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Abstract 

So far the literature on inventory control for perishable products has mainly focused on (near-) 

optimal replenishment policies for a stylized environment, assuming no leadtime, no lot-sizing, 

stationary demand, a first in first out retrieval policy and/or product life time equal to two 

periods.  This literature has given fundamental insight in the behavior and the complexity of 

inventory systems for perishable products.  In practice, many grocery retailers have recently 

automated the inventory replenishment for non-perishable products.  They recognize they may 

need a different replenishment logic for perishable products, which takes into account e.g. the 

age of the inventory in the system.  Due to new information technologies like RFID, it now also 

becomes more economically feasible to register this type of information.  This paper suggests a 

replenishment policy for perishable products which takes into account the age of inventories and 

which requires only very simple calculations.  It will be shown that in an environment, which 

contains important features of the real-life retail environment, this new policy leads to substantial 

cost reductions compared with a base policy that does not take into account the age of 

inventories. 
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1.  Introduction 

Worldwide sales at grocery retailers in 2006 easily exceeded $1,000 billion.  Perishable products 

such as fresh produce, dairy and meat constitute more than a third of these sales [1].  Controlling 

the inventories of these perishable products is increasingly important.  On the one hand, margins 

on non-perishable products are relatively small and decreasing.  On the other hand, customers are 

asking for higher product variety in perishable product categories, leading to less predictable 

demand per product and to more outdating, and for new product categories with a short shelf life, 

such as fresh ready-to-eat meals.  

Our paper originates from discussions with several European grocery retailers.  Analyses of 

their data and interviews revealed the following characteristics of their perishable products: the 

products' remaining shelf life is short (1 to 30 days), demand within a week is non-stationary 

with high demand on Friday and Saturday, the customer can observe the expiration date of the 

items and is allowed to select the items, and inventory replenishment is done periodically and in 

small batches ([2], [3]).  These retailers are using an Automated Store Ordering (ASO) system 

for the non-perishable products, which does not take into account detailed information about the 

age of the inventory.  They wonder whether this type of ASO system can also be applied to the 

perishable products. 

In addition, until recently, most of the literature on inventory replenishment policies for 

perishable products in a stochastic environment (see paragraph 2 for more details), has focused 

on policies which do not take into account detailed information about the age of the inventory.  

At the same time, new technology allows new ways of controlling the inventories.  Technology 

like RFID will enable an efficient administration of both the quantity and the age of the 

inventory in the system.  In this paper, we propose and evaluate a new inventory replenishment 

policy for perishable products, which takes into account this detailed information.  We will do 

this for an environment that contains important features of the original problem setting, i.e., with 

stochastic demand, a weekly demand pattern, positive lead-times and with lot sizing.  The 

literature mostly assumes a first in first out (FIFO) retrieval policy, while according to Silver et 

al. [4] and Cohen and Prastacos [5] customers typically prefer a last in first out (LIFO) retrieval 

in an environment where they can see the expiration date and where they are allowed to select 

the item.  Therefore, we will evaluate the different replenishment policies for both the FIFO and 

the LIFO customer retrieval behavior.  
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2.  Literature review 

Excellent literature reviews on perishable inventory systems are done by Nahmias [6], Raafat [7] 

and Goyal and Giri [8].  Since 2001 most publications in this field deal with pricing and lot-

sizing models (e.g. [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], 

and [23]) or with 2-echelon systems (e.g. [24], [25], [26], [27], [28], [29], [30], and [31]).  The 

papers on pricing and lot-sizing models often assume a deterministic environment. 

In this paper, we focus on a different environment: we study replenishment policies for a 

single echelon perishable inventory system with stochastic demand and a fixed lifetime.  

Although this type of system has been studied since Van Zyl [32], the number of publications 

since then is limited.  Nahmias [33] and Fries [34] showed that for a perishable item with fixed 

lifetime equal to m  periods, incurring outdating costs for units of inventory available in the 

system at the end of their lifetime, the optimal replenishment policy in general depends on a 

)1( −m -dimensional vector, which describes the age distribution of the inventory in the system.  

