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SUMMARY 

The first experiments with microwave reflector antennas were carried 

out during the last decade of the nineteenth century. Although the 

first generation of the devices used resulted in antennas quite simi

lar to present reflectors, extensive application took place some fifty 

years later, after World War II, when microwave electronic equipment 

could be improved, thanks mainly to the first radar systems. Present

day microwave antenna theory was established in these years. 

Apart from the contributions by commercial and military activities, the 

most important improvements of microwave antennas have been due to 

radioastronomy, for which very large reflectors were constructed during 

the post-war period. Some of these systems are mentioned here: the 

spherical 300 m antenna in Aceribo (Puerto-Rico), the fully steerable 

100 m dish in Effelsberg (W.Germany) and several reflector arrays as in 

Westerbork (Netherlands) with 12 dishes of 25 metres. At present new 

developments are expected in large telescopes operating at very high 

frequencies (100-300 GHz). 

The largest number of (mostly) small pencil beam antennas is used for 

terrestrial microwave links.Due to the availability of inexpensive 

components for frequencies above 6 GHz, these devices are attractive in 

particular for moderate-distance links where a high channel capacity 

is required, small reflector antennas (in terms of wavelength) being 

suitable for this purpose. 

A rapid increase in large reflector-antenna development activities 

took place after the launching of the first generation of communication 

satellites. Large dishes of about 30 metres in diameter operating in 

the 4 and 6 GHz bands are used with more than 100 of these terminals at 

present. Cassegrain reflectors are preferred due to their better noise 

characteristics, and these antennas are very much like the large an

tennas used in radioastronomy. The following are important develop

ments from this period: reflector-shaping in order to increase antenna 

gain, improved feeds such as dual-mode and corrugated horns and beam

waveguide feeds for physically large antennas. Although very much at-
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tention has been paid to mechanical improvements in large telescopes, 

the electrical concept has remained essentially unchanged. 

On the other hand, it may be expected that the increasing number of 

ground stations of various sizes, and the application of higher fre

quencies (10-30 GHz) will change the design problems considerably. It 

is likely that a large number of antennas of the next generation will 

have diameters of about 3-10 metres. The main problems likely to be 

encountered here are the application of frequency re-use technique, 

and the realization of prescribed radiation-pattern envelopes lin order 

to avoid interference effects. For small dishes (D < 100A) th~ front

fed paraboloid of revolution seems to be the most logical choice. Since 

the radiation behaviour of this class of antennas is determined mainly 

by that of the feed (shaping cannot be applied here) , optimizing of the 

latter is discussed in the Chapters 2 and 3. 

The bandwidth, spill-over and aperture efficiency are the most impor

tant feed-design aspects. Moreover, the feed should have a high degree 

of polarisation purity. The feed structure has been chosen in accordan

ce with the field distribution that results in the flat focal region 

from a plane wave incident on the parabolic reflector. It will be shown 

in Chapter 2 that a separation of hybrid-mode solutions realized in two 

concentric rings leads to very good radiation performance in a wide 

frequency band; this is in contrast to a well-known multi-mode single 

waveguide approach. An experimental investigation proves the validity 

of this new concept. A lowering of the spill-over, and an increase in 

aperture efficiency are the main advantages here. These feed~ are first 

of all suitable for use in relatively flat dishes with f/D > 0.35. 

In Chapter 3 the problem of optimizing the feed characteristics for 

deep dishes (f/D < 0.35) will be studied. The theory is more complica

ted than in the corresponding case of a flat parabolic reflector with 

small 0
0

• The field behaviour on a small sphere around the paraboloid 

focus serves to determine the optimum feed geometry. A biconical cor

rugated horn with one propagating mode has proved suitable for matching 

to focal region fields. It will be shown, both theoretically and expe

rimentally, that aperture eff iciencies above 65% can be achieved for a 
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focal-plane reflector (f/D = 0.25). Moreover, the spill-over can be 

kept below 2% in this case. 

The far-field power distribution of feeds discussed in Chapters 2 and 

3 should be independent of ~' but should depend on 6 such that a high 

gain and low spill-over can be realized. Therefore, the shaping amounts 

to adapting the 6-dependence of the radiation pattern. 

The elementary problem of an ideal, physically realizable reflector an

tenna is discussed in Chapter 4. For some given purpose an optimum 

aperture distribution of microwave reflector antennas is often defined 

as that which occurs according to geometrical optics. Clearly, addi

tional diffraction effects disturb this picture considerably in most 

antennas, having their effect on the reflector aperture and, conse

quently also on the far-field. An improvement may be expected by apply

ing a beam-waveguide antenna type in which the spill-over and hence the 

diffraction effects are negligible. Some additional requirements have 

to be satisfied too, such as the possibility of reflector shaping and 

the condition of zero cross-polarisation. Further, the feed applied in 

such a system should not produce any diffracted radiation. It will be 

shown that a combination of cylindrical reflectors satisfies these re

quirements, while the corrugated horn with narrow flare angle is most 

suitable for focusing in the near field. ~xperiments have been carried 

out with a system consisting of four cylindrical reflectors capable 

of producing symmetrical as well as asymmetrical far-field power pat

terns. The shaping amounts in this case to the realization of desired 

far-field characteristics, referring to dependence on both 6 and ~. 
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CHAP~R 1 

GENERAL CONSIDERATIONS 

1.1. Antenna efficiency for paraboloids of revolution 

The increasing number of antenna applications in the microwave region, 

for instance for satellite communication or radioastronomy, requires 

efficient use of such antennas. The results of the study on supergain 

antennas show that miniaturization cannot be successfully applied to 

antennas. Earlier workers have used the maximization of the gain as a 

design criterion for all reflector antennas. It has been shown that 

this criterion is in general not compatible [1] with an optimum value 

for the gain-temperature ratio G/T (which determines the final signal

to-noise ratio S/N in receiving systems). Maximizing the antenna gain 

leads to a critical parameter for the transmitting antenna. However, 

constraints on the pattern shape, pattern envelope etc. and the refore 

on the gain, should be taken into account for special applications, 

for instance undesirable interference effects should be avoided in 

particular in the case of ground-station antennas for satellite com

munication. 

The capability of a receiving antenna to absorb most effectively ra

diation energy from a part of the space is fixed by the gain function 

or directivity G(6,~). The latter is defined, when the same antenna 

is used as a transmitter, as the ratio of the power P(0, ~) radiated 

per unit solid angle in a given direction 6,~, and the average of 

this power over all directions. Hence 

G(6,~) ( 1.1) 

Pt being the total radiated power. 

The maximum value of the gain function, the gain Gm' constitutes the 

largest factor by which the power transmitted in a given direction can 

be increased relative to an isotropic radiator. 

The maximum amount of energy absorbed by an aperture with cross -
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section A of a receiving antenna is obtained when the phase and ampli

tude are uniform across the aperture. We then have for the correspon

ding gain in the transmitting case: 

G 
0 

(1.2) 

Since for all antennas G 5: G
0 

we can define the "antenna efficiency" 

(sometimes called the gain factor) by 

G 

G 
0 

(1.3) 

in which G is the product of the gain associated with the presence of 

the paraboloid and of the feeder. 

For a given polarisation the efficiency decreases rapidly if the phase 

and amplitude distributions deviate from homogeneous ones. It is ap

propriate to express the aperture efficiency as a product of the il

lumination efficiency ni, the spill-over efficiency ns, the phase 

efficiency np and the cross-polarisation efficiency nx: 

(1.4) 

In terms of a transmitting antenna the three first quantities may be 

defined with respect to the emission of a linearly polarised wave not 

taking into account losses due to cross-polarisation; ns then consti

tutes the fraction of the emitted energy that is incident on the re

flector, ni the reduction of na due to the inhomogeneity of the ampli

tude distribution across the aperture (while comparing s ituations both 

with the true phase distribution), and n the corresponding r eduction 
p 

due to the inhomogeneity of the phase distribution. Finally, 1-nx mea-

sures the reduction caused by the generation of a contribution of dif

ferent polarisation, that is the effect of cross polarisation. 

For applications where frequency re-use techniques are to be us ed,the 

level, rather than the cross-polarisation losses 1-nx should be con

sidered. For cross-polarisation levels below -30 dB the power losses 

represent only a very small fraction of the total field and we may 

therefore assume that nx = 1. 
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For parabolic antennas of revolution, assuming a ~-independent feed 

d . t"on tt E(e) jE(e) I e-j~(e), we fi'nd [2]: ra ia i pa em 

0~ I eo I 
2cot

2 f E(e)tan % de 
2 

0 
n ( 1. 5) a 71' 

IE (el 1
2 

s ine de f 
0 

According to (1.4) we rewrite Eqn. (1.5) as the product of the three 

factors defined above, wnich here become: the illumination efficiency 

eo 
f jE(eJ 1

2 
sine de 

( 1.6) 

0 

the spill-over efficiency: 

eo 
f IE(e) 12 sine d8 
0 

n s 71' 

f IE(e) 12 sine de 

( 1. 7) 

0 

and, finally, the phase efficiency 

(1.8) 

[
eo 8 J 2 
~ IE( e )ltan 2 de 

We may conclude that the maximum gain (n = 1) may be obtained with 
a 2 e 

the aid of a spherical source pro~ucing a .pattern E(e) =sec (2), 

which involves n. = n 
l. p 

1, while simultaneously all power radiated 

should be intercepted by the reflector (within a cone with e = 00). 

The expressions (1.6), (1.7) and (1. 8 ) are commonly used in feed de

sign for parabolic antennas. The aperture efficiency na of the para

boloid can be simply calculated either from the measured or predicted 

data, by numerical lnte gration. These formulas can also be used for 

Cassegrain and Gregorian reflectors . In this case , however, the focal 

distance and 00 are those of the equivalent paraboloid [ 3]. 
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As already stated, in a number of applications the S/N ratio is to be 

optimised. We know that 

(1.9) 

where G is the antenna gain and T represents the total system tempera

ture, that is the sum of the antenna temperature Ta and the receiver 

temperature Tr. 

To determine T we need more information concerning T • The total an
a 

tenna noise temperature is given by: 

411 

T 
411 I T(fl)G(fl)dfl a 

0 

211 11 

411 I d¢ I d6T(6,¢)G(6,¢) ( 1.10) 

0 0 

where T(6,¢) is a measure for the noise energy per unit frequency in

terval and per unit solid angle that arrives from a direction fixed by 

e and ¢. 

Let us now consider the simplified antenna pattern shown in Fig. 1.1. 

The antenna is pointed towards the zenith and we further assume that 

the antenna pattern depends only on 6 such that G1 and G2 are the 

constant values of Gin the regions 0 < e < a and a < e < 11, respec

tively. We then have 

14 

11 

-2

1 I Ta T(6)G(6)sin6 d6 

0 

a 

G21 I 
0 

T(6)sin6 d6 + 

11 
( 

G 11/2 

-1 I 

J 
T ( 6) sin6 d6 . 

11/2 

T(6 )sin6 d6 + 

( 1.11) 



In cases in which some sources located close to the main beam might 

cause a considerable increase of Ta' an additional term for a < 8 < S 

with G =Gs (dotted line in Fig. 1.1) could be included in Eqn. (1.11). 

Fig. 1.1: The antenna pattern. 

For a« 1T/2 and Gs« G
1

,G
2 

we obtain from (L11) 

T 
a 

1T 1T 

G21 I G22 I T(8)sin8 d8 + T(8)sin6 d8 . 

0 0 

( 1. 12) 

We observe that half the spill-over is directed to the cold sky with 

temperature T while the second half sees the ground at temperature T 
s g 

Thus we may write 

T T 
T Tn +~O-nl+-5l.C1-nl 

a SS 2 S 2 S 

( 1.13) 

where ns is the spill-over efficiency. The total system temperature is 

then given by 

T = T + T 
a r 
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-
2
1 

[Ts(l + n ) + T (1 - n J] + T 
s g s r 

( 1.14) 

The maximum gain of the reflector antenna is defined by Eqn. (1.2), 

viz. 

consequently, 

(G/T) 
0 

G 
0 

T' + T 
a r 

where T~ = Ts in absence of the spill-over (ns 

the "figure of merit" in the following way: . 

F.M. 
(G/T) 

(G/T) 
0 

G 

G 
0 

T + T 
s r 

T 

(1.15) 

( 1.16) 

1). Next we define 

(1.17) 

Ts +Tr being the total system temperature if ns = 1. This new para

meter becomes, after applying the Eqns. (1.3) and (1.14), 

F.M. (1.18) 

Where the contribution of Ts may be neglected a simplified expression 

can be derived from (1.18), viz: 

F.M. na T + T (1 - n )/2 
r g s 

T 
r ( 1.19 ) 

We conclude that the radiation properties of the antenna, i.e. gain, 

primary and secondary spill-over (as occuring in Cassegrain antennas), 

and the side lobe level, all of which affect the value of na play a 

significant role in systems with low receiver temperature Tr. Due to 

the high ground temperature T 300° K, the performance of such sys-
g 

tems depends mainly on the amount of spill-over energy produced by the 

antenna. 
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1.2. General solution of Maxwell's equations 

Since most antennas contain both source and source-free regions, the 

relevant Maxwell equations may be given as follows, assuming a time 

dependence according to exp(jwt): 

'i/ x E + jwµ!:! - M (1.20) 

'i/ x H - jwe:~ J ( 1. 21) 

~ and ~ represent the densities of the electric and the magnetic 

sources respectively. Since these equations are linear, the solution 

can be considered as a sum of two contributions generated by J and M 

respectively. We accordingly introduce the splitting 

E = ~1 + ~2 , H = !:!1 + !:!2 ; - (1. 23) 

we then get two sets of equations, viz. 

'i/ x ~1 + jwµ!:!1 0, (1.24) 

'i/ x 
!:! 1 jwe:~l J 

and 
(1. 25) 

'i/ x ~2 + jwµ!:!2 - M (1.26) 

'i/ x 
!:!2 + jwe:~2 0 ( 1.27) 

The solution of these sets can be constructed as follows in the case 

of a homogeneous space. First, in view of (1.24) we have 

(1.28) 

which is satisfied if 

!!1 'i/ x A (1.29) 

Substituting Eqn. (1.2~) into (1.24) gives 

'i/ x (~1 + jwµ~) = 0 , (1.30) 

which in turn is satisfied if 

~1 + jwµ~ = -'i/~, ( 1.31) 
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~ being a scalar potential. From Eqn. (1.25) we next obtain 

2 
"J x "J x ~ - ~ = w µe: ~ - jwe:'IJ~ • 

Applying a vector identity, and assuming that V.A + jwe:~ 

(1.32) reduces to the Helmholtz equation 

2 2 
"J ~ + w e:µ~ = -J 

(1. 32) 

0, Eqn. 

( 1. 33) 

After having solved ~, the complete first contribution to the field 

can be derived, in view of (1.31) and (1.32), from 

~l jwe: ('IJ x "J x A - J) 

!! 1 
"J x A (1.34) 

Similarly we obtain the solution of Eqns. (1.26) and (1.27). The pro

cedure consists of having to solve the other Helmholtz equation, 

(1.35) 

while the corresponding field is then given by 

~2 -"J x F 

H = 1 ("J x "J x - M) 
-2 jwµ 

F (1. 36) 

The superposition of both field contributions (1.34) and (1.36) yields 

according to (1.23), 

E -"J x F + ("J x "J x A 
jwµ 

J) 

(1.37) 

H V x A + ("J x "J x F - M) 
jwµ 

The associated well-known solutions of the Helmholtz equation that 

satisfy the radiation condition at infinity are given by 

~(r) 4! ff f ~(!') -jkR 
--R- e dr' 

~(r) 4! f ff ~(!') -jkR 
dr' ---e 

R 

(1.38) 
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with 

R I;: - ~·I , k 

Fig. 1.2: Source distribution and coordinate geometry. 

The general solution to the Maxwell Eqns. (1.20) and (1.21) consists 

of the sum of a so-called particular solution, and a solution of the 

source-free equations, the complementary solution, let us say. A par

ticular solution may be that derived from the Eqns. (1.37) and (1.38), 

and the complementary solution that derived from Eqns. (1.33), (1.35) 

and (1.37), taking J M = 0. 

1.3. Circularly polarised waves 

Let us next consider sources which are related according to 

(1.39) 

with z = /\Ji€ . 
0 

The integrals of ( 1. 38) then imply that ~ = ~ j Z
0 

A. In view of 

(1.37) we next find the fol lowing relation between E and Hin the 

source-free region (~ = M = 0): 

E (1.40) 

If this relation is satisfied, each plane-wave solution is circularly 

polarised, and therefore also the complete solution throughout the 

wave zone, in particular at all points on the sphere at infinity. For 

instance, the combination of an electric and a magnetic dipole aligned 

in the same direction, and satisfying (1.39), will generate this type 

of field. 
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Another example for which (1.39) is realised, concerns corrugated horn 

antennas with circular cross-section. It has been proved theoretically 

and experimentally that these antennas produce perfect circularly po

larised waves [4]. 

We remark, however, that a circular aperture cross-section is not a 

necessary condition for excitation of circularly polarised waves [5]. 

Further, corrugated feeds with circular symmetry produce a power ra

diation pattern which is identical in all planes through the axis of 

propagation. In other words, the power radiation pattern is ~ndepen

dent of~. which is important for a large number of applicat~ons, in 

particular with respect to reflector antennas. Possible applications 

and the radiation behaviour of corrugated antennas will be described 

in more detail in the next chapter. 
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CHAPTER 2 

DUAL~RING FEEDS WITH HYBRID MODES 

2.1. Introduction 

The analysis of a parabolic reflector shows that the field distribu

tion in the focal plane, due to a plane-incident wave, is approximate

ly proportional to the Airy pattern J
1 

(u)/u where u = kPsin0 0 (p = ra

dial distance from the focus); this holds for e0 small enough i.e. for 

large values of the ratio f/D of the focal length and the aperture 

diameter. This pattern is, of course, the Fourier transform of the 

uniform field distribution across the reflector aperture. The percen

tages of the power, concentrated in the first three rings fixed by the 

zeros of J
1 

are: 83.8%, 7.2% and 2.8%, respectively, of the total 

amount of energy intercepted by the reflector. An ideal feed should 

therefore cause a distribtuion identical to that of Fig. 2.1 across 

an infinite aperture. 

-02 

Fig. 2. 1 : Airy pattern. 

J,(u> 
-u-

For front-fed paraboloids, relatively small feeds are commonly used 

while the aperture fields of the latter should provide a good mat

ching to the focal field of the paraboloid up to the first few zeros 

of J
1 

(u)/u. An ape rture efficiency o f about 50-60%, typical for these 
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reflectors, is often the result of a non-optimal field matching in the 

focal region. These feeds provide a reasonable match for only the cen

tral part of J
1 

(u)/u. Consequently, a considerable percentage of the 

energy is radiated beyond the reflector. Obviously, such an antenna is 

not very suitable for low-noise applications. As already stated, the 

earth is a good absorber of microwaves, and the S/N ratio accordingly 

decreases rapidly with increasing spill-over. Lowering of the edge il

lumination will improve the spill-over efficiency, but this will in 

most cases reduce the gain. 

An improvement of the antenna performance can be achieved by 1pplica

tion of feeds with a large aperture diameter enabling matchin~ in the 
I 

two first Airy zones instead of in the first central zone only (Fig. 

2.2a). This will not only cause an increase of the theoretical maxi

mum from 83.8% to 91%, but it also improves the spill-over characte

ristics considerably. Assuming that such a feed could be realized in 

practice, we find that the far-field pattern shows a "dip" in the 

forward direction (Fig. 2.2b). The influence of the space attenuation 

(a) 

0 ---0 
( b) 

Fig: 2.2: Desired field distribution of the feed and corresponding far

field pattern. 

in the parabolic r e flector is then partly e liminated and we obtain a 

more uniform amplitude distribution in the reflector aperture. Depen

ding on the actual pattern shape (roughly the dotted line in Fig.2.2b), 

this kind of primary pattern results in a toroidal distribution in the 

aperture of the paraboloid. Low diffraction at the central (blocked) 
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part of the reflector and low far-field side lobes [6] are the main 

advantages here. 

r r 

II 

I 2a 

II 

2a l2b 
I 

I 
(a) (b) 

Fig. 2.3: Single- and dual-ring waveguide geometry. 

In order to realize this kind of distribution, we could apply two dif

ferent techniques. First, we can use a circular waveguide (Fig . 2.3a) 

with a number of propagating modes such that the required aperture 

field distribution is achieved. An analysis of such a multi-mode wave

guide has been carried out by Ludwig [7]. It can be concluded from the 

latter that four modes are needed in a perfectly conducting circular 

waveguide, if the field of Fig. 2.2a were to be realised. Another 

technique, with a single waveguide, has been developed by Minnet and 

Thomas [BJ. They use a waveguide with the boundary conditions 

E~ = H~ = 0, known as "balanced hybrid conditions". In this case a 

single hybrid mode (a mode constructed from the superposition of a TE

and TM field, see next section) gives a symmetrical radiation pattern 

and two hybrid modes are sufficient in order to obtain a distribution 

similar to that in the smooth waveguide with four modes. An improved 

feed of this type has been proposed by Vu [9]. 

