

Composition and synchronization of real-time components
upon one processor
Citation for published version (APA):
Heuvel, van den, M. M. H. P. (2013). Composition and synchronization of real-time components upon one
processor. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR755346

DOI:
10.6100/IR755346

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR755346
https://doi.org/10.6100/IR755346
https://research.tue.nl/en/publications/40a0059e-90bf-4f52-b36e-038dbc5f9044

Composition and synchronization of real-time components
upon one processor

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op woensdag 12 juni 2013 om 16.00 uur

door

Martijn Marianus Henricus Petrus van den Heuvel

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. J.J. Lukkien

Copromotor:
dr.ir. R.J. Bril

Composition and synchronization of real-time components
upon one processor

A DISSERTATION

by

Martijn Marianus Henricus Petrus van den Heuvel

June 2013

This thesis has been approved by a committee with the following members:

prof.dr. J.J. Lukkien (Technische Universiteit Eindhoven, The Netherlands)
dr.ir. R.J. Bril (Technische Universiteit Eindhoven, The Netherlands)
prof.dr. K.G.W. Goossens (Technische Universiteit Eindhoven, The Netherlands)
prof.dr. T. Nolte (Mälardalen University, Sweden)
dr. G. Lipari (Scuola Superiore Sant’Anna, Italy)

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).
IPA Dissertation Series 2013-08

The work in this thesis is supported by Agentschap NL under the VERIFIED
project (grant number: HTASI10003).

c© Martijn M.H.P. van den Heuvel, 2013.
All rights are reserved. Reproduction in whole or in part is prohibited without
the written consent of the copyright owner.

Printed by: Gildeprint Drukkerijen – The Netherlands

A catalogue record is available from the Eindhoven University of Technology
Library

ISBN: 978-94-6108-443-9

PREFACE

This is a book of many colors, I could not have written just on my own. In the
first place, I am extremely grateful to my co-promoter, dr.ir. Reinder J. Bril, for
his guidance, discussions and his patience over the last years. We have spent
many hours to exchange ideas and I have got to know you as a very demanding
supervisor who pays back his student’s efforts with exponential amounts of
energy and constructive feedback to improve the quality of research. Some
may experience this as overwhelming; I can just say: I have enjoyed the thrill.
Secondly, I would like to thank my promoter, prof.dr. Johan J. Lukkien, for his
support. Although our technical discussions were scheduled less frequently,
their impact were significant and they made me re-think problems to the core. I
am also grateful for the opportunities I was given by both of you to collaborate
with other researchers, within the research group as well as abroad.

When I made my first steps into research (four years ago, in 2009), I had
counsel of a team of experienced researchers. As a legacy of my master
project, I could immediately practice writing my first research articles under the
supervision of Reinder, who also supervised me during my master project, and
under the long-distance coaching of prof. Dr.-Ing. habil. Christian Hentschel and
Dipl.-Ing. Stefan Schiemenz from Brandenburg University of Technology (BTU),
Germany. Christian and Stefan hosted me as a master student at BTU during
the spring semester of 2009, which was very kind of you. It is thereafter, when
I was coaching my master students, that I appreciated even more Stefan’s non-
exhaustive patience with his students and his lessons regarding reporting science
to other researchers. Another remarkable moment was the joint conference
presentation with Christian in Las Vegas (January 2011), graced by an award
for the best runner-up research paper in a leading conference on consumer
electronics. It was my pleasure to work with you and learn from you.

This doctorate dissertation takes a slightly changed research direction, tar-
geted at safety critical embedded systems (such as in-vehicle systems). I would
like to thank the expertise group, Systems Architecture and Networking (SAN),
for creating a great working atmosphere and my (former) office mates, Tseesuren
Batsuuri and Milosh Stolikj, for sharing a great time. My closest cooperations
within SAN have been with my office mates dr.ir. Michał J. Holenderski (also
known as ”dr. Mike”) and Uğur Keskin. It is astonishing how such different
personalities conducted research together. We had many enjoyable moments
and you were memorable company at our conference travels. I would also like
to thank my other co-authors in the SAN group for sharing your ideas and
for the interesting discussions: Ionut David, Sunder Aditya B. Rao, Wim Cools,
dr.ir. Rudolf H. Mak, dr. Tanır Özçelebi and dr.ir. Richard Verhoeven. A special
thanks goes to dr.ir. Pieter J.L. Cuijpers for your unselfish devotion of time for
discussions – especially during Reinder’s sabbatical – and for twisting every

i

Preface

(scientific) problem. Your unique view on things makes discussions with you
interesting. It certainly had impact – I think a positive one – on this dissertation.
Last, and certainly not least, many thanks to dr.ir. Richard Verhoeven and to
dr. Erik J. Luit for their support with technical exhibitions. You divested me of
lots of project engineering, which allowed me to focus on my research niche.

The research results in this dissertation have also been influenced by a
collaboration with various researchers from Mälardalen University (MDH). I
would like to thank their dean, dr. Damir Isović, for the nice discussions with
him and for trusting me as a coach for his selection of excellent exchange
students. It was my pleasure to work with you and your students. I have
also visited MDH for one week (March 2012); it was prof.dr. Thomas Nolte
and dr. Moris Behnam who have kindly hosted me during my visit and
they have visited us several times as well. I experienced our mutual visits as
extensive, enjoyable weeks. I am therefore proud to present some of our joint
research efforts as a chapter of this dissertation. I would also like to thank
other researchers from MDH for sharing their ideas and discussing technical
aspects, especially Mikael Åsberg and Rafia Inam. However, special thanks
goes to Moris Behnam. During my visit to MDH, he spent his whole working
week to warm (sometimes heated) discussions with me. Back home from our
visits, we organized several conference calls to continue our discussions. Thank
you, Moris, for your inspiring discussions and sharing your valuable ideas.

Following the lines of research in which I have been involved, I have (co-)
supervised various master students during their graduation project or internship
project: Coen Tempelaars, Alok Lele and Ashwini Moily (in cooperation with
BTU) – Gowri Sankar Ramachandran, Syed M.J. Abdullah and Xiaodi Zhang
(in cooperation with MDH) – Chidiebere G.U. Okwudire and Ivan Raul Lopez
Guadarrama (within SAN). I can just hope that you enjoyed the cooperation
as much as I did; it was my pleasure to work with you.

Thanks to the collaborations with a variety of researchers, as mentioned
above, I co-authored several research articles, which allowed me to travel
to international conferences in order to present and publish the articles. The
conversations at those conferences with other researchers further inspired me
and brought me new ideas. I would like to highlight a few persons: dr. Stefan M.
Petters (CISTER, Portugal), dr. Nathan W. Fisher (Wayne State University, USA),
dr. Marko Bertogna (University of Modena, Italy) and dr. Rob Davis (University
of York, UK). Thank you for your useful discussions, feedback and suggestions
which helped us to identify challenges and solutions to problems in our research
domain. I would also like to thank the organizers of the summer school that I
have visited in Pisa (June 2010), prof.dr. Giorgio Buttazzo (Scuola Superiore
Sant’Anna, Italy) and his enthusiastic team, for sharing their knowledge and
for the nice experience. The school brought me in touch with interesting fellow

ii

Preface

researchers I would not have met otherwise.
As time flies, we arrive at a moment of having actually composed this doctor-

ate dissertation, sewed together from many pieces of collaborative work. I would
like to thank the reviewers of this dissertation, prof.dr. Kees G.W. Goossens
(Eindhoven University of Technology, The Netherlands), prof.dr. Thomas Nolte
(Mälardalen University, Sweden) and dr. Giuseppe Lipari (Scuola Superiore
Sant’Anna, Italy), for their useful feedback and their help to further improve
the quality of this dissertation. Furthermore, I would like to thank prof.dr.ir.
Kees C.H. van Berkel (Eindhoven University of Technology, The Netherlands)
for participating in the doctorate committee.

Working towards a doctorate dissertation takes a significant period of time,
sporadically occupied by stressful moments. I am grateful for the opportunities
I had to meet many people with diverse backgrounds and interests and I want
to thank them for spending spare time in an enjoyable way. In particular, I
would like to thank the squash squad (led by Hrishikesh L. Salunkhe, SAN
member) and E.S.B.V. Panache for keeping me fit physically as well as mentally.
I also want to thank other friends for leisure and sharing insights. For example,
the yearly March-April (MaPril) weekends were the herald of a relax spring.
Finally, I owe many thanks to my family for supporting me unconditionally.
Thank you all for showing your interest and coloring this book.

Martijn van den Heuvel
Eindhoven, June 2013

iii

ABSTRACT

Many industrial systems have various hardware and software functions for
controlling mechanics. If these functions act independently, as they do in legacy
situations, their overall performance is not optimal. There is a trend towards
optimizing the overall system performance and creating a synergy between
the different functions in a system, which is achieved by replacing more and
more dedicated, single-function hardware by software components running on
programmable platforms. This increases the re-usability of the functions, but
their synergy requires also that (parts of) the multiple software functions share
the same embedded platform.

In this work, we look at the composition of inter-dependent software func-
tions on a shared platform from a timing perspective. We consider platforms
comprised of one preemptive processor resource and, optionally, multiple non-
preemptive resources. Each function is implemented by a set of tasks; the
group of tasks of a function that executes on the same processor, along with
its scheduler, is called a component. The tasks of a component typically have
hard timing constraints. Fulfilling these timing constraints of a component
requires analysis. Looking at a single function, co-operative scheduling of the
tasks within a component has already proven to be a powerful tool to make
the implementation of a function more predictable. For example, co-operative
scheduling can accelerate the execution of a task (making it easier to satisfy
timing constraints), it can reduce the cost of arbitrary preemptions (leading to
more realistic execution-time estimates) and it can guarantee access to other
resources without the need for arbitration by other protocols. Since timeliness is
an important functional requirement, (re-)use of a component for composition
and integration on a platform must deal with timing.

To enable us to analyze and specify the timing requirements of a particular
component in isolation from other components, we reserve and enforce the
availability of all its specified resources during run-time. The real-time systems
community has proposed hierarchical scheduling frameworks (HSFs) to imple-
ment this isolation between components. After admitting a component on a
shared platform, a component in an HSF keeps meeting its timing constraints as
long as it behaves as specified. If it violates its specification, it may be penalized,
but other components are temporally isolated from the malignant effects. A
component in an HSF is said to execute on a virtual platform with a dedicated
processor at a speed proportional to its reserved processor supply. Three effects
disturb this point of view. Firstly, processor time is supplied discontinuously.
Secondly, the actual processor is faster. Thirdly, the HSF no longer guarantees
the isolation of an individual component when two arbitrary components
violate their specification during access to non-preemptive resources, even
when access is arbitrated via well-defined real-time protocols.

v

Abstract

The scientific contributions of this work focus on these three issues. Our
solutions to these issues cover the system design from component requirements
to run-time allocation. Firstly, we present a novel scheduling method that
enables us to integrate the component into an HSF. It guarantees that each
integrated component executes its tasks exactly in the same order regardless of
a continuous or a discontinuous supply of processor time. Using our method,
the component executes on a virtual platform and it only experiences that the
processor speed is different from the actual processor speed. As a result, we can
focus on the traditional scheduling problem of meeting deadline constraints of
tasks on a uni-processor platform. For such platforms, we show how scheduling
tasks co-operatively within a component helps to meet the deadlines of this
component. We compare the strength of these cooperative scheduling techniques
to theoretically optimal schedulers.

Secondly, we standardize the way of computing the resource requirements
of a component, even in the presence of non-preemptive resources. We can
therefore apply the same timing analysis to the components in an HSF as to
the tasks inside, regardless of their scheduling or their protocol being used for
non-preemptive resources. This increases the re-usability of the timing analysis
of components. We also make non-preemptive resources transparent during the
development cycle of a component, i.e., the developer of a component can be
unaware of the actual protocol being used in an HSF. Components can therefore
be unaware that access to non-preemptive resources requires arbitration.

Finally, we complement the existing real-time protocols for arbitrating access
to non-preemptive resources with mechanisms to confine temporal faults to
those components in the HSF that share the same non-preemptive resources.
We compare the overheads of sharing non-preemptive resources between
components with and without mechanisms for confinement of temporal faults.
We do this by means of experiments within an HSF-enabled real-time operating
system.

vi

NOTE TO THE READER

This dissertation considers the modeling of timing constraints of complex
embedded systems in a way that enables us to compose such systems from
independently analyzed (software) components. Since an important functional
metric of many complex systems is timing, the desired timing properties of a
system and its components should be modeled and analyzed carefully. This
dissertation focusses on the underlying techniques in two book parts.

In the first part of this dissertation, we survey existing techniques for modeling
timing properties of so-called real-time systems and we extend those techniques
with our best practices to model synchronization between components. This
part includes an introductory background in the research field, a discussion
of our most important research results and directions for future research. The
second part of this dissertation presents a selection of research papers. These
papers describe our research contributions in detail and they complement our
modeling techniques with programming techniques and algorithms to optimize
the processing resources required by a real-time system, while respecting its
timing constraints.

vii

CONTENTS

Preface i

Abstract v

Note to the reader vii

Part I – Composition and synchronization of real-time components
upon one processor 1

1 Introduction 3
1.1 Motivating example . 4
1.2 Problem description . 5
1.3 Contributions . 7
1.4 Outline . 10

2 Real-time models, their performance and complexity 11
2.1 Task models . 12
2.2 Priority inversion of sporadic tasks 18

3 Hierarchical composition of real-time models 31
3.1 The design we hold to . 31
3.2 Make tasks elementary units of composition 38
3.3 The rules of composition . 41
3.4 Handle external events with the destined task priority . . 49
3.5 Set a component deadline to constrain resource sharing . 51

4 Results, discussion and conclusions 57
4.1 Overview of the included papers 57
4.2 Discussion and conclusions 62

5 Future work 67
5.1 Optimizing the number of systems scheduled successfully 67
5.2 Mixed-criticality systems . 71
5.3 Multi-processor scheduling 74

References 79

Part II – Included papers 85

Paper A - Generalized fixed-priority scheduling with limited preemptions 87

Paper B - Virtual scheduling for compositional real-time guarantees 117

ix

Contents

Paper C - Opaque analysis for resource-sharing components in hierarch-
ical real-time systems 141

Paper D - Transparent synchronization protocols for compositional real-
time systems 207

Paper E - Dependable resource sharing for compositional real-time sys-
tems 243

Paper F - Temporal isolation in an HSF-enabled real-time kernel in the
presence of shared resources 269

Curriculum Vitae 295

x

Part I

Composition and
synchronization

of real-time components
upon one processor

1

1 INTRODUCTION

Many industrial systems have various hardware and software functions for
controlling the real physical world through electronics and mechanics. Examples
can be found in a wide range of application domains, including manufacturing
machines, highly dependable medical devices, intelligent transportation and
in-vehicle control. The traditional approach in the design and development of
these embedded systems makes use of an architecture that simply composes sets
of self-contained hardware platforms. These hardware platforms are connected
by several network buses. Each set of inter-connected platforms typically hosts
a single, independently developed functional unit [1]. The last few years have
shown, however, that this federated architectural approach can no longer stand.
Firstly, since the number of electronic functions in embedded systems is ever
increasing, it becomes too expensive to make dedicated hardware units for
each function. Secondly, there is a trend towards optimizing the overall system
performance and creating a synergy between the different functions in a system.

In short, more and more dedicated, single-function hardware will continue
to be replaced by increasingly complex software functions running on pro-
grammable platforms. If these software functions act independently from other
functions, as they do in legacy and early development situations, their overall
performance is not optimal. A revolutionary performance increase of embed-
ded systems comes from extensive networking between embedded electronic
computers and from the composition and the integration of independently
developed software functions. The aim of composition in here is to increase
the re-usability of the functions, regardless of their inter-dependence.

Various industrial standards have been developed over the years to promote
the exchange and the integration of certified software components from multiple
vendors. Each function is implemented by a set of tasks; the group of tasks of a
function that executes on the same processor, along with a scheduler for those
tasks, is called a component. For example, a consortium of automotive suppliers
and manufacturers has developed the AUTOSAR standard for the exchange of
such component software. As another example, the ARINC specification 653-2
describes the interface between component software and underlying middleware
in a distributed avionics system. However, many standards, including AU-
TOSAR and ARINC 653-2, lack explicit information about timing requirements
of components in their meta-model. Since timeliness is an important requirement
for many embedded systems, re-use of a software component for composition
in an integrated platform must deal with timing.

In this work, we look at the composition of software components on a
shared platform from a timing perspective. We consider platforms comprised
of one preemptive processor resource and, optionally, multiple non-preemptive
resources. Since the tasks of a component typically have hard timing constraints,

3

1. Introduction

it requires analysis to verify that the timing constraints of a component are
fulfilled. Our ultimate goal is to develop tools to reduce development time of
embedded software and to prove that integrating independently developed
components upon a shared platform is functional, safe and cost effective.

1.1 Motivating example
Today’s vehicles contain an ever increasing number of electronic functions, see
Figure 1. These electronic control functions consist of various components that
replace mechanical control systems (also called X-by-wire), so that some of the
traditional mechanics, e.g., the steering column, can be left out. Each function is
also a cyber-physical system by itself [2], which holistically integrates sensing,
actuation, computation, networking and physical processes. These X-by-wire
functions are complex, distributed and interdependent.

Fig. 1. A modern car is equipped with many embedded computers inter-
connected via different kinds of communication busses. This infrastructure
facilitates more and more electronic, X-by-wire applications.

For example, a function, called integrated vehicle dynamics control (IVDC),
is meant to optimize the coordination of multiple chassis control functions in a
vehicle [3]. The main goal of IVDC is to stabilize a vehicle in critical situations
and to improve its handling performance by reducing oversteer or understeer.
This type of control when applied to braking actuators only is sometimes
referred to as electronic stability program (ESP). ESP has already proven to
have a positive impact on the accident rates. Recent literature indicates that
there is still room for further improvement by adding more X-by-wire functions,
such as steer-by-wire, to the stability control [3]. However, combining different

4

1. Introduction

control functions is not trivial and their synergy requires also that the multiple
software components of different functions share the same embedded platform.
The development of electronic functions such as IVDC brings many technical
challenges, ranging from distributed programming to control theory and from
timing analysis to the composition of components.

The current market situation reinforces these challenges, because adding a new
function into a vehicle often means purchasing pre-manufactured hardware and
software with little information about the internal behavior of the function [1].
The AUTOSAR consortium recently attempted to introduce a standard in
which suppliers provide only the functional software components associated
with well-defined behavioral component models and interfaces. Industrial
standards like AUTOSAR thereby aim at giving system integrators better control
over the functional cooperation, communication and synchronization between
different components of arbitrary vendors. The underlying operating system and
middleware – responsible for standardized application programming interfaces
(APIs) with underlying support for multi-tasking and synchronization – are also
subject to AUTOSAR certification. These layers should protect a component
against propagation of faults caused by other components.

The challenge of the system integrator is then to satisfy the resource require-
ments of the composed components. Many components, especially those that
implement control functionality, are sensitive to timing and fluctuations in actu-
ation delays [4]. Furthermore, some components must share several actuation
devices, such as brakes and the steering wheel. Software components may also
share multiple input and output (I/O) devices and software pieces [1], e.g.,
object detection. These forms of resource sharing inherently require interrupt
handling or contiguous mutual-exclusive execution of components, which may
further impact I/O delays experienced by the control tasks. Failing to meet
timing constraints of a component may lead to an unstable vehicle and unsafe
situations.

Because we consider software components that are sensitive to timing, the
individual components and the composed system require timing analysis. This
work investigates the composition of inter-dependent software components,
including the underlying operating-system support, from a timing perspective.

1.2 Problem description

Embedded systems are increasingly taking advantage of the opportunities
offered by better programmable and more powerful hardware platforms. This
leads to system designs with new software functions and solutions that share
hardware resources and that have hard real-time constraints associated with
them. The design of embedded systems requires the development of cost-

5

1. Introduction

effective platforms, i.e., a selection of off-the-shelf hardware, real-time operating
system and programming framework supported by novel tools and technologies.

To cope with the ever increasing complexity of embedded systems, we
revisit hierarchical scheduling frameworks (HSFs). These frameworks enable
composition and isolation of independently developed, real-time components
upon a single processor through a hierarchy of schedulers and reservations.
If these real-time components also act independently, as they do in legacy
and development situations, their overall performance is not optimal. There
is a trend towards optimizing the overall system performance and creating a
synergy between the different components in a system. The emerging synergy
between different components calls for innovative technologies, methodologies
and algorithms to establish predictable software synchronization.

We focus on two types of synchronization between tasks located in arbitrary
components:

1) a-synchronous resource sharing and communication (e.g., event or in-
terrupt driven). A component, that shares the processor with other com-
ponents, may cause unpredictable overheads to those other components
due to the handling of external events such as I/O interrupts, software
signals or timer interrupts. This is the result of propagating an event
immediately, i.e., without delaying the delivery of an a-synchronous event
until the destined task has the highest priority in the composed system.
Moreover, a component may receive a continuous processor supply in a
federated architecture, because it has the entire processor at its disposal.
In an integrated system, however, the processor needs to be shared and
it is inherently available for execution discontinuously. If the tasks of a
component are triggered by external events, an integrated component
may execute its tasks in a different order under a continuous than under
a discontinuous supply of processor time.

2) synchronous resource sharing and communication (via so-called non-
preemptive resources). The HSF no longer guarantees isolation of an
individual component when an arbitrary other component violates its
specification during the execution of its tasks on non-preemptive resources
that require mutually exclusive access, even when access is arbitrated
via well-defined real-time synchronization protocols. This problem be-
comes even more apparent when a component developer (consciously
or unconsciously) exploits protocol-specific timing glitches. In addition,
a component that has been developed with the explicit support of one
particular synchronization protocol cannot be re-used in an HSF when
the synchronization protocol is changed.

We focus on the problems associated with these two types of resource sharing
and communication between tasks in arbitrary components.

6

1. Introduction

1.3 Contributions
In this work we revisit frameworks for designing hierarchically scheduled
systems. We cover the system design from component requirements to run-time
resource allocation and arbitration of components upon a single processor and
other resources.

Component Cs Resource-supply model

Interface selection

Component Interface Ωs

Admission control

Other components’ interfaces

reject
accept

Virtual platform of Cs Other virtual platforms

Resource allocation

Global scheduling and global resource arbitration

Component development

(Timing-) Requirements analysis

Fig. 2. The design stages of an hierarchically scheduled system.

The composition of components into an hierarchically scheduled system
involves several design phases, see Figure 2. Our main objectives are: (i) in-
dependent development of components, (ii) independent (timing) analysis of
components and (iii) abstraction of resource sharing between component. The
latter objective especially calls for enhancements of the earlier proposed design
phases of a compositional system. In short, our contributions are as follows.

Component development. During the development of a component, a de-
signer has to split a piece of software into concurrently executing units called

7

1. Introduction

tasks. Part of this work is to protect critical sections, requiring contiguous mutual-
exclusive execution, through a synchronization protocol. When a task executes
in a critical section it is said to execute on a non-preemptive resource.

We make the API to non-preemptive resources transparent during the devel-
opment cycle of a component (Paper D), i.e., the developer of a component
can be unaware of the actual protocol being used in an HSF to realize mutual-
exclusive execution on that resource. Components can therefore be unaware that
access to non-preemptive resources requires global arbitration (beyond their
virtual platforms). This supports the independent development of components.

Requirements analysis. At design time, the component designer must char-
acterize the timing requirements of the component and derive an appropriate
timing interface that summarizes these requirements. We distinguish two aspects
here (see Paper C): (i) the choice of an interface representation, i.e., determined
by the choice of a resource-supply model, and (ii) the selection of the interface
parameters under the auspices of the chosen resource-supply model.

Furthermore, we standardize the way of computing the interface parameters
of a component, even in the presence of non-preemptive resources. We can
therefore apply the same timing analysis to the components in an HSF as to
the tasks inside, regardless of their scheduling or their protocol being used for
non-preemptive resources. The latter property, i.e., that the component’s timing
analysis is independent of the global synchronization protocol, is called opacity.
This property increases the re-usability of the timing analysis of components.

We also show how scheduling tasks co-operatively within a component, i.e.,
by a limited-preemptive local task scheduler, helps to meet the deadlines of
this component (Paper A). We compare the strength of these scheduling tech-
niques to theoretically optimal schedulers. The limited-preemptive schedules
of components may result in tighter resource requirements of a component.

Interface selection. Given a resource-supply model, the designer needs to
compute an interface, so that the component is guaranteed to satisfy its deadline
constraints on any platform that satisfies its interface. The optimal interface for
a component is subject to different trade offs. For example, Lipari and Bini [5]
derived an interface for an independent component based on the bounded-
delay model while trading off the maximum service delay versus the maximum
processor bandwidth.

In the presence of non-preemptive resources that need to be shared between
tasks of different components, the selection of interface parameters becomes
even more complicated. On the one hand, the more preemptive the tasks in
a component execute, the better their responsiveness. On the other hand, the
more preemptive the tasks in a component execute, the longer the component
as a whole may keep control over a non-preemptive resource; this may lead to
long blocking durations between components. We propose a method to trade

8

1. Introduction

off these interface parameters of a component in a computationally tractable
way (Paper C).

Admission control. When a component needs to execute on a shared plat-
form with other components, it presents its timing interface to the admission-
control algorithm. The admission controller determines whether or not the
component can enter the system without compromising the schedule of the
other components. If a component is admitted successfully, the component is
allocated a virtual platform dimensioned according to its specification in the
timing interface. If the component is rejected, the designer must go back to the
interface specification.

We propose a method to select an interface of a component in such a way
that the composition of components will return a configuration that can be
scheduled successfully whenever possible1 (Paper C). Our method selects new
interface parameters when necessary and the selection procedure searches the
design space in a computationally tractable way.

Resource allocation. If a set of components is admitted on a shared platform,
each of the components is allocated a virtual platform. A virtual platform
implements an abstraction layer, so that all resources required by the hosted
component appear to be available without the need of sharing those resources
with other components. For example, the virtual platform implements a service
policy (i.e., a server, in short) for the allocation of a virtual processor.

The virtual platforms are then together scheduled on the physical resources.
On a shared platform, however, a virtual platform delivers the processor time
discontinuously and the actual processor is faster than the virtual processor.
This disturbs the desired view of a virtual processor, because the order in
which external events are handled within the component during run time may
change with respect to the execution order on a continuous processor.

We present a novel scheduling method – called virtual scheduling – that enables
us to compose a component into an HSF with other components (Paper B). It
guarantees that each integrated component executes its tasks exactly in the
same order regardless of a continuous or a discontinuous supply of processor
time. Using our virtual-scheduling method, the component executes on a virtual
platform and it only experiences that the processor speed is different from
the actual processor speed. As a result, external events are delivered to a
component when that component is executing on the processor. This prevents
the handling of events destined for suspended components; thus, we avoid that
event-handling consumes resources allocated to other components. Furthermore,
we can now focus on the traditional scheduling problem of meeting deadline

1. This optimality criterion holds under the assumption that the interface parameters of a
component are computed opaquely, i.e., independently of the global scheduling and resource-
arbitration policies which decide when the required resources are actually delivered.

9

1. Introduction

constraints of tasks on a continuous uni-processor.
Global scheduling and global resource arbitration. After we have reserved

all the specified resources of the components, we must schedule and enforce the
availability of these resources during run-time. In paper D we investigate the
scheduling overheads in a real-time operating system that we have extended
with an HSF and with various real-time synchronization protocols. Paper D
ignores the enforcement of reserved resources other than the processor, however.

The promise of a virtual platform is that a component keeps meeting its
timing constraints as long as it behaves as specified. If it violates its specification,
it may be penalized, but other components are temporally isolated from the
malignant effects. The HSF no longer guarantees the isolation of an individual
component when two arbitrary components violate their specification during
access to non-preemptive resources, even when access is arbitrated via well-
defined real-time protocols.

We therefore complement the existing real-time protocols for arbitrating
access to non-preemptive resources with mechanisms to confine temporal faults
to those components in the HSF that share the same non-preemptive resources
(see Paper E). We compare the overheads of sharing non-preemptive resources
between components with and without mechanisms for confinement of temporal
faults (see Paper F). We do this by means of experiments within the same
HSF-enabled real-time operating system as used in Paper D.

1.4 Outline
The remainder of the first part of this work focusses on (i) timing-requirements
analysis, (ii) the representation of component interfaces and the derivation
of the corresponding interface parameters and (iii) the admission control of
components. The programming framework for the development of a component
and the algorithms for selecting the best interface of a component are advanced
topics and these topics are therefore kept for the second part of this work.

The outline of this first part is as follows. Section 2 gives an overview of
several real-time task models that provide means for timing-requirements
analysis of an individual component. This section also introduces the notion of
resource sharing between tasks of the same component and it recapitulates the
corresponding analysis. Section 3 presents the current state-of-the-art techniques
for composing real-time models in a hierarchically scheduled system. We present
guidelines and rules how to abstract from the actual execution of the local tasks
within a component on any required resource. This gives a preview of our
newly contributed techniques for designing compositional systems in which
we implement an admission controller for components as if components were
simple tasks. Section 4 summarizes our most important research results. Finally,
Section 5 proposes future research directions.

10

2 REAL-TIME MODELS, THEIR PERFORMANCE AND COMPLEXITY

For the timing analysis of real-time components, we take a process view
of a component. This means that a component has been synthesized into
concurrently executing units, i.e., tasks, for which access to the processor (as
well as other resources) is arbitrated by a local scheduler. The mapping from
the original application’s functional entities to run-time tasks may be complex,
e.g., deriving local deadlines of tasks in a distributed system can be complex [6];
however, this complexity falls beyond the scope of our work.

We are therefore no longer interested in the functional models. This prevents
that changes in one function (or application) causes a chain of changes in
components that have to execute on the same platform. At the end, we are
interested in satisfying all the timing constraints in the system by means of
composing independently developed and analyzed real-time components. This
means that abstraction of local scheduling and local tasks is desired, so that a
component fits in the context of standard real-time scheduling models.

In this section, we look at real-time task and scheduling models. Hence, we
consider the situation where a single component has the entire processor and
all resources at its disposal. We look at the following triangle of metrics:

1) performance: in this work, we limit the performance measure of a task
to its schedulability. A task is schedulable, if it can complete all its jobs
prior to its deadline. The better the performance is of a real-time task
model, the more task sets are schedulable.

2) abstraction: a model abstracts from the real timing behavior of a task.
The more details that are left out of a timing model, the harder it is to
give realistic and accurate performance guarantees of a task.

3) complexity: given a set of individual models of tasks, we compose these
models in such a way that the resulting system satisfies all the deadlines
of each of the tasks. We are interested in the algorithmic complexity of
the composition.

In our work, we look at methods to optimize the number of task sets that
can be scheduled under various abstraction levels and under various ways of
composition (Paper A and Paper C). We also compare the performance of the
different models in terms of scheduling overheads (Paper D and Paper F).

The remainder of this section is as follows. Firstly, we investigate different
abstraction levels of modeling the timing behavior of the jobs executed by a set
of independent tasks. We also investigate the impact on the complexity of the
analysis when those tasks have to execute on a shared processor. Secondly, we
look how synchronization between tasks changes these models. Synchronization
protocols make it possible to accommodate for limited dependencies between
tasks, i.e., they implement mutual-exclusive execution between tasks. For

11

2. Real-time models, their performance and complexity

example, a task requires mutual exclusion with other tasks when it executes
on a shared non-preemptive resource.

2.1 Task models
In this section, we give a brief overview of commonly used task models in
real-time uni-processor scheduling. A system comprises a set of n independent
tasks, τ1 . . . τn, that share a single processor. Each task τi generates an infinite
sequence of jobs, counted from 0 . . . k − 1. The k-th job Ji,k of a task τi is
characterized by an arrival time ai,k, a relative deadline Di,k and a worst-case
execution time (WCET) Ei,k. Job Ji,k is said to be schedulable, if it is able to
complete its WCET of Ei,k time units within Di,k time units from its arrival.

As scheduling policies, we consider earliest deadline first (EDF) and fixed-
priority scheduling. EDF is an optimal policy for scheduling independent jobs
upon a preemptive processor. EDF dynamically assigns a static priority, πi,k to
each job of a task, i.e., its absolute deadline di,k = ai,k +Di,k and πi,k = di,k.
Fixed priority scheduling of tasks assumes the same static priority, πi, of all jobs
of the same task. At each moment in time, the scheduler selects the job with
the highest priority among all the jobs that have pending execution requests on
the processor2, i.e., jobs are fully preemptive and the scheduler is work conserving.

We start with the basic model by Liu and Layland [7]. We also adopt their
basic assumptions, i.e., jobs do not suspend themselves, a job of a task does
not start before its previous job is completed, and the overhead of context
switching and task scheduling is ignored. A real-time task model may make
further assumptions or add task parameters, so that efficient analysis can be
developed to determine whether or not the jobs of all tasks in a system are
able to satisfy their deadline constraints. Figure 3 briefly summarizes of the
relation between several task models.

Periodic task model [7]. Following the seminal model of Liu and Layland [7],
each task has a period, Ti, and a WCET, Ei = max {Ei,k | 0 . . . k − 1}; these pa-
rameters are fixed for all jobs generated by task τi. Whereas Liu and Layland [7]
assumed implicit deadlines of tasks (i.e., Di = Ti), Leung and Whitehead [8]
have explicitly added a deadline constraint to each task, i.e., each job has to
complete its execution time within Di time units from its arrival. We use the
short-hand notation τi = (Ti, Ei, Di) for characterizing a periodic task. If each
task of a task set has a deadline at most equal to its period, then the task
set is called deadline constrained. Many control algorithms can be developed
considering only periodic actuation and, thus, they can be implemented as
hard real-time periodic tasks [4].

2. Strictly spoken, jobs are the units of concurrency being scheduled. In many restricted task
models, however, each task is assumed to have just one job with pending execution requests at
each moment in time. Tasks and jobs are therefore often used interchangeably.

12

2. Real-time models, their performance and complexity

Recurring branching [18]

Elastic [11]

Sporadic [9]

Recurring [15]

Digraph [20]

GMF [13]

Multiframe [12]

Periodic [7]

P
er
fo
rm

a
n
ce

a
n
d
ex

p
re
ss
iv
en

es
s

C
o
m
p
le
xi
ty

o
f
sc
h
ed

u
lin

g
a
n
a
ly
si
s

High High

LowLow

Fig. 3. Overview of task models where arrows indicate the specialization
relationship. The higher a task model resides in the hierarchy, the higher its
expressiveness (less abstract). The lower a task model resides in the hierarchy,
the more abstraction we have and the less expensive the scheduling analysis is.

Sporadic task model [9]. Rather than a fixed separation of Ti time units
between two subsequent job arrivals of task τi, a sporadic task generates a
sequence of jobs which are separated by at least Ti time units. The period
parameter of a task, Ti, therefore determines the minimal inter-arrival time of
subsequent jobs. Each sporadic job may arrive at an arbitrary moment in time,
i.e., it may delay its arrival for an arbitrarily long period.

A sporadic task can be seen as a sporadically periodic task which exhibits its
worst-case processor demand when subsequent jobs arrive separated minimally
in time [10]. That is, similar to a periodic task under arbitrary phasing.

Elastic task model [11]. Apart from a nominal period Ti, each task has a
minimum period Ti,min and and maximum period Ti,max. Given these extra
bounds on the fluctuations of a task’s period, one can compute the fluctuations
in the response times of tasks by either assuming the worst-case individual
utilization of a task (i.e., tasks are assumed to have a rate Ti,min) or the best-case
individual utilization of a task (i.e., tasks are assumed to have a rate Ti,max).

Buttazzo et al. [11] have applied this model to control overload situations
of sporadic tasks by means of dynamically adapting the nominal periods of

13

2. Real-time models, their performance and complexity

individual tasks within the boundaries of [Ti,min, Ti,max].
Multi-frame task model [12]. Each job of a multi-frame task may specify

a different WCET, Ei,k. The job sequences generated by the multi-frame task
(infinitely) cycle through the static list of job types.

Although the original model presented in [12] consider only implicit deadlines
of tasks, this assumption is lifted by Baruah et al. [13]. Moreover, Baruah et
al. [13] allow a different minimum separation, Ti,k, and a different relative
deadline Di,k between two subsequent job arrivals of the same task. This model
is referred to as the generalized multi-frame (GMF) task model. GMF tasks may
implement state machines, as in some avionics and automotive applications,
with a well-defined cycle and a WCET for each state [14].

Recurring task model [15]. The recurring task model [15] generalizes the
sporadic task model [9], the GMF task model [13] and scheduling with internal
deadlines [16]. A recurring task τi is represented by a directed a-cyclic graph
(DAG) with a unique source and a unique sink3. Each vertex u in the graph
represents a sub-task τi,u, with its own WCET Ei,u and an arbitrary deadline
Di,u. Whenever a job of a sub-task is triggered, it needs to complete its workload
Ei,u within Di,u time units. Each edge (u, v) in the graph is labeled with a
value Ti,v indicating the minimum separation between a trigger of sub-job τi,u
and a trigger of τi,v . Inherited from the sporadic task model, two subsequent
arrivals of the source vertex are at least separated by Ti time units.

Baruah [15] presented a demand-bound test which checks whether or not
all (internal) deadline constraints of a given task set are satisfied under EDF
scheduling of tasks. The scheduling analysis under both EDF as well as fixed
priority assignments of recurring tasks have been presented in [17]. These
schedulability tests have an exponential worst-case complexity in the number
of vertices of a task. When the DAG is a tree, the task model is called the
(recurring) branching task model [18]. This model has a simplified analysis. A
task can be analysed within a cubic complexity in the number of vertices and
the analysis of an entire task set has a pseudo-polynomial time complexity.

Anand [19] has extended the recurring branching task model by explicitly
modeling different lengths of branches and by explicitly modeling control
variables at decision points.

Digraph task model [20]. The digraph task model [20] generalizes the
recurring task model by allowing cyclic directed graphs. The analysis for
EDF-scheduled digraph-task systems has been presented in [20] and [21].

Complexity of analyzing a schedule
Given a set of tasks, we would like to analyze whether or not all the tasks’
deadlines are satisfied. The analysis of the schedule should preferably be

3. Both multi-frame task models in [12] and [13] are restricted to a chain of vertices.

14

2. Real-time models, their performance and complexity

computationally efficient. The algorithmic complexity of analyzing a schedule
does not only depend on the expressiveness of the task model, it also depends
on the scheduling policy. Table 1 presents an overview.

To analyze the schedulability of a task set, the jobs in a sufficiently large time
window need to considered. The first problem of analyzing a schedule is to
bound the length of the time window adequately. The second problem is then
to define an appropriate upper bound on the workload of the task set within
this window. In order to deem a task set schedulable, we must check whether
or not all jobs in a so-called synchronous busy interval finish prior to their
deadline. The synchronous busy interval is defined by the longest time window
that the processor is busy with processing a job that is simultaneously released
with a higher-priority job of other tasks and it includes the time required to
process the higher-priority jobs subsequently released by other tasks.

One way of determining whether or not all the jobs meet their deadline
is by computing the response time of the jobs. Joseph and Pandya [23] have
developed response-time analysis for fixed-priority scheduling of sporadic tasks
and Spuri [24] has presented response-time analysis for EDF scheduling of
sporadic tasks. Contrary to fixed-priority scheduling of sporadic tasks, under
EDF scheduling of sporadic tasks the synchronous busy interval is not unique
for a set of tasks [24]. It might be necessary to consider several alignments of
tasks and check all jobs in the resulting busy interval in order to find the worst-
case response time of an EDF-scheduled task. Computing the response times
of tasks can therefore be complicated and it is not always the most suitable
method for analyzing a schedule. Fortunately, there exist boolean schedulability
tests which allow to analyze the schedule of a task set within a finite time
interval while assuming an initial synchronous release of all tasks in the system,
even with EDF scheduling of tasks [10]. For more complicated task models
with fixed task priorities, however, the analysis of a synchronous busy interval
may result in just a sufficient scheduling analysis [22].

A schedulability test is considered to be efficient in the real-time community
if resource-augmentation bounds exist. In other words, given a unary repre-
sentation of a task set as an input, i.e., a finite sequence of jobs generated

TABLE 1
Overview of the algorithmic complexity of exact scheduling analyses under

various task models (as it is presented by Stigge et al. [22]).
Task model EDF scheduling Fixed-priority scheduling

Periodic [7] and sporadic [9] task model

pseudo-polynomial

pseudo-polynomial
Generalized multi-frame task model [13]

strongly coNP-hardRecurring (branching) task model [15], [18]
Digraph task model [20]

15

2. Real-time models, their performance and complexity

by the tasks within a certain time interval, the schedulability problem of the
task set can be solved in polynomial time complexity in its input size. The
algorithms for analyzing a schedule are therefore called weakly NP-hard and
the algorithmic complexity of such a test is said to be pseudo-polynomial.

This class of pseudo-polynomial scheduling problems gives the opportunity
to develop fully polynomial-time approximation schemes (FPTASes) in terms of
resource-augmentation bounds. Intuitively, a resource-augmentation bound gives
an upper bound on the processor speed that a task set requires continuously
in order to avoid deadline misses. The resource-augmentation bounds of an
FPTAS must be interpreted as follows:

• if an FPTAS indicates that a task set is schedulable, then the processor is at
most 1 + ε times as fast as required by an exact schedulability test, where
ε can be selected by the system designer in order to trade the algorithmic
complexity of the FPTAS against the precision. In other words, if the FPTAS
deems a task set schedulable, then an exact test will fail the task set when
the WCETs of the tasks are multiplied with a factor larger than 1 + ε.

• if the FPTAS fails to schedule a task set, then no further conclusions can
be drawn.

FPTASes have already been developed for the timing analysis of periodic
tasks and sporadic tasks. For example, Albers and Slomka [25] presented an
FPTAS for sporadic tasks scheduled by an EDF scheduler and Fisher and
Baruah [26] presented an FPTAS for sporadic tasks scheduled under a fixed-
priority assignment4. Note that computing response times of tasks is NP-hard
in the strong sense [28], because response times cannot be approximated within
polynomial bounds. It is possible, however, to derive response times of sporadic
tasks with a constant resource-augmentation bound [29].

The approximation of the schedulability analysis is beyond the scope of
this work. Nevertheless, it is useful to understand the reasoning behind
these polynomial-time approximation schemes. In this work we will design
algorithms (see paper A and Paper C) to optimize the scheduling of dependent
sporadic tasks, i.e, tasks that share more resources than just the processor. Our
algorithms typically need to validate a schedulability condition in each step of
the optimization. The existence of efficient approximation techniques for the
verification of a schedule indicates the importance of developing algorithms to
traverse the design space of a system within polynomial time complexity.

Finally, we recall that the relative algorithmic complexity of the various
task models must be interpreted within the context of the basic scheduling
assumptions of Liu and Layland [7]. For example, there is evidence [30] that the

4. The FPTAS by Fisher and Baruah [26] for fixed-priority scheduling of tasks is correct for
deadline-constrained task sets only; it is flawed for arbitrary deadlines of tasks, which has been
corrected by Nguyen et al. [27].

16

2. Real-time models, their performance and complexity

τi,1

τi,2

τi,3

(5,10)

(2,8)

(1,10)

10

10

10

Di,1=Ti,1=10 Ti,2=10

Di,2=8

Di,3=Ti,3=10

time

time

Legend: job arrival job deadline

(b)

(c)

(a)

job execution

Ti = 10 Ti = 10

Di = 8

Ti = 10

Di = 8 Di = 8

Fig. 4. A generalized multi-frame task [13] flattened into a sporadic task [9].
(a) represents the digraph of the task, (b) shows the corresponding time-line
representation and (c) shows the time-line of a constructed sporadic task.

complexity of analyzing a set of sporadic tasks is much easier than analyzing
a set of periodic tasks when self-suspension of tasks is allowed. Lifting the
standard scheduling assumptions is beyond the scope of this work, however.

The model we will use and its performance
In this work we schedule a set of sporadic tasks upon a single preemptive
processor. As we have seen just before, various sufficient conditions have been
developed for this task model in order to determine whether a task set can
meet its deadlines by a certain scheduling policy.

More general task models, i.e., digraph tasks, can be flattened in order to
convert them into a sporadic task model. This flattening means that the sporadic
task τi can be defined by the tightest Di,k, the smallest Ti,k and the largest Ei,k

of all the sub-tasks in the graph representations of a digraph task. Figure 4
shows an example of flattening the graph representation of a task into a sporadic
task. Alternatively, each job in the digraph can be seen as a concurrent task, i.e.,
ignoring the mutual-exclusive execution intervals of those jobs. In both cases,
the scheduling analysis on a flattened task system may become pessimistic.

Since we will use the sporadic task model, we recapitulate the exact schedul-
ing analysis of a set of task that needs to execute on a single processor. These
sufficient and necessary conditions are assumed to be well-understood by the
reader and can be found back in the referred literature.

17

2. Real-time models, their performance and complexity

A set T of n deadline-constrained sporadic tasks can be scheduled
under a fixed priority assignment upon one processor [31], if and only
if,

∀i : 1 ≤ i ≤ n : (∃t : t ∈ Si : rbf(i, t) ≤ t) , (1)

where
• rbf(i, t) defines the cumulative processor request bound of the

tasks with a priority higher than, or equal to, τi in an arbitrary
interval of length t, i.e,

rbf(i, t) =
∑

πj≥πi

⌈
t

Tj

⌉
Ej ; (2)

• Si denotes a non-empty finite set of time points [31], i.e.,

Si
def
=

{
t = b·Ta

∣∣ πa > πi; b ∈ N
+; t ∈ (0, Di]

}
∪ {Di}. (3)

A set T of n deadline-constrained sporadic tasks can be scheduled with
EDF upon one processor [10], if and only if

∀t : t ∈ S : dbf(t) ≤ t, (4)

where
• dbf(t) defines the cumulative processor demand bound of the task

set in an arbitrary interval of length t, i.e,

dbf(t) =
∑

1≤i≤n

⌊
t+ Ti −Di

Ti

⌋
Ei; (5)

• S denotes a non-empty finite set of time points [32], i.e.,

S def
=

{
t = b·Ti +Di

∣∣ 1 ≤ i ≤ n; b ∈ N
+; t ∈ (0, lcm {T1, . . . , Tn}]

}
(6)

and the lcm {T1, . . . , Tn} denotes the least common multiple of the
task periods.

The algorithmic complexity of verifying the scheduling conditions in (1) and
in (4) is pseudo-polynomial.

2.2 Priority inversion of sporadic tasks

The scheduling of tasks discussed so far assumed fully preemptive task models,
so that at each moment in time the highest priority job can be selected by the

18

2. Real-time models, their performance and complexity

scheduler for execution on the processor. In practice, tasks may share more
resources during (part of) their execution than just the processor. For example,

1) tasks may access shared memory to communicate with other tasks
• via shared buffers and shared data structures; or
• via memory-mapped devices.

2) tasks may use operating-system services, which requires
• protection of in-kernel data structures using short non-preemptive

critical sections;
• mutual exclusion between the tasks that use shared device drivers

and other services.
3) tasks may access the processor non-preemptively (i.e., so-called pseudo-

resources) in order to
• reduce the number of cache misses;
• reduce pipeline flushes.

Access to shared resources is typically guarded by synchronization primitives
provided by the real-time operating system, e.g., semaphores [33], in order to
guarantee mutual exclusion. These resources are assumed to be accessed only
in critical sections and are serially reusable.

A synchronization protocol arbitrates access to the class of resources that is
referred to as serially reusable, non-preemptive resources. Baker [34] and Baruah [32]
describe the meaning of these resources as follows. A job that begins executing
on such a resource releases the resource only when it has completed its execution
on the resource. Nevertheless, it is possible that a job accessing such a resource
in a critical section is preempted within the critical section; however, it will
not release the resource upon such preemption.

The classical semaphores do not provide suitable mechanisms for real-time
arbitration of shared resources, because the use of semaphores may lead to
so-called unbounded priority-inversion times. Figure 5 shows an example of this
phenomenon. During priority inversion the highest-priority task τ1 effectively
runs at the lowest priority until that lowest priority task τn releases the resource
R� that τ1 wishes to access as well. The actual length of the time interval
of priority inversion might not be unbounded; however, without a real-time
protocol it is complicated to compute a bound on the priority-inversion duration.
The unbounded durations of priority inversion reflect that each task must assume
it has the lowest priority in the system and its execution is maximally delayed
accordingly. This may easily lead to infeasible schedules.

The goal of real-time synchronization protocol is to bound priority-inversion
times between tasks. Lampson et al. [35] already recognized the phenomenon
of unbounded priority-inversion times and they suggest a solution to bound
the durations of priority inversion. Their solution is currently known as the

19

2. Real-time models, their performance and complexity

time

τ1

τ2

τ3 R� R�R�

R�

Unbounded blocking

Legend: critical section normal execution task arrival

b1

Fig. 5. Synchronization mechanisms, e.g., semaphores [33], which provide
means to implement mutual-exclusive execution of tasks, can lead to so-called
unbounded blocking of high-priority tasks. Real-time synchronization protocols
have been invented to prevent this phenomenon.

immediate priority ceiling protocol (I-PCP) [36]. However, they did not describe
the timing analysis of the tasks.

There are different ways to extend the scheduling analysis of task models with
resource sharing. Firstly, we briefly recapitulate the traditional synchronization
protocols. The tasks may access resources through these protocols at any
arbitrary moment in time during their execution. Secondly, we look at tasks
that consist of predefined series of critical sections (also called sub-jobs).

Real-time synchronization protocols
The key property of a real-time synchronization protocol is that the priority-
inversion durations between tasks can be bounded based on just (i) the WCETs
of the critical sections of all tasks and (ii) the relative priorities of the tasks that
access the same resources. Thus, the WCETs of the entire tasks are irrelevant.
For analysis purposes, we augment the sporadic-task model with the WCETs
of the critical sections of tasks.

• Hi is a set WCETs of critical sections of a task τi. The cardinality of Hi is
at most equal to the number of resources in the system, m.

• hi� ∈ Hi is the WCET of a critical section of task τi to resource R�. A task
may execute multiple critical sections accessing the same resource R�; the
value of hi� is just the longest WCET among those critical sections.

To perform the timing analysis of tasks, many real-time synchronization
protocols use the notion of a resource ceiling.

Definition 1: A resource ceiling rc� of resource R� is a statically computed
value that indicates the highest priority task that wishes to access resource R�.

20

2. Real-time models, their performance and complexity

Under fixed-priority scheduling of tasks the priorities of the tasks can be
used to define the resource ceiling. Under EDF scheduling of tasks, which is a
dynamic-priority scheduler, the shortest relative deadline of the resource-sharing
tasks defines the resource ceiling.

Some protocols also use the resource ceiling in order to implement the
basic mutual-exclusion mechanism of a synchronization protocol. The most
commonly used real-time protocols can be found in standard text books, for
example, see [37]. We therefore give just a brief overview of their distinguishing
characteristics, illustrated by Figure 6.

Priority-inheritance protocol [36]. The priority-inheritance protocol works
as follows. If a higher-priority task blocks on a resource that has been locked
by a lower-priority task, then the lower-priority task temporarily inherits the
higher priority. As soon as the lower-priority task releases the resource, it falls
back to its own priority. A task can inherit priorities transitively.

Spuri [38] has proposed the dynamic priority-inheritance protocol for EDF
scheduling of tasks. Similarly to fixed-priority scheduling, a task inherits the
absolute deadline of a blocked task until it releases the resource; thereafter, it
resumes at its original deadline.

The priority-inheritance protocol uses the resource ceiling just for analysis
purposes. A task can at most inherit a priority equal to the resource ceiling.
Moreover, a higher-priority task can block at most once on each of its accessed
resources within a synchronous busy interval. Formally, a task τi can experience
a blocking duration of at most

bi =
∑

1≤�≤m

max (0, max {hj� | rc� ≥ πi > πj}) . (7)

The term in (7) can be further reduced by taking the number of lower priority
tasks into account [36].

In an EDF-scheduled task system, only a task that has already started its
execution and that has a deadline larger than a considered time interval of
length t can block tasks with a deadline shorter than (or equal to) t, i.e.,

b(t) =
∑

1≤�≤m

max (0, max {hj� | Di ≤ t < Dj}) . (8)

The phenomenon that a higher-priority task can block on a sequence of resources
that are all locked by different lower-priority tasks is called chained blocking
(see Figure 6). The chain of blocking durations results in a cumulative blocking
defined by a sum of critical-section lengths, see (7) and (8), and deadlocks are
possible.

Priority ceiling protocols [36]. The priority-ceiling protocol has been invented
to overcome the penalties of chained blocking. It works as follows. During

21

2. Real-time models, their performance and complexity

run-time a dynamically computed system ceiling, sc(t), is maintained,

sc(t) = max {rc� | R� is locked at time t} . (9)

If a task wishes to access a resource R�, the PCP grants access only if the
priority of the task is higher than the current system ceiling. Furthermore, if
a task blocks on a resource, the task that has locked the resource inherits the
priority of the blocked task until it releases the resource (just like the PIP).

Since the resource ceiling represents the highest-priority task that may ever
wish to access the same resource, the PCP avoids chained blocking and it avoids
deadlocks [36]. A higher-priority task can therefore be blocked on at most one
of its accessed resources within a synchronous busy interval. Formally, a task
τi can experience a blocking duration of at most

bi = max (0, max {hj� | 1 ≤ � ≤ m ∧ rc� ≥ πi > πj}) . (10)

Chen et al. [39] have extended the PCP for EDF scheduling of tasks. In an
EDF-scheduled task system, only a task with a deadline larger than t that has
already started its execution can block tasks with a deadline of at most t, i.e.,

b(t) = max (0, max {hj� | 1 ≤ � ≤ m ∧Di ≤ t < Dj}) . (11)

Stack-based protocols [34], [36]. Similar to the default counting semaphores,
the PIP and the PCP require waiting queues to track tasks that pend on a
locked resource. When a task releases a resource, it comes with an event to
notify blocked tasks. This may lead to an interleaved execution of high priority
and low priority tasks, see Figure 6(a) and Figure 6(b). As a consequence, each
task must store its execution state on a separate stack location. Stack-based
synchronization protocols prevent interleaved execution of tasks. Contrary to
the PIP and the PCP, the key property of stack-based protocols is that they
have non-blocking lock and unlock operations.

Sha et al. [36] proposed a stack-based synchronization protocol which is
widely applied in industrial systems. They proposed the immediate PCP (I-PCP)
as a simpler alternative for the PCP. The I-PCP is, for example, part of the OSEK
and POSIX operating-system standards5. Whereas the PCP waits with blocking
of other tasks until one attempts to access a resource, the I-PCP immediately
raises the priority of a task to the resource ceiling upon access of a resource.
As soon as the resource is released, the task falls back to its previous priority.

The stack resource policy (SRP) [34] generalizes the I-PCP, i.e., it supports
multi-unit resources and it supports dynamic priority scheduling using the
EDF. Contrary to the I-PCP, the SRP changes the scheduler. That is, at each

5. The immediate priority ceiling protocol (I-PCP) is sometimes also referred to as the highest
locker protocol (HLP). In the POSIX standard, the I-PCP is called Priority Protect Protocol (PPP).

22

2. Real-time models, their performance and complexity

time

τ1

τ2

τ3 R1 R1

R2

R1

Legend: critical section normal execution task arrival

R2

R2

(a)

time

τ1

τ2

τ3 R1 R1

R1 R2

R2

(b)

R1

Chained blocking

time

τ1

τ2

τ3 R1

R1 R2

R2

(c)

Avoidance blocking

Fig. 6. Overview of different real-time synchronization protocols that bound the
priority-inversion times between tasks. The PIP allows blocking of a higher-priority
task by a chain of lower-priority tasks, but only once per accessed resource,
see (a). The PCP, the I-PCP and the SRP avoid this phenomenon, see (b) and (c).
The PCP blocks a higher-priority task at its attempt to access a resource when the
system ceiling is higher than the task’s priority, see (b). Contrary to the PCP, both
the I-PCP and the SRP disallow any higher-priority task to start their execution
when a resource with a ceiling higher than their priority is locked, see (c).

23

2. Real-time models, their performance and complexity

scheduling decision the highest priority task is dispatched that has the highest
priority among all ready tasks and that has a higher priority than the current
system ceiling. Under fixed-priority scheduling of tasks, the I-PCP and the SRP
exhibit the same run-time behavior, see Figure 6(c). The same blocking term
can be used for resource sharing arbitrated by the PCP, the I-PCP and the SRP
(also with EDF). This blocking term has been defined in (10) and in (11).

Comparison of real-time synchronization protocols
We briefly compare the different real-time protocols. Further, we motivate why
we prefer to use the SRP as a synchronization protocol in this work.

A nice property of the I-PCP and the SRP is that they prevent interleaved
execution of low-priority tasks and high-priority tasks. Figure 6(c) illustrates
this execution behavior, i.e., see the pyramid form of the job executions. These
protocols therefore make it possible to share a single execution stack between
all the tasks. This may considerably reduce the memory requirements of a
task set [40]. Moreover, the I-PCP and the SRP do not need an event-queue
infrastructure, because the waiting queues of tasks are contained in the ready
queue (sorted by execution priority).

One reason for choosing PIP support in a real-time operating system, however,
is that PIP can implement the basic functionality of mutual-exclusive execution
between tasks without requiring any pre-computed resource ceilings (unlike
the PCP, the I-PCP and the SRP). In the PIP the priority of the task that has
locked the resource is dynamically raised to the priority of the task that is
pending on a resource, which does not require knowledge of any resource
ceiling. This property of the PIP is called transparency, i.e., the PIP does not
require new kernel primitives compared to the default semaphores [33]. Despite
this nice property, the analysis of tasks arbitrated by the PIP uses the notion of
a resource ceiling [36] (just like the PCP, the I-PCP and the SRP do).

Some operating systems even do away with the transparency property of
the PIP in order to reduce implementation costs. For example, μC/OS-II only
supports a single task on each priority level, independent of the execution
state of the task, because a priority is also used as a task identifier. A priority
level is assigned to each resource on creation of the resource. The priority level
is used to raise the priority of a task when it blocks a higher-priority task,
which is named priority calling in the μC/OS-II terminology. The priority calling
protocol deployed by μC/OS-II is well documented [41] and it implements the
PIP non-transparently6. Because of the assignment of a unique priority to each
resource, the transparent character of PIP is lost.

6. Many other operating-system vendors refuse to state clearly which synchronization protocol
they have implemented [42]. For example, Zöbel et al. [42] have shown that many attempts to
identify the truly implemented protocol fail.

24

2. Real-time models, their performance and complexity

The disadvantage of the I-PCP and the SRP is that these protocols block any
task with a lower priority than the resource ceiling, even if none of those tasks
pend on the same resource. This phenomenon is called avoidance blocking, see
Figure 6(c). Avoidance blocking does not affect the computation of the blocking
term compared to the PCP. The reason is as follows. A middle-priority task
may get blocked by the PCP as soon as a high-priority task blocks (causing a
priority-inheritance of the lowest priority task). With the I-PCP blocking cannot
happen during the execution of a task; blocking can only happen prior to the
execution of a task. Similar to the PCP, however, a task arbitrated by the I-PCP
can be blocked at most once by a lower priority task in a synchronous busy
interval. We conclude that the same blocking term can be used for resource
sharing arbitrated by the I-PCP and the SRP as defined in (10) and in (11).

Advantages of the I-PCP and the SRP are their ease of implementation and
their deadlock-avoidance property. Moreover, the worst-case blocking of tasks
arbitrated by the PCP, the I-PCP or the SRP, i.e., see (10) and (11), is superior
compared to the worst-case blocking of tasks arbitrated by the PIP, i.e., see (7)
and (8). The PIP is therefore not very suitable for arbitrating hard real-time
tasks. This is confirmed by Baruah [32], who has shown that the SRP+EDF
is an optimal scheduling policy for hard real-time sporadic tasks among all
work-conserving scheduling policy. Since this work considers the scheduling
of hard real-time tasks, without further loss of generality, we focus on resource
arbitration using the SRP.

Performance of limited-preemptive schedulers
The analysis of resource-sharing tasks typically assumes a preemptive task model.
This means that a blocking term is included in the analysis of the schedule as a
worst-case delay for the start of the execution of tasks. The blocking task may
finish its work earlier, however, when it delays the execution of higher priority
tasks beyond its own completion. Such accelerated execution of a task is not
taken into account in the preemptive task model. So-called limited-preemptive
schedulers do take into account these delays of higher-priority tasks.

Bertogna and Baruah [43] have presented an overview of limited-preemptive
EDF scheduling of sporadic tasks. Buttazzo et al. [44] have surveyed limited-
preemptive scheduling of sporadic tasks with fixed priorities. We briefly reca-
pitulate the main ideas behind different task models.

Preemption-thresholds scheduling (PTS) [45]. With PTS, each task τi has a
preemption threshold θi at least equal to its priority. A job of task τi competes for
the processor at its priority when it is ready to execute but it has not yet started
to execute. At run-time, when τi first starts to execute, its active priority is set to
its preemption-threshold θi. When τi is executing, it can only be preempted by
tasks with a priority higher than θi. PTS can specialize to both fully preemptive

25

2. Real-time models, their performance and complexity

scheduling and non-preemptive scheduling of tasks.
Gai et al. [40] have shown that PTS can be unified with the SRP, where a task

τi accesses a so-called pseudo-resource Rρ as soon as it starts executing and
it releases Rρ upon completion. The corresponding worst-case critical-section
length is hi = Ei and the resource ceiling is defined by rcρ = θi. Then, the
blocking times experienced by tasks can be computed according to the SRP as
well, i.e., see (10) and (11). Given a task set with fixed priority assignments, Wang
and Saksena [45] derived algorithms for selecting the preemption thresholds.

Scheduling with deferred preemptions (DPS) [16], [46]. In DPS, each job of
task τi consists of a sequence of mi sub-jobs7, where mi ≥ 1. The a-th sub-job of
τi is denoted by τi,a and characterized by a WCET, Ei,a, where Ei =

∑mi

a=1 Ei,a.
Sub-jobs are non-preemptive. Hence, a task can only be preempted between sub-
jobs, i.e., at the so-called preemption points. DPS specializes to non-preemptive
scheduling when ∀1≤i≤nmi = 1.

The number of non-preemptive sub-jobs, mi, is typically assumed to be
static [16]. As an example, fixed-priority DPS, also referred to as FPDS [47] or
co-operative scheduling [16], places preemption points statically [48]. However,
Bertogna and Baruah [43] have presented a novel DPS scheme for EDF, where
a job is dynamically split into non-preemptive sub-jobs without compromis-
ing EDF’s optimality. Although the total number of preemptions in a fully-
preemptive EDF schedule is bounded from above by the number of jobs being
scheduled, there is no bound on the number of preemptions of an individual
job. The DPS-EDF policy of Bertogna and Baruah [43] gives bounds also on
the number of preemptions for the jobs of an individual task.

Scheduling with preemption thresholds for sub-jobs (PTS+) [49], [50]. With
PTS+, each task τi consists of a sequence of mi sub-jobs (similar to DPS). In
addition, each sub-job τi,a has a preemption threshold θi,a. When a sub-job τi,a
is executing, it can only be preempted by tasks with a priority higher than its
preemption threshold θi,a. The preemption threshold θi,a therefore allows the
threshold for preemption to be raised for the duration of sub-job τi,a.

When mi = 1, a task τi has no preemption points. That is, PTS+ specializes to
PTS when ∀1≤i≤nmi = 1. Furthermore, it specializes to DPS when all sub-jobs
are non-preemptive.

In line with the result of Gai et al. [40], Yao et al. [50] have shown that PTS+

can be implemented using the SRP, where each sub-job accesses a pseudo-
resource Rρ as soon as it starts executing and it releases Rρ upon completion.
The corresponding worst-case critical-section length is hi = Ei,a and the resource

7. Sub-jobs in a limited-preemptive task model are different from sub-tasks in a preemptive
digraph task model (see Figure 3). A digraph task represents possible sequences of jobs, i.e.,
sub-tasks, generated by that task, including deadlines and minimal inter-arrivals. The sub-jobs of
a limited-preemptive task represent contiguous work to be done by a single job of that task.

26

2. Real-time models, their performance and complexity

ceiling is defined by rcρ = θi,a. Then, the blocking times experienced by tasks
can be computed according to the SRP as well, i.e., see (10) and (11).

PTS+ is also a form of cooperative processor allocation [16] between the
tasks and the scheduler. Sub-jobs are separated by preemption points (just like
with DPS) and at these preemption points, a task relinquishes its control over
any pseudo-resource on which it wishes to execute. Since the SRP+EDF is an
optimal uni-processor scheduling policy, limited preemptive scheduling models
cannot lead to feasible schedules that were infeasible with the SRP+EDF [46].
By scheduling tasks according to SRP+EDF, it is irrelevant how often each task
accesses a shared resource and it is irrelevant when a task starts with accessing
a shared resource during its execution. Thus, these two execution characteristics
can be left out of the task model.

Contrary to EDF, PTS+ under fixed-priority assignments of task – which
we refer to as FPTS+ (see Paper A) – can actually take advantage of the
alignment of sub-jobs (just like FPDS, see [47] and [48]). The intuition behind
this improvement is as follows. If a task finishes its job with a critical section,
e.g., writing its output to a shared buffer, then this job may block any higher
priority task until it has already finished its own execution. However, if the job
of the resource-accessing task would not finish immediately upon completion
of the critical section, then the higher priority tasks would delay the completion
of that job after the critical section anyway. Thus, delaying the higher-priority
tasks until completion of a lower-priority task may improve the schedulability
of a task set. The following example illustrates this.

Example 1: Consider a system with three tasks τi = (Ti, Ei, Di): τ1 = (7, 1, 2),
τ2 = (15, 8, 15) and τ3 = (26, 6, 26), where τ1 is assigned highest priority and
τ3 is assigned the lowest priority. Figure 7(a) shows (part of) the worst-case
schedule of these fully preemptive tasks under a synchronous release.

Figure 7(b) and Figure 7(c) show that the schedulability of tasks can be
improved for restrictive forms of resource sharing. In these figures, only the
critical section that completes the execution of a job is shaded; other critical
sections may just delay preemptions of higher priority tasks, but those do
not have the potential to accelerate the execution of a job. Because task τ2 is
allowed to execute for a duration of 1 time unit non-preemptively, the WCET
for writing its output non-preemptively to a buffer is E2,2 = 1 time units. Using
our analysis in Paper A, task τ2 can tolerate a blocking of at most 5 time units.
For task τ3 we can either choose a DPS scheme with h3,1 = 1 time units or
we can choose a PTS+ scheme with E3,2 = 5 time units and a preemption
threshold θ3,2 = π2. For these two cases, our analysis in Paper A finds a worst-
case response time of WR3 = 26 time units and WR3 = 17 time units, respectively.
In this example, PTS+ generates a significant amount of slack in the system.