This makes the computation of optimal policies very complex for large values of m  [6].  To deal 

with this complexity, authors typically have chosen either to simplify the system, e.g. by 

assuming 2=m  periods (this case is discussed by [32], [35] and [36]) or to consider simple 

replenishment policies.  The simplest and most studied policy is the critical number policy, in 

which a new order is generated if the inventory position in the system drops below a critical 

number.  Several heuristics have been suggested for the determination of the critical number (see 

e.g. [37], [38], and [39]).  All these papers assume the retrieval policy is first in first out (FIFO), 

the lead-time is zero, there is no lot sizing and the demand is stationary.  Although the single 

critical number policy does not use any information about the age distribution of the inventory, 

[37], [38], and [39] have shown that this simple policy is close to optimal under the assumptions 

just mentioned. 

In the replenishment policy we suggest in this paper, we take into account the full age 

distribution of the inventory.  Earlier, Nahmias [40], Tekin [41] and Haijema et al. [42] have 

shown that the performance of the system can be improved by taking into account partial 

information about the age of the inventory in the system at the moment the replenishment 

decision is made.  Nahmias [40] approximated the original problem with a heuristic that takes 

into account detailed age information about newer inventory and aggregated information about 
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older inventory.  Tekin [41] introduced a ),,( TrQ -policy, in which a replenishment order of 

size Q  is placed either when the inventory drops to r , or when T  units of time have elapsed 

since the last instance at which the inventory level hit Q , whichever occurs first.  Haijema et al. 

[42] take into account age-information by using two critical numbers in their replenishment 

policy: one for the total inventory and one for the young inventory.  They also distinguish two 

demand classes: demand for young items and demand for items of any age.  Their replenishment 

policy is a double-level order-up-to rule with one level for young inventory and the other level 

for the total inventory.  Our paper differs from these three papers in two ways.  First, our 

replenishment policy takes into account all information about the age distribution and secondly, 

the assumptions on the retrieval policy and the inventory system are different.  The paper of 

Nahmias [40] assumes FIFO-retrieval, no lot sizing and no week pattern.  In his numerical 

experiments, Nahmias [40] only finds very small improvements compared to the approximate 

single critical number policy.  The paper of Tekin [41] assumes FIFO-retrieval, no week pattern, 

continuous review and they assume that the aging of items in a replenishment batch only starts 

after all units of the previous replenishment batch are exhausted either by demand or through 

decay; in other words, aging of a replenishment batch starts when it is unpacked for 

consumption.  The paper from Haijema et al. [42] deals with inventory control for blood platelets 

and therefore they assume that the supplier instead of the customer controls the retrieval of the 

inventory. They assume FIFO is applied to meet the demand for items of any age and a wider 

range of retrieval options (including both FIFO and LIFO) for the demand for young items. They 

assume there are no lot-sizing restrictions. 

The literature on LIFO perishable inventory systems is very scarce.  Cohen and Prastacos [5] 

deal with the effect of FIFO versus LIFO retrieval policies on both the system performance and 

ordering decisions. Their analysis is restricted to 2=m .  They derive approximations for the 

critical number for LIFO systems and compare these with the values for FIFO systems.  The 

critical numbers turned out to be rather insensitive to the type of retrieval policy although the 

optimal expected costs were significantly higher for LIFO.  Nahmias [6] mentions that this result 

suggests that simple approximations for FIFO systems could also be used effectively in LIFO 

systems.  Since Cohen and Prastacos [5] did not investigate replenishment policies other than 

critical number policies, our paper has added value in showing whether or not an age based 

replenishment policy leads to improved performance in a LIFO system. 



