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ABSTRACT
We introduce a local operation for polygons and subdivi-
sions called an edge-move. Edge-moves do not change the
edge orientations present in the input and are thus suitable
for iterative simplification or even schematization. Based on
edge-moves we present a new efficient method for area- and
topology-preserving subdivision simplification. We show how
to tailor this generic method towards the specific needs of
building wall squaring and urban-area generalization. Our
algorithm is guaranteed to make further progress on any sub-
division that has two or more faces and/or reflex vertices.
Furthermore, our method produces output of high visual
quality and is able to generalize maps with ≈ 1.8 million
edges in a few hours.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial Databases and GIS ; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling

General Terms
Algorithms, Theory

Keywords
Outline schematization, Building simplification, Map gener-
alization
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Figure 1: (a) Building (167 edges). (b-c) Simplified
to 48 and 28 edges. (d) Generalized to 20 edges.
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1. INTRODUCTION
Maps are widely used to convey information. They employ
a variety of visual representations and are targeted towards
different purposes. Regardless of representation and pur-
pose, visual clutter arises when placing too much detail in a
small area of a map, greatly reducing legibility. To amelio-
rate this, the displayed elements are often simplified or even
schematized. Simplification eliminates details from map el-
ements. Schematization goes one step further, increasing
legibility by distorting elements, often to adhere to some
predefined orientations. The style and amount of detail on
a map needs to be suitable for its target scale and purpose.
Many maps are topographic maps, for example depicting an
urban area by indicating buildings, roads, and rivers. Such
maps are often not designed for a single purpose and try
to display as much information as possible without caus-
ing clutter. When visual clutter is to be reduced for to-
pographic maps, we speak of cartographic generalization.
Encompassing more than just simplification, cartographic
generalization of urban data distinguishes seven generaliza-
tion operators [11]: elimination, displacement, aggregation,
exaggeration, detail elimination, squaring, and typification.
An example of outlines of the same building generalized for
different scales is shown in Fig. 1.

Topographic detail is less relevant for other types of maps.
For example, a metro map mainly needs to convey connec-
tivity information. These maps are typically schematized,
often using the four main orientations (horizontal, vertical,
and both diagonals). Schematized maps of transport net-
works frequently show not only the network itself but also
schematized region boundaries or subdivisions. In the re-
mainder of this paper, we consider only maps that are simple
polygonal subdivisions.

Results. We present a simple and fast method for subdivi-
sion simplification that can be tailored to support schemati-
zation as well as the generalization operators detail elimina-
tion, squaring, aggregation, and elimination. Our method
preserves the area of each face in an input subdivision, uses
(a subset of) the orientations of the input, and is topologi-
cally correct. It is based on a single operation called an edge-
move (illustrated in Fig. 2). In Section 2, we introduce edge-
moves for simple polygons. Edge-moves are complete, that
is, they can reduce the complexity of any non-convex simple
polygon in an area-, orientation-, and topology-preserving
way. As their name suggests, edge-moves move edges and
vertices: the output vertices are necessarily not restricted to
be a subset of the input vertices. In Section 3, we describe
our algorithm for polygons and briefly discuss a method to
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Figure 2: (a) Two edge-moves. (b) The result.

restrict orientations of polygons or subdivisions before sim-
plification to allow for schematization. The same section
also explains how to tailor our algorithm to wall squaring.
Section 4 shows how to extend our method to polygonal
subdivisions. In Section 5, we discuss the application of our
method to urban-area generalization. We introduce a simple
approach to aggregation that integrates easily into our sim-
plification algorithm. Together with aggregation our method
is complete for subdivisions as well. Results are illustrated
and discussed per topic throughout the paper.

Related work. There is a significant body of work in the
GIS literature that deals with line simplification. Of par-
ticular relevance to our paper is the work of Bose et al. [1]
on area-preserving line simplification. Delling et al. [5] and
Neyer [13] discuss C-oriented schematization of routes or
lines. However, it is generally not advisable to simplify
or schematize each chain in a subdivision separately, espe-
cially when aiming for a result with low complexity. There
are some approaches, developed in computational geometry,
that preserve the topology of the input subdivision. For ex-
ample, De Berg et al. [4] describe a method that simplifies
a polygonal subdivision without introducing intersections or
passing over special input points. However, such methods
are not restricted to use the orientations present in the in-
put and thus cannot be used for schematization purposes.
Moreover, many simplification problems that minimize the
number of edges in a subdivision are NP-complete [7].