A different approach has been made by Koch and others [10], [11], [12] 

using a dual-ring waveguide (Fig. 2.3b). In this case the field dis

tribution is realized in two separated rings. The relevant modes in 

the inner region I, viz. the TE
11 

- and TM
11 

modes, can be chosen in

dependently of those in the outer region II, where a combination of 

the TE 11 - and TE 12 mode is used. 
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Disadvantages, inherent to the multi-mode approach, are: low bandwidth 

due to dephasing in the feed aperture, unsuitability for use in deep 

reflectors, high cross-polarisation, and complicated coupling problems 

that might cause an excitation of unwanted modes or a non-optimum 

power ratio of the required modes. 

There is, however, a basic difference between the two systems shown in 

Fig. 2.3. To obtain a special field distribution, four modes are used 

in both feed types with perfectly conducting walls. The dual-ring feed 

of Fig. 2.3b shows,however a considerably wider bandwidth than the 

other one. The advantage of the mode separation is evident; : the de-
1 

phasing of the modes in each region is more important than the de-
1 

phasing between the inner and the outer part of the feed. The relative 

bandwidth of a four-mode dual-ring feed is claimed to be 6%, which is 

in contrast with a single waveguide with four propagating modes. The 

latter is unsuitable for practical applications due to its narrow 

bandwidth. 

In can be concluded that a dual-ring feed concept proves its suitabi

lity for the applications in parabolic reflectors where high aperture 

efficiency and low · cross-polarisation are required. There are, how

ever, several conditions which should be satisfied: 

(a) single-mode propagation in each region, 

(bl ~-independent radiation pattern for both regions, 

(cl good field matching across the aperture to J
1 

{u)/u, 

(d) optimum dispersion characteristics in both regions, in order to 

provide minimum phase errors in the feed aperture as a .function of 

frequency. I 

It is clear that under these conditions the corrugated waveguide is a 

good candidate for the inner region of a dual-ring feed. In fact, the 

corrugated waveguide produces a ~-independent radiation pattern in a 

wide frequency band. With a single propagating mode (HE~!) mode; see 

section 2.3), the amplitude has the shape of J
0

(kap) inside the wave

guide, while being zero at the boundary p = a. Furthermore, it is ~ite 

closely matched to J 1 {kpsin0ol/kpsin0o, provided ksin0o ~ 1.6ka. 

The next step consists of finding a single model producing a ~-inde

pendent radiation pattern with the condition of a field distribution 
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in the aperture that is nearly equal to that of J
1 

(u)/u in the region 

between the first two zeros of J 1 (u). A corrugated coaxial waveguide 

with the boundary conditions E¢ = H¢ = 0 seems to be a logical choice 

here [13], [14]. 

According to the theory, the maximum aperture efficiency of a parabo-

loid of revolution with dual-ring feed will be 91%. This, however, 

only applies to a flat dish (0o + 0) with long focal distance, and an 

infinitesimally thin wall between both regions, while the fields in 

the waveguide should be perfectly matched to those in the focal plane 

of the paraboloid. We remark that if the above assumption are satis

fied, there will be no limitation whatever on the bandwidth of such a 

system. In other words, the realization of the conditions (a), (b) and 

(c) implies that (d) will be satisfied in the ideal case too. Obvious

ly, the above conditions cannot be realized in practice. First, the 

fields in the focal plane of the paraboloid (30° < 00 < 90°) contain 

an additional term [15]; the aperture field distribution then shows 

ring structure determined by the corresponding zeros of Er and E¢. 

Inside the transitional regions constituting these rings the direction 

of the polarisation is gradually reversed by 180°, provided the an

tenna is illuminated by a linearly polarised plane wave. The actual 

distribution outside these rings remains nearly linearly polarised. 

We may expect that the concept of a dual-ring hybrid-mode feed is sui

table for practical realization. 

In the next section we shall describe the propagation behaviour and 

the field distribution of dual-ring waveguides with the boundary con

ditions E¢ = H¢ = 0 at all walls. A simplified model of this feed will 

be presented later. In order to determine the radiation characteris

tics of a realisable feed, we shall assume a finite wall thickness be

tween both regions and a frequency dependence due to corrugations. 

Finally, a corrugated dual-ring horn with narrow flare angle will be 

described. Since the above assumptions deviate considerably from the 

ideal model, we shall derive the aperture efficiency for the transmit

ting mode. 
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2.2. Hybrid modes in circular coaxial waveguides 

We shall start with the computation of the electromagnetic field in a 

coaxial waveguide a 1 < r < a 2 with the boundary conditions E~ = H~ = O 

independent of the frequency. The hybrid mode will be obtained as the 

sum of a TE- and a TM field. 

--'1 
-----

Fig. 2.4. Coaxial waveguide. 

The components of the TE field are contained in the following expres-

sions, 

<H'1 32'!' 
1 

E ---ar I 
H 

jwµ 3r3z I r r r 
0 

3'1'1 32'!' 
1 (2 .1) E~ 3r H~ jwµ r 3~3z 

I 

0 

( "• ) E 0 I H 
jwµ k2'1'1 + 3) z z 

0 

and those for the TM field in: 

32'!' 3'1' 2 2 
E 

jwE: 3r3z I H 
3r r r r 

0 

32'!' 3'1'2 
E~ 

2 
(2.2) 

jWE: r 3~3z 
I H~ ----a; I 

0 
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E 
z H 

z 
0 

here o/1 and o/2 have to satisfy the Helmholtz equation in free space, 

viz.(~2 + k
2

)o/ = O. 

Assume the following generating function for the TE field: 

(2.3) 

that for the TM field being 

[A
2

J (k r) + B
2

N (k r)] ( ¢) -j(wt - Bz) n c n c cos n e (2.4) 

with 

are constants and Jn(kcr) and Nn(kcr) are the Bessel and Neumann func

tions of the first kind and of the order n. 

Substitution of Eqns. (2.3) and (2.4) into (2.1) and (2.2), respec

tively, gives for the "hybrid modes" (obtained by the superposition of 

a TE- and a TM field) in a coaxial waveguide: 

E 
r 

E 
z 

-

+ 

+ 

~[;Al Jn (kcr) 

[.!!_ B
1

N (k r) 
r n c 

~[kcAlJ~(kcr) 

[k B1N1 (k r) c n c 

+{-kA2J 1 (kr)J + w c n c 
0 

+ _B_ k B
2

N1 (k r)J~ cos(n¢), we: c n c 
0 

B .!!_ A
2
J (k r)] + +-we: r n c 

0 

B 
; B2Nn(kcr>]~sin(n¢), +-we: 

0 

+ B
2

N (k r) ] cos(n¢), 
n c 

H - { [-
8- k A J' (k r) + .!!. A

2
J (k r)l + 

r wµ c 1 n c r n c '.J 
0 

+[w~ kcBlN~(kcr) + ;B2Nn(kcr>]~ sin(n¢), 
0 

(2.5) 

(2.6) 

(2. 7) 

(2. 8 ) 
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1[w~o n 
H~ r A1Jn(kcr) + k A2J 1 (k r)] + c n c 

[~- n 
+ kcB2N~ (kcr>] f cos(n~), + ;- B1Nn(kcr) (2.9) wµo 

k2 

H 
c 

[A1J (k r) + B
1
N (k r)] sin(n~). z jwµ n c n c (2.10) 

0 

In these equations we have omitted the common factor exp-j(wt - 8z). 

The primes in J~(kcr) and N~(kcr) indicate differentiation with res

pect to the complete argument. 

2.3. The dispersion equation 

Next we assume the boundary conditions E~ = H~ = 0 at r = a
1 

and 

r = a2 , independent of the frequency. It should be noted that the 

boundary conditions of th~s form do not represent the physical situa

tion but serve for taking the first step towards solving our problem. 

First, we shall consider simultaneously the situations: 

(a) 

(b) A = -z A 
1 0 2 

and 

and -z B 
0 2 

(2 .11) 

(2.12) 

In these special cases the boundary conditions for E~ and H~ are 

found to involve one and the same relation. We rewrite the Eqns. 

(2.5) to (2.10) using (2.11), (2.12) and the relations z = ~ 
2 2 . o o_ o 

and k = w µ £ • We obtain, with the upper (lower) signs referring 
0 0 

throughout to situation a, (b), while ,omitting the common factor 

exp-j(wt - 8z): 

Er + ~A2Z0 (; Jn(kcr) + ~ kcJ~(kcr~ + 

+ 
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2
z

0 
[~N (k r) + ~k N'(k rl]l cos(n~), 

r n c - k c n c { 
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E 
z 

H 
r 

H 
z 

+ B2Z [~ ~ N (k r) + k N' (k r)] ~ 
o k r n c - c n c 

sin(n.P), (2.14) 

k2 

[A2Jn(kcr) + B2Nn (kcr>] 
c 

cos(n<j>), (2.15) 
jWE 

0 

- ~ A2 [~ J (k r) :!: ~ k J' (k r)] + 
r n c k c n c 

+ B2 [~ N (k r) + ~ kcN~ (kcr>]~ sin(n<j>), (2.16) 
r n c -

+ ~ A2 
[~ ~ J (k r) :!: J' (k r)J + k r n c n c 

[B n + k N'(k r)J~ cos(n<j>), (2.17) + B2 - - N (k r) 
k r n c - c n c 

sin(n<j>). (2.18) 

The boundary conditions E<P = Hip = 0 are to be applied at r = a
1 

and 

r = a
2

• T~e resulting dispersion equation for the propagation constant 

is determined by 

0 , (2.19) 

or 

F1G2 - G1F2 O, 

where 

Fl f _E. J (k a ) 
k a

1 
n c 1 + kcJ~ (kcal) , 

Gl f _E. N (k a ) + kcN~ (kcal) , 
k a

1 
n c 1 -

(2.20) 

F2 f _E. J (k a ) + kcJ~ (kca2) , 
k a

2 
n c 2 -

G2 .f!. _E. N (k a ) + kcN~(kca2 ) , 
k a

2 
n c 2 -

for both situations A
1 
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(+) 
the upper signs is called the HErun mode, 

(-) 
the other one the HE 

run 

mode; the integer m fixes the root of the dispersion equation (2.19), 

n being given; the roots are labeled according to increasing values 

of jk j. The solution for 8/k > 1, involving imaginary kc can better 
c 

be represented in terms of the modified Bessel and Neumann functions 

I and K instead of J and N • At the cut-off frequency 8/k = O, for 
n n n n 

which k c 
k, (2.19) reduces to 

(2. 21) 

We observe that this relation holds for both HE(+)_ and HE(-) modes. 
run run 

The cut-off frequency of hybrid modes is identical with the cut-off 

frequency of the TE modes in a coaxial waveguide with perfectly con

ducting boundaries and the same dimensions. A similar result has been 

found for circular waveguides with the same boundary conditions 

E~ = H~ = 0 involving 

J~ (ka) = 0, (2.22) 

where a is the radius of the waveguide. 

We have solved the dispersion equation (2.19) numerically for both 

kinds of modes. Some of these results are shown in Figs. 2.5a-c for 

n = 1, i.e. a singular ~-dependence, while plotting 8/k as a function 

P. 
k 

t 
0.5 

30 

2 

Fig. 2.5a: 8/k vs. 2a1/;i. for n = 1, a/a1 4. 
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of 2a
1

/A = ka/11 for various values of the parameters a 2/a1 . We ob-
(+) (- ) s e rve that the branches f o r the HE
11 

- and HE
11 

mode cross the line 

8/k = 1 rather steep so that these modes will be considerably modified 

by a small change of the f requency f = c/A. This imp lies that these 

modes are not suitable for our application. The HE1;> mode, however, 

shows a frequency behaviour in the fast-wave region 0 < 8/k < 1 which 

i s similar to that of the HE1~) mode in a circul~r waveguide of radius 

a = a
1 

with the previous boundary .conditions E~ = H~ = 0. The branch 

f or this mode is also plotted for comparison in Figs . 2. Sa-c. Note 

that it is possible ~o f ind a cut-off frequency (8 = 0) for t he HE1;' 
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mode (to be used in the coaxial waveguide constituting region II in 
. ( 1) 

Fig. 2.3b), which is identical with that of the HE 11 mode to be used 

in the circular waveguide with radius a= a 1; the value of a 2/a1 then 

needed is to be found from Eqs. (2.21) and (2.22). 

In Fig. 2.Sd the solutions of the first few modes with n = 2 in the 

coaxial waveguide are plotted for the case a 2/a1 = 2. 

f3 
k 

f 
0.5 

I 
1-
1 
I 
I 
I 
I 
I 
I 

m= 1 

2 4 

Fig. 2.Sd: 8/k vs. 2a1/A for n = 2. 
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6 

Returning to the aperture distribution J
1 

(u)/u desired approximately 

across the dual-ring system we observe that for an optimum field 

matching a system with a 2/a1 7.02/3.83 = 1.83 is needed, the first 

two zeros of J 1 (u) occurring at u = 3.83 and 7.02. This value of a 2/a
1 

is rather different from that required for equal cut-off frequencies 

in the inner and the outer region, viz. a 2/a1 ~ 3 . However, i~ prac

tice the dispersion relations and their influence on the prophgation 
I 

and radiation behaviour should be considered in the operating frequency 

range. This implies that a compromis between optimum field match and 

low dephasing in the feed aperture should be found. 

A waveguide feed of length L involves a phase difference in the aper

ture between the outer and inner region that is given for any frequen-

cy by 

II> ( k) = kL ( ~ - t) , (2 .23 ) 
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\ 

6/k being the solution of the dispersion equation for the HE(;; mode 

chosen above for the coaxial outer waveguide and y/k that for the 
( 1) HE 11 mode chosen for the inner circular waveguide. The phase shift for 

the upper frequency to be used, f
0 

+ ~f, let us say, is then 

<I> (k ) = kL (~ - l'..) 
1 k k (2.24) 

k c 

We assume a constant phase across the aperture for the lowest frequen-

( 211 fo) o o 
cy f

0 
which requires <I> ~-c- = 0 or 180 • We have computed the phase 

variation ~<I>= <l>(k 1J - <l>(k
0

) for two feeds A and B, each with 

a 2/a1 = 2 (note that this is nearly the optimum ratio a
2
/a

1 
= 1.83) 

but with different aperture dimensions. Both feeds operate close to 

the cut-off frequency. 

Feed (f
0 

+ M)/f
0 koal M 

A 1.09 4.4 :!: 21.5° 

B 1.10 5.0 + 13.5° 

Table 2 .1 

We may conclude that these values of ~<I> indicate a considerable impro

vement compared with other classes of multi-mode feeds [ 8 ] . Even close 

to the cut-off, the feed A still produces an acceptable phase dis

tribution over about 9% relative bandwidth. A yet better reduction of 

the phase variation is found for feed B that has a somewhat larger 

aperture dimensi on. In this case the dispersion characteristics of 

both the inner and the outer region, as well as their dependence on 

the frequency result in a lowering of the dephasing errors in the feed 

aperture. 

we remark that in these examples the radiation properties of the feed 

and its efficiency have not been taken into account; they me rely indi

cate a possible matching of both dispersion characteristics. In other 

words, the bandwidth as well as the radiation performance should also 

be considered. 
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2.4. The transverse fields in dual-ring waveguides with anisotropic 

boundary conditions 

After having solved the dispersion equation (2.19) fork , k being 
c 

given, we are able to investigate the fields in the waveguide. The 

latter will be derived first for the outer coaxial region. We shall 

consider first of all the behaviour of the HE~:) modes, in particular 

Of the HE (+) HE(+)_ and the HE(+) d U . th 1 
11 

- ' 12 13 
mo e. sing e recurrence re a-

tions: 

_2z [Z 1(z) + Z 1(z)J' 
m- m+ 

(2.25) 

and 

1 
Z~(z) = 2 [Zm-l (z) - zm+l (z)] , (2.26) 

where z may be either a Bessel or a Neumann function; we obtain from 

Eqns. (2.13), (2.14), (2.16) and (2.17), for n = 1, 

in which 

E 
r 

Z H o r 

-k z 
c 0 

2 

k z 
c 0 

2 

-k z 
c 0 

2 

-k z 
c 0 

2 

~ ( 1 

1 + ~) N
0 

(kcr) + ( 1 

+ ~) J o (kcr) 

+~)N0 (kcr) 

+ (1 
+ (1 

cosq,, 

sin<!>, 

sin<!> , 

cos<!>, 

+~)J2 (kcr), 

+ ~) N2 (kcr), 

+ ~) J 2 (kcr) ' 

+ ~) N2 (kcr) . 

(2.27) 

(2.28) 

(2 .29) 

(2 . 30) 

(2. 31) 

(2 . 32) 

(2.33) 

(2.34) 

As bef ore, the upper signs in 

modes~ the lower one s to the 

(+). 
(2.31) t o (2 .34) refer to the HElm 

HE~:) modes. The r atio B2/A2 i s to be 
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derived from Eqns. (2.14) or (2.17) with the aid of the boundary con

ditions E<I> = H<I> = 0 at both walls r = a 1 ,a2 . 

We next define the <!>-independent quantities: 

Er(rel) 

and 

E 
<j> (rel) 

Er(r,<j> = 0) 

max Er(r,<j> = 0) 

max E<l>(r,<j> = n/2) 

(2.35) 

(2.36) 

where the maximum refers to the largest value of the quantity in 

question inside the coaxial regio:n. We have computed numerically 

these transverse field components as functions of the radial dis

tance p = (r - a
1
)/( 2 - a

1
l for several modes. The results are 

shown in the Figs. 2.6 to 2.9. We may conclude that their behaviour 

is very similar to that of the hybrid modes in a cylindrical wave

guide with the same boundary conditions [4]. 

Due to its field distribution, differing too much from J
1 

(u)/u, the 

HE~!) mode is not suitable for our application (see Fig. 2.6). The 

(+) d h b h l'k h (l) d . . 1 HE
12 

mo e, owever, e aves i et e HE
11 

mo e in a circu ar wave-

guide, i.e. both Er(rel) and E<j>(rel) have a similar distribution 

QI 

.:: ... 
w 

0 0 

0 0.5 p 0 0.5 p 

Fig. 2.6: 
(+) 

HE11 mode; a/a1 2; a 1/;i. "' 0.2. 
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across the guide; for small aperture dimensions Er is non-zero at the 

boundary, while for a
1 

>> A, B/k tends to 1, and the second term in 

f
112

(kcr) and g 112 (kcr) from Eqns. (2.31) to (2.34)can be neglected so 

that the r dependence of Er and E$ become identical. The field distri

bution does not change virtually with a 2/a1 as can be seen from Fig. 

2.8 where the fields for a 2/a1 = 3 and 4 are plotted. The HE~;) mode 

is shown in Fig. 2.9. 

We may conclude that the HE~;) mode is suitable for application in a 

dual-ring waveguide . Its amplitude distribution is nearly identical to 

that of the J 1 (u)/u function between its first two zeros. Further, the 

dispersion characteristics show, as expected, very good similarity 

with those of the HE~~) mode of the cylindrical waveguide with radius 

a 1, so that wideband performance can be achieved with two hybrid modes. 

To complete the description of the feed type we shall study the radia

tion behaviour in the next section. 

Finally, we observe that both E$ and H$ vanish at the boundary, as 

they should. 

2.5. The radiation pattern of a dual-ring waveguide with anisotropic 

boundary conditions 

2.5.1. General introduction 

In this section we shall investigate the radiation behaviour of a dual

ring waveguide with the boundary conditions E$ = H$ = 0 independent of 

the frequency (Fig. 2.10). 

The power-radiation pattern will be calculated by means of the 

Kirchhoff- Huygens method. We assume that the aperture constitutes an 

equiphase plane. The electromagnetic field of the dual-ring radiator 

is then found from the following well known rigorous expressions 

f [~x~(E'l] G(E•E'ldS + 

SA 
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J [~x~(E')] G(E•E')dS + 
SA 

- --
1

- cu?;l l jwµ P cur P J [~x~(E')] G(E•E')dS, 
SA 0 

(2.45) 

with the Green function 

dS being a surface element of the aperture SA while P(E) constitutes 

the point of observation. 

z 

Fig. 2.10: Planar circular aperture with coaxial cross-section. 