 

 

5 

3.  Model assumptions and notation 

To compare different replenishment policies, we used a discrete event simulation model of the 

retail process of perishable products at a single store.  We used the following assumptions and 

notation: 

• We study a single perishable product with fixed lifetime of m days; the lifetime is 

defined here as the remaining lifetime for goods when they arrive in the store (in general 

an agreement on the lifetime is made with the supplier who prints an expiration date on 

the item taking into account the lead-time from supplier to the store); 

• Demand is probabilistic with a seasonal demand pattern week during the week.  The 

weekly demand has mean µ  and variance 2σ , with df  the fraction of the week demand 

for weekday d .  We modeled the demand for each weekday d  with a Gamma 

distribution (cf. Burgin [43]), with mean µµ ⋅= dd f  and variance 22 σσ ⋅= dd f ; 

• The inventory is controlled with a periodic review system with review period 1=R  day, 

i.e., daily ordering; 

• The inventory in the store at the start of day t  consists of one or more batches.  A batch is 

defined here as a set of items available in the store, which all have the same remaining 

shelf life (i.e. the same age).  The amount of items available in the store at the start of day 

t  having r  days remaining shelf life is equal to trB ; 

• Replenishment orders arrive with a fixed lead-time 1=L  day.  We assume that the 

supplier has ample stock; 

• Replenishment quantities are limited to multiples of an exogenous determined case pack 

size Q , i.e., predetermined lot sizes; 

• Upon delivery of the replenishment order, all the items are placed on the shelf.  We 

assume that the shelf has ample capacity; 

• Customers retrieve items with positive remaining shelf life from the batches on the shelf, 

depending on their demand and preference regarding remaining shelf life, with 
trW  the 

amount retrieved with remaining shelf life r  at day t . Outdating tO  is the retrieval by 

store clerks of items with 1 day remaining shelf life at the end of day t , since these items 

can not be sold the next day; 
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• When the inventory on the shelf is insufficient to satisfy the demand, the excess demand 

is lost; 

• In the replenishment policies we apply the same safety stock SS  for each weekday; 

The timing of events during a day in the model is: after opening the store, inventory 

decreases due to customers' demand, after closing the store outdated inventory is removed, 

remaining inventory is counted, and performance measures such as the service level are 

calculated, goods arrive and are stacked on the shelves, and finally the orders are placed.  

4.  Replenishment policies 

The new replenishment policy, to be introduced in this paper, is called the EAR policy.  It will be 

compared with a base policy.  This base policy is essentially the same policy that is used by 

some grocery retailers to replenish non-perishable products.  Moreover, if the lot size is equal to 

one and there is no week pattern, this base policy is equal to the single critical number policy, 

often studied in the literature on inventory systems for perishable products.  Both the base policy 

and the EAR policy will be described in detail below. 

Following the notation of Silver [4], the base policy is a ),,( nQsR  policy.  In this policy, a 

replenishment order is created only when the inventory position at a periodic review moment is 

strictly below the dynamic reorder level 
ts .  In that case a number of case packs (

tn ), each with 

size Q, is ordered which is necessary to bring the inventory position back to or just above the 

reorder level 
ts .  Note that the inventory position is the sum of the inventory on hand in the store 

and the inventory in transit.  Further, the reorder level ts  is dynamic, since it has to deal with the 

weekly seasonality of demand.  Following common practice as discussed in Silver [4], we set the 

reorder level as follows: 

∑
++

+=

+=
RLt

ti

it DSSs
1

ˆ       (1) 

with SS  the safety stock and ∑
++

+=

RLt

ti iD1
ˆ  the expected demand during lead-time plus review 

period.  Finally, the value of 
tn  is chosen such that the inventory position just after a 

replenishment decision is at or above ts , but strictly less than Qst + .  If we define B

tIP  as the 

inventory position at day t  just before an order is placed, then tn  is determined as follows: 
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In the EAR policy, the inventory position is first corrected for the estimated amount of 

outdating and an order is placed if this revised inventory position drops below the reorder 

level ts . 

