, which strength and position follow from the local 
flow near the upstream edges, by using the local similarity solution. Each edge vortex is 
combined with the associated main vortex through an amalgamation procedure in which 
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the potential far inside the side branches is conserved. A similar amalgamation procedure 
has been used for the simulation of the periodic flow in aT-junction and for the periodic 
flow in a nozzle. 

For moderate acoustic amplitude, a new main vortex is started when the acoustic 
velocity field changes from going out of the side branch to going into the side branch. As 
a result, there is a phase shift of half a period between vortex formation at the upper and 
that at the lower edge. The position of the center of vorticity and the circulation for the 
periodic solution for a moderate acoustic amplitude Uac/Uo = 0.3 with Sr =o 0.4 are shown 
in figure 4.25. The vortex trajectories of the two vortices are geometrically symmetric, but 
there is a phase shift of half a period between the time of formation of the two vortices. 
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For high acoustic amplitudes the flow visualization showed that near an edge a new 
vortex structure appears in the shear layer before the acoustic velocity changes sign. Since 
this is an empirical parameterfor the two-vortex method, the method is less suited for this 
case. 

Vortex-blob method 

The high-amplitude periodic vortex formation has been simulated by the vortex-blob 
method. At t = 0, the mean and acoustic flow have been started and two vortex structures 
are formed simultaneously at the upstream edges. Due to the instability of the vortex 
sheet, a new vortex structure is formed each period near both edges, however not simul­
taneously but with a shift of half a period. The latter can be understood by realizing 
that for a single side branch each period a new vortex structure starts to be formed when 
the acoustic waves start to move into the side branch. Since for the specified geometry 
considered here this condition occurs half a period apart in the two opposite side branches 
the formation of a new vortex structure has a phase shift of half a period. 

The periodic solution obtained with the vortex blob method for Sr = 0.27 and UaciUo = 
0. 76 is shown in figure 4.26. To obtain this result only the fundamental mode of the acous­
tic velocity has been imposed. It has been verified that a numerical simulation including 
two higher harmonics shows only minor differences in the trajectory of the center of vor­
ticity. 

The size of the markers is linearly related to the circulation of the vortex blob at 
the marker position, while the type of marker is related to the sign of its circulation (.6. 
= negative, 0 = positive). From the results of the numerical simulation presented in 
figure 4.26 it is clear that for high acoustic amplitudes, the circulation is nonuniformly 
distributed along the vortex sheet and most of the vorticity is concentrated near the center 
of the vortex spiral. At tiT= n + 0.25, when the acoustic velocity reaches a maximum 
value and is directed into the upper side branch, vorticity of negative sign is generated at 
the lower upstream edge and the vortex sheet leaves the edge tangentially to the wall of 
the side branch. 

In figure 4.27 the position of the center of vorticity and the circulation for each individ­
ual vortex structure are compared with the estimated position of the vortex core from the 
experimental data in figure 4.22. During the initial stage of the computation the position 
of the center of vorticity and that of the vortex core follow the similarity law for the im­
pulsively started flow around a goo wedge. From the similarity solution for the impulsively 
started flow around a. goo wedge we obtain r ,...., t 112 and as a result df I dt "' c 112 which is 
singular for t -T 0, which explains the singular behavior of df I dt during the initial stage 
of the computation. 

However, for the periodic solution the trajectory of the center of vorticity leaves the 
edges tangentially, while the position of the vortex core agrees with the experimental data. 
If we define the moment of formation of a new vortex as the moment that df I dt = 0 with 
.Pr I dt2 > 0, we observe that a new vortex is formed at tIT R:l n + 0.3 and n + 0.8, which is 
R:l 0.2 T before the acoustic wave starts to move into the side branches. This agrees with 
the results of the flow visualization at high acoustic amplitude (see figure 4.22) and with 
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FIGURE 4.26: Numerical simulation of periodic vortex formation in a 
cross-junction. High-amplitude acoustic field, Uac/Uo = 0.76 with Sr = 
0.27. Results of the vortex-blob method (6 = 0.10). The mean and acoustic 
flow have been started at t = 0. 
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FIGuRE 4. 27: Trajectory of center of vorticity and circulation of the vor­
tex sheet for the periodic flow in a cross-junction. High-amplitude acoustic 
field, Uac/Uo = 0.76 with Sr = 0.27. (x position of vortex core obtained 
from the flow visualization shown in figure 4.22) (a) x-coordinate of cen­
ter of vorticity {b) y-coordinate of center of vorticity {c) circulation {d) 
increase of circulation ( --) vortex formed at upper upstream edge (- · · · · -) 
vortex formed at lower upstream edge. 

the results obtained at high amplitudes in aT-junction (see figure 4.12) and in a nozzle at 
high acoustic Strouhal numbers (see figure 4.1 and 4.8). 

4.5 CONCLUSIONS 

In this chapter the periodic vortex formation in the shear layer associated with the flow 
separation at sharp edges and triggered by an externally imposed periodic acoustic velocity 
field has been studied, both with or without a main stream. In the presence of a main 
flow field it is found that at low acoustic amplitudes the moment of formation of a vortex 
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structure is equal to the moment the acoustic velocity changes sign. In that case the 
acoustic velocity field triggers the inherent Kelvin-Helmholtz instability of straight vortex 
sheets with a nearly uniform vortex distribution. The initial disturbance grows while it is 
convected along the shear layer from the upstream edge in the direction of the downstream 
edge with a nearly constant velocity. 

The formation of a vortex structure and its circulation are only slightly influenced by 
the value of the acoustic amplitude. Comparison of the results computed by the vortex-blob 
method and results of Laser Doppler velocity measurements carried out in aT-junction 
at moderate acoustic amplitude shows that the vortex-blob method describes the periodic 
vortex formation process accurately. 

For high acoustic amplitudes, the periodic vortex formation shows a phase shift with 
respect to the acoustic velocity field of approximately -0.2 T, both for the flow in aT­
junction as well as for the flow in a cross-junction. The formation of a new vortex structure 
is in this case not only determined by the acoustic flow field, but mainly by the vorticity 
distribution in the vortex layer. For high acoustic amplitudes the vorticity is distributed 
highly nonuniformly along the shear layer, i.e. most of the vorticity is concentrated in the 
region near the vortex core. In case the amplitude of the acoustic velocity is of the same 
order (not necessarily higher) than the velocity of the mean flow even vorticity of opposite 
sign can be present in the vortex layer. 

Due to the concentration of vorticity in small areas a two-vortex method can describe 
the periodic vortex formation at high amplitudes quite welL In the two-vortex method 
the moment of vortex formation is an input parameter, which has to be obtained from 
flow visualization or from numerical results of a more sophisticated method. Both the 
vortex-sheet method and the vortex-blob method can be used for this purpose. 

In absence of a mean flow the problem is always nonlinear and also in this case vortices 
start to be formed before the acoustic velocity changes sign. The vortex formation at a 
sharp-edged nozzle could be accurately described by the vortex-blob method. Due to the 
absence of a mean flow vortices remain close to the nozzle-edge during an acoustic period 
and, in view of the simplicity of the method a single-panel method, assuming that a new 
vortex is formed when the increase of circulation changes sign, also gives reasonable results. 
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Chapter 5 

The aeroacoustic behavior of an open 
pipe 1 

Abstract 

The propagation of plane acoustic waves in smooth pipes and their reflection at 
open pipe terminations have been studied experimentally. The accuracy of the 
measurements is determined by comparison of experimental data with results of 
linear theory for the propagation of acoustic waves in a pipe with a quiescent fluid. 
Considered are the damping and the reflection at an unflanged pipe termination. 
In the presence of a fully developed turbulent mean flow the measurements of the 
damping confirm the results ofRonneberger & Ahrens (1977). In the high-frequency 
limit the quasi-laminar theory of Ronneberger (1975) predicts accurately the con­
vective effects on the damping of acoustic waves. For low frequencies a simple 
theory combining the rigid plate model of Ronneberger & Ahrens (1977) with the 
theoretical approach of Howe (1984) yields a fair prediction of the influence of tur­
bulence on the shear stress. The finite response time of the turbulence near the 
wall to the acoustic perturbations has to be taken into account in order to explain 
the experimental data. The model yields a quasi-stationary limit of the damping 
which does not take into account the fundamental difference between the viscous 
and thermal dissipation observed for low frequencies. 
Measurements of the nonlinear behavior of the reflection properties for unflanged 
pipe terminations with thin and thick walls in absence of a mean flow confirm 
the theory of Disselhorst & van Wijnga.arden (1980), for the low frequency limit. 
It appears however that a. two-dimensional theory as proposed by Disselhorst & 
van Wijnga.arden (1980) for the high frequency limit underestimates the acousti­
cal absorption by vortex shedding by a factor 2.5. The measured influence of wall 
thickness on the reflection properties of an open pipe end confirms the linear theory 
of An do (1969). In the presence of a mean flow the end correction 6 of an unflanged 
pipe end varies from the value of the high Strouhal number limit 6/a = 0.61, with 
a the pipe radius, which is equal to the value in absence of a mean flow given by 
Levine & Schwinger (1948) of 6/a == 0.61, to a value of 6fa = 0.19 in the low 
Strouhal number limit which is close to the value of 6/a 0.26 predicted by Rien-
stra (1983). . 
The prE>.ssure reflection coefficient is found to agree with the theoretical predic­
tions by Munt (1977, 1990) and Cargill (1982b) in which a full Kutta condition is 
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A.J. REIJNEN & A.P .J. W!JNANDS, Damping and reflection coefficient measurements for an open pipe 
at low Mach and low Flelmholtz numbers. 
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included. The accuracy of the theory is fascinating in view of the dramatic simplifi­
cations introduced in the theory. For a thick-walled pipe end and a pipe terminated 
by a horn the end correction behavior is similar. It is surprising that the nonlinear 
behavior at low frequencies and high acoustic amplitudes in absence of mean flow 
does not influence the end correction significantly. 
The aero-acoustic behavior of the pipe end is dramatically influenced by the pres­
ence of a horn. In the presence of a mean flow the horn is a source of sound for a 
critical range of the Strouhal number. 
The high accuracy of the experimental data suggests that acoustic measurements 
can be used for a systematic study of turbulence in unsteady flow and of unsteady 
flow separation. 

5.1 INTRODUCTION 
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In duct systems, which are part of complex flow distribution systems, used for example by 
the Netherlands gas distribution company (N.V. Nederlandse Gasunie) to distribute gas 
under high pressure, acoustic excitation can be caused by compressors or flow instability. 
In particular we study the coupling between periodic vortex shedding and acoustic standing 
waves. To be able to predict for a given geometry the conditions at which resonant acoustic 
oscillations occur and to estimate the amplitude of such a resonance, knowledge is required 
of the quality factor of the resonator. This quality factor is determined by amongst others 
the reflection coefficient of the acoustic waves at the end of the resonator, the damping 
of the acoustic waves by visco-thermal losses in the boundary layer and the interaction 
of acoustic waves with a turbulent mean flow. Typical for industrial conditions are low 
frequencies, low mean flow velocities and very high Reynolds numbers. 

In this paper an open pipe with various types of pipe terminations is studied. A plane 
acoustic pressure wave of complex-valued amplitude P+ and a reflected wave of complex­
valued amplitude P- are traveling inside the pipe in positive and negative direction, res­
pectively. The reflection coefficient R =P-IP+ at an open pipe end is easily obtained with 
a two-microphone method as described by Abom & Boden (1986, 1988). In the original 
method the wave numbers of the plane acoustic waves are assumed to be known. These 
wave numbers are calculated from the damping coefficient according to Kirchhoff (1868), 
see Davies (1988), Abom & Boden (1986, 1988). A major advantage of the two-microphone 
method is that data can be obtained for very low Helmholtz numbers (Peters et al. (1992)), 
at which the standing wave method does not yield accurate results (Alfredson & Davies 
(1970)). 

In order to increase the accuracy of the measurements the two-microphone method 
is extended to a multi-microphone method which enables the simultaneous measurement 
of the wave numbers and the reflection properties. In this way, also the damping a± of 
acoustic waves traveling in the pipe has been determined. 

The parameters characterizing the problem are the Mach number M = Uo/Co, the 
Helmholtz number ka = wafeo, the mean flow Strouhal number1 Sr0 = wa/Uo which is 

1 Note that in this chapter the Strouhal number is based on the radian frequency w, rather than the 
frequency f, as used in the previous chapters 
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equal to kafM and the acoustic Strouhal number Brae wa/itac· Here, a is the inner 
radius of the pipe, w the radian frequency of the acoustic waves inside the pipe, Uo is the 
mean volume flow divided by the pipe cross-sectional area 1ra2 and C<J is the speed of sound, 
while Uac is the amplitude of the acoustic velocity at the open end of the pipe. Table 5.1 
gives an overview of the main theoretical and experimental results obtained during the last 
decades for the magnitude IRI of the reflection coefficient, its phase tp expressed as the 
so-called end correction{)= tw/';, and the damping a:1:. 

Many theoretical results have been obtained for the reflection of acoustic waves at an 
open pipe end with sharp edges (e.g. Levine & Schwinger (1948)), as well as for the in­
fluence on the reflection properties of: wall thickness (e.g. Ando (1969)); mean flow (e.g. 
Munt (1977, 1990), Cargill (1982a,b), Rienstra (1983) and Howe (1979a)); and vortex shed­
ding (e.g. Disselhorst & van Wijngaarden (1980)). However, accurate experimental data 
are not available for cases with both a low Mach number and a low Helmholtz number. 
In many cases experimental results are given in terms of transmission losses (e.g. Bechert 
(1980) and Cummings & Eversman (1983)). Typical scatter in reported data, as for exam­
ple by Alfredson & Davies (1970), Abrishaman (1977), Ingard & Singhal (1975), Davies et 
al.(1980) and Abom & Boden (1986, 1988) of the reflection of plane acoustic waves at an 
open pipe end amounts to 3% in jRj and 20% in the end correction 6. 

Without a mean flow accurate predictions for the reflection coefficient and end correc­
tion for a sharp-edged pipe end are given by Levine & Schwinger (1948). For low Helmholtz 
numbers ka < 0.5, the work of Ando (1969) indicates that in a quiescent fluid there is no 
significant influence of the wall thickness at the pipe end on the magnitude of the reflection 
coefficient. However, Ando (1969) also predicted a significant increase of the end correction 
6 with increasing wall thickness, 6 rising to the value of the end correction for a flanged 
pipe end given by Nomura et al. (1960). 

There is little information on the dependence of the reflection coefficient on the ratio 
Uac/Uo of the amplitude of the acoustic velocity Uac at the pipe end and the mean flow 
velocity U0 in presence of a mean flow nor on the ratio of the acoustical displacement and 
the pipe radius Brae = wa/uac in absence of mean flow. Some experimental work on the 
nonlinear behavior of pipe ends and diaphragms on the reflection characteristics at high 
acoustic amplitudes has been described in terms of quasi-stationary models by Ingard & 
Ising (1967), van Wijngaarden (1968), Bechert (1980), Cummings & Eversman (1983) and 
Cummings (1984). For a quiescent fluid a prediction for the acoustic energy absorption by 
vortex shedding was calculated in the limit Srac > 1 by Disselhorst & van Wijngaarden 
(1980) using a two-dimensional description of the flow. 

In presence of a. mean flow the reflection coefficient R and damping a are strongly 
influenced by the Mach number. The influence of the Mach number on the reflection 
properties was studied using a linear theory, including a Kutta condition at the pipe end, 
by Munt (1977, 1990). The theory of Munt (1977) and other theories, based on this basic 
theory assume a uniform main flow (plug flow) and infinitely thin shear layers as boundaries 
for the jet. The shear layer oscillations induced by the acoustic perturbations are growing 
exponentially as they are convected away from the edges of the pipe end. Obviously after a 
few hydrodynamic wave lengths it is questionable whether linear theory is still applicable. 
Hence the validity of the theory is not obvious. Furthermore the theory should only be 
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valid when the thickness of the acoustic boundary layer is large compared to that of the 
main flow boundary layer at the pipe exit. 

The theory of Munt (1990) predicts that the reflection coefficient IRI can exceed unity 
within a critical range of the Helmholtz number. Cargill (1982a,b) and Rienstra (1983) 
analyzed the problem for the case of low Strouhal number (Sr0 = ka/M), and found a 
similar behavior for the magnitude of the reflection coefficient in case the Kutta condition 
was imposed at the edges of the pipe end, but a significantly different behavior for the 
solution in which Kutta condition was not imposed. For the latter solution the magnitude of 
the reflection coefficient in the low Strouhal number limit is equal to IRI = (1- M)/(1 + M) 
which corresponds with the reflection of all of the acoustic energy at the pipe end. 

Rienstra (1983) was also able to predict a low-Strouhal-number limit for the end correc­
tion in the presence of a low-Mach-number mean flow. It is common practice (e.g. Davies 
(1988)) to assume that for an unflanged pipe termination the presence of a mean flow 
has no effect on the ratio of the end correction li and the pipe radius a (lifa 0.6133, 
see Levine & Schwinger (1948)), i.e. for low Strouhal numbers it has the same value as 
for high Strouhal numbers. However, the low-Strouhal-number theory of Rienstra (1983) 
predicts a much lower value, namely of lifa 0.2554. 

For the high-Strouhal-number limit, Rienstra (1983) and Howe (1979a) derived that the 
end correction indeed approaches the value (lila= 0.6133) found in absence of a. mean flow 
component. For small but finite Mach numbers Howe (1979a) found a correction factor, 
which is a function of the Mach number, which has to be applied to the end correction 
found without a. mean flow. In the intermediate region of Sr0 = 0(1) Cargill (1982b) 
states that there is no simple approximate analytical expression for li /a. There are some 
indications for the nonuniform behavior of lifa for low Mach numbers and low Helmholtz 
numbers. For example, the experimental data of Davies et al. (1980) indicate a. decrease of 
the end correction lias a result crf nonzero mean flow. However, in the latter investigation 
the different cases of Sr0 -+ 0 and Sro -+ oo have not been distinguished. 

Powell (1951), Wilson et al. (1970) and Hirschberg et al. (1988) have shown that the 
presence of a horn at the end of the pipe may have a. spectacular influence on the aero­
acoustic behavior of an open pipe termination. For a. critical range of the Strouha.l number 
the value of the energy reflection coefficient defined as RE = IRI2(1- M)2 /(1 + M)2 exceeds 
unity. We will present some additional data., in particular on the end correction. 

In a quiescent fluid a. theoretical expression for the damping coefficient a is given 
by Kirchhoff (1868) for the case the acoustic boundary layer is thin compared to the 
pipe radius. A general theory for low-frequency-plane wave propagation in pipes can be 
found in Tijdeman (1975). In the presence of a mean flow the damping coefficient for the 
acoustic waves traveling in upstream direction is different from the one for waves traveling 
in the downstream direction. This convective effect on the damping of acoustic waves has 
been studied by Ronneberger (1975). Ronneberger (1975) proposes a quasi-laminar theory 
taking the turbulent mean flow velocity profile into account, but neglecting the dissipation 
due to the interaction of the turbulent stresses and the acoustic field. 

An important parameter appears to be the ratio of the thickness Oac = J2v/w of the 

acoustic boundary layer and the thickness li1 R:i 10vf..}r0 fp0 of the viscous sublayer of the 
turbulent mean flow boundary layer. Here, v is the kinematic viscosity, p0 is the density 
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of the fluid and To is the mean wall shear stress. If the ratio is small fio.c ~ 81, the damping 
of acoustic waves is not influenced by the turbulent stresses, and a general agreement 
between the quasi-laminar theory of Ronneberger (1975) and the experimental data has 
been demonstrated by Ronneberger & Ahrens (1977). For very large values of the ratio 
Oa.c/6~, a quasi-stationary theory has been proposed by Ingard & Singhal (1974). 

A theory including the nonuniform turbulent eddy viscosity is proposed by Howe 
(1979b), and extended in a later paper by the same author, Howe (1984). Howe's the­
ory (1984) predicts satisfactorily the global features of the damping coefficient a:;,. How­
ever, the difference between the experimental data obtained by Ronneberger & Ahrens 
(1977) and the results of the theory of Howe (1984) is still quite large, of the order of 
20%. Furthermore the theory of Howe (1979h, 1984) is based on a two-dimensional flat­
plate approximation and does not yield a finite quasi-stationary limit of the damping at 
low frequencies. Intuitively the ratio Oac/61 is expected to be crucial for the validity of 
the assumptions of plug-flow and Kutta condition in the model of Munt (1977). These 
assumptions correspond to the limit lio.c/ 61 ~ 1. For this reason, reflection coefficient 
measurements have been carried out over a wide range of values of this parameter, i.e. 
0.2 < Oac/Ol < 3. 

The purpose of the present investigation is to obtain accurate data of the reflection 
coefficient R and the damping a:;: for low Helmholtz numbers ka, low Mach numbers 
M, this for a wide range of Strouhal numbers Sr0 = ka/M and Srac· In this region of 
parameters very few experimental data exist (see table 5.1) though this region is of special 
interest for practical applications. Differences between the various theoretical predictions 
for Rand O:± are relatively small in this range of the parameters. Therefore a high accuracy 
of the experimental data is required to validate the predictions of the theoretical models. 

In section 5.2 the experimental setup will be described as well as the extension of the 
two-microphone method to a multi-microphone method. The accuracy of the method is 
checked by comparison of experimental data, obtained in absence of a mean flow, with 
predictions. 

The damping of acoustic waves due to viscous and thermal forces, the influence of a 
nonzero mean flow and turbulence will be discussed in section 5.3, where also experimental 
data on the damping coefficient a is presented. 

In section 5.4 the acoustic properties of an open pipe end in absence of mean flow 
is studied. The influence of the pipe end geometry on the reflection characteristics of a 
pipe end is determined and compared with theories found in the literature for low- and 
high-amplitude acoustic fields, respectively. Finally the influence of a mean flow on the 
reflection properties of an open pipe end is discussed ln section 5.5. 

5.2 SETUP AND EXPERIMENTAL PROCEDURE 

5.2.1 Setup 

The measurements have been carried out in a horizontal steel tube of 6 m length and inner 
radius a= 15.013 rom. The wall thickness of the tube is d0 5.00 rom. The inner pipe 
wall has a surface roughness of less than O.lJLm, which in all the applications considered 



5.2 Setup and experimental procedure 

AUTHOR I TH. EXP. IIRI li a: I ka M 
MoNT {1977, 1990) X - X - - VAR. <1 VAR. 

RIENSTRA (1983) X X X - <1 <1 <1 
CARGILL (1982a,b) X - X - - <1 <1 <1 
ANDO (1969) 
LEVINE & SCHWINGER (1948) X - X X - VAR. 0 -
NoMURA et al. (1960) 
KIRCHHOFF (1868} 
T!JDEMAN (1975} X - - X VAR. 0 -
HowE {1979b,1984) X X X X <1 <1 >1 
RONNEBERGER (1975) 
RONNEBERGER & AHRENS (1977) X X - X VAR. <1 VAR. 

lNGARD & SINGHAL (1974, 1975) X X - X < 3.5 <0.5 VAR. 

DISSELHORST et aJ. (1980) X X X - - <1 0 -
lNGARD & ISING (1967) 
BECHERT {1980) 
CUMMINGS & EVERSMAN (1983) X X X - - VAR. <1 VAR. 

CUMMINGS (1984) 
ALFREDSON & DAVIES (1970) 
ABRISHAMAN (1977) 
DAVIES (1980) - X X X - > 0.1 <0.2 >1 
ABOM & BODEN (1986, 1988) 
PETERS et a/. (1992) - X X X - < 0.3 < 0.2 VAR. 

TABLE 5.1: Summary of existing theoretical and experimental results for 
the reflection and damping of acoustic waves in an open pipe. (var.) cor­
responds with a continuous range of values. 
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>1 
>1 
~1 

>1 

~1 

>1 

>1 
>1 
VAR. 

<1 

~1 

VAll. 

here corresponds to an hydraulically smooth surface. A very thin coating of oil was present 
in order to avoid possible corrosion of the tube. The experimentally determined friction 
coefficient agreed within the accuracy of the volume flow measurement (0.5%) with the one 
that follows from Prandtl's law for the friction of a tube with hydraulically smooth walls 
(Schlichting (1968)). 

