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Zusammenfassung 
 
Die Aktualisierung von komplexen Telekommunikationssystemen, die sich durch die ihnen 
eigene Verteiltheit und  hohe Kosten bei System-Nichtverfügbarkeit auszeichnen, ist ein 
komplizierter und fehleranfälliger Wartungsprozess. Noch stärkere Herausforderungen bergen 
solche Software-Aktualisierungen, die die Systemverfügbarkeit nicht beeinträchtigen sollen. 
Dynamic Upgrade ist eine Wartungstechnik, die das Verwalten und die Durchführung von 
Software-Aktualisierung automatisiert und damit den Betrieb des Systems während der 
Wartungszeit nicht unterbricht. 
In dieser Arbeit wird das Dynamic Upgrade als ein Sonderfall der Bereitstellung und 
Inbetriebnahme (Deployment) von Software betrachtet, in dem Teile der einen Dienst 
repräsentierenden Software durch neue Versionen im laufenden Betrieb ersetzt werden. Die 
Problemstellung des Dynamic Upgrade wird anhand einer vom Autor erarbeiteten Taxonomie 
erläutert, die die Entwurfsmöglichkeiten für ein System zur Unterstützung von Dynamic 
Upgrade hinsichtlich dreier Systemaspekte klassifiziert: Deployment, Evolution und 
Zuverlässigkeit (Dependability). Mit Hilfe dieser Taxonomie lassen sich auch andere Systeme 
zur Unterstützung von Dynamic Upgrade miteinander vergleichen. Aufbauend auf einem 
ausführlichen Vergleich über existierende Ansätze zur Unterstützung von Dynamic Upgrade, 
wird in der vorliegenden Arbeit eine Lösung entwickelt und dargestellt, die Dynamic Upgrade 
in verteilten komponentenbasierten Software-Systemen ermöglicht. 
Ausgehend von der Problemanalyse wird mit Hilfe des Unified Process ein als Deployment 
and Upgrade Facility bezeichnetes Modell entwickelt, das sowohl die benötigten 
Leistungsfähigkeiten eines Dynamic Upgrade unterstützenden Systems als auch 
Eigenschaften von aktualisierbaren Software-Komponenten beschreibt. Dieses Modell ist 
Plattform-unabhängig und einsetzbar für mehrere unterliegende Middleware-Technologien. 
Das Modell wird in einem Java-basierten prototypischen Rahmenwerk programmiert und um 
plattformspezifische Mechanismen auf der Jgroup/ARM Middleware erweitert. Das 
Rahmenwerk umfasst allgemeine Entwurfslösungen und –muster, die sich für die 
Konstruktion einer Unterstützung für Dynamic Upgrade eignen. Es erlaubt die Kontrolle der 
Lebenszyklen von Aktualisierungsprozessen und ihre Koordination im Zielsystem. Darüber 
hinaus definiert es eine Reihe von Unterstützungsmechanismen und Algorithmen für den 
dynamischen Aktualisierungsprozess, der gegebenenfalls mit unterschiedlichen Zielsetzungen 
und unter verschiedenen Randbedingungen erfolgen soll. Insbesondere wird ein 
Aktualisierungsalgorithmus für replizierte Software-Komponenten dargestellt.  
Das entwickelte Rahmenwerk wird zwecks Plausibilitätsprüfung der dargestellten Ansätze 
und zur Auswertung der Auswirkungen der Dynamic Upgrade unterstützenden Mechanismen 
im Hinblick auf Systemperformanz in mehreren Experimenten eingesetzt. Diese quantitative 
Evaluierung der Experimente führt zu einer Spezifikationen eines einfachen 
Bewertungsmaßstabs (Benchmark), der sich zum Vergleich von Dynamic Upgrade 
unterstützenden Systemen eignet. 

Stichwörter: dynamic (online) upgrade, Dienstbereitstellung, Verwaltung von 
Systemänderungen zur Laufzeit, Hochverfügbarkeit, Komponenten-Technologie, verteilte 
objektorientierte Systeme, middleware 
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Abstract 
 

Upgrading complex telecommunication software systems, characterized by their inherent 
distribution and a very high cost of system unavailability, is a difficult and error-prone 
maintenance activity. Even more challenging are such software upgrades that do not 
compromise the system availability. Dynamic upgrades is a technique, which automates 
performing and managing upgrades so that the software system remains operational during the 
upgrade time.  
In this thesis, the dynamic upgrade is considered as a special case of software deployment, in 
which a running service has to be replaced with its new version. The problems of dynamic 
upgrades are introduced using a novel taxonomy that classifies the design issues to be solved 
when building support for dynamic upgrade with regard to three system aspects: deployment, 
evolution and dependability and provides a reference to comparing other systems supporting 
dynamic upgrades. An extensive and thorough survey of existing approaches to dynamic 
upgrades follows and, furthermore, is as a starting point to designing a solution supporting 
dynamic upgrades in distributed component-based software systems. 
Derived from the problem analysis, a model called Deployment and Upgrade Facility 
describing the capabilities needed for managing and performing dynamic upgrades as well as 
properties of upgradable software components is developed using the Unified Process 
approach. The model is  platform independent and can be used with a range of underlying 
middleware technologies. The model is implemented in a Java-based prototypical framework 
and extended with platform specific mechanisms on top of the JGroup/ARM middleware. The 
framework captures common design solutions and patterns for building a support for dynamic 
upgrade. The framework allows for controlling life-cycle and coordination of upgrade 
processes in the system. It also defines a number of supporting mechanisms and algorithms for 
the upgrade process. A special attention is drawn to an upgrade algorithm for replicated 
software components for achieving a synergy of replication techniques and dynamic upgrade .  
The developed framework is used to validate the feasibility of the approach and to measure 
the overhead of the mechanisms supporting dynamic upgrade with regard to the performance 
of the system being upgraded in a number of practical experiments. This quantitative 
evaluation of the experiments leads to a specification of a simple benchmark for systems 
supporting dynamic upgrades. 

Keywords: dynamic (online) upgrading, service deployment, runtime change management, 
high availability, component based technology, distributed object systems, middleware 
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1 Introduction 
Change management is indispensable in most distributed software systems which are 
continually being modified throughout their life cycle. Managing the changes at runtime in 
distributed systems is a complex task that requires much expertise. In highly-available 
systems, performing software upgrades is even more challenging because of strong 
requirements on upgrade process dependability and hard constraints on the system downtime. 
Dynamic upgrades, a technique that allows for introducing changes to a running software 
system, deals with these challenges. Generally speaking, it allows for replacing pieces of 
software in a running system with new ones. 
Dynamic upgrades is the central topic of this thesis. It is investigated in the context of 
distributed systems and component-based middleware technology. The rest of this chapter is 
structured as follows: in section 1.1 the motivation for investigating these technique is given. 
the goals, scope and approach of this thesis are described in sections 1.2, 1.3 and 1.4 
correspondingly. The structure of the rest of the thesis is given in section 1.5. 

1.1 Motivation 
This thesis is motivated by three well-known facts about the software systems: 

• Evolution of software systems is inevitable. Software systems change constantly and 
need to be upgraded a couple of times in their life time. The spectrum of software 
change is wide and ranges from introducing program corrections or performance 
improvements of existing system components to complex changes of the overall 
functionality and/or structure of the system necessary to adapt the system to new user 
requirements. 

• High availability and evolution mismatch. Conventional software upgrade mechanisms 
are not good enough for high available systems as they introduce maintenance breaks 
which reduces the system availability. In a conventional approach, the system runtime 
has to be interleaved with maintenance breaks in which the necessary changes are 
manually applied to the system. This approach, however, is not suitable in distributed 
systems that have to be high available.  

• Software upgrades are critical to the operation of the system. In many existing systems, 
human interaction is required to upgrade a system. However, upgrading a software 
system introduces a high risk of an error during the upgrade or potentially after the 
upgrade is complete. Moreover, managing changes to a running system in systems may 
require high skills that makes the upgrade process expensive. 

The technology of dynamic upgrades is not application domain specific. There are many 
application domains, in which dynamic upgrades can be profitable. In most cases, these 
applications belong to a wider class of software systems having strong requirements on high 
availability and reliability. Typical application domains include:  

• Infrastructure: Telecommunications, electricity supply. 
• Electronic Business and Government: Online shopping systems serving several time-

zones, mission-critical nation-wide governmental facilities (e.g. tele-voting system). 
• Banking: ATMs, online banking. 
• Industrial process control: Furnaces or oil refineries operating around the clock. 
• Medical applications: Life support systems. 
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Moreover, many researchers and domain experts are aware of the need of investigating 
techniques enabling upgrading systems on the fly. For instance, in the telecommunication 
domain, Schulzrinne states in a workshop on the IP telephony [100]: “Probably the major 
challenge faced by Internet telephony is moving from the current Internet reliability of about 
99% or 99,5% to 99,999, i.e. no more than five minutes of unavailability per year. This 
requires a different mindset, not just protocol and technology fixes, as upgrades have to be 
done while the system is running and every component has to engineered to have a hot stand-
by”. 
Many applications from various industry domains require some support for dynamic upgrades. 
This support is, thus, not application domain specific and should be provided as a generic 
service to the domain specific applications. In the distributed systems, generic services are part 
of a middleware platform. That is why, dynamic upgrades are investigated in the context of 
middleware technologies in this thesis. 
Furthermore, the thesis is motivated by the arguments resulting from the survey of the state of 
the art: 

• Weak support for dynamic upgrades for standard distributed software technologies. The 
standard middleware has only recently identified the problem of dynamic upgrades 
and started related initiatives. The ongoing or first versions of the standards provide 
solutions that are focused on one specific way of performing upgrades. 

• A more general approach is required. The existing solutions are proprietary and the 
standard solutions to come are specific to the underlying software technology. There 
is a need to handle the dynamic upgrades at a higher level of abstraction for the sake 
of the solution’s reusability and adaptability to the underlying technologies. 

1.2 Goals  
The primary goal of this thesis is to develop a technology-independent model describing 
functionalities and capabilities supporting upgrades of distributed systems at runtime. The 
model should: 

P1. describe the capabilities needed to support dynamic upgrades in distributed software 
systems, 

P2. define the properties of distributed software components enabling their upgradability, 
P3. be general enough to abstract the specifics of the component application domain and 

possibly the idiosyncrasies of a certain programming environment, 
P4. be applicable to the currently available middleware technologies, 
P5. be expressed in a well-known notation to be easily understandable and reusable. 

The second goal of this thesis is to develop a system compliant to the model above. The 
solution should: 

P6. support performing and managing dynamic upgrades of distributed software 
components in compliance with the model defined above, 

P7. be practically validated as a proof of concept using, and extending if necessary, one 
of the existing middleware technologies providing the runtime environment and 
deployment support for distributed software systems,  

P8. be extendable by various supporting mechanisms for performing and managing 
dynamic upgrades, 

P9. be as much reusable and portable as possible.  
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P10. be evaluated with regard to the promised increase in system availability using 
quantitative tests. 

1.3 Scope  
This work addresses miscellaneous issues relevant to building distributed software systems 
capable of being upgraded on the fly. The scope of investigation is primarily targeted at 
systems built with distributed object approach, distributed component technology extensions 
and its existing middleware realizations. The investigation scope is limited to issues regarding 
the application and the middleware platform that the distributed applications are running on. 
The questions that are to be answered in this thesis are: 

• What deployment and runtime mechanisms does a platform, on which distributed 
application run, need so that applications can be dynamically upgraded?  

• What deployment techniques are required for such applications? 
• In how far is it possible to upgrade software on the fly without any breaks in its 

operation?  
• When and under what conditions is software upgrade possible on the fly?  
• How to perform an application upgrade so that it is transparent to the users? What kind 

of transparency issues have to be addressed? 
• How does software replication and other high availability techniques relate to dynamic 

upgrade? 
• Is it possible to develop applications without regarding the dynamic upgrade 

capability? If not, how does the software have to be extended for this reason? What 
consequences does it have on the application development?  

• What is the overhead of introducing the dynamic upgrade capability to the original 
software system? 

On the other hand, other aspects of distributed systems are not taken into consideration, 
including: 

• Specific hardware support needed to upgrade applications on the fly. It is one of the 
requirements that the upgrade support should be realized in software and run on 
general purpose hardware. Moreover, the software solution should be easily portable. 

• Features needed by existing analysis and design processes, notations and programming 
languages to support building upgradable software. Even though the software 
engineering aspects are investigated in this thesis, it is assumed that the upgradable 
component-based software is developed using existing and main-stream object-related 
and related development methodologies and tools.  

• Mechanisms allowing for validating component implementations and their 
substitutability in particular. Validation and other issues related to software evolution 
are not investigated in this thesis. The solution presented is mainly concerned with 
deployment and partly dependability related issues when performing dynamic 
upgrades. These mechanisms, however, impact the freedom of changes supported by 
the dynamic upgrades and therefore evolutionary aspects are mentioned wherever it is 
necessary. 

1.4 Approach 
In this work, the problem of dynamic upgrades is investigated from the deployment 
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perspective in that upgrade is a special case of software deployment. As a result, the starting 
point of constructing a model for dynamic upgrades is a broader in scope deployment model 
for distributed software. The model for service deployment and upgrades is then constructed 
and validated in the projects the author has been participating. An important part of this model 
is a component based service model that describes the life cycle of the service and the way the 
service is structured. 
The deployment model is then elaborated and focused with regard to dynamic upgrades. It 
forms a framework that captures design solutions and patterns for building a dynamic upgrade 
support.  
The model is complemented by the dynamic upgrade support mechanisms. Selected 
mechanisms supporting dynamic upgrade are designed and implemented. As a support for 
dynamic upgrades is a generic service, the middleware platform is found suitable for placing 
this support. In the thesis, the model and the supporting mechanisms are proposed to extend 
available middleware platforms. The extensions are called Deployment and Upgrade Facility 
and are implemented as a series of prototypes as a proof of concept. 
On the other hand, this work does not intend to extend other elements of the development and 
runtime environment for the distributed software systems. In particular, the programming 
languages and corresponding development tools, like compilers, linkers or interpreters. 
Neither are extensions of the operating systems underlying the middleware layer investigated. 
Moreover, the approach presented in this thesis assumes using standard hardware platforms 
and typical programming environments to provide a solution that has a potential to be used by 
in the main-stream and commodity distributed applications 

1.5 Thesis Structure 
In this chapter, the introduction to the topic of dynamic upgrades was given. After the 
motivation leading to this research including some real world applications was presented, the 
thesis goals and the approach was put forward. The rest of the chapter was dedicated to a brief 
but wide-angled survey of research topic related to dynamic upgrades. 
In the subsequent chapters of this thesis, the technology of dynamic upgrades is mostly 
investigated from the deployment perspective. An upgrade is shown as a deployment step in 
the software life cycle.  
The thesis is divided into two parts. The Basics and The Solutions. The first part presents some 
introductory and background information needed to comprehend the rest of the thesis. It also 
includes a comprehensive survey of the previous work on dynamic upgrades as well as 
presents dynamic upgrade support of some mainstream middleware technologies. Part 
Solutions describes my proposal of an approach to dealing with dynamic upgrades.  
The remaining chapters of the introductory part of this thesis are structured as follows: 
Chapter 2 gives the background information on the context of this thesis: distributed systems 
and the component-oriented software engineering paradigm. Chapter 3 introduces the basic 
concepts and problems related to dynamic upgrades. 
Chapter 4 presents the support for dynamic upgrades in the mainstream middleware platforms 
and discusses the needed extensions. It also investigates a range of dynamic upgrade support 
systems, DUSS for short, and concludes with a feature comparison between them. It is also 
a starting point to define the requirements for the solution presented in the next part of this 
thesis. 
Part The Solution contains the following chapters. Chapter 5 specifies a model for deployment 
and dynamic upgrades for distributed component-based software systems. The model is 
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determined by a list of requirements for a solution supporting service deployment and 
dynamic upgrade, in particular. This model includes two parts: (1) a use case model which 
defines the capabilities needed for service deployment and upgrades in component-based 
distributed software systems constructed and (2) a component model, which defines how 
component-based distributed system is structured. Chapter 5 also contains some 
implementation details of the model.  
The remaining chapters investigate the key aspects of the DUSS fundamental to this thesis: 
dynamic upgrade management and algorithms. Whereas upgrade management is covered in 
chapter 6, a variation of upgrade algorithms as well as a number of dynamic upgrade support 
mechanisms are presented in chapter 7. A practical evaluation of the implementation of the 
presented solution is the topic of chapter 8. Chapter 9 concludes the main part of the thesis 
and gives a summary of the thesis contributions as well as some proposals for future work. 
Attached to the thesis is the list of acronyms, a glossary of terms and a list of references.  
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2 Distributed Component Technology 
This chapter introduces the context of this thesis, namely distributed systems and the 
component oriented software technology. In section 2.1 the key characteristics of distributed 
systems in general are briefly presented. The focus of description is put on dependable 
distributed systems, in which dynamic upgrades is of particular importance. Then, a brief 
overview of object oriented and component oriented paradigm and its application to 
distributed systems is given. A number of concepts and terms related to these technologies, 
like object, type, component or container, are introduced that are used throughout the thesis.  

2.1 Characteristics of Distributed Systems 
In this section provides some background information on distributed systems. The basic 
characteristics of distribution systems in general is given first. Then, some introductory 
information concerning the dependability of computer systems is presented. This information 
is required to understand the challenges of supporting dependable dynamic upgrades in 
a distributed environment. 

2.1.1 Distribution Complexity 
Design and development of distributed system is quite an intricate task that involves 
understanding many aspects of system complexity introduced by their distribution. Some of 
the problems that have to be considered when developing dependable distributed systems are 
listed below [67]. 
• Interconnection. In distributed systems, different components have to communicate and 

interoperate with each other in a consistent, reliable and efficient way. These components 
are often developed independently from each other in various isolated environments. This 
heterogeneity of components makes system integration and reliable component 
interworking at system runtime difficult. 

• Interference. System components, developed in isolation and having functionality as 
designed may yield unwanted effects when combined in a system. Developing a reliable 
system involves considering explicit and implicit dependencies between components and 
potential interference of their behavior in the system. 

• Partial Failures. Components of distributed systems usually run in different runtime 
environments that are independent from each other in terms of occurring failures. 
Consequently, it may happen that one part of a distributed system fails whereas the rest of 
the system is capable of providing its services. This characteristics of distributed systems, 
on one hand, requires applying mechanisms that allow the system to properly work in spite 
of the system’s partial failures. On the other, the fact that only part of the system has failed 
allows applying mechanisms that would adapt the system to the new execution conditions 
and make use of the currently available system resources. 

• Propagation of effect. In contrast to faults in centralized systems, faults in distributed 
systems cannot be always easily localized, i.e. assigned to one specific component. Effects 
of such faults, failures, usually propagate and are detected in some other system 
component. This characteristics of failures is typical for software bugs, also called 
Heisenbugs in bibliography [6], which are the most common sources of system crashes in 
current complex distributed systems. Generally, their occurrence is neither repeatable nor 
deterministic (does not depend on the system inputs) what makes their tracking down and 
elimination even more difficult. 
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2.1.2 Dependability 
This section describes the dependability and related concepts as it is understood in this thesis. 
The definitions are then used when discussing the characteristics of upgrade algorithms.  
Some information processing system are mission-critical in terms that the user depends on the 
services offered by the system. A system failure may be very costly with regard to [32]: 

• Loss of production (e.g. manufacturing applications), 
• Loss of clients (due to lack of user confidence), 
• Loss of human life (life-critical applications). 

Because all applications are susceptible to hardware and software faults, both accidental and 
intentional, some mechanisms have to be provided to support system dependency.  
In the context of distributed systems, dependability is a collective term to describe availability 
and reliability. The aspects are not totally independent from each other and their definitions 
and interdependencies will be discussed below. 

• Reliability is the likelihood that a middleware platform provides the middleware 
services in a well specified way, even in the case of middleware or application failures. 
Reliability services should be offered without unacceptable performance loss. 

• Availability is the fraction of time a middleware platform is operational (e.g. 7x24) 
without unacceptable loss of performance due to non-functioning parts of the 
middleware platform. Non-functioning may have different reasons: e.g. failures, 
system overload or management breaks The availability of an platform with (real-) 
time constraints may be described as follows: a component is available if a certain 
percentage (e.g. 95%) of requests are serviced within an required timing constraint. 
This must be measured over a period of time significantly longer than the timing 
constraint 

2.2 Distributed Objects 
The object-oriented approaches in software technology is dated as long as Simula`67. Initially, 
they have spread in the area of programming languages, like Smalltalk, C++, Java and C#. 
Later they have been used in a wider scope in computer science: operating systems, databases, 
distributed processing and object-oriented analysis and design. The idea of representing 
system parts distributed on a number of computer nodes as objects, and their interactions as 
exchanging messages between the objects has been appealing to the designer of distributed 
systems due to: 

• ability to deal with distribution complexities described in section 2.1.1. One of the 
fundamental ideas of the object-oriented paradigm is encapsulation. It makes it 
possible to abstract from certain aspects of modeled reality and to hide it in the internal 
implementation of an object. The aspects of distribution, including location and 
failures can be encapsulated to certain degree. This idea has yielded the so called 
distribution transparencies introduced in the Open Distributed Processing[46]. 

enabling a more flexible design. The first distributed system were designed in the client-
server paradigm. To overcome certain limitation of this paradigm, multi-tier 
architecture had to be developed. The idea of decomposing a modeled system of 
distributed nature into logical entities interacting with each other in a mesh-like 
topology enabled a new dimension of design flexibility in distributed systems. The 
object-oriented paradigm was ideally suited to support this kind of architecture.  

straightforwardness of mapping from modeling domain to the design concepts and 
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implementation artifacts. Building distributed systems in the same paradigm in all the 
phases of software development process, including system analysis, design and 
implementation, allowed for defining straightforward stage transitions between these 
phases and mappings between the results achieved in each of the phase. 

In last two decades, object-orientation is the underlying paradigm of many conceptual 
architectures for distributed object systems, like ISO Open Distributed Processing[45][46], 
OMG`s Object Management Architecture or TINA[126] specified by TINA Consortium, as 
well as frameworks and platforms implementing these architectures, including OpenDoc[84], 
OMG’s CORBA[72][73] and Java RMI, which is part of J2EE[119] now.  
In spite of the advantages identified above, the object-oriented paradigm did not handle many 
issues of distributed system suitably. Some of these problems, related to software deployment 
and upgrades in particular are listed below[123]: 

Objects are not deployable. The notion of objects is very appropriate for software design 
and implementation. It provides a life-cycle model of any entity and a simple and 
expressive interaction model. However, this is not enough to cope with software 
during the deployment phase. The object-oriented paradigm does not define any means 
to structure and package parts of the software system so that it can be deployed in 
a destination infrastructure.  

No implicit notion of composition. The definition of an object does not deal with 
composition. Its definition focus on other aspects: abstraction, encapsulation of state 
and behavior, as well as polymorphism. This fundamental characteristics of objects 
does not permit to use objects as units of software composition in a straightforward 
way. Furthermore, the object technology does not introduce any gluing concepts to 
combine objects together in a simple and easy way. This led to building object-
oriented software systems and frameworks that were of monolithic character and made 
assembling and combining objects into distributed applications difficult. 

Reuse difficulties in evolving systems. The basic mechanism for reuse in object-oriented 
systems is class inheritance. However, this approach does not work well in evolving 
systems. If a class and its subclasses evolve independently, this may lead to problems 
when using implementation inheritance, a phenomenon called fragile base class 
problem in the literature.  

Economical Immaturity. Except for technical issues concerning object-orientation, 
a problem of economical immaturity is pointed out. The promoters of object 
technology are argued to have underestimated the non-technical market-oriented 
aspects of their solutions in the destination inter-enterprise markets. The software 
markets, where individual objects, classes, class libraries and frameworks could be 
purchased off the shelf, did not happen as some supporters of object-oriented solutions 
had promised. 

All these problems have undermined the meaning of the object oriented paradigm in the 
developments of software engineering. Software researchers and practitioners have been 
steadily investigating solutions to the drawbacks mentioned and came up with the concepts of 
components.  

2.3 Software Components 
Component-oriented systems has received increasing research and industrial interest in recent 
years[128][123]. It promotes software reuse according to the black-box model. Components 
are independently developed pieces of application code that encapsulate their internal 



 

  12 

implementation and whose functionality can be accessed only through well-defined interfaces 
like objects. The key point that distinguishes them from objects is that context dependencies 
of components are explicitly expressed. Thus, component developers may avoid some 
maintenance problems known from object-oriented systems, where undisciplined use of 
inheritance may reduce the encapsulation degree required for independent maintenance and 
modifiability (cf. fragile base class problem as described in [123]). 
A component model defines the basic architecture of a component, specifying the structure of 
its interfaces and the mechanisms by which it interacts with its container and with other 
components. The component model provides guidelines to create and implement components 
that can work together to form a larger application. Application builders can combine 
components from different developers or different vendors to construct an application. One of 
the promises of component technology is a world in which customized business solutions can 
be assembled from a set of off-the-shelf business objects. Software vendors could produce 
numerous specialized business components, and organizations could select the appropriate 
components to match their business needs.  
The behavior of components is specified in terms of interfaces, like it is done for objects. One 
way of specifying component interfaces is called contractual specification. The interfaces are 
specified as contracts. Such contract describes what the client needs to do in order to use the 
capabilities provided by a component. It also states the service or capability provided by the 
component. A contract captures two parties: the component offering some service, playing the 
role of a provider, and its environment, which plays the role of a client. The client has to meet 
the precondition before interacting with the component to comply to the contract. The 
provider can then rely on that precondition. On the other hand, the provider has to fulfill 
certain postcondition so that the interaction can be correctly completed. Finally, contracts can 
describe both the functional and non-functional requirements 
Additionally, software components are also defined by their properties. The list of component 
properties as understood in this thesis is presented below:  

• Unit of Abstraction. A component provides some functionality that can be accessed by 
means of a contract which consists of interfaces providing some services and 
interfaces that a component requires to provide its interfaces. A component usually 
hides its implementation, state and resources, which are needed to perform its tasks, 
from the component clients. 

• Unit of Composibility. A component is a reusable software building block: a pre-built 
piece of encapsulated application code that can be combined with other components 
and with hand written code to rapidly produce a custom application.  

• Unit of Deployment. A component can be deployed independently of other 
components with which it will be assembled in a system. It means that it can be 
packaged and delivered independently from other software components. Furthermore, 
it can be installed onto the nodes of the target infrastructure and it can be loaded into 
and prepared to execution in its execution environment (container).  

• Unit of System Management. Each of the components can be individually managed 
and configured in terms of their quality of service, such as its service performance, 
provided security or fault tolerance. 

 
The statements above are summed up in the following definition of the software component, 
which is then used throughout the text of this thesis: 
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Definition 1.  
A software component is a piece of software with contractually specified interfaces and 
explicit context dependencies only. Context dependencies are specified by stating the 
required interfaces and the acceptable execution platform(s). Additionally, the 
component has the following properties: it is a unit of abstraction, composition,  
deployment and management. 

Software components are deployed in a execution environment to provide their functionalities 
specified using the interfaces. An execution environment of a software component is called 
container and typically is a single addressed space, where the components code is installed 
and executed. 

Definition 2.  
A container is an execution environment in which software components may be deployed 
and their code can be executed according to the underlying execution model.  

A containers is located on host that provides with computational resources, including the 
processing power and the memory as well communicational resources. The later are needed 
for components deployed in multiple containers to interact. In a distributed environment, a 
host is connected to other hosts through a data network, which allows for inter-host 
communication. 
Once deployed, the code of software components is executed in a container. A software 
component being executed is also called to be instantiated and its runtime appearance, the 
result of instantiation, is called  runtime instance. When referring to runtime instances of a 
software components in the context of runtime phase of a software system, the term 
component or component instance is used.   
Runtime instances of components communicate with each other during the runtime. In case of 
components deployed in different containers, some remote communication means is used. 
Such (runtime instances of) software components are said to be distributed.  

Definition 3.  
Distributed software components are components that are deployed in containers located 
on multiple hosts, interconnected with a data network. Runtime instances of distributed 
components communicate with each other using a given remote communication 
paradigm. 

There are multiple communication paradigms that are supported by the existing distributed 
and networking operating systems as well as the middleware technologies. The 
communication paradigms and the technologies that support them are a topic of the next 
section. This kind of components is of primary interest of this thesis.  
In this work, distributed components are implemented using object-oriented technology. From 
the implementation point of view, component runtime instances are then sets of co-located 
objects intercommunicating with each other and providing the contracted component services 
as described by the component contract. The technology supporting deploying and executing 
of such components is called middleware and is briefly described in the next section. 
In the context of this thesis, a service is seen as a number of related software components and 
interacting with each other provide a value-added functionality to the users. This set of 
software components providing a well-defined functionality to a given user is called a service. 
Services will be considered mainly from the deployment point of view. When referring to a 
service deployment, it will be understood as deployment of all software components that form 
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a service.  

2.4 Middleware  
Middleware has been defined in many way in the literature [5][17][24][84]. From the 
communication perspective, the middleware can be seen a set of services that facilitate parts 
of a software system to communicate in a distributed environment. The middleware services 
are traditionally considered to reside in the middle above the operating system (OS) and 
networking software and below the distributed applications[5]. On the upper level, the 
middleware provides its services through a set of APIs to the applications. The applications 
can access the middleware services in a uniform way so that the distribution of applications 
and its parts is encapsulated. On the bottom layer, the middleware makes use of APIs offered 
by the underlying instances of the operating system residing on the nodes of the distributed 
system. A model of middleware from this perspective is given in Figure 1. 

  

Figure 1. Middleware: Layer Model 

 

2.4.1 Middleware Features 
Middleware facilitates deploying and running applications in a distributed environment 
covering the following aspects of the complexities of distributed systems identified in section 
2.1.1: 

• Generic Services. Middleware can be used in the context of many various application. 
It offers so called horizontal services that are common to various application domains 
and independent of the specifics of a concrete application. The generic services 
include: 

o advanced communication services, like RPC, event-oriented communications, 
or group communication,  

o service for discovering services, like directory/naming or trading, and 
o coordinating interactions of services: transaction-processing support,  

• Heterogeneity support. Middleware typically works on a number of hardware platforms 
and operating systems.  

• Distribution transparency. Middleware allows for an exchange of information among 
distributed application parts without the application programmer having to handle 
intricate details of  

• Interoperability, the ability of two or more systems or components to exchange 
information and to use the information that has been exchanged[44]. 
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• Portability, which is the ability of two or more systems or components to exchange 
information and to use the information that has been exchanged[44]. 

• Flexibility, which is the ease with which a system or component can be modified for 
use in applications or environments other than those for which it was specifically 
designed[44]. 

The aforementioned features of middleware make it easily distinguishable from applications. 
The latter are designed to be specific to some domain and solving a concrete domain problem 
at hand. On the other hand, middleware can be distinguished from the operating system in that 
it does not provide any technology-specific services. The middleware API is supposed to 
encapsulate the idiosyncrasies of the underlying hardware and low-level software as well as 
provide a unified way of accessing communicational and computational resources in 
a heterogeneous environment. 

2.4.2 Taxonomy Of Middleware  
There is a range of different middleware systems that have been developed throughout the last 
decades. The approaches have been classified below according to the underlying 
computational and communicational model in [10]. The classification has been extended here 
by adding the class of component-oriented middleware and mobile agent middleware.  
The following classes of middleware can be distinguished: 

• Message-oriented middleware, MOM for short, is a middleware that typically supports 
asynchronous calls in the client and server architecture. Message queues provide 
temporary storage when the destination program is busy or not connected. MOM 
reduces the involvement of application developers with the complexity of the master-
slave nature of the client/server mechanism. MOM. The messages can contain 
formatted data, requests for action, or both. 

• RPC-based middleware is a middleware using the procedure-oriented paradigm. It 
allows for invoking procedures or functions on remote objects in the same way it is 
done in the local environment. This middleware is used seldom nowadays and most of 
solutions converted to object-oriented approaches. The most famous RPC-base 
middleware products are Distributed Computing Environment, DCE[95] standardized 
by Open Group and SunRPC[8], a proprietary solution from Sun Microsystems.  

• Distributed transaction processing, DTP for short, is a middleware environment 
oriented toward handling transaction semantics over a network. It extends the MOM or 
RPC-oriented middleware by adding some transaction support. Some known products 
include Tuxedo or Encina.  

• Database access middleware is a class of middleware that is specialized to support 
interoperable access to the data base products. An example of this kind of middleware 
is the Open Data Base Connectivity, ODBC standard defined by the Open Group 
(previously known as X/Open). It defines a programming-language and data base 
vendor independent API for accessing and processing data stored in the data base. 
Many of the data base vendors, including Oracle and Sybase, provide an 
implementation of this standard for their products. 

• Object-oriented middleware. This class of middleware can be seen as an extension of 
the RPC-middleware. It allows for distributed parts of the application , which are 
modeled as distributed objects (cf. section 2.2) to exchange information in terms of 
object messages. The mainstream middleware technologies available on the market 
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currently are:  

o Common Object Request Broker Architecture, version 1.0 to 2.4.3 [73] 
specified by the Object Management Group, an industry forum gathering 
companies and research organizations from the whole world. The CORBA is 
an open standard with many commercial, e.g. Borland’s Visibroker[130], or 
open-source implementations, like OpenORB[82]. 

o Java technology defined and implemented originally by Sun Microsystems Inc. 
and further standardized by “an open, inclusive organization of active members 
and non-member public input” in the Java Community Process[120]. The 
specification includes among others, the Java language[118], Java Virtual 
Machine as a runtime environment, Java RMI[122] as the communication 
platform. 

o Component Object Model and its most recent successor .NET platform 
provided by Microsoft Corp. COM[84] and its subsequent versions, DCOM 
and COM+, has been offered as part of the Microsoft Windows operating 
system since 1993. This technology mentioned for completeness but is only 
very roughly investigated in the thesis because of space and time limitation. 

• Component-oriented middleware. This class of middleware has appeared relatively 
recently as the main stream of middleware products. Compared to object-oriented 
middleware, the basic unit of distribution, management and deployment is component 
whose semantics is explicitly defined in all these aspects of component life cycle. 
Component-oriented middleware supports, in particular, component assembling, i.e. 
combining 3rd party software components together at deployment time. The 
mainstream middleware technologies available on the market currently are: 

o Enterprise Java Beans[119] defines a component model for the Java 
technology. The model is based on Java Beans[117] published in 1996 and 
extended by support for different classes of components. 

o CORBA 3.0 [73] is a component extension of the object-oriented CORBA 2.X 
middleware. It defines a fully-fledged component model based on the EJB 
approach and extended to the requirements of the heterogeneous multi-
programming language interoperable distributed CORBA environment.  

• Mobile-Agent Technologies. Mobile objects [50] and mobile agents are concepts that 
evolved from the object oriented approaches combined with work on mobility aspects 
of information systems. They support migration of running instances of programs 
including its computational state from one execution environment to another one so 
that the computations can be seamlessly continued at another location. The 
standardization forums concerned with mobile agents include FIPA[26]. A few 
examples of mobile agent platforms include Aglets[51], Voyager[71] and 
Grasshoper[3]. 

In the remaining chapters of this thesis, the term of middleware is equivalent to the object-
oriented middleware and its component-oriented extensions, if appropriate. 
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2.4.3 Middleware-based Distributed System Architecture 
The distributed system using object oriented middleware consists of the following elements: 

• Platform, is the part of middleware which supports interactions between runtime 
representations of software components in a distributed system. The execution 
supports the ODP distribution transparency[46]. Because of the way the object-
oriented middleware evolved towards the component-oriented middleware, the 
platform is further subdivided by some authors in the literature [18][48] into: 

o Distributed Processing Environment[126] supports interactions between 
software components using mechanisms to provide the ODP distribution 
transparency[46]. Examples of a DPE include OMG’s CORBA-compliant 
Object Request Brokers or Remote Method Invocation implementation of the 
Java platform.  

o Component-Support Platform, which makes use of the Distributed Processing 
Environment and provides additional support for component deployment and 
execution. With respect to deployment support, it offers mechanisms to 
assemble components, install and configure them, whereas the execution 
support includes explicit factory component life cycle Some real world 
examples of a Component-Support Platform include Enterprise Java 
Beans[119] and CORBA 3.0[73]. 

• Container is an execution environment in which components are deployed and run 
providing their services to the service users.  

• Horizontal Support Services are generic services used by the application components 
to access application domain independent functionality. Some example of these 
generic services have been listed in section 2.4.1. These services in the CORBA 
specification are called CORBA Object Services, COS, in Java they belong to the 
packages of the standard runtime environment. 

• Components is software which provide some functionality specific to some problem 
domain. To provide the functionality, they use the capabilities of the platform 
described above. The components can be further classified with respect to the degree 
of their applicability. Two classes can be distinguished: 

o Vertical Support Components, called also Service Platform Components, are 
components that provide common capabilities and useful functions for a given 
problem domain. Some examples of such components are:  

� TINA Service Architecture[126] specified by the TINA Consortium 
which defines a set of generic services useful when developing of 
telecommunication services.  

� IBM’s San Francisco[43] which provides a number of components for 
building E-Commerce applications.  

o Application Components. These are software components which encapsulate 
application-specific functions. They make use of the Vertical Support 
Components for the generic application domain functions, the Horizontal 
Support Services for the generic distributed system support services and the 
DPE for interactions with other system components. 

The architecture of a distributed system based on component-oriented middleware is depicted 
in Figure 2. The sample distributed system contains two hosts running different operating 
system, shown as columns below the platform. The platform is presented as a even surface 
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hiding the heterogeneity of the underlying operating systems and hardware architectures. It 
provides a unified access to the communication and computational capabilities of the hosts. 
Containers with components running in them are located above the platform symbolizing their 
client role with respect to the platform. The components presented in the figure comprise both 
vertical support components and application components. The components can interact with 
each other by exchanging information in terms of operation calls, asynchronous messages 
(events) and data streams. These interactions are supported by the platform. 

 

 

Figure 2. Reference Model for Component-based Middleware. 

2.5 Summary 
This chapter includes background information needed to understand the context of the core 
investigations of this thesis. The text refers to the fundamental properties of distributed 
systems and, in particular, dependable distributed systems and gives a very short concept 
overview of object-oriented and component-oriented software modeling and development 
paradigms. The chapter also presents introductory information on the middleware technology 
and its classification. The focus of this middleware presentation is put on object-oriented and 
component-oriented middleware platforms, which are technological target of investigations 
and are used as software development tools when building the prototype.  
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3 Dynamic Upgrades 
This chapter introduces the terminology, basic concepts and problems related to upgrading 
component-oriented software and building systems supporting dynamic upgrades . First, a set 
of definitions of basic concepts, including the dynamic upgrade, are introduced in section 3.1. 
Some of these definitions are elaborated and concretized in the next chapters of the thesis. In 
section 3.2, it is argued that software components are a natural unit of upgrade. Section  3.3 
follows with description of three key aspects of the problems related to performing dynamic 
upgrades in an distributed environment. The aspects include: system evolution, high 
availability and deployment and are a basis for defining a problem taxonomy for the dynamic 
upgrade presented in section 3.4. Section 3.5 motivates implementing the dynamic upgrade 
support functionality as part of a middleware platform. Finally, an overview of related 
research topics is given in section 3.5. 