Hence, a lower preemption threshold may allow for a larger sub-job length,

27

2. Real-time models, their performance and complexity

time

τ1

τ2

τ3

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

time

τ1

τ2

τ3

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

time

τ1

τ2

τ3

(c)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

R1 R1

R1

R1 R1

R1

R1

R1 R1 R1R1

R1

R2 R2

R1

Legend: critical section normal execution task arrival

Fig. 7. Fixed-priority scheduling of tasks can take advantage of an appropriate
alignment of limited-preemptive critical sections. Figure (a) illustrates a fully
preemptive schedule (without resource sharing) of the task set given in Example 1.
Figure (b) shows that tasks can execute a sequence of critical sections of (at most)
1 time unit non-preemptively (DPS), without violating any deadline constraints.
Finally, Figure (c) shows that a lower priority task can further accelerate its
execution by delaying just a selection of higher priority tasks (PTS+).

while a higher threshold may reduce the sub-job length due to little tolerated
blocking by (one of) the blocked tasks. The last sub-job of a task can therefore
be seen as a critical section with trade-offs in preemption level and WCET.

Why does this scheduling improvement not apply to EDF? Contrary to fixed-

28

2. Real-time models, their performance and complexity

priority scheduling, under EDF a job can preempt upon its release, only if it has
an earlier absolute deadline than the currently executing job. For any arbitrary
release, the relative deadline of the task determines whether or not a certain
amount of blocking and interference can be allowed. Within the deadline, the
interference is determined only by tighter absolute deadlines of other tasks.
This is where fixed-priority scheduling looses scheduling performance: a lower-
priority task is delayed by a higher-priority task, no matter their absolute
deadlines. Limited-preemptive scheduling techniques can alleviate this problem
and they can therefore improve the achievable utilization of fixed-priority
schedulers significantly (see Paper A). Nevertheless, the performance cannot
approach EDF (as it was conjectured by Bertogna et al. [48]). Even with limited-
preemptive scheduling, the weakness of fixed-priority assignments to tasks
remains that the preemption thresholds only increase the urgency of executing
a job after it has already started executing. With EDF the urgency of executing
a pending job also increases prior to the start of its execution.

Complexity of analyzing a schedule
We again use the sporadic task model and we recapitulate the scheduling
analysis of a set of resource-sharing tasks that need to execute on a single
processor. These conditions are assumed to be well-understood by the reader
and can be found back in the referred literature.

A set T of n deadline-constrained sporadic tasks can be scheduled with
SRP+EDF upon one processor [32], if and only if

∀t : t ∈ S : b(t) + dbf(t) ≤ t, (12)

where
• b(t) is the maximum priority-inversion time within an interval of

length t due to local resource sharing, as defined in (11);
• the dbf(t) is defined in (5); and
• S denotes a non-empty finite set of time points [32], see (6).

A set T of n deadline-constrained sporadic tasks can be scheduled with
the SRP and a fixed priority assignment upon one processor [34], if

∀i : 1 ≤ i ≤ n : (∃t : t ∈ Si : bi + rbf(i, t) ≤ t) , (13)

where
• bi is the maximum priority-inversion time experienced by task τi

due to local resource sharing, as defined in (10);
• the rbf(i, t) is defined in (2); and
• Si denotes a non-empty finite set of time points [31], see (3).

29

2. Real-time models, their performance and complexity

The scheduling condition in (12) is exact [32], i.e., both sufficient and neces-
sary, for scheduling the task set with resource constraints successfully by the
SRP+EDF upon one processor. The scheduling condition in (13) is just sufficient
for scheduling the task set successfully with fixed-priority and the SRP upon
one processor [34], because it only considers the negative impact of blocking.
For other synchronization protocols than the SRP, the blocking terms in (12)
and in (13) must be changed accordingly (as described earlier in this section).
The maximum amount of blocking that a task can tolerate without missing
its deadline is called the blocking tolerance [51]. The algorithmic complexity of
verifying the scheduling conditions in (12) and in (13) is pseudo-polynomial.

Paper A considers exact scheduling analysis for limited-preemptive schedulers
under fixed-priority assignments of tasks. The key idea behind this analysis
is as follows. Assuming a task with a sequence of sub-jobs, we compute the
worst-case finishing time of a task until the final sub-job. Then, we take the
worst-case finishing time as the start time of the last sub-job while taking into
account the limitations of the preemptions incurred by its preemption threshold.
Whereas the condition in (13) considers the entire job of a task holistically,
our novel analysis in Paper A checks a vector of time points for each step in
the analysis. The algorithmic complexity of analyzing a limited-preemptive
schedule remains pseudo-polynomial (similar to the algorithmic complexity
in (13) for a preemptive task model).

30

3 HIERARCHICAL COMPOSITION OF REAL-TIME MODELS

In this section, we present the basic structural design that underlies the systems
considered in this work. Viewing a system as a hierarchy of components is
useful, because it describes many different system architectures and it helps to
focus on the similarities and differences between systems.

Building a system must follow closely the thoughts of a system designer,
which calls for well-defined design schemes. We will therefore look at convenient
units of composition, how to model dependencies between them and how to
implement those compositional units and their dependencies.

3.1 The design we hold to

An hierarchical scheduling framework (HSF) – as proposed by Deng and
Liu [52] – is implemented upon a single processor and contains components at
each level in the scheduling hierarchy. Each component has a parent (except
the root of the scheduling tree) and each component abstracts the workload
generated by its child components deeper in the hierarchy, see Figure 8. At
the leafs of the scheduling tree the hard real-time tasks reside; these tasks
implement the real work to be executed.

The entities in our HSF, as illustrated in Figure 8, are bound to contracts. Each
component receives one incoming supply of processor resources, i.e., depicted
by one incoming bold arrow. The component therefore virtually executes upon
a single processor and it can be unaware of its position in the scheduling
hierarchy8. A local scheduler allocates the supplied resources to its children,
i.e., the local tasks. Each component may select its own scheduling policy.

The tasks located in arbitrary components may require other resources than
just the processor. A resource that is used in more than one component is
denoted as a shared global resource. A resource that is only shared by tasks
within a single component is a shared local resource. Any access to a resource is
assumed to be arbitrated by a synchronization protocol.

Traditional synchronization protocols such as the PCP [36] and the SRP [34]
can be used for local resource sharing in HSFs [52], as is formally proven
in [54]. However, when a task accesses a global shared resource, one needs
to consider the priority inversion between components as well as the local
priority inversion between the tasks within a component. A global resource is
therefore accompanied by a logical stub locally. It is this stub that is accessed by
the local tasks and an a-synchronous upcall is made to the parent component
upon an access of that stub. The same parent that also supplies the processor

8. In practice, the component cannot be entirely unaware of the scheduling level [53]. The tighter
the timing constraints of a component are, the less scheduling overhead a component allows and,
thus, the higher the component must be positioned in the scheduling hierarchy.

31

3. Hierarchical composition of real-time models

local
scheduler

Component 1

local
scheduler

Component 2

local
scheduler

Component n
. . .

global
scheduler

Parent
R1 R2

Ω1 Ω2
Ωn

t

Processor supply

Request resource

Legend:

. . .

τ1 τn

. . .

τ1 τn

. . .

τ1 τn

Fig. 8. A parent component implements a global scheduler to allocate a share of
the processor and a share of other non-preemptive resources, e.g., R1 and R2,
to each of its child components, C1 . . . Cn. Each child component, Cs, comprising
a set of tasks, τ1 . . . τn, and a local scheduler, receives those shares that are
specified by its interface Ωs. Tasks, located in arbitrary components, may share
resources.

resources is responsible for arbitrating access to the real global resource (see
the dotted arrows in Figure 8). We will later consider various modifications on
the traditional protocols in [36] and [34] for the implementation of such global
synchronization protocols.

Figure 8 is rich enough to model multi-level HSFs. We only consider in-
teraction with other components through well-defined interfaces. Such global
interaction between tasks located in different components is always routed via
the earliest-common parent component. Without further loss of generality, we
therefore focus on two-level HSFs (just like Deng and Liu [52] did).

In the remainder of this section, we explain our representation and our
corresponding interpretation of the resources supplied to an individual com-
ponent in an HSF. We first look at resource-supply models for independent
components, i.e., components that only share the processor and do not share
any other resources. Next, we augment those resource-supply models with
support for sharing non-preemptive resources between components.

32

3. Hierarchical composition of real-time models

Θ

0

Θ

2Θ

3Θ

4Θ

0 Π +Δ− 2Θ 2Π +Δ− 2Θ 3Π +Δ− 2Θ 4Π +Δ− 2Θ

pr
o
ce
ss
or

ti
m
e
(t
)

lsbfΩ(Π,Θ,Δ)(t)

sbfΩ(Π,Θ,Δ)(t)

Θ Θ

Π Π Π

Θ

Δ

Π

Θ

ΔΔΔ

Δ−Θ

Δ−Θ

Π Π Π Π

Π−Θ Π−Θ Π−Θ Π−Θ

(a)

(b)

BΩ

time (t)

λ α

Π

Fig. 9. The worst-case periodic resource supply to a component, sbfΩ(t), in an
arbitrary time interval of length t, and its corresponding linear approximation,
lsbfΩ(t), according to the EDP model Ω(Π,Θ,Δ).

Processor resource-supply models for independent components
Those parameters that define a worst-case processor supply, contemplating that
timing constraints of a task set are satisfied, together form a so-called real-time
interface. This interface – sometimes also referred to as a supply contract [55] –
abstracts the timing constraints of tasks into a single real-time constraint.

Explicit-deadline periodic (EDP) resource model [56]. An EDP resource
Ω(Π,Θ,Δ) supplies Θ time units of processor time every period of Π time
units and Θ is provisioned no later than Δ time units from the start of the
period Π (where Δ ≤ Π). A component that receives its processor resources
according to the EDP resource-supply model interferes with other components
in the system as if it was as a single deadline-constrained periodic task.

The supply bound function, sbfΩ(Π,Θ,Δ)(t), returns the minimum processor

33

3. Hierarchical composition of real-time models

supply for any sliding interval of length t, i.e.,

sbfΩ(t) = max

⎧⎨⎩
0,(
h(Ω,t) − 1

)
Θ,

t−
(
h(Ω,t) + 1

)
(Π−Θ) + (Π−Δ)

⎫⎬⎭ , (14)

where h(Ω,t) =
⌈
t−(Δ−Θ)

Π

⌉
.

The sbfΩ(t) is illustrated in Figure 9. The first clause of the max-term prevents
that supply bound becomes negative. The second and the third clause represent
alternative views on the available processor time to the component:

1) In an interval of length t, the component receives k times Θ time units;
see Figure 9(a). The component starts requesting for processor time when
Θ has just been delivered, so that it has to wait for the longest possible
duration until processor time is supplied.

2) In an interval of length t, the component receives t minus the unavailable
processor time; see Figure 9(b). The unavailable processor time is charac-
terized as follows: firstly, the delivery of processor resources is blocked
for a duration of BΩ = Δ−Θ time units. Then, immediately a periodic
task, τΩ = (Π,Π−Θ,Π−Θ) is released which periodically occupies the
processor for Π−Θ time units.

The delivery of Θ runs at most one period Π late with respect to t = 0; similarly,
the unavailable processor time runs at most one period Π ahead.

The notion of the unavailable processor time, captured by the last clause of
the sbfΩ, is interesting, because it illustrates the freedom of composition of the
component. A lower priority component may block the component for at most
BΩ = Δ − Θ time units and, next, all the higher-priority (or equal-priority)
components may at most consume Π − Θ time units. This is not the only
interpretation, because there are other alignments of the worst-case blocking
BΩ and the worst-case interference τΩ that fit the sbfΩ as well.

Time-division multiplexing. A time-division-multiplexed (TDM) resource
Υ(Π,Θ) is defined by:

Υ(Π,Θ)
def
= Ω(Π,Θ,Θ). (15)

An EDP resource models a fluctuating allocation time of the budget Θ and
the degree of these fluctuations in two subsequent periods Π is bounded by
deadline Δ. Contrary, a TDM resource supplies its budget Θ at the same time
within each period Π, without fluctuations. The absence of such fluctuations
may lead to tighter schedulability analysis. Easwaran et al. [56] refer to the
TDM model as a bandwidth-optimal EDP-model.

Although the BΩ = 0 of a component, it is important to realize that TDM
still allows resource sharing between components. The scheduling delays of
components with equal priority are already taken into account as interference,

34

3. Hierarchical composition of real-time models

see the definitions in (11) and in (10) of the blocking term. In other words, any
extra processor bandwidth that is required for just the purpose of resource shar-
ing between TDM-scheduled components must be allocated in and subtracted
from the maximum allowable interference Π−Θ.

Periodic resource model [57]. The periodic resource model Γ(Π,Θ) is a
specialization of the EDP resource Ω, i.e., a periodic resource Γ(Π,Θ) has an
implicit deadline for the allocation of budget Θ. More formally,

Γ(Π,Θ)
def
= Ω(Π,Θ,Π). (16)

The resources supplied by Γ(Π,Θ) within two subsequent periods Π are subject
to a maximum degree of freedom bounded by just the component period Π.

Bounded-delay model [58]. The bounded-delay model (α, λ) differs from
the previous resource-supply models, because it does not necessarily require
resources to be delivered periodically. Instead, it promises a continuous utiliza-
tion, α, of the processor after an initial service delay of at most λ time units.
The supply bound function, sbf(α,λ)(t), returns the minimum processor supply
for any sliding interval of length t, i.e.,

sbf(α,λ)(t) = α (t− λ) . (17)

This model is very general and it is difficult to select the parameters α and λ
efficiently [59], [5]. A large service delay, λ, may need to be compensated with
a large processor utilization, α, and vice versa. However, a component that
meets its deadlines with just a small processor fraction may still leave little
space for other components if it only allows a small service delay, λ. One way
of limiting the search space for appropriate candidates of α and λ is putting
extra requirements on the sizes of allocated processor quanta [58].

For example, the bounded-delay model can be used to estimate the resource
supply of EDP resources linearly, i.e., as follows:

λ = max {t | sbfΩ(t) = 0} = Π+Δ− 2Θ and α =
Θ

Π
. (18)

Filling in these values of λ and α in the sbf(α,λ)(t) defines the linear lower-bound
of the supply bound function, i.e., the so-called lsbfΩ(t) [57],

lsbfΩ(t) =
Θ

Π
(t− (Π +Δ− 2Θ)) . (19)

On the one hand, the parameters Π and Δ are more suitable for selection
during the component’s design phase [60] and an appropriate selection of
periodic parameters may give tighter scheduling bounds than the conservative
approximation in (19) does. Figure 9 shows the sbfΩ(Π,Θ,Δ)(t) of an EDP resource
Ω(Π,Θ,Δ) and its corresponding bounded-delay approximation, lsbfΩ(Π,Θ,Δ)(t).

35

3. Hierarchical composition of real-time models

By choosing the value of Δ appropriately, the definition of the lsbfΩ(t) can also
be instantiated to approximate the supply of a periodic resource Γ(Π,Θ) or to
approximate the supply of a TDM resource Υ(Π,Θ).

On the other hand, the main advantage of the bounded-delay resource-supply
model – also referred to as a latency-rate (LR) server [61] – is that it is easy to
aggregate series of interface parameters λ and α. This enables the computation
of tight upper bounds on end-to-end delays and buffer requirements in a
heterogeneous network of servers that may support different scheduling policies
and different task models [61]. With the EDP resource-supply model, as well as
with its derivatives, the aggregation of the interface parameters is hard, because
it requires an alignment of the synchronous busy interval of local tasks and
the period of the resource supply [62].

Other resource-supply models. There are alternative formal frameworks, e.g.,
real-time calculus [63], for characterizing the resource supply to a component
in an interface. Unlike the resource-supply models in [56], [58], [57] and [63],
various models, e.g., [64], [65], [66], [67] and [68], deviate from the principle
of independent analysis of a component as they make assumptions, amongst
others, on the relative priorities of other components in the system. These
alternative models tighten the processor-supply bound of the serviced tasks.
Unfortunately, the complexity of the analysis also increases for these models.

The approaches in [64], [65], [66] and [67] analyze the local and global
schedulability of a system holistically. These works all consider two-level fixed-
priority scheduling. Wandeler and Thiele [67] compute tight supply bounds
by taking into account the interference of other components in the real-time
calculus framework of [63]. Similarly, [64], [65] and [66] have extended the
more traditional response-time analysis for this purpose.

In order to tighten the analysis of two-level EDF-scheduled systems, more
advanced techniques are possible to shape the arrival of tasks exactly according
to a predefined, arbitrary dbf(t) function and to enforce temporal isolation
between components accordingly, for example, see [68].

Wang et al. [55] explicitly translate precedence constraints of local tasks to
constraints on the resource supply of a component. These additional constraints
on the interface inherently limit the composition, since independent components
may have conflicting constraints. Instead, we will propose a virtual-time
scheduler (Paper B) which makes it possible to leave precedence constraints
implicit and to exclude them from the component’s interface. In this entire
work, however, we shall refrain from assumptions in the local analysis of a
component on the global scheduling policies, including the exact timing of
processor-time delivery. Our aim is to compose systems of components that
can be developed and analyzed independently of other components, so that
these components can be re-used in different systems and frameworks.

36

3. Hierarchical composition of real-time models

Augmenting resource-supply models for resource sharing
We take the EDP resource-supply model to specify the processor time allocated
to a component. A budget Θs, specified by the interface Ωs of a certain
component Cs, defines the quantum of the processor that is required for
the task set to meet the deadline constraints of the local tasks. In addition,
tasks located in arbitrary components may require execution on the same
non-preemptive resource. If a task that accesses a global shared resource is
suspended during its execution due to the exhaustion of its budget, excessive
blocking periods can occur [69] which may hamper the correct timeliness of
other components. To prevent such budget depletion during global resource
access, several synchronization protocols have been proposed in literature.

Although a global synchronization protocol must prevent budget depletion
during global resource access, in order to do so, it may need to deliver processor
resources differently or additionally. To be able to account the scheduling
penalties that come with these changes in the processor supply, we need to
augment the interface of a component with the amount of resources that this
component requires on each non-preemptive resource. The set of these so-called
resource holding times [70] – denoted by Xs – defines the amount of execution
time on global resources that a component receives for an access to a resource.
In other words, if component Cs is granted access to resource R�, it receives
Xs� ∈ Xs time units of execution time on resource R� prior to deadline Πs.

The value of the resource holding time of a component to a resource, i.e., Xs�,
represents the largest amount of resources supplied to component Cs from the
access until the release of a task τi to resource R�. It includes the cumulative
processor requests of tasks within the same component Cs that can preempt τi
while it is holding resource R�, see Figure 10.

The way of computing the resource holding times of a component and its
tasks may depend on the local synchronization protocol and the local scheduling
policy, for example, see the method under local SRP+fixed-priority scheduling by
Bertogna et al. [70] and the method for local SRP+EDF by Bertogna et al. [71].
Moreover, various system assumptions, such as the global synchronization
protocol, may influence the way of computing resource holding times, for
example, see the methods developed for the global synchronization protocols
BROE [72] and H-SRP [73]. We proposed a method (see Paper C) to unify the
way of computing the resource holding times for a class of components.

To summarize, the augmented EDP resource model Ω = (Π,Θ,Δ,X)

• gives Θ time units of processor time every period of Π time units and Θ is
provisioned no later than Δ time units from the start of the period Π; and

• gives X� ∈ X time units of processor time, provisioned no later than Π
time units from the start of the period Π in which access to R� is granted.

The second item may call for the delivery of more processor time within a

37

3. Hierarchical composition of real-time models

time

RHT

τ1

τ2

τ3

rcs�

hs2�

R� R�

R�

Local resource ceiling (rcs�):
highest priority of any (local) task
sharing resource R�

Legend: critical section normal execution task arrival

Fig. 10. The resource holding time (RHT) represents the cumulatively consumed
processor time by any task of a component while one task holds a resource.

period Π than just Θ. Such a delivery of the extra processor time is necessary
to complete resource access, but it may be delivered beyond deadline Δ. Only
Θ must be delivered prior to Δ in order to satisfy deadline constraints of tasks.
Any extra delivery of processor time guarantees that access to a resource R� is
completed by the same job of a component as the job that initiated the access,
just like the jobs of the task in Figure 10. As motivated further in Section 3.5,
we use a deadline equal to period Π for this extra delivery.

3.2 Make tasks elementary units of composition
The task is a convenient unit to build real-time systems; the schedulability
analysis of tasks is widely studied and is well understood. For this reason the
task is also an appealing candidate to compose components hierarchically.

If the degree of complexity of a function, e.g., measured in terms of concur-
rency, is limited, then it is unnecessary to subdivide a function into different
tasks. Thus, a simple function is written in a single task. A more complex
function may require division into a set of tasks, i.e., together forming a
component. A component is just an artefact of analysis, although it may serve
also as a packaging unit for shipping a complex function to system builders.
Each component is meant to be part of a larger system.

Conversely, a system can be decomposed into components with relative
priorities. Regehr et al. [53] addressed the real-time analysis of restricted
scheduling hierarchies. They proposed a method to flatten the scheduling
hierarchy into a form where it can be analyzed using traditional real-time
analysis. That is, they transform the scheduling hierarchy into a fixed-priority-
scheduled task system and they use the preemption thresholds of Wang and

38

3. Hierarchical composition of real-time models

Saksena [45] to model mutual-exclusive execution between tasks. Gonzáles
Harbour et al. [74] analyze a flattened system which may have groups of EDF-
scheduled tasks within a larger system with tasks that have fixed priorities.

There are two main disadvantages of analyzing a flattened system, as is done
by [53] and [74]. Firstly, it is unsuitable for the composition of independently
developed components, because the tasks in the entire system are holistically
analyzed. Hence, the entire system must be decomposed again and must be re-
analyzed after each change, for example, after adding or removing a component.
This is impractical, and sometimes even impossible, for open systems composed
from components of multiple vendors.

Secondly, the analysis on a flattened system, i.e., composed of independently
developed components, may be pessimistic. The reason is that the synchronous
busy interval of a group of tasks (forming a component in the hierarchy) can be
too long; even when the component’s utilization is arbitrary small, a component
may leave little space for timely execution of other components. Without
mechanisms to control the workload generated by the tasks, the traditional real-
time analysis is inconvenient for the composition of components. Fortunately,
there exist composition techniques to overcome these issues.

The resource-supply contract of a component, i.e., the interface, specifies the
periodic requirements of a component in order to meet its tasks’ deadlines. This
interface is determined based on a worst-case upper bound of the workload
generated by jobs of tasks within a component. However, we need additional
mechanisms to enforce periodic execution to a component during run time. The
real-time systems community has therefore proposed processor resource reserva-
tions [75] to re-shape the workload generated by the tasks of a component into
(sporadically) periodic chunks of execution. The implementation of processor
reservations requires mechanisms for scheduling the reserved quanta, enforcing
their availability and monitoring consumed reserves by the component.

The access of a component in the HSF to its processor reservations is
mediated through a server. A server defines a policy to implement each of
the three mechanisms of a reservation, which leads to (periodic) behavior of
the component satisfying its interface. Servers are originally meant to handle
a-periodic tasks with unknown arrival curves and to force periodic behavior to
those a-periodic tasks. The other hard real-time recurring tasks, executing along
with the server on the same processor, can therefore be analyzed even in the
presence of unpredictable (a-periodic) tasks handled by that server. Similarly, a
component in an HSF, serviced by a server, can be treated as if it was a single
task on itself and existing timing analysis for tasks can be re-used for validating
whether or not it is feasible to admit a component on a shared processor.

In addition to the three mechanisms inherited from a reservation, a server
implements a policy to distribute the reserved processor resources to its

39

3. Hierarchical composition of real-time models

serviced tasks. The most straightforward server policies are TDM and periodic
polling [76]. Several server policies aim at improving the average response of
tasks by means of bandwidth-preservation. This class of servers preserves their
budget when no workload is pending to be serviced, so that the remaining
budget can be used at a later moment in time when new tasks arrive. Contrary
to bandwidth-preserving servers, other servers have a policy to deplete their
unused budget, for example,

• a polling server [76] discards its remaining budget when no workload is
pending (which affects its service guarantee negatively); and

• an idling server [64], similar to a TDM policy for Υ(Π,Θ), idles away the
remaining budget when no workload is pending.

Examples of bandwidth-preserving servers are the sporadic server [77] and
the deferrable server [78]. The deferrable server, however, does not exactly
behave as a periodic task, because the deferrable server can suspend itself when
no workload is pending and, subsequently, it may execute two budgets back to
back. The impact on the other components of handling tasks inside a deferrable
server is measured by means of the least upper bound on schedulability [78]9,
which measures the remaining processor bandwidth available to other tasks or
components in the system when a particular server (e.g., a polling server or a
deferrable server) executes at the highest priority. The sporadic server improves
on the total utilization bound of the deferrable server, because it does not cause
back-to-back executions of reserved budgets. Furthermore, a sporadic server is
almost as good for the average response times of tasks as the deferrable server.
The disadvantage of the sporadic server, however, is its difficult implementation,
because one needs to keep track of when budget is consumed and how
much is consumed. Some simplifications of the sporadic server have been
proposed. However, these should be considered with care, since some of these
simplifications suffer from anomalies. For example, the sporadic server described
by the real-time POSIX standard may allocate too much processor time, thereby
breaking temporal isolation between components [80].

In our work, we allocate a server to a component to enable predictable
composition of components consisting of hard real-time tasks. The least amount
of resources to be distributed by the server to these tasks can be computed by
means of a resource-supply model. The resource-supply model does not make
any assumption on the implementation of a specific server policy. An idling
periodic server [64] or a TDM server are therefore often preferred for servicing

9. The remaining processor bandwidth after allocating a server to soft a-periodic workload at
the highest priority, dimensioned with a utilization of Us, is also referred to as the total utilization
bound [78]. This bound is different from the so-called utilization bounds derived by, for example,
Shin and Lee [57], [59] and Saewong et al. [79], who have derived a sufficient size Us for a server
that must service periodic workload with hard deadlines.

40

3. Hierarchical composition of real-time models

hard real-time workload, because of their predictable global interference pattern
and their ease of implementation. However, in general the choice for binding
a server to a component, i.e., the selection of the actual policy of distributing
the processor reserves, is a deployment issue (see Paper D). During the timing
analysis of a component the server type is therefore assumed to be unknown.

Most server policies found in standard text books, e.g., [37], [81], use their
period parameter as an implicit deadline for the allocation of resources. In this
way, the server guarantees a static processor utilization (also referred to as
processor bandwidth) to its serviced tasks, thus, it implements a period bounded-
delay model. As a consequence, a straightforward one-to-one mapping of other
resource-supply parameters to server parameters may be impossible when the
server parameters are more restrictive than the parameters of the resource-
supply model. This may require a pessimistic over-allocation of processor
bandwidth, especially for deadline-constrained tasks. Kumar et al. [82] have
recently alleviated this pessimism by proposing a demand-bound server which
guarantees a fixed quantum prior to an explicitly chosen deadline, i.e., they
efficiently implemented a server policy for the EDP resource-supply model [56],
Ω(Π,Θ,Δ). Our interest is not the relative performance of server policies;
however, we are interested in servers as units of composition and the relative
performance of them in combination with global synchronization protocols.

3.3 The rules of composition
Since we use tasks as units of composition in each level of the system’s
scheduling hierarchy, we can re-use the same schedulability analysis, no matter
we schedule real tasks or components. In order to guarantee the deadline
constraints of all tasks within the system, each artefact (a task or a component)
within the entire scheduling tree must make its deadline. Compositional analysis
enables us to analyze the schedulability of each component in the scheduling
tree separately, assuming that all its children (i.e., the task set of the component)
behave (sporadically) periodic, either by themselves or forced by means of, for
example, a server.

Composition of independently developed components requires independence
of the timing analysis of the global scheduling policies being implemented by a
superficial parent component. The input for the local analysis of a component
is a task set characterized by the period, WCET, deadline and critical section
lengths of the tasks. Furthermore, we take as an input the relative task priorities,
the local scheduling policies (for the processor and the other resources) and
a resource supply model. The result of the local analysis is an interface. The
interface of a component lacks any information about the inputs of the local
analysis (such as the task model and the local scheduling policies), because
those have become implementation details of the component. Nevertheless,

41

3. Hierarchical composition of real-time models

the way in which interface parameters are computed can be influenced by
them. This is similar to a task for which its internal functional behavior is also
irrelevant globally. As such, we refrain from annotating an interface with the
inputs of the local analysis.

Given a task set and the policies for scheduling tasks, we can verify whether
or not all tasks meet their deadlines. We limit to stack-based policies [34] for
arbitrating the access of tasks to shared resources. We now summarize the
scheduling conditions for the bounded-delay resource-supply model.

According to Easwaran et al. [56], a task set T can be scheduled with the
SRP and a fixed priority assignment upon an EDP resource Ω(Π,Θ,Δ),
if

∀i : 1 ≤ i ≤ n : (∃t : t ∈ Si : bi + rbf(i, t) ≤ lsbfΩ(t)) , (20)

where
• bi is the maximum priority-inversion time experienced by task τi

due to local resource sharing, as defined in (10);
• the rbf(i, t) is defined in (2); and
• Si denotes a non-empty finite set of time points [31], see (3).

According to Easwaran et al. [56], a task set T can be scheduled with
SRP+EDF upon an EDP resource Ω(Π,Θ,Δ), if

∀t : t ∈ S : b(t) + dbf(t) ≤ lsbfΩ(t), (21)

where
• b(t) is the maximum priority-inversion time within an interval of

length t due to local resource sharing, as defined in (11);
• the dbf(t) is defined in (5); and
• S denotes a non-empty finite set of time points [32], see (6).

The composition of a group of components follows the same rules as the
composition of tasks. A parent component implements the global scheduling
policies for the arbitration of its child component. Thus, in order to determine
whether or not all child components meet their deadlines, we take as an input
for the global scheduling analysis the following five elements:

1) a set of interfaces that specify the resource requirements of each of the
child components in terms of (augmented) resource-supply models;

2) a server policy for each component to implement its resource-supply
model as a regular task;

3) the relative component priorities and the corresponding policy to schedule
the servers on the processor;

42

3. Hierarchical composition of real-time models

4) a synchronization protocol to arbitrate servers that wish to access other
shared resources;

5) an (augmented) resource-supply model that determines the shape of the
output of the analysis, i.e., the resources received by the parent component.

Based on these inputs, we can determine, using the conditions in (20) and (21),
whether or not a parent component delivers sufficient time units (both on the
processor and on other resources) in order to satisfy the deadline constraints
of its child components (or tasks). This procedure is straightforward for the
composition of independent components without global synchronization.

There is a catch in the composition of dependent components, however. We
recall that the tasks perform the real work; thus, shared resources are actually
accessed by the tasks within the components and not by the components
themselves. In order to re-use the concepts of blocking that underly the
conditions in (20) and (21), a component must truly behave as a task. As
a consequence, a local task must initiate and complete any access to a shared
resource in the same component period. In order to fulfill this requirement
additional processor reserves might need to be allocated; this leads to a global
increase of the rbf or the dbf of a component. There are several approaches for
this, each of them with its own advantages and disadvantages, which deserve
more attention (see Section 3.5).

Furthermore, dependent on the global scheduling policy of the child com-
ponents, the bounded-delay approximation of the EDP resource-supply to a
component, as modeled in the scheduling conditions (20) and (21), may be
replaced by a more specific resource-supply model. For example,

• if a set of components is scheduled globally by TDM, then the deadline
Δs = Θs of each of those components Cs can be applied to tighten the
analysis of the local tasks; i.e., the lsbfΩ(Π,Θ,Δ)(t) in the conditions in (20)
and in (21) can be replaced by sbfΥ(Π,Θ)(t).

• if an idling periodic server [64] is used to provision resources to a com-
ponent, the periodic resource model by Shin and Lee [57] can be applied
to tighten the analysis of the local tasks; i.e., the lsbfΩ(Π,Θ,Δ)(t) in the
conditions in (20) and in (21) can be replaced by sbfΓ(Π,Θ)(t). An overview
of servers belonging to this class, e.g., the idling periodic server, can be
found in [83].

However, some global schedulers may explicitly require a bounded-delay
analysis. For example, if a set of components is scheduled globally by the
BROE [72] policy, then the bounded-delay resource-supply model must be
used to analyze of the local tasks. The bounded-delay resource-supply model
maximizes the independence of a component of its global scheduling policy and
it therefore returns a better re-usability of the timing analysis of a component.

43

3. Hierarchical composition of real-time models

Exact algorithms for computing period-constrained budgets

Assume we are given a set of tasks and a local scheduling policy. We select
a period parameter Π as the design parameter in the component interface,
optionally complemented with an explicit deadline Δ. The question is then:
what is the smallest budget Θ satisfying the scheduling condition in (20) or
the condition in (21)?

In this section we answer this question. We re-consider the EDP resource-
supply model, its periodic derivatives and its bounded-delay approximation.

Definition 2: We call an EDP interface Ω(Π,Θ,Δ) exact (or optimal), if for a
given a task set T with local scheduling policy SP, a given period Π and a
given deadline Δ the local schedulability condition by scheduling policy SP is
satisfied with a budget Θ and with Θ− ε, for any infinitesimally small ε > 0,
the local schedulability condition violates that condition.

EDP resource model. Easwaran et al. [56] claim an exact algorithm for
determining the budget of a set of independent tasks which has a better
run-time efficiency than an exhaustive search proposed by Shin and Lee [57].
However, the algorithm in [56] may yield pessimistic budget allocations.

Example 2: Consider a component C1 with a period Π1 = Δ1 = 10 and with
a single task τ1,1 = (27, 5, 27). Independent of the scheduling policy, EDF or
FPS, Easwaran et al. [56] yield a budget of 3.42 time units. Equation (26) gives
the same result as an exhaustive search: 8

3 time units, which is an exact budget,
since rbf(1, 27) = 5 time units and the processor supply is sbfΩ(10, 83 ,10)

(27) = 5
time units. The budget allocations by Easwaran et al. [56] for EDP resources
are therefore suboptimal.

The dissertation of Easwaran [60] presents an algorithm similar to his
conference paper [56]. Contrary to [56], it comes with a proof. The algorithm
in [60] suffers the same pessimism (see Example 2). We conclude that the
algorithm by Easwaran et al. [56], [60], which considers both EDF scheduling
and fixed-priority scheduling of tasks, is pessimistic, although it is claimed to
be exact.

Fisher and Dewan [84] have presented a unique, fully polynomial approxi-
mation scheme (FPTAS) to calculate a budget for a given set of independent
tasks scheduled by EDF, a given resource period Π and a given deadline Δ.
Dewan and Fisher [85] have presented a different FPTAS for fixed-priority
scheduling of tasks upon an EDP resource. We have shown in [86] that the
algorithm in [85] may yield optimistic budgets and we proposed a correction
for their algorithm. However, for an exact budget computation the algorithm
in [86] can be simplified. We now present an algorithm which is computed
more efficiently than the exhaustive search proposed by [57] and which returns
an exact budget for a set of independent tasks.

Lemma 1: Given a component with a cumulative workload represented by

44

3. Hierarchical composition of real-time models

variable W (t) at time t, a period Π and a deadline Δ. The smallest budget Θ,
satisfying the inequality W (t) ≤ sbfΩ(t), is given by

Θ ≥ W (t)

k

∨
Θ ≥ −t+W (t) + kΠ+Δ

k + 1
(22)

such that k ∈ N
+ and
W (t)

k
<

−t+W (t) + kΠ+Δ

k + 1
⇔ k ≥ ���+ 1 (23)

and
W (t)

k
≥ −t+W (t) + kΠ+Δ

k + 1
⇔

k ≤ �� if �� < ���+ 1

k ≤ �� − 1 else, (24)

where

� =
t−Δ+

√
(t−Δ)2 + 4Π ·W (t)

2Π
. (25)

Proof: Variable k reconstructs the value of h(Ω,t) in (14) by computing the
intersection between the two non-zero line segments in coordinate (t, W (t)),
see (22). The intersection is characterized by the roots of the convex parabola
Πk2+k(Π−t)−W (t). The value of k is determined by observing that h(Ω,t) ∈ N

+.
The real-number representation of the positive root, �, of the parabola is given
in (25); its counter part always has a negative value, because the term in the
square root dominates the preceding term. Since the left-hand sides of the bi-
implications in (23) and (24) are strictly non-overlapping (mutually exclusive)
inequalities, we have to guarantee a strictly smaller value k ∈ N

+ in (24) than
in (23). The case distinction detects whether or not �� = ���+1. This concludes
the proof.

From Lemma 1, we can directly derive Algorithm 1 to compute an optimal
budget for a given period Π and a given deadline Δ, satisfying the requested
resources W (t) at time t. Note that Algorithm 1 is independent of the local
scheduling policy.

The design parameters of a component are the period Π and the deadline
Δ. We now derive the EDP interfaces for task sets scheduled by a local fixed-
priority scheduler or by a local EDF scheduler.

Given a period Π and a deadline Δ, we derive an EDP interface Ω(Π,Θ+,Δ)
under fixed-priority scheduling of tasks by rewriting the condition in (20) and
by applying Lemma 1:

Θ+ = max
1≤i≤n

{
min
t∈Si

{ComputePartialBudget(Π, Δ, bi + rbf(i, t), t)}
}
. (26)

45

3. Hierarchical composition of real-time models

Algorithm 1 ComputePartialBudget(Π, Δ, W (t), t)

1: � =
(t−Δ)+

√
(t−Δ)2+4Π·W (t)

2Π

2: Θ1 ← W (t)−t+(���+1)Π+Δ
���+2

3: Θ2 ← W (t)
���−1

4: if �� ≤ ��� then

5: Θ2 ← W (t)
���

6: end if
7: Θmin

t ← min(Θ1, Θ2)
8: return Θmin

t

Equation (26) is a specialization of the exact instantiation of the approximation
scheme for fixed-priority-scheduled EDP resources by Dewan and Fisher [85],
but they have forgotten the if-statement that we have in line 4 of Algorithm 1.
We recognized that this issue may lead to optimistic results [86].

Given a period Π and a deadline Δ, we derive an EDP interface Ω(Π,Θ+,Δ)
under EDF scheduling of tasks by rewriting the condition in (21) and by
applying Lemma 1:

Θ+ = max
t∈S

{ComputePartialBudget(Π, Δ, b(t) + dbf(t), t)} . (27)

For a set of independent tasks Equation (27) yields the same results as the
exact characterization of the FPTAS presented by Fisher and Dewan [84]. Again,
the dbf , rbf , the blocking terms (bi and b(t)) and the sets Si and S that appear
in (26) and in (27) are defined in Section 2.1.

TDM resource model. We now present an algorithm to compute a budget
for a component that is globally scheduled by TDM. Again, our algorithm
is more efficient than an exhaustive search and it is optimal for independent
tasks. Since under TDM holds Δ = Θ, the definition of h(Υ,t) =

⌈
t
Π

⌉
, see (14).

Compared to Lemma 1, the absence of Θ in the ceiling term simplifies the
re-construction of the value of h(Υ,t).

Lemma 2: Given a cumulative workload of W (t) at time t and a period Π for
that component, the smallest budget Θ, satisfying the inequality W (t) ≤ sbfΥ(t),
is given by

Θ ≥ W (t)

k

∨
Θ ≥ Π+

−t+W (t)

k + 1
(28)

such that

k =

⌊
t

Π

⌋
. (29)

46

3. Hierarchical composition of real-time models

Proof: Similar to Lemma 1.
From Lemma 2, we can directly derive Algorithm 2 to compute an optimal

budget for a given period Π and a given deadline Δ, satisfying the requested
resources W (t) at time t. Note that Algorithm 2 is independent of the local
scheduling policy (similar to Algorithm 1).

Algorithm 2 ComputePartialTDMBudget(Π, W (t), t)

1: Θ1 ← Π+ W (t)−t

� t
Π�+1

2: Θ2 ← W (t)

� t
Π�

3: Θmin
t ← min(Θ1, Θ2)

4: return Θmin
t

The design parameter of a component is the period Π. We now derive the
TDM interfaces for task sets scheduled by a local fixed-priority scheduler or
by a local EDF scheduler.

Given a period Π, we derive a TDM interface Υ(Π,Θ+) under fixed-priority
scheduling of tasks by rewriting the condition in (20) and by applying Lemma 2:

Θ+ = max
1≤i≤n

{
min
t∈Si

{ComputePartialTDMBudget(Π, bi + rbf(i, t), t)}
}
. (30)

Given a period Π, we derive a TDM interface Υ(Π,Θ+) under EDF scheduling
of tasks by rewriting the condition in (21) and by applying Lemma 2:

Θ+ = max
t∈S

{ComputePartialTDMBudget(Π, b(t) + dbf(t), t)} . (31)

Again, the dbf , rbf , the blocking terms (bi and b(t)) and the sets Si and S
that appear in (30) and in (31) are defined in Section 2.1.

Periodic resource model. Given a task set, a local scheduling policy and a
component period Π, we can re-use the algorithms for computing exact EDP
budgets in (26) and in (27) for the computation of an exact budget satisfying
the periodic resource model by Shin and Lee [57]. This simply requires to fill
in Δ = Π, see (16).

Bounded-delay resource model. Assume we are given a set of tasks and
a local scheduling policy. We select a period Π and an explicit deadline Δ
for this component. We now search for the tightest possible bounded-delay
approximation characterized by Θ that satisfies the scheduling condition in (20)
or the condition in (21).

This question has been solved by Lipari and Bini [5, Section V] for fixed-
priority scheduling of tasks upon the periodic resource model. Their result
can be straightforwardly generalized for other local scheduling policies and

47

3. Hierarchical composition of real-time models

for the EDP resource model. A generalization of their approach to the EDP
resource-supply model works as follows.

Lemma 3: Given a cumulative workload of W (t) at time t, a period Π and a
deadline Δ for that component, the smallest budget that satisfies the inequality
W (t) ≤ lsbfΩ(t), i.e., returned by ComputePartialBDMBudget(Π, Δ,W (t), t),
is given by

ComputePartialBDMBudget(Π, Δ,W (t), t) =

(Π +Δ− t) +

√
(Π +Δ− t)

2
+ 8ΠW (t)

4
. (32)

Proof: Simply compute the roots of the parabola defined by the inequality
W (t) ≤ lsbfΩ(t); this is similar to Lemma 1.

Given a period Π and a deadline Δ, the tightest possible linearly approximated
EDP interface Ω(Π,Θ−,Δ) under fixed-priority scheduling of tasks can be
obtained by rewriting the condition in (20) and by applying Lemma 3:

Θ− = max
1≤i≤n

{
min
t∈Si

{ComputePartialBDMBudget(Π, Δ, bi + rbf(i, t), t)}
}
.

(33)
Given a period Π and a deadline Δ, the tightest possible linearly approximated

EDP interface Ω(Π,Θ−,Δ) under EDF scheduling of tasks can be obtained by
rewriting the condition in (21) and by applying Lemma 3:

Θ− = max
t∈S

{ComputePartialBDMBudget(Π, Δ, b(t) + dbf(t), t)} . (34)

Again, the dbf , rbf , the blocking terms (bi and b(t)) and the sets Si and S
that appear in (33) and in (34) are defined in Section 2.1.

Finally, note that a tight bounded-delay approximation of the TDM model
can be obtained by repeating the steps in this section. Similar to Lemma 2, one
may use the definition of the TDM model, as expressed in (15) in terms of the
EDP model. We leave the details as an exercise.

The models we will use in this work, their performance and complexity
In this work, we will mainly consider a set of components whom’s resource
requirements are specified by means of the periodic resource model by Shin
and Lee [57] and its bounded-delay approximation, augmented with resource
sharing. Each component consists of a set of sporadic, deadline-constrained tasks
and a local scheduler (in some included papers in Part-II the model is slightly
more liberal). The corresponding algorithms for computing periodic budgets,
as presented in this section, are optimal for fully preemptive independent tasks;
the algorithms may over-allocate processor time to tasks that share resources,
because it is unknown when the limited-preemptive region is executed (as

48

3. Hierarchical composition of real-time models

explained in Section 2.2). These algorithms are used for several experiments
carried out in Part-II of this work.

We use the periodic resource-supply model to abstract the timing requirements
of a component, because the model allows for the maximum freedom of
delivering the processor time. A component, i.e., the local tasks and their local
scheduler, are treated as if it was a single task on itself, independently of any
other components or tasks in the system. This locality of the analysis comes
with abstraction overhead. The corresponding abstraction overheads have been
extensively investigated by, for example, Shin and Lee [57], [59]. They have
compared sets of independent tasks scheduled upon the periodic-resource
model and upon the bounded-delay model. Their results can be extended with
support for local resource sharing in a straightforward way [57].

The complexity of analyzing a schedule of a component in an HSF is pseudo
polynomial, i.e., similar to the complexity of a task set that has the entire
processor at its disposal. In fact, the schedule of a component in an HSF
can be represented by a flattened task set that occupies the entire processor
(see Figure 9). In line with these similarities between hierarchical and non-
hierarchical schedules, there exist FPTASes for determining scheduling bounds
for independent sporadic tasks scheduled upon an EDP resource by various
local policies. For example, the FPTAS by Albers and Slomka [25] for EDF
scheduling of tasks has been extended for use within the EDP resource-supply
model by Fisher and Dewan [84]. Similarly, the FPTAS by Fisher and Baruah [26]
for fixed-priority scheduling of tasks has been extended for use within the EDP
resource-supply model by Dewan and Fisher [85].

3.4 Handle external events with the destined task priority
An important source of unpredictability for real-time systems comes from
a-synchronous events [37]. There can be various event sources such as timer
interrupts, I/O interrupts and software interrupts (or events). Within an hier-
archical real-time system, external events or interrupts can trigger the tasks of
arbitrary components. This makes it even harder than in a non-hierarchical
system to isolate other tasks in the system from the unpredictable interference
caused by the handling of those arrived events.

The handling of programmed timer interrupts and time-keeping for compo-
nents constrained by reservations are typically a special concern. For example,
the hypervisor of Barham et al. [87] separates different timer queues for each
partition (which hosts a component), so that each client OS can program its own
real and virtual timers. The SPIRIT μkernel [88], XtratuM [89] and VMware [90]
by default follow a similar approach. For backwards compatibility, VMware
allows immediate forwarding of timer interrupts when they occur in real time.
The latter does not scale, because each interrupt triggers a context switch to the

49

3. Hierarchical composition of real-time models

receiving partition. Nevertheless, this effectively supports legacy OSes requiring
a strictly periodic occurrence of a timer interrupt for local time keeping, e.g.,
Linux 2.4. As a result, the time within a component progresses in the same
way as the real time.

In most cases, the time within a component progresses differently than the
real time when a component is executed on a shared platform, because of the
intervals of time where the processor is unavailable for the component. To track
the so-called virtual time, a dedicated timer exists in the Portable Operating
System Interface (POSIX) standard. Each process running on a POSIX-compliant
platform has a virtual timer available that expires relative to its consumed
processor time. When the virtual timer expires, a software interrupt – called a
signal – is sent to the process. It is then the task of the HSF to deliver these
signals to the destined threads without hampering the timing of other threads.

There are different type of signals; some signals can be sent by one thread
to an arbitrary other thread in the system. For example, threads may make
I/O requests on devices that respond with interrupts [91]. These interrupts
typically arrive when the destined process is inactive. Zhang et al. [92] have
clearly separated between top-half and bottom-half interrupt handlers of an
hardware source. The top-half interrupt handlers are typically assumed to be
negligibly short10.

Zhang et al. [92] focussed on predictable handling of the bottom-half in-
terrupts, because these can take significantly more processor time than their
top-half counter parts. In fact, bottom-half interrupt handlers are the same
as software interrupts (signals) and they can be seen as high-priority threads.
Contrary to paying attention to these priorities, however, Zhang et al. [92] pro-
posed mechanisms within Linux to ensure that bottom-half interrupt handlers
are scheduled in accordance with the urgency and importance of the threads
(tasks) that led to their occurrence. In this way, the overheads for handling
interrupts is charged to the associated thread or process. Parmer et al. [91]
have adopted the approach by Zhang et al. [92] for an operating system that
supports hierarchical composition of components, i.e., called CompositeOS. For
this purpose, they have presented new mechanisms to limit unnecessary calls
to external schedulers of other components in the HSF; that is, scheduler calls
are deferred until the receiving thread of an event must urgently execute.

A key for predictable composition of components in an HSF is managing
interrupts. In many of the works described so far, e.g., [88], [87], [89], [92]
and [91], the enabling technology is a conversion of real interrupts (both from

10. In case this assumption may harm the predictability of the system, filters implemented in
dedicated hardware have been presented, e.g., by Agron et al. [93], in order to regulate the delivery
of hardware interrupts to the processor. Also software-based solutions have been presented, e.g.,
see [94] and [95], for systems where each interrupt source can be enabled and disabled separately.

50

3. Hierarchical composition of real-time models

real hardware sources and from software sources) into light-weight events that
can be managed. The light-weight events are then delivered to the destined
task according to the task’s priority, i.e., the interrupt appears to a task from
a virtual source. We observed that many academically implemented HSFs
inside real-time operating systems refrain from the appropriate virtualization
of interrupt sources other than timer interrupts. For example, this holds for the
HSFs in VxWorks [96], FreeRTOS [97] and, the one on which we base our work,
μC/OS-II [98]. This is different in, e.g., RED Linux [99] and CompositeOS [91].
The latter two introduced buffering of the arrived events until the destined task
has the highest priority to execute. Thus, the priority of a component on itself
is unimportant; it only relates the priorities of its local tasks to the priority of
the tasks that are located in different components.

After a duration of unavailable processor time, a component in the HSF can
have multiple pending events. These are locally handled by several tasks in a
(static or dynamic) priority order. Proper management of events in component-
based systems has been a well studied problem. However, none of the existing
HSF-based platforms guarantees that the order in which event-triggered tasks
are activated in a component is preserved compared to the order of execution
of that component on a dedicated processor. We propose a virtual-scheduling
mechanism to complement the existing mechanisms for event handling in an
HSF with such support (see paper B). In this way, legacy real-time components
that have been analyzed upon a slower, dedicated processor can be integrated by
fitting a resource-supply model without the need to repeat the timing analysis
of the tasks. With our virtual-scheduling approach, events are by definition
delivered during the execution of the destined component.

3.5 Set a component deadline to constrain resource sharing

Consider a component Cs which requires access to a set of resources. We have
earlier defined an augmented resource-supply model Ωs = (Πs,Θs,Δs,Xs),
which includes the resource holding times of a component upon its accessed non-
preemptive resources. These resource holding times of a component determine
the blocking caused to other components during admission control (i.e, the
global analysis of the composed components), similar to the analysis of resource-
sharing tasks (see Section 2.2). The additional meaning of these resource holding
times – considered in this section – is a difficult one and it can affect the timing
analysis in different ways.

Firstly, we recall that only Θs must be delivered prior to Δs in order to
satisfy deadline constraints of the local tasks. Secondly, the interface Ωs gives
X� ∈ Xs time units of processor time, provisioned no later than Πs time units
from the start of the period Πs in which access to R� is granted.

51

3. Hierarchical composition of real-time models

λs = 2(Πs −Θs)−Os

Θs Os Θs Os

Πs Πs Πs

Θs Os

Δs

λs = 2(Πs −Θs)

Θs Os Θs OsΘs

(a)

(b)

Δs

Fig. 11. Setting a component deadline for global resource sharing of local tasks
may reduce the service delay of processor time, (a), and it may therefore improve
the local schedulability. Without such a component deadline, (b), the global
schedulability of components may improve.

The second requirement may impose more rigorous changes than strictly
necessary to the way in which the processor resources are delivered to a
component. For example, the computed value of Θs can be smaller than a
resource holding time X� ∈ Xs. When a task of component Cs is granted access
to resource R�, this component requires at least a worst-case delivery of X� time
units of processor supply within its current period Πs, i.e., an over-allocation
of at least Os = X� −Θs. The exact size and nature of the over-allocations, Os,
depend on the synchronization protocol being used (see Paper C).

Just for the ease of component analysis, we have chosen to make the period
of delivering the over-allocations of budgets synchronous with the component
period. In fact, the extra processor time, Os, can be delivered synchronously
or a-synchronously with the component’s period Πs. Figure 11 shows these
two options. Figure 11(a) shows that the resource access must complete within
the same component period (but it may overrun the deadline Δs); Figure 11(b)
shows that the resource access is allowed to overrun also the component’s
period, Πs, a-synchronously. Despite the extra freedom in Figure 11(b), any
extra delivery of processor time must ultimately guarantee that access to a
global resource is completed by the same job of a component as the job that
initiated the access, just like the tasks.

It is a complicated choice whether synchronization of global resources should
be constrained with the component period synchronously or a-synchronously,
because both have their advantages and disadvantages in terms of the estimated
scheduling penalties for global resource sharing. However, it is not just these

52

3. Hierarchical composition of real-time models

scheduling penalties that are affected. It is also the re-usability of the component
that may be sacrificed. We briefly look at the impacts on both the local
scheduling analysis of a component and the global scheduling analysis being
used for composing a component with other components.

Local scheduling analysis. Assume a synchronous deadline Πs for finishing
granted access to a globally shared resource. We may be able to use this
information to tighten the required budget Θs of a component, see Figure 11.
Since an over-allocation Os has to fit within Πs, it makes no sense to choose a
deadline Δs larger than Πs −Os. Applying this decrease of deadline Δs leads
to a smaller service delay, λs. The decrease of λs may consequently decrease
the size of budget Θs.

However, the reduction of Θs also has down sides. The reasoning is as
follows. Budget Θs must be delivered within deadline Δs. Firstly, there are not
so many server policies that allow a constrained deadline, which makes its hard
to implement the computed interface. Secondly, the size of budget Θs is affected
by the assumption that any access to any resources is arbitrated through a
global synchronization protocol. The need for a global synchronization protocol
depends also on other components. Even if global sharing of a resource is
unnecessary, budget Θs must be delivered prior to the tightened deadline
Δs. In this case, the analysis performs poor, because the so-called density, Θs

Δs
,

of the global schedule is higher than necessary. A larger deadline Δs might
have resulted in a larger budget Θs, but it also leads to a lower density. This
improves the global schedulability.

Whether global resource sharing is arbitrated a-synchronously or synchronous-
ly with the period of the processor supply is irrelevant during the local analysis.
Moreover, the reusability of a component can be increased by means of entirely
ignoring the global synchronization protocol during the local analysis.

Global scheduling analysis. As we have just concluded, the choice of
allocating over-allocations of budget Os synchronously or a-synchronously
with period Πs is supposed to be a decision at the global scheduling level. An
a-synchronous allocation, as depicted in Figure 11(b), may lead to a tighter global
analysis, thus, more components can be scheduled jointly on the same platform.
For one global synchronization protocol, Keskin et al. [100] have compared two
synchronous allocation policies, i.e., the ones in [73] and in [101], and a novel
a-synchronous allocation policy. Experimental results indicate that this choice
has little impact on the ratio of systems that can be scheduled successfully.
The improvements of the scheduling analysis in [101] and [100] mainly come
from the applied limited-preemption techniques and the tighter local analysis.
Although the scheduling analysis may slightly improve, the disadvantage
of allowing a-synchronous over-allocations is the additional implementation
complexity for keeping track of a-synchronous budget replenishment [100].

53

3. Hierarchical composition of real-time models

We therefore opt for analyzing the re-allocations of budgets due to global
synchronization by means of using one synchronous deadline for each resource-
sharing component.

We conclude that it is useful to set the period Π as a component deadline
to constrain resource sharing during the global scheduling analysis. In this
way, we can keep the local timing analysis of a component independent of
its global scheduling policy and synchronization protocol. This property of
the timing analysis of a component is called opacity (Paper C). The remaining
questions, being imposed by the need for global resource sharing, are about
the reservations of a component Cs on non-preemptive resources, i.e.,

• how are the allocations of Os managed by the different protocols?
• how are the allocations of Os and the resource holding times in Xs enforced?

The remainder of this section briefly addresses these two topics.

Global synchronization protocols
We already saw that there is a need to complement the traditional synchro-
nization protocols, e.g., the PIP, the PCP and the SRP, with mechanisms that
ensure that tasks finish their critical section in the same component period
as the critical section has been initiated in. We give a brief overview of the
different protocols found in literature. The PIP extensions are summarized by
bandwidth-inheritance (BWI) protocols; the SRP-based flavors are the main
topic of our work and these are therefore summarized separately.

Bandwidth inheritance (BWI). Steinberg [102] have implemented a capacity-
reserve donation protocol to solve the problem of priority inversion for tasks
scheduled in a fixed-priority reservation-based system. A similar approach
has been described by Lipari et al. [103] for earliest-deadline-first (EDF)-based
systems and it is termed bandwidth-inheritance (BWI).

BWI regulates resource access between tasks that each have their dedicated
budget. It works similar to the priority-inheritance protocol (PIP) by Sha et
al. [36]: when a task blocks on a resource it donates its remaining budget to the
task that causes the blocking. The donatee then executes in the budget of the
donor and at the priority of the donor until it releases the resource. BWI-like
protocols are not very suitable for arbitrating hard real-time tasks in HSFs,
because the worst-case interference of all tasks in other components that access
global resources needs to be added to a component’s budget at integration
time in order to guarantee its internal tasks’ schedulability [104] (which is even
worse than PIP’s blocking, see Section 2.2). This leads to pessimistic budget
allocations for hard real-time components.

Hierarchical stack resource policy (HSRP). The HSRP [105] trivially extends
the SRP to HSFs: a task that wishes to access a global shared resource cannot
be blocked upon its attempt. Since HSRP’s lock operation is non-blocking,

54

3. Hierarchical composition of real-time models

the HSRP allows the tasks of a component to overrun their budget until the
resource is released. HSRP has two flavors: overrun with payback (OWP) and
overrun without payback (ONP). The term without payback means that the
additional amount of budget consumed during an overrun does not have to
be returned in the next budget period.

Subsystem integration and resource allocation policy (SIRAP). The SIRAP
[106], [107] allows a task to access a global resource only if it has sufficient
budget to complete the entire critical section. If a task attempts to access a
resource and the remaining budget of the component is insufficient, then the
task blocks itself until the component’s budget is replenished, i.e., the remainder
of the budget is idled away. As soon as sufficient budget is available, the SRP
is used to arbitrate resource access between the components globally. Strictly
speaking, the SIRAP is different from the SRP, because a task arbitrated by
the SRP cannot block at the time of accessing a resource. The challenge of
analyzing a component arbitrated by the SIRAP is to bound the amount of
inserted idle time in each component period [107].

Bounded-delay resource-sharing open environment (BROE). BROE [72]
comes with a special server policy for a component and this server implements
the bounded-delay resource-supply model. If a tasks serviced by a BROE server
requests access to a global shared resource, the entire server may suspend
itself. However, such a request only causes a server self-suspension if there is
insufficient budget to complete the critical section and if the supplied budget by
the server is running ahead with respect to its guaranteed processor utilization.
If there is insufficient budget to complete the critical section and if the supplied
budget by the server is running late, then the budget of the server is immediately
replenished; however, the replenished budget is served at a lower priority. BROE
is restricted to global SRP+EDF scheduling of components and it cannot be
generalized for other global scheduling policies.

Temporal isolation of independent components
We have earlier defined an augmented resource-supply model which captures
the component’s reservations on the processor as well as on non-preemptive
resources. A server implements the processor reservations. If a component
wishes to execute more than it has specified in its timing interface, then the
server prohibits it to do so. The same degree of temporal isolation between
components is difficult to achieve when a task shares resources with other
tasks located across their processor reservation [108]. Whenever a component
exceeds its resource holding time, as specified in its interface, other components
in the system also risk missing their deadlines.

Consider a malicious situation where a task enters an infinite critical section;
obviously, this violates any reasonable timing interface. A nice property of the

55

3. Hierarchical composition of real-time models

BWI is that only those components that share the same resource are affected
by the overrunning critical section. The reason is as follows. The malicious
component itself cannot consume more processor time than it has reserved;
this is enforced by a server. In addition, the malicious component may receive
the reserved processor time from donor components in order to continue the
critical section. However, the amount of donated processor time is bounded
by the amount that the donor would have ultimately available for itself. We
conclude that BWI isolates other components in the system that do not share
the same resource from the malicious effects of an overrunning critical section.

If resource access is arbitrated by a ceiling-based protocol, like the SRP or
the PCP, there is a risk that even independent components miss a deadline
whenever an arbitrary component overruns its specified resource holding time.
For example, consider the SRP. We recall that scheduling performance of the SRP
is made possible by so-called avoidance blocking (see Figure 6 in Section 2.2).
Thus, a component with a preemption level lower than the resource ceiling may
experience blocking, even when it is entirely independent. We have proposed
an SRP extension to resolve this issue (Paper E), which is called hierarchical
synchronization with temporal protection (HSTP).

The key idea of HSTP is to monitor the resource holding times of a component.
When a component attempts to exceed the specified length of the resource
holding time, a preemption point is placed immediately prior to the continuation
of the executing component. An overrunning critical section forces the behavior
of PTS+ to a component (see Section 2.2) and any independent component will
therefore continue meeting its deadlines. The accessed resource stays occupied
by the component, so that no other component can access the same resource.

Apart from HSTP’s temporal protection mechanism for independent com-
ponents, we also proposed bandwidth-donation mechanisms to alleviate the
scheduling penalties for the resource-sharing components. Our mechanisms
are tailored to the SRP-based protocols described above, i.e., HSRP, SIRAP and
BROE, and they preserve a special property: even if a component executes on
a donation, it will not hamper independent components. Santos et al. [109]
proposed an extension to the BWI, called the clearing fund protocol (CFP), to
compensate for excessive donations, i.e., the inheritor component becomes a
debtor of the donor component. It may be possible to make the CFP applicable
to SRP-based protocols, but the CFP is tailored to the constant bandwidth
server (CBS) [110] and it is hard to make the CFP applicable to other server
policies. Contrary to the CFP, our bandwidth-donation mechanisms apply to
any server with periodic processor allocations. In any case, the intervention
in the schedule with bandwidth donations after an excessive resource holding
time – as is done by the CFP [109] and optionally by HSTP (Paper E) – lacks
further hard real-time guarantees to any of the components involved.

56

4 RESULTS, DISCUSSION AND CONCLUSIONS

In the remainder of this section, we first give an overview of the results and
scientific contributions presented in this work. Secondly, we conclude and
discuss the obtained results.

4.1 Overview of the included papers

In this section, we give an overview of the contributions in the papers included
in the second part of this work. The notations, the assumptions and the models
may differ slightly per paper.

Paper A – Generalized fixed-priority scheduling with limited preemptions

R.J. Bril, M.M.H.P. van den Heuvel, U. Keskin and J.J. Lukkien, Generalized fixed-
priority scheduling with limited preemptions, in Proc. 24th Euromicro Conference
on Real-Time Systems (ECRTS), pp. 209–220, Pisa, Italy, July 2012.

Abstract Fixed-priority scheduling with deferred preemption (FPDS) and
fixed-priority scheduling with preemption thresholds (FPTS) have been pro-
posed in the literature as viable alternatives to fixed-priority preemptive
scheduling (FPPS), that reduce memory requirements, reduce the cost of
arbitrary preemptions, and may improve the feasibility of a task set even
when preemption overheads are neglected.

This paper aims at advancing the relative strength of limited-preemptive
schedulers by combining FPDS and FPTS. In particular, we present a refinement
of FPDS with preemption thresholds for both jobs and sub-jobs, termed FPGS.
We provide an exact schedulability analysis for FPGS, and show how to
maximize the feasibility of a set of sporadic tasks under FPGS for given
priorities, computation times, periods, and deadlines of tasks. We evaluate
the effectiveness of FPGS by comparing the feasibility of task sets under FPGS
with other fixed-priority scheduling algorithms by means of a simulation. Our
experiments show that FPGS allows an increase of the number of task sets that
are schedulable under fixed-priority scheduling.

Contribution The basic idea of this paper, i.e., the generalized scheme for
fixed-priority schedulers and the corresponding response-time analysis, has been
proposed by Reinder Bril. This paper continued an earlier work [49] by Ugur
Keskin, Reinder Bril and Johan Lukkien for more specific fixed-priority limited-
preemptive schedulers. Martijn van den Heuvel was the main responsible for
the schedulability analysis that uses request-bound functions, the derivation of
the corresponding optimization algorithms and the simulations.

57

4. Results, discussion and conclusions

Paper B – Virtual scheduling of periodic tasks for compositional real-time guaran-
tees
M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Virtual scheduling of
periodic tasks for compositional real-time guarantees, In Proc. 8th IEEE International
Symposium on Industrial Embedded Systems (SIES), (to appear), Porto, Portugal,
June 2013.

Abstract Consider a legacy application executing a set of time-triggered
periodic tasks on a uni-processor platform. In this paper, we extend the hier-
archical scheduling framework to allow the integration of the same application
as a component on a faster processor which needs to be shared with other
components. After admission of this application into the framework, the
integrated component still has to satisfy its internal deadline constraints and it
must execute jobs in the same order as on the dedicated reference processor,
regardless of the actual supply of processor resources. We propose a method for
this – called virtual scheduling – which is independent of the component-level
scheduling policy. Moreover, virtual scheduling is transparent to a component,
so that it is even applicable without making modifications to the code or
specification of the application.

Contribution The main idea of this paper is from Martijn van den Heuvel.
The idea has been further developed and refined in close co-operation with
both Reinder Bril and Johan Lukkien.

Paper C – Opaque analysis for resource-sharing components in hierarchical
real-time systems
M.M.H.P. van den Heuvel, M. Behnam, R.J. Bril, J.J. Lukkien and T. Nolte,
Opaque analysis for resource-sharing components in hierarchical real-time systems,
submitted to the real-time systems journal.

Abstract Hierarchical scheduling frameworks (HSFs) have been developed
to enable composition and reuse of independently developed and analyzed
real-time components in complex systems. In practice, these components share
more resources than just the processor, requiring arbitration through a global
(system-level) synchronization protocol.

In this paper we propose opaque analysis methods to integrate resource-
sharing components into uni-processor HSFs. A local (component-level) schedu-
lability analysis is opaque if it is independent (or agnostic) of the global
synchronization protocol. An individual component can therefore be analyzed as
if all resources are entirely dedicated to it. This locality of the analysis obtained
from opacity enables us to derive a computationally tractable method for

58

4. Results, discussion and conclusions

exploring and selecting the design parameters of resource-sharing components
with the objective to minimize the system load. Moreover, given a real-time
interface of a component that is derived by means of an opaque analysis, the
component can be used with an arbitrary global synchronization protocol. Hence,
opacity extends the independence of a component of the global scheduling
model, thereby effectively increasing the reusability of the component.

