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Model engineering is the synthesis of models and their analysis to solve real-
world problems. We make a model of a system to derive information about that
system by analyzing its model. The term ‘system’ is used here for any ‘complex
thing’. Systems can be man-made, which we call artifacts, or they can occur in
nature. The elements of a system may be material or immaterial things. Examples
of systems are an airplane, a biological cell, the metabolism of a mammal, a
software package, a business process or the set of laws to run a country. A model
is used as a representation of a system. Models can have different forms. For
example we have physical models such as a scale model of an airplane. 

I shall restrict myself to mathematical or symbolic models and computer models.
The latter are representations of symbolic models in a computer language so that
a computer can manipulate the model, for instance by simulating the modeled
behavior. In making a model we have to map the elements of the system we want
to model onto the elements, often symbols, of the model. In fact a model is a
virtual image of a part of a real-world system. The main assumption of model
engineering is: The properties we can derive from the model are also valid for the
real system. 
This may all sound a very lofty activity, but everybody uses mathematical models
every day. The most well-known model is counting. If we have a flock of sheep and
we would like to know how many sheep there are, we make a mapping from the
sheep to the natural numbers, consecutively, 1,2,3,.. until each sheep has a
number. This is fairly easy if they don’t move, but counting many moving objects is
difficult. Probably the second most commonly used model is an economical
calculation represented in a spreadsheet where we map the products we make to
the money it costs to produce them and the sales activities to the value of the
orders. So we arrive at the profit we make by subtracting the total cost from the
total revenue of sales. In the first example we were only interested in the number
of sheep and in the second in the amount of money we could earn. Other day-to-
day examples of models are a geographical map and a floor plan of a building. 
The questions we want to answer determine the type of model we will have to use. 

Introduction
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For advanced model engineering the availability of fast computers and of data in
digital form are essential. When I started my career, computers were brand new
devices. They were extremely slow compared to modern computers and their data
storage capacity has since then increased by a magnitude of 109. Hardly any data
were available in digital form. Many of the model engineering techniques we apply
today were completely unfeasible when I started my career. So I have experienced
an evolution in model engineering comparable with the evolution from traveling in
a horse-drawn carriage to traveling in a space shuttle (see [0]).

It is a good tradition that retiring professors give a valedictory lecture in which
they look back on their working life and summarize the lessons they have learned.
I will conform to this tradition. In total I spent 16 years of my career in the
consultancy business and 26 years in the academic world and during 10 of those
16 years in consultancy I was a part-time professor. In all those years model
engineering played an important role in my life. In this lecture I will reflect on
model engineering and I will use my rather unusual career path to structure this
lecture. 

It is a bad tradition that retiring professors like to give direction to future research
or to criticize the academic system they have been part of. That is the job of their
successors. I shall only use my experience to share some ideas about the future
with you. 
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My interest in science started at high school where I was inspired by very good
teachers in mathematics and physics. I liked physics more than mathematics.
Physicists make models of parts of the real world and they analyze these models
to understand or to predict phenomena. This is what model engineers do.
Mathematicians like to answer generic questions of a modeling framework, such
as “is there always a solution?”, “is there a best solution?”, “is it unique?”and “is
this the fastest method to arrive at a solution?”. I like these questions, but I like
making models to solve practical problems better. So I consider myself more as a
model engineer than a mathematician. 

I started my Bachelor study at Leiden University with a first major in physics, a
second in mathematics, and a minor in astronomy. I was discouraged by the bad
laboratory facilities, my own clumsiness in these labs and the way physics was
taught in Leiden. In contrast mathematics was taught very well, so I swapped
physics for mathematics. I had no idea what to become later, but I did not like the
idea of becoming a high school teacher. In those days some interesting
developments occurred: the mathematics department of Leiden University was
extended with chairs in probability theory, statistics and numerical analysis using
computers and a chair in what we now would call the science of programming. In
particular the last two were brand new scientific topics with great expectations
about their applicability. Until then mathematics was mainly used in physical
sciences, but now it was also being applied to economic phenomena. Also
econometrics had just started as a new discipline, though unfortunately not in
Leiden. For my Master’s I chose applied mathematics as my major and I arranged
with some friends a special minor in economy. I learned a lot during my last two
years as student-assistant in statistics with Prof. Willem van Zwet.

When I graduated I had no ambition to become a scientist. But my wife was still
studying in Leiden and teaching at a university meant not having to do military
service. So when I was offered a job in computer science by Prof. Alexander Verrijn
Stuart in Leiden I gratefully accepted it. I had to teach many courses, in particular
about programming languages and simulation techniques. Although I saw many
challenges in computer science, I was more interested in applied mathematics and

Prelude
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particulary in Markov chains. After two and a half years I moved to Eindhoven for a
PhD position in Markov Decision Processes with Prof. Jaap Wessels. I worked on
how to control these processes in case the underlying transition mechanism
should have unknown parameters that have to be estimated during the course of
the system. So I had to deal with the dilemma of using the estimates of the
parameters for optimal control, versus obtaining more information about these
parameters. I made my own modeling framework and I analyzed it as far as I
could. I could solve problems that were a magnitude larger than the state-of-the-
art, but they were still so-called toy problems. With today’s computers and the
availability of operational data in digital form, these techniques could be applied
to real life problems. In addition to working on my thesis I did some research in
other areas of the field of Markov Decision Processes.

