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SUMMARY

Remote Control and Motion Coordination of Mobile Robots

As robots destined for personal and professional applications advance towards
becoming part of our daily lives, the importance and complexity of the control al-
gorithms which regulate them should not be underestimated. This thesis is related
to two fields within robotics which are of major importance in the advancement
of robotics in the scope above; namely, telerobotics and cooperative robotics. On
the one hand, telerobotic systems support remote or dangerous tasks, whereas, on
the other hand, the use of cooperative robotic systems supports distributed tasks
and has several advantages with respect to the use of single-robot systems.

The use of robotic systems in remote tasks implies in many cases the phys-
ical separation of the controller and the robot. This separation is advantageous
when carrying out a variety of remote or hazardous tasks, but at the same time
constitutes one of the main drawbacks of this type of robotic systems. Namely,
as information is being relayed from the controller to the robot and back over the
communication network, a time-delay unavoidably appears in the overall control
loop. Hence, controller designs which guarantee the stability and performance of
the robot even in the presence of the aforementioned time-delay become necessary
in order to ensure a safe and reliable completion of the assigned tasks.

On the other hand, using a group of robots to carry out a certain assignment,
as compared to a single robot, provides several advantages such as an increased
flexibility and the ability to complete distributed or more complex tasks. In order
to successfully complete their collective task, the robots in the group generally
need to coordinate their behavior by mutually exchanging information. When this
information exchange takes place over a delay-inducing communication network,
the consequences of the resulting time-delay must be taken into account. As
a result, it is of great importance to design controllers which allow the group of
robots to work together and complete their task in spite of the time-delay affecting
their information exchange.



The two control problems explained previously are addressed in this thesis.
Firstly, the remote tracking control problem for a unicycle-type mobile robot with
network-induced communication delays is studied. The most important issue to
consider is that the communication delay in the control loop most probably com-
promises the performance and stability of the robot. In order to tackle this prob-
lem, a state estimator with a predictor-like structure is proposed. The state esti-
mator is based on the notion of anticipating synchronization and, when acting in
conjunction with a tracking control law, the resulting control strategy stabilizes
the system and mitigates the negative effects of the time-delay. By exploiting
existing results on nonlinear cascaded systems with time-delay, the local uniform
asymptotic stability of the closed-loop tracking error dynamics is guaranteed up
to a maximum admissible time-delay. Ultimately, explicit expressions which illus-
trate the relationship between the allowable time-delay and the control parameters
of the robot are provided.

Secondly, the remote motion coordination problem for a group of unicycle-
type mobile robots with a delayed information exchange between the robots is
considered. Specifically, remote master-slave and mutual motion coordination are
studied. A controller design which allows the robots to maintain motion coordi-
nation even in the presence of a delayed information exchange is proposed. The
ensuing global stability analysis, which also exploits existing results on nonlinear
cascaded systems with time-delay, provides expressions which relate the control
parameters of the robots and the allowable time-delay.

The thesis places equal emphasis on theoretical developments and experimental
results. In order to do so, the proposed control strategies are experimentally vali-
dated using the Internet as the communication network and multi-robot platforms
located in Eindhoven, The Netherlands, and Tokyo, Japan.

To summarize, this thesis addresses two related control problems. On the one
hand, we consider the tracking control of a wheeled mobile robot over a commu-
nication network which induces a time-delay. On the other hand, we focus on
the motion coordination of a group of these robots under the consideration that
the information exchange between the robots takes place over a delay-inducing
communication network.
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1
INTRODUCTION

Abstract . This chapter begins with an introduction and an overview of the
current developments in telerobotic and cooperative robotic systems, focused
particularly on, but not limited to, wheeled mobile robots. This motivates a
discussion on some of the challenges that arise when the information exchange
of measurement data and control commands in a robotic system takes place
over a delay-inducing communication network. In turn, this discussion leads to
the formulation of the research objective and main contribution of this thesis.

1.1 Telerobotic and Cooperative Robotic Systems
In the last 50 years, advancements in different technological fields and the demand
to lower production costs and manage workplace safety have led to a surprisingly
quick development and the wide-scale adoption of what were once seen as futuristic
robots. It is likely that, in the coming decades, robots in personal and professional
applications will become part of our daily lives. As this revolution takes place,
the tasks conferred to robotic systems and the control algorithms which regulate
them will continue to become more decisive and complex as requirements for such
systems now encompass flexibility, robustness, safety, and transparency, among
others. Given the previous demands, this thesis touches upon two fields of robotics
which have contributed and will continue to contribute to meet these requirements;
namely, telerobotics and cooperative robotics.

On the one hand, telerobotic systems, that is, robotic systems which are
controlled at a distance, have become significantly important as a way to support
remote, dangerous or spatially distributed tasks. On the other hand, in the case
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Figure 1.1 . Example of telerobotic systems. The da Vinci minimally invasive sur-
gical robot (left) and the teODor remote handling robot from telerob
GmbH (right). See photo credits in the footnote.

of cooperative robotic systems, it is widely agreed upon that the use of multi-robot
systems, specifically of teams or groups of mobile robots which exhibit cooperative
behavior, presents several advantages over the use of single-robot systems (Arai et
al., 2002; Cao et al., 1997; Siciliano and Khatib, 2008).

The number of current and potential applications of telerobotic and cooperative
robotic systems has significantly increased during the last two decades. Some of
the applications of telerobotic systems include underwater robotics (Whitcomb,
2000; Yuh and West, 2001), space robotics (Biesiadecki et al., 2006; Hirzinger et
al., 2004), robots for agriculture, forestry, construction and mining (Halme and
Vainio, 1998; Ho et al., 2000; Vagenas et al., 1991), robots intended to carry
out tasks in hazardous environments or participate in search and rescue missions
(Murphy, 2004; Sanders, 2006; Yamauchi, 2004), and medical robots (Anvari et al.,
2005; Ortmaier et al., 2007). For additional references regarding these applications
see Siciliano and Khatib (2008). Two examples of telerobotic systems are shown
in Figure 1.11.

Among the applications that one could think of for a group of cooperative
robots are payload transportation (Wang et al., 2007), logistics (Adinandra et al.,
2010; Guizzo, 2008), localization and sensing (Dunbar and Murray, 2006; Leonard
et al., 2007), reconnaissance and surveillance (Casbeer et al., 2006; Grocholsky et
al., 2005), pursuit and enclosure of a prey (Madden et al., 2010; Yamaguchi, 1999),
automated highway systems (Naus et al., 2010; Swaroop and Hedrick, 1996), and

1Photo credit http://www.davincisurgery.com (left) and http://www.telerob.de (right).

http://www.davincisurgery.com
http://www.telerob.de
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Figure 1.2 . Example of cooperative robotic systems. Kiva Systems Drive Units
for intelligent warehouse management (left) and a team of swarm-bots
pulling a child (right). See photo credits in the footnote.

replenishment operations (Kyrkjebø et al., 2006, 2007). Note that these applica-
tions are not constrained to land-based robots, but also include unmanned aerial
vehicles (UAVs), unmanned underwater vehicles (AUVs), and unmanned surface
vehicle (USVs), among others. Two examples of cooperative robotic systems are
shown in Figure 1.22, whereas the interested reader is referred to Arai et al. (2002)
and Pettersen et al. (2006) for reviews of additional applications.

Having briefly defined telerobotic and cooperative robotic systems, Section 1.1.1
and Section 1.1.2 explain in greater detail some of their main features.

1.1.1 Telerobotic Systems

The notion of telerobotics first began to take shape during the 1940’s and 1950’s,
making it one of the earliest applications of robotics. The developments in this field
were motivated by stricter requirements for human safety in hazardous environ-
ments still present today; in particular when handling nuclear waste (see Hokayem
and Spong, 2006; Siciliano and Khatib, 2008, for additional details). Nowadays,
as noted in Siciliano and Khatib (2008), a wider definition of a telerobotic sys-
tem considers a barrier between a so-called local site and a so-called remote site.
Such barrier may be imposed, for instance, by a hazardous environment or an
escalation to larger or smaller environments and results in the user not being
able to reach the remote environment physically. As a consequence, telerobotic
systems are generally split into a local (the user) and a remote site (the environ-
ment). In telerobotics, a number of possible control architectures exist depending
on the overall requirements of the system. For instance, some control architectures

2Photo credit http://www.gadgetreview.com (left) and http://lsro.epfl.ch (right).

http://www.gadgetreview.com
http://lsro.epfl.ch
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Figure 1.4 . Elements of the problem setting considered in this work.

consider a human operator in the local site. A schematic representation of a classi-
cal telerobotic system including a human-in-the-loop is shown in Figure 1.3. The
operator is intended to perform control actions by means of the master device.
These actions may range from low level direct commands to unsupervised telecon-
trol (remote control). Note that the local and remote sites are both equipped with
a controller and that these controllers transmit information (such as position, ve-
locity, and force measurements) over a communication channel which (physically)
separates both sites. As a result, one of the main issues that has to be addressed
during the design and analysis of a telerobotic system is the time-delay induced
by the communication channel. This issue is particularly important since it is well
known that time-delays can be detrimental to the stability and performance of
a controlled system (Hale and Verduyn-Lunel, 1993; Kolmanovskii and Myshkis,
1992). The design of a control architecture which mitigates the negative effects of
the network-induced delay in a remotely controlled robotic system constitutes one
of the focal points of this thesis.

In this work, we will focus on the particular case in which the robotic system in
the remote site is autonomously controlled from the local site without any human
supervisory control. A schematic representation of this architecture is depicted in
Figure 1.4. This remote control architecture may be useful when considering the
remote operation of multiple robots (consider, for instance, the control of a group
of mobile robots with minimal sensing and decision making capabilities from a
remote command center) or in the context of Networked Control Systems. This
type of systems will be introduced in Section 1.2.
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1.1.2 Cooperative Robotic Systems

The definition of cooperative behavior given in Cao et al. (1997) states, “given a
certain task, a multi-robot system displays cooperative behavior if, due to some
underlying cooperation mechanism, there is an increase in the total utility of the
system”. As explained in Cao et al. (1997) and Siciliano and Khatib (2008), some
of the reasons for favoring multi-robot systems may be that the task at hand is too
complex for a single robot or that multi-robot systems are inherently distributed,
well suited for parallelism, and usually possess greater flexibility and scalability.

In order to fully exploit the capabilities of multi-robot systems, one of the
theoretical and technological issues which remains open for improvement is the
development of appropriate group coordination and cooperative control strate-
gies. In this respect, the leader-follower, the virtual structure, and the behavioral
approaches are the most recurrent.

In leader-follower or master-slave motion coordination, one of the robots in
the group acts as the leader or master, whereas the remaining robots are known
as the followers or slaves. The master robot’s objective is to complete a certain
task which would normally be related to the task of the group as a whole, such
as guiding the slaves through a course with obstacles. Taking the master’s real
motion as a basis, the slave robots generate their individual reference trajectories.
This information flow is depicted in Figure 1.5 for a master robot with n slaves.
One could think of a group of mobile robots in which one of the robots, the master,
has greater capabilities than all the other robots. Even if the slave robots are only
equipped with minimal sensing and decision-making capabilities, the group as a
whole can still achieve quite complex tasks when being directed by a master robot.
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It is this advantage however, that which at the same time constitutes two of the
main drawbacks of this motion coordination strategy. In the first place, since the
motion of the master robot is independent from the motion of the slave robots,
the master has no knowledge about one or more of the slaves being unable to
complete its task. This implies that master-slave motion coordination has very
limited robustness against perturbations to the slave robots. The second pitfall
is that any failure of the master robot translates into the complete group not
being able to complete its task. Thus, relying mostly on the master robot poses a
substantial risk.

Because there is no explicit feedback from the slave robots to the master, it
is well known that master-slave motion coordination is in essence a problem of a
tracking nature. In consequence, many classical control techniques such as feed-
back linearization (Desai et al., 2001; Fierro et al., 2001), dynamic feedback (Mar-
iottini et al., 2007), backstepping (Li et al., 2005), and sliding mode control (De-
foort et al., 2008; Sadowska, 2010) have been used to achieve this type of motion
coordination (additional references may be found, for instance, in Kanjanawan-
ishkul, 2010). The origins of master-slave motion coordination in the context of
mobile robotics can be traced back to the seminal work of Das et al. (2002), De-
sai et al. (2001), and Fierro et al. (2001), where so-called separation-bearing and
separation-separation controllers are proposed.

The majority of the latest work concerning master-slave motion coordination
for mobile robots is devoted to estimating the translational and rotational velocities
of the master robot, which are required to generate the reference trajectories of
the slave robots. Most of the methods proposed in this respect are vision based
and rely on some kind of observer or filter (Mariottini et al., 2007; Orqueda and
Fierro, 2006; Vidal et al., 2003).

In mutual motion coordination, all the robots in the group generate their
reference trajectory based on common reference known as the virtual center. In
this case, the geometry which results from the desired motions of the robots is
denoted as the virtual structure. As a result, mutual motion coordination is natu-
rally suited to maintain a geometric formation which inherently possesses a certain
robustness since, in most cases, the mobile robots are coupled to each other. The
information flow between four mutually coordinated robots which are coupled and
generate their reference trajectory based on a common virtual center is depicted
in Figure 1.6.

The concept of a virtual structure was first introduced in Lewis and Tan (1997),
where an important assumption is that all the robots possess global knowledge.
The mobile robots are seen as particles which are intended to stay inside the virtual
structure and the virtual structure looks to conform to the robots’ positions and
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successively displaces. Additional works based on the virtual structure approach
resulting in slight improvements may be found in Beard et al. (2000), Egerstedt
and Hu (2001), and Young et al. (2001), among others.

More recent extensions to the virtual structure approach may be found in van
den Broek et al. (2009), Kostić et al. (2010a), and Sadowska (2010). The definition
of mutual motion coordination in these works is very closely related to the one
provided in Nijmeijer and Rodriguez-Ángeles (2003) for mutual synchronization
of robotic manipulators. In van den Broek et al. (2009), each of the robots in
the group is equipped with a coordinating controller not only intended to track
the robot’s specific reference trajectory, which is based on the common virtual
center, but also designed to provide a coupling mechanism between the robots in
order to increase the group’s ability to withstand perturbations. The coupling
between the robots is based on all the robots exchanging their error information
with each other, which results in a massive communication flow. This demanding
communication requirement is substantially reduced in Sadowska (2010) by means
of a decentralized control architecture. In this case, the robots are only allowed
to communicate with other robots within a certain communication neighborhood,
while still taking into account the group’s overall behavior.

An additional approach to design cooperative robotic systems, which is not
considered in this work, is the behavior-based approach. This approach was first
introduced by Brooks (1986) and makes use of a set of so-called behaviors, or
motion primitives, which are weighed in order to produce the robots’ ultimate
behavior. For instance, the control inputs to the robots would depend on the
combination of the weights of a number of behaviors such as trajectory track-
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ing, localization, collision avoidance, and others. The behavior-based formation
control strategy was proposed in Balch and Arkin (1998) for a group of unicycle-
type mobile robots by weighting several independent actions for the robots,
ultimately resulting in a so-called motor schema-based control. A behavior-based
approach has the advantage of being quite intuitive and allows the implementa-
tion of complex tasks by fragmenting them into a set of easier, more accessible
actions. This feature, together with the fact that it focuses on a decentralized
architecture makes it suitable for large groups of robots. The main drawback of
this approach is that the resulting group’s dynamics do not lend themselves to a
straightforward mathematical analysis, making it extremely difficult to study the
group’s closed-loop stability and accurately predict its performance.

A comprehensive overview of additional approaches not considered in this work
may be found in Kanjanawanishkul (2010) and the references therein. Some of the
possibilities mentioned include the notion of string stability for line formations
(Swaroop and Hedrick, 1996) and its generalization to formations in a planar
mesh (Pant et al., 2002), optimization-based strategies relying on model predic-
tive control (MPC) (Dunbar and Murray, 2006; Kanjanawanishkul, 2010), and a
number of problems addressed by using algebraic graph theory, such as flocking
and rendezvousing (Bullo et al., 2009; Jadbabaie et al., 2003; Olfati-Saber, 2006;
Ren, 2008). Since the number of references related to the last approach are so
vast, only some which could be considered locus classicus have been cited.

Considering master-slave and mutual synchronization of mechanical systems
as defined in Nijmeijer and Rodriguez-Ángeles (2003), a clear resemblance ap-
pears between these ideas and the master-slave and mutual motion coordination
approaches for mobile robots. In these approaches it is possible to employ an
explicit mathematical model to predict the robots’ motions, making it feasible to
formally analyze the group’s behavior (as opposed to the behavioral approach).
This constitutes the main reason why the master-slave and mutual motion coor-
dination strategies are the only ones considered throughout this thesis.

1.2 Networked Communication in Telerobotic and
Cooperative Robotic Systems

A common element in telerobotic and cooperative robotic systems, especially when
aiming at a practical implementation, is the use of a communication network
to exchange important information. On the one hand, as explained already in
Section 1.1.1, networked communication is necessary in telerobotic systems to
transmit and receive measurement and control data between the local and remote
sites (see Figure 1.3). On the other hand, in the case of cooperative robotic
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systems, one would expect that the elements which conform the group exchange
information between them (such as their current position or tracking error) in
order to achieve a certain task. When considering a group of mobile robots, this
information exchange almost certainly takes place over a communication network.
As noted by Siciliano and Khatib (2008), when networked communication is used
to coordinate and achieve cooperative behavior among the elements of a multi-
robot system, one speaks of networked robotics.

Because of the time needed to transmit data over the network, the use of
networked communication to exchange information in telerobotic and cooperative
robotic systems results in time-delays. In addition, in the case of a cooperative
robotic system with networked communication, the load placed on the commu-
nication channel becomes more demanding as the number of robots in the group
increases. As a result, the time needed to transmit data over the network (that
is, the magnitude of the time-delay) becomes larger. These network-induced de-
lays are undesirable (albeit mostly unavoidable) because, as explained already in
Section 1.1.1, they may degrade the performance of the system and even compro-
mise its stability. Hence, when it comes to telerobotic and cooperative robotic
systems with networked communication, the importance of designing control al-
gorithms which are robust in the face of time-delays cannot be underscored.

In many cases, the issues that will arise when considering networked commu-
nication in telerobotic and cooperative robotic systems are typical of Networked
Control Systems (NCSs), a key research field in control engineering (Antsaklis
and Baillieul, 2007; Murray et al., 2003). Among these issues are (time-varying)
network-induced delays, time-varying sampling intervals, packet losses, and other
communication constraints. As defined in Posthumus-Cloosterman (2008), a NCS
is a “system where the control loop, generally consisting of a continuous-time
plant and a (discrete-time) controller, is closed over a communication channel”. A
schematic representation of a typical NCS is shown in Figure 1.7.
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Figure 1.8 .Remote control system considered in this work.

Some of the reasons for advocating the use of NCSs are their flexibility, due to
their inherent distributed nature, (Hespanha et al., 2007) and the benefit this may
represent in terms of installation and maintenance costs (Tipsuwan and Chow,
2003). On the other hand, it is precisely the use of networked communication that
which, at the same time, constitutes the main disadvantage of a NCS; namely,
the unreliability (in terms of induced delays and information loss) of the commu-
nication channel. For an in-depth overview of these issues refer, among others,
to Heemels and van de Wouw (2011), Heemels et al. (2010), Nešić and Liberzon
(2009), Posthumus-Cloosterman (2008), and Tipsuwan and Chow (2003), and the
references therein. It is worth noting that some of the typical applications of
NCSs, such as remote surgery and automated highway systems, overlap those of
telerobotic and cooperative robotic systems.

Given the importance of ensuring the stability and performance of telerobotic
and cooperative robotic systems in the face of delay-inducing networked communi-
cation, Section 1.3 and Section 1.4 outline the control problems within these areas
addressed in this thesis.

1.3 Remote Control of Mobile Robots
The negative effects of the network-induced delays when controlling a system over
a communication network have already been highlighted in Section 1.2. In this
work, we focus on the tracking control of mobile robots over a delay-inducing com-
munication network. In other words, we consider that the system transmits its
sensor measurements and receives its control commands using networked commu-
nication. We denote this problem as the remote tracking control of mobile robots
and consider the schematic representation shown in Figure 1.8. In particular, we
will propose a control strategy based on a state predictor and a tracking controller
which ensures the stability and tracking performance of the robot in the face of a
constant time-delay.
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The problem of controlling a system over a communication network has been
addressed in different fields of control engineering. In order to place the current
work in the proper context and precisely formulate its contributions, an overview
of closely related and relevant literature follows.

As explained before, much of the work on NCSs is devoted to the study of
the effect of a wide range of network-induced impairments and uncertainties. On
the other hand, in this thesis we only consider the effects of network-induced
delays. Nevertheless, it is important to stress that the majority of the work in the
field of NCSs focuses on robust stability and stabilization (refer, among others,
to Cloosterman et al., 2009; Donkers et al., 2011; Garcia-Rivera and Barreiro,
2007; Nešić and Liberzon, 2009). In contrast, in the current work we consider
the more complex problem of trajectory tracking control. In this respect, of the
few works in the NCSs literature that address the tracking control problem, the
vast majority focuses on linear systems (see for example van de Wouw et al.,
2010a). Contrary to that, in this thesis we consider the remote tracking control
of mobile robots with nonlinear dynamics. Although work on nonlinear NCSs
exists, it focuses mainly on problems related to stabilization, rather than on more
complex regulation tasks such as trajectory tracking and motion coordination (see,
for instance, Carnevale et al., 2007; Heemels et al., 2010; Nešić and Teel, 2004a,b;
van de Wouw et al., 2010b, for additional details). A distinctive feature of the
work on NCSs mentioned above is that the sampled-data nature of the systems is
explicitly taken into account, typically leading to switched uncertain discrete-time
system models (Cloosterman et al., 2009, 2010; Donkers et al., 2011; Hetel et al.,
2008) or hybrid system models (Dačić and Nešić, 2007; Heemels et al., 2010; Nešić
and Teel, 2004a,b; Walsh et al., 2002). This constitutes a fundamental difference
with the modeling, analysis, and controller design approach taken in this thesis,
where the tracking control problem is studied on the basis of a continuous-time
modeling perspective.

In the context of telerobotics, several techniques have been proposed to over-
come the negative effects of a network-induced delay in a remotely controlled
system. For an overview of these techniques, refer to Hokayem and Spong (2006)
and Siciliano and Khatib (2008), and the references therein. Among the most
common approaches are operation under delay by means of shared compliant con-
trol or the addition of local force loops (Hashtrudi-Zaad and Salcudean, 2002;
Kim et al., 1992), the use of the scattering transformation (Anderson and Spong,
1989; Stramigioli et al., 2002), a passivity-based approach (Hannaford and Ryu,
2002; Ryu et al., 2005), and wave variable transformations (Munir and Book,
2002; Niemeyer and Slotine, 2004). Some works even consider the Internet as the
communication channel, which introduces issues such as variability in the network-
induced delay, packet dropout, and data retransmission (Munir and Book, 2003;
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Oboe and Fiorini, 1998). Recall that in a classical telerobotic system, the local
and remote sites are both equipped with a controller (see Figure 1.3), whereas in
the current work we consider the more challenging scenario in which there is no
controller on the remote site (see Figure 1.8). In other words, the mobile robot
transmits its sensor measurements to the local site and receives its control com-
mands from the local site over the communication channel. On the other hand,
in the current work we do not focus on reflecting the interaction forces in the
remote site (that is, the interaction forces between the robot and its surrounding
environment) to the local site. This allows us to use the posture kinematic model
of the mobile robots under consideration to design their remote tracking control
strategies. Given that the posture kinematic model is the simplest representation
capable of providing a global description of the state of the robot (Siciliano and
Khatib, 2008), the resulting remote tracking control strategies require a minimal
amount of information to be implemented (only the position and orientation of
the robot are necessary, as opposed to the translational and rotational velocities
and the system parameters required by the dynamic model).

It is worth noting that the remote control problem considered in this thesis
is also related to the type of problems addressed by predictor-like control strate-
gies such as the ones based on the classical Smith predictor (Smith, 1957) and its
numerous extensions. Among these extensions are Smith-like predictors for non-
linear systems (Kravaris and Wright, 1989), for discrete nonlinear systems (Henson
and Seborg, 1994), and for nonlinear systems with disturbances (Huang and Wang,
1992). Nonetheless, the applicability of these Smith-like predictors is restricted to
certain classes of nonlinear systems and the majority of the work often focuses on
mitigating the negative effects of input time-delays in industrial and chemical pro-
cesses, with a limited number of applications to mechanical systems (for instance,
in Smith and Hashtrudi-Zaad, 2006; Velasco-Villa et al., 2007). In contrast, as
explained before, the current work focuses on a class of mechanical systems with
rich nonlinear dynamics; namely, mobile robots.

Recently, a number of predictor-based compensation techniques haven been
proposed for a broader class of nonlinear systems in Karafyllis and Krstic (2010),
Krstic (2009), and upcoming related works by the same authors. These control
strategies are inspired on the ideas behind the original Smith predictor and com-
bine a state predictor together with a feedback control law designed for the delay-
free system. Even though the remote tracking control strategies presented in this
thesis are based on a similar architecture and make use of a predictor-controller
combination, the design procedure and characteristics of the state predictors in
both cases are different (the main differences between both control strategies will
be explained in greater detail in Section 4.5).
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Finally, there is a wide array of control techniques and approaches that focus
on the control of nonlinear systems with (input, output, or input and output)
time-delays. Some of the methodologies for addressing these problems include
intelligent control techniques such as neural networks (Hong et al., 1996; Tan
and Keyser, 1994a,b) and fuzzy logic (Cao and Frank, 2000; Malki and Misir,
1996), delay decomposition and approximation techniques (Alvarez-Aguirre et al.,
2008; Schoen, 1995), design of causal control laws for delayed systems (Marquez-
Martinez and Moog, 2004), and finite spectrum assignment techniques Oguchi
(2007); Oguchi et al. (2002). For an overview of recent results on the stability and
control of nonlinear delayed systems refer to Gu and Niculescu (2003). The main
difference is that the remote tracking controllers proposed in this work are based
on tracking control laws which already exist and have proven merit in the high-
performance tracking control of mobile robots, whereas the controllers designed in
the aforementioned works are specifically (and sometimes exclusively) designed to
accommodate time-delays.

1.4 Remote Motion Coordination of Mobile Robots
As explained in Section 1.2, it is not always practical to assume in a cooperative
robotic system that an ideal communication channel is available for the robots to
use. Motivated by this, in the current work we focus on the motion coordination
of a group of mobile robots considering a communication network which induces
a time-delay. We will denote this type of motion coordination as remote motion
coordination of mobile robots and focus on both master-slave and mutual motion
coordination. Furthermore, we consider the case of a constant network-induced
delay, with the aim of describing a first step towards incorporating additional
networked communication effects. The information flow between robots in remote
master-slave and mutual motion coordination is depicted in Figure 1.9(a) and
Figure 1.9(b), respectively.

It is worth noting that the vast majority of the work available on motion coor-
dination does not take into account the properties of the communication network
which the robots use to exchange information. In this respect, much more atten-
tion has been given to the cooperative aspect of motion coordination than to the
communication aspect. For instance, we have already explained that the tracking
control problem within the field of NCSs has received considerably less atten-
tion than the robust stability and stabilization problems. It then follows that,
although some of the tools available in the NCSs literature would seem suitable to
address the issues that arise when having networked communication in a coopera-
tive robotic system, the problem, even more complex in nature than the tracking
control problem, remains relatively unexplored within this field.
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Figure 1.9 . Information flow between robots in remote master-slave and mutual
motion coordination. The dashed lines represent the time-delay which
results from the use of networked communication.

On the other hand, there are a number of recent works which analyze the
problem of reaching consensus or synchronization among multiple agents. These
agents belong to a network with certain topology and interact with each other
via a delayed coupling. As explained already in Section 1.1.2, the remote motion
coordination problem considered in this work focuses on master-slave and mu-
tual motion coordination. Recall that in these types of motion coordination it is
necessary for the robots in the group to exchange information in order to reach
certain coordination objectives. In other words, the robots in the group (agents)
also interact with each other via a delayed coupling. It then follows that there
is a relationship between reaching consensus and reaching motion coordination in
a multi-agent system, and that this relationship is still in place when consider-
ing delay-inducing networked communication between the agents. A preliminary
approach to further understand this relationship in the context of mobile robots
(considering delay-free communication) can be found in Sadowska et al. (2011).

There are several important points to highlight regarding the works which
address the consensus problem with communication delays. First, the majority of
these works focus on agents with single or double integrator dynamics. For exam-
ple, the consensus condition has been shown to be delay independent for first-order
multi-agent systems (Blondel et al., 2005; Cao et al., 2009). On the other hand,
frequency domain techniques have been proposed to study the consensus prob-
lem with communication delays for groups of higher-order agents (Lee and Spong,
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2006; Münz et al., 2010; Tian and Liu, 2009). More recently, results have been
obtained for nonlinear systems with relative degree one (Münz, 2010) and relative
degree two (Münz et al., 2011). For a more in-depth review of the consensus prob-
lem with communication delays consult Münz (2010) and the references therein.
Another recent work studies the delay independent synchronization of generic non-
linear systems which interact via delayed couplings (Steur and Nijmeijer, 2011).
While the underlying assumption in our work is that the graph which represents
the network’s topology is strongly connected, the majority of the previous works
explicitly attempt to relax this connectivity assumption, something which is not
addressed in the current work. Nevertheless, it is important to emphasize that the
controllers used to achieve consensus in the previous cases and the ones we will
propose to achieve motion coordination are intrinsically different. Such difference
lies in the fact that, when considering consensus problems, the control input of
each agent is given only by the couplings between that particular agent and the
other agents in the group. On the other hand, when considering motion coordi-
nation of mobile robots, the coupling between the robots in the group constitutes
only a fraction of the total control input of each robot, with the remaining part of
the input intended to drive the robots in order to achieve a certain task.

The work by Dong and Farrell (2008), Dong and Farrell (2009), and Dong
(2011) is also closely related to the remote motion coordination problem studied
in this thesis. These works focus on the formation control of a group of mobile
robots with networked communication. In Dong and Farrell (2008) and Dong
and Farrell (2009), the kinematic model of the robots is transformed to a reduced
system in order to derive coordinating controllers which are robust in the face
of communication delays. Contrary to that, the coordinating controllers in the
current work are directly based on the kinematic model of the robots and on
tracking control laws which already exist. The dynamic model of the robots is
used in Dong (2011) to propose adaptive coordinating controllers which are robust
against communication delays. This constitutes one of the main differences with
the current work, in which we consider the posture kinematic model of the robots.
As explained already in Section 1.3, this results in coordinating controllers which
require a minimal amount of information to be implemented. In addition, the
coordinating controllers proposed in Dong (2011) are specifically designed to let
the robots reach a certain formation (as in rendezvousing), whereas in the current
work we consider the case of letting the robots move along a reference trajectory
while maintaining a formation (as in motion coordination).

It is worth noting that, of all the previous works, only Steur and Nijmeijer
(2011) report experimental results (to be found in Neefs et al., 2010). In contrast,
all the remote motion coordination strategies proposed in this thesis have been
experimentally validated using a group of unicycle-type mobile robots.
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Having defined the control problem addressed in this work, Section 1.5 for-
mulates the research objective and outlines the main contributions of the thesis.

1.5 Research Objective and Main Contributions of
the Thesis

Considering the problem settings outlined in the previous two sections, we have
that this thesis focuses on the remote tracking control of a mobile robot over
a delay-inducing communication network and on the motion coordination of a
group of mobile robots under the consideration that the information exchange
between the robots takes place over a communication network which is subject to
a time-delay. In addition, the resulting remote tracking and motion coordination
strategies will be validated by both numerical simulations and experimental results.
The experiments are to be carried out in a multi-robot platform which will be
introduced in Chapter 3 and is composed of two equivalent setups located at
the Eindhoven University of Technology (TU/e) in the Netherlands and at Tokyo
Metropolitan University (TMU) in Japan. These observations may be summarized
in the following research objective:

Design and experimentally validate control strategies for the following two
control problems:

1. The remote tracking control of a mobile robot over a delay-inducing commu-
nication network.

2. The motion coordination of mobile robots communicating over a delay-inducing
network.

The fact that the aforementioned control strategies focus on wheeled mobile
robots poses major challenges due to the fact that they are nonlinear systems with
rich dynamics and may be subject to non-holonomic constraints. Furthermore,
the presence of network-induced delays, even when constant, also constitutes an
additional difficulty.

Considering the previous research objective, the main contributions of this
work may be stated as follows:

• The design of controllers for robotic systems in which the robot and the con-
troller are physically separated and linked via a two-channel, delay-inducing
communication network must take into account the effects of the ensuing
time-delay, since the stability and performance of the system may be com-
promised. In this thesis we address the problem of the remote tracking con-
trol of wheeled mobile robots; specifically, unicycle-type and omnidirectional
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robots. The proposed control architecture consists of a state estimator with
a predictor-like structure and a modified state feedback tracking controller.
Using the Lyapunov-Razumikhin approach and results for nonlinear delayed
cascaded systems, we show that this predictor-controller combination guar-
antees the stability of the closed-loop system up to a maximum admissible
delay. Moreover, the performance of the proposed remote tracking control
strategy is assessed in both simulations and experiments.

• The state predictor used in the remote tracking control strategies presented
in this thesis is inspired on the notion of anticipating synchronization in
coupled chaotic systems. The application of this type of state predictor to
mechanical systems (in particular to mobile robots) constitutes one of the
main contributions of this work. Furthermore, the remote tracking control
strategies which result from the application of this state predictor are not
only intended to ensure the stability of the closed-loop system in the face of
delays, but also to take a proactive approach towards mitigating the negative
effects of the network-induced delay.

• The thesis presents a design approach to obtain coordinating controllers
for unicycle and omnidirectional mobile robots. These controllers feature
mutual couplings between the robots in order to ensure improved robustness
against perturbations. The main focus is on assessing the effects of the delays
induced by the communication network used to relay information between
the robots. Firstly, we present results stating up to which maximal delay
closed-loop stability (and hence motion coordination) can still be achieved.
Secondly, the effect of delays on the coordination performance is assessed by
means of simulations and experiments.

• We consider the experimental implementation and validation of the
proposed control strategies to be an additional contribution of this work.
The experiments are carried out using the multi-robot platforms present in
the Netherlands and Japan, which communicate over the Internet.

• As an extension of the results regarding the remote tracking control of
mobile robots, we also show that the predictor-controller combination can
be successfully applied to the remote tracking control of a one-link robot.
More specifically, we show that the stability and performance of the resulting
closed-loop system is guaranteed up to a maximum allowable time-delay and
validate the proposed control strategy by means of numerical simulations.
This extension elucidates how the remote control architecture proposed in
this work may be applied to a broader range of mechanical systems, such as
robotic manipulators.
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1.6 Structure of the Thesis
The thesis is organized as follows. Chapter 2 provides some basic preliminaries re-
garding the stability (in the sense of Lyapunov) of time-varying dynamical systems,
retarded functional differential equations, and delay-free and delayed nonlinear cas-
caded systems. In addition, Chapter 2 recalls a trajectory tracking controller for
the unicycle robot. These results will be used extensively in Chapters 4 to 6.

Chapter 3 contains a description of the multi-robot experimental platform used
to implement the control strategies developed in Chapters 4 and 5.

In Chapter 4, a control strategy is proposed to solve the remote tracking control
problem for a unicycle robot with network-induced delays. The control strategy
compensates for the negative effects of the time-delay using a state predictor and
ensures asymptotic stability up to a maximum admissible delay. Additionally, the
proposed remote tracking controller is validated using the multi-robot platform
described in Chapter 3.

Chapter 5 introduces the motion coordination strategies considered in this
work; namely, the master-slave and mutual motion coordination strategies. These
coordination strategies are studied under the assumption that a network-induced
delay affects the communication channel which the robots use to exchange infor-
mation. The subsequent stability analysis shows that, up to a certain admissi-
ble delay, the robots maintain motion coordination. Additionally, the coordinat-
ing controllers proposed for this purpose are validated in the experimental setup
introduced in Chapter 3.

In Chapter 6, the remote control and motion coordination strategies introduced
in Chapters 4 and 5 are applied to different dynamical systems besides the unicycle
robot; namely omnidirectional mobile robots and a one-link robot. As with the
unicycle robot, the proposed controllers ensure the stability of the resulting closed-
loop system up to a maximum admissible delay.

Finally, Chapter 7 presents concluding remarks and recommendations for
future research. For the sake of the readability of the main text, the proofs of
the theorems proposed throughout this thesis are given in the appendices.
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2
PRELIMINARIES

Abstract .This chapter contains some of the mathematical definitions, stability
concepts, and general results on cascaded systems and on the tracking control
of a unicycle robot that will be used throughout this thesis.

2.1 Outline

This chapter recalls several concepts and definitions which will be useful when
studying the stability properties of the different control strategies presented in
this work. To begin with, Section 2.2 reviews some general mathematical notions.
In Section 2.3, an overview of the stability of time-varying dynamical systems is
provided and some fundamental concepts and results of Lyapunov stability theory
for this type of systems are recalled. Stability results for a particular class of time-
varying dynamical systems, namely time-varying cascaded systems, are presented
in Section 2.4, whereas a number of stability results for retarded functional dif-
ferential equations are given in Section 2.5. Finally, the posture kinematic model
of a unicycle-type mobile robot and a suitable trajectory tracking controller for
this system is presented in Section 2.6. The majority of the concepts and defini-
tions presented in this chapter are taken from Khalil (2000), Lefeber (2000), and
Siciliano and Khatib (2008), unless indicated otherwise. The reader is referred to
these references for additional details and in-depth explanations.
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2.2 General Mathematical Notions
The notation regarding vector and matrix norms in this work is as follows. The
vector 1- and 2-norms of vector a are denoted as ‖a‖1 and ‖a‖2, respectively. The
matrix sum norm, Frobenius norm, and induced matrix 1- and 2-norms of a matrix
A are denoted as ‖A‖sum, ‖A‖F , ‖A‖i1, and ‖A‖i2, respectively. The minimum
and maximum eigenvalues of a symmetric matrix A will be denoted as λmin(A)
and λmax(A). Throughout this thesis there are a number of results, especially
theorems referred from other works, in which there is no distinction regarding the
vector norm being used. This means that these results hold for any valid vector
norm as long as their use is consistent. In these cases the vector norm will be
denoted as ‖ · ‖.

The following theorem, known as Gershgorin’s circle theorem, will be useful
when checking the location of the eigenvalues of a square matrix.

Theorem 2.1. (Skogestad and Postlethwaite, 2005, Appendix A.2.1). The eigen-
values of the n × n matrix A lie in the union of n circles in the complex plane,
each with center aii (diagonal elements of matrix A) and radius ri =

∑
j 6=i |aij |

(sum of the off-diagonal elements in row i).

An interpretation of the theorem is that, if aii > ri, all the eigenvalues of
matrix A lie in the open right-half of the complex plane. Along the same lines, if
aii < −ri all the eigenvalues lie in the open left-half of the complex plane.

Consider now the definition of class K,K∞, and KL comparison functions.

Definition 2.2. (Khalil, 2000, Definition 4.2). A continuous function α : [0, a)→
[0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0. It is
said to belong to class K∞ if a =∞ and α(r)→∞ as r →∞.

Definition 2.3. (Khalil, 2000, Definition 4.3). A continuous function β : [0, a)×
[0,∞) → [0,∞) is said to belong to class KL if, for each fixed s, the mapping
β(r, s) belongs to class K with respect to r and, for each fixed r, the mapping β(r, s)
is decreasing with respect to s and β(r, s)→ 0 as s→∞.

The definition of a scalar persistently exciting (PE) signal is given next and will
be useful when investigating the stability of a special type of linear time-varying
systems.

Definition 2.4. (Lefeber, 2000, Definition 2.3.5). A continuous function ψ :
R+ → R is said to be persistently exciting if all of the following conditions hold:

• a constant K > 0 exists such that |ψ(t)| ≤ K, ∀t ≥ 0;
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• a constant L > 0 exists such that |ψ(t)− ψ(t′)|≤L|t− t′|, ∀t, t′ ≥ 0;

• constants δ > 0 and ε > 0 exist such that

∀t ≥ 0,∃s : t− δ ≤ s ≤ t such that |ψ(s)| ≥ ε.

Similar to the definition of a scalar PE signal, the definition of a PE vector of
continuous functions Ψ(t) ∈ Rn, with Ψ(t)=[φ1(t), φ2(t), . . . , φn(t)]T , will be use-
ful when checking the stability of a particular type of linear time-varying systems.

Definition 2.5. A vector Ψ(t) : R+→Rn of continuous functions φi : R+→R, for
i ∈ {1, 2, . . . , n}, is said to be persistently exciting if all of the following conditions
hold:

• constants Ki > 0 exist such that |φi(t)| ≤ Ki for all t ≥ 0 and
i ∈ {1, 2, . . . , n};

• constants Li > 0 exist such that |φi(t)−φi(t′)|≤Li|t− t′| for all t, t′ ≥ 0 and
i ∈ {1, 2, . . . , n};

• constants δ > 0 and εi > 0 exist such that

∀t ≥ 0,∃s : t− δ ≤ s ≤ t such that |φi(s)| ≥ εi, ∀i ∈ {1, 2, . . . , n}. (2.1)

Remark 2.6. Note that condition (2.1) requires that, within the interval
[t − δ, t], there exists a common time instant s at which the absolute value of
every φi(s), i ∈ {1, 2, . . . , n}, is equal to or greater than a certain εmin > 0, where
εmin = min{ε1, ε2, . . . , εn}.

An interpretation of Definition 2.5 follows from the interpretation of a scalar
PE signal made in Lefeber (2000). Assuming that we plot the graphs of all |φi(t)|,
for i ∈ {1, 2, . . . , n}, and observe these graphs through a window of width δ > 0.
Then, no matter where we put this window on these graphs, always a time instant
s in this window exists where all φi(s), i ∈ {1, 2, . . . , n}, satisfy |φi(s)| ≥ εmin > 0.

Finally, consider the following continuous functions which will be used in later
results.

f1(x) :=
∫ 1

0

cos(sx)ds =
{

sin x
x for x 6= 0
1 for x = 0

, (2.2a)

f2(x) :=
∫ 1

0

sin(sx)ds =
{

1−cos x
x for x 6= 0
0 for x = 0

, (2.2b)
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and note that

lim
x→0

sinx
x

= 1 and lim
x→0

1− cosx
x

= 0.

For simplicity of notation, the expressions sin x
x and 1−cos x

x will be used in this
thesis, even though it would be more precise to use (2.2a) and (2.2b), respectively.

2.3 Stability of Time-Varying Dynamical Systems
This section presents a number of definitions regarding the stability of time-
varying dynamical systems focusing mainly on Lyapunov stability of equilibria.
Its contents are based on definitions provided in Khalil (2000) and Haddad and
Chellaboina (2008), unless indicated otherwise.

Consider a non-autonomous nonlinear system described by

ẋ = f(t, x), x(t0) = x0, t ≥ t0, (2.3)

where x ∈ D, the space of states D ⊆ Rn such that 0 ∈ D, f : [t0, t1)×D → Rn is
such that f(·, ·) is jointly continuous in t and x, and for every t ∈ [t0, t1), f(t, 0) = 0
and f(t, ·) is locally Lipschitz in x uniformly in t for all t, in compact subsets of
[0,∞). Note that under the above assumptions the solution x(t), t ≥ t0, to (2.3)
exists and is unique over the interval [t0, t1).

The concept of stability is one of the most important ones when studying any
dynamical system. The following definition introduces different stability notions
for system (2.3).