To arbitrate resource access between components, we consider four existing
protocols: SIRAP, BROE and HSRP – comprising overrun with payback (OWP)
and overrun without payback (ONP). We classify local analyses for each
synchronization protocol based on the notion of opacity and we develop new
analysis for those protocols that are non-opaque.

Finally, we compare different analyses for SIRAP, ONP, OWP and BROE by
means of an extensive simulation study. From the results we derive guidelines
for selecting a global synchronization protocol.

Contribution The main idea of opaque analysis, including the new overrun
analysis, came from Martijn van den Heuvel. The notion of opacity has been
further leveraged in close co-operation with mainly Moris Behnam and Reinder
Bril. The idea to exploit the property of opaque analysis in order to optimize
the overall load on the processor came from Moris; the algorithms and the
simulations have been developed by Martijn van den Heuvel. All authors have
contributed to the writing of the paper.

Paper D – Transparent synchronization protocols for compositional real-time
systems
M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Transparent Synchronization
Protocols for Compositional Real-Time Systems, in IEEE Transactions on Industrial
Informatics (TII), pp. 322–336, vol. 8, issue 2, May 2012.

Abstract Hierarchical scheduling frameworks (HSFs) provide means for
composing complex real-time systems from well-defined, independently an-
alyzed components. To support resource sharing in two-level HSFs, three
synchronization protocols based on the stack resource policy (SRP) have
recently been presented for single-processor execution platforms, i.e., HSRP,
SIRAP and BROE. This paper presents a transparent implementation of these
three protocols side-by-side in an HSF-enabled real-time operating system.
Transparent synchronization interfaces make it possible to select a protocol
during integration time based on its relative strengths.

A timing interface describes the required budget to execute a component on
a shared platform and an accessor’s maximum critical-section execution time to
global shared resources. These resources are arbitrated based on the available

59

4. Results, discussion and conclusions

budget of the accessing task. We enable this explicit synchronization of virtual
time with global time by means of a novel virtual-timer mechanism. Moreover,
we investigate system overheads caused by each synchronization protocol,
so that these can be included in the system analysis. Based on the analytical
and implementation overheads of each protocol, we present guidelines for the
selection of a synchronization protocol during system integration.

Finally, we show that unknown task-arrival times considerably complicate
an efficient implementation of SIRAP’s self-suspension mechanism. We briefly
discuss the implementation complexity caused by these arrivals for bandwidth-
preserving servers, e.g., deferrable servers and BROE.

Contribution The main idea of providing transparent programming in-
terfaces, regardless of the synchronization protocol, came from Reinder Bril.
The different synchronization protocols considered in this paper have been
implementated and evaluated by Martijn van den Heuvel. All authors have
contributed to the writing of the paper.

Paper E – Dependable resource sharing for compositional real-time systems
M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Dependable resource sharing
for compositional real-time systems, in Proc. 17th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA),
pp. 153–163, Toyama, Japan, August 2011.

Abstract Hierarchical scheduling frameworks (HSFs) have been exten-
sively investigated as a paradigm for facilitating temporal isolation between
components that need to be integrated on a single shared processor. In the
presence of shared resources, however, temporal isolation may break when
one of the accessing components executes longer than specified during global
resource access. The ability to confine such temporal faults makes the HSF
more dependable. As a solution we propose a stack-resource-policy (SRP)-
based synchronization protocol for HSFs, named Hierarchical Synchronization
protocol with Temporal Protection (HSTP).

When a component exceeds its specified critical-section length, HSTP enforces
a component to self-donate its own budget to accelerate the resource release. In
addition, a component that blocks on a locked resource may donate budget. The
schedulability of those components that are independent of the locked resource
is unaffected. HSTP efficiently limits the propagation of temporal faults to
resource-sharing components by disabling local preemptions in a component
during resource access. We finally show that HSTP is SRP-compliant and applies
to existing synchronization protocols for HSFs.

60

4. Results, discussion and conclusions

Contribution The main idea of developing isolation mechanism in order to
protect independent components against other misbehaving resource-sharing
components came from Martijn van den Heuvel. The different policies that
exhibit our design criterion have been lined up in close co-operation with
Reinder Bril.

Paper F – Temporal isolation in an HSF-enabled real-time kernel in the presence
of shared resources

M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Temporal isolation in
an HSF-enabled real-time kernel in the presence of shared resources, in Proc. 7th
International Workshop on Operating Systems Platforms for Embedded Real-
Time Applications (OSPERT), pp. 39–48, Porto, Portugal, July 2011.

Abstract Hierarchical scheduling frameworks (HSFs) have been extensively
investigated as a paradigm for facilitating temporal isolation between com-
ponents that need to be integrated on a single shared processor. To support
resource sharing within two-level, fixed priority scheduled HSFs, two syn-
chronization protocols based on the stack resource policy (SRP) have recently
been presented, i.e. HSRP and SIRAP. In the presence of shared resources,
however, temporal isolation may break when one of the accessing components
executes longer than specified during global resource access. As a solution
we propose a SRP-based synchronization protocol for HSFs, named Basic
Hierarchical Synchronization protocol with Temporal Protection (B-HSTP). The
schedulability of those components that are independent of the unavailable
resource is unaffected.

This paper describes an implementation to provide HSFs, accompanied by
SRP-based synchronization protocols, with means for temporal isolation. We
base our implementations on the commercially available real-time operating
system μC/OS-II, extended with proprietary support for two-level fixed priority
preemptive scheduling. We specifically show the implementation of B-HSTP and
we investigate the system overhead induced by its synchronization primitives
in combination with HSRP and SIRAP. By supporting both protocols in our
HSF, their primitives can be selected based on the protocol’s relative strengths.

Contribution The main idea of developing isolation mechanism in order to
protect independent components against other misbehaving resource-sharing
components came from Martijn van den Heuvel. This paper compares the
protocol implementations in Paper D to new implementations of those protocols
that are complemented with the (basic) isolation mechanisms presented in
paper E. The experiments have been carried out by Martijn van den Heuvel.

61

4. Results, discussion and conclusions

4.2 Discussion and conclusions

In this work we revisited synchronization and composition of real-time com-
ponents upon a single processor and other non-preemptive resources. We
focused on two types of synchronization between the tasks located in arbitrary
components: a-synchronous resource sharing and communication (i.e., event or
interrupt driven) and synchronous resource sharing and communication (via
so-called non-preemptive resources). We give a brief overview of the lessons
we have learned related to these forms of synchronization.

The independence of a real-time component of its global scheduler is im-
portant during its development. We therefore made the timing requirements
of the tasks transparent regardless of the component’s dependencies on these
two types of task synchronization (Paper B and Paper D). This means that
the component developer can be unaware that the processor and other non-
preemptive resource may need to be shared with other real-time components.

The composition of components forms an hierarchical scheduling framework
(HSF), which is established via well-defined timing interfaces. In order to derive
a timing interface for a component, we must perform timing analysis. The
analysis compares the tasks’ timing characteristics to a resource-supply model
which bounds the variability of any of the supplied resources. In Paper C,
we have augmented the resource-supply models for HSFs with a method
that computes the resource sharing parameters of a component determinately,
regardless of the global scheduling and the global resource-arbitration policies.

Unfortunately, it is hard to abstract entirely from the resource-supply model
in the timing-requirements analysis of a component. The role of the resource-
supply model is to abstract from (i) the task model of local tasks and (ii) the
actual allocation policy of processor bandwidth and other resources. The latter
requires at least the awareness of the existence of those allocation policies, i.e.,
the allocated processor time might be supplied discontinuously. It is possible,
however, to enforce the same schedule regardless of the delays in the processor
supply, as long as the maximum delay is bounded.

We have proposed a method (see Paper B) – called virtual scheduling – to
establish this. A major advantage of virtual scheduling for the composition of a
system is that an individual component virtually executes on a processor with
a continuous supply and, thus, a real-time component preserves its predictable
schedule after composition with other components.

After admitting a component on a shared platform with other components, the
HSF reserves the processor share and the shares of the other non-preemptive
resources required by that component. Also the access to those resources
is arbitrated through the allocated virtual platform. From the component’s
point of view, it is better to allocate larger quanta. This reduces the cost of
preemptions and makes it easier to schedule tasks. From the platform’s point

62

4. Results, discussion and conclusions

of view, it is better to allocate smaller quanta. This better approximates the
supply function and smaller quanta therefore lead to less over-provisioning
of processor bandwidth. This trade off affects the period of the reservations,
captured in (or derived from) the interface of a component.

There are many different policies to provision the reserved processor band-
width. Since the resource-supply model abstracts from these server policies
anyway, we conclude that the most suitable and predictable method of compos-
ing hard real-time components is through periodic, idling processor reservations.
This policy shapes a component as a simple periodic task. As investigated in
Paper D, many of the more complicated processor allocation policies introduce
either more allocations of processor bandwidth during the timing analysis or
higher implementation costs (and sometimes even both).

We also investigated the analytical scheduling penalties and the implementa-
tion costs of SRP-based real-time synchronization protocols in HSFs (Paper D).
These protocols provide well-defined programming interfaces for arbitrating
access to globally shared non-preemptive resources. We considered the following
protocols: HSRP – comprising overrun without payback (ONP) and overrun
with payback (OWP) –, SIRAP and BROE. Each of these protocols presents
different scheduling mechanisms that prevent budget depletion during the
execution of a component on a non-preemptive resource. For this purpose,
HSRP allows a component to overrun its allocated budget temporarily. Contrary
to the HSRP, both SIRAP and BROE use a self-blocking mechanism in order to
avoid budget overruns for the completion of a critical section.

Looking at the scheduling analysis of SIRAP and BROE, they both outperform
the HSRP. The real-time performances of SIRAP and BROE are competitive to
each other, but the scheduling performance of SIRAP is less sensitive to task
characteristics than BROE is. The reasons are twofold (see Paper C):

1) BROE inherently uses the bounded-delay resource-supply model, which
approximates the periodic processor supply to a component linearly. This
linear approximation may give a pessimistic estimation of the required
resources when the deadlines of tasks are heavily constrained; in this
situation, even HSRP can sometimes outperform BROE.

2) SIRAP’s analysis exploits many detailed task characteristics. The disad-
vantage of this, however, is that an analyzed component – meant to be
arbitrated by SIRAP – cannot be reused in an HSF with another global
synchronization protocol.

We have solved the latter inconvenience, so that the interface parameters of
a component can be computed independently of the global synchronization
protocol. Under this abstraction, however, the advantages of the scheduling
analysis of SIRAP disappear compared to HSRP and BROE.

Looking at the implementation costs of global synchronization protocols in

63

4. Results, discussion and conclusions

an real-time operating system (Paper D), we considered two major sources
that impact their performance: (i) the underlying server model and (ii) the
cost of the primitives for synchronizing the local and global schedulers. BROE
scores poorly at the first metric, because it comes with its own server which is
considerably more complicated than a periodic, idling server. Both SIRAP and
HSRP are independent of an underlying server policy. SIRAP scores poorly
at the second metric, because it requires to prevent other local tasks from
executing during the inserted idle times, i.e., those tasks with a preemption
level lower than the local resource ceiling must be suspended. This is different
for BROE and HSRP, because they re-arrange the supplied server budgets, so
that local arbitration of tasks can be left to the local scheduler without further
modifications.

Re-arranging the supplied server budgets, as is done by BROE and HSRP,
might be considered harmful for the global predictability of the system. Here
SIRAP is the preferred protocol. Fortunately, there exist simplifications that also
allow efficient local scheduling in combination with global resource arbitration
through SIRAP. Despite the negative impact on the schedule of a component,
for several reasons it can also be a good idea to disable local preemptions
during global resource access. For SIRAP’s idle-time insertion, this means the
expensive task suspensions and resumptions can be replaced by just a spin
lock. Furthermore, the resource holding times of a component become more
predictable if critical sections cannot be preempted locally (Paper E).

As we have seen, there are many different system parameters that influence
the performance of a global synchronization protocol. It is therefore complicated
to choose a global synchronization protocol appropriately, even for system
integrators with comprehensive knowledge about real-time resource-sharing
aspects. For this reason, we have made the APIs of these protocols transparent
(see Paper D), so that a component developer can be unaware of (i) the scope of
resource sharing (local versus global) and (ii) the actual protocol being used for
arbitrating access to a shared resource. The additional advantage of transparent
APIs is that a component developer cannot use protocol-specific exploits. This
mitigates the integration of a component in an HSF, because the schedule of
the component itself is more predictable.

For the enforcement of reservations of components on non-preemptive
resources, we presented an SRP extension (Paper E), called hierarchical synchro-
nization with temporal protection (HSTP). The main design objective of our
protocol is to limit the propagation of temporal faults to independent component
in case a task exceeds its specified worst-case critical-section length. To achieve
this, HSTP dynamically places preemption points in an over-running critical
section to enforce the maximum contiguous holding time of each resource.

One way or an other, HSTP must limit the local sources of unpredictable

64

4. Results, discussion and conclusions

execution that may impact the resource holding times. HSTP therefore prohibits
preemptions by other tasks within a component during critical sections. This
means that we cannot have multiple tasks from the same component handling
interrupts. It is possible, however, to bypass the latter limitation by means of
multi-level reservations, for example, as has been done by Parmer et al. [91]
and de Niz et al. [108]. Their approaches did not apply HSTP’s idea of placing
preemption points in an over-running critical section, i.e., contrary to [91]
and [108], HSTP allows a critical section to consume its component’s allocated
budget entirely and in a controlled manner.

Finally, we recall that enforcement of global temporal isolation of independent
components (in the presence of other dependent components) comes into play,
only if tasks violate the timing interface of the constituting component. This may
have a major consequence straddling the local schedulability of the misbehaving
component. That is, in case a non-preemptive resource is shared with an other
component, the blocking times can be unbounded for all the tasks in any of the
resource-sharing components. In such situations, additional policies [111], e.g.,
roll-back or roll-forward of a misbehaving task, are needed to enforce progress
inside those resource-sharing components. Secondly, the implementation costs
of the timer mechanisms that are required to monitor the consumed resources by
a component on each of its accessed resources can be large (Paper F). These two
reasons indicate that resource sharing between components should be avoided
when possible; it should be considered with care otherwise. In particular, it
stresses the importance that resource sharing is abstracted appropriately at
the level of local development and local analysis, so that it is easier during
composition to judge the risks of global resource sharing on the predictability
of the system.

65

5 FUTURE WORK

We have focused in this work on the composition and scheduling of tasks under
the objective of minimizing the required processor resources. Firstly, we consider
future research directions for further optimizing the resource requirements of
components that need to share one processor. Secondly, we look at emerging
challenges arising from the needs to share resources between independently
analyzed and certified components of different criticality. Finally, we briefly
look forward to the impact of broadening the scope of our proposed methods
from a uni-processor platform to a homogeneous multi-processor platform.

5.1 Optimizing the number of systems scheduled successfully
In this work we have presented two techniques for maximizing the number of
systems that can be scheduled without deadline misses:

1) at the component level using limited-preemption techniques (Paper A);
2) at the system level using two-level preemptive scheduling and resource

arbitration using the SRP (Paper C).
The first technique explores the choices of selectively disabling local preemptions
of a component which has the entire processor at its disposal. Alternatively,
it can be seen as finding the configuration of a task set that allows for the
largest scheduling delays, i.e., the longest critical sections. The second technique
considers global resource sharing under preemptive two-level scheduling. This
can be seen as finding the configuration of a system that allows for the slowest
processor, i.e., the minimal system load. The second technique does not only
optimize the number of systems that can be scheduled successfully, the returned
system configuration also imposes the smallest possible system load.

In an HSF, the interface of the component captures the reservations on all
the resources required by the component, including the processor. In this work,
optimizing the schedulability of components in an HSF has not been considered
for tasks that are locally scheduled with limited-preemption techniques. In
other words, the analysis of a task arbitrated by the SRP takes no advantage of
an increased preemption level. Furthermore, we assumed that all the resources
used by the tasks of a component have one-unit capacity.

Finally, the period of a component determines a deadline for the completion
of the critical sections of its local tasks. The same component period also
determines the sizes of the reserved quanta, i.e., contributing to the overall
processor bandwidth required to schedule the system (which determines the
system load). The period of a component therefore also impacts the success of
meeting deadlines.

In the remainder of this section, we look more carefully to these three
limitations of our work.

67

5. Future work

Optimality of limited-preemptive schedules

As we have seen in Section 2.2, the analysis of a fixed-priority preemptive
schedule is pessimistic for modeling limited-preemptive execution of tasks,
because preemptive models do not take into account the acceleration of a task
after it has started its execution; only the disadvantage of blocking is taken
into account. We have considered a variety of limited-preemptive fixed-priority
schedulers that tighten the component’s analysis. The model with deferred
preemptions (FPDS) seems the easiest to analyze and it allows to analyze tasks
with non-preemptive sub-jobs. For FPDS, in particular, Davis and Bertogna [112]
have recently shown where to place the preemption points in the tasks and how
to assign the optimal priorities to tasks accordingly. Their algorithms meet all
deadlines of a task set, if this is possible by FPDS. For other limited preemptive
scheduling models that are based on preemption thresholds, we have assumed
in our work that priorities of tasks are given.

The optimization algorithm by Davis and Bertogna [112] is inapplicable
to preemption-threshold schemes in general. Under FPDS sub-jobs are by
definition non-preemptive. Contrary to FPDS, where the priorities of tasks and
the placement of preemption points are of importance for the schedulability
of a task set, for more general limited-preemptive scheduling schemes we
also need to determine the optimal preemption thresholds of the sub-jobs
of tasks. Even for the most basic preemption-threshold scheduling scheme
– as proposed by Wang and Saksena [45] – only exponential algorithms are
known for determining priorities of tasks and determining thresholds of tasks
optimally [112]. It would be interesting to see how much processor resources
can be gained by limited preemptive scheduling with an optimal assignment
of priorities compared to the deadline-monotonic assignment of priorities that
we have used in our experiments.

Moreover, we have only considered limited-preemptive scheduling for a single
component that has the entire processor at its disposal. It would be interesting
to apply limited-preemptive scheduling to tasks in an hierarchical system.
Especially, the optimizations of two-level fixed-priority HSFs with budget
overruns are interesting. Since overruns happen at the end of a server budget
and a server can be viewed as a task on itself, limited-preemptive techniques
can be used to tighten the global analysis (as we have done in [100]). The
problem of placing preemption points within the tasks of different components
of an HSF in an optimal manner has not been studied yet. Moreover, it would
be interesting to see how the sizes of limited-preemptive sub-jobs of tasks
within the entire system need to be reconfigured when components enter or
leave the system.

68

5. Future work

Multi-unit resources

One may make duplicates of resources, for example, using the algorithm
proposed by Baruah [32], in order to reduce the blocking between tasks or
between components. A smaller blocking term increases the schedulability of
the system. However, the capacity of the resource (number of available units)
may still be constrained compared to the number of tasks requiring the same
resource, especially in open environments where components can dynamically
enter or leave the system. In such cases, resource arbitration may have to deal
with multi-unit resources.

One way of looking at multi-unit resources is to consider each unit as a
one-unit resource on itself. This view can be directly applied to our current
algorithms for optimizing the system load in HSFs. It is not guaranteed that
our algorithms return an optimal selection of interfaces for components (in
terms of the system load), because statically allocating the available units of a
resource to the accessing tasks is sub-optimal in terms of schedulability.

Fortunately, the SRP [34] supports dynamic arbitration of multi-unit resources.
The use of multi-unit resources requires to adapt the way of computing the
preemption levels of tasks and it changes the number of possible resource
ceilings accordingly. The increase in the number of possible resource ceilings
relates polynomially to the number of available units of a resource. Despite the
polynomial bounds on the expansion of the system’s dimension, computing the
smallest capacity per resource such that the system load of an HSF is minimized
is a difficult and intractable problem [113].

We have therefore presented a selection procedures for interfaces of compo-
nents sharing just one-unit resources, so that the selected interfaces minimize
the system load. To demonstrate the algorithmic complexity of optimizing the
usage of multi-unit resources, let us start with resources of one-unit capacity that
need to be shared globally (like our current method requires). Our selection
procedure is based on a finite set of interface candidates sorted by a non-
decreasing processor requirement. As a result, the only way to reduce the
system load is by decreasing the global blocking between components in each
iteration of the optimization procedure. In our current method, the only way
to reduce the global blocking is by means of reducing the resource holding
times. Reducing the resource holding times can only be achieved by increasing
the local blocking. This results never in a smaller budget, so that the interface
candidates of a component are indeed traversed in a non-decreasing sorted order
of the component’s processor requirement. Our procedure therefore converges
in a polynomial number of steps towards an optimal selection of interfaces for
all the components in the HSF.

An alternative way of decreasing the global blocking between components
could be by means of increasing the capacity of the resource that causes the

69

5. Future work

largest blocking. This alternative is problematic for the convergence of the
system load, because the availability of one extra unit of a resource results also
in less local blocking between tasks of the resource-sharing components. The
required budget of those components may therefore decrease and, thus, the
iterations for selecting interface candidates follow no longer a non-decreasing
processor requirement. Hence, it requires further study to optimize the system
load of components accessing multi-unit resources.

Selecting component periods

Integrating resource-sharing components into the HSF requires that compo-
nents cannot be preempted at arbitrary moments in time by arbitrary other
components. To be able to guarantee the timeliness of other components, the
period of a component determines the deadline for the completion of a critical
section. In the presence of shared non-preemptive resources, the selection of
Ps is therefore constrained by the resource holding time.

It is already hard to determine a proper period for independent components
in an HSF [60]. In the presence of shared resources, the same period serves
as an extra deadline for each of the tasks for the completion of an access to a
shared resource. The selection of just one period for the arbitration of all the
resources required by a set of tasks seems to be a natural choice, even when
a component has the entire platform at its disposal. For example, Thiele and
Ernst [114] derive one period for the tasks in a pipeline that share resources
from the throughput constraints of a component and this period determines the
blocking tolerance of those tasks. However, the model by Thiele and Ernst [114]
considers only local resource sharing and each task can only access a single
shared resource; they do not consider global resource sharing. We can support
global resource sharing by means of extending the model in [114] with our
notion of an opaque component design. The challenge then is to derive one
common period across all the groups of tasks that share resources.

Similarly, when tasks execute on a cluster of homogeneous processors,
literature suggests that a single period for the allocation of all the reserved
quanta on each of the processors of the cluster is a good choice [115]. However,
sharing of more resources than just processor(s) between different components
may require larger quanta of reservations. The allocated processor quanta must
be large enough to complete the entire resource holding times of a component
and this requirement applies to each of the processors that can be used by this
component. In any system holds that the larger the reserved quanta are, the
more over-allocations of the processor bandwidth.

70

5. Future work

5.2 Mixed-criticality systems
Many industrial standards have been developed over the years to promote
the exchange and the integration of software components from multiple ven-
dors. For example, a consortium of automotive suppliers and manufacturers
has developed the AUTOSAR standard. Many of these standards, however,
including AUTOSAR, lack explicit information about timing requirements in
their meta-model.

Instead, the functional-safety standards and regulations often describe classes
of risk and the corresponding necessary safety requirements for achieving an
acceptable residual risk. For example, the standard DO 178B specifies 5 classes
of risk for aeronautic systems. In November 2011, the ISO 26262 functional
safety standard for automotive systems has been published. ISO 26262 specifies
so-called Automotive Safety Integrity Levels (ASILs). The standard provides
requirements, applicable throughout the life cycle of all automotive electronic
systems, for validation and confirmation measures to ensure that a sufficient
and acceptable level of safety is achieved.

There is an emerging need to certify safety-critical systems according to
global standards, e.g., ISO 26262, before these systems enter the market. The
real-time systems community has therefore developed novel task models and
scheduling policies over the past few years. In the remainder of this section, we
look at three important research topics related to the certification of a system.
Firstly, we consider scheduling of tasks that have been assigned levels of mixed
criticality. Secondly, we look at the composition of components that have mixed
criticality levels (with or without shared resources). Finally, we define a new
concept, i.e., resilience, which aims at graceful recovery from temporal faults.

Modified task model and its (lacking) schedulability results
The seminal model by Vestal [116] requires to assign one criticality level to
each (sporadic) task. The higher the criticality level of a task, the higher its
estimated WCET. The schedulability condition considers a different WCET for
each task at each criticality level. All the WCET values that have an impact on
whether a task meets its deadline or not must be of the same criticality level
as that required by the task [117].

The classical ways of prioritizing tasks optimally (rate monotonic or deadline
monotonic) do not take into account the criticality of a task. Criticality As
Priority Assignment (CAPA) guarantees timeliness of the highest criticality
task, no matter how lower-criticality tasks behave, but it can be resource
inefficient. Vestal’s algorithm [116] for assigning fixed priorities to tasks that
have different criticality levels has shown to be optimal and equivalent to
Audsley’s algorithm [118], i.e., both Vestal’s and Audsley’s algorithm will find
a priority assignment if a feasible priority assignment exists [119]. In Vestal’s

71

5. Future work

model, EDF is no longer optimal; Baruah and Vestal [117] presented an example
of a task set which can be scheduled by fixed-priority preemptive scheduling
and cannot be scheduled by EDF. They concluded that the performance of
scheduling policies using fixed task priorities and fixed job priorities, like EDF,
are incomparable for the scheduling of mixed-criticality tasks.

Criticality scheduling may require an additional run-time mechanism in order
to change the scheduling policy immediately upon detection of suspicious task
executions, i.e., when a task exceeds its WCET for its level of criticality. De Niz
et al. [120] presented a scheme that allows the regular priority assignments
and the priorities are reversed according to the relative criticality of a task
whenever a high-criticality task (with a low priority) has not completed its
execution upon an instant where it has zero slack. The criticality levels of
tasks are different from the common notion of system modes. A survey on
mode-change protocols can be found in [121]. Contrary to, for example, the
zero-slack mechanism by de Niz et al. [120], changing of modes typically entails
a non-negligible transition latency.

Also blocking of mixed-criticality tasks, e.g., due to resource sharing or
limited preemptive scheduling, may delay the required prompt intervention. To
the best of our knowledge, blocking is not considered in the current literature on
scheduling of mixed-criticality tasks. It would be interesting to take into account
limited preemptions in the model of mixed-criticality systems. Next, it would
be challenging to investigate the relative performance of limited-preemptive
execution by EDF and by fixed-priority scheduling of mixed-criticality tasks.

Composition of real-time components
In this work, we have chosen the tasks as the preferred unit of composition for
real-time systems, i.e., a set of tasks of a component is represented as if it is a
task on itself. The most complex situation is when each individual task can
have different criticality levels with respect to tasks in other components. The
problem of scheduling tasks with mixed criticality within a system composed
of a hierarchy of schedulers has not been considered yet.

In the first place, we could take a simplified model. It would be interesting
to look at situations where the criticality of a task is expressed relative to the
tasks in the same component only. Then, each component expresses one level
of criticality relative to other components at the global level of an HSF.

To support resource sharing between tasks of different components, it would
be interesting to extend the zero-slack mechanism by de Niz et al. [120] with
the notion of blocking. Our basic SRP modification, called HSTP, prevents
unbounded priority inversion for independent components in the presence of
other resource-sharing components. It implements a solution for this purpose
for relatively tightly coupled components with the same criticality. HSTP is

72

5. Future work

not adequate for resources shared among components with different criticality,
since it still allows a low-criticality component to disrupt a high-criticality one.
In a mixed-criticality system different recovery mechanisms are required, e.g.,
to terminate a low-criticality component that does not return the resource in
time for a high-criticality component and to restore the state of that resource.

Robust and resilient scheduling
The current scheduling models for tasks with mixed criticality levels allow a
deadline miss of a low-criticality task when a high-criticality task is in danger of
missing its deadline. Nevertheless, the model is based on giving hard guarantees
to the highest criticality tasks. This meets the expectations of building a robust
system. Robustness defines how well a system is prepared against propagation
of timing faults.

For the scheduling of tasks in non-hierarchical systems, Davis and Burns [122]
proposed a well-defined measure of robustness. They defined a non-decreasing
function of time that characterizes the worst-case overhead from unpredictable
sources that a task may experience without missing its deadline11. Davis and
Burns [122] accordingly defined an algorithm for assigning priorities to tasks in
such a way that the overall measure of the robustness-functions is maximized.
We believe that robustness alone is not sufficient in highly critical systems.

Another measure would be how well a system can deal with timing faults.
We use the term resilience to define the degree in which a system can recover
readily from the adversities caused by timing faults. In highly critical systems
the assumption is that bad things will happen, no matter how well the system
is designed and tested. The traditional notion of robustness cannot be used
directly, because robustness is typically measured by a non-decreasing function
of time. For example, it does not support probabilistic models. Following
de A. Lima and Burns [123], the term resilience is already used in the real-
time systems community to give a measure of how many faults (including a
cost model for recovery from a fault) a task set can absorb without missing a
deadline. The resilience in these works comes from the mechanisms to recover
from functional faults in the system. From a timing perspective, the execution
costs of the recovery mechanisms – assuming a maximum frequency of their
occurrence [123] – can be captured in a robustness function.

To the best of our knowledge, it has not been investigated how to mitigate
the propagation of deadline misses (or other timing faults) between the tasks
of a real-time component. The chance of yet an other deadline miss is therefore
unknown for the specific scenario after a deadline miss of a task has occurred.

11. Resource-supply models express also the maximum amount of unavailable processor time a
task set may experience without missing any deadlines. However, each of these models uses a
function with a pre-defined shape.

73

5. Future work

Whenever a deadline miss happens, novel graceful mechanisms are required
for recovery from that temporal fault, so that the system can return into an
execution state with a predictable workload upper bound. Our new notion of
resilience now refers to the time it takes to achieve this. It might be necessary to
intervene in the schedule to accelerate such recovery, for example, by suspending
low-criticality tasks temporally or by re-allocating budgets from low-criticality
components. This can further improve the resilience of a real-time system.

A simple heuristic to improve the resilience of a system is to over-allocate
resources, so that the available slack can be used to recover from timing faults.
Reservation-based scheduling on itself just prevents propagation of temporal
faults to other independent components, thus, increasing just the robustness.
However, the resource-supply models that we used for the composition of com-
ponents are inherently pessimistic, because they refrain from any assumptions
on the actual interference caused by other components in the system. It would
be interesting to see how the available slack, obtained from the pessimism in
those models, can be exploited to improve the resilience of a system.

Moreover, it would be interesting to extend our measure of resilience to
resource sharing in HSFs. The resource-holding times define over-estimated
reservations on non-preemptive resources. Our notion of opaque analysis
abstracts global resource arbitration and local resource arbitration, so that
different synchronization protocols can be compared at the same level of
abstraction. In our current work (Paper E and Paper F), we did not evaluate
our protocol, HSTP, or other synchronization protocols in terms of quality
metrics like resilience and robustness. It would be interesting to investigate the
implementations of several synchronization protocols, e.g., BWI, HSRP, SIRAP
or BROE, in terms of resilience.

5.3 Multi-processor scheduling
In this work we considered a hierarchical composition of real-time components
upon a single processor. Each component abstracts a group of real-time tasks as
if it was a single task on itself. The hierarchy of schedulers forms a tree, because
each component receives resources from one parent through a single supply
function. The result is that a component virtually executes on a uni-processor
albeit possibly at a lower speed.

There are several models that allow modeling of multiple parallel functions
of resource supplies to components [124]. In these models, components can be
composed in a directed a-cyclic graph. The result is that a component virtually
executes on a multi-processor platform, where each supply function models a
virtual processor with a certain speed. There are different ways to describe the
interface of a component under a supply by parallel processors. We are searching
for the same abstraction for the composition of components on a multi-processor

74

5. Future work

platform as we have already obtained on a uni-processor platform, i.e., in terms
of processor requirements and in terms of non-preemptive resources.

In the remainder of this section, we first briefly summarize the recent advances
of composition of components on multi-processor systems with and without
resource sharing. Finally, we look at topics of future work on multi-processor
systems that relate to our research on uni-processor systems.

Composition using parallel supply functions
The most general model of the parallel supply function (PSF) of a component
by Bini et al. [125] improves their initial PSF model presented in [124]. The
PSF [125] is an extension of the single processor supply bound function, sbf(t),
described by a set of m functions Yk. The function Yk(t) is the minimum amount
of resources provided in any interval of length t by at most k virtual processors.
A component is schedulable on a given platform with m parallel processor
reservations, if for every interval of length t there exists a k ≤ m such that the
component requirement in any interval of length t does not exceed Yk(t).

In the multi-processor periodic resource (MPR) model by Shin et al. [115],
all m supply functions are implemented by periodic reservations, where all
functions have the same period P and all functions share a cumulative budget
Q. The exact budget of a virtual processor on itself is irrelevant, as long as the
sum of all budgets is Q. A disadvantage [62] of the MPR model by Shin et
al. [115] is that a component may not be guaranteed on any arbitrary platform
that satisfies the interface description of the periodic PSF, if the periods of the
parallel supply functions are unaligned. As a consequence, implementing a
virtual platform using the MPR model requires time synchronization between
the virtual processors.

In order to lift this limitation, Lipari and Bini [62] use a different interface
model: the bounded delay multi-partition (BDM). The BDM model is an extension
of the bounded-delay model by Feng and Mok [58]. A BDM interface is
characterized by one initial service delay λ and and by m values of αk which
denote the minimum cumulative utilization with k processors. This means that
all the functions Yk(t) are approximated with linear functions with an initial
delay of length λ and a constant slope of αk.

Composition of components in the presence of shared resources
Following the seminal work of Rajkumar et al. [126] in 1988, many works
have considered resource sharing between tasks executing on a multiprocessor
platform. Extended versions of the uni-processor synchronization protocols, e.g.,
the SRP and the PCP, are commonly used for this purpose on multi-processor
platforms. Davis and Burns [127] have recently surveyed different policies for
scheduling tasks on homogeneous multi-processors, with and without resource

75

5. Future work

sharing. Brandenburg et al. [128] have investigated the relative performance of
blocking and non-blocking approaches for tasks that access shared resources.
The blocking approaches considered both busy-waiting and suspending; the
non-blocking approaches considered lock-free and wait-free. Each approach
has its advantages and its disadvantages.

The composition of independently developed components upon a multi-
processor platform in the presence of shared resources has recently received
some attention [129]. Nemati et al. [129] assume partitioned scheduling of tasks
(tasks are statically allocated to one processor) and, in addition, they assume
that one processor hosts only one component. Thus, one processor serves as a
container and no further reservations are needed for implementing processor
isolation between components. Nemati and Nolte [130] also showed how to
compute the resource holding times under a more liberal component model
where a local static-priority scheduler determines which tasks to execute on the
m identical processors. The authors of [129], [130] made the timing analysis of
a system compositional. However, task-based locking protocols are used for
the synchronization of tasks. It would be interesting to look at various local
scheduling policies and to look at different global synchronization protocols.

Open problems
Although the contributions of this work apply to uni-processor systems, it
would be interesting to apply them to multi-processor systems. In particular, it
would be interesting to look at the following issues.

1) Opacity: similar to our notion of opaque analysis for resource sharing
between different components, it would be interesting to decouple the local
analysis of a component from the global composition of components. This
includes the way of accounting the blocking on globally shared resources.
Using PSFs, for example, see [125], [124], [62] and [115], the required processor
resources of a component can be abstracted regardless of the global scheduling
policy. Extending this abstraction with the notion of shared resources requires
that the interface of a component should not be influenced by the global
synchronization protocol. This extends the independence of a component of
the entire global scheduling model, thereby further increasing the re-usability
of the component upon multi-processor systems.

2) Synchronization protocols: the BDM model by Lipari and Bini [62] seems
to be an attractive model to abstract the processor requirements of a component.
In the context of the bounded-delay model by Feng and Mok [58] for uni-
processor HSFs, BROE performs superior in terms of the system load compared
to all other global synchronization protocols. It would therefore be interesting
to extend BROE, or another component-level self-blocking technique, to multi-
processor systems.

76

5. Future work

Most existing protocols for resource sharing on multi-processors penalize
the tasks that try to access unavailable resources. Alternatively, a BROE-like
protocol may temporarily suspend an entire component. A potential advantage
may be that the inherent costs for time synchronization between the allocated
cluster of processors, i.e., caused by the access of a resource that is shared
across processors, can be easily bounded per component.

3) Temporal isolation: similar to uni-processor systems, additional mech-
anism are required in the presence of non-preemptive resources to ensure
temporal isolation between components. The implementation overheads of
our protocol for uni-processor HSFs, i.e., HSTP, is efficient compared to the
implementation of multi-level reservations, because critical sections are execute
with local preemptions disabled. No other task than the resource-accessing one
can therefore cause a violation of the specified resource-holding time.

Disabling preemptions for short critical sections is often affordable within
the compositional models on a uni-processor system [72]. When a component
is allocated a cluster of processors, however, disabling all local preemptions
during a critical section prohibits any concurrency, even on other processors
than the one allocated to the resource-accessing task. We leave it as future
work to investigate alternative approaches – and their cost – for confinement of
temporal faults during access to shared non-preemptive resources in hierarchical
multi-processor systems.

4) Virtual scheduling: our technique for virtual scheduling has been de-
veloped for uni-processor systems in order to reproduce the schedule of a
component under a continuous processor when the same component is mapped
on a discontinuous virtual processor. It would be interesting to see how to
extend the notion and the meaning of virtual scheduling using PSFs which
define cumulative processor speeds. For example, (i) a legacy uni-processor
component needs to execute on a cluster of virtual processors or (ii) a multi-
processor component needs to execute on a discontinuous cluster of virtual
processors.

Another application of virtual scheduling in the context of multi-processor
systems may be for the purpose of reserving shares for components of a single
communication bus. For example, a legacy component can be given a dedicated
processor. Other components that execute on other processors may block the
availability of the bus for our legacy component. The blocking must be bounded
to guarantee the timeliness of our legacy component. The increase in speed
of the communication buses with peripherals (like the network or the main
memory) in computer systems grows much slower than the increase of the
(cumulative) processor speeds does. Allocating a non-depletable share of the
bus to our legacy component may therefore make the rest of the processors
unusable. With virtual scheduling, the maximum jitter tolerance, λ, of our

77

5. Future work

legacy component can be used to define the granularity of a (non-preemptive)
bus-transfer in a simple way (which then also applies to other components
in the system). It would be interesting to see how virtual scheduling shapes
contention on a shared communication bus in a multi-processor system.

78

REFERENCES

[1] M. Di Natale and A. Sangiovanni-Vincentelli, “Moving from federated to integrated
architectures in automotive: The role of standards, methods and tools,” Proceedings of the
IEEE, vol. 98, no. 4, pp. 603–620, April 2010.

[2] C. Lu, R. Rajkumar, and E. Tovar, “Guest editorial special section on cyber-physical systems
and cooperating objects,” IEEE Transactions on Industrial Informatics (TII), vol. 8, no. 2, p. 378,
May 2012.

[3] B. Bonsen, R. Mansvelders, and E. Vermeer, “Integrated vehicle dynamics control using state
dependent riccati equations,” in International Symposium on Advanced Vehicle Control (AVEC),
August 2010.

[4] C. Lozoya, M. Velasco, and P. Marti, “The one-shot task model for robust real-time embedded
control systems,” IEEE Transactions on Industrial Informatics (TII), vol. 4, no. 3, pp. 164–174,
August 2008.

[5] G. Lipari and E. Bini, “A methodology for designing hierarchical scheduling systems,” Journal
of Embedded Computing (JEC), vol. 1, no. 2, pp. 257–269, 2005.

[6] N. Serreli, G. Lipari, and E. Bini, “The distributed deadline synchronization protocol for
real-time systems scheduled by EDF,” in Conference on Emerging Technologies and Factory
Automation (ETFA), September 2010, pp. 1–8.

[7] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a real-time
environment,” Journal of the ACM, vol. 20, no. 1, pp. 46–61, January 1973.

[8] J. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of periodic,
real-time tasks,” Performance Evaluation, vol. 2, no. 4, pp. 237–250, December 1982.

[9] A.-L. Mok, “Fundamental design problems of distributed systems for the hard-real-
time environment,” PhD thesis, Massachusetts Institute of Technology, May 1983,
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-297.pdf.

[10] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-time sporadic tasks
on one processor,” in Real-Time Systems Symposium (RTSS), Dec 1990, pp. 182–190.

[11] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive rate control,” in
Real-Time Systems Symposium (RTSS), December 1998, pp. 286–295.

[12] A. Mok and D. Chen, “A multiframe model for real-time tasks,” in Real-Time Systems
Symposium (RTSS), December 1996, pp. 22–29.

[13] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe tasks,” Real-Time
Systems, vol. 17, pp. 5–22, 1999.

[14] A. Zuhily, “Scheduling analysis of fixed priority hard real-time systems with mul-
tiframe tasks,” Ph.D. dissertation, University of York, York, UK, January 2009,
http://www.cs.york.ac.uk/rts/documents/thesis/zuhily09.pdf.

[15] S. Baruah, “A general model for recurring real-time tasks,” in Real-Time Systems Symposium
(RTSS), December 1998, pp. 114–122.

[16] A. Burns, “Preemptive priority based scheduling: An appropriate engineering approach,” in
Advances in Real-Time Systems, S. Son, Ed. Prentice-Hall, 1994, pp. 225–248.

[17] S. K. Baruah, “Dynamic- and static-priority scheduling of recurring real-time tasks,” Real-Time
Systems, vol. 24, pp. 93–128, 2003.

[18] S. Baruah, “Feasibility analysis of recurring branching tasks,” in Euromicro Workshop on
Real-Time Systems, June 1998, pp. 138–145.

[19] M. Anand, “Conditional models for compositional design of real-time embedded systems,”
Ph.D. dissertation, University of Pennsylvania, May 2008.

[20] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time task model,” in Real-Time
and Embedded Technology and Applications Symposium (RTAS), April 2011, pp. 71–80.

[21] ——, “On the tractability of digraph-based task models,” in Euromicro Conference on Real-Time
Systems (ECRTS), July 2011, pp. 162–171.

[22] M. Stigge and W. Yi, “Hardness results for static priority real-time scheduling,” in Euromicro
Conference on Real-Time Systems (ECRTS), July 2012, pp. 189–198.

[23] M. Joseph and P. Pandya, “Finding response times in a real-time system,” The Computer
Journal, vol. 29, no. 5, pp. 390–395, 1986.

79

References

[24] M. Spuri, “Analysis of deadline scheduled real-time systems,” Institut National de Recherche
et Informatique et en Automatique (INRIA), France, Tech. Rep. 2772, January 1996.

[25] K. Albers and F. Slomka, “An event stream driven approximation for the analysis of real-time
systems,” in Euromicro Conference on Real-Time Systems (ECRTS), July 2004, pp. 187–195.

[26] N. Fisher and S. Baruah, “A fully polynomial-time approximation scheme for feasibility
analysis in static-priority systems with arbitrary relative deadlines,” in Euromicro Conference
on Real-Time Systems (ECRTS), July 2005, pp. 117–126.

[27] T. H. C. Nguyen, P. Richard, and N. Fisher, “The fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with arbitrary relative deadlines
revisited,” in International Conference on Real-Time and Network Systems (RTNS), November
2010.

[28] F. Eisenbrand and T. Rothvoss, “Static-priority real-time scheduling: Response time compu-
tation is np-hard,” in Real-Time Systems Symposium (RTSS), December 2008, pp. 397–406.

[29] P. Richard, G. Kemayo, F. Ridouard, E. Grolleau, and T. H. C. Nguyen, “Response time
bounds for static-priority tasks and arbitrary relative deadlines with resource augmentation,”
in Conference on Emerging Technologies and Factory Automation (ETFA), September 2012.

[30] K. Lakshmanan and R. Rajkumar, “Scheduling self-suspending real-time tasks with rate-
monotonic priorities,” in Real-Time and Embedded Technology and Applications Symposium (RTAS),
April 2010, pp. 3–12.

[31] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact
characterization and average case behavior,” in Real-Time Systems Symposium (RTSS), December
1989, pp. 166–171.

[32] S. K. Baruah, “Resource sharing in EDF-scheduled systems: A closer look,” in Real-Time
Systems Symposium (RTSS), 2006, pp. 379–387.

[33] E. W. Dijkstra, “Cooperating sequential processes,” Tech. Rep. EWD-123, 1965.
[34] T. Baker, “Stack-based scheduling of realtime processes,” Real-Time Systems, vol. 3, no. 1, pp.

67–99, March 1991.
[35] B. W. Lampson and D. D. Redell, “Experience with processes and monitors in Mesa,”

Communications of the ACM, vol. 23, no. 2, pp. 105–117, February 1980.
[36] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an approach to real-

time synchronisation,” IEEE Transactions on Computers (TC), vol. 39, no. 9, pp. 1175–1185,
September 1990.

[37] G. Buttazzo, Hard real-time computing systems - predictable scheduling algorithms and applications
(2nd edition). Springer, 2005.

[38] M. Spuri, “Earliest deadline scheduling in real-time systems,” Ph.D. dissertation, Scuola
Superiore Sant’Anna, Pisa, Italy, 1995.

[39] M.-I. Chen and K.-J. Lin, “Dynamic priority ceilings: A concurrency control protocol for
real-time systems,” Real-Time Systems, vol. 2, pp. 325–346, 1990.

[40] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utilization of real-time task sets
in single and multi-processor systems-on-a-chip,” in Real-Time Systems Symposium (RTSS),
December 2001, pp. 73–83.

[41] J. J. Labrosse, MicroC/OS-II: the real-time kernel (2nd edition). CMP Books, 2002.
[42] D. Zöbel, P. Polock, and A. van Arkel, “Testing for the conformance of real-time protocols

implemented by operating systems,” in International Workshop on Formal Methods for Industrial
Critical Systems (FMICS), Electronic Notes in Theoretical Computer Science, Vol. 133, May 2005,
September 2004, pp. 315–332.

[43] M. Bertogna and S. Baruah, “Limited preemption EDF scheduling of sporadic task systems,”
IEEE Transactions on Industrial Informatics (TII), vol. 6, no. 4, pp. 579–591, November 2010.

[44] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling for real-time
systems. a survey,” IEEE Transactions on Industrial Informatics (TII), vol. 9, no. 1, pp. 3–15,
February 2013.

[45] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption threshold,” in
International Conference on Real-Time Computing Systems and Applications (RTCSA), December
1999, pp. 328–335.

80

References

[46] S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic systems,” in
Euromicro Conference on Real-Time Systems (ECRTS), July 2005, pp. 137–144.

[47] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worst-case response time analysis of real-time
tasks under fixed-priority scheduling with deferred preemption,” Real-Time Systems, vol. 42,
no. 1-3, pp. 63–119, August 2009.

[48] M. Bertogna, G. Buttazzo, and G. Yao, “Improving feasibility of fixed priority tasks using
non-preemptive regions,” in Real-Time Systems Symposium (RTSS), December 2011, pp. 251–260.

[49] U. Keskin, R.J. Bril, and J.J. Lukkien, “Exact response-time analysis for fixed-priority
preemption-threshold scheduling,” in Conference on Emerging Technologies and Factory
Automation (ETFA), Work-in-progress (WiP) session, September 2010, pp. 1–4.

[50] G. Yao and G. Buttazzo, “Reducing stack with intra-task threshold priorities in real-time
systems,” in Conference on Embedded Software (EMSOFT), October 2010, pp. 109–118.

[51] V. Lortz and K. Shin, “Semaphore queue priority assignment for real-time multiprocessor
synchronization,” IEEE Transactions on Software Engineering (TSE), vol. 21, no. 10, pp. 834 –
844, October 1995.

[52] Z. Deng and J.-S. Liu, “Scheduling real-time applications in open environment,” in Real-Time
Systems Symposium (RTSS), December 1997, pp. 308–319.

[53] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, “Evolving real-time systems using
hierarchical scheduling and concurrency analysis,” in Real-Time Systems Symposium (RTSS),
December 2003, pp. 25–36.

[54] L. Almeida and P. Peidreiras, “Scheduling with temporal partitions: response-time analysis
and server design,” in Conference on Embedded Software (EMSOFT), September 2004, pp.
95–103.

[55] W. Wang, A. K. Mok, and G. Fohler, “Pre-scheduling,” Real-time Systems, vol. 30, pp. 83–103,
2005.

[56] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework using EDP resource
models,” in Real-Time Systems Symposium (RTSS), December 2007, pp. 129–138.

[57] I. Shin and I. Lee, “Compositional real-time scheduling framework with periodic model,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3, pp. 1–39, 2008.

[58] X. Feng and A. Mok, “A model of hierarchical real-time virtual resources,” in Real-Time
Systems Symposium (RTSS), December 2002, pp. 26–35.

[59] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in Real-Time Systems
Symposium (RTSS), December 2004, pp. 57–67.

[60] A. Easwaran, “Advances in hierarchical real-time systems: Incrementality, optimality, and
multiprocessor clustering,” Ph.D. dissertation, University of Pennsylvania, Pennsylvania,
USA, 2008.

[61] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for analysis of traffic
scheduling algorithms,” IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 611–624,
October 1998.

[62] G. Lipari and E. Bini, “A framework for hierarchical scheduling on multiprocessors: From
application requirements to run-time allocation,” in Real-Time Systems Symposium (RTSS),
December 2010, pp. 249–258.

[63] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for scheduling hard real-time
systems,” in International Symposium on Circuits and Systems (ISCAS), vol. 4, May 2000, pp.
101–104.

[64] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,” in Real-Time
Systems Symposium (RTSS), December 2005, pp. 389–398.

[65] R. J. Bril, W. F. J. Verhaegh, and C. C. Wüst, “A cognac-glass algorithm for conditionally
guaranteed budgets,” in Real-Time Systems Symposium (RTSS), December 2006, pp. 388–397.

[66] P. Balbastre, I. Ripoll, and A. Crespo, “Exact response time analysis of hierarchical fixed-
priority scheduling,” in Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), August 2009, pp. 315–320.

[67] E. Wandeler and L. Thiele, “Real-time interfaces for interface-based design of real-time

81

References

systems with fixed priority scheduling,” in Conference on Embedded Software (EMSOFT), 2005,
pp. 80–89.

[68] F. Dewan and N. Fisher, “Efficient admission control for enforcing arbitrary real-time demand-
curve interfaces,” in Real-Time Systems Symposium (RTSS), December 2012, p. (to appear).

[69] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline scheduling environment,”
Real-Time Systems, vol. 9, no. 1, pp. 31–67, 1995.

[70] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and resource hold times,”
in International Parallel and Distributed Processing Symposium (IPDPS), March 2007, pp. 1–8.

[71] ——, “Resource holding times: computation and optimization,” Real-Time Systems, vol. 41,
no. 2, pp. 87–117, 2009.

[72] ——, “Resource-sharing servers for open environments,” IEEE Transactions on Industrial
Informatics (TII), vol. 5, no. 3, pp. 202–219, August 2009.

[73] M. Behnam, T. Nolte, M. Sjodin, and I. Shin, “Overrun methods and resource holding times
for hierarchical scheduling of semi-independent real-time systems,” IEEE Transactions on
Industrial Informatics (TII), vol. 6, no. 1, pp. 93 –104, February 2010.

[74] M. González Harbour and J.C. Palencia, “Response time analysis for tasks scheduled under
EDF within fixed priorities,” in Real-Time Systems Symposium (RTSS), December 2003, pp.
200–209.

[75] C. Mercer, S. Savage, and H. Tokuda, “Processor capability reserves: Operating system
support for multimedia applications,” in International Conference on Multimedia Computing
and Systems (ICMCS), May 1994, pp. 90–99.

[76] J. P. Lehoczky, L. Sha, and J. K. Strosnider, “Enhanced aperiodic responsiveness in hard
real-time environments,” in Real-Time Systems Symposium (RTSS), December 1987, pp. 261–270.

[77] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard real-time systems,”
Real-Time Systems, vol. 1, no. 1, pp. 27–60, June 1989.

[78] J. Strosnider, J. Lehoczky, and L. Sha, “The deferrable server algorithm for enhanced aperiodic
responsiveness in hard real-time environments,” IEEE Transactions on Computers (TC), vol. 44,
no. 1, pp. 73–91, January 1995.

[79] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein, “Analysis of hierarchical fixed-priority
scheduling,” in Euromicro Conference on Real-Time Systems (ECRTS), June 2002, pp. 152–160.

[80] M. Stanovich, T. Baker, A.-I. Wang, and M. González Harbour, “Defects of the POSIX sporadic
server and how to correct them,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2010, pp. 35–45.

[81] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[82] P. Kumar, J.-J. Chen, and L. Thiele, “Demand bound server: Generalized resource reservation

for hard real-time systems,” in International Conference on Embedded Software (EMSOFT),
October 2011, pp. 233–242.

[83] P. Kumar, J.-J. Chen, L. Thiele, A. Schranzhofer, and G. Buttazzo, “Real-time analysis of servers
for general job arrivals,” in International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), August 2011, pp. 251–258.

[84] N. Fisher and F. Dewan, “A bandwidth allocation scheme for compositional real-time systems
with periodic resources,” Real-Time Systems, vol. 48, no. 3, pp. 223–263, 2012.

[85] F. Dewan and N. Fisher, “Approximate bandwidth allocation for fixed-priority-scheduled
periodic resources,” in Real-Time and Embedded Technology and Applications Symposium (RTAS),
April 2010, pp. 247–256.

[86] M. M. H. P. van den Heuvel, P. J. L. Cuijpers, J. J. Lukkien, and N. W. Fisher, “Revised
budget allocations for fixed-priority-scheduled periodic resources,” Eindhoven University of
Technology, Tech. Rep. CS-12-03, February 2012.

[87] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of virtualization,” in ACM Symposium on Operating Systems
Principles (SOSP), 2003, pp. 164–177.

[88] D. Kim, Y.-H. Lee, and M. Younis, “Spirit-μkernel for strongly partitioned real-time systems,”
in Conference on Real-Time Computing Systems and Applications (RTCSA), December 2000, pp.
73–80.

82

References

[89] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded architecture based on
hypervisor: The XtratuM approach,” in European Dependable Computing Conference (EDCC),
April 2010, pp. 67–72.

[90] VMware, “Timekeeping in VMware virtual machines - VMware ESX 4.0/ESXI 4.0, VMware
Workstation 7.0,” Information guide, May 2010.

[91] G. Parmer and R. West, “Predictable interrupt management and scheduling in the Composite
component-based system,” in Real-Time Systems Symposium (RTSS), December 2008, pp.
232–243.

[92] Y. Zhang and R. West, “Process-aware interrupt scheduling and accounting,” in Real-Time
Systems Symposium (RTSS), December 2006, pp. 191–201.

[93] J. Agron, W. Peck, E. Anderson, D. Andrews, E. Komp, R. Sass, F. Baijot, and J. Stevens,
“Run-time services for hybrid cpu/fpga systems on chip,” in Real-Time Systems Symposium
(RTSS), December 2006, pp. 3–12.

[94] T. Facchinetti, G. Buttazzo, M. Marinoni, and G. Guidi, “Non-preemptive interrupt scheduling
for safe reuse of legacy drivers in real-time systems,” in Euromicro Conference on Real-Time
Systems (ECRTS), July 2005, pp. 98–105.

[95] J. Regehr and U. Duongsaa, “Preventing interrupt overload,” in Conference on Languages,
compilers, and tools for embedded systems (LCTES), 2005, pp. 50–58.

[96] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards hierarchical scheduling
on top of VxWorks,” in Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), July 2008.

[97] R. Inam, J. Mäki-Turja, M. Sjödin, S. M. H. Ashjaei, and S. Afshar, “Support for hierarchical
scheduling in FreeRTOS,” in Conference on Emerging Technologies and Factory Automation
(ETFA), September 2011.

[98] M. Holenderski, “Multi-resource management in embedded real-time systems,” Ph.D.
dissertation, Eindhoven University of technology, October 2012.

[99] K.-J. Lin and Y.-C. Wang, “The design and implementation of real-time schedulers in RED-
linux,” Proceedings of the IEEE, vol. 91, no. 7, pp. 1114–1130, July 2003.

[100] U. Keskin, M.M.H.P. van den Heuvel, R.J. Bril, J.J. Lukkien, M. Behnam, and T. Nolte,
“An engineering approach to synchronization based on overrun for compositional real-time
systems,” in Symposium on Industrial Embedded Systems (SIES), June 2011.

[101] M. Behnam, T. Nolte, and R. J. Bril, “Tighter schedulability analysis of synchronization
protocols based on overrun without payback for hierarchical scheduling frameworks,” in
Conference on Engineering of Complex Computer Systems, April 2011.

[102] U. Steinberg, J. Wolter, and H. Härtig, “Fast component interaction for real-time systems,”
in Euromicro Conference on Real-Time Systems, July 2005, pp. 89–97.

[103] G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in reservation-based real-time
systems,” IEEE Transactions on Computers (TC), vol. 53, no. 12, pp. 1591–1601, December 2004.

[104] M. Behnam, “Synchronization protocols for a compositional real-time scheduling framework,”
Ph.D. dissertation, Mälardalen University, November 2010.

[105] R. Davis and A. Burns, “Resource sharing in hierarchical fixed priority pre-emptive systems,”
in Real-Time Systems Symposium (RTSS), 2006, pp. 257–267.

[106] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization protocol for
hierarchical resource sharing in real-time open systems,” in Conference on Embedded Software
(EMSOFT), October 2007, pp. 279–288.

[107] M. Behnam, T. Nolte, and R. J. Bril, “Bounding the number of self-blocking occurrences of
SIRAP,” in Real-Time Systems Symposium (RTSS), December 2010.

[108] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource sharing in reservation-based
systems,” in Real-Time Systems Symposium (RTSS), December 2001, pp. 171–180.

[109] R. Santos, G. Lipari, and J. Santos, “Improving the schedulability of soft real-time open
dynamic systems: The inheritor is actually a debtor,” Journal of Systems and Software, vol. 81,
pp. 1093–1104, July 2008.

[110] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time systems,”
in Real-Time Systems Symposium (RTSS), December 1998, pp. 4–13.

83

References

[111] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of
dependable and secure computing,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 11–33, 2004.

[112] R. I. Davis and M. Bertogna, “Optimal fixed priority scheduling with deferred pre-emption,”
in Real-Time Systems Symposium (RTSS), December 2012, p. (to appear).

[113] J.-J. Chen and S. Chakraborty, “Partitioned packing and scheduling for sporadic real-time
tasks in identical multiprocessor systems,” in Euromicro Conference on Real-Time Systems
(ECRTS), July 2012, pp. 24–33.

[114] D. Thiele and R. Ernst, “Optimizing performance analysis for synchronous dataflow graphs
with shared resources,” in Design, Automation Test in Europe Conference (DATE), March 2012,
pp. 635–640.

[115] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework for virtual clustering
of multiprocessors,” in Euromicro Conference on Real-Time Systems (ECRTS), July 2008, pp.
181–190.

[116] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance,” in Real-Time Systems Symposium (RTSS), December 2007, pp.
239–243.

[117] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with multiple criticality
specifications,” in Euromicro Conference on Real-Time Systems (ECRTS), July 2008, pp. 147–155.

[118] N. Audsley, “Optimal priority assignment and feasibility of static priority tasks with arbitrary
start times,” University of York, UK, Tech. Rep. YCS-164, December 1991.

[119] F. Dorin, P. Richard, M. Richard, and J. Goossens, “Schedulability and sensitivity analysis of
multiple criticality tasks with fixed-priorities,” Real-Time Systems, vol. 46, pp. 305–331, 2010.

[120] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of mixed-criticality real-time
task sets,” Real-Time Systems Symposium (RTSS), pp. 291–300, December 2009.

[121] J. Real and A. Crespo, “Mode change protocols for real-time systems: a survey and a new
protocol,” Real-Time Systems, vol. 26, no. 2, pp. 161–197, March 2004.

[122] R. Davis and A. Burns, “Robust priority assignment for fixed priority real-time systems,” in
Real-Time Systems Symposium (RTSS), December 2007, pp. 3–14.

[123] G. M. de A. Lima and A. Burns, “An optimal fixed-priority assignment algorithm for
supporting fault-tolerant hard real-time systems,” IEEE Transactions on Computers (TC),
vol. 52, no. 10, pp. 1332–1346, October 2003.

[124] E. Bini, G. Buttazzo, and M. Bertogna, “The multi supply function abstraction for
multiprocessors,” in International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), August 2009, pp. 294–302.

[125] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor platforms: Specification and
use,” in Real-Time Systems Symposium (RTSS), December 2009, pp. 437–446.

[126] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synchronization protocols for multiproces-
sors,” in Real-Time Systems Symposium (RTSS), December 1988, pp. 259–269.

[127] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,”
ACM Computing Surveys (CSUR), vol. 43, no. 4, pp. 1–44, October 2011.

[128] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, “Real-time
synchronization on multiprocessors: To block or not to block, to suspend or spin?” in
Real-Time and Embedded Technology and Applications Symposium (RTAS), April 2008, pp. 342–
353.

[129] F. Nemati, M. Behnam, and T. Nolte, “Independently-developed real-time systems on multi-
cores with shared resources,” in Euromicro Conference on Real-Time Systems (ECRTS), July
2011, pp. 251–261.

[130] F. Nemati and T. Nolte, “Resource hold times under multiprocessor static-priority global
scheduling,” in International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), August 2011, pp. 197–206.

84

Part II

Included papers

85

PAPER A:

GENERALIZED FIXED-PRIORITY SCHEDULING WITH LIMITED PRE-
EMPTIONS

R.J. Bril, M.M.H.P. van den Heuvel, U. Keskin and J.J. Lukkien

In proceedings of the 24th Euromicro Conference on Real-Time Systems (ECRTS),
pp. 209–220, July 2012

87

ABSTRACT
Fixed-priority scheduling with deferred preemption (FPDS) and fixed-priority schedul-

ing with preemption thresholds (FPTS) have been proposed in the literature as viable

alternatives to fixed-priority preemptive scheduling (FPPS), that reduce memory re-

quirements, reduce the cost of arbitrary preemptions, and may improve the feasibility

of a task set even when preemption overheads are neglected.

This paper aims at advancing the relative strength of limited-preemptive schedulers

by combining FPDS and FPTS. In particular, we present a refinement of FPDS with

preemption thresholds for both jobs and sub-jobs, termed FPGS. We provide an exact

schedulability analysis for FPGS, and show how to maximize the feasibility of a set

of sporadic tasks under FPGS for given priorities, computation times, periods, and

deadlines of tasks. We evaluate the effectiveness of FPGS by comparing the feasibility

of task sets under FPGS with other fixed-priority scheduling algorithms by means of

a simulation. Our experiments show that FPGS allows an increase of the number of

task sets that are schedulable under fixed-priority scheduling.

Paper A

88

1 INTRODUCTION
1.1 Background and motivation
Based on the seminal paper of Liu and Layland [1], many results have been achieved

in the area of analysis for fixed-priority preemptive scheduling (FPPS). Arbitrary

preemption of real-time tasks has a number of drawbacks, though. Because all tasks

may be active at the same time, the memory has to be dimensioned for the sum of the

worst-case memory requirements of the tasks. In systems using cache memory, e.g.

to bridge the speed gap between processors and main memory, arbitrary preemptions

induce additional cache flushes and reloads. Although fixed-priority non-preemptive

scheduling (FPNS) may resolve these problems, it generally leads to reduced schedu-

lability compared to FPPS [2]. Therefore, two main limited-preemptive schemes have

been proposed between the extremes of arbitrary preemption and no preemption: fixed-

priority scheduling with deferred preemption (FPDS) or co-operative scheduling [3, 4]

and fixed-priority scheduling with preemption thresholds (FPTS) [5, 6, 7, 8].
These two schemes are based on orthogonal refinements of the scheduling model

for FPPS, and as a consequence, neither of the two schemes generalizes the other.

For FPDS, each job (or activation) of a task is assumed to consist of a sequence of

sub-jobs, where sub-jobs are non-preemptable. When a job is executing, it can only

be preempted between consecutive sub-jobs, i.e. at so-called preemption points. For

FPTS, each job of a task has a so-called preemption threshold next to a priority. When

a job is executing, it can only be preempted by jobs with a priority higher than its

preemption threshold. The reduction of the memory requirements for FPDS and FPTS

are addressed in [9] and [6, 10], respectively. The reduction of the cost of arbitrary

preemptions for FPDS has been addressed in [11, 12, 4, 3, 13]. The improvement of

the feasibility of a task set has been addressed for FPDS in [4, 14] and for FPTS in

[6, 14]. Because each scheme has its own relative strengths and weaknesses, we seek to

combine both schemes into a single scheme, which we term generalized fixed-priority

scheduling (FPGS). In this paper, we focus on the improvement of the feasibility that

can be achieved by FPGS.

1.2 Contributions
This paper presents four major contributions. Firstly, we present FPGS, a refinement

of FPDS with preemption thresholds for both jobs and sub-jobs. This novel scheme

generalizes existing fixed-priority scheduling (FPS) algorithms, such as FPNS, FPPS,

and FPTS. Secondly, we provide and prove an exact schedulability analysis for FPGS.

Because FPGS generalizes existing FPS algorithms, its analysis specializes to the anal-

ysis for any of the other algorithms. Thirdly, we show how to maximize schedulability

of a set of sporadic tasks under FPGS for given priorities, computation times, periods

and deadlines of tasks by determining optimal preemption thresholds for jobs and sub-

jobs, and lengths of final sub-jobs of tasks. Our approach for FPGS is inspired by and

refines to the approach presented in [14]. Fourthly, we evaluate the schedulability of

Paper A

89

FPGS compared to other FPS algorithms by means of a simulation. Our experiments

show that FPGS allows an increase of the number of task sets that are schedulable

under FPS.

1.3 Overview
The remainder of the paper is organized as follows. In Section 2, a scheduling model

for FPGS is presented. Because FPGS refines FPDS, we briefly recapitulate the worst-

case response time analysis for FPDS in Section 3. Section 4 presents the worst-

case response time analysis for FPGS. Section 5 describes how to maximize the

schedulability of a set of tasks under FPGS. The effectiveness of FPGS to improve

the feasibility is evaluated in Section 6. This paper is concluded in Section 7.

2 REAL-TIME SCHEDULING MODEL
This section starts with a basic, continuous scheduling model for FPPS, i.e. we assume

time to be taken from the real domain (R), similar to, e.g. [15, 4, 14]. We subsequently

refine this basic model for FPTS [5] and FPDS [4]. Next, our generalized model for

FPGS is presented. The section is concluded with remarks, including an example.

2.1 Basic model for FPPS
We assume a single processor and a set T of n independent, sporadic tasks τ1, τ2, . . .,
τn, with unique priorities π1, π2, . . ., πn. At any moment in time, the processor is used

to execute the highest priority task that has work pending. For notational convenience,

we assume that (i) tasks are given in order of decreasing priorities, i.e. τ1 has highest

priority and τn has lowest priority, and (ii) a higher priority is represented by a higher

value, i.e. π1 > π2 > .. . > πn.