We assume an aperture diameter of at least a few wavelengths and a . 

large distance IEI = r >> ka~, admitting in the exponent the "radia-

l 11 
er. r'> ~· 2 ting near field approximations" I E - E' + E - - I I - + 

2
-

2 er . •> 2 E r 
{IEI - lr•l2 }, and Vr ~ -jkEllEl·We then obtain, after some cal-

culation, Introducing spherical polar coordinates (r,9,~) for the 

point of observation, as well as plane polar coordinates (r',~') for 
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the aperture points (see Fig. 2.10), the following expressions for 

the transverse components of the electric field: 

1 e-jkr 
4TTr 

a2 

I dr'r' 

6 

2TT I d~' [E~ + ZOH~cos8)cos(~ - ~·)+ 
0 

_ ~')] ejkr'sin8cos(~ - ~')e-jwr' 2 

+ (E~ - Z0H~cos8)sin(~ ~ 

1 e-jkr 
4TTr 

a2 
r 
J dr' r' 

0 

(2.46) 

2TT I d~' [E~cose - ZoHr')cos(~ - ~·)+ 
0 

_ ~')] ejkr'sin8cos(~ - ~')e-jwr• 2 

- (E~cose + Z0H~)sin(~ ~ 

(2.47) 

with w 
k 

2r 

We next omit, in view of the far-field approximation, the factor 
-jwr•2 

e 

2.5.2. The radiation from the outer region 

This contribution refers to the coaxial region a
1 

< r' < a
2

• The aper-
. (+) (-) 

ture fields for the HElm - and the HElm modes needed there have al-

ready been derived in the previous section. We substitute the corre-

spoqding expressions (2.27) and (2.30) into (2.46) and (2.47), while 

applying the relations: 

2TT 

J 
~· (~ ~·) jacos(~ - ~·)d~'- ~ 

cos~ cos ~ - ~ e ~ - TTCOS~ 

0 

2TT 

J sin~'sin(~ - ~')ejacos(~ - ~')d~'= -TTcos~ {J
0

Ca) + J
2

(a)}(2.49) 

0 
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2'1£ 

f ' c~ ~·i jacos(~ - ~·>a~· . ~ sin~ cos 'I' - 'I' e 'I' = irsin'I' 

0 

211 

J cos~'sin(~ - ~')ejacos(~ - ~'la~·= nsin~ {J
0

(a) + J
2

(a)} (2.51) 

0 

in which a= kr'sine. We thus obtain the following expressions for the 

transverse electric-field components in the far-zone region: 

- .!. B z ~ e-jkr cos~ 1
2

(0) , 
2 2 o 4r 

E - .!. A z ~ -jkr si' n~ l (0) + 
~ - 2 2 o 4r e "' 1 

: 

(2.52) 

(2.53) 

where the ratio A
2
/B2 is fixed (see section 2.3), while 1

1 
(0) and 

12 (0) have the following form: 

a2 

J 12 (i + ~ cose) [J
0

(kcr')J
0

(a) - J 2(kcr')J2(a) J + 

al 

and 

I 

{2 (~ + cose) [N0 (kcr')J
0

(a) + N2(kcr')J2(a)] t 

The individual integrals of the form J ZP(µx)JP(Vx)xdx as occurring in 

11 and 12 can be evaluated with the aid of the relation 

40 

J ZP(µx)JP(vx)xdx = µ2 : v2 [zp(µx) ~ JP(vx) - JP(vx) ~ ZP( µx)J 

(2.56) 



Thus we get the closed forms: 

2 (i + ~)(1 + cos0) 

2 2 2 [a2ksin0J
0

lkca2JJ1 1ka
2
sin0) + 

k sin e - k 
c 

12.57) 

+ a 1kcNl (kca1JJ
0

1ka1sin0)] + 

2(1 - ~)(1 - cos0) 

k2sin20 - k2 [ a2kcN1 (kca2)J2 lka2sin0) + 
c 

12. 59) 

The c;lependence of the radiated power on 0 relative to its val ue on the 

axis of the waveguide 10 = 0), can be represented as follows for the 

far-zone E-plane pattern 14> = O; electric field in the meridional 

plane): 

(2.59) 

and for the H-plane 14> n/2) by 
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- I Ecp (0,ir/2) I · 
PH(0) - 20 lO<:Jlo Elj>(S = O) (2.60) 

(2.61a) 

(2.6lb) 

Due to the rotational symmetry of the feed the quantities PE and PH 

also fix the radiation pattern in any meridional plane (specified 

value of¢). In fact, the magnitude E of the electric field in such 

a plane is given by [7] 

(2.62a) 

Moreover, the cross polarisation expressed by the field component per

pendicular to the primary field results from 

@ -10 
-0 

L 
QI 

~ 
a. 

-20 
QI 

.2: ...... 
nJ 

<ii 
L 

-30 

0 

X(0,¢) = {IE
0

(0,0)I - IE¢(0,ir/2Ji}sin¢cos¢. (2.62b) 

o ...----~~~~~~~~~~~ 

30 

ED -1 o 
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nJ 
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L 
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-30 

0 30 60 90 120 
- e (degr.) 

Fig. 2.11: Far-field radiation 

pattern, a2/a1 = 2. 

Fig. 2.12: Far-f ield r adiation 

patte rn , a 2/ a 1 = 3. 
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We infer from (2.52) and (2.53) that IE8 (8,0) I = IE$(8,~/2) I so that 

the power radiation pattern is identical in both principal planes 

(PE= PH). This implies that the coaxial radiator with the boWldary 

conditions E$ = H$ = 0 even produces identical patterns in a l l planes 

through the axis of propagation, while all cross polarisation is ab-

sent. 

We have calculated the radiation pattern for a 2/a1 = 2,3 for several 

values of 2a1/A, the mode chosen in the waveguide being the HE~;> 
mode. The results are plotted in Figs. 2.11 and 2.12. We observe that 

the radiation pattern has a relatively high side lobe level which 

makes this coaxial waveguide unsuitable for direct use as a feed for 

parabolic reflectors. For our application, however, we have to study 

its behaviour in combination with a waveguide Wlder anisotropic boWl

dary conditions, i.e. as part of a dual-ring feed. 

2.5.3. The contribution from the inner r egion 

The corresponding far-field radiation pattern from cylindrical wave

guides (region I) with the boWldary conditions E$ = H$ = 0 has been 

derived by several authors [4] , [16] , [17 ] . Their theories involve 

again a $-independent radiation pattern given, als o in a closed fonn, 

by: 

I I (8) I 
20 log10 I(O) , (2.63) 

with 

(2 . 64) 

and a= (1 - y/k)/(1 + y/k), y/k being the solution of the dispersion 

equation for the inner waveg\J.ide. 
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2.5.4. The radiation field for the complete dual-ring waveguide 

Assuming a dual-ring waveguide with an infinitesimal wall between the 

region I and II, as represented in Fig. 2.10, let the mode in the inner 
(1) (+) 

region be the HE
11 

mode, and that in the outer region the HE
12 

mode. 

In view of the geometry, power control in both regions may be conside

red as independent. 

In Fig. 2.13 the calculated far-field components for each mode separa

;tely, normalized by unity at e = 0 are plotted for the indicate~ si tua

tion. The resulting field can be written as follows, again for a pro-

per normalization, 

(2.65) 

with constant values for ~ 1 and ~2 ; I and II label the fields asso

ciated with the inner and the outer region respectively, a is a con

stant, in general complex factor connected to the power ratio be

tween both regions. Only a special case, discussed previously, viz. 

the phase difference ~ 2 - ~ 1 = 0 or 180° in the feed aperture, a 

being real, will give a solution the phase of which is independent 

of e. 
1.0 

E 

0.5 

ka1 = 5.6 
2a1= 1.8.A 

a-ja1 = 2.18 

- oCdegr:) 

HE
(l)_ (+) 

Fig. 2.13: 
11 

and HE
12 

mode pattern. 

In the case of an optimum match of the fields in the focal region, the 

inner part of a dual-ring feed supports the largest percentage of the 
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energy radiated by the feed, that is 92% of the total energy absorbed 

by the two first Airy rings. For a non-perfect match, which could be 

caused, for instance by the finite value of the wall thickness be

tween both regions, we can still determine the optimum power ratio in 

the feed aperture that corresponds to maximum aperture efficiency. It 

may, however, be expected that these corrections will not cause a se- . 

rious decrease of the predicted aperture efficiency. 

We have computed the radiation pattern for two dual-ring feeds with 

different values of 2a1/A., again for the modes indicated in Fig. 2.13, 

and for real a-values in the range 0 $ a $ 0.5; the power has been 

normalised to its maximum occurring at some special 9 value (Fig. 2.14 

and Fig. 2.15). For a= O, the plotted pattern is that of the inner 

waveguide (region I). With increasing a we observe a dip in the for

ward direction, and a sharper shape of the pattern. The side lobes re

mains essentially unchanged so that an increase in the illumination 

efficiency, and a decrease of the spill-over may be expected compared 

with a single waveguide radiator combined with a paraboloid reflector 

having a given value of 0
0
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Our next task is to estimate the phase errors, as a function of f re

quency, which occur due to the differences of propagation behaviour in 

both regions of a dual-ring waveguide. I n the dispersion characteris

tics, derived in the previous section , the boundary conditions were 

assumed to be independent of frequency. It is obvious t hat this carmot 

be realized in practice. 
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It is true that the boundary conditions E<!> = H<!> = 0 can be realised 

with the corrugations of a ;\./4 depth, however, they then depend on 

the frequency. On the other hand, the influence of the phase errors 

on the radiation pattern has to be taken into account for a bandwidth 

of approximately 10% of the main frequency f • We know that a single-o 
mode corrugated waveguide operates satisfactorily in a frequency band 

considerably larger than 10%. In other words, the influence of the 

grooves on the pattern symmetry can be neglected in this case. We may 

expect that the dephasing becomes a dominant effect, especially for 

small feeds operating close to the cut-off frequency. 

Examples of the phase distorsion in the far field are shown in Figs. 

2.16 and 2.17. Here, for the frequency f = f
0 

we assumed a phase dif

ference of 180° between both modes in the feed aperture, which; ac

cording to (2.65), results in a real far-field radiation pattern. An 

increase of the frequency to f = 1.lf
0 

will cause a phase shift in 

the aperture deviating from 180°. Consequently, the far-field pat

tern becomes complex and the phase errors, the 6-dependence of which 

is shown for the examples, may reduce the gain of a parabolic reflec

tor. As already stated, this effect is of significant importance for 

a small feed. For the reflector with 0
0 

62° we find (see Fig. 2.16a 

and b, both referring the same values for a 1 and a2 l a maximum phase 

variation of about 30° at a frequency differing 10% from f
0

• We re

mark that this value is still acceptable for most antenna applica

tions. For a large dual-ring feed (2a1 = 10;\.) this effect can be ne

glected for the same frequency band. The phase errors here prove to 

be less than about 4° (Fig. 2.17a and b, again referring to identical 

values for a 1 as well as for a 2J. 

we may conclude that the dual-ring radiator, with the boundary con

ditions E<!> = H<!> = O is suitable for use in parabolic reflectors, also 

as a primary feed. Narrowing of the radiation pattern, typical for all 

waveguide feeds, will limit the useful bandwidth rather than the de

phasing errors. A dual-mode system based on the principle of separa

tion of the propagating modes will operate in a considerably larger 

frequency band than other multi-mode antennas. Due to the pattern 

shape, an increase of the gain and a decrease of the spill-over may 

be expected. 
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In order to describe the radiation of such a feed in detail, a more 

rigorous analysis is needed. First, a prediction of the polarisation 

performance as a function of frequency should be considered. In such 

case H~ does not vanish and the influence of the grooves on the pat

tern symmetry is to be taken into account. Further, this theory can 

also be applied to horns with small flare angles, provided a quadratic 

phase distribution across the aperture is assumed. This extension of 

the theory will be presented in the next section. 

2.6. Dual-ring corrugated feeds 

In this section we shall investigate the influence of the depth of the 

grooves on the propagation and radiation behaviour of the corrugated 

dual-ring waveguide as a function of the frequency. If the width of 

the grooves approaches zero, the corrugated surface may be considered 

smooth, but anisotropic. 

The field components in the grooves are matched at the boundaries to 

those of the grooveless guide. After solving the dispersion equation 

we shall derive the radiation pattern of a dual-ring radiator as a 

function of the frequency. It has been shown by experiments that this 

method leads to a reliable estimation of the radiation behaviour of 

corrugated waveguides [18]. Using this method, it is also possible to 

determine the optimum depth of the grooves for any waveguide radius. 

2.6.1. The fields in the grooves of a coaxial guide 

We assume that the distance between the grooves is so small that many 

occur per wavelength. The regions I (bl $ r $ a
1

) and III(a2 $ r $ b 2) 

of Fig. 2.18 can then be considered, in a good approximation, as ra

dial waveguides, short-circuited at r = b
1 

and r = b
2 

respectively. In 

the case of t 2 < \/2 (see Fig. 2.18) only the dominant (z independent) 

TM mode will propagate in the grooves [21]. 

Its non-vanishing field components can be represented as follows in 

region I: 
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Fig. 2.18: Groove structure. 

jw: r CA3Jn (kr) + A4Nn (kr )J sin(n4>), 
0 

and for region III: 

E z 

H 
r jw: r [A5Jn(kr) + A6Nn(kr)Jsin(n¢), 

0 

(2.66) 

(2.67) 

(2.68) 

(2.69 ) 

(2.70) 

(2. 71) 

here J and N again the 
th 

order Bessel and Neumann functions, are n 
n n 

respectively, with k = w/€µ, and A
3

, A4' AS and A
6 

are constants, 
0 0 

with the prime in J' and N' denotes differentiation with respect to 
n n 

their argume nt kr. 

In view of the condition E
2 

= 0 at the perfectlY. condu cting bottom of 

the grooves (r = b
1 

and r = b
2

) we can easily determine separately the 

depth of the grooves if the condition H¢ = 0 is to be satisfied at 

r = a 1 and r = a
2

. We then have to choose b 1 and b
2 

such, that the 

following relations apply 
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(a) to r a
1 

J~ (ka1)Nn (kb1) - N~ (ka1)Jn (kb1) 0, (2. 72) 

and 

(b) to r a
2 

J~(ka2 )Nn(kb2 ) - N~(ka2 )Jn(kb2 ) = 0. (2. 73) 

To satisfy these conditions, the depth of the grooves should be about 

a quarter of a wavelength or differ from it by a multiple of A/2. 

Where the depth of the grooves has to be small, for instance ldetween 
! 

the inner and outer parts of a dual-ring guide, dielectric lo~ded 

grooves could be applied [19]. In order to satisfy the condition 

Hep = 0 at r = a 1 ,a
2 

in that case we rewrite the Eqns. (2. 72) and (2.73) 

as follows, taking account of the relative dielectric constant E 
r 

(a) J~ (kdal )Nn (kdb1) N~(kda1)Jn(kdb1) 0, (2.74) 

(b) J~(kda2)Nn(kdb2) - N~(kda2)Jn(kdb2) 0, (2. 75) 

where kd = k~ The depth of the grooves can then be reduced appro

ximately by a factor of ~. 
r 

The fields in the grooves of the inner part of a dual-ring waveguide 

can be derived in the same way. 

2.6.2. The dispersion equation for the coaxial outer region 

In order to derive this equation for the coaxial part of a dual-ring 

waveguide, we still have to match the hybrid fields in the guide, re

presented in section 2.2., to those in the grooves at the boundaries 

r = a 1 and r = a 2• This leads to the following four boundary condi

tions to be satisfied simultaneously: 

1. Ez = 0 at the bottom of the grooves, r = b
1

,b
2

• From Eqns. (2.66) 

and (2.69) we obtain: 
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Jn (kb1) 

- A3 Nn (kb1) 
(2.76) 



and 

(2. 77) 

2. E¢ = 0 at r = a
1 

and r = a
2 

gives, applying the Eqn. (2.6) to 

hold in region II: 

+ [kcBlNn' (kcal) + _B_ ~ B (k a i] 
W£

0 
a

1 
2 C 1 

+ [k B
1
N' (k a

2
) + _B_ ~ B

2 
(k a

2
)] 

c n c W£
0 

a
2 

c 

0 I (2.78) 

0 . (2.79) 

3. The continuity of H¢ at the boundaries r = a
1 

and r = a
2

, according 

to its values in II (section 2.2) and in I and II respectively (pre

ceding section),involves the equations: 

[w~ 0 a~ AlJn(kcall + kcA2J~(kca1>] + 

+ [-B- ~ BlN (k a) + kcB2N~(kcal)J wµ
0 

a
1 

n c 1 

(2.80) 

L~o a: A1J2{kca2) + kcA2J~(kca2>] + 

+ [-B- ~ BlN (k a 2 ) + kcB2N~ (kca2 l] wµ
0 

a
2 

n c 

=-~[A J'(ka) + A
6

Nn'(ka
2
JJ. 

JWµ 5 n 2 
0 

(2.81) 

4. The corresponding continuity of Ez at the preceding boundaries 

yields 

k2 
c 

jW£0 
(2 .82) 
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(2.83) 

After the elimination of A
3

, A
4

, A
5 

and A
6 

from Eqns. (2.80) to (2.83) 

the dispersion equation then obtained can be written as a determinant 

which has to vanish, viz: 

k J' 
c 1 

_B _ __!!_ J 
W£

0 
a

1 
1 

k N' 
c 1 

_B_....,!!.N 
W£ O a 1 1 

~.....!!. J 
.k a

1 
1 

kcG(l) ~.....!!. N 
k a

1 
1 kcG(2) 

O; (2 . 84) 

k J' 
B n k N' _B _ __!!_N ---J 

c 2 W£
0 

a
2 

2 c 2 W£
0 

a
2 

2 

~ ....!!. J 
k a

2 
2 kcG(3) ~ .....!!.N 

k a
2 

2 
k G(4) 

c 

the following abbreviations have been introduced here: 

W)J k C' 
G(1) = __£ J' - ___£ __!_ J 

k 1 W£ c 1 I 

0 1 

W)J k C' 
G(2) __£ N' - ___£ __!_ N 

I k 1 W£ C 1 
0 1 

W\J k C' 
G(3) __£ J' - c 2 

---J I k 2 W£
0 

C
2 

2 

W).l k C' 
G(4) __£ N' - ___£ ___±._ N 

I k 2 W£
0 

c
2 

2 

cl Jn (kal l 
Jn (kbl) 

Nn (ka1 ) (2.85) -
Nn(kbl) 

I 

c2 Jn (ka2 l 
Jn(kb2) 

Nn (ka2 l -
Nn (kb2) 

I 

C' J~(ka 1 l 
Jn (kbl l 

N~ (ka
1

) -
Nn (kbl) 

I 1 

C' J~(ka2 l 
Jn(kb2) 

N~(ka2 ) -
Nn (kb2J I 2 
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Working out the determinant (2.84) we get the dispersion equation in 

a somewhat simpler form, 

(S/k) 4 n 4 

(ala2)2 k: 
{ 

F ( 1) 
F(l) F(2) + 

k
2 

C'C' 
c 1 2 F (5) } 

F(2) 

kc cl F(3) 
---- + 

k Cl F(2) 

+ 

kc c; F (4 ) 
-- - - + 

k c
2 

F(2 ) 

+ 

{
F ( l ) F (5) - F (3) F( 4) } 

F (2) I 

in which 

F ( 1) F(2) 

F(3) F(4) 

U . 86 ) 

while the relations (2.85) still apply. This dispersion equation has 

been solved numerically as a function of 2a
1

/A for several values of 

the parameters a
1

,a2 ,b
1 

and b 2 with n = 1. 

At the cut-off frequency we have S/ k = 0 and thus kc = k. The deter

minant (2.84) can then be rewritten in the simplified form: 

kJi 0 kNl 0 

0 kG(l) 0 kG(2) 
0, (2.88) 

kJ2 0 kN2 0 

0 kG(3) 0 kG(4) 

while the expressions (2.85) may still be used. Working out (2.88) 

yields 
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with (2.89) 

Since the Wronskians (J2N2 - N2J2 ) and (NiJl - JiN1) do not vanish, 

we only have to solve 

0 I (2.90) 

and also 

0 . (2 .91) 

We know that the condition (2.90) fixes the cut-off frequency of the 

TEnm mode in a coaxial waveguide with perfectly conducting boundaries 

at r = a 1 and r = a 2 . On the other hand, the equation (2.91) deter

mines the cut-off frequency of the ™r.m mode in such a guide with 

radii b 1 a'ld b
2

. 

The mode whose 

the HE(+)mode. 
nm 

cut-off frequency corresponds to (2.90) is again called 

The other one, the HE(-) mode, now assumes a different 
nm 

cut-off frequency, due to the fact that the boundary conditions im-

posed by the grooves had to be taken into account. 

The general dispersion equation (2.86) for the coaxial region has 

been solved numerically for n = 1 and several values of a 1 , a2 , b 1 as 

---HE 1• 1 a b(cm) 
~ gi COAXIAL REGION{_ ____ H El~ A. 2.25 3.15 

B. 1.4 2.3 ~ fU INNER REGION - ·- - - HElJ' 
-= ~ _Q,_9 _ _1.8_ - ~ ~ 

~ - -·- I 
/ ---· k I a . .----

t 
I ,,./' ~ 

"::{ / /. / / 

I ~· . ;'\ / 
ti==1 --; [;_,~ "G.i-

0.5 ::Z: I ::z: . ~/ 
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a function of 2a
1

/). (Figs. 2.19 and 2.20). We observe that the bran
(-) 

ches of the HE
11 

mode cross the line 8/k = 1, i .e . there is a transi-

tion from fast (8/k < 1) to s low waves (8/k > 1). 