Definition 2.7. (Khalil, 2000, Definition 4.4). The equilibrium point x = 0 of
(2.3) is

• stable if, for each ε > 0, there is δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε ∀t ≥ t0 ≥ 0; (2.4)

• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0, independent of
t0, such that (2.4) is satisfied;

• unstable if it is not stable;

• asymptotically stable if it is stable and there is a positive contant c = c(t0)
such that x(t)→ 0 as t→∞, for all ‖x(t0)‖ < c;
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• locally uniformly asymptotically stable (LUAS) if it is uniformly
stable and there is a positive constant c, independent of t0, such that for
all ‖x(t0)‖ < c, x(t)→ 0 as t→∞, uniformly in t0; that is, for each η > 0,
there is T = T (η) > 0 such that

‖x(t)‖ < η, ∀t ≥ t0 + T (η), ∀‖x(t0)‖ < c; (2.5)

• globally uniformly asymptotically stable (GUAS) if it is uniformly
stable, δ(ε) can be chosen to satisfy limε→∞ δ(ε) =∞, and, for each pair of
positive numbers η and c, there is T = T (η, c) > 0 such that

‖x(t)‖ < η, ∀t ≥ t0 + T (η, c), ∀‖x(t0)‖ < c. (2.6)

The following lemma provides an equivalent definition of uniform stability and
uniform asymptotic stability by making use of comparison functions.

Lemma 2.8. (Khalil, 2000, Lemma 4.5). The equilibrium point x=0 of (2.3) is

• uniformly stable if and only if there exist a class K function α and a
positive constant c, independent of t0, such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀t≥t0≥0, ∀‖x(t0)‖ < c; (2.7)

• locally uniformly asymptotically stable (LUAS) if and only if there
exist a class KL function β and a positive constant c, independent of t0,
such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t≥t0≥0, ∀‖x(t0)‖ < c; (2.8)

• globally uniformly asymptotically stable (GUAS) if and only if in-
equality (2.8) is satisfied for any initial state x(t0).

A special case of uniform asymptotic stability which receives its own designa-
tion is so-called exponential stability.

Definition 2.9. (Khalil, 2000, Definition 4.5). The equilibrium point x = 0 of
(2.3) is exponentially stable if there exist positive constants c, k, and λ such
that

‖x(t)‖≤k‖x(t0)‖e−λ(t−t0), ∀‖x(t0)‖ < c, (2.9)

and globally exponentially stable if (2.9) is satisfied for any initial state x(t0).



24 2 . PRELIMINARIES

The definitions of uniform asymptotic and exponential stability provided in
Lemma 2.8 and Definition 2.9 may be characterized in terms of the existence of
a so-called Lyapunov function. Next, sufficient conditions for the stability of the
nonlinear time-varying system (2.3) are given in terms of a Lyapunov function
V (t, x). In order to do so, hereinafter we define

V̇ (t, x) :=
∂V

∂t
+
∂V

∂x
f(t, x),

for a given continuously differentiable function V : [0,∞)×D → R. Additionally,
φ(τ ; t, x) denotes the solution of system (2.3) at time τ which starts at (t, x).

The following theorems formulate sufficient conditions for uniform asymptotic
and exponential stability in terms of the existence of a Lyapunov function exhibit-
ing certain properties.

Theorem 2.10. (Khalil, 2000, Theorem 4.9). Let x = 0 be an equilibrium point
for (2.3) and D ⊂ Rn be a domain containing x = 0. Let V : [0,∞) × D → R be
a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤W2(x), (2.10a)

V̇ (t, x) ≤ −W3(x), (2.10b)

∀t ≥ 0 and ∀x ∈ D, where W1(x),W2(x), and W3(x) are continuous positive
definite functions on D. Then x = 0 is uniformly asymptotically stable. If D = Rn
and W1(x) is radially unbounded, then x = 0 is globally uniformly asymptotically
stable (GUAS).

Theorem 2.11. (Khalil, 2000, Theorem 4.10). Let x = 0 be an equilibrium point
for (2.3) and D ⊂ Rn be a domain containing x = 0. Let V : [0,∞) × D → R be
a continuously differentiable function such that

k1‖x‖a ≤ V (t, x) ≤ k2‖x‖a, (2.11a)

V̇ (t, x) ≤ −k3‖x‖a, (2.11b)

∀t ≥ 0 and ∀x ∈ D, where k1, k2, k3, and a are positive constants. Then x = 0
is exponentially stable. If the assumptions hold globally, then x = 0 is globally
exponentially stable (GES).

The stability notions in Theorem 2.11 are stronger than the ones in Theorem
2.11. An intermediate notion situated between global exponential stability and
global uniform asymptotic stability is global K-exponential stability as defined in
Sørdalen and Egeland (1995).
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Definition 2.12. (Sørdalen and Egeland, 1995, Definition 2). The equilibrium
point x = 0 of (2.3) is said to be globally K-exponentially stable if a class
K function α(·) and a constant β > 0 exist such that the following holds for all
x0 ∈ Rn and t0 ∈ [0,∞):

‖x(t)‖ ≤ α(‖x0‖)e−β(t−t0), t ≥ t0 ≥ 0. (2.12)

The next definition introduces a linear time-varying (LTV) dynamical system.

Definition 2.13. (Haddad and Chellaboina, 2008, Definition 2.3). Consider the
dynamical system (2.3) with D = Rn. If f(t, x) = A(t)x, where A : [t0, t1]→ Rn×n
is piecewise continuous on [t0, t1] and x ∈ Rn, then (2.3) is called a linear time-
varying (LTV) dynamical system.

Based on Definition 2.13, consider the LTV system

ẋ(t) = A(t)x(t), x(t0) = x0, t ≥ t0, (2.13a)
y = C(t)x, (2.13b)

with A : [0,∞) → Rn×n continuous. Recall that in the case of linear systems,
global uniform asymptotic stability and global exponential stability are equivalent.
The following theorem formalizes this fact for LTV systems.

Theorem 2.14. (Ioannou and Sun, 1996, Theorem 3.4.6 v). The linear time-
varying (LTV) system (2.13) is globally exponentially stable (GES) if and only if
it is globally uniformly asymptotically stable (GUAS).

As in the nonlinear case, the global exponential stability of an LTV system may
be characterized in terms of the existence of a Lyapunov function V (t, x) with
certain properties. Moreover, the following converse theorem states that there
exists a (time-varying) quadratic Lyapunov function for an LTV system when its
origin is GES.

Theorem 2.15. (Khalil, 2000, Theorem 4.12). Let x = 0 be the exponentially
stable equilibrium point of (2.13). Suppose A(t) is continuous and bounded. Let
Q(t) be a continuous, bounded, positive definite, symmetric matrix. Then, there
exists a continuously differentiable, bounded, positive definite, symmetric matrix
P (t) which satisfies

Ṗ (t) + P (t)A(t) +AT (t)P (t) = −Q(t). (2.14)

Hence, V (t, x) = xTP (t)x is a Lyapunov function for the system which satisfies
V̇ (t, x) = −xTQ(t)x.



26 2 . PRELIMINARIES

The next definition will be required in stability results for particular types of
LTV systems presented later. Before the definition, recall that the system (2.13)
is a bounded realization provided A(t) and C(t) are bounded. Let Φ(t, t0) denote
the state transition matrix for the system ẋ = A(t)x; then, the uniform complete
observability of system (2.13) is defined as follows.

Definition 2.16. (Silverman and Anderson, 1968). A bounded realization (2.13)
is said to be uniformly completely observable (UCO) if ∃δ > 0 such that

GO(t, t+ δ) ≥ α(δ)I > 0, ∀t ≥ 0, (2.15)

where the observability Gramian is defined as

GO(t, t+ δ) :=
∫ t+δ

t

ΦT (τ, t)CT (τ)C(τ)Φ(τ, t)dτ. (2.16)

The following theorem is based on Theorem 8.5 in Khalil (2000) and is useful
when trying to determine the global exponential stability of an LTV system for
which only a Lyapunov function with a negative semi-definite time derivative is
available.

Theorem 2.17. Consider the LTV system (2.13), where A(t) is continuous for
all t ≥ 0. Suppose there exists a continuously differentiable, symmetric matrix
P (t) that satisfies, for c1, c2 > 0, the inequality

0 < c1I ≤ P (t) ≤ c2I, ∀t ≥ 0, (2.17)

as well as the matrix differential equation

−Ṗ (t) ≥ P (t)A(t) +AT (t)P (t) + CT (t)C(t), (2.18)

where C(t) is continuous in t. If the pair (A(t), C(t)) is uniformly completely
observable (UCO), then, the origin of (2.13) is globally exponentially stable (GES).

Proof. The proof straightforwardly follows from Theorem 8.5 and Example 8.11
in Khalil (2000).

The next lemma characterizes the stability of a certain class of LTV systems
and will be useful in the upcoming chapters.

Lemma 2.18. (Jakubiak et al., 2002). Consider the LTV system

ẋ =
[
−c1 −c2ψ(t)
c3ψ(t) 0

]
x, (2.19)

with x ∈ R2. Given c1 > 0, c2c3 > 0 and ψ(t) : R+ → R persistently exciting,
x = 0 is a globally exponentially stable equilibrium point of (2.19).
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The following theorem is based on Theorem 2 in Kern (1982) and Corol-
lary 2.3.4 in Lefeber (2000). This result is useful when exploiting Theorem 2.17
to determine the global exponential stability of an LTV system which depends
on a number of time-varying functions. These functions are denoted as φi(t),
for i ∈ {1, 2, . . . , n}, and together constitute the vector of continuous functions
Ψ(t) = [φ1(t), . . . , φn(t)]T .

Theorem 2.19. Consider the following linear time-varying (LTV) system:

ẋ = A(Ψ(t))x, (2.20a)
y = Cx, (2.20b)

where Ψ(t) = [φ1(t), . . . , φn(t)]T is persistently exciting according to Definition 2.5
and A(Ψ) is Lipschitz continuous and bounded. Assume that, for P = [p1, . . . , pn]T ,
the pair (A(P ), C) is observable for P for which pi 6= 0 for all i ∈ {1, 2, . . . , n}.
Then, system (2.20) is uniformly completely observable (UCO).

Proof. Since Ψ(t) is PE, it is bounded. Using the fact that A(Ψ) is bounded,
we have that A(Ψ(t)) is bounded as well. This, in turn, implies that (2.20) is a
bounded realization. Now, for any fixed s ∈ [t − δ, t], with δ > 0, according to
Definition 2.5, (2.20) may be rewritten as:

ẋ = A(Ψ(s))x+ [A(Ψ(t))−A(Ψ(s))]x, (2.21a)
y = Cx, (2.21b)

which results in the reduced system

ẋ = A(Ψ(s))x, (2.22a)
y = Cx. (2.22b)

Since s is fixed, the observability Gramian of (2.22) is given by

GO(t− δ, t) :=
∫ t

t−δ
eA

T (Ψ(s))(τ−(t−δ))CTCeA(Ψ(s))(τ−(t−δ))dτ. (2.23)

Due to the fact that Ψ(t) is PE, we can always chose s ∈ [t − δ, t] such that
φi(s) 6= 0 for all i ∈ {1, 2, . . . , n}. Moreover, since the pair (A(P ), C) is observable
for P for which pi 6= 0 for all i ∈ {1, 2, . . . , n}, we can always chose s such that
the pair (A(Ψ(s)), C) is observable. This implies that the observability Gramian
GO(t− δ, t) in (2.23) is non-singular. Considering the previous and due to the fact
that GO(t − δ, t) is positive semi-definite to begin with (due to its quadratic-like
nature), we can conclude that the observability Gramian satisfies GO(t − δ, t) ≥



28 2 . PRELIMINARIES

α(δ)In > 0, where α(δ) > 0 for all δ > 0. Using the fact that GO(t − δ, t) as in
(2.23) satisfies GO(t− δ, t) ≥ α(δ)In > 0 and the fact that A(Ψ(t)) is Lipschitz in
t (since A(Ψ) is Lipschitz in Ψ by assumption and Ψ(t) is Lipschitz in t since it is
PE), we can employ a similar line of reasoning as that in the proof of Theorems 1
and 2 in Kern (1982) to conclude that the LTV system (2.20) is UCO.

2.4 Cascaded Systems
This section elaborates on the stability of cascaded systems and is based on
the results presented in Panteley and Loría (1998), Lefeber (2000), and Lefeber
et al. (2000). Consider the nonlinear time-varying system ẋ = f(t, x), with
x = [xT1 x

T
2 ]T ∈ Rn+m, which can be written as the following nonlinear cascaded

system:

ẋ1 = f1(t, x1) + g(t, x1, x2)x2, (2.24a)
ẋ2 = f2(t, x2), (2.24b)

where x1 ∈ Rn and x2 ∈ Rm, f1(t, x1) is continuously differentiable in (t, x1) and
f2(t, x2), g(t, x2, x2) are continuous in their arguments and locally Lipschitz in x2

and (x1, x2), respectively. The previous cascaded system is assumed to have an
equilibrium point at [xT1 x

T
2 ]T = 0. In addition, f1(t, 0) = 0 and f2(t, 0) = 0 for all

t≥t0.

The cascaded system (2.24) consists of a nonlinear system Σ1 with state x1

perturbed by the output of the nonlinear system Σ2 with state x2 by means of the
interconnection gain g(t, x1, x2), in which

Σ1 : ẋ1 = f1(t, x1), Σ2 : ẋ2 = f2(t, x2).

Note that if the x2-dynamics converge to zero, the x1-dynamics reduce to Σ1.
In this case, even if Σ1 is asymptotically stable, the asymptotic stability of the
cascaded system (2.24) cannot be ensured by merely requiring the stability of Σ1

and Σ2. The following theorem poses sufficient conditions for the global uniform
asymptotic stability of the origin of the nonlinear cascaded system (2.24).

Theorem 2.20. (Lefeber et al., 2000). The equilibrium point [xT1 x
T
2 ]T = 0 of

the nonlinear cascaded system (2.24) is globally uniformly asymptotically stable
(GUAS) if the following three assumptions hold:

1. System Σ1: the system ẋ1 = f1(t, x1) is globally uniformly asymptotically
stable (GUAS) and there exists a continuously differentiable function V (t, x1) :
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R+ ×Rn → R and positive definite functions W1(x1) and W2(x1) such that

(i) W1(x1) ≤ V (t, x1) ≤W (x1), ∀t ≥ t0, ∀x1 ∈ Rn; (2.25a)

(ii) V̇ (t, x1) ≤ 0, ∀‖x1‖ ≥ η; (2.25b)

(iii)
∥∥∥∥ ∂V∂x1

∥∥∥∥ ‖x1‖ ≤ ζV (t, x1), ∀‖x1‖ ≥ η; (2.25c)

where η, ζ > 0 are constants.

2. Interconnection: the function g(t, x1, x2) satisfies

‖g(t, x1, x2)‖ ≤ α1(‖x2‖) + α2(‖x2‖)‖x1‖, ∀t ≥ t0, (2.26)

where α1(·), α2(·) : R+ → R are continuous functions.

3. System Σ2: the system ẋ2 = f2(t, x2) is globally uniformly asymptotically
stable (GUAS) and satisfies∫ ∞

t0

‖x2(t; t0, x2(t0))‖dt ≤ β(‖x2(t0)‖), ∀t0 ≥ 0, (2.27)

where the function β(·) is a class K function.

In the theorem, condition 1.(i) indicates that the Lyapunov function related
to system Σ1 should be bounded, condition 1.(ii) requires the derivative of this
function to be negative semi-definite, and condition 1.(iii) restricts its growth,
condition 2 imposes a growth condition on the interconnection gain, and condition
3 requires the integrability of the state of system Σ2. Besides requiring that both
Σ1 and Σ2 are GUAS, the three assumptions guarantee that the solutions of the
cascaded system (2.24) remain bounded. As a result the cascaded system is GUAS.

A stronger notion regarding the stability of the cascaded system (2.24) can be
obtained when both systems Σ1 and Σ2 are globally exponentially stable. This
result is stated in the following lemma and is based on a previous result introduced
by Panteley and Loría (1998).

Lemma 2.21. (Aneke, 2003, Lemma 3.6.2). If in addition to the assumptions
in Theorem 2.20 both systems Σ1 and Σ2 are globally exponentially stable (GES),
then the cascaded system (2.24) is globally K-exponentially stable.

The following system is a particular case of the cascaded system (2.24):

ẋ1 = A(t)x1 + g(t, x1, x2)x2, (2.28a)
ẋ2 = B(t)x2, (2.28b)
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where x1 ∈ Rn and x2 ∈ Rm, A(t) ∈ Rn×n and B(t) ∈ Rm×m are continuously
differentiable and bounded. In this case, we have that

Σ1LTV : ẋ1 = A(t)x1, Σ2LTV : ẋ2 = B(t)x2,

resulting in the LTV systems Σ1LTV and Σ2LTV interconnected via a nonlinear
coupling g(t, x1, x2). The following corollary regarding the stability of the cascaded
system (2.28) may be formulated along the same lines of Theorem 2.20 and Lemma
2.21.

Corollary 2.22. The cascaded system (2.28) is globally K-exponentially stable
provided systems Σ1LTV and Σ2LTV are globally exponentially stable and the non-
linear interconnection g(t, x1, x2) satisfies the second condition in Theorem 2.20.

Proof. Recall the three conditions in Theorem 2.20 and note that if systems Σ1LTV

and Σ2LTV are GES, they are necessarily GUAS due to Theorem 2.14. This
means that the first parts of conditions 1 and 3 in Theorem 2.20 are satisfied.
Additionally, from converse Lyapunov theory (see Theorem 2.15), the existence
of a (time-varying) quadratic Lyapunov function V (t, x1) which satisfies (2.25) is
guaranteed. Moreover, since system Σ2LTV is GES it satisfies condition (2.27).
Since the requirement on the interconnection g(t, x1, x2) is the same, all condi-
tions in Theorem 2.20 are satisfied. Finally, due to the fact that systems Σ1LTV

and Σ2LTV are GES, from Lemma 2.21 it follows that the cascaded system (2.28)
is globally K-exponentially stable.

2.5 Stability of Retarded Functional Differential
Equations

This section introduces some results concerning the stability of retarded functional
differential equations. These results are required later on in order to study the
stability of the remote tracking control and remote motion coordination strategies
presented in Chapter 4, Chapter 5, and Chapter 6.

Consider the following retarded functional differential equation:

ẋ(t) = f(t, xt), (2.29)

where f : D → Rn, D ⊆ (R × C(n)) and C(n) = C([−τ, 0],Rn) is the (Banach)
space of continuous functions mapping the interval [−τ, 0] into Rn. This vector
space is equipped with the norm ‖ · ‖c, denoted as the continuous norm, which is
defined for a function ϕ ∈ C([a, b],Rn) as follows:

‖ϕ‖c = max
a≤s≤b

‖ϕ(s)‖, (2.30)
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where ‖ · ‖ denotes any vector norm. In (2.29), t ∈ R, x(t) ∈ Rn, and xt ∈ C(n) is
defined as xt(s) = x(t+ s), for −τ ≤ s ≤ 0.

In this thesis we adopt notational conventions from Hale and Verduyn-Lunel
(1993) and Sedova (2008a). We have that the function x is a solution of (2.29) on
[σ − τ, σ + β) if there are σ ∈ R and β > 0 such that x ∈ C([σ − τ, σ + β],Rn),
(t, xt) ∈ D, and x(t) satisfies (2.29) for t ∈ [σ, σ + β). Moreover, for given σ ∈ R
and φ ∈ C(n), x(t;σ, φ) is a solution of (2.29) with initial value φ at σ, or simply
a solution through (σ, φ), if there is a β > 0 such that x(t;σ, φ) is a solution of
(2.29) on [σ − τ, σ + β) and xσ(σ, φ) = φ (herein, the notation xt(σ, φ) is used
to denote the solution segment xt starting at time t − τ and ending at time t
corresponding to the initial value φ at σ). In particular, when σ = t0, the solution
of (2.29) is given by x(t; t0, φ), and xt0 = φ denotes the initial condition of the
system. In addition, for any ϕ ∈ C(n), that is, any element of the Banach space,
ϕ(0) ∈ Rn and ϕ(−τ) ∈ Rn denote ϕ at the end and beginning of the interval
[−τ, 0], respectively, and, generically, ϕ(s) ∈ Rn denotes ϕ at s ∈ [−τ, 0].

The functional f in (2.29) is assumed to be continuous on each set of the form
R+ × Cρ(n), where ρ > 0, Cρ(n) = {ϕ ∈ C(n) : ‖ϕ‖c < ρ}, bounded by some
constant M(ρ), and Lipschitz with some constant L(ρ). As explained in Sedova
(2008a), these assumptions ensure the existence and uniqueness of the solution
x(t; t0, φ) to system (2.29). We also assume that f(t, 0) = 0, for all t ∈ R+, such
that system (2.29) has a zero equilibrium state.

If V : R × Rn → R is a continuous function and x(s; t, ϕ) is the solution of
(2.29) through (t, ϕ), with ϕ ∈ C(n), then the derivative of V along the solutions
of (2.29) is defined as

V̇ (t, ϕ) = lim
h→0+

sup
1
h

[V (t+ h, x(t+ h; t, ϕ))− V (t, ϕ(0))], (2.31)

or equivalently,

V̇ (t, ϕ) =
∂V

∂t
(t, ϕ(0)) +

∂V

∂x
(t, ϕ(0))f(t, ϕ). (2.32)

The following theorems, known as the Lyapunov-Razumikhin theorems, estab-
lish sufficient conditions to determine the stability of the origin of the retarded
functional differential equation (2.29) in terms of the rate of change of a certain
function.

Theorem 2.23. (Hale and Verduyn-Lunel, 1993, Theorem 4.1). Suppose
f : R × C → Rn takes R× (bounded sets of C) into bounded sets of Rn and
consider the retarded functional differential equation (RFDE) (2.29). Suppose
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u, v, w : R+ → R+ are continuous, nondecreasing functions, u(r) and v(r) are
positive for r > 0, u(0) = v(0) = 0, and v is strictly increasing. If there is a
continuous function V : R× Rn → R such that

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), t ∈ R, x ∈ Rn, (2.33)

and the derivative of V along the solutions of (2.29) satisfies

V̇ (t, ϕ) ≤ −w(‖ϕ(0)‖), (2.34)

if
V (t+ s, ϕ(s)) ≤ V (t, ϕ(0)), (2.35)

for s ∈ [−τ, 0], then the solution x = 0 of system (2.29) is uniformly stable.

Theorem 2.24. (Hale and Verduyn-Lunel, 1993, Theorem 4.2). Suppose all con-
ditions of Theorem 2.24 are satisfied and in addition w(r) > 0 if r > 0. If there is
a continuous nondecreasing function p(r) > r for r > 0 such that the conditions
(2.34)-(2.35) are strengthened to

V̇ (t, ϕ) ≤ −w(‖ϕ(0)‖), (2.36)

if
V (t+ s, ϕ(s)) ≤ p(V (t, ϕ(0))), (2.37)

for s ∈ [−τ, 0], then the solution x = 0 of system (2.29) is uniformly asymptotically
stable. If u(s) → ∞ as s → ∞, then the solution x = 0 is also a global attractor
for the system (2.29).

As explained in Hale and Verduyn-Lunel (1993), the Lyapunov-Razumikhin
approach exploits the idea that, if the solution of a RFDE begins in a ball and is
to leave this ball at time t, it is only necessary to consider initial data satisfying
‖x(t+s)‖ ≤ ‖x(t)‖, for all s ∈ [−τ, 0], to study its stability. In addition, Münz et al.
(2008) highlight the importance of noting that the Lyapunov-Razumikhin function
in the theorem is not necessarily non-increasing along the system trajectories,
meaning that it may actually increase within the delay interval.

A particular type of retarded functional differential equation of special interest
in this work is the following nonlinear cascaded system1:

ẋ(t) = fx(t, xt) + gxy(t, xt, yt), (2.38a)
ẏ(t) = fy(t, yt), (2.38b)

1Throughout this thesis the expression fa (or more explicitly fa(t, at)) will be used to denote
the functional fa : D → Rm in a retarded functional differential equation. This notation is not
to be confused with a different usage of fa often found in the literature, in which fa is used as
short notation for ∂f

∂a
.
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where x ∈ Rm, y ∈ Rn, xt ∈ C(m), and yt ∈ C(n). We assume that fy(t, 0) = 0,
fx(t, 0) = g(t, ϕx, 0) = 0 for all t ∈ R+ and ϕx ∈ C(m), such that the system has
the zero equilibrium state. In the absence of the coupling term g(t, xt, yt), system
(2.38a) takes the following form:

x(t) = fx(t, xt), (2.39)

denoted hereinafter as the x-dynamics without coupling.

The following theorems formulate sufficient conditions to establish the local
and global uniform asymptotic stability of the nonlinear delayed cascaded system
(2.38).

Theorem 2.25. (Sedova, 2008a, Theorem 2). Consider the nonlinear delayed
cascaded system (2.38) and let both the zero solution of the x-dynamics with-
out coupling (2.39) and the y-dynamics in (2.38b) be locally uniformly asymptot-
ically stable (LUAS). Then, the solution [xT yT ]T = 0 of system (2.38) is locally
uniformly asymptotically stable (LUAS).

Theorem 2.26. (Sedova, 2008b, Theorem 4). Assume that for system (2.39)
(the x-dynamics without coupling) there exists a function V (t, x) of the Lyapunov-
Razumikhin type which satisfies the following assumptions:

1. V (t, x) is continuously differentiable, positive definite, and has the infinites-
imal upper limit with ‖x‖ → 0 and the infinitely great lower limit with
‖x‖ → ∞;

2. due to system (2.39), the derivative of the function V (it represents the func-
tional V̇ (t, ϕx) = ∂V

∂t (t, ϕx(0)) + ∂V
∂x (t, ϕx(0))fx(t, ϕx) satisfies the estimate

V̇ (t, ϕx) ≤ 0 for all ϕx ∈ Ωt(V ) = {ϕ ∈ C(m) : max−τ≤s≤0 V (t+ s, ϕx(s)) ≤
V (t, ϕx(0))};

3. |V̇ (t, ϕx)| ≥ U(t, ϕx) for all (t, ϕx) ∈ R+ × C(n), the functional U(t, ϕx) is
uniformly continuous and bounded in each set in the form R+ × K with a
compact set K ⊂ C;

4. the intersection of the sets V −1
max(∞, c) := {ϕx ∈ C(m)|∃ϕn → ϕx, tn →

+∞ : limn→∞max−τ≤s≤0 V (tn + s, ϕn(s)) = limn→∞ V (tn, ϕn(0)) = c} and
U−1(∞, 0) is empty with c 6= 0;

and that additionally the following conditions are satisfied:

5. for all x ∈ Rn such that ‖x‖ > η, the inequality
∥∥∂V
∂x

∥∥ ·‖x‖ ≤ c1V (t, x) holds,
and, for all x ∈ Rn such that ‖x‖ ≤ η, the estimate

∥∥∂V
∂x

∥∥ ≤ c is valid with
certain constants η, c1, c > 0;
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6. for ϕy ∈ C(n) and some continuous functions α1, α2 : R+ → R+ the func-
tional g admits the following estimate:

‖g(t, ϕx, ϕy)‖ ≤ (α1(‖ϕy‖c) + α2(‖ϕy‖c)‖ϕx(0)‖)‖ϕy‖c;

7. solutions of system (2.38b) admit the estimate ‖y(t; t0, φy)‖ ≤ k1‖φy‖ce−k2t
with certain constants k1, k2 > 0.

Then the zero solution of system (2.38) is globally uniformly asymptotically stable.

As explained in Sedova (2008b), several remarks are in place regarding Theorem
2.26. First, note that the second assumption on V (t, x) is, in fact, the Lyapunov-
Razumikhin condition for asymptotic stability. Although this condition usually
requires the negative definiteness of the derivative of V (t, x), the requirement in
the assumption has been weakened in order to ease the construction of appropriate
Lyapunov-Razumikhin functions. Nonetheless, in order to still guarantee asymp-
totic stability, additional conditions have been posed. These requirements appear
in the third and fourth assumptions, and are satisfied by default by functions with
a negative definite derivative. Second, from Remarks 2 and 3 in Sedova (2008b),
we have that if the function V (t, x) is quadratic, the bounds on its growth posed
in the fifth condition are automatically satisfied and ‖ϕx(0)‖ can be replaced by
‖ϕx‖c in the estimate for the functional g in the sixth assumption. It is worth
pointing out that the use of vector norms throughout the theorem should be con-
sistent. This means that the vector norm used within the continuous norm ‖ · ‖c
should be consistent with the rest of the vector norms used in the theorem (recall
that the continuous norm has already been defined in (2.30)).

There definitely is a resemblance between Theorem 2.25 for nonlinear delayed
cascaded systems and Theorem 2.20 for nonlinear delay-free cascaded systems. For
instance, besides requiring some form of stability for the unperturbed dynamics of
the first system, both of them pose growth conditions on the associated Lyapunov
(-Razumikhin) function. In addition, the requirement for global uniform asymp-
totic stability of the second system plus the condition that its output is integrable
in Theorem 2.20 corresponds to the global exponential stability requirement for
the same system in Theorem 2.25. Finally, both theorems pose similar growth con-
ditions on the interconnection, so that the solutions of the overall system remain
bounded.

2.6 Tracking Control of Mobile Robots
A schematic representation of the unicycle robot considered in this work is shown
in Figure 2.1. The robot is composed of two independently actuated wheels and
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Figure 2.1 . Schematic representation of a unicycle-type mobile robot.

one or several passively orientable wheels (caster wheels). The position at time t
of the point P (located at mid-distance from the driving wheels of the robot) with
respect to the global coordinate frame ~e 0 =[~e 0

x ~e
0
y ]T is denoted by the coordinates

(x(t), y(t)), whereas the angle at time t between the heading direction of the
robot robot and the ~e 0

x -axis of the global coordinate frame is denoted by θ(t)
(see Figure 2.1). The posture kinematic model of the unicycle robot is given by
the following differential equations:

ẋ(t) = v(t) cos θ(t), (2.40a)
ẏ(t) = v(t) sin θ(t), (2.40b)

θ̇(t) = ω(t), (2.40c)

in which v(t) and ω(t) constitute the translational and rotational velocities of the
robot, respectively, and are regarded as its control inputs. The state of the system
is denoted by q(t)=[x(t) y(t) θ(t)]T .

In the tracking control problem, the control objective of the unicycle robot is
to track the reference position (xr(t), yr(t)) with an orientation θr(t). Feasible
reference orientation and Cartesian velocities for the robot must satisfy the non-
holonomic constraint which appears in the posture kinematic model of the unicycle,
given by the expression −ẋr(t) sin θr(t) + ẏr(t) cos θr(t) = 0. Considering this
constraint, the reference orientation and translational and rotational velocities of
the robot are defined as follows:

θr(t) = arctan
(
ẏr(t)
ẋr(t)

)
+ kπ, k = 0, 1, (2.41a)



36 2 . PRELIMINARIES

vr(t) =
√
ẋ2
r(t) + ẏ2

r(t), (2.41b)

ωr(t) =
ẋr(t)ÿr(t)− ẍr(t)ẏr(t)

ẋ2
r(t) + ẏ2

r(t)
= θ̇r(t), (2.41c)

where the arctangent function in (2.41a) must consider the sign of each argument
in the ratio ẏr(t)/ẋr(t) in order to accurately determine to which quadrant the
resulting angle belongs2. The two possible choices for k in (2.41a) allow for the
same trajectory to be followed either forwards (k=0) or backwards (k=1).

As stated by Siciliano et al. (2009), in order for the tracking problem to be
soluble, it is necessary that the reference position is admissible, that is, feasible, for
the posture kinematic model of the unicycle. This means that θr(t) should satisfy
(2.41a) and that there must exist reference translational and rotational velocities
vr(t) and ωr(t) which satisfy (2.41b) and (2.41c), respectively. Hence, the reference
orientation and translational and rotational velocities satisfy the equations

ẋr(t) = vr(t) cos θr(t), (2.42a)
ẏr(t) = vr(t) sin θr(t), (2.42b)

θ̇r(t) = ωr(t), (2.42c)

with an associated reference state trajectory qr(t)=[xr(t) yr(t) θr(t)]T .

In order to solve the tracking control problem for the unicycle, a set of tracking
error coordinates which relate the reference trajectory qr(t) and the state of the
unicycle q(t) was first proposed by Kanayama et al. (1990). These error coordi-
nates, shown in Figure 2.2, have an associated error state qe(t)=[xe(t) ye(t) θe(t)]T

and are given byxe(t)ye(t)
θe(t)

 =

 cos θ(t) sin θ(t) 0
− sin θ(t) cos θ(t) 0

0 0 1

xr(t)− x(t)
yr(t)− y(t)
θr(t)− θ(t)

 . (2.43)

Differentiating the error coordinates (2.43) and exploiting the kinematics of
the unicycle (2.40) and (2.42) yields the following open-loop error dynamics:

ẋe(t) = ω(t)ye(t) + vr(t) cos θe(t)− v(t), (2.44a)
ẏe(t) = −ω(t)xe(t) + vr(t) sin θe(t), (2.44b)

θ̇e(t) = ωr(t)− ω(t). (2.44c)

2This variant of the classical arctangent function is known as the atan2 function in some
programming languages, such as MATLAB. It is worth noting that all the arctangent functions
which appear in this thesis have been implemented considering this variant.
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Figure 2.2 .Unicycle robot coordinates, reference trajectory coordinates, and
tracking error coordinates.

The tracking control problem consists in finding an appropriate stabilizing
control law u(t)=[v(t)ω(t)]T such that the tracking error qe(t) converges to zero.
Consider for the control input the following tracking controller first proposed in
Panteley et al. (1998) and further studied in Lefeber et al. (2001):

v(t) = vr(t) + cxxe(t)− cywr(t)ye(t), cx > 0, cy > −1, (2.45a)
ω(t) = ωr(t) + cθθe(t), cθ > 0, (2.45b)

in which cx, cy, and cθ constitute the feedback tracking gains and vr(t) and ωr(t)
the feedforward reference velocities, already defined in (2.41b) and (2.41c), respec-
tively.

The error dynamics (2.44) together with the tracking control law (2.45) result
in the following closed-loop error dynamics:[
ẋe(t)
ẏe(t)

]
=
[
−cx (1+cy)ωr(t)
−ωr(t) 0

] [
xe(t)
ye(t)

]
+
[
cθye(t)θe(t)−vr(t)(1−cos θe(t))
−cθxe(t)θe(t)+vr(t) sin θe(t)

]
,

(2.46a)

θ̇e(t) = −cθθe(t). (2.46b)

Considering the following state definitions: ξ1(t) := [xe(t) ye(t)]T and ξ2(t) :=
θe(t), the closed-loop error dynamics (2.46) may be rewritten in the following form:
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ξ̇1 = A(t)ξ1 + g(t, ξ1, ξ2), (2.47a)

ξ̇2 = −cθξ2 (2.47b)

with

A(t) =
[
−cx (1 + cy)ωr(t)
−ωr(t) 0

]
,

g(t, ξ1, ξ2) =
[
cθye(t)θe(t)− vr(t)(1− cos θe(t))
−cθxe(t)θe(t) + vr(t) sin θe(t)

]
.

Note that the rearranged closed-loop error dynamics (2.47) form a cascaded
system which is a particular case of the time-varying cascaded system (2.28).
Remarkably, all the closed-loop error dynamics in this thesis which are related to
the unicycle robot or a group of unicycles have a similar cascaded structure. As a
result, the approach to study the stability of these error dynamics is, to a certain
extent, similar in all cases.

The previous remark constitutes the main reason for including the following
proposition, which formulates sufficient conditions under which qe(t)=0 is a glob-
ally K-exponentially stable equilibrium point of the closed-loop tracking error
dynamics (2.46).

Proposition 2.27. (Lefeber, 2000; Lefeber et al., 2001). Consider the posture
kinematic model of a unicycle robot as given by (2.40). The reference Cartesian
position of the robot is given by (xr(t), yr(t)), whereas its reference orientation θr(t)
is given by (2.41a). Additionally, consider the tracking controller (2.45), with the
feedforward terms vr(t) and ωr(t) defined as in (2.41b) and (2.41c), respectively,
and the feedback part based on the error qe(t) between the reference trajectory qr(t)
and the state q(t), as given in (2.43). If the following conditions are satisfied:

• the reference translational velocity vr(t) 6= 0, ∀t, is bounded;

• the reference rotational velocity ωr(t) is persistently exciting (PE);

• the tracking gains satisfy cx, cθ > 0, cy > −1,

then, qe(t) = 0 is a globally K-exponentially stable equilibrium point of the closed-
loop error dynamics (2.46).

The next chapter introduces the multi-robot platform used to experimentally
validate the control strategies proposed in this thesis.
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3
EXPERIMENTAL PLATFORM

Abstract .This chapter introduces the experimental multi-robot platform used
to implement and validate the control strategies developed in this thesis.

3.1 Experimental Platform Description
In this chapter, we introduce the multi-robot platform used in this thesis to
experimentally validate the control strategies proposed in Chapter 4 and Chapter 5.
There are two experimental setups available, one located at the Eindhoven Uni-
versity of Technology (TU/e) in the Netherlands and the other one at Tokyo
Metropolitan University (TMU) in Japan. These setups may be used in a stand-
alone fashion or, jointly, to conduct remote coordination experiments. The chapter
begins with a brief description of the experimental setups and the elements that
compose them and continues with an overview of the communication link set up
between the setups so that they exchange information.

3.1.1 General Description

A multi-robot experimental platform was originally designed at TU/e to evaluate
different formation control strategies for a group of unicycle-type mobile robots.
All the necessary details regarding the design specifications, component choice,
implementation, and calibration may be found in van den Broek (2008). Inspired
by this design, a similar setup was subsequently implemented at TMU. Besides
being used to evaluate the control strategies presented in this thesis, the setups
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Figure 3.1 . Experimental setup at TU/e (left) and at TMU (right).

have proven to be very useful in testing low-level and high-level motion coor-
dination strategies and collision avoidance, task allocation, and visual servoing
algorithms, among others (see for example Adinandra et al., 2010; Kostić et al.,
2009, 2010a,b).

Overview

Both experimental setups are shown in Figure 3.1. The setups have a driving arena
in which the mobile robots execute their task. An overhead camera connected to a
computer captures the location of the robots at regular intervals. This information
is processed in the computer and the necessary (control) inputs for each robot are
generated. Subsequently, these control inputs are transmitted to the corresponding
robots in order to close the control loop.

Mobile Robot Platform

The mobile robot platform selected is the e-puck robot, shown in Figure 3.2.
The e-puck is a differential-drive unicycle-type mobile robot developed at EPFL,
Switzerland (refer to Mondada et al. (2009) for additional details). The wheels
of an e-puck are driven by stepper motors which receive velocity control com-
mands over a BlueTooth connection. All the data processing required to execute
these commands is carried out in the robot’s onboard processor. Establishing a
BlueTooth connection between the e-puck and a computer allows the robot to be
controlled using a variety of programming languages, whereas its processing capa-
bilities open up the possibility to implement semi-decentralized and decentralized
control algorithms.
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Figure 3.2 . CAD rendering of the e-puck mobile robot (left) and a team of e-pucks
equipped with reacTIVision fiducial markers (right).

Vision System

The position and orientation of the robots is measured by means of static scene
analysis by using an industrial FireWire camera. The camera in the setup at TU/e
is an AVT Guppy F-080b (shown in the left-hand side of Figure 3.3), whereas the
one used at TMU is an Imaging Source DMK-31BF03. Both cameras are equipped
with a Computar T0412FICS-3 4mm lens and, based on the height at which they
are placed, the resulting driving arena is of 175×128 cm at TU/e and 100×50 cm
at TMU.

Each robot is fitted with a unique fiducial marker of 7×7 cm, such as the one
shown in the right-hand side of Figure 3.3. The markers are read by reacTIVision, a
standalone application which is capable of determining the position and orientation
of a large quantity of these markers at the same time (see Kaltenbrunner and
Bencina, 2007, for additional details). In the setup at TU/e the data generated
by reacTIVision is calibrated by means of a coordinate transformation, whereas
at TMU it is calibrated by gridding the arena and determining the position of the
robot with respect to the origin of the grid.

Software

The data stream generated by reacTIVision is composed of messages formatted
with the TUIO protocol (see Kaltenbrunner et al. (2005) for additional details).
The protocol uses UDP (User Datagram Protocol) port 3333 to relay messages to
a specific client application. For this reason, incoming data from reacTIVision can
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Figure 3.3 .Overhead FireWire camera used at TU/e (left) and a close-up view of
a reacTIVision fiducial marker (right).

be managed by a number of programming languages, such as C ++, Python, and
Java, running on any operating system that supports them.

All the control algorithms presented in this thesis have been implemented in
Python. The main reason behind this choice is the simplicity with which a network
connection can be set up and configured in this language, which means a network
connection between both setups can be easily established.

Sampling Rate and Bandwidth

Using the vision system results in a sampling rate of approximately 25Hz, which
constrains the bandwidth of the overall setup. Nonetheless, this choice still allows
the correct polling of the measurement data while ensuring an accurate control of
the mobile robots.

3.1.2 Data Exchange over the Internet

Exchanging data between the experimental setups in the Netherlands and Japan
is necessary in order to implement the remote control and motion coordination
strategies proposed in this thesis. Because of its widespread availability and low
cost, the Internet is chosen as the communication channel for this exchange.

Network Configuration

In order to establish a connection which guarantees a reliable and secure data
exchange, the setup at TU/e accesses the TMU network via a Virtual Private
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Network (VPN). Some of the advantages of using a VPN is that it offers secure
access to the network without being a dedicated communication channel and that
it bypasses the difficulties posed by closed ports and network security measures.

Socket Configuration

The data exchanged between the setups is transmitted as soon as it becomes
available by means of non-blocking Transmission Control Protocol (TCP) sockets
running on the Internet Protocol (IP). The low bandwidth of the system allows the
use of the TCP protocol, which guarantees reliable data delivery. The correct se-
rialization and deserialization of the data stream as required by Python is ensured
by fixing the size of each transmitted packet and setting accordingly the reading
buffer on the receiving end. Since data is exchanged bidirectionally in some of
the control strategies, different processing threads are set up for transmitting and
receiving data.

Although User Datagram Protocol (UDP) sockets allow data exchange at
higher rates, they cannot guarantee reliable and integral data delivery. Because
of this, the use of the more reliable TCP protocol is preferred since sampling the
system faster has not been required so far. The reasoning behind this is that we
assume that the unicycles move with low accelerations, since the controllers which
will be designed for them are based on their posture kinematic model and their
reference velocities are relatively slowly varying signals as well. Nonetheless, the
use of UDP sockets clearly constitutes an option for data communication, espe-
cially when considering control systems requiring higher sampling rates, such as a
robotic manipulator.

Data Payload

When implementing the control strategies presented in this thesis, the number of
variables exchanged amounts to only a few per robot. For instance, the robots
may broadcast their position and orientation or receive their control inputs or
reference trajectories from a remote location. Since this information is bundled
in each setup and then broadcast to the other setup, the demands placed on the
communication network does not increase significantly as the number of robots in
the setups grows.

Recall, however, that data is transmitted as soon as it becomes available. This
means that the transmission rate is the same as the sampling rate of the setups.
This might be unnecessarily taxing on the communication channel and, considering
the current problem setting, it is highly probable that more efficient mechanisms
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to exchange information exist. Nevertheless, investigating such mechanisms lies
beyond the scope of this work considering that the current approach has proven
to be successful in practice.

Setup Synchronization

An additional aspect to consider is synchronizing the internal clocks of the com-
puters at each setup. This is important in some of the experiments because having
a global time scale allows a more accurate characterization of the performance of
the system. Nonetheless, synchronizing the computer clocks with millisecond ac-
curacy is not a trivial problem, especially when the computers are located so far
apart (around 9000 km).

One possibility is to use the clock of Global Positioning System (GPS) devices
as the reference for the computer clocks. Although this approach constitutes one
of the most accurate options available, cost and implementation issues render this
idea unfeasible in the current setting. Another option is using the Network Time
Protocol (NTP) to set the computer clocks. In this case, the accuracy depends on
several factors such as the operating system being used and the distance between
the computers and the NTP server which provides the time reference. In Windows,
the Windows Time Service allows to synchronize the computer clock with an NTP
server. However, the Windows Time Service cannot maintain the system time more
accurately than about a 1-2 second range (Microsoft, 2010). Ultimately, because of
its simplicity and null cost, the setups (roughly) synchronize their clocks with the
same NTP server using the Windows Time Service, resulting in (approximately)
the aforementioned synchronization accuracy. Although not ideal, this does not
represent a major inconvenience since, as will be shown later on, the time-delay
induced by the communication network can be characterized quite accurately.