Cartographic generalization is a very broad topic and we
cannot hope to survey the literature here. Hence we high-
light only a few relevant references. Our work is most closely
related to the following papers on building generalization [3,
9, 16, 20]. Furthermore, algorithms for building wall squar-
ing [10, 14, 15] and outline simplification [8, 14, 17] can
also be applied to subdivision simplification and schemati-
zation. However, none of these methods is area-preserving
and many do not provide topological guarantees. Swan et
al. [18] and Wolff [19] give excellent overviews of methods
for map schematization and metro map construction.

2. EDGE-MOVES
Here we introduce edge-moves and sketch an argument that
shows that edge-moves can always be performed on a non-
convex polygon in an area-, orientation-, and topology-pre-
serving way.

Intuitively, an edge-move operates on three consecutive
edges, moving the vertices of the middle edge along the lines
that coincide with the other edges while maintaining the ori-
entation of the middle edge. Such an operation can add or
remove area, depending on the direction of movement. A
contraction is an edge-move where at least one edge vanishes
due to reaching length zero. Two edge-moves—one adding
area, the other removing area—are combined to obtain an
area-preserving and orientation-preserving operation. Fig. 2
shows two of these complementary edge-moves. In subdivi-
sions, edge-moves cannot always be applied. However, with

a simple method for aggregation, we can actually prove com-
pleteness (see Theorem 2 in Section 5).

More formally, assume that we are given a simple polygon
P . We call an edge of P convex or reflex if both its vertices
are convex or reflex respectively. The exterior angle of a
vertex is defined as the angle between one edge and the
extension of the other. The exterior angle is sometimes also
referred to as turning angle. The angle is negative if and
only if the vertex is reflex.

A configuration G consists of three consecutive edges de-
noted by g1, g2, and g3. Edges g1 and g3 are its outer edges,
g2 is its inner edge. The outer edges of a configuration define
two tracks, infinite lines through the edges. An edge-move
on G moves g2 such that its orientation is preserved and its
vertices are on the tracks, making the outer edges longer
or shorter. An edge-move is valid if at least one of its ver-
tices remains on its original outer edge and g2 remains on
the same side of or on the intersection point of the tracks
(if any). An edge-move which causes one of the edges of G
to reach length zero, is a contraction. Contractions are ex-
tremal edge-moves. An edge-move is positive if it adds area
to P and negative if it removes area.

A configuration supports edge-moves, either positive, neg-
ative or both. Let g+2 denote the extremal position of g2
after any valid positive edge-move, i.e. the position after
a positive contraction. The positive contraction region of
a positive configuration, R+(G), is the region enclosed by
g2, g+2 , and the tracks. A feasible positive configuration is a
configuration for which R+(G) is empty except for G. Sim-
ilarly, we define the negative contraction region R−(G) and
a feasible negative configuration. If a positive or negative
configuration is feasible, then any valid positive or negative
edge-move respectively is feasible. An example of an edge-
move and its regions is shown in Fig. 3.

R−

R+

Figure 3: A valid positive edge-move.

Since we desire an approach that preserves the area of the
polygon, we combine two complementary feasible configura-
tions, one positive and one negative, executing an edge-move
on both simultaneously. The one with the smaller contrac-
tion region is contracted, while the other is moved just far
enough to compensate for the area change. Two configu-
rations conflict when they share an edge, unless they share
only outer edges and one of these has a convex and a reflex
vertex. In this special case the two edge-moves both either
shorten or lengthen the shared edge.

Theorem 1. Every simple non-convex polygon has a non-
conflicting pair of complementary contractions.

Here we give only some intuition for the proof of Theorem 1;
the full proof is given by Buchin et al. [2].

By induction, it can be shown that at least one feasible
negative configuration exists in a polygon. More specifically,
such a configuration exists in a consecutive series of edges
of a polygon that adhere to certain restrictions. By prop-
erly inverting the polygon (i.e. turning it “inside-out”), it
follows that there must also be a feasible positive configura-
tion. What remains to be shown is that there is a pair that is



non-conflicting. We can show the existence of either of the
following: a series of edges that adhere to the restrictions
such that any feasible negative configuration in the series
cannot conflict the given feasible positive configuration; or
a feasible positive configuration that does conflict the given
negative configuration. In the latter case, we can prove that
the negative configuration is situated such that there must
be another nearby that does not conflict with the feasible
positive configuration.