While I enjoyed that period very much, when I finished my thesis I did not accept
an attractive offer to stay at the university because I wanted to put mathematics,
in particular operations research and statistics, into practice. So in 1978 I left the
ivory tower where we were able to work in a virtual world where we invented the
problems ourselves. I started as deputy director of a small consultancy firm, AKB
(Adviesbureau voor Kwaliteitsbeleid en Besliskunde) in Rotterdam. 
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Most of the practical experience in model engineering I obtained during my AKB
period. At that time AKB was the only firm in the Netherlands that offered model
engineering to answer business questions. AKB was owned by a larger
consultancy organization with about 400 employees, called Bouwcentrum, where
the focus was on the building and construction industry. AKB had a wider scope: 
it functioned as the computer center for Bouwcentrum and it was involved in
almost all the Bouwcentrum projects where mathematical models played a part.
AKB’s rich history started in 1946. One of the most important projects was the
construction of a new measurement system for fashion. It was much more efficient
than the existing systems at the time, but the system was never introduced
because a number of major fashion firms refused to make the switch. During the
first half year at AKB my coach was Prof. Hans Sittig, who retired as director of
AKB. He was a self-made scientist and without a MSc or a PhD he became part-
time professor at Erasmus University. He was taught statistics by the famous Prof.
Van Dantzig during WWII when both had to go underground. Sittig’s mathematical
toolkit was rather limited, but what he could do with it to solve business problems
was really amazing. It was a very exciting period in which I learned a lot about
model engineering. This was one of the best learning experiences for me: it was a
very good business school training as well as training in model engineering. 

I shall now briefly sketch some characteristic model engineering projects we did at
AKB. Of course in most cases I did this with some colleagues. The first two cases
occurred at AKB before my time, but are interesting for their ‘side effects’.

1. The grade-day system
In times that houses used oil for heating, the oil companies had to have oil
trucks available to supply houses that ran out of stock during the weekends.
AKB constructed a model to forecast the oil consumption of all clients. This
dramatically reduced the number of trucks needed. The model was based on
simple regression techniques and used the daily recorded temperatures. Only
once there was a problem: one house repeatedly ran out of oil whereas all
other houses had no such problem. Analysis showed that the client drove a
diesel powered car and he used, illegally, heating oil to fuel his car.

Model engineering in practice
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2. Biscuit bakery
A large bakery had a problem with their biscuit production. The problem was
that some biscuits were broken when they left the production line. The analysts
of AKB made a model of the production process and did a statistical analysis. 
So they found out that one mould for the biscuit production had a burr. This
problem was solved! However the client was not pleased because now he had
too few broken biscuits to supply the demand for bread-crumbs, so they had to
break good biscuits to fulfill this demand.

3. Standardization for the building industry
One of my first jobs at AKB was for the Dutch Normalization Institute (NEN). 
I made proposals for new standards for the height of doors and for the size of 
a shower space. The door height standard was based on measurements of
candidates for military service. A complication was that the age at which these
candidates were measured had changed. The model was simple: first we
estimated the growth trend by linear regression and then we extrapolated it to
2020. Next we determined a one-dimensional normal distribution with the
extrapolated mean value and the current coefficient of variation. Finally a 95%
confidence upper bound of 210 cm was calculated. For the showers we
obtained data from experiments and we used a 4-dimensional normal
distribution to obtain the standards. (I believe the fourth dimension was the
orientation in the shower). That was a hell of a job using only a hand calculator!

4. Glass plate cutting
A small software company had offered the development of a software package
to a cluster of eight glass factories. The software would now be called an ERP
system. Part of the package was a module that could determine the optimal
plan to cut large so-called mother panes into small window panes. This job was
too difficult for them so they called on some experts at the TU Delft. Although
they arrived at some kind of solution, based on integer linear programming, the
task ran for more than an hour on a large computer, while the software house
had offered the solution on their mini-computer with a response time of less
than five minutes. So the question was if we could help them. A week later we
had a heuristic method that delivered acceptable cutting patterns within the
five-minute limit. We first solved a one-dimensional cutting stock problem, in
which we divided strips over the mother plates and then we divided the
windows over the strips. Later the operators of the glass industries complained
that our method was not always efficient. We learned the heuristics they used
and incorporated them in the software. After a year there were no complaints
anymore.
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5. Harbor pool
At that time there were about 30 big stevedoring companies active in the port
of Rotterdam. Due to highly fluctuating workload in stevedoring companies, a
separate labor pool had been formed with about 2000 dock workers divided
among the respective stevedoring companies. Every day each company had the
right to use its own share of the pool. If they needed fewer dock workers, the
remaining number could be used by other stevedoring companies. In the event
that dockworkers were unemployed, the stevedoring companies together had
to pay for them, based on their share in the pool. At that time, there was a
government ruling that compensated for idle dock workers. The cost of a dock
worker on the payroll of the stevedoring company was lower than hiring one
from the pool, but the pool was cheaper than hiring one from another source,
specifically because of the compensation ruling. Each month AKB received the
expected workload forecasts of all the stevedoring companies. This was highly
confidential information. We combined these data with the order portfolio of
the German industry. So we had better forecasts of the workload than the
companies themselves! We used these forecasts to determine the optimal
distribution of the pool shares for the next period. One way to solve this
problem is by solving simultaneously the newsboy problem for each company.
We also developed a quadratic programming method for this problem [1]. So
AKB had what we now call a data warehouse of workload data. This service ran
for at least 10 years.