∑
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      (3) 

The estimated amount of outdating is determined via recursive equations, using the age 

distribution of the inventory.  To derive these equations, we first note that the amount of 

outdating, which is the retrieval by store clerks of products with one day remaining shelf life at 

the end of a day, depends on which items from which batches are chosen by the customers to 

satisfy their demand.  Therefore, we will derive recursive equations for both FIFO and LIFO 

retrieval.  

In the case of FIFO retrieval, we have the following recursive expressions at each day t . The 

retrieval is the maximum of the remaining batch size and the unsatisfied demand from older 

batches on the shelf, i.e., for mr ,,1…=  









−= ∑
−

=

1

1

,
r

i

tittrtr WDBMaxW      (4) 

In the case of LIFO retrieval, the amount of retrieval from a batch on day t  is the maximum 

of the remaining batch size and the unsatisfied demand from fresher batches on the shelf, i.e., for 

1,,1, …−= mmr  









−= ∑
−

+=

Lm

ri

tittrtr WDBMaxW
1

,      (5) 

At the end of each day, an inventory replenishment decision is made which determines 

mRLtB ,++ .  After each day, the batches are updated to account for aging, retrieval and outdating, 

i.e., for mr ,,2…=  

trtrrt WBB −=−+ 1,1      (6) 

And for the batch with 1 day remaining shelf life 

1,1, ttt WBO −=       (7) 
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The recursive equations above are the basis for calculating the estimated outdating quantities, 

which are needed in the EAR policy, as shown in formula (3).  We estimate these outdating 

quantities by calculating for consecutive periods i  (ranging from 1+= ti  to Lti += ) the 

retrieval, the remaining batches and the outdating in period i  using (4)-(7) under the assumption 

that in period i  demand is equal to the expected demand.  This implies the following procedure, 

starting with 1+= ti : 

1. Determine the estimated retrieval in period i  using (4) or (5) and by assuming demand 

in period i  was equal to the expected demand. 

2. Determine the estimated remaining batches available for the next period and the 

estimated outdating in period i  using (6) and (7) and by assuming the retrieval in 

period i  is equal to the estimated retrieval as determined in Step 1. 

3. While Lti +<  do 1: += ii  and continue with Step 1, otherwise stop. 

 

5.  Simulation experiments 

In order to compare the performance of the replenishment policies, we measured the long-term 

average costs. The costs incurred during a period t  are given by: 

tHtKtZtQt HCKCZCQCC ⋅+⋅+⋅+⋅=     (13) 

with tQ  the amount of units ordered, tZ  the amount of units outdated, tK  the lost sales in 

units and 
tH  the average inventory in period t . 

We did a factorial experiment in which we tested several levels for each of the eight input 

parameters.  The experimental setup is given in Table 1.  The parameters for the product lifetime, 

average demand, coefficient of variation and lot-sizes are based on parameters reported in [41], 

[38], and [2].  The purchasing costs and outdating costs are similar to the values used by 

Nandakumar [38].  To determine the lost sales costs we used the result that for the classical 

newsboy problem (a 1-period problem for a perishable item) the service level should be equal to 

the underage cost divided by the sum of the overage cost and the underage cost.  In our case, the 

underage costs are equal to the lost sales costs, while the overage costs are equal to the 

purchasing plus the outdating costs.  We used this result to find lost sales cost parameters which 

are likely to lead to relatively low lost sales fractions, in line with the design of experiments of 
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Tekin [41].  Thus, in our experiments we use the lost sales costs 
KC  which follow from solving 

the equation ( )
QZKKK CCCCCR ++= , in which the lost sales cost ratio KCR  is set equal to one 

minus the lost sales fractions used by Tekin [41].  The values for the remaining input parameters 

were as follows: week length of 7 days with week pattern 

{ } { }10.0,18.0,18.0,16.0,13.0,13.0,12.0=df  (taken from [4]), review period 1=R  day, and lead-

time 1=L  day. 

Following Law and Kelton [44], the reported values for the simulation are the averages from 

at least 10 replications.  In each replication, the first 50 weeks were the warming-up periods and 

statistics are recorded for the last 1000 weeks.  We replicated until a 95 % confidence interval 

was reached for the customer service level 002.02 ±P . 2P  is the percentage of demand delivered 

from stock, also known as the fill rate. 