The open pipe end is placed in the middle of a large room {20 x 16 x 9m3), 0.66 m 
above a rigid floor. The nearest wall is at 6 m distance. The four different types of pipe 
end geometries studied in this paper are given in figure 5.1. 

• The first type of goometry, shown in figure 5.1a, approximating the unflanged pipe 
termination with thin walls, studied by Levine & Schwinger (1948), Munt (1977, 
1990) and others, has a sharp edge with a bevel angle of 20°. 

• The second type of goometry given in figure 5.1b is an unflanged pipe end with thick 
walls, with the thickness d comparable with the thickness do of the pipe wall. Two 
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FIGURE 5.1: Pipe end geometries used for the experiments (dimensions 
in mm). (a) sharp edged pipe end. (b) thick-walled pipe end with wall 
thickness d of the order of do. (c) thick-walled pipe end with wall thickness 
d much larger than do. (d) circular horn with radius of curvature r = 4a. 
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values of the wall thickness d at the pipe end were chosen, one for which the ratio 
of inner to outer radius a/(a +d) = 0.85 and a second one for which this quantity 
equals 0.70, each corresponding with geometries studied by Ando (1969). 

• Experiments with pipe end wall thicknesses d larger than the pipe radius a, i.e. 
dfa = 4/3 and 20/3, i.e. with the type of pipe end geometry given in figure 5.lc, 
were carried out to obtain values for the end correction for conditions close to those 
of a. flanged pipe end. 

• Finally a pipe end with a circular horn with radius of curvature r equal to 4a, shown 
in figure 5.ld, was studied. This geometry is a reasonable approximation for the 
human lips in a position used for human whistling. 

In the absence of a mean flow, the acoustic excitation is provided by a loudspeaker 
enclosed in a box with a hole of radius a at both sides of the box. One of the holes is placed 
at a distance 1 mm from the pipe entrance. By dosing the remaining gap with flexible 
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tape, the possible influence of acoustical streaming on the high amplitude measurements 
was checked. No significant influence was observed. Mechanical contact between the pipe 
and the excitation is avoided by placing these elements on two independent frames. To 
avoid the transfer of mechanical vibrations from the loudspeaker to the pipe via the floor 
the frame supporting the pipe is placed on 6 rubber strips. In order to obtain an optimal 
signal to noise ratio, the measurements were performed at frequencies corresponding to 
acoustic resonances of the pipe/excitation combination. Measurements of the reflection 
coefficient at a dosed pipe end have confirmed that there is no significant effect of pipe 
wall vibrations on the results of the measurements. 

FIGURE 5.2: ExperimentaJ setup (A) high pressure supply (B) valve (C) 
flow meter (Instomet Q-66) (D) reverberation chamber (E) siren (F) steel 
tube (inner radius a == 0.015013 m) (G) pipe end geometry (H) waJl 
temperature measurement (I) pressure transducers (type PCB 116 A) (J) 
charge amplifiers (type Kistler 5007) (K) data acquisition system (llP 3656 
S) 

In the presence of a mean flow, the acoustic pulsations are provided by a siren {see 
figure 5.2) which is, in the frequency range considered (10Hz< f < 1000Hz), a much 
more efficient sound source than the loudspeaker. A bypass allows a variation of the ratio 
of the amplitude of the acoustic velocity Uac at the open pipe end and the mean flow velocity 
Uo in the range 0.01 < Uac/Uo < 0.5. When the siren and the pipe are detached to allow 
the mean flow to escape through the gap between the two devices, the siren can be used to 
excite a pipe with a dosed end. This allows the comparison of the reflec~ion coefficient at 
a dosed pipe end obtained by excitation with the loudspeaker with that obtained with the 
siren. High-amplitude acoustic fields could easily be obtained using the siren as a sound 
source, which however can induce significant temperature variations along the pipe. 

The present investigation is limited to low and intermediate values of the acoustic 
amplitude. When the siren was rigidly attached to the pipe, with an open side branch to 



160 Chapter 5: The aeroacoustic behavior of an open pipe 

deflect the mean flow, a small but significant deviation of the reflection coefficient of the 
closed pipe end was found (0.5 %) for those frequencies corresponding to the mechanical 
resonance frequencies of the setup. With a gap of about 1 em between the siren and the 
pipe end the mechanical contact was avoided and the effect of the mechanical vibration 
on the reflection coefficient became negligible. Since the measurements for a closed pipe 
end are much more sensitive to small errors than measurements for an open pipe end, this 
implies that the siren does not induce significant vibrations in the pipe walls. However, 
in order to ensure that wall vibrations do not affect the data the siren and the pipe were 
detached and the gap was closed with flexible plastic tape. 

The speed of sound eo is calculated from the wall temperature Tw measured at various 
positions in the pipe. The variation of the temperature along the tube is about O.l"C, 
which corresponds with the uncertainty in its measurement. Using a 0.2 mm thermocouple 
placed across the tube, it was verified that the stagnation temperature of the flow did 
not differ more than 0.2°C from the wall temperature under the conditions considered 
(M < 0.1). The flow temperature T was calculated by assuming a recovery factor, i.e. 
T = Tw(l - 0.18M2) corresponding to a turbulent boundary layer on a plane surface 
according to Ronneberger (1975). The speed of sound was estimated by interpolation of 
the data found in the CRC Handbook on Chemistry and Physics (Weast (1976)). For 
measurements without a mean flow the speed of sound eo is corrected for the humidity of 
the air. For the experiments with mean flow the air is provided by a high pressure supply 
(60 bar) and is dry (dewpoint -40° C). 

The mean flow velocity U0 is calculated from the volume flow obtained with a calibrated 
turbine meter (type lnstromet Q-66). The uncertainty in the measurement of U0 is about 
0.5%. The measured Uo is corrected for the difference in pressure and temperature between 
the pipe exit and the flow meter position. The calibration of the turbine meter was checked 
by a comparison of the measured mean velocity with the value obtained from the profile 
for a fully-developed turbulent pipe flow where the centerline velocity was measured by a 
Prandtl tube. Also a comparison with data obtained with an orifice meter showed that the 
measured mean velocity is accurate within 0.5 %. 

The mean static pressure in the pipe was measured using a Wallace & Tiernan manome­
ter with a measurement accuracy of 50 Pa. The atmospheric pressure was determined with 
a mercury manometer with an error of less than IOOPa. The acoustic pressure in the pipe 
is measured by means of acceleration compensated piezo-electrical gauges (type PCB 116 
A). These gauges have a diameter of 10.3 mm. Because the diameter of the gauges is large 
compared to the pipe radius, the gauges cannot be mounted flush in the pipe wall. The 
installation of the gauges in the wall of the pipe is shown in figure 5.3. A channel (3.5 mm 
diameter and 1.5 mm long) connects the pipe with a cylindrical cavity (10.5 mm diameter 
and 0.5 mm deep) in front of the surface of the pressure gauge. Calibration of the installed 
gauge involving a reference pressure gauge mounted flush in a closed pipe end yields a 
correction on the gauge readings for the influence of the gauge installation units. 

The pipe consists of separate segments on which the individual pressure gauges are 
mounted. By interchanging these pipe segments, different positions of the microphones a.re 
obtained. As will be shown in the next section, the accuracy of the measured data. depends 
on the relative position of the gauge with reference to the standing wave pattern in the 
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FIGURE 5.3: Configuration of the pressure gauges in the pipe wall 
(dimensions in mm). 
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pipe and hence on the frequency considered. As a rule of the thumb, one of the gauges 
used for the determination of the reflection coefficient must be placed close to a pressure 
node. In the case of an open pipe end the first microphone is placed about three diameters 
from the pressure node at the pipe end. At this position a plane wave approximation yields 
an accurate description of the acoustic flow field. 

The proximity of the first microphone to the pressure node at the open pipe end implies 
that measurements will be accurate for a continuous range of frequencies. One of the 
microphones has to be positioned at a pressure node, which implies that when a closed 
pipe end is considered, or when data obtained at a location further down the pipe is 
considered (for example for the measurement of damping), full accuracy of the data is only 
achieved for discrete frequencies. 

The position x;, measured from the pipe end, of the microphone i was determined with 
an accuracy of 0.1 mm. Measurements for a closed pipe end confirm, that the acoustical 
position of the gauge corresponds with the geometrically determined position of the gauge. 
The signals from the microphones are amplified by means of charge amplifiers (Kistler type 
5007, bandwidth O.lHz < f <22kHz) and transferred for further analysis to a HP 35658 
data acquisition system (dynamic range 80 dB, phase accuracy O.l degree, linearity 0.1 
dB). Using FFT analysis (frequency discretisation 0.004 Hz, using a Hanning window), 
the transfer functions H;i between microphones at position x; and Xj were obtained. Only 
data with a coherence equal to one within the accuracy of the measurement (10-4 ) were 
used. Each measurement was repeated three times. 

The reproducibility of the measurements appears to be determined by the analog/digital 
converter (13 bit). The accuracy of the measurements is mainly limited by the accuracy of 
the calibration of the pressure gauges. Because the measurement for the case of the closed 
pipe end is very sensitive to small errors in the calibration, these measurements were used 
to adjust the calibration obtained with the procedure described above. In this refinement 
the damping coefficient in a quiescent fluid obtained from the measurement data was used 
which was close to the value predicted by Kirchhoff (1868). 
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Because the measurements were carried out with simultaneous reading up to six micro­
phones, independent reflection coefficient data could be obtained. Data were checked on 
their sensitivity to systematic errors due to the uncertainties in the calibration. Suspect 
data, showing errors more than 0.5% as a result of the uncertainties in the calibration, 
were rejected. In general, data obtained with different microphone pairs agreed within 
0.1 %. Typical reproducibility of the data is of the order of 0.05% or better. The largest 
systematic errors observed are due to the room acoustics and will be discussed further. 
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FIGURE 5.4: Velocity profile measured close to a flanged circular pipe 
end. The arrow denotes the mea.n velocity in the pipe (41 mfs). Mea­
surements presented are obtained at a distance ( +) x "' -0.2 a, (l:l.) x 
0.15 a (D) x = 0.7 a ('V) x = 1.9 a (x) x = 3.9 a from the pipe end. 

5.2.2 Mean flow conditions 

As the test section of the pipe was always placed more than 100 pipe diameters downstream 
of the siren, a. fully developed turbulent mean flow was achieved in all experiments. The 
mean velocity profile close to the pipe end was measured by means of a constant tempera­
ture hot wire of 5/Lm diameter and 6 mm length. The average velocity inside the pipe was 
approximately 41 m/s, which is close to the maximum velocity used in all experiments. 
The measured velocity profiles in the shear layer of the free jet at a flanged pipe end are 
presented in figure 5.4. The momentum thickness of the free shear layer increases linearly 
with x, the distance to the pipe end. 

For the steady flow in a pipe segment, terminated by a horn, for the flow conditions 
considered the separation point depends strongly on the Reynolds number. This effect is 
measured by means of a pressure recovery factor, defined by Cv = !:.pj~p0UJ, where !:.p 
is the pressure difference between a point just inside the pipe in front of the horn and a 
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point in the far field outside. This pressure recovery factor is presented in figure 5.5. It 
can be related to an effective diameter D; of the free jet by Cv = 1 - (2a/ D; )4 , where a 
uniform velocity profile in the jet has been assumed and the Bernoulli equation has been 
used. The maximum pressure recovery factor found in this manner is Cv = 0.3, which is 
equivalent to a maximum increase of the jet width by about 10%. 
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FIGURE 5.5: Pressure recovery factor for the steady flow in the horn, 
shown in figure 5.1d. 

5.2.3 Determination of reflection coefficient and the damping 

Using the measured transfer functions H;; between the microphone at position x; and the 
reference microphone at position x; close to the open pipe end (x = 0), the reflection 
coefficient R of the open pipe end and the complex-valued wave numbers k+ and k_, of 
the in positive and negative direction traveling acoustic waves, can be determined. The 
underlying analysis is based on the assumption that the acoustic field can be described in 
terms of plane waves for which p(x,t) = p(x)eiwt with 

(5.1) 

where pis the complex-valued amplitude of the acoustic pressure p(x) and w is radian 
frequency. The imaginary parts of the wave numbers "S(k±) correspond to the negative of 
the damping coefficients ll'± of the waves 

(5.2) 

When the wave numbers k± and the transfer function Hji = p(:r:i)/p(x;) are known, the 
complex-valued reflection coefficient R(x) at position x, defined as 

(5.3) 
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can be calculated from 

H;;e-ik+(x;-x)- e-ik+(Xj-r) 

R(x) = eik-(x,-x) _ H;~ie.ik-(r;-x) {5.4) 

where k± is assumed to be independent of the position x. If the wave numbers k± are known, 
the reflection coefficient can be determined by the two-microphone method described by 
A hom & Boden (1986, 1988). The reflection coefficient at the pipe end R(O) will he denoted 
by R. If the wave numbers k:1: are unknown as well, a multi-microphone method can be 
used. When four microphones are used, three independent pairs of microphones can be 
selected. From equation (5.4) a set of three nonlinear complex-valued equations is obtained 
with R, k+ and k_ as complex-valued unknowns, which has to he solved iteratively. When 
more than four microphones are used, a nonlinear regression procedure can be used .to 
solve the resulting set of overdetermined nonlinear equations (e.g. Ronne berger & Ahrens 
(1977)). . 

The procedure used for the experiments presented in this paper is based on the concen­
tration of microphones into two clusters. The first cluster of microphones is placed near 
the pipe end. The second cluster is placed at a distance from the open pipe end which 
is much larger than the microphone spacing within a cluster. The first cluster is used 
to determine the reflection coefficient R(x,) at position x; of the microphone, closest to 
the pipe end. The second cluster is used to calculate the reflection coefficient R(x;) at 
position x:i of the microphone of the second cluster placed in a pressure node. (This last 
condition determines the values of frequencies at which the experiments are carried out.) 
Under these conditions R(xi) and R(x;) appear to be most ipsensitive to random errors, 
calibration errors and other systematic errors. It was found that the values of R(x;) and 
R(xj) calculated using equation {5.4) for both clusters is rather insensitive to the precise 
value of k± as long as the microphones in each cluster are placed closer than a quarter of 
the acoustic wavelength apart. When a theoretical value is used for k:~;, an accurate first 
approximation for R(x;) and R(x;) can he obtained. Fr9m these values of the reflection 
coefficient an accurate first guess for the damping coefficient et± can be determined from 
the imaginary part of the individual complex values of k+ and k_ obtained from 

(5.5) 

where tlx;j x; -xi is the distance between the microphones at the position X; and Xj· In 
principle, because there is a mean pressure gradient along the pipe, the :Mach number M 
and wave numbers k± depend on the position x. Using the mrrection procedure proposed 
by Ronneberger & Ahrens (1977) this effect was estimated, but it appeared to be negligible 
for our experimental conditions (M :5 0.1). Therefore here it is assumed that M and k:~; 
are independent of position x. The complex-valued average wavenumber can be obtained 
by averaging k+ and k_, i.e. k0 = ( k_ + k+ )/2 or directly from 
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R(x;) 2i•-t>x --=e n.u ,, 

R(xi) 
(5.6) 

This procedure can either be repeated, using the new values of the wavenumbers kr. to 
recalculate R(x;) and R(xi ), or one can use a general nonlinear solver procedure to deter· 
mineR, k+ and k_ from the signals of two pairs of microphones (one pair in each duster). 
It turned out that both procedures converged rapidly towards the same result. 

Typical accuracy in IRI using the two-microphone method with theoretical estimates 
for the wavenumbers k± is better than 0.2% for ka < 0.1 and 0.3% for 0.1 < ka < 0.3. The 
typical absolute accuracy in the corresponding 6 is about 0-03 a_ For the multi-microphone 
method the accuracy could be increased to 0.1% for JRJ, and to ±0.02 a uncertainty for 6. 
The accuracy of the wavenumber k± is 2 % for the imaginary part and 0.02 % for the real 
part. The reproducibility was found to be better than 0.05 % for JRJ and 0.5 % for 6 and 
~(k±)· This accuracy was confirmed by measurements without a mean flow, which will be 
described in the following sections. 

The energy reflection coefficient RE is defined as the ratio of the intensity of the reflected 
and that of the incident acoustic energy at the pipe end. The energy reflection coefficient 
RE is related to the pressure reflection coefficient R by (Mechel (1965)) 

RE = IRI
2 G ~Z)2 

(5.7) 

where M Uo/Co is the Mach number, averaged over the duct cross section. 

5.fL{. Influence of the acoustics of the room 

The influence of the rigid floor on the reflection coefficient of the open pipe end is taken 
into account by assuming a point source below the floor, at the mirror-imaged location of 
the pipe end, of strength equal to the acoustic volume flow at the pipe end. This imag~ 
source represents the reflection of the acoustic field at the floor. Free field conditions are 
assumed above the floor, i.e. reflections at the ceiling and the side walls are not taken 
into account. Since the nearest wall is at 6 m direct reflections a.t this wall are assumed 
to be negligible. The correction to the reflection coefficient and end correction due to the 
presence of the floor, in the low frequency approximation, is given by (Disselhorst & van 
Wijngaarden (1980)) 

(5.8) 

where His the distance of the pipe to the floor and JRJII and OJI are the reflection coefficient 
and end correction measured in the presence of the floor, respectively. IRJ and 6 are the 
values for the latter two quantities for free field conditions. For low Helmholtz numbers, i.e. 
ka < 0.3, the corrections in our experiments (with H = 660mm and a= 15.013 mm) are 
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less than 0.2% for an open pipe end. Neverthelt>_ss it has been applied to all data presented 
here. 

1.0 ,--------------...., 

0 0.1 0.2 
ka ka 

FIGURE 5.6: Influence of wall tl1ickness on the reflection coefficient for an 
open pipe end without a mean flow a.t low acoustic amplitudes (Srac > 20) 
as a function of the Helmholtz number ka. Influence of room resonances 
is observed mainly for ka ';::! 0.1. A two-microphone method, using an 
experimentally determined value of the damping ao, close to the value 
given by equation (5.10) is used. 
Microphone positions : x1 = -86.8 mm,x2 = -224.5 mm. (x) sharp 
edges, af( a+ d) = 1.00, ( tl) thick walls, a/( a+ d) = 0.85, (D) a/( a+ d) = 
0.70. (a) Absolute value of the reflection coefficient IRI (b) End correction 
o ---Levine & Schwinger (1948) foraf(a+d) = 1.00 and Ando (1969) 
for af(a + d = 0.85. ------ -- Ando (1969) for af(a +d)= 0.70 
······Nomura et al. (1960) for af(a +d)= 0.0. 

(b) 

0.3 

Figure 5.6 compares the reflection coefficient IRI and end correction 6 obtained with a 
two-microphone method, in absence of a mean flow, with the theoretical results of Levine 
& Schwinger (1948) for an unflanged pipe end with thin walls, and the theory of Andq 
(1969) for pipes with finite wall thickness d. It is found that the dat.a for IRI obtained from 
the present measurements agree within 0.5 % with the theoretical data, while the data for 
6 obtained from the experiments agree within 5 % with the corresponding theoretical data. 

The data presented in figure 5.6 have been obtained for small values of the acoustic 
displacement Uac/w compared to the pipe radius a. This condition can be expressed in 
terms of an acoustic Strouhal number Srac = wafuac· The data of figure 5.6 have been 
obtained for conditions such that Srac > 20. For acoustic Strouhal numbers in this range 
there is no significant nonlinear behavior to be expected. 

The main systematic difference between the reflection coefficient obtained from the 
measured data and the theoretical ones occurs around ka = 0.1. It is expected that this 
apparent systematic error of about 0.5 % is due to the resonance of the large room in which 
the experiments have been carried out. 
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5.3 DAMPING 

In section 5.3.1 to 5.3.3 the existing theories and data on damping of plane waves in smooth 
pipes will be discussed. New data obtained with the multi-microphone method described 
in the previous section is presented in section 5.3.4. 

5.3.1 Damping in absence of mean flow 

Visco-thermal damping of acoustic waves in a quiescent medium in pipes has been studied 
by Kirchhoff (1868), Rayleigh (1896) and Tijdeman (1975). In the low frequency approxi­

mation (ka ¢: 1) a.nd for high shear numbers (Sh == a;:;;r; ~ 1, where vis the kinematic 
viscosity of the medium) the wave number can be approximated by 

w( 1-i1 7-1 k=- 1+-~(1+-) 
eo . V2 Sh ffr 

-1 1 ')'-1) - -')'-) 
2 Pr 

{5.9) 

where ')' a.nd Pr are the ratio of the specific heats, also known as Poisson's ratio a.nd the 
Prandtl number, respectively. In the experiments described in this paper ka < 0.3 while 
Sh > 30. For air Pr 0.71 and '"Y = 1.4. The density po of air was taken from Weast 
{1976). For the dynamic viscosity of air p, pv the data given by Touloukia.n et al. (1975) 
was used. As a result, the temperature dependence of the kinematic viscosity of dry air is 
given by v = A+ B(T- Tref ), with T the absolute temperature of the air inside the pipe, 
A= 1.51 10-s m 2/s, B = 9.2 10-s m2 /sK a.nd Tref = 293.16 /(. The first correction 
to w/eo which is inversely proportional to the shear number corresponds to the solution 
given by Kirchhoff {1868), which also changes the phase velocity of the acoustic plane 
waves. The second term, i.e. the Sh-2 term, is a correction of the damping obtained by 
Kirchhoff (1868) and was obtained by Ronneberger (1975) from the exact expression given 
in Tijdema.n {1975). The result is valid for Sh > 20 and within 0.01% in agreement with 
the low-frequency solution obtained by Tijdeman (1975). 

The damping in a quiescent fluid is given by the negative of the imaginary part of 
equation (5.9), i.e. 

w( 1 '"Y-1 1 '"Y 1 1 'Y 1) 
ao =;;; V'J,Sh (1 + ffr) + Sh2(1 + ffr- ;p--p;:-) (5.10) 

Although the Sh- 2 term in equation (5.10) is usually neglected in literature (e.g. Davies 
(1988), Morse & Ingard (1968), Pierce (1989)) in our experiments it ca.n attain values of 
2% of the first term. Hence this correction should be taken into account in view of the 
accuracy (1%) which is to be achieved in the measurement of the damping. 

The dissipation is dominated by the viscothermallosses at the walls. The viscothermal 
losses in the bulk of the flow are given by Pierce (1989) as 

O'btJ.Ik = ~ (ka)
2 (i + P,b + 1- 1) 

eo 2Sh2 3 p, Pr 
(5.11) 

where Jib is the bulk viscosity which is approximately 0.6ft. This contribution to the 
damping is two orders of magnitude smaller than the losses in the boundary layer and will 
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he neglected. The contributions due to relaxation processes can be accounted for by an 
enhanced bulk viscosity llp.b and can, for air at room temperature with 20% humidity be 
approximated by 

(5.12) 

where ( a;>.)max is the maximum absorption per wavelength associated with the i-type relax­
ation process and j; is the relaxation frequency (Pierce (1989), chapter 10). For air, we find 
for 02, i 1, ft = !2500Hz, (atA)max = 0.0011 and for Nz, i = 2, h =173Hz, (a2A)m<>z = 
0.002. For low frequencies f < 200Hz, the contribution of the relaxation processes to the 
damping in the bulk of the flow dominates the other contributions given in equation (5.11 ). 
However, for the present experimental setup, the damping in the bulk of the flow is still 
less than 1% of the damping in the boundary layer and is therefore neglected. 