3.1.3 Round-Trip Delay Time
The round-trip delay between The Netherlands and Japan has been measured
continuously during a 24 hour period in Botden (2011). The measurements were
conducted between the computer of the experimental setup at TU/e and a (ran-
domly chosen) server in Japan.

The hrPing (high resolution ping) command was used to measure the round-
trip delay during the 24 hour interval. Throughout this time, 1200 hrPing requests
were sent to the server in Japan during a two-minute interval. These two-minute
bursts of hrPing requests were repeated every three minutes, resulting in a total of
288 bursts during the 24 hour period. The main reason for not measuring directly
the round-trip delay with the computer of the setup at TMU, but rather with a
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Figure 3.4 .Round-trip delay between The Netherlands and Japan measured dur-
ing 24 hours.

randomly chosen server in Japan, is that the network at TMU does not accept
ping requests.

The mean value of the round-trip delay for each burst is shown in Figure 3.4,
together with the 95% confidence interval of the measurement. The overall mean
value of the round-trip delay is around 268ms. In the figure, the repercussions of
network traffic variations throughout the day are clearly noticeable in the mea-
surements.

In comparison, the round-trip delay between the computers of both setups
has also been measured using time stamping. In this case, the measurements
were conducted during different times of the day, for amounts of time ranging
from 2min to 10min, and for a total time of around 60min. In accordance with
the measurements obtained using the high resolution ping, the mean delay value
when using time stamping also resulted in approximately 268ms (267.4917ms from
TU/e→TMU and 269.5307ms from TMU→TU/e).

In conclusion, the proposed network and socket configuration allows the setups
to reliably exchange data between each other with a delay which is fairly constant.
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The next chapter addresses the problem of a mobile robot being controlled over
a delay-inducing communication network.
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4
REMOTE TRACKING CONTROL OF A

MOBILE ROBOT

Abstract . In this chapter we address the tracking control problem for a unicycle-
type mobile robot which is controlled over a two-channel, delay-inducing com-
munication network. A control strategy capable of compensating for the neg-
ative effects of the time-delay is proposed and the local and global asymptotic
stability of the closed-loop system is guaranteed up to a maximum admissible
delay. The applicability of the proposed control strategy is demonstrated by
means of experiments carried out between multi-robot platforms located in
Eindhoven, The Netherlands, and Tokyo, Japan.

4.1 Introduction
The study of robotic systems controlled over a network has become important as
a way to support the design of robotic systems that can perform remote, dan-
gerous or distributed tasks. A schematic representation of the problem addressed
in this chapter is depicted in Figure 4.1. In this case, the controller and the
mobile robot are linked via a delay-inducing communication channel, which pos-
sibly compromises the performance and stability of the closed-loop system. As
explained in Chapter 1, several techniques have been proposed so far in the con-
text of teleoperated systems and Networked Control Systems (NCSs) to cope with
network-induced delays; for example, the use of the scattering transformation,
a passivity-based approach, wave variables formulation, queuing methodologies,
delay compensation techniques, and robust control design, to name a few. A
detailed description of such techniques may be found in some of the references
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Figure 4.1 . Schematic representation of a mobile robot controlled over a delay-
inducing communication network.

given in Chapter 1, whereas an overview of these techniques and many others can
be found, for example, in Hokayem and Spong (2006), Heemels and van de Wouw
(2011), and Tipsuwan and Chow (2003).

In this chapter, a control strategy which allows the remote tracking control of
a unicycle-type mobile robot is proposed. The control scheme consists of a state
predictor in combination with a tracking controller, which together compensate for
the negative effects of the network-induced delay. The state predictor is inspired on
the synchronization-based predictor introduced in Oguchi and Nijmeijer (2005a)
and Oguchi and Nijmeijer (2005b), and the tracking control law is the one studied
in Section 2.6. In Kojima et al. (2010), a similar state predictor is applied to
a mobile robot subject to a communication delay, and sufficient conditions for
the stability of the predictor error dynamics are derived. This thesis follows the
alternative approach taken in Alvarez-Aguirre et al. (2010b) and Alvarez-Aguirre
et al. (2011), and studies the stability of the entire closed-loop system, which
consists of the mobile robot, the tracking controller, and the state predictor.

As explained before, we consider the case in which sensor data and control
commands are communicated over a network inducing a delay. In the NCSs lit-
erature, researchers have been focusing on the study of robust stability in the
face of uncertain, time-varying delays, while most of the work focuses on stabi-
lization problems (often for linear systems). In the current work, we focus on the
more complex control problems of tracking time-varying trajectories (this chap-
ter) and achieving motion coordination (Chapter 5) for a class of nonlinear robotic
systems. Motivated by the measurements of the network delays induced by the
Internet link employed in this work (see Chapter 3), we consider the case of con-
stant delays. Moreover, since these measurements also show that the magnitude
of the network-induced delay (≈ 270ms) is much larger than the sampling period
of the experimental setups introduced in Chapter 3 (40ms), we do not consider
sample-and-hold effects in the system but rather carry out our complete analysis
in continuous-time.
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The contribution of this chapter is twofold. First, we propose a remote control
strategy consisting of a tracking controller and a predictor which guarantees the
local or global stability of the resulting closed-loop system for delays smaller than
a certain upper bound. Second, the control strategy is experimentally validated
using the multi-robot platform introduced in Chapter 3 using the Internet as the
communication channel.

The remainder of this chapter is organized in the following way. The remote
tracking control strategy for a mobile robot is introduced in Section 4.2, together
with some ideas on how to overcome the main practical implementation issues
apparent in the experimental study. The local and global stability of the resulting
closed-loop error dynamics is studied in Section 4.3. Illustrative simulation and
experimental results are included in Section 4.4. The chapter concludes with a
discussion in Section 4.5.

4.2 Predictor-Based Remote Tracking Control of a
Mobile Robot

In this section, we consider a mobile robot controlled over a network which induces
time-delays, as depicted in Figure 4.2. The forward time-delay τf affects the
robot’s control input u(t), resulting in the delayed control signal u(t − τf ) being
applied to the robot. The backward time-delay τb affects the robot’s output q(t) (in
this case the state of the unicycle), resulting in the delayed output q(t− τb) being
available for control purposes. The controller makes use of the reference trajectory
qr(t) of the robot and the output of the state predictor z(t) in order to produce
the control signals for the unicycle. At the same time, the state predictor requires
the control signal u(t) and the correction term ν(t) to compute its output. The
state predictor is a dynamical system which has very similar dynamics to those of
the mobile robot. The output of the state predictor is intentionally delayed by τ̃f
and then by τ̃b, which are, respectively, the estimates of the forward and backward
time-delays. This yields z(t− τ̃), with τ̃ = τ̃f + τ̃b, which together with the delayed
output of the robot q(t−τb) and the output of the state predictor z(t) are required
to compute the correction term ν(t). The objective of the closed-loop predictor-
controller combination is to guarantee stability and ensure that the robot tracks
(a delayed version) of the reference trajectory.

The origin of this type of predictor can be traced back to the appearance
of the notion of anticipating synchronization in coupled chaotic systems, which
was first noted by Voss (2000) for a scalar system. After the same behavior was
observed in certain simple physical systems such as specific electronic circuits and
lasers (see for instance Masoller, 2001; Sivaprakasam et al., 2001; Voss, 2002),
it was studied for more general systems in Oguchi and Nijmeijer (2006). As a
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Figure 4.2 . Block diagram representation of the remote tracking control strategy.

result of this generalization, a synchronization-based state predictor for nonlinear
systems with input time-delay was proposed in Oguchi and Nijmeijer (2005a). A
similar predictor-controller combination was applied to a unicycle in Kojima et
al. (2010), where a different tracking controller, correction term, and approach to
study stability have been used. It is worth noting that, in that work, only sufficient
conditions for the stability of the predictor error dynamics have been derived. As
explained already, the remote control strategy presented in this chapter follows
similar lines of reasoning as the work presented in Alvarez-Aguirre et al. (2010b)
and Alvarez-Aguirre et al. (2011).

4.2.1 Experimental Implementation

One of the practical implementation issues of the proposed remote tracking con-
troller is the availability of an accurate model of the network-induced delay. As
noted in Hokayem and Spong (2006) and Michiels and Niculescu (2007), among
others, predictor-like control strategies tend to be particularly sensitive to delay
model mismatches, especially when dealing with nonlinear systems and a commu-
nication channel such as the Internet. Considering this, two different techniques
have been used in order to implement the proposed delay remote tracking control
strategy. Their objective it to provide an accurate estimate τ̃ of the real delay τ .
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Naturally, the most straightforward approach is to measure the communica-
tion delay. This has already been done in Section 3.1.3, where the round-trip delay
between TU/e and TMU has been measured at approximately 268ms using two
slightly different techniques. Based on these measurements we can say that the
round trip time-delay is fairly constant and reproducible, and that measuring it
provides a (reasonably) reliable alternative for emulating the time-delay τ . The
consistency in the measurements might be a consequence of using a VPN connec-
tion, which could be acting, to a certain degree, as a dedicated, albeit inexpensive,
communication channel.

The second alternative is called signal bouncing, and is only suitable when
considering a bilateral time-delay. In this case, the remote tracking control strategy
is modified, resulting in the block diagram representation shown in Figure 4.3. The
mobile robot in the remote location is assumed to have certain data reception and
transmission capabilities, which is the case since it is already able to receive control
commands and transmit its state. Instead of delaying the predicted state z(t) by
τ̃f and then by τ̃b, it is sent to the mobile robot together with the control signal
u(t). This means that, at time t, z(t− τf ) and u(t− τf ) arrive at the mobile robot
after being affected by the input time-delay τf . The control input u(t − τf ) is
applied to the mobile robot, producing the state q(t), whereas the predicted state
z(t− τf ) is not processed at all and is sent by the robot over the network back to
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the controller side. Both signals exiting the mobile robot are subject to the output
time-delay τb, resulting in q(t − τb) and z(t − τ) being available at time t for the
computation of the correction term ν(t). As a result, by using the communication
channel itself to delay the predicted state, it is no longer necessary to model the
time-delay.

Considering the above we can say that, for the particular problem setting
considered in this thesis, assuming the availability of an accurate estimate τ̃ of the
real delay τ is reasonable.

4.2.2 State Predictor and Controller Design

Consider a unicycle robot subject to a network-induced delay. In this case, the
mobile robot is subject not only to an input (forward) time-delay τf , but also to
an output (backward) time-delay τb, as denoted in Hokayem and Spong (2006).
Throughout this thesis the forward and backward time-delays τf and τb, respec-
tively, are assumed to be constant and known, with the round-trip time-delay
defined as τ := τb + τf . This assumption is motivated by the delay measurements
conducted on the communication channel of the experimental platform used in
this work (refer to Chapter 3). Given the posture kinematic model of a unicycle
robot with state q(t) = [x(t) y(t) θ(t)]T as in (2.40), if the mobile robot is subject
to a network-induced input delay τf , its model becomes:

ẋ(t) = v(t− τf ) cos θ(t), (4.1a)
ẏ(t) = v(t− τf ) sin θ(t), (4.1b)

θ̇(t) = ω(t− τf ). (4.1c)

Additionally, since the time-delay affecting the system is bilateral, its state
measurements are affected by an output time-delay τb, yielding the measured state
q(t− τb) = [x(t− τb) y(t− τb) θ(t− τb)]T .

Even though it is subject to a network-induced delay, the unicycle robot is
intended to track (a delayed version of) a reference trajectory with an associated
state qr(t) = [xr(t) yr(t) θr(t)]T . In order to improve the tracking performance of
the robot, the following state predictor, with state z(t) = [z1(t) z2(t) z3(t)]T , is
proposed:

ż1(t) = v(t) cos z3(t) + νx(t), (4.2a)
ż2(t) = v(t) sin z3(t) + νy(t), (4.2b)
ż3(t) = ω(t) + νθ(t), (4.2c)
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in which the robot kinematics can clearly be recognized and where ν(t)=[νx(t) νy(t)
νθ(t)]T constitutes a correction term based on the difference between the predicted
and the measured states.

For the purpose of designing the correction term ν(t), a new set of error
coordinates is introduced, namely, pe(t). This set of error coordinates is related to
the difference between the delayed predicted state z(t− τ̃) and the delayed system
state q(t− τb) and is defined as:

pe(t) =

p1e(t)
p2e(t)
p3e(t)

 =

 cos z3(t− τ̃) sin z3(t− τ̃) 0
− sin z3(t− τ̃) cos z3(t− τ̃) 0

0 0 1

x(t− τb)− z1(t− τ̃)
y(t− τb)− z2(t− τ̃)
θ(t− τb)− z3(t− τ̃)

 ,
(4.3)

where τ̃ := τ̃f + τ̃b represents the sum of the modeled input and output network-
induced delays. Since the time-delays are assumed to be known or, in other words,
modeled perfectly, we have that τ̃f = τf and τ̃b = τb, which yields τ̃ = τ .

The idea behind defining the prediction error based on the difference between
the delayed predicted state and the delayed system state, that is, q(t−τb)−z(t−τ̃),
is to compare these signals at the exact time instant when they are supposed to
have the same values. This would mean that the predictor, as such, anticipates
the state of the system by a time lapse equal to the forward time-delay τf .

Given the error coordinates (4.3), the correction term ν(t) is proposed as
follows:

νx(t) = kxp1e(t) cos z3(t)− kyp2e(t) sin z3(t), (4.4a)
νy(t) = kxp1e(t) sin z3(t) + kyp2e(t) cos z3(t), (4.4b)
νθ(t) = kθp3e(t), (4.4c)

where kx, ky and kθ are the correction gains.

Having constructed the state predictor, a new set of error coordinates denoted
as ze(t) is defined. These error coordinates relate the difference between the pre-
dicted state z(t) and the reference trajectory qr(t) and are given as follows:

ze(t) =

z1e(t)
z2e(t)
z3e(t)

 =

 cos z3(t) sin z3(t) 0
− sin z3(t) cos z3(t) 0

0 0 1

xr(t)− z1(t)
yr(t)− z2(t)
θr(t)− z3(t)

 . (4.5)

The block diagram representation of the proposed control scheme, depicted in
Figure 4.2, shows that the output of the state predictor constitutes the input of
the tracking controller. The control law (2.45) will now make use of the predicted
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error coordinates z1e(t), z2e(t), and z3e(t) as in (4.5) (as opposed to the real error
coordinates xe(t), ye(t), and θe(t)) and is given below:

v(t) = vr(t) + cxz1e(t)− cyωr(t)z2e(t), cx > 0, cy > −1, (4.6a)
ω(t) = ωr(t) + cθz3e(t), cθ > 0. (4.6b)

Due to the input time-delay, the control action applied to the mobile robot in
(4.1) is given by

v(t− τf ) = vr(t− τf ) + cxz1e(t− τf )− cyωr(t− τf )z2e(t− τf ), (4.7a)
ω(t− τf ) = ωr(t− τf ) + cθz3e(t− τf ). (4.7b)

The resulting control input already hints at how the system should behave.
Intuitively, the robot state q(t) converges to the delayed reference state trajectory
qr(t− τf ). This claim will be examined in greater detail in Section 4.3.

4.2.3 Closed-Loop Error Dynamics

The formulation of the closed-loop error dynamics is needed to study the stability
properties of the remote control strategy. Exploiting the predictor (4.2), correction
term (4.4), and control law (4.7), the following closed-loop error dynamics result:

ż1e(t) = −cxz1e(t) + (1 + cy)ωr(t)z2e(t)− kxp1e(t) + cθz2e(t)z3e(t)

+ kθz2e(t)p3e(t)− vr(t)(1− cos z3e(t)), (4.8a)
ż2e(t) = −ωr(t)z1e(t)− kyp2e(t)− cθz1e(t)z3e(t)− kθz1e(t)p3e(t)

+ vr(t) sin z3e(t), (4.8b)
ż3e(t) = −cθz3e(t)− kθp3e(t), (4.8c)
ṗ1e(t) = ωr(t− τ)p2e(t)− kxp1e(t− τ) + cθp2e(t)z3e(t− τ) + kθp2e(t)p3e(t− τ)

− (vr(t− τ) + cxz1e(t− τ)− cyωr(t− τ)z2e(t− τ))(1− cos p3e(t)), (4.8d)
ṗ2e(t) = −ωr(t− τ)p1e(t)− kyp2e(t− τ)− cθp1e(t)z3e(t− τ)− kθp1e(t)p3e(t− τ)

+ (vr(t− τ) + cxz1e(t− τ)− cyωr(t− τ)z2e(t− τ)) sin p3e(t), (4.8e)
ṗ3e(t) = −kθp3e(t− τ). (4.8f)

Considering the state definitions ξ1(t) :=[z1e(t) z2e(t) p1e(t) p2e(t)]
T and ξ2(t) :=

[z3e(t) p3e(t)]
T , the closed-loop error dynamics (4.8) may be represented as the

following cascaded system:

ξ̇1(t) = A1(t, t− τ)ξ1(t) +A2ξ1(t− τ) + g(t, ξ1t , ξ2t), (4.9a)

ξ̇2(t) = B1ξ2(t) +B2ξ2(t− τ), (4.9b)
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where ξit , i = 1, 2, is an element of the Banach space C(li) = C([−τ, 0],Rli), with
l1 = 4 and l2 = 2, defined by ξit(s) := ξi(t + s) for s ∈ [−τ, 0]. Note that by
means of ξit it is possible to represent the state ξi of the system throughout the
time interval [t− τ, t]. The matrices in (4.9) are given by

A1(t, t− τ) =


−cx (1 + cy)ωr(t) −kx 0
−ωr(t) 0 0 −ky

0 0 0 ωr(t− τ)
0 0 −ωr(t− τ) 0

 ,

A2 =


0 0 0 0
0 0 0 0
0 0 −kx 0
0 0 0 −ky

 , B1 =
[
−cθ −kθ

0 0

]
, B2 =

[
0 0
0 −kθ

]
,

g(t, ξ1t , ξ2t) =


g11 kθz2e(t)
g21 −kθz1e(t)
0 g32

0 g42

 ξ2(t) +


0 0
0 0

cθp2e(t) kθp2e(t)
−cθp1e(t) −kθp1e(t)

 ξ2(t− τ),

with

g11 = cθz2e(t)− vr(t)
∫ 1

0

sin(sz3e(t))ds,

g21 = −cθz1e(t) + vr(t)
∫ 1

0

cos(sz3e(t))ds,

g32 = −(vr(t− τ) + cxz1e(t− τ)− cyωr(t− τ)z2e(t− τ))
∫ 1

0

sin(sp3e(t))ds,

g42 = (vr(t− τ) + cxz1e(t− τ)− cyωr(t− τ)z2e(t− τ))
∫ 1

0

cos(sp3e(t))ds,

where the equalities in (2.2) have been used to define g11, g21, g32, and g42.

The upcoming section elaborates on the local and global stability of the closed-
loop error dynamics (4.9).

4.3 Stability Analysis
In order to characterize the behavior of the predictor-tracking controller combina-
tion introduced in the previous section, theorems which pose sufficient conditions
under which the closed-loop error dynamics (4.9) are either locally or globally uni-
formly asymptotically stable are presented in this section. Considering the remote
control strategy and the control action applied to the robot, the control objectives
of the complete system may be defined as follows:
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• the state of the unicycle converges to the state of the reference trajectory
delayed by τf , that is, q(t)→ qr(t− τf );

• the predicted state anticipates the state of the unicycle by τf , that is,
z(t)→ q(t+ τf );

• the predicted state converges to the state of the reference trajectory, that is,
z(t)→ qr(t).

The following control goal may be formulated based on the previous objectives:

Given the unicycle robot (4.1) subject to a network-induced delay τ = τf + τb,
the state estimator (4.2), (4.3), and (4.4), and the control law (4.5) and (4.6), the
mobile robot should track a delayed version qr(t− τf ) of the reference trajectory.

Considering this control goal, it follows that in order to meet the control
objectives it is sufficient to prove the stability of the equilibrium point (zTe , p

T
e )T =

(z1e , z2e , z3e , p1e , p2e , p3e)
T = 0 of the closed-loop error dynamics (4.9).

4.3.1 Sufficient Conditions for Local Asymptotic Stability

The following theorem formulates sufficient conditions under which (zTe , p
T
e )T = 0

is a LUAS equilibrium point of (4.9).

Theorem 4.1. Consider the posture kinematic model of a unicycle robot subject
to a constant input time-delay τf , as given by (4.1). The reference position of the
robot is given by (xr(t), yr(t)), whereas its reference orientation θr(t) is given by
(2.41a). Additionally, consider the tracking controller as given in (4.6), with the
feedforward terms vr(t) and ωr(t) defined as in (2.41b) and (2.41c), respectively,
and the feedback part based on the error between the reference trajectory and the
predicted state, as given in (4.5). Moreover, consider the state predictor (4.2),
(4.3), (4.4), which uses state measurements delayed by a constant output time-
delay τb. If the following conditions are satisfied:

• the reference translational velocity vr(t) 6= 0, ∀t, is bounded;

• the reference rotational velocity ωr(t) is persistently exciting (PE);

• the tracking gains satisfy cx, cθ > 0, cy > −1;

• the correction gains satisfy kx = ky = k > 0, kθ > 0;

• the time-delay is known, that is, τ̃ = τ = τb + τf ;
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• the time-delay τ belongs to the interval 0 ≤ τ < τmax, with

τmax = min
{

1
√
p(ω̄r + k)

,
π

2kθ

}
, (4.10)

where p > 1 and ω̄r = supt∈R |ωr(t)|,

then, (zTe , p
T
e )T = 0 is a locally uniformly asymptotically stable (LUAS) equilibrium

point of the closed-loop error dynamics (4.9). In other words, z(t) → q(t + τf )
as t → ∞, that is, the predicted state anticipates the state of the system by τf ,
and q(t)→ qr(t− τf ) as t→∞, that is, the system tracks the reference trajectory
delayed by τf .

Proof. For the sake of brevity, only a sketch of the proof is presented in this
chapter. The complete proof is given in Appendix B.2.

Given that the closed-loop error dynamics (4.9) are arranged as a cascaded
system of the same form as (2.38), Theorem 2.25 is used to establish the local
uniform asymptotic stability of their equilibrium point (zTe , p

T
e )T = 0. This results

in the following conditions:

• the system ξ̇1(t) = A1(t, t−τ)ξ1(t)+A2ξ1(t−τ), denoted as the ξ1-dynamics
without coupling, is locally uniformly asymptotically stable (LUAS);

• the system ξ̇2(t) = B1ξ2(t) + B2ξ2(t − τ), denoted as the ξ2-dynamics, is
locally uniformly asymptotically stable (LUAS);

• the coupling term g(t, ξ1t , ξ2t) vanishes when ξ2t → 0, that is, g(t, ξ1t , 0) = 0.

The validity of these three conditions is then checked given the assumptions
on the tracking gains cx, cy, and cθ, correction gains kx, ky, and kθ, reference
translational and rotational velocities vr(t) and ωr(t), respectively, and maximum
allowable time-delay τmax, adopted in the theorem.

Regarding the first condition, note that the ξ1-dynamics without coupling can
be represented by a cascade itself. Using a similar reasoning as for the original
cascaded system, it can be shown that the local uniform asymptotic stability of
these dynamics may be concluded if the time-delay satisfies the following condition:

τ <
1

√
p(ω̄r + k)

, (4.11)

and the requirements for cx, cy, kx and ky stated in the theorem are met.
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Regarding the second condition, the local uniform asymptotic stability of the
ξ2-dynamics is ensured for

τ <
π

2kθ
, (4.12)

provided cθ and kθ satisfy the conditions in the theorem. Satisfying condition
(4.10) ensures that conditions (4.11) and (4.12) are met.

Regarding the third condition, it immediately follows that as ξ2t → 0, the
coupling term vanishes.

The local uniform asymptotic stability of the equilibrium point (zTe , p
T
e )T = 0

of the closed-loop error dynamics (4.9) is then concluded for the requirements
posed in the theorem, thereby completing the sketch of the proof.

Remark 4.2. One of the assumptions in Theorem 4.1 is that the reference tra-
jectory is not known a priori. However, if the reference trajectory is available in
advance and the value of the forward time-delay is known, it is possible to provide
the controller with the reference qr(t+ τf ). Since we expect the robot to track the
delayed reference trajectory, it will actually track the desired reference trajectory,
that is, qr(t).

The relationship between the allowable time-delay τ and the control parameters
for conditions (4.11) and (4.12) is shown in Figure 4.4. The left plot shows the
maximum allowable time-delay satisfying (4.11), considering p = 1 and different
values for the correction term gain k and the maximum reference rotational velocity
ω̄r. Depicted in the right plot is the maximum allowable time-delay satisfying
(4.12), given p = 1 and different values for the correction term gain kθ. Note
that, for both conditions there exist choices for the correction gains such that it
becomes possible to accommodate larger time-delays (k ↓ 0 and ω̄r → 0 for (4.11)
and kθ ↓ 0 for (4.12)).

4.3.2 Sufficient Conditions for Global Asymptotic Stability

When considering a global stability result, the control objectives stated at the
beginning of this section remain the same apart from the fact that we require
these objectives to be attained for arbitrarily large initial conditions. In this light,
the upcoming theorem formulates sufficient conditions under which (zTe , p

T
e )T = 0

is a GUAS equilibrium point of (4.9). It is worth noting that the conditions
stated in the theorem below do not explicitly place a bound on the allowable
time-delay τmax, but rather are only able to ensure the existence of a certain
τmax > 0 such that global uniform asymptotic stability can be guaranteed for any
τ ∈ [0, τmax]. The absence of an explicit expression for τmax results in a qualitative



4.3 . STABILITY ANALYSIS 59

i
i

“fig˙pred˙bounds˙temp” — 2011/7/22 — 3:13 — page 1 — #1 i
i

i
i

i
i

0 1 2 3 4 5
0

1

2

3

4

5

0

5

0

5

0

1

2

3

4

5

 

 
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

kθ

τ
[s

]

kω̄r [rad/s]

τ
[s

]

Figure 4.4 .Allowable time-delay τ for conditions (4.11) (left) and (4.12) (right).
To better illustrate the relationship between the gains and the time-
delay, the allowable delay has been cut off at 5 s.

characterization of global asymptotic stability in the next theorem, as opposed to
local asymptotic stability which was characterized quantitatively by means of an
explicit requirement on the allowable time-delay τmax in Theorem 4.1.

Theorem 4.3. Consider the posture kinematic model of a unicycle robot subject
to a constant input time-delay τf , as given by (4.1). The reference position of the
robot is given by (xr(t), yr(t)), whereas its reference orientation θr(t) is given by
(2.41a). Additionally, consider the tracking controller as given in (4.6), with the
feedforward terms vr(t) and ωr(t) defined as in (2.41b) and (2.41c), respectively,
and the feedback part based on the error between the reference trajectory and the
predicted state, as given in (4.5). Moreover, consider the state predictor (4.2),
(4.3), and (4.4), which uses state measurements delayed by a constant output
time-delay τb. Suppose that the following conditions are satisfied:

• the reference translational velocity vr(t) 6= 0, ∀t, is bounded;
• the reference rotational velocity ωr(t) is persistently exciting (PE);

• the time-delay is known, that is, τ̃ = τ = τb + τf ;

• the tracking gains satisfy cx, cθ > 0, cy > −1,

then, for kx = ky = k > 0 sufficiently small and kθ > 0 there exists a τmax > 0 for
which the equilibrium point (zTe , p

T
e )T = 0 of the closed-loop error dynamics (4.9)



60 4 . REMOTE TRACKING CONTROL OF A MOBILE ROBOT

is globally uniformly asymptotically stable (GUAS) for all 0 ≤ τ ≤ τmax. In other
words, for these values of kx, ky, and kθ, z(t) → q(t + τf ) as t → ∞, that is, the
predicted state anticipates the state of the system by τf , and q(t) → qr(t − τf ) as
t→∞, that is, the system tracks the reference trajectory delayed by τf .

Proof. For the sake of brevity, only a sketch of the proof is presented in this
chapter. The complete proof is given in Appendix B.3.

Based on Theorem 2.26 and following a similar approach as in the proof of
Theorem 4.1, the global uniform asymptotic stability of the equilibrium point
(zTe , p

T
e )T = 0 of the closed-loop error dynamics (4.9) may be established if the

following conditions are satisfied:

• the ξ1-dynamics without coupling are globally exponentially stable (GES)
with an explicit quadratic Lyapunov-Razumikhin function Vξ1 ;

• the ξ2-dynamics are globally exponentially stable (GES);

• the coupling term g(t, ξ1t , ξ2t) admits the estimate

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c. (4.13)

for continuous functions α1, α2 : R+ → R+.

The exponential stability requirements on the ξ1-dynamics without coupling
and the ξ2-dynamics are based on the assumptions in Theorem 2.26 and the re-
marks that follow the theorem (the formulation of these requirements is explained
in greater detail in Appendix B.3). In addition, because of the stability require-
ment on the ξ1-dynamics without coupling, the estimate on the coupling term may
be rewritten as in (4.13) according to the remarks that follow Theorem 2.26.

The validity of the three conditions in the list above is checked given the
assumptions on the tracking gains cx, cy, and cθ, correction gains kx, ky, and kθ,
reference translational and rotational velocities vr(t) and ωr(t), respectively, and
maximum allowable time-delay τmax, adopted in the theorem.

The first step to check the condition on the ξ1-dynamics without coupling is
that their delay-free version is GES. Once this has been shown, it follows from
Lyapunov converse theory (see Theorem 2.15) that there exists a strict Lyapunov
function for the delay-free ξ1-dynamics without coupling. Although such a strict
Lyapunov function is shown to exist, it is not known explicitly. This function is
then proposed as a candidate Lyapunov-Razumikhin function for the ξ1-dynamics
without coupling. Because the candidate Lyapunov-Razumikhin function is not
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known explicitly, the conditions on the allowable time-delay τmax which result from
the ensuing stability analysis do not place an explicit bound on τmax. This implies
that the global asymptotic stability of the ξ1-dynamics without coupling (and
hence of the complete closed-loop error dynamics (4.9)) can only be characterized
qualitatively.

Regarding the second condition, recall that the ξ2-dynamics have already been
shown to be LUAS in the proof of Theorem 4.1. Since these dynamics are given by
a linear time-invariant (LTI) system, the global aspect follows directly and, in ac-
cordance with Definition 2.12, the system is also exponentially stable. This means
that the ξ2-dynamics are GES provided that the time-delay satisfies condition
(4.12) and cθ and kθ satisfy the conditions in the theorem.

Regarding the condition on the coupling term, it can be shown using vector
and matrix norms that the inequality (4.13) is satisfied with α1(‖ϕξ2‖c) = 4|v̄r|
and α2(‖ϕξ2‖c) = 4(cθ + kθ + 2(cx + |cy|ω̄r)).

After checking the three conditions formulated at the beginning of the proof,
we have that the global uniform asymptotic stability of the equilibrium point
(zTe , p

T
e )T = 0 of the closed-loop error dynamics (4.9) is concluded for the require-

ments posed in the theorem. This completes the sketch of the proof.

Although the theorem only poses qualitative conditions which ensure the global
uniform asymptotic stability of the closed-loop error dynamics (4.9), it does shed
some light on how the system will behave. To begin with, the conditions on the
control parameters imply that there exist correction gains k = kx = ky > 0 and
kθ > 0 for which the origin of the closed-loop error dynamics is GUAS for all
τ ∈ [0, τmax]. In addition, the similarities between the local and global stability
theorems would lead one to believe that the conditions posed in the local case
might actually hold for a wider set of initial conditions, or that global stability
can be ensured for a slightly smaller maximal time-delay than τmax as given in
(4.10). The question remains, of course, how much wider would the set of initial
conditions be, or how much smaller would the allowable time-delay be. Finally, it
is worth noting that, since Theorem 4.3 has been formulated under the assumption
that the reference trajectory is not known a priori, Remark 4.2 is also in place in
the global stability analysis.

4.4 Simulation and Experimental Results
This section contains a number of simulations and experiments which illustrate
the performance of the remote control strategy presented in this chapter. The
experiments are carried out in the multi-robot platform introduced in Chapter 3
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and allow for a robot located at the TU/e to be controlled from TMU and vice-
versa. The results in this section encompass one numerical simulation and two
experiments. In the case of the experiments, a mobile robot at TMU is controlled
from TU/e. The reference trajectories are given as follows:

• Simulation: a circle with radius r = 0.5m centered at (xrc , yrc)=(0.875, 0.65)m,
a reference rotational velocity of ωr = 0.5 rad/s, and a reference translational
velocity of vr = rωr = 0.25m/s. Its parametric equations are given by

xr(t) = xrc + r sin θr(t), (4.14a)
yr(t) = yrc − r cos θr(t); (4.14b)

• Experiment 1: an eight curve with the following parametric equations:

xr(t) = xrc + a sin(bt), (4.15a)
yr(t) = yrc + c sin(2bt), (4.15b)

where (xrc , yrc) = (0.5, 0.25)m denotes the center of the curve, 2a = 2b =
0.4m, its length and width, respectively, and c = 0.2 rad/s constitutes its
angular velocity. In this case, ω̄r = 1.16 rad/s, which will be used to choose
the correction gains k = kx = ky such that (4.11) is satisfied.

• Experiment 2: sinusoid with the following parametric equations:

xr(t) = xr0 + vr0t cos θr0 − a sin θr0 sin(ωr0t), (4.16a)
yc(t) = yr0 + vr0t sin θr0 + a cos θr0 sin(ωr0t), (4.16b)

where (xr0 , yr0)=(0.1, 0.25)m denotes the origin of the sinusoid, θr0 = 0 rad
represents the orientation of the curve, vr0 = 0.01m/s and ωr0 = 0.3 rad/s
are the translational and rotational velocities of the sinusoid, respectively,
and a = 0.15m its amplitude. For this reference trajectory ω̄r = 0.48 rad/s,
which will be used to choose the correction gains k = kx = ky.

The initial conditions for the system and the state predictor, q(0) and z(0),
respectively, are given in Table 4.1, whereas the tracking gains of the controller,
the correction gains of the predictor, the magnitude of the time-delay, and the
duration of the simulation or experiment are provided in Table 4.2.

Several remarks are in place regarding the values contained in Table 4.2. First,
given the selected values of the correction gains, the maximum allowable time-
delay τmax according to condition (4.10) in Theorem 4.1 is 1.1 s for the simulation,
0.57 s for the first experiment, and 0.93 s for the second experiment. Recall that, in
order to satisfy the conditions in Theorem 4.1, the network-induced delay τ should
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Table 4.1 . Initial conditions of the unicycle and the state predictor used in each
simulation/experiments.

Initial conditions
System Predictor

x(0) y(0) θ(0) z1(0) z2(0) z3(0)
[m] [m] [rad] [m] [m] [rad]

Simulation 1.1 0.3 π
3 0.0 0.0 0.0

Experiment 1 0.2307 0.2191 0.2851 0.0 0.0 0.0
Experiment 2 0.1796 0.5975 0.3916 0.0 0.0 0.0

Table 4.2 . Tracking gains, correction gains, communication delay, and duration of
the simulation/experiment.

Tracking gains Correcting gains Delay τ Duration
cx cy cθ kx ky kθ [ms] [s]

Simulation 2.0 2.0 1.0 0.4 0.4 0.75 1000 60.0
Experiment 1 2.0 2.0 1.0 0.6 0.6 0.6 268 60.0
Experiment 2 2.0 2.0 1.0 0.6 0.6 0.6 268 120.0

belong to the interval [0, τmax). Second, for the simulation, the communication
delay is assumed to be τ = τf + τb = 0.5 + 0.5 = 1 s, which clearly belongs to the
interval [0, 1.1). In this case, the predictor-controller combination is implemented
as in Figure 4.3. On the other hand, in the case of the experiments, the predictor-
controller combination is implemented as in Figure 4.2 and the magnitude of the
estimate of the communication delay τ̃ is based on measurements. Because of
this, only the magnitude of the round-trip time-delay is known, even though the
specific values of the forward and backward delays remain unknown. Additionally,
due to the sampling rate of the experimental platforms, which is 25Hz, only delay
models which are multiples of 40ms can be implemented in software. This means
that, in the experiments, the output of the predictor is delayed by τ̃ = 280ms
and not by τ̃ = 268ms. Motivated by the consistency of the communication delay
measurements (see Chapter 3), we assume that τ̃ = τ . As a result, τ ∈ [0, 0.57)
for the first experiment and τ ∈ [0, 0.93) for the second experiment, which means
that the condition on τ in Theorem 4.1 is satisfied for both experiments.

The plots in Figure 4.5, Figure 4.6, and Figure 4.7 show the reference, robot,
and predictor trajectories in the global coordinate frame ~e 0 for the simulation and
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Figure 4.5 . Simulation. Remotely controlled unicycle (a perturbation is induced
at t = 30 s).

both experiments, respectively. The initial and final positions of these trajectories
are marked with a cross and a circle, respectively. Some of the crosses might not
be visible because they overlap with the reference trajectory. In the simulation,
the control inputs v(t) and ω(t) of the robot are affected during 1.5 s starting at
t = 30 s by an additive perturbation of 0.2m/s and 0.3 rad/s, respectively. The
purpose of perturbing the robot is to show that the proposed predictor-controller
combination possesses certain robustness against perturbations. As expected, the
trajectory of the robot lags the reference trajectory with a delay τf .

Further details are shown in Figure 4.8, Figure 4.10, and Figure 4.12 for the
simulation and both experiments, respectively. In the figures, the plots in the
first row show the tracking errors, defined as ex(t) = xr(t − τf ) − x(t), ey(t) =
yr(t − τf ) − y(t), and eθ(t) = θr(t − τf ) − θ(t), respectively. The plots in the
second row depict the prediction error, given by ep1(t) = x(t − τ) − z1(t − τ),
ep2(t) = y(t − τ) − z2(t − τ), and ep3(t) = θ(t − τ) − z3(t − τ), respectively. The
plots show that all the errors (practically) converge to zero and how all the errors
in the simulation reflect the perturbation which affects the robot.
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Figure 4.6 . First experiment. Unicycle at TMU remotely controlled from TU/e.

Finally, the translational and rotational velocities applied to the unicycle in
the simulation and both experiments are shown in Figure 4.9, Figure 4.11, and
Figure 4.13, respectively. In the case of the simulation, these control inputs reflect
the perturbation that acts on the robot.

The simulation results validate the implementation of the predictor-controller
combination as in Figure 4.3 and the conditions on the communication delay
and the control parameters posed in Theorem 4.1 to guarantee local asymptotic
stability. The results show that the robot lags its reference trajectory as expected
and that the remote control strategy is able to recover from small, transient,
additive perturbations. On the other hand, the experimental results validate the
implementation of the predictor-controller combination as in Figure 4.2, as well
as the conditions on the communication delay and the control parameters posed
in Theorem 4.1 to guarantee local asymptotic stability. The results show that the
error coordinates (practically) converge to zero even in the presence of a small
delay model mismatch. In conclusion, the behavior of the remote control strat-
egy is consistent with the local stability analysis (provided the conditions posed
in Theorem 4.1 are satisfied) and the tracking performance of the robot can be
ensured even in the presence of a network-induced delay.
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Figure 4.7 . Second experiment: Unicycle at TMU remotely controlled from TU/e.

4.5 Concluding Remarks
This chapter considers the tracking control problem of a unicycle robot controlled
over a two-channel communication network which induces time-delays. A tracking
controller and a state predictor, which together guarantee the tracking of a de-
layed reference trajectory, has been proposed. The tracking and prediction error
dynamics have been shown to be LUAS with an explicit (quantitative) bound τmax

on the allowable time-delay. This local stability analysis has been complemented
with a global stability analysis which guarantees (qualitatively) the existence of
a non-zero upper bound on τmax. In addition, simulations and experiments vali-
date the effectiveness of the proposed remote control approach and show that the
predictor-controller combination can withstand small delay model mismatches and
delay variations.

The local stability analysis shows that the choice of the tracking gains does
not influence the magnitude of the allowable communication delay and that the
magnitude of this delay is in fact related to the selected correction gains. As
explained in Remark 4.2, it is possible to track the desired reference trajectory
qr(t) at time t if the reference trajectory qr(t+ τf ) is known a priori.
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Figure 4.8 . Simulation. First row: predictor tracking error; second row: prediction
error (a perturbation is induced at t = 30 s).
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Figure 4.9 . Simulation. Left: translational control input; right: rotational control
input (a perturbation is induced at t = 30 s).

Compared to other control strategies which cope with communication delays,
the main advantage of the current predictor-controller combination is that its
implementation is straightforward and does not require any significant changes to
a tracking controller which is already available. Moreover, deriving the predictor
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Figure 4.10 . First experiment. First row: predictor tracking error; second row:
prediction error.
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Figure 4.11 . First experiment. Left: translational control input; right: rotational
control input.

dynamics is quite intuitive and follows from the system model. In addition, there
is plenty of freedom in the choice of the correction term. The main drawback of the
remote control strategy is that, in its current form, it is only suitable for constant
time-delays. Issues such as time-varying delays, packet losses, communication
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Figure 4.12 . Second experiment. First row: predictor tracking error; second row:
prediction error.
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Figure 4.13 . Second experiment. Left: translational control input; right: rota-
tional control input.

constraints, and quantization effects have yet to be considered in this framework.
Although this certainly motivates future research, it (theoretically) limits, to some
extent, the current application scope of the predictor-controller combination. Still,
a challenging experimental case-study of controlling a mobile robot over the Inter-
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net between the Netherlands and Japan confirms the robustness of the proposed
approach towards time-variation and uncertainty in the network delay.

A question that naturally arises is how the current state predictor inspired on
synchronization differs from the well-known Smith predictor (Smith, 1957). Specif-
ically, the application of the Smith predictor to nonlinear systems, first studied
in Kravaris and Wright (1989), could be considered as an (alternative) option to
achieve the remote tracking control of a unicycle. A distinguishing feature of the
synchronization-based predictor is that it contains a mechanism that encourages
the convergence of the delayed state of the system and the delayed predicted state
by means of the correction term. In addition, this feature enables the predictor-
controller combination to withstand (certain) perturbations, as shown by the sim-
ulation in Section 4.4.

On the other hand, as noted by (Michiels and Niculescu, 2007), most of the
work regarding the Smith predictor focuses on its robustness and disturbance
rejection characteristics. In its simplest implementation, such as in Kravaris and
Wright (1989), the Smith predictor for nonlinear systems does not appear to pro-
vide a similar mechanism for convergence and disturbance rejection. Nevertheless,
one should not carelessly jump into conclusions regarding the possible application
of a Smith-predictor-based remote tracking control strategy to a unicycle robot,
since a number of modifications and extensions which improve the performance of
the Smith predictor in the context of nonlinear systems have been recently pro-
posed (refer to Karafyllis and Krstic, 2010; Krstic, 2009, for an in-depth treatment
of these ideas)). This modified Smith predictor requires the solution of the cor-
responding differential equation, which in the case of the unicycle robot can only
be approximated numerically due to the system’s non-holonomic constraint. In
contrast, the predictor proposed in this thesis can be implemented in a similar
way as an observer and has a lower computational cost than the aforementioned
Smith-like predictor. Nevertheless, the remote control strategy resulting from the
Smith-like predictor is capable of compensating for arbitrarily long delays, whereas
the delay compensation strategy presented in this chapter has an upper bound on
the maximum allowable time-delay. A detailed comparison between the modified
Smith predictor and the predictor based on synchronization proposed in this thesis
remains an interesting topic for future research.