For the special frequency for which H¢ vanishes simultaneously on 

both walls r = a 1 ,a2 the dispersion relation (2.84) reduces conside

rably in view of the vanishing of Cl and CZ; the equation then finally 

becomes identical with (2.19). In that case we may write for the 

HE(+) mode 
nm 

and 

For all other values of the frequency more general relations apply, 

that is 

where the constants a
1

, a
2 

and a can eas i ly be determined from (2.84). 

2.6.3. The dispersion equation for the inne r region 

The reievant equation there concerns a corrugated waveguide for which 

the dispersion equation h as been derived by Roumen [ 18 ] and Al~ 

Hakkak [16] under similar assumptions as for the above corrugated 

outer r egion. The result reads 
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(y/k) 2 
2 

(k a) 
c 

2 
n 

J (k a) 
n c 1 

k a 
c 

J' (k a) 
n c 

J' (ka)N (kb)-J (kb)N' (ka) 
n n n n 

J' (k a) 
n c 

J (k a) 
n c 

ka J (ka)N (kb)-J (kb)N (ka)' 
n n n n 

(2.93) 

where a is the radius of the waveguide and (b-a) denotes the depth of 

the grooves. 

We have plotted the solution of this equation (curves A, B and C) for 

several values of a and b in Fig. 2.19. Note that the depth of the 

grooves has been chosen equal in both regions. In this example the 
i 

largest value of a equals a 1 of the outer part and does no4 , there

fore, represent the physical situation (separating wall infinitesimal). 

It indicates, however, that the solutions of the dispersion equations 

in both regions are close to each other for the combinatio~ of the 
(1) (+) ' 

HE
11 

and HE
12 

modes. The region 1.25 < 2a1/A < 1.875 has roughly 

been derived from the assumption that H~ = 0 if the depth of the 

grooves equals A/4; the need for a maximum useful relative frequency 

bandwidth of the order of 50% leads to the upper limit of 

2a1/A = 1.875. 

2.6.4. The transverse-field characteristics 

In this section we shall investigate these characteristics as a func
( +) 

tion of the frequency, in particular for the HE 12 mode in the outer 

region of a dual-ring corrugated waveguide. First, we shall assume 

that 

Cl. 

The fields in the waveguide are found just as in section 2.4. 

For n 1 we obtain: 

kcA2Zo 
[f1 (kcr) + af2 (kcr)] cos~, (2.94) E 2 r 

E = 
kcA2Zo 

[f3 (kcr) + af4 (kcr) ] sin~, (2.95) 
~ 2 

kcA2Zo 
[gl (kcr) + ag2 (k cr)] sin~, (2.96) Z H 2 o r 

Z0H~ 
kcA2Zo 

[g3 (kcr) + ag4 (kcr)] cos~, (2.97) 
2 
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with (taking throughout either the upper or the lower notation) 

where 

f 1 (kcrl (a 1 +t)Jo(kcr) + -
3 

f 2 (kcr) (a2 
8) . + k N (k r) + 

0 c -
4 

g1 (kcr) (1 + al t) Jo(kcr) 

3 

k r 
c 

kr'\/1 - (8/k) 2 

(a1 - ~) J (k r) k 2 c 

(a2 - t) N2 (kcr) , 

+ (1 - al t) J2 (kcr) -

We observe that for the case a
1 

= a 2 =: 1, the equations (2.94) to 

(2.97) become identical to those derived in section 2.4 for H4> = 0, 

independent of the frequency. We have plotted E~ and E , normalised by 
'f r (-) 

their corresponding maximum values in the guide, for the HE
11 

mode 

and the HE~;> mode (Figs. 2.21 and 2.22), for some representative 
(-) 

cylindrical structure. The field characteristic of the HE
11 

mode are 

similar to those of the corresponding solution of section 2. 4. 

the HE~;) mode in a waveguide with large dimensions (Fig. 2.22) 

depends greatly on the frequency, which is in contrast with the 

For 

E 
r 

solu-

tion of section 2.4 with its frequency independent boundary conditions. 

0 

0 

Fig. 2.21: 

0 

0.5 
p 

0 0.5 p 

(-) 
HE

11 
mode; a

2 
= 6 cm, a

2
/a

1 
= 2.625, 

a 1 - b 1 = b 2 - a2 = 0.9 cm, f = 9.5 GHz. 
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0 

0 0.5 p 

0 

0 0.5 p 

<+l I Fig. 2.22: .HE12 mode; a 2 = 13.2 cm, a 1 - b 1 = b 2 - a 2 0.9 cm, 

f = 9.87 GHz, ------ f = 10.18 GHz, 

f = 10.91 GHz. 

The lowest value of Er at both boundaries may be expected for the fre

quency at which the condition H<P = 0 is satisfied. High values of Er 

at these boundaries will result in a pattern which is different in the 

two principal planes (<j> = 0 and .P = n/2). 

2.7. The radiation behaviour of dual-ring corrugated waveguides and 

horns with a small flare angle 

z 

Fig. 2.23: Corrugated dual-ring waveguide. 
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First, we shall derive the power radiation pattern of a dual-ring cor

rugated waveguide (Fig. 2.23) as a function of the frequency. Next, 

the radiation pattern of such an antenna which a quadratic phase &is

tribution across the aperture will be determined. This radiation pat~ 

tern will be calculated again by the Kirchhoff-Huygens method. 

2.7.1. Dual-ring waveguide radiator with grooves 

In this case the field distribution across the aperture is assumed to 

be identical with that inside the waveguide. We again use Eqns. (2.44) 
. ,2 

to (2.47). The factor e-JWr can again be omitted in our computation 

of the far field where it reduces to unity. Substituting Eqns. (2.94) 

to (2.97) we obtain the following contribution to the far field for 
(+) 

the HE
12 

mode that is due to the outer ring (region II, i.e. 

a
1 

< r' < a
2
l: 

·1 \ "1 ( 1 

al 

+_ks cose)[J (k r')J (kr'sin8) + 
0 c 0 

-J2 (kcr')J2 (kr'sin8)] + (t + cos8)[J
0

(kcr')J
0

(kr'sin8) + 

+J2 (kcr')J2 (kr'sin8)]f 

-e2z
0

k c •cos; •1 l a 2 (i 
al 

r'dr' + 

+ _kS cos6)[N (k r')J (kr'sin6) + 
0 c 0 

-N2 (kcr')J2 (kr'sin6)] + (t + cos8)[N
0

(kcr')J
0

(kr'sin6) + 

+N
2

(kcr')J2 (kr'sin8)] ( r'dr' (2.99) 

a2 

A2Z
0

kc11 sin4> f ~ CLl (~ + cos8\[J (k r')J (kr'sin8) + J 0 c 0 

al 

+J2(kcr')J2(kr'sin0)] + (1 + f cose)[Jo(kcr')Jo(kr'sin8) + 
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a2 

+B2Zokcnsin~ I ~a2 (~ + cose)[No(kcr')Jo(kr'sin8) + 

al 

+N2 (kcr')J2 (kr'sin8)] + (1 + ~ cos8)[N
0

(kcr')J
0

(kr'sin8) + 

-N2 (kcr')J2 (kr'sin8)]~ r'dr' (2.100) 

Applying the relation (2.56) we can replace the above expressions by 

closed forms without integrations, viz. 

E8 -A2Z0kcncos~ ~a 1 (1 + t cos8)[I(4) - I(l)] + 

+(~ + cose)[r(4) + I(l)J} + 

-B2Z0kcncos~ {a2 (1 + ~ cos8)[I(3) - I(2)} + 

+(~ + cose)c r (3) + r (2)] f , 

E<f> A2Z0kcnsin~ ~a1 (~ + cose)[I(4) + I(l)] + 

~1 + ~ cos~[I(4) - I(1)]1 + 

+B2Z
0

kcn sin~ 1 a2 (~ + cos~[ I (3) + I (2)] + 

+(1 + ~ co~e )[1 (3) - I (2)] ~ . 

(2 .101) 

(2 .102) 

I(l) to I(4) are combinations of Bessel functions which result from the 

evaluation of the following integrals: 
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a2 

I(l) f J 2 (kcr')J2 (kr'sin8)r'dr' , 

al 

a2 

I (2) f N2 (kcr')J2 (kr'sin8)r'dr' , (2 .103) 



a2 

!(3) f N
0

(kcr')J
0

(kr'sin8)r'dr' , 

al 

a2 

I (4) I J (k r')J (kr'sin8)r'dr' • 
0 c 0 

We observe that the expressions (2.101) and (2.102) are equal if 

a
1 
= a 2 =: 1, and then become identical with (2.52) and (2 .53); this 

is found to apply only if H~ = O, i.e. under the "balanced hybrid 

conditions". The power radiation pattern is then independe nt of ~-

In general the far field proves to be completely characteri zed by the 

two functions 

20 log1 0 I 
E

8
(8, 0 ) 

I (2 .104a ) 
E 8 ( e = OJ 

20 log1o I 
E~ (8,TI/2) 

I · 
(2.104b) 

E~(e = 0 ) 

which a l s o fix the field dependence in other meridional p lanes accor

ding to (2 . 62a). We then have 

p (6,~) (2.105) 

Moreover , (2.62b) s hows t hat in the present s ituat i on cross polarisa

tion occurs in general, which is in contrast to the case with the boun

dary conditions E~ = H~ = 0 at the walls . 

The far- zone contrib ut ions f r om the inne r reg ion [ 18] can also be wri t 

t en in closed form, viz .: 
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- kca(cos8 + t)[kcaJ1 (kca){J
0

(u) - J 2 (u)} + 

- uJ1 (u){J
0

(kca) - J2 (kca)}]~ cos<j>, 

kca(l + f cos' [kcaJ1 (kca){J
0

(u) + J 2 (u)} + 

- uJ1 (u){J
0

(kca) + J
2

(kca) }]~ sin<j>, 

(2.106) 

(2.107) 

y/k being the solution of the dispersion equation in the corrugated 

waveguide (2.93) and u = kasin8. 

The resulting field is then the sum of the two contributions from the 

inner and the outer regions, respectively. This sum can be normalized 

as 

~(8,<j>) 
I H1 

E (8,<j>)e + (2.108) 

with constant values of a, <1> 1 and 4> 2 ; the constant a is connected to 

the power ratio between both regions. 

2.7.2. Dual-ring corrugated horns with small flare angles 

We shall now consider the horn antennas of a dual-ring type ~ith nar

row flare angles. 

Provided the cone angles are small (a
112 

< 15°) we may approximate the 

fields across the flat aperture A, that is the part inside the a
2 

cone 

of the plane through the rim of the latter (see Fig. 2.24) by an am

plitude given by that of the (cylindrical) waveguide. For some values 

of a 1 , 2 the pattern beam width may be considered as almost frequency

independent in a limited frequency range [4]. 
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Fig. 2.24: Dual-ring horn antenna. 

The expressions (2.46) and (2.47) are still reliable in the present si-
. , 2 

tuation of narrow flare angle, while the factor e-Jwr can be neglec-

ted in view of the wave-zone approximations. However, since the field 

E' and H' should be identified with that occurring on the sphere s, we 

have to insert an additional phase factor accounting for the path 

length between the corresponding points P' and P" on the surfaces A 

and S respectively (see Fig. 2.24); it suffices to approximate this 

path length by a quadratic function of the rectangular coordinates in 

A, this length thus becoming d a 2/2 -r• 2/2d , a having the values a 1 0 0 

and a
2 

in the inner and outer part respectively of A. Thus the following 

expressions apply in the wave-zone: 

a 

~ e-jkr J dr'r' 
4nr 

0 

2n 

J d<j>'[(E~ + Z0H~cos8)cos(~ - <j>') + 

0 

jk !...__ -

+ (E' - z H'cos8)sin(<j> - <j>')]ejkr'sinecos(<j> -
<I> o r 

( 

,2 

<I>') 2d0 
e 

a 

~ e-jkr J dr'r' 
4nr 

0 

(2.109) 

2n 

J d<j>'[(E¢cose - Z0H~)cos(<j> - ¢') + 

0 

2) ,2 d a 1 jk !...__ - _o __ 
<I>') (2d0 · 2 

e , 

(2 .110) 
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~ e-jkr 
4trr 

2tr 

f d4>'[(E~ + Z0H~cosS)cos(4> - 4>') + 

0 

r o 
jk - - --

+ (El - Z H'cosS)sin(~ - 4> 1 ) Jejkr'sinScos(4> -
'f' or 

( 

, 2 d Cl.22) 

4> I) 2d
0 

2 
e 

2tr 

J d4>'[(E~cosS - Z0H~)cos(~ - 4>') + 

0 

0 k I 
0 a (,!. 

- (E~cosS + Z
0

Hq,'lsin(4> - 4>') ]eJ r sin cos 'f' -

(2 .111) 

(2. 112) 

where E' and H' ,i. are short for E (r' ,a• ,4>') and H ,i.(r' ,0' ,q,). 
r,4> r,'f' r,4> r,'f' 

The sum of both contributions in the far zone for a proper normalisa

tion is then 

~ (8,4>) 
I H1 (S ,q,) + II H2 (S ,q,) 

E ( e I 4>) e Cl.E ( e I 4>) e (2.113) 

where q, 1 and q, 2 are now functions of a and 4> resulting from the above 

expressions. 

2.8. Evaluation and experimental investigation of dual-ring feeds 

It has been shown in the preceding sections that this class of feeds 

produces a shaped far-field radiation pattern (in the 8-direction) 

which leads to an increase of the aperture efficiency, and a decrease 

of the spill-over. Due to the mode separation technique good radiation 

performance is expected to be found in a relatively wide frequency 

band (approx. 10%). 

On the other hand, a somewhat more complicated dual-ring structure has 

to be considered. First, a finite wall thickness between the two re

gions has to be taken into account, for instance that of a quarter of 

wavelength, has proved to be of greatest influence for small apertures. 
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We should match the fields resulting in the focal region from an inci

dent plane wave to those of such a feed in order to estimate this ef

fect. In general, in deeper dishes the central part of the focal-region 

fields (up to the first zero) becomes smaller in terms of the operating 

wavelength, which consequently requires a small feed aperture. Moreover, 

these fields differ considerably from the Airy pattern J
1 

(x)/x, and an 

additional ring is found between the first two regions [20J. Thus we 

have to match the fields outside the above-mentioned ring which implies 

that the influence of a finite wall thickness could almost be neglected 

for properly chosen feed dimensions. If necessary, the depth of the 

grooves can be reduced by dielectric loading (see section 2.6.1.). We 

conclude that this feed is less suitable for deep dishes; in the trans

mitting case we find a decrease in aperture efficiency compared to that 

of a flat reflector. This is shown in Fig. 2.25 where the aperture ef

ficiency (na = ni ns np) is plotted as a function of 8
0 

for two cases, 

viz. a small feed with 2a = 1.4A and a large one with 2a = lOA. The 

maximum of na equals 86% in the first case, while the large feed shows 

a maximum of 89.5%. This latter maximum is quite close to that of 91% 

achieved with the ideal feed perfectly matched to J 1(x)/x up to the 

second zero (see section 2.1.). 

71 

1.0 
771 

2a = 1.4.A 
a 21a1 = 2.0 

0.9 a11a = 1.36 

O.~O 50 60 
8 0 CDEGR.l 

(a) np > 0.995 (6f/fo 5%) 

np > 0.985 (6f/f
0 

10%) 

Fig. 2.25: Aperture efficiency na 

71 

1.0 
71i 77s 

2a • 10.A 

a 2'a1 = 2.15 
a11 a • 1.05 

0.9 

0.8 

Q7s 6 7 8 9 
-e

0
<0EGR.l 

(bl np > 0.999 (6f/f
0 

= 10%) 
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The phase losses due to dephasing in the feed aperture are 1.5% at 

most for the small feed operating over a 10% relative frequency band. 

Next we derived the radiation pattern (Fig. 2.26) for a feed with 

2a = 4.·4A while all effects discussed previously are included in our 

computation. These are: the depth of the grooves in the inner and outer 

region, a quadratic phase distribution across the aperture, and a 

finite wall thickness between the two regions. The depth of the grooves 

have been chosen equal in both regions, which implies that th~ balanced 

hybrid conditions cannot be satisfied simultaneously in these regions. 

The frequency for which the cross-polarisation in the $ = 45° plane be

comes minimal has therefore been taken as f . We observe that such an 
0 

antenna gives very good performance over an 11% relative frequency band. 

The cross-polarisation increases only by 1.5 dB from -32.0 to -30.5 dB. 

The aperture efficiency (for 0
0 

= 16°) decreases from 88% to 05% while 

the maximum of phase losses does not exceed 1.5%. 

0 
f = f 0 ....: 
2a=4.4.il. 
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0 

n = o.85, n a p 0.985 

Fig. 2.26: Computed radiation pattern of dual-ring antenna with 

grooves. 
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Fig, 2.27: Measured radiation patterns for antenna A094. 

The experimental investigation has been carried out with the antenna 

A094 which has the following dimensions: 

2.5 3.4 3.45 6.3 2.55 7.2 4.6° 11.5° 

The measured far-field power and phase pattern as well as the cross

polarisation are plotted in Fig. 2.27. The dots indicate the predicted 

radiation pattern for f = 9.0 GHz under the balanced hybrid conditions. 

We observe that there is a very good agreement between the theoretical 

and measured data. The phase difference of about 20° could certainly be 

improved. This holds good also for the cross-polarisation performance. 

Summarizing, the dual-ring corrugated feed may be considered suitable 

for applications in dishes with f/D > 0.35, in a relative frequency 

band of about 10%. A lowering of the spill-over, and an increase in the 

aperture efficiency compared to that of single-waveguide feeds is 

achieved by this approach. Finally, the bandwidth is expected to be 

better when compared with other multi-mode feeds. 
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CHAPTER 3 

PROPAGATION AND RADIATION CHARACTERISTICS OF BICONICAL HORNS WITH 

BOUNDARY CONDITIONS E~ = H~ = 0 

3.1. Introduction 

In the preceding chapter we have discussed the feeds for which the 

aperture is (almost) an equiphase plane. These feeds, designed for the 

optimum field match in the focal plane are thus of the waveguide type, 

or horns with a narrow flare angle. 

Another class is that of the conical horns; in this case the spherical 

feed aperture is part of the sphere within a cone determined by angle 

6 and radius r. An optimum feed of this type should produce a field 

distribution across this aperture identical to that caused there by 

the plane wave incident on the paraboloid, propagating parallel to the 

axis of the latter. The geometrical optics show directly that for a 

uniform aperture distribution in amplitude and phase the field ampli

tude of the feed pattern should have a 6-dependence sec2 (~). Obvious

ly, it is a difficult task to design a feed according to this ap

proach, especially for deep dishes. For instance, for a focal-plane 

paraboloid (f/D = 0.25, 0
0 

= 90°) the power-radiation pattern of an 

ideal feed should then produce a "dip" in the forward direction of 6 

dB below the corresponding value in the direction 6 = 90°. 

A more rigorous analysis of the fields near the focus derived on a 

sphere with radius r around the focus (being the origin of the coordi

nates) has been carried out by Boomars [20]. The field behaviour de

pends on kr as well as on the f/D ratio of the paraboloid; for large 

kr values the maximum power occurs mostly in some direction 6 off the 

feed axis. Since most of the conical feeds do not possess this proper

ty, a different approach for efficient illumination of deep dishes 

should be used. 

An improvement could be achieved by the application of biconical horns. 

Due to the requirements on the bandwidth and the pattern symmetry the 
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corrugated biconical horn with one propagating mode has been chosen 

here. 

In this chapter we shall derive the electromagnetic field in a bico

nical horn antenna (Fig. 3.1} with a solid core in the domain 

0 < e < e1 , and with the boundary conditions E~ = H~ = 0 at both the 

inner wall e = el and the outer wall e = e2. ~e dispersion relation 

will be solved for arbitrary values of e1 and e2 • Finally, the far

field radiation pattern will be computed. 

3.2. Hybrid modes in biconical horn antennas 

The TE- and TM modes in a biconical horn may be derived from the fol

lowing expressions, which are the spherical field components of (1.37} 

in the free space J M 0. 

Fig. 3.1: Bi conical horn antenna. 