5.3.2 Convective effects 

The wave numbers for up- and downstream propagating acoustic waves are influenced by 
the mean flow velocity U0 , defined as the volume flux divided by the pipe cross-section. 
For a uniform mean flow, neglecting damping, it is found that 

(5.13) 

where M = U0 /eo is the Mach number of the mean flow. The effect of a non uniform laminar 
mean velocity distribution on the damping coefficient was studied by Ronneberger (1975). 
By taking into account the turbulent mean velocity profile Ronneberger (1975) solved the 
linearized equations for mass, momentum and energy conservation for a pipe flow. In this 
quasi-laminar theory the acoustic effect of the turbulent mixing was neglected. When the 
acoustic boundary layer thickness f>ac = J2v/w is small compared to the thickness of the 

viscous sublayer 81 ~ lOv/v* of a turbulent pipe flow (where v• = Jro/Po is the friction 
velocity), the quasi-laminar theory is expected to describe the damping of the acoustic 
waves quite accurately. · 

To first order approximation the damping coefficient is independent of the mean flow 
velocity distribution, but depends only on the mean flow Mach number, i.e. according to 
(Ronneberger (1975)) 

2 I + -y-1 
a _ _ (1 + M) "[f=M)2 7Pr 

- I -1 
a+ 1 - M (l+Ml2 + * (5.14) 

which is valid for the region where f>ac < f>1. Using a two-dimensional flow model Howe 
(1984) found an alternative result which for f>ac < f>1 is given by 

1 + ")'-1 a_ "[f=M)2 7Pr 

a+ = (t+~l• + * (5.15) 

Since Howe's (1984) theory is more approximate than the one used by Ronneberger (1975), 
we expect the result given by Ronneberger (1975) to be more accurate for f>a.c < f>1. 



Section 5.3: Damping 

3.0.-----------0------, 

l 
.._I 2.0 
tl 

0.1 

c 

c~ . . . . . 
,.... ......... ..-·--· 

0.2 0.3 
M 

FIGURE 5. 7: Influence of Mach number on the damping coefficient in up­
stream (a_) and downstream (a+) direction. 
(A) f =630Hz, (D) f =3350Hz: data Ronneberger & Ahrens (1977). 
(<>) f = 135 Hz present data obtained with a multi-microphone method 
with microphones at positions x1 = -86.8 mm,x2 = -347.8 mm,x3 = 
-385.3 mm, x4 = -4550.3 mm, xs = 4601.2 mm, xs = -5093.7 mm. Data 
corresponding to values for which 640/61 > 1 are presented by filled mark­
ers. Theory for o ... /61 < 1: - - -: quasi-laminar theory Ronneberger 
(1975), equation (5.14). · · · · • • : Howe (1984), equation (5.15). For 
Oac/DI :> 1: - • - · - · - : Ingard & Singhal (1974), equation (5.17). 
-- : Howe {1984), equation (5.18). 
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In figure 5.7 the data of Ronneberger & Ahrens (1977) for the damping coefficients are 
given as a function of the Mach number. The data were obtained by varying the Mach 
number keeping the frequency constant (630 Hz (~) and 3350 Hz (D)). For the region, 
where 6 ... /61 < 1, the data are given by open symbols, while the other data are given 
as solid symbols. Included in figure 5. 7 are the two theoretical results given by equations 
(5.14) and (5.15). For Cac/61 < 1, the quasi-laminar theory of Ronneberger (1975) describes 
the convective effects quite accurately. However, for the region where turbulence affects 
the acoustic damping 6 ... /61 ::> 1 a strong deviation from the theory of Ronneberger (1975) 
is observed. Note that equation (5.14) is only a first approximation of the quasi-laminar 
theory of Ronneberger (1975). Comparison with the full quasi-laminar solution can be 
found in Ronneberger & Ahrens (1977). The effect of turbulence on the acoustic damping 
properties will be described in the next part of this section. 

5.3.3 Influence of turbulence 

In the presence of a turbulent mean flow the damping of acoustic waves is influenced by the 
action of the turbulent stresses if the acoustic boundary layer thickness 6o.c is larger than 
that of the laminar sublayer 61• The effect of turbulence can be described in first-order 
approximation by adding to the kinematic viscosity an eddy viscosity, which is nonuniform 
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over the pipe cross-section. The eddy viscosity is small compared to the kinematic viscosity 
for distances from the wall (y) small compared to the thickness of the viscous sublayer 8,. 
For y > 81, i.e. in the logarithmic region of the turbulent boundary layer, the eddy viscosity 
increases approximately linearly with the distance from the wall. 

Using van Driest hypothesis (see Schlichting (1968)) for the calculation of the edJy 
viscosity, Ronneberger & Ahrens (1977) derived a. model for the damping of acoustic waves 
by a turbulent mean flow. From their experimental data three different regions in terms 
of the relative thickness of the acoustic boundary layer could be distinguished. 

1. For low values of the ratio 8acf8,, the damping of acoustic waves is not influenced by 
the turbulent shear stress and is accurately described by the quasi-laminar theory of 
Ronneberger (1975) (figure 5. 7). This findings fully agree with the observation that 
the eddy viscosity is small in the viscous sublayer. 

2. For large values of 8acf8, the damping was found to increase linearly with the acous­
tic boundary layer thickness. In this case the damping is mainly the result of the 
turbulent mixing in the bulk of the flow. 

3. For a value of the ratio 8ac/81 of order one, at a critical Mach number, a minimum 
in the damping was observed by Ronneberger & Ahrens (1977). This minimum is 
lower than the value predicted by the quasi-laminar theory. Hence Ronneberger & 
Ahrens (1977) conclude that the damping appears to be reduced by the presence of 
turbulence. 

This reduction of damping has been explained by Ronneberger & Ahrens (1977) as being 
the result of the destructive interference at the wall of the shear waves generated by the 
acoustic field with the shear waves reflected at the edge of the viscous subla.yer by the 
strong variation of the eddy viscosity. For critical ratios of the acoustic boundary layer 
thickness and and the thickness of the laminar sublayer, this destructive interference is 
maximal which results in the observed minimum in the damping. 

Using the eddy viscosity model of van Driest (Schlichting (1968)), Ronneberger & 
Ahrens (1977) could not predict the minimum in the damping. In their model the damping 
coefficient a0 = limM .... oa± was always larger than the damping in a quiescent fluid. Using 
a model for the eddy viscosity in which the eddy viscosity depends linearly on the distance 
from the wall and in which the eddy viscosity is neglected within the viscous sublayer 
Howe ( 1984) did predict a minimum of the damping coefficient a0 • However, the minimum 
in cro does not appear at the correct value of Cac/81 and the interference effect is severely 
underestimated. 

Even the simplified 'rigid plate' model, proposed by Ronneberger & Ahrens (19i7), 
assuming a.n infinitely large eddy viscosity, which certainly overestimates the reflection of 
the shear wave at the edge of the viscous layer does not predict the correct 8ac/81 at which 
the minimum in the damping occurs, nor the correct value of the minimum itself. Using 
the thickness of the laminar sub layer 6, as a parameter to shift the position of the minimum 
to the observed value of 8ac at minimum, the minimum in the damping is underestimatNl 
by a factor of two. 
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Because the shear wave decays rapidly with the distance from the wall y a deep min­
imum suggests reflections from a distance from the wall smaller than the value of 61 used 
in the existing theories. To obtain a destructive interference one should then have an ad­
ditional phase shift during the reflection. This phase shift might be related to 'memory' 
effects of turbulence. Hence in spite of the fact that Ronneberger & Ahrens (1977) assume 
these memory effects to be negligible a theory neglecting these effects does apparently not 
explain the experimental data available. 

More recently Ronneberger (1991) estimated that the timescale involved in the memory 
effects of turbulence is of the order of tm = l00vfv*2• This corresponds to the acoustic 
period if w+ wvjv•2 211'/100. This appears to be a value of the same order of 
magnitude a.,q the value of w+, where the damping approaches a minimum (w+ :::::;. 0.01) in 
the experiments of Ronneberger & Ahrens (1977). 

If the rigid plate model proposed by Ronneberger & Ahrens (1977) is extended by 
including a phase shift of wtm = 100w+ due to the reflection at the edge of the viscous 
sublayer (y = 5!), the shear stress at the wall To is given by 

= (5.16) 
To 

Tstokes 

where the superscript + denotes values nondimensionalised with the kinematic viscosity 
v and the friction velocity v• and Tstonu "1itilu4 ceiwt is the shear stress for a. Stokes 

boundary layer in absence of a mean flow. If the value of 5t is adjusted to fit the low 
frequency quasi-steady limit, a value of ht = 12.5 is obtained. 
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FIGURE 5.8: Influence of turbulence on the shear stress impedance, 
Zr = (1 + i)To/TStokes· (a) real part R(Zr), (b) imaginary part ~(Z,.). 
(x) experimental data Ronneberger & Ahrens (1977). ( · · · ·) rigid-plate 
model (6T = 15), Ronneberger & Ahrens (1977, (- -)rigid-plate model 
with memory effects (6T = 12.5), equation (5.16), (---) model Howe 
{1984) (6t = 7). 

20 25 
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In figure 5.8 the experimental data of Ronneberger & Ahrens (1977) for the wall shear 
stress impedance Zr = (1 + i)To/Tstokes in presence of a turbulent mean flow are compared 
with the results of the rigid plate model of Ronneberger & Ahrens (1977) with 6i = 15, 
the theoretical result of Howe (1984) with 6i = 7 and the modified rigid-plate model 
with Iii = 12.5 in whkh a phase shift due to memory effects of turbulence is taken into 
account. Figure 5.8 clearly shows that memory effects can be responsible for the differences 
between the results of existing theories and the experiments. The result given in equation 
(5.16), obtained by including memory effects into the simple rigid plate model, considerably 
increases the correlation between theory and the experiment. This is rather surprising since 
the rigid-plate model is a very approximate model of the interaction of the acoustic shear 
wave with the turbulent flow away from the wall. 

The decrease of the wall shear stress observed by Ronneberger & Ahrens (1977) agrees 
with more recent data on the wall shear stress reported in Mankbadi & Liu (1992) and 
Louis & Isa.bey (1992), although the data presented there show a la.rge scatter, in particular 
in the region where 66cf6, > 1. 

For high values of the ratio liac/bt the two-dimensional approximation of the boundary 
layer used by Howe (1979b, 1984) is not valid anymore, because the acoustic boundary 
layer thickness then becomes of the order of the radius ofthe pipe (Sh ~ 1). From the 
experimental data of Ronneberger & Ahrens (1977) a quasi-stationary behavior is obtained 
for bo.c/DI > 2. The two-dimensional theory of Howe (1984) does not have such a quasi­
stationary limit for Oac/bt -+ oo in its present form. This is a severe drawback which calls 
for further theoretical study. 

lngard & Singhal (1974) have derived a quasi-stationary theory for the damping in the 
region where 6acfli, is large. In their theory the damping coefficient is given by 

(5.17) 

where ak is the damping in a quiescent fluid according to Kirchhoff (1868) and is given 
by the first term in equation (5.10). In equation (5.17) Re is the Reynolds number, based 
on the mean flow velocity and the pipe diameter and t/J is the turbulent friction factor. 
For smooth pipes t/J can be obtained from Prandtl or Blasiusequations (see Schlichting 
(1968)). For high Reynolds numbers t/J depends only weakly on the Reynolds number. The 
expression given by Howe (1984) can be simplified for the limit of liac/lil ~ 1 to 

1 + :r.::! a_ {I=Mj2 Pr 
- ::: ___!__ + -y-1 
a+ (l+M)2 --p;:-

(5.18) 

which differs slightly from equation (5.15} by the dependence of the Prandtl number. In 
figure 5.7 in the region where 6ac/lit > 1 the convective effects can be compared with the 
experimental data of Ronneberger & Ahrens (1977) for a frequency of 630 Hz. In this region 
the theory of Howe { 1984) is found to give a more accurate prediction of the convective 
effects than the theory of Ingard & Singhal (1974). 

Ingard & Singhal (1974) obtained a frequency dependence of the damping a:1: by simply 
adding Kirchhoff's damping ak without mean flow to a± given by equation (5.17). This is 
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certainly a very crude approach which is not justified by existing experimental data. 
A quasi-stationary limit for the damping coefficient can also be obtained from the rigid 

plate model, proposed by Ronneberger & Ahrens (1977), which, using the two-dimensional 
theory of Howe (1984), results in 

+ 1 +:I=.! 0!± jjac {i±M)2 Pr 

a~c = st 1+ * (5.19) 

For 6t 12.5 the value of the damping is reasonably dose to the result of lngard & 
Singhal (1974), given by equation (5.17). However the theory of lngard & Singhal (1974) 
neglects the influence of thermal convection and corresponds to an isothermal solution. 
The convective effects and the frequency dependence of equation (5.19) are in much better 
agreement with the experimental data. However, it should be noted that at the moment no 
well established theory is present for describing the convective effects in the quasi-stationary 
limit. 

5.3.4 Experimental results 

Using the multi-microphone method the damping coefficient for plane waves traveling in 
a pipe in a quiescent fluid have been determined for a setup consisting of a pipe with a 
closed end. The reflection coefficient of the closed pipe end is R(xi) 1, while a reflection 
coefficient R(xi) was obtained with two pairs of microphones ±3.5m from the closed end. 
From equation (5.6) the average wavenumber ko, and as a result the damping could be 
determined accurately. 

The damping coefficient 0! obtained for the acoustic waves is presented in figure 5.9. The 
damping coefficient is normalized with the theoretical value for the damping a 0 in absence 
of mean flow for high shear numbers (equation (5.10)}. The data obtained with the different 
microphone pairs agree within the experimental accuracy (±2%) of 0!. Figure 5.9 shows 
that the damping is within the range of the required accuracy for the present measurements, 
i.e. the damping is about 0.7% larger than the value predicted by equation (5.10). This 
small systematic deviation can partially be explained by the viscosity in the bulk of the 
flow, given by equation (5.11) and (5.12), which is of the order of 0.6% of ao due to 
relaxation processes. 

For the measurements without mean flow, presented in section 5.4, the data obtained 
with the two-microphone method were post-processed by using the experimentally deter­
mined value of the damping. 

The damping of acoustic waves in a turbulent mean flow was obtained in two ways: 
at constant Helmholtz number by varying the Mach number, 0.01 < M < 0.1, and at 
constant Mach number by varying the Helmholtz number. The Helmholtz number has 
been varied between 0.01 < ka < 0.06, because in this range the microphone calibration 
is most accurate. In figure 5.10 the damping coefficient for waves traveling in up- and 
downstream direction are shown as a function of the Mach number at constant frequency 
(f =88Hz). 

The damping is nondimensionalised with the value in absence of mean flow (equation 
(5.10)). For high Mach numbers a strong increase of damping is observed as the damping 
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FIGUR.E 5.9: Damping coefficient in absence of mean flow, nondimen­
sionalised with the value given by equation (5.10). A multi-microphone 
method is used with microphones at positions x1 = -7.5 mm, x2 = 
-3426.0 mm, X3 = -3476.8 mm. 
(o): (ii/ao) obtained from R(O) = l,R(x2) and H12, 
(x): (ii/o:o) obtained from R(O) = l,R(x3) and H13 

tends towards a quasi-stationary limit. The damping in up- and downstream direction are 
different due to the presence of a mean flow. 

The average wave number ko can be obtained accurately from the multi-microphone 
method according to equation (5.6), while the different values of the up- and downstream 
wave numbers, obtained from equation (5.5), are more sensitive to calibration errors. 
Therefore average values k0 are presented in figure 5.11 rather then data for k± extrapo­
lated to zero Mach number in the way as proposed by Ronneberger & Ahrens (1977). For 
low Mach numbers (M < 0.1), the difference between k0 and lim.u-o k± is of the order of 
MZ. 

Figure 5.1la. presents the average damping coefficient a = Ha- +a+), normalized 
with the value a 0 in absence of a mean flow, given in equation (5.10), as a function of 6dc· 
The experimental data are again obtained in two ways: at constant frequency by varying 
the Mach number, and at constant Mach number by varying the frequency. Within the 
experimental accuracy (2% in S(k)) the different data sets collapse onto a single curve. 
The data agree with the real part of the averaged wall impedance 

(5.20) 

which is equal to a weighted sum of the shear stress impedance Zr and the impedance 
of the heat conduction wave Zq. In the region where Oac/fll ::::::: 1 the damping decreases 
significantly to a value about 4 % smaller than the damping for the case without mean 
flow. In the region just before that (6tc::::::: 7) the damping increases slightly (±3%) which 
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is clearly seen in the enlargement in figure 5.lla. Although the data of Ronneberger & 
Ahrens (1977) are obtained from an extrapolation of results obtained at finite Mach number 
to results for zero Mach number, the difference with the average damping is less than 2% 
for M < 0.1. In the present investigation experimental data could be obtained for a value 
of s;t twice the maximum value obtained by Ronneberger & Ahrens (1977). In this region 
a change in the quasi-stationary behavior is found. A similar behavior is also observed 
in figure 5.llb, which shows the imaginary part of the averaged wall impedance Z. For 
Sac < 25, this parameter decreases towards a value of 0.4, which was also obtained by 
Ronneberger & Ahrens (1977), but a small increase is found for Oac > 25. 

The convective effect on the damping expressed in the form a_f a+ is given in figure 5. 7 
for a constant frequency of 135 Hz. Indeed the present low frequency data are reasonably 
in agreement with the earlier data at higher frequencies (630Hz, 3350Hz) of Ronneberger 
& Ahrens (1977), and clearly exhibit the convective effect for the different regions where 
oac/fit ~ 1 and liacl 61 < 1. 

5.4 OPEN PIPE END IN A QUIESCENT FLUID 

5.4.1 Influence of pipe end geometry 

In this section the linear behavior of an open pipe end in a quiescent fluid is considered. 
The linear behavior is found for low amplitudes of the acoustic velocity field ( Uac/CfJ < 1 
and Srac = wa/ftac ~ 1). 

Analytical results are in general limited to either a.n unflanged thin-wa.lled open pipe 
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in free space, or a pipe with an infinitely large hard baffle (flanged pipe end). The theory 
further neglects the influence of viscosity, which corresponds to the limit of high shear 
numbers (Sh > 1). 

Because our emphasis is on low Helmholtz numbers (ka < 0.3) the acoustic field in the 
pipe can be described in terms of plane waves. Furthermore, in this limit the reflection 
coefficient ca.n be determined by assuming incompressible flow. At a distance r1 from 
the pipe end for which rtfa > 1 but kr1 < 1, the flow at r1 ca.n he described by the 
incompressible flow generated by a point source. Matching the volume flow at the pipe 
exit with the volume flow at rt, a.nd matching the acoustical energy fluxes yields the 
absolute values of the reflection coefficient at the pipe end, namely 

IRI = 1 

for ka < 0.2 for an unflanged pipe end and 

(ka)2 

2 

IRI = 1- (ka) 2 

(5.21) 

(5.22) 

for ka < 0.2 for a flanged pipe end. The difference between these low frequency approxi­
mations and the more accurate expressions derived by Levine & Schwinger (1948) for an 
unflanged thin walled pipe end, by Ando (1969) for an unflanged thick walled pipe end 
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and by Nomura et oL (1960) for a flanged pipe end are of the order of the e~perimen­
tal accuracy (0.5%). In figure 5.6 the reflection coefficients determined from the Pfe!l~Ntt 
measurements are given for an unflanged pipe end with different values of the wall thi§k­
ness (a/( a+ d) = 0.70, 0.85 and 1.00), and compared with the exact theory of Levine&; 
Schwinger (1948). It is indeed found from figure 5.6a that in the low frequency limit the 
shape of the pipe end does not influence the magnitude IRI of the reflection coeffir;i@nt, as 
suggested earlier by Bechert (1980). 
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FIGURE 5.12: (a) Pressure reflection coefficient IRI and (b) end correction 
5 for a pipe terminated by a horn, in absence of a mean flow as a function 
of the Helmholtz number ka at low acoustic amplitude. 
( o) : Data obtained with a two-microphone method with microphones 
at positions x1 -117.6mm,x2 -255.3mm using an experimentally 
determined value of ao. 

: Tl1eory for an unflanged pipe end by Levine & Schwinger {1948). 
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Figure 5.12 shows the reflection coefficient for a pipe terminated by a horn, with a radius 
of curvature equal to twice the pipe diameter (see figure 5.ld). Also for this configuration 
the theory for the unflanged pipe end appears to he valid for the magnitude IRI of the 
reflection coefficient, at least up to ka 0.15. For higher frequencies the radiation is 
considerably enhanced by the horn. Atka 0.1 a small influence of room resonances is 
observed similar to what has been noted for an unflanged pipe end in figure 5.6a. 

In contrast with the reflection coefficient IRI the end correction 15 strongly depends 
on the geometry of the pipe end. The end correction is a measure for the inertia of the 
acoustic flow around the pipe end. This effect is determined by the local flow within a 
region with length scale of the order of the pipe radius. Hence as far as IRI is concerned, 
an unflanged pipe with a thick wall will behave like any other unflanged pipe if the wall 
thickness is small compared to the wavelength of the acoustic field. If the wall thickness is 
larger than the pipe radius the end correction 8 of an unflanged, thick-walled pipe is close 
to that of a flanged pipe end. Indeed., as predicted by Ando (1969), an increase of the end 
correction from the value predicted by Levine & Schwinger (1948) for an unflanged thin 
walled pipe end is observed , i.e. 
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!if a 0.6133 0.1168(ka)2 
(5.23) 

for ka < 0.5 towards the end correction for a flanged pipe end predicted by Nomura et al. 

(1960) 

lif a = 0.8217 - 0.367( ka )2 
(5.24) 

for ka < 0.5. Figure 5.6b shows the end correction determined from the present mea­
surements for an unflanged pipe end with thin (a/( a+ d) 1.0) and thick (af(a +d) = 
0.70, 0.85) walls. For a pipe end with wall thickness af(a +d)= 0.70 the influence of the 
wall thickness on the end correction observed in figure 5.6b agrees with the theoretical data 
given by An do (1969). The theoretical data given by Ando (1969) for a/(a+d) = 0.85 would 
imply a negligible influence of the wall thickness d on the end correction li for ka < 0.3. 
However, the experimental results show a significant increase of 8 for this value of the wall 
thickness. Because the theoretical end correction of Ando (1969) for af(a +d) 0.85 is 
substantially different from the experimentally determined values we think that this dis­
crepancy is due to an error in the representation of the theoretical data, rather than a 
fundamental difference between the theory and experiment. 

The end correction data for a pipe terminated by a horn is presented in figure 5.12b. The 
end correction (defined relative to the end of the straight pipe and therefore much larger) 
shows a gradual increase (±13%) with an increasing Helmholtz number (0 < ka < 0.3). 

Using a one-dimensional approximation for the acoustic flow in the horn the end cor~ 
recti on of the horn can be estimated to be 8/ a = 1.92, while a value close to 2.3 is found 
from the experiment. This indicates that the end correction of a horn is dominated by the 
inertia of the acoustic flow within the horn. 

5.{2 Nonlinear losses 

The most significant nonlinear effect observed in the present experiments is the effect of 
the unsteady separation of the acoustic flow at the pipe end and the formation of vortices 
associated with the separation of the flow. This occurs when the amplitude of the acoustic 
displacement is large compared to the pipe radius, i.e. for conditions where the acoustic 
Strouhal number Sr0 , = wa/f.tac is small. 

This nonlinear behavior of the acoustics of a pipe end causes a strong increase in the 
absorption of sound since part of the acoustic energy is transferred into the kinetic energy 
of the vortices which is subsequently dissipated by friction. The nonlinearity was studied 
by Bechert (1980) and Cummings & Eversman (1983) for a pipe which ends into a nozzle 
and by Ingard & Ising (1967) and Cummings (1984) for a flanged pipe end with an orifice 
plate at the exit. 

For an unflanged pipe end, without mean flow, both with sharp and with rounded 
edges, the nonlinear behavior was studied extensively by Disselhorst & van Wijngaarden 
(1980). For high acoustic Strouha.l numbers the vortices formed a.t the pipe end remain 
in the vicinity of the edges where they have been generated. Under these conditions, the 
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vorticity generation and convection process can be described qualitatively by a locally 
two-dimensional potential flow model, employing for example a discrete vortex method 
as proposed by Disselhorst & van Wijngaarden (1980). Peters & Hirschberg (1993) have 
shown that similar results can be obtained using a method with a single point vortex which 
carries the circulation in combination with a vortex segment attached to the edge, which 
takes care of the vorticity generation. 