3.1 Basic Definitions  
This software life cycle can be seen as is a software transition from a state that it is 
implemented and tested by the software provider to a state, in which it is usable in a given 
environment. This transition is enabled by releasing the software so that is available in a given 
environment or infrastructure and followed by a deployment process.  

Definition 4.  
Releasing software is a process of making a piece of software available for deployment 
in the given target infrastructure. 

As the context of the thesis is distributed systems, the infrastructure is distributed per se. In 
a distributed environment, the infrastructure consists of multiple interconnected hosts, each of 
which is capable of providing computational and communicational resources  to the 
components. The hosts may be heterogeneous in that they provide the software with different 
computational platform determined by the execution model and the access means to the  host 
resources. 

Definition 5.  
Target infrastructure is a infrastructure where the given software is released. In 
a distributed environment, it consists of a set of hosts, each of which is capable of 
providing computational and communicational resources  to the deployed software. 

In general, software deployment is the a process in which software released are placed into the 
target execution environment and made ready for execution. The deployment process involves 
various activities, including code distribution, installation, configuration. Thus, the following 
definition of deployment process is coined for the purpose of this thesis: 

Definition 6.  
Deployment process is a process involving actions aimed at making a released piece of 
software ready for execution in a given target execution environment. 

Whenever a piece of software is released it a target environment, it is available for 
deployment. This particular software released is called a software version or a software release 
and is identified by a version number, called also a release identifier, which differentiates one 
software version from another software version offered under the same software name 
provided by the same software provider. 
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Definition 7.  
A software version is a piece of software available for deployment after it is released in 
the given target infrastructure.  

Conventionally, a software version is called newer if it is released after another software 
version called older. Thus, newer or older attributes of a software version  are related to the 
order of their release times. In the context of this thesis, a software version may additionally 
be new or old with respect to the upgrade process. The definition of these attributes are given 
below: 

Definition 8.  
A new software version refers to the software that is going to replace another software 
version during a given upgrade process. The other software version refers to a version 
deployed in the target infrastructure and is called an old software version.   

In the process of software upgrade, a new software version is deployed into a target system 
and replaces the older version of the software code in the given target nodes belonging to the 
target infrastructure. The replacement or exchange of software versions is one of the key 
differences when compared to a deployment process as defined in Definition 6. Upgrading 
a software version means not only distributing, installing and configuring it in the target 
infrastructure but also configuring the runtime environment so that the new software is used 
instead of the old software version. In particular, whenever the code of the old software 
version is to be used, the new software version should be used if possible. Additionally, the 
upgrade process may optionally leave the old software version in some subset of the 
infrastructure intact, if there is a need for having multiple software versions deployed in the 
target infrastructure.  

Definition 9.  
A software upgrade, called further upgrade, is a process aimed at deploying a (new) 
software version so that it replaces another (old) software version which is deployed in a 
given subset of the target infrastructure.  

Furthermore, some constraints are imposed on the differences between versions of the code. 
These constraints define the substitutability relation which determines the degree to which the 
new code can differ from the old code. Software is upgraded to improve the quality of service 
of a system or to adapt its functionality to the changing requirements. The substitutability 
constraints can be defined in a range of ways to cover the spectrum of allowed system 
changes. At this point, the definition of substitutability constraints is left open for further 
refinement as its definition strongly depends on the evolution model of the system, which is 
not in the focus of this thesis. Consequently, a skeleton definition of the substitutability 
constraints is stated  below: 

Definition 10.  
Substitutability constraints define the allowed differences between the old an new 
software versions involved in an upgrade process.  

To sum up, an upgrade process can be defined as a deployment process focused on exchange 
of software code so that the substitutability constraints on the code difference hold; this core 
idea is expressed symbolically in Definition 11. 
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Definition 11.   
An upgrade process is valid if the new and the old software versions involved fulfill the 
substitutability constraints.  

The dynamic upgrade is an upgrade process that additionally has a direct influence on the 
runtime behavior of a running software being upgraded. Not only does it deal with exchanging 
a software version deployed in the target infrastructure but also with exchanging running 
software pieces, called further runtime artifacts. Each runtime artifact is an instance of one 
software version deployed. An example of a runtime artifact is a component runtime instance 
as defined in section 2.3.  

Definition 12.  
A runtime (software) artifact is an abstraction of a piece of software being executed at 
runtime.  

To exchange a runtime software artifact running one (old) software version means to replace it 
with another runtime artifact that is an instance of another (new) software version released in 
the target infrastructure. Like in an upgrade process, the old and new software versions of the 
involved runtime software artifacts have to fulfill the substitutability constraints for an 
dynamic upgrade to be valid. 
Furthermore, the dynamic upgrade process has to ensure that the software system as a whole is 
operational during the upgrade so that the system user can access system functionality without 
breaks. These additional constraints set on the upgrade process are called runtime constraints. 
One example of the runtime constraints is dynamic upgrade transparency, which guarantees 
that the dynamic upgrade process does not influence the behavior of the runtime artifacts 
being upgraded software which is seen by other runtime software artifacts in the target 
infrastructure. Another example of runtime constraints is a requirements on the dynamic 
upgrade algorithm not to compromise the dependability of the distributed system, whose part 
is being upgraded. Taking into account these runtime constraints influences the design and the 
complexity of the algorithms to perform dynamic upgrades.  
As the process of a dynamic upgrade deals with exchanging runtime artifacts and has an 
impact on the runtime behavior of the system both during and after the upgrade, it is of much 
more dynamic nature compared to the upgrade process. To stress this upgrade aspect, it is 
called dynamic upgrade. Definition 13 sums up the core idea of the dynamic upgrade. 

Definition 13.  
A dynamic upgrade is an upgrade process aimed at replacing given runtime software 
artifacts with ones running a new software version so that certain runtime constraints 
hold during the dynamic upgrade process.   

Both the upgrade and dynamic upgrade process are performed to exchange some software 
artifacts (and their runtime instances in case of the dynamic upgrade). These software artifacts 
consist a part of the distributed system which the process is applied to and are called hereafter 
upgrade target.  

Definition 14.  
An upgrade target is the object of the given upgrade process. For a upgrade process it 
contains a set of deployed software artifacts to be replaced in the distributed system. For 
a dynamic upgrade process, it contains additionally a specification of runtime instances 
to be replaced in the distributed system.  
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The upgrade target may be compound, in general, as it may consist of a number of software 
artifacts. The smallest piece of a distributed system that can be an upgrade target is called 
a unit of upgrade.  

Definition 15.  
A unit of upgrade is the smallest software artifact that can be upgraded independently. 

3.2 Component as Unit of Upgrade 
In section 2.3, the component was defined by its properties. A component that has been 
developed independently from other components, may be then independently deployed and 
managed . As the application evolve and the components are modified by their developers, 
working possibly independently for multiple software houses,  and deployed into the target 
system, the system is upgraded. If additionally, this upgrade process is required to by dynamic 
in the sense of Definition 13 in section 3.1, the component appears to be suitable as a unit of 
dynamic upgrade. In other words, its properties predispose a component to be a natural unit of 
upgrade. Therefore, it is argued that a component can have another property derived from its 
properties listed in section 2.3: 
• Unit of Dynamic Upgrade. A software component is the smallest software artifact in 

a component-based distributed software system which can be an object of a dynamic 
upgrade process.  

It is worth of noting that dynamic upgrade is not an orthogonal property compared to the 
previous ones. The activity of dynamic upgrading is a related to component deployment and 
(life-cycle) management. A dynamic upgrade is a special case of deployment as defined in 
section 3.1 and a special case of software life-cycle management, in which the deployed code 
of the component is replaced with a new version and, consequently, runtime instances of this 
software component are replaced with instances running this new code. Lastly, an upgrade is a 
result of component maintenance activity that deals with code changing due to debugging and 
adopting component code to new system requirements. 
In the further investigation of this thesis, the component is considered as a unit of upgrade. All 
the definitions in section 3.1 related to dynamic upgrades abstracted from a concrete software 
artifact. From now on, the definitions are treated as if the abstraction of “software artifact”  is 
replaced with a “software component“ and “runtime software artifact” with runtime instance 
of a component. 
Note that this property postulates a component to be the smallest software artifact that can be 
independently upgraded in the system. This definition does not allow system upgrades of 
software artifacts of a finer level of granularity, such as a single programming language 
statement, a single class or a function being just a part of a software component.  
On the other hand, this component property allows for dynamic upgrades having multiple 
software components as an upgrade target. These upgrades are called compound upgrades. 

Definition 16.  
A compound (dynamic) upgrade is a (dynamic) upgrade process with an upgrade target 
consisting of multiple software components. 

3.3 Aspects of dynamic upgrades 
The technology of dynamic upgrades can be considered from three viewpoints: 
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• System Evolution. Dynamic upgrades can be considered as a method to handle change 
management in evolving software systems at runtime.  

High availability. Dynamic upgrades can be seen as a means to increase system availability 
by shortening the downtime during the maintenance breaks. 

• Software Deployment. Dynamic upgrades can be viewed as a special case of service 
deployment, in that new version of some software has to be deployed replacing some 
other software already deployed in a system.  

The subsequent subsections discuss each of the aspects.  

3.3.1 Evolution 
Dynamic Upgrades can be considered as an enabler technology for managing runtime changes 
in evolving software systems. Runtime change, in the context of distributed applications, 
includes the following aspects [42]: 
• Replacing or upgrading the application components that define the system functionality. 

The change is further referred to as component upgrade and involves replacing one 
implementation of a system component with a new one. This aspect of the runtime change 
is elaborated in the rest of the paper. 

• Modifying the logical structure (topology) of the system, which defines which 
components are in the system and how they are interconnected at runtime. Configuration 
changes are in terms of both adding and removing the system components and the 
connections between them.  

• Altering the physical structure of the system, which defines how the system components 
are mapped onto the system underlying physical resources, like assignment of components 
to network nodes. 

Dynamic upgrades can be considered as a special case of general change management support 
systems, in which: 
• the logical structure of a software system is much more stable then the internals of the 

components, 
• the scope of allowed changes is limited to replacing a number of software components so 

that each software component is replaced with a new version of the software component. 
 

3.3.2 Dependability 
Dynamic Upgrade can be considered a method to improve system availability [35], which is 
one of the characteristics of the system dependability[32]. Traditionally, the techniques for 
increasing availability have been based on masking hardware failures [32][115]. Software 
failures which are found to be more often sources of system unavailability have been 
addressed only recently. The formula characterizing system availability is often expressed as 
follows: 

MTTF 

MTTF+MTTR 

Thus, availability can be enhanced by increasing the Mean Time To Failure, MTTF, or 
decreasing the Mean Time To Repair, MTTR. Dynamic Upgrade increases software 
availability by reducing the MTTR parameter of the system. A component that is 
malfunctioning can be replaced on the fly. Component is replaced without stopping the system 
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so the time to repair is much shorter then time to repair required to traditionally reinstall a part 
of the system. In this reasoning, it is assumed that the MTTF is not diminished hereby, that is, 
the system failures occur at most with the same frequency as before the upgrade. On the other 
hand, if upgrade contributes to improved system reliability as a new better and less buggy 
component replaces its older version, the system availability is enhanced even more.  
Additionally, dynamic upgrade is a complementary mechanism to commonly used cost 
effective fault tolerant techniques applied to highly available systems. These techniques are 
based on software or temporal redundancy. The first ones comprise active replication, whereas 
the latter – a variety of passive replication schemes or rollback and restart. Since these 
methods mask only failures and do not deal with the origin of the failures, i.e. the faults, the 
faults remain in the system and will probably cause other failures in the future. In worst case, 
if the failure is not transient, the system will not successfully recover and these fault tolerant 
techniques will fail. Dynamic Upgrade alleviates this drawback by giving a support for 
removing faulty components.  

3.3.3 Deployment 
Software upgrades are part of the software life cycle. Dynamic upgrades, that is upgrades of 
running parts of a software system, are a special case of upgrades at runtime. This section 
explains the relationship of upgrades, and in particular dynamic upgrades, to other phases of 
software system life cycle.  
In Figure 3, the full lifecycle of a software system is presented in a form of a graph. It 
comprises four main phases the specification, development, deployment and runtime. After 
a software system is specified according to the user requirements and with regard to results of 
the functional analysis, the software system is designed, validated and adapted to the specifics 
of a concrete middleware platform. 
As a result of the development phase, the software is formed out of programming language 
constructs, called artifacts, like functions or classes and the so called resources containing 
required information to configure and initialize the programming constructs in the deployment 
phase. The programming constructs are divided into groups and packaged together in software 
components. 
Then software component can be deployed into a target environment by delivering (or 
distributing) them and installing at their destination. If needed, the component is configured 
according to the deployment criteria of the local runtime environment and the preferences of 
the local system users. After that, the component is ready to activate. In conventional 
component lifecycle, the components have to be deactivated to be upgraded. Finally, if the old 
version of a component is not needed any more, it is withdrawn from the system.  
Dynamic upgrade can also be considered as a special case of deployment. Upgrading software 
comprises deploying a new version of some service and optionally removing the old version if 
it is not needed any more. A dynamic upgrade support system can be then seen as an extension 
of a deployment system. To support software upgrades it uses the capabilities provided by the 
deployment system, like releasing new version of software in the distributed system, 
delivering software components to their destinations, allow for installation and uninstallation 
of software components. Additionally, some additional mechanisms are needed compared to 
a deployment system that does not support upgrades. These mechanisms include storing the 
state of the old version components and transferring it to the new ones. Even more challenging 
are dynamic upgrades that involve ensuring upgrade transparency.  
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Figure 3. The phase model of software lifecycle. 

In each phase, different methods, tools and technologies can be utilized in order to 
successfully and efficiently produce the desired output. For distributed systems, such 
technologies, methods and tools have been surveyed, explored or introduced by relevant 
research and development projects. It is not within the scope of this work to delve in all these 
phases and provide explicit descriptions for the applicable actions. Instead, the thesis focuses 
mostly on the component upgrade, particularly on its dynamic version, which belongs to the 
component runtime phase. It is worth noting, however, that investigating dynamic upgrade 
requirements on software technology, requirements may be expressed concerning other phases 
of the component lifecycle, like component development or deployment.  
From the component developer perspective, the component’s capability of transparent 
dynamic upgrade can be seen as a quality of service parameter of this component. This extra 
feature of the component has to be added to the component functionality. The upgrade 
transparency requires that the component developer be not burdened with caring about this 
component feature when developing their component. It means, however, that some 
development support tools have to be provided that automatically enhance the component 
implementation with some dynamic upgrade mechanisms. The component runtime 
environment, i.e. middleware platform may also be required to enhance.  

3.4 Problem Taxonomy 
This section describes the major issues that have to be addressed while dealing with upgrading 
software components systems on the fly. These issues are proposed to be classified in 
a hierarchical taxonomy. The taxonomy is based on the aspects of the dynamic upgrades 
introduced in section 3.3.  
Figure 4 shows the proposed taxonomy. It consists of three trees, each of which classifying 
problems related to one of the dynamic upgrade aspects, including: evolution. dependability 
and deployment. The following subsections present the problems related to each of the 
aspects. Some of the problems are also symbolically illustrated in Figure 5. 
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Figure 4. The taxonomy of the dynamic upgrade problems. 

3.4.1 Evolution 
The first tree of the taxonomy depicted in Figure 4 includes problems related to the aspect of 
system evolution, which was introduced in section 3.3.1. The related issues include system 
compatibility and its validation as well as state transfer. 

3.4.1.1 Compatibility 

One of the most important goals to meet when upgrading some running software is to preserve 
its consistency. Although the system consistency is described in terms specific to the 
functional model of the system, there are also some general issues on consistency preservation 
that are to be addressed in every component-based system.  
Consistency preservation is a multi aspect issue. From the system evolution perspective, it can 
be investigated with respect to compatibility specification and upgrade validation. The first 
issue is concerned with specifying to what extent the versions of a component can differ from 
each other, i.e. what is the component substitutability [105]. Regarding a component as an 
entity with a number of well-defined interfaces that allow for accessing the component 
functionality and with some code implementing the functionality, the compatibility of 
implementations as well as interfaces is to be considered. Both of the concepts are related 
with the notion of subtyping [55].  
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3.4.1.2 Upgrade validation 

Upgrade validation is concerned with checking that the upgrade is valid in the sense of 
Definition 11 and has terminated successfully so that the system consistency is preserved after 
the system is upgraded. This includes checks that the system upgraded behaves according to 
the expectations, that is the changes introduced do not make the system incompatible to its old 
version.  
Two upgrade validation types can be distinguished: 

• Online validation is performed during the upgrade process and immediately after the 
upgrade is done for some limited period of time. During this time, the new system 
version may be run in a testing mode in which it performs a possibly constrained set of 
its functions and the results of its computations are compared against the old version’s 
results. If the checks are positive, the new version may be fully replace the old version 
which can be then deactivated. Otherwise, the upgrade is not valid and has to be rolled 
back so that the old version of the system can be resumed. 

• Offline validation is done before the actual upgrade is carried out in a real system. The 
new version of the code is validated and tested in an environment simulating the real 
system. On a successful validation, the new version is considered compatible to the old 
version and the test upgrade is valid. The new version can be used to upgrade the 
target system. 

 

 

Figure 5. Component upgrade issues. 

3.4.1.3 State transfer 

Another problem that has to be solved regards component state transformation between the 
old and the new version of the component to upgrade. In order to preserve consistency of the 
system, the current state of the component to upgrade, i.e. its computation results and the 
whole context of the computations, have to be transferred to the new version of the 
component (see Figure 5). This means that the computational state of a component has to be 
stored somewhere temporarily and subsequently restored by the new component. In this way, 
the new version of the component can correctly carry on the computations from the point they 
were stopped for the upgrade break. A well-defined protocol is required for transferring the 
state at least from the old version of a component to the new one. Optionally, the protocol 
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may allow for transferring the component state from a newer version of the component back 
to the old one in case the old version has to be restored in the target system. An example of 
such a standardized protocol is GIOP[73] or the one supported by Java serialization 
mechanism[118]. 
Except for transferring the state between the component versions, an additional mechanism is 
needed that maps the state of the old component version to the new one. In other words, the 
destination version has to correctly interpret the state transferred and set itself into an 
equivalent state to the one transferred. In general this mapping cannot be performed 
automatically. Manual and semi-automatic mechanisms have been proposed in proprietary 
solutions [42] and [132]; no standardized mechanisms are available.  

3.4.2 Dependability 
The second tree found in the proposed taxonomy comprises problems related to the aspect of 
system dependability introduced in section 3.3.2. The problems identified are presented in the 
following subsections. 

3.4.2.1 Availability 

System availability is one of the characteristics of system dependability. It is defined by the 
time fraction in which the system is operational in a given period of time. The problems in 
this category are then related to minimizing the system unavailability during a dynamic 
upgrade process. 

3.4.2.1.1 Upgrade transparency 
Usually only some part of the whole distributed system has to be upgraded. To make the 
system operational during the upgrade process, this process in terms of unavailability of parts 
being upgraded should not be visible to the rest of the system. This property is called upgrade 
transparency and is related to issues of reference management and unavailability reduction 
explained in the subsequent sections. Some work that attempted to address this problem 
include [33] and [114]. 

3.4.2.1.1.1 Reference Management 

A closely related issue is reference management. In our model, a system is made up of 
components interoperating with each other by means of connectors. The connectors are 
abstractions of lower-level constructs called bindings or references. To preserve the 
consistency of the whole system, an upgrade process is required not to affect the integrity of 
the component connections. On a lower abstraction level, it means that references that 
components use to send requests to other components must be upgraded respectively, as well. 
It is the upgrading policy that is decisive in how the references are managed. Assuming the 
upgrading policy permits only one (the newest) version of a component to exist in the 
upgrading zone, all the distributed references to the component to upgrade have to be rebound 
from the old to the new version of the component. Thus, after a component has been 
upgraded, all the references to the old version are now pointing at the newest component 
version so that the replacement of the component is transparent to the component clients. 
Other upgrading policies may require different reference management to keep the references 
between the system components consistent.  
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3.4.2.1.2 Unavailability reduction 
One of the main reasons for dynamically upgrading systems is to reduce the unavailability of 
the system that would result from traditional maintenance breaks. During dynamic upgrades, 
special take care is taken to minimize the breaks in operation of the system component 
upgraded. One solution to this in systems without replication is to coordinate the upgrade 
process so that the upgraded parts of the system are as small as possible. In this way, at any 
time during the upgrade only a small part of the system is unavailable while others are 
operational. In distributed systems with replication support, the solution to this problem is 
based on using replication mechanisms to run both the old and the new versions during the 
upgrade in parallel and to perform the version switch instantaneously.  

3.4.2.2 Upgrade Reliability and Safety 

Distributed systems are characterized by inherent partial failures as described in section 2.1. 
For this a system supporting upgrades should be designed in a reliable and safe way. The 
safety of the upgrade process means the system ability of tolerating failures occurring in 
distributed systems (without running upgrade processes) as well as of recovering from new 
types of failures introduced by the upgrade itself. The latter ones may be caused by running 
new code that behaves in a different though compatible way. Some solutions to the upgrade 
reliability problem include self-stabilizing upgrade algorithms and a recovery support that 
enables a system to fall back to the state before the upgrade took place. As a consequence, the 
upgrade algorithm should be designed according to the fault tolerance principles ([6],[12] and 
[90]).  

3.4.2.3 Upgrade Security 

Upgrading of software at runtime is a critical activity. Malicious or wicked attempts to 
upgrade a running part of a system may have a disastrous consequences to the system. The 
upgrade support system should permit to perform upgrades to only authorized persons, 
playing the role of the system (upgrade) manager. Activities related to performing upgrades 
should be dealt with in a similar way like other deployment or maintenance activities. A 
special case is one a software component autonomously determines a need for an upgrade. 
The dynamic upgrade support system may have to determine whether the upgrade is 
permitted. The decision process can be determined by a rule engine prescribing which 
components and possibly under what additional conditions are allowed to instantiate an 
upgrade process.  

3.4.3 Deployment 
 
The last problem tree in the taxonomy presented in Figure 4 is concerned with problems of 
deploying the code in the distributed system. An overview of the related problems is the 
contents of the sections below.  

3.4.3.1 Code Packaging and Versioning  

The software components that are to be deployed have to be packaged prior to transfer and 
delivery to the target nodes. The package must contain the software components in terms of 
the code and a meta-data description of the system including its requirements and 
dependencies.  
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Packaging scheme depends on the component model. An example of packaging is that used 
for software downloaded via the Internet Explorer. The package consists of a compressed file 
(file.cab) which includes installation and registering instructions in an information file and an 
open software description file [129] specifying dependency data (e.g. DLL files) and the 
software component(s). A proposal of the new CORBA Deployment and Packaging Model, 
a part of the OMG’s CCM specification[73], and its proposed extensions [20] defines another 
packaging scheme. The CORBA component model provides the concept of the 'descriptor' 
that is based on extended XML elements to describe a packaged software system. Yet another 
packaging method is described in the FAIN documentation on the Active Service 
Provisioning[23]. The descriptor is defined using a XML schema and describes the 
characteristics, including dependencies, of the associated service component.  
Additionally, versions of the component implementation have to be distinguishable in order to 
perform a system upgrade. The mechanisms supporting this is called versioning. Versioning 
of components is usually done assigning a version number to each component version 
released by the software provider. There are a number of versioning schemes applied in 
different development and deployment environments. The version numbering schemes can be 
as simple as monotonously increasing integer numbers whenever a new component version is 
released[74]. A component version number can also be defined as a n-tuple of integer 
numbers, each of which is increased with regard to a different aspect of the system that has 
been changed in the new software version[94]. More complex versioning schemes are based 
on description of component set-valued features to model relationships between component 
versions sets[133].  In any case, version numbering is related to the software release and 
should be orthogonal to other aspects of component, like naming of runtime instances of the 
component or naming scheme for the internal software artifacts comprising the component 
implementation. Additionally, because the interface and code of a component implementation 
can evolve independently of each other, these two versioning mechanisms are frequently 
separated.  

3.4.3.2 Code Release, Upgrade Target Discovery and Code Distribution 

A system upgrade is possible as soon as the new upgraded code is available. The process of 
making the code available to the system is called code release. The code release may be as 
simple as notifying the system manager, or the software running on behalf of him, of the 
available code and providing the information on how to access the code. Code release may 
also be followed by an automatic code download so that it is available locally on the nodes 
belonging to the distributed system. For the downloading system to work efficiently, it is 
necessary to discover where to download the code to. This requires discovering of the so 
called upgrade target, which consists of running instances of the code to be upgraded.  

3.4.3.3 Performing Upgrades 

The very core of deploying upgraded code in the target system are the issues related to 
performing the upgrade process. These issues are presented in the following subsections. 

3.4.3.3.1 Dynamic Installation, Loading, Linking and Replacement 
To be able to upgrade a piece of running code in a software system, the execution platform 
(for instance an operating system or a runtime environment like Java Virtual Machine) has to 
support installation of new code at runtime. The installation comprises system management 
actions at the nodes of the distributed system aiming at preparing the code to be executable in 
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its target instance of the execution platform (typically an operating system process). Example 
installation steps may include unpacking the component packages, copying the code into the 
suitable directories, updating the appropriate system variable and registry services to make the 
execution platform aware of the newly installed code modules. Not only has the code to be 
installed but it has to be loaded into a running instance of an execution environment (dynamic 
loading) and linked with other code already running on the platform. Finally, the runtime 
artifacts running the old version of code to be upgraded have to be replaced with 
corresponding artifacts running new code. 

3.4.3.3.2 Upgrade Coordination  
Performing an upgrade depends much on what to is be upgraded, that is what is the upgrade 
target is. Some examples of upgrade targets include a single running instance of a component, 
a set of runtime instances implementing a component, like an actively-replicated server, or all 
runtime instances of a set of components. Obviously, the running code instances may be 
interacting with each other and upgrading all of them at once may reduce the system 
availability. For handling upgrades of multiple targets, which are potentially running on 
a number of hosts in the system, the upgrades have to be coordinated. The coordination 
mechanism computes a sequence in which the runtime artifacts are to be upgraded, enforces 
this sequence and takes care of additional requirements on the upgrade process, including 
transactional property.  

3.4.3.3.3 Upgrade Time 
Another germane matter that needs investigating is focused on when a component can be 
upgraded. An ideal case would be if a component could be upgraded directly after an upgrade 
request is sent. However, this is not always the case. Let us imagine a component running 
a method’s code as a consequence of a client request. Intuitively, the component should not be 
stopped at any moment of the request execution but the upgrade should be postponed to the 
time when the component is ready, e.g. when the request has exited and the component is 
inactive again. One approach to the problem has been proposed in [49]. A component is only 
allowed to be upgraded when it is in a quiescent state, i.e. the component is passive and has no 
outstanding transactions which it must accept and service. 

3.4.3.4 Upgrade Management 

In a large distributed system, the complexity of software including the dependencies between 
components, the distribution scheme for software deployment is fairly high. Furthermore, the 
system management and supervision may be also done in a distributed way, possibly by 
multiple system administrators. To correctly and reliably upgrade such a system, a automated 
support is needed. The main issues in the upgrade management concern: 

• coordination of multiple upgrade processes and resolution of conflicts that may occur 
if upgrades are triggered independently.  

• support for upgrade planning and enforcing these plans so that the upgrades are 
performed efficiently from the perspective of the whole distributed system. 

3.5 Upgrade support location 
Considering the issues that have to be dealt with when supporting dynamic upgrades of 
distributed applications, on one hand, and the capabilities that the different elements of the 
distributed systems as presented in section 2.4.3 on the other hand, this thesis argues that the 
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platform is the most suitable element in the middleware-based distributed system architecture 
for localizing the functionalities supporting dynamic upgrades. The following rationale 
supports this claim: 
• Dynamic upgrade is a horizontal support mechanism. As dynamic upgrades are special 

case of deployment mechanism, which is then one of the generic domain-independent 
services, it is straightforward to design a facility for supporting dynamic upgrades of 
distributed applications in the platform. As a dynamic upgrade support facility has to 
cover a number of issues described in section 3.4, which are related to many aspects of the 
platform, the facility may have to extend both the DPE as well as the component support 
platform. 

• Dynamic Upgrade transparency. Upgrading a component on the fly is required to occur 
transparently to other application components. This transparency may be considered as 
another distribution transparency as defined in the ODP terminology. It is a inherent 
feature of middleware platforms to implement these transparencies.  

The middleware support for dynamic upgrades is further called Deployment and Upgrade 
Facility. The Facility, the platform and a set of tools supporting development of dynamically 
upgradable software components will be further called a dynamic upgrade infrastructure. 
Figure 6 shows a middleware-based architecture of a distributed system extended by the 
support for dynamic upgrades. It focuses on the elements of the dynamic upgrade 
infrastructure.  

 

 

Figure 6. The infrastructure to support dynamic upgrading. 

The infrastructure elements are described as follows: 
• Deployment and Upgrade Facility (DUF) provides basic mechanisms enabling 

component replacement at system runtime. The mechanisms are embedded in a 
concrete platform and use other services of the platform, like dynamic loading of 
components, component state storing/restoring or inter-component reference 
management.  

• Platform is based on the existing middleware platforms for distributed systems, like 
Microsoft DCOM[85], Java RMI[122], OMG ORB[73] or TINA DPE[126]. Extended 
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with the DUF facility as one of the horizontal services, the platform forms a complete 
execution environment for distributed software components capable of being 
dynamically upgraded. The platform is the key dependency of the implementation of 
the model developed in this thesis but is not part of the result of this thesis. 

• Deployment and Upgrade Tools (DUT) form a development support environment for 
the software developers and providers. The tools support the programmer in 
developing deployable and dynamically upgradable components. Their aim is to 
minimize the effort of programming software components with dynamic upgrade 
capability by semi-automatic generation  of code related to deployment and dynamic 
upgrade. Development of the tools, though,  is not part of this thesis. 

3.6 Related topics 
Dynamic upgrade has been a research topic for a long time now. It was most frequently 
discussed in the context of runtime change management systems, such as CONIC[49] or 
POLYTH[41][42]. Upgrading a system without stopping it was also an relevant issue in the 
context of high available and dependable systems [32] in investigation of methods to reduce 
the planned system downtime [66]. Some aspects of dynamic upgrade problem was addressed 
in the research on migration and mobile code. In the next subsections, the problem of dynamic 
upgrade from the viewpoint of the related research areas is briefly presented.   

3.6.1 Fault tolerance 
Dynamic Upgrade binds two aspects of software systems: evolution and availability [32]. The 
latter is also a goal of fault tolerant systems. Because of some similarities in concepts and 
their realization techniques, the techniques can be used complementary in many critical 
systems. This section relates the notions of dynamic upgradability and fault tolerance and 
focuses on the points distinguishing the techniques. 
The principle objective of the dynamic upgrade is to support the evolution of software systems 
with a requirement that the system’s availability is maximized. Systems made up of 
components can be modified by replacing the components with their new versions. Instead of 
applying the changes to the system by shutting the system down, the components are replaced 
on-line, so that the maximal availability of the system’s functionality is reached. The changes 
are applied so that both the scope of the system that has to be stopped and the time of the 
system maintenance are minimized.  
Dynamic upgrades as a method to cope with software evolution running fault-tolerant 
middleware have been considered in our work [109][110] and [17]. Below the main 
differences between Dynamic Upgrade Support Systems and Fault Tolerance Systems are 
sketched.  
Fault tolerant systems are designed with the objective to cope with, and recover from, 
different sorts of failures of the system and its environment, and additionally, to ensure 
system’s high availability. The failures in the context of fault tolerant systems [115] 
traditionally refer to a loss of processing resources or a loss of logical and physical 
communication paths. However, if component upgrades are also considered as system 
failures, then software systems that are dynamically upgradable can be regarded as a special 
case of fault tolerant systems. A temporary loss of processing resources is inherent to an 
upgrade of a component since a component has to be stopped and their new version started 
after the upgrade. Additionally, the new version of the component has to be consistently 
initialized with the current state of the whole system in that the stored state of the old version 
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of the component is used to compute the initial state of the new version of the component. 
Analogously, if a failure of a processing resource, such as an operating system process, 
happens in a fault tolerant system, it is handled by restarting another instance of the process 
and initializing it with the state of the old instance of the process that has recently been 
checkpointed This comparison allows for finding further analogous like upgrade request – 
failure, upgrade – recovery, dynamic upgrade facility – recovery mechanism, component state 
saving – checkpointing.  
Two significant differences between dynamic upgrading and fault tolerance have to be 
mentioned, however. Firstly, the initialization time of an upgrade can be controlled, whereas 
real failures occur unexpectedly and have to be handled immediately in most cases. In spite of 
the asynchronous nature of the upgrade requests, the start of the upgrade execution can be put 
off until the system is ready to handle the upgrade since a relatively short postponement of the 
upgrade is usually acceptable. On the other hand, critical failures have to be dealt with 
immediately in fault tolerant systems. Secondly, component upgrades always involve two 
versions of the component: the one to be upgraded and the one that will replace the running 
version. In fault tolerant systems, on the other hand, the recovery mechanisms deal with only 
one version of the component affected by the failure. Thus, recovering from a system failure 
typically requires restarting the same version of the component that has crashed for whatever 
reasons. Upgrades have an additional dimension when compared to conventional component 
recovery in fault-tolerant systems: the component evolves during the upgrade. This needs an 
upgrade facility to have appropriate mechanisms that will correctly insert the new type of the 
component into the slot in the system where the old version of the component has been 
executing. This can comprise: validating the conformity of the new version of the component 
with the old one, transferring and mapping the component state from the old to the new 
version. 
In [134], the maintenance events have been classified with regard to their impact on the 
system availability. Class 1 describes Non-recoverable Maintenance events, that is events 
requiring the system to be unavailable for the entire duration of the maintenance activity; 
Class 2 is thought to be for Recoverable Maintenance events, which need the system to be 
unavailable during part of the maintenance activity; Class 3 is concerned with Transparent 
Maintenance, meaning events that do not require a system outrage. The technique of dynamic 
upgrades can be then viewed as a method to eliminate events of class 1 and 2 from the system 
life cycle. 

3.6.2 Code Mobility and Mobile Agents 
Systems supporting code mobility that has been investigated and developed in the last years 
address similar issues that are dealt with when upgrading software on the fly. This section 
describes the similarities and the differences in the dynamic upgrade and mobile code 
problematic.  
Migration has been a research topic heavily investigated since the late 1970s in computer 
science. Process migration systems, like Condor[9], Sprite[13] or TUI[106], and object 
migration systems like Emerald[116] enable process or objects, correspondingly, to move 
between different execution environments at runtime. Execution environments are usually 
located on different hosts connected by a network. The key problem that has to be solved to 
allow for code migration at runtime is to transfer the current state of a process or an object 
from the original machine to the destination. Whereas the process state consists of all the 
variables within the process, the object state means a set of internal variables encapsulated by 
the object implementation forming just a part of the runtime execution environment or 
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process. The problem of state transferal is also central to upgrade systems; e.g. a new version 
of a component has to continue the component’s computation from the state the old version of 
the component had just before the upgrade. In both classes of systems the common point is 
that a component state has to be prepared for transfer somehow, and translated back to a form 
that can be used for component for further component computations after an upgrade or 
migration process is over.  
The details of the transfer process are however different. State transfer in migration systems is 
concerned with the remoteness of the original and destination execution environments, 
whereas state transfer in dynamic upgrade systems is a means to deal with different versions 
of the component implementation and its state definitions. In a migration system, the state is 
prepared for transfer by being marshaled so that it can be sent on the wire to a remote 
destination address space. After the state has been transported to the destination it can then be 
demarshaled. If a heterogeneous distributed system is involved, a migration system has to 
define a well-defined state exchange format that is independent of the hardware and 
underlying operating system so that the object state running in the original execution 
environment can be correctly interpreted in the destination execution environment. On the 
other hand, in an upgrade system, the state transfer involves mapping the state of the old 
version of the component to an equivalent state of the new version of the component. To sum 
up, the state transfer in upgrade systems deals primarily with differences in the component 
architecture itself, whereas the state transfer in migration systems deals with differences in 
component execution environment.  
The mobile code concepts have been further elaborated in the mobile agents systems, like 
KQML[25], General Magic's Odyssey [29], Open Space’s Voyager [71] or IKV++ 
Grasshopper [3]. To sum up the concept of a mobile agent, a short description of mobile agent 
technology after [93] is cited hereafter: “mobile agents are agents that can physically travel 
across a network, and perform tasks on machines, called agencies, that provide agent hosting 
capability. This makes processes possible to migrate from computer to computer, for processes to 
split into multiple instances that execute on different machines, and to return to their point of 
origin. Unlike remote procedure calls, where a process invokes procedures of a remote host, 
process migration allows executable code to travel and interact with databases, file systems, 
information services and other agents”. 
Despite many similarities of dynamic upgrade and mobility support in agent systems, the 
application areas of these two approaches differ. On one hand, applications that need to be 
upgraded on the fly have typically strong availability requirements, i.e. even a short planned 
maintenance break would unacceptably decrease the system availability. Such systems are 
usually designed in a way that does not permit changes of  the system architecture but enables 
for predicting the time characteristics of the mission critical system components. On the other 
hand, typical application areas for mobile agent technology do not have such high availability 
requirements but allow for building flexible systems that can be reconfigured and extended. 
To upgrade such an agent-based system, it is enough to send the new version of the agent 
software to a corresponding agency and upgrade the agent off-line.  

3.7 Summary 
This chapter presented an introduction to the dynamic upgrade topic. After the basic concepts 
are concisely defined in section 3.1, three aspects of the dynamic upgrade problem are 
presented in section 3.3: system evolution, high availability and a software deployment. These 
aspects serve as a starting point when classifying problems related to dynamic upgrade in the 
problem taxonomy 3.4.  The problems identified in the taxonomy are further analyzed and 
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serve as input to form a set criteria for the comparative study of the state-of-the-art Dynamic 
Upgrade Support Systems (chapter 4), or DUSS for short. The deployment aspect is stressed 
in the further chapters of this thesis and the dynamic upgrade is seen as a special case of the 
deployment process. 
In this chapter, it is claimed that the most suitable element of the distributed system 
architecture for localizing the dynamic upgrade support is the middleware platform (section 
3.5). Consequently, in the subsequent chapters of this thesis, middleware platforms are 
investigated with regard to the support for dynamic upgrades and extensions of these   
Additionally, the software component is proposed to be the basic unit of dynamic upgrade in 
the component-based distributed systems. It is suitable to be a unit of upgrade because of its 
other properties  as pointed out in section 3.2.  
Chapter completes with a short discussion with related research topics in section 3.5 
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4 State of the art 
This chapter describes the state of the art in support for dynamic upgrades both in the main 
stream middleware products and in research prototypes extending the standard programming 
environments for distributed systems. These systems are analyzed and evaluated in terms of 
a set of comparison criteria. The analysis and evaluation of the state-of-the-art systems help to 
identify their drawbacks and missing features.  