3. SIMPLE POLYGONS
Using the edge-moves defined in the previous section, we it-
eratively simplify simple polygons. However, a simple poly-
gon might admit many edge-moves. As a heuristic, we se-
lect a complementary pair of edge-moves such that the size
of smallest of the two contraction regions is minimized. By
Theorem 1, there is always a complementary pair of two
non-conflicting feasible configurations. Therefore, we can
find a pair of configurations that are both feasible. Of all
non-conflicting feasible configurations, the one that is closest
(in the number of edges along the boundary) is chosen. For
efficiency, each edge stores the number of edges that block
the positive and negative contraction of the configuration
of which that edge is the inner edge. These counters can
be used to check in constant time whether a configuration
is feasible. We obtain a quadratic-time algorithm, given in
Algorithm 1. The correctness of the algorithm follows from
Theorem 1 and the observation that a single configuration
conflicts with at most 5 configurations. Since at most a con-
stant number of edges change during the edge-moves, only a
constant number of edges have to be checked to decrement

Algorithm 1 SimplifyPolygon(P, k)

Require: P is a simple polygon
Ensure: P is a convex polygon or has at most k edges

1: Initialize contraction counter for each edge
2: while |P | > k and P is non-convex do
3: Find up to six of the smallest positive contractions

and up to six of the smallest negative contractions
4: Determine minimal contraction pair (G1, G2)
5: Dec. counters for contractions blocked by G1 or G2

6: Contract (G1, G2)
7: Inc. counters for contractions blocked by G1 or G2

8: return P

(a) (b) (c)

Figure 4: (a) Great Britain (549 edges). (b) Simpli-
fied to 50 edges. (c) Schematized hexagonally to 50
edges.

(a) (b) (c)

Figure 5: (a) Greece (616 edges). (b) Simplified to
40 edges. (c) Schematized octagonally to 27 edges.

and increment the counters of all edges in the polygon. Sim-
plification results are shown in figures 4(b) and 5(b).

It is also possible to modify the algorithm such that edge-
moves with non-empty contraction areas can be used. To
this end, the algorithm should not simply count the number
of edges blocking a configuration, but keep track of the clos-
est point in the contraction region. This allows to quickly
decide whether a configuration can compensate for a change
in area. A simple implementation of this would lead to
a cubic-time algorithm. However, in reasonable outlines,
edge-moves are obstructed typically by relatively few edges.
Hence the actual execution time is expected to not differ
much from the original algorithm. This modification is es-
pecially relevant for subdivisions as it gives more flexibility.

Since edge-moves preserve orientations, we can use it for
schematization purposes as well. This is done by restrict-
ing angles beforehand. We describe in Section 3.1 how one
can convert a polygon into an area-equivalent polygon with
edges oriented according to some given set. Finally, we can
also perform building wall squaring using edge-moves. How-
ever, this needs more preprocessing than just schematiza-
tion. These additional steps are described in Section 3.2.

3.1 Imposing angular restrictions
Here, we describe how to convert a given subdivision to a
new subdivision such that each face maintains its area and
such that every edge in the result is parallel to an orientation
in some given set C. This method is based on the rectilin-
earization process described by Meulemans et al. [12].

We do not go into detail on the method in this paper. The
basic idea is to create “staircases” for each edge that ensure
area preservation and the adherence to the orientation set
C. Intersections can be avoided by using a sufficient (but
finite) number of“steps”. Examples of staircases are given in
Fig. 6. Two schematization results of this method, followed
by simplification, are shown in figures 4(c) and 5(c).

The orientation set C must consist of at least two dis-
tinct orientations (four directions). However, there are no
other constraints on the orientation set, it may either be
regular or irregular. The method can always deal properly
with vertices of degree four. Vertices up to degree 2|C| may
be dealt with, if the distribution of the edges around these
high-degree vertices is such that every edge can be assigned

Figure 6: Staircases for octagonal schematization.



to the first or second orientation in either clockwise or coun-
terclockwise direction. Since vertices of degree four or higher
occur very infrequent in cartographic applications, this is
considered to be sufficient.

3.2 Building wall squaring
Buildings are man-made objects and as such often have
right-angle corners. However, given outlines may be inac-
curate. Building wall squaring is the task of restoring these
right-angle corners where appropriate. We perform squar-
ing by imposing angular restrictions, followed by a sequence
of edge-moves to return to the original complexity of the
building. We first discuss how to detect arcs in a building
outline, as squaring and deforming these should be avoided.
We then discuss the detection of building orientations and
finally show how to obtain a squared building outline.