6. Portplan 
Because of our knowledge of the harbor pool we became logistics experts in
the port of Rotterdam. We developed a software package that was used by
several stevedoring companies to forecast their own workload in much more
detail. The workload system was based on their contracts, the arrival patterns
of ships and of the types of commodity they had to handle. This system was
one of the first decision support systems. Managers and controllers of the
stevedoring companies could use it themselves. It was used for planning and
budgeting over many years. The underlying models were queuing models and
heuristics for optimization [2].

7. Container terminals
Portplan was intended for general cargo. But more and more general cargo was
packed in containers. So we also got the assignment to build a similar decision
support system for container terminals. The goals were the same but the
techniques totally different, since here we had to model the handling of
containers at the terminal, which was done with sea cranes that took the 
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container out of the vessel and put it on a truck to move it to a stack area
where a yard stacker or transtainer put the container in the stack. Later the
client trucks would pick them up. This was the inbound flow, but the outbound
flow was similar. Here we applied the brand new mean value analysis
techniques for queuing networks where the trucks that moved between sea
cranes and transtainers formed a closed loop network. This system was also
used for many years [3].

8. Meat production 
For one of the leading supermarket chains we developed a linear programming
model (packed in software) to plan the production in their two butcheries, each
of which catered to about 180 supermarkets. Each butchery had its own orders
for a week ahead and to enable the purchase of half cows and pigs or smaller
parts of them to fulfill the demand. Although I never liked this type of
production, I learned a lot about meat production. One of the constraints was
that meat should not stay in the butchery for more than a day and that the
demand for Saturday was more than could be produced on Friday. So on
Thursday a part of the production for Saturday had to be done. In the beginning
the head of the butchery was not keen on us. We had several meetings where
we presented the data of simulated production of 4 weeks in the past to test
our model. We came up with a much more efficient production plan than was
being used. But according to the head butcher our ground beef was far too fat.
So we incorporated a new constraint which was actually a recipe for ground
beef. Later we were very disappointed because we lost a couple of tons of
good-quality beef in our model. Ashamed, we confessed it to the head of the
butchery. But then he said: “Well in that week we had a campaign for meat of
lesser quality and in order to meet that demand we sold the better beef.” He
continued: “It is amazing that your computer was able to discover this.” So now
we had him on our side. Although savings could be made of 10,000 guilders a
week in each of these butcheries, top management did not dare to let the
production planning be done by a computer.

There are many more interesting cases I can recall. I only once used a Markov
Decision Process, which was disappointing since I had hoped to apply my thesis
work in practice. I used Markov chains a bit in manpower planning with the
Formasy software package [4], originally developed in the group of Jaap Wessels.
AKB obtained the rights, reengineered it and applied it in several large
organizations.
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The most important lessons learned in this period are:
• Always start with data analysis, using simple statistical methods.
• Never trust interviews as a single source of information: people are seldom able

to tell precisely what they do, how they do it and to distinguish exceptions from
main stream activities. Always try to verify their answers with objective data.

• Always ask your client why he needs the information you are supposed to
produce. And more precisely, what he or she will do with the possible outcome.
Often clients do not need what they ask for! 

• Decision support systems should not dictate decisions but they should help the
decision maker by structuring the decision process, giving insight in the
consequences of a decision and recommending decisions.

• You seldom solve a practical problem with only one mathematical model. For
different aspects you need different models and the consistent integration of
these models into one decision support system is a typical model engineering
challenge. 

Instead of giving advice in the form of a report, we provided a decision support
system that the client could use himself to create a new recommendation in
response to changing circumstances. It seemed that the construction of such
systems would become an interesting research field. This was one reason for my
renewed interest in computer science. The other was based on a remark of a
potential client who said to me: “You offer me a system to predict the daily
workload for the coming weeks. That is beautiful, but I do not even know what the
workload was yesterday.” He was right, of course. First we should build
information systems that record the operational events of the business. So AKB
went into software house activities and we built up expertise in database
management systems: the network model was the new trend after the hierarchical
model introduced by IBM™. We even delivered hardware: non-stop computers of
GEAC™, which later became a major software producer.
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In 1983 I received some offers for a professorship, in different disciplines. It
seemed that there was interest in somebody with a solid scientific background
who had experience in real business applications. So in 1984 I came back to
Eindhoven as a professor in computer science, in particular the theory of
information systems. The existing staff in my Information Systems group was
working on database theory and I added a research activity in intelligent systems
using my experience in decision support systems. At that time Eindhoven was
famous for its style of programming, developed by Prof. Edsger Dijkstra and
others. Programming was moving from an art to a science. The derivation of
programs from formal specifications was the main goal. This led to beautiful
methods of program construction. However for programming on a large scale
these methods were less suitable. The business man in me said that I should not
try to beat my colleagues in the field where they were among the world’s elite.
Since they always assumed there was a formal specification of the program, 
I asked the question: “Who provides these specifications?”. Since there was no
clear answer, this became my main topic for the next ten years. Of course, I did not
restrict myself to specifications of small programs but I studied the specifications
of complex software systems. 