4.1 Introduction 
The problematic of managing runtime changes in distributed systems has been heavily 
investigated. One trend of this research is focused on formal describing software architectures 
which has resulted in plethora of Architecture Description Languages, ADL. The system 
architectures are often described in terms of system components, connectors and their 
designed configurations (e.g. Darwin [57]) or planned configuration changes (e.g. 
Rapide [56]). A newer class of these formalisms are Architecture Modification Languages, 
which are extensions to ADLs and provide means to describe unplanned changes to 
architecture of a system, see C2’s AML [83].  
Much work that has been done combines the problem of describing the changes of the 
software architecture with the dynamic upgrade of architectural components. The theoretical 
foundations of a distributed component system capable of being dynamically changed have 
been developed during work on Regis/CONIC project [49]. Some more technical results have 
been presented in papers on POLYLITH [41], a framework for dynamic reconfiguration of 
distributed systems. This approach is based on the formalisms elaborated in the CONIC 
project and focuses on introducing runtime change at the granularity of an operating system 
process. Research on CONIC and related projects concerns upgrading only the so-called 
quiescent (not active) components, i.e., informally, which are being not involved in any 
communication with either other components or their environment. 
Other category of research done on upgrades is focused on the low-level details of the 
development environment including the programming language and the operating system that 
the solution is developed for. These approaches propose reengineering the development tools, 
including compilers and assemblers and tackle issues regarding techniques for dynamic code 
loading and linking [53][87][39], defining the state of upgraded software, transferring it to the 
new version [2][7][21][31][39][51][132] and reference management [33]. 
Some research that is focused only on dynamic upgrade aspects of runtime change 
management can also be found in literature. Different design and programming artifacts at 
various levels of abstraction and of different granularity have been investigated to be a unit of 
system upgrade, see Figure 7. As an example, Gupta et. al [34][35][36] consider introducing 
changes to software systems at the level of an imperative language statement. A procedure 
implementation as an upgrade unit is used in DAS [31] and PODUS [102]. Fabry [21] and 
Bloom [7] (in his work on ARGUS extensions) investigates software replacement on the level 
of program modules. Other systems, like C2 [83], DCUP [89] support dynamic upgrading of 
components at the architectural level. Still another approach is represented by the 
DRASTIC [16] project in which upgrading software is examined on the level of autonomous 
sub-domains, called zones, which form a distributed system. A comparative survey of some of 
the systems supporting dynamic upgrade can be found in [103].  
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Figure 7. Classification of different approaches with respect to the granularity of the units of 
upgrade. 

 

4.2 Investigated Systems 
The investigated systems include both standard middleware platforms and their propriety 
extensions specialized to provide support for dynamic upgrades.  
Two standard middleware are investigated in this chapter: CORBA (sec. 4.2.1) and Java (sec. 
4.2.2) technology. These are the main stream technologies used both in the industry and 
research community. Additionally, this work on this thesis has been carried out in the context 
of projects aiming at developing distributed systems for purposes of telecommunication 
applications, which these two technologies have been mostly applied in.  
 A number of systems enabling dynamic upgrade is presented in more detail, to provide the 
reader with better understanding of the dynamic upgrade issues better. Because of the focus of 
this thesis, the survey is limited to systems that : 

provide a pure software solution, i.e. do not require on special hardware support, 
support dynamic upgrade of distributed applications. 

The subsequent sections describe the proprietary dynamic upgrade support systems. They 
include: C2 (sec. 4.2.3), CONIC (sec. 4.2.4), DRASTIC (sec. 4.2.5), Eternal (sec.4.2.6), 
PODUS (sec.4.2.7), POLYLITH (sec. 4.2.8), SOFA/DCUP(sec. 4.2.9), STL (sec. 4.2.10) and 
CHORUS (sec. 4.2.11). 

4.2.1 CORBA 
Common Object Request Broker Architecture is an open standard for distributed object 
computing, defined by the Object Management Group, OMG. The current version of the 
CORBA specification at the time of writing this text is 3.0 adopted by OMG and published in 
a formal document [73]. Further references to CORBA include: [72][84][85][97]. 
The Object Management Group has been active in the area of upgrading CORBA systems at 
runtime for some time.[77][76]. The standard defines a first portable and interoperable 
framework to facilitate upgrading of CORBA objects. The framework: 

• allows for upgrading of implementations of individual CORBA objects only, i.e., 
external object interfaces cannot be upgraded.  

• provides a means to ensure objects-to-be-upgraded to reach a quiescent state, whereas 
a quiescent state is defined as not executing any methods.  

• defines interfaces to enable state transfer of CORBA objects. 
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• ensures upgrade transparency in terms of: 
o consistent message delivery during the upgrade process, i.e. the messages are 

not lost, disordered or processed twice, 
o referential integrity in that clients continue using the same object reference after 

the upgrade they used before the object has been upgraded. 
• provides a capability to roll back an upgrade before the new implementation becomes 

operational. 
• allows for reverting from the upgrade in a given period of time. 
• provides some basic transactional support for upgrades of object collections. 
• supports upgrades of both replicated and non-replicated CORBA objects can be 

upgraded. 
To sum up, the current release of the CORBA standard does not support dynamic upgrades. 
The OMG is currently working on a future CORBA extension adding rudimentary support for 
dynamic upgrades. The main drawbacks of this future extensions are: 

• Limitations in the dynamics of change, i.e. in how far the new version of code can 
change from the old version. Only implementation changes are supported.  

• Support for upgrades of simple upgrade targets. The specification does not enable to 
upgrade a number of CORBA objects during one upgrade process.  

• Weak upgrade management. Even though the specification supports two kinds of 
predefined upgrade initiation schemes, the push and pull upgrades1, no other upgrade 
management schemes are considered.  

• Inflexibility of specification. The specification proposes one upgrade algorithm and 
defines interfaces and an interaction protocol to support this algorithm. Other 
algorithms are not supported and the specification does not address framework 
extensibility, such as a possibility to add new upgrade algorithms.  

• The specification deals basically only with runtime aspects of upgrades. It does not 
addresses issues of deploying new versions including managing the code, such as 
installation of new code, uninstallation and discarding the old one. It assumes that 
a new version is available at a given node and is deployed so that instances of the 
implementation can be created on demand. 

• Weak support for versioning and evolution tracking. The specification does not 
address how to relate different versions of a object implementation. There are no 
mechanisms that support storing the information about the old and upgraded code.  

4.2.2 Java 
Java [1] is one of the most frequently used object oriented programming languages. It was 
released by Sun in 1995 and quickly has become very popular in the area of Internet 
applications thanks to its applets, i.e. Java programs that can be dynamically downloaded in 
the compiled form (as byte code) either from a local file system or through a network e.g. 
from a web page, allowing code mobility. The code mobility offered by Java is limited to one 
hop, i.e. sending the code from a web server to the clients. The code is executed in the Java 
Virtual Machine, JVM, in the so called sand-box model to minimize security problems of the 

                                                 
1 The push upgrade is initiated by a client of the upgrade framework who triggers an upgrade request. The pull upgrade is initiated by 

one of the application objects to upgrade. 



 

  40 

foreign code running at the client side. 
Java platform supports distributed computing by the remote method invocation (RMI) service 
an the serialization service. The first allows for sending and processing requests by remote 
objects. The latter allows for serializing a graph of Java objects into byte stream and 
deserializing objects from a byte stream.  
Another important service that Java offers it reflection. This service allows for inspection of 
programming artifacts, like classes or packages for their features (class methods or package 
classes), instantiating objects, accessing or modifying the values of fields of objects or classes, 
and invocation of methods on objects and classes. 
Java Beans is a component architecture for the Java platform. The architecture allows for 
defining beans, which a components consisting of a set of Java classes and resources. The 
specification distinguishes two phases of a component life cycle.  

• Design time, when beans are customized by modifying their attributes, connected to 
other beans and assembled into compound beans. 

• Runtime, when the beans can be used, i.e. when Java programs or other beans invoke 
operations on the beans, the beans send or receive events. 

Depending on the phase of the bean lifecycle, the behavior or appearance of a bean may be 
different. 
Java with its JVM, distributed object model (RMI) and a component model Enterprise Java 
Beans can be considered as a middleware technology. It offers a similar functionality as 
CORBA or DCOM but is limited to only one programming language, Java. Because of JVM 
availability for most mainstream platforms, the Java middleware can be used in heterogeneous 
systems.  
In the context of the support for dynamic upgrade of software components, the following 
features of the Java language and its environment are relevant: 

• Java serialization. With this technology, a Java component can save their state and 
send it to a new version of the component. 

• Class loading [53]. Java allows for loading new classes to be loaded into the JVM at 
runtime. This functionality is similar to dynamic libraries known from DLLs in 
Microsoft Windows or Unix shared libraries and supports the following features:  

o lazy loading, i.e. classes can be loaded on demand at run time. class loading is 
delayed till the class is to be used. 

o type-safe linkage, i.e. both link-time and runtime type checks are applied to the 
loaded code to guarantee type safety. 

o user-defined class loading policy, code is loaded by the so-called class loaders 
so that the loading process may be fully controlled by the programmer.  

o multiple namespaces, i.e. class loaders provide separate namespaces for 
different software components, and thus class of the same name may be treated 
as separate types in the same JVM. 

This feature can be used to load new version of software during runtime to upgrade 
components in the system. 

Product Versioning. To cope with evolving software, Java allows for versioning of 
specification and implementations. In Java, the following entities have their versions: 
the Java Virtual Machine both in terms of the language specification as well as of the 
implementation , Java Runtime and the core classes, and Java packages. Java provides 
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reflection mechanisms that allow to query Java programming artifacts, like packages 
or classes for their characteristics. Among others, the Java reflection API provides 
information about Java entities versioning. 

Java Packages are the basic unit of Java software in terms of independent development, 
packaging, verification, upgrade and distribution.  

The Java Language[118] specifies the notion of binary compatibility that corresponds to 
the general notion of component substitutability. The specification states that a change 
to a type is binary compatible with (equivalently, does not break binary compatibility 
with) preexisting binaries if preexisting binaries that previously linked without error 
will continue to link without error. Binaries are compiled to rely on the accessible 
members and constructors of other classes and interfaces. To preserve binary 
compatibility, a class or interface should treat its accessible members and constructors, 
their existence and behavior, as a contract with its users. A list of some important 
binary compatible changes that the Java programming language supports is presented 
below: 

Reimplementing existing methods, constructors, and initializers to improve performance.  
Changing methods or constructors to return values on inputs for which they previously 

either threw exceptions that normally should not 
occur or failed by going into an infinite loop or causing a deadlock.  
Adding new fields, methods, or constructors to an existing class or interface.  
Deleting private fields, methods, or constructors of a class.  
When an entire package is upgraded, deleting default (package-only) access fields, 

methods, or constructors of classes and interfaces in the package.  
Reordering the fields, methods, or constructors in an existing type declaration.  
Moving a method upward in the class hierarchy.  
Reordering the list of direct superinterfaces of a class or interface.  
Inserting new class or interface types in the type hierarchy. 
The Java programming language is designed to prevent additions to contracts and 

accidental name collisions from breaking binary compatibility. 
In the JCP community there is ongoing activity on continuous availability support for Java 
applications running on top of the J2EE platform[121][65]. The work is aimed at defining 
standard APIs for availability-related support transparent to application components and 
includes online upgrades as one of the mechanism considered in addition to support for Field-
Replaceable Units (FRU). The focus of the online upgrade work is put on collaboration 
between the J2EE platform and the application during the online upgrade process. The authors 
propose an EJB, Enterprise Java Bean to be an upgrade unit and define a two-phase-commit 
upgrade algorithm with a rollback support. A rollback of an upgrade process may be triggered 
by the operator before an upgrade is committing. The specification defines an interface that 
upgradable objects have to implement for starting and committing an upgrade process on 
a bean class. The interface is used by the J2EE server, which provides an execution 
environment for beans, to control the upgrade run. Upgrades are triggered by the Operator or 
other components of the J2EE Platform. State transfer is controlled by an auxiliary platform 
component, the Resource Manager, and is based on the Java serialization mechanism. The old 
version of software modules, the EJB classes, are removed (unloaded) from the execution 
environment after an upgrade terminates successfully.  
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Figure 8. Sequence diagrams showing a two-phase dynamic upgrade algorithm in the proposed 
J2EE solution. 

4.2.3 C2 
Oreizy et al. [83] presents an approach to runtime software evolution on the architectural 
level. They investigate software systems having the so called C2 architecture. Such systems 
consist of components and connectors that are explicit architectural entities. Components 
communicate via connectors so that component interdependencies are minimized and 
computation is separated from communication. The key benefit of such an approach is: 

• high abstraction level of runtime change handling, making it possible to make 
decisions based on an understanding of application requirements and its semantics;  

• separation of decisions concerning change from application-specific behavior.  
They distinguish four aspects of change management: 

• application policy defines how the change is applied, such as instant or gradual 
component replacement, 

• scope is the extent to which the system is affected by the change,  
• separation of concerns regarding system functional behavior and runtime change 
• level of abstraction at which changes are described. 

 
It is investigated how dynamic changes to system at run time, like adding, replacing or 
removing system components, and reconfiguring connectors binding can be managed so that 
the system integrity is preserved. 
The authors also discuss what requirements components and connectors should fulfill to 
support runtime change. Components must be dynamically loadable and able to rebind to 
connectors. Connectors which encapsulate components interactions and localize decisions 
regarding communication policy and mechanism, must be implemented as discrete entities so 
that component binding reconfiguration is possible. They support different aspects of change 
management: they can provide various change policies, facilitate to localize change 

4.2.4 CONIC  
Kramer’s and Magee’s [49][57] work on dynamic change management is focused on 
distributed application structure changes like component addition, deletion and 
reconfiguration of component connections. Their approach, which is based on a separation of 
issues regarding the application’s architecture from those regarding application components’ 
functionality, allows specifying and introducing structural changes so that the application state 
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does not need to be considered to preserve the consistency of the application during and after 
the system upgrade.  
Their results regard a model of a distributed system presented in their paper. A distributed 
system is a directed graph of processing nodes bound with each other by means of directed 
communication paths starting in the connection initiator. Each node can initiate and service 
transactions that model an exchange of information between nodes. The transactions concern 
always only two nodes and consist of one or more message exchanges between the connected 
nodes. The model assumes that the transactions complete in bounded time and their initiators 
are aware of the transaction completion. The consistency of the system is determined on the 
global and local levels. On the global level, some constrains in terms of system node states 
have to be preserved. Nodes are said to be locally consistent if there are no partially complete 
transactions at the node. 
The central property an application node must have so that the system consistency could be 
preserved during change, is identified and defined as quiescence. A node is quiescent if: 

• It is not currently engaged in a transaction that it initiated, 
• It will not initiate new transactions, 
• It is not currently engaged in servicing a transaction, and 
• No transactions have been or will be initiated by other nodes which require service 

from this node, 
This property ensures that the node’s state is consistent (does not contain the results of 
partially completed transactions) and frozen (the application state will not change as a result 
of new transactions. 
A model for dynamic change management has been prototyped in CONIC. It is based on 
general structural rules for making alterations at the configuration level without the need to 
consider the application state nor the specification of component actions. The changes can be 
applied in a way as to leave the modified system in a consistent state and without disturbing 
the unaffected part of the operational system (Figure 9). 
The model tries to meet the following objectives: 
1) Changes should be specified in terms of the system structure.  
2) Change specifications should be declarative. That means that the needed changes are 

separated from how they are carried out. 
3) Change specifications should be independent of the algorithms, protocols and states of the 

application. 
4) Changes should leave the system in a consistent state. 
5) Changes should minimize the disruption to the application system. This refers to the fact 

that the management system should, from the change specification, be able to determine 
a minimal set of nodes which will be affected by the change, leaving the rest of the system 
to continue its execution normally. 
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Figure 9. Configuration management in CONIC 

In order to maintain a consistent application state during dynamic changes, the management 
system should interface with the application in order to direct it towards the appropriate state 
of reconfiguration. Furthermore, the management system must be able to confirm that the 
application has reached this state. The configuration states along with their transitions are 
outlined in Figure 10. 

PASSIVE ACTIVE

create

remove

link

unlink

activate

passivate

 

Figure 10. State transition diagram of a CONIC application 

A component in a passive state can continue to accept and service transactions but it must not 
initiate any new transactions except as a result of accepting or serving transactions. The 
precondition for either linking or unlinking is that the component in question must be in 
quiescent state which signifies that all components that can initiate transaction on the target 
component are passive. 

4.2.5 DRASTIC 
The DRASTIC [15] project is aimed to build an architecture which explicitly addresses run-
time change evolution of heterogeneous distributed systems. The architecture should allow 
distributed systems for changing component types and their implementations, as well as the 
system configuration. DRASTIC systems are organized in a number of disjoint autonomous 
zones that are logical collections of processes distributed over a network. The processes 
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consist of interoperating objects. A zone is the finest unit of evolution in that all the objects 
within a zone are considered to evolve as a single unit. A zone is also a unit of change 
encapsulation i.e. it provides some means to constrain propagation of the change so that other 
parts of the system that have been not directly affected by the change do not have to be 
adapted to the new system configuration. These constrains are explicitly expressed with 
contracts that are defined as pair-wise agreements between zones. The contracts describe 
which types can be transferred between the zones and the necessary transformation of the 
types. In the DRASTIC architecture contracts have to be provided by the software developer. 
As a proof-of-concept of the DRASTIC concepts, a series of prototype systems is built in 
various environments. The CORBA specification is investigated as one environment. The 
project research results in an observation that the CORBA specification lacks support for 
system evolution. Firstly, CORBA does not provide for tracking type changes. An CORBA 
object is accessed by its clients through its interface. Interface definitions are kept in interface 
repositories. Every object interface is given a unique identifier, so called repository id, which 
is used to look up the interface in an interface repository. When passing an object (reference) 
from one ORB to another, it is required in CORBA that the repository id be the same in both 
ORBs. However, every new version of an interface is considered to be other interface and 
there is no explicit support in CORBA to relate the different versions of an interface. 
DRASTIC comes up with a contract concept to solve the problem. Secondly, the CORBA 
specification does not provide a means of constraining the effects of evolution. Operations on 
an interface repository, like adding a new version of an interface definition, are visible 
throughout the whole system, permitting other parts of the system to see an incoherent 
repository. Thus, a means of localizing the system change is needed so that the evolution will 
be made transparent and changes will not propagated to other parts of the system. To constrain 
the effects of the evolution, DRASTIC provides zones that are the units of decomposition and 
evolution. The software in each zone is evolved as a coherent whole, largely autonomously 
from software in other zones, even though the source code may originally have been shared by 
components in many zones. 
Contracts specify which program types can be exchanged between zones and the 
transformations that are required should an object move from one zone to another or if 
a method invocation is made that crosses a zone boundary. Zone autonomy is supported by 
inserting code supplied by the software engineer at the zone boundary. These software 
fragments, called change absorbers, handle the transformations indicated above and enforce 
the zone contract. 
The zone contract is a pair-wise argument between two distinct zones. A contract between any 
two zones, for example, A and B is described in two sub-contracts which consist of three 
descriptions each (Figure 11). Sub-contracts are seen from the perspective of the exporting 
zone. Zone A 's sub-contract specifies: which types it will export to zone B; which types zone 
B will import from zone A; and the transformations required to transform objects from one 
type to another. The second sub-contract describes the same information from zone B's point 
of view, although it is not necessarily the inverse of zone A's.  
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Figure 11. A Contract between Zone A and Zone B 

Zone B exports objects of type X' which zone A imports as objects of type X. Only the 
software that performs the transformation from objects of type X to objects of type X' needs to 
be aware of this relationship. As type transformation rules can be specified between any two 
zones, it is possible for one zone to export a type that another is not prepared to directly 
import, for example, X' and X above. This is the reason why one zone's export and import 
sub-contracts may not necessarily be the inverse of the other zone's.  
DRASTIC allows processes in one zone for their evolution while other processes in other 
zones can continue their execution, even when these processes hold references to each other. 
This is done by intercepting application-level object references and placing change absorbers 
along the reference chain between the invoking object and the object being invoked. In the 
current DRASTIC design, all software and data in a zone must be evolved at the same time. 
The objects have a unique identity within the entire system and they can migrate. Persistency 
is supported using the concept of orthogonal persistence, i.e. the object persistency is added 
independent of the implementation of the object.  
To sum up the DRASTIC approach to system upgrading: 

• It does not support a fine granularity evolution. All the components in a whole zone 
have to be frozen at evolution time.  

• Freezing a zone means terminating all the processes in the zone and storing their state 
on a disk. This is inefficient and cannot be applied to mission-critical systems with 
real-time constrains.  

• The problem of upgrading continuously active components within a zone is not 
addressed in the project. The programmer is compelled to solve the problem in ad hoc 
way. 

4.2.6 Eternal 
Eternal [68][69] extends CORBA with capabilities for fault tolerance based on object 
replication. It supports both active and passive replication schemes of CORBA objects both 
playing the role of clients and/or servers. 
The more recent work on Eternal extensions [66][124] provides the CORBA application 
developers with support for life upgrades, i.e. software and hardware upgrades on the fly. The 
target of upgrade is a replicated CORBA object. The upgrade process is incremental so that 
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the replicas are upgrades one by one while the application is operational. The upgrade process 
is divided into the following steps: 

• Preparation phase, in which the new version of the source code is analyzed and 
compared against its old version. The preparation is aimed to automate the process of 
upgrading the system. The system with the assistance from the programmer, generates 
some code to facilitate the upgrade. The code is then compiled and deposited in the 
CORBA implementation repository. 

• Upgrade phase, in which the old executable code running is indeed upgraded with it 
new version. Whereas the upgrade is seen from the application level as a single atomic 
action, it consists of multiple upgrades of single replicas being upgraded. The upgrade 
supporting system ensures that at least one replica of an object is operational 
throughout the upgrade. 

The system does not automate upgrading distributed systems fully. Assistance from the 
application programmer is needed to support state mapping between the old and new code, for 
instance, when new attributes consisting the object implementation are added. 

4.2.7 PODUS 
The PODUS [102][103] system, developed by Frieder and Segal at University of Michigan 
and at Bellcore, represents a procedure-oriented approach, as classified in [103], to dynamic 
program upgrading.  
Programs in PODUS system are distributed programs written in a procedural languages, like 
C or Pascal, that use remote procedure calls for interprocess communications. An upgrade of 
a program is done by replacing each procedure of the program with its new version. Replacing 
a procedure involves changing the binding form the procedure’s old version to the new one. 
The key features of the PODUS upgrading system are: 

• The upgrade policy allows replacing many procedures as an atomic program upgrade. 
The order of the individual procedure upgrades, as well as the time of the upgrade is 
automatically computed so that the correctness of the program can be preserved during 
the upgrade. 

• The upgrading systems determines automatically time when each procedure may be 
upgraded by analyzing syntactic2 and semantic3 dependencies between procedures and 
inspecting the program runtime state to check weather the procedure is active. Only 
inactive procedures can be upgraded. 

• The PODUS imposes two constrains on programs to be upgraded: they must be 
structured in a top-down manner and all data must be accessed by means of abstract 
data types. 

• It supports changes to procedure signature (interface), internal data structures and 
implementation code. The procedure interface change is possible by introducing a 
level of indirection: the user defines so called interprocedures, subroutines converting 
the procedure calls between different versions and mapper procedures converting data 
formats between procedure versions.  

• It supports upgrading of distributed programs. The programs are limited, though. 

                                                 
2 A procedure P depends syntactically of another procedure if P can be called from the other procedure. 
3 Procedures P and Q are semantically dependent if they interact but their dependency cannot be determined on the basis of program 

code syntax. 
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• Program components communicate by means of RPC and are single-threaded 
processes, 

• semantically dependent procedures are collocated. This constrain enables to avoid 
considering the dependencies between distributed procedures during the upgrade. 

• It supports existence of multiple versions of the same procedure in a program. 

4.2.8 POLYLITH 
Hofmeister and Purtilo [41][42] presents an extension to POLYLITH, a software 
interconnection system, that allows management of runtime change in distributed programs 
without lost of overall system service. Their research is based on results of Kramer and Magee 
[49] work on Conic with regard to when a distributed program can be reconfigured and in 
what way. The concerns investigated by Hofmeister focus mainly on externalization, 
internalization and possible transmission of the process state. Their method can also support 
process migration and fault tolerance. 
Applications in the POLYLITH environment are composed of interoperating components that 
are system processes. Each process is implemented by a module that includes individual data 
and program units. Components communicate with each other by binding to module interfaces 
of other components and thus building communication channels. The structure of the 
application is determined by its modules and channels binding them.  
The following forms of runtime change are distinguished: 

• module implementation, replacing an individual module, 
• system structure, like adding or removing a process, and  
• geometry that defines mapping system parts to physical hosts.  

The approach to reconfigure a system is characterized by: 
• A component is defined to be a system process that is capable to externalize and 

internalize its state in terms of abstract data types (ADTs). This capability is 
application dependent and adequate functions supporting the capability must be 
supported for each component by the programmer. The components are responsible for 
capturing and externalizing the whole their state, including the piece of state cached by 
the underlying operating system, like table of open file descriptors. 

• The components have to communicate with each other by means of the POLYLITH 
bus so that all the communication can be controlled during the reconfiguration process. 

• Component upgrade involves atomic rebinding that does not cause the messages in 
transit sent to the upgraded component to be lost. The neighbor components (that 
communicate with the components) do not have to be halted during most of the 
upgrade period because communications channels can buffer messages. 

• Component addition, a special kind of structure reconfiguration, requires the 
component to be resynchronized with the current state of application so that 
application consistency is preserved. This resynchronization is application dependent. 
Changing a system part requires freezing the contiguous system elements.  

POLYLITH (see [41] and [42]) is a component architecture enabling components implemented in 
different languages executing on different platforms to communicate across a network. 
Components (called nodes in POLYLITH) may communicate using asynchronous messages or 
RPC. Both clients and servers must explicitly declare interfaces (modules in POLYLITH) with 
the operations (interfaces in POLYLITH) to use for communication. 
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Figure 12 shows the POLYLITH MIL (Module Interconnect Language) definitions for a simple 
application with a server performing integer additions for a client. Observe that the client and 
server interfaces are bound statically.  

 
service “math_server” : { 
  implementation: { binary : “/user/x/maths.exe” 
           machine : “apollo.widgets.com”} 
  function “add” : {integer, integer} returns {integer} 
} 

 

service “math_client” : { 
  implementation: { binary : “/user/x/mathc.exe” 
           machine : “zeus.widgets.com”} 
  client “add” : {integer, integer} accepts {integer} 
} 

 

orchestrate “math_program”{ 
  tool “math_server” 
  tool “math_client” 
  bind “math_client add” “math_server add” 
} 

Figure 12. Polylith MIL definitions for a simple application. 

To allow dynamic upgrade of POLYLITH nodes, mechanisms for rerouting communication and 
transferring node state has been added (cf. reference management in section 3.4.2.1.1.1).  
For a stateless node, the upgrade process would be to rebind all (external) interfaces bound to 
the old module to the new module. POLYLITH reconfiguration primitives permits this change to 
be applied atomically, and in such a way that no messages in transit are lost. 
Transferring the state to the new node involves transferring node data and the stack of 
program counters. Node data is serialized and deserialized by code supplied by the 
programmer. The programmer must also supply a set of reconfiguration points (equivalent to 
the upgrade points as defined in section 3.1 of this thesis). When a state transfer is requested, 
execution continues until a reconfiguration point is reached. At that point, local variables (i.e. 
data in the current stack activation frame) are serialized and sent to the new node along with 
the identity of the reconfiguration point, and then the function returns. This process continues 
until all stack frames have been unwound. After restoring global data, the new node will call 
each function that should be on the stack in the right order, restore the local data and jump to 
the point where execution was suspended. The state of the old node has then been 
reconstructed, and execution resumes.  
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Figure 13. Transferring stack frames. 

Figure 13 illustrates how the stack is transferred to the new node. The PC is not a physical 
program counter (memory address), but rather the identity of a label to which the new code 
does a jump. 
The process for unwinding and rebuilding the stack is aided by a special pre-processor (as of 
yet only available for C), which inserts code that handles everything but the serialization and 
deserialization of data. Since the stack management is written in high level language and 
manipulates the stack using normal function calls and returns, it is portable. 

4.2.9 SOFA/DCUP 
SOFA (Software Appliances)[88][89] is a platform, developed at the Charles University in 
Czech Republic, which supports off-the-shelf software components to be provided over 
a network and run applications made of these components. It provides a set of abstractions to 
model trading with software components over a computer network including the SOFA 
component model. In particular, the platform addresses issues related to component searching, 
downloading, upgrading, licensing and billing. 
Software components are distributed to clients by means of the network of SOFA nodes. The 
SOFA network supports a secure and reliable component propagation medium that is 
independent of the underlying component provider’s or client’s network.  
DCUP, Dynamic Component Upgrading, is an extension to SOFA that allows safe upgrading 
of software components at runtime. The architecture is implemented in Java environment. An 
application in DCUP consists of components that form a tree-like structure. A component, 
which is a group of objects, is composed of a permanent and a replaceable part. The 
permanent part exists in the application across the versions of a component and provides a 
indirection layer encapsulating the replaceable part of a component. The replaceable part is 
changed each time a component upgrade takes place and contains the objects that define the 
functionality of the component. The permanent part is responsible for component building, 
upgrading and terminating, as well as for transition of references crossing component 
boundaries. Wrappers, that belong to the permanent part of the component, mediate access to 
the target objects exported by a component and prevent from accessing the component during 
an upgrade. Thus, the upgrade of a component is transparent to other components. The 
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wrappers also check activity of a component allowing only for an upgrade of inactive 
components. The DCUP addresses also transition of state from the old to the new version of 
a component in that every component must be serializable.  
To sum up, DCUP does not support upgrade transparency to component developers. Every 
component has to implement certain interfaces that are needed for the upgrade support system. 
The current implementation is available for the Java environment and a CORBA port is 
planned. The approach taken in DCUP is limited as it allows for upgrading components that 
are inactive only. 

4.2.10 STL 
STL [132] is a tool supporting state transfer during an online software upgrade in a distributed 
environment. The tool is able to checkpoint an application state and transfer this state between 
two versions of the application processes even though the state format is different. The 
application’s state is defined in terms of data structures and can be transferred so that the 
definitions of data structures in the new version of the application process are different from 
the definitions used in the old version of the application process.  
The proposed mechanism is claimed to be portable and machine independent as the tool uses 
a data format based on the External Data Representation, XDR, for transferring the state. The 
format is a standard data representation in remote-procedure call, RPC, mechanism to transfer 
data between different hardware architectures. XDR is enhanced to transfer complex data 
structures, like double links, cyclic graphs and other cross referenced data structures. 
The following changes in the data structure are allowed by STL: 

• Removal of fields, when the new version removes some data fields from the old 
version. 

• Addition of fields, when the new version adds a few data fields to the old version. 
• Field size change, when the new version changes the size of existing fields like arrays. 

The application state has to be explicitly determined by the application developer by 
identifying the data structures contained in the state. The identified data structures and their 
modified versions are collected in a file. The modifications are manually marked by the 
programmer. Once the specification of the application state for two versions of the software is 
given, a corresponding procedures for marshalling and demarshalling are generated by the 
STL tools. Instances of data structures are stored independently from each other. In more 
complex cases, where the data structures include cross-references, some support from the 
application programmer is needed to determine which instance of data structures should be 
stored together.  

4.2.11 CHORUS extensions 
Hauptmann et al. describes in their article [37] an extension to the Chorus operating system 
allowing for dynamic upgrade of applications. Their approach does not require modifications 
to development tools but focuses on adjusting the application code to make it replaceable. The 
authors provide recommendations so that this adjustment can be supported by development 
tools. Their results are not general enough and apply to only one operating system, namely 
Chorus, and one programming language, C++ because dynamic upgrading, or on-the-fly 
software replacement in their terms, cannot be realized in an operating system- and language-
independent way. 
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4.2.12 Other approaches 
Peterson et al. [87] presents a method for dynamically upgrading running code in higher-
ordered and typed (“HOT”) programming languages. In their work on an Haskell compiler 
implementation, called Hugs, they mainly investigate issues that are relevant to dynamic 
upgrade from the language perspective. The first-class entity and the basic unit of upgrade is 
a higher-ordered function. Functions are defined in program modules which permit control 
over namespaces, facilitate separate compilation and can be loaded on demand into a running 
program. In the paper, a strategy of principled dynamic code improvement is investigated 
which permits to constrain the options to dynamically upgrade the program code. Only the 
pieces of code that are chosen by the programmer in advance (before the compile time) may 
be upgraded. The authors do not discuss what compatibility of components means and when 
one component is substitutable for another one in terms of semantics. The validation of the 
component substitutability is limited to type checking. In their approach, components, may 
have their state. The state transfer between the old and the new version of the component is 
mentioned and an outline of saving and restoring the state is given, however, the definition of 
the component is not presented.  

4.3 Evaluation of previous work 
This section presents an analysis of the approaches to upgrading systems on the fly, as 
described in the previous section. The approaches are compared in terms of system features 
describing various aspects of the dynamic upgrade identified in section 3.4.  
The following paragraphs describe the comparison features in details. The comparison is then 
summarized in a table. The analysis concludes with a list of the dynamic upgrade 
requirements that are not suitably met by the systems presented here. 

4.3.1 Comparison criteria 
The comparison criteria describe various aspects of system support for dynamic upgrade. The 
set of criteria is based on features originally proposed in [103]. In this thesis, the comparison 
is adapted to the list of problems and issues of dynamic upgrades that were identified in 
section 3.4. The list of criteria is also extended by some new features that described more 
details of the upgrade process. Additionally, the criteria refer only to a software support for 
dynamic upgrades.  
The chosen comparison criteria include: 
• Unit of upgrade (granularity) is the basic unit that the system allows upgrading. It can be: 

o Zone is a logical collection of processes, or containers in a component-related 
terminology, which are  distributed over a number of hosts. 

o Component is a piece of software running within a address space that can offer its 
functionality through its contract to other components, either co-located or placed 
somewhere.  

o Module is a syntactic programming language artifact that comprises a set of 
procedures related to each other. It is an artifact that may have some state and is 
a singleton. In object-oriented languages, this concept has be elaborated and 
comprises to a set of related classes.  

o Procedure is a syntactic programming language artifact that offers some 
functionality available through procedure invocations to other program entities 
within the program.  
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o Code instruction is the smallest syntactic programming language construct which 
sequences form a procedure. 

The finer the granularity of the unit, the more easily and quickly the system can upgrade 
program with small, localized changes. On the other hand, the finer the unit, the finer and 
more complex deployment and dynamic upgrade support have to be.   
Programming language concepts, like statements, functions or classes are very fine-
grained units of upgrade. Considering dynamic upgrades on this level of abstraction allow 
for defining precise upgrade validity rules and adequate upgrade validation tools, 
designing an optimal state transfer mechanism in the given programming environment. 
The disadvantage of these approaches is that the solution is programming environment 
dependent and in most cases, it is not generic enough to be applied to other development 
environments.  
A process is an engineering term from the multi-tasking operating systems. A process is 
a runtime entity, a unit of execution that provides a virtual runtime environment for code 
execution. Usually, the code running in a process is a self-contained application program 
or a service offering its functionality to other programs running in the system. A process is 
also a unit of system resource management, i.e. some resources can be allocated to the 
process and their usage is controlled by the operating system on the process level. Since 
the process is a unit of independent execution and resource management it is a tempting 
candidate for a unit of upgrade. However, a process is a runtime entity and has a different 
life cycle from software that is the target of the upgrade. It is also one possible engineering 
realization of software runtime environment. The characteristics of the process are also 
operating system specific and reduce the application scope of such a unit of upgrade.  
It is believed that component oriented paradigm of software development gives a much 
better way of dealing with software upgrades. A software component is view here as a 
natural unit of upgrade that allows coping with upgrades throughout the life cycle of 
software. The component is a single abstraction common in all software life cycle phases 
starting from design, through deployment and runtime to maintenance. Thus, considering 
components as a unit of upgrade enables overcoming the scope limitation of the 
approaches presented above and giving the reader a more complete view of issues related 
to dynamic upgrade that need addressing in different software life cycles.  

• System-support requirements. It concerns the development and underlying runtime 
environment support for upgrading systems on the fly. Some example include: choice of 
the underlying platform technology, like middleware or the operating system. 

• Language Requirements describe the programming language supported if the solution 
depends on some features of the language in which the units of upgrades are programmed. 

• Distributed interprocess communication describes the sort of and the technology used for 
interaction of the distributed software parts. This affects the kinds of programs that can be 
upgraded. 

• Dynamics of change. This describes the type and scope of the changes supported and 
permitted by the substitutability constraints of the dynamic upgrade (cf. section 3.4.1.1). 
Depending on the granularity of the upgrade different levels of changes are possible: for 
instance, when upgrading a procedure, the signature of the procedure, i.e. its interface does 
not change, whereas when upgrading a module, new procedures may be added and the 
existing ones cannot change signatures. The change types can be classified into two main 
groups with regard to the target of the changes. 

o Interface changes, which can be further grouped into: 
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� No interface change. Only the encapsulated aspects of the unit of upgrade 
may change. 

� Monolithically increasing change of the interface. An example of this kind of 
change would be inheritance in object-oriented programming languages. 

� Arbitrary interface changes.  
o Implementation changes, which can be further grouped into: 

� Functional changes such as: 
• monolithically increasing (adding new functionality while the old 

one is unchanged),  
• replacing functionality (superset of states transitions plus new 

states), arbitrary changes (a totally different finite state machine) 
� Non-functional changes (performance, security, etc) 

• State transfer. It describe the extent of the support for state transfer (cf. section 3.4.1.3). 
• Execution Model. It describes the supported execution model of upgradable components. 

The model is either single threaded or multiple-threaded. 
• Upgrade process. The criterion describes the features of the upgrade algorithm controlling 

the upgrade process. The algorithm’s atomicity is described here in terms of number of 
phases the algorithm performs to terminate. An algorithm may be one-phased if the 
algorithm supports upgrades that can be made available immediately after the upgrade 
terminates. Two-phased and many-phases algorithms handle upgrades with higher 
dynamic of change, in which the additional or changed features of  the new software 
version can be made available only with a delay related to a need of upgrading other 
software artifacts. 

• Active Target of Upgrade. This criterion describes whether an upgrade of active runtime 
instance of software artifact is supported, whereas active means that the software artifact is 
being used by an running execution thread. In more technical terms, it  that an active 
thread has invoked some code which belongs to the implementation of the software 
artifact and has not returned from this invocation. In case of an object being a runtime 
instance of a class, an object is active if a thread has entered one of the member functions 
(or a method) of the class associated  with the object and has not returned from this 
function. The thread may be executing either the body of this method or other code 
invoked from the body of this method so that the invocation of this method is stored in the 
execution stack.  

• Type of Upgrade Target. It describes the complexity of the upgrade target that can be 
handled in one dynamic upgrade process. The possible upgrade targets can be: simple or 
compound. A simple upgrade targets is a single software artifact, whereas a compound 
upgrade target is one consisting of many software artifacts that are potentially distributed. 
The compound upgrade target may be further divided into  actively and passively 
replicated software artifact in case of replicated software or interworking if it consists of 
many artifacts using each other. Upgrading a compound upgrade target during one upgrade 
process is more difficult to deal with because it requires dealing with passivation of a 
group of possibly interacting runtime instances and more complex failure scenarios.  