The next chapter considers the occurrence of a communication-induced delay
in a different setting; namely, within a group of mobile robots. In this case,
the master-slave and mutual motion coordination strategies briefly introduced in
Chapter 1 are explained in greater detail and studied under the assumption that
the information exchange between the robots is subject to a communication delay.
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5
REMOTE MOTION COORDINATION OF

MOBILE ROBOTS

Abstract . This chapter considers the remote motion coordination of a group
of unicycle robots. Suitable controllers to achieve delay-free master-slave and
mutual motion coordination of a group of unicycle robots are presented at the
beginning of the chapter. These two motion coordination strategies are then
studied under the assumption that the communication channel which links the
robots introduces a network-induced delay. A stability analysis shows that the
group of robots can achieve master-slave or mutual motion coordination up to
a maximum admissible delay. The performance of the proposed coordinating
controllers is illustrated by means of simulations and experiments between the
multi-robot platforms in Eindhoven, The Netherlands, and Tokyo, Japan.

5.1 Introduction
As explained already in Chapter 1, the use of a cooperative multi-robot system
presents a number of advantages over the use of a single-robot system. The areas
of application for this type of robotic systems is, at present, growing rapidly and
such applications will most probably become commonplace in the future. In this
context, the development of reliable coordination and cooperation strategies for
teams or groups of mobile robots is particularly important.

This chapter focuses on different motion coordination methods for wheeled mo-
bile robots and, more specifically, for unicycle-type mobile robots. In this respect,
as explained in Chapter 1, the most prevalent approaches are the master-slave
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Figure 5.1 .Mutual motion coordination of two, three, and four mobile robots with
delayed information exchange.

approach (also referred to as the leader-follower approach), the mutual approach
(which allows the formation of a virtual structure), and the behavioral approach.

In this chapter, the coordinating controllers for master-slave and mutual motion
coordination introduced in van den Broek et al. (2009) and Sadowska (2010) are
recalled. These controllers are based on the trajectory tracking controller proposed
by Panteley et al. (1998) and allow for the motion coordination of an arbitrary
number of unicycles.

An important aspect to consider in these type of motion coordination strategies
is the properties of the communication network which the robots use to exchange
information. Nevertheless, most of the literature concerning motion coordination
places more emphasis on the cooperative aspect than on the communication aspect.
For this reason, we address the problem of the motion coordination of mobile robots
considering a delay-inducing communication network. Motivated by our findings
regarding the nature of the network-induced delay in the experimental platform
being used in this work, it is possible to consider a constant communication delay
between all the robots in the group (see Chapter 3 for additional details). In
addition, because of the difficulty of the problem, we only consider the case when
such delay is equal between all robots. Hereinafter, the problem being considered
will be referred to as remote motion coordination of mobile robots. A schematic
representation of the remote mutual motion coordination problem for two, three,
and four robots is shown in Figure 5.1. In the figure, Ri denotes the i-th robot in
the group, for i ∈ {1, 2 . . . , n}, and the arrows represent the information takeing
place between the robots which, as explained already, is delayed by τ . In this case,
the network-induced delay is constant and equal for all robots.

It is worth noting that researchers have been focusing on the study of related
problems, especially in the context of NCSs. In the NCSs literature, most of the
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work has focused on the study of robust stability in the face of uncertain, time-
varying delays, and on stabilization problems, mostly for linear systems. While
the trajectory tracking problem has received less attention, the problem of motion
coordination has yet to be explored in detail. Motivated by this, we focus on the
remote motion coordination of a group of n unicycle robots. It is worth noting
that a preliminary approach to study some of the ideas contained in this chapter
has already been reported in Alvarez-Aguirre et al. (2010a).

The contributions of this chapter may be summarized as follows. First, we
propose a remote motion coordination strategy for a group of n unicycle robots.
This strategy is based on existing coordinating controllers and guarantees the
global uniform asymptotic stability of the complete group for delays smaller than
a certain upper bound. In addition, we experimentally validate and study the
performance of this motion coordination strategy using the multi-robot platform
introduced in Chapter 3, which uses the Internet as the communication channel.

The outline for the remainder of this chapter is as follows. First, control
schemes for delay-free master-slave and mutual motion coordination of a group
of unicycle robots are introduced in Section 5.2 and Section 5.3, respectively. In
Section 5.4, the remote master-slave motion coordination of a group of mobile
robots is studied based on the definition of this type of motion coordination intro-
duced in Section 5.2. A similar approach is taken in Section 5.5 where, inspired on
the definition of mutual motion coordination presented in Section 5.3, sufficient
conditions are derived to achieve this type of motion coordination when the com-
munication exchange between the robots is subject to a time-delay. Both motion
coordination strategies are tested in simulation and experiments in Section 5.6. In
the experiments, two unicycle robots, one located at TU/e and the other one at
TMU, are able to coordinate their motions in a master-slave and mutual fashion
by exchanging information through the Internet. The concluding remarks of the
chapter are given in Section 5.7.

5.2 Delay-Free Master-Slave Motion Coordination
of Mobile Robots

This section concerns the master-slave motion coordination of a group of mobile
robots. A control architecture to achieve this type of motion coordination in a
group of n+ 1 mobile robots is shown in Figure 5.2. In the figure, um denotes the
control inputs of the master robot, qm its state, and qrm its reference trajectory;
us,i represents the control inputs of the i-th slave robot and qs,i its state, for
i ∈ {1, 2, . . . , n}.
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Figure 5.2 .Master-slave motion coordination of n+ 1 mobile robots.

As explained in Nijmeijer and Rodriguez-Ángeles (2003) for rigid robotic ma-
nipulators, in master-slave motion coordination one of the robots, denoted as the
master, is independent from the other robots and dominates the group. In our case,
the master robot prescribes a certain trajectory qm(t)=[xm(t) ym(t) θm(t)]T which,
in general, depends on a given reference trajectory qrm(t)=[xrm(t) yrm(t) θrm(t)]T

and control input um(t)=[vm(t)ωm(t)]T . The motions of the remaining n robots
in the group, which are the non-dominant robots known as the slaves, are based
on the trajectory prescribed by the master robot. In other words, the motion of
the master robot is used as a starting point to derive the reference trajectories of
the slaves. We consider two methods for constructing these reference trajectories.

The first method results in so-called location oriented reference trajectories.
In this case, the reference displacement of each slave relative to the motion of the
master is defined by possibly time-varying displacements lxs,i(t) and lys,i(t) given
with respect to the global coordinate frame ~e 0. If the displacements considered
are constant, the slave reproduces the motion of the master in a different location
within the workspace.

The second method results in so-called formation oriented reference trajecto-
ries. In this case, the relative displacements of the slaves with respect to the master
are defined in terms of the robot-fixed coordinate frame of the master (denoted as
~e 1 in Figure 2.2). As a result, the master and slave robots maintain a geometrical
formation defined by the distances between them in the frame fixed to the master.
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The necessary mathematical expressions to construct the location oriented and
formation oriented reference trajectories for the i-th slave robot in the group are
provided in Appendix A. The resulting reference state trajectory in both cases is
denoted by qrs,i(t) = [xrs,i(t) yrs,i(t)θrs,i(t)]

T . Due to the way qrs,i(t) is derived,
the reference trajectories of the slaves satisfy the non-holonomic constraint of the
unicycle robot.

The i-th slave robot has a state qs,i(t) = [xs,i(t) ys,i(t) θs,i(t)]T , whereas the
state of its tracking error coordinates is qes,i(t) = [xes,i(t) yes,i(t) θes,i(t)]

T . These
error coordinates are given as in (2.43), only adding subindex s, i in order to denote
the i-th slave robot. In the same way, the tracking error dynamics of the i-th slave
are given as in (2.44) (adding subindex s, i once more).

The following tracking controller us,i(t) = [vs,i(t)ωs,i(t)]T , equivalent to the
one introduced for a single robot in (2.45), is proposed for the i-th slave robot:

vs,i(t)=vrs,i(t)+cxs,ixes,i(t)−cys,iwrs,i(t)yes,i(t), cxs,i > 0, cys,i >−1, (5.1a)
ωs,i(t)=ωrs,i(t)+cθs,iθes,i(t), cθs,i > 0, (5.1b)

for i ∈ {1, 2, . . . , n}.

Note that, because of the way that the reference trajectories of the slaves are
derived, the master-slave motion coordination problem is in fact a problem of a
tracking nature, since the objective of each slave robot is to track its respective
reference trajectory. As mentioned above, the controller of the slave robots is the
same as the original tracking controller (2.45). This implies that the controller
of each slave ensures the global K-exponential stability of its corresponding error
dynamics as long as its reference rotational velocity is persistently exciting, its
reference translational velocity is bounded and non-zero, and its tracking gains
satisfy certain requirements. This follows directly from the stability analysis of
the tracking controller (2.45).

5.3 Delay-Free Mutual Motion Coordination of
Mobile Robots

A mutual motion coordination strategy for a group of n mobile robots is presented
in this section. The corresponding control architecture is shown in Figure 5.3,
where qvc denotes the common virtual center (which is used to construct the
reference trajectories of all the robots in the group), qi denotes the state of the
i-th robot, qei its error coordinates, and ui its control inputs, for i ∈ {1, 2 . . . , n}.

Recall that mutual coordination of robotic manipulators was introduced in Ni-



76 5 . REMOTE MOTION COORDINATION OF MOBILE ROBOTS

i
i

“fig˙local˙m˙temp” — 2011/1/26 — 9:40 — page 1 — #1 i
i

i
i

i
i

Virtual

Center

Robot 1

Coordinating 

Controller

Robot 1

1
u

1
q

vc
q

Robot 2

Coordinating 

Controller

Robot 2

2
u

2
q

Robot n

Coordinating 

Controller

Robot n

n
u

n
q

1
e

q

2
e

q

ne
q

Figure 5.3 .Mutual motion coordination of n mobile robots.

jmeijer and Rodriguez-Ángeles (2003) and was applied to a group of two unicycle
robots in van den Broek et al. (2009) by using the virtual structure approach. In
this case, all the robots communicate their position and orientation errors to each
other, forming a bidirectional all-to-all coupling. This means that, in this type
of motion coordination, there is no hierarchy among the robots in the group, as
opposed to master-slave motion coordination. As a result, the individual perfor-
mance of each robot influences the overall performance of the group. This implies
that a tradeoff exists between coordinated and individual behavior and is the rea-
son why the group as a whole is better suited to withstand perturbations (this
statement will be further clarified once the coordinating controller is introduced).
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In mutual motion coordination, the reference trajectories for the n robots in
the group are based on a common reference denoted as the virtual center. Equiv-
alent to the master-slave case, two possibilities for constructing these reference
trajectories are considered in this work; namely, a location oriented and a forma-
tion oriented approach. The main differences between these two methods have
already been highlighted in Section 5.2, whereas the mathematical expressions
required to produce the reference trajectories for a group of unicycles with mutu-
ally coordinated motions are available in Appendix A.

The reference trajectory for the i-th robot, for i ∈ {1, 2 . . . , n}, is denoted by
qri(t)=[xri(t) yri(t) θri(t)]

T , not withstanding if the reference is location oriented
or formation oriented. Given the state of the i-th robot qi(t) = [xi(t) yi(t) θi(t)]T ,
the error coordinates qei(t) = [xei(t) yei(t) θei(t)]

T are defined as in (2.43), only
adding subindex i in order to denote the i-th robot in the group. This means that
the resulting error dynamics have the same form as (2.44) (adding subindex i).

These error dynamics are used to construct controllers ui(t)=[vi(t)ωi(t)]T that
mutually coordinate the motions of the unicycles. Consider the tracking controller
given in (2.45) as a starting point. As proposed in van den Broek et al. (2009),
so-called mutual coupling terms are appended to the aforementioned control law.
These coupling terms are introduced directly in the controller, resulting in the
following mutual motion coordination control law for the i-th robot in the group:

vi(t) = vri(t) + cxixei(t)− cyiwri(t)yei(t) +
n∑

j=1,i6=j

kxi,j (xei(t)− xej (t))

−
n∑

j=1,i6=j

kyi,jωri(t)(yei(t)− yej (t)), (5.2a)

ωi(t) = ωri(t) + cθiθei(t) +
n∑

j=1,i6=j

kθi,j
(
θei(t)− θej (t)

)
. (5.2b)

In this coordinating controller, the tracking gains are given by cxi , cyi > 0, and
cθi > −1, whereas the gains kxi,j , kyi,j , kθi,j > 0 determine the strength of the
coupling between the i-th and j-th robots, for i, j ∈ {1, 2, . . . , n}, j 6=i. Note that
all the robots in the group exchange their error coordinates qei(t) with each other.
This means that each robot receives the error coordinates of the other n−1 robots
in order to determine its interaction with the group.

The reason for incorporating the coupling terms to the tracking control law
(2.45) is for the controller of each robot to mediate between, on the one hand, the
tracking of the individual reference trajectories and, on the other hand, ensuring
that motion coordination is maintained. It should be clear, however, that such



78 5 . REMOTE MOTION COORDINATION OF MOBILE ROBOTS

mediation is manifest only when one of the robots in the group is being perturbed.
In this case, the magnitude of the coupling gain determines how the group copes
with the perturbation, that is, whether the robots prioritize following their re-
spective reference trajectory or maintaining coordinated motion. As a result, if
none of the robots in the group is being perturbed, trajectory tracking and motion
coordination can be guaranteed simultaneously in this setting.

The previous coordinating controller is the same as the one presented in Sad-
owska (2010) and is slightly different from the one introduced in van den Broek et
al. (2009). The difference resides in the definition of the input rotational velocity
ωi(t); in van den Broek et al. (2009), the orientation error θei(t) and the differences
between the orientation errors θei(t) − θej (t) are all arguments of trigonometric
functions (a sine in all cases). As stated in Jakubiak et al. (2002), this modification
eases the construction of an orientation-error observer. Although this work only
considers controllers which do not contain these sinusoidal terms, the approach
to study their stability is (mostly) the same. However, as a consequence of the
difference between them, with the current controller (that is, the one of Sadowska
(2010)) a global stability analysis seems possible, whereas with the controller of
van den Broek et al. (2009), only a local stability analysis is possible.

Given the open-loop error dynamics, the coordinating controller of the i-th
robot, and the equalities defined in (2.2), the total closed-loop coordination error
dynamics are given by

[
Ẋe(t)
Ẏe(t)

]
=
[
−Cx Ωr(t)(In×n + Cy)
−Ωr(t) 0n×n

] [
Xe(t)
Ye(t)

]
+
[

Ȳe(t)CθVr(t)Θesin

−X̄e(t)Cθ + Vr(t)Θecos

]
Θe(t),

(5.3a)

Θ̇e(t) = −CθΘe(t), (5.3b)

in which

Xe(t) = col(xe1(t), . . . , xen(t)), Ye(t) = col(ye1(t), . . . , yen(t)),

X̄e(t) = diag(xe1(t), . . . , xen(t)), Ȳe(t) = diag(ye1(t), . . . , yen(t)),

Ωr(t) = diag(ωr1(t), . . . , ωrn(t)), Vr(t) = diag(vr1(t), . . . , vrn(t)),

Θe(t) = col(θe1(t), . . . , θen(t)),

Θesin(t) = diag
(∫ 1

0

sin(sθe1(t))ds, . . . ,
∫ 1

0

sin(sθen(t))ds
)
,

Θecos(t) = diag
(∫ 1

0

cos(sθe1(t))ds, . . . ,
∫ 1

0

cos(sθen(t))ds
)
,
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and

Ca =


ca1 +

∑
ka1,j −ka1,2 . . . −ka1,n

...
. . . . . .

...

−kan−1,1

. . . can−1 +
∑
kan−1,j −kan−1,n

−kan,1 −kan,2 . . . can +
∑
kan,j

 ,

where
∑

kai,j =
n∑

j=1,j 6=i

kai,j for a ∈ {x, y, θ}.

Considering the following state definitions: ξ1(t) := [XT
e (t)Y Te (t)]T and ξ2(t) :=

ΘT
e (t), the closed-loop coordination error dynamics (5.3) may be represented as

the following cascaded system:

ξ̇1 = A(t)ξ1 + g(t, ξ1, ξ2)ξ2, (5.4a)

ξ̇2 = −Cθξ2, (5.4b)

with

A(t) =
[
−Cx Ωr(t)(In×n + Cy)
−Ωr(t) 0n×n

]
,

g(t, ξ1, ξ2) =
[
Ȳe(t)Cθ + Vr(t)Θesin

−X̄e(t)Cθ + Vr(t)Θecos

]
.

Since the cascaded closed-loop error dynamics (5.4) are a particular case of
the time-varying cascaded system (2.28), the approach to study their stability is
similar to the one used for the tracking error dynamics in Section 2.6.

Given Qe(t) :=[XT
e (t)Y Te (t) ΘT

e (t)]T , the following proposition formulates suf-
ficient conditions under which the equilibrium point Qe(t)=0 of the coordination
error dynamics (5.3) is globally K-exponentially stable.

Proposition 5.1. Consider a group of n unicycle robots in which each robot has
its own reference trajectory composed of its reference position (xri(t), yri(t)) and
orientation θri(t), for i ∈ {1, 2 . . . , n}. The reference trajectories of the robots are
either location or formation oriented and are based on the position (xvc(t), yvc(t))
and orientation θvc(t) of a so-called virtual center and on possibly time-varying
displacements lxi(t) and lyi(t) of robot i with respect to the virtual center. Suppose
that all the robots in the group are equipped with a coordinating controller given as
in (5.2), which contains feedforward terms vri(t) and ωri(t) satisfying (2.41b) and
(2.41c), respectively, a feedback part based on the error qei(t), and coupling terms.
If the following conditions are satisfied:
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• the reference translational velocities of the robots vri(t) 6= 0, ∀t and
∀i ∈ {1, 2, . . . , n}, are bounded;

• the reference rotational velocities of the robots ωri(t), ∀i ∈ {1, 2, . . . , n}, are
persistently exciting (PE);

• the tracking gains satisfy cxi , cθi > 0, cyi > −1, ∀i ∈ {1, 2, . . . , n}, whereas
the coupling gains satisfy kxi,j , kyi,j , kθi,j > 0 and are such that kxi,j = kxj,i
and kyi,j = kyj,i , ∀i, j ∈ {1, 2, . . . , n}, i6=j,

then, Qe(t) = 0 is a globally K-exponentially stable equilibrium point of the closed-
loop coordination error dynamics (5.3) and the group of n unicycles achieves mu-
tual motion coordination.

The proof of Proposition 5.1 is, in essence, the same as the proof of Theorem
5.1.2 in Sadowska (2010). Nevertheless, since there is a slight difference in the
end result (we claim that the error dynamics (5.4) are globally K-exponentially
stable), we will at least present a sketch of the proof.

Proof. The proof follows from the application of Corollary 2.22. First, note that,
as explained in Sadowska (2010), matrices Cx, Cy, and Cθ are positive definite (this
can be shown by applying Gershgorin’s circle theorem, that is, Theorem 2.1). In
addition, from the conditions on kxi,j and kyi,j in Proposition 5.1, we have that
matrices Cx and Cy are symmetric.

Consider now the ξ1-dynamics without coupling ξ̇1 = A(t)ξ1. In order to study
their stability, the following candidate Lyapunov function has been proposed by
Sadowska (2010):

V = ξT1
1
2

[
In×n 0n×n
0n×n In×n + Cy

]
ξ1,

whose derivative along the solutions of (5.4) is given by

V̇ = −ξT1
[
Cx 0n×n

0n×n 0n×n

]
ξ1 ≤ 0.

Using Theorem 2.17 it is then possible to conclude the global exponential
stability of the ξ1-dynamics without coupling. First, given the above candidate
Lyapunov function V and defining C := [Ĉx 0n×n] (where ĈTx Ĉx = Cx), we have
that the following inequality

PA(t) +AT (t) + CTC ≤ 0,
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is satisfied for P = 1
2

[
In×n 0n×n
0n×n In×n + Cy

]
, as required by Theorem 2.17. Then,

with the aid of Theorem 2.19, we show that the pair (A(t), C) is uniformly com-
pletely observable (UCO). As a result, the delay-free ξ1-dynamics without coupling
are GES (for additional details on this part, refer to the first part of the proof of
Theorem 5.3, presented in Appendix C.2).

Regarding the ξ2-dynamics, their global exponential stability follows from
linear systems theory given that all eigenvalues of Cθ lie in the right-hand side
of the complex plane. Finally, we can show that the growth of the coupling term
term g(t, ξ1, ξ2) is bounded by 2nV̄r + ‖Cθ‖sum ‖ξ1‖1, where V̄r := max

i∈{1,2,...,n}
{v̄ri}

and v̄ri := sup
t∈R
|vri(t)|. This completes the sketch of the proof.

5.4 Remote Master-Slave Motion Coordination of
Mobile Robots

The problem of achieving master-slave motion coordination in a group of
n+ 1 mobile robots has already been addressed in Section 5.2, where it has been
concluded that this motion coordination problem is of a tracking nature.

In remote master-slave motion coordination we consider the case when the
information of the master robot is available to the slaves after a certain time-
delay τi, where subindex i denotes the i-th slave robot in the group. This delay is
induced by the communication network which the master robot uses to relay its
position and orientation measurements to the slave robots.

A control architecture which achieves master-slave motion coordination
under these circumstances (denoted as remote master-slave motion coordination)
is shown in Figure 5.4. In the figure, the slave robots receive the position and ori-
entation information of the master after a certain time-delay τi, i ∈ {1, 2, . . . , n}.
In other words, the state of the master robot qm(t) is available to the i-th slave
as qm(t − τi), i ∈ {1, 2, . . . , n}. With this information at hand, the slaves con-
struct their respective reference trajectories using, for example, one of the methods
described in Appendix A. Using the same tracking controller as the one presented
in Section 5.2, the slaves should then be able to track these reference trajectories.

Since the reference trajectories of the slaves are formed with the delayed output
of the master, the network-induced delay only affects these references. This means
that the remote master-slave motion coordination problem remains a problem of
a tracking nature.
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Figure 5.4 .Remote master-slave motion coordination of n+ 1 mobile robots. The
i-th slave receives the output of the master, which is necessary to
construct its own reference trajectory, after a time-delay τi.

A number of remarks regarding the nature of the network-induced delay are in
place. To begin with, the time-delay τi may be different for each of the slaves. In
addition, knowledge of the magnitude of these delays is not necessary to compute
the reference trajectories of the slaves. Under some considerations, these delays
may even be considered to be time-varying. The requirement in this case would
be that the information from the master robot reaches the slaves in order. The
key aspect to consider is that, eventually (and gradually), the state of the master
robot becomes available to all the slaves and, as this happens, the slaves are able
to derive their respective reference trajectories and track them.

An additional point to consider is the effect of the network-induced delay on
the performance of the group. The definition of master-slave motion coordination
given in Section 5.2 considers, for instance, the possibility of having the slaves
reproduce exactly the same motion of the master in a different location within the
workspace of the robots. The control objective in this case would be to have all
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the robots (including the master) tracking the same trajectory at the same time
instant in different locations. Clearly, any network-induced delay in the informa-
tion exchange from the master to the slaves would result in the slaves only being
able to track the motion of the master after a certain time τi. As a consequence,
the group would not be able to reach exact master-slave motion coordination but
rather delayed coordination. In conclusion, it is possible to guarantee stability but
not coordinated behavior in all cases.

5.5 Remote Mutual Motion Coordination of
Mobile Robots

Recall the mutual motion coordination strategy presented in Section 5.3, where
all the robots in a group of n mobile robots receive the trajectory of a virtual
center which they use to produce their respective reference trajectories. In this
type of motion coordination, the robots exchange their error coordinates, denoted
as qei(t), i ∈ {1, 2, . . . , n}, with each other. The error coordinates received from
the remaining n−1 robots in the group are used to constitute so-called coupling
terms, which in the event that any of the robots in the group is perturbed, help
to mediate between having the robots follow their respective reference trajectories
and ensuring that motion coordination is achieved.

In this section, we consider the case when the information exchange between
the robots is subject to a network-induced delay. In the case of remote mutual
motion coordination this delay, denoted by τ , is assumed to be constant and equal
among all the robots in the group. Such a delay may be due to a number of
reasons, some of which have already been explained in Chapter 1. Consider for
instance the case when the characteristics of the communication channel which
the robots use to exchange information are such that network-induced delays are
unavoidable or the case when a considerable distance physically separates the
robots. As explained already in Section 5.1, we refer to the resulting problem
setting as remote mutual motion coordination. The control architecture which
results when considering a delayed information exchange is shown in Figure 5.5,
where all the robots in the group receive the common virtual center qvc(t) which
they use to produce their respective reference trajectories qri(t), i ∈ {1, 2, . . . , n}.
In addition, each robot is equipped with a coordinating controller which produces
the control inputs ui(t), i ∈ {1, 2, . . . , n}. This controller requires the position
and orientation measurements of the robot, that is, the state qi(t), the reference
trajectory of the robot qri(t), which is based on the common virtual center, and
the error coordinates of the remaining n−1 robots, which arrive after a time-delay
τ , that is, qej (t− τ), for i, j ∈ {1, 2, . . . , n}, j 6=i.
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The requirement that all the robots have access to the virtual center trajectory
without delay may be satisfied in a number of ways. One option is that the
trajectory of the virtual center is known a priori and hence is locally available
to all the robots. Another alternative is that the virtual center is generated in a
remote location (consider for example a centralized command center) and is known
a sufficient amount of time ahead such that qri(t) can be sent to the i-th robot so
that the reference is available to the robot when required for coordination purposes.
Note that the latter scenario would additionally require a precise synchronization
of the clocks on the virtual center and all the robots.

Recall that the resulting reference trajectory for the i-th robot is denoted by
qri(t) and that this reference is based on the common virtual center qvc(t) and can
be computed using, for example, one of the methods described in Appendix A.
Given the state of the robot, recall that its error coordinates qei(t) are given byxei(t)yei(t)

θei(t)

 =

 cos θi(t) sin θi(t) 0
− sin θi(t) cos θi(t) 0

0 0 1

xri(t)− xi(t)yri(t)− yi(t)
θri(t)− θi(t)

 , (5.5)

for i ∈ {1, 2, . . . , n}. The ensuing error dynamics yield

ẋei(t) = ωi(t)yei(t) + vri(t) cos θei(t)− vi(t), (5.6a)
ẏei(t) = −ωi(t)xei(t) + vri(t) sin θei(t), (5.6b)

θ̇ei(t) = ωri(t)− ωi(t), (5.6c)

for i ∈ {1, 2, . . . , n}, where vri(t) and ωri(t) represent the reference translational
and rotational velocities of the i-th robot, respectively. As explained in Section 2.6,
these reference velocities must satisfy (2.41b) and (2.41c), respectively.

In order to achieve remote mutual motion coordination, the following coordi-
nating controller ui(t) = [vi(t)ωi(t)]T is proposed for the i-th robot:

vi(t) = vri(t) + cxixei(t)− cyiwri(t)yei(t) +
n∑

j=1,j 6=i

kxi,j (xei(t)− xej (t− τ))

−
n∑

j=1,j 6=i

kyi,jωri(t)(yei(t)− yej (t− τ)), (5.7a)

ωi(t) = ωri(t) + cθiθei(t)+
n∑

j=1,j 6=i

kθi,j
(
θei(t)− θej (t− τ)

)
, (5.7b)

for i ∈ {1, 2, . . . , n}. In (5.7), cxi , cθi > 0, and cyi > −1 denote the tracking gains
of the controller and kxi,j , kyi,j , kθi,j > 0 determine the coupling strength between
the i-th and j-th robots, for i, j ∈ {1, 2, . . . , n}, j 6=i.
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The coordinating controller (5.7) is very similar to the one presented in
Section 5.3 for delay-free mutual motion coordination. The difference between
both controllers is that the one for remote mutual motion coordination considers
a delayed information exchange. This means that, due to the network-induced
delay, the coupling terms in (5.7) can only make use of the error coordinates of the
other robots in the group once they become available after the time-delay τ , that
is, qej (t − τ) for i, j ∈ {1, 2, . . . , n}, j 6=i. The following assumptions have been
made on this delay.

Assumption 5.2. The following holds for the communication delay τ :

• τ is constant and equal between all robots;

• τ is possibly unknown, but qej (t − τ) for i, j ∈ {1, 2, . . . , n}, j 6=i is known
for all t;

• τ ∈ [0, τmax], where τmax is the maximum allowable time-delay for which the
group of robots can achieve motion coordination.

As discussed already, this assumption is motivated by the fact that the delay
measurements presented in Chapter 3 (carried out between the experimental setups
located in The Netherlands and Japan) are fairly constant.

In the current problem setting, all the robots in the group receive the infor-
mation concerning the virtual center at the same time. This means that this
information is readily available to all the robots and that they can use it to de-
rive their respective reference trajectory. This motivates a related problem, which
would be the case when the virtual center (and perhaps the reference trajectories
themselves) are produced in a different location. Such circumstances would arise,
for example, when considering a centralized and remote command center which
assigns the reference trajectories for each individual robot. The main advantage of
such configuration would be that it allows for optimal decisions to be taken based
on global information about the group. Nonetheless, additional time-delays τri
going from the command center that produces the trajectories to the i-th robot
would have to be considered. The presence of these additional delays and the
fact that the robots in the group do not receive their reference trajectories (or
the virtual center) at the same time would require additional considerations in the
stability analysis and perhaps a redefinition of what is to be considered as mutual
motion coordination. We will refrain from such extensions in this thesis and focus
on remote motion coordination as outlined at the beginning of this section.

Given the open-loop error dynamics (5.6) and the coordinating controller (5.7),
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the closed-loop error dynamics of the i-th robot are the following:

ẋei(t) = −

cxi +
n∑

j=1,j 6=i

kxi,j

xei(t) +

cyi + 1 +
n∑

j=1,j 6=i

kyi,j

ωri(t)yei(t)

+
n∑

j=1,j 6=i

kxi,jxej (t− τ)−
n∑

j=1,j 6=i

kyi,jωri(t)yej (t− τ)

− vri(t) (1− cos θei(t)) +

cθi +
n∑

j=1,j 6=i

kθi,j

 yei(t)θei(t)

− yei(t)
n∑

j=1,j 6=i

kθi,jθej (t− τ), (5.8a)

ẏei(t) = −ωri(t)xei(t) + vri(t) sin θei(t)−

cθi +
n∑

j=1,j 6=i

kθi,j

xei(t)θei(t)

+ xei(t)
n∑

j=1,j 6=i

kθi,jθej (t− τ), (5.8b)

θ̇ei(t) = −

cθi +
n∑

j=1,j 6=i

kθi,j

 θei(t) +
n∑

j=1,j 6=i

kθi,jθej (t− τ). (5.8c)

Considering the complete group of n unicycles and the equalities defined in
(2.2), the closed-loop error dynamics (5.8) may be rewritten in compact matrix
form as follows:[
Ẋe(t)
Ẏe(t)

]
=
[
−Cx Ω̄r(t)(In×n + Cy)
−Ω̄r(t) 0n×n

] [
Xe(t)
Ye(t)

]
+
[
Kx −Ω̄r(t)Ky

0n×n 0n×n

] [
Xe(t− τ)
Ye(t− τ)

]
+
[
Ȳe(t)Cθ − Vr(t)Θesin

−X̄e(t)Cθ + Vr(t)Θecos

]
Θe(t) +

[
−Ȳe(t)Kθ

X̄e(t)Kθ

]
Θe(t− τ), (5.9a)

θ̇e(t) = −CθΘe(t) +KθΘe(t− τ), (5.9b)

in which

Xe(t) = col(xe1(t), . . . , xen(t)), Ye(t) = col(ye1(t), . . . , yen(t)),

Θe(t) = col(θe1(t), . . . , θen(t)), X̄e(t) = diag(xe1(t), . . . , xen(t)),

Ȳe(t) = diag(ye1(t), . . . , yen(t)), Ω̄r(t) = diag(ωr1(t), . . . , ωrn(t)),

Vr(t) = diag(vr1(t), . . . , vrn(t)),
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Θesin(t) = diag
(∫ 1

0

sin(sθe1(t))ds, . . . ,
∫ 1

0

sin(sθen(t))ds
)
,

Θecos(t) = diag
(∫ 1

0

cos(sθe1(t))ds, . . . ,
∫ 1

0

cos(sθen(t))ds
)
,

and

Ca =


ca1 +

∑
ka1,j 0 . . . 0

...
. . . . . .

...

0
. . . can−1 +

∑
kan−1,j 0

0 0 . . . can +
∑
kan,j

 ,

Ka =


0 ka1,2 . . . ka1,n

...
. . . . . .

...

kan−1,1

. . . 0 kan−1,n

kan,1 kan,2 . . . 0

 ,

in which
∑

kai,j =
n∑

j=1,j 6=i

kai,j , for a ∈ {x, y, θ}.

Given the following state definitions: ξ1(t) := [XT
e (t)Y Te (t)]T and ξ2(t) :=

ΘT
e (t), the closed-loop error dynamics may be represented as the following cascaded

system:

ξ̇1(t) = A1(t)ξ1(t) +A2(t)ξ1(t− τ) + g(t, ξ1t , ξ2t), (5.10a)

ξ̇2(t) = −Cθξ2(t) +Kθξ2(t− τ), (5.10b)

where ξit , i = 1, 2, is an element of the Banach space C(li) = C([−τ, 0],Rli), with
l1 = 2n and l2 = n, defined by ξit(s) := ξi(t+ s) for s ∈ [−τ, 0] and

A1(t) =
[
−Cx Ω̄r(t)(In×n + Cy)
−Ω̄r(t) 0n×n

]
,

A2(t) =
[
Kx −Ω̄r(t)Ky

0n×n 0n×n

]
,

g(t, ξ1t , ξ2t) =
[
Ȳe(t)Cθ − Vr(t)Θesin

−X̄e(t)Cθ + Vr(t)Θecos

]
ξ2(t) +

[
−Ȳe(t)Kθ

X̄e(t)Kθ

]
ξ2(t− τ).

The cascaded system (5.10) is a particular case of the nonlinear delayed cas-
caded system (2.38). This means that the results of Sedova (2008b) introduced in
Theorem 2.26 in Chapter 2 will be particularly useful when studying its stability.
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Considering the presence of the network-induced delay as a premise and the
coupling between the robot as a design requirement, we now study the stability of
the closed-loop error dynamics (5.10). This stability analysis will show that, for
some bounded uncertainty interval for the constant (possibly unknown) time-delay
and a given set of control parameters (that is, tracking and coupling gains and
reference trajectories satisfying certain assumptions), the network-induced delay
is not detrimental for mutual motion coordination. As a matter of fact, it is
this capacity to attain motion coordination in the presence of a delay-inducing
communication link which allows the use of a coordinating controller based on the
one studied in Section 5.3 for delay-free mutual motion coordination.

Given the definition Qe(t) :=[XT
e (t)Y Te (t) ΘT

e (t)]T , the following theorem pro-
vides sufficient conditions to establish the global uniform asymptotic stability of
the equilibrium point Qe(t) = 0 of the closed-loop error dynamics (5.9).

Theorem 5.3. Consider a group of n unicycle robots, in which each robot receives
its own reference trajectory, composed of its reference position (xri(t), yri(t)) and
orientation θri(t), i ∈ {1, 2, . . . , n}. These reference trajectories are either lo-
cation or formation oriented and are based on the position (xvc(t), yvc(t)) and
orientation θvc(t) of a so-called virtual center, and on possibly time-varying dis-
placements lxi(t) and lyi(t) relative to xvc(t) and yvc(t), respectively. Suppose that
all the robots in the group are equipped with a coordinating controller as in (5.7), in
which the feedforward terms vri(t) and ωri(t) satisfy (2.41b) and (2.41c), respec-
tively, and the network-induced delay τ satisfies Assumption 5.2. If the following
conditions are satisfied:

• the reference translational velocities of the robots vri(t) 6= 0, ∀t, and
∀i ∈ {1, 2, . . . , n}, are bounded;

• the vector of reference rotational velocities Ωr(t) = [ωri(t), . . . , ωrn(t)]T is
persistently exciting (PE) according to Definition 2.5;

• the tracking gains satisfy cxi , cθi > 0, cyi > −1, ∀i ∈ {1, 2, . . . , n}, whereas
the coupling gains satisfy kxi,j , kyi,j , kθi,j > 0 and are such that kxi,j = kxj,i
and kyi,j = kyj,i , ∀i, j ∈ {1, 2, . . . , n}, i6=j,

then, for cθi > 0 sufficiently large, there exists a τmax > 0 for which Qe(t) = 0 is
a globally uniformly asymptotically stable (GUAS) equilibrium point of the closed-
loop coordination error dynamics (5.9) for all τ ∈ [0, τmax]. This means that the
group of n unicycles achieves remote mutual motion coordination under delayed
communication.
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Proof. Only a sketch of the proof is presented in this chapter, whereas the complete
proof is given in Appendix C.2.

The global uniform asymptotic stability of the equilibrium point Qe(t) = 0 of
the cascaded system (5.9) is guaranteed provided the following conditions, which
follow from the application of Theorem 2.26, are satisfied:

• the system ξ̇1(t) = A1(t)ξ1(t) + A2(t)ξ1(t − τ), denoted as the ξ1-dynamics
without coupling, is globally exponentially stable (GES) with a quadratic
Lyapunov-Razumikhin function Vξ1 ;

• the system ξ̇2(t) = −Cθξ2(t) + Kθξ2(t − τ), denoted as the ξ2-dynamics, is
globally exponentially stable (GES);

• the coupling term g(t, ξ1t , ξ2t) admits the estimate

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c.

for continuous functions α1, α2 : R+ → R+.

The proof goes along the same lines as the proof of Theorem 4.3. Hence, the
exponential stability requirements on the ξ1-dynamics without coupling and the
ξ2-dynamics are also based on the assumptions in Theorem 2.26 and the remarks
that follow the theorem.

The three conditions are checked considering the conditions in the theorem on
the tracking gains cxi , cyi , and cθi , i ∈ {1, 2, . . . , n}, coupling gains kxi,j , kyi,j , kθi,j ,
i, j ∈ {1, 2, . . . , n}, j 6= i, and reference translational and rotational velocities vri(t)
and ωri(t), i ∈ {1, 2, . . . , n}, respectively.

Checking the condition on the ξ1-dynamics without coupling is done in the same
way as in the proof of Theorem 4.3. First, the delay-free version of the ξ1-dynamics
without coupling is determined to be GES. Consequently, from Lyapunov converse
theory it follows that there exists a strict Lyapunov function Vξ1 for these delay-
free error dynamics. This function is then proposed as a candidate Lyapunov-
Razumikhin function for the ξ1-dynamics without coupling. Due to the fact that
Vξ1 is not known explicitly, the resulting conditions for the global asymptotic
stability of the ξ1-dynamics without coupling (and hence of the complete closed-
loop error dynamics (5.9)) are only qualitative.

The ξ2-dynamics, which are given by a delayed LTI system, are determined
to be delay-independent using Lyapunov-Razumikhin stability criteria for LTI
systems (see Proposition 5.3 of Gu et al., 2003, for additional details on the
criterion used).
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Using vector and matrix norms it is shown that the condition on the coupling
term is satisfied with α1(‖ϕξ2‖) = 2nV̄r and α2(‖ϕξ2‖) = ‖Cθ‖sum + ‖Kθ‖sum,
where V̄r := max

i∈{1,2,...,n}
{v̄ri} and v̄ri := sup

t∈R
|vri(t)|, for i ∈ {1, 2, . . . , n}.

Since the three conditions stated at the beginning of the proof have been
checked, the equilibrium point Qe(t) = [XT

e (t)Y Te (t) ΘT
e (t)]T = 0 of the closed-

loop error dynamics (5.9) is concluded to be GUAS for the requirements posed in
the theorem. This completes the sketch of the proof.

Several remarks are in place regarding the previous theorem. Clearly, the
most important one is that the theorem does not provide explicit bounds on the
allowable time-delay τ ∈ [0, τmax] such that the global uniform asymptotic sta-
bility of the closed-loop error dynamics (5.9) is guaranteed. This is due to the
fact that a strictly decaying Lyapunov-Razumikhin function (that is, with a neg-
ative definite derivative) for the system ξ̇1(t) = A1(t)ξ1(t) + A2(t)ξ1(t − τ) (the
unperturbed position error dynamics) is not available. In other words, although
the global exponential stability of these error dynamics may be concluded, explic-
itly formulating the bounds on the allowable time-delay is not possible since a
Lyapunov-Razumikhin function whose derivative contains all the elements of the
state ξ1(t) is not known. Even if these bounds are not explicitly known, the proof
presented in Appendix C.2 provides an expression which gives an idea about the
nature of the allowable time-delay (refer to Section C.2.1 for additional details, in
particular to (C.18) for the expression we refer to above).

It is worth noting that it might be possible to obtain explicit bounds for the
allowable time-delay by making additional requirements on the reference rota-
tional velocity ωri(t). For instance, Sedova (2008a) studies the tracking problem
considering a measurement delay and assumes a constant reference rotational ve-
locity. Although this allows to formulate explicit bounds on the time-delay, it is
not convenient at all from a practical point of view, due to the fact that the set
of possible reference trajectories is greatly restricted. Since we are considering a
group of mobile robots which are supposed to track a variety of reference trajec-
tories in order to coordinate their motions and complete a certain task, making
such an assumption does not represent an attractive option and consequently will
not be pursued.

An additional remark which follows from the specific details in the proof is
that there is a stark contrast between the stability result obtained for the unper-
turbed position error dynamics and the one obtained for system (5.10b), that is,
the orientation error dynamics. Whereas the global exponential stability of the
unperturbed position error dynamics depends on the magnitude of the time-delay
τ , the global exponential stability of the orientation error dynamics is actually
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delay-independent. In consequence, exploring alternative approaches to study the
stability of the unperturbed position error dynamics in order to obtain larger delay
bounds remains an important issue for future work.

5.6 Simulation and Experimental Results
The following simulation and experiments demonstrate the applicability of the
remote motion coordination strategies presented in this chapter. In the exper-
iments, the multi-robot platform introduced in Chapter 3 is used to implement
master-slave and mutual motion coordination between a robot located at TU/e
and another one at TMU.

The results encompass one numerical simulation (remote mutual motion coor-
dination of four robots) and two experiments (the first one for remote master-slave
motion coordination and the second one for remote mutual motion coordination).
In the case of the master-slave experiment, the master is located at TU/e and
the slave is located at TMU. In mutual motion coordination, robot 1 is located at
TMU and robot 2 is located at TU/e. As assumed in Section 5.5, in the remote
mutual coordination simulation and experiment all the robots have access to the
virtual center qvc(t) without delay. This means that copies of the virtual center
trajectory are locally generated for all robots and that the starting time of these
trajectories is determined from (almost) synchronized clocks.

The reference trajectory of the master robot in the first experiment and the
virtual center in the simulation and second experiment are given as follows:

• Experiment 1 (remote master-slave motion coordination): a sinusoid with
parametric equations given as in (4.16), with origin at (xr0 , yr0)=(0.3, 0.3)m,
an orientation of θr0 = 0 rad, translational and rotational velocities of vr0 =
0.01m/s and ωr0 = 0.3 rad/s, respectively, and an amplitude of a = 0.15m.

• Simulation (remote mutual motion coordination): a circle with paramet-
ric equations given as in (4.14), with a radius of r = 0.5m, centered at
(xrc , yrc)=(1.5, 1.5)m, a reference rotational velocity of ωr = 0.5 rad/s, and
a reference translational velocity of vr = 0.25m/s.

• Experiment 2 (remote mutual motion coordination): an eight curve with
parametric equations given as in (4.15), centered at (xrc , yrc)=(0.85, 0.62)m,
a length and width of 2a = 2b = 0.4m, and an angular velocity of c =
0.2m/s.



5.6 . SIMULATION AND EXPERIMENTAL RESULTS 93

Table 5.1 . Initial conditions, tracking gains, and displacements used in the sim-
ulation/experiments. The displacements are from the master or the
virtual center, depending on the type of motion coordination, and are
given with respect to the world-fixed coordinate frame of each robot.

Initial conditions Controller gains Displacements Delay
x0 y0 θ0 cx cy cθ lx ly τ

[m] [m] [rad] [m] [m] [ms]

First experiment: remote master-slave motion coordination.