There are many different ways to specify a system. For me a formal specification of
a system has three elements:
• A model of the environment in which the system to-be-built should operate.
• A model of the system itself.
• A set of additional properties the system has to fulfill. 

Some of these properties concern the system itself, others the system in
interaction with its environment. Preferably these properties are formulated in
some logic, using the notions of the models. The model of the environment is
usually less detailed than the model of the system to-be-built. Only the interaction
with the system really matters. In information systems engineering one of the
main functions to realize is the recording of events that happen in the
environment. Then modeling can become confusing. Are we modeling the 

The science of 
model engineering
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environment or the part of the information system that records the events in the
environment? Are we looking at the real world or at the virtual world?

Since the models are abstractions of reality, it might occur that some properties
are not applicable to the models. However, the properties that are applicable
should be verified by the system engineer. Some properties might be simple
consequences of the model itself, others might be difficult to verify. A typical
example of a difficult property is deadlock freedom, which means that a system
will never ‘hang’, an ideal that is still to be realized by commercial software
vendors. Today we call such an approach model-based software engineering, and
it is a hot topic, but at the time I started this I was quite a pioneer in the field. 

In computer science models are used in a different way than in operations
research, where I came from. So I became interested in the theory behind
modeling. There are many philosophical questions concerning systems and their
models, but we will consider their practical use. Models can be used for different
purposes:
1. Descriptive models: The model is used to document a system. This occurs in

almost all the engineering disciplines. 
2. Explanatory models: The model is used to explain some phenomena. This is

what historians do: they link historical events by presumed causality
relationships.

3. Predictive models: The model is used to forecast some phenomena under
certain assumptions. The weather forecast is the most well-known one.

4. Optimization models: The models are used to tune the parameters of a system
in order to improve its performance. Typical examples are the scheduling of
trains, traffic lights or the mixture of food components to produce food.

5. Control models: The model is used to influence the behavior of a system. For
instance, to move a robot arm to perform some task or to regulate the influx of
fuel in a combustion engine. 

6. Construction models: To design, synthesize and test a system. Construction
models can be considered blueprints. 

In computer science and particularly in software engineering, models are used to
construct a system. In that sense model engineering is part of systems
engineering. However, the scope of model engineering is wider, since we also
make models for other purposes than constructing a system. Up to the time I
became a professor I never used models to construct a system, except for designs 
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of a rabbit hutch which I also realized. Software systems differ from other complex
artifacts in the sense that even a small software system may have an infinite set of
inputs, each with a specific output. This makes it impossible to verify the
functionality by exhaustive testing. Complex software systems have many
components operating in parallel, which generates exponential growth in possible
behavior. The main engineering challenge in high-tech systems, like cars, robots
and airplanes is the software system embedded in it. The production of copies of
airplanes, for instance, is very costly but if we have constructed a software
system, it is easy to make a copy of it. So for software systems the design phase is
the most crucial one and the verification of its behavior at the model level is
essential. 

Mechanical engineers, civil engineers and architects use geometry to make
models of the system they want to construct. In fact, geometry is their modeling
language. Geometry is a fine language to express artifacts that have a physical
form. However, software does not have such a form. Software defines the behavior
of a system and so for software engineering new languages had to be invented. 
A modeling framework consists of languages to express models and to express
properties of a model, and it often has a set of techniques and software tools to
analyze models. Modeling languages often have a graphical notation and they
should have formal semantics. The model engineer can chose from a large variety
of modeling frameworks. Not all of them satisfy these requirements. There are
several ways to classify these frameworks. We distinguish three classes of
modeling framework:
• Equation models: Equations and inequalities over variables in a Euclidean space

(Rn), where the variables are vectors or functions and where, in the case of more
solutions, there is an optimization criterion to select one solution. 

• Data models: To represent relationships between entities or concepts. The term
‘data’ may also be replaced by ‘information’, ‘knowledge’ or even ‘belief’. 

• Process models: To express the dynamic behavior of a system in the form of
events or state changes. 

In all modeling frameworks we can discover the notion of a state. The set of all
possible or allowable states is called the state space. 
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In equation models the state space is often a Euclidean space. In these models we
can distinguish different types of variables: exogenous variables that are
determined by the context of the system, control variables that may be
determined by the designer at design time or the decision maker at run time and
endogenous variables that are the results of solving the equations. 
In data models the state is a concrete instance of the data model and in process
models the state space is mostly an arbitrary finite or countable set. In addition to
having a state space, the process models and some of the equation models also
have a transition mechanism that relates each state to zero or more futures. 

Based on these notions we can classify modeling frameworks along the following
five characteristics:
• Static or dynamic 

If there is the notion of a transition mechanism, it is called a dynamic model.
Otherwise, it is a static model.

• Discrete or continuous state space
If the state space is part of some Euclidean space, it is called continuous. If it is
an arbitrary finite of a countable set, it is called discrete.

• Discrete or continuous time
If the futures, associated to a state, are functions from intervals of R1 into the
state space, we have continuous time. If each future of a state contains exactly
one state, we have discrete time. In the latter case, the transition mechanism is
a binary relation over the state space.

• Deterministic, non-deterministic or stochastic transition mechanism
If the transition mechanism determines for each state exactly one future, then
we have a deterministic model. If a state may have more than one future, it is
non-deterministic. Stochastic models are like non-deterministic models but each
future (or set of futures) has a given probability.