• Upgrade management. The feature shows in how far an upgrade process can be managed 
in the system. The upgrade management may be include handling a single upgrade process 
at a time or multiple upgrade processes. Additionally, it may handle automatic 
initialization of upgrade processes and recovery from non-trivial failures during the 
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upgrade process, including conflicts between dynamic upgrade processes. 
• Multiple Versions. The criterion determines the support of multiple versions of a software 

entity running in a system at a time. Multiple software versions may be supported on the 
container/process level (if different version may run in the same container/processes) or 
system level (if multiple version cannot run in one process but may run in parallel in 
different containers comprising the distributed system).  

• Deployment support. This feature describes the system support for deploying the new 
software. It includes handling software package versioning, dynamic loading and linking 
new code during the system runtime, unloading (removing from the process or container) 
the old code, etc. 

• Main limitations. The main limitations of the system supporting the dynamic upgrades. 

4.3.2 Comparison 
The solutions supporting dynamic upgrades described in section 4.2 have been divided into 
two groups for better presentation: 

• Systems with the software component as a unit of upgrade. These systems are 
presented in Table 1. The table includes also features of DUF, the solution developed 
and presented in the next chapters of this work.  

• Systems with other software artifacts a unit of upgrade. These systems are presented in 
Table 2. 

            System 
 
Feature 

C2 Future CORBA 
with Online 
Upgrades 

Future Java 
with Continuous 

Availability 
Spec. 

SOFA/DCUP DUF 

Unit of upgrade 
(granularity) 

Architecture-
level component 

CORBA  
component 

Java Bean DCUP 
component 
(framework of 
Java objects). 
Component may 
contain 
subcomponents. 

DUF component 

System-support 
requirements 

C2 framework 
(Java 
implementation) 

CORBA 3.0 JVM DCUP 
architecture 

Component-
oriented 
middleware  

Programming 
Language 
Requirements 

Supports 
dynamic loading 

IDL-2-languague 
mapping must be 
defined 
(available for 
Java or C++) 

Java Java Object-oriented 

Distributed 
interprocess 
communication 

Arbitrary 
connector based 

CORBA RMI Java RMI 
(planned be 
extended to 
CORBA) 

Remote object 
communication 
(e.g. CORBA, 
RMI) 

Dynamics of change Arbitrary 
application 
architecture 
reconfiguration 
and component 
replacement 

Possible 
component 
implementation 
changes. Not 
determined in the 
specification. No 
interface 
versioning. 
Evolving 
versions of a 

Binary 
compatibility. 
JVM, JRE and 
package 
versioning 

Component 
implementation 

Open to the 
upgrade 
algorithm 
assumptions. 
Currently 
implemented 
algorithms 
permit changes 
of 
implementation. 



 

  56 

interface are not 
related to each 
other. Runtime 
environment and 
component 
implementation 
versioning is not 
specified. 

and simple 
interface 
changes. 

Degree of human 
intervention 

Low (change 
specification on 
the architectural 
level; change 
validation) 

Low(preparation 
of upgradable 
component 
implementations) 

Low Low  Very low 
(automated 
upgrade 
management) 

State transfer Not discussed in 
the work; 
component 
specific. 

User has to 
define the 
component state 
and use the 
Externalization 
service for 
storing/restoring. 

User has to 
define the 
component state 
and use the Java 
serialization for 
storing/restoring. 

Java serialization 
applied to chosen 
“important” 
objects in the 
component 
implementation. 

Serialization 
supported by the 
underlying 
middleware 
platform. 

Execution Model Single threaded Single- or mutli-
threaded. 

Mutli-threaded. Multi threaded Single- or mutli-
threaded. 

Upgrade process  One-phase One-phase One-phase Simple 
component 
replacement. 
Upgrades 
initiated by 
component 
provider or the 
upgrade 
infrastructure.  

Thanks to 
extendable 
framework any 
algorithms can 
be added. 
Possible n.phase 
algorithms. 

Active Target of 
Upgrade 

Yes Yes  ? No  Yes 

Type of Upgrade 
Target. 

Interworking actively or 
passively 
replicated 
CORBA objects 

Simple Simple  Simple, 
replicated and 
coumpound. 

Upgrade 
management 

Changes 
specified in C2’s 
AML 

No  Out of scope On demand 
policy. 

Policy-based. 
New policies can 
be added. 

Multiple versions No System-level Container-level Container-level Container-level 

Deployment 
support 

Out of scope CORBA 
deployment 
infrastructure 

JAR packaging, 
beans assembling 
class loading. 

Upgrade 
infrastructure 
allows for 
downloading the 
new software 
into the 
application 
premises (push 
or pull model). 

Yes. 

Main limitations C2-architectures; 
Java; Simple 
component 
replacement 

Limited 
dynamics of 
change, 
inflexible 
specification, 
weak upgrade 
management. 

Java only, not 
extendable, no 
upgrade 
management. 

Only inactive 
components can 
be upgraded. 
Homogeneous 
components. 
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Table 1. Comparison of DU systems with a unit of upgrade which is a component. 
 
 
    System 
 
 
 
Feature 

CONIC/ 
POLYLITH 

Chorus Eternal DRASTIC PODUS STL 

Unit of 
upgrade 
(granularity) 

Process  Process CORBA 
object 

Zone Procedure CORBA 
object 

System-
support 
requirements 

Conic runtime 
environment 

Operating 
system 
support for 
multi-
threading and 
dynamic 
process 
loading 

Fault Tolerant 
CORBA 
(Eternal) 

 None  XDR 
checkpointing 
libraries 

Programming 
Language 
Requirements 

Conic as ADL, C 
as programming 
lang. 

C/C++ C++ Supported by 
CORBA 

Procedural 
(C) 

CORBA IDL 
or C++  

Distributed 
interprocess 
communicatio
n 

RPC/asynchronous 
messages 

Message 
passing 

CORBA CORBA RPC CORBA 

(Dynamics of 
change 

Architectural 
changes; 
replacement of 
Guardians (service 
module) 
implementations 

Code, date, 
interfaces 

Object 
interfaces and 
implementatio
ns 

Objects may 
change their 
type 
arbitrarily.  

Procedure 
signatures, 
internal data 
structures, 
procedure 
implementatio
n 

Addition/rem
oval of fields, 
changing sizes 
of fields 

Degree of 
human 
intervention 

Moderate  Low Low (state 
mapping 
between 
different 
object 
implementatio
n versions  

Change 
absorbers 
needed to be 
written to 
transform the 
inter-zone 
interactions 

Low to 
moderate 

Moderate 

State transfer Strong mobility: 
data 
(de)serialization 
and execution stack 
(un)winding in C 

 Object state 
has to be 
expressed as 
value object. 

Orthogonal 
persistency 

 Storing and 
restoring data 
structures in a 
language 
independent 
extension to 
XDR; 
complex 
(circular) data 
structures 
supported; 
user-defined 
mapping 
between the 
state format 
versions  

Execution Single threaded Multi Single- or 
mutli-

Single Single Single 
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Model threaded threaded. threaded threaded threaded 

Upgrade 
process  

One-phase One-phase 2 phase 
(prepare, 
change) 

A zone is 
frozen; the list 
of change 
absorbers is 
upgraded; 
objects evolve 
and the zone 
is thawed. 

One-phase One-phase 

Active Target 
of Upgrade 

No  No Yes  No  Yes No  

Type of 
Upgrade 
Target. 

Simple Simple actively or 
passively 
replicated 
CORBA 
objects  

Interworking 
(within an 
upgrade zone) 

Interworking Simple 

Upgrade 
management 

 No No  Out of scope Out of scope On demand 
policy. 

Multiple 
versions 

System-level System-level Container-
level 

System-level Container-
level 

System-level 

Deployment 
support 

Out of scope Out of scope No No Out of scope No 

Main 
limitations 

Special-purpose 
language; 
interprocess 
communication 
requires explicit 
intermodule links 

  
Chorus 
specific 
solution: non-
standard 
solutionm 

FT support 
necessary, no 
upgrade 
management, 
no 
deployment 

 Requires top-
down 
structured 
programs; all 
data as ADTs 

Simple 
component 
replacement. 
No support 
for multiple 
types of 
upgrade 
targetss. Not 
easily 
extendable. 

Table 2. Comparison of DU systems with a  unit of upgrade which is not a component. 

4.3.3 Conclusions 
The presented solutions provide a support for dynamic upgrades to a different degree and for 
different technologies. Below are some statements summarizing the state of the art.  

• Specialized and main-stream solutions. The presented solutions are grouped into 
proprietary and standardized solutions. Many proprietary solutions provide support for 
a specialized development and runtime execution environment and are not easy to port 
to other platforms. The support for dynamic upgrades has been only recently 
considered in the standardization activities of the main-stream middleware platforms 
(the CORBA online upgrade) or are being worked on (Java Continuous Availability). 
They (will) provide rudimentary support for dynamic upgrades that can be used by 
wider spectrum of users. 

• Weak flexibility and extendibility. Event though the solutions deal with supporting 
evolution and extendibility of the software systems under upgrade, their own design is 
not flexible. They provide different degree for dynamic upgrades and do not allow for 
extending this support. Many solutions are rather monolithic and close in that they 
provide the dynamic upgrade support in form of a library or a self-contained toolkit. It 
is not easy to extend the specifications and add new upgrade mechanisms that would 
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overcome the existing limitations of the solutions. To gain a better reusability and 
portability, a more modular structuring, such as an open object-oriented framework or 
a composed-based approach, is needed.  

• No relation to deployment support. The existing specifications focus on the runtime 
aspects of the dynamic upgrade process itself. However, the support for dynamic 
Upgrades should not only address issues related to runtime configuration, i.e. 
exchanging runtime artifacts in a software system. Additionally, support for deploying 
new versions of the code, including code distribution, code packaging and versioning 
as well as discovery of service instances deployed in the system needs to be given. 
Therefore, the dynamic upgrade support should be integrated with deployment facility 
provided by the middleware. In particular, dynamic upgrades could be seen a special 
case of service deployment, in which a new version of a running service is redeployed 
in lieu of its old version. 

• No management of dynamic upgrades. Dynamic upgrades belong to maintenance 
activities that are performed during the system runtime in parallel to usual system 
operations. The dynamic upgrade process should be managed in the same way other 
maintenance activities are. In the existing solutions for dynamic upgrades, 
management support is missing which should include automated initialization and 
progress control of the dynamic upgrade processes, handling parallel upgrades, support 
for security of upgrades.  

• Full support for distributed systems. An upgrade is a deployment or maintenance 
process that may involves communication and coordination of distributed objects in 
a system and may take some time to terminate. As the distribution inherently imposes 
a risk of failures, the process of upgrade should tolerate failures typically occurring in 
distributed systems. Additionally, running new code during an upgrade may cause 
some failures that could not happen before the system is upgraded. Consequently, a 
solution supporting dynamic upgrades should provide upgrade safety and reliability.  

This short analysis identifies the main drawbacks of the investigated systems supporting 
dynamic upgrades in a distributed environment. It is a starting point for specification of the 
requirements on our solution which enables distributed software components to be upgraded..  
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5 Model for Service Deployment and Upgrade  
Software upgrades can be considered as a special case of software deployment in which the 
software components to upgrade have been already deployed and they have to be replaced 
with another component implementation as argued in chapter 3. This chapter specifies 
a model covering deployment of component-based distributed software and defines the 
dynamic upgrade as one use case. Having in mind a wider picture of activities related to 
dynamic upgrades, it is easier to: 

• identify the mechanisms common for deployment and dynamic upgrade and the ones 
specialized to dynamic upgrade so that the further work can be better focused on the 
specialized mechanisms, and 

• achieve a better degree of reuse of design and implementation of the available 
mechanisms in the current middleware platforms when prototyping a solution 
compliant to the model as requested by property P4.  

The model for service deployment and upgrade consists of the following parts: 
• Use case model, which defines the main actors involved in deploying services in 

a distributed system as well as the main capabilities to be provided by a system 
supporting deployment and upgrades, in particular. The model also identifies the main 
activities involved in providing the system capabilities. This part of the model fulfills 
the request model property P1 stated in section 1.2 and is presented in section 5.2.  

• Component model, which specifies the basic notions related to service deployment and 
upgrade. It is defined in the form of classes and their interrelations. It addresses model 
property P2 and is presented in section 5.3. 

The presentation of this model is preceded with the results of the requirements analysis in 
section 5.1. The demanded properties of the target system supporting dynamic upgrades is 
specified with a list of requirements defined when analyzing the drawbacks of the state of the 
art dynamic upgrade support systems presented in section 4.3. The list of requirements 
includes both functional and non-functional requirements and is structured into requirement 
sublists grouping requirements with regard to the central object they refer to, i.e. the dynamic 
upgrade support system as a whole, the upgrade process, and finally the upgrade management.  
The approach taken to specifying the model for service deployment and upgrade is based on 
the Unified Process as described and interpreted in [52]. This development process involves 
top-down specification of the system, starting from system capabilities specified using the use 
cases, through a class-based domain model, design model until the implementation model 
which includes considerations specific to a specific implementation technology to be used to 
develop the software based on the model. The process is iterative and allows for coming back 
the previous phases of the specification and their revising  In this chapter except for section 
5.4, the model for deployment and dynamic upgrades is presented in a technology independent 
way and therefore meets model property P3 requested in section 1.2. 
With a few justified exceptions, the graphical notation used to describe the model is Unified 
Modeling Language, version 1.4, a modeling language that is commonly used with the Unified 
Process and has been standardized by the OMG, following the object-oriented modeling 
paradigm. This language has been selected to meet the model property P5 stated in section 
requesting expressing the model using a well-.known notation. 
The model presented in this chapter is then used as an underlying model for services to deploy 
and to upgrade in the next chapters. In section 5.4, more details of the design and 
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implementation model are given. The model has been developed and validated in the context 
of the IST FAIN project[23]. 

5.1 Requirement Analysis 
In this section, a list of requirements on a dynamic upgrade support system is presented. The 
starting point of the requirement analysis process was the result of the survey of the state of 
the art systems supporting dynamic upgrades presented in chapter 4. The requirements for 
a system supporting dynamic upgrades presented in this section are stated so that: 

• they elaborate and precise the goals of this work presented in section 1.2, 
• the deployment aspects of the dynamic upgrade are explicitly taken into consideration, 
• they allow for building a more general and extendable solution compared to the 

existing systems supporting dynamic upgrade. 
Furthermore, an explicit requirement is added on the component-based model for the 
distributed services to convey our belief that components is natural unit of upgrade as argued 
in section 3.2. This requirement analysis also attempts to handle the complexities of 
distributed systems presented in section 2.1.1, by stating some non-functional requirements on 
the DUSS and the support mechanisms, including dependability, heterogeneity and portability. 
The requirements are divided into six categories for the sake of better readability. Section 
5.1.1 specifies general functional requirements and section 5.1.2 non-functional requirements 
on our solution. Because the algorithms for actual performing dynamic upgrades are a central 
point of interest to this thesis, requirements concerned with mechanism and algorithms for 
dynamic upgrades have been stated in a separate group of requirements:  the functional 
requirements on dynamic upgrade process itself are stated in section 5.1.3 and the non-
functional ones in section 5.1.4. Another requirement group are related to the management 
support for dynamic upgrades in a distributed environment and are enumerated in section 
5.1.5. Finally, a list of requirements on the component upgradability to be supported  by the 
solution complete the list in section 5.1.6.  

5.1.1 General functional requirements  
These requirements define the general functional properties of the system to be modeled, 
designed and developed in this work. When referring to a class of system fulfilling these 
requirements, a term Dynamic Upgrade Support System, or DUSS for short, is used. This 
group of requirements include: 
R1. Basic Deployment Capabilities. A DUSS, as a deployment system should provide the 

basic deployment capabilities. In particular, it should be possible to make a service 
available in a system, to deploy the service to a suitable target environment, to remove it 
from this environment, and finally to withdraw a service from the system. 

R2. Support for distributed services. A DUSS should handle distributed nature of 
components which may have been deployed in a number of containers and hosts of 
a distributed system. In case of the upgrade of a distributed service, a DUSS should 
identify and localize all the targeted service components installations in the distributed 
system and then coordinate an upgrade of these components.  

R3. Support for co-existence of multiple versions. It is required that multiple version of 
system components may coexist in a system. Different versions of a service component 
may be released in a system, may be deployed in a target environment and may be 
running in the system at the same time.  
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5.1.2 Non-functional requirements 
This list of requirements define non-functional requirements on the DUSS. They are as 
follows: 
R4. Extensibility. An dynamic upgrade support system is required to be easily extensible. It 

should be possible to add both policies to manage dynamic upgrades in the system and 
mechanisms supporting these policies. 

R5. Portability. An dynamic upgrade support system has to be so realized that it is easy to 
port the system to other middleware platform, by means of some middleware or its 
extension so that the solution is portable across hardware architectures and operating 
systems. 

5.1.3 Functional requirements on dynamic upgrade process 
These requirements are concerned with the functional properties of the algorithms for dynamic 
upgrades. They are:  
R6. Automated Upgrade Process. The component deployment and upgrade, in particular, 

must be carried out as much automatically as possible. However, some human 
intervention may be allowed or sometimes necessitated, e.g., enabling the system 
deployer to support the system to recover from deployment/upgrade failures.  

R7. System consistency preserved during the upgrade. An upgrade of a system must not 
transform the system into a inconsistent state so that the further processing will result in 
a system failure. What the system consistency means is inherent to the concrete 
application. 

5.1.4 Non-functional requirements on dynamic upgrade process 
The requirements presented here state non-functional characteristics of the algorithms 
controlling dynamic upgrades of distributed software components.  
R8. Minimizing the loss of the system functionality during the upgrade process. The 

change has to be localized so that the functionality of the minimal part of the system 
affected by the change is degraded. 

R9. Minimizing the unavailability periods in which the upgraded parts of the system are 
not able to provide their functionality  

R10. Dependability of the upgrade. An upgrade should be an atomic action. Either the 
system is upgraded successfully and new version replaces the old one, or the system 
should fallback to the state before change. For all actions triggered by the component 
upgrade mechanisms there must exist reliable counter-actions that may cancel and bring 
to their backward state all impacted areas. 

R11. Upgrade transparency. System components that have not been directly influenced by 
the system runtime change should not be aware of the changes during the system 
reconfiguration.  

5.1.5 Upgrade Management 
The management and coordination of dynamic upgrade processes in distributed systems is the 
central issue to the following requirements: 
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R12. Automated Upgrade Management. It should be possible to determine when the 
upgrade is to take place. Possible scenarios are: immediately after the upgrade request is 
delivered; when a component to upgrade is idle, or at a given time. An upgrade can 
either concern an instance of a component’s type, some well-defined group of 
components (e.g. a management zone) or all the instances of the evolving type. 

R13. Support for multiple simultaneous upgrades. Since delays in realizing services are 
inevitable in distributed systems, an upgrade may take some time to complete. In large 
scale distributed systems, where management is decentralized, there may be several 
sources of upgrade request. Thus, upgrades are often performed simultaneously and 
some upgrade synchronization is needed.  

5.1.6 Upgradable Components  
Upgradability can be seen as an attribute of a component implementation, similar to 
persistency or multi-threaded-ness. This section describes requirements on the DUSS 
concerning its impact on the way the software system as a whole, and a software component, 
in particular, has to be designed and implemented if a component is supposed to be capable of 
dynamic upgrades, i.e. upgradable. 
R14. Orthogonal Upgradability. The upgrade capabilities of a component, which belong to 

the system management issues, should be separated from other aspects of the component, 
especially the component’s business logic. 

R15. Simplicity of development of upgradable components. The component developer 
should put as little as possible additional effort to provide components with dynamic 
upgrade capability. Thus, any programming artifacts that are needed by an upgradable 
component should be automatically generated by the development tools and 
transparently used by the system components. 

R16. Minimizing the set of constraints on the system that an infrastructure supporting the 
dynamic upgrade should impose on the development process and the system itself. In 
particular the infrastructure should not constrain the system’s architecture, nor 
programming style. 

R17. Heterogeneous service support. A DUSS should support upgrades of heterogeneous 
services, i.e. services that may consist of components requiring various software 
technologies, i.e. programming languages and execution models. The component 
deployment mechanisms must be able to successfully install and activate a component, 
as well as upgrade a running component with a new version of the component. A new 
version of a component implementation may use another software technology and may 
need to be installed in a different container. 

 

5.2 Use case model 
This section presents the use case model for deployment of services in distributed systems. 
The modeled system is called hereafter Deployment and Upgrade Facility, or DUF for short. 
The system under discussion is briefly analyzed with regard to its required capabilities and its 
boundaries in section 5.2.1. In the subsequent sections, the system is described using the UML 
concept of actors and identified functionalities of the system with the help of use cases. 
Thus, the use case model defines: 
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• main actors interacting with the system, whereas an actor is anything with behavior, 
including the system under discussion when it calls upon the services of other systems 
[92]. The actors are introduced in section 5.2.2.  

• use cases which represent the set of all functionalities a system supporting deployment 
should offer. These functionalities can be considered as detailed specification of 
requirement R1 stated in section 5.1.1. Furthermore, the use case model identifies the 
main activities needed to realize the specified functionality as well as presents the 
interrelations between specified functionalities. The use cases are presented according 
to a use case description template defined in [92] section 5.2.3. 

5.2.1 Capabilities  
Deployment and Upgrade Facility should provide the basic deployment capabilities as stated 
in requirement R1 in section 5.1.1. At a greater detail, it means that the following capabilities 
have to be provided: 

1. Releasing and withdrawing services in the system. The Service Deployers are provided 
with a capability to release their services in the distributed system. The service is 
released by registering its name and some deployment information (a list of required 
service component descriptors) with the network service registry, and uploading the 
service code including all the dependent code into the network-wide service 
repository. A service may also be withdrawn from the network when a service provider 
does not want to offer it to its customers. 

2. Deploying and removing services. After the service is released in the network, the 
Service Deployer may want to deploy his service to a specific target environment, 
which is most suitable for the given user requesting access to the service. Because of 
the distributed nature of services, as stated in requirement R2, a target environment is 
formed by a set of active nodes on which the code modules of the active service are 
deployed. The Service Deployer may also remove the installation of the service from 
the given target environment if it is needed, e.g. if the service should not be offered in 
the system any more.  

3. Redeployment or an upgrade of service is a specific case of deployment in which 
a service already deployed in the service is replaced with a given service. Additionally, 
it is required as stated in requirement R3 that a number of versions of a service may 
coexist in the system. 

4. Dynamic Upgrade of a service. It is considered a special case of a service upgrade in 
which a runtime instance (or a group of them) of a service are replaced by another 
version of the service so that a number of constraints hold as defined in section 3.1.  

5.2.2 Actors  
The main actors communicating with the DUF system are: 

• Service Provider is an entity who makes the service available to the target system. It is 
also the Service Provider that decides to withdraw his service from the system so that 
the service cannot be deployed in the system any more. 

• Service Deployer is an entity who possibly initiates and coordinates the process of 
service deployment and in particular service upgrade. Traditionally, the Service 
Deployer’s role is taken by the human system administrator. However, this role can be 
taken by a software system in order to automate the deployment and upgrade 
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processes. In the solution proposed in chapter 6, it is a specialized dynamic upgrade 
management framework that will play the role.  

• Target System, which represents the distributed system which is the target of the 
deployment operations. The target system includes both physical infrastructure and the 
software running on top of it. The new services to be deployed or new versions of the 
running services become part of the Target System itself after the deployment or 
upgrade process, correspondingly, succeeds. 

5.2.3 Use Cases 
All above capabilities have been modeled as UML use cases and are depicted in Figure 14. 
This use case diagram presents the actors interacting with the use cases as well as the use case 
relationships. The following use cases of the model can be identified: 
• Release service. It describes the capability of the DUF system to make a service available 

for deployment in the target system. The details of this use case are presented in section 
5.2.3.1. 

• Deploy service. It describes the capability of the DUF to deploy a released service in 
a target environment in the target system. The details of this use case are presented in 
section 5.2.3.2. 

• Upgrade service. It describes the capability of the DUF to upgrade a deployed service in 
the target system. Service upgrade is considered as a special case of service deployment as 
argued in section 3.1. Additionally, service upgrade may include activities that a part of 
the service removal process. The details of this use case are presented in section 5.2.3.3. 

• Dynamically upgrade service. It describes the capability of the DUF to dynamically 
upgrade a deployed service in a target system. It is modeled as a special case of a service 
upgrade. Except for the activities needed to perform an upgrade, additional means have to 
be taken to ensure that the dynamic upgrade process is performed with the given real time 
constraints. The details of this use case are presented in section 5.2.3.5. 

• Remove service. It describes the capability of the DUF system to remove a service from 
a target system. The details of this use case are presented in section 5.2.3.6. 

• Withdraw service. It represents the capability of the DUF system to withdraw a service 
from a list of available services in the target system. The details of this use case are 
presented in section 5.2.3.7. 
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dynamically upgrade service

withdraw service upgrade serviceremove service

release service deploy service

ServiceDeployerServiceProvider TargetSystem

<<include>>

 

Figure 14. Main Use Case Diagram of the DUF. 

The DUF system capabilities represented by the main use cases are related to each other in 
that there is a valid sequence in which they occur for a given service. The activity diagram in 
Figure 15 depicts this sequence of activities. 

• First, a service is released by the Service Provider in the target system. This means 
that the Service Provider makes the service available to the users by announcing or 
registering the service in the target service. The information about the service are 
storied in the system and available for the deployment purposes.  

• After having been released, a service may be deployed in the target system. It is the 
Service Deployer that initiates this process by interacting with the DUF and provides 
some additional information determining the preferred target environment for the 
service. The deployment process considers this information as well as the deployment 
requirements of the service itself related to its design. On a successful service 
deployment, the service is ready to use by its users. It is the responsibility of the 
Service Deployer to grant service access to the users. 

• Once a service is deployed, the service may need to be upgraded. It is the Service 
Deployer (which may be also the service itself ) to trigger the upgrade process. The 
target of the upgrade process is a deployed service. There are no requirements on the 
availability of the service so the old running version of the service may be shutdown 
and a new one started instead. If there are some additional requirements on the 
availability of the service during the upgrade, the process is called dynamic upgrade.  

• A deployed service, i.e. a service installation, may be removed from the target 
environment it has been deployed to, if needed.  

• Finally, the Service Provider may withdraw a service from the target system. From this 
moment, the service is not available for deployment anymore.  
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service 
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Figure 15. Activity diagram for a service processed by the DUF. 

The following subsections explain the use cases identified above. 

5.2.3.1 release service  

The Service Provider who decides to offer his service in the target system has to release it The 
service is released by registering its name, its meta-information (a list of required service 
component descriptors) and a number of the service code modules with DUF.  
Releasing service is part of the deployment cycle encompassing all operations that are 
required to prepare the service to be available for deployment after the development of the 
service has been complete. This phase include service packaging and announcement as 
described below: 

Packaging 
The software components that are to be deployed have to be packaged prior to transfer and 
delivery to the target nodes. The package must contain the software components in terms of 
the code and a meta-data description of the system including its requirements and 
dependencies.  

Advertising 
This phase caters for the dissemination of appropriate information to interested parties about 
the characteristics and requirements of the software system to be deployed. This can be 
achieved either automatically (a part of the deployment architecture discovers a service 
offered by the Service Provider) or with human interface (Service Provider interacting with 
the deployment architecture). The end objective is that the Service Deployer be notified of the 
availability of the service. 
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5.2.3.1.1 Actors 
The following actors participate in this use case: 

Service Provider, who wants to release his service and triggers the process.  
• Service Deployer, who registers the information about the service released and 

maintains it for future service deployments.  

5.2.3.1.2 Preconditions 
1) The service is prepared for packaging.  

5.2.3.1.3 Postconditions  
1) The service is released, i.e. the service packages are available to the Service Deployer. 

5.2.3.1.4 Description 
1) Service Provider prepares his service components to release. This includes creating 

packages for the service components, which include service description and the service 
code. 

2) Service Provider contacts the DUF in the given Target Service and provides him with 
information about the service to release. DUF records this information . It may involve 
downloading service packages to the Service Deployer infrastructure or just recording the 
details needed to download the service packages on demand. 

advertise service

package service

 

Figure 16. Activity diagram for use case “release service”. 

5.2.3.1.5 Extensions 
2a) The service data is consistent or complete; the service is not properly packaged.  

1) Service Deployer breaks processing the release request and signals an error.  
 

5.2.3.2 deploy service 

After a service is released in the target system, the Service Deployer may want to deploy his 
service to a specific target environment, which is most suitable for the given Service User 
requesting access to the service.  

5.2.3.2.1 Actors 
Service Provider, who triggers deploying a given service. 
Target System, which is a distributed system in which the service is to be deployed. 

5.2.3.2.2 Preconditions 
1) A given service is released in the target system.  
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2) The service is deployable in the target system, that is: 

a. there exists at least one target environment within the target system suitable to 
deploy the given service, 

b. there exists a mapping that assigns a container capable of running a service 
component for each service component comprising the service.  

5.2.3.2.3 Postconditions 
1) The service is deployed in a suitable target environment.  

5.2.3.2.4 Description 
1) Service Provider requests deploying a given service.  

2) Service Deployer identifies the target environment by matching the service requirements 
against the target system capabilities. 

3) Service Deployer delivers the required service code to the target environment.  

4) Service Deployer installs the service in the target environment. 

5) Service Deployer configures the service. 

6) Service Deployer activates the service. 

5.2.3.2.5 Details  
Figure 17 shows an activity diagram of the deploy service use case. The sections below 
provide more details on the steps of the deployment process. 
 

component installation

matching process

code delivery

configuration

activation
 

Figure 17. Activity diagram for use case “deploy service”. 

Matching process  
The activity is aimed at determining an optimal placement of the service components onto 
a set of nodes available for service deployment. The process is based on matching the service 
requirements expressed in the service descriptor against the capabilities of the available nodes. 
In case, the service components are not predetermined before this process starts, the matching 
process also involves determining the components to be deployed for a given service.  
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The activity diagram giving more insight into a design of the matching process is shown in 
Figure 18. It shows a variation of a matching process in which the service components are not 
predetermined before the activity starts. The activity identifies the components required for a 
service by parsing the information on the service composition from the deployment descriptor. 
Then, two activities may be performed in parallel: getting information on the available 
capabilities of the distributed system and parsing the component requirements on the 
capabilities it needs to be deployed. The capabilities include the underlying technologies 
(programming environment and a specific hardware platform) as well certain system resources 
the service needs to fulfill its contract, including computational and communication resources. 
The information gathered during these two activities provide the input to the actual matching 
process that determines the assignment of each of the service components to a containers on a 
node belonging to the distributed system. The activity ends if the found assignment is feasible 
and the matching process is complete as it may be recursive. Otherwise, another iteration of 
the matching process occurs. 

identify  required 
se rvice com ponent s

get info on distributed system 
capabi lity  availability

parse service component 
deployment requirements

is matching feas ible 
and complete?

match requirements  
against capabilit ies

[ yes ]

[ no ]

 

Figure 18. Process of matching service deployment requirements against capabilities of a distributed 
system.  

Delivery 
The delivery phase of the component package is done through the available transport 
channels, including the Internet. This involves considerations on the package size, target node 
quantity and transport quality. The delivery can follow either a "pull" or a "push" approach 
and can use wide-used protocols such as http and ftp. 
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Component Installation 
The installation activity covers the actual placement and "tuning" of a software system into 
a suitable container on a suitable node. Given a released software component, this process 
combines the metainformation about the service encoded in the service component (e.g. 
descriptor) with the information at the target node in order to determine how to properly 
configure the software system. In the case that dependencies are specified, the process 
becomes more complex since it may involve fetching and deployment of necessary 
prerequisite components. The installation process may also involve the following activities: 

• associating the names to the corresponding run-time code (e.g. upgrade registries, 
registering to the implementation repository) 

• publishing the component references (e.g. registering to a naming service) 

Configuration 
This activity involves tuning of the components installed in their target environment. The 
service component may have certain parameters that have to be set with some values to be 
useable to the user. These values may be either default and can be stored in some meta data 
describing the initial (pre-set) configuration or may be computed in some specific algorithm 
using the system information.  

Activation 
Finally, the service may be activated, that is made available to the user access. This activity 
usually involves executing some initial code of the component, for instance calling external 
static functions in a C-based implementation of a component or instantiating a main class in a 
Java environment.  

5.2.3.3 upgrade service 

This use case describes service upgrades, which is considered as a special case of deployment 
in the context of this thesis (cf. section 3.3.3). That is why it is defined as a use case inherited 
from use case “deploy service”.  

5.2.3.3.1 Actors 
Service Deployer, who may trigger upgrading the given service. 
Target System, which is a distributed system in which the service is to be upgraded. 

5.2.3.3.2 Preconditions 
1) The given service is deployed in the target system. 

2) A new version of the service is released in the target system. 

3) The service is designed to be upgradable and the state in which service upgrade is feasible 
can be reached within a time bound from the moment of planned upgrade time.  

5.2.3.3.3 Postconditions 
1) The service is successfully upgraded.  

5.2.3.3.4 Description 
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1) Service Deployer requests upgrading a service and provides the details of the upgrade 
process.  

2) DUF identifies the location of the upgrade target. 

3) DUF delivers the required service code to the target environment.  

4) DUF installs the service in the target environment. 

5) DUF exchanges the old version of the service components with the new one. 

6) DUF uninstalls the old version of the service components, if needed.  

7) DUF removes the code of the old version of the service, if needed.  

component uninstallation

component installation

target exchange

target discovery

code removal

code delivery

 

Figure 19. Activity diagram for use case “upgrade service”. 

5.2.3.3.5 Extensions 
2a) The upgrade target cannot be located.  
4a) The installation fails.  
5a) The exchange of service version fails 

5.2.3.4 Details 

The process of upgrade is based on a number activities that are described in other use cases. 
Code delivery, component installation are described in section 5.2.3.2; target discovery, 
component uninstallation and code removal are described in section 5.2.3.6. 
A new activity to this use case is target exchange.  

Target exchange 
In service upgrade, the old version of the service has to be replaced with a newer one. In 
a simple upgrade process, there are no requirements on the service availability. For this, the 
process of exchange may be as simple deactivating all service components to upgrade and 
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starting a new version of these components. For stateful services, the state can be transferred 
off-line.  

5.2.3.5 dynamically upgrade service 

The process of the dynamic upgrade is similar to the process of upgrade. It includes the same 
activities and could be represented with the same activity diagram as the one depicted in 
Figure 19.  

Target exchange 
The main difference is the process of exchanging the target. In case of dynamic upgrades, 
specialized mechanisms and upgrade algorithms are needed to match additional, mainly 
nonfunctional requirements on this part of the dynamic upgrade process including R8-R11 
specified in section 5.1.4. Compared to the target exchange in the (static) upgrade process, the 
target exchange is an activity that: 

• is performed during and in parallel to the normal operation of the system as an 
additional activity in the system, 

• has to minimize the unavailability period of the upgrade target, 
• has to guarantee that the system operates consistently during the exchange, e.g. no 

messages can be lost, the old references to the target component runtime instances 
have to stay valid, 

• the state has to be transferred on the fly from runtime instances of the old version of 
component to the newly created  instances of the new component version. 

 Example of mechanisms implementing this activity are described in chapter 7 of the thesis. 

5.2.3.6 remove service 

The Service Deployer may request to remove a given service installation, that is the deployed 
service, from its target environment it was deployed in. The DUF identifies all service 
component deployed for the given service installation and removes each of them from the 
containers comprising the target environment. The removal process includes the following 
activities depicted in the activity diagram in Figure 20:  

Target discovery 
In this activity, the target installations of the given service are discovered in the target system. 
This consists in finding the hosts and containers belonging to the target environment in which 
the service has been deployed. 

Component uninstallation 
This activity is concerned with uninstalling the service components from the containers found 
in the step above. This includes resetting the container to the state before the service 
component installation and potentially setting the container resources allocated during the 
code module installation. 

Code removal  
This activity results in making the code modules unavailable from the containers of the target 
environment discovered before.  



 

  77 

component uninstallation

target discovery

code removal
 

Figure 20. Activity diagram for use case “remove service”. 

5.2.3.6.1 Actors 
Service Provider, who triggers removing the given service. 
Target System, which is a distributed system in which the service has been deployed. 

5.2.3.6.2 Preconditions 
1) The given service is deployed in the target system.  

2) The given service installation has not been removed. 

5.2.3.6.3 Postconditions 
1) The service installation is removed from the given target environment.  

5.2.3.7 withdraw service 

The Service Provider who has released his service in the target system, may also want to 
withdraw the service so that is it not available to Service Deployers. The withdraw 
service use case describes the capability of the DUF. To withdraw a service, the Service 
Provider has to remove both the service metainformation and the service code modules from 
the DUF. 

5.2.3.7.1 Actors 
The following actors participate in this use case: 

Service Provider, who triggers withdrawing the given service by contacting the Service 
Deployer.  

• Service Deployer, who discards the information about the service to withdraw and so 
that the service is not available to be deployed in the target system any more.  

5.2.3.7.2 Preconditions 
1) The service has been released in the target system. 

5.2.3.7.3 Postconditions 
1) The service is withdrawn from the target system and the service cannot be deployed by the 

Service Deployer any more.  

5.3 Component Model 
This section presents a component model that is considered further as the underlying service 
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model. The basic concepts of the model are defined and their relations explained. 
The concepts are classified according to the software component life cycle phase. The 
implementation phase concepts are presented in section 5.3.1, and the deployment phase 
concepts in section 5.3.2. The runtime concepts are the contents of section 5.3.3. 

5.3.1 Implementation Phase Concepts 
The component implementation is specific to the software technology it is developed with. In 
this component model, the technological specifics are abstracted from and the component is 
defined as an aggregation of programming language constructs, called Artifacts, which are 
developed during the implementation phase. An sample realization of the artifact in a object-
oriented programming language[131], like Java[118] is a class and in a function-oriented 
imperative language like C is a function. Apart from artifacts, a component implementation 
may include a number of ConfigurationData instances. This data expresses a persistently 
stored information used at the component’s configuration time to initialize the component 
runtime image to reach a pre-configured state. ConfigurationData is modeled using the 
very flexible and dynamical modeling construct of a set of Properties objects, whereas 
each Properties object has a name and a value that may have values of any type, 
including other Properties. This construct is very expressive and allows for storing quite 
complex data structures. 
The introduced concepts and their interrelations are depicted in a class diagram in Figure 21.  
A ComponentImplementation is identified by its name. The name is unique among all 
implementations of the given component. The name may, for instance, include a string 
codifying the name of the component implementation provider.  

ComponentImplementation

-name : String

ConfigurationData

+getProperty() : Properties

Artifact

-fullName : String
-signature : String

Properties

-name : string
-value : any

OOPClass Function

1

-artifacts1..*

has

1

-data 0..*

has

programmingModel
-owner

 

Figure 21. The implementation phase concepts of the component model. 

5.3.2 Deployment phase concepts 
In this model, service is defined from the deployment perspective. Service is a unit of 
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functionality that a Service Provider wants to offer to the customers by releasing it as 
described in the use case model in section 5.2.3.1. In terms of deployment, a service consists 
of a number of interconnected service components The service can be seen as a graph , where 
the nodes are service components and edges are links describing the communications between 
connected components.  