E 1 ( a
2 

k2)Ar' r jwE
0 

C:lr2 + 

dF a 2A 
Ee 

r r 
- rsine ~+ jWE

0 
r arae I 

(3.1} 

1 
dF 

1 1 a 2A 
E~ 

r r 
r ---ae+ jWE rsine ara~ ' 

0 

H 1 ( a
2 

2) -.-- --2 + k F I r JW\Jo C:lr r 
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1 
oA 

r 1 1 
a2!<' 

r 
He rsine 

--+-- arae 
, 

a<jl jwµo r 

(3. 1) 

1 
oA 

1 
o2F 

r r 
H<jl r Te+ jwµo rsine ara<1> 

Ar and Fr are the radial (assumed to be the only non-vanishing) compo

nents of the vector potential associated with the electric and magne

tic source currents respectively. 

We assume that the hybrid mode to be considered can be obtained as a 

sum of TE- and TM field. Since both e = 0 and e = 11 are excluded from 

the field region, we need, for each of the above potentials both 

Legrende functions Pm(cose) and Qm(cose) in the series expansion each v v 
term of which is separated with respect to the polar coordinates. The 

individual terms of these expansions have to satisfy the Helmholtz 

equation, ,.;o that we. can fix the potentials for a special mv mode 

with [23] 

(A) 
r mv 

(3.2a) 

(3.2b) 

H(2 ) (kr) is the spherical Hankel function of the second kind and 
v •(2) ... ~ (2) 

order v which can be expressed by Hv (kr) = ~11kr/2 Hv+~(kr). A1 ,A2 , 

B 1 and B2 are constants to be determined from the boundary conditions 

at e = el and e2. 

The field components for a special mode are obtained by substituting 

(3.2) in (3.1). The explicit expressions read as follows at points in

side the horn: 

z ii( 2 l (krl 
0 \) . (3.3) 

r 

1 [A2 m - -.- - P (cos e) sine z v 
0 
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Z H o r 

zoHe 

ZoHdl 

where 

z li! 2l !krl 
0 \} 

r 

[A2 av (kr) Zo 

z 8 !2 l !krl 
0 \} 

r 

I si~0 ( ','~ ( oos0) + B1Q~(cose)] + 

I dPm(cos8) B2 dQ~;oos0) J ! \} 

dB 
+- sin(m•fr z 

[Al 

dPm(cos8) 
\} 

dB 

aH (2 ) (kr) 
\} 

0 

aO::<=•"J 
+ Bl dB + 

a (kr) 
\} jk dr H (2) (kr) 

\} 

(3. 3) 

(3.4) 

The subscript 1 refers to the TM mode, 2 to the TE mode contribution. 

The function av(kr) depends on kr as well as on v. With the aid of the 

asymptotic expansion we infer that lima (krl. -1, an a.pproximation 
\} Kr-t«' 

which holds for large kr i.e. kr >> v. We emphasize that ttie hybrid 

modes discussed in this chapter are derived under this app~oximation. 

3.3, The dispersion relation for the boundary conditions E~ 0 

Applying the boundary conditions at 0 

we obtain 
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and 

- [:: 
m 

dP v (cosB) dQ~(cosB) 11 

- CLV (kr) 

dB z 
0 

dB ·J e 

dQ~(cosB)] 
+ B1 dB + 

1 [A2 .m 
- . - 8 -z P (cosB) sin v 

0 

0 ' (3.Sa) 

0 . 

(3.Sbl 

These equations can only be solved for v values independent of r if 

we apply the approximation av= -1, which assumes that krmin >> v, 

rmin being the r value at the top of the cone; therefore, the latter 

should not extend to the origin of the coordinate system. Under these 

conditions Eqns. (3.5) become as follows, ordered with respect to A
1 

and B 1: 

and 

1 m ~ + -.-
8 

P (cosB) + 
sin v 

+ --)._e Qm(cosei] I 
sin v - e 

1 m ] -.-
6 

P (cos6) + 
sin v 

--)._6 Qm ( cos 6 i] I sin v 6 

0, (3 .6a) 

6 e 0 (3.6b) 
1 I 2 

We observe that both equations depend only ort 6 and that a solution 

can easily be found if A
2

/A1z
0 

= B
2

/B
1

Z
0 

= + 1, since then (3.6a) and 

(3.6b) lead to the same result. The approxima tive dispersion equation 

will then have the form 

p:!: (61) + 
G-(6 1) 

0 I 
(3. 7) 

p:!: (6 2 ) + G- (6
2

) 
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or 

0 , 

in which 

F:!:(6l 
dPm(cos6) 

1 m v 
d6 + --

6
- P (cos6) - sin v 

(3.8) 

c;:!: (6) 
dQm(cos6) 

1 m \) 

d6 + sin6 Qv(cos6) -

The modes corresponding to the upper signs are called the HE(+) modes, 

the HE(-) 
mn 

the other ones modes. For given m, 61 and 6
2

(6
1 

< 62) there 
mn 

is an infinite number of increasing v values that satisfy Eqn. (3. 7). 

Some numerical results representing these modes by plotting v
2 

or v
1 

as a function of 9
2

, taking 9
1 

as a parameter, are given in the Figs. 

and (3.3); corresponding data for the real v values of the (3.2) 

HE(+) 

~~) 
HE11 

mode (with the smallest but one v value form = 1) and the 

mode (smallest v form= 1) are given in Tables 3.1 and 3.2. For 
(1) (2) 

comparison we have also plotted the solutions for the HE
11 

- and HE 11 
modes [21] in a horn with the anisotropic boundary conditions 

The factor A1/B
1 

needed for the computation of the radiation pattern 

is simply fixed by Eqns. (3.6). The functions Pm(cos6) and Qm(cos6) 
v \) 

v 

10 

5 

e,= 
25"5"10"20" 30" 40" so• so• 

20° ~ 0° sao aao 
----e2 

Fig. 3.2: The HE~;) mode. 
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10° 17.8439 

15° 13.4455 16.9881 

20° 9.3879 11.2785 17.1034 

25° 7.1560 8.2987 11.4182 

30° 

35° 

40° 

45° 

5{)0 

55° 

60° 

65° 

70° 

75° 

80° 

85° 

90° 

5.7498 

4.7863 

4.0873 

3.5591 

3.1472 

2.8183 

2.5507 

2.3296 

2.1448 

1.9889 

1.8560 

1.7425 

1.6633 

6.5230 

5.4383 

4.5167 

3.8'?.91 

3.4240 

3.0485 

2.7456 

2.4969 

2.2901 

2. 1163 

1.9691 

1.8434 

1.7559 

8.4252 17.0782 

6.6368 11.4940 

5.4511 8.5017 

4.61.00 6. 7119 

3.9843 

3.5023 

3.1210 

2.8131 

2.5603 

2.3500 

2.1733 

2.0235 

1. 9199 

5.5240 17.2271 

4.6804 11.5304 

4.0524 8.5437 

3.5683 6.7583 

3.1853 

2.8760 

2.6222 

2.4114 

2.2675 

5 . 57 41 1 7 . 4611 

4.7341 11.5480 

4.1097 8.5669 

3.6294 6.7874 

3.3197 5.81 20 

(+) 
Table 3.1: The v-vaiues for the HE

12 
mode. 

are obtained from their representations in terms of triqonometri~ 

functions if v is an integer, or in terms of hypergeometric functions 

in all other cases. 

L-et us return to the discussipn of errors introduced by the approxima

tion av(kr) = -1. As stated, a depends on vas well as on kr. Equation 

(3.7), whe n derived from (3. 5 ) for finite kr (a becoming a complex 

quantity) yields complex orders v which depend on kr; therefore, these 

v-values cannot be considered as eigenvalues, since the corresponding 

wave function is not a solution of the Helmholtz equation. However, 

Eqn. (3.7) may be used in the limit for very large kr. Moreover, for 

small v-values av approaches the limiting value rather fast, even in 

the case of a relatively small kr. The latter property is of interest 

for our application since in most cases e
1 

< 10° and e
2 

> 60°; the so

lutions for v in biconical horns approach then the result obtained in 

conical horns, both with the boundary conditions E~ = H~ = 0 (see Figs. 

3 • 2 and 3 . 3 ) • 
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0/01 2.5° 50 100 200 40° 60° 

100 

15° 19.0169 20.5873 

200 14.2659 14.7484 17.9745 

25° 11. 2960 11.4779 13.1824 

30° ' 9.3274 9.4072 10.2145 16.9945 

35° 7.9250 7 .9641 8.3891 12.1884 

40° 6.8747 6.8956 7.1365 9.2729 

45° 6.0588 6.0707 6.2152 7.5247 

50° 5.4067 5.4138 5.5045 6.3547 18.3021 

55° 4.8736 4.8781 4.9372 5.5127 11. 7376 

60° 4.4297 4.4327 4.4725 4.8747 8.7871 

65° 4.0545 4.0565 4.0840 4. 3725 7.0268 

70° 3.7332 3.7346 3.7540 3. 9654 5.8588 17.5657 

75° 3.4550 3.4559 3.4700 3.6278 5.0274 11. 6227 

80° 3.2117 3.2125 3.2228 3.3425 4.4053 8.6529 

85° 2.9974 2.9979 3.0057 3.0976 3.9219 6.8792 

90° 2.8434 2.8438 2.8500 2.9252 3.6061 5.9045 

Table 3.2: The v-values for the HE(-} 
11 

mode. 

3.4. The aperture fields of a biconical horn antenna 

After solving the dispersion equation we can derive the aperture 

fields of the horn; these are needed for the d e termination of the 

radiation pattern. 

\ 

Again we shall use Eqns. (3.3) applying the approximation a(kr} = -1 

We then obtain from (3.3) the following relevant field components for 

a single mode across the spherical apertures of Fig. (3.1), for both 

A2/A1Zo = B2/B1Zo = + 1: 
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A z 8( 2) (kr} 
1 0 v 

r 
m J dP (cos0} 

1 ~ + -.-
0
- pm(cos0) + 

0 sin v · 

1 m J + -.-0- Q (cos0) 
sin" v 

sin(m<j>}, 



B [d~(cos0) - JI 
+ A~ --de.,.----: si!a ~(cose) cos(mljJ), 

A
1
zii(2)-(kr) j[dPm( ) l 

o ~ ~a cos a : si~0 P~ ( cos0 >J + (3.9) 

+ -B1 [<(cos0) 11 
Al d0 : si~0 ~(cos0) cos(mljJ) I 

A z a< 2 > (k ) 1 o v r 
r 

sin(mljJ). 

The ratio s 1/A
1 

is fixed by Eqn. (3.6). 

For two examples of such aperture fields the quantity E = IE4'/sin4JI = 
= IE

0
/cos4J\ is plotted as a function of ·a in Figs.3.4 and 3.5, 61 

being given with 62 as a parameter. We observe that the fields vanish 

(as they should) at the boundaries. Furthermore, a maximum field 

intensity occurs at some angle 0 between 61 and 62. 

-E 

!!.1 .5• 
rs ·, 

!Lt • io• 

10 10 

5 

30 
COEGRl 

<+> a ·-= 5°. Fig. 3. 4: HE
12 

mode, 1 
(+) 0 

Fig. 3.5: HE
12 

111ode, e1 = to . 
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3.5. Fields in the grooves of a corrugated biconical horn 

To obtain the desired symmetrical radiation pattern mentioned in the 

introduction we had to satisfy the boundary conditions E~ = H = 0 
~ 

at the two boundaries 6 = e1 and 6 = 6
2

. These simultaneous conditions 

can be realized by proper corrugation of the boundary walls with the 

aid of grooves. 

First, in all cases which are to be considered, e2 (outer wall) is 

large and a solution in terms of Eqns.(3.1) is needed everywhere in

side the walls, including the grooves. To compute the field in the 

latter (Fig. 3.6) at the e2 boundary we apply the theory described by 

Jansen et al. [21]. Assuming that kb << 1 and (r
2 

- r 1)/r
1 

< < 1 this 

theory entails that 

v =.!..+~I.!..+ (kr1>2 
2 - , 4 

Fig . 3.6: Spherical groove geometry. 

(3.11) 

A narrow width of the grooves implies that the TM mode will be domi

nant in the grooves. Applying the boundary conditions at the walls R
1 

and R2 of Fig. 3.6 the mentioned theory shows that, if H~ should 

vanish at the opening of the grooves (6 = e
2
), the following relation 

has to be satisfied: 

0 . (3.12) 

Using the expression (3.11) we have evaluated (3.12) numerically. The 

depth of the grooves in wavelength is plotted in Fig. 3.7 as a func

tion of v for several values of e
2

• We may conclude that the depth of 

the grooves changes rapidly as a function of kr
1

, and thus of v for 

78 



small 62 , and that the depth is nearly independent of v for large 6
2

• 

For large kr112 values a useful approximation for the depth of the 

grooves results. In fact, Eqn. (3.11) can be simplified for large 

kr 
1

, giving -v = kr 1 "' kr2 • 

s 0.5 
I 02= 

ts• 

0.4 

30° 

0.3 45° 

~i:~ 
0.25 

5 10 15 
k r1 

Fig. 3.7: Depth of the grooves vs. kr1 • 

With the aid of the asymptotic formulas for Pm and Qm we obtain for 
v v 

the depth of the grooves 

A 
s = 4 (2t + 1) t O, 1, 2, .•.••• (3 .13) 

This result is in agreement with the asymptotic value of the depth of 

the grooves found in circular waveguides. 

The inner wall (boundary 6
1

) is assumed to be a cone with narrow angle 

(6
1 

< 15°). We may, therefore, derive the depth of the grooves as in 

section 2.6.1. 

3.6 ; The radiation pattern 

The spherical surface confined by the rim of the outer cone Ce = 6 2 ) 

consists of the part SB inside the inner cone (6 < 61) and the re

maining SA constituting the effective aperture. 

79 



If we assume that the influence of the currents at the surface s8 
(Fig. 3.9) is negligible, the rigorous representation by (2.44) and 

(2.45) may again be used for the calculation of the electromagnetic 

field at the remote point P: 

x 

~ ( !: ) cur lp J [!! x ~ ( !: ' ) ]G ( !: , !: ' ) dS + 
SA 

1 
+ -.~- curlp curlp 

JWE:O 
f [n x ~(!:')]G(!:,!:')dS, 

s;,. 

~(!:) curlp J [n x ~(!:'l]G(!:,!:'ldS + 
SA 

z 

p 

Fig. 3.9: Corrugated biconical horn. 

1 exp(-jk\E - !:' \l 

47[ I!: - EI I with the Green function G(E•E'l 

(3 .17) 

(3.18) 

y 

here r' fixes a point P' in the spherical aperture with radius r si
o 

tuated between both cones; !! is the local unit vector in the radial 

direction at P'. 
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For the far field the gradient operator may be replaced by -jkE/IEI, 

and IE - E'I by r - r'[sin6sin6'cos(¢ - ¢') + cos8cose•] in the ex

ponent, but by r in the denominator. This yields the following rele

vant field components: 

Ee (r,e ,¢) 
e-jkr 2 
---r 

r o 

x exp[jkr (cos6cose• + sin6sin6'cos(¢ - ¢')) ]sin8'd8'd¢' 
0 

(3 .19) 

x exp[jkr (cos8cos6' + sin6sin8'cos(¢ - ¢ 1 ))]sin8'd8'd8' 
0 

(3.20) 

where Ee,¢ and He,¢ are short for Ee,¢<r',8',¢'l and He,¢(r',8',¢'l. 

Substituting of Eqns. (3.9) in (3.19) and (3.20), application of the 

relation 

exp[jkr sin8sin6'cos(¢ - ¢')] = J (kr sin8sin8') + 
0 0 0 

+ ~ 2jnJ (kr sin6sin8')cos[n(¢ - ¢')], 
n=1 n o 

and evaluation of the integration with respect to ¢' gives the fol-

d . · f th HE(+) mode·. lowing final result for the ra iation pattern o e ln 

'k e -jkr - (2) 
- ~ -- r z H (kr ) cos¢ [A

1
F(8) + B

1
G(8)] , 

41f r o o " o 
(3.21) 

;k -jkr (2) 
~ _e __ r z ii (kr )sin¢ [A

1
F(8) + B

1
G(6)], 

4ir r o o v o (3.22) 
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with the functions F and G defined by 

e2 

F(e) 
f 

{(cose• + cose)[J (kr sinesine•) + J 2 (kr sinesinS•)J + 
0 0 0 

+ (1 + cosecose•j[J (kr sines1ne 1
) - J 2 (kr sines1ne 1

)] + 
0 0 0 

(3. 23) 

e2 

G(e) I { (cose' + cose) [J (kr sinesine') + J 2 (kr sine sine')] + 
0 0 0 

+ (1 + cosecose')[J (kr sinesine') - J 2 (kr sinesine')] + 
0 0 0 

+ 2jsinesine 1J
1 

(kr
0

sinesin8 I) }g~~) (e I) exp ( jkr
0 

Cosecose I) Sine I de I 

while 

f <+> ce · l 
1 \) 

dP~ (cose') 1 
de' + sine' P ~ (cose,) 

dQ~ (cose') 1 
de' +sine• Q~(cose') 

(3.24) 

(3.25) 

(3.26) 

The radiation pattern of the HE(-) modes can be derived in a similar 
mn 

way. The ratio B1/A1 , which is needed in the above expressions, is ob-

tained from Eqn. (3.6). From (3.21) and (3.22) we infer that 

1Eel
2 

+ IE¢1
2 

is independent of ¢. We observe that the corrugated 

(coaxial) waveguides and (biconical) horns all produce a symmetrical 

radiation pattern, provided the boundary conditions E¢ 

satisfied. The power radiation pattern is given, in our case of a 

hybrid mode, by 

20 log10 
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B 
F(e) + f G(e) 

1 

Bl 
F(O) + - G(O) 

Al 

(3.27) 



The computed radiation patterns of the following antennas have been 

plotted in Figs.3.10 to 3.15 for the case of excitation by the hybrid 

HE(+) mode. 
12 

antenna 91 92 

1 7.5u 6QU 

2 12.5° 60° 

3 7.5° 75° 

4 12.5° 75° 

5 12.5° 90° 

6 17.5° 90° 

Table 3.3 

These values of 91 and 92 fix that of v. The radiation pattern can 

then be determined with the aid of (3.22) and (3.24) if kr is also 
0 

given. 

For each of these antennas two patterns with different kr
0 

values are 

represented, one with small aperture diameter, and another with a 

large aperture diameter. The power function of the radiation pattern 

as well as the corresponding phase for the associated far-field (al

so shown) are both normalised with respect to their values of zero 

dB and zero degrees which refer to the direction of maximum radiated 

power. 

We conclude from these results that the amplitude and the phase pat

terns strongly depend on kr
0

. An antenna with small aperture has a 

rather non-uniform phase distribution; this will result in phase de~ 

viations across the aperture of the parabolic reflector and, conse

quently, in a decrease of the gain. 

From Fig. 3.11b we may also conclude that even for a large feed dia

meter the phase distortion caused by the inner part of the antenna may 

be considerable. Further, the difference between the forward direction 

(9 = 0) and that of the maximum intensity(normalized at 0 dB) is found 

to be a function of kr
0

. This implies that, by applying the large dia

meter feed which gives the best radiation properties, deep dishes can 

be illuminated very efficiently. In other words, the radiation.pattern 

in these cases rather closely approximates to the sec2 (~)function 
which is characteristic for a maximum illumination efficiency ni 1. 
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Such a pattern is plotted in Fig. 3.14b. In this case the "dip" in the 

forward direction is about 7 dB below the maximum which occurs in the 

direction e = 40°; the edge illumination for e = 90° becomes - 19 dB, 

while we also find a nearly constant phase pattern from e = 15 up to 

85 degrees. For other values of kr
0 

(12.6 < kr
0 

< 33.5) characteristic 

parameters for the radiation-pattern beam width are plotted in the 

Figs. 3.16 to 3.21, in succession for the same antennas as above 

labelled to 6; the significance of the relevant parameters is infer-

red from the schematic diagram at the top of Fig. 3.16. We ~nfer from 

these plots that the direction e
0 

of maximum radiated power does not 

change virtually with kr
0

• The spill-over, however, greatlyj depends on 

kr
0 

which is apparent from a rather steep decrease of, e.g. e
10 

and 

e20 for large kr
0

; a corrugated horn with wide flare angles [ 21] . also 

shows the same property. We may conclude that for the parabolic reflec

tor with given f/D, and the feed with some kr
0

, optimum values of e
1 

and e2 can be found such that the aperture efficiency becomes maximum 

Finally, we would remark that for large kr
0

, the region of a nearly 

e independent phase is closely approximated by the interval extending 

between the corresponding values of e1 and e2 • This may be seen as a 

consequence of the field distribution across the feed aperture since 

there is no power flow along the corrugated wall. 

3.7. The antenna efficiency 

The results from the last section show that the biconical corrugated 

feed is capable of producing a very wide radiation pattern suitable 

for illuminating deep dishes. OWing to the "dip" in the forward direc

tion and to the pattern shape, a relatively uniform aperture distri

bution may be expected for the paraboloid. On the other harid, this 

type of feed will cause a considerable phase distorsion and, therefore, 

a reduction of the gain. Obviously, the improvement of the fie ld uni

formity across the reflector aperture should be higher than the addi

tional phase losses due to this type of feed. In order to predict the 

aperture efficiency of the paraboloid with a biconical corrugated horn 

as a feed, we shall throughout this section use the relation 

n n. n n ; we then neglect all cross-polarisation effects. An opti-a J. s p 
mum feed for given f/D is found by varying e

1
, e

2 
and kr

0
• 
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3.7.1. The phase efficiency 

As stated, the effect of the phase errors will be of primary concern. 