We ran each of the 69120 simulation experiments for the following four scenarios:  

I. Base ),,( nQsR  policy with FIFO retrieval; 

II. EAR policy with FIFO retrieval; 

III. Base ),,( nQsR  policy with LIFO retrieval; 

IV. EAR policy with FIFO retrieval. 

In all four scenario’s we determined for each parameter setting the optimal safety stock level 

SS , which minimized the average simulated costs. 

 

Insert Table 1 here. 

6.  Results and Discussion 

The performance on average cost of the optimal EAR policy, C(EAR), compared to the average 

cost of the optimal base policy, C(Base), is measured by  

)(

)()(
100

BaseC

EARCBaseC
C

−
=∆  

The performance of the EAR policy will be described separately for the inventory system 

with FIFO retrieval and the system with LIFO retrieval. 
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FIFO retrieval 

 

Insert Table 2 here. 

 

Table 2 shows the relative performance of the EAR policy under FIFO retrieval. It gives the 

minimum, the average and the maximum average cost reduction of the optimal EAR policy 

compared to the base policy for a subset of all 69120 experiments, in which one input parameter 

was kept constant at a certain level.  

 

With FIFO retrieval the EAR policy outperforms the base policy in 96% of the experiments.  

The EAR policy leads on average to 4.0% lower costs, with a minimum of -1.4% and a 

maximum of 20.7%. The EAR policy gives the largest improvements for short product lifetimes 

( 5≤m ), high coefficients of variation and high outdating costs.  As expected the improvement 

from the EAR policy, which has been designed to prevent unnecessary outdating, is relatively 

high for small product lifetimes or high outdating costs, since in these cases the prevention of 

outdating is relatively important (either because there is a lot of outdating or outdating is 

expensive).  The EAR policy performs relatively well for situations with high coefficients of 

variation due to the fact that if demand is relatively uncertain, some periods will have no or very 

low demand.  After these periods the system has high inventory levels of old items.  The base 

policy does not take this information on the age distribution into account, while the EAR policy 

recognizes this and adjusts the replenishment decision accordingly. 

 

LIFO retrieval 

 

Insert Table 3 here. 

 

In Table 3, the relative performance of the EAR policy is shown under LIFO retrieval.  With 

LIFO retrieval the EAR policy outperforms the base policy in more than 99% of the experiments.  

We see substantial larger benefits under LIFO compared to FIFO. The average cost reduction 

over all 69120 experiments is 16.6% under LIFO compared to 4.0% under FIFO. For products 

with a short lifetime the difference is even larger; for 2=m  the average cost reduction due to the 
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EAR policy is 31.0% under LIFO compared with 7.0% under FIFO.  Under LIFO the largest 

improvements (up to 60%) are for products with a short product lifetime, a low coefficient of 

variation and a high lost sales cost ratio.  The EAR policy performs well when the lost sales cost 

ratio is high, since then the amount of safety stock is high and as a result the amount of outdating 

is large. On the other hand, if the demand is relatively uncertain in a system with LIFO retrieval, 

the EAR policy may occasionally become a victim of its own prophecy: if the EAR policy 

estimates that part of the old inventory will be outdated, it will order additional inventory. If then 

demand in the periods until arrival of the new inventory is less than or equal to the estimated 

demand and if demand in the next periods after arrival of the new inventory turns out to be 

higher than estimated, this latter demand will first be satisfied (due to the LIFO retrieval) from 

the new inventory and as a result more old inventory will be outdated then would have been the 

case if no additional inventory was ordered.  

 

Apart from costs, we also considered the effects of different systems and policies on the 

average inventory and the freshness of products offered to consumers. Under both FIFO and 

LIFO retrieval, the average inventory increases when using the EAR policy compared to the base 

policy (with 1.9% for FIFO and 9.6% for LIFO).  For perishable products, outdating is much 

more important than inventory holding cost, but the improvements of the EAR policy over the 

base policy decrease slightly with increasing holding cost. 