JavaMediaFramework : Component

abstract_prop = false
compound_prop = false
name = JavaMediaFramework
serviceProvider = providerAAA
description = ""
version = 1.1

TranscoderEngine : Component

abstract_prop = false
compound_prop = false
name = TranscoderEngine
serviceProvider = providerAAA
description
version = 2.0

Duplicator : Component

abstract_prop = false
compound_prop = false
name = Duplicator
serviceProvider = providerBBB
description = ""
version = 1.1

Transcoder : Component

abstract_prop = true
compound_prop = true
name = Transcoder
serviceProvider = providerAAA
description = ""
version = 1.2

TranscoderService : Service

name = TranscoderService
version = 2.1

 

Figure 22. An example component-based service compliant to the component model. 

Figure 22 depicts an example service. The service is called TranscoderService and 
consists of two top components: Transcoder and Duplicator. Whereas the latter is 
a simple service component, component Transcoder contains further subcomponents: 
JavaMediaFramework and TranscoderEngine.  
One key characteristics of the software component as described in section 2.3, is its 
composibility. A component may be composed of a number components. In terms of 
deployment, it means that a component may need to access some other components. This idea 
is expressed by component dependencies. In the model, class Component has access zero of 
more dependent Component objects.  
There are three classes of service components that differ in the terms of whether they consist 
of some service subcomponents and whether they directly refer to a code module. 

• Simple Component is a service component without any dependencies. It contains just 
a reference to a code module. 

• Compound Component is a service component consisting of subcomponents and having 
a reference to a code module. 

• Abstract Component is a service component consisting of subcomponents and having 
no reference to a code module. 

The relations between the classes modeling the concepts defined above are depicted in a class 
diagram in Figure 23. 
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Service

-name : string

+getComponentInstanceList() : string[]
+getDeploymanetRequirement( componentID : string ) : DeploymentRequirements

ComponentRequirements

+getComputationalResources() : ComputationalResources
+getContainerType() : string

TopologicalRequirements

+getConnectedComponents()
+getHostRequirements() : HostRequirements
+getLinkRequirements() : LinkRequirements

Version

+identical( aVersion : Version ) : boolean
+major_newer( aVersion : Version ) : boolean
+minor_newer( aVersion : Version ) : boolean

LinkRequirements

-communicationType : string
-linkQoS : LinkQoS

Component

+abstract_prop : boolean
+compound_prop : boolean
-description : string
-name : string
-serviceProvider : string

ComputationalResources

-cpuCapacity : string
-memoryCapacity : int
-persistentStore : int

CodeModule

+name : string

HostRequirements

-hostNetworkRole : string
-hostType : string
-networkLocation : string

-components

1..*

-module

0..1
-parent

1

-children 0..*

depends

-version

 

Figure 23. The deployment phase concepts of the component model. 

This graph has some additional attributes described as service deployment requirements. 
There two types of requirements: 

• Topological requirements represented by class TopologicalRequirements in the 
model. These requirements describe the needed characteristics of the environment 
where the service will be deployed. The characteristics concern both the hosts and 
network links between them. Typical host requirements include: the type of host, its 
role in the network (e.g. whether it is a intermediate egress router or an end node) or 
network location (e.g. the absolute IP address or relative to hosts where other service 
components are to be deployed) These requirements are modeled by class 
HostRequirements. Typical link requirements describe the type of communication 
between two components and the needed quality of the underlying network link (e.g. 
bandwidth, jitter, round-trip time, etc). The latter are abstracted in the model by class 
LinkRequirements. 

• Component requirements (represented by class ComponentRequirements in the 
model) determine the needs of the service components with regard to the availability 
of computational resources in the target environment .Typical computational resources 
needed are the CPU processing power, the amount of the main memory and persistent 
store memory. 

Class Service in the model has a name which determines the service template. 
Additionally, it provides methods to: 

• Retrieve the names of all service components names 
• Get the topological requirements of each service component. 

Component, or Service Component is a basic unit of deployment in the model. It is described by 
a number of attributes to identify the component and are usually stored in the service 
descriptor. Optionally, the service has a reference to a code module which represents a file the 
component implementation is packaged.  
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Additionally, the Component has a version to distinguish various component releases of 
a Component. Whenever a new component is released, it is assigned a version that is unique. 
The version is determined by the Service Provider. For the purposes of this work, it is enough 
to apply a simple versioning scheme. In this scheme, the following rules apply: 

Component version VC is a pair of integer numbers (m, n):where m is called major version 
number and n is called minor version number. It will be noted as VC(m, n). 

Version equivalence is defined as follows: 

VC(m, n) = VC (p, q) ⇔ m=p ∧ n=q 

There is an partial order relation defined on the versions as follows:  

VC(m, n) > VC(p, q) ⇔  m>p ∨ ( m=p ∧ n>q) 

For any two component releases R1 and R2 that occurred at time tR1 and tR2 it is required: 

tR2 > tR1 � VC(m, n) > VC(p, q) 

Additionally, if any major change occurs in this release then additionally the major version 
number should be increased so that m>p and n reset to 0. 
In case of a minor changes, it is required that n>q. 

The definition of the major and minor change is related to the evolution model of the 
target system that specifies the possible changes in evolving components. This topic is 
not considered in this thesis. Hereafter, it will be assumed that:  

a major change is a non-compliant change in the component interface and semantics  
a minor change is a compliant change in the code module or in the component 

dependencies. 
Whereas, a compliant change is a change that does not break the component contract that 

is defined by its interfaces.  
To explain these rules using the example service depicted in Figure 22, assume a new version 
of service TranscoderService is released. Provided that a minor change was done in 
component Duplicator by Provider BBB, the component has to be released with version 
1.2 and the service gets version 2.2. No other components have to change their version, since 
this modification does not impact them. After some time, JavaMediaFramework has 
undergone some major redesign (including some changes to its exported interfaces) and now 
Provider AAA is released again. Because of these major changes, the component version has to 
change to 2.0. Moreover, the major version number of all the components and services that 
depend on this component have to be increased after they are adopted to the changes and 
released. Thus, new release of component Transcoder appears in version 2.0 and service 
TranscoderService in version 3.0. 
Service Deployment is a process of mapping the service components onto the target 
environment. It involves determining the target environment, identifying needed service 
components, fetching, installing and loading the appropriate code modules into the target 
environment.  
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Container

-id : string
-reources : ComputationalResources
-type : string

Component

+abstract_prop : boolean
+compound_prop : boolean
-description : string
-name : string
-serviceProvider : string
-version : string

Host

-address : Address
-supportedContainerTypes

VirtualLink

-id : string
-reservedQoS : LinkQoS

PhysicalInfrastructureTargetEnvironment

Link

-end : Host
-qos : LinkQoS
-start : Host

1

1..*1..*

0..* 1

0..* 1
1..*

1..*1..*

 

Figure 24. The deployment-phase relations between the component and its target environment.  

The physical infrastructure provides the set of computational and communicational resources 
available to be used during the execution of a service. Physical Infrastructure consists of 
a number of computers, called further hosts, and a number of links connecting these hosts. 
Each link offers some communicational resources, that is connectivity with a given quality of 
service. Each host is identified with an network address and offers some computational 
resources.  
To deploy a service, its requirements have to be fulfilled by the available computational and 
communicational resources. These resources are a subset of all resources provided by the 
Physical Infrastructure. They include a subset of host resources and a subset of link resources. 
The computational resources are managed using the term of Container.  
A Container provides an execution environment with certain amount of computational 
resources that belong to a given host. The resources include memory, processing power and 
persistent storage. Each Container has its type that is determined by the execution model. This 
model is then defined by the development and programming environment, like Java or C++ as 
well as the basic services it offers. 
The communicational resources are managed in terms of virtual links. A virtual link provides 
connectivity between two hosts with certain quality of service. Each link may have a number 
of virtual links provided that the sum of resources taken by them is smaller then the total 
amount of communicational resources of the link. 
With regard to service deployment, the deployment process has to match the deployment 
requirements against the resources provided by the physical infrastructure and chose a subset 
of the physical infrastructure. This subset is called a Target Environment. In other words, 
Target environment is computed during the process of matching service deployment 
requirements against the resources available in the physical Infrastructure and will be 
a runtime environment for the service to deploy. The target environment consists of a number 
of containers in which the given service component is to be deployed and a number of virtual 
links that will be used by the service components to interact. It is the matching process (part of 
the deployment process) that assigns every service component to a container of the Target 
Environment .  
The presented concepts are modeled in the corresponding classes presented in the class 
diagram in Figure 24. 
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5.3.3 Runtime phase concepts 
Component Runtime Image is a runtime entity that comes into being when a deployed software 
component is loaded into a container. In a given container, only one component runtime image 
can be loaded at a time. However, a component runtime image may create many instances of 
its interfaces if needed. 
The runtime part of this component model is defined in a very light-weighted aspect-oriented 
and low-coupled way. A set of interfaces is defined that can be provided by the component 
instances. This approach enables reuse of other existing component models and facilitates 
high portability. These interfaces are depicted in Figure 25.  
It defines only a few interfaces that a component implementation may provide. Only one of 
these interfaces is mandatory. It is the Reflective interface which defines operations 
supporting a component with multiple interfaces. It provides operations for retrieving all 
interfaces provided by a component instance and getting a reference to any of the interfaces 
provided by the component instance.  
Another interface is InstanceFactory which supports a universal way of creating 
instances of components. This interface should be implemented by each the component 
runtime image.  
Yet another interfaces ActivationListener defines a way to notify the component 
runtime image or component instances of the fact being activated or deactivated.  
The interface especially relevant to performing dynamic upgrades of software component is 
called Upgradable and is described in detail in section 6.2.6.1. 

Upgradable

+get_state() : State
+reach_upgrade_point( callback : UMFCallback ) : void
+reach_upgrade_point() : long
+set_state( theState : State, upgrade_point : long )

Reflective

+getInterface( name : string ) : any
+getInterfaceList() : string[]

ActivationListener

+activated() : void
+deactivated() : void

InstanceFactory

+create() : any

 

Figure 25. Basic runtime interfaces of component runtime images. 

A runtime instance of a container is a instance of an execution environment for components 
runtime images. It provides component runtime instances with the basic services needed for 
their execution. In general, these services include access to the computational and 
communicational resources that are available to the component instances deployed in this 
container.  

5.3.4 Phase Transitions 
This section describes the interrelations of concepts defined in different phases of the software 
life cycle.  
A service component has the following life cycle presented in Figure 26: 

• First, a service component is released. This means that the service component makes 
the service available to be deployed in the distributed system.  

• A released service component may be deployed to a target environment in the 
distributed system. As a result, the service component is installed in a container and is 
ready to its executable code may run.  

• A service component may be activated in the container to be able to process the clients 
requests, if it plays the server role. The activation process may include instantiation of 
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certain runtime artifacts in case of the object-oriented execution model or invoking 
some initial functions in case of the function-oriented execution model.  

• Once a service component is deployed, it may need to be upgraded, that is, a new 
version of the service component code has to replace the old version. In case, the 
service component has been activated, the upgrade process is called dynamic.  

• A service component may be deactivated in the container. It makes the runtime 
artifacts of the service component be: (1) passive in that no external activity will result 
in execution of the runtime artifacts from the moment of deactivation, and (2) all 
running activities in the service component are possibly made frozen in a bounded 
time period after activation is requested.  

• A deployed service component, may also be removed from the target environment it 
has been deployed to, if needed.  

• Finally, a service component may be withdrawn from the distributed system. This 
makes the component unavailable to any activities in the distributed system.  

deployed

released

activate

actvate

withdrawn

dynamic 
upgrading

deactivate

upgrade

upgrade done

 

Figure 26. The service component Life-cycle phases. 

Code Module is a file with the executable code of the given service component. The contents 
of the file is implementation technology specific. Given a reference to this file, the container 
infrastructure knows how to install and load the code module. A code module has the 
following phases of life cycle (also depicted in Figure 27): 

• Initially, it is released to the system during the release time of the service. 
• It is fetched onto a system node from the service repository and may be kept in the 

local service repository for some time. 
• It is installed in a container instance, which means it is made available to the container 

infrastructure to load it if needed. 
• It is loaded into a container. The module is either dynamically loaded into the running 

container instance or loaded by a new container instance when it started. 
• It is unloaded from the container instance. The module may be unloaded and unlinked 

from the running container instance.  
• It may be uninstalled from the container if it was previously installed in that container.  
• Finally, it may be removed from the node.  

When a service component is deployed, the code modules associated with it are usually 
fetched to the appropriate nodes of the target environment, installed and loaded into the target 
containers. In case, a service component is to be upgraded, the new version of the code 
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modules have to be fetched, installed and loaded, and afterwards the old version may be 
unloaded and uninstalled. 

released

fetched

fetch

installed

install

uninstall

loaded

load

unload

removed

remove

 

 

Figure 27. The life cycle phases of the code module. 

5.4 Design and Implementation 
The presented concepts of the use case and component model presented in the previous 
sections of this thesis have been realized by the author of this thesis and contributed to the IST 
FAIN (Future Active IP Networks) project. The functionalities designed in detail and 
implemented within this project are related to service release and withdrawal, service 
deployment and removal.  
The Active Service Provisioning system is a subsystem of the FAIN system architecture[27] 
aimed at defining a generic architecture for IP-based active networks. It supports deployment 
of distributed heterogeneous services onto a network of active nodes, which are computing 
nodes which can be located as intermediate nodes in the network infrastructure, like 
traditional network routers and switches in the communication network, and are capable of 
running programs processing data traffic flowing through them. (see [125] for an introduction 
to active networks). Nevertheless, the approach is not limited to active networks and it be can 
applied to distributed systems including a typical enterprise distributed system Further details 
of the system design and implementation can be found in [112],[58],[23] and [22]. 

5.4.1 Approach Summary 
The Active Service Provisioning System provides an example implementation of the 
fundamental capabilities for service deployment. These include releasing a service in 
a system, deploying it with a given set of deployment requirements as well as removing such 
a deployed service and withdrawing a service from a system.  
The approach of the FAIN ASP system is summarized be the following list of features: 

• Two-layered architecture: The rationale for choosing this architecture was a separation 
of concerns in the service deployment problem space. Whereas the network-level ASP 
deals with network issues including identifying nodes of the target environment for a 
given service with regard to the topological service requirements and network Quality 
of Service requirements, the node-level ASP is concerned with node specific 
requirements, including technology and other service dependencies. 

• Heterogeneous active service support: The ASP enables deployment of active services 
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independently of the implementation technology they are based on. As long as a 
service is structured in terms of components and described using universal service 
descriptors defined in XML, it can be deployed using the ASP in the same way. 

• Multi-EE node support: The ASP allows for deployment of active services on top of 
multi execution environment nodes. A service may consist of components to be 
deployed in different execution environment on a node. The decision as to which EE 
should be chosen depends on the execution capability and the availability of the 
suitable component implementation. 

• Deployment support for service components in different planes: ASP is designed for 
deploying service code independent of the purpose. In the same way, it is possible to 
deploy components to run in management, control and data plane.  

• Hybrid two-phase process for the selection of a target environment: The selection of 
active nodes suitable for a deployment of active services is designed as a hybrid of a 
centralized pre-section of the candidate nodes to be used for service deployment and a 
decentralized checking that the actual node capabilities on the candidate nodes suffice 
the service needs. 

• Universal service meta-information description: The service descriptors are expressed in 
XML, a commonly-used SGML-based language standardized by W3C. By applying 
this language, the descriptors are easy to write for the service providers, easy to 
process by the programs (e.g. to generate it automatically by developing a service or to 
parse it) and, last but not least, as easy to extend. The common availability of the 
parsers also makes the software processing XML-based service descriptors easy to port 
to other platforms. 

• Binding of service components: The FAIN ASP also supports binding service 
components forming a service. A service descriptor enables describing the way the 
components should be connected with each other and the node level ASP can interpret 
this information and perform the necessary actions.  

 
Additionally, the service model supported by the ASP system is based on the one presented in 
section 5.3. The one presented in this thesis has been extended by adding the implementation 
phase and some runtime phase concepts to the model. The definition of some of the concepts 
in our model have been elaborated from the ASP Component Model and extended by the 
necessary definitions relevant to dynamic upgrades. 

5.4.2 Realization overview 
The design of the ASP system follows a two-level type architecture, where the network and 
the node level can be distinguished. This architecture is depicted in Figure 31. 
On the network level the ASP consists of the Network Manager working as the central access 
point of the ASP to other Non-ASP sub-systems. The Network Service Registry and the 
Network Service Repository are dedicated to service information storage and delivery: 
On the element level the ASP consists of the Node Manager, which is the central access point 
for the ASP on the element level. The Node Manager on the candidate nodes selected for 
deployment of service components is contacted by the network manager . In addition the Code 
Manager, the Service Creation Engine, the Local Service Registry, the Local Service 
Repository and the Reconfiguration Manager make up the node level ASP: 
The following section describes the main entities of the Active Service Provisioning system.  
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Service Registry is used to manage the meta information about the services in a form of 
service descriptors. Service descriptors XML documents containing the information on 
the service attributes, like the service name, version, the provider, as well as service 
requirements in terms of container (execution environment) and network capabilities, 
and service dependencies. The descriptors are stored in the Service Repository, when a 
service component is released in the network. Network Manager and the Service 
Creation Engine may contact the Service Registry to fetch service descriptors. Finally, 
service descriptors are deleted from the Service Registry, if a service is withdrawn 
from the network. 

• Service Repository is a data base for code modules. A code module is stored in the 
Service Repository, when a service descriptor referencing the particular code module 
is released in the network. The Code Manager, which is part of the node level ASP 
system and is described below, may fetch code modules from the Service Repository. 
A code module is deleted, if a service descriptor referencing the particular code 
module is withdrawn. As is the case for the Service Registry, several Service 
Repositories may coexist in a big network. 

 

NodeASP

NodeManager

+createServiceInstance()
+deployServiceComponent()
+removeServiceInstance()

LocalServiceRegisty

+fetchDescriptor()

LocalServiceRepository

+getCodeModule()

CodeManager
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+install()
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+checkService()
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NetworkASP
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+createServiceInstance()
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+removeServiceInstance()

ServiceRegistry
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Figure 28. Design classes of the ASP system. 

• Network Manager serves as an access component to the ASP system. In order to initiate 
the deployment of an particular service, a Service Provider contacts the Network Manager 
and requests a service to be deployed as specified by the service descriptor. It is also 
responsible for processing the network level service deployment requirements and 
matching them against the actual network capabilities. Deployment requirements include 
the service topology, which is determined by a number of service components to be 
located on nodes with given characteristics. The node characteristics include their node 
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roles in the network, like egress, ingress, end node, position absolute in terms of the 
network address or relative to nodes requested by other service components. Other 
deployment requirements are handled at the node level. This component has access to the 
information on how to access component installations and runtime component instances. 

• Node Manager is the peer component to the network manager on the node level. The 
network manager communicates with the node ASP manager in order to request the 
deployment, upgrading and removal of service components.  

• Service Creation Engine is a component that resolves the dependencies of a service. It 
does so by parsing the service metainformation contained in the service deployment 
descriptor. The dependency resolution is a recursive process which involves resolving 
dependencies of service components that the given service depends on. The 
dependency resolution process is not relevant to this thesis and it is not described here. 
An example of such a resolution and a detailed design of this component can be found 
in [23] 

• Code Manager is a component which maintains the information about the code 
modules installed on the node. This component is contacted after the Service Creation 
Engine has resolved the dependencies of the service component requested to be 
deployed. The service component information comprises: 
• Service Component dependencies: 

o Resolved inter-component dependencies, in the form of a list of all the 
service components that the given service component depends on. 

o Environment dependencies, i.e. the dependencies on the execution 
environment that the code module associated to a service component is 
supposed to run in. 

• Service Component local installations: 
o Expiration date, 
o VE identifier and EE identifier, where the code modules are installed. 

The Code Manager holds the information about the installed service components in a 
data structure forming a directed acyclic graph (DAG). The nodes in the data structure 
represent the service components installed onto the node, whereas the edges represent 
the dependencies between these components. The data structure used to keep this 
information is depicted in Figure 29. The DAG has two levels: the first level consists 
of nodes representing service components that were requested to install by the SCE. 
Nodes on the second level represent the service components that the service 
components from the first level directly or indirectly depend on.  

The information maintained by the Code Manager is upgraded by: 

• SCE in case it requests fetching and installing a service component, 

• SCE in case it requests upgrading a deployed service component, 

• Code Manager itself whenever a service component expires and needs to be 
uninstalled from a given target environment.  
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Figure 29. Data structure with the code module information in the Code Manager. 

5.4.2.1 Releasing a service 

The realization of use case release service described in section 5.2.3.1 is straightforward. The 
needed interactions are depicted in a collaboration diagram in Figure 30. Table 3 explains the 
interactions depicted.  

: NetworkManager

: ServiceProvider

: ServiceRepository

: ServiceRegistry

storeCodeModule()1.2: 

registerService()1.1: 
releaseService()1: 

 

Figure 30. Collaboration Diagram: Releasing a service 

 
Seq. No. Interaction description 
1. Service Provider requests releasing his service. He accesses the network manager 

and provides the necessary information, including the service name, service meta-
description as well as the references to the service’s code modules.  

1.1 Network Manager contacts then the service registry where it uploads the service 
descriptor(s). 

1.2 It also uploads the code modules of the service onto the Service Repository. 

Table 3. Interactions during releasing a service. 

5.4.2.2 Deploying a service 

Deployment of component-based services is a key functionality of the Active Service 
Provisioning system. In section 5.2.3.2, the use case description presents the main activities of 
the deployment process. These activities are now presented by adding the details of the ASP 
system. Figure 31 depicts a collaboration diagram with all the interactions within the ASP 
system and Table 4 describes the details of these interactions. 
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: LocalServiceRepository

: LocalServiceRegisty

: ServiceDeployer : ServiceRepository: NetworkManager : ServiceRegistry

: CodeManager

: NodeManager

Network level

Node level

: SCE

getCodeModule()1.3.2.2: fetchAndInstall()1.3.2: 

fetchDescriptor()1.3.1.1: 

getCodeModule()1.3.2.2.1: 

fetchService()1.1: 

deployComponent()1.3: 

parseServiceComponent()1.3.1: 

deployServiceComponent()1: 

fetchService()1.3.1.1.1: 

findDeploymentMapping()1.2: 
updateServiceDB()1.4: 

download( CodeModule )1.3.2.1: 
install( localRef, aContainer )1.3.2.3:  

Figure 31. Collaboration Diagram: Deploying a service . 

 
 
Seq. No. Interaction description 
1. Service Deployer initiates the deployment procedure by requesting the network 

manager to download the service code and install it accordingly.  
1.1 Network Manager fetches the network level service descriptor from the Service 

Registry to identify the service’s deployment requirements with regard to the 
network topology. 

1.2 It matches these requirements against the actual capabilities of the underlying 
network and finds out a number of candidate target environment, each of which 
consists a number of nodes. Each of these environments suits the topological 
requirements of the service. As a result of this operation, a number of mappings 
between each service component of the service and a candidate node is defined. It 
is however not sure whether the candidate nodes provide adequate computational 
resources to the service components. 

1.3 To determine one target environment, Network Manager tries out each of these 
mapping one by one. Each sends the deployment request to each of the active 
nodes of the target environment. 

1.3.1 Node manager supports the network level ASP with a selection of nodes of the 
target environment by checking whether the service component proposed in the 
mapping is deployable on the give node. In this simple scenario, it just passes the 
deployment request with its description to the Service Creation Engine, or SCE for 
short The latter resolves recursive dependencies of the service to deploy. It does so 
by parsing and processing further the service's deployment descriptor. When 
resolving dependencies, SCE has to decide which service component to chose 
from the set fulfilling the service component requirements. It does this by 
matching the service components requirements and the local capabilities of the 
node, like available container (execution environment) types or other resources 
that may be allocated by the Service Provider. The result of the dependency 
resolution process, is the so-called service tree. It is a data structure containing the 
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information on the code modules needed to be fetched and installed in the suitable 
execution environments. 

1.3.1.1 SCE fetches the node-level metainformation about the service to deploy from the 
Local Service Registry 

1.3.1.1.1 If the Local Service Registry does not contain the needed information, it contacts 
the Service Registry and downloads the needed deployment descriptors 

1.3.2 After the dependencies of the service components are resolved, Node Manager 
may fetch all missing code components onto the node. For this, it requests the 
Code Manager to coordinate further steps of the service deployment process and 
passes the service tree to it. 

1.3.2.1 Upon this request, the Code Manager checks with its internal data base whether 
each of the service components in the service tree is available on the node, i.e. its 
code module has not been downloaded and installed, and its code modules are 
stored in the local service repository. If the code module is in the local cache of the 
Local Service Repository, a local reference to the code module is returned. 

1.3.2.1.1 Otherwise, the Local Service Repository contacts the Service Repository and 
downloads the file. 

1.3.3 Now the actual installation process is started. Node Manager requests the Code 
Manager to install the downloaded code module. Optionally, the component 
installation for activatable components may be then instantiated.  

1.4 Network Manager updates the internal data base where the information about 
component installation are kept. 

Table 4. Interactions during deploying a service. 

5.4.2.3 Upgrading a service 

Upgrading of a service starts with searching the installation of the service component in the 
target system. This information is kept by the Network Manager in its internal data base. Then 
the Network Manager request the upgrade in each of identified container, in which the 
components of the given service are deployed. More details are given in Table 5 describing 
the interactions in the ASP system depicted in a collaboration diagram in Figure 32. 
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: ServiceDeployer : NetworkManager

: NodeManager

: CodeManager

Network level

Node level

: SCE

upgradeComponent()1.2.2: 

upgradeComponent()1.2: 

parseServiceComponent()1.2.1: 

upgradeService()1: 

findComponentInstallations()1.1: 
updateServiceDB()1.3: 

 

Figure 32. Collaboration Diagram: Upgrading a service 

Seq. No. Interaction description 
1. Service Deployer requests upgrading a deployed service. For that, he contacts the 

Network Manager. 
1.1 Network Manager finds out where the given service type is deployed by searching 

its internal data base where component installations are stored whenever a service 
is deployed. 

1.2 Network Manager iterates through all nodes where the service components are 
deployed and requests upgrading these components one by one. 

1.2.1. Node Manager identifies all the components that belong to the service by 
contacting the SCE that parses the service component dependencies. The 
dependencies may be already stored by the SCE so there is no need to parse the 
service descriptor. 

1.2.2 Node Manager requests CodeManager upgrading each component that has to be 
upgraded. 

1.3 Network Manager updates the internal data base where the information about 
service component installation are kept. 

Table 5. Interactions during upgrading a service. 
 

5.4.2.4 Removing a service 

Removing of a service starts with searching the installation of the service components in the 
target system. This information is kept by the Network Manager in its internal data base. Then 
the Network Manager request the component removal in each of containers, in which the 
components of the given service are deployed. 
The design of use case remove service described in section 5.2.3.6 is depicted in Figure 34. 
Table 6 below explains the interactions depicted.  
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: ServiceDeployer : NetworkManager

: CodeManager

: NodeManager

Network level

Node level

: SCE

uninstall( aContainer, aCInstallation )1.2.2: 

removeComponent()1.2: 

parseServiceComponent()1.2.1: 

removeServiceComponent()1: 

findComponentInstallations()1.1: 
updateServiceDB()1.3: 

 

Figure 33. Collaboration Diagram: Removing a service 

 
Seq. No. Interaction description 
1. Service Deployer requests removing a service deployed before. For that, he 

contacts the Network Manager. 
1.1 Network Manager finds out where the given service type is deployed by searching 

its internal data base where component installations are stored whenever a service 
is deployed. 

1.2 It can iterate through the nodes where the service components have been deployed 
and request removing the components that belong to the given service.  

1.2.1 Node manager coordinates the removal process on its node. It iterates all the 
components to remove and requests all dependent components from the SCE. 

1.2.2. Code Manager removes then all dependent components unless they are not used by 
component installations. 

1.4 Network Manager updates the internal data base where the information about 
component are kept. 

Table 6. Interactions during removing a service. 

5.4.2.5 Withdrawing a service 

The design of use case withdraw service described in section 5.2.3.7 is depicted in Figure 34.  
Table 7 explains the interactions depicted.  
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: ServiceProvider

: NetworkManager

: ServiceRepository

: ServiceRegistry

deleteCodeModule()1.3: 

unregisterService()1.2: 
fetchService()1.1: 

withdrawService()1: 

 

Figure 34. Collaboration Diagram: Withdrawing a service 

 
Seq. No. Interaction description 
1. Service Provider requests withdrawing his service. The service is referred by its 

name.  
1.1 Network Manager access the service registry to fetch the meta-information on the 

given service. It parses the information to identify the code modules related to the 
service. 

1.2 Network Manager removes the metainformation related to the service.  
1.3 It also removes the identified code modules from the Service Repository.  

Table 7. Interactions during withdrawing a service. 
 

5.4.2.6 Service Description 

Service composition and their deployment requirements are expressed in terms of service 
descriptors.  
The process of deployment is split into two phases for the sake of separation of concerns, the 
service description has been split into two types of service descriptors. Network and node 
level descriptors. Whereas the network-level descriptor describes network issues including 
identifying nodes of the target environment for a given service with regard to the topological 
service requirements and network Quality of Service requirements, the node-level ASP is 
concerned with node specific requirements, including underlying technology and 
dependencies of other service components. 
Network–level service descriptor. It provides the generic descriptive information about the 
service, lists the top components of the services and describes the topological requirements on 
the target environment. The network-level service descriptors are processed by the network 
ASP subsystem. A network-service descriptor for the example service 
TranscoderService depicted in Figure 22 is presented in Listing 1. 

Listing 1 TranscoderService.xml: 
<?xml version="1.0" encoding="UTF-8"?> 
<NETWORK_SERVICE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="FAIN_NETWORK_LEVEL_DESCRIPTOR.xsd" 
xsi:type="NETWORK_SERVICE"> 

    <DESCRIPTION> 
        <SERVICE_NAME>TranscoderService</SERVICE_NAME> 
        <SERVICE_ID>extended_transcoder_pure_java</SERVICE_ID> 
        <PROVIDER>AAA</PROVIDER> 
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        <VERSION>2.1</VERSION> 
        <SIGNATURE>0x1234ab006f8b11fa8c</SIGNATURE> 
        <CLASS>economy</CLASS> 
        <LICENSE>0.2</LICENSE> 
    </DESCRIPTION> 
    <SERVICE_COMPONENT> 
        <NAME>Duplicator</NAME> 
        <INSTANCE_NAME>d1</INSTANCE_NAME> 
        <LOCATION> 
            <RELATIVE> 
               <NODE_ROLE>ingress 
               </NODE_ROLE> 
            </RELATIVE> 
        </LOCATION> 
    </SERVICE_COMPONENT> 
    <SERVICE_COMPONENT> 
        <NAME>TXengine</NAME> 
        <INSTANCE_NAME>tx1</INSTANCE_NAME> 
        <LOCATION> 
            <RELATIVE> 
               <NODE_ROLE>egress 
               </NODE_ROLE> 
            </RELATIVE> 
        </LOCATION> 
    </SERVICE_COMPONENT> 

</NETWORK_SERVICE> 

Node-level service descriptor. It describes a service component and its requirements. Like the 
network-level descriptor, it also provides generic descriptive information about the component 
including the component name, provider and its release version. The second part describes the 
configuration data needed to configure and activate the component. The data is as properties 
in a similar way as defined in the component model.  
The last part of the service descriptor is dependent on the class of service component 
described. For a simple implementation component. this part contains a reference to a code 
module and identifies the target environment where the code module is to be installed. It also 
contains EE-specific information, which is used to perform EE-specific part of deployment 
process. It may also specify the computational resource needed by the component. 
The service descriptor of an abstract component holds information about required sub-
components and how they are to be bound to each other in order to perform the expected 
functionality. Finally, a compound implementation is a mixture of the two classes above, and 
hence contains both sets of information. Listing 2 presents the node-level descriptor for the 
example component TranscoderEngine. 

Listing 2 TranscoderEngine.xml: 
<?xml version="1.0" encoding="UTF-8"?> 
<SERVICE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="FAIN_NODE_DESCRIPTOR.xsd" xsi:type="COMPONENT"> 
 <DESCRIPTION> 
  <SERVICE_NAME>TranscoderEngine</SERVICE_NAME> 
  <SERVICE_ID/> 
  <PROVIDER>AAA</PROVIDER> 
  <VERSION>1.1</VERSION> 
 </DESCRIPTION> 
 <PROPERTIES> 
  <PROPERTY> 
   <KEY>mainClassName</KEY> 
  

 <VALUE>org.ist_fain.services.transcoder1.TranscoderManager</VALUE> 
  </PROPERTY> 
  <PROPERTY> 
   <KEY>mainCodePath</KEY> 
   <VALUE>/usr/local/jmf-2.1.1/lib/jmf.jar:/usr/local/jmf-

2.1.1/lib/sound.jar:/usr/local/jmf-2.1.1/lib:code/demux.jar</VALUE> 
  </PROPERTY> 
  <PROPERTY> 
   <KEY>AdmissionTimeOut</KEY> 
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   <VALUE>30000</VALUE> 
  </PROPERTY> 
 </PROPERTIES> 
 <ENVIRONMENT> 
  <EE_NAME>JVM</EE_NAME> 
  <EE_VERSION>1.3.1</EE_VERSION> 
 </ENVIRONMENT> 
 <CODE xsi:type="CODE_LOCATION"> 
  <CODEBASE>jvm.TranscoderService.AAA.TranscoderEngine.jar</CODEBASE> 
 </CODE> 

</SERVICE> 

The service descriptor is specified as XML schema. This technology has been chosen because 
of the platform-independent character of the language XML and its simplicity to specify, 
validate and process in automatic way because of huge availability of XML development 
support tools, including editors and parsers.  

5.4.3 Discussion 
The Active Service Provisioning system provides the advanced deployment support but only 
rudimentary support for upgrading services for distributed services. Namely, it provides the 
support for service release and withdrawal as well as service deployment and its removal. The 
most recent design of the ASP system [23] also provides capabilities for service 
reconfiguration in terms of adding or removing components to an existing running service as 
well as modification of connections between components at runtime. This reconfiguration can 
be initiated directly by the Service Deployer or by the service itself (the so called auto 
reconfiguration).  
However, this system does not support all the features needed to upgrade services in a fully 
dynamic way. The following features still have to be provided: 

• Upgrade Process Management. The ASP system follows the client-server paradigm, in 
which the ASP provides the deployment-related functionalities when requested. It 
itself is however not proactive and needs an external trigger to work, either from the 
Service Provider (Service Deployer and Provider are not distinguished in the FAIN 
business model) directly requesting a deployment-related action from the Policy-Based 
Management System that acts on behave of the Service Provider. Even though the 
Management System framework is very generic and extensible, no specialized policies 
and their enforcement modules are defined to cope with dynamic upgrades. 
Furthermore, defining such policies and implementing their logic in form of Policy 
Decision Points and Policy Enforcement Points is not trivial and their deployment 
requires running a heavy-weighted policy framework.  

• Specialized Upgrade Mechanisms. The ASP does not provide all the mechanisms 
needed to perform dynamic upgrades. In particular, upgrade algorithms have to be 
defined for different types of upgrade targets.  

• Non-functional aspects of dynamic upgrades. The ASP does not address the non-
functional requirements R8 -R11 defined in section 5.1.4. In particular, the following 
aspects are not covered:  

o Real time aspects. The mechanisms should be concerned with the real-time 
aspects The target system availability should not be reduced 

o Dependability aspects. Upgrading of a system should not make it more 
susceptible to outrages.  

o Upgrade Transparency. No mechanisms are defined to make a dynamic upgrade 
transparent to the rest of the system.  
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Consequently, in the next chapters of this thesis, it is assumed that the middleware platform 
provides the functionalities as realized by the Active Service Provisioning system. In 
particular, it is assumed that the Infrastructure enables functionalities as defined in the use 
case model described in section 5.2 and that the services to be upgraded are compliant to the 
component model described in section 5.3:  
In the subsequent chapters of this thesis, the features identified above needed to fully support 
dynamic upgrades of distributed component-oriented services will be investigated. The 
following features characteristics summarizes the approach presented: 

• A light-weighted framework for dynamic upgrade management. This framework is 
presented in chapter 6. 

• Specialized Upgrade mechanisms. The upgrade algorithms are presented in chapter 7. 

5.5 Summary 
In this chapter, a model for deployment and upgrade has been presented. The model is defined 
using the UML use cases. The model identifies the main actors involved in the deployment 
process, and the upgrade process in particular, and describes the key capabilities that the 
support system has to provide. The system upgrade is considered as a special case of software 
deployment, in which a service in redeployed so that the same service that has been previously 
deployed is replaced. A dynamic upgrade is then a special case of service upgrade, in which 
additional constraints have to be taken into account during the process.  
The chapter also introduces a component model defining basic concepts describing software 
in subsequent phases of its life cycle including: implementation, deployment and runtime. The 
focus of the component model is set on the deployment phase.  
Finally, one realization of the introduced concepts in the presented model is briefly described. 
This realization is based on a prototypical implementation of the FAIN Active Service 
Provisioning system that the author of the thesis has contributed to. The realization 
description concludes with a summary of the capabilities missing in the ASP system to fully 
support dynamic upgrades. These capabilities include a specialized upgrade management and 
specialized dynamic upgrade mechanisms. These mechanisms are the main topic of the next 
chapters of this thesis.  
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6 Managing Dynamic Upgrades 
The management of highly available distributed systems involves activities to adapt and 
customize the system to the current requirements of its users. Dynamic upgrades allow to 
introduce the necessary changes to a running system without compromising its availability. As 
the process of upgrading may itself be a complex task that has to be done multiple times 
throughout the system’s life span, an automatic support for its management could facilitate it 
and make it less error-prone. A support for well-balanced design of a management support for 
dynamic upgrades in a distributed environment is one of the research challenges for the 
designers of dynamically upgradable systems as mentioned in section 3.4. In section 5.1.5 a set 
of requirements on a dynamic upgrade support system were formulated.  
In this chapter, the domain of dynamic upgrade management is presented in section 6.1. In 
section 6.2, a design model for the Dynamic Upgrade Management Framework is described. It 
describes the main subsystems and their design classes and documents the key design 
decisions. The presentation of the solution design uses the UML notation [96][81] and the 
design process is based on the Unified Process. The implementation related issues are 
described in section 6.3. Finally, section 6.4 summarizes the whole chapter. 

6.1 Domain Model 
The Dynamic Upgrade Management Facility represents the entity, external to the system to be 
upgraded, that is responsible for managing the upgrade process. Its task is to: 

• Manage the service code provisioning and in particular deployment. 
• Initiate the upgrade process if the upgrade is to be triggered externally. 
• Coordinate the upgrade process which includes: 

o enforcing the upgrade management policies, 
o selecting the upgrade targets in case of multiple upgrade needed, 
o recovering the system from upgrade failures. 

While designing our solution the following assumptions were considered.  
• The application target of the Deployment and Upgrade Facility are large distributed 

systems in which management decisions would be too difficult and their enforcement 
rather intricate for a human administrator to make them. In particular, the complexity 
of the distributed software, like the dependencies between components, the 
distribution of the software components deployed in the system is fairly high.  

• The system management and supervision may be done in a distributed way, possibly 
by multiple system administrators in parallel. There is a need to coordinate their 
actions and resolve potential conflicts in the management decisions.  