We have to minimize this effect in order to keep the antenna gain at 

the required level. We consider the Eqn. (1.8) with 

E(6) = IE(6) le-j~(S) • The phase efficiency is computed numerically 

from the predicted radiation pattern and the results for antennas 3,4, 

5 and 6 of the preceding section are represented in Figs. 3.22 to 

3.25, for different values of e1 and e2 , as a function of kr
0

• The 

curves in these figures show the phase efficiency for various values 

of the edge illumination of the parabolic reflector; this latter para

meter as the power radiated in the direction 6
0 

relative to that of 

its maximum value. 
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Fig. 3.22: The phase efficiency 

of antenna 3. 
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Fig. 3 . 23: The phase efficiency 
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Fig. 3.24: The phase efficiency 
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Fig. 3.25: The phase efficiency 

of antenna 6 . 
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We may conclude that there is a considerable difference in the phase 

errors for antennas with the same e2 but different e1 • This is shown 
0 0 by considering the Figs. 3.22 and 3.23 for e2 75 and e

1 
= 7.5 

and 12.5°, respectively. The antennas with e2 90°, e1 = 12 .5° and 

17.5° show a similar effect (Figs. 3.24 and 3.25). For a large feed 

(kr > 20) the phase losses could be kept below 5%, while the power 
0 

radiation pattern does not change virtually (for compari'son see the 

beam width versus kr
0 

in Figs. 3.18 to 3.21). Thus, for every e2 , a 

lowest possible value of e
1 

and kr
0 

can be found such that the phase 

losses are negligible and have no influence on the pattern shape. This 

will, however, not apply to feed with e 
2 

< 65° where the phase dis

torsion plays a significant role; this indicates that t~ese feeds are 

not suitable for application in flat dishes (large f/D) . ~ 

Summarizing, the choice of a large feed aperture, large e
2 

and small 

e
1 

proves to give the most satisfactory result, with lowest phase 

degradation. In such a case the phase efficiency is fairly indepen

dent of the edge illumination. 

3. 7.2. The illumination and spill-over efficiency 

These are the other two quantities determining the antenna gain. Since 

the conditions for minimum phase errors are now shown, we still have 

to maximize the product nins. 

The spill-over efficiency has been defined in (1.7) as the ratio of 

the power concentrated within the cone e < 0 and the total power 
.0 

radiated by the feed, while the illumination efficiency is represen-

ted by (1.6). We have computed these two efficiencies for antennas 3 

and 6 (Table 3.3) as a function of kr
0

• The values are plotted in 

Figs. 3.26 and 3.27 separately for various edge illuminations. As 

expected , both ns and ni are very dependent on the edge illumination. 

A high edge illumination.gives a nearly uniform amplitude distribution 

across the aperture of the paraboloid but causes a large amount of 

spill-over. We observe that the illumination efficiency is quite inde

pendent of kr
0

, while the spill- over decreases rapidly with increasing 

kr . 
0 
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In Figs. 3.28 and 3.29 the aperture efficiency n = n n.n is shown 
a s i p 

for various feed diameters (d = 2r
0
sine

2
> as a function of the 

angular aperture 0
0

, again for antennas 3 and 6. Antenna 3 shows a 

maximum aperture effciency for 0
0 

= 62° (f/D = 0.415); for a feed with 

the diameter d = 10.3A we find na = 0.85. Antenna 6 is suitable for 

paraboloids with 0
0 

= 75° . (f/D = 0.325). In this case we have na =0.84 
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for d = 10.67A. Application of feeds with smaller diameter, viz. 

d = 6.44A and 6.67A respectively, lowers the aperture efficiency by 

approximately 3%. 

Antenna 6 combined with a focal-plane paraboloid (0
0 

= 90°, f/D = 0.25) 

entails an aperture efficiency na of 68%; for such a deep dish this 

constitutes a relatively high value, compared with other single-mode 

feeds. 

3.7.3. The figure of merit 

In order to determine reception performance of the parabolid ;with bi

conical corrugated horn, we next derive the "figure of merit " . We 

shall apply the simplified expression (1.19). The corresponding figure 

of merit is plotted in Figs. 3.30 and 3.31 for two feeds, 3 and 6, 

respectively, as a function of the angular aperture 0
0

. A range of va

lues for d/A, comprised between those referring to the dotted and so

lid lines has been considered, leading to bands (instead of curves) in 

which T has a constant value as indicated. We observe that the maxi-
r 

mum of F.M. occurs for higher 0
0 

values (lower f/D ratios) than the 

maximum of na for the same antenna (for comparison see Figs. 3.28 and 

3.29). This is due to the influence of the spill-over and of Tr to the 

antenna noise temperature Ta. The latter decreases with increasing 0
0 

more rapidly than na' so that the maximum F.M. will be found at a 

lower spill-over level. Further, also Tr becomes important; if Tr de

creases, the F.M. decreases, too, and its maximum will be found at a 

higher 0
0 

(less spill-over). We observe that the choice of the feed 

diameter (d = 2r
0
sin92 l becomes very critical. This is becam~e of a 

rapid decrease of the spill-over for increasing aperture diameter; we 

know that in such a case the illumination and phase efficiency do not 

virtually change. The variation in feed diameter (4A < d < 10.67A.) could 

cause a lowering of the figure of merit by more than 10%. 

From this we may conclude that these feeds are suitable for use in 

deep parabolic dishes when high gain and low noise operation are re

quired. Application of biconical corrugated feeds could considerably 

improve antenna performance. 
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3.8. Experimental investigation of biconical horn antennas with 

grooves 

We have experimentally investigated several feeds, with different 

values of 61 , 62 and kr
0 

Some results for two antennas, viz.: 

A 7.5° 

B 12 .5 

are shown in Figs. 3.32 and 3.33. 

65° 

75 

kr 
0 

29.3 

29.3 

Good agreement between the measured and predicted values is observed 

in both cases. Note that in the case of antenna B the inner part of the 

feed is longer than the outer one. This results in a "dip" of about 

-15 dB relative to the resulting aperture distribution will be appro

ximately toroidal; the maximum power radiates in the direction 6 = 44° 

towards the paraboloid while the power distribution decreases rapidly 

towards the reflector rim and the centre of the dish. 

Although the agreement between the H- and E-plane is almost perfect 

and the normalized pattern beam width has a frequency-independent 
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Fig. 3.33: Experimental pattern 

of antenna B. 

character (quite similar to that of scalar feeds) , the cross-polarisa

tion increases rapidly with incre asing frequency. The coupling section 

between the waveguide and the cone is the most critical part of this 

feed; unwanted modes can be excited there with the present feed model. 

We have also investigated these feeds experimentally in combination 

with a parabolic reflector. Part of these experiments has been carried 

out in Westerbork with a 25-metre dish operating at 4995 MHz. It was 

the aim of this experiment to lower the spill-over to about 1.8%, and 

to keep the aperture efficiency at 65%. The measured antenna efficien

cy was 63%, and several types of coupling sections have been tested. 

Another experiment has been carried out with a focal plane paraboloid 

(Figs. 3.34 and 3.35) and a feed similar to antenna 6 (9
1 

= 17.5° and 

92 = 90°), but with a longer central cone as shown in Photograph 3.1. 

The measured gain of this 61 cm paraboloid was 40. 23 dB which corre

sponds to an aperture efficiency of 64.6%. This is ce rtainly an accep-
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Photograph 3.1: Focal plane dish with biconical feed. 

table value for such a deep dish. The pattern envelope and the cross

polarisation could be improved by using a self supporting central-fed 

structure. This is found to be possible due to the co-.figuration shown 

in Photograph 3 .1. In s uch a case the coupling section is also simpler. 
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CHAPTER 4 

OPTIMUM REFLECTOR ANTENNA DESIGN 

4.1.1. A Survey of reflectors consisting of paraboloids of revolution 

Great technological progress has been made in satellite communication 

in the past decade, accompanied by an increase in the number of sa

tellites, their capacity, and the number of ground-station antennas. 

The earth-terminal situation is characterised by the availability of 

various types, from 25-30 metre high-capacity antennas to low-cost 

1.5 metre T.V. receiving terminals. 

The trend towards smaller diameters and less directive ground-station 

antennas increases the interference potential, as adjacent satellites 

and terrestrial radio relays may operate in the same frequency bands. 

Antenna sidelobe patterns with the envelope significantly below the 

CCIR references in the specific region from 9 = 2.5° to 6° off-axis 

(where adjacent satellites are likely to be found; 2 and 3 in Fig. 

4..1), as well as in the region of far-field side lobes (where radio 

relays could be operational), would be very advantageous for new ap

plications. These references read [24]: 

a) D 2! 1001' 

G(0) 32 - 25 log109 (dBi), 1° ~ 9 ~ 48°, 

-lO(dBi), 490 ~ 9 ~ 180°. (4. la) 

b) D < 1001' 

G(9) 52 - 25 log109 - 10 log D/A (dBi), 1° ~ 9 ~ 48°, 

-10 (dBil, 48° ~ 9 ~ 180° . (4. lb) 

The polarisation properties of the ground-station antenna have to sa

tisfy the re-use requirements, i.e. dual polarisation use at one fre

quency. Orthogonal polarisation provides an efficient use of the avai

lable frequency band by doubling its capacity, and it can also sup

press the crosstalk between the adjacent satellites 1 and 2 or 1 and 

97 



3. Clearly, a high cross-polar isolation is required, generally below 

-30 dB over the 1 dB bandwidth. These characteristics should be 

achieved over a bandwidth of 8%, both for the transmitting band (up

link) of 6 GHz and the receiving band (downlink) of 4 GHz; according 

to a conventional notation the combination of these bands is indi

cated as the 4/6 GHz bands. 

Finally, increased antenna efficiency without additional cost conside

rably reduces the expense of the complete system (i.e. the antenna 

combined with a low-noise amplifier (LNA) or with a high-power ampli

fier (HPA). As antenna diameters . are reduced, the costs of :LNA and 

HPA increase very rapidly for the same specifications . on ~he other 

hand, any increase in antenna size to utilize lower-cost aijiplifiers 

will result (in present antenna technology) in high system pr1ce, due 

to the additional cost of the antenna. 

2 3 

Fig. 4.1: Location of adjacent satellites. 

From this we may conclude that the antenna, including the feed system, 

forms an essential part of the earth terminals. New antennas which 

satisfy the above requirements and which are low in price could play 

an important role in present and future developments in satellite 

communication technology. 

Rotationally-symmetric reflector antennas, such as front-fed and 

Cassegrain (Fig. 4. 2), still play a significant role in communications 

[25], [26]. 
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Developments in large ground-station antennas resulted in a sophisti

cated Cassegrain-shaped design [27]. 

teed 

/ 
/ 

/ 

Fig. 4.2: Front-fed and Cassegrain reflector. 

sub reflector 

"' "' "' "' "' "' 

The front-fed paraboloid of revolution is the most simplest, while its 

feed size is small in terms of the reflector diameter. The blockage is 

then less than in Cassegrain design. On the other hand, the main ad

vantage of the Cassegrain geometry is its good noise performance. The 

largest fraction of the primary spill-over is radiated beyond the sub

reflector against the "cold" sky. The secondary spill-over, due to the 

scattering from the subreflector, is considerably lower than in the 

corresponding case of the front-fed paraboloid. 

The near-field Cassegrain design (Fig. 4.3a) consists of two confocal 

paraboloids of revolution, and the feed system, usually a horn para

boloid, illuminates the subreflector by a wave front which is approxi

mately uniform in phase [28J. Such a configuration is commonly ~sed in 

large antennas (D > 100A); the subreflector and the main reflector can 

be properly shaped to increase the antenna gain. Compared with the 

classical Cassegrain of Fig. 4.2b this arrangement allows a lower edge 

illumination of the subreflector which, consequently, lowers the dif

fraction effects. Typical for the classical Cassegrain and near-field 

Cassegrain antenna is the la.rge feed needed for the illumination of 

the subreflector. The feed, together with the electronic equipment 

(transmitter or receiver), are housed in a moving box situated behind 

the main reflector. 
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(a) Near-field Cassegrain. b) Cassegrain reflector with beam
waveguide feed. 

Fig. 4.3 

In order to keep the feed and the receiver (transmitter) stationary 

for limited steerability of the main reflector a beam waveguide feed 

(Fig. 4.3b) has been developed [29], [30]. Such a feed system makes 

use of four reflectors, two plane and two curved. It is possible to 

design these reflectors such that frequency re-use applications become 

possible. The advantages are, clearly, only mechanical ones. 

Summarizing, the reflector antennas consisting of surfaces of revolu

tion are widely used devices with good cross-polarisation performance, 

and a high gain (shaped design). On the other hand, a high sidelobe 

level, caused by the blockage of a part of the reflector, could be-
1 

come a serious obstacle in future applications. Since this di sadvantage, 

quite independent of the design details, remains unchanged we may con

clude that only the "open" geometry will offer the possibility of 

further improving the radiation behaviour of reflector antennas. Such 

a geometry implies that each aperture point can be reached by a geome

tric-optical ray leaving the source, independent of the number of re

flections along its path. A number of off-set. systems have been deve

loped for which the blockage does not occur. Most of these systems are 

derived from the rotational-symmetric configurations. A very simple 

example is that of a single off-set paraboloid of revolution (Fig.4.4a). 
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The feed illuminates only a part of the reflector such that there will 

be no aperture blockage. 

(a) Off- set reflector. 

feed 

I 

~1 
~I 

Fig. 4.4 

(b) Open Cassegrain antenna. 

We find, however, an additional cross-polar component which depends 

on the off-set angle 9
0 

(the angle between the central ray leaving 

the feed, and the axis of the paraboloid) as well as the angle 9i of 

Fig. 4.4a [31]. With increasing 9
0 

the cross-polarisation increases too, 

and fore 45°, e. = 45° the cross-polarisation level is about -20 
0 l. 

dB, which is unacceptable for application in frequency re-use systems. 

This contribution can quite accurately be determined by applying the 

geometrical optics [32], [33] in case of an antenna illuminated by an 

ideal (Huygens) source (see section 1.3). 

A modification of this antenna is the open Cassegrain [34] shown in 

Fig. 4.4b. Its radiation behaviour is similar to that of a single off

set paraboloid but with better noise characteristics. Low compactness 

and the cross-polarisation are the main disadvantages here. Recently 

it has been shown that the cross-polarisation behaviour of this anten

na can be improved [35] by rearranging the feed and the subreflector 

position. However, it is likely that this antenna will be less compact 

than the previous one. 

For line-of-sight applications the horn paraboloid is presently the 

most popular reflector antenna with open geometry. The horn can be 

either pyramidal or conical (Fig. 4.5). 
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Fig. 4.5 

The aperture efficiency of the horn reflector is about 75%, while, due 

to the geometry there will be almost no spill-over. This antenna there

fore proves to be very suitable for low-noise applications; the noise 

temperature contribution due to the wide-angle lobes is less than 1°K. 

Due to the sidelobe characteristics it is suitable for use in micro

wave links. 

For these applications there is also a "folded" modification of the 

horn paraboloid [36]. In view of its length this antenna is less sui

table for applications with physically large aperture. 

4.1.2. Application of cylindrical focusing structures 

As already mentioned, all antennas discussed in the preceding section 

are focusing surfaces with rotational symmetry (or a part of it). Ob

viously, also a cylindrical paraboloid, in combination with a line 

source along its focal line, will collimate the beam; suctj an antenna 

can be used for pencil-beam applications. It is, however, a difficult 

task to design a line source operating in a wide frequency band while 

satisfying the frequency re-use requirements. Cylindrical reflectors 

with a line source are mostly used for narrow band applications. The 

advantage o f a simple shaping of the reflector surface (for instance 

for the cosec
2e pattern) makes these antennas suitable for radar 

applications. 

The cylindrical paraboloid can also be used in a combination with a 
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point source. In fact, it can easily be proved that a subreflector con
. 2 

sisting of the cylindrical paraboloid z = ...:J.::.... - f (with its focal 
4f1 1 

line F1), will transform the spherical wave emitted from a point sour-

se at the origin 0 of the coordinates into a cylindrical wave. The 

image focal line Fi of the latter is parallel to the y-axis and pas

ses through the point with coordinates x = O, z = -2f1• The main re

flector, another cylindrical paraboloid fixed by the relation: 

2 
x 

z = - ~- + f2 - 2f1 , 
4f 2 

(4.2) 

will collimate the cylindrical wave into a plane one, provided its 

focal line F2 coincides with the previous focal line Fi· 

z 

~· 

MAIN 
REFLECTOR 

(a) Crossed cylindrical para
boloids. 

Fig. 4. 6 

y 

. i _ _ ,.__ _ _ W~__.J 

(b) Aperture-plane images. 

I t is evi dent t hat such a system is suitr.ib le f or off-set applications. 

First, the primary source can be pointed in any direction fixed by 

the angles a and ~· Further, the subreflector and the feed can both be 

rotated about the focal line F2 (which is identical with t he i mage focal 

line Fil· Seve ral types o f refle ctor antennas have been develope d 

us ing this p rinciple [ 37], [38] . Note that i n these cases the s ubre

flector and the feed are both rotated by 90° with respect to the si

tuation shown in Fig. 4. 6a. Moreover, no cross -polarisation is found 

to occur in the principal planes (zy and zx plane in Fig. 4. 6a). 

Further, the f ar-fie ld pattern could be asymmetrica l in t he se planes, 

according to the a s ymmetry of the aperture f i e ld. Rays l eaving the 
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feed with pres~ribed e and ~ values intersect the aperture plane ac

cording to a pattern as shown in outline in Fig. 4.6b. The main ad

vantages here are the use of spherical source (corrugated horn) and 

the polarisation purity of the far-field pattern. 

The bandwidth of the system is limited only by the feed characteris

tics. This reflector type is suitable for "compact range" applications 

[39], enabling the far-field of a given antenna to be determined with 

the aid of observation in the near-field of another focusing! antenna. 

It can be used in an off-set configuration so that the result ing 

fields in the aperture (test area) are considerably more uniform in 

amplitude than in the present compact range design [40], [41]. From 

a mechanical point of view the cylindrical reflectors can easily be 

manufactured with high surface accuracy . 

Since all antennas discussed in this section have certain disadvan-

tages, we shall next determine the condi tions under which the ideal 

physically realizable antenna can operate. Next we shall determine the 

reflector system to be used. This is a different approach compared 

with the classical problem of optimizing the radiation performance of 

a given reflector-antenna system. 

For instance, the optimal aperture distribution for a circular aper

ture may be well defined, but this very distribution is no longer op

timal if a part of the aperture is blocked. Another example may be 

that of so-called h'igh-gain antennas ; such antennas do not always give 

the optimum gain/temperature ratio G/T. 

Finally, the realisation of an ideal antenna will mainly depf nd on the 

feed and its performance. This problem also will be discussed in more 

detail. 

4.2.1. Re flector s for opt imum G/T 

Low-noise operation is of great importance for satellite ground- sta

t ion antennas . It is an a im of the reflector design to keep the anten

na temp erature Ta' which contributes to the t otal system t emperatur e 

T (1. 9 ), as l ow as possible . For i nstance, the I nte lsat v 11/14 GHz 

104 



spot-beam ground-station (D ~ 14 m) will have a G/T in the 40 dB/K 

range. This G/T value is about realised in the case of existing 30 m 

terminals operating at 4/6 GHz. Small terminals for TV-reception only 

(D ~ 1 m) should have G/T of 12 dB/K. 

Bearing the assumptions from .chapter 1 in mind, we rewrite the expres

sion (1.11): 

Gl 
a TT/2 

T I T(9)sin9d9 + 
G2 

J T(9)sin6d9 + a 2 2 
0 a 

TT (4.3) 
G2 I + 2 T(6)sin6d6. 

TT/2 

As already stated in section 1.1, the largest contribution to the an

tenna temperature (Fig. 1.1) is usually caused by the (primary) feed 

spill-over radiating in the direction of the earth (T = 300°K). Even 
g 

a small amount of the spill-over energy will cause an important in-

crease of Ta and, therefore an increase in the total system tempera

ture T. 