Master 0.1833 0.1124 1.1042 2.0 2.0 1.0 0.0 0.0 268
Slave 0.1028 0.2581 0.8591 5.5 13.0 3.0 −0.2 −0.25 268

Simulation: remote mutual motion coordination.

Robot 1 1.4 0.6 π
4 1.0 1.0 1.0 1.0 0.5 750

Robot 2 1.8 1.4 π
3 1.0 1.0 1.0 1.0 −0.5 750

Robot 3 0.1 0.4 π
2 1.0 1.0 1.0 −1.0 −0.5 750

Robot 4 0.6 1.2 π 1.0 1.0 1.0 −1.0 0.5 750

Second experiment: remote mutual motion coordination.

Robot 1 0.4746 0.3108 0.7413 4.0 8.0 1.0 0.0 0.0 268
Robot 2 0.7466 0.4381 0.8182 4.0 8.0 1.0 −0.35 −0.37 268

The initial conditions of the robots, the magnitude of their tracking gains, the
desired displacements of each robot from either the master robot or the virtual
center (depending on the motion coordination strategy being evaluated), and the
magnitude of the network-induced delay are all given in Table 5.1 for the simulation
and both experiments. In the mutual motion coordination case, the coupling
gains are kxi,j , kyi,j , kθi,j = 0.5 in the simulation and kxi,j , kyi,j , kθi,j = 1.0 in the
experiment, for i, j ∈ {1, 2, . . . , n}, j 6=i, and n = 2 and n = 4, respectively.

The plots in Figure 5.6, Figure 5.7, and Figure 5.8 show the results of the
remote master-slave experiment. The reference trajectory and path of the master
and slave robots are shown in Figure 5.6 in their respective world-fixed coordinate
frame (~em for the master at TU/e and ~e s for the slave at TMU). A cross and
a circle highlight the initial and final positions of the reference trajectories and
robot paths, respectively (this will also be the case for the remaining simulation
and experiment). The plots show how the path of the slave robot converges to
the path of the master robot (in this respect, recall that the reference of the slave
equals the delayed trajectory of the master).
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Figure 5.6 . First experiment: remote master-slave motion coordination of two uni-
cycle robots located at TMU (slave) and TU/e (master). Reference and
robot trajectories shown in the respective world-fixed coordinate frame
of the master and slave robots, that is ~em and ~e s, respectively.
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Figure 5.7 . First experiment. Tracking errors of the master and slave robots.

The plots in Figure 5.7 show the tracking errors of the master and slave
robots, defined as exm(t) =xrm(t) − xm(t), eym(t) = yrm(t) − ym(t), and eθm(t) =
θrm(t) − θm(t), for the master and exs(t) = xrs(t)−xs(t), eys(t) = yrs(t)−ys(t),
and eθs(t)=θrs(t)−θs(t) for the slave. All errors converge to zero, which indicates
that the unicycles achieve delayed master-slave motion coordination irrespective
of the network-induced delay. The control inputs of each robot for the remote
master-slave experiment are shown in Figure 5.8.
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Figure 5.8 . First experiment. Left: translational control input of the master and
slave; right: rotational control input of the master and slave.

The results of the mutual motion coordination simulation are shown in
Figure 5.9, Figure 5.10, Figure 5.11, and Figure 5.12. The reference trajectory
and path of each robot in the global coordinate frame are depicted in Figure 5.9.
To highlight the behavior of the group in the face of perturbations, the transla-
tional and rotational velocities of the second robot are perturbed by 0.3m/s and
0.6 rad/s, respectively, during 2 s at t = 40 s and of the fourth robot by 0.4m/s and
−0.2 rad/s during 3 s at t = 80 s. The plots show how the robots achieve mutual
motion coordination, how the perturbations are reflected on all the other robots
in the group, and how the couplings between the robots allow the group to cope
with these disturbances.

The plots in Figure 5.10 show the tracking errors of each robot. These tracking
errors are defined as exi(t) = xri(t)−xi(t), eyi(t) = yri(t)− yi(t), and eθi(t) =
θri(t)−θi(t), for i = 1, 2, 3, 4. The coordination errors between the robots are
shown in Figure 5.11. These errors are defined as exi(t)−exj (t), eyi(t)−eyj (t),
and eθi(t)− eθj (t), for i, j ∈ {1, 2, 3, 4}, j 6=i. The plots in both figures show
that the tracking and coordination errors converge to zero and, as expected, all
the robots in the group reflect the perturbations which affect second and fourth
robots at t = 40 s and t = 80 s. The control actions of the i-th robot are shown in
Figure 5.12 and also reflect the perturbations.

The results of the mutual motion coordination experiment are shown in
Figure 5.13, Figure 5.14, and Figure 5.15. The reference trajectory and path
of each robot in their respective world-fixed coordinate frame (~e 1 for robot 1 at
TMU and ~e 2 for robot 2 at TU/e) are depicted in Figure 5.13. In this experiment,
the robot at TMU is perturbed by manually displacing it at approximately 14.6 s.
The plots confirm that the robots achieve mutual motion coordination and that
the perturbation on the robot at TMU is reflected on the robot at TU/e.
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turbed at t = 40 s and t = 80 s, respectively.

The plots in Figure 5.14 show the tracking errors of each robot and the coordi-
nation errors between the robots as defined above for the simulation. These errors
converge to zero and show the effects of the perturbation. The control inputs of
the robots are depicted in Figure 5.15.

There is an important remark to be made regarding the effect of the pertur-
bation on the robots when considering a delayed communication channel. Recall
that, when considering a delay-free coupling between the robots and robot i is
perturbed, the other n−1 robots immediately react to the perturbation because
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Figure 5.10 . Simulation. Tracking errors of each robot. The second and fourth
robots are perturbed at t = 40 s and t = 80 s, respectively.

of the coupling between them. This means that all of the robots contribute so
that the i-th robot can overcome its perturbation as fast as possible. On the other
hand, when the coupling between the robots is affected by a time-delay, the effects
of a perturbation on robot i reach the remaining n−1 unperturbed robots after a
certain time τ . This means that the disturbed robot copes with the perturbation
by itself for some time before receiving the help from the other robots to overcome
such perturbation. Naturally, as the network-induced delay becomes larger, the
perturbed robot will have to cope with the perturbation by itself for a longer
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Figure 5.11 . Simulation. Coordination errors between the robots. The second and
fourth robots are perturbed at t = 40 s and t = 80 s, respectively.
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Figure 5.12 . Simulation. Left column: translational control input of each robot;
right column: rotational control input of each robot. The second and
fourth robots are perturbed at t = 40 s and t = 80 s, respectively.

period of time. In other words, as the magnitude of the communication de-
lay increases, the effectiveness of the coupling term in the face of perturbations
diminishes.

To summarize, we have that the results of the first experiment validate the
notion that attaining remote master-slave motion coordination is possible in the
presence of a network-induced delay. In this case, the tracking errors converge
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to zero even when considering a communication channel which induces a time-
delay with minor variations. In the case of remote mutual motion coordination,
the simulation and experiment validate the proposed coordinating controller. We
have that the tracking errors and coordination errors (practically) converge to
zero even in the presence of small, transient, additive perturbations and once
more considering a communication delay with minor variations. Moreover, the
results are in accordance with the presented stability analysis, which guarantees
global uniform asymptotic stability for all 0 ≤ τ ≤ τmax up to a certain allowable
time-delay τmax > 0.

5.7 Concluding Remarks
This chapter begins by presenting two different types of motion coordination
strategies for a group of unicycles. First, a master-slave motion coordination
strategy, in which the motion of a pre-assigned master robot constitutes the base
for defining the reference trajectories for a group of n slave robots, is presented in
Section 5.2. Afterwards, a control strategy for mutual motion coordination is pre-
sented in Section 5.3. In this case, all the robots in the group base their reference
trajectories on a common virtual center and motion coordination is maintained by
coupling all the robots with each other.
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The main difference between both motion coordination strategies has already
been highlighted by the experimental results in van den Broek et al. (2009) and is
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related to the fact that mutual motion coordination better copes with disturbances
because of the couplings between the robots. In this sense, improved coordinated
motion is ensured in the presence of perturbations.

The chapter focuses mainly on the problem of remote master-slave and mutual
motion coordination of a group of unicycle robots. In this case, the motion coordi-
nation strategies are denoted as remote because the communication channel which
the robots use to exchange information is subject to a network-induced delay.

Regarding remote master-slave motion coordination, we have determined that,
because of the effects of the time-delay in the information exchange between the
master and the slaves, it is not always possible to achieve this type of motion co-
ordination using the coordinating controllers studied in Section 5.2. Nevertheless,
as long as the measurements from the master become available to the slaves in
order, it is possible to guarantee the stability of the slaves due to the fact that the
problem is one of a tracking nature. In this sense, we have concluded that it is
possible to guarantee stability but not always coordinated behavior. This means
that, in the presence of a network-induced delay, the group might only be able to
reach delayed master-slave motion coordination.

Regarding remote mutual motion coordination, we have established that it is
possible to achieve this type of motion coordination using a controller very simi-
lar to the one introduced in Section 5.3, as long as the network-induced delay is
constant and belongs to the interval τ ∈ [0, τmax], with τmax small enough. Al-
though it has not been possible to obtain explicit bounds for τmax because of the
lack of a strict Lyapunov-Razumikhin function for a certain part of the closed-
loop error dynamics, we have carried out a stability analysis which demonstrates
the existence of such an interval for certain control parameters and a set of refer-
ence trajectories satisfying specific requirements. An additional advantage of the
current approach is that the derivation of the coordinating controller is natural
and based on an existing control law.

In contrast with some of the results available in the literature, the proposed
remote motion coordination strategies have been validated experimentally using
the Internet as the communication channel and considering a group of robots in
two remote locations; namely, the Netherlands and Japan. The results for re-
mote master-slave motion coordination show that attaining this type of motion
coordination (at least a delayed version of it) is possible even when considering
a network-induced delay subject to minor variations. Similarly, the simulation
and experimental results for mutual motion coordination show that the coordinat-
ing controller is able to withstand small, transient, additive perturbations and a
slightly time-varying communication delay.
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The remote control and motion coordination strategies studied so far in this
work only apply for a particular class of systems, namely, unicycle robots. In
the next chapter we will apply the remote tracking control strategy introduced in
Chapter 4 and the remote motion coordination strategies studied in this chapter to
other mechanical systems, namely, an omnidirectional mobile robot and a one-link
robot.
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6
APPLICATION TO OTHER

MECHANICAL SYSTEMS

Abstract . In this chapter, the remote control and motion coordination strategies
introduced in Chapter 4 and Chapter 5 are applied to dynamical systems other
than the unicycle robot. In the first part of the chapter, a predictor-controller
combination for an omnidirectional mobile robot and a remote mutual motion
coordination strategy for a group of these robots are proposed, followed by
their respective stability analyses and illustrative simulations. In the second
part of the chapter a remote tracking control strategy for a one-link robot is
presented, also followed by a stability analysis and simulations.

6.1 Introduction
The remote control and motion coordination strategies proposed in Chapter 4 and
Chapter 5 have been applied so far to unicycle robots only. In this chapter we will
advocate, however, that the principles behind these control strategies are valuable
in a more general setting and can be used to develop similar control strategies
for other mechanical systems; in particular, different types of mobile robots and
robotic manipulators. With this possibility in mind, the current chapter focuses
on the remote control and motion coordination of omnidirectional mobile robots
and a one-link robot.

In the first part of the chapter a predictor-controller combination for the remote
tracking control of an omnidirectional robot is proposed, and sufficient conditions
to guarantee the global and local stability of the resulting closed-loop error dynam-
ics are formulated. The second part of the chapter is devoted to the remote motion
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coordination of a group of omnidirectional robots. Since the remote master-slave
motion coordination case has already been shown to be quite straightforward in
Chapter 5, we will only focus on remote mutual motion coordination in the current
chapter. Recall that, in this case, the information exchange between the robots is
subject to a network-induced delay. In contrast with the global stability results
obtained for a group of unicycle robots, where only a qualitative requirement for
the allowable time-delay was obtained, when considering a group of omnidirectional
robots it is possible to provide a quantitative upper bound for the network-induced
delay up to which motion coordination can be achieved while still guaranteeing
global asymptotic stability of the group’s error dynamics.

It is worth noting that, in general, control problems addressed for unicycle
robots are seldom extended to omnidirectional robots, since the latter are con-
sidered to be easier to control because their posture kinematic model is fully lin-
earizable by static state feedback. For this reason, only a few examples exist in
the literature which address the issues studied in this thesis. One exception is the
work of Kanjanawanishkul (2010), in which delay-free motion coordination strate-
gies for a group of omnidirectional robots are developed using model predictive
control (MPC) techniques.

There are, however, a number of reasons which motivate the extension of the
control architectures introduced in this thesis to omnidirectional robots. First, the
feedback linearization controller is not applicable when this type of robot is con-
trolled over a delay-inducing communication network. This means that addressing
this type of issues would benefit from, for instance, the design of a predictor-
controller combination such as the one introduced in Chapter 4 for a unicycle. In
addition, a remote coordinating controller which uses the posture kinematic model
of the robot and is based on a feedback tracking controller with coupling terms,
such as the one introduced in Chapter 5 for a group of unicycles, has yet to be
proposed for a group of omnidirectional robots. Finally, the number of applica-
tions which use this type of mobile robot has been on the rise in recent years,
so it has become increasingly important to develop structured and unified control
strategies for them.

In this chapter we also propose a predictor-controller combination for the re-
mote tracking control of a one-link robot, accompanied by the local stability anal-
ysis of the resulting closed-loop error dynamics. The motivation behind proposing
this control strategy is to provide additional insight into the applicability of this
type of predictor-controller combination to more complex robotic manipulators.

The remainder of this chapter is structured in the following way. In Section 6.2,
a predictor-controller combination for an omnidirectional mobile robot is designed
based on the remote control strategy introduced in Chapter 4. In the same section,
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the remote mutual motion coordination strategy studied in Chapter 5 is applied
to a group of omnidirectional mobile robots. The problem of the remote tracking
control of a one-link robot is addressed in Section 6.3. The respective stability
analyses and simulations of the proposed control strategies are included in each
section, and the closing remarks of the chapter are given in Section 6.4.

6.2 Remote Tracking Control and Mutual Motion
Coordination of Omnidirectional Robots

The remote control strategy proposed in Chapter 4 for a unicycle robot will be
applied to an omnidirectional robot in this section. In addition, the possibility
to achieve remote mutual motion coordination of a group of n omnidirectional
robots is also studied in this section based on the ideas introduced in Chapter 5
for unicycle robots. In order to do so, we will first introduce the posture kinematic
model of this type of robot.

6.2.1 Kinematic Model

An omnidirectional mobile robot has no fixed or steering wheels, but is rather
equipped with at least three so-called Swedish or caster wheels (refer to Siciliano
et al., 2009, for additional details on these types of wheels). A mobile robot with
these characteristics is able to move in any direction within its workspace without
the need to change its orientation.

The omnidirectional robot considered in this thesis is equipped with three
Swedish wheels. Since this type of wheels have a series of rollers attached to their
circumference they allow the movement of the robot in any direction without any
restriction. Hence, the robot is not subject to any non-holonomic constraint. A
schematic representation of the omnidirectional robot considered in this work is
shown in Figure 6.1. Note that, in the figure, ~e 1 denotes a coordinate frame fixed
to the robot and that there is a fixed angle of 120◦ between the axes on which the
wheels of the robot are mounted. Considering that δ represents the angle between
the axis on which the first wheel is mounted and ~e 1

x , and since the angle between
the axis on which the third wheel is mounted and ~e 1

x is 90◦, it follows from the
proposed wheel configuration that δ = 120◦ − 90◦ = 30◦.

Consider point P in Figure 6.1, which denotes the intersection of the axes
on which the wheels of the robot are mounted. The position coordinates of this
point (at time t) with respect to the global coordinate frame ~e 0 are denoted by
the coordinates (x(t), y(t)), whereas the angle (at time t) between the heading
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Figure 6.1 . Schematic representation of an omnidirectional mobile robot.

direction of the robot and ~e 0
x is denoted by θ(t). The resulting kinematic model,

obtained as in Campion et al. (1996) and Canudas de Wit et al. (1996), is the
following:

ẋ(t) = v1(t) cos θ(t)− v2(t) sin θ(t), (6.1a)
ẏ(t) = v1(t) sin θ(t) + v2(t) cos θ(t), (6.1b)

θ̇(t) = ω(t). (6.1c)

The control inputs of the robot are given by v1(t), v2(t), and ω(t), where ω(t)
denotes the robot’s rotational velocity and v1(t) and v2(t) represent its transla-
tional velocity components aligned, respectively, with ~e 1

x and ~e 1
y . The state of the

robot is given by q(t) = [x(t) y(t) θ(t)]T .

6.2.2 Remote Tracking Control

We now consider the case when the robot is subject to a network-induced delay
τ , composed of an input and an output time-delay τf and τb, respectively. Given
the input time-delay τf , the kinematic model of the robot becomes:

ẋ(t) = v1(t− τf ) cos θ(t)− v2(t− τf ) sin θ(t), (6.2a)
ẏ(t) = v1(t− τf ) sin θ(t) + v2(t− τf ) cos θ(t), (6.2b)

θ̇(t) = ω(t− τf ). (6.2c)
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In addition, the output time-delay τb produces the state q(t−τb) = [x(t − τb)
y(t− τb) θ(t− τb)]T .

The control objective of the robot is to track a prescribed reference position
(xr(t), yr(t)) and orientation θr(t), which have an associated reference state tra-
jectory qr(t) = [xr(t) yr(t) θr(t)]T . Following the same approach as for the uni-
cycle robot used in Chapter 4, the following state predictor with state z(t) =
[z1(t) z2(t) z3(t)]T is proposed:

ż1(t) = v1(t) cos z3(t)− v2(t) sin z3(t) + νx(t), (6.3a)
ż2(t) = v1(t) sin z3(t) + v2(t) cos z3(t) + νy(t), (6.3b)
ż3(t) = ω(t) + νθ(t), (6.3c)

where ν(t) = [νx(t) νy(t) νθ(t)]T denotes the correction term.

In order to define the correction term, consider first the prediction error, given
by pe(t) = [pex(t) pey (t) peθ (t)]

T = [x(t − τb)− z1(t − τ̃), y(t − τb)− z2(t − τ̃),
θ(t− τb)−z3(t− τ̃)]T . The correction terms in (6.3) are then designed as follows:

νx(t) = kxpex(t) = kx(x(t− τb)− z1(t− τ̃)), (6.4a)
νy(t) = kypey (t) = ky(y(t− τb)− z2(t− τ̃)), (6.4b)
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νθ(t) = kθpeθ (t) = kθ(θ(t− τb)− z3(t− τ̃)), (6.4c)

where kx, ky, and kθ are the correction term gains and τ̃ := τ̃f + τ̃b represents the
sum of the estimated input and output network-induced delays, which is assumed
to be known (that is, τ̃ = τ = τb + τf ).

Note that the prediction error and correction terms of the omnidirectional robot
are different from the ones proposed for the unicycle in (4.3). In addition, the
delay-free output of the predictor, z(t), is not required to compute the correction
terms of the omnidirectional robot. This results in the remote tracking control
strategy shown in Figure 6.2 for the omnidirectional robot.

Given the state predictor (6.3) and correction term (6.4), the tracking control
law for the predictor-controller combination is defined as follows:

v1(t) = µx(t) cos z3(t) + µy(t) sin z3(t), (6.5a)
v2(t) = −µx(t) sin z3(t) + µy(t) cos z3(t), (6.5b)
ω(t) = µθ(t), (6.5c)

where the auxiliary controls µ(t) = [µx(t)µy(t)µθ(t)]T are given by

µx(t) = ẋr(t) + cxz1e(t), (6.6a)
µy(t) = ẏr(t) + cyz2e(t), (6.6b)

µθ(t) = θ̇r(t) + cθz3e(t), (6.6c)

in which ze(t) = [z1e(t) z2e(t) z3e(t)]
T = [xr(t)− z1(t) yr(t)− z2(t) θr(t)− z3(t)]T .

The linearizing controller (6.5) in combination with the auxiliary control (6.6)
constitute the regular tracking control law for an omnidirectional robot in which
the output of the predictor is used instead of the output of the system.

The control action applied to the robot after the input delay τf is the following:

v1(t− τf ) = µx(t− τf ) cos z3(t− τf ) + µy(t− τf ) sin z3(t− τf ), (6.7a)
v2(t− τf ) = −µx(t− τf ) sin z3(t− τf ) + µy(t− τf ) cos z3(t− τf ), (6.7b)
ω(t− τf ) = µθ(t− τf ). (6.7c)

Closed-Loop Error Dynamics

Given the state predictor (6.3), correction term (6.4), and delayed tracking con-
troller (6.7), the closed-loop error dynamics yield:

ż1e(t) = −cxz1e(t)− kxpxe(t), (6.8a)
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ż2e(t) = −cyz2e(t)− kypye(t), (6.8b)
ż3e(t) = −cθz3e(t)− kθpθe(t), (6.8c)
ṗxe(t) = −kxpxe(t− τ)− (ẋr(t− τ) + cxz1e(t− τ))(1− cos pθe(t))

− (ẏr(t− τ) + cyz2e(t− τ)) sin pθe(t), (6.8d)
ṗye(t) = −kypye(t− τ)− (ẏr(t− τ) + cyz2e(t− τ))(1− cos pθe(t))

+ (ẋr(t− τ) + cxz1e(t− τ)) sin pθe(t), (6.8e)
ṗθe(t) = −kθpθe(t− τ). (6.8f)

Considering the state definitions ξ1(t) :=[z1e(t) z2e(t) pxe(t) pye(t)]
T and ξ2(t) :=

[z3e(t) pθe(t)]
T , (6.8) may be rearranged in the following cascade:

ξ̇1(t) = A1ξ1(t) +A2ξ1(t− τ) + g(t, ξ1t , ξ2t), (6.9a)

ξ̇2(t) = B1ξ2(t) +B2ξ2(t− τ), (6.9b)

where ξit , i = 1, 2, is an element of the Banach space C(li) = C([−τ, 0],Rli), for
l1 = 4 and l2 = 2, defined by ξit(s) := ξi(t + s) for s ∈ [−τ, 0]. The matrices in
(6.9) are given by

A1 =


−cx 0 −kx 0

0 −cy 0 −ky
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 −kx 0
0 0 0 −ky

 ,
B1 =

[
−cθ −kθ

0 0

]
, B2 =

[
0 0
0 −kθ

]
,

g(t, ξ1t , ξ2t) =


0 0
0 0
0 g32

0 g42

 ξ2(t),

with

g32 =−(ẋr(t−τ)+cxz1e(t−τ))
∫ 1

0

sin(spθe(t))ds−(ẏr(t−τ)+cyz2e(t−τ))
∫ 1

0

cos(spθe(t))ds,

g42 =−(ẏr(t−τ)+cyz2e(t−τ))
∫ 1

0

sin(spθe(t))ds+(ẋr(t−τ)+cxz1e(t−τ))
∫ 1

0

cos(spθe(t))ds,

where the equalities in (2.2) have been used to define g32, and g42.

Stability Analysis

The control goal for the omnidirectional robot is the same as for the remotely
controlled unicycle in Chapter 4; that is, the robot should track a delayed version
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qr(t − τf ) of its reference trajectory. The following theorem formulates sufficient
conditions under which (zTe , p

T
e )T = 0 is a GUAS equilibrium point of (6.8), that

is, under which the above control goal is achieved.

Theorem 6.1. Consider an omnidirectional mobile robot subject to a constant
input time-delay τf , whose posture kinematic model is given as in (6.2). The
reference position and orientation of the robot are prescribed by (xr(t), yr(t)) and
θr(t), respectively. Consider the tracking controller as given in (6.5) together with
the auxiliary control (6.6). Additionally, consider the state predictor (6.3) with
the correction term (6.4). If the following conditions are satisfied:

• the reference velocities ẋr(t) and ẏr(t) are bounded ∀t;

• the tracking gains satisfy cx = cy = c > 0, cθ > 0;

• the correction term gains satisfy kx = ky = k > 0, kθ > 0;

• the time-delay is constant and known, that is, τ̃ = τ = τb + τf ;

• the time-delay τ belongs to the interval 0 ≤ τ < τmax, with

τmax = min

 2β
(
c+ 3k −

√
c2 − 2ck + 5k2

)1
2

k
√
p
(
c+ 3k +

√
c2 − 2ck + 5k2

)3
2
(√
c2 + k2 + k

) , π

2kθ

 ,

(6.10)
where p > 1 and β = min

{
c (c+ k) , k2

}
,

then (zTe , p
T
e )T = 0 is a globally uniformly asymptotically stable (GUAS) equilib-

rium point of the closed-loop error dynamics (6.8). In other words, z(t)→ q(t+τf )
as t → ∞, that is, the predicted state anticipates the state of the system by τf ,
and q(t) → qr(t − τf ) as t → ∞, that is, the robot tracks the reference trajectory
delayed by τf .

Proof. For the sake of brevity, only a sketch of the proof is presented in this
chapter. The complete proof is given in Appendix D.1.

Based on Theorem 2.26 and following the same approach as in the proof of
Theorem 4.3, the global uniform asymptotic stability of the equilibrium point
(zTe , p

T
e )T = 0 of the cascaded system (6.9) may be established if the following

conditions are satisfied:

• the system ξ̇1(t) = A1ξ1(t)+A2ξ1(t−τ), denoted as the ξ1-dynamics without
coupling, is globally exponentially stable (GES) with an explicit quadratic
Lyapunov-Razumikhin function Vξ1 ;
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• the system ξ̇2(t) = B1ξ2(t) + B2ξ2(t − τ), denoted as the ξ2-dynamics, is
globally exponentially stable (GES);

• the coupling term g(t, ξ1t , ξ2t) admits the estimate

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c, (6.11)

for continuous functions α1, α2 : R+ → R+.

The validity of these three conditions is checked considering the requirements
in the theorem for the tracking gains cx, cy, and cθ, correction gains kx, ky, and
kθ, and maximum allowable time-delay τmax.

The stability of the ξ1-dynamics without coupling is studied using a quadratic
candidate Lyapunov-Razumikhin function. The global exponential stability of
these error dynamics is ensured provided that the time-delay satisfies the following
condition:

τ <
2β
(
c+ 3k −

√
c2 − 2ck + 5k2

)1
2

k
√
p
(
c+ 3k +

√
c2 − 2ck + 5k2

)3
2
(√
c2 + k2 + k

) . (6.12)

The ξ2-dynamics have already been shown to be GES in the proof of Theorem
4.3 considering the following bound on the time-delay:

τ <
π

2kθ
. (6.13)

Regarding the third condition, it can be shown that the inequality (6.11) can
be satisfied by choosing α1(‖ϕξ2‖) = 2 (|¯̇xr|+|¯̇yr|) and α2(‖ϕξ2‖) = 2(cx+ cy),
where ¯̇xr := supt∈R |ẋr(t)| and ¯̇yr := supt∈R |ẏr(t)|.

The three conditions stated at the beginning of the proof have now been
checked. As a result, the global uniform asymptotic stability of the equilibrium
point (zTe , p

T
e )T = 0 of the closed-loop error dynamics (6.9) can be concluded given

the requirements posed in the theorem. This completes the sketch of the proof.

Theorem 6.1 has been formulated under the assumption that a preview of the
reference trajectory is not available. However, as explained in Remark 4.2 for the
unicycle robot, if the reference trajectory qr(t+ τf ) is known at time t, it becomes
possible for the omnidirectional robot to track its current reference trajectory, that
is, qr(t).
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Figure 6.3 .Allowable time-delay τ for conditions (6.12) (left, cut off at 2 s) and
(6.13) (right, cut off at 5 s).

The maximum allowable time-delay τmax satisfying (6.12) and (6.13) for p = 1
and different values of the control parameters is shown, respectively, in the left and
right hand plots of Figure 6.3. As with the unicycle, a low-gain predictor design
yields high robustness against delays.

The upper bound on the delay resulting from condition (6.12) may be quite
conservative due to the fact that, when studying the global stability of (6.9), a
strict Lyapunov-Razumikhin function is required for the ξ1-dynamics without cou-
pling (these dynamics are contained in (6.9a)). For this reason, we also formulate
the following theorem, which yields a less strict bound on the delay by posing
conditions under which (zTe , p

T
e )T = 0 is a LUAS equilibrium point of (6.8).

Theorem 6.2. Consider the same problem setting as in Theorem 6.1. If the
following conditions are satisfied:

• the tracking gains satisfy cx, cy, cθ > 0;

• the correction term gains satisfy kx, ky, kθ > 0;

• the time-delay is constant and known, that is, τ̃ = τ = τb + τf ;

• the time-delay τ belongs to the interval 0 ≤ τ < τmax, with

τmax = min
{

π

2kx
,
π

2ky
,
π

2kθ

}
, (6.14)
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then, (zTe , p
T
e )T = 0 is a locally uniformly asymptotically stable (LUAS) equilibrium

point of the closed-loop error dynamics (6.8).

Proof. For the sake of brevity, only a sketch of the proof is presented in this
chapter. The complete proof is given in Appendix D.2.

The proof is based on Theorem 2.25 and is very similar to the proof of Theorem
4.1. We can formulate the following conditions in order to guarantee the local
uniform asymptotic stability of the equilibrium point (zTe , p

T
e )T = 0 of the closed-

loop error dynamics (6.9):

• the ξ1-dynamics without coupling are locally uniformly asymptotically stable
(LUAS);

• the ξ2-dynamics are locally uniformly asymptotically stable (LUAS);

• the coupling term g(t, ξ1t , ξ2t) vanishes when ξ2t → 0, that is, g(t, ξ1t , 0) = 0.

These conditions are checked given the requirements for the tracking gains
cx, cy, and cθ, correction gains kx, ky, and kθ, and maximum allowable time-delay,
τmax posed in the theorem.

In order to check the first condition, the ξ1-dynamics without coupling are
represented as a cascaded system. The local uniform asymptotic stability of these
dynamics is ensured provided the time-delay satisfies the following conditions:

τ <
π

2kx
, τ <

π

2ky
, (6.15)

and the requirements for kx and ky stated in the theorem are met.

Regarding the second condition, the local uniform asymptotic stability of the
ξ2-dynamics has already been shown in Theorem 4.1 for

τ <
π

2kθ
. (6.16)

Finally, regarding the third condition, it immediately follows that as ξ2t → 0,
the coupling term vanishes.

Having checked the three conditions stated at the beginning of the proof, the
local uniform asymptotic stability of the equilibrium point (zTe , p

T
e )T = 0 of the

closed-loop error dynamics (4.9) is concluded given the requirements posed in the
theorem. This completes the sketch of the proof.
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Note that, contrary to the conditions posed in Theorem 6.1, the reference
velocities ẋr(t) and ẏr(t) in Theorem 6.2 are not required to be bounded. Moreover,
the conditions on the allowable time-delay τmax posed in Theorem 6.2 only depend
on the correction gains kx, ky, and kθ, as opposed to Theorem 6.1 where these
conditions also depend on the tracking gains cx, cy, and cθ and where the additional
restriction that cx = cy and kx = ky is in place. In addition, the allowable time-
delay τmax derived from (6.14) for different values of kx, ky, and kθ (this condition
is for local stability) has the same form as the one derived from (6.13) for different
values of kθ (this condition is for global stability). Recall that, when considering
global stability, the allowable time-delay for different values of kθ is depicted on
the right-hand side of Figure 6.3, whereas the allowable time-delay for different
values of kx and ky is shown on the left-hand side of the same figure. Considering
the previous remark regarding the similarity between the allowable time-delay
for different values of kx, ky, and kθ for local stability and for different values of
kθ for global stability, a comparison of both plots in Figure 6.3 shows that the
upper bounds on the time-delay for local stability are less conservative than the
ones for global stability. This means that a tradeoff exists between using a global
stability result with conservative delay bounds or a local stability result with less
conservative delay bounds.

6.2.3 Remote Mutual Motion Coordination

We now consider the remote motion coordination problem for a group of n omni-
directional mobile robots. Recall that the posture kinematic model of this type of
robot has already been given in (6.1), with qi(t) = [xi(t) yi(t) θi(t)]T denoting the
state of i-th robot in the group, for i ∈ {1, 2, . . . , n}.

The same trajectory generation approaches used for the mutual motion coordi-
nation of a group of unicycles may be used to construct the reference trajectories
for the omnidirectional robots. Although the explicit mathematical expressions
to do so are not provided in Appendix A, they can be easily derived using the
same approach as for the unicycles. Not withstanding the trajectory generation
approach used, the state of the reference trajectory for the i-th robot is given by
qri(t) = [xri(t) yri(t) θri(t)]

T .

The tracking error of the i-th robot is given by the difference between its
reference trajectory and its own state, that is, qei(t) = qri(t) − qi(t). In order
to achieve mutual motion coordination as defined in Chapter 5, the robots in
the group are supposed to exchange their tracking errors qei(t) with each other,
meaning that each robot receives the tracking errors of the other n−1 robots in
the group. In an ideal setting this information exchange would occur without any
interference. Nevertheless, we consider the case when it is affected by a network-
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induced delay τ , just as with the unicycles in Chapter 5. Recall that the time-delay
for all communication between the robots is assumed to be constant and equal,
but not necessarily known.

Following the same approach as with the coordinating controller in Chapter 5,
the following controller ui(t) = [v1i(t) v2i(t)ωi(t)]

T may be proposed to achieve
remote mutual motion coordination in a group of n omnidirectional robots whose
information exchange is subject to a time-delay τ :

v1i(t) = µxi(t) cos θi(t) + µyi(t) sin θi(t), (6.17a)
v2i(t) = −µxi(t) sin θi(t) + µyi(t) cos θi(t), (6.17b)
ωi(t) = µθi(t), (6.17c)

where the auxiliary coordinating controller µi(t) = [µxi(t)µyi(t)µθi(t)]
T yields:

µxi(t) = ẋri(t) + cxixei(t) +
n∑

j=1,i6=j

kxi,j (xei(t)− xej (t− τ)), (6.18a)

µyi(t) = ẏri(t) + cyiyei(t) +
n∑

j=1,i6=j

kyi,j (yei(t)− yej (t− τ)), (6.18b)

µθi(t) = θ̇ri(t) + cθiθei(t) +
n∑

j=1,i6=j

kθi,j (θei(t)− θej (t− τ)). (6.18c)

The tracking gains cxi , cyi , and cθi and coupling gains kxi,j , kyi,j , and kθi,j in
(6.18) serve the same purpose as in the coordinating controller (5.7) for a group
of unicycles. Namely, the tracking gains dictate the tracking behavior, whereas
the coupling gains determine the strength of the coupling between the i-th and
j-th robots and how the group will react to perturbations. Note that only the
information sent over the network used in the coupling terms is subject to a time-
delay τ .

Closed-Loop Error Dynamics

Given the definition of the tracking error qei(t) and the coordinating controller
(6.17)-(6.18), the closed-loop error dynamics of the complete group are given as
follows:Ẋe(t)
Ẏe(t)
Θ̇e(t)

=−

 Cx 0n×n 0n×n
0n×n Cy 0n×n
0n×n 0n×n Cθ

Xe(t)
Ye(t)
Θe(t)

+

 Kx 0n×n 0n×n
0n×n Ky 0n×n
0n×n 0n×n Kθ

Xe(t−τ)
Ye(t−τ)
Θe(t−τ)

 ,
(6.19)
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in which

Xe(t) = col(xe1(t), . . . , xen(t)), Ye(t) = col(ye1(t), . . . , yen(t)),

Θe(t) = col(θe1(t), . . . , θen(t)),

and

Ca =


ca1 +

∑
ka1,j 0 . . . 0

...
. . . . . .

...

0
. . . can−1 +

∑
kan−1,j 0

0 0 . . . can +
∑
kan,j

 ,

Ka =


0 ka1,2 . . . ka1,n

...
. . . . . .

...

kan−1,1

. . . 0 kan−1,n

kan,1 kan,2 . . . 0

 ,

in which
∑

kai,j =
n∑

j=1,j 6=i

kai,j , for a ∈ {x, y, θ}.

Stability Analysis

The following theorem formulates sufficient conditions for the global exponential
stability of the equilibrium point Qe(t) = [XT

e (t)Y Te (t) ΘT
e (t)]T = 0 of the closed-

loop error dynamics of the complete group as given in (6.19).

Theorem 6.3. Consider a group of n omnidirectional mobile robots with their
posture kinematic model given as in (6.1). Each robot in the group has its own
reference trajectory, composed of its reference position (xri(t), yri(t)) and orien-
tation θri(t), for i ∈ {1, 2, . . . , n} denoting the i-th robot in the group. Suppose
that all the robots in the group are equipped with a coordinating controller given
as in (6.17)-(6.18), in which the network-induced delay τ is constant, equal, and
possibly unknown to all robots. If the following conditions are satisfied:

• the tracking gains satisfy cxi , cθi , cyi > 0, ∀i ∈ {1, 2, . . . , n};
• the coupling gains satisfy kxi,j , kyi,j , kθi,j > 0 ∀i, j ∈ {1, 2, . . . , n}, i6=j,

then, Qe = 0 is a globally exponentially stable (GES) equilibrium point of the
closed-loop error dynamics (6.19) for any τ ≥ 0. This results in the group of n
omnidirectional robots achieving mutual motion coordination independently of the
time-delay affecting their information exchange.
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Proof. The closed-loop error dynamics (6.19) are composed of the following de-
coupled systems, whose stability may be studied individually:

Ẋe(t) = −CxXe(t) +KxXe(t− τ), (6.20a)

Ẏe(t) = −CyYe(t) +KyYe(t− τ), (6.20b)

Θ̇e(t) = −CθΘe(t) +KθΘe(t− τ). (6.20c)

Note that the individual Xe, Ye, and Θe-dynamics have the same form as the
ξ2-dynamics (C.1b) studied in Section C.2.2. Recall also that the stability of the
latter dynamics has already been determined to be delay independent by means of
the Lyapunov-Razumikhin delay-independent stability criterion for linear systems
(see Gu et al., 2003; Niculescu et al., 1998). Considering the previous, it follows
that the equilibrium point Qe(t) = [XT

e (t)Y Te (t) ΘT
e (t)]T = 0 of the closed-loop

error dynamics of the complete group is globally exponentially stable for any τ ≥ 0,
provided the tracking and correction gains satisfy the requirements posed in the
theorem; namely, that the tracking gains satisfy cxi , cθi , cyi > 0 and the correction
gains satisfy kxi,j , kyi,j , kθi,j > 0 for all i, j ∈ {1, . . . , n}, i 6=j. This completes the
proof.

The theorem states that mutual motion coordination in a group of omnidi-
rectional robots is delay-independent when considering a delayed error exchange
between the robots. This occurrence is quite remarkable but not at all unexpected
since the omnidirectional robot is feedback linearizable and the coordinating con-
troller (6.18) yields closed-loop error dynamics given by a delayed LTI system.
Because of this fact, it is not necessary to make use of the results of Sedova
(2008b) to analyze the stability of these dynamics (as was the case with the group
of unicycles), but rather it is possible to make use of tools such as the Lyapunov-
Razumikhin delay-independent stability criterion for linear systems (see Gu et al.,
2003, for additional details).

The result implies that, from a stability perspective, the mutually coordinating
controllers in the delay-free and delayed cases for a group of omnidirectional robots
are essentially the same. The main difference that we expect between both cases is
the reaction of the group to perturbations. Recall that the main contribution of the
coupling terms is in helping maintain motion coordination when one of the robots
in the group is perturbed. Nevertheless, as explained already in Chapter 5 for the
unicycles, when a network-induced delay affects the error information exchange
between the robots and one of the robots is perturbed, the remaining robots react
to the perturbation after the time-delay. This means that the robot which is
perturbed begins compensating for the perturbation by itself before the other



120 6 . APPLICATION TO OTHER MECHANICAL SYSTEMS

Table 6.1 . First simulation parameters; remote control of an omnidirectional robot.

Initial conditions Gains
System Predictor Tracking Correction

x(0) y(0) θ(0) z1(0) z2(0) z3(0) cx cy cθ kx ky kθ
[m] [m] [rad] [m] [m] [rad]

1.5 0.2 π
3 0.0 0.0 0.0 1.0 1.0 1.0 0.25 0.25 0.25

robots in the group react to it and make their contributions to overcome it. The
simulation results in the next section will further illustrate this effect.

6.2.4 Simulation Results

The simulations in this section validate the stability results and illustrate the
performance of the remote control and motion coordination strategies studied so
far in this chapter. The first simulation illustrates the remote tracking control
of an omnidirectional robot as proposed in Section 6.2. The initial conditions
for the system q(0) and the state predictor z(0), together with the tracking and
correction gains are provided in Table 6.1. The network-induced delay is assumed
to be τ = τf + τb = 0.75 + 0.75 = 1.5 s and the correction gains are selected such
that the local stability criterion (6.14) posed in Theorem 6.2 is satisfied. Note
that accommodating a time-delay of 1.5 s with the global stability criterion (6.10)
posed in Theorem 6.1 would require smaller tracking and correction gains cx, cy
and kx, ky, respectively. The reference trajectory is given by a number of line and
arc segments which form a square starting at (1.2, 1.4)m, with a side-length of
0.8m, and rounded edges (see Figure 6.4). It takes 60 s to trace a square and,
since the simulation takes 120 s, the robot tracks the trajectory twice. The robot
has a prescribed orientation of π2 rad at all times.

The reference, robot, and predictor trajectories in the global coordinate frame
~e 0 are depicted in Figure 6.4, with their initial and final positions marked with a
cross and a circle, respectively. A positive additive perturbation affects the inputs
of the robot during 3 s starting at t = 90 s. During this time, the robot’s transla-
tional velocities v1(t) and v2(t) are affected by 0.1m/s and 0.05m/s, respectively,
and its translational velocity ω(t) by 0.2 rad/s. Still, the plot clearly shows that
the robot is capable of tracking the (delayed) reference trajectory.

The plots in Figure 6.5 further illustrate the performance of the predictor-
controller combination. The plots in the first row depict the tracking errors, defined
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Figure 6.4 . First simulation: remote control of an omnidirectional robot. Refer-
ence, robot, and predictor trajectories in ~e 0.

as xe(t) = xr(t−τf )−x(t), ye(t) = yr(t−τf )−y(t), and θe(t) = θr(t−τf )−θ(t),
respectively. The plots in the second row show the prediction error pe(t), already
defined in Section 6.2.2. Clearly, the tracking and prediction errors all converge
to zero even in the presence of the (transient) perturbation.

The last plots for this simulation, which appear in Figure 6.6, show the control
inputs of the robot and how they reflect the perturbation at 90 s. The considerable
differences between the required velocities of the line and arc segments (which
are joined to form the reference trajectory) are reflected as discontinuities in the
resulting control inputs of the robot.

The second simulation illustrates the remote motion coordination of a group of
four omnidirectional robots. The virtual center is the same square with rounded
edges used in the first simulation and the reference orientation of the robots is
prescribed as θr1(t) = 0.0 rad/s, θr2(t) = 2π

5 rad/s, θr3(t) = 4π
5 rad/s, and θr4(t) =

6π
5 rad/s. The simulation takes 120 s and the initial conditions, controller gains,
and displacements from the virtual center (given in terms of the global coordinate
frame ~e 0) for each robot are given in Table 6.2. All the coupling gains are set to
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Figure 6.6 . First simulation. Control inputs.

0.75, that is kxi,j , kyi,j , kθi,j = 0.75, for i = 1, 2, 3, 4, j = 1, 2, 3, 4, and i 6= j. The
network-induced delay τ = 1 s. The selected tracking and coupling gains are all
positive, so that the conditions posed on them in Theorem 6.3 are satisfied and
the delay-independent global stability of the remote mutual motion coordination
strategy is ensured.
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Table 6.2 . Second simulation parameters; remote motion coordination of a group
of four omnidirectional robots.