• The management decisions and the mechanisms used to enforce these decisions can 
easily be separated from each other. The mechanism to perform upgrades can be 
located in the middleware platform whereas the policies may be defined based on the 
expertise of system administrators and interpreted by the management framework. 

Thus, an automatic or semi-automatic support for management of dynamic upgrades is 
beneficial. Furthermore, a policy-based approach is suitable in this context. 

6.1.1 Overview 
This overall architecture of the DUF is depicted in Figure 35. It consists of the following 
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logical subsystems: 
• DU Management Framework which is an extendable object-oriented policy-based 

framework providing support for upgrade management and coordination in 
a distributed system. The framework defines basic support for policy-based way of 
managing maintenance events in the system and dynamic upgrades in particular as 
well as a number of needed classes for controlling upgrade processes in a unified way. 
The concrete upgrade management policies and upgrade algorithms are defined in the 
following subsystems : 

o Upgrade Management Policies contains a set of predefined policies defining 
typical management schemes for dynamic upgrades. 

o Upgrade Algorithms contains a collection of different variants of upgrade 
algorithms. New algorithm implementations may be added to this collection.  

• DUF Infrastructure is a part of the solution that is located in the middleware platform. 
This infrastructure is needed by the Management Framework and Upgrade Algorithms 
to control the communication in the system parts being upgraded as well as certain 
service life-cycle management, including component implementation loading, or 
activation.  

• Upgrade Target is a part of the distributed Target System which is to be upgraded 
within an upgrade procedure. An upgrade target may consist of a component, which is 
the minimal unit of upgrade, or a set of components distributed in the system. 
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Figure 35. The architecture of the DUF and its distributed system with highlighted components 
related to the upgrade. 

Three reference points, RP for short, are defined to allow for communication between the 
framework and other components of the system. The reference points are defined by a number 
of public interfaces of the logical components between which the reference point is defined: 

• RP1 which is offered to the Service Provider and allows for configuring the DU 
Management Framework. The Service Deployer may set up the framework to manage 
and coordinate upgrades in the system using the existing upgrade management policies 
and upgrade mechanisms.  

• RP2 is an interface defined for communication between the DU Management 
Framework and the Target System. It is used for coordinating and controlling a part of 
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the middleware platform relevant to the upgrades, called DUF Infrastructure. The 
interface is also use for retrieving information about the system for evaluating the 
upgrade management policies. 

• RP3 is an interface which enables extending the DU Management Framework by 
plugging in new management policies or upgrade mechanisms. In order for the policies 
and upgrade mechanisms to be plugged in, they have to implement certain interfaces 
and make use of the interfaces provided by the framework as defined in RP3.  

 

6.1.2 Conceptual Classes 
Figure 36 depicts more details of the DUF architecture. The architecture comprises the 
following conceptual classes: 

• UMFServer is the entry point class of the DUMF. Its role is to accept upgrade 
requests from the service deployer, check their correctness and transform them into 
upgrade management policies. 

• UpgradeInitiator is a class in the DUMF responsible for triggering upgrade 
processes. It does so by either regular evaluation of the triggering conditions of a set of 
upgrade initialization policies which are passive or by letting active policies to initiate 
corresponding upgrade processes by themselves. 

SystemMonitor is a subsystem that monitors the state of the distributed system and 
reports it to the upgrade initiator. This information is needed to check whether the 
triggering conditions of the policies are fulfilled and the corresponding policy action 
can be started. The functionality of this class is directly related to the upgrade support 
and is rather of general character. As such, it is skipped in further design of the system 
elaborated in this thesis. 

• UpgradeProcess is an instance of a deployment and management process that deals 
with exchanging programming artifacts comprising a target system. An upgrade 
process is determined by a concrete Upgrade Target and an Upgrade Algorithm.  

• UpgradeAlgorithm is an algorithm that defines the steps to follow during a system 
upgrade process. Upgrade algorithms belong to upgrade mechanisms and are 
controlled by the DU Management Framework described above. There are a number of 
algorithms possible and each of them may be applied only in a specific context. An 
upgrade algorithm depends on the upgrade target and the parameters of the upgrade 
process, such as allowed dynamics of change. A number of algorithms are predefined 
in this thesis and new ones can be smoothly added to the framework. 

• UpgradeTarget represents a set of component runtime instances that are to be 
upgraded in the given upgrade process. An upgrade target is one of the attributes 
determining an UpgradeProcess. 

ComponentRuntimeImageInstance represents a single runtime instance of 
a component. Each instance is part of a runtime image of the distributed system; it runs 
in a container which is deployed in a host that belongs to the target system. Each 
runtime instance implements one ComponentImplementation. 

ComponentImplementation abstracts an implementation of a component. 
A component implementation is determined by its code which contains a number of 
software artifacts specific to the programming language of the implementation.  

UpgradePoint abstracts an upgrade point, which is defined as a point in the component 
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implementation code, which when reached enables to freeze the execution of the 
component runtime instance. Upgrades points are candidates when an  upgrade process 
on runtime instances of this component implementation can start. 

ComponentRuntimeImageInstance

ComponentImplementation

UpgradeAlgorithmUpgradeProcess

UpgradeInitiator

SystemMonitor UpgradeTarget

UpgradePolicy

UpgradePoint
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Figure 36. The conceptual classes of the DUF system. 

6.1.3 Upgrade Management Dimensions  
The process upgrade is a complex task and the way it is done may vary in many aspects. The 
objective of the upgrade management is to provide a means to control how and when the 
upgrade is performed within the permissible limits. The following dimensions of the upgrade 
process are distinguished: 

• Initiation Source, meaning who or what initiates the upgrade process. 
• Time, meaning when the upgrade process is initiated. 
• Range, meaning a part of the system that the upgrade may influence. 
• Atomicity, meaning the atomicity of the upgrade process. 

Below these dimensions are described in more detail.  

6.1.3.1 Initiation Source 

This dimension concerns the way the upgrade process is triggered. Two main initiation 
sources of the upgrade may be distinguished:  

• Externally. In this case, an entity external to the system to upgrade is responsible to 
start the upgrade process. The initiation may be started as a consequence of 
deployment of new software to the system or as a reconfiguration request of the system 
manager. 

• Internally. The system itself checks the condition triggering the upgrade and starts the 
upgrade process. The upgrade is then a consequence of a state change of the system. 
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6.1.3.2 Time 

Section 3.4.3.3.3 introduces the problem of finding an appropriate time when the upgrade can 
be carried out. On the other hand, the system handling upgrades may propose starting an 
upgrade process for some management related reasons at a given point in time. Because of the 
potential mismatch between a necessity and a feasibility to perform an upgrade in the target 
system, this thesis differentiate the planned upgrade time and the real upgrade time, when the 
upgrade process actually is started . Even though, the planned upgrade time may be equivalent 
to the real upgrade time, in general, the real upgrade time follows the planned upgrade time. 
This delay is related with the need to prepare the upgrade target for an upgrade.  
There are some a number of possible predicates that may describe when to initiate the process 
of upgrading a system on the fly. With regard to the upgrade time of a component, an upgrade 
process may commence for instance: 

• On new code availability. Whenever a new code implementing the object to be 
upgraded is available to the upgrade system, the upgrade may commence.  

• On time trap: The upgrade may be scheduled at a given time point. 
• On certain system state. The system state may be related to: 

o The system load. An upgrade may recommended only when the upgrade target 
is not actively processing any requests or is loaded to a certain extend.  

o Malfunctioning detection. The upgrade be triggered by a monitoring subsystem 
that discovers malfunctioning of the given software component expressed, for 
instance, by frequent crashes of the component.  

6.1.3.3 Range 

This dimension describes the part of the system that the upgrade process is to be applied. This 
unit of upgrade range is called an upgrade zone. In the distributed component systems, the 
upgrade zone can be: 

• container,  
• node, or  
• domain consisting of a set of nodes. 

Upgrade target multiplicity is another parameter related to the upgrade range. As the upgrade 
concerns the change of the component type, which may be instantiated in a running system, 
the runtime instances impacted by this change have to be described. The runtime entities may 
be: 

• a certain instance of a component type, 
• all instances in the upgrade zone (e.g. all the instances running on a specific node) 

6.1.3.4 Atomicity 

Another issue of upgrade management concerns the way the component is to be upgraded. 
The upgrade may be seen as: 

• an atomic process, in which the component is upgraded as if it was performed in an 
instance, i.e. other components use either the old version of the component or the new 
one at a time. This strategy may be used when two versions of a component running in 
parallel and processing requests are not wished in the system.  

• not atomic process, in which some components use still the old version while some 
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others use the new version of the component. This strategy may be used when 
invocations started before the real upgrade time are to be completed using the old 
version of the component, whereas the requests that came after the new version of the 
component is up and running, may be processed by the new component [87].  

6.2 DUF Design Model 
This section presents the details of the design model for the Deployment and Upgrade Facility. 
The model is composed of design classes that are contained in a number of packages. Section 
6.2.1 gives an overview of the packages and the subsequent sections give more details of the 
classes, their relationships and interactions. 

6.2.1 Package Overview 
The DUF facility is comprised in the following packages: 

• DUF.ComponentModel that contains rudimentary definitions of the component 
model. These definitions underlie the definitions in package TargetSystem and 
Infrastructure. 

• DUF.DUMF is the core package of the DUMF framework. It contains definitions 
related to managing upgrade processes in the system as well as external interfaces to 
other subsystems including the Service Deployer and the Upgrade Algorithms. 

• DUF.DUMF.Policies defines the modeling artifacts related to the policies for 
managing the upgrade processes.  

• DUF.Infrastructure defines interfaces abstracting the functionality of the 
middleware platform needed to control and coordinate upgrades in the system. 

• DUF.TargetSystem defines interfaces for communication with the target 
components that should be upgraded in the system. 

• DUF.UpgradeAlgorithms includes definitions related to upgrade algorithms. 
The concrete algorithm implementations may be inserted in this package or in 
specialized packages. 

The package structure is shown in Figure 37. The diagram shows the packages listed above, 
their main interfaces and abstract classes explained later as well as package interdependencies. 
ComponentModel provides basic meta-definitions that are used in all other packages and in 
particular in the TargetSystem that contains definitions related to upgradability in the 
target software systems. As DUMF provides basic interfaces and mechanisms supporting 
upgrade management, these definitions are used in package UpgradeAlgorithms 
comprising the implementations of upgrade algorithms. Both packages 
UpgradeAlgorithms and DUMF depend on package Infrastructure with definitions for 
underlying mechanisms offered by the middleware platform. The model elements related to 
policy management are encapsulated in a package DUMF.Policies internal to DUMF. The 
policy-based management is thus not visible outside DUMF. This allows for changing the 
paradigm to handling upgrade management in future design and prototypes. 
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Figure 37. The DUF package structure and package interdependencies. 

6.2.2 ComponentModel package 
This package comprises basic notions of the underlying component model, including 
component, container or code module. These definitions are described in section 5.3. 

6.2.3 DUMF package 
This package comprises model elements that are related with Dynamic Upgrade Management. 
The classes in the package allow for requesting upgrades in the system, managing a number of 
upgrades processes independently requested and extending the framework by both new 
upgrade management policies and upgrade algorithms.  

6.2.3.1 Public Definitions 

The following interfaces are defined in package DUF.DUMF: 

• DUFExternal is an interface that is the DUF access interface for the external 
Service Deployer. It allows the Service Deployer to configure the DUF so that it can 
automatically perform the upgrade requested. The DUF configuration is defined as 
a sequence of configuration policies. This interface defines operations to: 

o request_upgrade() for requesting the DUMF facility to take control over 
a given upgrade process according to the given parameters. 

o cancel_upgrade() for cancelling on demand an upgrade process that has 
already started or has been scheduled to start in as previously requested by the 
Service Deployer. 



 

  106 

• UpgradeCoordinator is an interface that defines operations related to 
coordinating an upgrade process. In particular, it provides the following operations: 

o initiate_upgrade() supports triggering an upgrade process. It is usually 
used by the UpgradeInitiatorImpl when the latter positively evaluates 
the triggering conditions of the associated upgrade initiation policy. 

o register_upgrade_algorithm() allows for associating an 
UpgradeAlgorithm with the UpgradeCoordinator. 

• UpgradeAlgorithm is an interface which has to be implemented by every upgrade 
algorithm. The operations offered by this interface allow for: 

o performing the subsequent steps of the algorithm whereas an algorithm is a N-
phase transaction, where N>=1. Each phase of the algorithm is atomic from the 
perspective of the whole upgrade algorithm. It starts when executing operation 
prepare() and its effects can be made permanent by calling commit()or 
undone if needed by calling rollback(). The state diagram of an upgrade 
algorithm is shown in Figure 38. 

o algorithm configuring by providing parameters customizing the algorithm to 
the needs of the upgrade process (operation configure()). 

o retrieving some general characteristics of a concrete upgrade algorithm 
supporting this interface, including the number of phases (operation 
phases()). 

phaseComplete

configured

recoveringinPhase

recovercommit

fail

configure

prepare

commitLastPhase

succeed

 

Figure 38. The state diagram for an upgrade algorithm. 

• UpgradeAlgorithmDescription represents a meta description of an 
algorithm. The description contains information on the upgrade target type (operation 
getAlgorithmName()) that the algorithm is applicable and some attributes 
allowing to describe the properties of the algorithm, including (operation 
getUpgradeTargetType()). 

• AlgorithmPool is an interface that abstracts a searchable container of upgrade 
algorithms. Upgrade algorithms may be registered and unregistered at runtime. The 
algorithms have different characteristics and applicability and there is a need to choose 
one that is most suitable for the given UpgradeProcess. The algorithms are 
searched after some criteria that are matched against the algorithm description.  
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6.2.3.2 Main Classes 

The main model elements of the DUMF package are depicted in Figure 39. It also depicts 
classes and interfaces from other packages (Policies and ComponentModel) that are used by 
the DUMF model elements. The classes are filled with white color. 
Many classes of the DUMF package implement the public interfaces defined above. The 
example of these classes include: UpgradeProcess, UpgradeIntitatorImpl, 
AlgorithmUpgradePoolSimpleImpl that implement the corresponding interfaces: 
UpgradeCoordinator, UpgradeIntitator and AlgorithmUpgradePool. The 
classes add some protected and private methods and attributes which define the logic of the 
operations contained in the interfaces. The following paragraph give more details on some of 
the classes defined. 

• AlgorithmPoolSimpleImpl implements a searchable container keeping 
upgrade algorithm types. The container actually keeps a list of object instances of 
UpgradeAlgorithmDescriptionImpl. The list has typically a few element 
objects. The searching is based on simple iterating through the list and comparing the 
algorithm characteristics stored in the algorithm attributes against the constraints in the 
lookup criteria. The list is open-ended.  

• UpgradeAlgorithmDescriptionImpl implements interface Upgrade-
AlgorithmDescription. It is designed as an abstract factory[28] and the method 
create() has to be overwritten by a factory class of a concrete upgrade algorithm. 

• UpgradeProcess is a class representing a concrete upgrade process determined by 
the upgrade target. Upgrade process are triggered by the UpgradeInitiator and 
coordinate the activities related to the upgrade by following the 
UpgradeAlgorithm associated with the process. The class implements thus 
interface UpgradeCoordintator. An UpgradeProcess follows exactly one 
UpgradeAlgorithm. It is designed to start the consequent phases of the associated 
upgrade algorithm and handle the phase failures reported by the algorithm by repeating 
the failure. A more complex coordination schemes can be added to the framework by 
inheriting this class.  

• UpgradeAlgorithmDescriptionImpl is an abstract class that implements 
interface UpgradeAlgorithmDescription. It is designed as an abstract 
factory[28] and method create() has to be overwritten by a factory class of 
a concrete upgrade algorithm. 

• UMFServer is a class that provides access logic to the DUMF framework for the 
Service Deployer. It allows the latter to request the facility to perform upgrades of 
given parts of the target system, the UpgradeTarget on the given conditions. 
Whenever the server deployer has requested an upgrade, the facility takes 
responsibility of detecting whether and when the given condition occurs and triggering 
the corresponding actions leading to the upgrade. The class is responsible for accepting 
the service deployer’s request, checking its validity and translating the request into 
a form for easy further processing with the DUF facility. 
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Figure 39. Class diagram for the DUMF package. 

• UpgradeInitiatorImpl implements the process of continuously evaluating the 
upgrade initiation policies and determining the start time of the upgrade processes 
managed by the DUF facility. The activity diagram for the UpgradeInititor 
object is depicted in Figure 40. 

• UpgradeRequestInfo is a simple data set class. It represents an upgrade request 
that is ordered by the Service Deployer. The request is created and filled in with the 
upgrade parameters including the upgrade target and the event that should trigger the 
upgraded, by the latter and sent to the DUMF framework for execution.  
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Figure 40. An activity diagram for the UpgradeInititorImpl. 

 

6.2.3.3 Interactions  

This section describes the interaction between the key components of the DUMF framework. 

6.2.3.3.1 Handling an upgrade request 
When a Service Deployer wants to request an upgrade in the target system, he has to contact 
the DUF facility. It is realized by accessing object UMFServer implementing interface 
DUFExternal as shown in Figure 41. ServiceDeployer creates and sends an upgrade 
request describing the details of the upgrade (steps 1-3). Such an upgrade request includes 
information on the upgrade target and the planned upgrade time. The planned upgrade time 
may depend on the system state. Internally, such a request is translated into an upgrade 
initialization policy validated (step 5) and stored with the UpgradeInitiator. The latter 
object is responsible for evaluating all upgrade initiation policies registered (step 8) and 
triggering upgrade processes when the corresponding triggering condition is fulfilled. In this 
case, object UpgradeCoordinator is created and configured according to the specifics of 
the initial upgrade request so that a corresponding upgrade process can start (step 9-10). 
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: UpgradeCoordinatorImpl

: UpgradeRequestInfo

: ServiceDeployer : UpgradeInitiator: UMFServer

while(true) do
  { ... }

new()9: 

initatiate_upgrade()10: 

new()1: 

return  7: 

return  2: 

insert_policy( upg_init_policy )4: 

validate_policy()5: 

check_policy_set()8: 

upgrade_service( upgrade_info )3: 

return  6: 

 

Figure 41. Handling an upgrade request(sequence diagram). 

6.2.4 UpgradeAlgorithms package 
This package contains definitions related to upgrade algorithm. It provides some abstract 
classes and interfaces that has to be implemented by concrete upgrade algorithm classes. The 
classes defined currently in this package define some simple classes that help with the upgrade 
algorithm classification. The concrete implementations of the upgrade algorithm may also 
have some implementation parts that is platform specific. This package is thought for the 
platform independent parts of the algorithm implementation. The other part of the algorithm is 
placed in the platform-related packages. These packages are named: 
DUF.UpgradeAlgorithms.Jgroup for the Jgroup/ARM[63] middleware platform or 
DUF.UpgradeAlgorithms.CORBA for the CORBA[73] middleware platform. 

6.2.4.1 Public Definitions 

The following abstract classes are defined in package DUF.UpgradeAlgorithms : 

• ActReplServUA defines an abstract class for upgrade algorithms suitable for 
upgrading actively replicated servers. Concrete implementations, like the one 
presented in section 7.2.4, of such algorithms should be derived from this class 
according to the Strategy[28] design pattern. 

• PassReplServUA defines an abstract class for upgrade algorithms suitable for 
upgrading passively replicated servers. Concrete implementations of such algorithms 
should be derived from this class according to the Strategy[28] design pattern. 

• NonReplUA defines an abstract class for upgrade algorithms suitable for upgrading 
non replicated servers. Concrete implementations of such algorithms should be derived 
from this class according to the Strategy[28] design pattern. 
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6.2.4.2 Main Classes 

The following classes are defined in package DUF.UpgradeAlgorithms : 

• NRSUA defines a concrete class implementing a upgrade algorithms suitable for 
upgrading non-replicated component instances. The details of the algorithm design and 
implementation is described in section 7.1. 

• ARSUA defines a concrete class implementing a upgrade algorithms suitable for 
upgrading actively replicated servers in Jgroup. The details of the algorithm design and 
implementation is described in section 7.2. 

• PRSUA defines a concrete class implementing a upgrade algorithms suitable for 
upgrading passively replicated servers in Jgroup. The details of the algorithm design 
and implementation is described in section 7.3. 

UpgradeAlgorithms

NonReplServUAPassReplServUA

NRSUAPRSUA

UMFCallback

+upgrade_point_reached( target : Upgradable ) : void

UpgradeAlgorithm

+commit()
+configure()
+phases()
+prepare()
+rollback()

ActReplServUA

ARSUA

 

Figure 42. Class diagram for UpgradeAlgorithms package. 

6.2.4.3 Interactions  

The package contains definitions of the abstract classes and interfaces that are then extended 
by concrete implementation of the upgrade algorithms. The upgrade algorithms are usually 
independent from other algorithms and therefore there is no inter-algorithm interactions. The 
details of the class interactions specific to an upgrade algorithm are described in sections on 
the implementation of this algorithm.  

6.2.5 Infrastructure package  
This package describes classes and interfaces to be implemented by a traditional component-
based middleware platform that the DUF needs. 
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6.2.5.1 Public Definitions 

The following interfaces are defined in package DUF.DUFInfrastructure: 

• CodeManager provides methods for managing the code modules. It allows for: 
o Downloading the code modules from the service code repository.  
o Installing the downloaded code into a given container (execution environment) 

as well as uninstall it from the container. 
o Loading and unloading the installed code into a given instance of a container. 

• ComponentActivator defines methods for managing life cycle of the 
components. It offers the following functions: 

o Component activation, which makes the component runtime image active in 
that its operations can be accessed and instances of the component runtime 
image can be created in the container.  

o Component deactivation, which makes the component runtime image inactive 
in that no operations on it and its instances in the container, including instance 
creation, can be performed.  

o Blocking the invocation dispatching, which makes the container stop 
dispatching incoming requests and messages to a given component runtime 
instance. This method is used for making the component instance quiescent to 
perform the upgrade.  

o Continuing the invocation dispatching, which makes the container (re)start 
dispatching requests to a given component runtime instance  

o Creation of a component interface reference that can be used for accessing the 
component from remote software. 

o Assigning a reference to a component runtime instance.  
• Discovery describes operations for discovering component runtime instances 

running in the system as well for advertising components so that they can be accessed 
by other entities in the system. 

6.2.5.2 Main Definitions 

The following classes are defined in this package: 
DiscoveryPattern is a class that includes some selected information on the 

component runtime instance. It is used to advertise the component runtime instance in 
the system and for its later discovery, where the DiscoveryCriteria are matched 
against. 

• DiscoveryCriteria is a class that abstracts criteria defining a set of component 
runtime. It offers a method that evaluates a given piece of information on a component 
runtime instance.  
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Discovery

+advertise( aComponentInstance : ComponentRuntimeImageInstance [DUF::ComponentModel], discoveryInfo : DiscoveryPattern ) : void
+@discover( theDiscoveryCriter ia : DiscoveryCrieria ) : ComponentRuntimeImageInstance [DUF::ComponentModel][]

CodeManager

+download( CodeModule ) : LocalRef
+install( localRef : LocalRef, aContainer : Container ) : void
+load( aCInstallation : ComponentInstallation, aContainer : Container ) : ComponentRuntimeImage
+uninstall( aContainer : Container, aCInstallation : ComponentInstallation ) : void
+unload( aCInstallation : ComponentInstallation, aContainer : Container )

ComponentActivator

+activate( object : ServerObject ) : void
+block_invocations( object : ServerObject )
+createRef() : ServerObject
+deactivate( component : Component ) : void
+map( objectRef : ServerObject, servant : ComponentRuntimeImage ) : void
+unblock_invocations() : void

DiscoveryPattern

-@aService : ComponentRuntimeImageInstance [DUF::ComponentModel]
-properties : Properties

DiscoveryCriteria

+evaluate( value : DiscoveryPattern ) : boolean

 

Figure 43. Main definitions of package DUF.DUFInfrastructure 

6.2.5.3 Interactions  

The class interactions within this package are not described here. The interfaces and abstract 
classes describe typical functionalities of traditional middleware or operating system and thus 
should be implemented by the underlying middleware platform. 

6.2.6 TargetSystem package 
This package defines interfaces and classes for communicating with upgradable components. 
Whereas some interfaces have to be implemented by the upgradable components 
(Upgradable), other are used for the upgradable components when accessing the DUF. The 
implementation of the interfaces provided by the upgradable components has to be currently 
provided by the component developer. In future, some automation may be supported by the 
DUF.  

6.2.6.1 Public Interfaces 

The following interfaces are defined in package DUF.TargetSystem: 

• UpgradeTarget describes the target of an upgrade. It is a list of tuples (host, 
container, a list of component instances), where the list contains component instances 
running in a give container on a host that shall be upgraded. 

• Upgradable describes the key interface that an upgradable has to provide. This 
interface defines methods used for making a component quiescent and then transfering 
the state of the component runtime image instance.  

• UMFCallback describes an interface to be implemented by the upgrad algorithm. It 
defines methods for being notified of reaching an upgrade state by the target 
component.  
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TargetSystemUpgradeTarget

+getNextUpgradable() : Upgradable

Upgradable

+get_state() : State
+reach_upgrade_point( callback : UMFCallback ) : void
+reach_upgrade_point() : long
+set_state( theState : State, upgrade_point : long )

State
UpgradePoint

-id : long

+UpgradablePoint( theId : long )

UpgradableStub

+create()
+get_state() : State
+reach_upgrade_point() : long
+reach_upgrade_point( callback : UMFCallback ) : void
+set_state( theState : State, upgrade_point : long )
+UpgradableStub( upgradable : Upgradable )
+upgrade_point_reached( up : long ) : boolean

UMFCallback

+upgrade_point_reached( target : Upgradable ) : boolean

1..*

0..1

 

Figure 44. Main classes and interfaces in package DUF.TargetSystem. 

6.2.6.2 Main Classes 

Figure 44 shows the main classes of package DUF.TargetSystem. Their details are 
described below: 

• State of a component represents the history of component computations. In 
practice, it is usually expressed by a set of internal variables that describe the results of 
the computations and by the system variables that describe that execution state. Most 
of the variables describe or point to the objects co-located with the component. Some 
other internal variables can be pointers referring to remote components. Managing 
a transfer of this part of the state is considered a special case of state transfer. 

• UpgradePoint describes the point in the execution of a component instance in 
which it is possible to perform a replacement. The points can be determined manually 
or in a semi-automated way. Potential candidates for upgrade points: 

• Places where threads block (see [37]). Requirements discussed in [37] have to 
be fulfilled; this approach depends on the language and the OS calls threading 
characteristics. 

• Places where the control enters/exists programming entities, like procedures, 
object/classes. Approach depends on the programming language structuring 
concepts. 

• UpgradableStub describes a default implementation of the Upgradable 
interface for one-threaded component implementations. The implementation of 
method reach_upgrade_point() saves the request and the callback reference. 
As soon as it is notified by the component instance of reaching an upgrade point or 
only a given one by calling method upgrade_point_notify(), it forwards this 
information to the callback. The component instance is blocked in at this upgrade 
point waiting for the return of the upgrade_point_notify() method. See 
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section 6.2.6.3 for the sequence diagram visualizing these interactions. 

6.2.6.3 Interactions 

The algorithm allowing for reaching an upgrade point is component specific. In general, it 
may be a non-instantaneous process that needs completing a certain amount of computations 
performed by the component implementation. For certain class of component 
implementations, the framework defines a default mechanism that facilitates decoupling the 
point in time when a request to reach an upgrade point is issued from the time in point an 
upgrade point is actually reached. The component implementations have to fulfill the 
following constraints: 

The component implementation is one-threaded. 
• The implementation notifies the framework, that is its associated UpgradableStub, 

of reaching subsequent upgrade points as they occur during the component execution. 
The time gap between two subsequent upgrade points is bound.  

oldVersion : TestServer1 newVersion : TestServer1: UpgradableStub: NRSUA

return   false 2: 

get_state()6: 

return   true 10: 

set_state( theState, upgrade_point )8: 

reach_upgrade_point( callback )3: 

upgrade_point_reached()4: 

upgrade_point_reached()1: 

return  7: 

return  9: 

upgrade_point_reached( target )5: 

 

Figure 45. Reaching an upgrade point and a state transfer.  

Figure 45 depicts example interactions occurring during the process of reaching an upgrade 
point as supported by the UpgradeStub. The interactions involve the DUF facility 
represented here by the NRSUA upgrade algorithm, the UpgradeStub and two versions of 
an upgradable component occur in the sequence presented in Table 8: 
 
Seq. No. Interaction description 
1. The old instance of the upgradable component notifies its upgradable stub of 

reaching an upgrade points whenever it reaches one. 
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2. After checking that there are no pending upgrade requests, the 
UpgradableStub returns immediately control to the old instance. 

3. The upgrade algorithm decides the upgrade the component instance and issues an 
asynchronous request to the component, that is, its UpgradableStub. The 
callback reference is passed at this call.  

4. Whenever a next upgrade point is reached by the old instance of the component, it 
the UpgradeStub is notified calling upgrade_point_reached(). 

5. This time the UpgradeStub does not return control back to the old instance and 
instead forwards the notification of reaching an upgrade point to the upgrade 
algorithm. 

6. Now, the actual state transfer may start. The upgrade algorithm gets the state of the 
old component instance, which execution is now blocked waiting for the return 
from invocation 4. 

7. The component state is returned to the algorithm. 
8. The algorithm may transfer this state to the new instance of the component that has 

been already instantiated. The upgrade point is also passed to bring the component 
instance to an execution state equivalent to that one returned by the old component 
instance in interaction 4. 

9. After the new component is set with the state transferred, the state transfer 
successfully terminates  

10. The execution control is returned the old component instance. The old component 
is notified of a state transfer and may be deactivated.  

Table 8. Reaching an upgrade point with support of UpgradableStub. 
 

6.2.7 Policies package 
The complexity and variety of parameters determining the way that the process can be 
performed needs to be expressed in a simple an consistent way. Policy-oriented management 
provides a good approach to express the multifold aspects of management process, i.e. the 
policies.  

6.2.7.1 Policy Information Model 

Upgrade management policies are used to manage the initiation of the upgrade process. They 
allow to specify or declare a condition under which certain management action related to 
dynamic upgrade should be carried out.  
The policy model used in our solution is based on some of the concepts introduced in the 
Policy Core Information Model defined by the IETF community[64]. The model is based on 
the declarative approach in that it does not define either the algorithm to produce a result 
using the attributes or an explicit sequence of steps to produce a result.  
Figure 46 depicts a class diagram with the core classes of the policy information model. The 
classes represent a simplified policy information model that is suitable for managing dynamic 
upgrade processes in a distributed system. 
A PolicyRule is defined by a number of policy conditions, each represented by class 
PolicyCondition and a number of policy action, represented by class PolicyAction. 
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The basic idea of a policy is that a policy rule checks its policy conditions and if any one or all 
of them, depending whether it is a ORed or ANDed policy rule, is fulfilled, the policy action 
is triggered by calling its start operation.  
Policy condition evaluation can be:  

• passive if it is the external entity to the policy condition that regularly calls 
fulfills operation on the policy condition. This type of policy conditions is 
abstracted with abstract class PassivePolicyCondition. 

• active if it is the policy condition object itself that notifies the policy manager of the 
condition being fulfilled. This type of policy conditions is abstracted with abstract 
class ActivePolicyCondition. 

Policy rules can be put together in a container PolicyGroup. Policies can be added, 
removed or retrieved from a PolicyGroup. Policy groups are used to manage sets of 
related policy rules.  

PolicyTimePeriodCondition

...

-delayed_reset() : void
~set_true() : void
...

PolicyGroup

+add() : long
+add( policy : PolicyRule ) : long
+get_policies() : PolicyRule[]
+remove() : void
+remove( policy_tag : long ) : void

PolicyRule

+enforce() : void
...

ActivePolicyCondition

+checkCondition() : void

PassivePolicyCondition

PolicyCondition

+fullfills() : boolean

PolicyAction

+start() : void

0..1

-rules 1..*

-condition
1

-rule1

 

-action

 

 

Figure 46. The upgrade management policy model. 

6.2.7.2 Policy Types 

In the DUMF framework, a few upgrade management policy types are pre-defined. These 
policies include: 

Upgrade Initiation Policy, which defines when an upgrade process should be started. The 
policy allows defining a set of calendar events, potentially reoccurring, that determine 
the start of an upgrade process.  

Upgrade Completion Policy, which defines when an upgrade process should terminate. If 
an upgrade is still being carried out, the upgrade process is stopped and cancelled.  

• Some other types of policies may include: 
Upgrade Failure Policy, which defines how to proceed with the upgrade process that has 

failed for some reason that cannot be coped with by the upgrade algorithm. 
Upgrade Process related Policies. parameter of the upgrade process (e.g. the minimum 

replication level). 



 

  118 

Upgrade Validation, which enables managing the upgrade validation process. Policies of 
this type define under what condition and how to validate an upgrade process that has 
successfully terminated. 

6.2.7.3 Policy Condition Determinants 

The Policy Condition can be determined by evaluation logical expressions applied to the 
following factors: 

• State of the Target System. The system state includes the current or predicted 
availability of system’s computational and communicational resources. Typical 
examples of such state constraints are system load threshold, request queue length 
threshold in a server to be upgraded or simply an calendar event. The constraints may 
be also defined on the system state history.  

• External factors. These factors do not depend on the state of the target system and can 
be evaluated only using some input from external entities. Typical examples of such 
factors include code availability of software deployed in the target system or an 
immediate upgrade request issued explicitly by the service deployer. 

6.2.7.4 Policy Specification 

Various specification methods and formats exist in the literature. In our approach, the 
following were considered:  

• Type-based Declaration. It allows expressing the type of the policy and some 
parameter values determining a specific policy instance of that type. The approach 
requires that policy types and their parameters be defined. Additionally, some generic 
code for each policy type is needed which defines the semantics of the policy type 
and is used to enforce policy instances of the type. XML is a commonly used markup 
language for policy declaration due to its easy parsing and programming platform 
independence.  

• Constraint-based format. The policy rules are specified in a constraint language as 
a logical expression. If a rule condition is evaluated positively the corresponding 
policy action is triggered. The actions are specified usually only as names that have to 
be mapped to program invocation.  

• Manual policy coding in a programming language. Both the policy condition and the 
policy action are coded directly in a programming language. The policies are defined 
according to a implementation mapping of a policy information model are integrated 
into the policy-based management framework. 

In the prototypical implementation of the DUMF framework, the latter policy specification 
approach was chosen and both policy conditions and actions are coded in the Java 
programming language. Upgrade management policies implement interfaces and extend some 
predefined classes that are a result of a Java mapping of the Policy Information Model 
presented in section 6.2.7.1. The decision was a trade-off between the effort to implement 
a fully-fledged policy specification mechanism and the time allocated for this task. However, 
the approach can be easily extended either to the constraint-based or type-based format, if 
needed. 

6.2.7.5 Example upgrade initiation policy 

This example shows a concrete example of an upgrade initiation policy. It is assumed that the 
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Service Deployer wants to perform to check the availability of new version of the component 
X code on Fridays at 21 hours every week and perform an upgrade of all instances of the 
component provided that the average system load does not exceed the threshold of 50%. 
The example policy can be expressed either using a single policy condition or defining a 
ANDed policy rule with the following subconditions. Below, the example policy is expressed 
as a single condition and presented in a simplified Java-like notation4: 
 

Listing 3 An example upgrade initiation policy.  
 
class ExamplePolicyCondition implements PolicyCondition{ 
 
 ExamplePolicyCondition() { … }; 
 
 Boolean fullfils() { 

return (today.dayOfWeek() == Calendar.FRIDAY) && 
(today.time().IsAround(Time(21,00))) && (CodeRepository.hasComponent(X)) && 
(SystemMonitor.averageSystemLoad() < 0.50); 

  }  
} 

 

6.2.7.6 Policy Management 

Policies can themselves be seen as services as they need to be deployed and managed. The 
policy information model describes their properties. Each policy is identified by its unique 
name. Additionally, policies are categorized by their type. 
Policies are maintained in the DUMF framework in the Policy Registry in a similar way the 
FAIN ASP maintains active services. Whenever a policy is to be used by the DUMF 
framework, it needs to be registered with the Policy Repository. DUMF defines a number of 
predefined policies and they are registered with the Policy Repository at the DUMF bootstrap. 
Except for the predefined policies, the DUMF framework enables to install new policies. New 
policies also need to be registered with the Policy Repository in order to make them visible to 
the DUMF framework 

6.2.7.6.1 Registering a new policy 

Whenever a new policy is introduced into the DUMF framework, it has to be registered with 
the PolicyRepository. In case of the upgrade initiation policy, such a policy is registered using 
UpgradeInitiator interface presented in section 6.2.3.  

6.2.7.6.2 Enforcing a policy 

As soon as the upgrade initiation policy is registered with the PolicyRepository, the 
latter is responsible for evaluating the triggering condition of the policy. Depending on 
whether the policy is active or not, it may evaluate the value of the condition expression in 
regular time gaps, in case of passive policies, or let the policy check the triggering condition 
by itself in case of active policies. On positive evaluating the policy condition, the upgrade 
initiation policy is enforced and a corresponding upgrade process started as a result of the 
policy action being triggered. This situation is described in steps 8-10 in Figure 41.  

                                                 
4 Note that this notation is only close to implementation of the example policy condition. The framework provides a lot of facility classes 

that would make the condition coding easier through reuse of paramterized classes. 
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6.2.7.6.3 Removing a policy 

There are two possible ways of removing a policy from the PolicyRepository: 

• Removal by Policy Expiry. One of the policy attributes is its Time To Live. This 
parameter describes the time validity of the policy. Each evaluation of a policy 
triggering condition is preceded with a policy time validity check. If the policy is not 
valid any more, it is removed from the Policy Repository. Otherwise, the evaluation of 
the policy triggered condition follows. 

• Explicit Removal. A policy also may be requested to be removed from the Policy 
Repository. This is done by invoking remove_init_policy() on 
UpgradeInitiator interface. In case of a policy that has been enforced, the policy 
action is stopped and recovered if needed. 

 

6.3 Implementation 
This section gives some implementation details. The methodology as well as the selected 
implementation technology and the developing tools are presented in section 6.3.1. The issues 
related to coding are the topic of section 6.3.2.The deployment of the DUF component is 
described n section 6.3.3.  

6.3.1 Methodology and Tools 
The development process of the Deployment and Upgrade Facility is based on the Unified 
Process[52] as mentioned in the previous sections of the thesis. Thus, the platform-
independent part of the Deployment and Upgrade Facility has been prototyped in parallel to 
developing the design model in an iterative process. After the design classes are initially 
conceived , they are used to define the corresponding implementation classes.  
In our approach, the Unified Process was supported by the capabilities of the Magic Draw[70] 
modeling tool. The tool allows building UML models that are used to generate code skeletons 
in a number of programming classes. We used the Java generator to produce Java 
implementation classes. 
These classes have been then extended by the functionalities described in the model by 
manual coding. Eclipse[14], an open source Integrated Development Environment, has been 
used to write and later debug the code. This tool is integrated with Magic Draw so that 
changes in the class definitions have been reflected back in the design model. In this way, it is 
possible to update the design model with the changes done in the implementation code and to 
close the feedback loop as prescribed in the Unified Process. 
For the code testing, Junit[47], a testing framework has been used in our developments. The 
usage of this framework supports writing unit tests of the code both that is to developed and 
that has been developed. The tests have to be defined manually to check the basic semantics of 
the classes and subsystems as described in the design model. 