Arc detection. Some buildings have characteristic arcs,
such as a church having a circular chapel. While in a polyg-
onal representation, the number of vertices used to represent
such a feature may be high, its visual complexity is far lower,
the arc being perceived as a single object. To avoid squar-
ing and deforming such arcs, we detect these beforehand,
marking the vertices as arc vertices. We characterize an arc
as a sequence of vertices that have similar exterior angles
and segment lengths. Given three parameters γ, δ and φ,
we mark a sequence of vertices v1, . . . , vn as arc vertices if
the following three conditions are met: the exterior angle
between two adjacent vertices may not change more than γ;
the exterior angle is also constrained to be contained in the
interval [−δ; +δ]; the ratio in length between two adjacent
edges may not exceed φ. In our experiments, we use γ = π

12
(15 degrees), δ = π

6
(30 degrees) and φ = 3. Note that the

first and last vertices of the sequence are not constrained
and thus any sequence of at most two vertices would satisfy
the conditions. A sequence of three vertices, in our opinion,
disregards the parameter γ and may as well be just a cor-
ner of the building. Therefore, we require that the sequence
consists of at least four vertices. Finally, we must also make
sure not to mark straight walls, represented by multiple ver-
tices, as arcs. This is done be requiring that there exists a
vi (1 < i < n) such that vi − v1 · vn − v1 < 0.99.

Orientation detection. To detect the orientations in a
building, we extend a method by Duchêne et al. [6]. Their
method takes a set of candidate orientations, and for each
such orientation computes the weighted sum of edge lengths
of edges contributing to that orientation. An edge con-
tributes to a candidate orientation if its orientation deviates
only by a small angle from the candidate orientation. The
weight of an edge depends linearly on this angle. We modify
this method in two ways.

(a) (b) (c)

Figure 7: (a) A building with imprecise walls.
(b) Result with linear contribution function. (c) Re-
sult with Gaussian contribution function.

Instead of using a linear contribution function, we use a
Gaussian function with a peak equal to the edge length and
a width of 7.5 degrees. This change results in a higher contri-
bution to orientations that are close to the orientation of the
edge. Whereas a linear contribution function ensures that a
maximal value always occurs at the orientation of one of the
edges, the Gaussian function does not have this property, al-
lowing the method to detect “intermediate” orientations in
noisy data (see Fig. 7). Moreover, instead of using a sampled
approach to find an orientation with maximal contribution,
we compute the desired orientation by numerical methods.

A building may have multiple orientations, varying be-
tween parts of the outline, as shown in Fig. 8. Instead of
locating only the main orientation, we remove the edges that
are close to the detected orientation (or its perpendicular)
and repeat the detection process until no edges remain.

(a) (b)

Figure 8: A building with two distinct orientations.
(a) Original building. (b) Squared outline.

Squaring. Now that arcs and orientations have been de-
tected, we perform two steps to obtain the squared outline.

We start by imposing angular restrictions as described
in Section 3.1. This is based on the detected orientations.
However, we do not change the edges that end in two arc ver-
tices such that arcs are not deformed in the process. If both
edges of a degree-2 non-arc vertex have the same associated
orientation, then it is marked as being superfluous. These
superfluous vertices are vertices along a (nearly) straight
wall and should be removed after squaring.

To obtain the squared outline, we now apply edge-moves
on the building outline. Instead of applying those with
smallest area, we apply those that cause the inner edge of the
configuration to move the least, making sure not to move arc
vertices. We stop when the number of vertices is at most the
number of non-superfluous vertices of the original outline.

For further simplification, we can “release” the arc ver-
tices and impose the angular restriction on these edges as
well. This allows for simplification (and at some point elim-
ination) of arcs from the building. Regardless of releasing
the arc vertices, simplification continues by selecting edge-
moves with the smallest contraction regions. If arc vertices
are to be released at all, this should be done before any fur-
ther simplification. This avoids large deformations that may
prove to be unnecessary after releasing the arc vertices.