Initial conditions Controller gains Displacements
in ~e 0

x0 y0 θ0 cx cy cθ lx ly lθ
[m] [m] [rad] [m] [m] [rad]

Robot 1 2.0 1.0 π
6 1.0 1.0 1.0 1.0 0.5 0.0

Robot 2 1.8 1.0 −π4 1.0 1.0 1.0 1.0 −0.5 0.0
Robot 3 1.2 1.5 π

2 1.0 1.0 1.0 −1.0 −0.5 0.0
Robot 4 1.4 0.5 π

3 1.0 1.0 1.0 −1.0 0.5 0.0

The reference trajectory and path of each robot are shown in Figure 6.7 in the
global coordinate frame ~e 0. At t = 20 s the translational and rotational velocities
of the second robot, v12(t), v22(t) and ω2(t), are affected during 4 s by a positive ad-
ditive perturbation of 1.0m/s, 1.5m/s, and 3.0 rad/s, respectively. The plots show
how the perturbation directly affects the second robot and how this perturbation is
reflected on the remaining robots, illustrating the tradeoff between following their
respective reference trajectory and maintaining motion coordination. As explained
already in Chapter 5, the larger the magnitude of the network-induced delay, the
longer it will take for the unperturbed robots to reflect this perturbation. In other
words, by the time the unperturbed robots begin to reflect the perturbation, the
perturbed robot is already compensating for it. Since the network-induced delay
considered is rather large (1 s), the perturbation reflected on the first, third, and
fourth robot is smaller than the one directly affecting the second robot.

The plots in Figure 6.8 show the tracking errors of each robot, whereas the
plots in Figure 6.9 depict the coordination errors between the robots, which are
defined as qe(t) = qei(t)−qej (t) = [xei(t)−xei(t) yei(t)−yej (t) θei(t)−θej (t)]T , for
i, j ∈ {1, 2, . . . , n}, i 6= j. All the tracking and coordination errors converge to
zero and temporarily reflect the perturbation which affects the second robot. The
control inputs of each robot are depicted in Figure 6.10, where the perturbation
is reflected on all the robots.

In summary, the previous simulation results validate the remote control and
motion coordination strategies proposed for the omnidirectional mobile robot. The
simulations yield the expected results according to the stability analyses carried
out for both control strategies. Moreover, the simulations show that the proposed
control strategies exhibit certain robustness against small, transient, additive per-
turbations in the control signals.
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ond robot is perturbed at t = 20 s.
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6.3 Remote Tracking Control of a One-Link Robot
The design of a predictor-controller combination for a one-link robot controlled
over a delay-inducing communication network is investigated in this section. The
purpose of this study is to motivate and make the first steps towards the application
of such a remote control strategy to a broader class of mechanical systems; namely,
robotic manipulators.

Consider a one-link robot with friction, such as the one shown in Figure 6.11.
This robot has the following dynamic model:

ml2θ̈(t) + κθ̇(t) +mgl sin θ(t) = α(t), (6.21)

where θ(t), θ̇(t), and θ̈(t) denote the angular position, velocity, and acceleration
of the robot, respectively, and α(t) its input torque. The link has a length of l, a
point mass m at its end, and its viscous friction coefficient is denoted by κ. The
gravitational acceleration is denoted by g and the state of the system is defined as
q(t) = [θ(t) θ̇(t)]T .

As with the unicycle and the omnidirectional robots, the one-link robot is
assumed to be controlled over a two-channel network inducing a delay τ , comprised
of an input and an output time-delay τf and τb, respectively. Rearranging (6.21)
and including the input time-delay, the dynamic model of the robot becomes:

θ̈(t) = − κ

ml2
θ̇(t)− g

l
sin θ(t) +

1
ml2

α(t− τf ). (6.22)

Additionally, the output time-delay τb produces the measured state q(t− τb) =
[θ(t− τb) θ̇(t− τb)]T .

The robot is intended to track a reference trajectory with a state qr(t) =
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[θr(t) θ̇r(t)]T . For this purpose, the following state predictor is considered:

z̈(t) = − κ

ml2
ż(t)− g

l
sin z(t) +

1
ml2

α(t) + νθ̇(t) + νθ(t), (6.23)

with state qz(t) = [z(t) ż(t)]T and correction term denoted by ν(t) = [νθ̇(t) νθ(t)]
T .

Given the prediction error pe(t) = θ(t− τb)− z(t− τ̃), the correction term are
defined as follows:

νθ(t) = kθ(θ(t− τb)− z(t− τ̃)), (6.24a)

νθ̇(t) = kθ̇(θ̇(t− τb)− ż(t− τ̃)), (6.24b)

where kθ and kθ̇ represent the correction term gains and τ̃ := τ̃f + τ̃b represents the
sum of the estimated input and output network-induced delays, which is assumed
to be known (that is, τ̃ = τ = τb + τf ).

The tracking control law for the predictor-controller combination considering
the state predictor (6.23) and correction term (6.24) is defined as follows:

α(t) = ml2
(
θ̈r(t) + kdże(t) + kpze(t) +

κ

ml2
ż(t) +

g

l
sin z(t)

)
, (6.25)

where ze(t) = θr(t)− z(t) and kp and kd denote the position and velocity tracking
gains, respectively. The tracking controller (6.25) is a computed torque controller
(see for example Kelly et al., 2005, for additional details on this type of controllers)
which uses the output of the predictor instead of the output of the system.

The control action applied to the robot after the input delay τf yields:

α(t−τf )=ml2
(
θ̈r(t−τf )+kdże(t−τf )+kpze(t−τf )+

κ

ml2
ż(t−τf )+

g

l
sin z(t−τf )

)
.

(6.26)

Exploiting the state predictor (6.23), correction term (6.24), and delayed track-
ing controller (6.26), the closed-loop error dynamics are given as follows:

z̈e(t) = −kdże(t)− kpze(t)− kθ̇ṗe(t)− kθpe(t), (6.27a)

p̈e(t) = − κ

ml2
ṗe(t)−

g

l
(sin θ(t− τb)− sin z(t− τ))− kθ̇ṗe(t− τ)− kθpe(t− τ).

(6.27b)

Assuming that both θ(t) and z(t) are small, it is possible to use the small angle
approximation to rewrite the closed-loop error dynamics (6.27) in the following
way:

z̈e(t) = −kdże(t)− kpze(t)− kθ̇ṗe(t)− kθpe(t), (6.28a)

p̈e(t) = − κ

ml2
ṗe(t)−

g

l
pe(t)− kθ̇ṗe(t− τ)− kθpe(t− τ), (6.28b)
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which may be represented by the following delayed LTI system:
że(t)
ṗe(t)
z̈e(t)
p̈e(t)

 =


0 0 1 0
0 0 0 1
−kp −kθ −kd −kθ̇

0 − gl 0 − k
ml2



ze(t)
pe(t)
że(t)
ṗe(t)

+


0 0 0 0
0 0 0 0
0 0 0 0
0 −kθ 0 −kθ̇



ze(t− τ)
pe(t− τ)
że(t− τ)
ṗe(t− τ)


(6.29)

As with the unicycle and omnidirectional robots, ensuring the stability of the
linearized closed-loop error dynamics (6.29) guarantees that the robot will track
a delayed version qr(t− τf ) of its reference trajectory. Note that this control goal
assumes that a preview of the reference trajectory is not available. Hence, Remark
4.2 concerning the availability of qr(t+ τf ) at time t is also in place.

There are a number of ways to study the stability of a delayed LTI system
such as (6.29) (refer for example to Gu et al., 2003; Michiels and Niculescu, 2007;
Niculescu et al., 1998, among others). In our case, we conducted an eigenvalue-
based numerical test for a given set of system and control parameters (mass m,
length l, and viscous friction coefficient κ of the one-link robot and tracking gains
kp and kd) and for different values of the correction gains kθ and kθ̇. The test
computes the rightmost eigenvalue for a certain combination of parameters and
correction gains using DDE-BIFTOOL, a Matlab package for numerical bifurcation
and stability analysis of delay differential equations (see Engelborghs et al., 2001).
It is worth noting that the resulting stability condition is necessary and sufficient,
and that this condition holds for a set of initial conditions which are close enough
to the reference trajectory. In addition, since we are considering a delayed LTI
system, the stability result obtained is of an exponential nature.

The results from the previous numerical test for a one-link robot with
m = 1.0 kg, l = 1.0m, κ = 0.5, kd = 20 and kp = 10 are shown in Figure 6.12. The
plot shows how as kθ ↓ 0 and kθ̇ ↓ 0, the magnitude of the allowable time-delay
increases. In other words, the same remark regarding how a low-gain predictor
design yields high robustness against delays is in place.

An additional test was carried out considering m = 0.5 kg, l = 0.4m, κ = 0.3
and the same values of kp and kd. In this case, the linearized closed-loop error
dynamics (6.29) are stable for all τ ∈ [0, 2] s and kθ, kθ̇ ∈ [0, 2]. Nevertheless, as
expected, additional tests with these parameters showed that as kθ and kθ̇ increase,
the magnitude of the allowable time-delay decreased.

Note that the linearized closed-loop error dynamics (6.29) may also be repre-
sented as the following cascaded system:

ξ̇1(t) = A1ξ1(t) +A2ξ2(t), (6.30a)
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ξ̇2(t) = B1ξ2(t) +B2ξ2(t− τ), (6.30b)

where ξ1(t) :=[ze(t) że(t)]T , ξ2(t) :=[pe(t) ṗe(t)]T , ξ1t ∈ C(2), ξ2t ∈ C(2), and

A1 =
[

0 1
−kp −kd

]
, A2 =

[
0 0
−kθ −kθ̇

]
, B1 =

[
0 1
− gl − κ

ml2

]
, B2 =

[
0 0
−kθ −kθ̇

]
.

The stability of the previous cascaded error dynamics may be studied using
a similar approach as with the unicycle and the omnidirectional robots (in this
case, based on Theorem 2.25). Following this approach it is possible to explicitly
state the requirement on a certain allowable time-delay τmax for which the error
dynamics are stable for all τ ∈ [0, τmax). Nevertheless, the results obtained using
this approach turned out to be quite conservative (several orders of magnitude in
fact). For this reason, we decided to present our stability results based on the
numerical test explained previously.
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Table 6.3 . Third simulation parameters; remote control of a one-link robot.

Initial conditions Gains
System Predictor Tracking Correction

q(0) q̇(0) z(0) ż(0) kp kd kθ kθ̇
[rad] [rad/s] [rad] [rad/s]
π
3 0.0 0.0 0.0 10.0 20.0 0.2 0.2

6.3.1 Simulation Results

The results of the simulation are shown in Figure 6.13 and illustrate the predictor-
controller combination applied to a one-link robot with a mass of m = 1.0 kg,
a length of l = 1.0m, and viscous friction coefficient of κ = 0.5. The initial
conditions of the robot and the predictor, and the values of the tracking and
correction gains appear in Table 6.3. The magnitude of the network-induced delay
is τ = τf + τb = 0.3 + 0.3 = 0.6 s and the simulation takes 120 s. The tracking
and correction gains for this simulation are selected such that the closed-loop
error dynamics (6.29) are exponentially stable. This is ensured by means of the
eigenvalue based numerical test explained above and can be assessed for different
values of the correction gains with the aid of Figure 6.12. The reference trajectory
is a sine with an amplitude of 1 rad and an angular frequency of 0.5 rad/s, and the
input torque is affected by a perturbation of 4Nm at t = 30 s during 1 s.

The reference trajectory, robot, and predictor angular positions and veloci-
ties are depicted, respectively, in the first and second plots of the first row in
Figure 6.13. The plots show how the trajectory of the robot converges to the
reference trajectory delayed by τf = 0.3 s. The plots in the second and third rows
depict the tracking errors, qe(t) = θr(t − τf ) − θ(t) and q̇e(t) = θ̇r(t − τ) − θ̇(t),
and prediction errors, pe(t) and ṗe(t), respectively. These errors converge to zero
and show how, after approximately 15 s, the system overcomes the perturbation.

The simulation results are in line with what was expected from the theoretical
formulations and show the applicability of the remote control strategy for a one-
link robot. Moreover, the results also show that the proposed control strategy
is capable of overcoming small, transient, additive perturbations in the control
signals.
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6.4 Concluding Remarks

In this chapter, the different remote control and motion coordination strategies
studied in this thesis have been applied to other dynamical systems besides unicycle-
type mobile robots.

In particular, predictor-controller combinations which allow for the remote
tracking control of an omnidirectional robot and a one-link robot have been pro-
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posed. A stability analysis for each of the remote tracking control strategies has
been presented and simulation results which validate the theoretical formulations
of these analyses have been included. In the case of the omnidirectional robot, the
resulting upper bound on the allowable network-induced delay based on a global
stability analysis turned out to be quite conservative. For this reason, a local sta-
bility analysis which yields a less conservative upper bound on the delay has also
been presented. As with the unicycle, if at time t the reference trajectory qr(t+τf )
is known, it becomes possible for the remote control strategies in this chapter to
track the desired reference trajectory, that is, qr(t). Recall that, when considering
the remote control or motion coordination of unicycles in this thesis, the resulting
closed-loop error dynamics could always be rearranged in a cascade. Our initial
assumption was that this occurrence was due to the fact that the controllers used
in this work for the unicycle are based on a tracking control law which yields cas-
caded error dynamics. Nevertheless, since the predictor-controller combination for
the omnidirectional robot and the one-link robot also yield error dynamics which
can be rearranged as a cascaded system, it appears that this result is also related
to the architecture of the remote control strategy. Specifically, it seems that the
observer-like structure of the predictor is the main reason behind this occurrence.
Whether the resulting cascaded system can be separated between the position and
orientation error dynamics (as with the mobile robots) or between the ze(t) and
pe(t) error dynamics (as with the one-link robotic) apparently depends on the
particular system being studied.

An additional extension considered in this chapter concerns the remote mutual
motion coordination of a group of omnidirectional robots. A global stability anal-
ysis of the resulting closed-loop error dynamics of the whole group indicates that
this type of motion coordination is delay-independent for omnidirectional robots.
A simulation with four omnidirectional robots and a network-induced delay of 1 s
shows how the robots maintain mutual motion coordination in the face of transient
perturbations.

In general, the results in this chapter confirm that the control strategies
developed in this thesis may very well find application in a wide range of robotic
systems.
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7
CONCLUSIONS AND

RECOMMENDATIONS

Abstract .This chapter recapitulates the main contributions and results of this
thesis. In addition, the chapter provides a number of recommendations for
further research.

7.1 Conclusions
As the assignments conferred to robotic systems become more critical and com-
plex, a number of scientific and technological challenges have to be tackled in order
to fully realize the potential of this type of systems. In particular, in this thesis we
propose control strategies which guarantee the stability and performance of a tele-
robotic and a cooperative robotic system in the face of delay-inducing networked
communication. The problem is relevant both from a theoretical and a practical
point of view, due to the fact that exchanging information through a communica-
tion network is a fundamental requirement in this type of robotic systems. The
remainder of this section discusses in greater detail the main contributions and
results of the remote tracking control and remote motion coordination strategies
presented in this thesis.

Remote Tracking Control of a Mobile Robot

In Chapter 4 and Chapter 6, a predictor-controller combination which allows for
the remote tracking control of different types of robotic systems is proposed. The
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state predictor in the predictor-controller combination, inspired on the notion of
anticipating synchronization, anticipates the states of the system and enables the
implementation of a remote tracking controller.

In Chapter 4, the predictor-controller combination is proposed for a unicycle-
type mobile robot. The predictor-controller combination guarantees the tracking
of a delayed reference trajectory. A local stability analysis shows that the tracking
and prediction error dynamics are locally uniformly asymptotically stable up to a
certain time-delay τmax (for which an explicit expression is provided). In addition,
a global stability analysis shows that there exists a maximum delay τmax > 0 such
that the tracking and prediction error dynamics are globally uniformly asymptoti-
cally stable for delays up to τmax. Experiments in which a unicycle robot located in
Japan is controlled from the Netherlands using the Internet as the communication
channel further validate the proposed remote control strategy.

In Chapter 6, the remote tracking control problem of an omnidirectional mobile
robot is addressed. The closed-loop tracking and prediction error dynamics are
determined to be globally uniformly asymptotically stable up to a certain time-
delay τmax > 0. Due to the fact that this bound appears to be rather conservative,
a local stability analysis which yields a larger bound on the allowable time-delay
has also been included. The problem of the remote tracking control of a one-link
robot is also addressed in Chapter 6. In this case, the linearized error dynamics
are shown to be stable for a given set of control parameters using an eigenvalue-
based numerical test. Illustrative simulations further validate the proposed remote
control strategies for the omnidirectional and the one-link robots.

The following can also be concluded for the remote tracking control strategy
presented in Chapter 4 and Chapter 6:

• The remote tracking control strategies proposed in Chapter 4 and Chapter 6
assume that the reference trajectory for the system is not known a priori. As
a consequence, the results in this thesis ensure tracking of delayed reference
trajectories. However, if the reference trajectory is known in advance (at
least for a time span of the forward network-induced delay), tracking non-
delayed reference trajectories becomes possible.

• The closed-loop error dynamics which result from the tracking and predic-
tion errors can be rearranged in as a cascaded system in all cases (that is,
for the unicycle and the omnidirectional mobile robots and for the one-link
robotic manipulator). In general, expressing these error dynamics as a cas-
caded system facilitates the ensuing stability analysis. In the case of the
mobile robots, the systems conforming the cascade can be clearly divided
between the error dynamics which correspond to the position errors and the



7.1 . CONCLUSIONS 137

error dynamics which correspond to the orientation errors of the robots. An
intuitive interpretation of the fact that the closed-loop error dynamics of
the different systems can be rearranged as a cascaded system is that this
is due to the structure of the predictor itself, which is similar to that of an
an observer. Nevertheless, this claim has not been verified formally and the
possibility that the closed-loop error dynamics of a broader class of systems
can be rearranged as a cascaded system is something that remains to be
seen.

• The stability analyses showed that the magnitude of the allowable commu-
nication delay is always related to the correction gains of the state predictor
and not to the tracking gains. This shows a certain “separation” between
tracking and estimation behavior.

• Even though the purpose of the remote tracking control strategy is to mit-
igate the negative effects of a constant time-delay, the experimental results
show that the control strategy still works properly when considering a com-
munication channel which induces (slightly) time-varying delays, such as the
Internet link between the Netherlands and Japan introduced in Chapter 3.

Remote Motion Coordination of Mobile Robots

In Chapter 5 and Chapter 6, coordinating controllers which attain master-slave
and mutual motion coordination under delayed communication for a group of
mobile robots are proposed. Specifically, the problem of the remote master-slave
and mutual motion coordination of a group of unicycle robots is addressed in
Chapter 5. The proposed coordinating controller guarantees the global uniform
asymptotic stability of the closed-loop error dynamics of the whole group. This
stability result holds as long as the network-induced delay belongs to the interval
τ ∈ [0, τmax], with the maximum allowable time-delay τmax > 0 small enough.

In Chapter 6, the same problem is addressed for a group of omnidirectional
mobile robots. In this case, the coordinating controller guarantees the delay-
independent global exponential stability of the closed-loop error dynamics of the
whole group. In the same way as with the remote tracking control strategies,
simulations and experiments in both chapters further validate the proposed remote
coordinating controllers.

The following can also be concluded for the remote motion coordination
strategy presented in Chapter 5 and Chapter 6:

• Recall that remote master-slave motion coordination has been shown to be
a problem of a tracking nature in Chapter 5. In this type of motion coordi-
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nation, the reference trajectories of the slaves are formed with the delayed
output of the master. As a consequence, the communication delay only
affects these reference trajectories. This implies that the closed-loop stabil-
ity of the slaves can be guaranteed regardless of the delay induced by the
communication network. However, performance is greatly affected by the
networked-induced delay in the sense that the group might only be able to
reach delayed master-slave motion coordination.

• A solution for the remote mutual motion coordination problem has been
proposed in Chapter 5 for a group of unicycle robots and in Chapter 6 for a
group of omnidirectional mobile robots. In the case of the unicycle robots,
the robots reach remote mutual motion coordination as long as the (constant)
network-induced delay is small enough. On the contrary, in the case of the
omnidirectional mobile robots, this type of motion coordination has been
shown to be delay-independent.

• As explained in Chapter 5, the coupling terms in the mutually coordinat-
ing controller determine how the group copes with perturbations. When
considering a small communication delay, the couplings between the robots
improve the robustness of the group against perturbations. However, as the
magnitude of the communication delay increases, the ability of the group
to cope with perturbations diminishes. Eventually, if the communication
delay becomes too large, the group does not exhibit coordinated behavior
any longer.

7.2 Recommendations
This final section enlists recommendations for further research. In the first part,
recommendations regarding the remote tracking control of mobile robots and the
related predictor-controller combination are presented. Afterwards, ideas for fur-
ther research regarding the remote motion coordination of groups of mobile robots
are discussed.

Remote Tracking Control of a Mobile Robot

Recommendations for future work regarding the remote tracking control strategy
proposed in this thesis are given below:

• The stability analysis of the remote tracking control strategies proposed for a
unicycle mobile robot in Chapter 4 and for an omnidirectional mobile robot
and a one-link robot in Chapter 6 appeared to exhibit a certain degree of
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conservativeness in the upper bound on the maximum admissible communi-
cation delay. Using other techniques to study the stability of delayed systems
might prove useful to obtain less conservative upper bounds.

• The remote tracking control strategy has been successfully validated in
experiments using the Internet as communication medium. It has been
shown that considering uncertain, though fairly constant delays suffices in
these experiments. In other situations, for example when employing wire-
less communication links, one may consider other types of network-induced
uncertainties as well. Such uncertainties would include time-varying com-
munication delays, packet dropouts, and time-varying sampling intervals.
Naturally, a first approach towards this goal would be to make use of the
tools already available in the Networked Control Systems (NCSs) literature,
such as in Carnevale et al. (2007), Heemels et al. (2010), Nešić and Teel
(2004b), Nešić and Teel (2004a), van de Wouw et al. (2010b), van de Wouw
et al. (2010a), and many others.

• A prerequisite to the previous recommendation might be to investigate a
discrete-time implementation of the predictor-controller combination. Such
implementation would allow considering the sample-and-hold effects in the
system.

• A formal comparison between the predictor based on synchronization and the
nonlinear version of the Smith predictor, together with its recent extensions,
would provide a reliable measure of the applicability of the state predictor
considered in this thesis.

• The remote tracking control strategy for a one-link robot proposed in
Chapter 6 showed that the predictor-controller combination may be applied
to a wider class of mechanical systems. Even though the ensuing stability
analysis only considered the linearized system, investigating the applicabil-
ity of the predictor-controller combination to other robotic systems such as
mechanical manipulators appears quite appealing.

• The experimental setups in Japan and the Netherlands synchronize their
clocks using the Windows Time Service (see Chapter 3). As a consequence,
the internal clocks of the computers at each setup are roughly synchronized.
Devising a method to synchronize these clocks more accurately would allow
a better characterization of the performance of the remote control strategies.

Remote Motion Coordination of Mobile Robots

Below we present ideas for future developments regarding the remote motion
coordination of a group of mobile robots:
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• Recall from Chapter 5 that when considering the remote mutual motion co-
ordination of unicycle robots it was not possible to provide an expression
with explicit bounds for the allowable time-delay. Naturally, quantitative
knowledge of the upper bound on the maximum admissible communication
delay is desirable. Nonetheless, the lack of a strict Lyapunov function for
the position error dynamics of the group obstructs the formulation of such
an explicit delay bound. Nevertheless, there are certain assumptions which
can be made on the reference rotational velocities of the robots which might
allow to obtain an explicit bound on the allowable time-delay. Such assump-
tions may be found in Sedova (2008b), where constant reference rotational
velocities have been considered.

• As with the remote tracking control strategy, considering additional un-
certainties in the communication channel such as time-varying delays and
packet dropouts would prove to be both challenging and fruitful. This would
include, besides the usual uncertainties considered in NCSs, different
communication delays between the elements of the group.

• The remote mutual motion coordination strategy in this thesis assumes that
all the robots in the group receive the information from the virtual center at
the same time. Exploring additional possibilities regarding the information
flow between the virtual center and the robots in the group would provide
the remote strategy with a more realistic architecture. One of these possibil-
ities would include a centralized remote command center which assigns the
reference trajectories for each individual robot. In this case, the reference
trajectories of each robot would be generated at a different location. As a
result, additional time-delays for the communication between the command
center and the robots would have to be considered.

• A number of features can be added to the motion coordination strategies
presented in this thesis in order to improve their performance in more real-
istic applications. Such features include, among others, inter-robot collision
avoidance, obstacle avoidance, and considering a decentralized control archi-
tecture. These features are (partly) available in the literature. For instance,
Kostić et al. (2009) and Kostić et al. (2010a) implement two different meth-
ods for collision avoidance and Sadowska (2010) proposes a decentralized
control architecture in a similar setting as the one considered in this work.

• The experimental results in Chapter 5 include only two unicycle robots.
Experiments with a larger number of robots would further illustrate the
performance of the remote coordination strategies presented in this thesis.

• An important point to consider is how the principles behind the remote
motion coordination strategies presented in this thesis translate to other
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robotic systems (such as manipulators) and to other systems in general (such
as mechanical, electrical, and biological systems among others).

Even though the (remote tracking and coordinating) controllers designed in
this thesis focus mainly on unicycle robots, we have also shown that it is possible
to apply these control strategies to other (mechanical) systems. In this respect,
we expect the control methodologies presented in this work to be applicable to,
at least, a large class of linear time-invariant (LTI) systems and to certain classes
of mechanical systems. In order to design a predictor-controller combination for a
certain system, one of the assumptions that we have made so far is that a tracking
control law for the delay-free version of the system is readily known. Moreover, we
have assumed that the complete state of the system is measured and transmitted
over the communication network. Because of the resemblance between the state
predictor and a state observer, we foresee that an ‘observable-like’ condition on
the system would be in place.
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A
LOCATION AND FORMATION

ORIENTED REFERENCE TRAJECTORIES

Abstract . This appendix provides a detailed explanation of the different
methods used throughout this thesis to derive the reference trajectories of
the mobile robots which belong to a group and are supposed to coordinate
their motions. In order to illustrate and compare the available options, a brief
discussion has also been included.

A.1 Motivation
When considering a team of mobile robots, the main objective concerns the coop-
eration of the robots in order to successfully complete a task. In this sense, the
main focus of this thesis is on ensuring that the robots in the group accurately
track a specific reference trajectory. In other words, the main goal is to coordinate
the motions of the robots, which could be useful for tasks as diverse as payload
transportation, construction, and reconnaissance and surveillance.

For this purpose, the mobile robot motion coordination strategies presented in
Chapter 5 considered, in both the master-slave and the mutual case, two different
methods for deriving the reference trajectories of the mobile robots whose motions
are to be coordinated. The first method results in a set of so-called location
oriented reference trajectories, which are separated from each other by specific
distances. A different approach consists in deriving the reference trajectories in
such a way that the robots in the group maintain a specific geometrical shape
while following a certain reference trajectory; these have been denoted as a set
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of formation oriented reference trajectories. Recall that in master-slave motion
coordination the reference trajectories of all the slave robots connected to a certain
master use as a starting point the trajectory tracked by the master robot. On the
other hand, in mutual motion coordination the reference trajectories of all the
robots belonging to a group are based on the reference trajectory of a common
virtual center.

In this appendix, the location and formation oriented reference trajectories
are derived for master-slave and mutual motion coordination of a group of mobile
robots. In particular, the explicit expressions to derive the reference trajectories for
a group of unicycle-type mobile robots are provided. In order to encourage further
work and additional applications, the differences and similarities between a set of
location oriented and formation oriented reference trajectories are discussed.

A.2 Location Oriented Reference Trajectories

As mentioned already, throughout this work the reference trajectory of each of the
robots whose motion is to be coordinated is defined in terms of either the movement
of the master robot or a common virtual center, depending on whether master-slave
or mutual motion coordination is being implemented. Using the respective source
of information as a starting point, possibly time-varying displacements are then
used to design the specific trajectories for the robots in the group. Whenever such
displacements are given with respect to the global coordinate frame ~e 0 =[~e 0

x ~e
0
y ]T ,

the variables of interest to be defined are the distances in this frame between the
coordinated robots and either the master robot or the virtual center, depending
on the type of motion coordination being used. This definition gives way to what
has been denoted as location oriented reference trajectories, which is shown in
Figure A.1 for two robots, i and j, respectively. The figure highlights how by
defining the displacement of each robot relative to the global coordinate frame,
the distance between the robots in this frame and the direction of their position
difference may be specified at will. For instance, in Figure A.1 the displacements
considered are constant, which results in the robots mimicking the movement of
their originating trajectory (either, the master robot or the virtual center) in a
different location within their workspace.

In this section, the location oriented reference trajectories for master-slave
and mutual motion coordination are derived for the unicycle robot. The posture
kinematic model of the robot and its tracking control law, as given in Chapter 5,
are used to obtain the mathematical expressions of its reference trajectories.
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Figure A.1 . Location oriented reference trajectories for robots i and j, based on
either the movement of the master robot or a common virtual center.

A.2.1 Unicycle Robot: Master-Slave Motion Coordination

Recall the master-slave motion coordination case, as defined in Chapter 5, in
which n slave robots are required to coordinate their motions with the movements
of a master robot. Consider that the reference position of the i-th slave robot,
for i ∈ {1, 2, . . . , n}, is given by possibly time-varying displacements lxs,i(t) and
lys,i(t) which define the distance between the slave and its master relative to the
global coordinate frame ~e 0, resulting in the following reference positions:[

xrs,i(t)
yrs,i(t)

]
~e 0 =

[
xm(t) + lxs,i(t)
ym(t) + lys,i(t)

]
~e 0, (A.1)

or, equivalently,

xrs,i(t) = xm(t) + lxs,i(t), (A.2a)
yrs,i(t) = ym(t) + lys,i(t), (A.2b)

where (xm(t), ym(t)) represents the position (in ~e 0) tracked by the master.

The reference orientation and translational velocities of the i-th slave must sat-
isfy the expression −ẋrs,i(t) sin θrs,i(t)+ ẏrs,i(t) cos θrs,i(t) = 0, which is due to the
non-holonomic constraint that appears in the posture kinematic model of the uni-
cycle, as shown by Brockett (1983). Otherwise, unfeasible reference trajectories
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would result due to incompatibility with the robot’s non-holonomic constraint.
Considering this constraint and exploiting the kinematics of the unicycle, the
reference orientation and translational and rotational velocities for the i-th slave
are defined as

θrs,i(t) = arctan
(
ẏrs,i(t)
ẋrs,i(t)

)
+ kπ, k = 0, 1, (A.3a)

vrs,i(t) =
√
ẋ2
rs,i(t) + ẏ2

rs,i(t), (A.3b)

ωrs,i(t) =
ẋrs,i(t)ÿrs,i(t)− ẍrs,i(t)ẏrs,i(t)

ẋ2
rs,i(t) + ẏ2

rs,i(t)
= θ̇rs,i(t). (A.3c)

Recall that, in order for the tracking problem of the i-th robot to be soluble, it is
necessary that the reference position (xrs,i(t), yrs,i(t)) is admissible for the posture
kinematic model of the unicycle. This means that the reference orientation θrs,i(t)
and the translational and rotational velocities vrs,i(t) and ωrs,i(t), respectively,
must satisfy the equations

ẋrs,i(t) = vrs,i(t) cos θrs,i(t), (A.4a)
ẏrs,i(t) = vrs,i(t) sin θrs,i(t), (A.4b)

θ̇rs,i(t) = ωrs,i(t), (A.4c)

with an associated reference trajectory qrs,i(t)=[xrs,i(t) yrs,i(t) θrs,i(t)]
T .

The reference Cartesian velocities and accelerations of the i-th slave, required
to compute its orientation and translational and rotational velocities as defined in
(A.3), are obtained by differentiating its reference position (A.2) and exploiting
the kinematics of the master robot, resulting in the following expressions:

ẋrs,i(t) = vm(t) cos θm(t) + l̇xs,i(t), (A.5a)

ẏrs,i(t) = vm(t) sin θm(t) + l̇ys,i(t), (A.5b)

ẍrs,i(t) = v̇m(t) cos θm(t)− vm(t)ωm(t) sin θm(t) + l̈xs,i(t), (A.5c)

ÿrs,i(t) = v̇m(t) sin θm(t) + vm(t)ωm(t) cos θm(t) + l̈ys,i(t), (A.5d)

where vm(t) and ωm(t) denote the control signals of the master, that is, its trans-
lational and rotational velocities, respectively. Differentiating the translational
velocity of the master yields its translational acceleration, v̇m(t), which is required
to estimate the reference accelerations of the slave (A.5c) and (A.5d).

In order to determine the values of the Cartesian velocities and accelerations
of the slave as in (A.5), it is necessary to know the control signals vm(t) and
ωm(t) applied to the master robot. This means that the reference velocities and
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accelerations of the slave depend on the tracking control law being used by the
master robot and, consequently, on the selected controller gains. For instance,
consider that the tracking controller proposed by Lefeber et al. (2001) is applied
to the master robot:

vm(t) = vrm(t) + cxmxem(t)− cymwrm(t)yem(t), cxm > 0, cym > −1 (A.6a)
ωm(t) = ωrm(t) + cθmθem(t), cθm > 0, (A.6b)

in which qem(t) = [xem(t) yem(t) θem(t)]T represents the error coordinates of the
master, and cxm , cym and cθm are the tracking control gains.

Given the tracking control law (A.6), the translational acceleration of the
master as, required by (A.5c) and (A.5d), yields

v̇m(t) = v̇rm(t) + cxm ẋem(t)− cym (ω̇rm(t)yem(t) + ωrm(t)ẏem(t)) , (A.7)

where the tracking error dynamics ẋem(t) and ẏem(t) are given by

ẋem(t) = ωm(t)yem(t) + vrm(t) cos θem(t)− vm(t), (A.8a)
ẏem(t) = −ωm(t)xem(t) + vrm(t) sin θem(t). (A.8b)

Computing the translational acceleration of the master as given in (A.7)
requires its reference translational and rotational accelerations, defined as

v̇rm(t)=
ẋrm(t)ẍrm(t)+ÿrm(t)ẏrm(t)√

ẋ2
rm(t)+ẏ2

rm(t)
, (A.9a)

ω̇rm(t)=
ẋrm(t) (

...
y rm(t)−2ωrm(t)ẍrm(t))−ẏrm(t) (

...
x rm(t)+2ωrm(t)ÿrm(t))

ẋ2
rm(t)+ẏ2

rm(t)
.

(A.9b)

As a result, in order to compute (A.9a) and (A.9b), the reference Cartesian
velocities, ẋrm(t) and ẏrm(t), accelerations, ẍrm(t) and ÿrm(t), and jerks, ...x rm(t)
and

...
y rm(t), of the master robot should be available.

A.2.2 Unicycle Robot: Mutual Motion Coordination

In mutual motion coordination as defined in Chapter 5, the members of a group
of n mobile robots coordinate their motions by tracking their respective reference
trajectories, based on a common virtual center, and exchanging their respective
error signals. In this type of motion coordination, the distance between the i-th
robot, for i ∈ {1, 2, . . . , n}, and the virtual center is defined in terms of possibly
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time-varying displacements lxi(t) and lyi(t) given with respect to the global coor-
dinate frame ~e 0. The resulting reference positions for robot the i-th are given by

xri(t) = xvc(t) + lxi(t), (A.10a)
yri(t) = yvc(t) + lyi(t), (A.10b)

where (xvc(t), yvc(t)) denotes the position of the virtual center.

The reference orientation and translational and rotational velocities for each of
the robots in the group may be computed by using the expressions in (A.3), only
substituting subindex s, i by i in order to refer to the i-th robot.

Differentiating the reference position (A.10) yields the reference Cartesian
velocities and accelerations, which are necessary to compute the aforementioned
reference orientation and velocities, and are given by

ẋri(t) = ẋvc(t) + l̇xi(t), (A.11a)

ẏri(t) = ẏvc(t) + l̇yi(t), (A.11b)

ẍri(t) = ẍvc(t) + l̈xi(t), (A.11c)

ÿri(t) = ÿvc(t) + l̈yi(t). (A.11d)

Knowledge of the velocities, ẋvc(t) and ẏvc(t), and accelerations, ẍvc(t) and
ÿvc(t), of the virtual center is required in order to estimate the reference Cartesian
velocities and accelerations of each robot as defined in (A.11). It is worth noting,
however, that in mutual motion coordination it is not necessary to exploit the
kinematic model of the system in order to compute these reference values, as
opposed to the master-slave case where not only this model is required, but also
the control inputs of the master robot. This difference results in less complicated
expressions and more accessible computations for mutual motion coordination.

A.3 Formation Oriented References Trajectories
In the previous section, the reference trajectories of the mobile robots whose
motions are to be coordinated have been specified with respect to the global
coordinate frame ~e 0, resulting in so-called location oriented reference trajecto-
ries. An alternative approach is to define the reference trajectories of the robots
with respect to the robot-fixed coordinate frame ~em/vc of either the master robot
or the virtual center, depending on the type of motion coordination strategy
implemented. As a result, the distance between the robots relative to the ~em/vc
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Figure A.2 . Formation oriented reference trajectories for robots i and j, based on
either the movement of the master robot or a common virtual center.

coordinate frame and the direction of their position difference may be specified at
will. The resulting reference trajectories have been denoted throughout this work
as formation oriented reference trajectories.

In order to illustrate this approach, the formation oriented reference trajectories
for two robots, i and j, are shown in Figure A.2. Coordinates lxi(t), lyi(t), lxj (t),
and lyj (t) are considered constant in the figure, resulting in the robots platooning
in a formation with an specific stationary geometry whose shape is defined by
the distances between the members of the group in the ~em/vc coordinate frame.
Since the robots are required to adapt their path in order to maintain a certain
formation, their respective reference trajectories will be different and their desired
orientation and velocities will not necessarily be equal. Note that in the location
oriented approach the robots reproduce the same motions in different locations,
whereas in the formation oriented case they track different trajectories in order to
maintain a specific distance and orientation with respect to each other.

The remainder of this section explains how to derive the formation oriented
reference trajectories for a group of unicycle robots for the master-slave and mutual
motion coordination cases.
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A.3.1 Unicycle Robot: Master-Slave Motion Coordination

Recall that in master-slave motion coordination, the time-varying displacements
lxs,i(t) and lys,i(t) define the distance from the i-th slave robot, for i ∈ {1, 2, . . . , n},
to the position tracked by the master robot (xm(t), ym(t)). In a set of forma-
tion oriented reference trajectories these displacements are defined in terms of
the robot-fixed coordinate frame of the master robot, resulting in the following
reference position for the i-th slave:[

xrs,i(t)
yrs,i(t)

]
~e 0 =

[
xm(t)
ym(t)

]
~e 0 +

[
lxs,i(t)
lys,i(t)

]
~em (A.12)

=
[
xm(t)
ym(t)

]
~e 0 +

[
lxs,i(t)
lys,i(t)

]
A 10~e 0, (A.13)

where

A 10 =
[
cos θm(t) − sin θm(t)
sin θm(t) cos θm(t)

]
; (A.14)

or, equivalently,

xrs,i(t) = xm(t) + lxs,i(t) cos θm(t)− lys,i(t) sin θm(t), (A.15a)
yrs,i(t) = ym(t) + lxs,i(t) sin θm(t) + lys,i(t) cos θm(t). (A.15b)

The reference orientation and translational and rotational velocities of the
slaves are given as in (A.3) and require the Cartesian velocities and accelerations
of the slave, which are given by

ẋrs,i(t) = −∆1m(t) sin θm(t) + ∆2m(t) cos θm(t), (A.16a)
ẏrs,i(t) = ∆2m(t) sin θm(t) + ∆1m(t) cos θm(t), (A.16b)
ẍrs,i(t) = −∆3m(t) sin θm(t) + ∆4m(t) cos θm(t), (A.16c)
ÿrs,i(t) = ∆4m(t) sin θm(t) + ∆3m(t) cos θm(t), (A.16d)

with ∆1m(t),∆2m(t),∆3m(t), and ∆4m(t) defined as

∆1m(t)= lxs,i(t)ωm(t)+ l̇ys,i(t), (A.17a)

∆2m(t)=vm(t)−lys,i(t)ωm(t)+ l̇xs,i(t), (A.17b)

∆3m(t)=vm(t)ωm(t)−lys,i(t)ω2
m(t)+lxs,i(t)ω̇m(t)+2l̇xs,i(t)ωm(t)+ l̈ys,i(t),

(A.17c)

∆4m(t)= v̇m(t)−lxs,i(t)ω2
m(t)−lys,i(t)ω̇m(t)−2l̇ys,i(t)ωm(t)+ l̈xs,i(t). (A.17d)

Note that some of the expressions in (A.17) require the control velocities of
the master robot vm(t) and ωm(t). This situation has already been addressed
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when generating location oriented reference trajectories in the master-slave motion
coordination case by making use of the tracking controller (A.6).

In (A.17c) and (A.17d), the translational acceleration of the master robot v̇m(t)
is defined as in (A.7), and its rotational acceleration ω̇m(t) is given by

ω̇m(t) = ω̇rm(t)− cθm θ̇em(t) cos θem(t), (A.18)

where the reference rotational acceleration ω̇rm(t) is defined as in (A.9b) and the
orientation tracking error dynamics θ̇em(t) yield

θ̇em(t) = ωrm(t)− ωm(t). (A.19)

A.3.2 Unicycle Robot: Mutual Motion Coordination

In mutual motion coordination the time-varying displacements lxi(t) and lyi(t)
denote the distances between the i-th robot, i ∈ {1, 2, . . . , n}, and the virtual
center, in the robot-fixed coordinate frame of the virtual center ~e vc. The resulting
reference position for the i-th robot is

xri(t) = xvc(t) + lxi(t) cos θvc(t)− lyi(t) sin θvc(t), (A.20a)
yri(t) = yvc(t) + lxi(t) sin θvc(t) + lyi(t) cos θvc(t), (A.20b)

where the reference orientation and translational and rotational velocities for each
robot may be computed by substituting subindex s, i by i in (A.3).

The reference Cartesian velocities and accelerations, required to compute the
aforementioned signals, are given by

ẋri(t) = ẋvc(t)−∆1vc(t) sin θvc(t) + ∆2vc(t) cos θvc(t), (A.21a)
ẏri(t) = ẏvc(t) + ∆2vc(t) sin θvc(t) + ∆1vc(t) cos θvc(t), (A.21b)
ẍri(t) = ẍvc(t)−∆3vc(t) sin θvc(t) + ∆4vc(t) cos θvc(t), (A.21c)
ÿri(t) = ÿvc(t) + ∆4vc(t) sin θvc(t) + ∆3vc(t) cos θvc(t), (A.21d)

with ∆1vc(t),∆2vc(t),∆3vc(t), and ∆4vc(t) defined as

∆1vc(t) = lxi(t)ωvc(t) + l̇yi(t), (A.22a)

∆2vc(t) = −lyi(t)ωvc(t) + l̇xi(t), (A.22b)

∆3vc(t) = −lyi(t)ω2
vc(t) + lxi(t)ω̇vc(t) + 2l̇xi(t)ωvc(t) + l̈yi(t), (A.22c)

∆4vc(t) = −lxi(t)ω2
vc(t)− lyi(t)ω̇vc(t)− 2l̇yi(t)ωvc(t) + l̈xi(t), (A.22d)
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where the rotational acceleration of the virtual center, ω̇vc(t), is defined as follows:

ω̇vc(t)=
ẋvc(t) (

...
y vc(t)−2ωvc(t)ẍvc(t))−ẏvc(t) (

...
x vc(t)+2ωvc(t)ÿvc(t))

ẋ2
vc(t)+ẏ2

vc(t)
. (A.23)

Note that in order to compute (A.23), knowledge of the velocities, ẋvc(t) and
ẏvc(t), accelerations, ẍvc(t) and ÿvc(t), and jerks, ...x vc(t) and

...
y vc(t), of the virtual

center is required.