• Stated-based or event-based
A dynamic model with discrete time can be specified by its state space and a
transition relation. This is called state-based specification. Another approach is
to have a set of events and a mechanism to relate successive events. This is
called event-based specification. 
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Without the pretention to be complete, we present 18 modeling frameworks in
table 1:

state: time: stochastic

static discrete discrete determ. state-based

dynamic continuous continuous non-determ. event-based

Equation models

(non)linear programming s c - - - 

difference equations d,s d, c d d - 

differential equations d,s c c d - 

control models d d,c d,c d,s - 

(non)linear regression s c - - - 

Data models 

relational model s d - - -

ER model s d - - -

functional model s d - - -

XML s d - - -

RDF s d - - -

Bayesian networks s d,c - - -

Process models

automata d d d d,n s

Petri nets d d d d,n s,e

process algebra’s d d d d,n e

Markov processes d d d,c s s

renewal processes d d d s e

time series d d d,c s e

queuing networks d d d s s

I have not mentioned the languages, like DFD and IDEF, for hierarchical
decomposition of processes. Although they had no formal semantics for behavior
they were used a lot by software engineers in practice. Neither have I mentioned
simulation languages because they usually have no formal semantics and
therefore no methods for analysis. Besides these formalisms there are logical
languages like Prolog, Linear Time Logic (LTL) and Computation Tree Logic (CTL) to
express properties of processes. The System Dynamics framework that became
popular by the Club of Rome in 1972, is in fact a difference equations framework. 

Table 1  Basic modeling frameworks
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Several of the listed frameworks are competing in the sense that one can model
the same system in different frameworks. To be able to use most of these
formalisms at a professional level, one needs a serious course and a lot of
practice. That is one of the reasons that engineers do not like to switch from
framework. There are schools or ‘tribes’ of users of a specific framework and there
are even ‘tribal wars’ between these communities.
Although most equation models and most data models do not have the notion of a
transition mechanism, this does not mean that it is impossible to express dynamic
behavior in these frameworks, but then it is the responsibility of the model
engineer.

In general, the goal of modeling determines the modeling framework we need. 
So for the evaluation of the performance of a system Markov processes or queuing
networks are suitable. To verify if a system behaves conform a set of rules, a
process algebra might be preferable. Since a systems engineer has to deal with
many of these goals, he often needs to use more than one framework.

For software systems we use dynamic models with discrete time and discrete state
space. To understand this note that the state of a computer system can be
represented by a (very long but finite) sequence of zeros and ones and that
computers may change their state after each pulse of their internal clock or after a
new input. For construction purposes we do not need stochastics although when
performance analysis is required we do have to assume potential usage which is
modeled with a stochastic process. We use non-determinism to model the
influence from the environment, for instance, the behavior of the users.

Remember we were looking for a framework to model information systems. In the
eighties the development of information systems was data-centric and not
process-centric, as it is today. The database was the heart of the information
system and as soon as the data model was fixed, programmers could start
programming different applications that shared the database, which should be
created according to the data model. A data model is perfect for defining a state
space but bad for defining state transitions. So I decided to choose a process
framework. After an excursion with a self-defined framework based on a network
of automata (see [5]) I moved to Petri nets. Petri nets had been well known for 
a couple of decades at that time. It is the first model of concurrency. Petri nets
have an elegant graphical notation which allowed defining infinite state spaces
with a finite graph and there are interesting and useful analysis methods for Petri
nets. I will explain very briefly what Petri nets are.
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A classical Petri net has three types of building blocks: 
• Transitions model (instantaneous) events or time consuming actions. In

diagrams: squares.
• Places model stages, to express that some part of a system is in a certain stage

waiting for a new event or buffers to store objects. In diagrams: circles.
• Tokens can be used as stage markers or to model objects. Objects can be of any

kind, such as data elements like a message, physical objects like a container, or
abstract objects like an agreement. In diagrams: dots in places.

A state of a Petri net is a distribution of tokens over the places. The transition
mechanism of a Petri net is defined by a very simple but powerful rule, called the
firing rule. In fig. 1 this is illustrated: a transition may change the global state of
the system locally by consuming one token from each of its input places and at
the same time producing one token for each of its output places. This is only
allowed if there are enough tokens in the input places.

Fig.2 shows a Petri net that models a complex container transportation system.
The tokens are not displayed in the left-hand subsystem but the places could
contain tokens that represent ships. In the right hand subsystem the tokens
represent trucks and in the middle they represent containers or containers on a
truck. The transitions model actions such as unloading a truck or events like
arriving in a harbor. The places model stages of the containers, trucks and ships,
such as waiting at a terminal and stripping or stuffing a container at a client site.

However, classical Petri nets are too simple to model all the details we would like
to model. For instance, the names of ships and the identities of the containers are
not expressed in the Petri net of fig.2. In classical Petri nets, as in many other pure
process frameworks, state spaces and the transition relation can only be specified
by enumeration, which is impractical for large data-intensive systems. So we

three input
places

before firing after firing

two output
places

Figure 1  Firing a transition
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decided to enrich the classical Petri nets with a language to define state spaces
and transition relations implicitly, by means of formula. 