Let us suppose a reflector arrangement with vanishing spill-over. The 

radiation in the region TT/2 < 6 < TT is then that produced by the aper

ture only. As an example, we assume that a circular antenna with 

D = 100A yields a uniform field distribution (in phase and amplitude) 

across its aperture. The far-field pattern is thus proportional to 

J 1 (u)/u. Further, the average gain is assumed to be constant in the 

quadrant TT/2 < 6 < TT and there to equal its value in the direction 

9 = 90°. Using the asymptotic expansion we estimate the average side 

lobe level at 23 dB below the isotropic one; G2 then equals 0.005, 

while T 150 x 0.005 = 0.75° K, assuming a noiseless sky. Clearly, 
a 

this is a very low value, and the antenna temperature will be fixed 

by the noise contribution from the quadrant 0 < 9 < TT/2, which in 

the microwave region is considerably higher than 0.75° K. Note that 

comparable results are achieved with horn reflector antennas which are 

also almost free of spill-over. 

We may conclude that the antennas which produce no spill-over are op

timal in view of . the antenna temperature. The class of r eflectors sa-
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tisfying these requirements is known as "beam waveguides". For the 

latter the bundle of rays propagating from the origin could be 

shielded by the metalic boundary up to the aperture without (at least 

theoretically) additional field distorsion, In view of this assump

tion the horn paraboloid may be considered as the simplest beam-wave

gui de antenna. Obviously, this implies that the edge illumination in 

some multi-reflector system should be kept at a low level, generally 

below -20 dB. 

Finally, we observe that such a · system can only be realized as off-

set one, so that the requirement of the open geometry is satisfied too. 

4.2.2. The aperture fields 

In this section we shall discuss the optimal aperture distributions 

for several application areas, in particular for ·satellite-ground 

communication antennas . Together with the constraints from the pre

ceding section this will lead to the choice of our "ideal" reflector 

antenna. 

As already mentioned, the pattern envelope for pencil-beam antennas 

should be below the CCIR refe rences. The latter allow a deviation of 

the sidelobes by 6 dB at most, so that the true pattern envelope might 

locally lie above the corresponding reference pattern. 

We have calculated the far-field pattern (Fig. 4.7) of three antennas 

with D/A = 100, a homogeneous phase but different aperture distribu-
2 tions for the amplitude, viz.: the uniform one, the 1 - p and the 

J
0

(j
01

p) pattern (p = radial distance to the axis, normalized by 

unity at the rim). The function J (j 1p) constitutes an optimum ac-
o 0 

cording to the criterion established by Spencer [42]. This author de-

fines the optimum distribution as the one that minimizes a properly 

normalized second-order moment of the far-field power pattern for a 

given aperture.This second-order moment constitutes a measure for the 

spread of power that is radiated aside from the beam axis. Some typi

cal data for the above distributions are given in Table 4 •. 1 while 

Fig. 4.7 illustrates the corresponding radiation pattern (the side 

lobes are partly i ndi cated. by their tops only). 
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Fig. 4.7: The far-field power patterns for various aperture dis
tributions . 
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aperture distribution effiency n 
a 

top-first sidelobe 

uniform 100% - 17.6 dB 

1 2 75% 24.6 dB - p -

J (j 1P) 69% - 27.p dB 
0 0 

Table 4.1 

we observe that all three distributions satisfy the CCIR require~ents 

which is in contrast with the experimental results. This disagreement 

is due to the blockage, the diffraction effects and to the direct feed 

radiation beyond the (sub)reflector, all of which modify the idealised 

aperture distributions assumed above. Moreover, the distribution 

J
0

(j
01

p) reduces the side lobe levels in the critical range 

2.5° < 8 < 6° by at least 15 dB (D/A = 100) compared with the CCIR 

norm. 

Until now we have assumed antennas with rotational symmetry. For a 

number of applications, however, an asymmetrical (~-dependent) far

field power pattern can be advantag_eous. The pattern envelope and the 

beam width needed may be less important in one principal plane than in 

the other. In other cases an asymmetrical beam could even be required, 

as in satellites or radars. 

The sidelobe suppression for paraboloids of revolution can be achieved 

in one special meridional plane by using some absorbing ~aterial on 

the reflector [43]. However, this technique not only lowers the anten

na gain by about 1.5 dB, but it also makes the antenna completely un

suitable for low-noise application. It also indicates how improvement 

of the radiation characteristics of existing antennas becomes compli

cated. 

A better result may be expected if we can realize an asymmetrical 

{sometimes called elliptical) far-field pattern with good polarisa

tion behaviour. 

It has been shown that an elliptical aperture (being a part of the 
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complete aperture of an reflector of revolution) , properly illumi

nated will produce elliptical power pattern in the far-field [44]. 

The feed suitable for this reflector, which should also yield good 

polarisation properties, has also been developed [45]. This antenna 

could therefore replace the circular one, provided the gain of both 

antennas is the same. 

In view of the far-field pattern envelope resulting from the aperture 

distribution J (j 1pl, we have concluded that this distribution is a 
0 0 

proper one for pencil-beam antennas for which a low sidelobe level is 

required; the CCIR-requirements are easily satisfied while the aper

ture efficiency is still about 70%. 

The 0-dependence of the true field distribution in the spherical aper

ture of a corrugated horn with the HE(+) mode is proportional to [21]: 
11 

f(0) (4.4) 

On the other hand, horns with narrow flare angles (0
0 

< 15°) provide 

the waveguide distribution J
0

(j
01

pl with an additional quadratic phase 

distribution across the spherical feed aperture; this pattern approxi

mates the field of Eqn. (4.4) very closely [4]. Applying geometrical 

optics we conclude that fields of the type given in Eqn. (4.4), after 

being collimated into a plane wave, become almost identical to 

J
0

(j
01

pl, provided 0 is small. As an example we consider a corrugated 

horn with a planoconvex lens in the aperture. The relation connec

ting the aperture distribution existing without the lens, f(0) say, 

with the actual distribution g(r) direct behind the lens reads: 

g(r) = f( 0 ) ~ ',_(ncos0 - 1J3 
~~ - cos0) (n - 1l

2 
(4.5) 

where n = ~and f is the local distance of the lens. Using the 
0 

Eqn. (4.4) we obtain for small 0(cos0 ~ 1) 

g(r) ~ Jo~ol 2~) · (4.6) 

With the aid of the geometrical-optical approximation we have noted 

109 



r 

d 

Fig. 4.8: The corrugated horn with planoconvex lens. 

the suitability of the distributions (4.4) and (4.6) for application 

in focusing reflector antennas. Since these fields vanish at the 

boundary we may consider them as ideal for beam waveguide use (zero 

diffraction effects). The next step involves the derivation of the 

true radiation behaviour in the near field; a comparison with the 

ideal case (geometric optics) determines the suitability of the men

tioned distributions for our purposes. 

4.2.3. -Near-field characteristics of corrugated horns with narrow 

flare angles 

Recently, several techniques have been developed for the determination 

of the fields for horns with narrow flare angles; these horns are now 

throughout assumed to satisfy the balanced hybrid conditions 

(E<I> = H<I> 0) at the walls. Some- experimental results are shown in 

Fig. 4.9 for a corrugated horn with 6
0 

= 6.5° and d = SA. The results 

concern the power and phase of the radiation as observed at two dif

ferent distances from the horn aperture, as a function of the relative 

transverse distance p (normalized to unity at the aperture rim). 

We conclude that this horn produces a wave front, part of which has a 

plane-wave character, that is in a limited range of distances from the 

probe to the aperture, close to the latter. 

Note that wi thin these distances the field distribution corresponds 

closely to that in the aperture of the corrugated waveguide, as indi

cated by the plot of specia l points of the function J
0

(j
0 1

p) in Fig.4.9. 
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There exist two other methods which could be successfully applied to 

determine the near-field. First, we could use the method described 

in Chapter 2, Eqns. (2.44) and (2.45). Assuming that the fields to be 

computed concern points which are at least a few wavelengths beyond 

the aperture, we are able to determine the near-fields of the horn 

with sufficient accuracy. However, double integrals are then to be 

evaluated nummerically. 

Another method, described by Clarricoats, Olver and Saha, involves the 

use of the mode expansion technique [47]. The latter has been found 

ve ry suitable for accurate computation of the field at any distance 

from the horn aperture . The following expression holds for the 

HE(+) mode: 
11 

c ii 121 (kr1Jf <el (sin.p)• n n n cos.p 
(4. 7) 
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while the coefficients c are given by n 

-jkr
0 

9 0 
e 2n + 1 

f fv(9)fn(9)sin9d9, (4.8) c al 2 1i 2ii(2 l (kr l n r 
0 2n (n + 

n o 0 

in which ii(2l is the spherical Hankel function and 
n 

1 1 1 1 
dPn(cos9) P (cos9) dPv(cos9) P ;(cos9) 

f (9) 
n 

fv (9) 
v, 

d9 + sin9 d9 
+ sln9 n 

Evaluation of the above expression shows that for corrugated horns 

with 8° < 9 < 15° an almost perfect spherical wave front is obtained, 
0 

provided the horn is large enough. This is obvious, since for kr >> 
0 

and kr
0 
~ kr1 the two 

jn+l e-jkro and jn+l 

spherical Hankel functions may be replaced by 

e-jkr1, respectively. Therefore, the near-fields 

are almost identical to the aperture fields of the conical horn, apart 

from an unimportant phase factor. These characteristics prove to be 

independent of the frequency in a wide band. 

We have computed and measured the near-field characteristics of two 

corrugated horns with the following data: 

Feed 9 d A 
0 0 

A ( 115) 80 12 cm 1. 3 cm 

B (006) 15° 12 cm 1. 3 cm 

Table 4. 2 

Instead of investigating the radiation characteristics by a probe 

moving along a spherical surface with centre at O, the probe is kept 

fixed while the horn is rotated (around the y-axis of Fig. 4.10). If 

the phase distribution is then found not to be almost constant over the 

central range, this might indicate that the rotation has not been 

achieved around the correct symmetry centre. The position of the lat

ter is then found by a small motion of the horn in the z-direction 

until the phase distribution shows a nearly constant part. This ad

justment is of great importance for focusing applications. 
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The results for both horns are collected in Figs. 4.10 and 4.11. In 

these plots we have omitted the E-plane patterns; these are almost 

identical to those of the H-plane which were actually represented 

for the power as well as for the phase. We observe that both antennas 

produce an almost perfect spherical wave insofar as the angular width 

of the beam is almost independent of the frequency, while the radia

tion behaviour remains essentially unchanged for various d~stances 

r - r from the aperture. Besides, the fields are, as expected, al-
l 0 

most identical to those in the horn aperture. Moreover, a very good 

agreement is found to exist between the data predicted from Eqn. 

(4.7) and experimental ones. 

The cross-polarisation level, measured for both antennas,was found to 

be below -35 dB. 

Note that the near-field wide-band characteristics of these feeds are 

considerably better than the corresponding ones in the far field; this 

comparison is possible since our B 006 antenna is identical with the 

antenna .4, all far-field properties of which are described by Jeuken 

[4]. In the near-field the pattern beamwidth is almost fre~uency in

dependent. 

We may conclude that the corrugated horns described in this section 

are suitable near-field focusing devices. First, a proper choice of 

the aperture diameter in terms of the wavelength and the angle 8
0 

of 

the horn can result in a wave front, part of which has a plane-wave 

character. Second, an almost perfectly spherical wave is obtained in 

the region close to the aperture. 

Finally, all feeds described here have the advantage of relatively 

small aperture dimensions (d < 10A). 

4.3. Cylindrical confocal parabolic reflector antennas 

According to the requirements derived in previous sections, we are 

now able to fix the constraints for an ideal reflector antenna. Such 

a reflector system should satisfy the following conditions: 
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(a) it should be of the beam- waveguid,e type, 

(b) there should be no (theoretical) restrictions concerning cross

polarisation limits, 

(c) no constraints on the shaping, 

(d) independent control of the aperture distribution in both principal 

planes. 

The latter condition is needed for antennas producing asymmetrical 

beams. Note that the off-set condition is involved in (a) (compare 

section 4.2.1.). Further, in view of (c), the aperture distribution 

can be adapted to a given purpose, independent of the distribution 

produced by the feed; the latter condition also involves the need for 

a multi-reflector system [48]. Finally, considering the results from 

the preceding section, only sources with rotational symmetry come up 

for discussion. 

We shall start with the simple case of two confocal parabolic cylin

ders (Fig. 4.12) arranged such that (a) is satisfied, and that the 

source produces a plane wave. This configuration will be shown to be 

the only one suitable for our purpose. 

The subreflector of our device constitutes of a cylindrical paraboloid 

the surface of which is given by 

(4.9a) 

in the coordinates indicated in Fig. 4.12, while the cylindrical para

boloid constituting the main reflector satisfies the equation 

2 
x 

z = 4 f 2 - f2 , 
(4.9b) 

both independent of y. In thes e equations f 1 and f 2 are the correspon

ding foca l distances of both reflectors, the focal lines of which 

coincide along the y-axis. 

Let the subreflector be illuminated by a plane wave propagating in z

direction, and polarised in the y-direction, thus having the incident 

(electric) field ~i E
0 

e-jkz y.Applying the ray optics we find for 
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Fig. 4.12: Off-set confocal parabolic cylinders 

the field of the reflected wave that 

E = 2 (n
1

.E . ) n
1 

- E. , 
-r - i -i 

(4.10) 

n
1 

being the unit vector along the normal at the reflection point 

(x,y,z) on the subreflector. It follows straightforwardly that after 

the second reflection at (x' ,y,z') in Fig. 4.12 the field in the aper

ture of the main reflector maintains its original polarisation, i.e. 

no additional component is found. Similarly, starting from the inci

dent field ~i = E
0 

e-jkzx polarised in the x-direction we finally find 

the same result. Thus, we may conclude that an antenna of this type 

produces no cross-polarisation (at least in the geometrical optical 

approximation) due to the optical arrangement used. 

To determine the power distribution in the aperture of the main re

flector we have to satisfy the relation PdA = P'dA' where P is the 

power density independent of y in an infinitesimal incident-ray pencil 

with cross-section do= dxdy, and P' the corresponding density in the 
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cross-section dO' = dx'dy of this pencil after it has been reflected 

by the main reflector. 

Since all rays are focused in the xz plane we have (Fig. 4.12a) 

giving x' 

z 
-x 

-z' 
X' 

or x .=.i = - ~ + f2 
4f

1 
- x 4f

2 
x' 

P' 

f2 
- f x, so that 

1 

Moreover, we have found dO'/dO = f
2
/f

1
. 

(4.11) 

(4.12) 

The relation between the intersections, with planes perpendicular to 

the z-axis, of the incident rays and those emerging after the two re

flections by the sub and the main reflector, is given by the transfor

mation 

x' 
f2 

- f x, y' 
1 

y t Z I 

2 2 According to these relations an original circle x + y 

formed into the ellipse 

(4.13a) 

R
2 

is trans-

(4.13b) 

In other words, a source with circular symmetrical distribution trans

forms into an elliptical distribution in the aperture of the main re

flector. In particular, a circular ring passes into an elliptical one 

as indicated in Fig. 4.12b. 

When illuminating the system of Fig. 4.12 by a feed, as shown in out

line in Fig. 4.13a, we may expect that the far-field power pattern 

will also have an asymmetrical shape, the excentricity of which is de

termined by the choice of the ratio f
2
/f1• Some experimental res ults 

concerning this antenna are found in [49]. 

In order to control the aperture distribution in both principal planes, 
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a series of such reflector sets can be positioned perpendicular to 

each other as shown in Fig. 4.13b for two sets, with the focal ratios 

f
2
/f

1 
and f 4/f3 respectively. In this case, for corresponding surface 

elements on the apertures of the consecutive cylindrical paraboloids 

we may write 

dA' = c
1
dA, dA" (4.14) 

with c
1 

= f
2
/f1 , and c2 = f 4/f3 ; hence dA" = c1c2dA. In 7 special case, 

viz. c1 = c2 , the resulting field distribution in the fi~al main re-
l 

fleeter aperture shows a circular symmetry. We conclude that this si-

tuation is identical, from geometrical optical point of view, to that 

of two confocal paraboloids of revolution (near-field Cassegrain, Fig. 

4.3a). The main difference is, of course, that the cylindrical system 

is free of blockage. In all other cases, where c1 # c
2

, we again get 

an elliptical deformation of originally circular distributions . 

To prove the suitability of our new antenna in practice, we have car

ried out a simple experiment wJ.th the two-reflector system of Fig. 

4.13a (in which, however, the feed has a circular cross-section), 
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Fig. 4.13: Two- and f our-reflector arrangements. 



The data for the corrugated horn used were 6 = 6.5° and d/\ = 5. The 
0 

near-field behaviour of this horn has been discussed in the previous 

section (Fig. 4.9). According to the ray optics the circular aperture 

with radius 2.5\ of the incident rays is transformed in the aperture 

of the rays, leading the main reflector into an ellipse with the axes 

10\ and 5\, oriented in the x- and y-direction respectively. In order 

to simplify the necessary two-dimensional integration over the final 

aperture, when computing the far field, we have shielded a part of this 

aperture such that only a rectangle remains, one side of wh_ich is made 

shorter than the other; as a matter of fact the experiment has been 

carried out with sides of 10\ and 2\ (see Fig. 4.14). We may expect 

that the aperture field distribution in the y-direction then becomes 

roughly uniform (in phase and amplitude), while in the other direction 

a distribution g(x) ~ J
0

(j
01

x) will occur in the ideal case. Therefore, 

since the far field distribution depends on the two-dimensional 

Fourier transform of the product of the truncated unit function will 

become proportional to sin u1/u1 in the yz plane (with u 1 = n~ sin6; 

6 is the angle between the z-axis and t..~e direction of observation) 

and to ~ .(_~ J
0

(j 01 x)ejku2xdx in the xz plane (with u2 = n~ sin6). 

000000 

predicted yz plane 

• • • • • • 
predicted xz plane 

0 

0 
0 

0 

0 

108 36 0 36 72 108 
() CDEGR.l 

Fig. 4.14: The power radiation pattern of the two-reflector antenna 

with f2 = 2f1' a= 2\, and b = 10\. 
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Obviously, this constitutes only a very rough estimate of the true 

aperture distribution, but due to the fact that the distance from 

the feed to the first reflecting surface is very short, it may be 

fairly reliable. From Fig. 4.14 we conclude that there is very good 

agreement between the experimental and predicted data which refer to 

the xz- and yz plane. Small errors below -20 dB in the xz plane are 

due to the phase taper produced by the feed. 

Summarizing, the reflector system presented in this section satisfies 

the conditions (a) to (d) inclusive. Therefore, this device might ser

ve as a model of an ideal, physically realizable reflector a~tenna. 

Even for reflectors of moderate size in terms of the wavelength 

(d ~ SA) the ray optics can succesfully be applied provided the dif

fraction effects are negligible. This is certainly satisfied here 

due to the tapered power distribution produced by the feed. In prac

tice we shall choose a feed which is somewhat larger than d ~ 6-10A; 

this justifies the use of the ray optics with feed-reflector arrange

ments similar to the previous ones. 

In the next s_ection we shall investigate cylindrical multi-reflector 

systems illuminated by a spherical wave. 

4.4.l. Cylindrical reflectors .with spherical sources 

In this section we shall discuss the focusing by cylindrical surfaces 

in which spherical-wave sources are applied. A possible arrangement is 

shown in Fig. 4.15 and will be explained with the aid of an orthogonal 

x,y,z system in which the point source has the coordinates x = y = 0, 

z = -2e1• The radiation from this source is realized with the aid of 

a corrugated conical horn, the wall of which contains the z-axis, the · 

latter making an a~gle 9
0 

with the horn axis. The primary rays leaving 

this horn are first reflected by the elliptical cylinder 

in which 
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while the cylindrical surface is restricted to the quadrant with y < 0 

and z > 0. All rays emerging after reflection against this cylinder 

will intersect the x-axis. This configuration has been chosen in view 

of its similarity to the case of two parabolic cylinders discussed in 

section 4.3. In fact, the second reflector, that is the parabola 

2 
y (4.17) 

now restricted to the quadrant with y > 0 and z < 0, has been chosen 

with a focal line again along the x-axis. However, the choice of an 

arrangement different from that of the predicting section is connected 

with our present aim to collimate a spherical instead of a plane

incident wave. Moreover, the present situation includes the preceding 

one as a limiting case when F2 moves to z = -~ 

As to the effect of the two reflectors, the original spherical wave is 

transformed into a cylindrical wave the focal line of which is paral-

z 
elliptical 
cylinder 
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Fig. 4.15: Basic configuration of a dual-cylindrical antenna and a 

spherical s ource. 
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lel to the y-axis, x = O, z = -2 (a+ f 2 ). The corresponding rays are 

all parallel to the xz plane while their extensions intersect the men

tioned focal line. As a matter of fact, the rays of this cylindrical 

wave could also be obtained with the aid of a single cylindrical para

boloid with the equation 

2 
y = 4f (f + z), f (4.18) 

The spherical source is positioned at the origin of our 9oordinate 

system. However, this apparently simpler configuration d9es not satis

fy the requirements formulated in section 4.3. 

Moreover, here these cylindrical reflectors can be arranged in series, 

such as in Fig. 4.13b, with two sets of the above type, The cylindri

cal wave produced by the first set is then transformed into a plane 

wave (propagating in the z-direction) by the second set. 