The effect of using the EAR policy compared to the base policy on the freshness for the 

customers is relatively small (on average 2% fresher products under FIFO and on average 0.0% 

under LIFO).  The EAR policy orders on average earlier than the base policy, but still keeps the 

products on the shelf until they are outdated.  Under LIFO retrieval, the customer gets products 

that are on average 30% fresher than under FIFO retrieval regardless of the policy used.  This 

results for the retailer using the EAR policy in a cost increase of on average 23%.  This is down 

from an average cost increase of 33% under the base policy. 

 

7.  Managerial insights and future research 

One main insight from this research is that taking into account the age distribution in the 

replenishment decision for perishable items often gives a large cost reduction.  In order to 
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implement such a policy, a more detailed registration is needed.  This can be achieved by modern 

information technology (using RFID and/or bar coding) or visual inspection.  The cost difference 

between the EAR policy and the base policy can be used by management as an indication for the 

budget for the implementation of this additional registration. 

On the other hand, it turned out that under FIFO retrieval the cost benefit of the EAR policy 

is substantially smaller.  This indicates that if the costs for the registration of full age information 

are high, managers may opt for an alternative scenario to prevent high costs in an environment in 

which customers are inclined to use LIFO retrieval: they may try to change the retrieval behavior 

in the direction of FIFO.  This can be achieved by giving price discounts to customers for 

products with low remaining lifetime or by keeping only items of one age on the shelves and the 

remainder of the inventory in the backroom.  The latter solution requires a considerable amount 

of labor, since it requires continuous monitoring of all perishable items in order to prevent out-

of-stock situations and frequent replenishment from the backroom to the shelves.  The cost 

difference between the replenishment policies under FIFO and LIFO can serve as a budget for 

the price discounts or the additional labor costs. 

An advantage of the EAR policy is its simplicity: to determine the estimated outdating 

quantities, only very simple calculations are needed. Also it is relatively easy to explain the logic 

behind the EAR policy to people in the stores who are responsible for managing the inventory of 

perishable products. Moreover, only one parameter (the safety stock) needs to be optimized per 

product.  This makes the parameter setting relatively easy, especially when the parameters are set 

manually by local inventory managers. 

Retailers who want to make their ASO system for non-perishable items applicable to 

perishable items will have to take into account that not only additional information on the age of 

the inventory is needed.  Due to the outdating costs for perishable items, the retailer may aim for 

a lower service level for perishables compared to non-perishables, resulting in a larger 

percentage of demand that is not registered due to out-of-stock situations. As a result, the 

demand forecasting may become more difficult.  See Tan and Karabati [45] for a further 

discussion on the resulting complications and ways to counter those.  For low service levels, the 

impact of the lost sales in the perishable inventory system may become more and more 

prominent and an adaptation of the EAR policy may be needed, in which the inventory position 
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is not only corrected for estimated outdating, but also for estimated retrieval quantities.  This is 

an area for future research.   

Other areas for future research are the impact on the performance of the EAR policy when 

the leadtimes are increased (e.g. due to the implementation of cross docking at the retailers' DC), 

the amplitude of the weekly demand pattern are increased or decreased or when the delivery 

frequency is changed. 

8.  Conclusions 

With the advent of RFID technology, the EAR policy becomes a practical solution for a retailer 

that manages a large assortment of perishable products.  Currently, the store managers have to 

spend considerably amounts of time to manually decide on order quantities or to correct the 

order advice from an automated store ordering system for this product segment.  Using the 

complete age vector of the inventory, the EAR policy can lead to substantial cost reductions for a 

retailer selling perishable products.  The cost reductions are especially large (up to 60%) for 

products with a short lifetime, when customer retrieval is Last In First Out, the coefficient of 

variation of demand is low and when the retailer aims for a high product availability. 
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Table 1: Input parameters for the simulation experiment. 