The language was a typed functional language that we designed in the
Information Systems group. In this language one can define arbitrary complex data
types and arbitrary complex functions to transform elements of these data types.
We added a data type to each place, meaning that all tokens in that place should
have a value belonging to that type. We also associated each transition with a
function for each output place that could transform the values of the input tokens
to values of the output tokens. The domain of the function could be smaller than
the Cartesian product of the input data types, which means that we could have a
precondition for firing. It is also possible to suppress some output tokens. In fig.3
we see a simple example in which there is a precondition so that only even
numbers are added.

We also enriched the framework with the notion of time. Each token was
associated with a timestamp. The firing rule was restricted in the sense that a
transition could only fire if (1) all tokens had timestamps not greater than the
current time and that (2) if one or more transitions can fire at the current time, one
of them will do so. We called the last property eagerness. A consequence of this
mechanism is that for each state of the model we can determine the time, the
system will leave the state to move to the next state. This time mechanism turned
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out to be very useful to model real-time systems. Since it is easy to model random
number generators in the framework it is possible to model stochastic behavior. 
To gain an overview of large systems we enriched the framework with the notion 
of hierarchy to cluster subsystems into a kind of ‘super transition’.

Now we had a framework in which it was rather easy to model all details we
needed in a rather easy way. We called our framework of enriched Petri nets
ExSpect [6] and we made a software tool, to edit, animate and simulate arbitrary
complex systems in this framework. For those days we had a very advanced
graphic user interface. In our Information Systems group Lou Somers and Marc
Voorhoeve were the main software engineers of the ExSpect tool. Soon after the
start of the tool development, Wil van der Aalst joined us as a PhD student after
he had finished his Master’s in our group. He contributed substantially to the
development of ExSpect. Later Eric Verbeek, also a former Master student, joined
us and he became the main software architect. The first version of ExSpect
became available in 1989 and TNO was our ‘launching customer’.

In the late eighties we were not very familiar with the Petri net community and we
learned Prof. Kurt Jensen had just developed so-called colored Petri nets [7] at that
time, which was almost the same as what we had done! Kurt also produced a
software tool, now called CPN-tools. I believe that we released our tools in the
same month in 1989. Both frameworks were able to model discrete as well as
continuous time, they could model deterministic, non-deterministic as well as
stochastic systems and the properties of classical Petri nets enabled one to use it
in a state-based style as well as an event-based style. 

In the meantime many other university groups have attempted to make integrated
modeling frameworks. In the last decade the software industry has made progress
by making an integrated modeling framework and supporting tools. Today the
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Unified Modeling Language (UML) is the standard modeling framework for the
industry. It is a family of various languages. Some of them have unclear semantics
and the integration of the various views has to be improved. However, it is a good
start. The most popular language of this family is the Class Diagram, which is an
extended data model. One of the languages for process modeling is the Activity
Diagram, which is very close to Petri nets. They became available in the nineties as
a result of industrial standardization. In table 2 we list six integrated frameworks,
counting UML as one family. Again, this is not an exhaustive list.

state: time: stochastic

static discrete discrete determ. state-based

dynamic continuous continuous non-determ. event-based

VDM s d - -

Z s d - -

CPN-tools d d d,c d,n,s s,e

ExSpect d d d,c d,n,s s,e

UML class model s - - - -

UML state charts d d d d,n s,e

UML activity diagrams d d d d,n e

mCRL2 d d d,c d,n e

The industry was very interested in ExSpect and we made models of a wide variety
of systems, such as logistics systems, the control of a satellite and of the Dutch
railway system. We stopped the development of ExSpect in 1996 because the
scientific challenge was over, but there are still some users today. It is a pity that
we did not develop a simple method with supporting software tools to transform
our system models into real software code. This is the main reason that ExSpect
and also CPN-tools are not so much used for software development. I regret that
because I strongly believe it is a very good approach. But for software engineers it
was often a big hurdle to start making a detailed model and then transform that
by hand into a software system. This omission can still be repaired by making
additional tools [9].

Anyway, my goal was reached: I had enough evidence that with this (ExSpect)
framework I could model all discrete event systems efficiently in a systematic way.
During my sabbatical year 1991-1992 in Waterloo, Ontario, I wrote a book [8] about
this framework. It did not become a best seller although a year ago it was
reprinted. For me it was time for a new challenge!

Table 2  Integrated modeling frameworks
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I always kept relationships with the field of industry after my AKB period, also
using them to create Master projects for students (around 100 in the period 1984-
1994). One special relationship had already started in my AKB period, with
Bakkenist Management Consultants, at that time one of the leading Dutch
consultancy firms with a strong focus on Information and Communication
Technology (ICT) and relationships between organization and information. In 1994
I moved to Bakkenist to become one of the managing partners with focus area ICT-
consultancy. There I was involved in all kinds of very exciting consultancy projects
with large companies. In particular in ICT strategy projects, in business process
reengineering (BPR) and in e-business. Finally it became clear to business
managers that the principle: ‘organize before automate’ was not the best way to
apply ICT. The reason is that they organized the work for people and then used
computers to automate the human tasks. It is much better to redesign business
processes fundamentally using all the possibilities of ICT. The BPR wave started
with the redesigning of internal business processes specifically in large
bureaucratic organizations. Later, the link with the environment of these
organizations was made: the customers and the suppliers. This caused the second
wave of e-business. Actually the e-business movement was the logical next step in
this revolution: a business process triggered by the customers who should be in
control as much as possible.