Each task τi is characterized by a minimal inter-arrival time Ti ∈ R
+, a worst-case

computation time Ci ∈R
+, and a (relative) deadline Di ∈R

+. The deadline Di may be

smaller than, equal to, or larger than the period Ti. A release of a task is also termed

a job. The first job arrives at an arbitrary time.

We also adopt standard basic assumptions [1], i.e. tasks do not suspend themselves,

a job of a task does not start before its previous job is completed, and the overhead

of context switching and task scheduling is ignored.

2.2 Refined model for FPTS
In FPTS, each task τi has a preemption threshold θi, where π1 ≥ θi ≥ πi. When τi
is executing, it can only be preempted by tasks with a priority higher than θi. Note

that we have FPPS and FPNS as special cases when ∀1≤i≤nθi = πi and ∀1≤i≤nθi = π1,

respectively.

Paper A

90

FPTS

FPNS

FPPS

FPDS

FPPS+

mi = 1

θi,k = π1

θi,k = πi

FPTS+ FPGS

FPDS^

mi > 1 => θi = πi

>mi 1_

Figure 1. A generalization graph for fixed-priority scheduling algorithms, as-
suming (1). The equations in the boxes denote additional constraints on mi, θi
(columns), and θi,k (rows) for FPPS, FPTS, and FPDS. The other algorithms, i.e.
FPPS+, FPTS+, and FPDS∧, follow from these additional constraints.

2.3 Refined model for FPDS
In FPDS, each job of task τi consists of a sequence of mi sub-jobs, where mi ≥ 1.

The kth sub-job of τi is denoted by τi,k and characterized by a worst-case computation

time Ci,k ∈ R
+, where Ci =

mi
∑

k=1
Ci,k. Sub-jobs are non-preemptable. Hence, a task can

only be preempted between consecutive sub-jobs, i.e. at so-called preemption points.

Note that we have FPNS as special case when ∀1≤i≤nmi = 1. Further note that FPTS

(or FPPS) is not a special case of FPDS nor vice versa.

2.4 Generalized model for FPGS
We now present a model for FPGS, that generalizes both FPTS and FPDS. Similar

to FPTS, we assume that each task τi has a preemption threshold θi, which serves as

a minimum preemption threshold for τi in our generalized model. Similar to FPDS,

we assume that each task τi consists of a sequence of mi sub-jobs, where consecutive

sub-jobs are separated by preemption points. We now define a preemption threshold

for each sub-job.

Each sub-job τi,k has a preemption threshold θi,k, where π1 ≥ θi,k ≥ θi. When a

sub-job τi,k is executing, it can only be preempted by tasks with a priority higher than

its preemption threshold θi,k. At a preemption point, a task τi can only be preempted

by tasks with a priority higher than θi. The preemption threshold θi,k therefore allows

the threshold for preemption to be raised for the duration of sub-job τi,k. When mi = 1,

there are no preemption points. To have FPTS as special case, we adopt θi,1 = θi for

mi = 1. In summary:

∀
1≤i≤n

(
(mi = 1 ⇒ θi,1 = θi)∧ ∀

1≤k≤mi

π1 ≥ θi,k ≥ θi ≥ πi

)
. (1)

Paper A

91

We have FPTS as special case when ∀1≤i≤nmi = 1. Similarly, we have FPDS as special

case when

∀
1≤i≤n

(
(mi > 1 ⇒ θi = πi)∧ ∀

1≤k≤mi

θi,k = π1

)
. (2)

A generalization graph for fixed-priority scheduling algorithms based on (1) is shown

in Figure 1. Given FPGS and the constraints for FPPS, FPTS, and FPDS, the other

algorithms are derived. FPPS+ and FPTS+ denote generalizations of FPPS and FPTS,

respectively, where each job of task τi may consist of a sequence of mi sub-jobs. For

both generalizations, the preemption threshold θi is assumed to be equal to πi when

mi > 1, similar to FPDS. FPPS+ models situations where internal deadlines [3] play

a role.

FPTS+ generalizes FPDS with preemption thresholds at the sub-job level. A de-

scription of and analysis for FPTS+ can already be found in [8]1. A special case of

FPTS+ is described in [16]2. A description of FPTS+ can also be found in [17]3.

FPDS∧ generalizes FPDS, where the preemption threshold θi of task τi in its

preemption points may be larger than πi.

2.5 Concluding remarks
Due to a preemption threshold, a task τi can defer the preemption and execution

of a higher priority task τ j. As a result, a next job of τi may experience a higher

interference. We will use the term blocking of a task τ j to denote the time that the

execution of τ j is deferred by lower priority tasks.

As illustrated in Figure 1, FPGS generalizes FPPS, FPTS, FPNS, FPDS, FPPS+,

FPTS+, and FPDS∧. By an appropriate instantiation, i.e. selection of mi, θi, and θi,k,

the schedulability analysis for FPGS will therefore specialize to the analysis for any of

the other algorithms. FPGS improves schedulability compared to existing algorithms,

as will be illustrated below.

Example: Consider a set T1 with four tasks with characteristics given in Table 1.

The set is schedulable under FPGS, but not under any other FPS algorithm. Using the

optimization algorithms in [5] and [14], the set remains unschedulable under FPTS and

FPDS. Using our optimization algorithm, the set remains unschedulable under FPTS+

and FPDS∧.

3 RECAP OF EXISTING ANALYSIS FOR FPDS [4]
In this section, we briefly recapitulate the worst-case response-time analysis for FPDS

as described in [4], i.e. for a continuous scheduling model. We start this section with

1. The analysis is only postulated in [8], however, not proven.

2. In [16], all sub-jobs of a task τi have the same preemption threshold. Moreover, all sub-jobs of τi have
the same computation time qi, with the possible exception of the final sub-job, i.e. Ci,mi =Ci − (mi −1)qi.

3. In [17], FPTS+ is used to reduce memory requirements. The schedulability analysis for FPTS+ is
based on FPPS, however, and therefore only sufficient.

Paper A

92

Table 1
Task set characteristics of T1 and worst-case response times under FPGS,

denoted by WRG
i .

task Ti Di Cik πi θi = θi,1 θi,2 WRG
i

τ1 16 16 2 4 4 – 16
τ2 210 210 36 + 14 3 3 4 170
τ3 435 435 166 + 14 2 2 4 434
τ4 480 435 86 + 14 1 3 4 434

basic terminology and definitions. Next, we describe the worst-case blocking of tasks

under FPDS and recapitulate the notion of ε-critical instant, on which the analysis is

based. The worst-case response-time analysis concludes the section.

3.1 Basic terminology and definitions
The response time of job k of task τi of the task set T is denoted by Ri,k. The worst-
case response-time WRi of a task τi is defined as the longest response time of its jobs,

i.e.

WRi
def
= sup

k
Ri,k. (3)

A task set T is schedulable when all its tasks meet their deadlines, i.e.

∀
1≤i≤n

WRi ≤ Di. (4)

A critical instant of a task is defined to be a (hypothetical) instant that leads to the

worst-case response time for that task [1]. The worst-case response time of a task τi
is found in a so-called level-i active period4 that starts at a critical instant of τi. To

define the latter notion, we first define the notion of pending load. The pending load
Pi(t) is the amount of processing at time t that still needs to be performed for the

jobs of tasks with a priority higher than or equal to task τi that are released before

time t. A level-i active period is an interval [ts, te) such that Pi(ts) = 0, Pi(te) = 0, and

Pi(t)> 0 for all t ∈ (ts, te).
The (worst-case) utilization UT of T is the fraction of the processor time spent on

the execution of T [1], i.e.

UT def
= ∑

1≤i≤n

Ci

Ti
. (5)

4. The notion of level-i active period supersedes the notion of level-i busy period [18]; see [4].

Paper A

93

3.2 Blocking and ε-critical instant
The worst-case blocking BD

i ∈R
+∪{0} of task τi by a lower priority task is equal to

the longest computation time of any sub-job of a task with a priority lower than τi.

This blocking is given by

BD
i = max

(
0, max

l:πi>πl
max

1≤k≤ml
Cl,k

)
. (6)

The outermost max in (6) is used to define BD
i for tasks that do not experience blocking,

i.e. the lowest priority task τn. If (and only if) BD
i > 0 then this blocking time is a

supremum (and not a maximum) and cannot be assumed, because (i) the sub-job of

the lower priority task causing the blocking of task τi has to start strictly before the

activation of τi and (ii) a continuous scheduling model is considered. Similarly, the

critical instant cannot be assumed when BD
i > 0.

Given an infinitesimal time ε > 0, the maximum response time of task τi under

FPDS is assumed when the level-i active period is started at an ε-critical instant, i.e.

when τi has a simultaneous release with all higher priority tasks and a sub-job of the

lower priority tasks with computation time BD
i starts a time ε before that simultaneous

release. This maximum response time of task τi is then given by the maximum of the

response times of the jobs of τi in the level-i active period. Because the maximum

response time is a strictly increasing function of the blocking time, the worst-case

response time of τi under FPDS, denoted by WRD
i , is found by letting ε go to zero.

This WRD
i is a supremum (and not maximum) when BD

i > 0, i.e. for all tasks except

the lowest priority task.

3.3 Worst-case response times
The worst-case length WLD

i of a level-i active period is given by the smallest x ∈ R
+

that satisfies the following recursive equation

x = BD
i + ∑

j:π j≥πi

⌈
x
Tj

⌉
Cj. (7)

WLD
i can be found by the following iterative procedure:⎧⎪⎪⎨⎪⎪⎩

WL(0)
i = BD

i + ∑
j:π j≥πi

Cj

WL(l+1)
i = BD

i + ∑
j:π j≥πi

⌈
WL(l)

i
Tj

⌉
Cj, l = 0,1, . . .

. (8)

The procedure is stopped when the same value is found for two successive iterations of

l, yielding WLD
i . The procedure is guaranteed to terminate for all i when the utilization

UT of the task set T is less than one, i.e. UT < 1.

Paper A

94

Although WLD
i is a supremum (and not a maximum) when BD

i > 0, the worst-case

number wlD
i of jobs of task τi in a level-i active period is always a maximum, and

given by

wlD
i =

⌈
WLD

i
Ti

⌉
. (9)

Assuming a critical instant for task τi at time zero with an activation of job zero of

τi, the worst-case response time WRD
i of τi is now given by

WRD
i = max

0≤k<wlD
i

WRD
i,k, (10)

where WRD
i,k denotes the worst-case response time of job k. The latter is given by

WRD
i,k = SD

i,k,mi
+Ci,mi − kTi, (11)

where SD
i,k,mi

denotes the worst-case start time of the last sub-job of job k relative to

the start of the level-i active period, given by the smallest x ∈ R
+ satisfying

x =

⎧⎪⎨⎪⎩
BD

i +(k+1)Ci −Ci,mi + ∑
h:πh>πi

⌈
x
Th

⌉
Ch for BD

i > 0

(k+1)Ci −Ci,mi + ∑
h:πh>πi

(⌊
x
Th

⌋
+1

)
Ch for BD

i = 0
. (12)

Similar to (7) for WLD
i , the latter recursive equations can be solved by means of an

iterative procedure, starting with a lower bound, e.g. BD
i +(k+1)Ci −Ci,mi . Note that

the analysis is not uniform, i.e. the analysis for BD
i = 0 (the lowest priority task),

differs from the analysis for BD
i > 0 (all other tasks). This anomaly is an immediate

consequence of the fact that a continuous scheduling model is assumed.

4 ANALYSIS FOR FPGS
In this section, we present worst-case response-time analysis for FPGS for a continuous

scheduling model.

We start this section with a description of interference and blocking under FPGS.

Next, we determine the maximum response time of task τi by assuming a minimal

amount of time δ that (a sub-job of) a lower priority task needs to start before the

activation of task τi to cause blocking of τi. We subsequently derive the worst-case

response time of τi by letting δ go to zero. The section is concluded with remarks.

4.1 Interference and blocking
A task τi can experience interference from all higher priority tasks, and a job of τi
can experience additional interference from previous jobs of τi. For interference, two

cases can be distinguished: (i) delay of the start of a job and (ii) preemption during

the execution of a job. All tasks with a higher priority can delay the start of a job,

Paper A

95

and previous jobs of a task can delay the start of a next job. However, a task τi can

only be preempted by a task τh when the priority of τh is higher than a preemption

threshold of τi, i.e. πh > θi,k or πh > θi.
Due to the limited preemptive scheduling of our model, a task τi can be blocked by a

lower priority task τl when a preemption threshold of τl prevents τi from preempting

τl , i.e. when θl ≥ πi or θl,k ≥ πi. In the former case, τl can block τi for at most

its worst-case computation time Cl . When θl < πi, τl can block τi for at most the

largest Cl,k with θl,k ≥ πi of its sub-jobs. The worst-case blocking time BG
i of task τi

is therefore given by

BG
i = max

(
0, max

l:πi>πl

({Cl | θl ≥ πi}, max
1≤k≤ml

{Cl,k | θl,k ≥ πi})
)
. (13)

The outermost max in (13) is used to define BG
i in situations where there exists no

lower priority task with a preemption threshold preventing τi to preempt, e.g. for the

lowest priority task τn. Similar to BD
i , BG

i can not be assumed when BG
i > 0. Hence,

this blocking time is the supremum of the blocking times that can actually occur.

4.2 Maximum response times
We now determine the maximum response time RG

i (Bi) of task τi by assuming a

maximum blocking time5 Bi for τi, i.e.

Bi = max(0,BG
i −δ), (14)

where δ denotes an amount of time that a (sub-job of a) lower priority task needs to

start before the activation of task τi to cause Bi blocking of τi. Given this maximum

blocking time, we can apply classical real-time theory to determine maximum response

times.
The maximum response time RG

i (Bi) of τi under FPGS is assumed when the level-i
active period is started at a δ-critical instant, i.e. when τi has a simultaneous release

with all higher priority tasks and a job or sub-job of the lower priority tasks with

computation time BG
i starts a time δ before that simultaneous release. A level-i active

period assumes its maximum length WLG
i (Bi) when started at a δ-critical instant. This

maximum length WLG
i (Bi) is given by the smallest x ∈ R

+ satisfying

x = Bi + ∑
j:π j≥πi

⌈
x
Tj

⌉
Cj. (15)

Similar to WLD
i , WLG

i (Bi) can be found by an iterative procedure; see (8). The maxi-

mum number wlG
i (Bi) of jobs of task τi in a level-i active period is given by

wlG
i (Bi) =

⌈
WLG

i (Bi)

Ti

⌉
. (16)

5. Although Bi depends on δ, we omit “(δ)” for readability.

Paper A

96

The maximum response time RG
i (Bi) of τi is now given by

RG
i (Bi) = max

0≤k<wlG
i (Bi)

RG
i,k(Bi), (17)

where RG
i,k(Bi) denotes the maximum response time of job k, assuming a δ-critical

instant at time zero with a release of job 0. Unlike FPDS, where all tasks with a

priority higher than πi can preempt τi at preemption points, only tasks with a priority

higher than the preemption threshold θi of τi can preempt τi at those points under

FPGS. Hence, only those latter tasks can delay the start of the last sub-job τi,mi of τi.

Moreover, the last sub-job τi,mi of τi can be preempted, by tasks with a priority higher

than the preemption threshold θi,mi of τi,mi .

Our analysis for FPGS therefore consists of four stages. We first determine the

maximum start-time SG
i,k(Bi) of job k with 0 ≤ k < wlG

i (Bi) of task τi. Next, we

determine the maximum start-time SG
i,k,mi

(Bi) of the last sub-job of job k of τi. We

subsequently determine the maximum finalization time FG
i,k(Bi) of job k of τi. Finally,

we determine the maximum response time RG
i,k(Bi) of job k of τi.

4.2.1 Maximum start-time of a job
Lemma 1: The maximum start-time SG

i,k(Bi) of job k with 0 ≤ k < wlG
i (Bi) of a

task τi relative to the start of the level-i active period is given by the smallest x ∈R
+

satisfying

x = Bi + kCi + ∑
h:πh>πi

(⌊
x
Th

⌋
+1

)
Ch. (18)

Proof: When job k of task τi can start its execution at time SG
i,k(Bi), (i) the lower

priority task causing the blocking Bi has completed its job or sub-job, (ii) all earlier

jobs of τi have completed at or before SG
i,k(Bi), (iii) all higher priority tasks that are

released before SG
i,k(Bi) have completed at or before SG

i,k(Bi), and (iv) no higher priority

task is released at SG
i,k(Bi). The start-time SG

i,k(Bi) of job k of τi is therefore given by

the smallest x ∈ R
+ satisfying (18). Note that case (iv) gives rise to the “floor + 1”

(rather than a “ceiling”) term in (18).

4.2.2 Maximum start-time of last sub-job of a job
Lemma 2: The maximum start time SG

i,k,mi
(Bi) of the last sub-job of job k with

0 ≤ k < wlG
i (Bi) of a task τi with mi > 1 relative to the start of the level-i active period

is given by the smallest x ∈ R
+ satisfying

x = SG
i,k(Bi)+Ci −Ci,mi + ∑

h:πh>θi

(⌊
x
Th

⌋
−
⌊

SG
i,k(Bi)

Th

⌋)
Ch. (19)

Proof: We consider the cases mi = 1 and mi > 1 separately. For mi = 1, the start-

time of the last sub-job of a job is equal to the start-time of that job. We therefore

Paper A

97

have to show that SG
i,k(Bi) is the smallest positive solution of (19). To that end, we first

observe that the maximum start-time of the last sub-job of a job is at least equal to

the maximum start-time of that job, i.e. SG
i,k,mi

(Bi)≥ SG
i,k(Bi) for mi ≥ 1. Next, SG

i,k(Bi)

is a solution of (19), which follows immediately by substituting SG
i,k(Bi) for x in (19)

and the fact that Ci =Ci,mi for mi = 1. Hence, SG
i,k(Bi) is the smallest positive solution

of (19).

Now consider the case mi > 1. When the final sub-job of job k of τi with mi > 1 can

start its execution at time SG
i,k,mi

(Bi), (i) all earlier jobs have completed at or before

SG
i,k(Bi), which is strictly smaller than SG

i,k,mi
(Bi), (ii) all earlier sub-jobs of job k with a

cumulative computation time of Ci −Ci,mi > 0 have completed at or before SG
i,k,mi

(Bi),

(iii) all tasks with a priority higher than θi that are released before SG
i,k,mi

(Bi) have

completed at or before SG
i,k,mi

(Bi), and (iv) no task with a priority higher than θi is

released at SG
i,k,mi

(Bi). The start-time SG
i,k,mi

(Bi) of the final sub-job of job k of τi is

therefore given by the smallest x ∈ R
+ satisfying (19). Note that case (iv) gives rise

to a term ∑h:πh>θi

(⌊
x

Th

⌋
+1

)
Ch. Further note that the summation in (19) includes a

term −
⌊

SG
i,k(Bi)

Th

⌋
rather than +1 to prevent that activations of higher priority tasks in

the initial part of the interval of length SG
i,k(Bi) are accounted for twice.

4.2.3 Maximum finalization time of a job
Lemma 3: The maximum finalization time FG

i,k(Bi) of job k with 0 ≤ k < wlG
i (Bi)

of a task τi relative to the start of the level-i active period is given by the smallest

x ∈ R
+ satisfying

x = SG
i,k,mi

(Bi)+Ci,mi + ∑
h:πh>θi,mi

(⌈
x
Th

⌉
−
(⌊

SG
i,k,mi

(Bi)

Th

⌋
+1

))
Ch. (20)

Proof: The last sub-job τi,mi of a job can only be preempted by tasks with a

higher priority than the preemption threshold θi,mi of τi,mi . For a maximum blocking

time Bi, the maximum finalization-time FG
i,k(Bi) of job k of τi is therefore given by

the smallest x ∈ R
+ satisfying (20). Note that similar to (19) the summation term

prevents activations of higher priority tasks in the initial interval of length SG
i,k,mi

(Bi)
to be accounted for twice.

4.2.4 Maximum response-time of a job
The maximum response time RG

i,k(Bi) of job τi,k can be expressed in terms of its

maximum finalization time FG
i,k(Bi) relative to the start of the level-i active period, i.e.

RG
i,k(Bi) = FG

i,k(Bi)− kTi. (21)

Paper A

98

Theorem 4: The maximum response time RG
i (Bi) of a task τi under FPGS is given

by

RG
i (Bi) = max

0≤k<wlG
i (Bi)

(FG
i,k(Bi)− kTi). (22)

Proof: Follows immediately from (17), (21), and Lemma 3.

4.3 Worst-case response times
We observe that the maximum length WLG

i (Bi), the maximum start times SG
i,k(Bi) and

SG
i,k,mi

(Bi), the maximum finalization time FG
i,k(Bi) and the maximum response time

RG
i,k(Bi) are all strictly increasing functions of Bi. To determine worst-case response

times under FPGS, we therefore let δ go to zero (i.e. δ ↓ 0), effectively letting Bi go

to BG
i (i.e. Bi ↑ BG

i). As a result, the critical instant can not be assumed when BG
i > 0,

similar to FPDS.

In the remainder of this section, we first consider the worst-case length of a level-i
active period. We subsequently address the same four stages as in the previous section,

i.e. worst-case start-time SG
i,k of job k of τi, worst-case start-time SG

i,k,mi
of the last sub-

job of job k of τi, worst-case finalization-time FG
i,k of job k of τi, and finally the

worst-case response time WRG
i,k of job k of τi and the worst-case response time WRG

i
of τi.

Lemma 5: The worst-case length WLG
i of a level-i active period is given by the

smallest x ∈ R
+ that satisfies the following recursive equation

x = BG
i + ∑

j:π j≥πi

⌈
x
Tj

⌉
Cj. (23)

Proof: Similar to the proof of the length WLD
i for FPDS; see Lemma 5 in [4].

WLG
i can be determined by an iterative procedure, similar to WLD

i ; see (8). Similar

to WLD
i , WLG

i is a supremum (and not a maximum) when BG
i > 0. The worst-case

number of jobs in a level-i active period is a maximum, and given by

wlG
i =

⌈
WLG

i
Ti

⌉
. (24)

4.3.1 Worst-case start-time of a job
Lemma 6: The worst-case start-time SG

i,k of job k with 0 ≤ k < wlG
i of a task τi

relative to the start of the level-i active period is given by the smallest x∈R
+ satisfying

x =

⎧⎪⎨⎪⎩
BG

i + kCi + ∑
h:πh>πi

⌈
x

Th

⌉
Ch for BG

i > 0

kCi + ∑
h:πh>πi

(⌊
x

Th

⌋
+1

)
Ch for BG

i = 0
. (25)

Proof: We consider BG
i > 0 and BG

i = 0 separately.

Paper A

99

{BG
i = 0} By substituting Bi = 0 in (18) we immediately get (25) for this case.

{BG
i > 0} The right-hand side of (18) is a strictly increasing function of Bi and

SG
i,k(Bi) is therefore also a strictly increasing function of Bi. The largest value for

SG
i,k(Bi) is therefore found for the largest value of Bi < BG

i . Hence, SG
i,k is given by

SG
i,k = lim

Bi↑BG
i

SG
i,k(Bi). (26)

Given Lemma 12 (see Appendix), we make the following derivation starting from

this equation:

SG
i,k = lim

Bi↑BG
i

(
Bi + kCi + ∑

h:πh>πi

(⌊
SG

i,k(Bi)

Th

⌋
+1

)
Ch

)

= BG
i + kCi + ∑

h:πh>πi

lim
Bi↑BG

i

(⌊
SG

i,k(Bi)

Th

⌋
+1

)
Ch

= {Lemma 12} BG
i + kCi + ∑

h:πh>πi

⌈
lim

Bi↑BG
i

SG
i,k(Bi)

Th

⌉
Ch

= {(26)} BG
i + kCi + ∑

h:πh>πi

⌈
SG

i,k

Th

⌉
Ch.

Hence, the worst-case start time SG
i,k is the smallest x ∈ R

+ satisfying (25), which

proves the lemma.

4.3.2 Worst-case start time of the last sub-job of a job
Lemma 7: The worst-case start time SG

i,k,mi
of sub-job mi of job k with 0 ≤ k < wlG

i
of task τi relative to the start of the level-i active period is given by the smallest x ∈R

+

satisfying

x =

⎧⎪⎪⎨⎪⎪⎩
SG

i,k +Ci −Ci,mi + ∑
h:πh>θi

(⌈
x
Th

⌉
−
⌈

SG
i,k

Th

⌉)
Ch for BG

i > 0

SG
i,k +Ci −Ci,mi + ∑

h:πh>θi

(⌊
x
Th

⌋
−
⌊

SG
i,k

Th

⌋)
Ch for BG

i = 0

. (27)

Proof: The derivation of (27) from (19) is similar to the derivation of (25) from

(18) by observing that SG
i,k,mi

(Bi) is a strictly increasing function of Bi, describing SG
i,k,mi

as

SG
i,k,mi

= lim
Bi↑BG

i

SG
i,k,mi

(Bi), (28)

and subsequently using Lemma 12.

Paper A

100

4.3.3 Worst-case finalization time of a job
Lemma 8: The worst-case finalization time FG

i,k of job k with 0 ≤ k < wlG
i of a task

τi relative to the start of the level-i active period is given by the smallest x ∈ R
+

satisfying

x =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
SG

i,k,mi
+Ci,mi + ∑

h:πh>θi,mi

(⌈
x
Th

⌉
−
⌈

SG
i,k,mi
Th

⌉)
Ch for BG

i > 0

SG
i,k,mi

+Ci,mi+

∑
h:πh>θi,mi

(⌈
x
Th

⌉
−
(⌊

SG
i,k,mi
Th

⌋
+1

))
Ch for BG

i = 0

. (29)

Proof: We consider BG
i > 0 and BG

i = 0 separately.

{BG
i = 0} We simply substitute SG

i,k,mi
(Bi) in (20) by SG

i,k,mi
and we are done.

{BG
i > 0} The right-hand side of (20) is a strictly increasing function of Bi and

FG
i,k(Bi) is therefore also a strictly increasing function of Bi. Hence, FG

i,k is given by

FG
i,k = lim

Bi↑BG
i

FG
i,k(Bi). (30)

Given Lemma 11 (see Appendix), we can make the following derivation starting from

this equation:

FG
i,k = lim

Bi↑BG
i

⎛⎝SG
i,k,mi

(Bi)+ kCi + ∑
h:πh>θi,mi

(⌈
FG

i,k(Bi)

Th

⌉
−

(⌊
SG

i,k,mi
(Bi)

Th

⌋
+1

))
Ch

)

= {(28)} SG
i,k,mi

+ kCi + ∑
h:πh>θi,mi

lim
Bi↑BG

i

(⌈
FG

i,k(Bi)

Th

⌉
−(⌊

SG
i,k,mi

(Bi)

Th

⌋
+1

))
Ch

= SG
i,k,mi

+ kCi + ∑
h:πh>θi,mi

(
{Lemma 11}

⌈
lim

Bi↑BG
i

FG
i,k(Bi)

Th

⌉
−

{Lemma 12}
⌈

lim
Bi↑BG

i

SG
i,k,mi

(Bi)

Th

⌉)
Ch

= SG
i,k,mi

+ kCi + ∑
h:πh>θi,mi

(⌈
{(30)}

FG
i,k

Th

⌉
−
⌈
{(28)}

SG
i,k,mi

Th

⌉)
Ch.

Hence, the worst-case finalization time FG
i,k is the smallest x ∈ R

+ satisfying (29),

which proves the lemma.

Paper A

101

4.3.4 Worst-case response time of a job
The worst-case response time WRG

i,k of job τi,k can be expressed in terms of its worst-

case finalization time FG
i,k relative to the start of the level-i active period, i.e.

WRG
i,k = FG

i,k − kTi. (31)

Theorem 9: The worst-case response time WRG
i of a task τi under FPGS is given

by

WRG
i = max

0≤k<wlG
i

(FG
i,k − kTi). (32)

Proof: Similar to Theorem 4.

4.4 Concluding remarks
In this section, we presented worst-case response-time analysis for FPGS for a contin-

uous scheduling model. We showed that the blocking time, critical instant, worst-case

length of a level-i-active period, and worst-case response time for a task are suprema

rather than maxima for all tasks, except for those tasks that do not experience blocking

by a lower priority task. As a result, our analysis for the worst-case start-time SG
i,k of job

k (Lemma 6) and SG
i,k,mi

of the last sub-job mi of job k (Lemma 7), and the worst-case

finalization-time FG
i,k of job k (Lemma 8) of task τi is non-uniform.

To derive worst-case response times, we first determined maximum response times

assuming a minimal amount δ that (a sub-job of) a lower priority task needs to start

before the activation of task τi to cause blocking of τi. We subsequently derived worst-

case response times by letting δ go to zero. By assuming δ = 1, the intermediate

results presented in Subsection 4.2 provide worst-case response-time analysis for a

discrete scheduling model [19], i.e. where task parameters are restricted to integers

and scheduling decisions are assumed to be taken at integral moments in time.

We therefore derived recursive equations for both a discrete as well a continuous

scheduling model to determine (i) the worst-case start time of a job, see (18) in

Lemma 1 and (25) in Lemma 6; (ii) the worst-case start time of the final sub-job, see

(19) in Lemma 2 and (27) in Lemma 7; and (iii) the worst-case finalization time of a

job, see (20) in Lemma 3 and (29) in Lemma 8. Each of these recursive equations can

be solved by an iterative procedure by starting with an appropriate lower bound, similar

to, e.g., the recursive equations of the level-i active period in (7) and the worst-case

response time under FPDS in (12).

5 IMPROVING SCHEDULABILITY
In this section, we show how to maximize schedulability of a task set T under FPGS

and its derivative FPS algorithms for given priorities πi, computation times Ci, periods

Ti, and deadlines Di of all tasks τi of T by determining optimal thresholds θi, sub-job

Paper A

102

thresholds θi,mi , and sub-job lengths Ci,mi for each τi of T . Our approach for FPGS is

similar to the approach for non-preemptive regions presented by Bertogna et al. [14],

i.e. we (i) convert the recursive response time equations to an exact schedulability test

based on execution-request curves, (ii) minimize the response time of a task, while

respecting so-called blocking tolerances [20] of higher priority tasks, and (iii) compute

blocking tolerances of tasks. Our algorithm for FPGS specializes to algorithms for its

derivatives, including the algorithm in [14]. Our algorithm differs significantly from

the latter, however, for two reasons. Firstly, we need to select thresholds θi and θi,mi

next to sub-job lengths Ci,mi , and secondly the highest θi,mi does not necessarily result

in a minimal response time under FPGS.

5.1 Alternative schedulability test for FPGS
Instead of calculating the worst-case start-time SG

i,k of job k of τi, the worst-case start-

time SG
i,k,mi

of its final sub-job, and its worst-case finalization time FG
i,k, we formulate

a schedulability test based on discontinuation points of cumulative execution-request

functions, similar to [14]. The worst-case cumulative execution request W (π, t) in an

interval [a,b) of length t of all tasks with a priority higher than π is given by

W (π, t) def
= ∑

h:πh>π

⌈
t

Th

⌉
Ch. (33)

The modified execution request W ∗(π, t) in a closed interval of length t is given by

W ∗(π, t) def
= ∑

h:πh>π

(⌊
t

Th

⌋
+1

)
Ch. (34)

We now use W (π, t) and W ∗(π, t) to define functions ψ(1)
i,k (x), ψ(2)

i,k (x,y), and ψ(3)
i,k (x,y,z),

to refer to the right-hand side of the recursive equations (25) for SG
i,k, (27) for SG

i,k,mi
,

and (29) for FG
i,k, respectively, (excluding the blocking term), i.e.

ψ(1)
i,k (x) = k×Ci +

{
W (πi,x) for BG

i > 0

W ∗(πi,x) for BG
i = 0

, (35)

ψ(2)
i,k (x,y) = ψ(1)

i,k (x)+Ci −Ci,mi

+

{
W (θi,y)−W (θi,x) for BG

i > 0

W ∗(θi,y)−W ∗(θi,x) for BG
i = 0

, (36)

ψ(3)
i,k (x,y,z) = ψ(2)

i,k (x,y)+Ci,mi

+

{
W (θi,mi ,z)−W (θi,mi ,y) for BG

i > 0

W (θi,mi ,z)−W ∗(θi,mi ,y) for BG
i = 0

. (37)

Note that, following (29), we use W (θi,mi ,z) in (37) and not W ∗(θi,mi ,z) for BG
i = 0.

Paper A

103

The time points, representing the discontinuation points to be inspected, can be

generalized as

Πi,k(tl , tu) = (tl , tu]
⋂

{h×Tj | ∀h ∈ N, j ≤ i}
⋃

{tu}, (38)

where Πi,k(tl , tu) is a non-empty (i.e. it contains at least tu) and finite set of time points.

We now define specializations of Πi,k(tl , tu) for ψ(1)
i,k (x), ψ(2)

i,k (x,y) and ψ(3)
i,k (x,y,z). The

set of time points Π(1)
i,k must contain a time t1 at which a job has been started (or it

exactly starts at t1), i.e. SG
i,k ≤ t1, and is defined as

Π(1)
i,k = Πi,k(k×Ti, k×Ti +Di −Ci). (39)

Note that we always include the upper-bound of the time domain tu in the set of time

points. In special cases, e.g. Ci = Di, this may include time 0 for job k = 0.

The set of time points Π(2)
i,k must contain a time t2 at which the final sub-job of a

job has been started (or it exactly starts at t2), i.e. SG
i,k,mi

≤ t2, and is defined as

Π(2)
i,k (t1) = Πi,k(t1, k×Ti +Di −Ci,mi)

⋃
{t1}. (40)

The set of time points Π(3)
i,k must contain a time t3 at which a job has been finished

(or it exactly finishes at t3), i.e. FG
i,k ≤ t3, and is defined as

Π(3)
i,k (t2) = Πi,k(t2, k×Ti +Di)

⋃
{t2}. (41)

Note that the inspected time points do not necessarily coincide with the exact worst-

case start and finalization times of a (sub-) job. Once we find a time t1 at which a job

has been started, it might therefore be the case that the final sub-job has also been

started. Similarly, once we find a time t2 at which the final sub-job of job k has been

started, it might be the case that the job has also finished its execution. Hence, we

insert the time point t1 in Π(2)
i,k (t1) and we insert t2 in Π(3)

i,k (t2).
We are now ready to present an exact schedulability test for FPGS using execution-

request curves.

Theorem 10: A task set is schedulable under FPGS, if and only if ∀i : 1 ≤ i ≤
n : ∀k ∈ [0,wlG

i) : (
∃t1 ∈ Π(1)

i,k : BG
i +ψ(1)

i,k (t1)≤ t1
∧

(42)(
∃t2 ∈ Π(2)

i,k (t1) : BG
i +ψ(2)

i,k (t1, t2)≤ t2
∧

(
∃t3 ∈ Π(3)

i,k (t2) : BG
i +ψ(3)

i,k (t1, t2, t3)≤ t3
)))

and for every task τi with BG
i = 0, for each job k there exists a t1 ∈ Π(1)

i,k , t2 ∈ Π(2)
i,k (t1)

and t3 ∈ Π(3)
i,k (t2) such that each of the following conditions holds:

Paper A

104

1) ψ(1)
i,k

∣∣∣
(BG

i >0)
(t1)< t1 or ψ(1)

i,k

∣∣∣
(BG

i =0)
(t1)≤ t1;

2) ψ(2)
i,k

∣∣∣
(BG

i >0)
(t1, t2)< t2 or ψ(2)

i,k

∣∣∣
(BG

i =0)
(t1, t2)≤ t2;

3) ψ(3)
i,k

∣∣∣
(BG

i >0)
(t1, t2, t3)< t3 or ψ(3)

i,k

∣∣∣
(BG

i =0)
(t1, t2, t3)≤ t3.

Proof: The only-if direction (⇐) follows directly from Lemma 15, Lemma 16

and Lemma 17; see Appendix B.

If (⇒): Assume (42) is satisfied and there is a task τi which misses its deadline.

This means that a job k in the level-i active period of τi ends at a time t ′3 > k×Ti+Di.

By definition holds that t ′3 /∈ Π(3)
i,k (t2), so that (42) and condition 3 is falsified.

5.2 Blocking tolerance
The blocking tolerance βi of a task τi is the maximum amount of blocking that a

lower priority task may induce to τi without hampering the feasibility of task τi. The

blocking tolerance for a task τi is defined by the minimum blocking tolerance of all

its jobs in a level-i active period:

βi = min
0≤k<wlG

i

{
βi,k

}
, (43)

where βi,k is the blocking tolerance of job k of τi.

Based on Theorem 10, the schedulability of job k of τi can be checked for BG
i > 0

by

∃
t1∈Π(1)

i,k , t2∈Π(2)
i,k (t1), t3∈Π(3)

i,k (t2)

(
BG

i ≤ t1 −ψ(1)
i,k (t1)∧ (44)

BG
i ≤ t2 −ψ(2)

i,k (t1, t2)∧BG
i ≤ t3 −ψ(3)

i,k (t1, t2, t3)
)
.

Equation (44) can be rewritten to

BG
i ≤ max

t1∈Π(1)
i,k , t2∈Π(2)

i,k (t1), t3∈Π(3)
i,k (t2)

{Φ(t1, t2, t3)} (45)

where

Φ(t1, t2, t3) = min

⎧⎪⎨⎪⎩
t1 −ψ(1)

i,k (t1),

t2 −ψ(2)
i,k (t1, t2),

t3 −ψ(3)
i,k (t1, t2, t3)

⎫⎪⎬⎪⎭ . (46)

The blocking tolerance βi,k of job k of τi is now given by

βi,k = max
t1∈Π(1)

i,k , t2∈Π(2)
i,k (t1), t3∈Π(3)

i,k (t2)
{Φ(t1, t2, t3)} . (47)

Paper A

105

The definition for βi,k is only correct for a strictly positive blocking tolerance (i.e.

BG
i > 0). In case that βi,k < 0, we know that job k deems the task unschedulable. When

βi,k = 0, then we need to verify whether or not βi,k is really equal to 0 using the rules

for BG
i = 0 in Theorem 10.

5.3 Minimizing response times
Similar to [5], the highest θi yields the minimal response time for a task τi under

FPGS, because the amount of interference of tasks with a higher priority than τi is

strictly non-increasing as a function of θi; see, e.g. (27). For a task τi, we can therefore

select the highest θi respecting the blocking tolerances of higher priority tasks, i.e.

θi = max(πi,max(πh : ∀ j:πh≥π j>πiCi ≤ β j)). (48)

The highest θi,mi does not necessarily lead to a minimal response time, however, as

will be illustrated by an example.

Example: Consider a task set TII with three tasks τi = (Ci,Ti,Di): τ1 = (1,7,2),
τ2 = (8,15,15) and τ3 = (6,26,26). The blocking tolerance β1 = 1, hence θ2 = π2

using (48). Because task τ2 is allowed to execute for a duration of β1 = 1 time unit

at priority level π1, the optimal choice for C2,m2
= 1 and θ2,m2

= π1. The blocking

tolerance β2 = 5, hence θ3 = π3 using (48). For task τ3 we can either choose C3,m3
= 1

with θ3,m3
= π1 or we can choose C3,m3

= 5 with θ3,m3
= π2. For these two cases, we

find WR3 = 26 and WR3 = 17, respectively. Moreover, the resulting blocking tolerances

for τ3 are β3 = 0 and β3 = 3, respectively.

This example shows that a lower threshold may allow for smaller response times

and for a larger length Ci,mi . A higher threshold may reduce the length of Ci,mi due to a

small blocking tolerance of (one of) the blocked tasks. Similar to [21], the last sub-job

of a task can therefore be seen as a critical region with trade-offs in preemption level

and execution length.

5.4 Optimization algorithms
The algorithm for determining the blocking tolerance is similar to the algorithm in [14],

but in our case based on Theorem 10.

In Algorithm 1, determining the blocking tolerance of job k of task τi, we explicitly

distinguish Φ|(BG
i >0) and Φ|(BG

i =0). This procedure is much more complicated than the

one in [14] due to the validation of the predicates in Φ|(BG
i >0) and Φ|(BG

i =0).

After computing the blocking tolerance for the first job, βi,0, we have an upper

bound for the maximum blocking that a task may suffer. We can therefore use the

value βi,0 to give an upper bound on the worst-case length, see (23). Algorithm 2

simply computes the blocking tolerance βi by taking the minimum over all jobs to be

considered for a task, i.e. according to (43). Apart from the extra input parameters θi
and θi,mi , the procedure in Algorithm 2 is exactly the same as in [14] for FPDS.

Paper A

106

Algorithm 1 jobTolerance(T , i, k, θi, θi,mi , Ci,mi)

1: βi,k ← max
t1∈Π(1)

i,k , t2∈Π(2)
i,k (t1), t3∈Π(3)

i,k (t2)

{
Φ|(BG

i >0)(t1, t2, t3)
}

;

2: if βi,k = 0 then
3: βi,k ← max

t1∈Π(1)
i,k , t2∈Π(2)

i,k (t1), t3∈Π(3)
i,k (t2)

{
Φ|(BG

i =0)(t1, t2, t3)
}

;

4: end if
5: return βi,k;

Algorithm 2 computeBlockingTolerance(T , i, θi, θi,mi , Ci,mi)

1: {Find the blocking tolerance for the first job:}
2: βi,0 ← jobTolerance(T , i, 0, θi, θi,mi , Ci,mi);
3: if βi,0 < 0 then return βi,0
4: βi ← βi,0;
5: compute wli using BG

i = βi,0;
6: {Find the minimum βi,k in the level-i active period:}
7: for k ← 1; k < wli; k ← k+1 do
8: βi,k ← jobTolerance(T , i, k, θi, θi,mi , Ci,mi);
9: if βi,k < 0 then return βi,k

10: βi ← min(βi; βi,k);
11: end for
12: return βi;

The algorithm to determine the optimal thresholds, sub-job thresholds, and sub-job

length generalizes the one by Bertogna et al. [14]. Essentially, Algorithm 3 loops

through the tasks from high to low priority. First, it tries to maximize the threshold

θi according to Lemma 14 (line 7-11). This limits the search space for an optimal

threshold for the final sub-job, θi,mi . Given a θi,mi , we assign the largest length for

Ci,mi guaranteeing schedulability of all the earlier considered, higher priority tasks.

The length of Ci,mi is at most equal to the smallest blocking tolerance of any higher

priority task with a priority lower than, or equal to, threshold θi,mi (line 13-20).
If there does not exist a triple (θi,θi,mi ,Ci,mi) that yields a non-negative blocking

tolerance for task τi, then τi is infeasible (line 21). When the blocking tolerance is

exactly zero, then we know that this limits the search space for valid thresholds for

the lower priority tasks (line 23). Finally, line 24 adds the best configuration for task

τi to the solution space C opt.
Run-time complexity: Algorithm 2 computes the blocking tolerance of a task with the

same complexity as the worst-case response-time analysis, i.e. in pseudo-polynomial

time. For each task τi, Algorithm 3 computes its blocking tolerance for at most

i possible preemption thresholds. Hence, Algorithm 3 performs O(n2) iterations to

determine the optimal threshold configuration for a task set T .

5.5 Instantiating optimization algorithms
Algorithm 3 can be easily instantiated to compute optimal configurations for any of the

FPS algorithms given in the overview of Figure 1. Below, we give a brief overview:

Paper A

107

Algorithm 3 optimalFPGS(T)

1: C opt ← /0;
2: β1 . . .βn ←−∞
3: θlimiti,mi

← π1;
4: for i ← 1; i ≤ n; i ← i+1 do
5: {invariant: ∀h < i the values βh have been computed.}
6: θcuri,mi

← θlimiti,mi
;

7: {Find the highest threshold θi, where π1 ≥ θi ≥ πi:}
8: θi ← πi;
9: for h ← i−1; 1 ≤ h∧βh ≥Ci; h ← h−1 do

10: θi ← πh;
11: end for
12: {Find the best θi,mi and corresponding Ci,mi :}
13: for

(
θcuri,mi

← θi; θlimiti,mi
≥ θcuri,mi

; θcuri,mi
← θcuri,mi

+1
)

; do

14: Ci,mi ← min
(

Ci,min
{

βh

∣∣∣ θcuri,mi
≥ πh > θi

})
;

15: βcuri ← computeBlockingTolerance(T , i, θi, θcuri,mi
, Ci,mi);

16: if βcuri ≥ βi then
17: βi ← βcuri ;
18: θi,mi ← θcuri,mi

;
19: end if
20: end for
21: if βi < 0 then return /0;
22: {If βi = 0, all next tasks τl are limited to πi > θl,ml ≥ θl}
23: if βi = 0 then θlimiti,mi

← πi+1;

24: C opt ← C opt ∪{(θi, θi,mi , Ci,mi)};
25: end for
26: return C opt;

• FPTS: the loop in line 12-20 reduces to a single case where θi,mi = θi and

Ci,mi =Ci. This is more efficient than [5], because in each iteration they recompute

the response times for all tasks τ j with θi ≥ π j > πi.

• FPDS: the loop in line 7-11 is discarded, i.e. θi = πi. The loop in line 12-20

reduces to a single case where θi,mi = π1 and Ci,mi is accordingly derived. This

yields a similar algorithm as in [14].

• FPNS: apply the algorithm for FPDS and check whether or not the assigned

values for Ci,mi are equal to Ci.

• FPTS+: similar to FPDS, the loop in line 7-11 is discarded, i.e. θi = πi.

• FPDS∧: similar to FPDS, the loop in line 12-20 reduces to a single case where

θi,mi = π1 and Ci,mi is accordingly derived. This firstly assigns an optimal threshold

according to FPTS and then applies a similar algorithm as for FPDS.

6 SIMULATION RESULTS
We perform the same four simulation studies as [14] to compare FPS algorithms under

various configurations of thresholds based on the number of schedulable task sets. The

results are compared with an optimal scheduling algorithm, i.e. EDF. For each system,

Paper A

108

we assign deadline monotonic priorities to tasks and task periods Ti are uniformly

drawn from the interval [100,10.000]. The individual task utilizations Ui are generated

using the UUnifast algorithm [22]. Using the task’s utilization Ui and the randomly

generated period Ti, we can derive the worst-case execution time Ci of a task τi, i.e.

Ci =Ui ×Ti. For each experiment and for each parameter configuration, we generate

a new set of 10.000 systems.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
at

io
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

Utilization (U(Τ))

EDF
FPGS

 FPTS+

 FPDS∧
FPDS
FPTS
FPPS
FPNS

Figure 2. Ratio of feasible task sets versus the task-set’s utilization, where the
number of tasks is n = 10 and Di = Ti.

In the first experiment, a system contains n = 10 tasks and we assume that task

deadlines are equal to task periods, i.e. Ti = Di. Figure 2 shows the results. It is

interesting that FPDS∧ gives a noticeable improvement in terms of schedulablity by

adding a threshold θi to FPDS. The alternative generalization of FPDS, i.e. FPTS+,

shows to be superior to FPDS and FPDS∧ in all our experiments. Surprisingly, FPGS

only shows a negligible gain in terms of schedulability. In each of our experiments,

there were between 5 to 15 systems out of the 10.000 generated systems that are only

schedulable under FPGS and not by any of the other FPS algorithms.

In the second experiment, we generate task deadlines uniformly drawn from the

range [Ci+0.5(Ti−Ci); Ti]. Figure 3 shows the results. Under tighter deadlines, FPTS

- as proposed by Wang and Saksena [5] - performs worse compared to FPDS relative to

the results in Figure 2. This is a direct consequence of the smaller blocking tolerances

of tasks, prohibiting to increase the threshold θi for the whole duration of Ci. The

same effect hits FPDS∧. For FPTS+ and FPGS, however, we gain more margin than

in the first experiment.

In the third experiment, we vary the range of the task deadlines using parameter α.

Paper A

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
at

io
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

Utilization (U(Τ))

EDF
FPGS

 FPTS+

 FPDS∧
FPDS
FPTS
FPPS
FPNS

Figure 3. Ratio of feasible task sets versus the task-set’s utilization, where the
number of tasks is n = 10 and Di ≤ Ti.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

α

EDF
FPGS

 FPTS+

 FPDS∧

FPDS
FPTS

FPPS
FPNS

Figure 4. Ratio of feasible task sets versus the deadline distribution α, where
the number of tasks is n = 10 and the task-set’s utilization is UT = 0.9.

We generate task deadline uniformly drawn from the range [Ci+α(Ti−Ci); Ti]. A low

value of α allows tasks to have short deadlines relative to their computation time and

α = 1 means that deadlines are equal to periods. This experiment confirms the relation

between the blocking tolerance and the relative performance of FPTS and FPDS∧ to

Paper A

110

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

R
at

io
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

Number of tasks (n)

EDF
FPGS

FPTS+

FPDS∧
FPDS
FPTS
FPPS
FPNS

Figure 5. Ratio of feasible task sets versus the number of tasks, where the
task-set’s utilization is UT = 0.9 and Di ≤ Ti.

FPDS. Again, FPTS+ and FPGS show a considerable improvement over FPDS.

In the fourth experiment, we increase the number of tasks within a range of [4, 40]
with incremental steps of 4. Similar to [14], we observed that the gain in terms of

schedulability becomes smaller for larger task sets. Intuitively, a high number of

tasks (with arbitrary periods) which together have a high utilization, decrease the

schedulabilty of a system. This is also shown in Figure 5. This differs from the results

in [14], because in [14] the authors fix the computation times of task in a relatively

small range and uniformly draw computations times rather than periods. As a result, for

large task sets they generate many tasks with low utilizations and these tasks all have

very large periods in a relatively small range. These task sets are therefore schedulable

by almost any scheduling algorithm, even non-preemptive scheduling.

For the same reason, the performance of FPNS is considerable lower in all our

experiments compared to the schedulability ratio in [14]. Note, however, that we were

able to reproduce the facts in [14] using their method. By further changing the range

of the task periods, we only observed small off-sets in the schedulability ratio. We

confirm, however, that FPDS - as presented in [14] - indeed improves the schedulability

compared to FPPS, FPTS and FPNS. Even more can be gained by our new results for

FPDS∧, FPTS+ and FPGS.

Also, we considered the constraint Ci,mi > 0 for FPDS and FPDS∧. Bertogna et

al. [14] created a scheduling class - limited preemptive scheduling - which unifies FPDS

and FPPS when Ci,mi = 0. We have evaluated both variants, allowing and disallowing

Ci,mi = 0, and we observed no difference in the schedulability ratio of FPDS and

Paper A

111

FPDS∧.

7 CONCLUSION
We presented FPGS, a generalized limited preemptive FPS scheme that combines

scheduling with deferred preemptions (FPDS [3]) and scheduling with preemption

thresholds (FPTS [5]). To obtain FPGS, we refined FPDS in two orthogonal dimen-

sions, i.e. preemption thresholds for jobs (FPDS∧) and preemption thresholds for sub-

jobs (FPTS+). FPGS generalizes existing FPS algorithms, such as fully preemptive

scheduling (FPPS), non-preemptive scheduling (FPNS), and the limited-preemptive

schemes proposed in [16, 8, 14]. We provided and proved an exact schedulability

analysis for FPGS for both a discrete as well as a continuous scheduling model.

Because FPGS generalizes existing FPS algorithms, its analysis specializes to the

analysis for any of the other algorithms.

For a continuous scheduling model, we showed how to maximize the schedulability

of a set of sporadic tasks under FPGS for given priorities, computation times, periods

and deadlines of tasks by determining optimal preemption thresholds for jobs and

sub-jobs, and length of final sub-jobs of tasks. Our approach for FPGS is inspired

by, and refines to, the approach presented in [14]. We evaluated the effectiveness of

FPGS by comparing the ratio of feasible task sets under various other FPS algorithms

in a number of experiments. Compared to the existing algorithms, FPGS shows a

significant gain in schedulability in all our experiments. The same holds for FPTS+

and FPDS∧.

Similar to [14], we neglected preemption overheads in our analysis for FPGS, in our

approach to maximize schedulability and in our evaluation. With preemption overheads,

the advantage of FPTS+ over FPDS∧ may be less pronounced, because the former

allows preemptions of sub-jobs by tasks with a higher priority whereas the latter

doesn’t. Incorporating preemption overheads requires further study.

REFERENCES
[1] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a real-time environment,”

Journal of the ACM, vol. 20, no. 1, pp. 46–61, January 1973.
[2] K. Jeffay, D. Stanat, and C. Martel, “On non-preemptive scheduling of periodic and sporadic tasks,”

in Proc. 12th IEEE Real-Time Systems Symposium (RTSS), December 1991, pp. 129–139.
[3] A. Burns, “Preemptive priority based scheduling: An appropriate engineering approach,” in Advances

in Real-Time Systems, S. Son, Ed. Prentice-Hall, 1994, pp. 225–248.
[4] R.J. Bril, J. Lukkien, and W. Verhaegh, “Worst-case response time analysis of real-time tasks under

fixed-priority scheduling with deferred preemption,” Real-Time Systems, vol. 42, no. 1-3, pp. 63–119,
2009.

[5] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption threshold,” in Proc. 6th

Int. Conf. on Real-Time Computing Systems and Applications (RTCSA), December 1999, pp. 328–335.
[6] M. Saksena and Y. Wang, “Scalable real-time system design using preemption thresholds,” in Proc.

21st IEEE Real-Time Systems Symposium (RTSS), December 2000, pp. 25–34.
[7] J. Regehr, “Scheduling tasks with mixed preemption relations for robustness to timing faults,” in Proc.

23rd IEEE Real-Time Systems Symposium (RTSS), December 2002, pp. 315–326.

Paper A

112

[8] U. Keskin, R.J. Bril, and J.J. Lukkien, “Exact response-time analysis for fixed-priority preemption-
threshold scheduling,” in Proc. IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), Work-in-Progress Session, September 2010.

[9] Koninklijke Philips Electronics, “An enhanced method for handling preemption points,” United States
Patent Application Publication US 2007/0022423 A1, January 2007, R.J. Bril and D.J.C. Lowet
(inventors).

[10] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utilizations of real-time task sets in single
and multi-processor systems-on-a-chip,” in Proc. 22nd IEEE Real-Time Systems Symposium (RTSS),
December 2001, pp. 73–83.

[11] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and M. Caccamo, “Preemption points
placement for sporadic task sets,” in Proc. 22th Euromicro Conference on Real-Time Systems (ECRTS),
July 2010, pp. 251–260.

[12] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo, “Optimal selection of preemption
points to minimize preemption overhead,” in Proc. 23rd Euromicro Conference on Real-Time Systems
(ECRTS), July 2011, pp. 217–227.

[13] G. Yao, G. Buttazzo, and M. Bertogna, “Bounding the maximum length of non-preemptive regions
under fixed-priority scheduling,” in Proc. 15th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), August 2009, pp. 351–360.

[14] M. Bertogna, G. Buttazzo, and G. Yao, “Improving feasibility of fixed priority tasks using non-
preemptive regions,” in Proc. 32nd IEEE Real-Time Systems Symposium (RTSS), December 2011, pp.
251–260.

[15] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-Time Systems, vol. 2,
no. 4, pp. 255–299, November 1990.

[16] M. Park, H. Yoo, and J. Chae, “Integration of preemption threshold and quantum-based scheduling
for schedulability enhancement of fixed priority tasks,” in Proc. 15th IEEE Int. Conf. on Embedded
and Real-Time Computing Systems and Applications (RTCSA), August 2009, pp. 503–510.

[17] G. Yao and G. Buttazzo, “Reducing stack with intra-task threshold priorities in real-time systems,” in
Proc. 10th Conference on Embedded Software (EMSOFT), October 2010, pp. 109–118.

[18] J. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary deadlines,” in Proc. 11th

IEEE Real-Time Systems Symposium (RTSS), December 1990, pp. 201–209.
[19] S. Baruah, L. Rosier, and R. Howell, “Algorithms and complexity concerning the preemptive scheduling

of periodic, real-time tasks on one processor,” Real-Time Systems, vol. 2, no. 4, pp. 301–324, November
1990.

[20] V. Lortz and K. Shin, “Semaphore queue priority assignment for real-time multiprocessor synchro-
nization,” IEEE Transactions on Software Engineering, vol. 21, no. 10, pp. 834 – 844, October 1995.

[21] I. Shin, M. Behnam, T. Nolte, and M. Nolin, “Synthesis of optimal interfaces for hierarchical scheduling
with resources,” in Proc. 29th IEEE Real-Time Systems Symposium (RTSS), December 2008, pp. 209–
220.

[22] E. Bini and G. Buttazzo, “Biasing effects in schedulability measures,” in Proc. 16th Euromicro Conf.
on Real-Time Systems (ECRTS), July 2004, pp. 196–203.

Paper A

113

APPENDIX
In this appendix, Section A provides auxiliary lemmas for the proofs in Section 4.

Section B presents preliminaries and auxiliary lemmas for the proof of Theorem 10

in Section 5.

APPENDIX A
AUXILIARY LEMMAS FOR LIMITS
The proofs of the following lemmas can be found in [4].

Lemma 11: When limx↑X f (x) is defined, and f (x) is strictly increasing in an interval

(X − γ,X) for a sufficiently small γ ∈ R
+, then the following equation holds.

lim
x↑X

 f (x)�=
⌈

lim
x↑X

f (x)
⌉

(49)

Lemma 12: When limx↑X f (x) is defined, and f (x) is strictly increasing in an interval

(X − γ,X) for a sufficiently small γ ∈ R
+, then the following equation holds.

lim
x↑X

� f (x)�=
⌈

lim
x↑X

f (x)
⌉
−1 (50)

APPENDIX B
PRELIMINARIES AND AUXILIARY LEMMAS FOR THEOREM 10

Lemma 13 (from [14]): For any time t there exists an arbitrarily small ε > 0 such

that W ∗(π, t − ε) =W (π, t).
Lemma 14 (Lemma 5.2 from [5]): Given a task with a priority πi, if setting the

preemption threshold θi equal to the highest priority in the system can not make a

task τi schedulable, then the task set is unschedulable.

Lemma 15: If a task τi is schedulable, then for each of its jobs k there exists a time

t1 ∈ Π(1)
i,k such that:

BG
i +ψ(1)

i,k (t1)≤ t1 if BG
i > 0, (51)

and for BG
i = 0 one of the following conditions holds:

1) ψ(1)
i,k

∣∣∣
(BG

i >0)
(t1)< t1; or

2) ψ(1)
i,k

∣∣∣
(BG

i =0)
(t1)≤ t1.

Proof: First we consider the case BG
i > 0. For a schedulable task τi, for each job

k there must be a time instant t ′1 where the processor becomes available. Moreover,

t ′1 can be at latest Di −Ci relative to the release of the task at time k×Ti, otherwise

task τi misses its deadline. Since the set Π(1)
i,k exactly contains all time points t1 ∈

(k×Ti, k×Ti+Di−Ci] where the left-continuous right-hand side of (25) in Lemma 6

Paper A

114

is discontinuous, for the smallest t1 ≥ t ′1 holds that ψ(1)
i,k (t1) = ψ(1)

i,k (t
′
1). Hence, Π(1)

i,k
must contain a time instant satisfying (51).

For the case BG
i = 0, we can follow a similar reasoning to find a time t1 ∈ Π(1)

i,k
which trivially satisfies the right-continuous function in case 2. We must show that the

strict inequality in case 1 is also sufficient to guarantee the schedulability of task τi.
This case is almost the same as in [14]. Let t ′1 ∈ (k×Ti; k×Ti +Di −Ci] be a point

satisfying case 1. Let t1 be the smallest point in Π(1)
i,k such that t1 > t ′1. Using Lemma 13

we know that for an arbitrary small ε > 0, W ∗(πi, t ′1 − ε) = W ∗(πi, t1) = W (πi, t ′1).
Hence, ψ(1)

i,k

∣∣∣
(BG

i >0)
(t1) = ψ(1)

i,k

∣∣∣
(BG

i =0)
(t ′1)≤ t ′1 < t1.

Lemma 16: If a task τi is schedulable and given the smallest time t1 ∈Π(1)
i,k satisfying

Lemma 15, then for each of its jobs k there exists a time t2 ∈ Π(2)
i,k (t1) such that:

BG
i +ψ(2)

i,k (t1, t2)≤ t2 if BG
i > 0, (52)

and for BG
i = 0 one of the following conditions holds:

1) ψ(2)
i,k

∣∣∣
(BG

i >0)
(t1, t2)< t2; or

2) ψ(2)
i,k

∣∣∣
(BG

i =0)
(t1, t2)≤ t2.

Proof: Given a schedulable task τi: for each job k, which has started executing

no later than the earliest discontinuous time point t1 satisfying Lemma 15, there must

be a time instant t ′2 where the processor becomes available to start the final sub-job

Ci,mi . Moreover, t ′2 can be at latest k × Ti +Di −Ci,mi , otherwise task τi misses its

deadline. Note that t1 indicates the latest point that job k has been started. Since

we only consider discontinuous points of the recursive equation, we may overshoot

the actual start time of a job. Hence, t1 and t ′2 may coincide. Since the set Π(2)
i,k (t1)

contains all time points t2 ∈ [t1, k×Ti +Di −Ci,mi] where the left-continuous right-

hand side of (27) in Lemma 7 is discontinuous, for the smallest t2 ≥ t ′2 holds that

ψ(2)
i,k (t1, t2) = ψ(2)

i,k (t1, t
′
2). Hence, Π(2)

i,k (t1) must contain a time instant satisfying (52).

For the case BG
i = 0, we follow exactly the same steps as in Lemma 15.

Lemma 17: If a task τi is schedulable and given the smallest t1 ∈ Π(1)
i,k satisfying

Lemma 15 and the smallest time t2 ∈ Π(2)
i,k (t1) satisfying Lemma 16, then for each of

its jobs k there exists a time t3 ∈ Π(3)
i,k (t2) such that:

BG
i +ψ(3)

i,k (t1, t2, t3)≤ t3 if BG
i > 0, (53)

and for BG
i = 0 one of the following conditions holds:

1) ψ(3)
i,k

∣∣∣
(BG

i >0)
(t1, t2, t3)< t3; or

2) ψ(3)
i,k

∣∣∣
(BG

i =0)
(t1, t2, t3)≤ t3.

Paper A

115

Proof: Given a schedulable task τi: for each job k, which has started executing

its final sub-job mi no later than the earliest time t2 satisfying Lemma 16, there must

be a time instant t ′3 no later than k × Ti +Di. Note that t2 indicates the latest time

at which sub-job mi has been started. Hence, t2 and t ′3 may coincide. Since the set

Π(3)
i,k contains all time points t3 ∈ [t2, k × Ti +Di] where the left-continuous right-

hand side of (29) in Lemma 8 is discontinuous, for the smallest t3 ≥ t ′3 holds that

ψ(3)
i,k (t1, t2, t3) = ψ(3)

i,k (t1, t2, t
′
3). Hence, Π(3)

i,k (t2) must contain a time instant satisfying

(53).

For the case where BG
i = 0, we have to consider the mixture of left-continuous and

right-continuous operands in ψ(3)
i,k

∣∣∣
(BG

i >0)
(t1, t2, t3). By observing that terms that depend

on t1 and t2 are constants (given by Lemma 15 and Lemma 16), we are again left with

a right-continuous function of t3. We can therefore again apply the same steps as in

Lemma 15.

Paper A

116

PAPER B:

VIRTUAL SCHEDULING FOR COMPOSITIONAL REAL-TIME GUARAN-
TEES

M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien

In proceedings of the 8th IEEE International Symposium
on Industrial Embedded Systems (SIES),
(to appear), June 2013

117

ABSTRACT

In this paper, we extend the compositional scheduling framework to enable the

integration of an existing (legacy) application as a component on a faster processor

which needs to be shared with other components. After admission of this application

into the framework, the integrated component still has to satisfy its tasks’ deadline

constraints and it must execute jobs in the same order as it did previously on the

dedicated processor, regardless of the actual supply of processor resources. We propose

a method – called virtual scheduling – which establishes this by reconstructing an

appropriate order of delivering events. Virtual scheduling is therefore independent of

the component-level scheduling policy and it is transparent to a component, so that it

is even applicable without making modifications to the code or specification of the

application.

Paper B

118

1 INTRODUCTION

Many industrial systems have various hardware and software applications for controlling

the physical world through electronics and mechanics. These applications can be

complex, distributed and interdependent. Examples can be found in a wide range of

application domains, including manufacturing machines, highly dependable medical

devices, intelligent transportation and in-vehicle control. There is a trend towards

optimizing the overall system performance and creating a synergy between the different

applications in a system. This makes it increasingly complex to take care of the

real-time requirements and constraints of individual applications separately. Those

application dependencies and requirements, e.g., end-to-end latencies and precedence

constraints, are typically captured in application models and are translated to task

attributes, e.g., deadlines and release offsets, by using off-line analysis (see [1] and [2]).

After resolving those complex dependencies and requirements, the resulting components,

each comprising a set of tasks with implicit constraints and a (local) task scheduler, are

expected to execute (part of) the application’s functionality properly on an off-the-shelf

real-time platform. Such a platform consists of uni-processor hardware and a real-time

operating system (RTOS). One component is then analyzed for only this dedicated

processor that supplies resources continuously, i.e., without any disruptions due to

execution of other components.

The traditional approach in the design and development of applications makes use

of an architecture that simply composes self-contained hardware. In these so-called

federated architectures, platforms are connected by several network buses and each

set of inter-connected platforms typically hosts a single, independently developed

application. The last few years have shown, however, that this federated architectural

approach can no longer stand [3]. Since the number of electronic applications in

embedded systems is ever increasing, it becomes too expensive to make dedicated

hardware units for each application. Fortunately, modern hardware is able to run

several components, derived from arbitrary applications, thereby taking advantage of

the opportunities offered by today’s better programmable and increasingly powerful

platforms. However, the integration of components on the same platform inherently

requires resource sharing between components, which may impact the input and output

(I/O) delays experienced by the applications’ tasks.