A.4 Concluding Remarks
The objective of this appendix has been to facilitate the design of motion
coordination tasks for a group of unicycle robots. This is an aspect which is often
overlooked or left to higher level planning entities in the literature. Two different
methods to construct the reference trajectories for a group of mobile robots have
been introduced, resulting in so-called location oriented and formation oriented
reference trajectories. The location oriented approach produces a set of trajecto-
ries distributed throughout the workspace of the robots, whereas the formation
approach generates the reference trajectories of the robots in such a way that they
are able to maintain a certain geometrical shape while following a prescribed ref-
erence trajectory. Both approaches have been cast in the master-slave and mutual
motion coordination frameworks, and the necessary mathematical expressions to
produce the reference trajectories for a group of unicycles have been included. Al-
though the derivation of these mathematical expressions is rather straightforward,
it shows that there are certain cases in which the amount of information required
to produce the reference trajectory for a mobile robot could be more than one
would expect. For instance, when deriving the reference trajectories for a group of
slave robots in master-slave motion coordination considering a location oriented
approach, knowing up to the third derivative of the reference position of the mas-
ter is necessary. It then follows that the availability of these signals is something
that should not be taken for granted. An additional aspect to take into account
is the amount of information flowing between the robots in order to produce their
respective reference trajectories. Depending on the number of robots composing
the group, the type of motion coordination strategy, and the method being used to
construct their reference trajectories, it is possible to estimate the demands placed
on the communication channel and assess the feasibility of a certain task.
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B
REMOTE TRACKING CONTROL OF A

UNICYCLE ROBOT: PROOFS

B.1 Closed-Loop Error Dynamics
Recall the cascaded closed-loop error dynamics (4.9) repeated here for convenience:

ξ̇1(t) = A1(t, t− τ)ξ1(t) +A2ξ1(t− τ) + g(t, ξ1t , ξ2t), (B.1a)

ξ̇2(t) = B1ξ2(t) +B2ξ2(t− τ), (B.1b)

where ξ1(t) := [z1e(t) z2e(t) p1e(t) p2e(t)]
T , ξ2(t) := [z3e(t) p3e(t)]

T , ξ1t ∈ C(4), and
ξ2t ∈ C(2). The matrices and the coupling term in (B.1) are given by

A1(t, t− τ) =


−cx (1 + cy)ωr(t) −kx 0
−ωr(t) 0 0 −ky

0 0 0 ωr(t− τ)
0 0 −ωr(t− τ) 0

 ,

A2 =


0 0 0 0
0 0 0 0
0 0 −kx 0
0 0 0 −ky

 , B1 =
[
−cθ −kθ

0 0

]
, B2 =

[
0 0
0 −kθ

]
,

g(t, ξ1t , ξ2t) =


g11 kθz2e(t)
g21 −kθz1e(t)
0 g32

0 g42

 ξ2(t) +


0 0
0 0

cθp2e(t) kθp2e(t)
−cθp1e(t) −kθp1e(t)

 ξ2(t− τ),

with g11, g21, g32, and g42 already defined in Section 4.2.3.
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B.2 Proof of Theorem 4.1: Remote Tracking
Control of a Unicycle Robot (Local Uniform
Asymptotic Stability)

Note that the cascaded system (B.1) is a particular case of the cascaded sys-
tem (2.38) introduced in Section 2.5. Based on Theorem 2.25, the local uniform
asymptotic stability of the equilibrium point (zTe , p

T
e )T = 0 of the closed-loop error

dynamics (B.1) may be established if the following conditions are satisfied:

• the system ξ̇1(t) = A1(t, t − τ)ξ1(t) + A2ξ1(t − τ), denoted hereinafter as
the ξ1-dynamics without coupling, is locally uniformly asymptotically stable
(LUAS);

• the system ξ̇2(t) = B1ξ2(t) + B2ξ2(t − τ), denoted hereinafter as the
ξ2-dynamics, is locally uniformly asymptotically stable (LUAS);

• the coupling term g(t, ξ1t , ξ2t) vanishes when ξ2t → 0, that is, g(t, ξ1t , 0) = 0.

The validity of these three conditions is checked given the assumptions on the
tracking gains cx, cy, and cθ, correction gains kx, ky, and kθ, reference translational
and rotational velocities vr(t) and ωr(t), respectively, and maximum allowable
time-delay τmax, adopted in the theorem.

B.2.1 Requirement on the ξ1-Dynamics Without Coupling

Recall the ξ1-dynamics without coupling:

ξ̇1(t) = A1(t, t− τ)ξ1(t) +A2ξ1(t− τ), (B.2)

where A1(t, t− τ) and A2 are defined below (B.1). Considering the following state
definitions: η1(t) := [z1e(t) z2e(t)]

T and η2(t) := [p1e(t) p2e(t)]
T , (B.2) may be

rewritten as the following cascaded system:

η̇1(t) = ∆1(t)η1(t) + ∆2η2(t), (B.3a)
η̇2(t) = ∆3(t− τ)η2(t) + ∆4η2(t− τ), (B.3b)

where

∆1(t)=
[
−cx (1+cy)ωr(t)
−ωr(t) 0

]
, ∆2 =∆4 =

[
−kx 0

0 −ky

]
, ∆3(t)=

[
0 ωr(t)

−ωr(t) 0

]
.
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The local uniform asymptotic stability of the cascaded system (B.3), and thus
of the ξ1-dynamics without coupling (B.2), can be concluded according to Theorem
2.25 if the following conditions are satisfied:

• the system η̇1(t) = ∆1(t)η1(t), denoted hereinafter as the η1-dynamics with-
out coupling, is locally uniformly asymptotically stable (LUAS);

• the system η̇2(t) = ∆3(t− τ)η2(t) + ∆4η2(t− τ), denoted hereinafter as the
η2-dynamics, is locally uniformly asymptotically stable (LUAS).

• the coupling term gη1η2(t, η1t , η2t) vanishes when η2t → 0;

The previous conditions will be checked considering the requirements posed in
Theorem 4.1.

Requirement on the η1-Dynamics Without Coupling

The η1-dynamics without coupling are given by the following expression:[
ż1e(t)
ż2e(t)

]
=
[
−cx (1 + cy)ωr(t)
−ωr(t) 0

] [
z1e(t)
z2e(t)

]
. (B.4)

The error dynamics (B.4) have exactly the same form as the position tracking
error dynamics of a mobile robot under the control law proposed by Jakubiak et
al. (2002) and have already appeared in Section 2.6. According to Lemma 2.18,
these dynamics are globally exponentially stable (GES) for the requirements on
cx, cy, and ωr(t) posed in Theorem 4.1. From Definition 2.14 it follows that these
dynamics are also globally uniformly asymptotically stable (GUAS), which clearly
satisfies what we require.

Requirement on the η2-Dynamics

In order to establish the uniform asymptotic stability of the η2-dynamics as given
in (B.3b), let us first consider their delay-free version:

η̇2(t) = ∆0(t)η2(t), (B.5)

where ∆0(t) = ∆3(t) + ∆4 =
[
−kx ωr(t)
−ωr(t) −ky

]
.

The following candidate Lyapunov function is proposed for (B.5):

Vη2 =
1
2
p2

1e +
1
2
p2

2e = ηT2 Pη2η2, (B.6)
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with Pη2 = 1
2I2. The derivative of the candidate Lyapunov function Vη2 is given by

V̇η2 = −kxp2
1e − kyp

2
2e = −ηT2 Qη2η2, (B.7)

with Qη2 =
[
kx 0
0 ky

]
. Note that matrix Pη2 is positive definite, whereas matrix

Qη2 is positive definite for kx, ky > 0.

We will now use the Lyapunov-Razumikhin stability theorem (see Theorem
2.24) to show that the origin of the η2-dynamics (B.3b) is LUAS. Using Newton-
Leibniz’s law, these dynamics may be written as the following distributed delay
system:

η̇2(t) = ∆3(t− τ)η2(t) + ∆4

(
η2(t)−

∫ t

t−τ
η̇2(s)ds

)
= ∆̃0(t)η2(t)−∆4

∫ t

t−τ
∆3(s− τ)η2(s)ds−∆2

4

∫ t

t−τ
η2(s− τ)ds (B.8)

with ∆̃0(t) := ∆3(t − τ) + ∆4. It is worth noting that the proposed Lyapunov
function (B.6) is also a Lyapunov function for the system η̇2(t) = ∆̃0η2(t), with
both functions having the same decay rate, characterized by the matrix Qη2 . For
this reason, Vη2 as in (B.6) will be considered as a candidate Lyapunov-Razumikhin
function for the η2-dynamics (B.3b). Its derivative, given the distributed delay
system (B.8), satisfies

V̇η2 =−ηT2 Qη2η2−2ηT2 Pη2∆4

∫ 0

−τ
∆3(t+s−τ)η2(t+s)ds−2ηT2 Pη2∆2

4

∫ 0

−τ
η2(t+s−τ)ds

≤−ηT2 Qη2η2+2‖η2‖2λmax(Pη2)
(
‖∆4‖i2 sup

t∈R
‖∆3(t)‖i2

∫ 0

−τ
‖η2(t+s)‖2ds

+‖∆2
4‖i2

∫ 0

−τ
‖η2(t+s−τ)‖2ds

)
. (B.9)

The Lyapunov-Razumikhin stability theorem requires that V̇η2(t) < 0 whenever

Vη2(η2(t+ δ)) ≤ pVη2(η2(t)), (B.10)

for all t and −2τ ≤ δ ≤ 0 and some p > 1. This condition may be rewritten in
terms of ‖η2(t+ δ)‖2 and ‖η2(t)‖2 as follows:

‖η2(t+ δ)‖2 ≤

√
p
λmax(Pη2)
λmin(Pη2)

‖η2(t)‖2 (B.11)

for all −2τ ≤ δ ≤ 0.
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Using condition (B.11), the derivative (B.9) of the candidate Lyapunov-Razumikhin
function is rewritten in the following way:

V̇η2≤

(
−λmin(Qη2)+2τλmax(Pη2)

√
p
λmax(Pη2)
λmin(Pη2)

(
‖∆4‖i2 sup

t∈R
‖∆3(t)‖i2+‖∆2

4‖i2
))
‖η2‖22.

(B.12)

In order to conclude uniform asymptotic stability of the η2-dynamics (B.3b)
we require that V̇η2 < 0. Recall that the conditions in Theorem 2.25 state that
k := kx = ky, which results in ‖∆4‖i2 = k and ‖∆2

4‖i2 = k2. Moreover, given
ω̄r := supt∈R |ωr(t)|, it follows that supt∈R ‖∆3(t)‖i2 = ω̄r. In addition, note that
λmax(Pη2) = λmin(Pη2) = 1

2 and λmax(Qη2) = λmin(Qη2) = k. Considering the
previous analysis, the derivative of the candidate Lyapunov-Razumikhin function
Vη2 along the solutions of (B.3b) yields:

V̇η2 ≤ −
(
k − τ√p(kω̄r + k2)

)
‖η2‖22. (B.13)

Given (B.13) it is possible to pose requirements on the correction gains, refer-
ence rotational velocity, and allowable time-delay such that the condition for the
local uniform asymptotic stability on the η2-dynamics is met. Specifically, this
type of stability may be concluded for (B.3b) if the following condition on the
time-delay:

τ <
1

√
p(ω̄r + k)

, (B.14)

and the requirements for ωr(t), kx, and ky stated in Theorem 4.1 are all satisfied.

Requirement on the Coupling Term gη1η2(t, η1t , η2t)

Since the coupling term is only dependent on η2(t), gη1η2(t, η1t , η2t) → 0 as
η2t → 0, which means that the requirement on the coupling term is met.

In conclusion, the local uniform asymptotic stability of the ξ1-dynamics without
coupling (B.2) is guaranteed provided the time-delay satisfies condition (B.14) and
the requirements for ωr(t), cx, cy, kx, and ky stated in Theorem 4.1 are met.

B.2.2 Requirement on the ξ2-Dynamics

Recall the ξ2-dynamics:

ξ̇2(t) = B1ξ2(t) +B2ξ2(t− τ), (B.15)
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where B1 and B2 have already been defined below (B.1). The ξ2-dynamics may
be rewritten as the following cascaded system:

ż3e(t) = −cθz3e(t)− kθp3e(t), (B.16a)
ṗ3e(t) = −kθp3e(t− τ). (B.16b)

In order to deduce the local uniform asymptotic stability of the cascaded system
(B.16), and thus of the ξ2-dynamics (B.15), the following is required:

• the system ż3e(t) = −cθz3e(t), denoted hereinafter as the z3e -dynamics with-
out coupling, is locally uniformly asymptotically stable (LUAS);

• the system ṗ3e(t), denoted hereinafter as the p3e -dynamics, is locally uni-
formly asymptotically stable (LUAS);

• the coupling term gz3p3(t, z3t , p3t) to vanish when p3t → 0.

Requirement on the z3e-Dynamics Without Coupling

The exponential stability of ż3e(t) = −cθz3e(t) is ensured for cθ > 0. Given that
the system is linear time-invariant (LTI), its (local) uniform asymptotic stability
immediately follows.

Requirement on the p3e-Dynamics

The characteristic quasi-polynomial of (B.16b) is given by

s+ kθe
−sτ = 0. (B.17)

Substituting s = σ + j$ into (B.17) and applying Euler’s formula yields

(σ + j$) + kθe
−στ−j$τ = (σ + j$) + kθe

−στ (cos$τ − j sin$τ) = 0, (B.18)

which is equivalent to the following set of equations:

σ + kθe
−στ cos$τ = 0, (B.19a)

$ − kθe−στ sin$τ = 0. (B.19b)

When the system is marginally stable, at least one root is located on the
imaginary axis (in this case σ = 0), resulting in the following condition for marginal
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stability:

kθ cos$τ = 0, (B.20a)
kθ sin$τ = $. (B.20b)

For (B.20a) to hold it follows that $τ = π
2 +nπ for n = 0,±1,±2, . . .. Consid-

ering these values of $τ and in order for (B.20b) to hold we have that kθ = ±$.
From the previous equalities it follows that kθτ = π

2 + nπ for n = 0,±1,±2, . . ..
Note that the characteristic polynomial of the delay-free version of system (B.17)
is given by s + kθ = 0, which means that this delay-free system is exponentially
stable for kθ > 0. Hence, invoking the continuity of eigenvalues argument for
LTI systems, we have that the global exponential stability (and therefore the local
uniform asymptotic stability) of the p3e -dynamics (B.16b) is ensured for

τ <
π

2kθ
, (B.21)

with kθ > 0.

Requirement on the Coupling Term gz3p3(t, z3t , p3t)

Note that the coupling term will vanish when p3t → 0, as it is linear and only
dependent on p3t . Thus, the condition on gz3p3(t, z3t , p3t) is satisfied.

Given that the conditions on the z3e -dynamics without coupling, the p3e -
dynamics, and the coupling term are met, we can conclude that the ξ2-dynamics
(B.15) are LUAS for the conditions in Theorem 4.1.

B.2.3 Requirement on the Coupling Term g(t, ξ1t , ξ2t)

Given the coupling term g(t, ξ1t , ξ2t) as defined in (B.1) and from the definition
of ξ2t , we have that as ξ2t → 0, both ξ2(t)→ 0 and ξ2(t− τ)→ 0. It then follows
that, as ξ2t → 0, the coupling term vanishes, which means that the requirement
on the coupling term is satisfied.

In conclusion, the local uniform asymptotic stability of the equilibrium point
(zTe , p

T
e )T = 0 of the closed-loop error dynamics (B.1) may be established provided

that the conditions in Theorem 4.1 for the tracking gains cx, cy, and cθ, correc-
tion gains kx, ky, and kθ, constant p, and reference translational and rotational
velocities, vr(t) and ωr(t), respectively, are met, and guaranteeing that (B.14) and
(B.21) are satisfied by means of condition (4.10) in the theorem. This means that
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the state estimator converges to the reference trajectory, since ze(t)→ 0 as t→∞,
or equivalently, z(t) → qr(t) as t → ∞. Additionally, the state estimator antici-
pates the system due to the fact that pe(t)→ 0 as t→∞, that is, z(t)→ q(t+ τf )
as t→∞. It then follows that q(t)→ qr(t− τf ) as t→∞, which means that the
unicycle robot subject to a communication delay τ tracks the reference trajectory
delayed by τf . This completes the proof.

B.3 Proof of Theorem 4.3: Remote Tracking
Control of a Unicycle Robot (Global Uniform
Asymptotic Stability)

In order to prove the global uniform asymptotic stability of the cascaded system
(B.1), a similar approach to the one used to prove its local stability will be followed.
In this case, based on Theorem 2.26, the following conditions may be posed in
order to establish the global uniform asymptotic stability of the equilibrium point
(zTe , p

T
e )T = 0 of the predictor’s closed-loop error dynamics:

• the ξ1-dynamics without coupling are globally exponentially stable (GES)
with an explicit quadratic Lyapunov-Razumikhin function Vξ1 ;

• the ξ2-dynamics are globally exponentially stable (GES);

• the coupling term g(t, ξ1t , ξ2t) admits the estimate

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c, (B.22)

for continuous functions α1, α2 : R+ → R+.

The exponential stability requirements on the ξ1-dynamics without coupling
and the ξ2-dynamics are based on the assumptions in Theorem 2.26 and the re-
marks that follow the theorem. In the case of the ξ1-dynamics without coupling,
the first four assumptions in Theorem 2.26 are satisfied if the system is GUAS
characterized by a strict Lyapunov-Razumikhin function and the fifth assumption
is fulfilled if the associated Lyapunov-Razumikhin function is quadratic. It then
follows that requiring the global exponential stability of these dynamics charac-
terized by a quadratic strict Lyapunov-Razumikhin function will satisfy all the
assumptions related to them. Although this requirement may be too restrictive
in general, it appears to be adequate for the problem currently being considered.
Regarding the ξ2-dynamics, the seventh assumption in Theorem 2.26 poses the
requirement for the global exponential stability of these dynamics. It is also worth
noting that, because of the stability requirement on the ξ1-dynamics without cou-
pling, the estimate on the coupling term may be rewritten as in (B.22) according
to the remarks that follow Theorem 2.26.
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The validity of the three conditions in the list above is checked given the
assumptions on the tracking gains cx, cy, and cθ, correction gains kx, ky, and kθ,
reference translational and rotational velocities vr(t) and ωr(t), respectively, and
maximum allowable time-delay τmax, adopted in the theorem.

B.3.1 Requirement on the ξ1-Dynamics Without Coupling

Recall the ξ1-dynamics without coupling:

ξ̇1(t) = A1(t, t− τ)ξ1(t) +A2ξ1(t− τ), (B.23)

in which A1(t, t− τ) and A2 have already been defined in (B.1) and their cascaded
representation introduced in (B.3) in Section B.2.1. This cascaded system without
a time-delay is given by the following LTV system:

η̇1(t) = ∆1(t)η1(t) + ∆2η2(t), (B.24a)
η̇2(t) = (∆3(t) + ∆4)η2(t). (B.24b)

The delay-free η1-dynamics without coupling in (B.24a) are given by[
ż1e(t)
ż2e(t)

]
=
[
−cx (1 + cy)ωr(t)
−ωr(t) 0

] [
z1e(t)
z2e(t)

]
, (B.25)

which have exactly the same form as (B.4) and have already been determined to
be GES.

From Lyapunov converse theory (see Theorem 2.15), we know that since the
delay-free
η1-dynamics without coupling are GES, there exists, for all t, a continuously dif-
ferentiable, bounded, positive definite, symmetric matrix Pη1(t) that satisfies

− Ṗη1(t) = Pη1(t)∆1(t) + ∆T
1 (t)Pη1(t) +Qη1(t), ∀t, (B.26)

where Qη1(t) is continuous, bounded, positive definite, and symmetric, and ∆1(t)
is required to be continuous in t and bounded for all t. The requirement on ∆1(t)
is satisfied since ωr(t) is required to be continuous and bounded, as it is PE (see
Definition 2.4).

As a result, Vη1 = ηT1 Pη1(t)η1 is a Lyapunov function for the delay-free η1-
dynamics without coupling. The derivative of this function satisfies

V̇η1 = −ηT1 Qη1(t)η1 ≤ −β1‖η1‖22, (B.27)

where β1 := inft∈R λmin(Qη1(t)).
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On the other hand, the delay-free η2-dynamics (B.24b) have already been de-
termined to be GES for kx, ky > 0 in Section B.2.1, with the Lyapunov function
Vη2 defined in (B.6).

Recapitulating, the delay-free η1-dynamics without coupling admit a Lyapunov
function Vη1 = ηT1 Pη1(t)η1, whereas the delay-free η2-dynamics admit a Lyapunov
function Vη2 = ηT2 Pη2η2. Considering this, we now propose

Vξ1 = Vη1 + Vη2 = ηT1 Pη1(t)η1 + ηT2 Pη2η2 (B.28)

as a candidate Lyapunov-Razumikhin function for the ξ1-dynamics without
coupling, that is, for (B.23).

We will now use the Lyapunov-Razumikhin stability theorem to show that the
origin of (B.23) is GES and that (B.28) is a Lyapunov-Razumkhin function which
satisfies the requirements stated in Theorem 4.3.

Recall that by using Newton-Leibniz’s law, the η2-dynamics (B.3b) may be
written as the distributed delay system (B.8). Considering this, the derivative of
the candidate Lyapunov-Razumikhin function (B.28) is given by

V̇ξ1 =ηT1 Qη1(t)η1+2ηT1 Pη1(t)∆2η2−ηT2 Qη2η2−2ηT2 Pη2∆4

∫ 0

−τ
∆3(t+s−τ)η2(t+s)ds

−2ηT2 Pη2∆2
4

∫ 0

−τ
η2(t+s−τ)ds

≤−β1‖η1‖22+2 sup
t∈R

(‖Pη1(t)‖i2)‖∆2‖i2‖η1‖2‖η2‖2−ηT2 Qη2η2+2‖η2‖2λmax(Pη2)(
‖∆4‖i2 sup

t∈R
‖∆3(t)‖i2

∫ 0

−τ
‖η2(t+s)‖2ds+‖∆2

4‖i2
∫ 0

−τ
‖η2(t+s−τ)‖2ds

)
.

(B.29)

The Lyapunov-Razumikhin stability theorem requires that V̇ξ1(t) < 0 whenever

Vξ1(ξ1(t+ δ)) ≤ pVξ1(ξ1(t)), (B.30)

for all t and −2τ ≤ δ ≤ 0 and some p > 1. This condition may be rewritten in
terms of Vη1 and Vη2 as

Vη1(η1(t+ δ)) + Vη2(η2(t+ δ)) ≤ p (Vη1(η1(t)) + Vη2(η2(t))) , (B.31)

for all t and −2τ ≤ δ ≤ 0 and some p > 1. It is possible to replace condition
(B.31) by a condition given in terms of ‖η1(t + δ)‖2, ‖η1(t)‖2, ‖η2(t + δ)‖2, and
‖η2(t)‖2 as follows:

‖η2(t+ δ)‖2 ≤
(
p

supt∈R (λmax(Pη1(t)))
λmin(Pη2)

‖η1(t)‖22 + p
λmax(Pη2)
λmin(Pη2)

‖η2(t)‖22
)1/2

.

(B.32)
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Using the fact that ‖a‖2 ≤ ‖a‖1, (B.32) may be replaced by the following
condition:

‖η2(t+δ)‖2 ≤

√
p

supt∈R (λmax(Pη1(t)))
λmin(Pη2)

‖η1(t)‖2 +

√
p
λmax(Pη2)
λmin(Pη2)

‖η2(t)‖2. (B.33)

Considering (B.29) and using condition (B.33), the derivative of the candidate
Lyapunov-Razumikhin function becomes:

V̇ξ1 ≤−β1‖η1‖22+2 sup
t∈R

(‖Pη1(t)‖i2)‖∆2‖i2‖η1‖2‖η2‖2−λmin(Qη2)‖η2‖22+2τλmax(Pη2)

×
(
‖∆4‖i2 sup

t∈R
‖∆3(t)‖i2+‖∆2

4‖i2
)

×

(√
p

supt∈R (λmax(Pη1(t)))
λmin(Pη2)

‖η1‖2‖η2‖2+

√
p
λmax(Pη2)
λmin(Pη2)

‖η2‖22

)
=−β1‖η1‖22+2‖η1‖2‖η2‖2

×

(
sup
t∈R

(‖Pη1(t)‖i2)‖∆2‖i2+τλmax(Pη2)

√
p

supt∈R (λmax(Pη1(t)))
λmin(Pη2)

×
(
‖∆4‖i2 sup

t∈R
‖∆3(t)‖i2+‖∆2

4‖i2
))
−

(
λmin(Qη2)−2τλmax(Pη2)

√
p
λmax(Pη2)
λmin(Pη2)

×
(
‖∆4‖i2 sup

t∈R
‖∆3(t)‖i2+‖∆2

4‖i2
))
‖η2‖22. (B.34)

Given the following definitions:

β2 := β21 + β22τ

= λmin(Qη2)︸ ︷︷ ︸
β21

−2λmax(Pη2)

√
p
λmax(Pη2)
λmin(Pη2)

(
‖∆4‖i2 sup

t∈R
‖∆3(t)‖i2 + ‖∆2

4‖i2
)

︸ ︷︷ ︸
β22

τ,

(B.35a)

β3 := β31 + β32τ

= 2 sup
t∈R

(‖Pη1(t)‖i2)‖∆2‖i2︸ ︷︷ ︸
β31

+2λmax(Pη2)

√
p

supt∈R (λmax(Pη1(t)))
λmin(Pη2)

(
‖∆4‖i2 sup

t∈R
‖∆3(t)‖i2 + ‖∆2

4‖i2
)

︸ ︷︷ ︸
β32

τ,

(B.35b)
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the derivative of the candidate Lyapunov-Razumikhin function (B.28) satisfies

V̇ξ1 ≤ −β1‖η1‖22 − β2‖η2‖22 + β3‖η1‖2‖η2‖2. (B.36)

Considering that for all γ > 0 the following holds:

‖η1‖2‖η2‖2 ≤ γ‖η1‖22 +
1
γ
‖η2‖22,

we have that (B.36) may be rewritten as

V̇ξ1 ≤−β1‖η1‖22−β2‖η2‖22+β3γ‖η1‖22+β3
1
γ
‖η2‖22

=−(β1−(β31+β32τ)γ) ‖η1‖22−
(

(β21+β22τ)−(β31+β32τ)
1
γ

)
‖η2‖22. (B.37)

In order for V̇ξ1 < 0 to hold, the following inequalities must be satisfied:

β1 − (β31 + β32τ)γ > 0, (B.38a)

(β21 + β22τ)− (β31 + β32τ)
1
γ
> 0. (B.38b)

Recall that the conditions in Theorem 4.3 state that k := kx = ky, so we have
that ‖∆2‖i2 = ‖∆4‖i2 = k and ‖∆2

4‖i2 = k2. Moreover, given ω̄r := supt∈R |ωr(t)|
it follows that supt∈R ‖∆3(t)‖i2 = ω̄r. In addition, note that λmax(Pη2) =
λmin(Pη2) = 1

2 and λmax(Qη2) = λmin(Qη2) = k. Considering these facts, β2 and
β3, as defined in (B.35a) and (B.35b), respectively, may be rewritten as follows:

β2 = k︸︷︷︸
β21

−√pk(ω̄r + k)︸ ︷︷ ︸
β22

τ, (B.39a)

β3 = 2k sup
t∈R
‖Pη1(t)‖i2︸ ︷︷ ︸
β31

+k(ω̄r + k)
√

2p sup
t∈R
‖Pη1(t)‖i2︸ ︷︷ ︸

β32

τ. (B.39b)

The derivative (B.37) of the Lyapunov-Razumikhin function along the solutions
of (B.23) may now be expressed as

V̇ξ1 ≤−

(
inf
t∈R

λmin(Qη1(t))−2γk sup
t∈R
‖Pη1(t)‖i2−τγk(ω̄r+k)

√
2p sup

t∈R
‖Pη1(t)‖i2

)
‖η1‖22

−

(
k−τ√pk(ω̄r+k)− 2

γ
k sup
t∈R
‖Pη1(t)‖i2−

τ

γ
k(ω̄r+k)

√
2p sup

t∈R
‖Pη1(t)‖i2

)
‖η2‖22,

(B.40)
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in which β1 = inft∈R λmin(Qη1(t)) has been used.

From (B.40), we know that it is possible to pose requirements on the track-
ing gains, correction gains, reference rotational velocity, and allowable time-delay
such that the condition for global exponential stability of the ξ1-dynamics without
coupling is met.

The global exponential stability of (B.23) may be concluded from (B.40) in
terms of the time-delay by considering (B.38), resulting in the following require-
ments for the time-delay τ :

τ <
β1 − γβ31

β32γ
, (B.41)

and
τ <

β21γ − β31

β32 − β22γ
, (B.42)

which may be rewritten as follows by taking (B.39a) and (B.39b) into account:

τ <
inft∈R λmin(Qη1(t))− 2γk supt∈R ‖Pη1(t)‖i2

γk(ω̄r + k)
√

2p supt∈R ‖Pη1(t)‖i2
, (B.43)

and
τ <

γ − 2 supt∈R ‖Pη1(t)‖i2
(ω̄r + k)(γ

√
p+

√
2p supt∈R ‖Pη1(t)‖i2)

. (B.44)

Given the fact that supt∈R ‖Pη1(t)‖i2 is bounded and inft∈R λmin(Qη1(t)) > 0,
the previous conditions imply that there exist k > 0 sufficiently small and γ > 0
sufficiently large so that there exists τmax > 0 such that (B.43) and (B.44) are
satisfied for all τ ∈ [0, τmax]. Hence, for all 0 ≤ τ ≤ τmax, there exist k > 0
sufficiently small and γ > 0 sufficiently large for which ξ1 = 0 is a GES equilibrium
point of (B.23).

In this sense, there seem to be two conditions which can always be fulfilled.
Namely, first chose γ large enough to satisfy condition (B.44). Then, chose k small
enough to satisfy condition (B.43). Note that as γ →∞, it is necessary for k ↓ 0.

Considering the previous remarks, it is possible to conclude that k > 0 can
always be chosen small enough such that the condition on the ξ1-dynamics without
coupling is satisfied; namely, that these dynamics are GES.

B.3.2 Requirement on the ξ2-Dynamics

To begin with, recall that the ξ2-dynamics are required to be GES. On the other
hand, note that the local uniform asymptotic stability of these dynamics has
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already been established in Section B.2.2. Since the system is LTI, the global
aspect follows directly and, in accordance with Definition 2.12, the system is
also exponentially stable. In conclusion, the global exponential stability of the
ξ2-dynamics is ensured for

τ <
π

2kθ
, (B.45)

provided cθ and kθ satisfy the conditions in Theorem 4.3.

B.3.3 Requirement on the Coupling Term g(t, ξ1t , ξ2t)

We are required to show that there exist continuous functions α1, α2 : R+ → R+

such that the coupling terms satisfies the following bound:

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c, (B.46)

for any ϕξ1 ∈ C(4) and ϕξ2 ∈ C(2).

We can rewrite the coupling term as defined in (B.46) in terms of ϕξ1 and ϕξ2
as follows:

g(t, ϕξ1 , ϕξ2) = g1(t, t− τ, ϕξ1 , ϕξ2(0))ξ2(t) + g2(ϕξ1(0))ξ2(t− τ), (B.47)

with

g1(t, t− τ, ϕξ1 , ϕξ2(0))=


g11 kθz2e(t)
g21 −kθz1e(t)
0 g32

0 g42

 , g2(ϕξ1(0))=


0 0
0 0

cθp2e(t) kθp2e(t)
−cθp1e(t) −kθp1e(t)

 ,
and g11, g21, g32, and g42 already defined below (B.1).

Considering (B.46) and (B.47), the following holds:

‖g(t, ϕξ1 , ϕξ2)‖1 = ‖g1(t, t−τ, ϕξ1 , ϕξ2(0))ϕξ2(0)+g2(ϕξ1(0))ϕξ2(−τ)‖1
≤ ‖g1(t, t−τ, ϕξ1 , ϕξ2(0))ϕξ2(0)‖1+‖g2(ϕξ1(0))ϕξ2(−τ)‖1
≤ ‖g1(t, t−τ, ϕξ1 , ϕξ2(0))‖i1‖ϕξ2(0)‖1+‖g2(ϕξ1(0))‖i1‖ϕξ2(−τ)‖1
≤ (‖g1(t, t−τ, ϕξ1 , ϕξ2(0))‖i1+‖g2(ϕξ1(0))‖i1) ‖ϕξ2‖c
≤ (‖g1(t, t− τ, ϕξ1 , ϕξ2(0))‖sum + ‖g2(ϕξ1(0))‖sum) ‖ϕξ2‖c,

(B.48)

where we have used the fact that ‖A‖i1 ≤ ‖A‖sum in the last inequality.

From (B.48) it follows that, in order to satisfy the requirement on the coupling
term, it suffices to show that there exist continuous functions α1, α2 : R+ → R+
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such that the following inequality is satisfied:

‖g1(t, t−τ, ϕξ1 , ϕξ2(0))‖sum+‖g2(ϕξ1(0))‖sum ≤ α1(‖ϕξ2‖c)+α2(‖ϕξ2‖c)‖ϕξ1‖c.
(B.49)

Considering the coupling term expressed in terms of particular solutions of
(B.1), the following condition results from (B.49) and the definition of the sum
matrix norm and the triangle inequality:

‖g1(t, t−τ, ξ1t , ξ2t(0))‖sum+‖g2(ξ1t(0))‖sum

≤ |cθz2e(t)|+
∣∣∣∣vr(t)1−cos z3e(t)

z3e(t)

∣∣∣∣+|kθz2e(t)|+|cθz1e(t)|+
∣∣∣∣vr(t) sin z3e(t)

z3e(t)

∣∣∣∣+|kθz1e(t)|

+
∣∣∣∣vr(t−τ)

1−cos p3e(t)
p3e(t)

∣∣∣∣+∣∣∣∣cxz1e(t−τ)
1−cos p3e(t)

p3e(t)

∣∣∣∣+|cθp2e(t)|+|kθp2e(t)|

+
∣∣∣∣vr(t−τ)

sin p3e(t)
p3e(t)

∣∣∣∣+∣∣∣∣cxz1e(t−τ)
sin p3e(t)
p3e(t)

∣∣∣∣+|cθp1e(t)|+|kθp1e(t)|

+
∣∣∣∣cyωr(t−τ)z2e(t−τ)

1−cos p3e(t)
p3e(t)

∣∣∣∣+∣∣∣∣cyωr(t−τ)z2e(t−τ)
sin p3e(t)
p3e(t)

∣∣∣∣ . (B.50)

Given the equalities defined in (2.2) note that the functions sin x
x and 1−cos x

x

are continuous and always ≤ 1 for all x, which allows to rewrite inequality (B.50)
as follows:

‖g1(t, t−τ, ξ1t , ξ2t(0))‖sum+‖g2(ξ1t(0))‖sum

≤ (|cθ|+|kθ|) (|z1e(t)|+|z2e(t)|+|p1e(t)|+|p2e(t)|)+2 |vr(t)|+2 |vr(t−τ)|
+ 2 |cxz1e(t−τ)|+2 |cyωr(t−τ)z2e(t−τ)| . (B.51)

The theorem requires cx, cy, cθ, kθ > 0 and recall that ω̄r = supt∈R |ωr(t)|.
Since vr(t) is bounded, we may define v̄r := supt∈R |vr(t)|. Inequality (B.51) may
now be expressed as follows:

‖g1(t, t−τ, ξ1t , ξ2t(0))‖sum+‖g2(ξ1t(0))‖sum

≤ (cθ+kθ) (|z1e(t)|+|z2e(t)|+|p1e(t)|+|p2e(t)|)+4 |v̄r|+2cx |z1e(t−τ)|
+2|cy|ω̄r |z2e(t−τ)|
≤ 4 |v̄r|+(cθ+kθ) (|z1e(t)|+|z2e(t)|+|p1e(t)|+|p2e(t)|)

+2(cx+|cy|ω̄r) (|z1e(t−τ)|+|z2e(t−τ)|+|p1e(t−τ)|+|p2e(t−τ)|)
≤ 4 |v̄r|+(cθ+kθ)‖ξ1(t)‖1+2(cx+|cy|ω̄r)‖ξ1(t−τ)‖1
≤ 4 |v̄r|+(cθ+kθ+2(cx+|cy|ω̄r))‖ξ1t‖c. (B.52)
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We may now express inequality (B.52) in terms of ϕξ1 and ϕξ2 , that is, for any
elements of the Banach spaces C(4) and C(2), respectively, as follows:

‖g1(t, t−τ, ϕξ1 , ϕξ2(0))‖sum+‖g2(ϕξ1(0))‖sum ≤ 4 |v̄r|+(cθ+kθ+2(cx+|cy|ω̄r))‖ϕξ1‖c.
(B.53)

From (B.53) we have that inequality (B.49) can be satisfied with α1(‖ϕξ2‖c) =
4|v̄r| and α2(‖ϕξ2‖c) = 4(cθ+kθ+2(cx+|cy|ω̄r)), which means that the requirement
on the coupling term is met.

After checking the three conditions formulated at the beginning of the proof
we have that the global uniform asymptotic stability of the equilibrium point
(zTe , p

T
e )T = 0 of the closed-loop error dynamics (B.1) is concluded, provided that

the conditions in Theorem 4.3 for the tracking gains cx, cy, and cθ, correction gains
kx, ky, and kθ, constant p, and reference translational and rotational velocities,
vr(t) and ωr(t), respectively, are met. The conditions on the control parameters
imply that there exist correction gains k = kx = ky > 0 sufficiently small, kθ > 0,
and a constant γ > 0 sufficiently large such that the conditions on τ posed in
(B.43), (B.44), and (B.45) are satisfied, and for which the origin of the closed-loop
error dynamics (B.1) is GUAS.

As a result, the state estimator converges to the reference trajectory, since
ze(t) → 0 as t → ∞, or equivalently, z(t) → qr(t) as t → ∞. Additionally, the
state estimator anticipates the system due to the fact that pe(t) → 0 as t → ∞,
that is, z(t)→ q(t+τf ) as t→∞. It then follows that q(t)→ qr(t−τf ) as t→∞,
which means that the unicycle robot subject to a network-induced delay τ tracks
the reference trajectory delayed by τf . This completes the proof.
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C
REMOTE MOTION COORDINATION OF

UNICYCLE ROBOTS: PROOFS

C.1 Closed-Loop Error Dynamics

Recall the cascaded closed-loop error dynamics (5.10), repeated here for
convenience:

ξ̇1(t) = A1(t)ξ1(t) +A2(t)ξ1(t− τ) + g(t, ξ1t , ξ2t), (C.1a)

ξ̇2(t) = −Cθξ2(t) +Kθξ2(t− τ), (C.1b)

where ξ1(t) := [XT
e (t)Y Te (t)]T , ξ2(t) := ΘT

e (t), ξ1t ∈ C(2n), and ξ2t ∈ C(n). The
matrices and the coupling term in (C.1) are given by

A1(t) =
[
−Cx Ω̄r(t)(In×n + Cy)
−Ω̄r(t) 0n×n

]
,

A2(t) =
[
Kx −Ω̄r(t)Ky

0n×n 0n×n

]
,

g(t, ξ1t , ξ2t) =
[
Ȳe(t)Cθ − Vr(t)Θesin

−X̄e(t)Cθ + Vr(t)Θecos

]
ξ2(t) +

[
−Ȳe(t)Kθ

X̄e(t)Kθ

]
ξ2(t− τ),

where all the elements in A1(t), A2(t), and g(t, ξ1t , ξ2t) have already been defined
below (5.9) in Section 4.2.3. In addition, we define the vector of reference rotational
velocities of the robots as Ωr(t) := {ωri(t), . . . , ωrn(t)}, for all i ∈ {1, 2, . . . , n}.
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C.2 Proof of Theorem 5.3: Remote Motion
Coordination of Unicycle Robots

The global uniform asymptotic stability of the equilibrium point Qe(t) = 0 of
the cascaded system (C.1) is guaranteed provided the following conditions, which
follow from the application of Theorem 2.26, are satisfied:

• the system ξ̇1(t) = A1(t)ξ1(t) + A2(t)ξ1(t − τ), denoted hereinafter as the
ξ1-dynamics without coupling, is globally exponentially stable (GES) with a
quadratic Lyapunov-Razumikhin function Vξ1 ;

• the system ξ̇2(t) = −Cθξ2(t) + Kθξ2(t − τ), denoted hereinafter as the
ξ2-dynamics, is globally exponentially stable (GES);

• the coupling term g(t, ξ1t , ξ2t) admits the estimate

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c,

for continuous functions α1, α2 : R+ → R+.

These three conditions are checked considering the conditions in the theorem on
the tracking gains cxi , cyi , and cθi , i ∈ {1, 2, . . . , n}, coupling gains kxi,j , kyi,j , kθi,j ,
i, j ∈ {1, 2, . . . , n}, j 6= i, and reference translational and rotational velocities vri(t)
and ωri(t), i ∈ {1, 2, . . . , n}, respectively.

C.2.1 Requirement on the ξ1-Dynamics Without Coupling

The ξ1-dynamics without coupling are given by

ξ̇1(t) = A1(t)ξ1(t) +A2(t)ξ1(t− τ), (C.2)

whereas their delay-free version is given as follows:

ξ̇1(t) = A0(t)ξ1(t), (C.3)

with A0(t)=A1(t)+A2(t) =
[
−C̃x Ω̄r(t)(In×n+C̃y)
−Ω̄r(t) 0n×n

]
, where C̃x :=Cx−Kx and

C̃y :=Cy−Ky.

Before studying the stability of the delayed system (C.2), we will first study
the delay-free system (C.3). In order to do so, consider the following candidate
Lyapunov function first proposed by Sadowska (2010):

V = ξT1 Pξ1, (C.4)
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with P = 1
2

[
In×n 0n×n
0n×n In×n + C̃y

]
.

It is worth noting that the matrices C̃x and C̃y are positive definite (that is,
C̃x, C̃y > 0) provided the requirements on the position tracking and coupling gains
in the theorem are satisfied, that is, cxi > 0, cyi > −1, and kxi,j = kxj,i , kyi,j =
kyj,i > 0 for i, j ∈ {1, 2, . . . , n}, j 6= i. This has already been shown in Sadowska
(2010) using Gershgorin’s circle theorem (see Theorem 2.1). In turn, the fact that
C̃y > 0 implies that P in (C.4) is positive definite.

The time-derivative of V as in (C.4) along the solutions of (C.3) is given by

V̇ = −ξT1 Qξ1, (C.5)

with Q =
[
C̃x 0n×n

0n×n 0n×n

]
, which is negative semi-definite as long as C̃x > 0.

We will now make use of Theorem 2.17 to conclude the global exponential sta-
bility of (C.3). To begin with, given the candidate Lyapunov function V , condition
(2.18) is rewritten as follows:

PA(t) +AT (t) + CTC ≤ 0, (C.6)

which, clearly, is satisfied for C := [Ĉx 0n×n], where ĈTx Ĉx = C̃x.

It only remains to be shown that the pair (A0(t), C) is uniformly completely ob-
servable (UCO) in order to conclude the global exponential stability of (C.3). This
can be done with the aid of Theorem 2.19. First, note that under the conditions
of Theorem 5.3, the vector of reference rotational velocities Ωr(t) is persistently
exciting, as required in Theorem 2.19. This means that ωri(t) is bounded and Lip-
schitz in t for all i ∈ {1, 2, . . . , n}, which implies that A(t) in (C.3) is also bounded
and Lipschitz in t. We now have to show that the pair (A0(Ωr), C) is observable
provided every ωri in Ωr is different from zero, that is, ωri 6= 0 for i ∈ {1, 2, . . . , n}.
The observability matrix O of the pair (A0(Ωr), C) is given as follows:

O =
[

C

CA0(Ωr)

]
=
[

Ĉx 0n×n
−ĈxC̃x ĈxΩr(In×n + C̃y)

]
, (C.7)

whose rank is n due to the fact that Ĉx, C̃x, and In×n + C̃y are positive definite
and the fact that all ωri 6= 0 for all i ∈ {1, 2, . . . , n}, which implies that Ωr is
full rank. Since all the requirements in Theorem 2.19 have been satisfied, we can
ensure that the pair (A0(t), C) is UCO. This shows, using Theorem 2.17, that the
delay-free ξ1-dynamics without coupling (C.3) are GES.
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Now, in order to study the stability of (C.2), which includes the delay, recall
that according to Lyapunov converse theory (see Theorem 2.15), since system
(C.3) is GES, there exists a continuously differentiable, bounded, positive definite,
symmetric matrix Pξ1(t) which satisfies the following equation:

− Ṗξ1(t) = Pξ1(t)A0(t) +AT0 (t)Pξ1(t) +Qξ1(t), (C.8)

where Qξ1(t) is continuous, bounded, positive definite, and symmetric, and A0(t)
is required to be continuous in t and bounded for all t. It then follows that
the requirements on A0(t) are satisfied, since all ωri(t) contained in Ωr(t) are
continuous and bounded due to the fact that Ωr(t) is persistently exciting in
accordance to Definition 2.5.