As an optional postprocessing step, we align walls using
edge-moves. If two (non-arc) walls with the same orienta-
tion are nearly colinear, we can try to apply edge-moves
such that the walls become exactly aligned. For two walls
that are similarly directed (e.g. the interior is above the
wall for both), one can always do this while preserving area.
However, if the walls are oppositely directed, this need not
be possible. Even in cases where this is possible (due to
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Figure 9: (a) Airport of Boston (361 edges). (b) Simplified to 54 edges. (c) Simplified to 295 edges with arc
detection. (d) Squared outline with 360 edges. (e) Simplified to 283 edges with arc detection after squaring.

different lengths of the walls), experiments indicated that
this yields unsatisfactory results. Other edge-moves could
also be used to compensate for the area gain or loss, but it
may cause a deformation that is worse than the misaligned
walls and it risks a misalignment of walls that were aligned.
By relaxing the area-preservation constraint, the misaligned
walls with opposite directions can move towards each other.

Fig. 9 shows various results for the main building of the
Boston airport. The result without arc detection obviously
obtains the lowest (measured) complexity. However, the per-
ceived complexity is not reduced for some arcs, it actually
increased. The building has quite a few small arcs that ap-
pear to be a simple offset of a larger arc. Since these vertices
are fixed by the arc detection, these details are not elim-
inated by simplification. For simplification with detected
arcs, it would be desirable to move such arcs to merge with
the larger one. However, the details of such an operation are
left as future work. Fig. 10 shows three results for another
complex building. Our method neatly squared the building
after detecting arcs (see Fig. 10(b)). However, walls that are
not part of an arc but that do end in two arc vertices are
not modified, for example the vertical wall in the bottom
right. Releasing the arc vertices and imposing the angular
restrictions on the edges allows us to further simplify the
building with satisfying results (Fig. 10(c-d)).

(a) (b)

(c) (d)

Figure 10: (a) Building with 95 edges. (b) Squared
outline with 95 edges. (c) Simplified to 38 edges.
(d) Simplified to 14 edges.

4. POLYGONAL SUBDIVISIONS
In this section we show how to simplify and schematize en-
tire subdivisions. We consider planar polygonal subdivi-
sions, which are induced by planar straight-line embeddings
of graphs. These graphs need not be connected. We define a
component of a subdivision to be a maximal subgraph that
is not contained in any finite face of the embedding. Any
subgraph that is embedded in a finite face is considered to
be part of the subgraph that encloses that face. Note that
this differs slightly from the typical definition of a connected
component in a subdivision (see Fig. 11).

(a) (b) (c)

Figure 11: (a-b) Subdivisions with a single compo-
nent. (c) Subdivision with two components.

The method for imposing angular restrictions, briefly dis-
cussed in Section 3.1, is already defined for subdivisions
rather than polygons. However, the definition of an edge-
move is based on polygons. In this section, we describe what
has to be taken into account when applying edge-moves in
subdivisions. For area preservation, it is important to com-
bine only edge-moves of which the inner edges are incident
on the same faces. In addition to this requirement, we must
define edge-moves in the presence of vertices of degree three
or higher. A configuration with interior vertices of degree
two supports edge-moves as defined for polygons. However,
if one of the interior vertices is degree four or higher, we
do not allow moving that vertex and as a consequence the
interior edge cannot be moved. We do not allow to move
vertices of degree four or higher as this would either violate
the topology-preserving or area-preserving property of the
method. This would be possible when allowing more than
two simultaneous edge-moves, at the cost of a higher com-
putational cost. For vertices of degree three, there is some
flexibility possible. There are three cases that can occur for
a degree-three vertex v for an edge-move with inner edge e,
incident to v (refer to Fig. 12):

(a) The other edges of v have the same orientation. These
edges must lie on different sides of the line through e.
When moving e in one direction or the other, vertex v
can slide along the other two edges.

(b) The other edges of v do not have the same orientation,
but lie on different sides of the line through e. When
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e
v

e e
v v

Figure 12: The three cases for a vertex of degree
three (white) when moving an edge e. New vertices
are given in gray. Top row: original situation; mid-
dle row: situation after moving e upward; bottom
row: situation after moving e downward.

moving e in one direction or the other, vertex v can
slide along the edge on that side, but an extra vertex
must be introduced on its original position.

(c) The other edges of v do not have the same orientation,
but lie on the same side of the line through e. When
moving e in the direction of the other edges, vertex v
can slide along the edge that makes the smallest angle
to e, but an extra vertex must be introduced on its
original position. When moving e in the other direc-
tion, vertex v can slide along the extension of either
edge. We use the edge that has the largest angle to
e, unless this edge has the same orientation as e (an
angle of π). A new vertex must be introduced on the
original position of v and this vertex has degree 3.