In contrast with the method of Disselhorst & van Wijngaarden (1980) the single vortex 
method predicts an acoustic energy absorption which is a factor 2.5 lower than the value 
observed experimentally for a sharp-edged pipe end. Comparison of the results of the two­
dimensional flow method with flow visualization in a two-dimensional flow by Disselhorst & 
van Wijngaarden (1980) and with more detailed calculations based on a vortex blob method 
indicate that the flow model is fairly accurate. The discrepancy between the calculated and 
the measured value of the absorption is thought to be due to the translation of the two­
dimensional results into equivalent three-dimensional situation. The procedure proposed 
by Disselhorst & van Wijngaarden (1980) is based on matching the acoustic potential 
flow. This procedure neglects the contribution of the vortex filament curvature on the 
self-induced velocity in the three-dimensional case. 

In the case of a free vortex ring with a core radius corresponding to liao this would 
result in an underestimation of the vortex velocity by a factor of three. Since the vortex 
ring velocity depends only weakly on the core radius this effect is only weakly dependent 
on the frequency. 

For low Strouhal numbers a quasi-steady theory, like the one described by Disselhorst 
& van Wijngaarden (1980), can be used in which during that part of the period of the 
acoustic field with a positive velocity a jet-line outflow is assumed and during the remain­
der of the period the flow is characterized by the formation of a vena-contracta-type of 
inflow with a turbulent recovery region. For the acoustic power absorbed by the vortices, 
nondimensionalised with !Pu!01ra2 and averaged over a period of the acoustic oscillation, 
it is found that 

(5.25) 

for Srao ~ 1, where a star denotes nondimensionalised quantities and 

(5.26) 

for Srac ~ 1. The parameter cd is determined by the geometry of the pipe end and is equal 
to 2 for a thin-walled unflanged pipe end and equal to 13/9 for a flanged pipe. Disselhorst 
& van Wijngaarden (1980) determined the parameter f3 by means of numerical simulation 
and found values between 0.6 and 1.0, depending on the number of point vortices used 
to describe the roll-up of the free shear layer. Using a simpler flow model, but the same 
procedure to translate the two-dimensional results into equivalent three-dimensional ones, 
Peters & Hirschberg (1993) found a value of f3 == 0.2. 

The power loss due to vortex formation and radiation of acoustic energy at the pipe end, 
averaged over a period, can be determined experimentally from the reflection coefficient 
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using the relation (see Cargill (1982a)) 

(5.27) 

for an open end in a quiescent fluid. The amplitude of the acoustic velocity Uac at the 
open pipe end can be obtained from IP+ P-1 = PoCcUac· For low Helmholtz numbers ka 
the theoretical reflection coefficient for a sharp-edged pipe end without vortex formation 
is given by equation (5.21). The acoustic power loss by radiation is then given by 

(5.28) 

For low Helmholtz numbers the power loss by radiation is negligible compared to the 
nonlinear losses given by equation (5.25), as long as 

(5.29) 

Employing equation (5.27) the total loss of acoustic energy was determined from the pres­
sure reflection coefficient at the pipe exit and the amplitude of the pressure signal at a 
pressure transducer. 

For three frequencies (27Hz, 54 Hz and 84Hz) the acoustic Strouhal number was varied 
by changing the amplitude of the acoustic velocity Uac· For these frequencies the Helmholtz 
number is very small (ka = 0.0074, 0.0145 and 0.0230, respectively), so that the condition 
for neglecting the radiation losses, given by equation (5.29), is certainly justified. 

Figure 5.13a compares the experimental data for the nondimensionalised acoustic power 
loss by vortex shedding with the predictions of Disselhorst & van Wijngaarden (1980), given 
by equation (5.25) and (5.26). Also included in figure 5.13a are data obtained by Disselhorst 
& van Wijngaarden (1980) from measurements of the quality factor of a resonating open 
pipe. Our measured data present an independent check for the theory. 

It is interesting to note that the high amplitude data (Srac « 1) agree better with the 
theory than the original data of Disselhorst & van Wijngaarden (1980). From figure 5.13a 
it is concluded, that a quasi-stationary limit for the nonlinear power absorption is found 
which for Srac « 1 is very close to the value from the theory proposed by Disselhorst & van 
Wijngaarden (1980). For lower acoustic amplitudes (Sr,.c ~ 1) the locally two-dimensional 
approximation of the vortex shedding proposed by Disselhorst & van Wijngaarden (1980) 
predicts the functional dependence on Srac of the acoustic power. A fair agreement is 
found Cor a value /3 = 0.5. Hence with fJ = 0.5 equation (5.25} can be used as a fit of the 
data for Srac ~ 1. 

A change in the dependence on Srac of P;c is observed around Srac 10. This is 
apparently related to the increasing asymmetry in the flow pattern during inflow and 
outflow of the acoustic field, observed by Disselhorst & van Wijngaarden (1980) in their 
flow visualization at Sr11c ~ 10. 

An advantage of the measurement of the reflection coefficient over the measurement of 
the quality factor of the resonating pipe as performed by Disselhorst & van Wijngaarden 
(1980) to determine the energy absorption by vortex formation, is that with the present 
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method also the influence of the nonlinear behavior on the end correction can be deter­
mined. From the end correction data. shown in figure 5.13b it· is observed that 6/a varies 
only slightly with the acoustic Strouhal number. In the high amplitude limit (Srac < 1) a 
slight increase (10%) is found relative to the linear behavior and a local increase of about 
5% is observed around Sro.c R$1, This rather small influence of flow separation on the end 
correction is quite surprising when compared to the spectacular effect of a nonzero mean 
flow on the end correction which will be discussed in the following section. 

The same experiments were also performed for a pipe end with thick walls, for which 
df(a +d)= 0.70. The results are included in figure 5.13b. Similarly to the behavior of a 
sharp-edged pipe end, for a pipe end with thick walls a quasi-stationary limit of the acoustic 
power absorption is found, which agrees with the predicted value given in equation (5.26) 
for a flanged pipe. However, a strong dip is observed in the acoustic power absorption at 
a value of the acoustic Strouhal number close to Sr.,c = 5. For this Strouhal number the 
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vortices formed at the sharp edge of the pipe end travel during one period of the acoustic 
field over a distance of the order of the wall thickness d. 

This effect is similar to the gain in acoustical energy for the case of a horn with a mean 
flow, which will be discussed in the next section. This effect can also be associated with 
the phenomenon of pipe tone and may play a significant role in the acoustical behavior of 
tone holes in woodwinds like a clarinet for which at resonance Sr"" ~ 1. 

The end correction is found to agree with the theory of Ando (1969) for a thick-walled 
pipe exit with a/(a+d) 0. 70 and it shows only a slight influence of the acoustic amplitude 
for Sra.c «. 1 and Sr .. "~ 1. 

5.5 OPEN PIPE END WITH MEAN FLOW 

5.5.1 Unjlanged pipe termination 

A linear theory for the reflection of plane acoustic waves at a thin-walled, unflanged pipe 
end has been derived by Munt (1977). The results have been obtained in the form of 
integral equations which have been solved numerically by Munt (1990). In the presence of 
a uniform subsonic mean flow (plug flow) and for low acoustic amplitudes (uac/Uo < 1) 
the linear theory predicts the pressure reflection coefficient at the pipe end as a function 
of the Helmholtz number ka and as a function of the mean flow Mach number M. 

In the theory of Munt a Kutta condition is assumed to apply at the edges of the pipe 
end, which implies a finite velocity and pressure at the edges. In that case an acoustic 
disturbance of the jet corresponds to a transfer of acoustic energy into the kinetic energy 
of the vortical disturbances of the jet shear layers. Munt (1990) found that the magnitude 
of the pressure reflection coefficient approaches a value of 1.0 for all Mach numbers if the 
Helmholtz number approaches zero, i.e. 

lim IRI = 1, for all M 
ka-o 

The acoustic power loss P is according to Cargill (1982a) given by 

P = 1l'a21fi+l2 ((1 + M)2 -IRiz(l M)2) 
PoCO 

which for the limit ka --+ 0 can be approximated as 

21' 12 lim P = ?ra P+ 4M 
k4-0 PoCO 

irrespective of the frequency. For M > 0, P is always positive. 

(5.30) 

(5.31) 

(5.32) 

For intermediate Helmholtz numbers and for M > 0 the pressure reflection coefficient 
reaches a maximum value which lies above 1.0. Cargill (1982b) found that this maximum 
value appears at a Strouhal number of Sr0 ~ 11'. The energy reflection coefficient RE as 
given by equation (5.7) remains less than 1.0 for all values of the Helmholtz number ka. 

For low Helmholtz numbers ka and low Mach numbers M approximate but dosed­
form solutions of the theory of Munt (1990) have been derived by Cargill (1982a,b) and by 



Section 5.5: Mean flow 183 

Rienstra. (1983). Both Cargill (1982} and Rienstra. (1983) distinguish the case that a. Kutta. 
condition is not imposed and the ca.se that a. full Kutta. condition is imposed at the sha.rp 
edge of the pipe exit, the latter corresponding to the case used by Munt (1977, 1990). For 
the reflection c~fficient Cargill (1982b) found the following expressions for ka < 1 

~ G + Z) ( 1 - <k;?) (5.33) 

~ 1(1+M)9-11(1 _(ka)
2

) 

(1-M)9+1 2 

where 9 = (9t + i92)/M and 91 and 92 are functions of the Strouhal number Sro = 
kafM defined in Cargill (1982b). The indices NK and K denote the results for the cases 
without and with a. Kutta condition imposed, respectively. The frequency dependence of 
the reflection coefficient corresponds to the low frequency behavior in absence of mean flow 
given by equation (5.21). For 0 < M < 1 the convective correction factor for IRI ca.n be 
written as 

IRI = (1 + MA) (t- (k;)
2

) (5.34) 

where the amplification factor ANK = 2 and AK = 2- ~+ . AK varies continuously 
!11 liz 

between AK = 0 for Sr0 -+ 0 and AK 0.90 for Sro --+ oo. It is found from equation 
(5.33) that 

1 

l+M 
1-

(5.35) 

The latter result for !RINK agrees with the result for the flow through the pipe with zero 
net acoustic power, given by equation (5.31), because without a Kutta condition imposed 
at the pipe edges no vortical disturbances are produced. 

For the KuttafNo Kutta condition cases Rienstra (1983) confirmed the above limits 
in the behavior of the reflection coefficient. In addition he obtained an expression for the 
end correction. Rienstra (1983) also found a. nonuniform behavior of the end correction for 
ka < 1, M < 1. For low frequencies ka, in the limit of vanishing mean flow M---+ 0, with 
Sr0 = kafM---+ oo, the end correction attains the same limiting value as found by Levine 
& Schwinger (1948) in absence of mean flow, i.e. 

lim 6/a 0.6133 
M-o,Sro-+oo 

(5.36) 

For small but finite Mach number and very low frequencies Rienstra (1983) found 

lim Sfa 0.2554v'1- M 2 
ka-+O,Sro->0 

(5.37) 

Davies et al. (1980) indeed report that the end correction depends strongly on the fre­
quency. However, since the end correction is presented as a function of the Helmholtz 
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number ka, rather than as a function of the Strouhal number Sro, the differences in the 
end correction yield an apparent scatter of the obtained values. In addition, the limit of 
low Strouhal number is not reached because the data reported by Davies et al. (1980) and 
the data reported by Munt (1990) have been obtained for ka > 0.1 and M < 0.3. 

In the present experiments our attention has been focussed on the range of the Helmholtz 
number 0 < ka < 0.06. By varying the Mach number in the range O.Ql < M < 0.2 the 
range of Strouhal numbers covered is 0.05 < Sro < 6. Here we note that Rienstra (1983) 
did not expect that the low Strouhal number limit of the end correction could experimen­
tally be obtained for any reasonable value of ka and M. 
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FIGURE 5.14: Pressure reflection coefflcient IRI = (1 + MA)(l- Hka)2) 
expressed in terms of the amplification factor A and end correction o for 
an open pipe end in presence of a mean flow at low acoustic amplitudes. 
Two-microphone method with microphone positions x1 -51.8 mm, :c2 = 
-189.5 mm. 
sharp edges: (o) M = 0.052,il,.c/Uo ~ 0.1;(+) M = 0.017,ilac/Uo ~ 
0.3; Multi-microphone method with microphone positions x1 = 
-86.9 mm,x2 = -239.3 mm,:c3 = -290.1 mm,x4 = -782.4 mm,xs = 
-1925.5 mm. sharp edges: (x)M = 0.002,iac/Uo ~ 0.1. thick walls 
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(a) Amplification factor A as a function ofStrouhal number (Sro ka/M) 
---- -- : AK, (ANK = 2) Cargill {1982b) 
(b) End correction of a as a function of Strouhal number (Sro = ka/M) 
unlfanged pipe end: ---- -- : Levine & Schwinger (1948) (M = 0) 
and Howe (1979a) for (Sro-. oo); -- : Rienstra (1983) for (Sr0 -. 0). 
flanged pipe end: · · · · · · : Nomura et al. {1960) (M = 0). 
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Figure 5.14 presents the amplification factor A appearing in the expression for the con­
vective factor of the pressure reflection coefficient (equation(5.34)) and the end correction, 
both as a function of the Strouhal number for three different Mach numbers. The data ob­
tained for these three Mach numbers collapse onto Cargill's (1982b) and Rienstra's (1983) 
predictions if a Kutta condition is imposed at the pipe edge. 

For the various Mach numbers the maximum value of the reflection coefficient is found 
to agree with the data predicted by Cargill (1982b), which is Sro ~ 11". Also the data for 
the end correction, presented in figure 5.14b, collapse onto a single curve when presented 
as a function of the Strouhal number. For high Strouhal numbers a limiting value is found 
which is independent of the Mach number, while for low Strouhal number a limiting value 
8fa = 0.19 is found. The latter value is close to the limit 0.2554.,11- M2 predicted by 
Rienstra (1983). The Mach number dependence predicted by Rienstra (1983), see equation 
(5.37), could not be verified experimentally, since this Mach number dependence is for 
M < 0.1 is within the scatter in the data (±0.02 a in 8). 

For low Strouhal numbers the difference between the predicted and the experimental 
value of the end correction might be due to the interaction between the unsteady and the 
stationary boundary layers as described by Howe (1979a). As noted by Howe (1979a) the 
assumption of a uniform flow, made by Munt (1977, 1990), Cargill (1982b) and Rienstra 
(1983) is only valid if the thickness of the unsteady boundary layer (J2vfw) is large 
compared to the characteristic length of the gradients in the shear layers of the jet leaving 
the pipe exit. In a turbulent pipe flow this characteristic length scale is the thickness of the 
laminar sublayer 5,. In our experiments 8acf8, varied between 0.2 and 3. In this range a 
transition was observed from a weak coupling between the turbulent flow and the acoustic 
field towards a strong coupling in the damping of acoustic waves in a turbulent flow. A 
breakdown of the validity of the plug-flow model of Munt (1977) could be expected for 
liacf8t « 1. It is therefore surprising that the experimental data do not show any deviation 
from the theoretical results from Munt (1990) in this region. 

It is also surprising that even a low Mach number mean flow affects the end correction 
significantly(> 60%), while as shown in figure 5.13b, nonlinearities involving the formation 
of free jets affect the end correction only slightly ( < 10%). 

5.5.2 Thick-walled pipe end and horn 

For the thick-walled pipe terminations, illustrated in figure 5.1c, the end correction is 
presented in figure 5.14b. For a wall thickness of d/a == 4/3 the end correction for a 
high Strouhal number equals the value of the end correction without mean flow. For low 
Strouhal numbers the value 8/a = 0.19 is found, which is equal to the value obtained for 
the end correction of an unflanged pipe termination at low Strouhal numbers. 

For a very thick-walled pipe end, with dfa = 20/3, it is shown in figure 5.14h that 
the end correction as a function of the Strouhal number has a similar appearance as for 
an unfl.anged pipe end with thinner walls. For low Strouhal numbers the end correction 
seems to be independent of the wall thickness of the pipe end. The value for high Strouhal 
numbers is generally found to agree with the end correction without mean flow. For an 
increasing thickness of the wall at the pipe end the end correction for a flanged pipe 
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termination (equation (5.24}, given by Nomura et al. (1960)) is obtained. 
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FIGURE 5.15: (a) Energy retlection coefficient RE and (b) end correction 
6 for a horn as a function of the Strouhal number Sr0 ka/M. Multi-
microphone method with microphones at positions x1 -91.8 mm, x2 = 
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The influence of the mean flow on the energy reflection coefficient Re of a pipe ter­
minated by a horn with radius of curvature equal to r = 4a is shown in figure 5.15a for 
the mean flow Mach numbers M 0.011, 0.042 and 0.107. From a comparison with the 
pressure reflection coefficient obtained in the absence of the mean flow, see figure 5.12, it 
is observed that the reflection coefficient is dramatically influenced by the mean flow. 

The most striking effect is that for a limited range of Strouhal numbers around Sr0 ~ 

7rafr, the energy reflection coefficient Re exceeds a value of LO. This indicates that 
the horn is a source of sound. For a horn such a behavior has been reported earlier by 
Powell (1951) who analyzed the radiated field and by Hirschberg et al. (1988) for different 
geometries of the horn using a two-microphone method. This feature has also been studied 
by Wilson et al. (1971) in connection with human whistling. 

Also for the closely related Whistler nozzle configuration a. similar behavior was found 
by Hirschberg et al. (1988), who explained the sound production in terms of vortex sound. 
Like in the 'Whistler nozzle', studied by Selerowicz et al. (1991) and Hirschberg et al. 
(1988), the horn presents a significant acoustical energy production when the travel time 
of vortices across the horn matches a number of acoustic oscillation periods. The acoustic 
energy production at Sr0 ~ 1ra/r corresponds to the first hydrodynamic mode. A second, 
less pronounced maximum at Sro ~ 21ra/r corresponds to the second hydrodynamic mode. 
This behavior is an indication for a. strong coupling (Kutta condition} between the acoustic 
field and the vortica.l field near the separation point, this in spite of the rather smooth 
curvature of the walL 

The influence of the mean flow on the end correction is presented in figure 5.15b. The 
end correction is measured with the end of the pipe of radius a as reference (x = 0). 
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The end correction is dramatically influenced by the mean flow, in a similar manner as 
found for the unflanged pipe end presented in figure 5.14b. Similarly to the case of the 
unflanged pipe the value for high Strouhal numbers corresponds to the data obtained at 
low amplitudes in the absence of a mean flow (figure 5.12b). For low values of Sr0 a strong 
influence of the Mach number on S is observed. The end correction decreases from the 
value without a mean flow and for low Helmholtz numbers (Sf a 2.3) towards a negative 
value. This unexpected behavior of the end correction can not be explained intuitively and 
calls for further theoretical analysis. It is also interesting to note that a horn has a more 
strongly pronounced nonlinear behavior than an unflanged pipe for Uac/Uo ~ 0.5 (Peters 
et al. (1992, 1993)). 

5.6 CONCLUSIONS 

An multi-microphone measurement technique has been described utilized to obtain accu· 
rate values of the reflection coefficient IRI (0.1 %), end correction li (±0.02 a) and the 
damping coefficient a± (2%) of plane acoustic waves in an open pipe termination for 
ka < 0.3 and M < 0.2. 

The influence of the room resonances on the measured reflection coefficient IRI is less 
than 0.2% for ka < 0.1 and less than 0.5% for 0.1 < ka < 0.3. In the absence of a 
mean flow and for low amplitudes of the acoustic field the present experimental data for 
IRI, li and a0 determined for a closed pipe end and an open sharp-edged pipe end agree 
with the values provided by the theories proposed by Levine & Schwinger (1948) for IRI 
and 8, and of the damping a0 obtained from the solution proposed by Tijdeman (1975). 

Our data on the influence of the wall thickness on IRI and li agree with the predictions 
derived by Ando (1969). For low frequencies ka ~ 1 the influence of the wall thickness 
on the reflection coefficient IRI is found to he negligible. This is in agreement with the 
conclusion of Bechert (1980}, that for low frequencies the exact shape of the pipe exit 
should not affect IRI. However, the end correction 8 is strongly influenced by the wall 
thickness. 

For high amplitudes of the acoustic field the influence of vortex formation, earlier pre­
dicted by Disselhorst & van Wijngaarden (1980) is confirmed. For low Strouhal numbers 
Srnc, based on the amplitude of the acoustic velocity, a quasi-stationary limiting value 
for the absorbed acoustic power is obtained. For high Strouhal numbers a locally two­
dimensional model of the vortex shedding a.t the pipe end is used to predict the varia­
tion with the Strouhal number of the acoustic power absorption. Application of a two­
dimensional model for the vortex shedding process at the end of a circular pipe, as proposed 
by Disselhorst & van Wijngaarden (1980), yields a prediction of the power absorption which 
is a factor 2.5 lower than the measurements. This difference might be due to a fundamen­
tal problem with the translation from a two~dimensional flow theory to a corresponding 
equivalent three-dimensional case. 

For the high amplitude behavior of a pipe end with thick walls an indication was found 
that for certain values of the Strouhal number Srac based on the acoustic velocity and the 
wall thickness the vortices formed at the pipe end can also transform part of their kinetic 
energy back into acoustic energy. This behavior is expected to be significant in tone holes 
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of reed woodwinds for which at resonance Sr4 c 0(1). 
For an unflanged pipe end we were able to determine the influence of the mean flow 

on the behavior of a sharp-edged pipe termination in a low amplitude acoustic field. For 
M < 1 and ka < 1 the values predicted by Munt (1990) and Cargill (1982a,b) for the 
reflection coefficient and the value predicted by Howe (1979a) and Rienstra (1983) for 
the end correction all agree with the values found in the present experiments. For the 
reflection coefficient our data confirm the theory of Munt (1990) and Cargill (1982) and 
therefore imply indirectly that the Kutta. condition has to be imposed at the pipe end. It 
is surprising that the plug-flow model of Munt (1977) applies so well to a fully developed 
turbulent mean flow even for values 6,.0 /0t as low as 0.2. It is shown that the end correction 
depends mainly on the Strouhal number Sro based on the mean flow velocity and that for 
low Strouhal number the end correction tends to the value of 6/a = 0.19, which is close 
to the value of 6/a = 0.2554, predicted by Rienstra. (1983). For high Strouhal numbers 
Sr0 the end correction agrees with the theoretical value of 6/a = 0.6133 as predicted by 
Howe (1979a) and Levine & Schwinger (1948). The value of 6/a = 0.19 found for low 
Strouhal numbers was also obtained for a thick-walled pipe end with d/a 4/3 and for 
one with 20/3. A negative value of the end correction was obtained for a pipe terminated 
by a horn. For all the pipe end geometries studied the value of the end correction at high 
Strouhal numbers agreed with the value obtained without a mean flow. In addition of a 
mean velocity field the aero-acoustic behavior of a horn is also considerably affected in the 
region where Sr0 R:: 1ra/r. In a critical range of Sr0 near this value the energy reflection 
coefficient RE exceeds unity. 

The influence of the mean flow on the damping coefficient was found to be accurately 
described by the quasi-laminar theory of Ronneberger (1975) in the region where the ratio 
6ac/6t < 1 and by the theory of Howe (1984) in the region where Ca0 /0t > l. The influence 
of turbulence on the wall shear stress impedance could qualitatively be described by the 
rigid plate model, proposed by Ronneberger & Ahrens (1977), which in the present study 
has been modified to include memory effects of turbulence. 

The multi-microphone method is found to be a. very useful tool to obtain accurate 
quanta.tive data on the effect of vortex formation on the a.eroacoustic behavior of a. pipe 
termination. Furthermore, it is thought that the influence of imposed unsteadiness on 
turbulent shear stress can be obtained more accurately using the multi-microphone method 
than using alternative methods. 
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Chapter 6 

The aeroacoustic behavior of pipe systems 
with two closed side branches 

Abstract 

High-amplitude acoustic pulsations occur in pipe systems in which the acoustic 
energy can accumulate in resonant modes. The aero-acoustic source strength is 
determined from a numerical simulation of the periodic :flow for a pipe system con­
sisting of a main pipe and two closed side branches in tandem or opposite to each 
other. Together with an estimate of the acoustic energy loss in the pipe system 
due to visco-thermal action an equilibrium amplitude of the acoustic resonance is 
predicted, which for a low-amplitude acoustic field is in fair agreement with the 
experimental data. 
At high acoustic amplitudes non-linear deformation of the waves generates higher 
harmonics. The even harmonics are efficiently radiated which results in a consider­
able damping due to radiation. 
The influence of the length of the side branches, the mean flow velocity, pipe cross­
section geometry and ambient pressure on the pulsation amplitude is studied ex­
perimentally. Also the influence of the geometry of the edges in the junction on the 
pulsations is discussed. For rounded edges acoustical amplitudes Uac/Uo larger than 
unity are observed and nonlinear wave deformation results in weak shock formation. 