The real-time systems community has therefore proposed compositional scheduling
frameworks (CSFs) to abstract from resource sharing between components and the

corresponding scheduling delays associated with it. The main goal of a CSF [4]

is to establish system-level timing properties by composing independently specified

and analyzed component-level timing properties, thus, improving the re-usability of

components. Current CSFs, e.g., [4]-[8], propose different models to combine and

abstract timing constraints of tasks within a component as a single real-time constraint,

called a real-time interface. A real-time interface constrains the variability and the

discontinuities in the resource supply to a component, so that component-level timing

Paper B

119

RTOS+
middleware

τ1 τ2 . . . τn

RTOS+
middleware

τ1 τ2 . . . τn

CANHardware
(CPU: 100 MHz)

Hardware
(CPU: 100 MHz)

τ1 τ2 . . . τn τ1 τ2 . . . τn

RTOS+middleware

Hardware (CPU: 200 MHz)

Component 1 Component 2

Federated application 1

Component 1 Component 2

Integrated application 1

τ1 τn τn τ1 τ2 . . . τn

RTOS+middleware

Hardware (CPU: 200 MHz)

Comp. 3 Component 1

τ1 τ2 . . . τn τ1 τ2 . . . τn

RTOS+middleware

Hardware (CPU: 200 MHz)

Component 2 Component 5

CAN

Multiple integrated applications

Legend: task Virtual processor Virtual network bus Send or receive events

(a)

(b)

Comp. 4

τ1

Figure 1. Whereas an application may be developed in isolation for a federated
architecture, it may need to run together with other applications on integrated
architectures in order to meet the demands of further limiting the growing number
of increasingly powerful computing platforms embedded in today’s real-time
systems. For example, the components of one application can be integrated on a
faster, shared platform, see (a), or the components of several applications can be
integrated on a faster, shared platform, see (b). As a consequence of resource
sharing between components in such integrated architectures, the events –
either sent over a virtual network bus or sent by real hardware devices such as
timers and the controller area network (CAN) – may arrive when the destined
component is suspended and they may be handled by tasks in a different order
in an integrated architecture than they were previously handled in a federated
architecture. Moving from federated to integrated architectures, e.g., as described
in [3], therefore requires additional validation of timing constraints at present.

properties can be established by the local scheduler. Each individual component may

define its own scheduling policy to distribute its allocated resources to its tasks. A set

of components can be composed by satisfying each of the individual resource supplies

specified by the real-time interfaces.

Paper B

120

1.1 Problem description and solution outline
A component in a CSF can be regarded as running on a dedicated processor at a

speed proportional to its resource supply, i.e., the component is said to execute on a

virtual processor. Two effects disturb this point of view. Firstly, resources are supplied

discontinuously. Secondly, the actual processor is faster. If the component was validated

under a continuous supply, as in legacy and development situations, the local deadlines

of tasks and the precedence constraints of tasks might be violated. Even with an optimal

local scheduling policy (like EDF) that admits delaying execution, the execution order

of tasks may change by shifting the resource supply in time. An additional validation

of local constraints is therefore required to prevent these artefacts. Since these local

constraints might be implicit after the application’s synthesis, re-validation of local

constraints might be impossible.

In this paper, we look at the events associated to the real-time tasks of a component

that was once developed and analyzed upon a federated architecture and that needs to be

integrated upon a faster, shared platform. Figure 1 illustrates two scenarios. On a virtual

processor, hardware resources are temporarily made unavailable to a component. Once

the resources become available, multiple events might be pending and the resulting

precedence order of jobs handling those events can be affected compared to a dedicated

platform. We focus on synchronization between tasks located in arbitrary components

by means of event-driven resource sharing and communication.

We extend CSFs with a mechanism to integrate components onto a shared processor

based on their analysis on a dedicated processor, while replicating the same delivery

order of events. By managing events appropriately, our only dependence on the resource-

supply model then is whether or not the supply is timely enough for meeting deadlines

of the tasks handling those events. This dependence is abstracted in a real-time interface

and does not require an additional validation of the local deadlines and precedence

constraints on the virtual processor.

We can now truly analyze a component independently, because a component can

be analyzed as if it has the entire processor at its disposal. Hence, our goal is to

implement a virtual processor which virtually supplies resources continuously. It must

be (i) efficient to implement, (ii) transparent to a component and (iii) independent of

the local scheduling policy.

1.2 Contribution
The contributions of this paper are as follows:

• We propose a virtual-scheduling policy to support synchronization on external

events by tasks of one or more components that share the same processor. We

therefore solve the problem of replicating the original delivery order of events on

a virtual processor by means of a virtual-time release guard, thereby automatically

satisfying the precedence constraints of tasks implicitly.

Paper B

121

• We investigate the impact of virtual scheduling on the required budget of a

component. We compare virtual scheduling to the periodic and bounded-delay

resource-supply models in [6] and [4]. Virtual scheduling decouples the com-

ponent’s local analysis and its underlying resource-supply model. Despite our

obtained abstraction, mapping virtually scheduled components onto the bounded-

delay resource-supply model [6] is efficient and tight.

• We make task synchronization on external events transparent during the timing

analysis of a component. We therefore give recommendations for managing events

in a predictable manner using virtual timers and using a clear separation between

internal and external events.

2 RELATED WORK

The increasing complexity of real-time systems led to a growing attention for composi-

tional analysis [4]-[11]. One of the challenges of real-time composition is to derive a

real-time interface for a component. The framework parameters that define a worst-

case resource supply to a component, contemplated that timing constraints within an

individual component are satisfied, together form a real-time interface. This real-time

interface - sometimes also referred to as a supply contract [8] - abstracts the timing

constraints of tasks into a single real-time constraint.

Wandeler and Thiele [7] calculate demand and service curves for components

using real-time calculus. Shin and Lee [4] proposed the periodic resource model to

guarantee periodic processor supplies to components. The explicit-deadline periodic

(EDP) resource model [5] extends the periodic resource model in [4] by explicitly

distinguishing a relative deadline for the allocation time of periodic guarantees. The

bounded-delay model [6] describes linear service curves with a bounded initial service

delay. Both Lipari and Bini [10] and Shin and Lee [11] have presented methods to

convert a bounded-delay supply into a periodic resource supply.

Matic and Henzinger [12] showed how to abstract from data dependencies between

tasks in dataflow graphs in two different formalisms (i.e., Real-Time Workshop (RTW)

semantics of Mathworks and Logical Execution Time (LET) semantics) within the

context of the periodic resource model [4]. In their model, tasks may have inter-

dependencies with other tasks residing within both the same component or another

component. Anand [13] has extended the recurring branching task model [14] with

control variables at decision points within the context of the EDP resource model [5].

Both approaches in [12] and [13] abstract from task inter-dependencies at the level

of composition. A drawback of their approaches is that they implement synchronization

logic at each appointed synchronization point between tasks. Contrary, Wang et

al. [8] reflect all task inter-dependencies within a component onto the resource supply.

Although no further implementation logic is needed for task synchronization, task

inter-dependencies are indirectly captured in the component’s interface. This inherently

comes at the cost of schedulability penalties at the level of composition.

Paper B

122

Mutually exclusive execution of tasks within a component can be supported with

standard semaphore-based protocols [9] such as the stack resource policy (SRP) [15].

The SRP can also implement precedence constraints between tasks [16]. A disadvantage

of semaphores is that the correspondingly varying execution priorities of tasks, are

hard to analyse [17]. This concern is especially important for highly critical systems

which must go through a certification process.

2.1 This work and its significance
In this work we develop compositional techniques for predictable task scheduling

upon virtual processors. At present, system designers manually schedule partitions

based on information from the partition vendors [18]. Although Easwaran et al. [18]

have improved the component-level timing analysis of the EDP resource model [5]

to abstract from the scheduling offsets of tasks, their approach lacks mechanisms to

enforce a predictable order of job execution upon a partition at run time. Also in this

paper we assume that precedence constraints between the tasks of a single component

are offline converted into release offsets (phasing). Contrary to [18], however, we

assume that the component has the entire processor at its disposal when its schedule

is constructed. Dobrin et al. [1] and Forget et al. [17] have developed such methods

for fixed-priority scheduled tasks; Isovic and Fohler [2] developed similar methods

for earliest-deadline-first (EDF) scheduled task sets. We propose a method to preserve

those programmed task inter-dependencies in the context of CSFs, without the need

to implement logic separately at each individual synchronization point (as [12], [13]

and [16] do).

For this purpose we use a virtual-time release guard. Our way of separating job re-

leases (events) looks similar to the release-guard protocol [19] or period-enforcement [20]

of sporadic tasks. However, the protocols in [19] and [20] guarantee a minimal separation

between subsequent jobs of the same task in real time while our approach guarantees

a minimal separation in virtual time, i.e., relative to the consumed processor time by a

component, between job releases of different tasks.

A key for predictable composition of components is managing the events associated

to tasks, such as timers and other types of signals. When the processor is unavailable,

multiple events may arrive to a component. It is the responsibility of a CSF to deliver

these events to the destined tasks without hampering the timing of other components’

tasks. As an example, Parmer et al. [21] have proposed brands and up-calls in an RTOS,

called CompositeOS, that supports hierarchical composition of tasks and components.

Their mechanisms – the brands and up-calls – have been invented to defer event

handling until the receiving task of an event has the highest priority in the system. In

this way, the overheads for handling events are charged to the associated task. Also

hypervisors, like the SPIRIT μkernel [22], XtratuM [23], L4 [24] and VMware [25]

by default follow a similar approach for buffering and deferring the propagation of

events to partitions (components). However, none of these existing CSFs guarantees

Paper B

123

that the order of delivering events to a component is preserved compared to the order

of delivery on a dedicated processor. We propose virtual scheduling for this, which

has as an additional advantage that events are delivered during the execution of the

destined component.

3 MODELS AND NOTATION

We consider a two-level scheduling framework, where a system comprises a set of N
independent components that need to share a single processor of one-unit speed. A

component C contains a set T of n recurring tasks τ1, . . ., τn. A task τi generates an

infinite sequence of jobs, Ji,1, . . .Ji,k. Upon the arrival of a job Ji,k at time ai,k, this

job Ji,k has to complete its work no later than its absolute deadline di,k.

In fact, we allow any recurring task model which satisfies the following two properties:

(i) in any time interval of arbitrary length t, each task must have an upper bound on

the workload generated by its jobs; and (ii) the job arrivals of the tasks are triggered

by an external event. Tasks may have internal deadlines [26], so that a part of its job’s

workload has to be completed prior to a relative deadline from its arrival1.

Without further loss of generality and for ease of presentation, we focus this paper

on periodic tasks that generate jobs triggered by timed events and a single deadline

associated with each of them. The timing of a periodic task τi ∈ T is specified by a

triple (Ti, Ei, Di), where Ti ∈ R
+ denotes its period, Ei ∈ R

+ denotes its worst-case

execution time and Di ∈R
+ denotes its deadline relative to its job arrivals. We restrict to

deadline-constrained tasks, i.e., Di ≤ Ti. The first job Ji,1 of a periodic task arrives with

an arbitrary phasing φi and each job Ji,k, where k ≥ 1, arrives at time ai,k = φi+(k−1)Ti
with a corresponding absolute deadline di,k = ai,k +Di.

A unique system-level (global) scheduler selects which component is executed on the

shared processor. The component-level (local) scheduler decides which of the released

jobs of the executing component is allocated the processor. The global scheduler and

each of the local schedulers of individual components may apply different scheduling

policies. The results contained in this paper apply to any task sets scheduled by a

work-conserving scheduling policy, defined as follows.

Definition 1: A scheduling policy is work conserving if and only if it never idles

the processor when there exists a job with pending execution requests.

We adapt our results for two example policies: earliest-deadline-first (EDF) scheduling

of jobs – an optimal dynamic-priority uni-processor scheduling algorithm – and fixed-

priority scheduling (FPS) of jobs – the de-facto standard in industrial systems for the

scheduling of real-time tasks.

1. A deadline constrains the progress of a job relative to its arrival. Different ways of constraining the
progress of job executions with respect to real time are disallowed, because those may disallow porting a
component to a virtual processor with discontinuities in its supply at arbitrary moments in time.

Paper B

124

3.1 Designing a bounded-delay partition recapitulated
Mok et al. [27] described how to modify the analysis of a task set that has been

validated on a dedicated processor and needs to be scheduled on a shared processor

with other components. They assume that a task set meets its deadline constraints on a

slower dedicated α-speed processor, i.e., α ∈ (0,1]. A task τi, with a WCET of Ei on

a unit-speed processor, is assumed to have a WCET of 1
α Ei on a dedicated α-speed

processor.

Feng and Mok [6] extended their bounded-delay model with a layer of abstraction,

so that if a task set is deemed schedulable on a slower processor of α speed and

each task allows a maximum release delay of Δ time units on a dedicated α-speed

processor without missing a deadline, then this task set is also schedulable on a virtual

processor which gives a continuous α-fraction of a unit-speed processor after an initial

delay of at most Δ time units. The parameter Δ is derived from the so-called blocking
tolerance [28], β , of the task set T .

Definition 2: Assume a task set T = {τi | 1 ≤ i ≤ n} has an entire α-speed processor

at its disposal. The blocking tolerance βi of a task τi is the longest scheduling delay

after the arrival of a job Ji,k of task τi without missing its deadline di,k.

The blocking tolerance βi of a task τi should be interpreted as follows. If a job Ji,k of

task τi is delayed for a duration of at most βi time units, then the processing time of

job Ji,k may increase due to (i) this scheduling delay itself of at most βi time units

and (ii) any potential extra interference of higher-priority jobs that are released during

this scheduling delay.

Definition 3: Assume a task set T has an entire α-speed processor at its disposal.

The blocking tolerance β of task set T is the largest blocking that any task in T can

tolerate without missing a deadline. Thus,

β def
= min{βi | 1 ≤ i ≤ n} . (1)

In the bounded-delay model of Feng and Mok [6], the value of β is computed upon a

continuous α-speed processor and this value is then termed Δ. This principle allows α
and Δ to be used as interface parameters of a component.

Since each component specifies an interface to abstract the resource requirements of

its task set, this interface can be used to determine whether or not a component can be

admitted together with other components on the same shared processor. If a component

is admitted, a virtual processor - also referred to as a (α, Δ)-partition - guarantees

and enforces the specified resources in the interface, so that the component keeps

meeting its timing constraints on the shared processor as long as it behaves as specified.

If it violates its interface specification, it may be penalized, but other components

are temporally isolated from the malicious effects. In line with the bounded-delay

model [6], we specify the interface of each component as a tuple (α,Δ). Parameter α
represents the virtual processor speed and Δ is the maximum service delay.

Paper B

125

3.2 Motivating example
Consider an example component comprising two EDF-scheduled periodic tasks: τ1 =
(8,1,4) and τ2 = (8,1,8). By choosing a phasing φ1 = 2 and φ2 = 0, we enforce that

job k of task τ2 completes its execution prior to job k of task τ1. This execution order

of jobs is the reverse of their deadline ordering. Each job completes at least Δ = 2

time units prior to its deadline on a (α = 1
2)-speed processor. Although this task set

satisfies all deadline constraints on a bounded-delay partition with parameters (1
2 ,2) of

a unit-speed processor, the execution order of the jobs on this virtual processor may

change. In the worst-case scenario, the first time unit of processor supply is provided

at time 2. At time 2, τ1 releases a job with a shorter absolute deadline of d1,1 = 6 than

the deadline d2,1 = 8 of the pending job of τ2, so that τ1 immediately starts executing.

This violates the precedence order ∀k : k ≥ 1 : J2,k completes prior to J1,k.

EDF guarantees that all tasks make their deadline on a virtual processor of the same

reference speed, α , as the dedicated processor as long as the service delay Δ respects

the maximum allowable blocking of tasks [6]. However, the execution order of jobs on

a virtual processor may change compared to the dedicated reference processor.

3.3 Detailed problem description
Consider a component C, composed of a set of tasks T with fixed arrival times and

absolute deadlines. The objective of virtual scheduling is as follows. If all tasks τi ∈ T
always complete their execution at least Δ time units prior to their deadlines when

scheduled by a policy SP upon a dedicated α-speed processor, then

• all tasks make the same absolute deadlines with the same component-level

scheduling policy SP on an (α,Δ)-partition of a unit-speed processor; and

• all the jobs execute in the same order on an (α,Δ)-partition of a unit-speed

processor.

A virtual processor can deliver processor resources too early or too late (by a degree

of Δ) compared to a dedicated processor with a continuous supply. First we show that

the exact schedule can be replicated by constraining the virtual processor such that it

supplies resources never too early (Section 4.1). Secondly, we relax this constraint on

the resource supply (Section 4.3).

4 VIRTUAL SCHEDULING

In this section, we present the rules used by our compositional scheduling framework

to make scheduling decisions. We first describe the global scheduling algorithm. Next,

Section 4.2 presents a proof of correctness of our scheduling algorithm. Finally,

Section 4.3 relaxes the assumptions in our system model on the resource supply.

Paper B

126

4.1 System-level scheduling
At each instant, the system-level scheduler selects some partition for execution. For

each partition, we define the least amount and the actual amount of processor resources

that the hosted component C receives from the global scheduler.

Definition 4: The supply bound function, sbf(t), returns the minimum amount of

processor resources that a component receives in any arbitrary (sliding) time interval

of length t. After a delay of Δ time units, the sbf(t) supplies at least a continuous

fraction, α , of the processor, i.e.,

∀t : t ≥ 0 : sbf(t) = max(0, α(t −Δ)) . (2)

From (2), we observe that the longest interval in which a component may receive no

processor supply is Δ, i.e.,

Δ = max{t | t ≥ 0∧sbf(t) = 0} . (3)

Definition 5: The actual supply function, asf(t), returns the actual processor re-

sources that a component has received in a designated time interval [0, t); it is a

non-decreasing function of time which must satisfy the following property:

∀t : t ≥ 0 : sbf(t)≤ asf(t)≤ sbf(t +Δ) . (4)

The restriction in (4) that asf(t)≤ sbf(t +Δ) guarantees that a virtual processor will

never supply more processor time than a dedicated α-speed processor does. We recall

that Section 4.3 removes this restriction on the asf(t).
From (2) and Definition 5 the following corollary follows.

Corollary 1: After a longest interval without processor supply, [ts−Δ, ts), has ended

at a time ts, the asf(t) continuously gives at least an α-share of the processor, i.e.,

∀t : t ≥ ts : asf(t)−asf(ts)≥ α(t − ts). (5)

We introduce additional state associated with a partition. Each partition, hosting a

component C, maintains

• a variable to keep track of virtual time, V ;

• a variable R to track the absolute time of the most recent job release (i.e., an

internal event);

• a variable A to track the absolute time of the most recent job arrival (i.e, an

external event); and

• a buffer B to plan future releases of the stored job arrivals.

The key idea behind a virtual-scheduled partition is to distinguish the external event,

i.e., the arrival of a job to a partition, (captured by variable A) and its corresponding

internal event, i.e., the release of a job, (captured by variable R), whereas by default the

arrival and the release are coinciding (A = R). Only after a job has been released, it can

contend with earlier released jobs for the processor time supplied by its partition. In

Paper B

127

order to replicate the schedule of the jobs on a continuous processor, a (discontinuous)

virtual processor must deliver the same amount of processor time in between the

releases of two arbitrary jobs as a continuous processor does.

Whenever a component receives processor time, its virtual time, V , progresses

with a rate proportional to its allocated processor share. We use V (t) to retrieve

the value of the virtual time, V , of component C at real time t. Buffer B[0...x](t) ={
(Ji,k, Vi,k) | ai,k ≤ t ∧Vi,k >V (t)

}
contains a chronologically sorted set of tuples

denoting those arrived jobs that have a computed release at virtual time Vi,k somewhere

in the future.

To establish the desired separation between job releases on a partition, the variables

V , R and A and buffer B are updated by virtual scheduling according to the following

rules (where tcur ≥ 0 denotes the current real time):

1) Initially, at time instant tcur = 0, we set:

V, R, A ← 0;

B ← /0;
(6)

2) Whenever a component C receives one unit of processor time, the virtual time

progresses with 1
α units, i.e.,

d

dt
V =

{
1
α if C is executing;

0 else.
(7)

3) Given a job Ji,k arriving at time instant tcur. If B= /0 and V (tcur)−V (R)≥ tcur−A,

then job Ji,k is released immediately, accompanied by the actions:

R, A ← tcur; (8)

4) Given a job Ji,k arriving at time instant tcur. If B= /0 and V (tcur)−V (R)< tcur−A,

then the release of job Ji,k is buffered until time instant t ′ at which the virtual

time reaches V (t ′) =Vi,k, where

Vi,k ← tcur−A+V (R);
A ← tcur;

B ← B∪{(Ji,k, Vi,k)};

(9)

5) Given a job Ji,k arriving at time instant tcur. Let V max=max
{

Vj,� | (Jj,�, Vj,�) ∈ B
}

be the virtual time corresponding to the last job stored in B. If B �= /0, then the

release of job Ji,k is buffered until time instant t ′ at which the virtual time reaches

V (t ′) =Vi,k, where
Vi,k ← tcur−A+V max;

A ← tcur;

B ← B∪{(Ji,k, Vi,k)};

(10)

Paper B

128

6) If B �= /0 and B[0] =
(
Ji,k, V (tcur)

)
hold at time tcur, then job Ji,k is released and

removed from the buffer, described by the following administrative actions:

B ← B \ {B[0]};

R ← tcur;
(11)

The above definitions and rules basically describe a bounded-delay partition [6]. One

difference with the original bounded-delay partition is the restriction in (4) on the upper

bound of asf(t), which has been introduced in order to guarantee that the virtual time

cannot run ahead. The virtual time is directly related to, and serves as a short-hand

notation for, the progress of the actual supply. Formally written, ∀t1, t2 : 0 ≤ t1 ≤ t2 :

V (t2)−V (t1) =
1

α
(asf(t2)−asf(t1)) . (12)

Using our restriction in (4) on the asf(t), in the best case a virtual processor exactly

gives an α share of the unit-speed processor without a service delay, so that the virtual

processor exactly behaves as a dedicated processor of α speed. Since this constraint

on the asf(t) might be hard to implement, in the next section we shall show how to

remove this constraint.

The other difference with the original bounded-delay partition is the rules for

arbitrating job releases. Rules 1, 3-6 guarantee that between any two job releases,

with corresponding arrival times a j,� ≥ ai,k, the virtual processor provisions at least

α(a j,�−ai,k) time units of processor supply to the component.

Example
Consider a task set comprising three tasks: τ1 = (6,1,6), τ2 = (8,1,8) and τ3 = (8,1,8).
Task τ1 is assigned the highest priority and task τ3 the lowest priority. The release

offsets of these tasks are fixed by φ1 = φ3 = 0 and φ2 = 2. When scheduling this task

set with the given fixed-priority assignment on a dedicated processor of α = 1
2 speed,

each of these tasks complete their execution at least Δ = 2 time units prior to their

deadline, see Figure 2(a). After admission of this task set on a bounded-delay partition

with parameters α = 1
2 and Δ = 2 of a unit-speed processor, virtual scheduling makes

sure that the schedule of jobs is replicated and at the same time all deadlines are met,

see Figure 2(b).

Paper B

129

jo
b
ar
ri
va

l

ti
m
e

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

τ 1 τ 2 τ 3

τ 1 τ 2 τ 3

ti
m
e

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

(a
)

Δ
Δ

L
eg

en
d
:

d
el
ay
ed

jo
b
re
le
a
se

jo
b
ex
ec
u
ti
o
n

p
ro
ce
ss
or

u
n
a
va
il
a
b
le

(b
)

ti
m
e

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

481
2

1
6

virtualtime

2
0

ti
m
e

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

481
2

1
6

virtualtime

2
0

F
ig

ur
e

2.
E

xa
m

pl
e

of
a

fix
ed

-p
rio

rit
y

sc
he

du
le

d
ta

sk
se

te
xe

cu
tin

g
(a

)
on

a
de

di
ca

te
d
(α

=
1 2
)-

sp
ee

d
pr

oc
es

so
r

an
d

(b
)o

n
a
(

1 2
,

2
)-

bo
un

de
d-

de
la

y
pa

rt
iti

on
of

a
un

it-
sp

ee
d

pr
oc

es
so

rw
hi

le
vi

rt
ua

lly
sc

he
du

le
d

un
de

ra
w

or
st

-c
as

e
su

pp
ly

.

Paper B

130

Under a best-case processor supply jobs are released at their arrival, because the

virtual processor exactly behaves as a dedicated α-speed processor. According to the

specified rules of virtual scheduling, the following scheduling decisions are made under

a worst-case processor supply (see Figure 2(b)):

t = 0: V, R, A ← 0, B ← /0 and both job J1,1 and job J3,1 are released immediately.

(Rule 1 and 3)

t = 2: Job J2,1 is buffered until virtual time 2, i.e., Vi,k ← 2, A ← 2 and B ←
{(J2,1, 2)}. (Rule 4)

t = 3: Since V (3) = 2, job J2,1 is released and removed from the buffer. We set

R ← 3 and B ← /0. (Rule 6)

. . .
t = 18:Job J1,4 is buffered until virtual time 18, i.e., Vi,k ← 18, A ← 18 and B ←

{(J1,4, 18)}; Next, job J2,3 is buffered until virtual time 18, i.e., Vi,k ← 18,

A ← 18 and B ←{(J1,4, 18),(J2,3, 18)}; (Rule 4 and 5)

t = 19:Since V (19) = 18, both job J1,4 and job J2,3 are released and removed from

the buffer. We set R ← 19 and B ← /0. (Rule 6)

t = 24:The hyper-period repeats itself.

4.2 Bounding the release delay of job arrivals
The scheduling rules described in the previous section may cause a delay in the release

of job arrivals compared to a regular bounded-delay partition. This section analyses the

durations of those release delays, which are directly related to the maximum allowable

release delay Δ on a dedicated α-speed processor. We conclude that an (α, Δ)-partition

exactly captures the required processor share of a virtually scheduled component.

Lemma 1: The absolute difference between the real time and virtual time is never

larger than Δ, i.e.,

∀t : t ≥ 0 : |V (t)− t| ≤ Δ. (13)

Proof: We rewrite (13) by applying (12) as

∀t : t ≥ 0 :

∣∣∣∣ 1

α
asf(t)− t

∣∣∣∣≤ Δ. (14)

The difference between asf(t) and αt is at its maximum when asf(t) is as small

as possible, i.e., asf(t) = sbf(t). Moreover, from the definition of sbf(t) in (2), we

know that sbf(t)≥ α(t −Δ). Substituting asf(t) in (14) for sbf(t) gives

∀t : t ≥ 0 :

∣∣∣∣ 1

α
(α (t −Δ))− t

∣∣∣∣≤ Δ. (15)

From (15) we derive Δ ≤ Δ, which proves this lemma.

Lemma 2: Given n deadline-constrained periodic tasks. If all n tasks meet their

deadline on a virtually scheduled bounded-delay partition, then the length of buffer B
is at most n.

Paper B

131

Proof: Assume all n tasks are stored in the buffer. Prior to any subsequent job

arrival Ji,k+1 of task τi, its previous job Ji,k must have left the buffer. Otherwise job

Ji,k misses its deadline, thereby violating the premise.

From Lemma 2 we conclude that the memory complexity of the scheduling queues

is the same with and without virtual scheduling, because an arrived job is either

represented in buffer B or it is is represented in the ready queue. We now bound the

sojourn time of a job in buffer B prior to its transfer to the ready queue at its release.

Lemma 3: Let bi,k be the sojourn time of job Ji,k in buffer B and let si,k be the

duration that the processor resources are unavailable to the component after the release

of job Ji,k. For all jobs arbitrated by virtual scheduling, it holds si,k +bi,k ≤ Δ.

Proof: From Definition 4 follows si,k ≤ Δ, so that a job not buffered prior to its

release (Rule 3) fulfills this lemma.

Consider those jobs that are buffered in B according to Rule 4 (B = /0) and Rule 5

(B �= /0) of virtual scheduling. Under the worst-case progress of virtual time, a service

delay of Δ units happened prior to the release of Ji,k. By virtue of Corollary 1, it then

holds that si,k = 0 and we must now bound bi,k to Δ.

Rule 4: Assume B = /0, so that R ≥ A ≥ 0. Consider a job Ji,k arrives at time ai,k.

Hence, job Ji,k is released when the virtual time violates the premise of Rule 4, i.e., at

a time t ′ s.t.

V (t ′)−V (R) = ai,k −A
≡ V (t ′)−ai,k =V (R)−A. (16)

If the buffer B is currently empty, then the previous job release at time R has occurred

earlier at a time where A =V (R).
Hence,

V (t ′) = ai,k (17)

Using (17) we obtain bi,k = t ′ − ai,k = t ′ −V (t ′). Thus, according to Lemma 1 we

conclude that bi,k ≤ Δ.

Rule 5: Assume B �= /0 and consider job Ji,k arrives at time ai,k. We prove this

rule by induction in the length of buffer B (bound by Lemma 2), where Rule 4 covers

the base step.

Consider a buffer of length � where the most recently inserted job has a a virtual

timer expiring at time V max = A. Job Ji,k is released when (at a time t ′ ≥ ai,k) the virtual

time reaches
V (t ′) = ai,k +V max−A

≡ V (t ′) = ai,k.
(18)

Hence, the (�+ 1)-th inserted value inside buffer B is (at most) V max ← ai,k. Since

V max = ai,k happens no later than Δ time units after ai,k (see Lemma 1), the proof for

Rule 5 follows by induction. Combining Rule 3, Rule 4 and Rule 5 proves this lemma.

Paper B

132

Given Lemma 3 and the rules of virtual scheduling which separate any two job

releases by at least an α share of the time between their absolute arrival distance, we

can now directly apply the known result from Mok et al. [27].

Theorem 1 (Theorem 6 in [27]): Given a component C and a bounded-delay par-

tition (α, Δ) , let Sn denote a valid schedule on a dedicated processor with speed

α , and Sp the schedule of the component on partition (α, Δ) according to the same

execution order and amount as Sn. Also let Δ denote the largest amount of time such

that any job of component C is completed at least Δ time units before its deadline. Sp
is a valid schedule if and only if Δ ≥ Δ.

Theorem 1 tells that if all tasks finish their execution at least Δ time units prior to

their deadline on a dedicated processor of α speed, then the task set is schedulable on

a (α, Δ) bounded-delay partition provided that the same execution order and amount

is replicated. Literature did not describe how to realize a replicated schedule, which

we have presented in this section.

4.3 Sustainable relaxations
The scheduling of hard real-time tasks must be predictable, so that all critical timing

constraints of the tasks are satisfied in advance. However, in many cases it is irrelevant

for the predictability of the system to know exactly who is executing. Especially in the

composition of off-line scheduled task sets, it is hard to establish the exact distance

between the execution of different jobs [8]. Fortunately, replicating the precedence

constraints of jobs is easier than replicating the entire schedule of jobs on a dedicated

processor onto a virtual processor.

To establish the latter, virtual scheduling requires an initial delay of the processor

supply to prevent that the virtual time within a component runs ahead of the real time.

Replicating just the precedence order allows to lift this implementation requirement,

assuming that a component implements its timing constraints in a sustainable manner.

A sustainable system [29] that satisfies its timing constraints under its worst-case

specifications, keeps satisfying its timing constraints when its real behavior is better

than it is in the worst-case. In line with this notion of a sustainable system by Baruah

and Burns [29], we define a sustainable order of the execution of jobs.

Definition 6: The precedence order of a job Ji,k and a job Jj,� is sustainable, if both

jobs Ji,k and Jj,� execute in the same precedence order independent of whether or not

one or more jobs Jx,y execute less than their WCET.

Theorem 2: Let the precedence order of a job Ji,k and a job Jj,� be sustainable. Also

let all the jobs of a component C finish their execution at least Δ time units prior to

their deadline on a dedicated α-speed processor. Then, component C will execute the

jobs Ji,k and Jj,� in the same order on a virtual-scheduled bounded-delay partition with

parameters (α, Δ) that satisfies asf(t)≥ α(t −Δ) without missing any deadline.

Proof: According to Theorem 1, this theorem holds if asf(t) is constrained by (4).

Now let us violate (4) by assuming asf(t)> sbf(t +Δ) = αt, i.e., the average speed

Paper B

133

γ of the virtual processor is α < γ ≤ 1 over time interval [0, t]. The WCET of any

job of the tasks τi ∈ T that execute in [0, t] may therefore decrease from 1
α Ei time

units to 1
γ Ei time units. Since the precedence order of Ji,k and Jj,� is sustainable,

both jobs execute in the same order when one or more jobs execute less than their

WCET (Definition 6). Hence, Ji,k and Jj,� execute also in the same order under virtual

scheduling, if asf(t)≥ sbf(t), compared to a dedicated α-speed processor.

Reconsider the example in Figure 2: the precedence order of the jobs J2,1 and J3,1 is

not sustainable, because their execution order may change when job J1,1 executes less

than its WCET. The same happens on a continuous processor, however. The relative

execution order of the jobs J2,1 and J3,1 can therefore be considered irrelevant for the

correctness of the schedule. Reconsidering the motivating example in Section 3.2, the

order of all jobs are sustainable. Many off-line schedules implicitly implement the

precedence constraints in this way, e.g., [1], [2] and [17] are therefore by definition

sustainable.

According to Theorem 2, resources can be supplied earlier without affecting the

precedence order of jobs, if the execution order of tasks is fully determined by (i) the

timely supply of resources in order to meet deadlines and (ii) the arrival times of jobs.

In other words, sustainable precedence relations remain valid when the processor speed

is increased. Virtual scheduling then takes care of those precedence relations in the

presence of delays in the processor supply.

5 COMPONENT-LEVEL SCHEDULING

The rules of virtual scheduling, as specified in the previous section, are responsible

for separating the events relative to their occurrences in real time and the delivered

processor supply between them. Only after an event is delivered to the destined partition,

a corresponding job is released and that job can subsequently contend with earlier

released jobs for the processor time supplied by its partition. Given a task set that

has programmed separations of events associated to the execution of its tasks, virtual

scheduling then replicates the precedence order of jobs of the local tasks upon a

partition under any work-conserving scheduling policy. This section discusses the local

schedulers that can be used by the individual components.

Consider a component that can be scheduled successfully upon a bounded-delay

partition (α,Δ). We recall that the bounded-delay model of Feng and Mok [6] determines

Δ from the blocking tolerance β of a task set while it is running upon a continuous

α-speed processor. From Theorem 1 we already concluded that this component then

also makes its deadlines upon an (α,Δ) partition when we add virtual scheduling to it.

The remaining question considered in this section is how to derive an appropriate timing

interface that summarizes the processor requirements of a component. We distinguish

two aspects here: (i) the choice of an interface representation, i.e., determined by the

choice of a resource-supply model, and (ii) the selection of the interface parameters

under the auspices of the chosen resource-supply model and the scheduling policy.

Paper B

134

For these purposes, we first derive an exact condition for virtual scheduling based on

the deadline tolerance of tasks2 under an arbitrary work-conserving local scheduling

policy.

Definition 7: Assume a task set T has an entire α-speed processor at its disposal.

The deadline tolerance δi of a task τi ∈ T is given by δi = Di −WRα
i , where WRα

i
denotes the worst-case response time of task τi upon this α-speed processor.

Stated differently, the deadline tolerance δi is the amount that the deadline Di of task

τi can be reduced without missing a deadline upon a continuous α-speed processor.

The deadline tolerance of a task set T is then given by

δ def
= min{δi | 1 ≤ i ≤ n} . (19)

We observe that Theorem 1 already makes use of the deadline tolerance implicitly.

Using Definition 7 of the deadline tolerance and Definition 3 of the blocking tolerance,

the following two corollaries follow directly from Theorem 1.

Corollary 2: Under any work-conserving scheduling policy, the blocking tolerance

βi of a task τi is at most equal to its deadline tolerance δi, i.e. ∀i : 1 ≤ i ≤ n : βi ≤ δi.

Corollary 3: Under any work-conserving scheduling policy, the blocking tolerance

β of the task set T is at most equal to its deadline tolerance δ .

Theorem 3: Given a component C comprised of a task set T = {τi | 1 ≤ i ≤ n}
and a work-conserving scheduling policy SP. Component C can execute on a (α,Δ)
bounded-delay partition under the auspices of virtual scheduling without missing any

deadlines, if and only if Δ ≤ δ .

Proof: Only-if direction: delaying a job of task τi for a longer duration than

Di−WRα
i time units may obviously lead to deadline misses upon an α-speed processor,

no matter whether processor time is supplied continuously or discontinuously.

If direction: Theorem 1 assures the validity of the schedule under virtual scheduling

and a corresponding release delay of jobs of at most δ time units.

The scheduling condition derived in Theorem 3 uses the response times of tasks

upon a continuous α-speed processor in order to derive the component’s interface

(α,Δ). The way of computing the response time WRα
i depends on the scheduling

policy SP of the component and it assumes that the processor supply progresses linearly

and continuously with a slope α over time. Firstly, we tailor Theorem 3 for more

specific work-conserving scheduling policies (EDF and FPS). Secondly, we look at

resource-supply models that represent a discontinuous processor differently than our

linear approximation does.

2. In literature, e.g., [6], the term jitter tolerance may refer either to our term blocking tolerance or to our
term deadline tolerance. In any case, we find the term jitter confusing. If a job Jj,� would indeed have a
jitter as large as δ j , then lower priority jobs Ji,k may miss their deadline. Contrary to the jitter tolerance,
the blocking tolerance of a job remains valid even if other jobs are blocked maximally and, similarly, the
deadline tolerances of other tasks remain valid even if one task’s deadline is decreased with δ time units.

Paper B

135

5.1 Priority-based scheduling policies
For optimal uni-processor scheduling policies (like EDF) replicating the execution order

is unnecessary for satisfying deadline constraints. Bertogna et al. [30] also observed

that replicating the same execution order and amount of execution time of jobs on a

virtual processor compared to a dedicated processor is just sufficient to satisfy deadline

constraints. As shown by the example in Section 3.2, however, even optimal scheduling

policies that satisfy deadline constraints regardless of a discontinuous or continuous

resource supply require a mechanism to preserve the precedence order of jobs as well.

Since EDF is work-conserving and an optimal scheduling policy, it can utilize its

allocated processor share entirely, regardless of any bounded delays in the processor

supply.

Theorem 4: Given a set of n deadline-constrained sporadic tasks, T = {τi | 1 ≤ i ≤ n},

and an EDF scheduler. The task set T can be virtually scheduled upon an (α,Δ) partition

by EDF without missing any deadline if and only if

∀t : t ≥ 0 : dbf(t) ≤ α(t −Δ), (20)

where the cumulative processor demand bound is defined as

dbf(t) = ∑
1≤i≤n

⌊
t −Di +Ti

Ti

⌋
Ei. (21)

Proof: We prove this theorem with the help of Lemma 4. Since Lemma 4 shows

that δ = β for EDF scheduling of tasks upon a continuous processor, this theorem

follows from the regular bounded-delay criterion presented by [6].

Lemma 4: The deadline tolerance, δ , of a task set T is equal to its blocking tolerance,

β , upon a continuous α-speed processor scheduled by EDF. In short, δ = β under

EDF.

Proof: We prove this lemma by contradiction. From Corollary 3 it follows that

β ≤ δ . Thus, suppose 0 ≤ β < δ and there exists a job that misses a deadline when

its release is delayed for δ time units, and it does not do so when it is blocked for β
time units, upon a continuous α-speed processor.

Let a job Ji,k arrive at time ai,k with a release ri,k = ai,k+δ , so that di,k = ri,k+Di−δ .

If job Ji,k misses its deadline di,k, then by virtue of EDF holds dbf(di,k − ai,k) =
dbf(Di)> α(Di−δ). Since all jobs of τi complete their execution at least δ time units

prior to their deadline Di upon a continuous α-speed processor (see Definition 7), the

cumulative execution demand δ + 1
α dbf(L) of task set T in any arbitrary time window

of length L cannot exceed L, i.e., ∀L : L ≥ 0 : δ + 1
α dbf(L)≤ L. Using Definition 3

of β and 0 ≤ β ≤ δ , the lemma follows.

Lemma 4 presents a unique property of the analysis of feasible bounded-delay

partitions scheduled optimally by EDF, independent of our support for virtual scheduling.

Under non-optimal scheduling policies, deadline constraints can also be violated

when a component is moved from a continuous to a discontinuous resource supply. In

Paper B

136

the example of Figure 2(b), job J3,1 of task τ3 misses its deadline when the release of

job J1,2 coincides with its arrival at time t = 6. Since discontinuities in the resource

supply may block the execution of jobs, under some scheduling policies (like FPS) one

might need to increase the speed of the virtual processor compared to the speed of the

dedicated processor in order to satisfy deadline constraints of tasks. For example, [10]

and [11] take this approach by redoing the local schedulability analysis of a component

and taking Δ as a blocking factor, β , on the target unit-speed processor. However, a

faster virtual processor with service delays does still not guarantee the same precedence

order of jobs; this is where virtual scheduling comes into play.

Virtual scheduling satisfies deadline constraints even without increasing the virtual

processor speed, i.e., it avoids that deadline constraints must be validated again on a

virtual processor. Hence, at least the same task sets can be scheduled without deadline

misses on a bounded-delay partition with and without virtual scheduling. Moreover,

our rules to guard the releases of jobs in virtual time replicate the execution order of

jobs on a dedicated processor onto a virtual processor and these rules are transparent

for the component.

5.2 Periodic versus bounded-delay resource-supply models
Virtual scheduling reconstructs the releases of jobs on a continuous α-speed processor

upon an (α,Δ) bounded-delay partition. For this purpose, it may delay the release of a

job in order to compensate for delays in the processor supply to earlier released jobs.

The progress of the resource supply to the tasks of a component therefore appears as

linear over time.

Different from the bounded-delay resource supply that progresses linearly, the periodic

resource model Γ(Π,Θ) – as proposed by Shin and Lee [4] – supplies Θ time units of

processor time every period of Π time units and Θ is supplied no later than Π time

units from the start of the period Π.

Independent of the use of virtual scheduling and no matter the local scheduling

policy, a bounded-delay interface (α,Δ) can be converted into a periodic interface

Γ(Π,Θ) as follows [6]:

Π =
Δ

2(1−α)
. (22)

This period assignment implicitly assigns a budget Θ = α·Π. The obtained Γ(Π,Θ)
can be convenient in the context of an RTOS with support for a CSF. We recall that

the way of determining Δ may depend on whether or not virtual scheduling is applied.

Since virtual scheduling may allow for larger Δ (Corollary 3), the sizes of period Π
may also become larger.

The role of a resource-supply model is important for meeting deadlines, because it

bounds the delays and the received processor supply. This can be done in different

ways, e.g., [11] and [10] compare the bounded-delay and the periodic resource model.

Paper B

137

However, the relative performance of resource models is non-trivial, regardless of

virtual scheduling.

With our virtual-scheduling support, a task set requires a non-increasing processor

bandwidth on its bounded-delay partition. Sometimes, it requires even less budget to

satisfy task deadlines than the periodic resource model requires. In Figure 2, the task

set needs a periodic resource Γ(2,1.2) according to Shin and Lee [4]. With virtual

scheduling Γ(2,1) suffices, which reduces the allocated processor bandwidth with

20%. Although virtual scheduling can use the bounded-delay model tightly, we cannot

always gain bandwidth compared to other resource-supply models, because the relative

strengths of the resource-supply models are unchanged by virtual scheduling.

6 CONCLUSIONS

A virtual platform abstracts all resources required by the hosted component, so that

they appear to be available without the need of sharing them with other components.

Several virtual platforms can then be scheduled together on the physical resources.

On such a shared platform, however, the actual processor is faster than the virtual

processor and the virtual processor delivers the processor time discontinuously. This

disturbs the desired view of a virtual processor, because the order in which external

events are handled within the component during run time may change with respect to

the execution order on a continuous processor. This paper proposed a solution for this

problem, called virtual scheduling.

By using virtual scheduling, a component executes on a virtual platform and it only

experiences that the processor speed is different from the actual processor speed. A

legacy component, which was once validated on that dedicated slower processor, can

therefore be integrated on a shared processor without requiring access to the code or

specification of its internal tasks to repeat the component-level analysis. The reason

is that virtual scheduling guarantees that the integrated component satisfies its tasks’

deadline constraints and that it executes jobs in the same order as on the dedicated

slower processor, regardless of the actual supply of processor resources. Unfortunately,

it is hard to abstract entirely from the resource-supply model during the timing analysis

of a component, because delays in the processor supply must be bounded. With virtual

scheduling, however, we can focus on the traditional scheduling problems of meeting

precedence constraints and deadline constraints of tasks on a continuous uni-processor.

As a second advantage, virtual scheduling delivers external events to a component

when it is executing on the processor. This prevents the handling of events destined

for suspended components; thus, we avoid that event-handling consumes resources

allocated to other components. As a result, a component developer can be unaware

that the processor and other event-driven resources may need to be shared with other

real-time components. Because of these two major advantages, we believe that virtual

scheduling can considerably improve the design flow of hardware and software products

Paper B

138

applying virtualization techniques, e.g, hypervisors hosting and separating software

components with different levels of timing criticality.

REFERENCES
[1] R. Dobrin, G. Fohler, and P. Puschner, “Translating off-line schedules into task attributes for fixed

priority scheduling,” in RTSS, Dec. 2001, pp. 225–234.
[2] D. Isović and G. Fohler, “Efficient scheduling of sporadic, aperiodic, and periodic tasks with complex

constraints,” in RTSS, Nov. 2000, pp. 207–216.
[3] M. Di Natale and A. Sangiovanni-Vincentelli, “Moving from federated to integrated architectures in

automotive: The role of standards, methods and tools,” Proc. of the IEEE, vol. 98, no. 4, pp. 603–620,
April 2010.

[4] I. Shin and I. Lee, “Compositional real-time scheduling framework with periodic model,” ACM TECS,
vol. 7, no. 3, pp. 1–39, 2008.

[5] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework using EDP resource models,”
in RTSS, Dec. 2007, pp. 129–138.

[6] X. Feng and A. Mok, “A model of hierarchical real-time virtual resources,” in RTSS, Dec. 2002, pp.
26–35.

[7] E. Wandeler and L. Thiele, “Real-time interfaces for interface-based design of real-time systems with
fixed priority scheduling,” in EMSOFT, Sept. 2005, pp. 80–89.

[8] W. Wang, A. K. Mok, and G. Fohler, “Pre-scheduling,” RTSJ, vol. 30, pp. 83–103, 2005.
[9] L. Almeida and P. Peidreiras, “Scheduling with temporal partitions: response-time analysis and server

design,” in EMSOFT, Sept. 2004.
[10] G. Lipari and E. Bini, “A methodology for designing hierarchical scheduling systems,” JEC, vol. 1,

no. 2, pp. 257–269, April 2005.
[11] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in RTSS, Dec. 2004, pp. 57–67.
[12] S. Matic and T. Henzinger, “Trading end-to-end latency for composability,” in RTSS, Dec. 2005, pp.

98–110.
[13] M. Anand, “Conditional models for compositional design of real-time embedded systems,” Ph.D.

dissertation, Univ. of Pennsylvania, May 2008.
[14] S. Baruah, “Feasibility analysis of recurring branching tasks,” in ECRTS, June 1998, pp. 138–145.
[15] T. Baker, “Stack-based scheduling of realtime processes,” RTSJ, vol. 3, no. 1, pp. 67–99, March 1991.
[16] M. Spuri and J. Stankovic, “How to integrate precedence constraints and shared resources in real-time

scheduling,” IEEE TC, vol. 43, no. 12, pp. 1407–1412, Dec. 1994.
[17] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling dependent periodic tasks

without synchronization mechanisms,” in RTAS, April 2010, pp. 301–310.
[18] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal, “A compositional scheduling framework for digital

avionics systems,” in RTCSA, Aug. 2009, pp. 371–380.
[19] J. Sun and J. Liu, “Synchronization protocols in distributed real-time systems,” in ICDCS, May 1996,

pp. 38–45.
[20] R. Rajkumar, “Dealing with suspending periodic tasks.” IBM Thomas J. Watson Research Center, June

1991.
[21] G. Parmer and R. West, “Predictable interrupt management and scheduling in the Composite component-

based system,” in RTSS, Dec. 2008, pp. 232–243.
[22] D. Kim, Y.-H. Lee, and M. Younis, “Spirit-μkernel for strongly partitioned real-time systems,” in

RTCSA, Dec. 2000, pp. 73–80.
[23] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded architecture based on hypervisor: The

XtratuM approach,” in EDCC, April 2010, pp. 67–72.
[24] U. Steinberg, J. Wolter, and H. Härtig, “Fast component interaction for real-time systems,” in ECRTS,

July 2005, pp. 89–97.
[25] VMware, “Timekeeping in VMware virtual machines - VMware ESX 4.0/ESXI 4.0, VMware

Workstation 7.0,” Information guide, May 2010.
[26] A. Burns, “Preemptive priority based scheduling: An appropriate engineering approach,” in Advances

in Real-Time Systems, S. Son, Ed. Prentice-Hall, 1994, pp. 225–248.

Paper B

139

[27] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time systems,” in RTAS, May 2001, pp.
75–84.

[28] V. Lortz and K. Shin, “Semaphore queue priority assignment for real-time multiprocessor synchroniza-
tion,” IEEE TSE, vol. 21, no. 10, pp. 834 – 844, Oct. 1995.

[29] S. Baruah and A. Burns, “Sustainable schedulability analysis,” in RTSS, Dec. 2006, pp. 159–168.
[30] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers for open environments,” IEEE TII,

vol. 5, no. 3, pp. 202–219, Aug. 2009.

Paper B

140

PAPER C:

OPAQUE ANALYSIS FOR RESOURCE-SHARING COMPONENTS IN HIER-
ARCHICAL REAL-TIME SYSTEMS

M.M.H.P. van den Heuvel, M. Behnam, R.J. Bril, J.J. Lukkien and T. Nolte

Submitted to the real-time systems journal.

141

ABSTRACT

Hierarchical scheduling frameworks (HSFs) have been developed to enable
composition and reuse of independently developed and analyzed real-time
components in complex systems. In practice, these components share more
resources than just the processor, requiring arbitration through a global (system-
level) synchronization protocol.

In this paper we propose opaque analysis methods to integrate resource-
sharing components into uni-processor HSFs. A local (component-level) schedu-
lability analysis is opaque if it is independent (or agnostic) of the global
synchronization protocol. An individual component can therefore be analyzed as
if all resources are entirely dedicated to it. This locality of the analysis obtained
from opacity enables us to derive a computationally tractable method for
exploring and selecting the design parameters of resource-sharing components
with the objective to minimize the system load. Moreover, given a real-time
interface of a component that is derived by means of an opaque analysis, the
component can be used with an arbitrary global synchronization protocol. Hence,
opacity extends the independence of a component of the global scheduling
model, thereby effectively increasing the reusability of the component.

To arbitrate resource access between components, we consider four existing
protocols: SIRAP, BROE and HSRP - comprising overrun with payback (OWP)
and overrun without payback (ONP). We classify local analyses for each
synchronization protocol based on the notion of opacity and we develop new
analysis for those protocols that are non-opaque.

Finally, we compare different analyses for SIRAP, ONP, OWP and BROE by
means of an extensive simulation study. From the results we derive guidelines
for selecting a global synchronization protocol.

Paper C

142

1 INTRODUCTION

Hierarchical scheduling frameworks (HSFs) have been developed to enable
composition and reusability of real-time components in complex systems.
The increasing complexity of those systems demands a decoupling of (i)
development and analysis of individual components and (ii) integration of
components on a shared platform, including analysis at the system level. An HSF
provides temporal isolation between components by allocating a processor budget
to each component. A component that is validated to meet its timing constraints
when executed in isolation will continue meeting its timing constraints after
integration (or admission) on a shared uni-processor platform. The HSF is
therefore a promising solution for industrial standards which more and more
specify that an underlying operating system should prevent timing faults in
any component to propagate to other components on the same processor.

The main goal of compositional real-time scheduling frameworks (Shin and
Lee, 2008) is establishing global (system level) timing properties by composing
independently specified and analyzed local (component level) timing properties,
thus, improving the reusability of components. Local timing properties are ana-
lyzed by assuming a worst-case supply of processor resources to a component.
The way of modeling the processor provisioning to a component is defined by a
resource-supply model, e.g., the periodic resource model by Shin and Lee (2008)
or the bounded-delay model by Feng and Mok (2002). These models make
it possible to combine deadline constraints of all tasks within a component
and abstract from the way tasks are locally scheduled, so that a component
can be represented by a single real-time constraint, called a real-time interface.
Components can be composed by combining a set of real-time interfaces, which
will treat each component as a single task by itself.

The global scheduling environment (a parent component) can provide more
resources to its (child) components than just processor resources. For example,
components may use operating system services, memory mapped devices and
shared communication devices requiring mutually exclusive access. An HSF
with support for resource sharing makes it possible to share serially accessible
resources (from now on referred to as resources) between arbitrary tasks, which
are located in arbitrary components, in a mutually exclusive manner. A resource
that is only shared by tasks within a single component is a local shared resource.
A resource that is used in more than one component is a global shared resource.
Any access to a resource is assumed to be arbitrated by a synchronization
protocol.

If a task that accesses a global shared resource is suspended during its
execution due to the exhaustion of its budget, excessive blocking periods
can occur which may hamper the correct timeliness of other components. To

Paper C

143

prevent such budget depletion during global resource access1 (see Figure 1),
four synchronization protocols have been proposed based on the stack resource
policy (SRP) by Baker (1991). These are based on two general mechanisms:

1) self-blocking when the remaining budget is insufficient to complete a global
resource access entirely - having two flavors called (i) the subsystem
integration and resource allocation policy (SIRAP) by Behnam et al. (2007)
and (ii) the bounded-delay resource open environment (BROE) by Bertogna
et al. (2009b) - or

2) overrun the budget until the resource is released - called the hierarchical
stack resource policy (HSRP) by Davis and Burns (2006). HSRP has two
flavors: overrun with payback (OWP) and overrun without payback (ONP).
The term without payback means that the additional amount of budget
consumed during an overrun does not have to be returned in the next
budget period.

Although these protocols prevent budget depletion during global resource
access, in order to do so, they may need to deliver processor resources differently.
This, on its turn, may add constraints to the supply of processor resources in
order to preserve local deadline constraints of tasks.

Ps Ps

Qs Qs
B

Ps

Qs

Figure 1. When the budget Qs (allocated every period Ps) of a task depletes while
a task executes on a global resource, tasks in other components may experience
excessive blocking durations, B.

In practical situations, a component developer is typically unconcerned
about the sharing scope of resources. A component may access resources
for which just local usage or shared global usage is determined only upon
integration of components onto a shared processor. Fortunately, the syntax
of the primitives for accessing local and global resources can be the same,
even though the synchronization protocols are different. The actual binding
of function calls to scope-dependent synchronization primitives, that arbitrate
either global or local resource access, can be done at compile time or when
the component is loaded. Dynamic binding of primitives makes it possible to
decouple the specification of global resources in the interface from their use in

1. For the same reason, SRP’s task model by Baker (1991) requires that the same job of a task
that accesses a resource also releases it. In order to be able to reuse the schedulability analysis of
tasks in the hierarchy of components (i.e., we treat a component as a task), an access to a resource
must be followed by a release within the same job of the component.

Paper C

144

the implementation. This flexible decoupling of the sharing scope of resources
in the application’s programming interface is called opacity by López Martinez
et al. (2010) and it abstracts whether or not a resource is global in the system.

This paper presents an extension of this notion of opacity to component anal-
ysis and the corresponding derivation of a real-time interface of a component.
Opacity requires that the implementation of a component, as well as the way
in which interface parameters are derived (the local analysis), are unaware
of the global synchronization protocol, so that components cannot make use
of any knowledge about the constraints and modifications in the processor
supply to a component imposed by the global synchronization protocol. By
definition of opacity, all computed interface parameters of a component are made
independent of a global synchronization protocol. This effectively increases the
reusability of the component.

In order to create a clean separation between local and global scheduling
analysis, we call the local analysis of a component opaque with respect to its
global (parent) component, if

1) it is unaware of global resource arbitration;
2) in the local analysis, global resources are treated the same as local re-

sources;
An opaque local analysis remains parameterized by a resource-supply model,
but, contrary to existing compositional models with non-opaque local analysis,
it allows us to post-pone the classification of shared resources into global and
local until component integration time. Moreover, an opaque analysis makes
it possible to defer the choice for a global synchronization protocol (if global
sharing is necessary at all) until component integration time.

Contributions: The first and main contribution of this paper is introducing
opaque analysis and leveraging the concept of an opaque analysis to a com-
putationally efficient methodology for exploring an overall resource-efficient
system configuration. Our methodology consists of three steps: a step where
the component analysis is abstracted from the resource-supply model and two
optimization steps where local blocking can be traded for global blocking.

The notion of opaque local analysis yields the following other contributions:
• We survey the existing analyses for HSFs in the presence of shared resources

and we characterize the compliance to opacity of each of the analysis.
• We develop new local analysis for those protocols that are non-opaque, i.e,

– We develop a new analysis for OWP. Our analysis reduces the pes-
simism of OWP, it is opaque and, in most cases, it is better than
ONP.

– Given the non-opaque analysis of SIRAP, we show that the overruns of
ONP can be used as an upper bound for the self-blocking durations of
SIRAP regardless of the local scheduling policy. As a consequence, an

Paper C

145

opaque analysis for ONP provides also an opaque analysis technique
for resources arbitrated by an implementation of SIRAP.

• We are the first to present an extensive experimental comparison of the
different analysis techniques for BROE, SIRAP, OWP and ONP. We do not
only evaluate the individual protocols, we also evaluate the effect of using
an opaque analysis for them.

• Finally, we derive new guidelines for selecting a synchronization protocol
in hierarchical real-time systems.

Organization: The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 describes our system model. Section 4 reca-
pitulates the mechanisms for global sharing of the synchronization protocols
considered in this paper (i.e., HSRP, SIRAP and BROE). Section 5 defines the
notion of opacity and accordingly classifies the existing compositional analysis
for HSFs in the presence of shared resources. Section 6 presents an improved,
simplified and opaque analysis for overrun with payback (OWP). Section 7
presents an opaque local analysis for SIRAP. Section 8 presents a methodology
which shows how an opaque analysis allows for a tractable design-space
exploration of resource-sharing components. Section 9 evaluates the different
analyses and the different protocols for global resource sharing by means of
a simulation study. We investigate how global resource sharing impacts the
schedulability of an individual component and, subsequently, how it impacts
the schedulability of an entire system. From these results we derive guidelines
for selecting a global synchronization protocol. Finally, Section 10 concludes
this paper.

2 RELATED WORK

In hierarchically scheduled systems, a group of recurring tasks, forming a
component, is mapped on a reservation; reservations were originally introduced
by Mercer et al. (1994) and Rajkumar et al. (1998). We first review existing
works on hierarchical scheduling of independent components. Secondly, we
lift the assumption on the independence of components. We discuss how tasks
may share resources with other tasks, either within the same component or
located in other components. This means that resource sharing expands across
reservations which calls for specialized resource access protocols. Finally, we
discuss the relation and difference between two important quality properties
of real-time synchronization protocols, i.e., transparency and opacity.

2.1 Timing interfaces of independent real-time components
The increasing complexity of real-time systems led to a growing attention for
compositional analysis. Deng and Liu (1997) proposed a two-level HSF for open

Paper C

146

systems, where components may be independently developed and validated.
The corresponding schedulability analysis have been presented in Kuo and
Li (1999) for fixed-priority preemptive scheduling (FPPS) and in Lipari and
Baruah (2000) for earliest-deadline-first (EDF) global schedulers.

One of the challenges of real-time composition is deriving a timing interface
for a component, i.e., separate the component’s internals from its global timing
parameters by allocating a guaranteed processor share. Wandeler and Thiele
(2005) calculate demand and service curves for components using real-time
calculus. Shin and Lee (2008) proposed the periodic resource model to specify
periodic processor allocations to components. The explicit-deadline periodic
(EDP) resource model by Easwaran et al. (2007) extends the periodic resource
model of Shin and Lee (2008) by distinguishing the relative deadline for the
allocation time of budgets explicitly. The bounded-delay model by Feng and
Mok (2002) describes linear service curves with a bounded initial service delay.

Many works presented approximated (e.g., Almeida and Peidreiras, 2004;
Lipari and Bini, 2005; Fisher and Dewan, 2012) and exact (e.g., Shin and Lee,
2008; Easwaran et al., 2007; Lipari and Bini, 2005) budget allocations for the
bounded-delay and periodic resource models under preemptive scheduling
policies. Both Lipari and Bini (2005) and Shin and Lee (2004) have presented
methods to convert the bounded-delay model into a periodic resource model.

Unlike the models by Shin and Lee (2008), Easwaran et al. (2007) and Feng
and Mok (2002), various models deviate from the principle of locality of
schedulability analysis as they make assumptions on the resource supply of
other components in the system in order to derive response times, e.g., see
the models by Davis and Burns (2005); Bril et al. (2006); Balbastre et al. (2009).
Although these alternative models tighten the response-time analysis of tasks,
unfortunately, the complexity of the analysis also increases for these models.

2.2 Task synchronization in hierarchically scheduled systems
In literature several alternatives are presented to accommodate resource sharing
between tasks in reservation-based systems. de Niz et al. (2001) support this in
their fixed-priority preemptively scheduled (FPPS) Linux/RK resource kernel
based on the immediate priority ceiling protocol (IPCP) by Sha et al. (1990)
and de Niz et al. (2001) propose a mechanism for temporal protection against
misbehaving critical sections. Steinberg et al. (2005) implemented a capacity-
reserve donation protocol to solve the problem of priority inversion for tasks
scheduled in a fixed-priority reservation-based system. A similar approach is
described in Lipari et al. (2004) for earliest-deadline-first (EDF)-based systems
and termed bandwidth-inheritance (BWI).

BWI regulates resource access between tasks that each have their dedicated
budget. It works similar to the priority-inheritance protocol (PIP) by Sha et al.

Paper C

147

(1990) and when a task blocks on a resource it donates its remaining budget to
the task that causes the blocking. BWI does not require a-priori knowledge of
tasks, i.e., no ceilings need to be precalculated. BWI-like protocols are not very
suitable for arbitrating hard real-time tasks in HSFs, because the worst-case
interference of all tasks in other components that access global resources needs
to be added to a component’s budget at integration time in order to guarantee
its internal tasks’ schedulability. This leads to pessimistic budget allocations
for hard real-time components.

A prerequisite to enable independent analysis of each of the resource-sharing
components and their integration is the knowledge of which resources a task
will access (Shin and Lee, 2008). To accommodate such resource sharing, three
synchronization protocols have been proposed based on the SRP from Baker
(1991), i.e., HSRP (Davis and Burns, 2006), SIRAP (Behnam et al., 2007) and
BROE (Bertogna et al., 2009b). Unlike HSRP’s and SIRAP’s analysis, however,
the global schedulability analysis of BROE is limited to EDF and cannot be
generalized to include other scheduling policies.

The overrun mechanism (with payback) was first introduced by Ghazalie
and Baker (1995) in the context of aperiodic servers. This mechanism was later
re-used in HSRP in the context of two-level HSFs by Davis and Burns (2006)
and complemented with a variant without payback. Although the analysis
presented by Davis and Burns (2006) does not integrate in HSFs due to the
lacking support for independent analysis of components, this limitation is lifted
by Behnam et al. (2010c).

The idea of self-blocking has also been considered in different contexts,
e.g., see Caccamo and Sha (2001) for supporting soft real-time tasks and see
Holman and Anderson (2002) for a zone-based protocol in a pfair scheduling
environment. The SIRAP by Behnam et al. (2007) uses self-blocking for hard
real-time tasks in HSFs on a single processor and its associated analysis supports
composability. In Behnam et al. (2010a) the original SIRAP analysis by Behnam
et al. (2007) has been significantly improved for arbitrating multiple shared
resources. We will show that the strength of SIRAP’s analysis comes from its
detailed system model, making it difficult to analyze components opaquely
with little timing characteristics.

The original SIRAP analysis by Behnam et al. (2007) and the compositional
HSRP analysis by Behnam et al. (2010c) have been analytically compared with
respect to their impact on the system load for various component parameters
by Behnam et al. (2009a). The performance of each protocol heavily depends
on the chosen system parameters. Moreover, these results suggest that HSRP’s
overrun mechanism with payback (OWP) is hardly beneficial compared to
overrun without payback (ONP). This observation is contradictory with the
recommendations of Davis and Burns (2006). Our new analysis makes the

Paper C

148

results in Behnam et al. (2009a) obsolete and we develop new guidelines, which
consider also BROE, to select a synchronization protocol in two-level HSFs.

2.3 Opacity versus transparency
Transparency means that synchronization primitives of one protocol can be
exchanged by another protocol without introducing new kernel primitives
in the application’s programming interface (Buttazzo, 2005). The traditional
example for transparent resource sharing in real-time systems is the priority-
inheritance protocol (PIP) by Sha et al. (1990) which transparently improves
the predictability of blocking durations compared to binary semaphores. For
example, the PCP by Sha et al. (1990) and the SRP by Baker (1991) are non-
transparent with respect to binary semaphores, because resource ceilings need
to be precalculated even to obtain the basic protocol functionality of mutual
exclusive resource access.

Although the traditional notion of transparency does not consider a hierarchy
of schedulers, BWI makes it possible for tasks located in arbitrary components to
share resources transparently. Looking only at SRP-compliant protocols, van den
Heuvel et al. (2012) have implemented HSRP, SIRAP and BROE in a real-time
micro-kernel by means of transparent primitives, enabling the system integrator
to select a synchronization protocol to optimize the overall system performance.
Transparent synchronization primitives for these SRP-based protocols hide for
the components which flavor of the SRP is used at the global level to arbitrate
shared resources.

Whereas transparency is a property of a protocol which mainly influences the
development cycle of a component, opacity influences both the development
cycle (e.g., see López Martinez et al., 2010; van den Heuvel et al., 2012) and the
analysis cycle of a component (the topic of this paper). From a development
perspective, opaque synchronization primitives hide the sharing scope of
resources during the component development and postpone binding of scope-
dependent primitives until integration time. At the end, the kernel primitives
for synchronizing local and global resources need to be different, because local
resource sharing should never interfere with the global schedule. From an
analytical perspective, opacity introduces an orthogonal level of abstraction
with respect to protocol transparency which is similar to the abstraction of
scheduling policies of independent tasks in HSFs by Deng and Liu (1997).
That is, each component can be deployed with a different synchronization
protocol, e.g., PIP, PCP or SRP, to arbitrate access to local resources and the
local protocols are independent and unconscious of the global synchronization
protocol.

If, and only if, a global resource is actually shared between components, it
must be arbitrated by a global synchronization protocol. The inherent changes

Paper C

149

in the supply of processor resources by a particular synchronization proto-
col, which prevent budget depletion during global resource access, can lead
to untruthful interface specifications under a non-opaque component-level
analysis.

For example, consider a component manufacturer which delivers a component
with a corresponding interface description specifying the component’s resource
requirements. We shall show (see Example 2) that the manufacturer may create
artificial dependencies on global resources which allow him to optimize the
required processor bandwidth of the component by means of - what we call - a
non-opaque analysis. Even if the system integrator identifies no other component
accesses the same global resources, it might be unclear whether and how
the local analysis has affected the processor requirements captured in the
component’s interface. In other words, the local optimizations based on the
specified resource requirements of a component may give an impression of
resource efficiency and, nevertheless, the system integrator may encounter
global scheduling penalties for the artificially created global dependencies.