6.3.2 Code structure 
The DUF framework has been prototypically developed in Java. For the sake of better 
portability as requested in requirement R5 (see section 5.1.2), the code is divided into two 
parts:  

• Platform-independent part. This pat of the DUF code does not depend on any specific 
middleware platform, in terms of using any interfaces and classes provided by 
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a concrete middleware platform. Thanks to no dependencies of any platform specifics, 
it can be ported easily. 

• Platform-specific part. This part of the DUF code is written for a give middleware 
platform. It uses the platform specifics and is not easily portable to another 
middleware platform. 

The platform independent code is structured in the Java packages corresponding to the UML 
packages in the design model presented in section 6.2.1. These packages include: 
DUF.ComponentModel, DUF.DUMF, DUF.DUMF.Policies, DUF.Infrastructure, 
DUF.TargetSystem and DUF.UpgradeAlgorithms. 
The implementation classes specific to middleware platforms are defined in separate 
packages. Currently, the prototype includes implementation classes for the Jgroup platform. 
The functionality related to this platform is collected in package 
DUF.Infrastructure.jgroup and DUF.TargetSystem.jgroup. 

6.3.3 Component deployment 
The design model presented in section assumes that some functionalities have to be located on 
each system host where upgradable components run and some functionalities may be deployed 
only node. The functionalities of the first category include packages 
DUF.Infrastructure and DUF.TargetSystem. Package DUF.DUMF belongs to the 
latter category. Package DUF.Algorithms and the derived ones may be of either category 
depending whether they are implemented in a centralized or decentralized manner and 
whether they use remote communication for accessing the infrastructure capabilities or not. 
As a result, two types nodes have been identified for the deployment purposes: 

• Management node, on which components are deployed, which are singletons in the 
system. 

• System node, which abstracts a regular node used for deploying components of the 
target system. 

The identified node types and the DUF components assigned to them are depicted in Figure 
47. In a typical distributed system, there is one management node and a number of system 
nodes. 

system node

TargetSystem

Infrastructure NodePartUpgradeAlgorithm

management node

CenttralPartUpgradeAlgorithm

DUMF

1 1..*

 

Figure 47. Deployment diagram for the DUF components.   

For deployment purposes, the package functionalities are distributed into corresponding 
physical components. The following components are identified: DUMF, TargetSystem, 
Infrastructure, CentralPartUpgradeAlgorithm and NodePartUpgrade-
Algorithm. Two latter components comprise the functionalities of package 
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DUF.Algorithms and divide the implementation artifacts of these functionalities into the 
ones to be deployed once in the system and the ones to be deployed on each node of the target 
system.  
It is important to note that whereas component DUMF is design and implemented independent 
of the underlying middleware platform, the other components include some platform specifics. 
These platform specific implementation artifacts are defined in the separate model 
subpackages of the corresponding DUF packages. Thus, components TargetSystem and 
Infrastructure contain implementation classes from these subpackages, as well. 
Furthermore, for the sake of framework extensibility, both each of the upgrade management 
policies and upgrade algorithms is proposed to be packaged in a different component. In this 
way, it is possible to deploy an upgrade algorithm or a policy independently and on-demand 
provided that the DUMF and Infrastructure components are available in the system. 
Whereas management policies are deployed always onto the management node, the upgrade 
algorithms may be deployed both onto some system nodes and the management node. Hence, 
it is enough to package a policy into only one component whereas an upgrade algorithm may 
need two components.  
An example deployment of DUF components is shown in Figure 48. The deployment diagram 
depicts only the dynamic components of the DUF facility, that is the component that may be 
deployed on demand. One upgrade initiation policy is deployed in the management node and 
its runtime instance in running as part of the DUF. An upgrade algorithm is also deployed in 
the system. Whereas one part is running in the management node, the other algorithm 
components are deployed in all the system nodes named brunali, devore and 
dividices. Though basic components of the DUF are not shown in the diagram for the 
sake of simplicity, they are deployed on the corresponding nodes as depicted in Figure 47. 
This example deployment configuration has been used in the practical experiments described 
in chapter 8. 
.  

akrit : management node

UIP1 : UpgradeInitiationPolicy

CPARSUA1 : CentralPartARSUA

devore : system node

NPARSUA2 : NodePartARSUA

brunali : system node

NPARSUA1 : NodePartARSUA

dividices: system node

NPARSUA3 : NodePartARSUA

 

Figure 48. An example deployment of the dynamic DUF components. 
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6.4 Summary 
In this chapter a framework for managing dynamic upgrades in distributed systems was 
presented. This framework allows for policy-based management of upgrade process in 
a distributed system. In particular, it enables: 

• Defining upgrade management policies determining the parameters of upgrades 
including the upgrade triggering condition. 

• Managing these policies so that they can be added or removed on demand. 
• Evaluating policy conditions at system’s run time. 
• Enforcing upgrade management policies by triggering corresponding policy actions. 

With regard to the requirements stated in chapter 5.1, the following of them are fulfilled by 
this part of the Dynamic Upgrade Facility: 

• Automated Upgrade Management (R12) is realized by inserting management 
policies by the service deployer. The dynamic upgrade management framework 
automatically evaluates the policy conditions and autonomously takes management 
actions related to upgrades. The upgrade process is automated in that system 
determines which upgrade algorithm is to be applied to the given upgrade target and 
may perform corrective actions to recover from failures to a certain degree without 
human interventions. 

• Support for multiple simultaneous upgrades (R13). The system supports running 
multiple upgrade process and their coordination if needed. To achieve that a number of 
upgrade management policies have to be defined, each of which may be concerned 
with one upgrade process. These policies may describe when to start an upgrade 
process 
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7 Performing Upgrades: The Algorithms  
This section is concerned with the algorithm allowing for replacing an instance of 
a component at runtime. Several variants of the algorithm are briefly presented that are 
applied to components with different replication characteristics. The variants comprise an 
upgrade of:  

• Non-replicated component, 
• Actively replicated component, and 
• Passively replicated component. 

The following subsections describe the design details of these algorithm variants. 

7.1 Non replicated component  
In this variant, the component to upgrade is not replicated, i.e. there is only one copy of a 
component instance. Performing upgrade of the component requires some break in the 
component activity so that a part of the system functionality is not available for some time. 

7.1.1 System Assumptions 
Concerning the system model, it is assumed that: 

A1. The code modules of the target component are available and can be downloaded and 
installed in the environment where the old runtime instance of the component is running. 

A2. The component state is transferable and the execution state can be described using the 
concept of upgrade points (see section 6.2.6.2). 

A3. The component reaches an upgrade point in a acceptable period of time. 

7.1.2 Algorithm Overview 
The basic idea of the algorithm is intuitive: the running instance of the old component version 
is replaced with a instance implementing the new code so that the component state is 
transferred from the old instance to the new one. The process is instantaneous from the point 
of view of the rest of the system that depends on the target component.  
This algorithm variant has the following steps: 
1) Install the new version of the component in the same runtime environment. 
2) Deactivate the old component, transfer the state, rebind the connections. 
3) Activate the new version of a component. 
4) Uninstall the old version of the component. 
The component is unavailable during step 2. This break may be short but exists always in this 
variant. Two instances of the component, the old and new version cannot be running at the 
same time since (Figure 49): 

• the state of the old component cannot be changed after the state is sent to the new 
component 

• the new component cannot be activated and process incoming requests before it is 
synchronized with the state of the old component.  
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New Component
Activation

State serialisation

State deserialisation

New version

Old version

Unavailability Time

Update Request

 

Figure 49. Upgrade process of a non-replicated component 

7.1.3 Algorithm Design 
The design of the upgrade algorithm integrated in the facility is presented in Figure 50. The 
algorithm logic is represented in class NRUA (a short for Non-Replicated Server Upgrade 
Algorithm) which implements interface UpgradeAlgorithm described in section 6.2.4. 
The definition of the algorithm is kept in the algorithm repository and is used by an object of 
class UpgradeProcess when the latter is initiated. A concrete instance of the upgrade 
algorithm is associated with an instance of class UpgradeProcess.  

/newComponentRuntimeInstance : Upgradable/oldComponentRuntimeInstance : Upgradable

/algoorithmRepository : AlgorithmPool

/process1: UpgradeProcess

: ComponentActivator

/ua : NRSUA

: UpgradeInitiatorImpl

: CodeManager: Discovery

UpgradeAlgoritms

TargetSystem

Infrastructure

DUMF

reach_upgrade_point( callback )1.3.5: 

upgrade_point_reached()1.3.5.1: 

get_state()1.3.7: 
create1.3.6: 

set_state( theState, upgrade_point )1.3.8: 

discover( theDiscoveryCriteria )1.3.1: deactivate(  oldComponentRI )1.3.9: 
map( objectRef, servant )1.3.10: 

search_matching_algorithm( criteria )1.1: 

new()1: 

download( CodeModule )1.3.2: 
install( localRef, aContainer )1.3.3: 
load( aCInstallation, aContainer )1.3.4: 

configure(  2 )1.2: 
prepare(  0 )1.3: 

commit()1.5: 
prepare(  1 )1.4: 

 

Figure 50. Coordinating an upgrade process. 

Figure 50 describes the algorithm logic in terms of interactions between the classes involved 
defined in packages DUMF, DUFInfrastructure and UpgradeAlgorithms. The class 
interactions are numbered as in the collaboration diagram depicted in Figure 50. 
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Seq. No. Interaction Description 
1. As soon as the triggering condition of an upgrade initiation policy is positively 

evaluated by the UpgradeInitiatorImpl , a corresponding upgrade process 
is triggered. The upgrade process is represented by a class UpgradeProcess 
and such an object is created.  

1.1. The upgrade process searches for a suitable upgrade algorithm for its upgrade 
target. It contacts the algorithm repository implementing interface 
AlgorithmPool and requests an algorithm matching the given criteria. The 
search criteria include information on the upgrade target type. In this case, it is an 
algorithm of class NRUA that is returned from the repository.  

1.2. The process configures the returned instance of the NRUA algorithm providing 
the necessary details on the upgrade target. 

1.3. The algorithm is started by triggering its first phase. 
1.3.1 In this phase, the algorithm discovers the location and access details of the 

upgrade target contacting Discovery service offered by the Infrastructure. 
1.3.2 The algorithm requests the old runtime instance of the component to upgrade to 

reach an upgrade point and get a notification on that. 
1.3.3 The new code of the component is downloaded to the location where it is going 

to be instantiated. It means typically the same location where the old code has 
been running.  

1.3.4 The code downloaded is installed in the target container, the execution 
environment using Infrastructure’s CodeManager.  

1.3.5 Additionally, the fetched code is loaded into a running instance of the target 
container. 

1.3.2.1 As soon as the old component instance reaches an upgrade point, a notification is 
sent to the upgrade algorithm through interface UMFCallback.  

1.3.6 Now the algorithm may create an instance using the new component code. 
1.3.7 It may perform the state transfer accessing the state of the old runtime instance of 

the component. 
1.3.8 The state is passed then to the newly created instance of the new version of the 

component. 
1.3.9 The old component may be deactivated, removed so that the resources it 

consumed are returned to the container and the old code unloaded and 
uninstalled. 

1.3.10 The algorithm finally updates the dispatching information in the container so that 
the client requests aimed at the old component instance are directed to the new 
component instance. 

1.4. After the last (and the first one) phase terminates successfully, the upgrade 
process can signal a commit. No rollback is possible from that point in time on. 
The upgrade target has been successfully upgraded and the new component 
runtime instance processes client requests instead of the old one. 

Table 9. Class Interactions during the NRSUA algorithm. 
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7.1.4 Discussion 
The presented algorithm allows for upgrading a single instance of a component. The algorithm 
is based on a simple replacement of an old component instance with a new one using the 
support mechanisms provided by the Infrastructure. The algorithm does not support fault 
tolerance as the component instances are assumed to be co-located in the same container, 
which is considered the smallest unit of failure. This algorithm reduces the system availability 
by making the component unavailable during the replacement phase.  
To overcome this drawback, the system needs some kind of redundancy. A common form of 
redundancy in distributed object-based software is the technique of object replication. The 
following sections describe upgrade algorithms for replicated upgrade algorithms.  

7.2 Upgrading an actively replicated object 
A different variant of the upgrade algorithm can be applied in an environment in which a 
component to upgrade is replicated in the active scheme. In this case, a number of component 
replica are running in parallel and processing incoming requests at the same time upgrading its 
state.  
A straight-forward solution would be to could block processing requests by all the replicas, 
replace all the replicas at the same time and reactivate the upgraded replicas. The big 
advantage of this algorithm is that is reduces unavailability of the system, as the component is 
not available during an upgrade of all its replicas. A better algorithm that reduces the 
unavailability of the component is outlined. The presented algorithm assumes that the state 
transfer process during the upgrade is much longer than the time needed to resynchronize the 
upgraded replicas as well as the one that was used to serialize its state, with the active ones 
after a time in which an upgrade is performed. The rationale is here that a state transfer 
between different versions of the component is a time consuming operation, whereas 
a synchronization of replicas can be achieved by processing the requests that were received 
during the state transfer.  
The sections below present the details of the upgrade algorithm for actively-replicated objects 
[113]. Section 7.2.1 gives a brief overview of the system model for the upgrade target. Section 
7.2.2 presents the assumption on the system, section 7.2.3 gives the basic idea of the 
algorithm. Section 7.2.4 presents the details of the algorithm design and finally section 7.2.5 
concludes with a brief analysis of the algorithm. 

7.2.1 System Model 
In the context of this paper, the software system is modeled as an actively replicated server 
[99], processing requests from multiple clients, see Figure 51. The clients send their requests 
by means of a group communication system which guarantees reliable broadcast of their 
requests to all the replicas of the server, collectively called a group. After the client requests 
are delivered by the GCS in a total order, each replica processes them in a deterministic way. 
The GCS collects the replica responses, agrees on the final response and sends it back to the 
corresponding client.  
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Figure 51. The state machine system model. 

7.2.2 System Assumptions 
The system model presented above is used for further investigations. In this section the 
assumptions of the model are explicitly described and extended with additional assumptions 
made on the upgrade algorithm.  
Concerning the system model, it is assumed that: 

A4. server computations are deterministic. 

A5. server has a state that is transferable. 

A6. server is actively replicated with level n. 

A7. clients access the server functionality sending requests and receiving responses. 

A8. replication transparency to the clients is provided by the Group Communication System.  

A9. GCS is capable of detecting crash of replicas. 

A10. GCS supports state transfer between the replicas in the server group. 

Additionally, the following assumptions on the replication management are stated: 

A11. GCS is extended so that it can recover from crashes by starting a replica on an 
available host and making it join the server group. 

A12. Recovery policy is defined and enforced by the extended GCS. 

Finally, the assumptions on the upgrade algorithm itself are proposed:  

A13. Server upgrades are atomic with respect to each other, i.e. two upgrade processes 
cannot interleave.  

A14. Replica replacement makes the replica temporarily unavailable. 

A15. Replica code is replaceable while it is not processing a user request, i.e. an upgrade is 
possible before a replica starts, and after it finishes processing a client request. 

A16. The algorithm has to tolerate replica crashes during the upgrade. 

A17. The system resources are limited. In particular, it is not feasible to substantially 
increase the original replication level while upgrading the system.  
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With respect to upgraded software, a new version of the software is supposed to be 
substitutable with the old one. In particular, it is required that:  

A18. the new software accepts the input acceptable by the old version. In particular, the new 
software offers a compatible interface to the old one;  

A19. for any input acceptable by the old software, the new one responds with the same 
output as the old software would do. 

7.2.3 Algorithm Overview 
The following section describes the basic idea of the algorithm allowing to upgrade an 
actively replicated server.  
The algorithm is based on the idea that to upgrade an actively replicated object it is enough to 
upgrade each of its replicas in a sequence. The number of replicas that can be upgraded in 
parallel depends on the availability requirements, i.e. the minimum replication level.  
The steps of such an algorithm could look like this: 

1) An upgrade request is reliably multicast to all the replicas of a server to upgrade. A set 
of replicas to upgrade consists of all the replicas of the server to upgrade. 

2) A candidate to be upgraded first is chosen.  
3) An algorithm checks whether the actual replacement is possible.  

a) If so, the candidate replica is (stopped and) replaced with its new version. 
Otherwise, the replica processes client requests and its replacing is postponed until 
it is possible. At the same time, the rest of the replicas are available to process the 
client’s requests.  

b) After an upgrade of the replica, the state of the new replica state is updated with 
the state of the active replicas. 

4) The upgraded replica is removed from the set of replicas to upgrade. 
5) Steps 2-4 are repeated until all the replicas are upgraded. 

7.2.4 Algorithm Design 
Following the basic idea of the algorithm, a more elaborate design of the algorithm is 
presented.  

7.2.4.1 Algorithm Core 

The algorithm is designed in a distributed way i.e. without a global coordinator. All the server 
replicas perform the same algorithm and are symmetrical in this sense. Figure 52 illustrates the 
steps of the elaborated design of the algorithm from the view point of a single replica. For the 
sake of better readability, the upgrade algorithm is depicted in state-oriented way using a SDL 
notation. This is one of exceptions of not using the UML notation done in this thesis.  
After the replica is initiated, it enters its idle state, i.e. it is neither processing a client request 
nor being upgraded. If it receives a client request, it enters processing state and after it is 
done it returns to the idle state. If it receives an upgrade request, the upgrade process starts.  
The replica sets the triggered flag to true and enters idle_upgrade state. While in this 
state, the replica may switch temporarily to the processing state whenever 
a client_request is received. Alternatively, the replica may leave this state when 
a condition enabling_upgrade holds. 
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This condition is a conjunction of two basic checks: 
• is it this replica’s turn to start the actual upgrade? This check can be reduced to a 

selection of a different replica at each check only once so that any resulting sequence 
of selections is permutation of replicas in the group. This can be realized through a 
voting process, in which each replica returns an element of a ordered set, like integer 
numbers. The selection criterion can be based on the order relation so that the replica 
with a smallest/greatest number wins. An example of a set matching the requirements 
above is the set of replica identifiers which are unique and typically realized as integer 
umbers. 

• can the upgrade of this replica can be performed at the moment? Hereafter, this 
condition is expressed in more accurate form by checking whether the current 
replication level is greater than a given number r, r>1.  

The enabling condition is evaluated regularly and as soon as it becomes fulfilled, the replica 
continues with the upgrade procedure.  

 

Figure 52. The upgrade algorithm from the viewpoint of a replica. 

The replica initiates (asynchronously) a process of starting a replica that replaces this one and 
enters the upgrading state waiting for the success of the operation.  
Operation start_replica() cooperates with the underlying layers of the system, 
including GCS, to start a replica with the new version of the code. The operation terminates 
before the new replica is started. However, it has to guarantee that the replica is started and 
joins the server group. Otherwise, the upgrade algorithm does not terminate. The GCS is also 
responsible for transferring the current state of the server group (determined by the rest of 
active replicas) to the new replica. Now the old replica can leave the group and terminate. 

7.2.4.2 Algorithm Integration into DUMF 

Figure 53 shows a scenario in which an actively replicated server with two replicas is being 
upgraded. Hereafter. it is assumed that: 
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• Minimum replication level is one. 
• No crashes occur during the upgrade process. 

The figure shows a sequence diagram with invocation calls between the objects involved in 
performing steps of the upgrade algorithm. The upgrade algorithm, which has been triggered 
by the DUMF in a suitable point of time, consists of a central object Algorithm1 registered 
with the DUMF and a number of local algorithm proxy objects, LocalARSUA, running on 
each of the nodes on which the replicas of the upgrade target are running. These objects 
perform the steps of the algorithm presented in Figure 52. Additionally, the diagram shows the 
algorithm interactions with the DUFInfrastructure, representing the middleware 
platform. In the scenario, the algorithm makes use of the middleware service to block 
incoming requests to the objects being upgraded as well as to activate a new replica and bind 
it to the address of the replica to replace.  
 

Algorithm1 : ARSUA Node1 : DUFInfrastructure Node2 : DUFInfrastructureReplica1 : Upgradable Replica2 : UpgradableNode2 : LocalARSUANode1 : LocalARSUA

: Upgradable

: Upgradable

block_invocations( object )5: 

map( objectRef, servant )10: 

block_invocations( object )12: 

map( objectRef, servant )17: 

reach_upgrade_point( callback )7: 

11: 

reach_upgrade_point( callback )14: 

18: 

upgrade()2: 
wait_until_upgrade_enabled()4: 

upgrade_point_reached( target )15: 

upgrade()1: 

wait_until_upgrade_enabled()3: 

upgrade_point_reached( target )8: 

6: 

set_state( theState, upgrade_point )9: 

13: 

set_state( theState, upgrade_point )16: 

 

Figure 53. The upgrade algorithm at work: scenario with 2 replicas and no crashes. 

7.2.5 Discussion 
An upgrade algorithm for an actively replicated server has been presented above. It is to be noted 
that the algorithm requirements listed in section 5.1.2 are met by the algorithm design as follows:  

Regarding Automating the Upgrade Process as requested in R6, the algorithm is triggered on 
demand by a sending an upgrade message using the basic system communication mechanism. 
The algorithm is triggered by a single upgrade request that is reliably distributed to all replicas 
of the server. This way of starting the algorithm allows for adding some automated upgrade 
management facility as requested in R12 in section 5.1.5. 
The algorithm preserves the system consistency during the upgrade, as requested in R7, in that 
it allows for state transfers that are handled by the underlying GCS services. One of the GCS 
services is the state merging service whose task is to transfer the group state to the replicas 
joining the group. As the replicas with the new component implementation join the group 
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according to the algorithm, their state is automatically upgraded to the current group state. 
Regarding the minimizing of the loss of the system functionality, as requested in R8, the 
granularity of upgrade is on the level of service components. As the upgrade target is 
operational at upgrade time, the system functionality is not lost. The upgrade may impact the 
performance of the system but it does not cause some part of the system to be not operational. 
Regarding the minimizing the unavailability periods, as requested in R9, the algorithm keeps 
a number of replicas of the upgrade target operational all the time during the upgrade. Thus, 
the upgrade process does not cause parts of the system to be unavailable.  
Regarding dependability of the upgrade as requested in R10, the algorithm has been designed 
to be self-stabilizing[12], i.e. can automatically recover following the occurrence of failures. 
The algorithm is self-stabilizing in that it is decentralized and tolerates replica crashes. As 
there is no single entity that controls the process of the algorithm, the algorithm continues in 
presence of transient crashes of replicas being upgraded. Additionally, other crashes are 
tolerated by the extended GCS enforcing a recovery policy. 
The algorithm supports the upgrade transparency, as requested in R11. At upgrade time, the 
parts of the system that are not upgraded, may access the functionality of the software 
component being upgraded and after the upgrade is completed in the same way it was before 
the upgrade. This is due to the fact that the new replicas join the same replica group and can 
be accessed using the same group identifiers.  

The presented version of the algorithm by itself does not guarantee that the replication level is 
hold after the upgrade. There must be an additional supervising mechanisms that takes care of 
this.  

7.3 Upgrading a passively replicated object 
This section presents the initial design of the upgrade algorithm for passively-replicated 
objects. The basic idea of the upgrade algorithm for a passively-replicated server is quite 
similar to the upgrade algorithm presented in section 7.1.1. For this the description is focused 
on the differences.  
Section 7.3.1 gives a brief overview of the system model for the upgrade target. Section 7.3.2 
presents the assumption on the upgrade target and the upgrade algorithm, whereas section 
7.3.3 gives the basic idea of the algorithm. Finally, section 7.3.4 concludes with a brief 
analysis of the algorithm properties. 

7.3.1 System Model 
In this section, the software system is modeled as a passively replicated server, processing 
requests from multiple clients, see Figure 54. A server is represented by a group which is a set 
of replicas running on different nodes. The group comprises: 

• The primary replica. This replica receives the requests sent by the clients, processes 
them and sends the response back. Whenever a request is processed, the primary 
distributes its current state (or a difference compared to the one it had before the last 
request arrived) to all the backup replicas. 

• A number of backup replicas, which do not process the client requests. They upgrade 
their state with the intra-group messages sent by the primary.  

The clients send their requests by means of a group communication system (GCS) which 
guarantees reliable transport of their requests to and the corresponding responses from the 
primary replica of the server. In contrast to the active replication scheme, GCS does not have 



 

  134 

to guarantee a total order delivery. Neither has the replica to process the requests in 
a deterministic way.  

 

backup 

client 
primary 

backup 

client 

client 

GCS 

 

Figure 54. The primary-backup system model. 

 

7.3.2 Algorithm Assumptions 
The objective of the upgrade algorithm is to upgrade an actively replicated server, i.e. 
substitute the executable code of the running processes of server replicas with another version 
of the executable code.  
Having in mind the general objectives of our framework enabling dynamic upgrades from 
chapter 1 , more detailed requirements on the upgrade algorithm are stated: 

R1. The algorithm is triggered on demand by a sending an upgrade message using the basic 
system communication mechanism.  

R2. The algorithm is self-stabilizing [12], i.e. can automatically recover following the 
occurrence of failures.  

R3. The algorithm preserves the system consistency by enabling state transfer from the old 
version to the new one in case of stateful servers. 

 

7.3.3 Algorithm Overview 
In the environment with passive replication, a component is represented by its primary replica 
processing the requests and the backup replicas regularly upgraded by the primary. An 
upgrade of a replicated server may include the following steps: 

1) Start a replica with the new code in the backup mode Bn+1. 

2) For all the backup replicas, perform an upgrade of each replica Bi, where 0<i<n 

o Start B’i replica with the new code and make it join the group in passive 
mode 

o Remove the old replica Bi.  

3) Force a fail-over to activate one of the backup replicas and shut down the old primary. 
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Figure 55 shows this version of the upgrade algorithm. The blue rectangles in the picture 
represent an exchange a replica with its new version. This exchange can be realised as it is 
described in section 7.1.  

Primary

Other backup
replicas

demanded
Fail-over

New primary

Backup 1

Update Request

 

Figure 55. Upgrade process of a passively replicated component 

7.3.4 Discussion 
An upgrade algorithm for a passively replicated server has been presented. It is to be noted 
that the algorithm requirements listed in Section 7.3.2 are met by the algorithm design as 
follows:  

R1. The algorithm is triggered by a single upgrade request that is reliably distributed to all 
replicas of the server.  

R2. The algorithm is self-stabilizing in that it is decentralized and tolerates replica crashes. 
As there is no single entity that controls the process of the algorithm, the algorithm 
continues in presence of transient crashes of replicas being upgraded. Additionally, other 
crashes are tolerated by the extended GCS enforcing a recovery policy.  

R3. The algorithm allows for state transfers that are handled by the underlying GCS. 

7.4 Implementation 
One variation of the dynamic upgrade algorithm, suitable for upgrading actively-replicated 
servers as described in section 7.1.1, has been implemented in the context of Jgroup/ARM. an 
object-oriented middleware platform. Sections 7.4.1, 7.4.2 and 7.4.4 give an overview of the 
Jgroup/ARM platform. Section 7.4.3 describes the key concept of the layer which allows for 
the platform extensions. The Upgrade Layer is described in section 7.4.5 and is the core of the 
algorithm implementation. The Upgrade Manager is briefly sketched in section 7.4.6. The 
conclusions on the algorithm implementation are presented in section 7.4.7. 

7.4.1 Underlying middleware platform 
Jgroup[63] is an extension of the Java distributed object model supporting the group 
communication paradigm. This middleware platform is aimed at supporting the development 
of reliable and high-available distributed applications in partitionable environments. Jgroup 
enables the creation of groups of remote objects that cooperate towards some common goal 
using a partitionable group communication service. Remote object groups simulate the 
behavior of standard remote objects by implementing a set of remote interfaces and by 
enabling clients to remotely invoke the methods defined in these interfaces through the 
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standard Java RMI mechanism. From the implementation view point, Jgroup is an extendable 
object-oriented framework that can be extended through adding so called layers to the Jgroup 
protocol stack.  
ARM[59] is a replication management facility built on top of Jgroup to simplify 
implementation. It handles both replica distribution, according to an extensible distribution 
scheme, as well as replica recovery, based on a group-specific policy in an autonomous way, 
i.e. without a need for the manual interaction of the system manager. Additionally, ARM offer 
a correlation mechanism to collect and interpret failure notifications from the underlying 
group communication system. 
The implementation of the upgrade algorithm extends the ARM framework with the capability 
of upgrading actively replicated server objects. 

7.4.2 Jgroup/ARM Architecture 
Figure 56 shows the core components of the Jgroup/ARM framework and its extensions to 
support dynamic upgrade. A brief description of the core components are given below.  

• Execution Daemon, ED for short, must be running on all hosts in the system that should 
be able to host application replicas. The execution daemon is used by the replication 
manager to create and remove replicas on remote hosts. 

• Replication Manager, RM for short, is the main component of the ARM framework 
and its tasks include, replica distribution, failure recovery and interaction with client 
management applications through the replication manager interface. This component is 
replicated for fault tolerance, as shown in Figure 56. 

• Upgrade Manager, UM for short, effectuates upgrade group requests, communicated to 
it by an upgrade management client. It is naturally co-located with the RM to exploit 
its database of available groups. 

• Dependable Registry, DR for short, is a replicated naming service. It enables a dynamic 
set of replicated remote objects to register themselves under the same name, forming 
an object group, which can later be retrieved by clients. This enables clients to 
communicate with the whole group as a single entity. Also the DR is co-located with 
the RM, since the RM depends on DR for bootstrapping. 

• Application Replica, R for short, provides the actual service functionality that may be 
upgraded. The application replica may make use of various services provided by 
Jgroup by specifying a layer stack, as presented in the next section. 
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Figure 56. The architecture of Jgroup/ARM 

7.4.3 Layers 
The Jgroup is designed using a layered architecture. A Layer in Jgroup is a basic building 
block that interacts with other layers of the system tin the following way: 

• It gets the data input from the lower layer, processes the data and forwards it to the 
upper layer(s) (Member interface), and 

• It gets the control data from higher layers and forward it to the lower layers 
(GroupManager interface)  

A Jgroup Layer in not a software component as it is understood in this thesis (see section 2.3) 
as it is not a unit of deployment and management. The definition of the layer is concerned 
with its interaction paradigm only.  

7.4.4 Group Manager  
Jgroup Group Manager, GM for short, supports dynamic creation of group communication 
layer stacks, based on a layer stack ordering string associated with each application. The 
configuration of the layer stack can be expressed in XML, as shown in Listing 4, allowing 
each application to be configured according to its needs for various Jgroup services, such as 
recovery, upgrade, group membership and group method invocation services. Each GM layer 
may interact with any other GM layer, through an interface that each layer exports within the 
stack. 
The Jgroup Daemon, JD for short, implements the basic group communication facilities such 
as failure detection, group membership and multicast, and each application specific GM layer 
may also communicate with the JD component to perform its tasks. 

Listing 4 Example application specification for Jgroup/ARM 
<Application name="UpgradableServer" group="103"> 
<Class name="test.upgrade.UpgradableServer" args=""/> 
<LayerStack order="PGMS:EGMI:Recovery:Upgrade"/> 
<RecoveryStrategy name="KeepMinimalInPartition"> 
<Redundancy initial="3" minimal="1"/> 
</RecoveryStrategy> 

</Application> 
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As shown in Listing 4, the UpgradableServer application use the PGMS, EGMI, 
Recovery and Upgrade layers. The PGMS is the group membership service provided with 
Jgroup; it supplies application replicas with information about the current view of the object 
group. The EGMI layer is an external group method invocation service, enabling clients to 
communicate with the entire object group as if it was a single entity. This means that the 
UpgradableServer will export an interface to its clients, enabling them to invoke the 
server group with what the client sees as a single method invocation. The RecoveryLayer 
also used in the example is a group manager layer that is part of the ARM framework. It is 
used in conjunction with the RM to ensure that all applications maintain a minimal 
redundancy level, as specified in Listing 4. 

 

Figure 57. Upgrade layer stack 

7.4.5 Upgrade Layer  
The upgrade algorithm, as described in section 7.2.4, has been implemented in Jgroup as 
a layer, called UpgradeLayer. Figure 57 illustrates the layer composition and interfaces 
supported by each of the layer. In the stack protocol configuration, the UpgradeLayer is the 
last component in the stack and interacts with the application components directly. For an 
application replica to be upgraded, it must implement the UpgradeListener interface (the 
upgraded() method.) The upgraded() method is used by the upgrade layer to notify the 
replica that a new version has been installed, and that the replica may now gracefully 
shutdown. 
Prior to upgrading a particular application, it must first have been installed through the 
Replication Manager. Figure 58 illustrates the main interactions of an upgrade. The actual 
upgrade is initiated by the Upgrade Management Client, UMC for short, by performing an 
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upgradeGroup() invocation on the UM (step 1), which in turn leads to 
a upgradeRequest() (step 2) multicast invocation on the respective upgrade layers of the 
group to be upgraded. Next, the upgrade layers of the replicas decide if its their turn to be 
upgraded; in this case, R1 is selected for upgrade and the UL performs a createReplica() 
(step 3 and 4) invocation on the local execution daemon. This in turn causes the newly created 
replica (new software version) to join the group, and thus all replicas (both new and old) 
install a new view (step 5). Once the UL representing the upgraded replica detect the new 
version (R1

u), it will make the old replica leave the group; once it has left, the upgraded() 
method is invoked on R1.  

 

Figure 58. Interactions involved in an upgrade. 

One of the main tasks of the upgrade layer is to determine which of the application replicas 
needs to be upgraded next, following the generic algorithm in section 7.1.1. As shown in 
Figure 58, the upgrade layer will wait for viewChange() events from the PGMS (see also 
step 5 in Figure 58). The replica to be upgraded next is determined on the basis of the replica 
positions in the view, e.g. the first member of the group will be upgraded first and so on. 
The actual upgrade occurs by invoking the createReplica() method on the local 
execution daemon, and once the new version of the replica has joined the group, the old 
replica can leave the group. All of this is seamlessly handled by the upgrade layer. 
The view originated from the PGMS provides a list of the current group member identifiers. 
In order to implement the upgrade layer, the member identifier has been extended with 
a software version number. This is used by the upgrade layer to distinguish between replicas 
running the old software from replicas running the new software, within the same view. 
To prevent client requests from being processed by the replica during an upgrade, the upgrade 
layer interacts with the EGMI layer, as indicated by the stopRequests() method. This is 
required to prevent returning results to clients while being upgraded. 
Assuming that the application is stateful, the new version of the replica must ensure that its 
state is synchronized with the remaining members of the group, before it can start processing 
client requests. State synchronization is provided by a separate layer in Jgroup, the State 
Merging Service, thus the upgrade layer does not need to deal with these issues.  

7.4.6 Upgrade Manager 
As shown in Figure 56, the upgrade manager object is co-located with the replication manager. 
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This is to simplify the interaction among the two components, yet making it easy to configure 
the system without the upgrade mechanism. The upgrade manager coordinates the upgrades. It 
provides an interface for a management client, to initiate upgrade request for a specific 
application that was previously installed through the replication manager. The AppInfo 
object supplied to the upgradeGroup() method encapsulates version information and class 
location for the new version of the application replica.  
 

7.4.7 Conclusions 
This section described one version of dynamic upgrade algorithm that is applicable to actively 
replicated servers implemented as a proof of concept. The algorithm implementation is based 
on Jgroup/ARM, which belongs to the class of object-oriented middleware and supports group 
communication.  
The upgrade algorithm is an extension of Jgroup/ARM platform. The extension is enabled 
through the layer architecture and framework-oriented design of the middleware. ARM 
provides a possibility of inserting object-oriented entities, called layers into the protocol stack 
of the middleware platform. The implementation of the dynamic upgrade algorithm is 
contained in the Dynamic Upgrade Layer.  
The implementation of the algorithm is object-oriented using the Jgroup layer concept. 
A Layer could be considered as a software component as it is interpreted in this thesis 2.3 if it 
were packaged and deployed in the Jgroup/ARM middleware platform if needed. The 
application specification could be considered as a simple component deployment language, 
which allows for describing the system configuration in terms of its components, its initial 
connections.  

7.5 Summary 
In this chapter, some upgrade algorithms were presented as the core mechanism to be 
provided by a dynamic upgrade system. Each of the algorithms addresses upgrades of different 
upgrade target and differs in the underlying system model. Some additional assumptions and 
requirements were needed to be added to general requirements on upgrade algorithms 
presented in section 5.1.2. One of the algorithm variations, i.e. supporting dynamic upgrades 
of actively replicated components was implemented using the Jgroup/ARM middleware as 
a proof of concept. The algorithm could be easily added to the middleware used due to its 
extendable layered architecture Jgroup/ARM .was designed. 
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8 Solution Evaluation  
This section describes the evaluation of a part of the Dynamic Upgrade Framework presented 
in the previous sections of this thesis. The evaluation is based on a number of practical 
experiments in which a running Java RMI-based server is dynamically upgraded while 
processing a stream of client requests. The upgrade target in these experiments is a test server 
which is actively replicated with the Jgroup2 and upgraded using the algorithm presented in 
section 7.1.1. During the upgrade, the server is operational and processing a constant flow of 
client requests. The evaluation shows the upgrade algorithm working in practice and 
investigates the cost of applying the algorithm in terms of system performance overhead, like 
decrease in the server response time .  

8.1 Aim  
The aim of this experiment is to measure the performance of the dynamic upgrade algorithm 
described in section 7.1.1 applied to an actively replicated server. In the experiment scenario, 
while the target server is busy processing client’s requests sent at regular intervals, it is being 
upgraded at the same time. With regard to fault workload, the server upgrade is carried out in 
ideal conditions, that is no server crashes during the upgrade (a fault-free environment). 
To express our expectations, the following hypothesis are put forward: 

Hypothesis H1.  
The response time of a server is compromised by the upgrade algorithm. The 
performance overhead of the upgrade process does not depend on the server 
characteristics.  

This hypothesis is based on the fact that the upgrade process involves activities consuming the 
resources of the nodes where the server replicas are running. Thus, performing additional 
actions decrease the responsiveness of the server as the upgrade process and the execution of 
the server code triggered by the client requests must compete now for the same resources. 
However, the performance penalty for the upgrade does not depend on the server 
characteristics in terms of its response time, replication level or the workload it has.  

Hypothesis H2.  
The server workload caused by the clients has an impact on the upgrade process 
time. The bigger it is, the longer an upgrade takes.  

The hypothesis above is based on the fact that the upgrade process shares the resources of the 
hosts with the server replicas runs and that both the upgrade activities and the request 
processing by the server are performed with the same priority. In this case, the heavier the 
server workload is, the longer it takes to access the resources needed to complete the upgrade.  

Hypothesis H3.  
The time of the upgrade process is proportional to the replication level of the server 
to be upgraded.  

As the algorithm implementation allows replacing one replica at a time and each replacement 
is performed in the same way (and presumably takes similar amount of time), the upgrade 
time of the whole server consisting of n replicas should be exactly proportional to n.  
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8.2 Experiment Description 
This section describes the details of the experiments performed. The experiment configuration 
and scenario is sketched in section 8.2.1.Section 8.2.2 presents the experiment testbed, section 
8.2.3 describes the benchmarking metrics and the methodology followed when conducting the 
experiments.  