6.1 INTRODUCTION 

Analysis of field cases of How-induced pulsations by the Netherlands Ga.sunie indicated that 
closed side branches were the origin of the most severe pulsation problems. In some cases 
it caused damage to the pipe system. After some preliminary laboratory experiments at 
Gasunie a systematic study in collaboration with Eindhoven University of Technology1 has 
been undertaken. The main results of this study are described in the thesis by Bruggeman 
(1987). 

In pipe systems with closed side branches severe acoustic resonances have also been 
observed In laboratory experim~nts by amongst others lngard & Singhal (1976), Baldwin 
& Simmons (1986) and Jungowski et a/. (1989). A single closed side branch is a perfect 
reflector of plane acoustic waves if the length of the side branch is equal to an odd number 
times a quarter of the wave length of the acoustic field. However, since as pointed out by 
Bruggeman (1987) a single side branch is not a resonator strong pulsations are not to be 
expected (Pac/PoeoUo < 0.1). 

1Gasdyna.rnics/ Aeroacoustics group of the department of Physics 
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The pulsations can become much stronger in a pipe system in which an acoustic res­
onator is present since in that case acoustic energy can accumulate. Such is the case in for 
example a pipe system with two dosed side branches placed a distance £3 = 2mL apart, 
where m is an integer number. 

Different geometries for a pipe system with two closed side branches (form = 0, 1) 
in whicb. flow-induced acoustic resonances can occur are shown in figure 6.1. In the 

FIGuRE 6.1: Geometries of a pipe system with two closed side branches in 
which resonances can occur. (a) co-axial branches, with cross-junction (b) 
two closed side branches under right angle, with diverted mean flow (c) 
tandem branches (m = 0) with T-junctions {d) tandem branches (m = 1) 
and horizontal mean flow (e) tandem branches (m = 1) and downward 
diverted mean flow (f) tandem branches (m 1) and horizontal second 
side branch and upward diverted mean flow. Only the geometries shown 
in (a) and (e,d) are studied in this chapter, since in these geometries the 
highest amplitude pulsations are observed. 

geometries considered there is a constant main flow with velocity U0 from right to left. 
Superimposed is an acoustic velocity field resonating between the two closed side branches. 
Assuming a standing wave pattern in the resonator, dominated by the first mode, the 
amplitude of the resonating acoustic velocity field Uac measured at the junction is related 
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to the acoustic pressure amplitude Pac according to Uac = Pac/ PoCoUo, where Pac is measured 
at the end of the closed side branch. This relation has to be corrected for high amplitudes 
of the acoustic field, when due to non-linear wave propagation in the side branches higher 
harmonics are formed and the pressure signal is strongly distorted by the presence of these 
higher harmonics. The order of magnitude of Uac/Uo observed in experiments is given for 
each configuration in figure 6.1. 

Since the low- and moderate-amplitude case has already been studied both experimen­
tally and theoretically by Bruggeman (1987) and others, in this chapter we will address 
geometries in which a high-amplitude acoustic field is resonating (Pac/PoCoUo = 0(1)). 

The quality factor of the resonator is defined as the ratio of the total acoustic energy 
content and the loss of acoustic energy, both per period of the acoustic field. It is de­
termined by the loss of acoustic energy through two effects; the damping of the acoustic 
waves by viscous forces and heat conduction in the boundary layer of the pipe flow; and 
by radiation of the acoustic energy into the main pipe. An additional radiation loss can be 
caused by vibrations of the pipe walls. The radiation losses into the main pipe are smallest 
when the length of the side branches is approximately ( n + ~) ~ ..\ and the distance between 
the side branches is approximately m~A, where m and n take integer values and ..\ is the 
wavelength of the resonating acoustic field2• 

As a result the highest quality factor of the resonator is expected for the pipe geometry 
with two side branches opposite to each other, further called the cross-junction geometry, 
see figure 6.1a (m = n = 0), or for the geometry with tandem branches with the distance 
between the branches much smaller than the acoustic wavelength, further called the double 
T-junction geometry, see figure 6.1c (also m = n = 0). 

These configurations have been studied experimentally by Ziada & Biihlmann (1992) for 
pipes with circular cross-section. They indeed observed that for a cross-junction geometry 
with sharp edges pulsations with Uac/Uo 1-::;j 0.3 could be obtained. Ziada & Biihlmann 
(1992) also observed that with increasing length of the side branches the amplitude of the 
higher modes could attain a higher pressure amplitude than the fundamental mode. This 
phenomenon will be discussed further in section 6.6. 

Experiments for double T-junction geometries with a distance of half a wavelength 
between the branches or more (m 2: 1) have been performed by Bruggeman et al. (1987, 
1989). On the basis of the value of the amplitude of the acoustic field Uac/Uo Bruggeman 
et al. (1987, 1989) distinguished three cases: 

• for small amplitudes (uac/Uo < 10-3
) the growth of disturbances in the shear layer 

can be described by linearized theory. 

• for moderate pulsation amplitudes (10-3 < u.c/Uo < 10-1 ) the linear theory is valid 
for the initial disturbance of the shear layer only. At a later stage, due to nonlinear 
effects, coherent vortex structures are formed which limit the amplification of the 
perturbations in the shear layer. 
The rate of generation of vorticity and the convection of the vorticity are not strongly 
influenced by the acoustic \"elocity field. Bruggeman (1987) showed that at these 

2 Here the end corrections 6 = O(H) of the side branches at the junctions are neglected since the effect 
is small as long as the side branches are long compared to the pipe width H. 
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moderate amplitudes the strength of the dipole sound source is independent of the 
amplitude of the acoustic field. 

• for high pulsation amplitudes (uac/Uo = 0(1)) the vortex layer rolls up instanta­
neously into a. coherent vortical structure. The generation and convection of vorticity 
are strongly influenced by the acoustic velocity field. As a result also the strength of 
the dipole sound source depends on the amplitude of the acoustic field. 

Jungowski et al. (1989) studied the influence of the variation of the ratio between the 
diameter of the side branch and that of the main pipe. Stronger pulsations were observed 
if the diameter of the side branches was decreased relative to the diameter of the main 
pipe. 

Baldwin & Simmons (1986) studied the effect of the geometry of the edges of the 
junction for a single side branch configuration. They concluded that in a geometry with 
sharp edges the highest pulsation amplitudes can be expected. 

Bruggeman et al. ( 1987, 1991) also studied the influence of the sharpness of the edges of 
the junctions. For circular pipes with diameter D the amplitude of the acoustic oscillations 
in a. tandem side branch geometry increased significantly (up to a factor 5) when the edges 
were rounded with a radius of curvature R = 0.2 D. By extrapolation of a series of 
experiments with increasing ambient pressure Bruggeman {1987) estimated the maximum 
pulsation amplitude in a doubleT-junction geometry {m = I) with rounded edges to be 
Uac/Uo = 0.6 ± 0.1, this in absence of friction losses. 

The present chapter presents additional experimental data. for different double-side­
branch geometries as well as a comparison of the predicted strength of the sound source 
in the resonant acoustic field with experimental data.. The strength of the source can he 
obtained from the model of the periodic flow in the cross-junction or T-junction, described 
in chapter 4. For a given value of the amplitude of the acoustic field the source strength is 
determined by applying the vortex sound theory of Powell (1964) and Howe (1975). The 
results for aT-junction and a cross-junction will he presented in the next section. 

At low frequencies ( kH < 1) the losses due to radiation into the main pipe are negligible 
in case m and n have integer values. In the present investigation rigid walls are assumed 
and radiation via the pipe walls is not taken into account. 

At low amplitudes the acoustic field can he fairly well described by a. single mode 
resonating between the side branches (see figure 4.13a) and only the acoustic energy losses 
due to friction and heat conduction at the pipe walls have to he estimated. This energy 
loss is determined in section 6.3. 

At high amplitudes the acoustic waves steepen while traveling inside the side branches 
due to nonlinear effects. As a result acoustic energy from the fundamental mode is con­
verted to higher harmonics and is effectively radiated into the main pipe for the even 
harmonics which do not correspond to resonant modes of the pipe system. This type of 
acoustic energy loss is discussed in section 6.4. 

·In section 6.5 it is shown how a balance between the a.eroacoustic energy source and 
the energy losses determine the equilibrium amplitude of the resonant acoustic field. For a 
cross-junction a comparison with experimental data is given in section 6.6. In section 6.6 
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also the influence of the pipe cross section geometry (circular or square) and the sharpness 
of the edges in the junctions on the aeroacoustics is discussed. 

6.2 DETERMINATION OF AERO-ACOUSTIC SOURCE STRENGTH 

The mechanism of the flow-induced pulsations is the coupling between the vorticity, gen­
erated at the sharp edges of the junction and the resonant acoustic field. Due to this 
interaction, kinetic energy of the main stream and the irrotational flow induced by the vor­
ticity is transferred to the acoustic field and the other way around. The theory underlying 
the phenomenon has been described by Powell {1964) and Howe (1975}. For a low Mach 
number, isentropic flow the first-order approximation of the instantaneous rate of energy 
transferred from the mean flow to the acoustic field is given by (see chapter 2) 

P(t) = iff Po(w x ii) ·it" dV {6.1) 
v 

The value of P(t) will be referred to as the instantaneous rate of acoustic energy produc­
tion by the aeroacoustic source. From this equation it is clear that the acoustic energy 
source strength depends on the acoustic velocity ilac(x, t), the total velocity v(x, t) and 
the vorticity w(i, t} present in the flow field. Only the non-acoustic part of the total flow 
field, i.e. the mean flow field and the flow induced by vorticity contribute to the integral. 
For periodic pulsations, i.e. oscillations with stationary amplitude, the net strength of the 
aeroacoustic source< P >is obtained upon averaging P(t) over one period of the acoustic 
velocity field. 

The potential-flow solution for the periodic flow in a T-junction or a cross junction, 
described in chapter 4, allows for vorticity in the vortex sheet only. This implies that the 
acoustic energy can be obtained by performing the integration in equation (6.1) along the 
vortex sheet. The instantaneous and net acoustic energy source strength will be presented 
in dimensionless form using the total kinetic energy of the mean flow p0U~ A as a reference, 
where A is the cross-sectional area of the side branch. 

6. 2.1 Double T -junction geometry 

In a doubleT-junction geometry like shown in figure 6.1c-f two source regions are present 
in which the vorticity generated at the sharp edges interacts with the resonating acoustic 
velocity field. The difference between the various T-junctions is the direction of the mean 
flow and of the acoustic flow. This is not only important for the generation and convection 
of vorticity but it has also a strong influence on the strength of the aeroacoustic energy 
source. In this section the source strength is determined in aT-junction with a main flow 
from right to left through the main pipe. We consider two cases; an acoustic velocity field 
coming out of the side branch and going into either the up- or downstream part of the 
main pipe. This describes the flow which is present in tandem side branches, shown in 
figure 6.lc,d and the flow in the upstream T-junction in figure 6.1e,f. 

Figure 6.2 shows the instantaneous strength of the aeroacoustic sound source in aT· 
junction, obtained with the different numerical methods employed in chapter 4 to simulate 
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FIGURE 6.2: Instanta.neous energy source strength in a T-junction with 
an acoustic field resonating between the side branch and the downstream 
part of the main pipe. 
(a) High-amplitude acoustic field, iac/Uo = 0.62 with Sr = 0.29. 
(b) Moderate-amplitude acoustic field, Uac/Uo = 0.17 with Sr = 0.38. 
Results obtained from the numerical simulations presented chapter 4. (-­
- -) two-vortex method TV (see figure 4.14) (······)vortex-sheet method 
VS (see figure 4.16) (-) vortex-blob method VB (see figure 4.19 and 
4.20). 
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the periodic flow. Here the acoustic field resonates between the closed side branch and 
the downstream part of the ma.in pipe. The Strouhal number used is Sr = 0.29 while the 
amplitude of the acoustic field is u,..fU0 = 0.62, corresponding to the values found in the 
high-amplitude flow visualization experiment shown in figure 4.12. 

Since the periodic solutions obtained with the vortex-sheet and vortex-blob method are 
very similar the instantaneous source strengths obtained from the results of both methods 
are approximately equal. Apparently the vortex structures which are convected in down­
stream direction into the ma.in pipe do not contribute to the acoustic source strength, given 
by equation (6.1), since the convection velocity v of such a vortex structure is parallel to 
the velocity of the acoustic field it,. •. These vortex structures are taken into account in the 
vortex-blob method, but in the vortex-sheet method they are removed when convected a 
certain distance into the downstream part of the main pipe. 

It turns out that also the simple two-vortex method yields an accurate prediction of 
the source strength. Apparently, concentrating the spatial distribution of vorticity into a. 
discrete vortex at the center of vorticity of the actual distribution of vorticity does not affect 
the source strength, at least not for this case. This is probably due to the circumstance 
that in reality for a. high-amplitude acoustic field the vorticity rapidly concentrates into 
highly rolled-up region. For such vorticity distributions the two-vortex method yields a 
satisfactory approximation. 

Figure 6.2 also presents the source strength obtained from results of the periodic flow 
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presented in figure 4.20, obtained by the two-vortex method and the vortex-blob method for 
the moderate-amplitude case Uac/U0 = 0.17 with Sr = 0.38. For this moderate-amplitude 
periodic flow the rate of vorticity generation is approximately constant and the vorticity 
is nearly uniformly distributed along the shear layer. For this case the two-vortex method 
does not give an accurate description of the vorticity distribution. However, figure 6.2b 
shows that even in this case global characteristics such as the source strength are still 
reasonably accurate determined by the simple two-vortex method compared to the results 
of the vortex-blob method. This validates the single-vortex models used by Nelson et al. 
(1983) and Bruggeman (1987) to estimate the a.eroacoustic source strength at moderate 
and high amplitudes. 

The dependence of the strength of the a.eroacoustic round source on the amplitude of the 
acoustic velocity field can be determined by solving the periodic flow problem for a range 
of values of Uac/U0 • However, for a variation of the acoustic amplitude also the Strouhal 
number at which in the experiment the resonance is at maximum pulsation amplitude 
varies. For a moderate-amplitude resonance the Strouhal number is approximately 0.4, 
which decreases to 0.3 for a high-amplitude acoustic resonance. 

In the present study the periodic flow in a T-junction, in the presence of an acoustic 
field resonating between the side branch and the downstream part of the main pipe, is 
simulated numerically for a number of acoustic amplitudes, all for a fixed value of the 
Strouhal number. For the moderate-amplitude case the Strouhal number was taken to be 
Sr = 0.4, while for the high-amplitude case the Strouhal number was taken to be Sr = 0.3. 
The results obtained with the vortex-blob method for a T-junction with an acoustic field 
resonating between the side branch and the downstream part of the main pipe are shown 
in figure 6.3. 

For moderate acoustic amplitudes the net source strength increases linearly with the 
acoustic amplitude. This can be explained as follows. For moderate amplitudes of the 
acoustic velocity field both the vorticity generated and the convection velocity of the vortic­
ity are independent of the amplitude of the acoustic field. Both are completely determined 
by the mean flow U0 • Only the instant of the formation of a new vortex structure in the 
shear layer is determined by the frequency of the acoustic field. Since the acoustic velocity 
field is described by an irrotational potential flow in the T-joint, the instantaneous acoustic 
power generation given by equation (6.1) depends linearly on the acoustic amplitude. 

For acoustic amplitudes larger than about 0.3, both the rate of vorticity generation 
and the convection of the vorticity is strongly influenced by the acoustic field and the net 
source strength increases nonlinearly with the acoustic amplitude. 

In a double-side-branch setup two T-junctions and therefore also two aero-acoustic 
sources are present. In the upstream side branch the acoustic velocity field is resonating 
between the side branch and the downstream part of the main pipe, in the downstream side 
branch the acoustic velocity field is resonating between the side branch and the upstream 
part of the main pipe. The strength of the respective sources in the T-junction of the 
upstream and and that in the downstream positioned side branch have to be added to 
obtain the overall a.eroacoustic energy source strength. The phase relation between the 
aeroacoustic sources is determined by the resonating acoustic field. 

The instantaneous strength of the aeroacoustic source for the two side branches is 
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FIGURE 6.3: Instantaneous and net energy source strength < P > in a 
T-junction with an acoustic field resonating between the side branch and · 
the downstream part of the main pipe. The Strouhal number is fixed to 
Sr = 0.4 for a moderate-amplitude acoustic field. Results obtained from 
a numerical simulation of the flow by the vortex-blob method(~ = 0.10). 
Acoustic amplitude ilac/Uo: (-): 0.1, (· · · · ·-): 0.2, (-- -): 0.3, (--·-) 
; 0.4. 

presented in figure 6.4 for high values of the acoustic amplitude. The Strouhal number is 
taken to be constant Sr = 0.3 for this high-amplitude case. Only results obtained with 
the vortex-blob method are presented. The desingularisa.tion parameter 8 used for the 
calculation of the flow was chosen to be 8 = 0.10. It was checked, that a. variation of this 
value by a factor two up or down did not affect the net source strength. 

From the data presented in figure 6.4 it is clear that in the upstream side branch the 
production of acoustic energy is large during the second half period of the acoustic field, 
while for the downstream side branch the energy absorption is large during the first half 
period of the acoustic field. As a result for Uac/Uo > 0.5 the sound source in the upstream T­
junction gives a net production, while in the downstream T-junction the sound source gives 
a net absorption. This difference between the two T-junctions was qualitatively explained 
by Bruggeman (1987) as a result in the difference of the acoustic velocity between the 
up- and downstream edges of the T-junctions. For the upstream positioned side branch 
the acoustic velocity at the downstream edge of the T-junction is approximately 3 times 
larger than the acoustic velocity at the upstream edge. The opposite is the case for the 
T-junction of the downstream positioned side branch. From figure 6.4 it becomes dear 
that the instantaneous source strength increases approximately linearly with the acoustic 
amplitude, except at the downstream edge of the second side branch. While the initial 
absorption increases with increasing amplitude the production is only slightly influenced 
by an increase in the amplitude of the acoustic velocity field. In the second side branch 
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FIGURE 6.4: Instantaneous energy source strength P(t) in a geometry with 
tandem branches. (a) T-junction with an acoustic field resonating between 
the side branch and the downstream part of the main pipe (0.5:::; Uac/Uo:::; 
0.8). (b) T-junction with an acoustic field resonating between the side 
branch and the upstream part of the main pipe (0.6 :::; Uac/Uo :::; 0.8). 
Acoustic amplitude varied with Strouhal number fixed (Sr = 0.3). Results 
obtained from the numerical simulation with the vortex-blob method (h = 
0.10). Acoustic amplitude Uac/Uo: (--): 0.5, ( · · · ·): 0.6, (-- -): 0.7, 
(-·-·-): 0.8. 

the net source strength is therefore negative. 
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The net source strengths for the up- and downstream T-junction are presented in fig­
ure 6.5. For moderate acoustic amplitudes the Strouhal number is fixed to Sr = 0.4, while 
for high acoustic amplitudes the Strouhal number is taken to be Sr = 0.3 in accordance 
with the experimentally observed value of the Strouhal number at resonance conditions. 
The net source strength in the upstream T-junction is for moderate amplitudes equal to 
that presented in figure 6.3. The net source strength of the downstream branch is negative 
for Uac/Uo > 0.45. The overall source strength of the system with tandem branches is equal 
to the sum of the two contributions. It is zero for an acoustic amplitude of Uac/Uo ~ 0.65. 
This limits the amplitude of the acoustic field which can be obtained in an ideal resonator 
with a tandem side branches (in absence of other sound sources). This phenomenon is in 
literature often referred to as the vortex damping mechanism. · 

The amplitude at which a zero net source strength is predicted can be realized only if 
losses due to radiation and damping of acoustic waves are negligible, i.e. in practice the 
equilibrium amplitude will be lower. In the next sections the source strength and acoustic 
energy losses occurring in the cross-junction geometry will be discussed further in detail. 

The maximum amplitude which can be obtained in a pipe system with tandem branches 
is considerably lower than the corresponding value for a resonator with a single side branch 
with an acoustic field resonating between the side branch and the downstream part of the 
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main pipe3 a:nd also, as will be shown in the next section for a cross-junction configuration 
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FIGURE 6.5: Net energy source strength < P > in a geometry with tan­
dem branches. The StrouhaJ number is fixed at Sr = 0.4 for moderate 
acoustic amplitudes iac/Uo $ 0.4 (represented with tilled markers) and 
at Sr := 0.3 for high acoustic amplitudes Uac/Uo ~ 0.5 (represented with 
open markers). Results are obtained from a numerical simulation of the 
flow by the vortex-blob method (8 = 0.10). (.6.) upstream T-junction (o) 
downstream T-junction (D) net source strength of the double side branch 
system 

6.2.2 Cross-junction geometry 

In a pipe system with co-axial side branches, i.e. a cross-junction geometry (see figure 6.1a), 
the aeroacoustic source strength can be determined from the periodic solution of the flow 
as described in chapter 4. For this geometry the acoustic velocity field is resonating be­
tween the dosed side branches and in contrast to the acoustic flow in a T-junction at any 
instant the local amplitude of the acoustic velocity at the up- and downstream edges of 
the cross-junction are equal in magnitude. The instantaneous source strength is due to 
the interaction of the two vortex sheets emanating from the upstream edges of the cross 
junction with the acoustic field. It can be determined from equation {6.1 ). 

Figure 6.6 shows the instantaneous source strength P(t) for the periodic flow in a 
cross junction for Sr = 0.3 and the acoustic amplitude Uac/Uo varied from 0.1 up to 0.8. 
The instantaneous source strength is obtained from the periodic flow solutions using the 
vortex-blob method again with 6 0.10. The vortex sheets emanating from the upper 

instance in a pipe system with a single closed side branch and a circular horn, connected to the 
open end of the main pipe (see e.g. Hirschberg et a/. (1989)). 
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FIGURE 6.6: Instantaneous source strength in a cross-junction. The am­
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and lower upstream edge are aeroacoustic sources of opposite sign and their contribution 
to the instantaneous source strength is equal in magnitude but 180° out of phase. The net 
source strength per period of each of the two vortex sheets is therefore equal4 . The sum 
of the two source strengths is presented in figure 6.7 for different acoustic amplitudes. 

Again the calculations have been performed at two values of the Strouhal number, 
namely Sr = 0.3 and Sr = 0.4, this in order to check the sensitivity of the net source 
strength to the value of the Strouhal number. The behavior of the net source strength is 
similar to that found for the upstream T-junction, see figure 6.5. The linear behavior of 
the source strength is valid until Uac/Uo ~ 0.2, which is comparable to the behavior found 
for a T -junction. 

Along the curve corresponding to Sr = 0.3 the source strength attains a maximum 
value for an acoustic amplitude of Ua.c/Uo ~ 0.8. For higher values of the amplitude of the 
acoustic velocity field the net source strength decreases. This effect has also been predicted 
by Bruggeman (1987) who suggested that during the first half period of the acoustic velocity 
field the absorption of acoustic energy increases stronger with the amplitude of the acoustic 
field than the production during the second half period. As a result, the net source strength 
can decrease for Ucc/Uo > 0.8. This behavior is similar to that of the net source strength 
found for a T-junction with an acoustic velocity field acrqss the downstream edge, see 
figure 6.3. 