Moreover, if a component developer would make use of properties specific
to a global synchronization protocol, then the resulting component may violate
its timing properties after the global synchronization protocol is changed. Since
the analysis of components is different for each global synchronization protocol,
we need to develop a common notion of opacity which yields a determinate
way of deriving component interfaces2. These interfaces should be independent
of the global scheduling environment in order to be general enough to select
an arbitrary global synchronization protocol.

3 REAL-TIME SCHEDULING MODEL

A system contains a single processor and a set R of M serially accessible
global resources R1, . . ., RM . The processor and these resources need to be
shared by N components, C1, . . ., CN , each comprising a sporadic, deadline-
constrained task set. A unique system-level (global) scheduler selects which
component, and when a component, is executed on the shared processor. The
component-level (local) scheduler decides which of the tasks of the executing
component is allocated the processor. The global scheduler and each of the local
schedulers of individual components may apply different scheduling policies.
As scheduling policies, we consider earliest deadline first (EDF), an optimal
dynamic uniprocessor scheduling algorithm, and the deadline-monotonic (DM)
algorithm, an optimal fixed-priority preemptive scheduling (FPPS) algorithm.

2. Opacity does not change the amount of parameters contained within an interface (i.e., the
size of the interface is unchanged); but it makes the way of computing the interface parameters of
a component independent of the global synchronization protocol.

Paper C

150

The stack resource policy (SRP) by Baker (1991) is used to arbitrate access to
shared resources between components at the global level; similarly, the SRP
is used at the local level to arbitrate access to shared resources between tasks
locally.

Since each component specifies an interface to abstract its task-set’s resource
requirements, this interface can be used to determine whether or not a com-
ponent can be admitted together with other components on the same shared
processor. If a component is admitted, a server guarantees and enforces the
periodic availability of the specified resources in the interface, so that the
component keeps meeting its timing constraints on the shared processor as
long as it behaves as specified. If it violates its interface, it may be penalized,
but other components are temporally isolated from the malignant effects.

An HSF truly executes different components in isolation in the absence of
shared resources. However, if components share resources, they cannot be
completely isolated from each other. For example, one component may violate
its interface by executing longer on a shared resource than it has specified, so
that all other components suffer from unexpectedly long blocking durations.
There are strategies for containment of temporal faults to those components
that share resources, e.g., de Niz et al. (2001) consider priority-inheritance-
based protocols and van den Heuvel et al. (2011) consider the same SRP-based
protocols as in this paper. Such strategies are beyond the scope of this paper;
we look at different methods for allocating sufficient processor time to an
individual component regardless of any other component, such that all the
resource requirements of a component are met according to its specification.

3.1 Component and task model
Each component Cs has a dedicated budget which specifies its periodically
guaranteed fraction of the processor. The timing interface of a component Cs

is specified by means of a triple Γs = (Ps, Qs,Xs), where Ps ∈ R
+ denotes its

period, Qs ∈ R
+ denotes its budget, and Xs denotes the set of resource holding

times to global resources. The maximum value in Xs is denoted by Xs, where
0 ≤ Xs ≤ Ps. The set Rs denotes the subset of global resources accessed by
component Cs, where the cardinality of Rs is denoted by ms (just like the
cardinality of Xs). The maximum time that a component Cs executes on the
processor while accessing resource R� ∈ Rs is called the resource holding time
which is denoted by Xs�, where Xs� ∈ R

+ ∪ {0} and Xs� > 0 ⇔ R� ∈ Rs.
Each component Cs contains a set Ts of ns sporadic tasks τs1, . . ., τsns

. The
timing characteristics of a task τsi ∈ Ts are specified by means of a quadruple
(Tsi, Esi, Dsi,Hsi), where Tsi ∈ R

+ denotes its minimum inter-arrival time,
Esi ∈ R

+ its worst-case execution time (WCET), Dsi ∈ R
+ its (relative) deadline

(where 0 < Esi ≤ Dsi ≤ Tsi) and Hsi denotes the set of its WCETs of critical

Paper C

151

sections. We assume that period Ps of component Cs is selected such that
2Ps ≤ Tsi(∀τsi ∈ Ts), because this efficiently assigns a budget to component
Cs in the context of the periodic resource model of Shin and Lee (2008). For
notational convenience, tasks (and components) are given in deadline-monotonic
order, i.e., τs1 has the smallest deadline and τsns has the largest deadline.

The WCET of task τsi within a critical section accessing global resource R�

(i.e., a value contained in Hsi) is denoted hsi�, where hsi� ∈ R
+∪{0}, Esi ≥ hsi�

and hsi� > 0 ⇔ R� ∈ Rs. The relation between the WCET of a critical section
(hsi�) and the resource holding times (Xs�) of a component is further explained
in Section 3.4.

3.2 Resource-supply models
The processor supply refers to the amount of processor resources that a com-
ponent Cs can provide to its workload in order to satisfy internal deadline
constraints. The supply bound function sbfΩs(t) of the EDP resource model
Ωs = (Ps, Qs, Ds,Xs), that returns the minimum supply for any interval of
length t, is given by Easwaran et al. (2007):

sbfΩs
(t) = max

⎧⎨⎩ 0,
(h(t)− 1)Qs,
t− (h(t) + 1)(Ps −Qs) + (Ps −Ds)

⎫⎬⎭ , (1)

with h(t) =
⌈
t−(Ds−Qs)

Ps

⌉
. Intuitively, an EDP resource Ωs = (Ps, Qs, Ds,Xs)

gives Qs time units of processor time every period of Ps time units and Qs is
provisioned no later than Ds time units from the start of the period Ps.

The periodic resource model Γs = (Ps, Qs,Xs) is a specialization of the EDP
resource Ωs with characteristics (Γs = (Ps, Qs,Xs)) ≡ (Ωs = (Ps, Qs, Ps,Xs)).
The deadline parameter Ds of the EDP resource model makes it possible to ex-
press relative priorities between components. Since we refrain from making any
assumptions on other components than the one under consideration, i.e., also
relative priorities are unknown, we will consider the periodic resource model
unless explicitly denoted differently. In this way, the resource requirements of
component Cs, captured in interface Γs by the local analysis, are satisfied by a
periodic resource supply of sbfΓs

(t).
The longest interval a component may receive no processor supply on a

periodic resource Γs = (Ps, Qs,Xs) is named the blackout duration, i.e.,

BDs = max {t | sbfΓs(t) = 0} = 2(Ps −Qs). (2)

The linear lower bound of the periodic resource with parameters Γs = (Ps, Qs,Xs)
is given by Shin and Lee (2008):

lsbfΓs
(t) =

Qs

Ps
(t− 2 (Ps −Qs)) . (3)

Paper C

152

The lsbfΓs
(t) in (3) is not only a linear approximation of the sbfΓs

(t) in (1), it
also models a bounded-delay resource supply as defined by Feng and Mok
(2002) with a continuous, fractional provisioning of Qs

Ps
of the shared processor

(also referred to as the virtual processor speed) and a longest initial service
delay of BDs time units.

A budget parameter Qs of interface Γs should be sufficient to meet deadline
constraints of tasks and no other constraints, e.g., related to global synchroniza-
tion, should influence the size of Qs. The set of resource holding times - denoted
in Γs by Xs - defines the amount of execution time on global resources that a
component receives for an access to a resource. In other words, if component
Cs is granted access to resource R�, it receives Xs� time units of execution time
on resource R� prior to deadline Ps.

3.3 Synchronization protocol
This paper focuses on arbitrating global shared resources using the SRP. To be
able to use the SRP for synchronizing global resources, its associated ceiling
terms need to be extended.

3.3.1 Preemption levels
Each task τsi has a static preemption level equal to πsi = 1/Dsi. Similarly,
a component has a preemption level equal to Πs = 1/Ps, where period Ps

serves as a relative deadline. If components (or tasks) have the same calculated
preemption level, then the smallest index determines the highest preemption
level.

3.3.2 Resource ceilings
With every global resource R� two types of resource ceilings are associated; a
global resource ceiling RC � for global scheduling and a local resource ceiling
rcs� for local scheduling. These ceilings are statically calculated values, which
are defined as the highest preemption level of any component or task that
shares the resource. According to the SRP, these ceilings are defined as:

RC � = max(ΠN ,max{Πs | R� ∈ Rs}), (4)
rcs� = max(πsns

,max{πsi | hsi� > 0}). (5)

We use the outermost max in (4) and (5) to define RC � and rcs� in those
situations where no component or task uses R�. The values of the local and
global ceilings as defined in (4) and (5) by definition guarantee mutual exclusive
access to their corresponding resource R� by the sharing tasks and components
and, therefore, the values of these ceilings cannot be further decreased. In some
situations - as further investigated in Section 8 - it might be desirable to limit

Paper C

153

preemptions more than is strictly required for mutual exclusive resource access,
which can be established by increasing the value of the resource ceilings in (4)
and (5) artificially.

3.3.3 System and component ceilings
The system ceiling and the component ceiling are dynamic parameters that
change during execution. The system ceiling is equal to the highest global
resource ceiling of a currently locked resource in the system. Similarly, the
component ceiling is equal to the highest local resource ceiling of a currently
locked resource within a component. Under the SRP a task can only preempt
the currently executing task if its preemption level is higher than its component
ceiling. A similar condition for preemption holds for components.

3.4 Resource holding times
The value of the local resource ceiling rcs� influences the resource holding times
(introduced by Bertogna et al., 2007), i.e., the value of Xsi� represents the
amount of processor time supplied to component Cs from the access until the
release of task τsi to resource R�. The resource holding time, Xsi�, includes the
cumulative processor requests of tasks within the same component Cs that can
preempt τi while it is holding resource R�.

The way of computing resource holding times of tasks depends on the local
scheduling policy, for example, see the method under local FPPS by Bertogna
et al. (2007) and the method for local EDF by Bertogna et al. (2009a). Moreover,
various system assumptions in the description of a particular global synchro-
nization protocol may affect the way of computing resource holding times
(e.g., see Behnam et al., 2007; Bertogna et al., 2009b; Behnam et al., 2010c).
However, all these methods can be simplified and unified (independent of the
local scheduling policy and the global synchronization protocol) by assuming
that the component’s period is smaller than the tasks’ periods. The main
observation leading to this simplification is that an access to a global resource
must be followed by a release of the resource in the same component period,
e.g., established by the self-blocking mechanisms or the overrun mechanisms
considered in real-time literature; otherwise, components do not comply with
the seminal model of Liu and Layland (1973) of periodic tasks in which each
job (an instance) of a particular task (or component) must be independent of
any of its preceding jobs. Violating this assumption would mean that we are
unable to reuse the SRP analysis at the global scheduling level, yielding an
analytical situation which is obviously undesirable.

If a resource must be accessed and released in the same component period
which is smaller than the task periods, then we can limit the number of
preemptions within a critical section and this, on its turn, will lead to a smaller

Paper C

154

resource holding time. The next lemma generalizes Lemma 1 in Behnam et al.
(2010b) and Lemma 3 in Behnam et al. (2010c) for the global SRP:

Lemma 1: Given Ps < T min
s and T min

s = min {Tsi | 1 ≤ i ≤ ns}, all tasks τsj
that are allowed to preempt a critical section accessing a global shared resource
R�, i.e., πsj > rcs�, can preempt at most once during an access to resource
R� when using any global SRP-compliant protocol, independent if the local
scheduler is EDF or FPPS.

Proof: If a task, having a period of at least T min
s , preempts two or more

times inside a critical section of resource R�, then the resource is also locked
during a period of at least a length T min

s ; thus, Xsi� > T min
s . Since Ps < T min

s ,
this would mean that Xsi� > Ps. According to the SRP (Baker, 1991), a global
resource should be accessed and released by the same instance of a component,
i.e., within period Ps. However, Xsi� > Ps yields a contradiction by requiring
a component utilization of Us ≥ Xsi�

Ps
> 1, making the component infeasible.

Lemma 1 makes it possible to compute the resource holding time, Xsi� of task
τsi to resource R� as follows:

Xsi� = hsi� +
∑

πsj>rcs�

Esj , (6)

and the maximum resource holding time within a component Cs is computed
as Xs� = max{Xsi� | 1 ≤ i ≤ ns}.

The computed values of Xs� are included in the set Xs which is part of
the component’s interface, Γs. We recall that opacity requires that the way of
computing the interface parameters Qs and Xs of a component is independent
of the global synchronization protocol; Lemma 1 establishes this requirement
for the set of resource holding times, Xs, of a component.

3.5 Overview
Table 1 summarizes the notation adopted in this paper.

4 GLOBAL SYNCHRONIZATION: PREVENT EXCESSIVE BLOCKING

In this section, we give a brief overview of the run-time mechanisms employed
by the synchronization protocols considered in this paper. Each of the protocols
applies straightforward resource arbitration by the SRP at the local level, for both
local and global resources. This means that when a task has started its execution
and tries to access a resource, irrespective of any other protocol specific actions
for global synchronization, the local component ceiling is updated immediately
as if resource access is granted.

To prevent budget depletion while a task executes on a shared resource,
HSRP (Davis and Burns, 2006) allows overrunning the budget until the task

Paper C

155

Table 1
Notation throughout this paper.

Symbol Description

N Number of components in the system
U Total utilization of allocated processor bandwidth
M Number of global resources
R Set of global resources
R� �-th global resource
RC � Global resource ceiling of R�

Cs s-th component
Πs Preemption level of Cs

Ps Period of the resource allocation to component Cs

Ds Relative deadline for the resource allocation to component Cs

ds(t) Absolute deadline at time t for the resource allocation to Cs

Qs Periodically allocated processor time for Cs

Us Allocated processor bandwidth of Cs

Rs Set of global resources accessed by Cs

Xs Set of holding times to global resources accessed by Cs

Xs� the resource holding time of Cs for R�

Xs Maximum of the resource holding times of Cs

Os Processor time for Cs merely dedicated to prevent excessive blocking
rcs� Local resource ceiling of R�

Γs Interface of Cs defining periodic resource demands of Cs

Ωs Interface Γs of Cs constrained by deadline Ds

BDs Longest duration for Cs without any processor supply
sbf(t) Minimum processor supply in any sliding window of length t
lsbf(t) Linear lower bound of sbf(t)
ICs Matrix of partial interface candidates of Cs

IC(�)
s �-th row of ICs with partial interfaces of Cs for accessing R�

Γs� Partial interface defining Cs’ demands for a given resource ceiling rcs�
Ts Task set of a component

U(Ts) Utilization of task set Ts
ns Number of tasks composing component Cs

ms Number of global resources accessed by Cs

τsi i-th task of component Cs

πsi Preemption level of τsi
Tsi Minimal inter-arrival time of task τsi
Esi WCET of τsi
Dsi (Relative) deadline of τsi
Hsi Set of WCETs of task τsi on resources
Isi Idle time (self-blocking) by SIRAP experienced by task τs1 . . . τsi
hsi� WCET of τsi’s largest critical section to R�

Xsi� Largest resource holding time of τsi to R�

releases the resource. Alternatively, SIRAP (Behnam et al., 2007) and BROE
(Bertogna et al., 2009b) each employ a self-blocking mechanism to prevent
budget overruns by only granting resource access when there is sufficient
budget left to complete the resource access.

Paper C

156

4.1 HSRP: Budget overruns
HSRP uses an overrun mechanism when a budget depletes during a critical
section. Several flavors of overrun have been compared by Behnam et al. (2010c).
If a task τsi ∈ Ts has locked a global resource when its component’s budget Qs

depletes, then component Cs can continue its execution until task τsi releases
the resource.

To distinguish this additional amount of required budget from the normal
budget Qs, we refer to Xs as an overrun budget. HSRP has two flavors: overrun
with payback (OWP) and overrun without payback (ONP). The term without
payback means that the additional amount of budget consumed3 during an
overrun does not have to be returned in the next budget period.

Although some papers on budget overruns assume Xs ≤ Qs (e.g., Davis and
Burns, 2006), we refrain from this assumption. In return, we assume that pay
back may span multiple budget replenishments, if Xs > Qs. In other words:
no budget becomes available in the subsequent budget replenishments after
the overrun happened until all remaining debts are paid back.

Budget overruns cannot take place across replenishment boundaries. For each
component Cs, the analyses of overrun protocols require Qs +Xs processor
time before its relative deadline Ps, for example, see Davis and Burns (2006)
and Behnam et al. (2010c).

4.2 SIRAP: task-level self-blocking
With SIRAP (Behnam et al., 2007, 2010a) a task is only allowed to access a
global resource when it has sufficient budget to complete the entire critical
section. If a task attempts to access a resource and the remaining budget is
insufficient, then the task blocks itself until the budget is replenished. SIRAP
guarantees access to a global resource in the replenished budget subsequent to
self-blocking. Essentially, a self-blocked task τsi consumes at most Xsi� amount
of idle time from the component’s budget while the task is waiting for its
budget to replenish. The cumulative overhead of self-blocking experienced by
task τsi over a time interval of length t can be computed as follows.

The SIRAP analysis by Behnam et al. (2010a) constructs a multi-set Gsort
si (t)

of self-blocking durations that a task τsi may experience in a time interval of
length t. The (cumulative) self-blocking term Isi(t) of a task τsi is defined as:

Isi(t) =
∑

1≤l≤z(t)

Gsort
si (t)[l], (7)

3. The actually consumed amount of processor time is by definition smaller than or equal to the
worst-case resource holding time Xsi�.

Paper C

157

where z(t) =
⌈

t
Ps

⌉
defines an upper bound to the number of self-blocking

occurrences within a time interval of length t and Gsort
si (t) defines a multi-set

(a set including duplicates of values Xsi�) of self-blocking lengths that a task
τsi may experience by itself and other tasks τsj in the same component.

This multi-set contains the extra blocking that a task may suffer due to
self-blocking by lower priority tasks:

I lowsi = max{Xsj� | πsi > πsj ∧ rcs� ≥ πsi}. (8)

In addition, the multi-set contains the self-blocking durations of task τsi itself
and the interference caused by self-blocking of higher priority tasks, so that
we can define the multi-set Gsi(t) as follows:

Gsi(t) = {I lowsi } ∪

⎛⎜⎜⎝ ⋃
(1≤j≤i)

⋃
(
1≤k≤

⌈
t

Tsj

⌉)

⋃
(R�∈Rs)

⋃
(1≤a≤msj�)

{Xsj�}

⎞⎟⎟⎠ . (9)

The term
⋃

(j≤i) iterates over all tasks τsj with a higher priority than task τsi and
includes the self-blocking by task τsi itself when i = j; the term

⋃(
1≤k≤

⌈
t

Tsj

⌉)

considers all the k activations of task τsj in an interval of length t; the term⋃
(R�∈Rs)

considers all resources R� accessed by task τsj and, finally, the term⋃
(1≤a≤msj�)

iterates over the number of resource accesses to resource R� by task
τsj . In other words: during each job-activation a task τsj may access a shared
resource R� for msj� times and it can self-block at any of these attempts. For
each attempt of τsi to access resource R�, a duplicate of the value Xsi� is
included in the multi-set Gsi(t).

Finally, the multi-set Gsort
si (t) is obtained by sorting the values in Gsi(t) in

non-increasing order. Equation (7) contributes a number of z(t) largest self-
blocking occurrences that a task τsi may experience in an interval of length t,
i.e., the first z(t) elements of Gsort

si (t).
It is important to note that the above analysis bounds the number of self-

blocking occurrences in any interval of length t by z(t) based on the minimum
ratio between task periods and the component period. After a self-blocking
occurrence has caused budget-depletion, tasks with a higher priority than
the local resource ceiling (πsj > rcs�) may arrive. Those jobs will be pushed
through to the next budget period and those are not always accounted for in
the resource holding time.

Example 1: Consider a component C1 with a local fixed-priority scheduler
and with two tasks τ11 and τ12. Task τ12 accesses a global shared resource R�

and τ11 is independent, so that the local resource ceiling rcs� = π12. Now the
following scenario can happen:

Paper C

158

1) task τ12 starts its execution and upon its attempt to access resource R�,
it encounters insufficient remaining budget to fit a processor request of
X12� time units. Task τ12 therefore initiates self-blocking.

2) a high priority task τ11 arrives just after budget depletion; Hence, it starts
executing as soon as the component’s budget is replenished and becomes
available.

3) After τ11 has finished its execution, the remaining budget is again insuffi-
cient to fit X12� time units.

The scenario is illustrated in Figure 2 and it shows that if two jobs of a single
task with higher priority than any of the local resource ceilings can execute
within one budget period, then this requires special attention.

Ps Ps

Qs

Ps

Qs Qs

self-blocking

tsb te

self-blocking

τ1

τ2 Xs2� Xs2�

Xs2�

tl

cs2�

Figure 2. SIRAP disallows that task τ2 self-blocks two times to prevent budget
overruns before access to resource R� is granted.

In order to accomodate for the extra budget requirement of tasks executing
twice within one budget Qs, it is sufficient that

Xs +
∑

j : Tsj<2Ps

Csj ≤ Qs. (10)

Note that a deadline-constrained task τsi with a period satisfying 2Ps ≤ Tsi can
execute only once within one budget Qs. Hence, those tasks are by definition
taken into account in the term Xs (see Lemma 1). For simplicity, we have
therefore assumed 2Ps ≤ Tsi in our system model, so that the summation in
(10) returns zero.

Behnam et al. (2009b) have traded off the amount of compensating budget in
(10) versus the amount of worst-case local self-blocking by refining SIRAP with
an additional local resource ceiling to regulate preemptions during self-blocking.
Without loss of generality and for simplicity of the analysis4, in this paper

4. It has been shown by Shin and Lee (2008) that the assumption 2Ps ≤ T min
s allocates an efficient

budget for a periodic resource model. Moreover, for relatively small budget periods compared
to task periods, the bounded-delay approximation of the periodic resource model is tighter (see
Lipari and Bini, 2005).

Paper C

159

we adopt the assumption by Behnam et al. (2007, 2009a, 2010a) to constrain
resource periods to 2Ps ≤ T min

s , so that (10) simplifies to Xs ≤ Qs.
Contrary to SIRAP, BROE - which also uses a self-blocking mechanism - does

not require resource access in the next budget replenishment after the first
self-blocking occurrence.

4.3 BROE: component-level self-blocking
Bertogna et al. (2009b) have proposed an alternative method of self-blocking
compared to SIRAP - called BROE - which uses EDF scheduling of tasks
and components. An analysis for BROE under task-level FPPS is presented
by Behnam et al. (2010b). Although the given analyses are opaque, BROE is
restricted to global EDF scheduling of components and the bounded-delay
model of Feng and Mok (2002).

Contrary to the other protocols, BROE’s resource-sharing overhead is left
implicit in its local analysis, because the bounded-delay model estimates
the worst-case processor supply to a component sufficiently pessimistic. It
is therefore unnecessary to account for the largest overrun of each task (as with
HSRP) and BROE also refrains from idling the processor to prevent budget
overruns (as with SIRAP). A comparison of different synchronization protocols
is therefore dependent on the underlying resource-supply model.

BROE uses a hard constant bandwidth server (H-CBS) by Abeni et al. (2009) to
provide its allocated processor bandwidth to a component Cs. Apart from period
Ps and maximum budget Qs, defining its utilization Us =

Qs

Ps
, at each time t a

H-CBS is characterized by an absolute server deadline ds(t) and a remaining
budget Qrem

s (t). Like with other servers, all pending jobs are contending for
processor resources at the server’s deadline ds(t) and whenever a job executes,
the budget Qrem

s (t) is decreased by the received execution time of that job. The
rules (1-5) of a BROE server, with respect to the current time t, are as follows
(Bertogna et al., 2009b):

1) Initially, Qrem
s (0) = 0 and ds(0) = 0.

2) When a new job of a task τi arrives at time t, if the server is idle and if
Qrem

s (t) ≥ (ds(t)− t)Us, then the server budget is replenished to the maximum
value Qs and the server deadline is set to ds(t) ← t+ Ps.

3) Let tr = ds(t)− 1
Us

Qrem
s (t). When a new job of a task τi arrives at time t, if

the server is idle and if t < tr, then the server budget is suspended until time
tr. At time tr the server budget is replenished to the maximum value Qs and
the server deadline is set to ds(t) ← tr + Ps.

4) When Qrem
s (t) = 0, the server is suspended until time ds(t), so that pending

jobs cannot contend for processor resources during time interval [t, ds(t)]. At
time ds(t), the server budget is replenished to the maximum value Qs and the
server deadline is set to ds(ds(t)) ← ds(t) + Ps.

Paper C

160

5) Whenever a pending task wishes to access a global resource R� at a time
t, it must perform a budget check. I.e., if the remaining budget Qrem

s (t) ≥ Xs�,
then there is enough budget to complete the resource access prior to server
deadline ds(t). Then, the task is granted access to resource R�. Otherwise, the
server will replenish its budget no later than time tr ← ds(t) − 1

Us
Qrem

s (t). If
tr ≤ t, this results in an immediate replenishment of the server budget to
the maximum value Qs and the server deadline is set to ds(t) ← tr + Ps. If
tr > t, the server is suspended until time tr. Next, at time tr the server budget
is replenished to the maximum value Qs and the server deadline is set to
ds(t) ← tr + Ps.

Rule 1, 2 and 4 describe a H-CBS, see Abeni et al. (2009) and Kumar et al.
(2011). BROE adds Rule 3 to the H-CBS to guarantee a fully replenished budget
when the server continues after a duration of idle time. Rule 2 and Rule 3 are
mutually exclusive. Rule 2 applies when the remaining budget Qrem

s (t) until
deadline ds(t) would require that the server supplies more processor resources
in the interval until deadline ds(t) than the server utilization Us. Otherwise,
Rule 3 applies, i.e., the supply by the server is still running ahead with respect
to its guaranteed processor utilization. Rule 5 adds resource arbitration to the
modified H-CBS. For any continuously backlogged interval of length t, i.e.,
the BROE server has pending jobs, BROE behaves as a conventional H-CBS
extended with resource arbitration (Rule 5). A request to access a global shared
resource only causes a server self-suspension if there is insufficient budget to
complete the critical section and if - similar to Rule 3 - the supplied budget by
the server is running ahead with respect to its guaranteed processor utilization.

5 COMPOSITIONAL TWO-LEVEL ANALYSIS

In this section we recapitulate the existing compositional analysis for hierarchi-
cally scheduled systems in the presence of global shared resources. Firstly, we
consider the global integration test which implements the admission control for
components based on the resource requirements specified in their interfaces.

Secondly, we consider the local schedulability analysis of a component. Using
this analysis an interface of a component is derived. The main contribution of
this section is that we define and discern opaque and non-opaque local analysis
of components.

5.1 Global schedulability analysis
Since the global scheduler is responsible for arbitrating access to global resources,
the global analysis explicitly takes into account the corresponding penalties for
global resource sharing which depend on the applied synchronization protocol.
These penalties include (i) blocking between components and (ii) protocol

Paper C

161

specific penalties for BROE, ONP, OWP or SIRAP. Dependent on the chosen
global synchronization protocol, the latter influences the processor requests by
a component or it influences the processor supplies to a component. To analyse
these scheduling penalties appropriately, we assume that during component-
integration time the synchronization protocol is known.

The following sufficient schedulability condition holds for top-level EDF-
scheduled systems (Baruah, 2006):

∀t > 0 : B(t) + DBF(t) ≤ t. (11)

The blocking term, B(t), is defined as Baruah (2006):

B(t) = max{Xu� | ∃s : R� ∈ Ru ∩Rs ∧ Ps ≤ t < Pu}. (12)

The demand bound function DBF(t) computes the total processor demand of
all components in the system for every time interval of length t, i.e.,

DBF(t) =
∑

1≤s≤N

(
Os(t) +

⌊
t

Ps

⌋
Qs

)
, (13)

where Os(t) defines the additional amount of budget that a component Cs

requires under a certain global synchronization protocol in order to prevent
excessive blocking durations for other components in the system.

With ONP a component can request for an additional amount of Xs time
units of processor time each period Ps. Hence, the term Os(t) is defined by
Behnam et al. (2010c):

Os(t) =

⌊
t

Ps

⌋
Xs. (14)

With OWP a component can only request an additional amount of Xs time
units of processor time once. Hence, the term Os(t) is defined by Behnam et al.
(2010c):

Os(t) =

{
Xs if t ≥ Ps

0 otherwise. (15)

For both SIRAP and BROE, it is required that Xs ≤ QS in order to be able
to complete an entire critical section within a single budget of size Qs. Hence,
we increase Qs with Os(t) time units if it is too small to fit Xs time units
contiguously, where Os(t) is defined as follows:

Os(t) =

⌊
t

Ps

⌋
max (0, Xs −Qs) . (16)

A global admission of EDF-scheduled components with the DBF(t)-based
analysis by Baruah (2006) has not been proven for BROE. Instead, Bertogna

Paper C

162

et al. (2009b) have modified the analysis by Baruah (2006) in order to make it
applicable to BROE and they derived a sufficient utilization-based test, i.e.,

∀w : 1 ≤ w ≤ N :
B(Pw)

Pw
+

∑
1≤s≤w

Qs +Os(Ps)

Ps
≤ 1. (17)

The test in (17) is also sufficient for SIRAP, ONP and OWP. Although this
utilization-based test is less tight than the demand-bound test, its linear time
complexity in the number of components can be interesting for open systems
where the admission test has to be executed online.

For global FPPS of components - by definition disallowing BROE - the
following sufficient schedulability condition holds (Lehoczky et al., 1989):

∀1 ≤ s ≤ N : ∃t ∈ (0, Ps] : RBF(t, s) ≤ t. (18)

The RBF(t, s) denotes the worst-case cumulative processor request of Cs and
all higher priority components for a time interval of length t, i.e.,

RBF(t, s) = Bs +
∑

1≤r≤s

(
Or(t) +

⌈
t
Pr

⌉
Qr

)
. (19)

where Or(t) defines the additional amount of budget that a component Cs

requires under a certain global synchronization protocol in order to prevent
excessive blocking durations for other components in the system.

Similar to EDF, under global FPPS and ONP the term Or(t) is defined by
Behnam et al. (2010c):

Or(t) =

⌈
t

Pr

⌉
Xr. (20)

Also under FPPS, a component arbitrated by OWP can only request an
additional amount of Xs time units of processor time once. Hence, the term
Or(t) becomes time independent and it is defined by Behnam et al. (2010c):

Or(t) = Xr. (21)

Taking into account the requirement of SIRAP that Xr ≤ Qr, we define the
term Or(t) in order to enforce that Qr is artificially increased if it is too small
to fit Xr time units contiguously within one period Pr, i.e., as follows:

Or(t) =

⌈
t

Pr

⌉
max (0, Xr −Qr) . (22)

The blocking term, Bs, is defined according to Baker (1991):

Bs = max{Xu� | Πu < Πs ≤ RC �}. (23)

Paper C

163

5.2 Local schedulability analysis
After developing a component and before publishing it to a framework inte-
grator, a component is packaged as a re-usable entity. This includes deriving a
timing interface to abstract from internal deadline constraints of tasks. Such an
abstraction requires an explicit choice for a resource-supply model, capturing
the processor supply to a component. Moreover, a component specifies what it
needs in terms of resources and exposes those resources that may be shared
globally in its interface. Whether or not a global resource is actually used by
other components is unknown within the context of a component.

There are several ways to account for local scheduling penalties due to
global resource sharing. One might assume that each resource is global and,
subsequently, account for the worst-case overhead inside the local analysis,
e.g., SIRAP’s analysis by Behnam et al. (2007, 2010a) and OWP’s analysis by
Davis and Burns (2006) and by Behnam et al. (2010c). Alternatively, one may
assume that all resources are local during the local analysis and compensate
for sharing between components at integration time, e.g., ONP’s analysis by
Behnam et al. (2010c).

The latter alternative presents the same view as during component de-
velopment, i.e., a component has the entire platform at its disposal and all
resources. Whenever a synchronization protocol for global resources is used
that is compliant with a synchronization protocol for local resources, the local
analysis of a component can be based on local properties only. We call such a
local analysis opaque, because it separates local and global resource arbitration.

Definition 1: An opaque analysis provides a sufficient local schedulability
condition for an individual component. It treats all resources accessed by the
component as local, so that, even under global sharing, properties of the global
synchronization protocol do not influence the computed interface parameters.

The key consequence of an opaque local analysis is the absence of resource
holding times in the equations that validate local schedulability. Section 3.4
already showed how resource holding times can be computed without making
assumptions on the global synchronization protocol. The opaque analyses
presented in this section accomplish that parameter Qs in the interface of
the component can also be derived regardless of the global synchronization
protocol. Table 2 gives an overview of local analyses found in literature by
indicating their opacity. The remainder of this section distinguishes opaque and
non-opaque local schedulability analyses under various global synchronization
protocols.

5.2.1 Opaque local analysis
Traditional protocols such as the PCP by Sha et al. (1990) and the SRP by
Baker (1991) can be used for local resource sharing in HSFs (see Almeida and

Paper C

164

Peidreiras, 2004). With an opaque local analysis, we can re-use the same local
analysis in the presence of global shared resources. The local analysis of ONP
by Behnam et al. (2010c) satisfies the notion of opacity, because it uses a simple
overrun upon integration and nothing else locally.

By filling in task characteristics in the demand bound DBF of (11) or the
request bound RBF of (18) and replacing their right-hand sides by (1), i.e.,
replace t by sbfΓs(t), the same schedulability analysis holds for tasks executing
within a component as for components at the global level.

We first perform these steps for local EDF of tasks for which the following
sufficient schedulability condition holds:

∀t : t ≥ 0 : dbfs(t) ≤ sbfΓs
(t), (24)

where dbfs(t) denotes the cumulative processor demand of all tasks of compo-
nent Cs for a time interval of length t.

For BROE, ONP and our new OWP analysis, the dbfs(t) is fully compliant
to the schedulability analysis for task sets on a dedicated unit-speed processor,
i.e.,

dbfs(t) = b(t) +
∑

1≤i≤ns

⌊
t−Dsi + Tsi

Tsi

⌋
Esi. (25)

The blocking term, bsi, is defined according to Baruah (2006):

b(t) = max{hsj� | ∃k : hsk� > 0 ∧Dsk ≤ t < Dsj}. (26)

Secondly, we perform the same steps for local FPPS of tasks for which the
following sufficient schedulability condition holds:

∀1 ≤ i ≤ ns : ∃t ∈ (0, Dsi] : rbfs(t, i) ≤ sbfΓs
(t), (27)

where rbfs(t, i) denotes the worst-case cumulative processor request of τsi for
a time interval of length t.

Table 2
Overview of the synchronization protocol’s support for integrating
resource-sharing components into the HSF with opaque analysis.

Analysis of resource-sharing strategies Authors Opacity

BROE Bertogna et al. (2009b) yes
HSRP - overrun without payback (ONP) Davis and Burns (2006) no
HSRP - overrun without payback (ONP) Behnam et al. (2010c) yes
Enhanced overrun Behnam et al. (2010c) no
Improved overrun without payback (IONP) Behnam et al. (2011) no
HSRP - overrun with payback (OWP) Davis and Burns (2006) no
HSRP - overrun with payback (OWP) Behnam et al. (2010c) no
SIRAP Behnam et al. (2007, 2010a) no

Paper C

165

For BROE, ONP and our new OWP analysis, the rbfs(t, i) is fully compliant
to the schedulability analysis for task sets on a dedicated unit-speed processor,
i.e.,

rbfs(t, i) = bsi +
∑

1≤j≤i

⌈
t

Tsj

⌉
Esj . (28)

The blocking term, bsi, is defined according to Baker (1991):

bsi = max{hsj� | πsj < πsi ≤ rcs�}. (29)

In Section 8 we shall show that BROE’s analysis requires to replace the
sbfΓs(t) with lsbfΓs(t) in the local schedulability conditions of (24) and (27).
Contrary to the other protocols, BROE explicitly assumes the bounded-delay
resource-supply model by Feng and Mok (2002). Since BROE’s underlying
resource-supply model captures the processor supply to a component sufficiently
pessimistic, all resources can be treated as local in the local analysis. This makes
BROE’s local analysis opaque.

5.2.2 Non-opaque local analysis
The local analysis of a component under resource arbitration by OWP or by
SIRAP does not regard global resources as local, thereby violating our definition
of opacity. Since global resources may need to be shared with tasks in other
components, the idea of SIRAP is to use the resource holding times of local tasks
to tighten the analysis of wasted resources. OWP penalizes a component for
(potentially) forcing changes in the processor supply sbfΓs

(t) due to accesses
to global resources. The properties of SIRAP and OWP are therefore reflected
on the computed value of budget Qs of a component.

A component using SIRAP demands more resources in its worst-case sce-
nario than an independent component demands. Using the analysis presented
by Behnam et al. (2010a), we therefore need to add a term, Isi(t), to account
for self-blocking to the rbfs(t, i) (see Section 4.2). The self-blocking term Isi of
a task τsi is defined in terms of z(t) =

⌈
t
Ps

⌉
, representing an upper bound

to the number of self-blocking occurrences within a time interval of length t,
and a multi-set Gsort

si (t) which comprises all self-blocking lengths Xsi� that a
task τsi may experience by itself and other tasks τsj in the same component
in a non-decreasing order. The sufficient FPPS condition for a task set Ts on a
periodic resource Γs = (Ps, Qs,Xs) is given by Behnam et al. (2010a):

∀τi ∈ Ts : ∃t ∈ (0, Dsi] : rbfs(t, i) + Isi(t) ≤ sbfΓs
(t), (30)

where rbfs(t, i) is defined in (28).
For local EDF we need to add the self-blocking occurrences of all tasks in the

component rather than the FPPS solution which considers the candidates for

Paper C

166

self-blocking of each task separately, i.e., the set of self-blocking occurrences
under local EDF can be represented by Isns(t) and can be derived from Gsort

sns
(t).

We recall that Gsort
si (t) stores all values Xsi� in a non-decreasing order and

includes a value for each individual resource access by a job of task τsi to
resource R�. Section 4.2 showed how to construct such a multi-set. The sufficient
EDF condition for a task set Ts on a periodic resource Γs = (Ps, Qs,Xs) is now
given by:

∀t : t ≥ 0 : dbfs(t) + Isns(t) ≤ sbfΓs(t), (31)

where dbfs(t) is defined in (25).
To demonstrate the effect of using properties of the global synchronization

protocol for optimizing the parameters of the component’s interface in the
local analysis, we consider a simpler non-opaque analysis than SIRAP. Behnam
et al. (2011) improved ONP by observing that the normal budget Qs of a
component Cs has to be served at least before relative deadline Ps − Xs,
resulting in a processor requirement which can be met by the EDP model
Ωs = (Ps, Qs, Ps −Xs,Xs). This improved ONP (IONP) analysis is non-opaque,
because it uses resource holding times to tighten the deadline Ds = Ps −Xs in
order to obtain a better budget parameter, Qs (thereby violating Definition 1).

Example 2: Consider a component C2 with a period P2 = 10 and a single
task τ21 = (27, 5, 27, {0.5}) which specifies an access to a global resource R� for
a duration of h21� = X21� = X2 = 0.5 time units. We use ONP for arbitrating
access to global resources. By making assumptions in the local analysis on how
ONP changes the processor supply to a component, a manufacturer may give
an untruthful impression on the efficiency of the component.

According to the IONP analysis where the resource holding time of 0.5
time units is exploited to tighten the deadline for budget Q2, it is sufficient
to allocate Q2 = 2.5 time units every period of 10 time units. This budget
allocation is derived from the EDP resource Ω2 = (P2, Q2, P2 − X2, X2) =
(10, 2.5, 9.5, {0.5}) and it is computed based on the assumption that an
additional amount of 0.5 time units may need to be supplied within one
component period to complete resource access by means of a budget overrun.

If resource R� turns out to be local to component C2, i.e., component C2 is
entirely independent of other components in the system, then budget overruns
are unnecessary for accessing resource R�. An independent component C2

would have required a periodic budget of Q2 = 8
3 time units every period of

10 time units.
If a component developer would have provided the interface computed by

means of the non-opaque IONP analysis intentionally, then the component
may look more attractive, because it requires an optimal processor bandwidth
- meaning that reducing the deadline D2 further than 9.5 does not yield lower

Paper C

167

bandwidth requirements - of only 2.5 time units instead of the larger quantum
of 8

3 time units every period of 10 time units. We recall, however, the 2.5 time
units must be supplied within 9.5 time units from the budget’s release, leading
to a density of processor allocations of 2.5

9.5 . This density under the tightened
EDP constraint is higher than the one without resource sharing satisfying the
periodic resource model Γ2 = (10, 8

3), i.e., 8/3
10 < 2.5

9.5 . In other words, at the
level of composition one may admit a component into the system requiring
8
3 time units every 10 time units while one may need to reject a component
requiring 2.5 time units before relative deadline 9.5 every 10 time units. Hence,
a non-opaque analysis may give the illusion of resource efficiency by artificially
creating resource dependencies.

The above example clearly shows the importance of opaque analyses for
open environments. The only protocols satisfying these properties are (the basic
version of) ONP and BROE. Surprisingly and contrary to both ONP, the current
local OWP analysis is non-opaque, but for OWP the violations of the opacity
property do not lead to an improved analysis for components (as it does with
IONP), irrespective of whether or not global resources are actually shared or
not.

According to Behnam et al. (2009a, 2010c), OWP has additional pessimism at
the local scheduling level compared to overrun without payback (ONP). They
have therefore modified the sbf(t) compared to the definition given in (1),
see Behnam et al. (2010c). Firstly, due to payback a component may supply
less resource within a component period. Secondly, the payback increases the
blackout duration of a component. The current local OWP analysis is non-
opaque, because it needs to know which resource are shared globally in order
to modify the sbf(t) accordingly. OWP is therefore hardly beneficial in its
current form compared to ONP. Should overrun with payback therefore be
considered obsolete based on these observations, or not?

6 SRP WITH BUDGET OVERRUNS: TO PAYBACK OR NOT TO PAY-
BACK?
We reconsider the problem of resource sharing across budgets. Ghazalie and
Baker (1995) recognized that when tasks access resources across their budget
with the SRP, their budget may deplete during resource access so that other
components may experience an excessive blocking duration. As a solution, they
proposed to overrun the budget Qs until the critical section completes and they
subsequently deduct the amount of overrun from the next budget replenishment
of the corresponding component. Their (global) analysis corresponds to the
analysis by Davis and Burns (2006) and Behnam et al. (2010c) in the sense that
we need to account for additional interference to all other components due to

Paper C

168

a worst-case over-provisioning of Xs budget which facilitates the overrun. This
results in the sufficient schedulability condition under global EDF and FPPS of
components as defined in (11) and (18).

Qs Xs

(a)

Qs −Xs
BDs = 2(Ps −Qs) +Xs Qs

Qs Xs

(b)

BDs = 2(Ps −Qs)
Qs Qs −Xs

Qs

Ps Ps Ps

Figure 3. Worst-case characterization of the periodic processor supply for the
SRP with mechanisms for overrun and payback, as presented in Behnam et al.
(2010c).

We now need to characterize the worst-case resource supply to the tasks
serviced by component Cs. Behnam et al. (2010c) distinguish two cases to
represent the worst-case processor supply, see Figure 3. The worst-case scenario
happens after the first budget supply of Qs has overrun with an amount of Xs.
This leads to a payback in one of the subsequent component periods. A payback
in the second period, as shown in Figure 3(a), means that (i) the amount of
overrun Xs is deducted from the next replenishment of Qs; and (ii) the next
replenishment of Qs is serviced as late as possible before the deadline Ps. The
longest blackout of the processor supply is BDs = 2(Ps −Qs) +Xs.

Alternatively, the component may overrun its budget again in the second
period, see Figure 3(b), so that a payback happens in the third period. The
budget in the third period is again supplied as late as possible, taking into
account that there must be enough time until the deadline to accommodate for
another overrun. This scenario has a smaller worst-case processor blackout of
BDs = 2(Ps −Qs).

Since component deadlines are assumed to be equal to their period Ps,
it is sufficient to consider the response time of the first activation of each
component, see (19). Furthermore, the schedulability test in (18) guarantees
that an amount of Qs +Xs budget can be provisioned within a period Ps. As a
consequence, the latest start time of that budget provisioning is Ps − (Qs +Xs).
This is independent of whether or not an overrun has taken place, as shown
in Figure 4.

We can now derive the following lemma:
Lemma 2: A component Cs following the periodic resource model Γs =

Paper C

169

Xs

(c)

Qs −Xs

Xs

(b)

Qs −Xs Qs

XsQs −Xs

BDs = 2(Ps −Qs)

BDs = 2(Ps −Qs)

Qs Xs

Qs Xs

(a)

Qs −Xs Qs

Ps Ps

BDs = 2(Ps −Qs)Qs Xs

Ps

Figure 4. The latest starting time of the processor supply in each period is
independent of whether or not an overrun takes place in that period.

(Ps, Qs,Xs), arbitrating global shared resource using the OWP mechanism,
cannot experience more than the regular blackout duration of BDs = 2(Ps−Qs).

Proof: Following the periodic resource model Shin and Lee (2008), shown in
Figure 4, the latest time that a budget of at least Qs−Xs will be provisioned is at
time Ps− (Qs+Xs), because there must be sufficient time between the finishing
time of the normal budget Qs and the period boundary Ps to accommodate for
an overrun situation. Hence, the Ps −Xs is an implicit deadline for the normal
budget Qs, so that the blackout for two consecutive budget supplies is at most
BDs = 2(Ps −Qs).

Contrary to ONP, we cannot make the implicit deadline Ps−Xs of budget Qs

explicit for OWP by applying the EDP model by Easwaran et al. (2007), because
this would further reduce the blackout duration to BDs = 2(Ps −Qs)−Xs, see
Figure 5. Although this is obviously optimistic for OWP, this explicit deadline
improves the local analysis of ONP (see Behnam et al., 2011). This improved
ONP (IONP) analysis is non-opaque, because it uses resource holding times to
tighten the computed budget parameter of a component.

The result of Lemma 2 is the same as the analysis derived by Davis and
Burns (2006), although they do not support a compositional analysis. Behnam
et al. (2010c) came up with an improved OWP method - called enhanced overrun
- to improve the blackout duration assumed by their initial OWP analysis, see
Figure 6. They improve their analysis by postponing the next replenishment
of a component, i.e., contrary to Lemma 2 they postpone the start time of the
budget provisioning. However, their alternative (i) requires modifications in
the implementation of the overrun mechanism, since it alters the periodicity of

Paper C

170

BDs = 2(Ps −Qs)−Xs

Qs Xs Qs Xs

Ps Ps Ps

Qs Xs

Ds

Figure 5. Since budget Qs must be provisioned before deadline Ps − Xs, the
EDP resource model Easwaran et al. (2007) enables a tighter, non-opaque ONP
analysis.

budget releases and (ii) still assumes a pessimistic budget supply of at most
Qs −Xs in an interval of length 2Ps.

Ps Ps

BDs = 2(Ps −Qs)

Ps

QsQs −Xs Qs

Xs

Figure 6. In Behnam et al. (2010c) the extra blackout due to payback is reduced
by introducing a flexible release off set for budget Qs −Xs, i.e., illustrated by the
initial delay of Xs.

The latter source of pessimism is inherited from the analysis by Davis and
Burns (2006), which considers the effect of push-through blocking due to an
overrun with payback. This effect is shown in Figure 4(c), where a task arrives
just after depletion of budget Qs −Xs. Although the task is pushed through to
the next budget replenishment, the blackout duration of the processor supply
remains BDs = 2(Ps − Qs). Using the periodic resource model by Shin and
Lee (2008), however, we already assume an initial delay of BDs followed by a
periodic supply of a budget of size Qs.

We also recall that the overrun budget Xs is merely for global reasons, because
the task set does not need an extra budget of Xs, i.e., it is already feasible
with a budget of Qs every period Ps. The remaining question is: given that a
fixed-priority-scheduled task set using a plain SRP-based resource arbitration
is schedulable on a periodic resource Γs = (Ps, Qs,Xs), is there any task that
may experience insufficient budget after a payback of at most Xs budget?

The analysis by Behnam et al. (2010c) is based on the point of view that the
minimum resource supply in an interval of length Ps must be assumed to be
equal to Qs −Xs, as is suggested by Figure 3. We will show that the model
in Behnam et al. (2010c) is indeed overly complex and pessimistic. The main
reasoning behind this claim is that the task set as a whole actually receives Qs

budget in an interval of length Ps, but the individual resource supply to a task
activation has changed. An overrun advances exactly the amount of budget

Paper C

171

of at most Xs to complete the critical section. The task activations that have
consumed this overrun cannot claim again processor time in the next budget
supply, so that a potential subsequent overrun cannot be caused by them. The
overrun budget in Figure 4 is grid-marked to indicate its partial availability.

Lemma 3: Given that a task set Ts under SRP-based resource arbitration is
schedulable on a periodic resource Γs = (Ps, Qs,Xs), a task τsi ∈ Ts cannot
miss its deadline when adding an overrun with payback mechanism.

Proof: We only need to consider the case where an overrun situation has
taken place subsequently causing a payback at the next budget replenishment.
Otherwise, the resource supply is unchanged compared to the sbfΓs

for
independent components, see (1).

We observe that an overrun situation can only be caused by a resource lock
by any of the tasks τsi ∈ Ts. Assume that task τsi locks resource R�, so that the
component ceiling is at least equal to the resource ceiling rcs�. Furthermore,
budget Qs depletes during resource access. This means that component Cs may
overrun its normal budget Qs for at most an amount of Xs� processor time,
which allows completing the critical section initiated by task τsi.

We prove by contradiction that no task τsj ∈ Ts will miss a deadline due to
the payback of Xs� budget at the next replenishment of the normal budget Qs,
i.e., assume that there exists a task τsj ∈ Ts that will miss a deadline after an
overrun.

We tackle this proof obligation by distinguishing four cases: tasks that may
preempt the critical section (πsj > rcs�), tasks that are blocked during the
critical section (rcs� ≥ πsj > πsi), the resource-locking task τsi itself (πsi = πsj)
and tasks that have a lower priority than the resource-locking task (πsi > πsj).

1) πsj > rcs�: these tasks may preempt the critical section. Moreover, these
tasks contribute to the length of Xs� for at most a single preemption (Lemma 1).
This means that if the task arrives after depletion of Qs and an overrun takes
place, then it will execute in the overrun budget. Contrary to the assumptions
in Behnam et al. (2010c), this task will actually consume the overrun budget
when it is available. An activation of task τsj which consumes Esj of overrun
budget cannot request the same amount of budget in the next budget period Ps,
because it has already finished its execution during the overrun. And vice versa:
if an activation of task τsj requests for Esj of normal budget, then it did not
execute during a possible overrun in the previous budget period. An overrun
in the previous period could therefore have at most a length of Xs� − Esj . If
Esj of the overrun has not been consumed, then the next budget supply will
also not be reduced with this amount of payback. Thus, the resources requested
by the current activation of task τsj , i.e., Esj , will be available before task τsj
will miss a deadline. Hence, no higher priority task τsj where πsj > rcs� will
miss a deadline due to a payback.

Paper C

172

2) rcs� ≥ πsj > πsi: these tasks are blocked during the critical section by the
resource ceiling. When we do not advance the overrun budget Xs� compared to
plain SRP-based resource arbitration, these tasks are schedulable. The reason is
that the blocking duration of at most Xs� is already accounted in the rbfs(t, j)
of task τsj . A new periodic supply cannot start with local blocking, because
blocking should already start in the previous provisioning and use the overrun
(if needed). Hence, OWP does not cause a deadline miss for any of the tasks
τsj that are blocked by the resource-accessing task τsi.

3) πsi = πsj : for the resource locking task τsi itself the same reasoning holds
as for the first case: it either consumes an amount of hsi� of the overrun budget
in the previous budget period or it consumes hsi� from the normal budget Qs

in the current budget period. Both cases are mutually exclusive and cannot
cause a deadline miss.

4) πsi > πsj : these tasks have a lower priority than the resource-locking
task and have already accounted Xs� as interference in their rbfs(t, j). Hence,
similarly to case 3, these tasks cannot assume that any budget would be
immediately available after replenishment of Qs in case of plain SRP-arbitration.
The OWP mechanism does therefore not cause a deadline miss to any task τsj
where πsi > πsj .

By contradiction we have proven that advancing the resource supply of Xs

due to overrun with payback does not hamper the schedulability of task set Ts
compared to plain SRP-based resource arbitration.

From both Lemma 2 and Lemma 3 we directly obtain the following results:
Theorem 1: The local schedulability analysis in (27) for a task-set Ts on an

SRP+fixed-priority-scheduled periodic resource Γs = (Ps, Qs,Xs) can be applied
when arbitrating global shared resources using overrun with payback (OWP).

Theorem 2: The local schedulability analysis in (24) for a task-set Ts on an
SRP+EDF-scheduled periodic resource Γs = (Ps, Qs,Xs) can be applied when
arbitrating global shared resources using overrun with payback (OWP).

We believe these theorems yield an interesting result, because they show
that the local schedulablity analysis of overrun with and without payback
are exactly the same. In particular, we can reuse the sufficient schedulability
condition for ONP as presented in (27) and (24).

Finally, we answer the main question of this section: to payback or not
to payback? The global schedulability analysis for components arbitrated by
overrun with payback is unchanged and was already considerably better than
the global analysis of overrun without payback. In addition, we have improved
the local schedulability analysis, such that there is no difference between ONP
and OWP. Hence, there is no reason to deploy overrun without a payback
mechanism from an opacity perspective.

Paper C

173

7 OPAQUE LOCAL ANALYSIS FOR SIRAP
In this section we derive an opaque local analysis for SIRAP. With the non-
opaque SIRAP analysis by Behnam et al. (2010a), one must know the number
of accesses to any global resource by each individual job. Although this is
unnecessary for HSRP and BROE, it makes SIRAP superior to ONP in case
each of those resources are actually shared with at least one other component.

HSRP accounts for a worst-case overrun in each component period, while an
actual overrun does not necessarily happen each period. However, exposing a
multi-set of resource holding times to the global schedulability test (similar to
SIRAP) is impossible for HSRP, because this breaks the independent analysis
of components due to the dependency of Gsort

si (t) on the time values t in the
testing set of the tasks in Ts.

Since each element in the set Gsort
si (t) is at most of length Xs, ONP only

performs equally well when a self-blocking of approximately Xs is deducted
in each component period. SIRAP is therefore always superior to ONP, so that
the ONP analysis can be safely used to implement a SIRAP system.

Theorem 3: If a task set Ts is deemed schedulable on a periodic resource
Γs = (Ps, Qs,Xs) using the ONP analysis, then it is also feasible on a periodic
resource Γ′

s = (Ps, Qs +Xs,Xs) using a SIRAP implementation.
Proof: The sufficient FPPS condition for a task set Ts on a periodic resource

Γs = (Ps, Qs,Xs) is given by (30):

∀τi ∈ Ts : ∃t ∈ (0, Dsi] : rbfs(t, i) + Isi(t) ≤ sbfΓs(t), (32)

where rbfs(t, i) is defined in (28), sbfΓs(t) is defined in (1) and the exact
construction of Isi(t) is given in (7), see Section 4.2. By definition it holds that
∀e ∈ Gsort

si (t) : e ≤ Xs. Hence, the schedulability condition in (32) is implied
by:

∀τi ∈ Ts : ∃t ∈ (0, Dsi] : rbfs(t, i) +
⌈

t
Ps

⌉
Xs ≤ sbfΓs

(t). (33)

Since within one budget period a self-blocking occurrence can only happen at
the end of a supply due to insufficient budget to complete a critical section, we
can remove the dependency on t provided that we add Xs extra budget in each
component period. In other words, for a given Ps the smallest conservative
budget Q′

s can be derived by:

Xs + (minQs : (∀τi ∈ Ts : ∃t ∈ (0, Dsi] : rbfs(t, i) ≤ sbfΓs
(t))) . (34)

The right-hand term of (34) is the same as schedulability condition for ONP,
see (27), which concludes our proof for local FPPS. Since our proof is based on
the observation that every server period Ps an at most e idle time is inserted
(∀e ∈ Gsort

si (t) : e ≤ Xs), the same steps as above can be straightforwardly

Paper C

174

applied to the dbfs(t)-based test in (31) for local EDF of tasks, which concludes
our proof.

Given Theorem 3, we make it possible to integrate a component validated
by an opaque analysis for both SRP+FPPS and SRP+EDF into the HSF, while
using SIRAP for global resource arbitration.

8 A DESIGN METHODOLOGY

So far in this paper, we have shown that ONP and BROE have opaque analysis
and we have developed a new opaque analysis for OWP and SIRAP. In this
section, we propose a three-step approach for optimizing the overall resource-
requirements of a system at integration time.

The objective of our approach is as follows. We are given the following
parameters of a component: (i) a task set T with predefined task characteristics
(Tsi, Esi, Dsi,Hsi), (ii) a local scheduling policy (FPPS or EDF) and (iii) the
period of the component, Ps. Given these component parameters, we want to
compute the remaining two parameters of the component’s interface Γs, i.e., we
compute the smallest budget Qs that satisfies local deadline constraints of tasks
and we compute the set of resource holding times Xs. These parameters must
be computed independent of the global synchronization protocol, such that the
local (opaque) schedulability analysis is satisfied and the overall impact on the
global system load is minimized. In order to reach our objective, we define
three steps.

Firstly, one must select a resource-supply model, which may significantly
impact the allocated budget to a component - even if a component shares no
global resources. In the presence of global shared resources, a synchronization
protocol may limit the choice of a resource-supply model. Hence, we consider
the problem of making this dependence opaque, so that the choice of a
resource-supply model can also be deferred until integration time (just like the
synchronization protocol).

Secondly, a local resource ceiling must be selected for each shared resource.
Contrary to local shared resources, for global resources an artificial increase
of the local resource ceiling compared to (5) may improve schedulability. On
the one hand, an explicit assumption on local resource ceilings affects the
local analysis non-opaquely, because a component gives up its local view on
resource sharing. On the other hand, since opacity allows one to defer the
choice of a global synchronization protocol until system integration, binding of
synchronization primitives may come with globally selected local ceilings. For
example, Davis and Burns (2006) disable all local preemptions during global
resource access. We consider the problem of finding the local resource ceilings
that allow for a maximum reuse at the level of composition in terms of global

Paper C

175

schedulability, i.e., we capture each of those component configurations in an
interface candidate.

Thirdly, given a set of components that need to be executed on a set of
resources and a processor, we search for a method to select one of those
interface candidates (i.e., we fix the resource-supply model and we choose the
appropriate local resource ceilings) that minimize the system load.

The second and the third step are inspired by the methods by Shin et al. (2008)
and Behnam et al. (2010b) of deriving and selecting interface candidates. Their
approach cannot be applied directly, because they implicitly assume that all local
resources are globally shared between components. If this assumption is violated,
then their method may not lead to optimal solutions. Lifting their assumption
is difficult, because it increases the design space of a system exponentially.
That is, each of the ms resources accessed by a component can be globally
shared (or not) and all 2ms combination should be considered. Fortunately, an
opaque analysis enables us to traverse this exponentially sized design space
in O(MNnmax

s) time and space complexity, where nmax
s = max{ns | 1 ≤ s ≤ N}.

Compared to Shin et al. (2008) and Behnam et al. (2010b), the complexity of
our method is only a factor M higher. By exploiting the key concept of opacity
that all resources are assumed to be local in the local analysis, we obtain a
tighter integration of resource-sharing components than Shin et al. (2008) and
Behnam et al. (2010b) did.

We conclude this section with a case study. It demonstrates our design
methodology and it compares our algorithms to the algorithms by Shin et al.
(2008) and Behnam et al. (2010b).

8.1 Choosing a resource-supply model
Each of the global synchronization protocols considered in this paper has a
period constraint Ps. For any access to a global resource granted by the global
SRP, the period Ps serves as a relative deadline for completion of a resource
access. For SIRAP and BROE, the period Ps also bounds the waiting time of a
task that wishes to access a global resource.

Given a period constraint Ps, the bounded-delay model gives a linear lower
bound lsbfΓs(t) of the actually supplied resources by a periodic resource
sbfΓs(t) with the same period parameter (see Lipari and Bini, 2005). For this
reason, the schedulability analysis for OWP, ONP and SIRAP using the bounded-
delay model is sufficient but pessimistic. BROE must use the bounded-delay
model and a period constraint Ps, while it is non-compliant with the periodic
resource model by Shin and Lee (2008); this is the main weakness of BROE
compared to the other protocols.

Example 3: Consider component C3 with a period P3 = 10 and two tasks:
τ31 = (1000, 2, 29, {0.5}) and τ32 = (1000, 1, 1000, ∅). Task τ31 accesses a global

Paper C

176

resource R1 for a duration of h311 = X31 = 0.5 time units; task τ32 is indepen-
dent. The smallest budget satisfying the local schedulability condition is the
same for both deadline-monontonic scheduling as well as for EDF scheduling of
tasks. Using the local schedulability condition in (27), we derive Q3 = 1, yielding
an interface Γ

(PRM)
3 = (10, 1, {0.5}). Without any global resource sharing, the

required processor bandwidth of component C3 is therefore 0.1, see Figure 7(a).
When arbitrating resource R1 with BROE, however, a budget of Q3 = 1 is
insufficient, see Figure 7(b). According to BROE’s bounded-delay criteria, i.e.,
using (3), component C3 requires a budget of Q3 = 1.63. The corresponding
bounded-delay interface Γ

(BDM)
3 = (10, 1.63, {0.5}) yields a bandwidth of 0.163.

To compare: arbitrating resource R1 with ONP or OWP would allocate an
overrun budget of 0.5 time units, so that the allocated processor bandwidth for
C3 becomes 0.15. In this example, BROE requires more processor bandwidth
than ONP, OWP or - by virtue of Theorem 3 - SIRAP.

Qs

Ps Ps Ps

ds,k−1 = 9 ds,k = 19

τ1

τ2
BDs = 2(Ps −Qs) Qs

0 ds,k+1 = 29

Qs

Qs

ds,k−1 = 9 ds,k = 19

τ1

τ2
BDs = 2(Ps −Qs)

0 d′s,k = 24

self-blocking

tr = 14

Qs

ds,k+1 = 34

Qs

(a)

(b)

Ps Ps Ps

Ps

Figure 7. The periodic resource model is inapplicable to BROE.

Although it has been shown by Kumar et al. (2011) that a conventional H-CBS
without support for resource sharing complies to the periodic resource model,
Example 3 shows BROE’s pessimism compared to a conventional H-CBS at both
the local and global scheduling level. Firstly, BROE cannot guarantee at least
sbfΓs

(t) processor resources to its task set in any interval of length t within
a backlogged period. Secondly, there are many possible server deadlines. An
important difference of BROE compared to other protocols is that the worst-case
processor supply to a component changes dependent on both (i) the size of the
statically computed resource holding times Xs� and (ii) the actual time at which
a task attempts to access resource R�. With the other protocols the processor
supply merely changes dependent on the size of the statically computed Xs�

values. The latter difference indicates an infinite amount of possibilities for
absolute deadlines within a backlogged server period. The lack of a finite set

Paper C

177

of server deadlines complicates an integration of BROE servers into the HSF
by using the enhanced demand-bound test of Baruah (2006) for EDF. Bertogna
et al. (2009b) have therefore proven a sufficient utilization-based integration
test, as presented in (17).

We conclude that a BROE server is non-compliant with the periodic resource
supplies of Shin and Lee (2008) and Kumar et al. (2011). Inherent to the
rules of BROE, however, the server has a period Ps (see Bertogna et al.,
2009b). Given a period constraint Ps, the bounded-delay model always gives
a linear lower bound lsbfΓs

(t) of the actually supplied resources sbfΓs
(t) by

a periodic resource Γs with the same period and budget parameters. BROE’s
pessimism in the allocation of processor bandwidth is inherited from the
bounded-delay model and the amount of pessimism compared to the periodic
resource model heavily depends on the timing characteristics of tasks and the
interface parameters of the comprising component.

Clearly, for the arbitration of accesses to global resources BROE cannot get
seamlessly attached to any arbitrary component represented by its periodic
interface Γs. This requires that the budget parameter Qs in interface Γs is linearly
estimated by means of the bounded-delay model. Since the resource-supply
model is enforced by BROE, the global synchronization protocol influences the
computed budget Qs, thereby violating the notion of opacity in Definition 1.

Nevertheless, one could construct an interface for a component using the
periodic resource model and convert it to a bounded-delay interface when
BROE is elected for global resource arbitration. An interface Γs = (Ps, Qs,Xs),
computed according to (27), represents a virtual task τ ′ = (Ps, Qs, Ps,Xs). By
applying the bounded-delay abstraction using the lsbfΓ′

s
(t) on the virtual task

τ ′, one can derive a conservative budget Q′
s which ∀t ≥ 0 upper bounds the

periodic supply sbfΓs
(t). According to the method by Lipari and Bini (2005),

Q′
s is found by:

Q′
s =

−(Y − 2Ps) +
√

(Y − 2Ps)2 + 8PsQs

4
, (35)

where Y = 2Ps −Qs.
Reconsidering Example 3: applying the bounded-delay criteria onto the

periodic resource model (PRM) Γ
(PRM)
3 = (10, 1, {0.5}) gives a conservative

budget of Q′
3 = 2.5 time units. Although this method of converting interfaces

allows a component to be be analysed with an arbitrary resource-supply model,
the derived interface suffers abstraction overheads of two resource-supply
models. It is therefore unattractive to convert a resource-supply model at the
interface level.

A more processor-efficient solution is to delay the choice of a resource-supply
model by deriving two interfaces for each component, Γ(PRM)

s and Γ
(BDM)
s , i.e., one

Paper C

178

interface for the periodic resource model (PRM) and one interface for its linearly
approximated bounded-delay model (BDM). Upon component integration, we
select an interface based on the global synchronization protocol.

To summarize, we foresee three solutions to make an opaque local analysis
for a component independent of a resource-supply model:

1) Bounded-delay interfaces: by assuming an HSF where components are
always composed based on bounded-delay interfaces, the periodic sup-
ply is by default approximated linearly. Although this is pessimistic
for frameworks using ONP, OWP or SIRAP, the compositional model
provides an open environment for components even in the presence of
shared resources regardless of the synchronization protocol. Moreover, no
additional complexity for converting component interfaces is required at
the level of composition.

2) Periodic-supply interfaces: by assuming an HSF where components
are always composed based on periodic-supply interfaces, one must
convert the periodic interface into a bounded-delay-compatible interface
when BROE is chosen for arbitrating access to global resources. During
system composition, this approach may cause pessimism in the interface
conversion.

3) Interface candidates: by providing an interface candidate for each resource-
supply model, one can select the appropriate interface based on the
HSF’s global scheduling and resource-arbitration policies. During system
composition, this approach requires that the resource-supply model is
a parameter of the derived component interface, but it prevents that
assumptions on the resource-supply model impact the performance of
the HSF under certain scheduling policies.