Input parameter Levels 

Product lifetime m  }15,10,5,4,3,2{  

Mean week demand µ  }35,28,21,14{  

Coefficient of variation µσ=CV  }0.1,50.0,25.0{  

Case pack size Q  }6,4,2,1{  

Lost sales cost ratio KCR  }995.0,99.0,98.0,95.0,90.0{  

Outdating cost 
ZC  }20,15,10,5,2,0{  

Purchasing cost QC  }10,5,2,1{  

Holding cost 
HC  }1,0{  
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Table 2: Cost comparison of the base and the EAR policy under FIFO retrieval. 

Parameter Level Min Avg Max 
Product lifetime 2 -0,23 6,97 20,70 
 3 0,48 5,91 17,09 
 4 0,16 4,90 16,93 
 5 -0,63 4,27 14,18 
 10 -1,39 1,25 4,39 
 15 -0,57 0,66 2,67 
Mean week demand 14 -1,38 4,16 20,70 
 21 -1,39 4,00 17,97 
 28 -0,25 4,00 15,45 
 35 -0,32 3,81 14,69 
Coefficient of variation 0,25 -1,39 2,81 20,70 
 0,5 -1,38 4,11 12,65 
 1 0,43 5,06 9,35 
Case pack size 1 -0,27 3,67 9,35 
 2 -0,42 3,77 11,51 
 4 -0,57 4,15 20,70 
 6 -1,39 4,39 17,97 
Purchasing cost 1 -1,39 4,31 20,70 
 2 -1,30 4,14 20,23 
 5 -1,14 3,87 19,14 
 10 -0,99 3,66 17,96 
Outdating cost 0 -0,60 3,12 14,45 
 2 -0,99 3,64 18,36 
 5 -1,18 3,98 19,61 
 10 -1,30 4,26 20,29 
 15 -1,35 4,43 20,56 
 20 -1,39 4,53 20,70 
Lost sales cost ratio 0,90 -0,11 3,24 16,23 
 0,95 -0,63 3,75 15,45 
 0,98 -0,06 4,16 14,78 
 0,99 -0,42 4,26 17,09 
 0,995 -1,39 4,57 20,70 
Holding cost 0 -1,39 4,05 20,65 
 1 -1,24 3,94 20,70 
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Table 3: Cost comparison of the base and the EAR policy under LIFO retrieval. 

 

 

Parameter Level Min Avg Max 
Product lifetime 2 5,82 30,95 60,45 
 3 4,07 22,79 48,30 
 4 4,06 17,96 43,83 
 5 3,34 14,77 37,45 
 10 -0,83 7,30 31,06 
 15 0,42 5,95 23,66 
Mean week demand 14 0,68 16,56 59,60 
 21 0,14 16,59 60,31 
 28 0,48 16,88 59,83 
 35 -0,83 16,44 60,45 
Coefficient of variation 0,25 0,42 19,84 60,45 
 0,5 0,71 17,24 54,18 
 1 -0,83 12,78 39,83 
Case pack size 1 -0,36 16,70 60,31 
 2 -0,56 16,66 59,86 
 4 -0,83 16,65 59,70 
 6 -0,27 16,46 60,45 
Purchasing cost 1 -0,83 17,71 60,45 
 2 -0,82 17,14 59,94 
 5 -0,80 16,18 58,69 
 10 -0,76 15,45 57,22 
Outdating cost 0 -0,64 13,57 50,87 
 2 -0,76 15,45 57,22 
 5 -0,80 16,62 59,06 
 10 -0,82 17,57 59,94 
 15 -0,83 18,08 60,27 
 20 -0,83 18,42 60,45 
Lost sales cost ratio 0,90 0,42 8,05 29,52 
 0,95 1,20 12,00 34,28 
 0,98 1,20 17,05 45,41 
 0,99 1,35 21,04 53,15 
 0,995 -0,83 24,95 60,45 
Holding cost 0 -0,83 16,71 60,45 
 1 -0,70 16,52 60,40 