For moderate amplitudes of the acoustic velocity field Uac/Uo < 0.2 the net source 
strength obtained with a fixed value of the Strouhal number of 0.4 is larger than the source 

is an independent check of the accuracy of the numerical solution. 
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strength obtained for Sr = 0.3. The opposite behavior is found for a high amplitude 
acoustic field. This corresponds with the observed behavior, that the Strouhal number at 
which maximum pulsation occurs shifts from Sr ~ 0.4 for moderate-amplitude pulsations 
towards Sr ~ 0.3 for high-amplitude pulsations. 

Since for the flow in a cross-junction both vortex sheets are aero-acoustic sources of 
sound the maximum amplitude which can be reached for negligible acoustic energy losses is 
much higher than the critical amplitude of (uac/Uo)c ~ 0.65 found for a tandem T-junction 
geometry. 

6.3 EsTIMATE OF ACOUSTIC ENERGY LOSS BY FRICTION AND HEAT CONDUCTION 

Because the Helmholtz number is small (He < 1), radiation losses into the main pipe 
will be negligible for the resonating modes of the pipe configuration for which parameters 
m and n take an integer value. Non-resonating modes of the pipe system are radiated 
effectively into the main pipe. At low acoustic amplitudes the energy losses are mainly due 
to viscous forces acting on the pipe walls and heat conduction to the walls. In the dosed 
side branches the mean flow velocity is zero and for Shear numbers ShH = H ,;;;;r;; > 1 
the damping of acoustic pressure waves due to visco-thermal action can be approximated 
by (Tijdema.n (1975)) 

. (6.2) 

where LA and A are the perimeter and cross-sectional area of the pipe segment, respectively. 
The value of 4Af LA is equal to the pipe width H for a square pipe and equal to the diameter 
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D for a circular pipe. The damping in the bulk of the flow is neglected since the damping 
coefficient in the bulk of the flow is much smaller than a 0 in the low frequency region 
considered here. 

In the present experiments the Shear number has a minimum value of approximately 
50. The standing wave pattern of the resonating acoustic field in the pipe system can be 
thought of as a superposition of two plane waves traveling in opposite direction, each with 
pressure amplitude P± = !Pac· The amplitude of the intensity of these waves is in absence 
of damping equal to II+I = ILl = f>!c/BPoCo· The intensity of both waves is damped 
exponentially while traveling up or down the side branch with damping coefficient 2ao if 
the mean flow is zero. For a nonzero mean flow the damping coefficient is given by 2a+ 
and 2a_ for the down- and upstream traveling wave, respectively. 

The values of the damping coefficients in up- and downstream direction a:~; can be 
obtained from the experimental data presented in chapter 5, e.g. see figure 5.10 and 
figure 5.11. For low Mach numbers and high frequencies the parameter .St. will be less 
than 15 and the damping coefficients do not deviate too much from the value in absence 
of a mean flow, except for a Doppler shift. Therefore, the influence of mean flow on the 
damping can in this region be neglected. 

In that case the total energy loss averaged over one period in a. closed side branch of 
length L can be approximated by 

< ~o .. >= ( 2!:~) aoLA (6.3) 

where we have used that in the present experiments 2a0 L < 1. The total power loss by 
visco-thermal action can be expressed, in nondimensionalized form, as 

(6.4) 

where it has been used that for a standing wave pattern in the resonator Pac = PoCoUac· For 
a pipe system with co-axial branches the total power loss by friction and heat conduction 
can be obtained by summing the power loss of the two individual side branches and the 
damping in the pipe section between the branches. 

6.4 NONLINEAR EFFECTS AT HIGH ACOUSTIC AMPLITUDE 

For high amplitudes of the acoustic velocity field the acoustic waves are distorted by 
nonlinear effects during propagation into the side branches. Due to nonlinear steepening of 
the waves higher harmonics are generated in the resonator, which can either correspond to 
modes of the pipe system which do not radiate into the main pipe (uneven harmonics), or 
modes which are efficiently radiated into the main pipe (even harmonics). The amplitude of 
each of the higher harmonics depends on the ratio between the acoustic pressure amplitude 
Pac and the ambient pressure [lo, which is related to the amplitude of the acoustic velocity 
field by ft,.c/Po l":j "'fUac/Uo, where 7 is the ratio of specific heats ("Y = 1.4 for air). 
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The energy transfer between the fundamental mode and higher harmonics is for a simple 
wave described by Pierce {1989)6 • It depends on the shock formation length if, which for 
a simple wave can be estimated from 

x....., 2Po~ 
....., ('y + l)kfiac 

(6.5) 

The energy transfer from the fundamental mode to the higher harmonics depends on the 
value of u = xfx. For a simple wave it is given by 

and by using the relations !Po = Po~ and Pac R! PoCQUac we obtain 

!+lk Mv.,.. URI--X-
2 Uo 

For small values of u the amplitude of the fundamental mode decreases according to 

while the amplitude of the second harmonic increases according to 

• • (T 

P2 = Pac2 

(6.6) 

(6.7) 

(6.8). 

(6.9) 

Assuming that during one period of the acoustic field the fundamental mode with wave 
number k = 1r f2L, generated by the aeroacoustic source at the junction, travels a distance 
L towards the side branch, the amplitude of the second harmonic at the closed end of the 
side branch is equal to 

A _ A "( + 1 MUac (6.10) 
P2 - Pac 8 1r Uo 

In a low frequency approximation, the second harmonic is totally radiated into the main 
pipe since it has a pressure maximum at the junction. Therefore it will be assumed that 
all the energy contained in the second harmonic is lost by radiation. Applying this theory 
to the experimental data obtained for a single side branch (figure 4.13 and table 4.1) and 
for co-axial branches (figure 4.23 and table 4.3) shows that the predicted amplitudes of 
the second harmonic given in table 6.1 agree reasonably with the experimentally observed 
values. Apparently the assumption of the presence of a simple wave causes an overestimate 
of the value of u for a high-amplitude acoustic field. 

The maximum value of u obtained in our experiments for a high-amplitude acoustic 
field is approximately u R! 0.12. For such values of u acoustic energy is mainly transferred 
from the fundamental mode to the second harmonic. The acoustic energy transferred to 
the third harmonic is much smaller, hut since the third harmonic is also a non-radiating 
mode of the pipe system the energy of the third harmonic can accumulate. Therefore it 

5Chapter 11, 'Nonlinear effects in sound propagation'. 
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Uac/Uo M (A2/A1)up (A2/A1)th 
0.08 0.09 0.028 0.007 
0.23 0.10 0.024 0.021 
0.62 0.13 0.059 0.076 
o. 0.054 0.071 

TABLE 6.1: Amplitude of second harmonic relative to the fundamental 
mode contained in the pressure signals. Comparison of data predicted by 
equation (6.10) for a. simple wave model with experimental data. for the 
periodic flow in a T-junction and cross-junction, presented in figure 4.13 
and 4.23, respectively. 
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may occur in the measured pressure signal at the closed end of the side branch that the 
amplitude of the third harmonic can become comparable to the amplitude of the second 
harmonic (see table 4.1 and 4.3). 

For u < 0.2 the net acoustic energy transfer from the fundamental mode to the higher 
harmonics can be estimated from 

(6.11) 

which is usually negligible compared to the viscous losses at least for Uac/Uo < 0.4, but it 
is the main acoustic energy loss for Uac/Uo = 0(1 ). 

6.5 PREDICTION OF EQUILIBRIUM AMPLITUDE 

In a pipe system with negligible losses due to radiation of acoustic energy the equilibrium 
amplitude of the acoustic resonance can be determined from a balance of the ideally net 
production of acoustic energy and the net loss of acoustic energy due to friction, heat 
conduction and radiation. The losses of acoustic energy due to friction and heat conduction 
increase with the square of the amplitude, see equation (6.3), while the losses due to the 
energy transfer to higher harmonics and subsequent radiation of the energy contained in 
the even harmonics increase with the acoustic amplitude to the fourth power, see equation 
(6.11). 

For moderate acoustic amplitudes the source strength increases linearly with the am­
plitude, i.e. < P > /PoU5A = So(uac/Uo) with S0 the constant of proportionality which 
depends on the geometry and the direction of the mean and that of the acoustic velocity 
field. In this case nonlinear losses are negligible and the equilibrium amplitude of acoustic 
pulsations can be determined from 

• 2 (2So) Pac = pUo -L-.-
ao tot 

(6.12) 
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where Ltot is the total length of the part of resonator in which the acoustic field is present. 
For a singleT-junction with a resonant acoustic velocity field across the downstream edge 
it follows from figure 6.3 that So = 0.04 ± 0.005 for Sr = 0.4, valid for Uac/Uo < 0.4, while 
for a cross junction a value follows of So = 0.04 ± 0.005, also for Sr = 0.4, here valid for 
u,..fU0 < 0.3 (see figure 6.7). 

The damping coefficient o:0 depends on the frequency and the pipe geometry as given by 
equation (6.2). Therefore the amplitude of the pulsation increases linearly with increasing 
pipe width and quadratically with increasing mean flow and decreases with increasing 
side branch length. For high amplitudes, when Uac/Uo > 0.4, equation (6.12) is not valid 
anymore and the equilibrium amplitude must be obtained from equating the numerically 
obtained source strength (see figure 6.3 and figure 6. 7) with the net energy losses by friction, 
heat conduction and nonlinear effects. 

For a double T·junction geometry with tandem branches the source strength is equal 
to zero for a critical amplitude (itac/Uo)c ~ 0.65, see figure 6.5. Close to this maximally 
attainable acoustic amplitude, the amplitude is more or less constant, i.e. close to (itac/U0 ) 0 

and therefore the pressure amplitude varies according to 

• TT (Uac) 
Pac = {JoCouo Uo c (6.13) 

which is independent of the length of the side branch and of the frequency. 

6.6 EXPERIMENTS 

6.6.1 Introduction 

An estimate of the source strength at moderate amplitudes was obtained by Bruggeman 
(1987) for a pipe system with square pipes consisting of a !p.ain pipe with a single closed 
side branch. The main pipe ends in a plenum chamber. By measuring the reflection coeffi­
cient of the plenum chamber by the two-microphone method Bruggeman (1987) estimated 
the energy losses caused by radiation. Bruggeman (1987) assumed that for this specific 
geometry energy losses due to friction and heat conduction are negligible compared to the 
radiation losses. Bruggeman estimated the net source strength in the linear regime to be 
represented by the slope So= 0.04±0.01, which agrees reasonably with the value predicted 
by the two-vortex method. 

Ziada & Biihlmann (1992) studied resonances in a geometry with a ma.in pipe of di­
ameter Do = 0.090 m and co-axial circular branches of various length with diameter 
D = 0.050 m. Since in this geometry the radiation losses into the main pipe are pre­
sumably negligible for the resonance frequencies of the pipe system at low frequencies 
kD < 1, which is valid for f < 600Hz, the net source strength can he determined from 
the total losses by visco-thermal damping. The maximum amplitude observed by Ziada 
& Biihlmann (1992) is Uac/Uo ~ 0.3 which is still in the linear regime of the net acous­
tic source strength. The slope of the net energy source strength measured by Ziada & 
Biihlmann is So = 0.04 ± 0.01 which is dose to the predicted source strength for a cross 
junction by the numerical simulation by the vortex-blob method. 
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It is uncertain whether an aeroa.coustic source in a circular pipe is equally effective 
compared to an aeroacoustic source in a square pipe. A small difference between the 
source strength in square and circular pipes has been observed by Bruggeman (1987) for 
the case of a double tandem side branch system. 

In the next section an investigation is described into the characteristics of a pipe system 
with co-axial branches both with square and with circular pipe segments. This study is 
aimed at validating the results of Ziada & Biihlmann (1992) as well as validating the results 
of the present numerical prediction of the equilibrium amplitude. 

6.6.!? Influence of pipe geometry on pulsation amplitude 

Pipes with circular cross-section 

Since in practice circular pipes are used for the transport of gas the aero-acoustic behavior 
of a pipe system with circular pipes and two closed side branches has been studied ex­
perimentally. Experiments performed for single and double side branch setups with pipes 
of circular cross-section have been described by Bruggeman (1987). The present study 
involving circular pipes is limited to the cross-junction geometry shown in figure 6.1a, with 
two closed co-axial side branches opposite to each other. 

For the experiment we utilize the setup used for the experiments on the aero-acoustic 
behavior of an open pipe end, described in section 5.2. The main pipe with a circular 
cross-section has a diameter Do = 0.030 m and a pipe wall thickness d0 = 0.005 m. The 
closed side branch has a diameter D = 0.025 m and the same wall thickness. The length of 
the side branches can be varied continuously by a piston. With the experimental setup it is 
also possible to perform experiments under conditions at high ambient pressure Po (up to 
15 bar) which will increase the Reynolds number and therefore decrease the visco-thermal 
energy losses in the pipe system. The present experiments have been performed at room 
temperature. 

The amplitude of the acoustic pressure field is measured at the end of the closed side 
branches, i.e. at a pressure maximum of the standing pressure wave, by using acceleration­
compensated piCzo..electrical transducers (type PCB 117) mounted flush in the wall of the 
piston. 

Since the cross-junction is positioned at a distance more than 150 times the pipe diam­
eter from the entrance of the pipe the mean flow has a fully developed turbulent velocity 
profile which can be described by 

U(r) = (l- 2r)k , 
Umax Do 

(6.14) 

where the value of n depends on the Reynolds number and can be found in Schlichting 
(1968). For the present experiments the Reynolds number Re = UmazDo/ v is of the order 
of 105 and n R: 7. The momentum thickness (J of the boundary layer of the turbulent flow 
is IJ = n(,?.f.51 - n~2 - 2n~t )Do. The experiments have been performed for four different 
values of the side branch length and for a mean velocity amplitude varying between 0 and 
200 m/ s. The magnitude of the average main velocity is obtained from a volume flux 
measurement far upstream of the cross-junction (accuracy ±1%). In the determination 
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of the mean velocity ambient temperature and pressure variations have been taken into 
account (see chapter 5). 

The amplitude of the acoustic pressure are presented in figure 6.8 for a side branch 
length of 0.200 m and 0.397 m. Acoustic resonance is observed at certain ranges of the 
mean flow velocity. In such a range the frequency locks into a fixed value which corresponds 
with the resonance frequency of the acoustic resonator or with an uneven multiple of the 
fundamental frequency. For the frequencies at which resonance occurs the Strouhal number 
varies between 0.3 and 0.5 for the first and between 0.9 and 1.0 for the second hydrodynamic 
mode of instability of the shear layer. 

Using linear stability analysis Michalke (1965) showed that for an infinite free shear 
layer with finite thickness the maximum amplification of initial disturbances of frequency 
f occurs for f9/Uo ~ 0.02, while no amplification of the disturbances is expected for 
f9/U0 > 0.04. In the present experiment with a fully developed turbulent pipe flow the 
momentum thickness 9 ~ 0.07 D we obtain a maximum amplification for Sr = f D / U0 = 
0.3. 

For a Strouhal number of Sr ~ 0.45 the convection of the vortex sheet generated at 
the upstream edge of the cross junction within one period of the acoustic field is about 
equal to the diameter of the side branch (since 0.45 UoT ~ D). At the higher value of 
the Strouhal number at which resonance occurs, Sr ~ 0.90, the distance of convection 
during two periods fits with the side branch diameter. The third hydrodynamic mode of 
instability of the shear layer Sr ~ 1.35 is not observed at atmospheric pressure, since the 
large shear layer thickness prevents an amplification of a.n instability for this mode. 

For a.n initially thinner shear layer an acoustic resonance in this unstable hydrodynamic 
mode of the shear layer has been observed by Bruggeman (1987) and also in the present 
experimental setup at high ambient pressure. 

For short side branches (L/ D < 10) the amplitude of the acoustic fluctuations are at 
maximum for the first mode of resonance as predicted by equation (6.12). Furthermore, 
the Strouhal number is found to decrease with an increasing pulsation amplitude. This 
suggests that the convection velocity of disturbances in the shear layer decreases with 
increasing acoustic amplitude. 

The pressure amplitude obtained for the first mode in a cross-junction geometry with 
various lengths of the side branch is presented in figure 6.9. The amplitude of the resonances 
is much larger than the values obtained by Ziada & Biihlmann (1992), since the side branch 
length is much smaller in our experiment and visco-thermallosses are much smaller. Ziada 
& Biihlmann (1992) suggested that the pulsation amplitude attains a maximum value of 
Pac/ PoCoUo = Uac/Uo ~ 0.4 for a sharp-edged cross-junction. At atmospheric pressure we 
obtain a maximum amplitude of Pac/ PoCOUo ~ 0.80 for a side branch length of 0.100 m. 
This high-amplitude behavior was also found by Hirschberg et a,l. (1989) for a single side 
branch and the main pipe terminated by a born. 

The acoustic energy losses by friction and heat conduction, given by equation (6.3), 
obtained for a cross-junction geometry with circular side branches are shown in figure 6.10. 
The present experimental data agree with the experimental data obtained by Ziada & 
Biihlmann for a similar setup with circular pipe segments of a larger diameter. 

For moderate acoustic amplitude Uac/Uo < 0.4 the experimental data agree with the 
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co-axial closed circular side branches with sharp edges at atmospheric 
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results of the vortex-blob method. For higher amplitudes, a strong deviation is observed 
from the predicted net energy source. The deviation is caused by the losses of acoustic 
energy from the fundamental mode towards higher harmonics due to nonlinear effects. An 
estimate of this additional energy loss given by equation (6.11) is included in figure (6.10). 
It is clear that the losses due to nonlinear effects can explain the difference between the 
calculated net source strength and the measured visco-thermal losses. 

When the ambient pressure is increased the mean density increases and as a result 
the kinematic viscosity decreases. In this way the influence of visco-thermallosses on the 
amplitude of the acoustic oscillations can be studied. In figure 6.11 results are presented for 
a cross-junction geometry with circular pipe segments with side branch length L = 0.200 m 
and 0.397 m. The ambient pressure has been varied from 1 bar up to 15 bar. Both for 
L = 0.200 m and 0.397 m the amplitude of the resonating acoustic field increases due to 
decreasing visco-thermallosses. When for L = 0.397 m the ambient pressure is increased 
from 6 up to 11 bar, suddenly the amplitude of the acoustic field increases strongly. This is 
due to the nonlinear increase of the source strength in the region Uac > 0.4, see figure 6.10. 

Pipes with square cross-section 

The influence of the geometry and the direction of the mean flow on the amplitude of the 
resonant acoustic field is studied with the experimental setup used for the visualization 
study described in chapter 4. In the setup, shown in figure 4.9, square aluminum pipe 
segments were used, with pipe width H = 0.06 m. The mean flow of air is provided by 
a high pressure supply. The mean flow velocity is computed from the measured pressure 
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difference between the plenum chamber and the ma.in pipe by using the Bernoulli equation. 
In figure 6.9a the amplitude of the acoustic pressure as obtained for the cross-junction 
geometry (see figure 6.la) with sharp edges is presented for various lengths of the side 
branch. Data are presented for the fundamental mode of the oscillation only. 

For a increasing side branch length L, the amplitude of the reSonant oscillations de· 
creases from a value of about 0.9 to a value of about 0.2 due to the energy losses by 
visco-thermal damping increasing with increasing L. In the process also the Strouhal num­
ber at which the amplitude of the resonant oscillation is at maximum increases slightly 
with increasing L, i.e. from 0.35 to 0.45. Not that the maximum amplitude observed for 
the cross-junction with sharp edges is much larger than the maximum amplitude found 
for the double T-junction. In a double T-junction the energy losses are higher because 
of more losses by friction and heat conduction, additional acoustic energy losses due to 
the interaction of the acoustic field with the turbulent mean flow and also the difference 
between the net source strength in a cross junction (see figure 6.7) and a doubleT-junction 
(see figure 6.5). 

For a pipe system with co-axial side branches the maximum amplitude observed for 
square pipes is comparable with the maximum amplitude obtained for a pipe system with 
circular cross-section. Furthermore, for the largest value of the side branch length the 
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amplitude of the second mode is higher than the amplitude of the fundamental mode. 
This phenomenon was also observed by Ziada & Biihlmann (1992) for a. cross junction 
with long circular pipe segments with diameter D = 0.051 m and with side branch length 
L1 = L2 = 0.61, 1.0 and 2.0 m. 

The acoustic energy losses due to visco-thermal action determined for the geometry 
with co-axial branches is included in figure 6.10. For moderate acoustic amplitudes the 
data. obtained for the cross-junction with circular pipes are in agreement with the data 
for square pipes. For high acoustic amplitudes the viscous losses are somewhat lower for 
the circular pipes than for the square pipes. To maintain the resonant oscillations the net 
aeroacoustic source strength should balance the losses. Figure 6.10 shows that the visco­
thermal losses are for moderate acoustic amplitudes qualitatively in agreement with the 
net aeroacoustic source strength predicted by the vortex-blob method. The difference in 
the high-amplitude range is caused by the additional energy loss due to nonlinear effects. 

6.6.3 lnft:uence of rounding the edges on pulsation amplitude 

For a single and for a double side branch geometry Bruggeman (1987) observed a strong 
influence of the radius of curvature of the edges of the junction on the amplitude of the 
acoustic resonance. In the present study the influence of rounding the edges is here studied 
systematically for the doubleT-junction geometry shown in figure 6.1d with square pipe 
segments. In figure 6.12 the results are presented of the effect of changing one of the four 
edges of the T-junction. For one T-junction the radius of curvature R of the edges have 
been changed from R/ H = 0 to values of R/ H = 0.1 and R/ H = 0.2, while the other 
T-junction had rounded edges with R/ H = 0.1. 
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From figure 6.12 it is dear that rounding the upstream edge increa.'>es the amplitude of 
acoustic resonance, while rounding the downstream edge decreases the acoustic amplitude, 
but only slightly. The effect is the strongest for the upstream edge of the second T-junction 
and for the downstream edge of the :first T-junction. This is h,ecause the acoustic velocity 
is at maximum at precisely these edges and changing the radius of curvature of these edges 
has the strongest influence on the absorption or production near these edges (see also 
figure 6.4). 

Clearly not only the maximum amplitude increases but simultaneously the Strouhal 
number at which the maximum amplitude resonance occurs decreases. This observed effect 
of rounding the edges can be explained in terms of a change in the source strength when 
the local geometry is changed. The source strength is given by equation (6.1). During the 
first half period of the acoustic field the vortex formation takes place near the upstream 
edge and acoustic energy is transferred to kinetic energy of the vortex. After half a. period 
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of the acoustic field, when the acoustic velocity changes sign, acoustic energy is produced 
by the interaction of the just generated vorticity field with the acoustic field. 

It is expected that rounding the upstream edge of the T-junction will affect the vorticity 
generation and the absorption of acoustic energy is will decrease so that the net energy 
source strength increases. The opposite will occur when the radius of curvature of the 
downstream edge is increased. This effect is indeed observed in the experiments, presented 
in figure 6.12. The stronger influence of rounding the edge at which the local acoustic 
amplitude is maximum is in agreement with the computed source strength at these edges, 
e.g. see figure 6.4. 