8.2.1 Experiment Configuration and Scenario 
In the experiments the following logical subsystems are involved: 

• Test Client that generate a stream of requests sent to the test server. The test client is 
implemented as a multi-threaded Java process that can send server requests with a 
given frequency.  

• Test Server that is the upgrade target in the experiments. It is an actively replicated 
server with replication level determined by the experiment parameters. The server runs 
on top of the JGroup toolkit which is extended by UpgradeLayer as described in 
section 7.4. 

• Upgrade Manager that is a piece of software that triggers the upgrade process. In the 
experiment configuration, it is a simple client that sends an upgrade request to the 
UpgradeLayer of each of the server replicas. 

The logical configuration of the conducted experiments is depicted in Figure 59.  

 

Clients sending 
requests to the 
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Upgrade 
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Figure 59. The experiment configuration. 

Each experiment is performed according to the following scenario steps:  
1. The actively replicated server is started with a initial replication level R on a subset of 

the testbed nodes N. The server is stateless and offers one function without side-
effects. The return value of that function depends only on the value of its input 
parameter. The function always terminates deterministically and takes a constant time 
TF to compute the function value. 

2. A number of clients are started and send their request to the server, which is also the 
upgrade target. 
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3. After the situation is stabilized after time T, the server upgrade may begin. An upgrade 
request is sent by the Upgrade Manager to all the replicas and the upgrade process 
commences. While the upgrade is being performed according to the upgrade 
algorithm, the clients are still sending the user requests. Some server replicas process 
the requests using the old code, while other are running already the new code.  

4. After some later time T+UT, the last replica in the server group is upgraded the thus 
the upgrade algorithm terminates. From now on, the server is processing the user 
requests using only the new version of the code. 

 
The actively replicated server can process two kinds of method invocations[63]: 

• Anycast invocations. The semantics of the anycast invocation guarantees that at least 
one server replica performs such a method. (see the lower diagram in Figure 60 
showing a time run of a sequence of consecutive anycast invocations). 

• Mulitcast invocations. The semantics of the multicast invocation guarantees that such 
a method is performed by all server replicas. The responses from the replica are then 
collected and sent back to the client. (see the upper diagram in Figure 60 showing 
a time run of a sequence of consecutive multicast invocations). 
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Figure 60. The difference in processing multicast and anycast requests by an actively replicated 
server. 

During the upgrade process not all replicas are active, that is processing client requests. In the 
current implementation of the algorithm, one is being replaced at a time and, therefore, it is 
not able to process client requests. The other replicas still may process client requests and 
make the whole server available. Figure 61 shows a sequence of client requests being 
processed during an upgrade process performed according to the algorithm proposed in 
previous chapter. For the sake of simplicity, new replicas has the same time lines as the 
corresponding replicas that they replace. To differentiate a new and an old replicas, the 
rectangular boxes on the old replica’s time line are filled with different filling patterns: 
a checked pattern for the requests processed by the old replica and a pattern with diagonally-
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stroked lines for the new replica. Additionally, the solid rectangular boxes represent the time 
periods that the replacement process is performed by the corresponding replica. 
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Figure 61. Processing of client requests during the upgrade process. 

 
The following parameter are changed in the experiment series: 

• Server Replication Level. The value of this parameter describes the number of replicas 
of the test server. It can be always greater than two.  

• Workload of the test server. As mentioned in the experiment scenario, the server 
workload is simulated by sending a continuous stream of client requests to the server 
at regular time intervals. Such a request send events distribution allows observing the 
behavior of the systems under constant load and analyze the correlation of the server 
workload and the system availability characteristics during the upgrade process. In 
future experiments, more advanced models for request sending may be investigated. 
The sample values of the request sending frequency are set so that: (1) the maximal 
frequency fmax of request processing is found out (server saturation); (2) the minimal 
frequency, and the first sample at the same time, is set to some value fmin; (3) the other 
values are distributed in the range [fmin , fmax).  

8.2.2 Testbed and experiment constraints 
The logical experiment configuration runs on top of the middleware, system software and 
hardware configuration. The hardware in the experiment testbed consists of: 

• 3 PCs, Pentium II 333Mhz, 
• 1 PCs Pentium IV 2Ghz, 
• 100Mbps Ethernet-based LAN. 

Whereas the slower machines are used for test server replicas and the Jgroup/ARM 
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infrastructure processes, including ExecDaemons and ReplicaManager (see section 
7.4.2), the latter machine is used to run the test client, a test server replica if replication level 
is equal to four and the scripts automating running a series of experiments (see below). 
The following software packages are used to run the experiments: 

• Debian 3.0[11], standard Linux 2.4.X kernel[54], 
• Sun JDK 1.3.1 for Linux[119], 
• ARM/Jgroup 2 extended with the DUF implementation as described in section 7.4, 
• Test server replicated with ARM/Jgroup2. The test server is an echo server in that it 

replies simple responses based on the input parameters with certain delay. The server 
provides three test methods: 

o m1 is a anycast void method. The implementation of method m1 just updates 
internal variables, like invocation counters and returns control. The method is 
also void in the sense that it does not return any return value. The response 
time of this method is used as a reference for the minimal response time of a 
anycast method possible in the experiment testbed. 

o m2 is a multlicast void method. The method is also void in the sense that it 
does not return any return value. The response time of this method is used as 
a reference for the minial response time of a mulitcast method possible in the 
experiment testbed.  

o m3 is a sample anycast method with an input parameter and returning some 
value. The input parameter is a byte array with a constant size (10k bytes). The 
method performs computations (with a constant time bound) to simulate 
workload by a typical server implementation. 

o m4 is a sample multicast method with some input parameters and a return 
value. It performs some computations (with a constant time bound) to simulate 
workload by a typical server implementation. 

• Set of shell scripts that control and automate the experiment runs. The scripts are 
responsible for starting the experiment in the initial configuration, collecting the logs 
with the experiment raw data from the testbed nodes. processing and storing them in 
the format needed for further analysis and presentation (e.g. gnuplot diagrams or excel 
spreadsheets). 

The experiment testbed has the following constraints: 
• Four nodes. The testbed has only four Linux machines. Running a replicated server 

with a replication level of greater than four would mean that multiple replicas would 
be running on the same node. The replicas would be competing for node’s resources 
and this could contribute to noise with regard to to the performance measurements. 
Consequently, it was decided to perform experiments with server replicated with 
a replication level of four or less.  

• No total isolation. However the testbed network is not completely isolated from the 
environment external to the experiment, i.e. traffic from other machines in the 
network, the network traffic is much reduced by applying switch filtering the incoming 
traffic. In this way, the noise coming from non-experiment related sources is rather 
low. Another issue is the noise coming from other processes running on the testbed 
machines. To handle that, the number of non-experiment processes on the Linux 
machines was reduced to minimum. Additionally, the testbed nodes share experiment 
files through NFS, which may have impact on certain system performance 
characteristics. Therefore, the experiment results should not be considered as absolute 



 

  147 

values. Instead, the experiments are set up to show some relative system 
characteristics. 

Considering the experiment testbed constraints above and the method for generating sample 
values for the experiment parameters, the following experiment parameter values depicted in 
Table 10 are assigned for the series of experiments carried out.:  
 

Parameter Sample values 
R – level of replication of the target 
server 

2,3,4 

X – workload of the test server (req/sec) 1, 4, 8 for experiments with test method 
m1 and m3 
20, 40, 80 experiments with test method 
m2 and m4  

Table 10. Experiment independent parameters. 

8.2.3 Benchmark metrics and Methodology 
The following are the basic metrics that are helpful to measure the performance of the 
algorithm. 

• RTx(t) – Response Time of test method request x=m1, m4 sent at time slot [t, t+dt), 
where dt is called cycle time. The response time is measured throughout the experiment 
time: before the upgrade process commences, while the upgrading takes place and 
after the upgrade is complete. 

• UT(R, X) – Upgrade Time is the time period from the moment an upgrade request is 
sent to the upgrade target to the moment target's upgrade process completes.  

The algorithm evaluation is based on the measuring the benchmarking metrics identified in 
section 8.2.3 for a number of experiments performed according to the scenario described in 
section 8.2.1. Each experiment is carried out with different combination of the independent 
parameters listed in section 8.2.1. Each such experiment is repeated 10 times to reduce the 
significance of the influence of external factors, including other traffic in the network and 
other processes accessing the computing resources of the testbed nodes.  
The time measurements are done using the standard Java library calls 
(System.currentTimeMillis()) . To reduce the time measurement imprecision, the 
server response times that are in range of a few milliseconds for method m1, a few ms teens 
for method m3 and a ms few tens for method m2 and m4, the average response times are 
computed for a number of invocations on the server within a time period called cycle time. In 
the experiments done, the cycle time was set to one second.  
The upgrade times are measured using the same Java library call. The time is determined by 
the time point at which the upgrade response arrives a replica of the test server and the time 
point at which a replica leaves the group of the test server. The upgrade process time is 
considered the longest5 upgrade time of a single replica. The measurement method is 
visualized in Figure 62. The vertical lines symbol the time lines of server replicas. The arrows 
point the times on which certain events occur to replicas. The yellow rectangular boxes 
indicate replicas processing the active steps of the upgrade algorithm, whereas dashed lines 

                                                 
5 Even though that the actual upgrade process time may be longer than the longest upgrade time of a single replica because of 

different times of an upgrade request arrivals at different replicas, we abstract from this in the experiment measurements. The time 
difference is an insignicant fraction of the whole upgrade process time. 
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show passive steps of the algorithm, that is replica waiting periods.  
A derived benchmark metrics, Average Upgrade Time, AUT for short, is then an average 
upgrade time taken for a number of repeated experiments with a given set of parameters. This 
metrics is used for further investigation for better precision’s sake. 

 

Upgrade Time 

Replica 1 

Update Request sent by 
the Upgrade Manager 

Replica 2 

Replica 3 

Update Request received 
by a test server replicas 

Replica leaves the test 
server group. 

 

Figure 62. The measurement method for the upgrade process time. 

 

8.3 Results 
The results of the experiments are graphically presented in this section as diagrams. First the 
server response time is presented as it changes in time during the experiment. After the 
upgrade process times are presented for experiments in different configurations. 

8.3.1 Server Responsiveness Analysis 
The section presents the results of the server responsiveness analysis. The analysis has been 
performed separately for the anycast methods in section 8.3.1.1 and for the multicast methods 
presented in section 8.3.1.2. 

8.3.1.1 Anycast methods 

In Figure 636, the average server response times are shown for an experiment with replication 
level 2, testing method 1 and request rate 20, 40 and 80 requests per sec. The average response 
times are computed for a number of 10 repetitions of the same experiment. 
The diagram shows that the response times increase during the upgrade process starting at 3s 
and terminating on average after 15s, that is 18s of the whole experiment time. The response 
times are especially large at the beginning of the upgrade process (peak around 3s exceeds 
12ms) and at the end of the upgrade process (peak around 15s exceeds 8ms). This can be 
explained by: 

• additional activity needed to process the upgrade request including starting a replica 
with a new code on the same host which the replica to replace runs on, and 

• additional communications needed to install a new membership view in the server 

                                                 
6 Each experiment is named acorrding to the following naming scheme: Ra mb rc, where Ra means Replication level and a can be 

equal to 2, 3, 4; mb means test method b and b can be equal to 1,2,3 or 4; rc means workload in request sent to the test server 
per seconds, where c can be 20, 40, 80 for anycast test method and 4, 8, 16 for multicast methods. Additionally, each symbolical 
variable in this scheme a, b and c can be set to X meaning any value from the allowed range. 
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group. 
Moreover, the diagram shows that the overhead peaks occur at the same points in time in each 
experiment independent of the traffic generated by the test clients. This phenomenon can be 
explained by that fact that the time that 1st replacement is started without waiting until the 
previous client request is fully processed. The implementation of the UpgradeLayer of the 
selected replica for the 1st replacement immediately starts a new replica on the same host and 
switches the replica state to upgrading (see section 7.2.4). The processor on which the 
selected replica is running is busy with starting a JVM and loading the needed classes. This 
decreases the response time of the whole server. As soon as the new replica is started and 
joins the server group, another replica can be chosen to be replaced. The time the next 
replacement takes place depends mainly on the speed a replica can start and join the group. 
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Figure 63. Average Response Times in experiment R2 m1 rX 

Figure 64 shows a time dependency of response times of the server’s test method 3 to 
compare. The diagram looks very similar to the previous one in terms of response time 
variations throughout the experiment. On average, test method m3 has a bigger response time 
than method 1. At the same time, the overhead introduced by the upgrade process is similar to 
that of method 1 both in terms of the time dependency (response time peak number and their 
time points).  
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Figure 64. Average Response Times in experiment R2 m3 r20 

Figure 65 presents the average response times for test method m1 changing during the upgrade 
process for a server replicated with a replication level equal to 2, 3 and 4. In this diagram, the 
rest of the experiment parameters are the same. A significant increase in the response times 
occurs coherently at the beginning of the upgrade process. The biggest response time at this 
time point overhead seems to be for the server with replication level of 2. The response time 
curves also have other peaks at 6s, 11s and 14s but they seem not be coherent. It is related to 
the fact that the different number of replicas have to be replaced during the upgrade process. 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.0 18.2 36.3 54.4 72.4 90.4 108.5

experiment time [sec]

re
sp

on
se

 ti
m

e 
[m

se
c]

R2 m1 r20 R3 m1 r20 R4 m1 r20
 

Figure 65. Average Response Times in experiment Rx m1 r20: 
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Table 11 shows average response times during the upgrade process and after it for the 
experiments with test method 1 used. The experiments vary in the replication level and the 
traffic load on the server. The table contains a ratio of the during-upgrade and after-upgrade 
average times. On average, the response times during the upgrade process are greater by 25% 
than the response time taken before or after the upgrade process. This can be considered as the 
overhead of the dynamic upgrade algorithm that is manifested by its negative impact on the 
test servers responsiveness.  

 
During upgrade Before/After upgrade 

Experiment Average 
Response Time 

Standard 
Error 

Average 
Response Time 

Standard 
Error 

Ratio 

R2 m1 r20 
R2 m1 r40 
R2 m1 r80 
R3 m1 r20 
R3 m1 r40 
R3 m1 r80 
R4 m1 r20 
R4 m1 r40 
R4 m1 r80 

6.96 
6.63 
5.99 
5.72 
5.41 
5.03 
6.04 
5.74 
5.09 

1.77 
1.58 
0.92 
1.07 
0.84 
0.51 
1.21 
0.93 
0.67 

5.54 
5.16 
4.19 
4.61 
4.32 
4.04 
5.14 
5.01 
4.08 

0.38 
0.39 
0.58 
0.27 
0.36 
0.22 
0.29 
0.22 
0.27 

1.26 
1.29 
1.43 
1.24 
1.25 
1.25 
1.18 
1.15 
1.25 

 
Table 11. Average response times during and after the upgrade process  

for test method 1. 

Additionally, Table 11 includes the standard errors of the response times. The greater values 
of the standard variation for the response times during the upgrade process confirm the 
observation of strongly varying server responsiveness. 

To conclude, the upgrade process adds some overhead onto the server responsiveness. This 
overhead is of quickly changing intensity and oscillates between 0 to its peak value of over 
200%. However, its effective overhead is on average around 25% when measured throughout 
the overall time of the upgrade process. Additionally, it seems that there is a relation between 
the number of peaks and the replication level. It can be explained by the fact that the peaks are 
to be contributed to the resource consuming activity of starting an operating process that each 
new replica joining in causes. 

8.3.1.2 Multicast methods 

Figure 66 depicts an equivalent diagram with server response times during a set of repeated 
experiments where test method m2 is used. Method m2 is a multicast method The 
experiments shown in the diagram differ in the workload generated. The response times in 
these experiments are quite correlated and follow the same pattern: the response time of the 
test server grows reaching its maximum peak of around 100 msec, which exceeds the average 
response time before and after the upgrade process by a factor of 500%. In this experiment, 
the number of peaks during the upgrade process is equal to three. 
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Figure 66. Average Response Times in experiment R3 m2 rX. 

Table 12 shows average response times of method 2 both during the upgrade process and 
before/after it. The last column includes a ratio between these times for each experiment. The 
average ratio for all experiments amounts to 1.66. Compared to the analogous results for 
method 1, the ratio is much higher (66% against 25% overhead) and indicates a higher 
performance overhead of the upgrade process for this test method. Furthermore, considering 
that fact (see sections below) that the upgrade time for method 2 is also much longer than for 
method 1 and 3, it can be stated that the overall performance overhead of the upgrade 
algorithm with regard to servers processing multicast methods is significantly higher than the 
one regarding servers processing unicast methods. 
 

During upgrade Before/After upgrade 
Experiment Average 

Response Time 
Standard 

Error 
Average 

Response Time 
Standard 

Error 
Ratio 

R2 m2 r4 37.46 22.66 20.08 4.99 1.87 

R2 m2 r8 31.20 13.40 18.96 5.52 1.65 

R2 m2 r16 27.36 12.54 17.79 2.75 1.54 

R3 m2 r4 35.80 25.79 19.06 3.75 1.88 

R3 m2 r8 32.31 15.54 19.09 3.29 1.69 

R3 m2 r16 29.36 12.32 18.26 1.44 1.61 

R4 m2 r4 78.03 21.65 47.85 5.78 1.63 

R4 m2 r8 59.76 11.73 38.42 3.34 1.56 

R4 m2 r16 60.52 11.00 38.92 1.93 1.55 

Table 12. Average response times during and after the upgrade process  
for test method 2. 
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8.3.2 Upgrade Time Analysis 

Another system parameter measured in the experiments is the upgrade time. Its value should 
be as small as possible in order to limit the performance overhead added by the upgrade 
process as well as to reduce the risk of failures during the upgrade. The following sections 
present the average values of the upgrade time, AUT, measured in the experiments.  
Figure 67 shows the average upgrade times [in ms] for the experiments with clients sending 
test method 1 to the server. The times have been presented for upgrade processes with 
different server replication levels (bars painted with different shades) and for different rates of 
client requests sent to the server (depicted on the x axe).  
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Figure 67. Average upgrade times for experiments with method 1. 

Figure 68 presents average upgrade times for experiments with test method 2. The vertical axe 
represents the upgrade times in milliseconds, whereas the horizontal axe represents the server 
load in the number of requests processes per second. Different shades of the diagram columns 
represent different replication level of the test server, with the left-hand blue column meaning 
replication level of two, the central column – replication level of three and the right-hand 
column – replication level of four.  
The diagram presents suggests a correlation between the upgrade time and the load of the 
server during the upgrade. Namely, the heavier the load is, the longer it takes to complete the 
upgrade process. Another dependency that can be seen in the diagram is a positive correlation 
between the upgrade time and the replication level: the higher the replication level is, the 
longer the upgrade process takes. This observation seems to support hypothesis H1 put 
forward in section 8.1 
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Figure 68. Average upgrade times for experiments with method 2. 

8.4 Conclusion 
To estimate the performance overhead of the upgrade algorithm introduced in previous 
chapter of this thesis, a number of practical experiments with the algorithm prototype were 
performed as described in this chapter.  
The results of these experiments confirm the hypothesis formulated at the beginning of the 
chapter as follows: 
With regard to Hypothesis H1, the upgrade process has a negative impact on the server 
responsiveness during the upgrade process. Depending on the method invocation semantics, 
this overhead differs from 25% for the anycast invocations to 66% for the multicast 
invocations. 
Therefore, it may be worth of changing the multicast type of traffic to anycast one for the time 
the dynamic upgrade is to be performed if it is feasible. Using the existing JGroup middleware 
platform it is possible if both invocation types are foreseen for the server method at compiling 
time of the server code because the method signatures differ for these method invocation 
styles. Using the Java reflection support and java byte code analysis and manipulation 
mechanism provided by the Byte Code Engineering Library [4] it could be possible to develop 
tools for generating the corresponding method syntax definitions. The difficulty would lie in 
the automated detection of side-effects and their resolution when transforming an anycast to 
multicast method or vice versa.  
Secondly, Hypothesis H2, which states that the time taken by the upgrade process applied to 
a replicated server depends on the replication level, can be confirmed. On average, it takes 
approximately double as long to upgrade an actively replicated server with replication level of 
4 compared to a server with only two replicas.  



 

  155 

The upgrade time for the sample replicated server used in the experiment was in range 
between 13 and 42 seconds. During this upgrade time, the server reliability is decreased and 
the system more susceptible to crashes as the replication level is smaller than out of that time. 
To reduce the crash risk, this upgrade time may be shortened by defining an upgrade enabling 
condition so that more replicas are upgraded in parallel. On the other hand, when the more 
replicas are being upgraded at a time, the less replicas are available and the server reliability is 
reduced. This trade-off may be solved by starting additional replicas with new code before 
replacing the old ones. However, the server responsiveness is then compromised as the 
increased replication level causes additional penalty as even more replicas have to compete for 
the same hardware resources if provided additionally. The rule of the thumb is to perform 
upgrades with at least two replicas not being upgraded. Additionally, the upgrade should be 
then performed during the time that the crash probability is smallest, for instance when the 
server workload is low. 
In the experiments carried out, it was not possible to fully verify , that is the server workload 
caused by the clients has an impact on the upgrade process time. The server is loaded from 
small to mean load and the host resources are ample to handle the additional activity of 
upgrading the server. Only in case of a test server with four replicas, the upgrade time depends 
on the workload. Some more experiments with heavy load on the server are needed to confirm 
the presumed correlation between the upgrade time and workload. 
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9 Conclusions 
This thesis has investigated the problem of upgrading distributed software components on the 
fly. Software upgrades have been considered from several perspectives: as a special case of 
deployment, as an approach to runtime management and as a mechanism to increase 
availability of time-critical systems.  
In this work, the topic of dynamic upgrades of distributed software was tackled by identifying 
the range of aspects of the core problem, such as defining the upgrade process, coordination 
and management of dynamic upgrades, upgrade validation. The problem analysis was initially 
based on the investigation of the existing approaches described in the research literature. This 
resulted in a comprehensive comparative study of the state-of-the-art systems supporting 
dynamic upgrades. The study allowed to define in a set of general requirement on the platform 
and the software systems to upgrade.  
The set of requirements was then taken as the input to develop a more generic model for 
middleware platforms aimed at supporting upgrades on the fly. The model was called 
Deployment and Upgrade Facility and formulated using the UML notation. It is modeled 
following the Unified Process with help of different models. In use case model, the main 
functionalities of a middleware platform to support dynamic upgrades are specified using the 
use case notation. In design model, the architecture that is derived out of the model is 
presented in term of the objects and their relationships and dynamic interactions. The 
applicability of the model was verified by deriving a concrete design of an object oriented 
framework supporting deployments and upgrades, The framework was implemented in 
a series of prototypes extending the mainstream middleware platforms, including OMG’s 
CORBA and JAVA RMI (Jgroup).  

9.1 Contributions 
The major contributions of this thesis are: 

• A model of a system supporting deployment of distributed applications and in 
particular, dynamic upgrades of distributed components. The model results from a 
comprehensive analysis of issues to be addressed when building software capable 
of being upgraded on the fly. The model is described in chapter 5 and contains the 
following parts: 

o Use case model describing the actors relevant to deploying and upgrading 
a distributed system, as well as, the core capabilities a system has to 
provide to enable deploying, and in particular upgrading distributed 
components. 

o Component Model, which defines the component and its features with 
regard to the implementation, deployment and runtime phases. 

• The Deployment and Upgrade Facility which is an object-oriented framework 
capturing design solutions and patterns to construct dynamic upgrade support 
systems. The framework is based on the model above and extends the model with a 
design of interactions . It has been described in chapters 6-8 of this thesis. The 
major features of DUF are: 

o Support for dynamic upgrades of distributed applications. The framework 
enables software upgrades by replacing software component on the fly. The 
software components may be distributed in multiple containers running on 
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various hosts. 
o Solution extensibility. The DUF is designed as an object oriented 

framework with extendibility in mind . The extensibility is expressed in the 
following aspects:  

� it is possible to extend the facility with new upgrade algorithms, 
some of which have been presented in this thesis. In particular, 
upgrade of non-replicated and replicated services is enabled. 

� it is possible to introduce new upgrade management schemes by 
inserting new management policies.  

o Advanced Upgrade Management. The DUF allows for managing upgrades 
in complex distributed systems. The management subsystem enables setting 
up the upgrades in the identified dimensions.  

o Technology-independence. The framework does not depend on the 
technology-specific realization of the supporting mechanism. 

The DUF has been extended by implementation of the supporting mechanisms 
that were implemented in a series of prototypes using a concrete middleware 
technology, including CORBA and Jgroup, a Java RMI extension.  

• Dynamic upgrade problem taxonomy and a state-of-the-art solution survey. The 
thesis identifies and classifies problems related to building dynamically upgradable 
distributed systems and the dynamic upgrade support systems. The proposed 
taxonomy is a result of comprehensive comparative analysis of existing systems 
and ones under development/specification , which support dynamic upgrades in 
distributed systems. 

The results of the thesis have been published in international conferences and discussed with 
world experts in the area [109][110][112][113]. The solutions presented in the thesis were 
submitted as contributions to the international research projects, in which the author of this 
thesis actively participated, including Eurescom P910[17][18], Eurescom P924[111][20] and 
IST FAIN[22][23].  

9.2 Novelty  
The approach to designing a dynamic upgrade support system presented in this thesis is novel 
in many ways: 

• Consideration of dynamic upgrades from the deployment perspective. The thesis 
provides a comprehensive view on dynamic upgrades in distributed applications, as 
a special case of the software deployment process. The view encompasses the 
deployment aspects and runtime issues related to software upgrades and extends 
the scope of most of the previous work on dynamic upgrades. 

• Separation of the technology independent part and technology specific part. The 
approach of this thesis is to divide the solution for dynamic upgrades into three 
parts: the model, the framework for Deployment and Upgrade Facility and the 
supporting mechanisms. Whereas the model and framework are technology 
independent, the realization of supporting mechanisms is specific to the underlying 
technology. 

• Heterogeneity Support. The DUF supports dynamic upgrades of distributed, 
heterogeneous services. The services may consists of multiple components 
implemented using different technologies spread across a number of containers and 
hosts. Thanks to the platform-independent model proposed in this thesis and the 
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openness of the COBRA middleware technology chosen for the prototypical 
implementation (open interfaces, interoperability and portability), it was easy to 
provide an implementation of the DUF which supports upgrades of heterogeneous 
services.  

9.3 Goal fulfillment  
The first goal of the thesis has been to construct a model that describes capabilities needed to 
support dynamic upgrades in distributed software systems. To meet this goal (P1 in section 
1.2), the use case model has been specified in chapter 5. The model includes an underlying  
component model defining how to construct distributed software out of components (goal P2).  
The model defines the core capabilities of the system and actors interacting with the system 
and is completely independent from the implementation technology (goal P3) The model has 
been validated by building a set of prototypes described in section 5.4 and chapters 6-7. using 
existing middleware platforms (goal P4).  Finally, to meet goal P5, the model is specified and 
presented using the Unified Modeling Language, a standardized notation, which is widely 
used by the industry and research community working on the object-oriented and distributed 
systems.  
The solution developed in this thesis fulfills all the goals set in section 1.2. It provides a 
support for performing and managing dynamic upgrades of distributed software components 
and is compliant to the model presented in chapter 5 (goal P6). The degree to which the 
support is provided is discussed in the following subsection when presenting the fulfillment of 
the more detailed requirements on the solution specified in section 5.1.  
Furthermore, to meet goal P7, the solution has been practically validated by implementing a 
series of prototypes using the CORBA and RMI main-stream middleware technologies.  It is 
designed and implemented as a framework that allows for its extensions by both by adding 
new support mechanisms and management policies for dynamic upgrades (goal P8). The 
implementation of the solution is divided into the  platform independent part and platform 
specific part (for Jgroup). Thus, its reusability is increased (goal P9). When porting it to 
another middleware technology, only the platform specific part needs to be implemented. 
Finally, the performance of the DUF system has been tested in a series of experiments as 
presented in chapter 8 to meet goal P10.  

9.3.1  General Functional Requirements  
With regard to the requirement on Basic Deployment Capabilities as express in R1. The DUF 
provides the basic deployment capabilities as described in chapter 5. In particular, it is 
possible to release, deploy, remove and withdraw a service from the system. The design and 
implementation of the system demonstrating these deployment capabilities was described in 
section. 5.4. 
With regard to the requirement on Support for distributed services, as stated in R2, the DUF 
supports deployment and upgrades of distributed component-based services. The underlying 
component model defined in section 5.3 enables a service to comprise a number of software 
components distributed on multiple containers and hosts. 
Concerning requirement R3 on Support for co-existence of multiple versions, it is possible to 
release and deploy multiple versions of a service component in a distributed system on each 
node, i.e. two or more version of a service component may be deployed on a node.  

9.3.2 General Nonfunctional Requirements 
Solution extendibility has a high priority in the approach presented in this thesis as requested 
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in R4. The solution is designed as a extensible framework which enables using a number of 
available upgrade management strategies and upgrade algorithms for various types of upgrade 
targets, as well as, inserting new dynamic upgrade management policies and supporting 
mechanisms.  
Referring to R5, DUSS Portability, a significant part of the Deployment and Upgrade Facility 
has been developed in a platform independent way so that the underlying capabilities of the 
middleware platform are abstracted. Additional, the requirement has been addressed by 
selecting Java as the programming language. This part of this solution can be easily ported to 
any middleware technology and other hardware platforms, for which an implementation of the 
Java Virtual Machine is available. Only small part of the implementation code of the support 
mechanisms is platform dependent and needs to be adapted to different middleware platforms.  

9.3.3 Requirements on Upgradable Components  
As far as Orthogonal Upgradability is concerned, requested in R14, the upgrade capabilities of 
a component, which belong to the system management issues is separated from the component 
functionality (business logic) in that another interface is added to the sets of the component’s 
main  interfaces related to the business logic of the component. The implementation of the this 
interface may have to be integrated with the implementation of the component’s business 
logic to insert the so called upgrade points. 
Simplicity of development of upgradable components was requested in R15. The component 
developer has to put some effort to add an implementation of the Upgradable interface. For 
the stateful components, the implementation has to support the state transfer mechanism in 
that the get_state() and set_state() method implementation has to be provided. 
These methods can be partly automated as shown in the work on persistent system, eg. 
Orthogonal persistence approach. In general, a automatic support for state transfer is not 
feasible. The DUF handles this requirements by following a framework-like approach 
providing a number of interface definitions that has to be then implemented by the component 
developer or generated by the state transfer support tools left out of this thesis. 
According to requirement R16, the set of constraints on the system imposed by a DUSS should 
be minimized. The approach taken in this thesis does not impose any constraints on the 
development process. Neither the system architecture nor programming style is constrained. 
The design flexibility is supported as much as the component-oriented paradigm allows for 
that. The DUF facility is a design framework that has some impact on the design of a 
component. (new interfaces that has to be supported by the upgradable components). 
Although the framework provides a number of support mechanism implementations, like 
upgrade algorithms specialized to handle upgrades of various upgrade targets, it is extendable 
and other supporting mechanisms can be added. 
With respect to requirement R17, dynamic upgrades of heterogeneous services should be 
supported. Deployment and Upgrade Facility is defined on the conceptual level and specified 
using UML. It has been implemented in the CORBA environment that supports heterogeneity 
of software components in a system. Thus, it supports interoperability.  

9.4 Open issues and Future Work 
The following topics have not been investigated at full length in this thesis and are proposed 
further research: 

• Higher dynamics of change. As the upgrade algorithms presented in this thesis 
provide some constraints on the allowed differences between versions of the 
component to upgrade, some investigation of upgrade algorithms should be carried out 
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that allow for higher dynamics of change during upgrades.  
• Tool support for automating the preparation of upgradable components. Some 

research should be done to investigate in how far it is possible to automate adding the 
upgradability to a component that has been designed without this goal.  

• Solution Scalability. The solutions presented in this thesis have been applied to 
relatively small distributed systems. Further research is needed to check the scalability 
of the solutions to a large-scale highly-distributed system, running perhaps on hosts 
connected with a links of significant communication delays. 

• Applicability to other software architectures. The solution has been used in the multi-
tier architecture based on the RPC communication paradigm. The recent tendency in 
software system development is to design systems in a decentralized and loosely-
coupled way that are more suitable for ubiquitous computing paradigm. It would be 
worth of investigating how the solution presented in the thesis can be applied to 
software systems built in these architectures.  

• Safe Online Upgrades. Safety of software system upgrades is a critical issue. The 
solution presented in this thesis assumes that the service deployer, who is a trusted 
entity for the target system, may also trust the service code providers with regard to the 
suitability and correctness of the code. If this assumption is weakened, some additional 
mechanisms supporting security of the upgrades need to be made available. 
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Acronyms 
This section contains a list of acronyms used throughout the text of this thesis. 
 
ADT Abstract Data Type 
AML Architecture Modification Language 
API Application Programming Interface 
ARM Autonomous Replication Management 
AUT Average Upgrade Time 
COM Component Object Model 
COS CORBA Object Services 
CORBA Common Object Request Broker Architecture 
DCOM Distributed Component Object Model 
DU Dynamic Upgrade 
DUF Deployment and Upgrade Facility 
DUMF Dynamic Upgrade Management Framework 
DUSS Dynamic Upgrade Support System 
DUT Deployment and Upgrade Tools 
EE Execution Environment 
EJB Enterprise Java Beans 
GCS Group Communication System 
IDL Interface Definition Language 
ISO International Standardization Organization 
JVM Java Virtual Machine 
MOM Message-Oriented Middleware 
ODP-RM Open Distributed Processing – Reference Model 
OMG Object Management Group 
OSD Open Software Description 
POA Portable Object Adaptor 
RMI Remote Method Invocation 
RP Reference Point 
RPC Remote Procedure Call 
RT Response Time 
SDL Specification and Description Language 
SDR Service Dependency Resolver 
SP Service Provider 
UML Unified Modeling Language 
VE Virtual Environment 
XML Extendable Markup Language 
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Glossary 
This is a list of terms adopted from the literature or introduced in this thesis. Each entry in the 
glossary contains the term, its explanation and the literature source it stems from. 
 

Term Explanation Source 

Actively-replicated 
Server 

A server replicated with a number of replica, each of 
which is running in parallel and ready to process incoming 
client requests. 

 

Anycast Method 
Invocation 

The semantics of an anycast invocation guarantees that the 
invocation on a replicated server will be executed by 
invoking the same method on at least one of the server 
replicas [unless client is completely partitioned from the 
server in case of partionable environment]. 

[63] 

Architecture Overall design of a system. An architecture integrates 
separate but interfering issues of a system, such a 
provisions for independent evolution and openness 
combines with overall reliability and performance 
requirements.  

[123] 

Component A component is a unit of composition with contractually 
specified interfaces and explicit context dependencies 
only. Context dependencies are specified by stating the 
required interfaces and the acceptable execution 
platform(s). Component has the following properties: it is 
a unit of abbstration,  deployment and management. In the 
context of this thesis, the component is mainly considered 
as a unit of dynamic upgrade. 

[123] 

Compound Upgrade A dynamic upgrade that involves multiple upgrade targets.  

Critical Systems Software systems that are critical to the operation of the 
organization or its mission.  

[30] 

Dynamic upgrade 
(process) 

A upgrade process that performs changing a given target 
system on-line while the system is operating, as compare to 
a static upgrade in which the system is taken off-line during 
reconfiguration. 

[30] 

Multicast Method 
Invocation 

The semantics of a multicast invocation guarantees that 
the invocation on a replicated server will be executed by 
invoking the same method on every server replica 
[contained in the client’ partition in case of partitionable 
environment]. 

[63] 

Object A model of an entity, which represents either a real or 
abstract phenomenon. An object can be distinguished 
from any other object and is characterized by its behavior 
and state. 

[45][46] 

OO-Framework A partial system implementation in object-oriented way 
formed by a set of interacting classes expressing the 
behavioral and structural patterns typical for a certain 
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problem domain. The framework is extendable by adding 
new, specialized classes to turn the framework into a 
concrete implementation for a system. 

Package [in UML sense] A collection of arbitrary model elements 
used to structure the entire model into smaller, clearly 
visible units. A package also defines a namespace for 
these model elements.  

[81] 

Passively-replicated 
Server 

A server replicated with a number of replica, one of which 
(called the primary replica) is processing the incoming 
client requests and sending updates to the rest of the other 
replicas (called backup replicas). 

 

Platform A basic technology enabling inter-process and intra-
process interactions of software components in the 
distributed system. Examples of commercial middleware 
platforms include Sun’s EJB[119] and OMG’s 
CORBA[73]. 
Synonyms: Middleware Platform, Distributed Execution 
Environment[126] 

 

Policy Policy allows for specifying or declaring a condition under 
which a given management process, in particular a 
dynamic upgrade, should be carried out. 

 

Recovery (1) Recovery is a process of leading to resuming the 
system operation after an outage. (2) Recovery is the 
speed with which a system returns to operation following 
an outage.  

[134] 

Reference Point A reference point is the specification of a particular set of 
conformance requirements. It comprises the set of 
interfaces that describe the interactions that take place 
between entities. 

[126] 

Referential Integrity Rule which describes the integrity of object or component 
relations. In the context of an dynamic upgrade if one 
component is upgraded, that is replaced with another one, 
the relation realizations (e.g. references) that other 
components use to access the component upgraded have 
to be updated correspondingly.  

[81] 

Runtime Constraints 
(of a dynamic 
upgrade process) 

Constraints on the quality of dynamic upgrades. They can 
range from the basic need to have a quality upgrade to a 
requirements for safe uninterrupted service of an online 
system, even in the event of an error in the upgraded 
software, hardware, or process.  

[30] 

Service Deployment 
(process) 

The process involving actions aimed at making a piece of 
software representing the service functionality available 
for using in a given target infrastructure Deployment 
process involves requirements a number of activities 
including: deployment requirement matching, code 
distribution, installation, configuration and activation. 

 

Service Release The process of making a service available to be deployed  
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in a given physical infrastructure. 
Service Withdrawal  The process of making a service unavailable to be 

deployed in a given physical infrastructure 
 

Static upgrade 
(process) 

A upgrade process that performs changing a given target 
system off-line. The system is not operational during the 
upgrade time. 

 

Upgrade Algorithm An algorithm describing the steps to upgrade a given 
upgrade target.  

 

Upgrade Process Upgrade process is a management process that deals with 
exchanging programming artifacts comprising a target 
system. In the context of this thesis, the target system is 
component-based distributed system.  

 

Upgrade Time One of the management dimensions of the upgrade 
process. Planned Upgrade Time is a point in time, in 
which the upgrade process for the given upgrade target 
should start, whereas Real Upgrade Time is the point of 
time when the upgrade process for the given target starts.  

 

Upgrade Target The object of a upgrade process. In context of dynamic 
upgrades of distributed system, it is defined as as set of 
runtime artifacts (component instances), possibly 
distributed on various nodes.  

 

Upgrade 
Transparency 

A feature of a DUSS. It masks, from an object, an upgrade 
being performed on other object(s) in the so called 
upgrade zone. The upgrade transparency can be 
considered as another ODP distribution transparency [46]. 

 

Upgrade zone A set of containers, which may be located on various 
container servers, in which the deployed components are 
to be upgraded. 
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