When combining edge-moves that introduce a new vertex,
it is important to make sure that the combined effect of
the edge-moves still reduces the overall complexity of the
subdivision. Predicting the total complexity reduction of
a single contraction is straightforward. Finally, to ensure
correct topology, it is important that a vertex of degree three
is never removed or moved on top of another vertex having
a degree higher than two. Figures 13 and 14 both show a
simplification and a schematization of a subdivision obtained
by applying our method on subdivisions.

(a) (b) (c)

Figure 13: (a) Norway, Sweden, and Finland (238
edges). (b) Simplified to 54 edges. (c) Schematized
dodecagonally (six orientations) to 54 edges.

(a) (b) (c)

Figure 14: (a) The provinces of Italy (1297 edges).
(b) Simplified to 244 edges. (c) Schematized octag-
onally to 244 edges.

5. URBAN-AREA GENERALIZATION
Urban-area generalization can be achieved in part by simpli-
fication. A collection of building outlines can be interpreted
as a subdivision. Therefore, the method that we outlined in
previous sections can be applied to obtain generalized ver-
sions of urban areas as well. However, depending on the size
of the area and the target scale, simplification alone does
not suffice; other generalization operators are required as
well. In this section, we deal with the integration of aggre-
gation and elimination into our simplification method. We
assume that we have detailed and accurate building outlines
available. Hence, we do not use squaring. Squaring could
even cause misaligned walls for buildings on opposite sides of
streets, greatly reducing the impression of a street caused by
the empty region in between. This is illustrated in Fig. 15.

Our support for aggregation is two-fold: an interior merge
aggregates two faces (buildings) within a component; an ex-
terior merge aggregates two separate components. We also
present a method to resolve high-degree vertices that cannot
be handled by these merge operations.

An interior merge involves two faces and requires that
these share at least one edge. The interior merge removes all
edges that are incident to both faces. The cost of an interior
merge equals the area of the smaller of the two faces multi-
plied by some parameter αin. This cost can be compared to
the cost (area of contraction region) of an edge-move in or-
der to decide which operation should be done. Increasing or
decreasing αin, respectively, makes the process less or more
likely to merge faces rather than performing edge-moves.

An exterior merge is initiated by making a zero-width con-
nection of two edges between the two nearest points on the
outer faces of the components. At least one of these new
edges allow a (small) positive edge-move. This edge-move
is performed and the area gain is compensated for by exe-
cuting a negative edge-move in one of the faces. To prevent
introducing a new orientation, we can pick two distinct ori-
entations from the components and create a staircase for
each of the newly introduced edges (see Section 3.1). The
cost of an exterior merge equals the area of the smaller of

(a) (b)

Figure 15: (a) Original outlines give the impression
of a street. (b) Misaligned walls would cause the
impression of the street to diminish.



(a) (b)

(c) (d)

Figure 16: (a) An edge incident only to the infinite
face. (b) A degree-four vertex alternatingly incident
to the infinite face. (c-d) Results after eliminating
a high-degree vertex. The area deformation is exag-
gerated to clarify the effect.

the two components multiplied by some parameter αex. We
require that αex ≥ αin holds. This guarantees that when an
exterior merge occurs, the smaller of the two components
consists of only one face, i.e. it is a simple polygon. In our
experiments, we use αin = 0.2 and αout = 0.5.

It is possible for a component to consist of multiple faces,
while no two faces share an edge (see Fig. 16(a-b) for exam-
ples). There are two cases possible: either a single edge has
the infinite face on both sides or a vertex of degree four or
higher is alternatingly incident to a finite face and the infi-
nite face. A single edge that is incident only to the infinite
face can be eliminated as follows: if it has a vertex of de-
gree one, then it can be removed without affecting the area.
Otherwise, we can duplicate the edge, creating a zero-area
region in between the edge and its duplicate. At least one
of these allows a positive edge-move. One of the faces at
the ends of the edge can perform a negative edge-move to
compensate for the change in area. This effectively merges
the two faces. For a vertex of degree-four (or more), we per-
form a positive edge-moves to “cut” the vertex, merging two
“adjacent” incident faces. Again, the increase in area can
be compensated for by an edge-move in one of the merged
faces. The cost of this operation is the area of the smallest
merged face multiplied by αin.

By combining these four methods of aggregating faces and
components, we obtain a method that is complete for sub-
divisions. This is formulated in the following theorem.

Theorem 2. Let S be a simple polygonal subdivision. Un-
less S is a simple convex polygon, subdivision S can be gener-
alized by either a complementary pair of feasible edge-moves,
an inner or outer merge, or the elimination of a high-degree
vertex, while preserving area, orientations, and planarity.