Bakkenist made me aware of the BPR wave and I saw that the precise modeling of
business processes would become very important. I realized that our ExSpect
framework was extremely well-suited for this task. It took me a little while to
convince my colleagues at TU/e that we should apply our approach to this field,
but we did! We introduced the notion of a workflow net which is a special class of
Petri nets that models precisely what we call a business process. It has one initial
place and one final place and every other place or transition is on a path from the
initial to the final place. The initial state is the distribution with exactly one token
in the initial place and the final state with exactly one token in the final place.
Specifically Wil van der Aalst made a great contribution by introducing the notion
of soundness or weak termination for workflow nets: a workflow net is sound if
from any state that is reachable from the initial state, it is possible to reach the

Return to practice
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final state. This notion generalized the deadlock property and it turned out to be a
very good sanity check for modeling business processes. So we applied ExSpect at
Bakkenist in various workflow projects. Wil and I wrote a book on workflow
systems [10] which later became a best seller that appeared in five languages.

The BPR and e-business waves saw a boom in the consultancy business. However,
it was generally believed that, in order to stay ahead of the competition,
consultancy firms should globalize. It was my task to look for a global player to
merge with. In 1999 we merged into Deloitte, at that time Deloitte & Touche. The
first two and a half years after the merger I was one of the managing partners of
the consultancy group. When the initial symptoms of the merger had faded away 
I became professional director of consultancy, which meant that I became
responsible for knowledge management, training, quality control and innovation of
the consultancy practice of some thousand consultants. It was a wonderful period
and a great experience, but when the consultancy directorate was established and
I had spent another ten years in consultancy, it was again time for a move!
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At that time TU/e asked me to come back as a full professor. I tried to discourage
the dean from hiring such an old person, but they still offered me the job. Paul de
Bra became professor shortly after I left in 1994. He focused on the database part
of the Information Systems group. We renamed my chair Architecture of
Information Systems (AIS) and together we formed the Information Systems
section. Shortly after my return in 2004, I was asked to become dean of the
department. I held this job from 2005 till 2009. Although I first considered it as my
‘tour of duty’, I liked the job very much. During that period I was very lucky that
Wil van der Aalst became my successor as head of the AIS group. I had to renew
my line of research. In my former period at TU/e I was focused on methods and
tools for modeling, but they were available by now. I still wanted to work on
methods that could support the work of model engineers, specifically on methods
and supporting software tools to help engineers in finding errors in their models.
All the work in this period I did in strong cooperation with members of the AIS
group, in particular with Natalia Sidorova, Marc Voorhoeve, Jan Martijn van der
Werf and Wil van der Aalst. We focused on four topics that I consider also as the
main challenges for the future. 

• Model integration. Often a single model of a system is inadequate or too
complex. Therefore, we have to make several models and the challenge is then
to make them consistent, i.e. to ensure that the different models do not
contradict each other. There are two kinds of integration: (1) integration of
different views, which means models that describe different aspects of a system
often in different frameworks and (2) different components describing different
subsystems of a large system, mostly within the same framework. I had
encountered these problems already in my AKB time when I had to solve
complex optimization problems I used a simplified optimization model that was
a great abstraction of the real system to find control parameters and a
simulation model for calculating the effects of the control parameters. 
However, now we were studying different forms of integration: (1) the
integration of data models and process models [10], (2) the integration of
different workflow models that represented different use cases of the same
system [12] and (3) the integration of communicating workflows [13].

Science of model engineering
continued
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• Model verification. This concerns the verification that a model satisfies the
properties defined in a specification. This is a popular topic. The standard
techniques are: (1) model checking which means inspection of the whole state
space to check whether the property holds, or (2) to use theorem proving
techniques to check a human generated proof. I concentrated on another
approach: correctness-by-construction and specifically for one property: weak
termination as described above. In particular, we worked on frameworks that
extended the classical Petri nets but not with the full power of colored Petri
nets, because it is very hard to prove properties of these systems. Our challenge
was to extend the classical Petri nets in such a way that the weak termination
property was easy to verify by inspecting the model only and not its complete
state space. Extensions we considered are: (1) nested Petri nets, in which the
tokens themselves are Petri nets [14] and (2) history-based Petri nets, where
transitions have a precondition based on the history of the process [15].
We also worked on the verification of more complex forms of weak termination:
(1) weak termination of workflow nets in the event that there is an infinite
sequence of input tokens, which we called generalized soundness [16] and (2)
weak termination of workflow nets with resource constraints [17].

• Model validation. This is the fundamental question of model engineering: ‘Is my
model a good representation of the real system, i.e. are properties that hold
true for the model also valid for the system?’ I considered this question from a
normative point of view, namely whether the real system is behaving in line with
the model: ‘Is the behavior of the system allowed in the model?’ In the case of
business processes this is typically a question for auditors [18].

• Model identification. This concerns discovering a good model of a system based
on observations of the real system. There are many questions and approaches
in this area. Actually in my PhD thesis I had already addressed this problem:
using the data of process execution to improve the estimators. In my AKB time
we had the problem that no operational data were available in digital form. But
today almost all organizations have information systems that record the relevant
events in a so-called log file. The activity of reconstructing a process model out
of log data is called process mining. Wil van der Aalst has put this topic on the
international research agenda and he made several essential contributions [19]. 