The amplitude of the acoustic resonance in the cross-junction geometry is also strongly 
influenced by rounding the edges. For the cross-junction geometry with co-axial square 
branches the influence of edge rounding is presented in figure 6.13. Increasing the radius 
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FIGURE 6.13: Influence of radius of curvature of the edges on the ampli­
tude of the acoustic resonance in a pipe system with two co-axial square 
side branches (see figure 6.1a) with Lt = L2 = 0.610 m, L3 0.075 m. 
(x) sharp edges R/ H = 0 ( o) edge radius of curvature R/ H 0.1 {D) 
R/H = 0.2 (t:.) with spoilers at upstream edges of length lfll = 0.1 

of all the edges from zero to R/ H = 0.1 increases the maximum amplitude by approxi­
mately 20 %, further increasing the radius of curvature to R/ H = 0.20 yields a. maximum 
amplitude of Pac/ PoCfJUo :::::: 1.3, almost twice the value observed for sharp edges! This 
amplitude of the acoustic pressure yields an amplitude of the acoustic velocity field which 
is larger than the mean flow velocity U0 • 

For this resonance condition Sr = 0.23 and Uac/U() = 1.3 obtained for a side branch 
length of L = 0.61 m the flow has been visualized without injecting C02 at the upstream 
edges of the cross-junction. The flow visualization presented in figure 6.14 shows a weak 
shock wave which each half period is formed in the side branches due to nonlinear steep­
ening of the acoustic waves. The density variations associated with this weak shock allow 
a visualization of the flow by a schlieren method. 
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(c) 
0.0 1.0 2.0 3.0 4.0 

tiT 
FIGURE 6.14: Flow visualization of shock wave formation m a cross-
junction geometry with rounded edges (R/ H = 0.2) using a schlieren 
method. Lt L2 = 0.61 m, L3 = 0.040 m, f = 135Hz and Po = 1 bar. 
Figure (a) (c) are at subsequent stages of the shock passing the cross­
junction. In figure (d) the pressure signal measured at the end of the closed 
side branch is shown. 
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(b) 

Under these flow conditions the amplitude of the acoustic pressure is approximately 
20% of the ambient pressure (Po ~ 1 bar) and hence Mac Uac/Co ~ 0.14. The value 
of a defined by equation (6.7) is approximately 0.5 assuming a simple wave traveling a 
distance twice the length of the side branch. This explains the formation of a weak shock. 
These measurements show that nonlinear effects are indeed important for high acoustic 
amplitudes with Uac/U0 = 0(1) which cannot be neglecte<i in the theoretic~:J,} analysis and 
the numerical simulation. 

When the shock wave reaches the intersection it is directed by the mean flow towards 
the main pipe where it collides with the downstream edge. After the collision reflected 
circular waves are observed in the junction after which a new shock wave emerges from the 
opposite side branch. 

The pressure measured at the end of the closed side branch is also presented in fig­
ure 6.14. The pressure signal differs strongly from a single-mode harmonic signal and a 



216 Chapter 6: The aeroacoustic behavior of a pipe system 

weak shock can be observed. 
Bruggeman (1987), in his study on flow-induced pulsations in a pipe system with a 

doubleT-junction, suggested to prevent pulsations by introducing so-called spoilers at the 
upstream edges of the T-junction. If these spoilers are also introduced at the upstream 
edges of the cross-junction geometry with rounded edges (with R/ H = 0.2, while the 
spoilers were straight and had a length l/H = 0.1), the amplitude of the pulsations could 
be reduced by a factor of 10 compared to the amplitude found in the cross-junction with 
rounded edges without spoilers (see figure 6.13). 

6.7 CONCLUSIONS 

The strength of the aero-acoustic sound source due to flow-induced pulsations has been 
obtained from the numerical solutions for the periodic flow in a cross-junction and in a 
T-junction. During the first half period of the acoustic field, when a new vortex structure 
is formed at the upstream edges, acoustic energy is transferred into kinetic energy of the 
tnean flow. During the next half period the vortex structure transfers kinetic energy of the 
mean flow back into acoustic energy. If during the second half period the vortex structure 
is close to the downstream edge of the pipe junction the net strength of the acoustic energy 
source can become positive. This explains why flow-acoustic coupling can only be observed 
at specific values of the mean flow Strouhal number. 

Up to moderate amplitudes of the acoustic field (uac/Uo < 0.3) the source strength 
averaged over a period of the acoustic field, i.e. the net source strength, increases linearly 
with the amplitude of the acoustic field. For higher amplitudes a maximum value of the 
net source strength is obtained. For an amplitude of the acoustic field ( Uac/Uo ? 0.9), at 
a given value of the Strouhal number, the source strength decreases slightly. 

In a double T-junction geometry the net source strength is obtained by adding the 
contributions of the upstream and that of the downstream T-junction. For this geometry 
the net source strength becomes zero at a critical amplitude (uac/Uo)c Rl 0.65. This critical 
value is the maximum amplitude which ideally can be obtained in a pipe system with 
sharp-edged tandem branches. This predicted maximum value of the amplitude of the 
acoustic field can only be obtained if losses due to friction and radiation are negligible. 

From the numerical simulations it is observed that for the cross-junction the net source 
strength is larger than that in a double T-junction geometry. As a result higher amplitude 
resonances can be expected for a pipe geometry with two closed side branched positioned 
co-axially opposite to each other on the main pipe. 

For a pipe system with two closed co-axial side branches the acoustic energy losses 
due to visco-thermal effects have been determined experimentally. For resonant conditions 
at moderate acoustic amplitude (uac/Uo < 0.4) both for pipes with square and circular 
cross-section the acoustic energy losses due to viscous and thermal effects are reasonably 
close to the net source strength predicted by the vortex-blob method. 

For resonant conditions at high acoustic amplitude the predicted source strength is 
much larger than the estimated energy loss through visco-thermal losses. The difference 
is due to energy losses through nonlinear effects: at high amplitudes the acoustic waves 
are distorted during propagation and energy is transferred from the fundamental mode 
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to higher harmonics. The even higher harmonics are efficiently radiated into the main 
pipe, while the uneven harmonics correspond to the higher modes of the resonator and the 
energy contained in these modes is accumulated in the pipe system. 

The source strength is strongly influenced by the direction of the mean and the acoustic 
velocity field as well as the radius of curvature of the edges of the junctions. For rounded 
upstream edges the net source strength is increased since the initial acoustic energy ab­
sorption is decreased. However, for rounded downstream edges the net source strength is 
decreased since the acoustic energy production is decreased. 

In a cross-junction geometry with rounded edges amplitudes of the acoustic velocity 
field larger than the amplitude of the mean flow field have been measured, i.e. U.c.c/Uo !>.':l 1.3. 
At this amplitude with acoustic Mach number Mac !>.':l 0.14 weak shock waves have been 
observed. If upstream edges are effectively sharpened by introducing spoilers the pulsation 
amplitude can be reduced by a factor of ten. 
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Chapter 7 

Summary and conclusions 

7.1 NUMERICAL SIMULATION OF UNSTEADY INTERNAL FLOW 

In the present study results of computational methods used to describe the unsteady, high­
Reynolds-number, low-Mach-number flow within pipes with closed side branches have been 
compared with results of flow visualization and Laser Doppler velocity measurements. The 
second-order panel method, developed at National Aerospace Laboratory (NLR) by Hoei­
jmakers & Vaatstra (1983) and described extensively by Hoeijmakers (1989) for the simu­
lation of the vortex wake roll-up as occurs behind an aircraft has been adapted such that 
it can handle interior flows and has been extended to include vorticity generation at sharp 
edges through a Kutta condition. The rigid-wall boundary conditions are incorporated 
by using a Schwarz-Christoffel mapping in which the physical flow domain is transfor­
med into the half-plane in computational space. This adaptations allow the method to be 
used for unsteady two-dimensional internal flow problems with flow separation at sharp 
edges. Results of the method have been compared with results of a vortex-blob method in 
combination with a first-order boundary element method, developed by Piva et al. (1992). 

On the basis of results of these methods simplified methods have been developed which 
compute the trajectory of the center of vorticity and the evolution of the circulation of 
the shear layer fairly well but do not give the details on the distribution of vorticity. 
Concentrating all vorticity contained in the shear layer into a single point vortex results 
in a so-called single-vortex method. This method, amongst others developed by Brown & 
Michael (1954) and used by Howe (1975), overestimates the amount of vorticity generated. 
The trajectory of the center of vorticity is reasonably predicted by the method provided 
that certain conditions are imposed on the system consisting of the point vortex and the 
so-called feeding sheet connecting the point vortex to the edge. 

By improving the single-vortex method on the aspect of vorticity generation a so-called 
two-vortex and a so-called single-panel method are obtained which gives a fair prediction of 
the trajectory of the center of vorticity and the evolution of the circulation of the vortical 
flow region. This holds as long as the distance of the center of vorticity to the edge where 
the vortex system is generated is of the same order as or smaller than the characteristic 
length scale of the problem (in internal flow problems usually the channel width). In 
addition the method requires empirical information on the moment of formation of a new 
vortex structure. 

Results of different methods applied to starting flows are discussed and compared in 
chapter 3. The cases considered are: the self-similar starting flow past a wedge (section 3.2); 
the impulsively started flow in a pipe with aT-junction (section 3.3); and the impulsively 
started flow out of a nozzle (section 3.4). 
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In the prediction of the periodic flow in internal configurations additional difficulties 
appear. The first problem is the periodic formation of vortical structures. The frequency of 
the initialization of a new vortex structure is determined by the frequency of the imposed 
periodic outer flow. However, as also has been observed in experimental studies, it appears 
that there can be a phase shift between the periodic outer flow and the periodic generation 
of new vortex structures. This phase shift depends on the acoustic amplitude Uac/Uo. The 
phase shift is predicted by the vortex-sheet and by the vortex-blob method, since these 
methods can describe the Kelvin-Helmholtz instability of the vortex sheet, which signals 
the formation of a vortex structure. 

In the single-vortex, two-vortex and single-panel method the instant in the cycles when 
of a new vortex structure is formed is an external parameter which has to be obtained 
empirically or theoretically from more elaborate methods. Test cases are discussed in 
section 4.4 and 4.5, namely the periodic flow in a pipe with a. T-junction and a pipe with a 
cross-junction, respectively. An example where the moment of formation of a new vortex 
structure can be determined a priori is discussed in section 4.2. It concerns the vortex 
formation in the periodic flow out of a sharp-edged nozzle with zero mean flow. Without 
a. mean flow component or when the acoustic amplitude is high (u,.c/Uo ~ 1), vorticity of 
opposite sign is generated during each period. In that case, the formation of a. new vortex 
structure starts at the moment the newly generated vorticity changes sign. 

A second difficulty in numerically simulating periodic flows is that vorticity has to be 
annihilated after a number of periods following the period it has been generated, this in 
order to limit to computation time and the extent of the computational region. Physically 
this annihilation corresponds to the merging of vortices with vorticity of opposite sign 
or with boundary layers as a result of (turbulent) diffusion but none of these effects is 
included within the potential-flow models employed. Usually vorticity is annihilated or 
removed from the computational domain if it has been convected far away from the region 
of interest, so that it doesn't influence the generation and convection of vorticity in the 
source region. The problem is avoided by limiting the number of periods the numerical 
simulation is carried on. 

7.2 INTERACTION OF A VORTICITY FIELD WITH AN ACOUSTIC FIELD 

In the presence of an acoustic field an unsteady vorticity field can transfer acoustic energy 
into kinetic energy of the vortical flow field and the other way around. In general a vortex 
structure is formed during the half-period the acoustic flow field is directed downstream 
around the sharp edge where the flow separates. During this half-period of the acoustic 
velocity field acoustic energy is transferred to kinetic energy of the vortical flow. During 
the next half-period the vortical structure can transfer kinetic energy back into acoustic 
energy. 

In general the net production of acoustic energy is negative, so that the flow field 
vorticity causes damping of the acoustic field. For example, for the periodic acoustic flow 
around a sharp-edged nozzle the periodic vortex formation process causes an absorption of 
acoustic energy. This has been found by measurements described in section 5.4. The net 
acoustic energy absorption, obtained from the simulation of the periodic flow in section 4.2 
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using the vortex sound theory by Howe (1975), is discussed by Peters & Hirschberg (1993). 
If during the second half period of the acoustic oscillation part of the vortex system is 

close to a boundary, for example a sharp edge, the amount of acoustic energy produced 
during the second part of the acoustic field can exceed the initial absorption. In that case 
the interaction between the flow-field vorticity and the acoustic velocity field is and aeroa­
coustic source of sound. An example of this sound generating phenomenon is described 
in chapter 6. In a pipe system with two closed side branches, either in tandem (double 
T-junction) or positioned opposite to each other (cross-junction), the vortex structures 
formed periodically near the upstream edges interact with the downstream edges. For a 
certain range of values of the mean flow Strouhal number based on the resonance frequency 
of the resonator a net production of acoustic energy can lead to a self-sustained pulsation 
in which the vortex formation frequency is imposed by the resonating acoustic field. 

7.3 LOSS MECHANISMS OF ACOUSTIC ENERGY 

The Strouhal number at which acoustic resonances can occur in a pipe system with closed 
side branches can be predicted accurately, see for example Stokes et al. (1986) and Brugge­
man (1987). However, a prediction of the equilibrium amplitude of the periodic acoustic 
field requires an accurate knowledge on the strength of the aero-acoustic source on one 
hand and the mechanisms imparting losses in acoustic energy on the other hand. If an 
acoustic field is resonating in part of a pipe system with closed side branches acoustic en­
ergy is lost by radiation into other parts of the pipe system or by radiation out of the pipe 
system through wall vibrations. Furthermore, the acoustic waves are damped by viscous 
dissipation and thermal conduction, the so-called visco-thermal effects. Finally, at higher 
acoustic amplitudes, due to nonlinear effects the acoustic waves steepen and acoustic en­
ergy of the fundamental mode is transferred to higher modes, which can cause a significant 
damping of the fundamental mode of the acoustic standing wave in a pipe system. Even 
shock waves are observed in a cross-junction at very high amplitudes. 

For low-frequency waves the radiation losses at open pipe ends can be measured by a 
so-called two-microphone method. With this method the reflection of acoustic waves is 
obtained if the damping of these waves inside the pipe system is known. In the presence of 
a (turbulent) mean flow the damping of acoustic waves is not accurately known. Several 
theoretical results, varying from empirical (Ingard & Singhal (1974)) to highly elaborate 
(Howe (1979, 1984)) do not succeed in predicting the measured data within 20%. Other 
theoretical results are only valid in a specific range of frequencies and Mach numbers (Ron­
neberger (1975)). In the present study the two-microphone method has been extended to a 
multi-microphone method which enables the measurement of both the reflection coefficient 
and the wave numbers in up- and downstream direction. 

The imaginary part of the wave number is the damping coefficient. A simple theoretical 
analysis indicates that accounting for the delay in the response of turbulence to shear waves 
generated at the wall by the acoustic field is essential to accurately predict the viscous 
contribution to the damping coefficient. 

The multi-microphone method is described in section 5.2 and the results for the damping 
and reflection coefficients are presented in section 5.3 and 5.4. The present experiments 
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validate the theories of Munt (1990), Cargill (1982) and Rienstra (1981) on the influence of 
a low Mach number mean flow on the reflection of plane acoustic waves at an unflanged pipe 
end. The present experimental data on the damping coefficients agree with data obtained 
by Ronneberger & Ahrens {1977), but are obtained for a wider range of frequencies and 
Mach numbers (see also Peters et al. (1993)). Quantitative information is provided on the 
way the reflection coefficient for an open pipe exit without a mean flow depends on the 
amplitude. These latter measurements confirm results of Disselhorst & van Wijngaarden 
(1980). 

7.4 PREDICTION OF EQUILIBRIUM AMPLITUDE OF ACOUSTIC OSCILLATION 

In order to predict the equilibrium amplitude of flow-induced pulsations in a pipe system 
with two closed side branches with sharp-edged junctions the strength of the aero-acoustic 
source has been determined in section 6.2. For moderate acoustic amplitude (u,.c/Uo < 
1) the net source strength increases linearly with the acoustic amplitude. For a larger 
amplitude, the net source strength increases more rapidly until a maximum source strength 
is reached at acoustic amplitudes of about one (it .. c/Uo 0(1)). 

For a cross-junction geometry the maximum is obtained for Uac/Uo :::;: 0.8, while for a 
double T-junction geometry this maximum is obtained at a lower value, i.e. Uac/Uo :::;: 0.4. 
For a still higher value of the amplitude of the acoustic field the net source strength can even 
become negative. This yields the highest amplitude which can be obtained in such a pipe 
system if acoustic energy losses are negligible. This maximum is found to be itac/Uo:::;: 0.65 
for a doubleT-junction geometry for T"junctions with sharp edges. 

However, if the geometry of the edges of the junctions is changed, the net source 
strength can be strongly influenced. This effect is described both theoretically and exper­
imentally in section 6.5. Increasing the radius of curvature of the upstream edges of the 
junction decreases the acoustic energy absorption while increasing the radius of curvature 
of the downstream edges decreases the acoustic energy production. In order to decrease 
the strength of the aero-acoustic source, and as a result the amplitude of the aconstic 
pulsations, the upstream edges should be sharp while the downstream edges should be 
rounded. An enhanced acoustic energy absorption can be obtained if so-called spoilers are 
introduced at the upstream edges (see Bruggeman (198~)). 

The acoustic energy losses due to visco-thermal effects in a pipe system with two co-axial 
closed side branches are for moderate acoustic amplitudes Uac/U0 < 0.3 in agreement with 
the source strength predicted by the computational methods for simulating the periodic 
vorticity generation and convection in the source regions. 

For high acoustic amplitudes Uac/Uo visco-thermallosses are only responsible for a. part 
of the total energy losses. The other part can be explained by an transfer of acoustic energy 
from the fundamental mode to higher harmonics by nonlinear effects. This indicates that 
we are now able to predict the maximum equilibrium amplitude of pulsations in resonator, 
formed by a pipe system with closed side branches, connected to the main pipe by sharp­
edged junctions. 
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Appendix A 

GOVERNING EQUATIONS FOR 
AERO-ACOUSTIC SOURCES. 

For the derivation of the equations describing the propagation of an acoustical disturbance 
in an arbitrary inviscid mean flow we will follow the general description given by Howe 
(1975). The equations found by Lighthill {1952, 1954) and Powell (1964) describing the 
aero-acoustic sources in a turbulent flow and the vortex sound mechanism in an isentropic 
flow, respectively, can be derived from the general description given by Howe (1975). 

In a quiescent, inviscid and non-conducting medium the propagation of acoustic distur­
bances is described by a wave equation, in which the acoustic disturbances are expressed in 
terms of the acoustic pressure p or fluctuations of the density p, the time-dependent scalar 
velocity potential t/J or it's time-derivative, or the acoustic velocity Uac· This because the 
wave operator is linear. However, it will be shown that in the presence of a mean flow the 
equations describing the propagation of acoustical disturbances can be combined into a 
nonlinear operator, which acts upon a variable describing the acoustical disturbances.· The 
most appropriate variable to describe the acoustic disturbances is found to be th~ specific 
total enthalpy H, which is defined as 

H(i, t) = h(i, t) + ~lv(i, tW (A-1) 

with v the total velocity and h(i, t) the enthalpy, which using the second law of thermo­
dynamics can be written as 

(A-2) 

where p, p, T, and S are the pressure, density, temperature and entropy, respectively. 
In the derivation of the propagation operator for the stagnation enthalpy H, it will be 
assumed that the medium is inviscid, but the effect of beat conduction will be taken into 
account, so that the entropy may increase in time. 

In absence of external mass sources and external forces the equations for the conserva­
tion of mass and momentum in an inviscid, compressible flow are given by 

Dp V ~ 0 -+p ·v = Dt 
Dv 0 p Dt + Vp = 

where D I Dt = 8 I 8t + iJ · V denotes the substantial derivative. 

(A-3) 

(A-4) 

The momentum equation can be written in Crocco's form by using the vector identity 
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(ii · 'V)v = w x i1 + V'(~li112 ), leading to 

lJv ~ ~ 
lJt +'VH+L=O 

in which His given by equation (A-1) and lis the Lamb vector, defined as 

L wxii-T'VS 

The density p is.in general a function of the pressure and the entropy, so that 

Dp = (lJp) Dp + (lJp) DS 
Dt av s Dt as " 

where (~) s = c2 defines the local speed of sound c. 
Furthermore for an ideal gas 

(;;)/ (!~)p 
p = ,--
Cp 

where Cp = T (~~) P is the specific heat at constant pressure. 

As a result, the continuity equation (A-3) can be written as 

_l_Dp + \7. i1 = .!_ DS 
pc2 Dt t;. Dt 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

By taking the derivative with respect to time of this equation and subtracting the diver­
gence of the momentum equation in Crocco's form (A-5) we find 

!!_ (-1 Dp) _ \72 H = \7 ·L + !!_ (!.. DS) 
at pc2 Dt at t;. Dt 

(A-10) 

In order to obtain the propagation operator for H, equation (A-10) can be written in the 
form 

CH='V·L+--+--·'VH-- -- +- --~ 1 D2 H 1 Dv a ( 1 Dp) a ( 1 DS) 
c2 Dtz c2 Dt at pc2 Dt at t;. Dt 

(A-ll) 

where 
1 D2 1 Dii 2 --+--·'V-\7 
c2 Dt2 c2 Dt 

£ (A-12) 

is the propagation operator for the stagnation enthalpy H. 
The choice of C has its origin in that the propagation of an acoustic disturbance in a 

quiescent isentropic medium with constant speed of sound is described by the linear wave 
operator 

(A-13) 
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Furthermore, introducing if= Vcp, where cp(x, t) cpo(X) + cp1(x, t) the propagation of an 
irrotationa.l disturbance in an irrotational inviscid, non-conducting mean flow is given by 

(A-14) 

This shows that both cases are described by the general propagation vector C. given by 
(A-12) for an arbitrary mean flow iJ. 

In order to simplify the right-hand side of equation (A-11) we use the momentum 
equation in Crocco's form (A-5) dotted into ~g~, to get 

(A-15) 

and the definition of the total enthalpy H equation (A-1), combined with the momentum 
equation (A--4) to get 

I_ D2 H _ J_E_ (! 8p) J_E_ (rDS) 
c2 Dt2 - c2 Dt p 8t + c2 Dt Dt 

(A-16) 

Furthermore, using the momentum equation (A-4) and the relation iJ · V = J51 -£i leads 
to 

1 DiJ fJiJ 
-c2 Dt.f)t 

(A-17) 

Substitution of equations (A-15), (A-16) and (A-17) into the general equation for H 
(A-ll) results in 

£H 

where we have used that 

1 D (l fJp) 
c2 Dt p fJt 

(A-18} 

1 D (fJp) 1 fJ (Dp) fJ ( 1 Dp) 
pc2 Dt 8t + pc2 fJt Dt - fJt pc2 Dt 

= 1 8p D (1) Dp fJ ( 1 ) 
;;i fJt Dt p - Dt fJt pc2 

(A-19) 
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A further simplification of the right-hand side of equation (A-18) can be obtained by using 
the relation IP = pt? (for an ideal gas), so that 

1 ap D (1) Dp a ( 1 ) 
c2 at Dt p Dt at pc2 

ap D ( 1 ) Dp [) ( 1 ) 1 ap D ( 1 ) 
at Dt pc2 Dt at pc2 p at Dt c2 

1apD (1) 
= -p [)t Dt -;;"2 (A-20) 

However, this term appears to be linear in the stagnation enthalpy Hand should therefore 
be taken into the propagation operator £. This can be understood by using the momentum 
equation (A--4) and the definition of the stagnation enthalpy II, equation (A-1). 

1 Dp ii --- +-. \lp 
pDt p 
1 Dp ~ Dii = ----v· 
pDt 
DH TDS 

- Dt + Dt (A-21) 

Combining equations (A-20) and (A-21) with the general equation (A-18) and combining 
the linear term in H into a new propagation operator £*, we find 

C*H = ~ 1 Dii ~ 
"il·L---·L 

c2 Dt 

DS D ( 1) 1 D ( DS) [) ( 1 DS) 
+TDt Dt -;;-2 + -;;"2 Dt TDt + [)t ;;; Dt 

with the modified propagation operator given by 

which can be simplified to 

£* = D (LQ_) + 1 Dii . \7 - \72 
c2 Dt 

(A-22) 

(A-23) 

(A-24) 

The term in the propagation operator £* which does not appear in C given in equation 
(A-12) represents the variation of the speed of sound in time, which in its turnis a result 
of the entropy variations in time associated with heat conduction in the inviscid medium. 
Finally, the right-hand side of equation (A-22) can be simplified to arrive at the general 
equation for the description of the propagation of acoustic disturbances in terms of the 
stagnation enthalpy variable H in a heat-conducting, inviscid ideal medium, given by 

C*H="il·L-J:_Dv.l+ D ('!._DS)+~(J:_DS) 
c2 Dt c2 Dt [)t ep Dt 

(A-25) 
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For an inviscid medium the total energy can be obtained from 

:t(pE) + \J. (pvH) = pT~~ (A-26) 

where E = e + !lvl2 is the total energy with e = f TdS- f p~ is the internal energy. 