Proof sketch. If the subdivision is a simple polygon,
there is always a complementary pair of feasible contractions
(Theorem 1). If the subdivision is not a simple polygon,
but has a component that is a simple polygon, then this
component can always be used for an exterior merge with
the nearest other component.

If the subdivision is not a simple polygon, and no com-
ponent is a simple polygon, then either an interior merge
can be performed or a high degree vertex can be eliminated,
reducing the number of faces in the component. Since the
dual of a single component is a tree, it must have a leaf:
that is, at least one face consists of three or more vertices,
of which only one has a degree higher than 2.

By the theorem above, it is always possible to generalize
a simple polygonal subdivision while preserving the total
area and orientations inherent in the input. However, for
our results, we do not apply the additional steps to ensure
these properties. Orientations are not preserved as no angu-
lar restrictions are used beforehand, making the restriction
unnecessary. For aggregation, we do not desire area preser-
vation since it may cause apparent area loss: when nearby
components merge into a single component, the space be-
tween them should be “absorbed”, to have the neighborhood
(which includes some of the empty space in between) main-
tain its apparent area. Hence, we do not compensate for the
area increase caused by the exterior merge and even per-
form edge-moves on both newly introduced edges such that
a maximal area is added. Also, it is undesirable to merge
small components with a component that is far away. Such
“outlier” components can simply be eliminated from the in-
put. A component is considered an outlier when the nearest
other building is further away than three times its diameter.

Discussion. We present results for a data set of building
outlines of Boston1. The complete data set, with 295,781
components and 1,750,427 edges, is depicted in Fig. 17. We
ran our algorithm on the complete data set and on sub-
sets. In the following, we discuss only two subsets: North
End (131 components; 2035 edges) and the northern part of
Roxbury (2192 components; 15,192 edges). We refer to the
latter simply as “Roxbury”. Some results for the complete
data set are available online2.

Fig. 18 shows the input and results for Roxbury. While
the generalized version uses about 20% less edges than the
simplified one, we think its visual quality is at least com-
parable to that of the simplified result. Some differences
are highlighted in Fig. 19. Small buildings are merged when
generalizing the urban area. This has little impact on the
visual quality but greatly reduces the complexity. As a re-
sult, other buildings can even use some more edges, retaining
more of their original shape. In Fig. 21, we show the input
for North End, as well as our simplification and generaliza-
tion result. Again, we conclude that the generalized result
is at least comparable to the simplified result, while using
almost 17% less edges.

The Boston data set has been used to analyze other simpli-
fication methods, such as the method presented by Haunert
and Wolff [8]. One of their results for North End is shown
in Fig. 21(d). Our simplification result has a similar com-
plexity as their result. The visual quality of the results are
comparable. We highlight typical differences by the exam-
ple shown in Fig. 20. The buildings shown are simplified
more accurately by the method of Haunert and Wolff (and
use more edges), but the area as a whole is simplified better
by our method as it preserves the impression of a street.

The main advantage of our method is that it is simple,
fast, and more scalable. While their solution involves solv-
ing an integer linear program (an NP-hard problem) with in
the worst-case O(n6) constraints, our method has a worst-
case complexity of O(n3) when allowing infeasible configu-
rations to compensate for area change. Since a component
can be affected only by “nearby” components, we can obtain

1This data set is freely available as part of the Mas-
sachusetts Geographic Information System, MassGIS:
http://www.mass.gov/mgis/lidarbuildingfp2d.htm, ac-
cessed on February 8, 2011.
2http://www.win.tue.nl/~wmeulema/results.html#boston



Figure 17: Data set of Boston with North End indi-
cated by the small rectangle and a part of Roxbury
indicated by a larger rectangle. The data set has
295,781 components and 1,750,427 edges.

(a) (b)

Figure 19: Highlights of Roxbury, found in the far
southwestern corner and the southern area. Each
case depicts input, simplification, and generaliza-
tion. (a) By aggregation, these buildings are rep-
resented with less edges without a significant loss of
visual quality at small scale. (b) Aggregation else-
where allows buildings to use more edges, resulting
in a higher visual quality.

(a)

(b)

(c)

Figure 18: (a) Roxbury, Boston (2192 components
and 15,192 edges). (b) Simplified to 9965 edges.
(c) Generalized to 1593 components and 8071 edges.