As a result, Vξ1 = ξT1 Pξ1(t)ξ1 is a strict Lyapunov function for system (C.3),
with

V̇ξ1 = −ξT1 Qξ1(t)ξ1 ≤ −β1‖ξ1‖22, (C.9)

where β1 := inft∈R λmin(Qξ1(t)).

Considering the previous developments, we now propose the following candi-
date Lyapunov-Razumikhin function for (C.2):

Vξ1 = ξT1 Pξ1(t)ξ1. (C.10)

Using the Lyapunov-Razumikhin stability theorem (see Theorem 2.24), we will
show that the origin of system (C.2) is GUAS. In order to do so, (C.2) is first
rewritten as the following distributed delay system:

ξ̇1(t) = A1(t)ξ1(t) +A2(t)
(
ξ1(t)−

∫ t

t−τ
ξ̇1(s)ds

)
= A0(t)ξ1(t)−A2(t)

∫ t

t−τ
A1(s)ξ1(s)ds−A2(t)

∫ t

t−τ
A2(s)ξ1(s−τ)ds. (C.11)

Considering (C.11), the derivative of the candidate Lyapunov-Razumikhin func-
tion (C.10) is the following:

V̇ξ1 = −ξT1 Qξ1(t)ξ1 −
(∫ t

t−τ
A1(s)ξ1(s)ds

)T
AT2 (t)Pξ1(t)ξ1

−
(∫ t

t−τ
A2(s)ξ1(s− τ)ds

)T
AT2 (t)Pξ1(t)ξ1 − ξT1 Pξ1(t)A2(t)

∫ t

t−τ
A1(s)ξ1(s)ds

− ξT1 Pξ1(t)A2(t)
∫ t

t−τ
A2(s)ξ1(s− τ)ds
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≤ −β1‖ξ1‖22 + 2 sup
t∈R
‖Pξ1(t)‖i2 sup

t∈R
‖A2(t)‖i2‖ξ1‖2

×
(

sup
t∈R
‖A1(t)‖i2

∫ 0

−τ
‖ξ1(t+ s)‖2ds+ sup

t∈R
‖A2(t)‖i2

∫ 0

−τ
‖ξ1(t+ s− τ)‖2ds

)
.

(C.12)

Note that supt∈R ‖A1(t)‖i2 and supt∈R ‖A2(t)‖i2 exist, since the elements of
A1(t) and A2(t), including Ω̄r(t), are bounded.

The Lyapunov-Razumikhin stability theorem requires that V̇ξ1(t) < 0 whenever

Vξ1(ξ1(t+ δ)) ≤ pVξ1(ξ1(t)), (C.13)

for all t and −2τ ≤ δ ≤ 0 and some p > 1. The following (stricter) condition,
given in terms of ‖ξ1(t+ δ)‖2 and ‖ξ1(t)‖2, may replace condition (C.13):

‖ξ1(t+ δ)‖2 ≤

√
p

supt∈R ‖Pξ1(t)‖i2
inft∈R ‖Pξ1(t)‖i2

‖ξ1(t)‖2, (C.14)

for all t and −2τ ≤ δ ≤ 0 and some p > 1.

Considering (C.12) and using condition (C.14), the derivative of the candidate
Lyapunov-Razumikhin function can be upper-bounded as follows:

V̇ξ1 ≤ −

(
β1 − 2τ sup

t∈R
‖Pξ1(t)‖i2 sup

t∈R
‖A2(t)‖i2

√
p

supt∈R ‖Pξ1(t)‖i2
inft∈R ‖Pξ1(t)‖i2

×
(

sup
t∈R
‖A1(t)‖i2 + sup

t∈R
‖A2(t)‖i2

))
‖ξ1‖22. (C.15)

Given the following definition:

β2 :=2 sup
t∈R
‖Pξ1(t)‖i2 sup

t∈R
‖A2(t)‖i2

√
p

supt∈R ‖Pξ1(t)‖i2
inft∈R ‖Pξ1(t)‖i2

(
sup
t∈R
‖A1(t)‖i2+sup

t∈R
‖A2(t)‖i2

)
,

(C.16)
we require that β1 − τβ2 > 0 in order for V̇ξ1 < 0. Given this requirement, the
global exponential stability of (C.2) may be concluded from (C.15) if the time-
delay satisfies the following bound:

τ <
β1

β2
, (C.17)

which may be rewritten as follows:

τ <
inft∈R λmin(Qξ1(t))

2 supt∈R ‖A2(t)‖i2
√
p

(supt∈R ‖Pξ1 (t)‖i2)3/2

√
inft∈R ‖Pξ1 (t)‖i2

(supt∈R ‖A1(t)‖i2 + supt∈R ‖A2(t)‖i2)
=:β3.

(C.18)
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Hence, for a set of given tracking and coupling gains cxi , kxi,j , kyi,j > 0 and
cyi > −1, for i, j ∈ {1, 2, . . . , n}, j 6=i, it is always possible to find a τmax < β3 such
that (C.2) is GES for all τ ∈ [0, τmax].

C.2.2 Requirement on the ξ2-Dynamics

Recall the ξ2-dynamics already defined in (C.1b):

ξ̇2(t) = −Cθξ2(t) +Kθξ2(t− τ). (C.19)

From Lyapunov-Razumikhin stability criteria and, as explained in Proposition
5.3 of Gu et al. (2003) and in Niculescu et al. (1998), the delay independent
stability of system (C.19) may be established if there exist a scalar ρ > 0 and a
real, positive definite, symmetric matrix Pξ2 > 0 such that the following inequality
is satisfied:

− Pξ2Cθ − CTθ Pξ2 +
1
ρ
Pξ2KθP

−1
ξ2
KT
θ Pξ2 + ρPξ2 < 0. (C.20)

Assuming matrix Pξ2 is diagonal and given the definitions of Cθ and Kθ, (C.20)
is given as follows:

− PCθ − CTθ P +
1
ρ
PKθP

−1KT
θ P + ρP

= −


2
(
cθ1 +

∑
kθ1,j

)
p1 0 . . . 0

...
. . . . . .

...

0
. . . 2

(
cθn−1 +

∑
kθn−1,j

)
pn−1 0

0 0 . . . 2
(
cθn +

∑
kθn,j

)
pn



+
1
ρ


p1 0 . . . 0
...

. . . . . .
...

0
. . . pn−1 0

0 0 . . . pn




0 kθ1,2 . . . kθ1,n
...

. . . . . .
...

kθn−1,1

. . . 0 kθn−1,n

kθn,1 kθn,2 . . . 0




1
p1

0 . . . 0
...

. . . . . .
...

0
. . . 1

pn−1
0

0 0 . . . 1
pn



×


0 kθ2,1 . . . kθn,1
...

. . . . . .
...

kθ1,n−1

. . . 0 kθn,n−1

kθ1,n kθ2,n . . . 0



p1 0 . . . 0
...

. . . . . .
...

0
. . . pn−1 0

0 0 . . . pn

+ ρ


p1 0 . . . 0
...

. . . . . .
...

0
. . . pn−1 0

0 0 . . . pn

 < 0,

where ∑
kθi,j =

n∑
j=1,j 6=i

kθi,j .
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After a number of simplifications the previous inequality becomes

− PCθ − CTθ P +
1
ρ
PKθP

−1KT
θ P + ρP (C.21)

=
1
ρ


a1,1 p1p2

∑ kθ1,lkθ2,l
pl

. . . p1pn
∑ kθ1,lkθn,l

pl
...

. . . . . .
...

pn−1p1

∑ kθ1,lkθn−1,l
pl

. . . an−1,n−1 pn−1pn
∑ kθn,lkθn−1,l

pl

pnp1

∑ kθ1,lkθn,l
pl

pnp2

∑ kθ2,lkθn,l
pl

. . . an,n

<0,

(C.22)

where

ai,i = −2ρ
(
cθi +

∑
kθi,j

)
pi + p2

i

∑ k2
θi,j

pj
+ ρ2pi,

∑ k2
θi,j

pj
=

n∑
j=1,j 6=i

k2
θi,j

pj
,

∑ kθi,lkθj,l
pl

=
n∑

l=1,l 6=i,j

kθi,lkθj,l
pl

, j 6= i.

We can ensure that the inequality (C.20) is satisfied if the matrix on the right-
hand side of (C.22) is negative definite. Using Gershgorin’s circle theorem (see
Theorem 2.1) results in the following condition for the negative definiteness of the
right-hand side of (C.22):

ai,i < −ri, (C.23)

with ri = pi
∑

pj
∑ kθi,lkθj,l

pl
. After some manipulations, condition (C.23) may

be rewritten as follows:

cθi +
∑

kθi,j >
1
2ρ

(
pi
∑ k2

θi,j

pj
+
∑

pj
∑ kθi,lkθj,l

pl

)
+
ρ

2
, (C.24)

where
∑

pj =
n∑

j=1,j 6=i

pj . From (C.24) it follows that it is always possible to find

cθi > 0 sufficiently large and ρ > 0 such that inequality (C.23), and hence in-
equality (C.20), are satisfied. As a result, in remote mutual motion coordination
of unicycle robots the orientation error dynamics are GES for a network-induced
delay τ of arbitrary magnitude.

C.2.3 Requirement on the Coupling Term g(t, ξ1t , ξ2t)

We are required to show that the coupling term satisfies the following bound:

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c, (C.25)
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for any ϕξ1 ∈ C(2n) and ϕξ2 ∈ C(n) and continuous functions α1, α2 : R+ → R+.

The coupling term as defined in (C.1), given in terms of ϕξ1 and ϕξ2 , yields

g(t, ϕξ1 , ϕξ2) = g1(t, ϕξ1(0), ϕξ2(0))ϕξ2(0) + g2(ϕξ1(0))ϕξ2(−τ), (C.26)

with

g1(t, ϕξ1(0), ϕξ2(0)) =
[
Ȳe(t)Cθ − Vr(t)Θesin

−X̄e(t)Cθ + Vr(t)Θecos

]
, g2(ϕξ1(0)) =

[
−Ȳe(t)Kθ

X̄e(t)Kθ

]
,

and Cθ,Kθ, X̄e(t), Ȳe(t),Θesin ,Θecos , and Vr(t) already defined below (5.9) in Sec-
tion 5.5.

The following holds given (C.25) and (C.26):

‖g(t, ϕξ1 , ϕξ2)‖1 = ‖g1(t, ϕξ1(0), ϕξ2(0))ϕξ2(0) + g2(ϕξ1(0))ϕξ2(−τ)‖1
≤ ‖g1(t, ϕξ1(0), ϕξ2(0))ϕξ2(0)‖1 + ‖g2(ϕξ1(0))ϕξ2(−τ)‖1
≤ ‖g1(t, ϕξ1(0), ϕξ2(0))‖i1‖ϕξ2(0)‖1 + ‖g2(ϕξ1(0))‖i1‖ϕξ2(−τ)‖1
≤ ‖g1(t, ϕξ1(0), ϕξ2(0))‖sum‖ϕξ2(0)‖1 + ‖g2(ϕξ1(0))‖sum‖ϕξ2(−τ)‖1
≤ (‖g1(t, ϕξ1(0), ϕξ2(0))‖sum + ‖g2(ϕξ1(0))‖sum) ‖ϕξ2‖c, (C.27)

where we have used the fact that ‖A‖i1 ≤ ‖A‖sum in the last two inequalities.

In order to satisfy the requirement on the coupling term, it follows from (C.27)
that it suffices to show that there exist continuous functions α1, α2 : R+ → R+

such that the following inequality is satisfied:

‖g1(t, ϕξ1(0), ϕξ2(0))‖sum + ‖g2(ϕξ1(0))‖sum ≤ α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c.
(C.28)

Consider now the coupling term expressed in terms of particular solutions of
(C.1). Then, the following condition results from (C.28) and the definition of the
sum matrix norm and the triangle inequality:

‖g1(t, ξ1t(0), ξ2t(0))‖sum + ‖g2(ξ1t(0))‖sum

=
∥∥Ȳe(t)Cθ − Vr(t)Θesin

∥∥
sum +

∥∥−X̄e(t)Cθ + Vr(t)Θecos

∥∥
sum +

∥∥Ȳe(t)Kθ

∥∥
sum

+
∥∥X̄e(t)Kθ

∥∥
sum

≤
∥∥Ȳe(t)Cθ∥∥sum + ‖Vr(t)Θesin‖sum +

∥∥X̄e(t)Cθ
∥∥

sum + ‖Vr(t)Θecos‖sum

+
∥∥Ȳe(t)Kθ

∥∥
sum +

∥∥X̄e(t)Kθ

∥∥
sum . (C.29)

Given the equalities defined in (2.2), note that the functions sin x
x and 1−cos x

x

(contained in Θesin and Θecos in (C.29)) are continuous and always ≤ 1 for all x,
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which allows to rewrite inequality (C.29) as follows:

‖g1(t, ξ1t(0), ξ2t(0))‖sum + ‖g2(ξ1t(0))‖sum

≤ 2 ‖Vr(t)‖sum +
∥∥X̄e(t)Cθ

∥∥
sum +

∥∥X̄e(t)Kθ

∥∥
sum +

∥∥Ȳe(t)Cθ∥∥sum +
∥∥Ȳe(t)Kθ

∥∥
sum

≤ 2 ‖Vr(t)‖sum + (‖Cθ‖sum + ‖Kθ‖sum)
(∥∥X̄e(t)

∥∥
sum +

∥∥Ȳe(t)∥∥sum

)
. (C.30)

Recall that vri(t) for i ∈ {1, 2, . . . , n} is bounded. Defining v̄ri := sup
t∈R
|vri(t)|,

the following holds:

‖Vr(t)‖sum =
n∑
i=1

|vri(t)| ≤
n∑
i=1

v̄ri ≤ nV̄r, (C.31)

where V̄r := max
i∈{1,2,...,n}

{v̄ri}.

Given the previous inequality and considering that ‖X̄e‖sum + ‖Ȳe‖sum =
‖ξ1(t)‖1, (C.30) may be rewritten in the following way:

‖g1(t, ξ1t(0), ξ2t(0))‖sum + ‖g2(ξ1t(0))‖sum ≤ 2nV̄r + (‖Cθ‖sum + ‖Kθ‖sum) ‖ξ1(t)‖1
≤ 2nV̄r + (‖Cθ‖sum + ‖Kθ‖sum) ‖ξ1t‖c.

(C.32)

Note that inequality (C.32) may be expressed in terms of ϕξ1 and ϕξ2 , that is,
for any elements of the Banach spaces C(2n) and C(n), respectively, as follows:

‖g1(t, ϕξ1(0), ϕξ2(0))‖sum+‖g2(ϕξ1(0))‖sum ≤ 2nV̄r+(‖Cθ‖sum + ‖Kθ‖sum) ‖ϕξ1‖c.
(C.33)

As a result, inequality (C.28) can be satisfied with α1(‖ϕξ2‖) = 2nV̄r and
α2(‖ϕξ2‖) = ‖Cθ‖sum + ‖Kθ‖sum, which means that the requirement on the
coupling term is met.

The three conditions stated at the beginning of the proof have now been
checked. Consequently, the equilibrium point Qe(t) = [XT

e (t)Y Te (t) ΘT
e (t)]T = 0

of the closed-loop error dynamics (C.1) is concluded to be GUAS for τ ∈ [0, τmax]
and some τmax > 0, given tracking gains cxi , cyi , and cθi , coupling gains kxi,j , kyi,j ,
and kθi,j , and reference rotational velocities ωri(t), for all i, j ∈ {1, 2, . . . , n}, j 6= i,
meeting the requirements posed in the theorem. This completes the proof.
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D
EXTENSIONS: PROOFS

D.1 Proof of Theorem 6.1: Remote Tracking
Control of an Omnidirectional Robot (Global
Uniform Asymptotic Stability)

Recall the cascaded closed-loop error dynamics (6.9) which result from the predictor-
controller combination applied to an omnidirectional robot:

ξ̇1(t) = A1ξ1(t) +A2ξ1(t− τ) + g(t, ξ1t , ξ2t), (D.1a)

ξ̇2(t) = B1ξ2(t) +B2ξ2(t− τ), (D.1b)

where ξ1(t) := [z1e(t) z2e(t) pxe(t) pye(t)]
T , ξ2(t) := [z3e(t) pθe(t)]

T , ξ1t ∈ C(4),
ξ2t ∈ C(2), and

A1 =


−cx 0 −kx 0

0 −cy 0 −ky
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 −kx 0
0 0 0 −ky

 ,
B1 =

[
−cθ −kθ

0 0

]
, B2 =

[
0 0
0 −kθ

]
,

g(t, ξ1t , ξ2t) =


0 0
0 0
0 g32

0 g42

 ξ2(t),

with g32 and g42 already defined below (6.9) in Section 6.2.
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According to Theorem 2.26, the global uniform asymptotic stability of the
equilibrium point (zTe , p

T
e )T = 0 of the cascaded system (D.1) may be established

if the following conditions are satisfied:

• the system ξ̇1(t) = A1ξ1(t) + A2ξ1(t − τ), denoted hereinafter as the
ξ1-dynamics without coupling, is globally exponentially stable (GES) with
an explicit quadratic Lyapunov-Razumikhin function Vξ1 ;

• the system ξ̇2(t) = B1ξ2(t) + B2ξ2(t − τ), denoted hereinafter as the
ξ2-dynamics, is globally exponentially stable (GES);

• the coupling term g(t, ξ1t , ξ2t) admits the estimate

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c,

for continuous functions α1, α2 : R+ → R+.

The validity of these conditions is assessed considering the requirements in the
theorem for the tracking gains cx, cy, and cθ, correction gains kx, ky, and kθ, and
maximum allowable time-delay τmax.

D.1.1 Requirement on the ξ1-Dynamics Without Coupling

From (D.1a), the ξ1-dynamics without coupling are given as follows:

ξ̇1(t) = A1ξ1(t) +A2ξ1(t− τ), (D.2)

whereas their delay-free version is given by

ξ̇1(t) = A0ξ1(t), (D.3)

where A0 := A1 +A2.

The following candidate Lyapunov function is proposed for (D.3):

Vξ1 = ξT1 Pξ1ξ1, (D.4)

with

P =
1
2


cx + kx 0 −kx 0

0 cy + ky 0 −ky
−kx 0 2kx 0

0 −ky 0 2ky

 ,
which is positive definite for cx, cy, kx, ky > 0.
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The derivative of (D.4) is given by

V̇ξ1 = −ξT1 Qξ1ξ1, (D.5)

with,

Q =


cx(cx + kx) 0 0 0

0 cy(cy + ky) 0 0
0 0 k2

x 0
0 0 0 k2

y

 ,
which is negative definite for cx, cy, kx, ky > 0.

The global exponential stability of (D.2) will now be shown using Lyapunov-
Razumikhin’s stability theorem (confer to Theorem 2.24). In order to do so, (D.2)
is rewritten as the following delay distributed system:

ξ̇1(t) = A0ξ1(t)−A2A1

∫ t

t−τ
ξ1(s)ds−A2

2

∫ t

t−τ
ξ1(s− τ)ds. (D.6)

We now propose (D.4) as a candidate Lyapunov-Razumikhin function for the
ξ1-dynamics without coupling (D.2). Given the delay distributed system (D.6),
the derivative of the candidate Lyapunov-Razumikhin function is given by

V̇ξ1 = −ξT1 Qξ1ξ1−
(
A2A1

∫ t

t−τ
ξ1(s)ds

)T
Pξ1ξ1−

(
A2

2

∫ t

t−τ
ξ1(s−τ)ds

)T
Pξ1ξ1

− ξT1 Pξ1A2A1

∫ t

t−τ
ξ1(s)ds− ξT1 Pξ1A2

2

∫ t

t−τ
ξ1(s− τ)ds

≤ −λmin (Qξ1) ‖ξ1‖22 + 2λmax(Pξ1)‖A2‖i2
(
‖A1‖i2

∫ 0

−τ
‖ξ1(t+ s)‖2ds

+‖A2‖i2
∫ 0

−τ
‖ξ1(t+ s− τ)‖2ds

)
‖ξ1‖2, (D.7)

where λmax(Pξ1) and λmin (Qξ1) denote the maximum and minimum eigenvalues
of matrices Pξ1 and Qξ1 , respectively.

One of the requirements of Lyapunov-Razumikhin’s theorem is that V̇ξ1(t) < 0
whenever

Vξ1(ξ1(t+ δ)) ≤ pVξ1(ξ1(t)), (D.8)

for all t and −2τ ≤ δ ≤ 0 and some p > 1, which may be rewritten in terms of
‖ξ1(t+ δ)‖2 and ‖ξ1(t)‖2 as follows:

‖ξ1(t+ δ)‖2 ≤

√
p
λmax(Pξ1)
λmin(Pξ1)

‖ξ1(t)‖2 (D.9)
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for all −2τ ≤ δ ≤ 0.

Using condition (D.9), the derivative (D.7) of the candidate Lyapunov-Razumikhin
function is given by

V̇ξ1 ≤

(
−λmin (Qξ1) + 2τ‖A2‖i2

√
p
λmax(Pξ1)

3
2

λmin(Pξ1)
1
2

(‖A1‖i2 + ‖A2‖i2)

)
‖ξ1‖22.

(D.10)

We require that V̇ξ1 < 0 in order to conclude the global exponential stability of
(D.2). Recall that from Theorem 6.1 we know that c := cx = cy and k := kx = ky,
which results in the following:

‖A1‖i2 =
√
c2 + k2, ‖A2‖i2 = k,

λmax(Pξ1) =
c+ 3k +

√
c2 − 2ck + 5k2

4
, λmin(Pξ1) =

c+ 3k −
√
c2 − 2ck + 5k2

4
,

λmin (Qξ1) = min
{
c (c+ k) , k2

}
=: β.

Considering the previous definitions, the derivative of the candidate Lyapunov-
Razumikhin function as in (D.10) may be rewritten as follows:

V̇ξ1 ≤

−β +
1
2
τk
√
p

(
c+ 3k +

√
c2 − 2ck + 5k2

)3
2(

c+ 3k −
√
c2 − 2ck + 5k2

)1
2

(√
c2 + k2 + k

) ‖ξ1‖22.
(D.11)

Given (D.11), it is possible to conclude the global exponential stability of (D.2)
if the allowable time-delay satisfies the following condition:

τ <
2β
(
c+ 3k −

√
c2 − 2ck + 5k2

)1
2

k
√
p
(
c+ 3k +

√
c2 − 2ck + 5k2

)3
2
(√
c2 + k2 + k

) , (D.12)

and the requirements for the tracking and correction gains stated in Theorem 6.1
are satisfied. Note that the right-hand side of (D.12) is positive for c > 0 and
k > 0. As a result, for 0 ≤ τ < τmax with τmax as in (6.10), the inequality (D.12)
is satisfied.

D.1.2 Requirement on the ξ2-Dynamics

The ξ2-dynamics have already been determined to be GES in Section B.2.2 if cθ
and kθ satisfy the conditions in Theorem 6.1 and the time-delay τ satisfies the
following bound:

τ <
π

2kθ
. (D.13)
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D.1.3 Requirement on the Coupling Term g(t, ξ1t , ξ2t)

Recall that the coupling term must satisfy the following bound:

‖g(t, ϕξ1 , ϕξ2)‖1 ≤ (α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c)‖ϕξ2‖c, (D.14)

for any ϕξ1 ∈ C(4) and ϕξ2 ∈ C(2) and continuous functions α1, α2 : R+ → R+.

The coupling term, as defined in (6.9), may be expressed in terms of ϕξ1 and
ϕξ2 as follows:

g(t, ϕξ1 , ϕξ2) = g1(t− τ, ϕξ1(−τ), ϕξ2(0))ϕξ2(0), (D.15)

with g1 =


0 0
0 0
0 g32

0 g42

, and g32 and g42 already defined below (6.9).

Given (D.14) and (D.15), we have that the following holds:

‖g1(t, ϕξ1 , ϕξ2)‖1 = ‖g1(t− τ, ϕξ1(−τ), ϕξ2(0))ϕξ2(0)‖1
≤ ‖g1(t− τ, ϕξ1(−τ), ϕξ2(0))‖i1‖ϕξ2(0)‖1
≤ ‖g1(t− τ, ϕξ1(−τ), ϕξ2(0))‖sum‖ϕξ2(0)‖1
≤ ‖g1(t− τ, ϕξ1(−τ), ϕξ2(0))‖sum‖ϕξ2‖c. (D.16)

From (D.16) it follows that, in order to satisfy the requirement (D.14), it
suffices to show that there exist continuous functions α1, α2 : R+ → R+ such that
the following bound is satisfied:

‖g1(t− τ, ϕξ1(−τ), ϕξ2(0))‖sum ≤ α1(‖ϕξ2‖c) + α2(‖ϕξ2‖c)‖ϕξ1‖c. (D.17)

Consider now the coupling term given in terms of particular solutions of (D.1).
From (D.17) and the definition of the sum matrix norm, the equalities in (2.2),
and the triangle inequality, we have the following:

‖g1(t− τ, ξ1t(−τ), ξ2t(0))‖sum

=
∣∣∣∣−(ẋr(t−τ) + cxz1e(t−τ))

(
1−cos z3e(t)

z3e(t)

)
−(ẏr(t−τ) + cyz2e(t−τ))

sin z3e(t)
z3e(t)

∣∣∣∣
+
∣∣∣∣−(ẏr(t−τ) + cyz2e(t−τ))

(
1−cos z3e(t)

z3e(t)

)
+(ẋr(t−τ) + cxz1e(t−τ))

sin z3e(t)
z3e(t)

∣∣∣∣
≤
∣∣∣∣ẋr(t−τ)

(
1−cos z3e(t)

z3e(t)

)∣∣∣∣+∣∣∣∣cxz1e(t−τ)
(

1−cos z3e(t)
z3e(t)

)∣∣∣∣+∣∣∣∣ẏr(t−τ)
sin z3e(t)
z3e(t)

∣∣∣∣
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+
∣∣∣∣cyz2e(t−τ)

sin z3e(t)
z3e(t)

∣∣∣∣+∣∣∣∣ẏr(t−τ)
(

1−cos z3e(t)
z3e(t)

)∣∣∣∣+∣∣∣∣cyz2e(t−τ)
(

1−cos z3e(t)
z3e(t)

)∣∣∣∣
+
∣∣∣∣ẋr(t−τ)

sin z3e(t)
z3e(t)

∣∣∣∣+∣∣∣∣cxz1e(t−τ)
sin z3e(t)
z3e(t)

∣∣∣∣ . (D.18)

Due to the fact that the functions sin x
x and 1−cos x

x are continuous and always
≤ 1 for all x, inequality (D.18) becomes:

‖g1(t−τ, ξ1t(−τ), ξ2t(0))‖sum ≤ 2 (|ẋr(t−τ)|+cx |z1e(t−τ)|+|ẏr(t−τ)|+cy |z2e(t−τ)|) .
(D.19)

Since ẋr(t) and ẏr(t) are bounded, we may define ¯̇xr := supt∈R |ẋr(t)| and
¯̇yr := supt∈R |ẏr(t)| so that inequality (D.19) becomes:

‖g1(t− τ, ξ1t(−τ), ξ2t(0))‖sum ≤ 2 (|¯̇xr|+ |¯̇yr|+ cx |z1e(t− τ)|+ cy |z2e(t− τ)|)
≤ 2 (|¯̇xr|+ |¯̇yr|+ (cx + cy)‖ξ1(t− τ)‖1)

≤ 2 (|¯̇xr|+ |¯̇yr|) + 2(cx + cy)‖ξ1t‖c. (D.20)

Consider now inequality (D.20) expressed in terms of ϕξ1 and ϕξ2

‖g1(t− τ, ϕξ1(−τ), ϕξ2(0))‖sum ≤ 2 (|¯̇xr|+ |¯̇yr|) + 2(cx + cy)‖ϕξ1‖c, (D.21)

and note that from (D.21) we can satisfy inequality (D.17) by choosing α1(‖ϕξ2‖) =
2 (|¯̇xr|+|¯̇yr|) and α2(‖ϕξ2‖) = 2(cx+cy). With this, the requirement on the cou-
pling term is met.

The three conditions stated at the beginning of the proof have now been
checked. As a result, the global uniform asymptotic stability of the equilibrium
point (zTe , p

T
e )T = 0 of the closed-loop error dynamics (D.1) can be concluded

given the conditions posed in Theorem 6.1 for the tracking gains cx, cy, and cθ,
correction gains kx, ky, and kθ, constant p, reference velocities, ẋr(t) and ẏr(t),
and time-delay τ . This implies that the state predictor converges to the reference
trajectory, that is z(t)→ qr(t) as t→∞, and that the state predictor anticipates
the system by τf , that is, z(t) → q(t + τf ) as t → ∞. From the previous asser-
tions it follows that the omnidirectional robot subject to a communication delay τ
tracks the reference trajectory delayed by τf , that is, q(t)→ qr(t− τf ) as t→∞.
This completes the proof.
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D.2 Proof of Theorem 6.2: Remote Tracking
Control of an Omnidirectional Robot (Local
Uniform Asymptotic Stability)

Based on Theorem 2.25, we can formulate the following conditions in order to guar-
antee the local uniform asymptotic stability of the equilibrium point (zTe , p

T
e )T = 0

of the predictor closed-loop error dynamics:

• the ξ1-dynamics without coupling are locally uniformly asymptotically stable
(LUAS);

• the ξ2-dynamics are locally uniformly asymptotically stable (LUAS);

• the coupling term g(t, ξ1t , ξ2t) vanishes when ξ2t → 0, that is, g(t, ξ1t , 0) = 0.

These conditions are checked given the requirements on the tracking gains
cx, cy, and cθ, correction gains kx, ky, and kθ, and maximum allowable time-delay,
τmax posed in Theorem 6.2.

D.2.1 Requirement on the ξ1-Dynamics Without Coupling

The following state definitions: ξ1(t) := [η1(t) η2(t)]T , η1(t) := [z1e(t) z2e(t)]
T , and

η2(t) := [pxe(t) pye(t)]
T , allow rewriting (D.2) as the following cascade:

η̇1(t) = ∆1η1(t) + ∆2η2(t), (D.22a)
η̇2(t) = ∆3η2(t− τ), (D.22b)

where ∆1 =
[
−cx 0

0 −cy

]
and ∆2 = ∆3 =

[
−kx 0

0 −ky

]
.

The locally uniform asymptotic stability of the ξ1-dynamics can be concluded
by studying the stability of the cascaded system (D.22). In particular, the global
uniform asymptotic stability of (D.22) is guaranteed provided the following
conditions are satisfied:

• the system η̇1(t) = ∆1η1(t), denoted hereinafter as the η1-dynamics without
coupling, is locally uniformly asymptotically stable (LUAS);

• the system η̇2(t) = ∆3η2(t − τ), denoted hereinafter as the η2-dynamics, is
locally uniformly asymptotically stable (LUAS);

• the coupling term gη1η2(t, η1t , η2t) vanishes when η2t → 0, that is,
gη1η2(t, η1t , 0)=0.
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The previous requirements are assessed considering the conditions on the con-
trol parameters posed in Theorem 6.2.

Requirement on the η1-Dynamics Without Coupling

From linear systems theory it follows that the η1-dynamics without coupling, given
by

η̇1(t) = ∆1ξ1(t), (D.23)

are GES provided cx, cy > 0. This result clearly satisfies the local uniform asymp-
totic stability requirement.

Requirement on the η2-Dynamics

The η2-dynamics, already defined in (D.22b), may be rewritten as:

pxe(t) = −kxpxe(t− τ), (D.24a)
pye(t) = −kypye(t− τ), (D.24b)

which can be regarded as two scalar decoupled systems. The global exponen-
tial stability of this type of delayed scalar system has already been derived in
Section B.2.2 and can be guaranteed for kx, ky > 0 and

τ <
π

2kx
, τ <

π

2ky
. (D.25)

As a result, the local uniform asymptotic stability requirement is satisfied for the
previous result.

Requirement on the Coupling Term gη1η2(t, η1t , η2t)

The coupling term gη1η2(t, η1t , η2t) is linear and clearly vanishes when η2t → 0.

D.2.2 Requirement on the ξ2-Dynamics

The ξ2-dynamics (D.1b) have already been determined to be GES in Section D.1.2
for cθ > 0 and kθ > 0 provided the time-delay τ satisfies the following condition:

τ <
π

2kθ
. (D.26)

This result clearly satisfies the local uniform asymptotic stability requirement.
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D.2.3 Requirement on the Coupling Term g(t, ξ1t , ξ2t)

The coupling term g(t, ξ1t , ξ2t) as given in (D.1a) clearly vanishes when ξ2t → 0.

The local uniform asymptotic stability of the equilibrium point (zTe , p
T
e )T = 0

of the closed-loop error dynamics (D.1) can be concluded, since the three conditions
stated at the beginning of the proof haven been checked for the
requirements posed in Theorem 6.2. As a result, the omnidirectional robot subject
to a communication delay τ (satisfying the condition in the theorem) tracks the
reference trajectory delayed by τf , that is, q(t) → qr(t − τf ) as t → ∞. This
completes the proof.
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SAMENVATTING

Robots ontworpen voor het gebruik in zowel professionele als huiselijke omgeving
worden in toenemende mate een onderdeel van ons dagelijks leven. De complex-
iteit en benodigde daadkracht van de regelalgoritmen voor deze robots mag niet
worden onderschat. Dit proefschrift is gerelateerd aan een tweetal disciplines bin-
nen de robotica, namelijk tele-robotica en coöperatieve robotica. Beide disciplines
staan voor een aantal grote uitdagingen om te kunnen voldoen aan de verwachtin-
gen van toekomstige robotische systemen. Aan de ene kant zijn tele-robotische
systemen in staat op afstand te opereren en (voor de mens) gevaarlijke taken te
verrichten, terwijl aan de andere kant coöperatieve robotische systemen in staat
zijn gedistribueerde taken te verrichten en verschillende voordelen te bieden ten
opzichte van het gebruik van een individuele robot.

Het gebruik van een robot om op afstand taken uit te voeren impliceert in
het algemeen de fysieke separatie van de robot en de regelaar. Deze separatie
biedt voordelen wanneer op afstand gevaarlijke taken moeten worden uitgevoerd,
maar representeert tegelijkertijd ook een belangrijk nadeel. Namelijk, de infor-
matiestromen tussen de robot en de regelaar zullen typisch plaatsvinden over een
communicatienetwerk, welke een tijdsvertraging in de regellus introduceert. Als
gevolg hiervan wordt het systematische ontwerp van regelaars, welke stabiliteit
en de gewenste prestatie induceren ondanks dergelijke tijdsvertragingen, essentieel
om een veilig en betrouwbaar functioneren van de robot te garanderen.

Het gebruik van een groep robots teneinde een bepaalde taak uit te voeren, in
vergelijking tot het gebruik van een enkele robot, biedt verschillende voordelen,
zoals additionele flexibiliteit en het vermogen gedistribueerde en complexe taken
uit te voeren. Teneinde gezamenlijke taken succesvol te verrichten dienen de robots
hun gedrag te coördineren door het onderling uitwisselen van informatie. Wan-
neer deze communicatie plaatsheeft over een communicatienetwerk dient rekening
gehouden te worden met de gevolgen van resulterende tijdsvertragingen. Het is
daarom met name belangrijk regelaars voor de robots te ontwerpen welke samen-
werken om een gemeenschappelijke taak te verrichten ondanks de tijdsvertraging
die de communicatie tussen de robots beïnvloedt.



De twee regelproblemen hierboven beschreven zijn het onderwerp van studie in
dit proefschrift.

Ten eerste wordt het volgprobleem voor op afstand geregelde eenwielerrobots
beschouwd. Het belangrijkste aspect van deze studie is het feit dat de tijdsver-
traging geïnduceerd door het netwerk, welke gebruikt wordt voor de communicatie
tussen robot en regelaar, de stabiliteit en prestatie van het geregelde systeem beïn-
vloedt. Teneinde problemen veroorzaakt door deze tijdsvertraging aan te pakken,
wordt in dit proefschrift een toestand schatter voorgesteld met de structuur van
een voorspeller. Deze toestand schatter is gebaseerd op de notie van anticiperende
synchronisatie. Wanneer gebruikt samen met een volgregelaar, onderdrukt deze
regelstrategie de nadelige effecten van de tijdsvertraging en stabiliseert deze het
resulterende gesloten-lus systeem. Door gebruik te maken van bestaande resul-
taten voor niet-lineaire cascadesystemen met tijdsvertraging, kan de locale uni-
forme asymptotische stabiliteit van de gesloten-lus foutdynamica gegarandeerd
worden tot een bepaalde maximale tijdsvertraging. Tenslotte worden expliciete
uitdrukkingen voor de relatie tussen de maximaal toegestane tijdsvertraging en de
parameters van de regelaar gepresenteerd.

Ten tweede behandelt dit proefschrift de bewegingscoördinatie van een groep
van mobiele robots, waarbij de communicatie tussen de robots onderhevig is aan
tijdsvertraging. Meer specifiek worden ’master-slave’ synchronisatie en wederzijdse
synchronisatie van groepen van eenwielerrobots beschouwd. Een regelaarontwerp
wordt voorgesteld, welke bewegingscoördinatie van de robots garandeert zelfs in de
aanwezigheid van communicatie-geïnduceerde tijdsvertragingen. De gerelateerde
stabiliteitsanalyse, welke ook gebruik maakt van bestaande resultaten voor niet-
lineaire cascadesystemen, voorziet in uitdrukkingen welke de regelaarparameters
en de maximaal toelaatbare tijdsvertraging relateren.

Het proefschrift legt evenveel nadruk op de theoretische ontwikkeling van regel-
algoritmen, als op de experimentele validatie van de ontworpen regelaars. De ont-
wikkelde regelstrategiën zijn experimenteel gevalideerd gebruikmakend van multi-
robot systemen in Eindhoven, Nederland, en Tokyo, Japan, waarbij de communi-
catie via het Internet verloopt.

Resumerend, dit proefschrift bestudeert een tweetal gerelateerde regelproble-
men. Ten eerste wordt het volgprobleem voor een op afstand (over een vertraagd
communicatienetwerk) geregelde eenwielerrobot beschouwd. Ten tweede wordt de
bewegingscoördinatie van een groep van mobiele robots beschouwd, waarbij de
informatie-uitwisseling tussen de robots plaatsheeft over een (vertraagd) commu-
nicatienetwerk.



RESUMEN

Conforme los robots destinados para aplicaciones personales y profesionales comien-
zan a convertirse en parte de nuestra vida diaria, la importancia y complejidad
de los algoritmos de control que los regulan no debe ser subestimada. El trabajo
de investigación presentado en esta tesis está relacionado con dos áreas de estudio
dentro de la robótica, la telerobótica y la robótica cooperativa, que son primor-
diales para el avance de esta disciplina en el contexto mencionado anteriormente.
Por un lado, los sistemas telerobóticos facilitan la realización de tareas remotas
o riesgosas, mientras que, por el otro lado, el uso de sistemas robóticos cooper-
ativos facilita la realización de tareas distribuidas y proporciona varias ventajas
con respecto al uso de un solo robot.

La utilización de sistemas robóticos para llevar a cabo tareas remotas implica,
en la mayoría de los casos, la separación física entre el controlador y el robot.
Dicha separación resulta favorable cuando se realizan tareas de alto riesgo o a dis-
tancia, pero constituye a la vez una de las principales desventajas de este tipo de
sistemas robóticos. A saber, el uso de un canal de comunicaciones para intercam-
biar información entre el controlador y el robot conlleva la aparición de un retardo
de tiempo en el lazo de control. Es por ello que resulta de primordial importancia
diseñar controladores capaces de garantizar la estabilidad y el buen desempeño
del robot aun considerando el retardo de tiempo. Lo anterior con la finalidad de
asegurar que las tareas asignadas al sistema se lleven a cabo de manera confiable
y segura.

Por el otro lado, la utilización de un grupo de robots para llevar a cabo ciertas
tareas posee varias ventajas en comparación con el uso de un solo robot, tales
como un incremento en la flexibilidad del sistema y la habilidad de completar tar-
eas de naturaleza distribuida o de mayor complejidad. Para completar de manera
exitosa su asignación, los robots que componen el grupo deben coordinar su com-
portamiento. Lo anterior generalmente se consigue mediante el intercambio mutuo
de información entre los robots. Cuando dicho intercambio se lleva a cabo a través
de un canal de comunicaciones que induce un retardo de tiempo, las consecuencias
de dicho retardo deben ser consideradas al momento de controlar al sistema. Con-



secuentemente, resulta indispensable diseñar controladores que permitan al grupo
de robots trabajar en conjunto y completar la tarea asignada a pesar del retardo
que afecta su intercambio mutuo de información.

Los dos problemas de control planteados previamente son abordados en esta
tesis. En primer lugar, se estudia el problema del control a distancia de un robot
móvil del tipo uniciclo, el cual se ve afectado por un retardo de tiempo en el
canal de comunicaciones que utiliza para transmitir su estado y recibir señales de
control. El aspecto más importante a considerar es que dicho retardo deteriora
el desempeño del robot y probablemente compromete la estabilidad del sistema.
Para abordar el problema se propone un estimador de estados con una estructura
similar a la de un predictor. Dicho estimador está inspirado en el concepto de
sincronización anticipada. Cuando el predictor de estado actúa en conjunto con
una ley de control para seguimiento, la estrategia de control que resulta es capaz
de estabilizar al sistema y compensar los efectos negativos ocasionados por el
retardo. Haciendo uso de resultados para sistemas no lineales con retardo en
cascada, se concluye que la dinámica del error en lazo cerrado es local uniforme
asintóticamente estable para un cierto rango de valores admisibles del retardo.
Del análisis de estabilidad se obtienen expresiones que explícitamente ilustran la
relación entre el retardo de tiempo y los parámetros de control del sistema.

En segundo lugar, se considera el problema de la coordinación a distancia de un
grupo de robots móviles del tipo uniciclo, en donde el intercambio de información
entre los robots está sujeto a un retardo de tiempo. Específicamente, se considera
la coordinación remota del tipo maestro-esclavo y mutua. Los controladores prop-
uestos permiten a los robots mantener la sincronía a pesar de que el intercambio de
información entre ellos se lleva a cabo de manera retardada. Se realiza un análisis
de estabilidad global el cual considera al grupo entero. De dicho análisis se derivan
una serie de expresiones que relacionan los parámetros de control de los robots con
el máximo retardo admisible para el cual el grupo se mantiene coordinado.

En este trabajo los desarrollos teóricos y los resultados experimentales reciben
el mismo énfasis. Por tal motivo, las estrategias de control propuestas se validan
de manera experimental. Para tal fin, se utiliza el Internet como canal de comu-
nicaciones y las plataformas experimentales para múltiples robots disponibles en
Eindhoven, Holanda, y Tokio, Japón.

Resumiendo, en esta tesis se abordan dos problemas de control relacionados.
Por un lado, se considera el control para seguimiento de un robot móvil utilizando
un canal de comunicaciones que induce un retardo de tiempo en el lazo de control.
Por el otro lado, se estudia el problema de la coordinación de un grupo de estos
robots considerando que el intercambio de información entre ellos está sujeto a un
retardo de tiempo.
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