In 2007 I became director of the Stan Ackermans Institute [20], which organizes 
16 post-Master programs in design and engineering, concluding with an innovative
design project in industry. Here model engineering is a cornerstone of systems
engineering!
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In 2009, together with Henk Zeegers of Inroads and Michiel van Osch, I started the
TSR-project [21]: the development of a so-called service robot that can execute
basic human activities, in a daily life environment. This project involves 10
organizations working closely together. The service robot is tele-operated, which
means that it can be controlled completely by a human operator from a cockpit at
an arbitrary distance. The robot can perform many simple tasks autonomously, 
but not for longer than a minute or so. This project offers beautiful modeling
challenges and the transformation of models into a physical system. I find it much
more exciting to build systems that act in the real world than systems that
produce information in a virtual world. One of the modeling challenges in robotics
is the integration of continuous and discrete behavior. The continuous behavior is
described by differential equations and the discrete behavior, for instance, by
enriched Petri nets, like colored Petri nets. Tokens that seem to be in rest in a
place, waiting for the firing of a transition, are in fact changing their local state in 
a Euclidean space according to a differential equation. Such models are called
hybrid models. 
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In this last section I would like to share my expectations about model engineering
in the future. It has a positive and a negative side. Let me start with the negative
side.

Model engineering is used in almost all scientific disciplines. This is due to the fact
that a big part of the model engineering knowledge is packed in software and
available as software tools, such as Matlab™ and SPSS™. You can use these
tools without deep knowledge of the underlying theories. On the one hand, this is
positive but, on the other hand, it is also dangerous. Many scientists use these
tools to make models and base conclusions on them. However, they are often not
aware of the fundamental theories behind the tools and of their limitations. 
For example in the social sciences, economy and earth sciences we see all kinds of
misuse of mathematical models. In the social sciences the majority of research is
fact discovery based on questionnaires. The design of the questionnaire is one of
the two creative moments in such research. Everyone who has ever filled out a
questionnaire knows how unreliable his answers are. Next statistical machinery,
for instance SPSS, is used to discover or test correlations. Then the second
creative moment occurs: the researcher selects some of the correlations and
interprets them as causalities. 

The same happens in economical research. Economical models are often based on
assumptions that do not seem to be true, such as the axioms that the ‘markets are
efficient’ and that ‘people behave in a rational way’. 
Also in the climate discussion we see that scientific statements are based on
mathematical models. The climate is the system that produces the daily weather.
The climate is a very complex system and mathematical chaos theory provides
good reasons to assume that the climate is not predictable. Nevertheless, many
scientists believe that the climate is changing and they even have found the
causes. All we know is that the weather is changing all the time. But concluding
that the system behind the weather is changing is very difficult to establish based
on the weather data only! I am convinced that if these scientists published all the
assumptions on which their conclusions are based, their results would not be
taken so seriously. In 1959 Darrel Huff wrote the famous book ‘How to lie with

Outlook
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statistics’ [22]. Now it is time for a new book: ‘How to lie with models’. I would like
to see a ‘driver’s license’ for scientists who use model engineering to do their
research. Such a license should include an ethical code that makes publish the
modeling assumptions compulsory.

It is very positive that model engineering is applied so much in systems
engineering. Almost all technological design will be done using model
engineering. 
In the design of mechanical systems Computer Aided Design (CAD) systems are
already very sophisticated and during the design process all kinds of checks and
performance indicators are calculated automatically. The step from design to real
product is also being automated. Computer Aided Manufacturing (CAD) systems
are coupled directly to the CAD systems. The more 3D printing develops, the
sooner the step from design to product will disappear completely. 

In the electronic systems industry we have already seen the same development for
a long time: an application specific circuit (ASIC) is designed and production is
completely automated from a model.
For software systems there will be excellent modeling tools in the future, that
allow for all kinds of verification during the design process. These tools will also
have code generators that will generate around 95% of the system code from the
model. There will always remain some complicated parts that have to be
programmed. Some of this code will be realized as ASIC, others stored in memory.
In fact, programming will be replaced by modeling, or modeling will become
programming at a higher level of abstraction.

The latest branch of systems engineering is bio-engineering where DNA and, in
the future, also complete cells and even micro-organisms will be engineered. Here
is a great challenge for model engineering. Successes have already been achieved
in the DNA-design, but we probably need new modeling frameworks in the future.

Today many complex systems have mechanical, electrical and software
subsystems; in the future these will probably also be biological ones. Integration
of these subsystems at production level seems to be a natural step. This is only
possible if we have an integrated modeling framework. In all these cases the
production steps are highly automated. An important side effect of this is that we
do not have to ship production to low-labor-cost countries in the future, we can do
it here!
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It is evident that I have learned a lot from my teachers, my colleagues at TU/e,
AKB, Bakkenist and Deloitte, and my PhD students. I could not have made this
beautiful journey between virtuality and reality without the help of the supporting
staff, in particular the great secretaries that I worked with. I am very grateful to all
of them! I am also very grateful to TU/e for offering me a very stimulating working
environment. I appreciate the focus on science and engineering, the high quality
standards and the friendly atmosphere.
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