In order to determine the aperture fields of such a four-reflector 

system, ray tracing has been applied, that is the determination of the 

intersections of all individual rays (leaving the feed with special 

e and ~ values) with the final aperture. This tracing procedure is 

based on the elementary laws of geometrical optics, as explained in 

the next section in connection with the derivation of the. polarisation 

behaviour. 

Examples of ray images in a plane aperture are shown in Fig. 4.16. 

For the sake of comparison we have also plotted the aperture image of 

a single paraboloid of revolution (a) (Fig. 4.2a) and in (b) that of 

an off-s.et paraboloid (Fig. 4.4a and also 4.4b) where ei = ec. Further, 

(c) shows the imaging by the system of Fig. 4.13b while, finally, (d) 

refers to the four-reflector system illuminated by a spherical wave as 

described above. Each circle in (a) represents the image of rays 

leaving the feed with a special e value, but an arbitrary azimuth 

angle~; the radius of such a circle equals 2f.tan(8/2). In the case 

of (b) the same primary rays are imaged by other circles the centres 

of which, however, do not coincide. 

We observe the aperture images (c) and (d) show almost a perfect sym

metry which is in contrast with the off-set reflector (b) derived from 
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Fig. 4.16: The aperture images of reflectors of revolution and of 

cylindrical four-reflector system. 

a system of revolution. The computer program leading to (d) was based 

on an example for which (see Fig. 4.15) 8
0 

= ec = 15°, while the focal 

distances of both parabolic reflectors were identical. 

One may conclude, that, due to the high degree of symmetry of the 

pattern iri the final aperture, a four-reflector system illuminated by 

a spherical source admits a very simple reliable approximation for its 

final aperture distribution. The far-field pattern can then be deter

mined either by the aperture method, or, applying the formula 

J = 2(fi x ~) for the current distribution across the main reflector, 
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it can be an integration over the surface of the latter. For rays pro

pagating in an isotropic homogeneous medium the field vectors E and H 

are connected according to the relation 

(4.19) 

§ being the unit vector in the direction of propagation. This holds 

both for the incident and the reflected fields. owing to the local 

plane-wave character of these fields, the geometric-optical treatment 

of the reflections can only be applied to smoothly curved reflecting 

surfaces. 

4.4.2. Cross-polarisation in cylindrical antennas with srherical 

sources 

Quite general~y, cross-polarisation in the aperture of reflector an

tennas is caused by: 

(a) the contribution of the feed, 

(b) the curvature of the reflectors, 

(c) the wave transformation. Its effect is described by the wave

imaging function, by which we understand the connection between 

the intersections of a particular ray with an object and a cor

responding final image plane. 

For large reflectors of revolution (b) degrades to a second-order ef

fect, but the imperfections in the feed play a significant role. On 

the other hand (c) becomes important in off-set reflectors. It has 

been shown that these effects can be discussed accurately by appli

cation of geometrical optics [32], [33]; a significant contribution 

to the cross-polarisation proves to be caused only by the rotation 

of the polarisation vector. 

Throughout this section we assume an ideal spherical source represen

ted by a corrugated horn operating under t he balanced hybrid condi

tions. The primary ~ vector at a distance R from the source may be 

given by 
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where P(6,¢) constitutes the feed power-radiation pattern while the 

unit vector ei fixes the polarisation dir.ection. The radiation from 

our corrugated horn can be approximated by that of a Huygens source. 

Let the electric and the magnetic moments of the latter be directed 

along the x- and y-axis respectively of some rectangular coordinate 

system; the unit vector ei for the primary or incident field is then 

given in terms of the unit vectors ue and a¢ (see Fig. 4.17) I 

z 

y 

Fig. 4. 1 7: Spherical coordinates . 

by 

(4. 21) 

Interchanging the direction of the mentioned moments, we have another 

polarisation given hy 

(ei) = uesin¢ + u¢sin¢. 
'i 

(4.22) 

We shall now first investigate the change of polarisation connected 

with a single reflection against a flat reflector. Therefore we con

sider the situation in Fig. 4.18a, with the polarisation planes Ai and 

Ar for the incident and reflected fields respectively, si ci.nd sr being 

unit vectors along the incident and the reflected ray; ~i and ~r are 

the corresponding field vectors. According to their definitions the 

plane Ai contains the vector si and ~i' and the plane Ar the vector 

125 



( b) 

reflecting 
Eit plane 

;:;::: 

Fig. 4.18: The polarisation plane approach. 

§r and ~r· We then have, in view of the identical value of the angle 

of incidence and reflection,(E
1 
.• ~1·l = (E .~)=a. Since the reflecting - -r r 

plane will be assumed as perfectly conducting Lhe total tangential E 

field vanishes, the normal component should he continuous, so as to 

have E. = E (Fig. 4.18b, with fi the unit vector perpendicular to 
-in -rn 

the reflecting plane R). 

These two properties are expressed by the equations: 

(4.23) 

fi • ~i = fi • ~r (4.24) 

The solution with respect to E reads as 
-r 
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-r - ~i + 2(fi • ~i)fi , (4.25) 



while IE I = IE. I· -r -i 

As to the change of the polarisation direction, s will be determined 
r 

by the properties of ray optics according to which fi, sr and si are 

coplanar, while (si.fi) = -(§r.fi). This leads to the followi ng related 

expression for the unit vector sr: 

s 
r (4.26) 

From the Eqns. (4.25) and (4.26) we conclude that any incident ray 

having Ai as its polarisation plane will, after reflection, pass in··

to a ray with the polarisation plane Ar. In fact, labelling the charac

teristics of such a ray by dashes, we have 

s' 
r 

E' 
-r 

- ' s. 
l. 

2(§!.fi)fi 
l. 

2 (fi.E!) 
-l. 

E' 
-i 

(4. 27) 

AS - µE I 
r -r 

(4.28) 

>..
1
{s. - 2(§ .. fi)fi} - µ {E. - 2 (E . • fi)fi } = 

l. l. 1 -l. -i 

(4.29 ) 

so that s~ and ~~ are indeed situated in the plane Ar fixed by the 

vectors §r and ~r· In other words, rays having a common polarisation 

plane conserve this property after any number of reflections against 

perfectly conducting surfaces. 

For an incident field ~i perpendicular to Ai, to be labelled ~i2 while 

~il should refer to some ~i in Ai , we find that t he reflected fie ld 

~r2 associated with ~i2 is perpendicular to Ar. This can be shown by 

first verifying, with the aid of (4.25) t he relation ~r2 • ~rl = 0, 

where ~rl corresponds to ~il. Thu~ ~r2 proves to be perpendicular to 

~rl as we ll as to §r' and conseq uently this vector is also perpendicu

lar to the plane Ar. 

An i ncident fie ld E . with arbitrary orientation (though perpendicula r 
- l. 

to §i) can now be split into components in and perpendicular to Ai: 

(4.30) 

For the corresponding r eflected fie ld we then find , again in view o f 
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(4.25) and the orthogonality of ~r2 and Ar' the other relation 

E 
-r 

yE l + oE 2 • -r -r 
(4. 31) 

Thus, we conclude that a vector ~i making an angle n with some polari

sation plane A., measured counterclockwise from A., will maintain its 
i i 

value after reflection; this means that the angle of the reflected 

field E with the new polarisation plane A that corresponds to A. -r r i 

(measured clockwise from A ) , still equals n. This also ho1ds after 
r 

repeated reflections. 

As to the polarisation effects due to the wave transformation we as

sume that if the polarisation vector of the incident wave is rotated, 

its new direction is maintained up to arrival at the next reflector. 

For multiple reflections the sum of all the rotations suffered along 

one ray trajectory will fix the resulting polarisation in the final 

aperture. 

Fig. 4. 19: Reflecting system S. 

We can now discuss a general .method for the determination of the over

all change polarisation by a system S that consists of two!cylindri

cal reflectors the cylinder axes of which are parallel, say parallel 

to the x-axis. An example of such a system is the device in Fig. 4.15. 

Let F2 be the focal point of S, a s in Fig. 4.15. In order to make use 

of the conservation of the above-mentioned angle n during the two re

flections, we shall deal with S as a receiver and . as a transmitter, 

respectively. In the first case we start from an incident wave, all 

rays of which are parallel to the xz plane; this should also hold for 

the common polarisation plane Pi of these incident rays. we know that 
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after the first reflection in S all previous rays having this common 

polarisation plane will remain in a single plane, the ~ew plane of po

larisation. owing to the cylindrical structure, this latter plane will 

again be parallel to the x-axis, and this property will be maintained 

at the next reflection. Therefore, when the incident ray Li parallel 

to the z-axis, and lying in Pi, arrives at the focus along the ray Lf 

(see Fig. 4.19), its electric field vector ~f must lie in a plane Pf 

which is parallel to the x-axis, while Pf has also to contain the line 

Lf. If Lf is known, the direction of the ~f is thus completely fixed. 

We next consider a role of S as transmitting antenna, the transmitted 

radiation being that of an X-polarised Huygens source. The direction 

of the electric field ~i at some point along Lf is then fixed by 

(4.21) which involves a direction making some angle n with the above 

plane Pf. Since this latter plane corresponds as a polarisation plane 

to Pi, the wave emerging from Swill be associated with an electric 

field ~f making the same angle n with Pi, this according to the above

mentioned property. 

0 

~~f-':-t-~~~~~/-:r-~~y 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

I / 
I /~ 
I // 

Q 

x 

Fig. 4.20: Polarisation plane and feed-field geometry. 

We now want to express the angle n in terms of 9 and ~. the polar 

angles fixing the direction of the ray Lf leaving the source F2 (see 

Fig. 4.20, which also shows the unit vectors u9 and u~). The situa~ 

tion of all relevant angles can also clearly be represented by the 

intersections of the lines through F2 with a sphere around F2 , leading 
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to adjacent triangles with sides and angles as shown in the Fig. 4.21. 

we remark that, in view of (4.21) the directions of ~i' a9 and uq, are 

then situated on the same great circles. According to an application 

of spherical trigonometry to the rectangular triangle with edges of 

Lf, Q and x, we find 

cos9 = cotga.tan<jl; (4.32) 

here a equals ¢ + n, taking into account that n is also found near 

the point Lf as the angle between the great circle Pf and th~t passing 

through ~i· Working out the relation cosn = cos(a - ¢) with the aid of 

(4.32) we finally arrive at 

cosn = cos¢cos9 + sin<j>tan<jl 

-Vcos
2

9 + tan
2

¢ 

(4. 33) 

For an arbitrary ray in the direction 9 and ¢, the final rotation of 

the polarisation vector in the reflector aperture along this ray is 

given by the above expression, n being the angle between ~f and Pi in 

Fig. 4.19. 
z 

--

90;!--/ 
/ 

Fig. 4.21: Spherical triangle geometry. 

I 
I 

/ 

According to the results found elsewhere [31], [38], we observe that 

there is no cross-polarisation in both principal planes ¢ = 0 and 

¢ = n/2 of cylindrical reflecting systems. For small values of 9, the 

maximum of the cross-polarisation occurs approximately in the plane 

¢ ~ n/4. Note that this does dot necessarily mean the plane ¢' = n/4 

in the final reflector aperture. 

The depolarisation factor 20 log1o(l~flsinn/l~ill is plotted in Fig. 
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Fig. 4.22: The cross-polarisation below co-polarisation, ~ 45°, 

4.22 for several values of 6. Applying this result to the feed B 006 

operating under the balanced hybrid conditions we find the maximum of 

the cross-polarisation due to the wave transform to be less than -48 

dB; the corresponding value for the feed A 115 lies below -50 dB, both 

related to the maximum of the co-polar power pattern. 

We conclude that the cross-polarisation effects due to the wave trans

form in cylindrical multi-reflector antennas illuminated by a spheri

cal source are of acceptable level for most applications. We may ex

pect that the imperfections in the feed become dominant in this case, 

which closely approaches the situation of the reflectors of revolution. 

4.5. Experimental investigation of four-reflector antennas 

We have investigated experimentally two different reflector systems, 

similar to that shown in Fig. 4.13b. 

The first system consists of four cylindrical reflectors, as occurring 

in two successive sets of the t ype shown i n Fig. 4.15; thus we have 

to deal with two elliptical cylinders (chosen as having equal excentri

city) and two parabolic cylinders (with equal focal length). The imaged 

final aperture (compare Fig. 4.16d) then have an approximately circular 

cross-section with D = 30.5 cm. There fore, we s hall refe r to this sys-

t em as the " symmetrical" one. 
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The second experimental antenna also consists of four reflectors the 

first three of which are identical to those of the previous system. The 

main reflector, however, has a focal distance twice as large as that of 

the second reflector. The resulting imaged final aperture here has an 

almost elliptical cross-section, with the dimensions 30.Sx61 cm. This 

second system will be indicated as "asymmetrical". 

First, we measured the aperture fields of the common first two-reflec

tor set. The feed used in these experiments was the antenra A(115) the 

near-field characteristics of which were collected in Fig. 4.10. The 

results for the power and the cross-polarisation pattern, measured at 

23 and 26 GHz in the yz plane, are shown in Fig. 4.23 as ~ function of 

the radial distance (normalized at unity on the reflector edges). The 

polarisation is taken in the x-direction; the results for y-polarisa

tion (not shown) are almost identical. The dots indicate aperture 

fields simply derived with the aid of geometrical optics from experi

mental near-field characteristics of the feed. We find excellent agree

ment between the theory and the experimental data. Note the asymmetry 

in the power pattern; it is caused by differences of the incident field 

on the first subreflector along a line 6 = const. A rapid increase of 

the cross-polarisation is due to the feed, the depth of the grooves 

being equal to 3/4 of a wavelength at 23 GHz; this clearl·y results in 

a narrowing of the available bandwidth. 

¥· y 

Fig. 4.23: The aperture fields of t wo-reflector ante nna. 
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Fig. 4.24a: The far-field power pattern of symmetrical four-re flector 

antenna. 
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Far-field radiation patterns of the symmetrical antenna are shown in 

Figs. 4.24a and 4.24b for two different antenna positions. The main 

reflector is sketched as a square, while the small rectangle fixes 

the position of the subreflectors. An experimental four-reflector an

tenna of this type is shown in Photograph 4.1. 

Photograph 4.1: Experimental four-reflector antenna. 

The dots in the Fig. 4.24a indicate the computed far-field radiation 

pattern as it should occur for a ~-independent field incident on the 

first subreflector. It is obvious that good agreement can only be ex

pected if both the 8- and ~ radiation characteristics of the feed are 

taken into account. On the right-hand side of these figures the re

sults for the other polarisation direction are also shown (broken line). 

The far-field radiation pattern proves to be almost independent of the 

polarisation direction. Some diffraction on the edge of the third sub

reflector causes an increase of the side lobes (see Fig. 4.24b). 

It is noted that this "symmetrical" antenna with the aperture dimen

sion of some 25 wavelengths satisfies the CCIR requirements for the 
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side lobe envelope of antennas with D > 100A (Eqn. (4a)). The latter 

is also identical to the FCC norm. 

The experimental far-field data of our "asymmetrical" antenna are 

shown in Figs. 4.25a and 4.25b. The azimuth patterns in two principal 

planes (again for two perpendicular polarisations) as indicated in 

these figures, have been recorded for f = 23 GHz. The patterns are al

most identical up to the -25 dB level for two perpendicular polarisa

tions. The beam width ratio in the two principal planes is about 2.2 

for -3 dB points. In this case, too, the CCIR/FCC conditions are 

easily met for the side lobes. As a matter of fact, pattern envelopes 

such as 32-30 log108 1 instead of the CCIR/FCC reference, earl be rea

lised with these antennas. The aperture efficiency of 70-80% can be 

achieved in this case. 

The cross-polarisation behaviour in the far-field is quite similar 

to that of the feed alone which is in agreement with the theory pre

sented in the preceding section. Finally, the aperture efficiency is 

approximately 50% for both our experimental antennas. Increased ef

ficiency can be achieved by additional shaping of reflector surfaces. 

4.6. Concluding remarks 

From the theoretical and experimental investigation the conclusion may 

be drawn that the "ideal physically realizable reflector antenna" con

cept proves to be capable of practical application. As a matter of 

fact, cylindrical reflecting surfaces, combined either with a spheri

cal or a plane-wave source provide suitable means for this purpose. 

It has been shown that no cross-polarisation occurs for a plane-wave 

illumination. On the other hand, the cross-polarisation contribution 

of such a system with a spherical (Huygens) source does not exceed 

-50 dB in most cases, while it vanishes in the two principal planes. 

The excellent near-field radiation performance of the corrugated horn 

yields a compact realization of this reflector antenna. 

Symmetrical as well as asymmetrical aperture distributions can be rea

lized, and thus the desired far-field power patterns can be obtained. 
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Moreover, an open geometry, and the beam-waveguide principle both 

minimize diffraction effects in such a system. As a matter of fact the 

diffraction losses can be made arbitrarily small provided the reflec

tors are large enough. This is certainly possible in the case described 

above since the reflectors and the feed can be located close to each 

other. A useful description of the field in the reflector aperture can 

be obtained with the aid of geometrical optics. A more rigorous ana

lysis should also take into account the change of the wavefront as a 

function of the distance from the reflecting surfaces. 

In order to get an arbitrary amplitude and phase distribution in the 

final aperture, the following conditions have to be satisfied for the 

geometric-optical rays arriving there from the source: 

1. Snell's law: the incident and reflected rays and the surface-normal 

are co-planar at each reflector. The angle of incidence equals the 

angle of reflection. 

2. Conservation of Energy: energy flow inside any pencil bounded by 

ray trajectories remains constant, even after the reflection. 

3. Theorem of Malus: ray trajectories are normal to the constant

phase surfaces, and this condition is maintained after any number 

of reflections. 

It has been shown [48] that a solution for an arbitrary amplitude and 

phase distribution exists in the two-dimensional case. This implies 

that a reflector system, consisting of (minimal) four cylindrical re

flecting surfaces positioned perpendicularly in pairs, is capable to 

produce an arbitrary amplitude and phase distribution in two perpen

dicular planes of the final aperture when spherical or plane-wave 

sources are applied. 

Summarizing, this new reflector antenna satisfies the requirements for 

so-called high-performance reflector antennas. These are: 

a) low antenna-noise temperature, 
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b) high gain, 

c) prescribed pattern envelopes, 

d) low reflection losses, 

e) high polarisation purity. 

The number of reflecting surfaces needed for this antenna may seem dis

advantageous, but since these reflectors are cylindrical, the manufac

turing is expected to be consi derably simpler than in the case of re

flectors of revolution. 
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SAMENVATTING 

Dit proefschrift heeft betrekking op belichters en reflector systemen 

welke geschikt zijn voor toepassingen in de radio-astronomie en in 

grondstations voor satelliete communicatie. Lage ruistemperatuur en 

hoog rendement zijn de belangrijkste ontwerp aspecten. 

In hoofdstuk 2 worden de eigenschappen van een concentrische ~ing-
! 

straler bestudeerd. De stralingseigenschappen van golfpijpen en hoorns 

met kleine tophoek zijn onderzocht. Het blijkt dat deze belichters ge

schikt zijn voor het belichten van parabolische ref lectoren m~t 

f/D > 0.35. Deze theorie is experimenteel geverifieerd. 

De theorie van hoofdstuk 3 is geldig voor gegroefde biconische hoorns 

met grote tophoek. Uit de theorie blijkt dat deze belichters een hoog 

rendement geven indien ze gebruikt worden voor het belichten van 

"d~epe" parabolische reflectoren (f/D < 0. 35). De overeenstel1lllling 

tussen theoretische- en experimentele r esultaten is goed. 

De stralingseigenschappen van rotatie-symmetrische reflector antennes 

en systemen welke daarvan zijn afgeleid 1zoals "open Cassegrain") 

worden beschreven in paragraaf 4 .i. Ee n ideale, physisch real iseerbare 

reflector antenne wcrdt geintroduceerd i n paragraaf 4 . 3 . Het b'lijkt dat 

een combinatie van twee confocale parabolische cylinders belicht met 

een "vlakke golf" de gewenste eigenschappen bezit. Hoge polarisatie

zuiverheid en lage verstoring door diffractie-effecten zijn de voornaam

ste eigenschappen~Bovendien . kan iedere willekeurige apertuurverdeling 

(in fase en amp litude) gereali .seerd worden. 

De polarisatie-eigens chappen van cylindrische reflectoren welke geschikt 

zijn voor gebruik in combinat ie met e en sfer ische b ron (gegroefde hoorn) 

worden behandeld in paragr.aaf 4 . 4. 2. 
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Paragraaf 4.5 bevat enige experimentele resultaten met twee verschil

lende reflector systemen. In beide gevallen worden vier cylindrische 

reflectoren gebruikt. Deze resultaten bevestigen de theorie van de 

vorige paragrafen. 
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