Since we are interested in the relative performance of global synchronization
protocols, in this paper we implicitly apply the latter approach.

8.2 Choosing local resource ceilings
Looking at the global system performance, the global resource ceilings are
optimally configured according to the SRP, see (4). This is irrespective of
whether the global scheduling policy is FPPS or EDF, because higher resource
ceilings impose more blocking and lower resource ceilings violate mutual
exclusive access to a shared resource. Within the hierarchy of an HSF, however,
the local resource ceilings in (5) require the smallest budget, but may introduce
large resource holding times Xs� and, hence, large blocking terms for other
components in the system. This raises the question: how to select local resource
ceilings in the most resource-efficient way for the integrated system as a whole?

Each component exposes a number of ms values of maximum resource
holding times, Xs� ∈ Xs, of an access to resource R� in its interface specification.

Paper C

179

The local resource ceiling rcs� of resource R� can have at most ns possible
values, leading to different values for resource holding time Xsi� and its
derivative Xs�. In general, each of the nms

s combinations yields a possible
interface (Ps, Qs,Xs) - called an interface candidate. It is therefore unattractive
to explore every combination of interface candidates of composed components.

It is not just the number of iterations for exploring the set of interfaces that
explodes exponentially. A component may need a total of 2ms sets of interface
candidates and each of these sets may need to traverse an exponential number
of candidates. The reason of this rapid design space explosion is that each
resource accessed by a component may affect the size of budget Qs if the
corresponding local resource ceiling is increased artificially. To eliminate the
impact of global sharing of a particular resource in case no other component
accesses the same resource, a separate set of interface candidates with different
local resource ceilings for the other global resources should be constructed. At
the same time, also those remaining resources may or may not be shared by
other components. Given that a component Cs accesses ms global resources,
this leads to 2ms sets of interface candidates.

Shin et al. (2008) sidestepped the problem of determining the sharing scope
of resources by simply assuming that all resources accessed by a component
are globally shared. Next, they proposed a method to explore the space of
all possible ceilings of the accessed resources. To simplify this problem, Shin
et al. (2008) assume that a component may access an arbitrary resource for a
duration of at most Xs time units.

The main observation of Shin et al. (2008) is that a lower local resource ceiling
rcs� leads to less local blocking, i.e., the lower rcs�, the lower the contribution of
bsi to the rbfs(t, i) in (27) or of b(t) to the dbfs(t) in (24). Hence, the optimization
criterion is represented by a Pareto trade off: the smaller the resource holding
time is, the more blocking tasks experience locally and, thus, the more budget
a component requires.

Furthermore, given a set of interface candidates for a component, initially
an empty set, one only needs to consider settings that lead to an interface
candidate which has both a smaller budget Qs and a smaller value of Xs than
any of the existing candidates have. In order to do so, the algorithm by Shin
et al. (2008) tries to increase the local resource ceiling that causes the largest
Xs and, in addition, the other local resource ceilings are increased if this does
not require additional budget. Since all resources are globally shared anyway,
it is sufficient to traverse the task set once, i.e., there are only ns possible local
resource ceilings to be considered. Hence the set of interface candidates is at
most of size ns and it can be generated in O(ns) iterations.

We observed the above trade off between the amount of local blocking and
the amount of budget can fail for non-opaque analyses. For example, SIRAP’s

Paper C

180

analysis may allocate a smaller budget when the local resource ceiling is selected
at a higher value than the necessary value in (5) determined by the SRP, so
that the resource holding times are smaller. As a result, the added overhead for
self-blocking, Isi, to the rbfs(t, i) in (30) is smaller. Even if a global resource is
not shared with other components, the term Isi is present in the local analysis.
Hence, none of the interface candidates in the produced set presents the view
of local sharing of a resource. Moreover, since each resource holding time
Xsi� may contribute to the size of the budget Qs differently, each of the nms

s

combinations of resource ceilings may enter the set of candidates.
Although Shin et al. (2008) implicitly use an opaque analysis, their method

has two limitations: (i) it only considers ONP and (ii) if the local ceiling that
determines Xs is increased (with the aim to decrease Xs) while that resource
is not globally shared, then the budget of the component is unnecessarily
increased. Behnam et al. (2010b) have applied the method by Shin et al. (2008)
to BROE. As a consequence of optimizing just Xs, however, all resources are
considered as globally shared; this is inconsistent with the local view of opacity.

We lift the assumption by Shin et al. (2008) that all global resources are
globally shared. Our main idea is to repeat the step for generating interface
candidates of a component for each resource separately. We derive a set of partial
interface candidates for each resource accessed by the component, assuming this
is the only resource that is globally shared with other components. Similar to
Shin et al. (2008), the use of an opaque local analysis ensures that the lowest
local resource ceiling yields a partial interface candidate that allows us to
consider also this globally exposed resource as a local resource. We derive ms

sets of partial interface candidates and in case ms = 1 our method specializes
to the method proposed by Shin et al. (2008).

As a consequence of splitting interfaces into partial candidates per global
resource, the selection criterion for the component interfaces (i.e., the actual
selection of the local ceilings) of an entire system also becomes more complicated
than the approach in Shin et al. (2008). Those partial candidates corresponding
to the resources that are actually shared globally are combined into a timing
interface of a component at integration time. In other words, the complete set of
interface parameters for one component is derived from a selection of at most
ms of its partial candidates. To optimize the system load of a combination of
resource-sharing components, we extend the interface selection method by Shin
et al. (2008) by explicitly optimizing the blocking on the bottleneck resource.

In the remainder of this section, we first explain the measure of the system
load, being used as our optimization criterion. Next, we present an algorithm
to derive partial interface candidates. Finally, we show how partial interfaces
can be combined into a true interface of a component.

Paper C

181

8.2.1 System load
The system load is a quantitative measure to represent the minimum amount
of processor resources necessary to guarantee the schedulability of the system.
Its value therefore depends on the global scheduling policy.

From the global schedulability tests in (18) for FPPS of components, we
define the processor request bound (αs) as

αs = min

{
Bs + RBF(t, s)

t

∣∣∣∣ 0 < t ≤ Ps

}
. (36)

Similarly, from the global schedulability tests in (17) for EDF scheduling of
components5, we define the processor demand bound (αs), i.e.,

αs =

⎛⎝B(Ps)

Ps
+

∑
1≤u≤s

Qu +Ou(Pu)

Pu

⎞⎠ . (37)

From the processor request bound in (36) and the processor demand bound
in (37), we derive the system load, i.e.,

loadsys = max {αs | 1 ≤ s ≤ N} . (38)

The system load in (38) is determined by the component that stresses the system
the most. If the loadsys > 1, then the system is unschedulable. This satisfies the
schedulability conditions presented in Section 5.1, assuming a global resource-
supply function of αst. One can think of the system load as decreasing the
speed of the processor by a factor loadsys. This increases a component’s budget
Qs, resource holding times Xs�, and blocking times by a factor 1/loadsys.

Example 4: Consider a system with a global FPPS scheduler comprising
two components (C1 and C2) and one global resource R1 arbitrated by ONP.
Component C1 has an interface Γ1 = (10, 1, {0.5}) and C2 has an interface
Γ2 = (48, 1, {1}). According to (36), we obtain α1 = 0.25 and α2 = 0.198.
Using (38) we derive loadsys = α1 = 0.25, meaning both C1 and C2 can be
scheduled together on a processor with a speed of factor 0.25.

Given a set of interface candidates for all the components in the system, the
objective of our optimization is to find one interface for each component such
that the system load is minimized.

5. Without loss of generality, we rewrote the utilization-based test in (17) instead of the demand-
bound test in (11), so that the processor demand bound in (37) is also compatible with the
bounded-delay model used by BROE.

Paper C

182

8.2.2 Generating partial interface candidates
To accomplish our goal of optimizing the system load, we first need to generate
the interface candidates of a component. The problem of generating interface
candidates is as follows. Given a component Cs and a set of global resources,
the problem is to generate a set of interface candidates such that there must
exist an interface that contributes the least possible (optimal) system load. The
partial interface candidates generated by the algorithms in this section are an
intermediate step to the problem of selecting interface candidates.

As explained before, for a given component Cs with ns tasks accessing ms

resources, each resource may have up to ns different local resource ceilings and
one interface candidate can be generated from each combination of the ms local
resource ceilings. Fortunately, not all the nms

s candidates have the potential
to minimize the system load; those that require more processor demand and
impose more blocking on other components can be considered as redundant.

Since a component is unaware of other components, it is also unknown which
resources are shared. Instead of directly deriving the interface candidates, we
therefore perform an intermediate step, i.e., we derive partial interface candi-
dates. In line with the definition of opacity, these partial interface candidates
can be combined into a true interface by selecting only the local ceilings of the
resources that are globally shared upon integration of components.

We present the generatePartialCandidates algorithm that is computationally
efficient and it produces also a bounded number of partial interface candidates.
We first provide some notions and properties on which our algorithm is based.
Given a component Cs, we assume that Ps is given by the system designer
and is fixed during the whole process of generating a set of partial interface
candidates.

A partial interface Γs� considers one global resource R� in isolation, i.e., R�

can be globally shared or it can be local to the component.
Definition 2: A partial interface candidate Γs� = (Ps, Qs�, {Xs�}) of a com-

ponent Cs accessing resource R� is a valid interface Γs for component Cs

- satisfying the opaque local schedulability conditions in (24) or (27) - under the
assumption that only resource R� is globally shared with other components.

Since a partial interface Γs� is a valid interface for the restrictive case where
the resource R� is the only resource that needs to be shared globally, the
additional bandwidth Os(t) of Γs� - defined in Section 5.1 to prevent excessive
blocking - takes into account R� in isolation as well, i.e., Xs = Xs�.

For the simple case of considering resource R� and ignoring all other resources
Rk ∈ Rs \ {R�}, we derive a set of interfaces in a similar way as Shin et al.
(2008). We are looking for a closed set of non-redundant partial interfaces.

Definition 3: A partial interface candidate Γs� = (Ps, Qs, {Xs�}) is redundant
if there exists Γ′

s� = (Ps, Q
′
s, {X ′

s�}) such that X ′
s� ≤ Xs� and Q′

s ≤ Qs (denoted

Paper C

183

as Γ′
s� ≤ Γs�). Otherwise, Γ′

s� = (Ps, Qs, {Xs�}) is non-redundant.
Intuitively, a redundant interface Γs� as defined by Definition 3 can never

cause a smaller system load than its non-redundant dominator Γ′
s�. Since we

only consider a single resource in isolation, this intuition can be confirmed
similarly to Lemma 1 by Shin et al. (2008).

Lemma 4: If Γ′
s� ≤ Γ∗

s�, then Γ′
s� cannot contribute more loadsys than Γ∗

s� does.
Proof: Assume Γ∗

s� is redundant. Using Definition 3, there exists a Γ′
s�, such

that X ′
s� ≤ Xs� and Q′

s ≤ Qs. Looking at the definition of the system load
in (38), it can be decreased by means of decreasing the blocking and/or the
demand-part, e.g., DBF(t) or RBF(t, s). Since X ′

s� ≤ X∗
s�, Γ

∗
s� cannot reduce the

blocking part of other components. Since Q′
s� + O′

s(Ps) ≤ Q∗
s� + O∗

s(Ps), Γ∗
s�

cannot reduce the demand part. Hence, Γ∗
s� cannot decrease loadsys.

Lemma 4 reduces the size of the set of partial interface candidates signif-
icantly. However, an exhaustive search for non-redundant candidates is still
computationally intractable. Since we consider a single resource in isolation,
we just need to traverse at most ns possible ceilings for this resource.

From the above definitions and lemma, we can derive an efficient algorithm
to compute the partial interface candidates of a component while considering
one resource, R�, as a global resource. Algorithm 1 presents the details and, in
case a component accesses only a single resource, the algorithm is exactly the
same as the interface-candidate-generation algorithm by Shin et al. (2008).

Algorithm description. Initially, each resource ceiling rcsk (∀k : 1 ≤ k ≤ ms)
is set to the lowest value according to the SRP (line 1-2), i.e., see (5). Next, the
loop in line 3-9 tries to increase the local resource ceiling of the resource under
consideration, i.e., resource R�. For each of the possible ceilings of R� a number
of steps is applied. Given the reconfigured local resource ceiling rcs�, a new
budget Qs is computed for the component (line 4) and the resource holding
times to resource R� are recomputed (line 5-6). These computed parameters Qs

and Xs� define a partial interface candidate Γs� = (Ps, Qs�, {Xs�}) which is
added to the set IC(�)

s (line 7). Finally, the redundant partial interface candidates
are removed from IC(�)

s (line 8).
In algorithm 2, we apply Algorithm 1 to each of the ms resources accessed by

component Cs (line 1-4). This results in a matrix of partial interface candidates
ICs, where each row represents the partial interface candidates IC(�)

s for the
case one particular resource R� is globally shared. In case a component does
not access any resource, we can directly compute its interface (line 5-8).

Complexity. Algorithm 1 executes at most O(ns) iterations, because resource
R� has at most ns possible ceilings. Hence, at most ns candidates are stored in
the set IC(�)

s . Also note that the removal of redundant candidates allows us
to further decrease the set of candidates. Since algorithm 2 generates ms sets
of partial interface candidates, computing the entire matrix ICs takes O(msns)

Paper C

184

Algorithm 1 generateSimplePartialCandidates(Ts, Ps, R�)
Require: - inputs - a task set Ts, a component period Ps and a single global

resource R�.
Require: calculateBudget(Ts, Ps,RCs);

returns the smallest component budget that satisfies (24) or (27).
Require: increaseCeilingXs� (RCs[�]);

returns whether or not the ceiling of the resource Xs� can be
increased by one. If so, it increases the ceiling of the selected
resource.

Require: removeRedundant(IC(�)
s);

removes all redundant partial interfaces from the interface list,
IC(�)

s .
Ensure: - output - a set of partial interfaces IC(�)

s for the case R� is globally
shared.

1: {Set the local resource ceilings rcs1, . . . , rcsms
according to the SRP, see (5):}

2: RCs = {rcs1, . . . , rcsms} ;
3: repeat
4: Qs� ← calculateBudget(Ts, Ps,RCs);
5: for each τsi ∈ Ts do compute Xsi� using (6) end for
6: Xs� ← max {Xsi� | 1 ≤ i ≤ ns} ;
7: IC(�)

s ← IC(�)
s

⋃ {Γs� = (Ps, Qs�, {Xs�})};
8: removeRedundant(IC(�)

s);
9: until

(
increaseCeilingXs� (RCs[�]) = false

)
;

10: return IC(�)
s ;

iterations, resulting in at most msns partial candidates.

8.2.3 Merging partial candidates into an interface
The limitation of a partial interface candidate Γs� for a component Cs accessing
resource R� is that it specifies the budget and the resource holding time to
resource R� of the component for a particular local resource ceiling rcs�, but
other resources accessed by the same component are ignored. Algorithm 2
generates these partial interfaces for all resources accessed by the component.
The remaining problem is to derive an interface for the case a component
accesses more than one globally shared resource.

Assume we are given which of the resources accessed by a component must
be shared globally. For each of those shared resources we select a local resource
ceiling defined by a partial interface candidate. This can be done by selecting
at most one partial interface candidate in each of the rows of ICs (generated

Paper C

185

Algorithm 2 generatePartialCandidates(Ts, Ps)
Require: - inputs - a task set Ts and a component period Ps.
Require: calculateBudget(Ts, Ps,RCs);

returns the smallest component budget that satisfies (24) or (27).
Require: generateSimplePartialCandidates(Ts, Ps, Rk);

returns the result from Algorithm 1.
Ensure: - output - a matrix ICs containing an array IC(�)

s of partial interface
candidates in each row, repeated for all the globally accessed resources
R� ∈ Rs.

1: for k ← 1; k ≤ ms; k ← k + 1 do
2: IC(k)

s ← generateSimplePartialCandidates(Ts, Ps, Rk);
3: ICs ← ICs

⋃{
IC(k)

s

}
4: end for
5: if ms = 0 then
6: Qs ← calculateBudget(Ts, Ps, ∅);
7: ICs ← {{Γs = (Ps, Qs, ∅)}}
8: end if
9: return ICs;

by Algorithm 2). In other words, we must select one interface in IC(�)
s of a

globally shared resource R�. Lemma 5 shows how to combine the selected
partial interface candidates into a true interface candidate.

Lemma 5: Assume a component Cs accesses ms resources that all need to be
shared globally. Let Γs1 = (Ps, Qs1, {Xs1}), . . . , Γsms

= (Ps, Qsms
, {Xsms

})
be a selection of partial interfaces of Cs generated by Algorithm 2, i.e., one
partial interface is selected from ICs for each of the ms shared resources. The
schedulability of component Cs is satisfied by interface Γs = (Ps, Qs, {Xs� | 1 ≤
� ≤ ms}), where Qs = max {Qs� | 1 ≤ � ≤ ms}.

Proof: Let Q′
s be the smallest budget such that all tasks τsi ∈ Ts make

their deadline while the local resource ceilings of all accessed resources are
configured according to the SRP, see (5). By definition all partial candidates of
component Cs generated by Algorithm 2 satisfy the following constraint:

(∀� : 1 ≤ � ≤ ms ∧ Γs� = (Ps, Qs�, {Xs�}) : Qs� ≥ Q′
s) . (39)

In Algorithm 1, an increase of only one local resource ceiling, i.e., rcs�, is
allowed and the additional amount of local blocking caused by this increase
can result in an increase of Qs� compared to the smallest possible budget Q′

s.
However, by virtue of the SRP a task τsi can be blocked by just one (outermost)
critical section of a lower priority task τsj (where πsi ≥ πsj) before τsi can

Paper C

186

start its execution. Hence, if one or more ceilings rcs1 . . . rcsms
are increased

compared to the value required by the SRP, then it is sufficient to add the
largest difference in budget to the value of Q′

s in order to accommodate for
one local blocking occurrence. Combining this observation with the property
in (39) of the partial interface candidates concludes our proof.

Lemma 5 makes it possible to merge an arbitrary number of partial candidates
into a single interface of a component. Prior to the integration of components,
however, it is still unclear which of the global resources need to be shared
with other components and which resources can be treated as local. The step
of merging partial candidates into a true interface is therefore postponed until
integration time (as will be described in Section 8.3), i.e, the interface candidates
of a component that capture all resource dependencies into Rs are derived on
the fly during global integration of components. Given such a set Rs and a
selection of partial interface candidates, Algorithm 3 presents the steps derived
from Lemma 5.

Algorithm 3 mergePartialCandidateIntoInterface(Γs, Rs, �, ics�)
Require: - inputs -

• an initial interface Γs = (Ps, Qs, Xs);
• the set Rs of accessed global resources that are exposed globally;
• a resource R�;
• a partial interface candidate in IC(�)

s for resource R� at index ics�.
Ensure: - output - An updated interface Γ̂s = (Ps, Q′

s, X ′
s) such that all local

ceilings are as high as the selected budget Qs� of partial candidate IC(�)
s [ics�]

allows.
1: if 1 ≤ ics� ≤

∣∣∣IC(�)
s

∣∣∣ then

2: Let IC(�)
s [ics�] = (Ps, Qs�, {X ′

s�}) be the next partial candidate of Cs;
3: Qs ← max (Qs, Qs�) ;
4: else
5: {no valid partial interface is given, so skip the update of Qs.}
6: end if
7: for each Rk ∈ Rs do
8: {Try to increase the local resource ceilings rcsk without increasing Qs:}
9: Let IC(k)

s [icsk] = (Ps, Qsk, {X ′
sk});

10: for
(
icsk; icsk ≤

∣∣∣IC(k)
s

∣∣∣∧Qsk ≤ Qs; icsk ← icsk + 1
)

do

11: Xs ← (Xs \ {Xsk})
⋃{X ′

sk};
12: end for
13: end for
14: return Γ̂s ← (Ps, Qs, Xs);

Paper C

187

Algorithm 3 takes as an input a given interface candidate Γs and an index
ics� to a partial interface candidate Γs� in the array IC(�)

s . We merge the given
interface and the partial interface into a new interface candidate Γ̂s. First, we
update the budget Qs according to Lemma 5 (line 2-3). Next, we update all
the local resource ceilings of the globally shared resources (line 7-13), i.e., we
increase the indices icsk of all globally shared resources Rk ∈ Rs as long as this
does not increase the size of budget Qs. This efficiently exploits the increase
in budget (line 3) being imposed by partial candidate IC(�)

s [ics�]. That is, we
keep any of the resource holding times in Xs as small as possible (see line 11).
Finally, the new interface candidate Γ̂s is returned (line 14).

In the next section, we present an algorithm to select interface candidates
efficiently. To conclude this section, we have shown that a non-opaque analysis
requires 2ms sets of interface candidates and the entire exponential nms

s design
space of possible local resource ceilings must be traversed in order to derive
each of these sets. Contrary, a total of ms sets of partial interface candidates
is sufficient with an opaque analysis and the size of each set is at most ns

(representing the Pareto-optimal local resource ceilings). Each of the ms sets can
be obtained within O(ns) iterations. As soon as it is known which resources
are globally shared, the partial interfaces can be combined into a true interface
candidate. In the next section, we present a method to select an interface
candidate with the objective to optimize the system load.

8.3 Optimized composition of components by interface selection
This section considers the problem of selecting the optimal system configuration,
i.e., one interface is derived from its partial candidates per component and all
interfaces of the components together minimize the system load. The algorithm
presented in this section (Algorithm 4) finds an optimal solution to this problem
through a polynomial number of iterative steps.

Algorithm 4, called selectInterfaceCandidates(IC1, . . . , ICN), assumes that
the partial candidates in each set of the given sets IC(�)

s ∈ ICs (at least those
for R� that are globally shared) are sorted in an increasing order of the total
bandwidth allocated to component Cs. Then, the first partial candidate of IC(�)

s

has the largest resource holding time Xs�, but the smallest budget Qs�. The
key strategy behind our algorithm is that in each iteration the total amount of
bandwidth allocation, i.e., Qs +Os(Ps), to at least one component is increased.

To make this strategy work, Lemma 6 removes redundant partial interface
candidates from IC(�)

s , given R� is globally shared. Lemma 6 generalizes
Lemma 5 by Shin et al. (2008) for other synchronization protocols than ONP.

Lemma 6: Consider two partial candidates Γ′
s� = (Ps, Q

′
s�, X

′
s�) and Γ∗

s� =
(Ps, Q∗

s�, X∗
s�) such that Q′

s� + O′
s(Ps) ≤ Q∗

s� + O∗
s(Ps) and X ′

s� ≤ X∗
s�. Then,

Γ′
s� will never contribute more to loadsys than Γ∗

s� does.

Paper C

188

Proof: See the proof of Lemma 4.
We use Lemma 6 to preprocess the input sets ICs. Next, our selection

algorithm generates a polynomial number of system configurations and each
configuration is represented by a set of N interfaces {Γs | 1 ≤ s ≤ N}.

8.3.1 Initialization of the interface selection
In the beginning of Algorithm 4 (line 1-20), our algorithm computes an ini-
tial configuration such that it consists of the first interface candidates of all
components, i.e, each of the components has the smallest possible budget. To
construct such an interface for a component Cs, we identify the partial interfaces
of the global resources that need to be shared by multiple components (see
the loop in line 3-11). The variable ics� is a counter that iterates through the
array IC(�)

s (initialized in line 5). Line 6 preprocesses the array IC(�)
s . First,

it applies Lemma 6 to IC(�)
s to remove redundant candidates. Moreover, it

removes all infeasible partial candidates, i.e., it is required that the total amount
of allocated bandwidth satisfies the constraint Qs� +Os(Ps) ≤ Ps, because this
guarantees that a granted access to a global resource can be completed in the
same component period. The preprocessing of IC(�)

s is completed by sorting
the remaining candidates in increasing order of Qs� + Os(Ps). If no partial
candidate is feasible, then global sharing of resource R� makes the system
infeasible (line 7). Line 9 constructs a set R′

s ⊆ Rs of the resources that need
to be shared globally. For each of those resources in R′

s, the interface Γs is
updated by repeatedly applying Algorithm 3 (line 10).

If a component only accesses resources that no other component wishes to
access, then we can treat all accessed resources as local, i.e., the component is
independent of other components (line 12-17).

Finally, after initializing the interface Γs of a component, we keep track of
the successor interface Γ̂s (line 19). The latter interface Γ̂s denotes the interface
where some of the partial interfaces IC(�)

s [ics�] have been replaced by their
successor IC(�)

s [ics� + 1]. However, both Γs and Γ̂s are the same initially. For
this initial configuration {Γ̂s | 1 ≤ s ≤ N}, loadsys is computed (line 29).

8.3.2 Iterations of interface selections
In each iteration of Algorithm 4 (line 23-37), we try to improve the system load.
Let s∗ denote the component Cs∗ with the largest processor request bound
among all components, i.e, loadsys = αs∗ according to (38). Component Cs∗ is
found by inspecting αs∗ of all components (line 35). By definition of s∗, we can
further reduce the value of loadsys by reducing the left-hand sides of the terms
in the schedulability tests in (17) or (18). There are two ways to reduce these
terms. One option is to reduce its maximum blocking B(t) or Bs∗ and the other
option is to reduce the component’s processor demands, i.e., Qs +Os(Ps).

Paper C

189

Similar to Shin et al. (2008) our algorithm always reduces the blocking part,
but it does not reduce the request-bound or demand-bound part. The reason is
that the algorithm starts from the interface candidates that have the smallest
demands and the largest resource holding times. Hence, for each interface
candidate, there is no room to further reduce its demand. However, there is a
chance to reduce the maximum blocking to component Cs∗ . It can be reduced
by decreasing the Xu� of a component Cu that imposes the largest blocking to
component Cs∗ by accessing the same resource R� as Cs∗ wishes to access. Note
that multiple components can cause the same amount of maximum blocking
or a component can cause the maximum amount of blocking to Cs∗ via more
than one resource. We collect all those pairs (u, �) in a set B.

Each pair (u, �) ∈ B represents a component Cu that wishes to access resource
R�, thereby causing the maximum blocking to Cs∗ (line 36). In each iteration
of the main loop (line 23-37), we select the next partial interface in IC(�)

u

(see line 24-28). The interface Γ̂u of component Cu is updated by merging its
previous interface Γ̂u with the partial interface candidate IC(�)

u [icu� + 1]; this is
done by using Algorithm 3 (line 26-27). We repeat these steps for all the pairs
(u, �) ∈ B that cause the same amount of maximum blocking to Cs∗ .

After changing the configurations of the components Cu captured in B, we
recompute loadsys for the set of interfaces {Γ̂s | 1 ≤ s ≤ N} (line 29). Dependent
on whether or not the changed system configuration has the potential to reduce
the system load, the loop in line 23-37 is repeated. In other words, all elements
in the recomputed set B (line 36) must make progress, otherwise the system
load cannot further decrease. This condition is tested in the until-clause (line 37).

Algorithm 4 selectInterfaceCandidates(IC1, . . . , ICN)

Require: - inputs - the matrices IC1, . . . , ICN with partial interface candidates.
Require: preprocessCandidates(IC(�)

s);

first, apply Lemma 6 to IC(�)
s ; next, remove the infeasible partial candidates with

Qs� +Os(Ps) > Ps and sort the remaining candidates in increasing order of Qs� +
Os(Ps).

Require: componentWithMaxLoad({Γ̂s | 1 ≤ s ≤ N});
returns the component Cs∗ with the largest processor load, i.e., loadsys = αs∗ .

Require: maxBlockingComponentResourcePairsToSystemload(s∗, {Γ̂s

∣∣ 1 ≤ s ≤ N});
returns a set of pairs of a component Cu and a corresponding resource R� that
produce the largest blocking to component Cs∗ (where Cs∗ determines loadsys).

Ensure: - output - if the system is feasible, we return a set {Γs | 1 ≤ s ≤ N} that contains one
interface for each of the N components. This set imposes the smallest system load.

Paper C

190

1: for s ← 1; s ≤ N ; s ← s+ 1 do
2: Γs ← (Ps, 0, ∅); R′

s ← ∅;
3: for each R� ∈ Rs

⋂(⋃
(1≤u≤N∧u �=s) Ru

)
do

4: {Initialize index ics� in array IC(�)
s and check whether sharing of R� can be feasible:}

5: ics� ← 1;
6: preprocessCandidates(IC(�)

s);
7: if IC(�)

s = ∅ then return infeasible end if
8: {Select the smallest Qs and the largest Xs� satisfying Lemma 5:}
9: R′

s ← R′
s

⋃ {R�};
10: Γs ← mergePartialCandidateIntoInterface(Γs, R′

s, �, ics�);
11: end for
12: if R′

s = ∅ then
13: {Cs is independent of the other components; throw away all its candidates:}
14: Qs ← min

{
Qs�

∣∣ IC(�)
s [1] = (Ps, Qs�, {Xs�})

∧
1 ≤ � ≤ ms

}
;

15: Γs ← (Ps, Qs, ∅);
16: ICs ← ∅;
17: end if
18: {Initialize the successor Γ̂s of candidate Γs:}
19: Γ̂s ← Γs;
20: end for
21: load∗

sys ← ∞;
22: B ← ∅;
23: repeat
24: for each (u, �) ∈ B do
25: {Decrease the Xu� of component Cu to R�:}
26: icu� ← icu� + 1;
27: Γ̂u ← mergePartialCandidateIntoInterface(Γ̂u, R′

u, �, icu�);
28: end for
29: compute loadsys for

{
Γ̂s

∣∣ 1 ≤ s ≤ N
}

according to (38);
30: if loadsys < load∗

sys then

31: {Select the interfaces Γ̂u that have resulted into the better system load:}
32: for u ← 1; u ≤ N ;u ← u+ 1 do Γu ← Γ̂u; end for
33: load∗

sys ← loadsys;
34: end if
35: s∗ ← componentWithMaxLoad({Γ̂s

∣∣ 1 ≤ s ≤ N});
36: B ← maxBlockingComponentResourcePairsToSystemload(s∗, {Γ̂s

∣∣ 1 ≤ s ≤ N});
37: until

(
∃(u, �) ∈ B : B 	= ∅ : icu� ≥

∣∣∣IC(�)
u

∣∣∣)
38: if load∗

sys > 1 then return infeasible end if
39: return {Γs | 1 ≤ s ≤ N} determining load∗

sys;

8.3.3 Termination of the interface selection
Algorithm 4 terminates (line 38-39), if there exists a component Cu that causes
the maximum blocking to component Cs∗ via resource R� and Cu cannot
decrease its resource holding time Xu�. Then, a set of interface candidates is
returned (line 39), i.e., if the set is deemed feasible (line 38). The returned set
minimizes the system load.

Theorem 4: When Algorithm 4 terminates, it returns a set of interfaces {Γs | 1 ≤

Paper C

191

s ≤ N} imposing the smallest possible system load, i.e., it is impossible to find
another interface Γ̂s that further decreases the system load.

Proof: Assume it is possible to further decrease the system load. Let s∗

denote the component Cs∗ that determines the system load, i.e., loadsys = αs∗ .
Since all the partial interface candidates are sorted in increasing order of
Qs�+Os(Ps), it is impossible to reduce the demand-part of Cs∗ . The only other
way to reduce the system load is to reduce the blocking to Cs∗ . Our algorithm
terminates when one of the pairs (u, �) ∈ B that cause the most blocking to
Cs∗ cannot select a new partial interface candidate in IC(�)

u (line 37). In this
case the blocking to Cs∗ cannot be reduced and the value of αs∗ therefore
remains the same. In other words, whenever we move from one step to another
one, our selection is the only that can decrease the system load. Hence, when
Algorithm 4 terminates, the system load cannot be decreased any further.

From Theorem 4 we conclude that Algorithm 4 returns an interface for each
component in the system (if the system is feasible). Also note that Algorithm 4
always terminates, because the number of interface-selection steps is finite. The
returned interfaces together minimize the system load.

8.3.4 Complexity of the interface selection algorithm
Given a set of N components sharing M global resources, the initialization of
Algorithm 4 (line 1-22) takes O(NM) iterations. The dominating part in terms
of the computational complexity is the while-loop in line 23-37. In each iteration
(except in the first iteration), at least one of the iterators ics� is incremented
(line 26); they are never decremented. The progress of at least one of the iterators
ics� is ensured by the guard of the main loop (line 37). Algorithm 4 therefore
traverses at most (nsms +1) combinations of partial candidates per component
Cs. Hence, the set of interfaces of N components (optimal with respect to the
system load) is computed by Algorithm 4 within O(NMnmax

s) iterations, where
nmax
s = max {ns | 1 ≤ s ≤ N}.
Algorithm 4 efficiently selects an interface that minimizes the processor

requirements of a system by applying an opaque analysis to the individual
components. The system load of the selected interfaces may be non-optimal
beyond the scope of opaque analyses. Although a non-opaque local analysis
may further tighten the system’s analysis, the presented algorithms may be
unable to find the optimal configurations of the local resource ceilings. An
opaque analysis is therefore instrumental for a tractable exploration of the
design space of resource-sharing components in HSFs.

8.4 A case study
We now present a case study to demonstrate the algorithms presented in this
section. First, we consider the two steps at the component level from Section 8.1

Paper C

192

and Section 8.2. Next, we show the integration of components using the step
from Section 8.3, where we compose a system from different components.

Example 5: We consider a component C5 with P5 = 125 and a task set
comprising 6 fixed-priority-scheduled tasks. The component C5 requires access
to 2 global resources, R1 and R2. The characteristics of the task set are given
in Table 3. The same task set is used as an example by Shin et al. (2008).

First, we have to choose a resource-supply model. Without loss of generality,
we will use the periodic resource model by Shin and Lee (2008).

Secondly, we generate the partial interface candidates ICs using Algorithm 2.
This requires 2 iterations: (i) for resource R1 Algorithm 1 returns a set IC(1)

s

containing 3 non-redundant partial interface candidates within 3 iterations and
(ii) for resource R2 Algorithm 1 returns a set IC(2)

s containing 2 non-redundant
partial interface candidates within 6 iterations. Table 4 presents the iterations
of Algorithm 1 and the resulting partial interface candidates.

For resource R1 we can choose 3 different local resource ceilings and each of
the choices leads to a non-redundant partial interface candidate. For resource
R2 we can choose 6 different local resource ceilings. Since budget Q52 is the
same for rc52 = π52 . . . π56 and the resource holding times X5i2 reduce in each
iteration, the partial interface candidates corresponding to rc52 = π53 . . . π56 are
redundant.

Table 3
Example task set of component C5.

Task T5i = D5i E5i h5i� R� Task T5i = D5i E5i h5i� R�

τ51 150 2 - - τ54 600 10 - -
τ52 160 1 - - τ55 650 50 5 R1

τ53 500 35 10 R1 τ56 750 8 4 R2

Table 4
Partial interface candidates of component C5 in IC(1)

5 (left) and in IC(2)
5 (right),

where the non-redundant candidates are highlighted by ∗.
iteration Q51 X51 rc51

∗ 1 51 13 π53

∗ 2 52.5 12 π52

∗ 3 56 10 π51

iteration Q52 X52 rc52

1 51 102 π56

2 51 52 π55

3 51 42 π54

4 51 7 π53

∗ 5 51 6 π52

∗ 6 53 4 π51

Example 6: Consider two components C2 and C5. The partial interface candi-
dates in Example 5 are computed in Table 4. Component C2 (taken from Exam-
ple 2) has a period P2 = 10 and it has just a single task τ21 = (27, 5, 27, {0.5})

Paper C

193

accessing resource R2. The corresponding interface, satisfying the periodic
resource model, is Γ2 = (10, 8

3 , {0.5}), i.e., component C2 has just one partial
interface candidate.

Resource R1 is accessed only by component C5 and resource R2 is shared
by component C2 and C5. Note that the smallest resource holding time of
component C5 to resource R1 is 10 time units, so that sharing of resource
R1 would immediately make the system infeasible. Since both Shin et al.
(2008) and Behnam et al. (2010b) assume that all the resources accessed by a
component are globally shared, their interface selection algorithms deem the
system unschedulable. Contrary, our selection algorithm (Algorithm 4) will
return a feasible set of interface candidates.

Let us assume a global EDF scheduler and ONP for the global arbitration of
resource R2. During the initialization phase of Algorithm 4, Lemma 6 labels
the partial interface candidate Γ52 = (125, 51, {6}) redundant, so that C5 has
one partial interface candidate remaining, i.e., the 6-th row in Table 4. Each of
the components has therefore just a single partial interface candidate. For each
of the components, their partial candidate directly transforms into an interface
and it determines the local resource ceilings. That is, Algorithm 4 returns the
set

{
Γ2 = (10, 8

3 , {0.5}), Γ5 = (125, 53, {4})
}

and the corresponding system
load is 0.773.

Example 7: Consider a system with 3 components: C2, C5 and C7. The
components C2 and C5 are the same as in Example 6 and they share re-
source R2. Component C7 has a period P7 = 80 and it shares resource R1

with component C5. Moreover, it contains two fixed-priority-scheduled tasks:
τ71 = (1000, 2, 1000, {0.5}) and τ72 = (1000, 1, 1000, ∅). Task τ71 accesses a
global resource R1 for a duration of h711 = X71 = 0.5 time units; task τ72
is independent. Using the local schedulability condition in (27) and using the
periodic resource model, we derive a single partial interface candidate, i.e.,
directly resulting into an interface Γ7 = (80, 3

11 , {0.5}).
Let us assume a global EDF scheduler and ONP for the global arbitration of

the resources R1 and R2. The initialization of Algorithm 4 selects the following
interface candidates:{

Γ2 = (10,
8

3
, {0.5}), Γ5 = (125, 53, {12, 4}), Γ7 = (80,

3

11
, {0.5})

}
. (40)

Note that the resource holding time X51 = 12 (rather than X51 = 13). This is
the consequence of labeling the partial interface candidate Γ52 = (125, 51, {6})
redundant, so that the other local resource ceiling rc51 can be increased to π52

without further increasing the budget (see Table 4).
By computing the system load, we obtain loadsys = α5 ≈ 0.85. Since C5

experiences no blocking – i.e., ∀t ≥ 125 :: B(t) = 0 –, we obtain B = ∅, so that

Paper C

194

there is no chance to further decrease the system load. Hence, (40) contains the
optimal set of interfaces.

9 EVALUATION

This section evaluates analysis methods for global resource sharing. From
the results, we derive which method matches the best with given system
characteristics.

In our experiments, we choose a system utilization U and we generate
individual component utilizations U(T) using the UUnifast algorithm by Bini
and Buttazzo (2004). The period of a component is uniformly drawn from the
interval [40, 70]. We assume global EDF scheduling of components and a single
non-preemptively shared global resource by all components.

Given a cumulative component utilization U(T), we generate ns = 8 tasks for
each component. The task periods Tsi are uniformly drawn from the interval
[140, 1000]. We initially assume deadlines equal to periods, i.e., Tsi = Dsi and
we assign deadline-monotonic fixed priorities to tasks. The individual task
utilizations usi are generated using the UUnifast algorithm by Bini and Buttazzo
(2004). Using the task’s utilization usi and the randomly generated period Tsi,
we can derive the worst-case execution time Esi of a task τsi, i.e., Esi = usi×Tsi.
All tasks access a single global resource for a random duration between 0.1×Esi

and 0.25 × Esi. In each experimental setting a new set of 10,000 systems is
generated.

9.1 Feasibility of task sets in the presence of global resources
We first investigate for which task-characteristics a particular analysis method is
better at the component level. We look at the percentage of schedulable task sets,
generated according to the description above, while requiring Qs+Os(Ps) ≤ Ps.

In each simulation study a new set of 10,000 systems is generated and the
following settings are changed:

1) Component utilization: The utilization of a component U(T) is varied within
a range of [0.05, 1.0] using incremental steps of 0.05, see Figure 8.

2) Component periods: The period of the periodic resource Ps is varied within
a range of [5, 70] with incremental steps of 5, see Figure 9.

For comparison purposes we included the results for the improved local
analysis of ONP by Behnam et al. (2011), i.e., IONP. Both experiments show that
the different overrun methods have little impact on the local schedulability of
a task set on a periodic resource. The main reason for this is the constraint that
the calculated budget Qs and the overrun budget Xs have to fit within period
Ps, i.e., we applied the constraint Qs + Xs ≤ Ps. For SIRAP and BROE, we
require Xs ≤ Qs. Due to this constraint, both SIRAP’s and BROE’s performance

Paper C

195

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

Utilization (U(Τ))

BROE
SIRAP

IONP
ONP = IOWP

OWP

Figure 8. Ratio of schedulable task sets versus the utilization, where the
component period is Ps = 40 and the number of tasks is ns = 8.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

R
at

io
 o

f f
ea

si
bl

e
ta

sk
 s

et
s

Component period (Ps)

BROE
SIRAP
IONP

ONP = IOWP
OWP

Figure 9. Ratio of feasible task sets as a function of the component period, where
the number of tasks is ns = 8 and the utilization U(T) = 0.4.

are suppressed and overlapping for small resource periods (see Figure 9).
BROE may require a larger budget for a component, because it must use the
bounded-delay model. In terms of the schedulability ratio, however, BROE

Paper C

196

clearly outperforms the other protocols (see Figure 8). In addition, both figures
show the cost of an opaque analysis in the context of two-level FPPS-based
HSFs, in which BROE is inapplicable.

The constraint, Qs +Xs ≤ Ps, is the main weakness for all overrun variants,
determined by the ratio Xs

Ps
. This ratio can be increased by increasing the

utilization (Figure 8), choosing smaller resource periods (Figure 9), decreasing
the number of tasks (ns) or by increasing the range of the task periods. When
keeping the utilization U(T) constant, the last two alternatives result in larger
WCETs and resource access times. Since Xs is computed from a fixed fraction
of the tasks’ execution times, this increases the Xs

Ps
ratio.

Our improved OWP (IOWP) performs equally well as ONP at the local level
and its global schedulability is superior compared to ONP. OWP is therefore
preferred above ONP. Note that the non-opaque IONP analysis in Behnam et al.
(2011) may slightly improve on IOWP and ONP. However, the global analysis
for OWP is always better than or equal to the global analysis of ONP. This
gives an advantage to ONP when both integration tests instantiated from (19)
yield the same result, i.e., when all component periods are chosen approximately
the same, so that also OWP accounts for an overrun in each component period.

Finally, we note that the choice for local FPPS versus local EDF does not
influence the relative strength of the global synchronization protocols. The
reason is that the ratio of Xs

Ps
- determining the performance for overrun-

based protocols - is only dependent on task WCETs and the component
period. The same holds for SIRAP’s and BROE’s requirement Xs ≤ Qs. In
general, the priority assignment to tasks may change the value of the computed
resource holding times and, thus, it may influence the value of Xs. Since in
our system model Ps is smaller than any of the local task periods, however,
the way of computing resource holding times is the same for EDF and for
deadline-monotonic fixed priorities. As a nice property of opacity, we have
obtained independence of the overheads of global synchronization and the
local scheduling policy.

9.2 Global scheduling penalties for global synchronization
In this section, we compare the analyses at the compositional level, because at
the local level - especially with opaque analyses - the resource-supply model
may hide scheduling penalties.

We observed that BROE is superior in terms of the number of task sets that
can be accommodated, because BROE does not need additional overrun budget
and it does not insert idle time. However, these results from Section 9.1 ignore
the required processor bandwidth by a single component. The bounded-delay
model, exclusively applied to BROE, performs relatively poorly compared
to the periodic resource model when the utilization of a component U(T)

Paper C

197

is small. Components having such characteristics contain tasks with small
computation times relative to task periods, so that the stair-cased curve of the
periodic resource supply gives a relative high provisioning with respect to the
WCET of tasks. A solution would be to reduce the period Ps of a component.
Although this makes the linear approximation of the periodic supply tighter
(being advantageous for the bounded-delay model and BROE), the period
size cannot be decreased arbitrarily, because an entire critical section must
fit within one period. Moreover, the shorter the component period is, the
higher context switching overhead will be. The implementation overhead of
the synchronization protocols is ignored in this evaluation, however, and it is
different for each protocol, for example, see van den Heuvel et al. (2012).

In the first experiment, we investigate how composing multiple resource-
sharing components affects the number of schedulable systems. Figure 10 shows
the results for N = 2 components and Figure 11 for N = 5 components. When
the utilization of a single component is relatively large, i.e., U(T) � 0.1, BROE
clearly outperforms all other protocols, see Figure 10. For smaller utilizations,
SIRAP becomes more advantageous than BROE, see Figure 11. The different
overrun methods have little impact on the global schedulability of components.
The main reason for this is the local constraint that the calculated budget Qs

and the overrun budget Xs already have to fit within period Ps.
In the second experiment, we repeated the same experiment for N = 5

components and we randomly generated tasks with deadlines Dsi ≤ Tsi,
uniformly drawn from the range [Esi + 0.5(Tsi − Esi); Tsi]. Figure 12 reports
the results. Compared to the first experiment, the bounded-delay model further
reduces the performance of BROE. Intuitively, postponing budget supply to a
task set, being subject to tight deadline constraints, deflates BROE’s performance
compared to the non-opaque analysis of SIRAP. However, BROE’s performance
is considerably better than any overrun variant.

In the third experiment, the system utilization U = 0.5 and the range of
task deadlines Dsi ≤ Tsi are fixed. The number of components, N , is varied
within a range of [1, 14], see Figure 13. Composing a system of many resource-
sharing components, e.g., the operating system itself can be a single point
of synchronization, may significantly decrease the number of schedulable
systems. It is interesting to see that BROE covers the entire performance
spectrum compared to SIRAP, ONP and OWP: from a superior performance
for components with large individual utilizations, to an inferior performance
for small component utilizations.

In the fourth experiment, we keep a system utilization of U = 0.5 for N = 5
components and we vary the range of the task deadlines using parameter δ. We
generated task deadlines uniformly drawn from the range [Esi+δ(Tsi−Esi); Tsi].
A low value of δ allows tasks to have short deadlines relative to their execution

Paper C

198

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f f
ea

si
bl

e
sy

st
em

s

System utilization

BROE
SIRAP

IONP
ONP ≈ IOWP

OWP

Figure 10. Ratio of schedulable systems versus the system utilization, where the
number of components is N = 2 and all tasks have Dsi = Tsi.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f f
ea

si
bl

e
sy

st
em

s

System utilization

BROE
SIRAP

IONP
ONP ≈ IOWP

OWP

Figure 11. Ratio of schedulable systems versus the system utilization, where the
number of components is N = 5 and all tasks have Dsi = Tsi.

time and δ = 1 means that deadlines are equal to periods. Figure 14 shows
the results. This experiment confirms the previous experiments: SIRAP’s non-
opaque analysis is beneficial for deadline-constrained tasks, while HSRP’s
overrun and BROE perform equally poor under tight deadline constraints.

Paper C

199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f f
ea

si
bl

e
sy

st
em

s

System utilization

BROE
SIRAP

IONP
ONP ≈ IOWP

OWP

Figure 12. Ratio of schedulable systems versus the system utilization, where the
number of components is N = 5 and tasks may have Dsi ≤ Tsi.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
at

io
 o

f f
ea

si
bl

e
sy

st
em

s

Number of components (N)

BROE
SIRAP

IONP
ONP ≈ IOWP

OWP

Figure 13. Ratio of schedulable systems versus the number of components,
where the system utilization is U = 0.5 and tasks may have Dsi ≤ Tsi.

Finally, both SIRAP and BROE have shown to be more resilient than HSRP’s
overrun variants for relatively large critical section lengths compared to a
component’s budget. For SIRAP, the analysis for a single shared resource by

Paper C

200

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f f
ea

si
bl

e
sy

st
em

s

δ

BROE
SIRAP
IONP

ONP ≈ IOWP
OWP

Figure 14. Ratio of schedulable systems versus the deadline distribution of tasks,
where the number of components is N = 5 and the system utilization is U = 0.5.

each task performs relatively poorly, because the more individual resource
accesses are considered, the better its analysis. BROE and overrun have opaque
analysis, i.e., only based on the local SRP. Sharing more global resources would
therefore not affect much the performance of an opaque analysis, because the
budget parameters are by definition of opacity independently derived of the
values of Xs�. A non-opaque local analysis, however, might be able to further
reduce the estimated protocol-specific scheduling penalties.

9.3 Recommendations
In HSFs where the (global) scheduling policy and the (global) resource-arbitration
policy are part of the implementation of a black-box component, an opaque
analysis is the only way to integrate components that share global resources.
Based on our evaluation of the existing SRP-based global synchronization
protocols, we showed that

• BROE’s analysis is opaque and, in many situations, it performs superior or
very competitive compared to any other protocol (ONP, OWP and SIRAP).

• BROE’s performance significantly degrades, if a system is composed of
components with tight internal task deadlines or if it is composed of many
components having small utilizations.

• Our improved OWP (IOWP) analysis shows the most consistent perfor-
mance of the existing opaque analyses, i.e., its performance is less sensitive

Paper C

201

for local task deadlines than BROE and it allocates less or an equal amount
of overrun budget to components than ONP.

• If the periods of integrated components are chosen almost the same, then
the amount of allocated overrun budgets to components is the same for
ONP and IOWP.

Suppose that during the local analysis of a component we are given which of
the global resources are actually shared with other components in the system.
In these situations a non-opaque analysis may better estimate the cost of global
resource sharing at the local level than a non-opaque analysis. Considering
both opaque and non-opaque analysis:

• Only when all component periods are almost the same, a non-opaque ONP
may take advantage over OWP in terms of schedulability of a system.

• We have proven the enhanced overrun by Behnam et al. (2010c) superfluous,
i.e., it is outperformed by our improved OWP;

• SIRAP’s analysis consistently outperforms ONP and OWP.
• In many cases SIRAP is performing equally well as, or better than, BROE.
• If local deadline constraints are loose, then BROE provides a considerably

easier analysis than SIRAP without (significant) performance loss.
Although a non-opaque analysis might be able to improve the schedula-

bility of a system, the problem of a non-opaque analysis is that it might be
computationally intractable to find the optimal settings of the local resource
ceilings with respect to the smallest possible system load. We have presented
algorithms to optimize the system load by means of an opaque analysis within
a polynomial number of iterations in the size of the system. Only with an
opaque analysis these algorithms are guaranteed to find a solution.

We therefore believe an opaque analysis enables an incremental way of
synthesizing a system. Firstly, an opaque analysis abstracts from the actual
dependencies between components until component integration time, so that
during integration the system load can be minimized by considering just the
actual dependencies. Secondly, given that a component has known (i) timing
details of its local tasks and (ii) pre-computed resource ceilings from the first step,
then the system load might be further improved by re-analyzing the individual
components in a composed system with a non-opaque analysis. This incremental
way of system analysis makes it possible to share resources between tasks in
arbitrary components, while being able to reduce the scheduling penalties of
global resource arbitration by means of computationally tractable algorithms.

10 CONCLUSION

This paper introduced the notion of opaque analysis for resource-sharing compo-
nents that need to be integrated on a uni-processor platform. An opaque local

Paper C

202

analysis of a component abstracts from global resource sharing until component
integration. Sufficient conditions for opacity are:

• component periods are smaller than the local tasks’ periods, so that resource
holding times of a component are defined independently of the global
synchronization protocol;

• resource holding times must disappear from the local schedulability test,
so that the budget parameter of a component can be solely computed
in order to meet deadline constraints of tasks (and independently of the
global synchronization protocol).

As a result of both conditions, when the SRP arbitrates access to shared
resources between periodic components, the necessary condition of opacity is
satisfied: all interface parameters of a component are computed independently
of a global synchronization protocol. By strictly separating local and global
scheduling, including resource arbitration, an opaque analysis enables a com-
putationally tractable design-space exploration - which cannot be guaranteed
with a non-opaque analysis - for optimizing the required processor resources
of a system as a whole (i.e., for optimizing the system load).

We applied opacity to four existing global synchronization protocols: SIRAP,
ONP, OWP and BROE. Although SIRAP’s original analysis is non-opaque, we
can use the analysis of overrun without payback (ONP) as a conservative and
opaque alternative. We also presented an opaque analysis for overrun with
payback (OWP), which dominates the opaque ONP.

In a system with global FPPS of components, opaque analyses (ONP and
our new OWP) have shown a significant drop in the number of schedulable
systems. The performance of opaque analyses is much better under global
EDF of components. The reason is that BROE’s analysis is opaque and, in
many situations, it is competitive with SIRAP’s non-opaque analysis. Although
BROE does not require any allocated processor time for idle time (like SIRAP
does) or overruns (like HSRP does), we identified that BROE’s analysis may
require more processor bandwidth than any of the other protocols if a system
is composed of components with tight deadlines or if it is composed of many
components having small utilizations. For those systems, a non-opaque analysis
may therefore significantly improve schedulability (demonstrated by SIRAP),
regardless of the global and local scheduling policies.

To explore the impact of different settings of resource-sharing components
on the system load, an opaque analysis is extremely useful. A non-opaque
analysis may further tighten the results of an opaque analysis, thereby enabling
an incremental system analysis. Since an opaque analysis of a component
only looks at local resource sharing, we conjecture an opaque analysis is also
important in multi-level HSFs (with more than two scheduling levels), so that
a component can be reused at an arbitrary position in the scheduling tree. We

Paper C

203

leave the integration of resource-sharing components in multi-level HSFs as
future work.

REFERENCES

Abeni L, Palopoli L, Scordino C, Lipari G (2009) Resource reservations for
general purpose applications. IEEE Transactions on Industrial Informatics
(TII) 5(1):12–21

Almeida L, Peidreiras P (2004) Scheduling with temporal partitions: response-
time analysis and server design. In: Conference on Embedded Software
(EMSOFT), pp 95–103

Baker T (1991) Stack-based scheduling of realtime processes. Real-Time Systems
3(1):67–99

Balbastre P, Ripoll I, Crespo A (2009) Exact response time analysis of hierarchical
fixed-priority scheduling. In: Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pp 315–320

Baruah SK (2006) Resource sharing in EDF-scheduled systems: A closer look.
In: Real-Time Systems Symposium (RTSS), pp 379–387

Behnam M, Shin I, Nolte T, Nolin M (2007) SIRAP: A synchronization protocol
for hierarchical resource sharing in real-time open systems. In: Conference
on Embedded Software (EMSOFT), pp 279–288

Behnam M, Nolte T, Åsberg M, Bril RJ (2009a) Overrun and skipping in
hierarchically scheduled real-time systems. In: Conference on Embedded
Real-Time Computing Systems and Applications (RTCSA), pp 519–526

Behnam M, Nolte T, Bril RJ (2009b) Refining SIRAP with a dedicated resource
ceiling for self-blocking. In: Conference on Embedded Software (EMSOFT),
pp 157–166

Behnam M, Nolte T, Bril RJ (2010a) Bounding the number of self-blocking
occurrences of SIRAP. In: Real-Time Systems Symposium (RTSS), pp 61–72

Behnam M, Nolte T, Fisher N (2010b) On optimal real-time subsystem-interface
generation in the presence of shared resources. In: Conference on Emerging
Technologies and Factory Automation (ETFA)

Behnam M, Nolte T, Sjodin M, Shin I (2010c) Overrun methods and resource
holding times for hierarchical scheduling of semi-independent real-time
systems. IEEE Transactions on Industrial Informatics (TII) 6(1):93–104

Behnam M, Nolte T, Bril RJ (2011) Tighter schedulability analysis of syn-
chronization protocols based on overrun without payback for hierarchical
scheduling frameworks. In: International Conference on Engineering of
Complex Computer Systems (ICECCS), pp 35–44

Bertogna M, Fisher N, Baruah S (2007) Static-priority scheduling and resource
hold times. In: Parallel and Distributed Processing Symposium (IPDPS)

Paper C

204

Bertogna M, Fisher N, Baruah S (2009a) Resource holding times: computation
and optimization. Real-Time Systems 41(2):87–117

Bertogna M, Fisher N, Baruah S (2009b) Resource-sharing servers for open
environments. IEEE Transactions on Industrial Informatics (TII) 5(3):202–219

Bini E, Buttazzo G (2004) Biasing effects in schedulability measures. In:
Euromicro Conference on Real-Time Systems (ECRTS), pp 196–203

Bril RJ, Verhaegh WFJ, Wüst CC (2006) A cognac-glass algorithm for condi-
tionally guaranteed budgets. In: Real-Time Systems Symposium (RTSS), pp
388–397

Buttazzo G (2005) Hard real-time computing systems - predictable scheduling
algorithms and applications (2nd edition). Springer

Caccamo M, Sha L (2001) Aperiodic servers with resource constraints. In:
Real-Time Systems Symposium (RTSS), pp 161–170

Davis R, Burns A (2005) Hierarchical fixed priority pre-emptive scheduling. In:
Real-Time Systems Symposium (RTSS), pp 389–398

Davis R, Burns A (2006) Resource sharing in hierarchical fixed priority pre-
emptive systems. In: Real-Time Systems Symposium (RTSS), pp 257–267

Deng Z, Liu JS (1997) Scheduling real-time applications in open environment.
In: Real-Time Systems Symposium (RTSS), pp 308–319

Easwaran A, Anand M, Lee I (2007) Compositional analysis framework using
EDP resource models. In: Real-Time Systems Symposium (RTSS), pp 129–138

Feng X, Mok A (2002) A model of hierarchical real-time virtual resources. In:
Real-Time Systems Symposium (RTSS), pp 26–35

Fisher N, Dewan F (2012) A bandwidth allocation scheme for compositional
real-time systems with periodic resources. Real-Time Systems 48(3):223–263

Ghazalie TM, Baker TP (1995) Aperiodic servers in a deadline scheduling
environment. Real-time Systems 9(1):31–67

van den Heuvel MMHP, Bril RJ, Lukkien JJ (2011) Dependable resource sharing
for compositional real-time systems. In: Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), pp 153–163

van den Heuvel MMHP, Bril RJ, Lukkien JJ (2012) Transparent synchronization
protocols for compositional real-time systems. IEEE Transactions on Industrial
Informatics (TII) 8(2):322–336

Holman P, Anderson J (2002) Locking in pfair-scheduled multiprocessor systems.
In: Real-Time Systems Symposium (RTSS), pp 149–158

Kumar P, Chen JJ, Thiele L, Schranzhofer A, Buttazzo G (2011) Real-time analysis
of servers for general job arrivals. In: Conference on Embedded Real-Time
Computing Systems and Applications (RTCSA), pp 251–258

Kuo TW, Li CH (1999) A fixed-priority-driven open environment for real-time
applications. In: Real-Time Systems Symposium (RTSS), pp 256–267

Lehoczky JP, Sha L, Ding Y (1989) The rate monotonic scheduling algorithm:

Paper C

205

Exact characterization and average case behavior. In: Real-Time Systems
Symposium (RTSS), pp 166–171

Lipari G, Baruah S (2000) Efficient scheduling of real-time multi-task applications
in dynamic systems. In: Real-Time Technology and Applications Symposium
(RTAS), pp 166–175

Lipari G, Bini E (2005) A methodology for designing hierarchical scheduling
systems. Journal of Embedded Computing (JEC) 1(2):257–269

Lipari G, Lamastra G, Abeni L (2004) Task synchronization in reservation-based
real-time systems. IEEE Transactions on Computers (TC) 53(12):1591–1601

Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a
real-time environment. Journal of the ACM 20(1):46–61

López Martinez P, Barros L, Drake J (2010) Scheduling configuration of real-
time component-based applications. In: Reliable Software Technology - Ada-
Europe, Lecture Notes in Computer Science (LNCS), vol 6106, Springer, pp
181–195

Mercer C, Savage S, Tokuda H (1994) Processor capability reserves: Operating
system support for multimedia applications. In: International Conf. on
Multimedia Computing and Systems (ICMCS), pp 90–99

de Niz D, Abeni L, Saewong S, Rajkumar R (2001) Resource sharing in
reservation-based systems. In: Real-Time Systems Symposium (RTSS), pp
171–180

Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resource kernels: A resource-
centric approach to real-time and multimedia systems. In: SPIE/ACM
Conference on Multimedia Computing and Networking (CMCN), pp 150–164

Sha L, Rajkumar R, Lehoczky J (1990) Priority inheritance protocols: an approach
to real-time synchronisation. IEEE Transactions on Computers (TC) 39(9):1175–
1185

Shin I, Lee I (2004) Compositional real-time scheduling framework. In: Real-Time
Systems Symposium (RTSS), pp 57–67

Shin I, Lee I (2008) Compositional real-time scheduling framework with periodic
model. ACM Transactions on Embedded Computing Systems (TECS) 7(3):1–39

Shin I, Behnam M, Nolte T, Nolin M (2008) Synthesis of optimal interfaces for
hierarchical scheduling with resources. In: Real-Time Systems Symposium
(RTSS), pp 209–220

Steinberg U, Wolter J, Härtig H (2005) Fast component interaction for real-time
systems. In: Euromicro Conference on Real-Time Systems (ECRTS), pp 89–97

Wandeler E, Thiele L (2005) Real-time interfaces for interface-based design of
real-time systems with fixed priority scheduling. In: Conference on Embedded
Software (EMSOFT), pp 80–89

Paper C

206

PAPER D:

TRANSPARENT SYNCHRONIZATION PROTOCOLS FOR COMPOSITIONAL
REAL-TIME SYSTEMS

M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien

In IEEE Transactions on Industrial Informatics (TII),
pp. 322–336, vol. 8, issue 2, May 2012

207

ABSTRACT

Hierarchical scheduling frameworks (HSFs) provide means for composing com-
plex real-time systems from well-defined, independently analyzed components.
To support resource sharing in two-level HSFs, three synchronization protocols
based on the stack resource policy (SRP) have recently been presented for
single-processor execution platforms, i.e., HSRP, SIRAP and BROE. This paper
presents a transparent implementation of these three protocols side-by-side
in an HSF-enabled real-time operating system. Transparent synchronization
interfaces make it possible to select a protocol during integration time based
on its relative strengths.

A timing interface describes the required budget to execute a component on
a shared platform and an accessor’s maximum critical-section execution time to
global shared resources. These resources are arbitrated based on the available
budget of the accessing task. We enable this explicit synchronization of virtual
time with global time by means of a novel virtual-timer mechanism. Moreover,
we investigate system overheads caused by each synchronization protocol, so
that these can be included in the system analysis. Based on the analytical
and implementation overheads of each protocol, we present guidelines for the
selection of a synchronization protocol during system integration.

Finally, we show that unknown task-arrival times considerably complicate
an efficient implementation of SIRAP’s self-suspension mechanism. We briefly
discuss the implementation complexity caused by these arrivals for bandwidth-
preserving servers, e.g., deferrable servers and BROE.

Paper D

208

1 INTRODUCTION

Many real-time embedded software applications are becoming increasingly
complex and diverse, while their time to market and cost is continuously under
pressure. By using dedicated component-based architectures, manufacturers
aim to reuse hardware and software components and support product families.
The automotive industry, for example, initiated several standardized develop-
ment models, e.g., the AUtomotive Open System ARchitecture (AUTOSAR) [4].
This industrial standard specifies that an underlying OSEK-based [5] operating
system should prevent timing faults in any component to propagate to different
components on the same processor.

Hierarchical scheduling frameworks (HSFs) have been investigated to pro-
vide such temporal isolation [6] by allocating a budget to each component,
where budgets are implemented by means of servers. Moreover, HSFs provide
a paradigm for facilitating a decoupling [7] of (i) development and analysis
of individual components and (ii) integration of components on a shared pro-
cessor, including analysis at the system level. In such compositional systems,
a component that is validated to meet its timing constraints when executing
in isolation will continue meeting its timing constraints after integration or
admission on a shared uni-processor platform.

To accommodate further resource sharing between components, three syn-
chronization protocols have been proposed based on the stack resource pol-
icy (SRP) [8], i.e., hierarchical stack resource policy (HSRP) [1], subsystem inte-
gration and resource allocation policy (SIRAP) [2] and bounded-delay resource
open environment (BROE) [3]. An HSF extended with such a protocol makes it
possible to share logical resources between arbitrary tasks, which are located in
arbitrary components, in a mutually exclusive manner. A resource that is used
in more than one component is denoted as a global shared resource. A resource
that is only shared within a single component is a local shared resource. If a task
that accesses a global shared resource is suspended during its execution due
to the exhaustion of the corresponding budget, excessive blocking periods can
occur which may hamper the correct timeliness of other components [9].

HSRP, SIRAP and BROE each provide a different run-time mechanism to pre-
vent the depletion of a component’s budget during global resource access. Each
protocol has its relative strengths depending on system characteristics [10], [11].
We would therefore like to enable these three protocols side-by-side within
the same HSF to minimize the calculated resource needs of a system. This re-
quires protocol transparency, i.e., an application programmer (i) can ignore which
synchronization protocol is selected by the system, and (ii) cannot exploit the
knowledge of the selected protocol. Our implementations of these SRP-based
synchronization protocols are based on the μC/OS-II operating system [12],
which we have extended with proprietary support for two-level hierarchical

Paper D

209

scheduling. The choice of operating system is driven by its (former) OSEK
compatibility1.

Although components are designed with the intention to be independent,
it may practically be necessary to synchronize on logical resources such as
operating-system primitives, shared communication devices and other memory-
mapped peripherals [1], [6]. Global resource sharing protocols within HSFs
are extensively investigated for ideal system models, e.g., [1], [2], [6], [3].
Unfortunately, most off-the-shelf real-time operating systems and middleware,
including μC/OS-II, by default do not support hierarchical scheduling nor
SRP-based synchronization. Moreover, the run-time overhead of these proto-
cols hardly received any attention. These overheads become relevant during
deployment of an HSF with resource-sharing components.

Contributions
The contribution of this paper is six fold.

• We present a transparent implementation of HSRP [1], SIRAP [2] and BROE
[3] to support global resource sharing in two-level HSFs. We restrict this
implementation to single unit resources and single processor platforms.
This updates our first implementation in [13].

• We extend our time-management module for HSFs with a novel virtual-
timer mechanism to arbitrate global shared resources based on the access-
ing task’s available budget.

• We extend [13] with a programming model that makes it possible to
transparently choose a synchronization protocol at different abstraction
levels, i.e., per component, per task or per resource. We accordingly show
how a wide range of existing analysis for different server implementations
complemented with HSRP, SIRAP and BROE can be integrated in a HSF.

• Contrary to [13], we also investigate the overheads of HSRP, SIRAP and
BROE for tasks with unknown arrival times, e.g., sporadic tasks, serviced
by bandwidth-preserving servers. We show that these servers combined
with SIRAP lead to high implementation costs. BROE includes its own
bandwidth-preserving server and does not suffer these implementation
penalties.

• We compare overheads and interrupt latencies caused by each resource-
sharing protocol, because in many microkernels, including μC/OS-II, the
only way for tasks to share data structures with interrupt service routines
(ISRs) is by means of disabling interrupts. Furthermore, we evaluate our
modifications to μC/OS-II.