Since we have made no further assumptions during the derivation of equation (A-25), 
this relation is exact for an inviscid, ideal gas. However, often it is useful to derive 
simplified equations from this relation, especially since the equation is in general nonlinear 
and therefore cannot be solved analytically. For example, for a non-conducting medium 
the flow is isentropic ~~ = 0, which will simplify the above expressions considerably. In the 
case of a homentropic medium \l S = 0 and the Lamb vector simplifies to the Powell vector 
l = w x v (Powell1964) while the speed of sound is constant c =eo. For an homentropic 
flow, equation (A-25) simplifies to 

~ 1 Dv ~ 
C*H = 'V·L- -- · L 

c2 Dt 
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Appendix B 

SINGLE VORTEX MODEL OF THE 
STARTING FLOW PAST A WEDGE. 

Consider the two-dimensional starting flow around a wedge of infinite extent. Assume 
that one potential flow component rounds the edge, while the other component flows 
symmetrically towards the edge. Due to the flow rounding the wedge the velocity at the 
edge of the wedge becomes infinite. In real flows the velocity remains finite at the edge 
due to the action of viscosity resulting in flow separation and generation of vorticity at the 
edge. At high Reynolds numbers the vorticity remains concentrated in a thin layer, which 
in the potential-flow model is assumed to be infinitesimally thin, i.e. a vortex sheet. In 
the potential-flow model viscosity is neglected and flow separation is enforced by imposing 
a Kutta condition, requiring the velocity to be finite at the edge. 

Due to its self-induced velocity field, the vortex sheet rolls up into a spiral-like vortex 
structure. In single-vortex methods it is assumed that the vorticity contained within the 
sheet may be concentrated into a single point vortex, at a position which is assumed to 
be close to the center of vorticity of the vortex sheet. Once the position of the point 
vortex z, is known, the circulation r, of the vortex can be obtained by imposing the 
Kutta condition. To satisfy the boundary condition on the solid sudace for a given z, 
and r" a conformal mapping is employed which maps the space around the wedge onto 
the half-plane in the computational space. Imaging the vortex in the wall then exactly 
satisfies the boundary condition of zero normal velocity. Finally the position of the vortex 
is obtained by convecting the vortex with a velocity which depends on the specific method, 
i.e. considering the vortex as a free vortex or a vortex, bounded to the edge by a feeding 
sheet. 

The transformation function from the physical plane, with complex coordinate z = 
x + iy to the computational half-plane !R(() > 0, with coordinate ( = '+iT}, shown in 
figure B.l, is given hy 

(B-1) 

where D is a. constant, n = 1r /(21r 8), with 0 the interior angle of the wedge. For the 
sake of generality we assume a starting How for both the symmetric and antisymmetric 
part of the mean potentia.! flow given by the complex velocity potential 

cp0 ( () = -iA( + B(2 (B-2) 

where A = at"' and B = btfl with a and b real constants and t the time. The velocity 
potential at a point ( in the computational plane due to the point vortex of strength r" 
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FIGURE B.l: Schwarz-Christoffel transformation of the region around a 
wedge into a semi-infinite plane. (a) physical plane z = x + iy {b) com­
putational plane ( = ~ + i71 

at (.,, which satisfies the normal-velocity boundary condition is given by 
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(B-3) 

where a star denotes the complex conjugate. The complex velocity potential is the sum of 
the velocity potential due to the attached flow and the velocity potential due to the point 
vortex. 

<P( () = <Po(() + <P.,( () (B--4) 

The determination of the complex conjugate of the velocity at the position of the point 
vortex in the physical plane, written in (-coordinates, necessitates the the use of the Routh 
correction (Clements (1973)), i.e. 

- - liD -+ -+ d<P' 1. (d<P if., ) dz ir. 
dz z, - (-+{v d( 21r(( (.,) / d( 41f 

(B-5) 

In the literature there has been some discussion about the appropriate velocity with which 
the point vortex is to be convected. For a free vortex the Helmholtz theorem indicates that 
the vortex convects with the local flow velocity. i.e. 

dz., = lim (d<P)* 
dt z-+zv dz (B--6) 

However, Brown & Michael (1954) argued that a point vortex with a time-dependent 
circulation is not a free vortex since it is connected to the edge with a so-called feeding sheet 
along which the vorticity feeds into the vortex. This implies that there is a time-dependent 
jump in the velocity potential across the feeding sheet which is equivalent to a pressure 
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jump since the velocity is continuous. In order to have a force-free point vortex/feeding 
sheet system, one has to allow for a force on the point vortex which cancels the one on the 
feeding sheet. Therefore at the point vortex there has to be a resulting slip-velocity which 
yields a Magnus force. The velocity required at the vortex is given by 

dz11 = lim (d~)* 
dt z-z. dz 

(B-7) 

However, if we require that the aero-acoustic source strength associated with the additional 
forces in the point vortex/feeding sheet combination balance, the velocity at the point 
vortex has to be 

(B-8) 

which is derived in section 2.2.3. 
In the following the similarity solutions for the three different methods will be described. 

The solution for a free-vortex method will be derived in detail, for the force-free and source­
free method only the results will be given. Since the problem is self-similar, the point vortex 
convects along a line with an angle 6,, independent of time. Writing z,(t) = r,(t) e;o., we 
can assume that r,(t) = rt". 
The Kutta-Joukowski condition requires the velocity ~ to be finite at the edge where the 
transformation is singular. This condition therefore requires that the singularity at the 
edge is eliminated by imposing equation (2.90), i.e. zero velocity in the computational 
plane. From the condition that the first derivative of the velocity potential ~(() with 
respect to ( at ( = 0 is zero, the circulation of the vortex can be related to its position as 

1raDta( rt"Y)n 
fv = (B-9) 

cos nOv 

Substituting equation (B-9) into the expression for the velocity at the vortex position, 
given by equation (B-5), and using equation (B-6) we obtain for the free-vortex-method 

'p-I 
:r::__(rfY)1-n e-ine. = (B-10) 

nD 

2bt/J D(rt"Yt einB. + iat" ( 1 [ 1 + 1 - n e-in9•] - 1) 
2cosn0., 2cosn0., 2n 

The time-dependence of the term on the left is t2"1-l-"Yn, while the two terms on the right 
have time-dependence t/Jhn and t"', respectively. Analytical solutions of this equation can 
be obtained for both the case that 0 < Ia I < lbl and lbl < lal- The value of Jbl can be zero 
in the second case. However, lal cannot be zero in the first case, since for lal = 0 the flow 
is not singular at the edge flow separation does not occur. This follows directly from the 
circulation given by equation (B-9), which only depends on the value of a. For the two 
limiting cases we find for the power of time describing the increase of the distance of the 
vortex 

"' = (1 + a)/(2 n) 
"f = (1 + .8)/(2 2n) 

for lbl < lal 
for 0 < lal < lbl 

(B-11) 

(B-12) 



231 

Consider first the case lbl < Ia I, i.e. when the first term on the right of equation (B-10) is 
negligible compared to the second term. Since the time drops out, we obtain 

/ •2-n · in8 1 -
( 

1 1 n e-in9. ) 

nDr = -ta e • - 4cos2n8,-~ cosn8., 

where the left-hand side is real. For the imaginary part of this equation we find 

(t- 4cos~n8Jcosn8,-c~n) cosln8, =0 

and as a result 

8, = .!. arccos (-
1
-) 

n 2..jii 

For the real part we obtain 

l;.2-n = a sin n8., (1 1 ) 
nD 4cos2 n8., 

and by using the solution for 8., and equation (B-11) we obtain 

(B-13) 

(B-14) 

(B-15) 

(B-16) 

(B-17) 

For the case that 0 < lal < lbl the second term on the right-hand side of equation (B-10) 
can be neglected compared to the other terms and we find 

.:f_;.2-n = 2bDr" e2ine. 
nD 

From the imaginary part of this equation we find 

sin2n8., = 0 

(B-18) 

(B-19) 

which results into 8., = 0, so that apparently the vortex moves along the centerline of the 
wedge. From the real part of equation (B-18) we obtain from equation (B-18) by using 
equation (B-12) 

4n(1- n)bD2 

1+,8 
Summarizing, for the case lbl < Ia! we obtain 

r, (aDKtt"+l) r!n 

8, 
1 1 

= -arccos--
n 2..jii 

r,.. = 21r..jiiaDtarn 

J(l = 
n(l- n)(2- n}(l 

l+o: 

(B-20) 

(B-21) 

.L)! 
4n 
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and for 0 < lal ~ lbl 

rv = (bD2 K2tt+P) (B-22) 

()\I = 0 

r., = 1raDt01rn 

/{2 = 
4n(l- n) 

1+,8 

Also for the force-free method and the source-free method we can obtain analytic solutions 
for both of above case, if the velocity at the vortex position, given by equation (B-7) and 
(B-8), is rewritten as 

(difl)* = ru lim -d 
Z-+Zw Z 

(B-23) 

r lim (difl) • (d() 
"•-•· dz dz 

(B-24) 

The analytical solutions for the force-free method with the point vortex/feeding sheet 
combination agree with equations (B-21, B-22) but with different constants K 1 and K 2• 

With the velocity of the vortex determined by equation (B-23) we find 

and for the source-free method with the velocity determined by equation (B-24) 

n 2 (1 n)(l- f,;)! 
2a+an+2n 
4n2(1- n) 

2n(l + ,8) + 2o:(l n) 

(B-25) 

(B-26) 

(B-27) 

(B-28) 

For the case the velocity component that rounds the edge is dominant it follows that if 
a = -!n then the circulation of the vortex will be constant in time and the solution of the 
methods will be identical since the constant Kt is equal. If the symmetrical component of 
the velocity is dominant the circulation will be constant in time if a = nJ!~~) and also in 
that case the three solutions are identical since the constants K 2 are equal. 
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8AMENVATTING 

Stromingsgeinduceerde pulsaties komen in de praktijk vee} voor in leidingsystemen va.n 
de procesindustrie en zijn een consta.nte bron van zorg vanwege de schade die ze kunnen 
veroorzaken aan het leidingnet. De resonanties ontstaan doordat de stroming loslaa.t aa.n 
scherpe hoeken en periodiek wervels vormt. Deze wervelafschudding koppelt hierbij met 
a.koestische sta.a.nde golven in bet leidingnet. Het doe) van het onderzoek is het voorspellen 
van de zelfgeinduceerde pulsaties in diverse leidingconfiguraties. 

De wervelafschudding is beschreven met behulp met diverse methoden gebaseerd op 
het potentiaa.l stromingsmodel, met a.ls doe! het verschijnsel met een zo eenvoudig mo­
gelijke rekenmethode te kunnen kwantificeren. De resultaten van de rekenmethoden zijn 
vergeleken met resultaten van stromingsvisualisatie van startende stromingen en van peri­
odieke wervelafschudding aa.n schaa.lmodellen van een systeem met een of twee afgesloten 
zijta.kken, generiek voor in de praktijk voorkomende situaties waa.r resonantie kan optreden. 

Met behulp van de rekenmethoden is de maximale resonantieamplitude bepaa.ld, die 
in een pijpsysteem met twee even lange, afgesloten zijtakken kan ontstaan als de verliezen 
door uitstraling van geluid, wrijving en niet-lineaire golfverschijnselen zijn te verwaa.rlozen. 

In het geval dat de verbindingsstukken tussen hoofdleiding en de twee zijtakken scherpe 
hoeken hebben zal the tijdsafhankelijke flux in de zijta.k nooit sterker zijn dan 65% van de 
gemiddelde flux in de hoofdleiding als de zijtakken achter elkaar sta.a.n. Als de zijta.kken 
echter tegenover elkaa.r staa.n kan de amplitude van de tijdsafhankelijke flux gelijk a.a.n de 
tijdsgemiddelde flux in de hoofdleiding worden. 

De verliezen van akoestische energie door uitstraling en wrijving worden sterk beinvloed 
door de (turbulente) tijdsgemiddelde stroming in het leidi~gsysteem. Door de meting van 
de reflectie coefficient van de akoestische energie en de demping van a.koestische golven in 
een rechte pijp met diverse pijpeinden zijn deze verliezen gekwantiseerd. 

De rekenmethoden worden in het tijdsdomein, voor een gegeven Strouhal geta.l en 
gegeven amplitude van het akoestisch veld, toegepast op de impulsief startende stroming in 
een aa.nta.l generieke configuraties. Na verloop van tijd is de invloed van het opstarten van 
de stroming verdwenen en wordt de oplossing periodiek. De over een periode gemiddelde 
productie en absorptie van a.koestische energie kan dan worden bepaald en daa.rmee de 
netto a.koestische bronsterkte van de pulsatie onder verliesvrije condities. 

Uit een balans tussen de productie van a.koestische energie door de interactie va.n de 
wervelstructuren met het akoestisch veld aan een kant en de schatting van het verlies 
van a.koestische energie door viskeuze effecten en uitstraling aan de andere kant ka.n de 
evenwichtsamplitude worden bepaald waa.rin het systeem resoneert. lnzicht in de factoren 
die van invloed zijn op de bronsterkte en de verliezen van akoestische energie geeft a.a.n hoe 
de resona.nties kunnen worden voorkomen of worden gedempt. 
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NAWOORD 

Hoewel aileen mijn naam op de kaft van dit boekje staat is de inhoud van dit proefschrift 
natuurlijk een voortbrengsel van een grote groep mensen die ik hier wil bedanken voor hun 
bijdrage. AI deze mensen vormen tesamen een gezellige vakgroep, een vereiste omgeving 
om produktief onderzoek te kunnen verrichten. Ik had het geluk vier jaar dee! uit te mogen 
maken van de va.kgroep Transportfysica van de faculteit Technische Natuurkunde aa.n de 
Technische Universiteit Eindhoven. Aan velen in deze groep, en in bet bijzonder de sectie 
Gasdynamica/ Aeroakoestiek, ben ik dank verschuldigd. 

Allereerst na.tuurlijk Mico Hirschberg, hij zorgde voor een consta.nte stroom van ideeen, 
die op willekeurige momenten van de da.g opkwamen en bediscussieerd werden. Het spuien 
van deze ideeen heefl misschien een hoge telefoonrekening opgeleverd, maar heeft tevens 
gezorgd voor een goede stimula.ns en voor blijvend enthousiasme voor het onderzoek. 
Helaas hebben we in de beperkte tijd van vier jaa.r maar een gedeelte ten uitvoer kun­
nen brengen. Door jouw betrokkenheid bij de experimenten heb ik vee! van de resultaten 
van hoofdstuk 5 te danken. Soms leek het wei also£ jij het was die zou promoveren! Mico, 
ik zal je missen als energieke motor, als sturende Ieider, als stimulerend gaspedaal en als 
noodza.kelijke rem om niet uit de bocht te vliegen en vooral als 'back-up' om op terug te 
vall en. 

Daarnaast ben ik Harry Hoeijmakers bijzonder veel dank verschuldigd voor zijn hulp 
bij het numerieke gedeelte van mijn onderzoek. Harry, jij hebt ervoor gewaakt da.t de 
numerieke beschrijving van de stroming met een zelfde nauwkeurigheid is geda.an als de 
experimenten. Door de vele discussies over de resultaten tot in de kleinste details zijn 
vee) nieuwe ideeen ontstaan. Zo heb ik goede herinneringen aan onze discussie over de 
kromming van een wervellaag a.an een scherpe hoek. Ondanks dat ik je gelijk heb moeten 
geven, heeft het me wei een stelling opgeleverd. Hoewel aeroa.koestiek niet direct jouw 
vakgebied is, heb je enorm vee! energie gestoken in de beschrijving van de werveldynamica. 
Ik ben je hiervoor dankbaar en tevens voor het zeer kritisch lezen van het manuscript 
waarvoor je zelfs nog enkele dagen van je vakantie hebt opgeofferd. 

Bram Wijnands, mijn kamergenoot, heeft ervoor gezorgd dat aile experimenten met 
Deutsche Griindlichkeil uitgevoerd werden. Hij was steeds het juiste aanspreekpunt als er 
weer eens een numerieke simulatie in overeenstemming was met het experiment,... of als 
dat weer eens niet zo was. Bram, door jou heb ik me steeds gerealiseerd dat aeroa.koestiek 
naa.st de productie van 140 dB herrie in een pijpleiding systeem ook een aa.ntrekkelijke kant 
heeft in de vorm van muziek bij blaasinstrumenten. 

Ook de overige !eden van de va.kgroep ben ik erkentelijk voor hun hijdrage aan het 
onderzoek. Met name wil ik nog bedanken: Rini van Dongen voor het meedenken over 
theoretische problemen, Eep van Voorthuizen voor zijn technische assistentie en Pierre 
Kriesels voor bet verrichten van vee! van de metingen gepresenteerd in hoofdstuk 6 en de 
discussies over de vergelijking met de numerieke simulaties. 

Het onderzoek zou in vier jaar nooit zo ver gekomen zijn zonder de inzet van veel 
studenten. De a.fstudeerders Erik van den Bogaard, Rob Bastiaans en Floris Huijsmans 
zorgden voor de basis van de numerieke simulatie en de experimenten. Guido ter Horst en 
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Johan van de Konijnenberg hebben daarna de meeste reflectiecoefficient metingen verricht. 
Antwan Reijnen ben ik een sigaar schuldig vanwege zijn zeer nauwkeurige metingen van de 
demping, weergegeven in hoofdstuk 5, terwijl Werner Mahu veel energie heeft gestoken in 
de numerieke simulatie. Werner, jij hebt voor mij bewezen dat het niet aileen belangrijk 
is een nauwkeurige numerieke simulatie van de stroming te kunnen maken, maar dat het 
nog belangrijker is deze resultaten op een aantrekkelijke manier te presenteren: Leonie 
Schoenmakers tenslotte heeft door visualisatie van de startende stroming in een T-stuk 
een vergelijking met de numerieke simulatie mogelijk gemaakt. 

Bij aile experimenteD en numerieke simulaties waren ook vee! stagaifes betrokken. Ate 
van Steenbergen, Leo Steeghs, Stefan Opdebeek, Joost de Vries, Jitze-Jan de Vries, Rard 
de Leeuw, Karel Burm, Anton den Boer, Cees-Jan Hogendoorn, Erik van Ba.llegooijen, 
Carlo Lagrouw, Armand Jongen, Andre Linssen, Maurice Bindels, Oscar van Schijndel, 
Olivier Schneider, Peter Hogendoom en Ferry Tabor ben ik dankbaar voor hun bijdrage 
aan het project. 

Echter ook van buiten de vakgoep Transportfysica heb ik steun gehad. Van de faculteit 
Wiskunde ben ik Rene van Hassel en Sjoerd Rienstra bijzonder dankbaar. 
Aan Ruth Gruijters dank ik vee) van de illustraties in dit proefschrift. 

Tijdens mijn verblijf in Italie aan de Universiteit van Rome, 'La Sapienza' heb ik in een 
prettige sfeer samengewerkt met Prof. Renzo Piva, Enrico de Bernardis, Giorgio Riccardi 
en in het bijzonder Alessandro Iafrati. De zogenaamde vortex-blob methode dank ik aan 
deze samenwerking. 

Tenslotte ben ik mijn promotor prof. Gerrit Vossers dankbaar voor het initieren van 
het project, en het op de achtergrond in goede banen leiden van het onderzoek en tevens de 
overige leden van de promotiecommissie, prof. H.W.M. Hoeijmakers (2• promotor), dr. A. 
Hirschberg (co-promotor), prof. D. Ronneberger (Dtl.), prof. R. Piva (It.), prof. A.A. van 
Steenhoven en prof. R.J. Zwaan voor hun suggesties ter verbetering van het manuscript. 

Promoveren eindigt altijd in een periode waarin andere activiteiten tijdelijk op een 
rijspoor worden gezet. Iedereen die ik hiermee tekort heb gedaan wil ik bedanken voor 
hun begrip hiervoor. Het werk is af, bet wordt tijd om te voorkomen dat de zijsporen 
dwaalsporen worden. 
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I De eindcorrectie 6 van een open pijpeinde met straal a daalt in aanwezigheid 
van hoofdstroming van de waarde zonder hoofdstroming naar 6/ a = 0.20±0.02 
zowel voor een scherp als voor een dikwandig pijpeinde. Dit wijst erop dat 
in aanwezigheid van stroming het singulier gedrag van de stroming nabij de 
scherpe rand van het pijpeinde geen invloed heeft op de eindcorrectie. 
Dit praefschrift, hoofdstuk 5 
S.W. RIENSTRA, J. Sound & Vibr. 86 1983, 539 

II Bij een loslatende, startende stroming om een scherpe hoek verlaat de schuif­
laag de hoek tangentieel. Desondanks is de kromming van deze laag nabij de 
hoek oneindig. 
Dit proefschrift, hoofdstuk 3 

III De demping van akoestische golven in een turbulente pijpstroming kan voor 
lage frequenties worden beschreven door een quasi-stationaire theory. In de 
quasi-stationaire limiet, waarin de demping wordt gerelateerd aan de frictie­
coefficient voor een turbulente pijpstroming, wordt geen rekening gehouden 
met warmtegeleiding en derhalve is de theory niet algemeen gel dig voor een gas. 
Voor een consequente toepassing van deze theorie zou dan ook de isotherme 
geluidssnelheid gebruikt moeten worden. 
Dit proefschrift, hoofdstuk 5 
U. lNGARD & V.K. SINGHAL, J. Acoust. Soc. Am. 55 1974, 535 

IV Om de werking van een eindige puntkracht in een stromingsveld gedurende 
een eindige tijd te beschrijven gebruikt Sparenberg een lineaire theorie waarin 
een massabron en een massaput op afstand met elkaar verbonden zijn door een 
oneindig dunne jetstroming. Om aan massabehoud te kunnen voldoen moet 
deze jet een oneindige snelheid hebben. Deze oplossing is echter fysisch niet 
relevant omdat dit een oneindige impulsstroom tot gevolg heeft. 
J .A. SPARENBERG, Elements of hydrodynamic propulsion. 1984 

V Het nut van lineaire theorie hangt af van de gekozcn referentie ten opzichte 
waarover wordt gelineariseerd. 
B.J. BAYLY & S.A. 0RZAG, Ann. Rev. Fluid Mech. 20 1988, 359 



VI In 1889 publiceerde Froude een theorie waarmee hij het maximale vermogen 
bepaalde wat door een actuatorschijf in kinetische energie kan worden omgezet. 
In deze theorie is het singulier gedrag van de stroming nabij de rand van 
de schijf niet nauwkeurig beschreven. De resultaten van Lee & Greenberg 
die een significante toename van het vermogen voorspellen op grond van een 
specifieke beschrijving van het singulier gedrag bij de randen zijn echter het 
gevolg van het introduceren van een randkracht in hun theorie en het ten 
onrechte identificeren van de druk minima als de randen van de actuatorschijf 
in hun experimenten. Afwijkingen van de Froude limiet zijn derhalve nog niet 
bewezen. 
J.H.W. LEE & M.D. GREENBERG, J. Fluid Mech. 145 1984, 287 
M.C.A.M. PETERS, afstudeerverslag T.U Eindhoven nr. R-982-A, 1989 
G.A.M. VAN KUIK, proefschrift T.U. Eindhoven 1991 

VII De wet die regelt dat lokale omroepen een deel van hun inkomsten via ether­
reclame zonder tegenprestatie moeten afstaan aan de regionale pers is in strijd 
met het concurrentieprincipe. 

VIII De teloorgang van de schoenindustrie in de Langstraat is naast de concurrentie 
van lage-lonen Ianden mede te wijten aan een gebrek aan opvolging in deze 
veelal traditionele familiebedrijven. 

IX Voor een optimale floaterservice bij volleybal is de positie van het ventiel van 
de bal van ondergeschikt belang. Het niet spinnen van de hal is belangrijker, 
omdat in dat geval een Von Karman wervelstraat kan ontstaan achter de bal. 
W. QING-DING et al., Fluid. Dyn. Res. 3 1988, 231 

X Uit milieuoogpunt is het verstandiger de volgorde: 1. koffie inschenken, 2. 
melk en suiker toevoegen om te keren, zodat het plastic roerstaafje kan worden 
uitgespaard. 