(a) (b) (c)

Figure 20: Highlight of North End, found in the
northwestern corner of North End. (a) Buildings
give the impression of streets (dashed lines). (b)
In our result, the impression is preserved. (c) In
the result of Haunert and Wolff [8], the impression
of the street is reduced. Also observe the apparent
topology violation in the bottom left building.



(a) (b) (c)

(d) (e) (f)

Figure 21: (a) North End, Boston (131 components and 2035 edges). (b) Simplified to 939 edges. (c) Gener-
alized to 242 components and 783 edges. (d) Result of Haunert and Wolff (Fig. 10 in [8]). (e) Simplified to
939 edges allowing “invalid” edge-moves. (f) Generalized to 242 components and 783 edges allowing “invalid”
edge-moves.

an efficient implementation. Our method is approximately
as fast for small data sets, but is far more scalable to large
data sets. Table 1 shows the execution time on North End,
Roxbury and the complete data set.

Another advantage of our method is that it preserves the
area of each face exactly. While Haunert and Wolff do
take this into account, no guarantees can be given. Fur-
thermore, our method integrates with a simple aggregation
method, while this has to be done separately for the method
of Haunert and Wolff. Finally, we observe a difference in
what is considered topologically safe. Their method guar-
antees that there are no intersections in the result, but treats
each building as a separate entity4, disregarding shared walls

Table 1: Execution times, measured until no further
operations can be performed. Last column lists ex-
ecution times of the Haunert and Wolff method [8].

Data set Simplified Generalized ILP
North End 2.288s 2.954s 2.06s
Roxbury 3.439s 9.037s 44s3

Boston 2h17m44s 4h57m07s N/A

and holes. Hence, some apparent holes may vanish (see
Fig. 20) or adjacent buildings may disconnect. In contrast,
our method works on subdivisions and—without aggregation—
preserves the dual graph of the subdivision.

Our method, as described, cannot eliminate short convex
and reflex edges easily, as these are not allowed to move
outward or inward respectively. The effect is that round
corners are moved inward completely or that small cutoffs
are not removed (as illustrated in Fig. 22). This is caused
by the definition of valid edge-moves, i.e., only edge-moves
of which at least one of the vertices remains on the original
outer edge are allowed. However, allowing “invalid” edge-
moves is possible and causes no algorithmic problems. Since
this type of edge-moves is not strictly required for complete-
ness, we can put restrictions on the use of such operations
without interfering with this property of the method. We
allow an invalid edge-move with inner edge e only if the in-
tersection of the tracks is in the direction of the edge-move
and the orthogonal distance between this intersection and

3Personal communication with J.-H. Haunert, May 2011.
4This causes the complexity measures given by Haunert and
Wolff to differ slightly from those we give.



(a) (b)

Figure 22: Issues that can be solved by allowing
invalid edge-moves. Both cases depict input, regular
result, and result when allowing invalid edge-moves.
Examples are found in central and southern North
End, respectively. (a) Rounded corners can only
shrink. (b) Small cutoffs cannot be removed.

the line through e is at most the length of e. Fig. 21(e-f)
shows the result of our method on North End when allowing
these additional edge-moves. The problems indicated have
been alleviated. But this introduces another problem. The
impression of the street at some locations vanishes similar
to the results of Haunert and Wolff (see Fig. 20).

An advantage of the algorithm by Haunert and Wolff is
that it is parameterized by error tolerance, which is quite
easily obtained from a target scale. Our method is param-
eterized by desired complexity, which does not directly cor-
respond to a target scale. However, it is straightforward to
change the algorithm such that it performs only edge-moves
that stay within some error tolerance of the original shape.
Depending on the used measure, this leads to an increased
worst-case execution time. Such a parametrization to scale
would likely solve some issues of components “contending”
over edges (as indicated in Fig. 19(b)).

6. CONCLUSION
We described a simple and fast method based on edge-moves
for the simplification of polygonal subdivisions. Our algo-
rithm is able to process large data sets and yields results of
high visual quality. Our method preserves the area of each
face of the input subdivision, uses a subset of the orienta-
tions present in the input, and results in a simple, topologi-
cally correct subdivision. Since our method preserves orien-
tations, it can also be used for schematization, by imposing
angular restrictions on the input beforehand. By adding two
more preprocessing steps, our method can also be used for
building wall squaring, one of the operators in cartographic
generalization. For generalizing entire urban areas, we in-
troduced a simple method for aggregation that integrates
seamlessly with our simplification algorithm.
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géographiques à base de contraintes et d’autonomie.
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