1. Unfortunately, the supplier of μC/OS-II, Micrium, has discontinued the support for the OSEK-
compatibility layer.

Paper D

210

• Based on the implementation and analytical complexity of each synchro-
nization protocol, we extract guidelines to select a protocol during system
integration.

The paper is organized as follows. Section 2 describes related works. Sec-
tion 3 presents our system model. Section 4 presents our programming model
to support transparent resource sharing. Section 5 summarizes our HSF ex-
tensions for μC/OS-II. Section 6 presents our implementations for SRP-based
resource arbitration, including HSRP, SIRAP and BROE. In Section 7 we ex-
perimentally compare these protocol implementations. Section 8 evaluates our
implementations. Finally, Section 9 concludes this paper.

2 RELATED WORK

In hierarchically scheduled systems a group of tasks, forming a component, is
mapped on a reservation [7]. These tasks may share resources with other tasks,
either within the same component or located in other components. This means
that resource sharing expands across reservations which calls for specialized re-
source access protocols. We first give an overview of existing resource-sharing
protocols. Next, we present interface abstraction techniques for components.

2.1 Task Synchronization in Reservation-based Systems
In literature several alternatives are presented to accommodate resource shar-
ing between tasks in reservation-based systems. De Niz et al. [14] support
this in their fixed-priority preemptively scheduled (FPPS) Linux/RK resource
kernel based on the immediate priority ceiling protocol (IPCP) [15] and pro-
pose a mechanism for temporal protection against misbehaving critical sec-
tions. Steinberg et al. [16] implemented a capacity-reserve donation protocol
to solve the problem of priority inversion for tasks scheduled in a fixed-priority
reservation-based system. A similar approach is described in [17] for earliest-
deadline-first (EDF)-based systems and termed bandwidth-inheritance (BWI).
BWI regulates resource access between tasks that each have their dedicated
budget. It works similar to the priority-inheritance protocol [15], i.e., when
a task blocks on a resource it donates its remaining budget to the task that
causes the blocking. BWI does not require a-priori knowledge of tasks, i.e.,
no ceilings need to be precalculated. Buttazzo and Gai [18] implemented a
reservation-based EDF scheduler for the real-time ERIKA Enterprise kernel,
including SRP-based synchronization support. All these approaches assume a
one-to-one mapping from tasks to budgets, and inherently only have a single
scheduling level.

A prerequisite to enable independent analysis of interacting components
and their integration is the knowledge of which resources a task will access [7].

Paper D

211

When a task accesses a global shared resource, one needs to consider the prior-
ity inversion between components as well as local priority inversion between
tasks within the component. To accommodate such resource sharing, three
synchronization protocols have been proposed based on SRP [8], i.e., HSRP [1],
SIRAP [2] and BROE [3]. Although HSRP [1] originally does not integrate in
HSFs due to the lacking support for independent analysis of components,
Behnam et al. [19] lifted this limitation. BROE [3] only considers resource
sharing under global EDF scheduling. Recently, HSRP and SIRAP have been
implemented in the two-level FPPS-based HSF on top of VxWorks [20]. We
presented similar implementations in [21] for HSRP and SIRAP within the
real-time microkernel μC/OS-II, and included BROE and its required EDF
support [13].

2.2 Component Abstraction
In [21], [22] we have extended μC/OS-II with support for two-level FPPS with
idling periodic servers [23], polling servers [24] and bandwidth-preserving,
deferrable servers [25]. Most works implement an idling periodic server [23]
as a budget provider, e.g., see [20], [21], because it behaves as an ideal periodic
task and it is easy to implement. Davis and Burns [23] claim that there are
no components comprising a task set that can be scheduled using a deferrable
server and cannot be scheduled using an equivalent idling periodic server with
the same period and capacity. However, [26] shows that their claim relies on a
specific task-set construction. We therefore investigate the efficiency of HSRP
and SIRAP combined with deferrable servers to enhance average response
times to external events.

Lipari and Bini [27] presented a method to calculate budget parameters
for independent components. In [28], [29] techniques are proposed to ob-
tain similar parameters in the presence of shared resources with heuristics
to optimize the component’s calculated resource needs. Recently, HSRP and
SIRAP were compared analytically with respect to their impact on the total
system load for various component parameters [11]. A preliminary comparison
including BROE has been presented in [10]. These protocols have relative
strengths depending on chosen parameters. Supporting these three synchro-
nization protocols in the same HSF puts demands on the implementation and
the schedulability analysis. Although we provide a clean timing interface to
separate component internals from their global timing parameters, we consider
tools and methods to obtain these parameters outside the scope of this paper.
We focus on analytical and programming aspects of HSRP, SIRAP and BROE
and compare the efficiency of corresponding primitives for different server
models.

Paper D

212

3 REAL-TIME SCHEDULING MODEL
We consider a two-level HSF using the periodic resource model [7] to specify
guaranteed processor allocations to components. An SRP-based synchroniza-
tion protocol is used for mutually exclusive access to global resources.

3.1 System model
A system contains a set R of M global logical resources R1, R2, . . ., RM , a
set C of N components C1, C2, . . ., CN , a set B of N budgets for which we
assume a periodic resource model [7], and a single processor. Each component
Cs has a dedicated budget which specifies its periodically guaranteed fraction
of the processor. In the remainder of this paper, we leave budgets implicit,
i.e., the timing characteristics of budgets are taken care of in the description
of components. Components are scheduled by means of FPPS or EDF.

3.2 Component and Task model
Each component Cs contains a set Ts of ns sporadic tasks τs1, τs2, . . ., τsns . The
set Rs denotes the subset of Ms global resources accessed by component Cs.
The maximum time that a component Cs executes while accessing resource
Rl ∈ Rs is denoted by Xsl, where Xsl ∈ R

+ ∪{0} and Xsl > 0 ⇔ Rl ∈ Rs. The
timing characteristics of Cs are specified by means of a triple < Ps, Qs,Xs >,
where Ps ∈ R

+ denotes its period, Qs ∈ R
+ its budget, and Xs the set

of maximum access times to global resources. The maximum value in Xs is
denoted by Xs, where 0 < Xs ≤ Qs ≤ Ps.

Timing characteristics of a task τsi ∈ Ts are specified by means of a triple
< Tsi, Esi, Dsi >, where Tsi ∈ R

+ denotes its minimum inter-arrival time,
Esi ∈ R

+ its worst-case computation time, Dsi ∈ R
+ its (relative) deadline,

where 0 < Esi ≤ Dsi ≤ Tsi. For notational convenience we assume that tasks
(and components) are given in deadline-monotonic order, i.e., τsns has the
largest and τs1 the smallest deadline.

3.3 Resource model
The processor supply refers to the amount of processor allocation that a compo-
nent Cs can provide to its task set Ts. The supply bound function sbfΓs(t) of
the periodic resource model Γ(Ps, Qs), that computes the minimum possible
supply for any interval of length t, is given by [7]:

sbfΓs(t) =

{
t− (k + 1)(Ps −Qs) if t ∈ V (k)

(k − 1)Qs otherwise,
(1)

where k = max
(⌈(

t − (Ps − Qs)
)
/Ps

⌉
, 1
)

and V (k) denotes an interval [(k +

1)Ps − 2Qs, (k + 1)Ps −Qs].

Paper D

213

3.4 SRP-based Protocols
We assume that resource access is arbitrated using SRP [8]. SRP has non-
blocking lock and unlock operations and makes it possible to share a single
execution stack between all tasks within a component. These properties reduce
a component’s memory utilization [30]. To be able to use SRP in an HSF for
synchronizing global resources, its associated ceiling terms need to be extended
and excessive blocking must be prevented.

3.4.1 Preemption level
SRP introduces a preemption level, which is a static value assigned to each task
and component. Each task τsi has a preemption level equal to πsi = 1/Dsi.
Similarly, a component has a preemption level equal to Πs = 1/Ps, where Ps

serves as a component’s periodic deadline. For FPPS this preemption level
reduces to a deadline-monotonic priority assignment. By inverse ordering of
tasks or components with respect to their relative deadlines [8], their priority
field can be used to indicate the preemption level for EDF.

3.4.2 Resource ceiling
Every global resource has two types of resource ceilings: a global resource
ceiling for global scheduling and a local resource ceiling for local scheduling.
These ceilings are static, off-line calculated values, which are defined according
to SRP as:

RC l = max(ΠN ,max{Πs | Rl ∈ Rs}), (2)
rcsl = max(πsns ,max{πsi | τsi uses Rl ∈ Rs}). (3)

These values represent the maximum preemption level of any component/task
that shares resource Rl. We use the outermost max in (2) and (3) to define RC l

and rcsl also in those situations where no component or task uses Rl. In [31],
[32] techniques are presented to trade-off preemptiveness against resource
holding times, here simply denoted as Xsl ∈ Xs.

3.4.3 System and component ceilings
During run time we need to keep track of component and system ceilings and
the scheduler needs to be extended with the notion of a these ceilings. These
ceilings are dynamic parameters that change during execution. The system/
component ceiling is equal to the highest global/local resource ceiling of a
currently locked resource in the system/component. Under SRP, a task can only
preempt the currently executing task if its preemption level is higher than its
component ceiling. A similar condition for preemption holds for components.

Paper D

214

3.4.4 Prevent excessive blocking
SIRAP [2] and BROE [3] use a self-blocking approach to prevent budget de-
pletion inside a critical section. If a task wants to enter a critical section, it
enters the critical section at the earliest time instant so that it can complete the
critical section before the component’s budget expires. If the remaining budget
is not sufficient to lock and release a resource before expiration, (i) the task is
suspended until new budget becomes available and (ii) the component ceiling
is raised to limit other tasks in the component to execute until the resource is
released. Contrary to SIRAP, BROE implements its own server model [3].

HSRP [1] uses an overrun mechanism to prevent budget depletion inside a
critical section. When the budget of a component expires and the component
has a task τi that is still locking a global shared resource, this task τi continues
its execution until it releases the locked resource. When a task accesses a
global resource the component ceiling is raised. HSRP assigns a static amount
of overrun budget, Xs, to each component. Two alternatives of the overrun
mechanism are presented: (i) overrun with payback, and (ii) overrun without
payback. The payback mechanism requires that when an overrun happens in a
component Cs, the budget of this component is decreased with the consumed
amount of overrun in its next execution instant. Without payback no further
actions are taken after an overrun has occurred. The relative strengths of both
alternatives have been investigated in [11].

4 TRANSPARENT SRP-BASED SYNCHRONIZATION

Enabling the integration of HSRP, SIRAP and BROE into the same HSF requires
that the primitive interfaces allow the connection and use of an arbitrary syn-
chronization protocol without modification of operational procedures on either
side of the interface, i.e., the interface is transparent. SRP’s lock operation is a
non-blocking primitive. This property is preserved by HSRP, but not by SIRAP
and BROE. The latter two require to explicitly check the remaining budget
before granting resource access. HSRP provides a static overrun budget, so that
a task can finish its critical section even though its budget has depleted. Hence,
all these protocols require knowledge of resource holding times (RHT) [31],
either for comparison purposes or to determine the overrun budget. Filling in
RHTs by hand in the lock interface may lead to high memory costs to store
all these values and provides an error-prone way of programming. Moreover,
a programmer typically does not know RHTs, because these values are plat-
form dependent. Development tools therefore need to bridge the gap between
system analysis and application engineering.

Paper D

215

4.1 Component Integration and Analysis Recapitulated
FPPS is the de-facto standard in industry for task scheduling [5]. Having such
support will simplify migration to and integration of existing legacy applica-
tions into the HSF, avoiding technology revolutions for engineers. Meanwhile,
the distinction between local scheduling of tasks within a component and
global scheduling of components makes it possible to deploy an EDF scheduler
at the global level. This optimizes the system utilization due to the optimality of
EDF with SRP-based resource arbitration [33]. We therefore allow an arbitrary
global scheduler, i.e., FPPS or EDF, and assume FPPS to be used locally, in
each component.

4.1.1 EDF-based Component Integration
The following sufficient schedulability condition holds for global EDF-based
systems [33]:

∀t > 0 : B(t) + dbfEDF(t) ≤ t (4)

The demand bound function dbfEDF(t) computes the total processor demand
of all components in the system for every time interval of length t, i.e.,

dbfEDF(t) =
∑
Cs∈C

⌊
t

Ps

⌋
Qs (5)

Equation (5) holds for idling periodic, polling and sporadic servers with im-
plicit deadlines and for BROE. A deferrable server Cds can be modeled as a
periodic server by including a release-jitter term of Pds − Qds in the demand
bound function [34]. The blocking term, B(t), is defined as [33]:

B(t) = max(0,max{Xu | Pu > t}). (6)

We use the outermost max in (6) to define B(t) in those situations where no
shared resources are accessed.

A component using HSRP demands more resources in its worst-case sce-
nario [19]. We therefore replace Qs in Equation (5) with Qs + Xs. If overrun
with payback is chosen, we only need to accommodate a single overrun budget
within an interval of length t, i.e., we replace Qs in Equation (5) with Qs+Os(t),
where

Os(t) =

{
Xs if t ≥ Ps

0 otherwise

Paper D

216

4.1.2 Deadline-Monotonic (DM)-based Component Integration
For global FPPS the following sufficient condition holds:

∀1 ≤ s ≤ N : ∃t ∈ [0, Ps] : dbfDM(t, s) ≤ t (7)

where dbfDM(t, s) denotes the worst-case cumulative processor request of Cs

for a time interval of length t, i.e.,

dbfDM(t, s) = Bs +Qs +
∑

1≤r<s

⌈
t

Pr

⌉
Qr (8)

Equation (8) holds for idling periodic, polling and sporadic servers [23]. A
deferrable server Cds can be modeled as a periodic server by including a
release-jitter term of Pds −Qds in dbfDM [35]. The blocking term, Bs, is defined
as [8]:

Bs = max(0,max{Xul | Πu < Πs ∧
Rl ∈ Ru ∧ RC l ≥ Πs}). (9)

We use the outermost max in (9) to define Bs in those situations where no
shared resources are used within a component.

A component using HSRP requests more resources in its worst-case scenario,
i.e., similar to the EDF case: Qr in Equation (8) is replaced with Qr + Xr.
If overrun with payback is chosen, we only need to accommodate a single
overrun budget within an interval of length t, i.e., replace the summation in
Equation (8) by

∑
1≤r<s

⌈
t
Pr

⌉
(Qr) +Xr.

4.1.3 Component Analysis
By filling in task characteristics in the demand bound dbf of (4) or (7) and
replacing their right-hand sides by (1), i.e., replace t for sbfΓs(t), the same
schedulability analysis holds for tasks executing within a component as for
components at the global level2. Dependent on the chosen synchronization
protocol, we may need to compensate for additional blocking effects. HSRP,
with or without payback, has the same local blocking term as SRP [8], because
it has a non-blocking lock operation. HSRP with payback, however, influences
the processor supply to serviced tasks, see [19] for the modified sbfΓs(t).

SIRAP’s and BROE’s self-suspension mechanisms lead to higher processor
demands of serviced tasks. SIRAP imposes at most one self-blocking occur-
rence in each component period Ps [36], i.e., for an interval of length t the
additional local self-blocking term has an upper bound of

⌈
t
Ps

⌉
Xs. BROE can

2. Polling servers [24] do not comply to the sbfΓs (t) in (1), because serviced tasks may suffer
a supply delay of 2Ps −Qs, i.e., larger than 2(Ps −Qs).

Paper D

217

self-block for at most Ps −Qs, where self-blocking delays the resource supply
for a virtual task arrival, being the critical section [3]. This delay influences the
RHT, but does not directly influence the schedulability of Ts [27, Theorem 3],
because the worst-case delay that any task serviced by BROE may suffer is
2(Ps −Qs).

4.2 Global Transparency: Abstraction versus Efficiency
HSRP, SIRAP and BROE are SRP-based protocols, each of which complies to
SRP-based global blocking rules. These protocols may be chosen with different
server models according to the system integrator’s needs. This transparent use
of synchronization protocols can be provided

1) at the component level, so that each component that uses a shared re-
source is arbitrated by a predefined protocol;

2) at the task level, so that each task that uses a shared resource is arbitrated
by a predefined protocol;

3) at the resource level, so that each resource is arbitrated by a predefined
protocol;

4) per resource access.
The latter three options result in more complicated analysis where each compo-
nent potentially suffers overrun and self-blocking in its budget dimensioning.
By allowing transparent use of these protocols at a lower abstraction level, i.e.,
the highest level is per component and the lowest level is per resource access,
a component interface should be supplied with more timing information. This
makes it possible to perform a tighter, but more complicated system analysis
and requires more timing information to be available during run time.

Firstly, BROE includes its own server model and therefore all its encom-
passed tasks are obliged to use the corresponding synchronization primitives.
Secondly, these protocols have only been compared with relative strengths
depending on component parameters [10], [11]. In line with these state-of-the-
art results, we implement transparent synchronization interfaces for all three
protocols at the component level.

4.3 A Framework-Specific Component Model
Given our choice for transparent interfaces at the component level, each com-
ponent Cs may have a dedicated interface description < Ps, Qs,Xs > for each
of the three synchronization protocols. The system integrator can choose to
instantiate a component based on the chosen server model and synchronization
protocol. However, during system integration this choice may not be entirely
free. Although the choice of a synchronization protocol is transparent from a
programmer’s perspective, it can be appurtenant to a particular framework.

Paper D

218

For example, when a component uses a service from a shared library by
means of calling a reentrant function, the access to this service is guarded by
semaphores at the system level. Hence, when one of the protocols, HSRP,
SIRAP or BROE, has been linked to these shared library services, the use of this
protocol is also enforced to its calling components. A protocol can be linked
to semaphore calls statically, during compile time, or dynamically, during run-
time. In our implementation, we provide an initialization function that links a
particular protocol to a component.

4.4 Transparent Interface Design
A weak precondition for transparency is that the maximum RHT, Xs, within
component Cs is known from the analysis. We can store this information
within the server-structure. This relaxes the amount of run-time information
and allows to remove the RHT parameter from lock operations, although
potentially at the cost of larger self-blocking times. Replacing the RHT with
Xs requires to keep track of nested critical sections. Only the outermost critical
section may self block (SIRAP and BROE) or give up overrun budget (HSRP).

We define an SRP interface to access global resources, and to maintain its
corresponding data structure, as follows:

1) void SRPMutexLock(Resource* r);
2) void SRPMutexUnlock(Resource* r);

For notational convenience we will use different names for the lock and
unlock primitives of each protocol. We include the RHT in each lock interface,
which is accounted in processor cycles and allocated to the calling task’s
budget. This allows a programmer to overrule the choice for a protocol and
reduce pessimistic budget assignments. If the RHT parameter is absent, then
Xs is used.

4.5 Transparent Resource Scopes
A component designer may use local and global shared resources in the compo-
nent’s code. Local shared resources are internally hidden, while global shared
resources are externally visible. In order to determine the local blocking of
tasks, based on Equation (6) or (9), a programmer needs to determine the
worst-case execution time (WCET) of each critical section, e.g., by using ap-
propriate WCET tooling. These WCETs serve as an input for further analysis
to determine RHTs based on techniques described in [31], [32]. Since accessing
global resources may block tasks in other components, a programmer must
specify the use of global resources. The system integrator cannot perform the
global schedulability analysis without a valid upperbound on RHTs to global
resources within each component. For each resource-component pair (Rl, Cs),

Paper D

219

at least the maximum RHT, denoted Xsl, is therefore recorded in the timing
interface < Ps, Qs,Xs >.

Since filling in RHTs by hand is error-prone, software development envi-
ronments or compiler tools should be extended with support to fill in these
values in appropriate places in the (binary) code. Moreover, from an opacity
perspective [37], i.e., neither the environment nor other components can modify
a component’s code, unified primitives may be desirable to access local and
global resources, e.g., as proposed in [20]. This allows to decouple the specifi-
cation and use of global resources in the actual implementation of a component
with the help of analysis tooling and the development environment.

If during admission time the system detects that only a single component
uses a global shared resource, then this resource may be considered as a
local resource. During system integration, however, one needs to account for
the worst-case global-blocking effects as specified by Equation (6) and (9).
Moreover, in open environments where components may enter and leave the
system during run time, global resource ceilings may be recalculated during
admission time. Extensions of the admission procedure to dynamically fill in
RHTs are also conceivable for such environments.

5 μC/OS-II AND HIERARCHICAL SCHEDULING

μC/OS-II is a microkernel which is maintained and supported by Micrium [38]
and is applied in many application domains, e.g., avionics, automotive, med-
ical and consumer electronics. The kernel is open source and is extensively
documented [12]. The μC/OS-II kernel features preemptive multitasking for
up to 256 tasks, and its size is configurable at compile time, e.g., services like
mailboxes and semaphores can be disabled.

This section outlines our realizations of hierarchical time management and
server implementations for μC/OS-II. These are required basic blocks to enable
implementations of SRP-based protocols. In [21], [22], we presented a basic
implementation of a two-level FPPS-based HSF with periodic idling, polling
and deferrable servers in μC/OS-II for FPPS-based HSFs and we extended this
framework with a global EDF scheduler and constant bandwidth servers (CBS)
in [13].

5.1 Timed Event Management
Intrinsic to our reservation-based component scheduler is timed-event manage-
ment. This comprises timers to accommodate (i) periodic timers at the global
level for budget replenishment of periodic servers and at the component level
to enforce minimal inter-arrivals of sporadic task activations; (ii) virtual timers

Paper D

220

to track a component’s budget; (iii) timers to wake-up a server after a period
of being suspended; and (iv) deadline timers to implement EDF.

In [22] a dedicated module is presented for managing relative timed event
queues (RELTEQs). Its basic idea is to store timed events - called timers - relative
to each other, by expressing the expiration time of the timer (i.e., the arrival
time of the event) relative to the expiration time of the previous timer. The
arrival time of the head event is relative to the current time. These timers as
well as tasks and servers are stored in queues. The timer value of the head of
each RELTEQ is decremented at each tick and the expiration of a timer triggers
an event handler which manipulates these timer queues, a server ready queue
or a task ready queue.

In a system we employ several timer queues to control tasks and servers, as
illustrated in Figure 1. In case of single level scheduling, we just have a single
system queue that represents the timer events associated with the arrival of
tasks.

To support hierarchical scheduling we use this system queue for the schedul-
ing of servers. The timers in this queue represent replenishment events cor-
responding to the start of a new period. In addition there is a local queue
for each server which keeps track of the timers needed to manage the tasks
inside a server such as task deadlines or the arrival of periodic tasks. At any
time at most one server can be running on the processor; all other servers
are inactive. When a server is suspended, its local queue is deactivated. In this
configuration the hardware timer drives two timer queues, i.e., the local queue
of the active (running) server and a system queue.

When the running server is preempted, its local queue is deactivated and
the queue belonging to the newly scheduled server is activated. In order to
ensure correct execution, the time that passed since the previous deactivation
needs to be accounted for upon activation. To keep track of this time we
introduce an additional queue: the stopwatch queue. Upon deactivation of a
server, a timer is added at the head of this queue. The stopwatch queue is
organized in the same relative fashion and contains one event for each non-
active server. However, contrary to the other queues, the head is counted
upwards. The accumulated time between the head of the stopwatch queue
and a stopwatch timer represents the time since the corresponding server was
deactivated. Whenever a server is activated, its local queue is synchronized
with the stopwatch, i.e., all timers in its local queue which would have expired
if the server was running are handled. As a result, all local timers with a
smaller accumulated value than the stopwatch timer are popped from the local
queue. After a simultaneous traversal of the stopwatch and local queues, its
stopwatch event is subsequently deleted from the stopwatch queue. The time
spent to synchronize the local queue of the newly activated server with global

Paper D

221

time is accounted to this server and subtracted from its budget.
Finally, a fourth queue represents timers that expire relative to the server

budget. These events trigger the depletion of (a fraction of) the server’s budget.
We call these virtual timers as their notion of time is limited to the server
budget. Rather than putting these in the system queue we have a separate
queue for them, since otherwise we would need to insert them into the system
queue upon activation and remove them again upon deactivation. This is
therefore more efficient than the organization reported in [20]. In this new
configuration, at every tick the heads of at most four queues are updated: a
system queue, an active server queue, a stopwatch queue, and an active server
virtual queue. The last queue does not need to get synchronized when a server
is resumed, because a deactivated server does not consume its budget. Figure 1
shows an example of our timer-management. Based on this support for timer-
management, we successfully applied an HSF to independent video applications
in consumer electronics [22].

Figure 1. RELTEQ-based timer management for two-level HSFs. At each tick
the head of the active queues are updated. When an event timer expires it is
popped from the queue. Upon a server context switch the server queue of the
activated server is synchronized with the stopwatch queue.

The current paper focuses on sporadic task scheduling and only considers
the virtual timer of budget depletion; the queue therefore has length 1. Hence,

Paper D

222

SIRAP and BROE can inspect a component’s virtual-timer in constant time to
(implicitly) synchronize its remaining budget with global time before granting
access to a global shared resource.

In contrast to an ordered list of absolute times, the relative time repre-
sentation does not lead straightforwardly to a O(log(N)) implementation for
inserting and deleting events, where N is the number of events in the queue.
Although it is possible using red-black trees, this requires to keep track of
absolute values in each node in the tree. We consider such an alternative
implementation out of the scope of this paper.

5.2 Server Scheduling
We choose to limit HSRP and SIRAP to idling periodic, polling and deferrable
servers. The sporadic server achieves a similar performance as a deferrable
server, but at a higher implementation cost [35]. However, our implementation
considerations of SRP-based synchronization protocols for a deferrable server
also apply to a sporadic server. BROE comes with its own server design. Its
implementation is presented in Section 6.4. Extending μC/OS-II with basic
HSF support requires a realization of the following concepts:

5.2.1 Global Scheduling
Since the server period serves as a relative deadline for that server, the rela-
tive representation automatically sorts the corresponding timers in the system
queue by absolute deadline. Similar to the μC/OS-II task scheduling approach,
we introduce a bit-mask to represent whether a server has capacity left. When
the scheduler is called, it traverses the deadline queue and activates the ready
server with the earliest deadline in the queue. Subsequently, the μC/OS-II
fixed-priority scheduler determines the highest priority ready task within the
server.

5.2.2 Periodic Servers
Since μC/OS-II tasks are bundled in groups of sixteen to accommodate efficient
fixed-priority scheduling, a server can naturally be represented by such a
group. The implementation of periodic servers is very similar to implementing
periodic tasks using our RELTEQ extensions [22]. Whereas a polling server
immediately discards its budget when there is no ready task to be serviced,
an idling server contains an idling task at the lowest, local priority, which is
always ready to execute. A deferrable server suspends when no task is ready,
until a task arrives. A server is only elected for execution when it contains a
ready task.

A bandwidth preserving server, e.g., a deferrable server, may need to provide
its preserved budget to tasks which arrive while it is suspended. Hence, we

Paper D

223

cannot simply deactivate its local event queue when its workload is exhausted.
One option is to keep its local queue active, but this would increase the
interference from suspended servers. We therefore proposed an alternative
solution based on wake-up timers [22]. When a server is suspended, we insert
a wake-up timer into the system queue with the expiration time of the first
timer in the server’s local queue, i.e., the earliest possible time of a sporadic
arrival. When a wake-up timer expires, we change the server state to ready,
allowing it to be scheduled by the global scheduler so that the corresponding
local event gets handled.

5.2.3 Greedy Idle Server
In our HSF, we reserve the lowest priority levels for a deferrable idle server,
which contains μC/OS-II’s idle task at the lowest local priority. This server has
the largest possible deadline, so that it always has the lowest priority. Only if
no other server is eligible to execute, then the idle server is switched in.

6 IMPLEMENTING SRP-BASED SYNCHRONIZATION

This section describes the common implementation parts of HSRP, SIRAP and
BROE. The implementation of SRP as a local synchronization protocol can triv-
ially be extracted. Thereafter, we present the three protocol implementations.

Our SRP-based HSF extensions entail changes to μC/OS-II. The protocol
implementations are using (i) variable assignments, (ii) SRP-based operations,
(iii) timed event management [22], (iv) a method enable and disable interrupts
and (v) scheduler extensions. The first three building blocks are not specifically
bound to μC/OS-II. The latter two are μC/OS-II specific, e.g., the extension of
the scheduler by SRP’s preemption rule [8] is eased by μC/OS-II’s open-source
character. This is accomplished by extending the μC/OS-II scheduler with two
if-statements.

6.1 Scheduling and Tracking Ceilings
The μC/OS-II scheduler calls a function which returns the highest priority
ready task. We extend this function with two rules according to SRP. When
the scheduler selects the next server to be activated, its associated component
priority must exceed the current system ceiling. Similarly, the priority of the
selected task must exceed the component ceiling. Otherwise, the priority on
top of the global/local stack is returned.

Each global resource accessed using an SRP-based mutex is represented by
a Resource structure, defined as follows:
typedef struct resource{

INT8U ceiling;

Paper D

224

INT8U lockingTask;
void* previous;

} Resource;

We use the Resource data-structure to implement a system ceiling stack.
ceiling stores the resource ceiling and lockingTask stores the identifier
of the task currently holding the resource. The previous pointer is used to
maintain the stack structure, i.e., it points to the previous Resource structure
on the stack that maintains the system ceiling. The ceiling field of the
Resource on top of the stack represents the current system ceiling. The prim-
itives SRPMutexLock and SRPMutexUnlock maintain this global-ceiling stack
structure.

Each global resource is also represented by a localResource structure
defined as follows:
typedef struct {
resource* globalResource;
INT8U localCeiling;
INT8U localLockingTask;
void* previous;

} localResource;

The localResource data-structure maintains a separate component ceiling
stack for each component. The globalResource points to the corresponding
resource block at the global level, i.e., all global resources are mapped to a
corresponding local resource. localCeiling stores the local resource ceiling
and localLockingTask stores the identifier of the task currently holding
the resource. The previous pointer is used to maintain the stack structure,
i.e., it points to the previous localResource structure on the stack. The
localCeiling field of the localResource on top of the stack represents
the current component ceiling. The primitive updateComponentCeiling maintains
this local ceiling stack structure.

6.2 SIRAP Implementation
This section presents our SIRAP implementation. The kernel primitives pre-
sented throughout this paper are assumed to execute non-preemptively, unless
denoted differently.

6.2.1 Resource Locking
The lock operation first updates the component’s local ceiling according to
SRP to prevent other tasks within the component from interfering during the
execution of the critical section. In order to successfully lock a resource there
must be sufficient remaining budget within the server’s current period. The
remaining budget Qremaining is returned by a function that depends on the

Paper D

225

virtual timers mechanism, see Section 5.1. If Qremaining is not sufficient to
complete the critical section, the task will spinlock until the next replenishment
event expires. To avoid a race-condition between a resource unlock and budget
depletion, we require that Qremaining is strictly larger than RHT before granting
access to a resource. The lock operation is presented in more detail in Pseudo-
code 1.

Pseudo-code 1 void SIRAP lock(Resource∗ r, INT16U RHT);
1: updateComponentCeiling();
2: while RHT >= Qremaining do
3: enableInterrups;
4: disableInterrups;
5: end while
6: SRPMutexLock(r);

When the server’s budget is replenished, all tasks spinlocking on a resource
are unlocked as soon as they are rescheduled. Although after budget replenish-
ment a repeated test on the remaining budget is superfluous [2], spinlocking
may efficiently implements the self-blocking mechanism. A disadvantage of
this implementation is that it relies on the assumption of an idling periodic
server. For any budget-preserving server, e.g., the deferrable server [25], the
self-blocking mechanism by means of a spinlock is unacceptable, because a
task consumes server budget during spinlocking.

An alternative implementation is to suspend a task when the budget is insuf-
ficient and resume a task when the budget is replenished. However, μC/OS-II
requires at any time a schedulable ready task, which is optionally a special
idle task at the lowest priority. The system and component ceilings prevent the
idle task to be switched in. Making an exception for the idle task potentially
breaks the property of SRP allowing to share stack space among tasks within
a component [8], [30]. The idle task should always be eligible to execute and
therefore must have its own execution stack. Idling a processor is typically
more energy efficient than spinlocking, e.g., [39] presents techniques to bun-
dle idling intervals in reservation-based systems. Since μC/OS-II provides a
context-preserving task model, i.e., threads, it does not support stack sharing
between tasks anyway. We therefore opt for the latter implementation, which
self-suspends a task, rather than spinlocking.

6.2.2 Resource Unlocking
Unlocking a resource simply means that the system and component ceiling
must be updated and the global SRP mutex must be released. Note that the
latter command will also call the scheduler.

Paper D

226

6.3 HSRP Implementation
This section presents our HSRP implementation. Additionally to the imple-
mentation of HSRP’s locking and unlocking operations, we need to adapt
the budget-depletion event handler to cope with overrun. This requires to
keep track of the number of resources locked (lockedResourceCounter) within
component Cs. HSRP assigns a static amount of overrun budget, Xs, to each
server within the system [1]. The server data-structure is extended with five
additional fields for bookkeeping purposes, i.e., lockedResourceCounter, inOver-
run, unusedOverrun, paybackEnabled and Xs. Optionally, we implement a pay-
back mechanism in the budget replenishment event. These event handlers are
managed by our timed-event module as presented in Section 5.1.

6.3.1 Resource Locking
The lock operation first updates the component’s local ceiling to the highest
local priority to prevent other tasks within the component from interfering
during the execution of the critical section. Next, the system ceiling is updated
by locking the SRP mutex with SRPMutexLock.

6.3.2 Resource Unlocking
Unlocking a resource means that the system and component ceilings must be
updated and the SRP mutex must be released. In case that any overrun budget
is consumed and no other global resource is locked within the same compo-
nent, we need to inform the scheduler that overrun has ended. Optionally, the
amount of unused overrun budget is stored to support payback upon the next
replenishment. The unlock operation in pseudo-code is:

Pseudo-code 2 void HSRP unlock(Resource∗ r);
1: updateComponentCeiling();
2: Cs.lockedResourceCounter −−;
3: if Cs.lockedResourceCounter == 0 and Cs.inOverrun then
4: if Cs.paybackEnabled then
5: Cs.unusedOverrun = Xs −Qremaining;
6: end if
7: Cs.inOverrun = false;
8: setComponentBudget(0);
9: end if

10: SRPMutexUnlock(r);

The command setComponentBudget(0) performs two actions: (i) the server
is blocked to prevent the scheduler from rescheduling the server, and (ii) the
budget-depletion timer is canceled by updating RELTEQ’s virtual event queue.

Paper D

227

6.3.3 Budget Depletion
We extend the event handler corresponding to a budget depletion with the
following rule: if any task within the component holds a resource, then the
budget is replenished with an amount Xs and server inactivation is postponed.
This requires to inserts a new event in RELTEQ’s virtual event queue with the
value Xs.

6.3.4 Budget Replenishment
For each periodic server an event handler is periodically executed to recharge
its budget. To support the optionally enabled payback mechanism, the replen-
ished budget is decreased with the unused overrun after consuming overrun
budget in the previous period.

When a server is still consuming overrun budget while its normal budget
is replenished, the overrun state of this server is reset [40]. The original HSRP
analysis [1] implicitly assumes that periodic budgets Qs +Xs complete before
their deadline Ds. However, this is a pessimistic but sustainable [41] assump-
tion. Figure 2 shows an example where a component replenishes its budget
during a critical section. Although exact analysis is not provided, [40] shows
that the schedulability analysis can be considerably improved compared to the
analysis in [1] when a component’s deadline only holds for budget Qs rather
than Qs + Xs. The implementation of this observation is compliant with the
analysis in [1].

0 50 100

Task-2.1

0

10

20

IPS2

Legend: active holding mutex

Figure 2. The overrun budget of a server (IPS2) depletes when its normal bud-
get replenishes (without payback). This example is generated from instrumented
code [42].

Paper D

228

6.4 BROE Implementation
BROE assumes global EDF scheduling and implements its own server model.
First, this section presents our realization of the BROE server in our HSF,
followed by BROE’s synchronization primitives.

6.4.1 Server Implementation
The BROE server is related to a CBS [43]: a bandwidth preserving server which
immediately replenishes its budget upon depletion, however, with a postponed
deadline. Unfortunately, a CBS is not suitable for HSFs, because it suffers from
the deadline aging problem [44]. This happens when the scheduling deadline
of a server is postponed many times and takes a large value compared to the
scheduling deadlines of the other servers.

To resolve this problem, a BROE server for a component Cs modifies a plain
CBS by two additional rules [3]:

1) when the server’s budget is exhausted, the server is suspended until
its deadline. When the deadline expires, the budget is recharged with a
relative deadline Ps. Hence, the absolute deadline of a BROE server is
represented in the system queue and its event handler replenishes the
server’s budget.

2) when a task arrives after a time interval that server Cs was idle and has
remaining budget, then the server Cs is suspended when its virtual time
is running ahead relative to its absolute deadline tdk

. This means that the
BROE server resumes with a recharged budget and a relative deadline Ps

(i.e., equal to its period) when the absolute time has passed the virtual
time.

These rules guarantee a server utilization of Us = Qs

Ps
, but introduce the

notion of a suspended server state, which is absent in a plain CBS. The first
rule is similar to a deferrable server with the difference that the deadline of a
BROE server is no longer strictly periodic due to the second rule. The second
rule introduces the notion of virtual time, which can be derived from the
server’s deadline and the virtual-timer mechanism as presented in Section 5.1.
However, notice the difference with the value of the event in the virtual server
queue, which represents the server’s currently remaining budget, Qremaining .

Within component Cs the virtual time advances with a rate Qs

Ps
. When the

component consumed too much of its budget relative to its absolute deadline
tdk

, it has to calculate the time ta until the next replenishment, where ta =
tdk

− Ps

Qs
Qremaining with a corresponding deadline tdk+1

= ta + Ps. In other
words, we perform the following actions to suspend a server: (i) replenish its
budget, (ii) postpone its deadline to ta +Ps and (iii) insert a wake-up event in
the system queue which expires at time ta. If time ta has already passed, then a
replenishment can even happen without self-blocking, because the component

Paper D

229

was lagging behind. Similarly, when a server has exhausted its workload, its
local queues can be deactivated at least until time ta, because any earlier local
event expiration will be postponed anyway until ta.

6.4.2 Resource Locking
The critical section of a task serviced by a BROE server is considered as a task
arrival on itself and the server will correspondingly suspend itself, if necessary,
according to the second rule presented above.

The lock operation first updates the component’s local ceiling to prevent
other tasks within the component from interfering during the execution of the
critical section. In order to successfully lock a resource there must be sufficient
remaining budget. If Qremaining is not sufficient to complete the critical section,
the server may get suspended until the absolute time passes the virtual time.
This requires to set a timer in the system queue to wake up the server, because
the virtual timer does not advance when the server is suspended. Moreover,
BROE fetches its current deadline, postpones its deadline and replenishes its
budget, which requires three more timer operations.

This budget becomes available after resuming the server and from that
time instant this budget is serviced before a relative deadline of Ps. Finally,
the scheduler is called to determine which other component has the earliest
deadline. When the server is woken up and switched in again, sufficient budget
is guaranteed to complete the critical section. Pseudo-code 3 denotes the lock
operation in more detail3.

Pseudo-code 3 void BROE lock(Resource∗ r, INT16U RHT);
1: updateComponentCeiling();
2: while RHT >= Qremaining do

3: ta ← getComponentDeadline()− Ps
Qs

Qremaining;

4: if ta > 0 then
5: ComponentSuspendUntil(ta);
6: end if
7: setComponentDeadline(ta + Ps);
8: setComponentBudget(Qs);
9: enableInterrups;

10: Schedule();
11: disableInterrups;
12: end while
13: SRPMutexLock(r);

To avoid a race-condition between a resource unlock and budget depletion,
we require that Qremaining is strictly larger than RHT before granting access

3. Strictly speaking, an if-statement is a sufficient budget test, because the component ceiling
prevents interference of other tasks within the component. The while loop is a form of defensive
programming.

Paper D

230

to a resource.

6.4.3 Resource Unlocking
Unlocking a resource simply means that the system and component ceilings
must be updated, so that the global SRP mutex is released.

6.5 Overview of Implementation Complexity
The implementation complexity for each of the three synchronization protocols
as discussed in this Section is summarized in Table 1. These results show that
BROE’s self-blocking mechanism is especially expensive due to expensive timer
operations. HSRP requires to reset budget timers and SIRAP does not need to
change any timer. However, these results only hold for periodic-idling servers.

Table 1
Overview of the synchronization primitive’s implementation complexity for

HSRP, SIRAP and BROE.
Event HSRP SIRAP BROE

Lock - suspend suspend server;
resource (or spinlock) renew deadline
Unlock resource end overrun - -
Budget depletion start overrun - -
Budget payback resume resume
replenishment (optional) (end spinlock)

6.5.1 Self-blocking on Bandwidth-Preserving Servers
SIRAP may suspend a deferrable server when a task experiences insufficient
budget to complete its critical section. Meanwhile, its component ceiling is
raised. If a task arrives that is blocked by the component ceiling, the server
should remain suspended until the earliest time instant that either (i) its bud-
get replenishes, so that a self-blocking task can access its desired resource,
or (ii) a next sporadic event arrives which repeats this rule. It is therefore
required to suspend all tasks with a lower priority than the component ceiling
upon locking a global resource and resume these tasks upon unlocking the
resource4. In the special case where resource accesses are chosen to be locally
non-preemptive, e.g., as in [1], a server can discard its remaining budget and
suspend itself until its budget replenishes. Alternatively, we can re-suspend the
server upon detection of an arrived event. A corresponding implementation
changes the scheduler by extending the SRP-rules presented in Section 6.1.

4. A similar implementation is chosen in [20], because they manipulate scheduling queues from
outside the kernel.

Paper D

231

Although the overhead for suspending a task is only there when a task actually
arrives, this overhead can take place at arbitrary moments in time. These
overheads make SIRAP expensive and unattractive for bandwidth-preserving
servers.

BROE does not suffer this additional self-blocking complexity, because a task
arrival does not change the server’s state and any task arrival during suspen-
sion will be served according to its priority after the server resumes. When
BROE resumes its execution, a fully recharged budget with a newly calculated
deadline becomes available to all its ready tasks. Any task arrival during self
suspension can therefore be safely postponed until the server resumes.

6.5.2 Which Protocol to Choose
Given the three alternative protocols, HSRP, SIRAP and BROE supported by
our framework, the question is: which protocol to use? Although both BROE
and SIRAP assume that resource-holding times fit within a component’s bud-
get, i.e., Xsl ≤ Qs, this assumption is unnecessary for HSRP. HSRP still requires
that a budget of Qs+Xs can be guaranteed within a single period Ps, however,
so that there is essentially no difference with allocating a larger budget such
that critical sections fit, i.e., satisfying the condition Xsl ≤ Qs.

Hence, from an analytical perspective, BROE is superior compared to SIRAP
and HSRP, because it does not allocate dedicated overrun budgets in addition
to a component’s normal budget, like HSRP does, and it also does not account
for self-blocking durations in the analysis, like SIRAP does. This makes BROE
an attractive mechanism to limit global preemptions in regions where arbitrary
preemptions may cause significant run-time overhead [45], in particular due
to architectural related preemption costs, such as cache misses and pipeline
flushes.

Both BROE and HSRP require expensive timer operations, whereas SIRAP
can be efficiently implemented on idling periodic servers. Independent of the
global scheduling policy, this makes SIRAP the preferred protocol for applica-
tions with many short critical sections. In those situations, SIRAP’s analytical
overhead is relatively small and the timer manipulations of BROE and HSRP
can consume more time than the critical section itself.

Finally, BROE only supports HSFs based on global EDF scheduling. For
HSFs based on global FPPS, we can choose between SIRAP and HSRP. In [11]
it has been concluded, based on simulation studies which investigate their
effect on the system load, that both alternatives are incomparable and their
relative strengths depend on the component parameters, < Ps, Qs,Xs >. Their
simulation results show that, in most cases, HSRP is preferred for components
where task periods are relatively close to the server period and SIRAP works
better for task sets with a relatively small server period compared to task

Paper D

232

periods.

7 EXPERIMENTS AND RESULTS
In this section we compare the implementations for HSRP, SIRAP and BROE.
First, we present a brief overview of our test platform. Next, we compare the
implementations of these protocols and investigate the system overhead of
their primitives. Finally, we demonstrate each protocol’s behaviour by means
of an example system.

7.1 Experimental Setup
We recently created a port for μC/OS-II to the OpenRISC platform to ex-
periment with the accompanying cycle-accurate simulator. This open-source
hardware platform is developed by the OpenCores project [46] and comprises a
scalar processor and basic peripherals. The OpenRISC simulator allows software-
performance evaluation via a cycle-count register. This profiling method may
result in either longer or shorter measurements between two matching calls
due to the pipelined OpenRISC architecture. Some instructions in the profiling
method interleave better with the profiled code than others. The measurement
accuracy is approximately 5 instructions.

Since it is important to know whether an real-time operating system behaves
in a timewise predictable manner [47], we investigate the disabled interrupt
regions caused by the execution of our synchronization primitives. Disabling
interrupts directly affects the response of the system to external events, but is
the only way for tasks in μC/OS-II to share data structures between primitives
executed in the task’s context and ISRs. In [47] the worst-case execution times
of almost all μC/OS-II primitives, including its synchronization services, are
investigated. These execution times mainly depend on a task’s state. In our
hierarchical setup, however, some primitives also include timer operations.
Our primitives therefore have partially static and dynamic execution times.

Our HSF supports at most 16 servers, where the highest and lowest priority
levels are reserved by the operating system. For each multiple of 2 servers
within our supportive range, we generated 100 random task sets with a total
utilization of 45%. We repeated this for all three synchronization protocols, i.e.,
we tested in total 2100 setups. Each component comprises 6 tasks with implicit
deadlines, i.e., Dsi = Tsi. We choose idling periodic servers in combination with
HSRP and SIRAP. Each server period, Ps, is the largest integer value which is
lower than half of the smallest task period serviced by Cs, i.e., 2Ps ≤ Tmin

si . All
tasks τsi in the system access a single global resource for a duration varying
between 0.1Csi and 0.25Csi. These critical sections are locally and globally non-
preemptive for other tasks. Only interrupt handlers may therefore interfere
during global resource access.

Paper D

233

7.2 Synchronization Overheads
We now present the time and space complexity of the implemented syn-
chronization primitives. A single-level SRP implementation [21] is used as a
reference.

7.2.1 Time Complexity
All primitives are independent of the number of servers and tasks in a system,
except BROE’s lock operation, see Table 2. BROE may change the deadline
ordering of components which makes its lock operation linear in the number
of components in the system.

Both SIRAP implementations are presented in Table 2, i.e., first the suspend-
resume and subsequently the spinlocking version. If we implement SIRAP
by means of spinlocking, then its overheads stay locally in a component, i.e.,
the spinlock adds to the budget consumption of the particular task that locks
the resource. SIRAP’s overhead consists of at least a single test for sufficient
budget in case the self-blocking test is passed. The overhead is at most two
of such tests in case the initial test fails, i.e., one extra self-blocking test is
done after budget replenishment and before resource access is granted. All
remaining tests during spinlocking are already included as self-blocking terms
in the local analysis [36]. The processor instructions executed for a single test
are 10 instructions. Our default implementation based on suspend-resume,
which includes a complementary scheduler rule for deferrable servers, blocks
a task on a semaphore which is released upon budget replenishment. This
implementation may cause longer interrupt latencies compared to spinlocking,
but the number of interrupt-disabled regions is decreased.

HSRP introduces overheads that interfere at the system level, i.e., the overrun
mechanism requires the manipulation of budget timers. These timer manip-
ulations cause deviations in the unlock operation’s execution time. The best-

Table 2
Overview of best-case (BC) and worst-case (WC) execution-times for
SRP-based protocols measured in number of processor instructions.

Event SRP HSRP SIRAP BROE
BC WC BC WC BC WC BC WC

Lock 124 124 196 196 214 320 214 > 1200
resource / 224 O(N)
Unlock 106 106 196 725 192 192 192 192
resource ± 2
Budget - - 0 383 - - - -
depletion
Budget - - 0 15 0 68 - -
replenish / - / -

Paper D

234

case HSRP overhead is null in addition to the normal number of processor
instructions that are spent to increase and decrease the component and system
ceilings. The worst-case HSRP overhead occurs at overrun. When the budget
depletes, it is replenished with an overrun budget of Xs, which takes 383 in-
structions. Overrun completion can occur when a task unlocks a resource while
consuming overrun budget. The system overhead for overrun-completion is
on average 725 instructions with 2 instruction defining its 95% confidence
interval. When the payback mechanism is enabled, one additional computation
is done to calculate the number that needs to be paid back at the next server
replenishment, i.e., an overhead of 5 instructions.

BROE’s self-blocking mechanism is relatively expensive, because it manip-
ulates deadline orderings of components, its component’s budget timer and
may suspend itself. BROE’s overhead consists of at least a single test for
sufficient budget, i.e., 10 instructions, and at most two such tests (like SIRAP).
The cost for budget replenishment is similar to overrun, i.e., 383 instructions.
Deadline postponement and server suspension each cost at least the same, but
these costs increase linearly in the number of servers in the system. Although
these timer manipulations before accessing a resource replaces those due to
budget replenishment in periodic servers, these expensive timer operations
may happen more often in the presence of shared resources and should be
accounted to BROE.

7.2.2 Memory Complexity
The code sizes in bytes of all three protocols are presented in Table 3. For
comparison purposes μC/OS-II’s synchronization primitives of counting sema-
phores and the priority-inheritance-based protocol are included in this table,
as well as our task-level SRP implementation. The sizes of the three global
protocols are approximately two times the size of plain SRP. Only BROE’s lock
operation is considerably more expensive due to its ready-queue manipula-
tions. The last column presents the code sizes of the transparently implemented
primitives. The lock operation is slightly increased in size due to glue code that
enables protocol transparency. The size of the unlock operation is determined
by HSRP.

In Section 6.1 we showed that each SRP resource has a data structure in
each component that shares this resource and at the global level. At the global
level, the system-ceiling stack contains at most M shared resources, i.e., linear
in the size of R. Each component Cs has a similarly sized stack structure,
i.e., O(Ms). Furthermore, counting semaphores and priority-inheritance-based
protocols do not support resource sharing across budgets and require waiting
queues to track tasks that pend on a locked resource. For these event-based
protocols, μC/OS-II reserves two bytes per task in the system for each resource

Paper D

235

Table 3
Code sizes (in bytes) of SRP primitives compared to μC/OS-II’s counting

semapphore (CS) and priority-inheritance protocol (PIP).
Function CS PIP SRP SIRAP HSRP BROE SIRAP+HSRP+BROE

Lock resource 416 924 196 492 436 792 820
Unlock
resource

208 396 192 384 436 384 436

Create
resource

196 304 228 168 168 168 168

Delete
resource

460 560 116 40 40 40 40

Set component
protocol

- - - - - - 192

Set component
ceiling

- - - 264 264 264 264

Set
component’s
RHT

- - - 148 148 148 148

control block. SRP-based protocols do not need this expensive infrastructure,
because waiting queues are contained in the ready queue. Instead, the server
control blocks are extended with five integers for timer management.

7.3 Transparent Interfaces: An Example
We recently extended our development environment with a visualization tool,
which makes it possible to plot a HSF’s behaviour [42]. To demonstrate the
behavioural differences between SIRAP, HSRP and BROE, consider an example
system consisting of three components, i.e., two deferrable servers (DS 1 and
DS 2) and a BROE server (see Table 4). The system comprises five tasks5

divided over the servers, which share a single global resource R1 (see Ta-
ble 5). The component/task with the lowest index has the highest preemption
level/priority. The local resource ceilings, rcsl, of R1 are chosen to be equal to
the highest local priority.

Figure 3 shows the behaviour of the EDF-scheduled example system, where
the period of a server represents its relative deadline. DS 1 selects SIRAP
and DS 2 selects HSRP with payback. SIRAP suspends DS 1 (time 5) and
postpones resource access due to insufficient budget. Although DS 1 preserves
its capacity during self-suspension, task 1 cannot start at time 10 due to the
raised component ceiling. HSRP immediately grants access to Rl and allows
task 4 to overrun its server’s budget for the duration of the critical section. DS 2

5. The computation time Csi denotes the task’s consumed time units before/after lock-
ing/unlocking a resource, e.g., the scenario Cs1,1; Lock(R1); Cs1,2; Unlock(R1); Cs1,3 is
denoted as Cs1,1 + Cs1,2 + Cs1,3.

Paper D

236

Table 4
Example System: component parameters

Component Period (Ps) Budget (Qs) Max. blocking (Xs)

DS 1 50 20 15
DS 2 60 20 15
BROE 75 20 10

Table 5
Example System: task parameters

Server Task Period Computation time4 Phasing

DS 1 Task 1 125 10 10
DS 1 Task 2 150 5+15+5 0
DS 2 Task 3 125 10 10
DS 2 Task 4 200 5+15+5 0
BROE Task 5 220 15+10+5 0

replenishes its budget with X2 at time 25. At time 36 task 4 unlocks R1 and
the remainder of X2 is discarded. The normal budget of DS 2 is reduced with
its consumed overrun at the next replenishment (time 60). Task 5 encounters
insufficient budget to complete its critical section at time 52. The BROE server
has a deadline of 75 and a remaining budget of 5 time units, so that it suspends
its execution until time 75 − 75

205 ≈ 56. In addition, it replenishes its budget
with a renewed deadline of 131. After the suspension expires at time 56, task 5
is serviced by its server so that it gains access to resource R1 at time 75.

8 EVALUATION

Short critical sections that share resources with the kernel, e.g., system calls, are
typically executed non-preemptively. Disabling and enabling interrupts itself
is very cheap, i.e., approximately 5 instructions. Long non-preemptive critical-
section durations may hamper the system’s responsiveness, however, so that it
becomes advantageous to trade preemptivenes against resource holding times.
This is where our protocol implementations come into play.

We showed that each of the protocol implementation has bounded com-
putation times and jitter, which makes the use of these protocols timewise
predictable. For protocols that need to manipulate timers, i.e., HSRP and BROE,
these jitters may become larger. We refer to [22] for a more extensive study on
timer management in our HSF. The execution times of the primitives must be
included in the system analysis by adding these to the RHTs in a component’s
interface, i.e., Xsl ∈ Xs.

By default, current analysis techniques do not account for overheads of
the operating system and the corresponding synchronization primitives. Us-

Paper D

237

0 50 100

Task2

Task4

Task5

0

10

20

DS1

Task1

0

10

20

DS2

Task3

0

10

20

BROE

Legend: active holding mutex

Figure 3. Example combining SIRAP (DS1), HSRP with payback (DS2) and
BROE to access one shared resource, generated from instrumented code [42].

ing more advanced analysis methods, for example as proposed in [48], our
measures can be included in the existing system analysis. Our experiments do
not incorporate scheduling costs, because these are the same for all protocols.
At the cost of implementing a data structure that maintains a waiting queue
for suspended tasks in the HSF, one can reduce the number of scheduler
calls, see [20]. We changed the scheduler, so that the ready queue of μC/OS-
II contains SRP’s waiting queues. Hence, we always call the scheduler at

Paper D

238

unlocking a resource.

9 CONCLUSION

HSFs have been developed to provide temporal isolation between components
and decouple independent development of components from their integra-
tion on a shared platform. We described the implementation of three SRP-
based synchronization protocols, i.e., HSRP, SIRAP and BROE, in a two-level
preemptively scheduled HSF to support inter-component synchronization. We
transparently offer these protocols side-by-side within the same HSF, so that
their primitives can be selected based on relative strengths of the protocol.

Our implementations are based on an HSF-enabled real-time operating sys-
tem, μC/OS-II. Our HSF builds on an hierarchical setup of relative timed-
events queues (RELTEQs). The decoupling of system- and server-related events
limits the interference of handling expiring timers corresponding to inactive
servers from the perspective of the executing server. To support SIRAP’s
and BROE’s self-blocking mechanisms, we implemented a novel virtual-timer
mechanism. HSRP uses a run-time overrun mechanism, which is implemented
such that overrun consumption ends when a component’s normal budget
replenishes. BROE provides a CBS-based server and uses a self-blocking mech-
anism in conjunction with deadline-postponement. Because BROE and HSRP
require expensive timer operations in their primitives, SIRAP is the preferred
protocol for integrating legacy components into the HSF with many short
critical sections. BROE is especially advantageous for global EDF-scheduled
systems with relatively large non-preemptive code fragments. Finally, in global
FPPS-based systems, HSRP is beneficial compared to SIRAP when task periods
are relatively close to their server period.

For each of the synchronization protocols we discussed the system over-
head. The memory requirements of these protocols are lower than priority-
inheritance-based protocols where tasks may pend in a waiting queue. Fur-
thermore, our primitives have bounded computation times and jitter. BROE’s
lock operation is especially expensive, in terms of time and space complexity,
due to its deadline manipulation and self-suspension. The implementation
complexity of HSRP is independent of the underlying server model. SIRAP’s
overhead is low for idling periodic servers, which are therefore preferred
above deferrable servers. As a future work we leave software-development-
environment extensions that support HSFs and global resource sharing.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for their useful feedback
and their help to improve the quality of this paper.

Paper D

239

REFERENCES
[1] R. Davis and A. Burns, “Resource sharing in hierarchical fixed priority pre-emptive systems,”

in Real-Time Systems Symp., Dec. 2006, pp. 257–267.
[2] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization protocol for

hierarchical resource sharing in real-time open systems,” in Conf. on Embedded Software, Oct.
2007, pp. 279–288.

[3] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers for open environments,”
IEEE Trans. on Industrial Informatics, vol. 5, no. 3, pp. 202–219, Aug. 2009.

[4] AUTOSAR GbR, “Technical overview,” 2008. [Online]. Available: http://www.autosar.org/
[5] OSEK Group, “OSEK VDX operating system specificiation 2.2.3.” [Online]. Available:

http://www.osek-vdx.org/
[6] T. Nolte, I. Shin, M. Behnam, and M. Sjodin, “A synchronization protocol for temporal

isolation of software components in vehicular systems,” IEEE Trans. on Industrial Informatics,
vol. 5, no. 4, pp. 375–387, Nov. 2009.

[7] I. Shin and I. Lee, “Compositional real-time scheduling framework with periodic model,”
ACM Trans. on Embedded Computing Systems, vol. 7, no. 3, pp. 1–39, 2008.

[8] T. Baker, “Stack-based scheduling of realtime processes,” Real-Time Syst., vol. 3, no. 1, pp.
67–99, March 1991.

[9] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline scheduling environment,”
Real-Time Syst., vol. 9, no. 1, pp. 31–67, 1995.

[10] M. Behnam, T. Nolte, M. Åsberg, and I. Shin, “Synchronization protocols for hierarchical real-
time scheduling frameworks,” in Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems, Nov. 2008, pp. 53–60.

[11] M. Behnam, T. Nolte, M. Åsberg, and R. J. Bril, “Overrun and skipping in hierarchically
scheduled real-time systems,” in Conf. on Embedded and Real-Time Computing Systems and
Applications, Aug. 2009, pp. 519–526.

[12] J. J. Labrosse, MicroC/OS-II: the real-time kernel (2nd edition). CMP Books, 2002.
[13] M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Protocol-transparent resource

sharing in hierarchically scheduled real-time systems,” in Conf. on Emerging Technologies and
Factory Automation, Sept. 2010.

[14] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource sharing in reservation-based
systems,” in Real-Time Systems Symp., 2001, pp. 171–180.

[15] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an approach to real-time
synchronisation,” IEEE Trans. on Computers, vol. 39, no. 9, pp. 1175–1185, Sept. 1990.

[16] U. Steinberg, J. Wolter, and H. Härtig, “Fast component interaction for real-time systems,” in
Euromicro Conf. on Real-Time Systems, July 2005, pp. 89–97.

[17] G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in reservation-based real-time
systems,” IEEE Trans. on Computers, vol. 53, no. 12, pp. 1591–1601, Dec. 2004.

[18] G. Buttazzo and P. Gai, “Efficient implementation of an EDF scheduler for small embedded
systems,” in Workshop on Operating System Platforms for Embedded Real-Time Applications, July
2006.

[19] M. Behnam, T. Nolte, M. Sjodin, and I. Shin, “Overrun methods and resource holding times
for hierarchical scheduling of semi-independent real-time systems,” IEEE Trans. on Industrial
Informatics, vol. 6, no. 1, pp. 93–104, Feb. 2010.

[20] M. Åsberg, M. Behnam, T. Nolte, and R. J. Bril, “Implementation of overrun and skipping
in VxWorks,” in Workshop on Operating Systems Platforms for Embedded Real-Time Applications,
July 2010, pp. 45–52.

[21] M. M. H. P. van den Heuvel, R. J. Bril, J. J. Lukkien, and M. Behnam, “Extending a HSF-
enabled open-source real-time operating system with resource sharing,” in Workshop on
Operating Systems Platforms for Embedded Real-Time Applications, July 2010, pp. 71–81.

[22] M. M. H. P. van den Heuvel, M. Holenderski, R. J. Bril, and J. J. Lukkien, “Constant-bandwidth
supply for priority processing,” IEEE Trans. on Consumer Electronics, vol. 57, no. 2, pp. 873–881,
May 2011.

Paper D

240

[23] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,” in Real-Time
Systems Symp., Dec. 2005, pp. 389–398.

[24] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard real-time systems,”
Real-Time Syst., vol. 1, no. 1, pp. 27–60, June 1989.

[25] J. Strosnider, J. Lehoczky, and L. Sha, “The deferrable server algorithm for enhanced aperiodic
responsiveness in hard real-time environments,” IEEE Trans. on Computers, vol. 44, no. 1, pp.
73–91, Jan. 1995.

[26] P. J. L. Cuijpers and R. J. Bril, “Towards budgeting in real-time calculus: deferrable servers,”
in Conf. on Formal modeling and analysis of timed systems. Springer-Verlag, 2007, pp. 98–113.

[27] G. Lipari and E. Bini, “A methodology for designing hierarchical scheduling systems,” Journal
of Embedded Computing, vol. 1, no. 2, pp. 257–269, 2005.

[28] I. Shin, M. Behnam, T. Nolte, and M. Nolin, “Synthesis of optimal interfaces for hierarchical
scheduling with resources,” in Real-Time Systems Symp., Dec. 2008, pp. 209–220.

[29] M. Behnam, T. Nolte, and N. Fisher, “On optimal real-time subsystem-interface generation in
the presence of shared resources,” in Conf. on Emerging Technologies and Factory Automation,
Sept. 2010.

[30] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utilization of real-time task sets
in single and multi-processor systems-on-a-chip,” in Real-Time Systems Symp., Dec. 2001, pp.
73–83.

[31] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and resource hold times,”
in Parallel and Distributed Processing Symp., March 2007, pp. 1–8.

[32] N. Fisher, M. Bertogna, and S. Baruah, “Resource-locking durations in EDF-scheduled
systems,” in Real-Time and Embedded Technology and Applications Symp., April 2007, pp. 91–
100.

[33] S. K. Baruah, “Resource sharing in EDF-scheduled systems: A closer look,” in Real-Time
Systems Symp., 2006, pp. 379–387.

[34] F. Zhang and A. Burns, “Analysis of hierarchical EDF pre-emptive scheduling,” in Real-Time
Systems Symp., Dec. 2007, pp. 423–434.

[35] G. Bernat and A. Burns, “New results on fixed priority aperiodic servers,” in Real-Time Systems
Symp., Dec. 1999, pp. 68–78.

[36] M. Behnam, T. Nolte, and R. J. Bril, “Bounding the number of self-blocking occurrences of
sirap,” in Real-Time Systems Symp., Dec. 2010.

[37] P. López Martinez, L. Barros, and J. Drake, “Scheduling configuration of real-time component-
based applications,” in Reliable Software Technologiey - Ada-Europe, ser. Lecture Notes in
Computer Science. Springer, 2010, vol. 6106, pp. 181–195.

[38] Micrium, “RTOS and tools,” March 2010. [Online]. Available: http://micrium.com/
[39] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, “Rate-harmonized scheduling and its

applicability to energy management,” IEEE Trans. on Industrial Informatics, vol. 6, no. 3, pp.
265–275, Aug. 2010.

[40] R. J. Bril, U. Keskin, T. Nolte, and M. Behnam, “Schedulability analysis of synchro-
nization protocols based on overrun without payback for hierarchical scheduling frame-
works revisited,” Eindhoven University of Technology, Tech. Rep. CS 10-05, June 2010,
http://alexandria.tue.nl/repository/books/685859.pdf.

[41] A. Burns and S. Baruah, “Sustainability in real-time scheduling,” Journal of Computing Science
and Engineering, vol. 2, no. 1, pp. 72–94, 2008.

[42] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Grasp: Tracing,
visualizing and measuring the behavior of real-time systems,” in Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, July 2010, pp. 37–42.

[43] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time systems,”
in Real-Time Systems Symp., Dec. 1998, pp. 4–13.

[44] L. Abeni, L. Palopoli, C. Scordino, and G. Lipari, “Resource reservations for general purpose
applications,” IEEE Trans. on Industrial Informatics, vol. 5, no. 1, pp. 12–21, Feb. 2009.

[45] M. Bertogna and S. Baruah, “Limited preemption edf scheduling of sporadic task systems,”
IEEE Trans. on Industrial Informatics, vol. 6, no. 4, pp. 579–591, Nov. 2010.

Paper D

241

[46] OpenCores. (2009) OpenRISC overview. [Online]. Available: http://www.opencores.org/
project,or1k

[47] M. Lv, N. Guan, Q. Deng, G. Yu, and Y. Wang, “Static worst-case execution time analysis of
the μC/OS-II real-time kernel,” Frontiers of Computer Science in China, vol. 4, no. 1, pp. 17–27,
2010.

[48] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, “Evolving real-time systems using
hierarchical scheduling and concurrency analysis,” in Real-Time Systems Symp., Dec. 2003, pp.
25–36.

Paper D

242

PAPER E:

DEPENDABLE RESOURCE SHARING FOR COMPOSITIONAL REAL-
TIME SYSTEMS

M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien

In proceedings of the 17th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA),
pp. 153–163, August 2011

243

ABSTRACT

Hierarchical scheduling frameworks (HSFs) have been extensively investigated
as a paradigm for facilitating temporal isolation between components that
need to be integrated on a single shared processor. In the presence of shared
resources, however, temporal isolation may break when one of the accessing
components executes longer than specified during global resource access. The
ability to confine such temporal faults makes the HSF more dependable. As
a solution we propose a stack-resource-policy (SRP)-based synchronization
protocol for HSFs, named Hierarchical Synchronization protocol with Temporal
Protection (HSTP).

When a component exceeds its specified critical-section length, HSTP enforces
a component to self-donate its own budget to accelerate the resource release. In
addition, a component that blocks on a locked resource may donate budget. The
schedulability of those components that are independent of the locked resource
is unaffected. HSTP efficiently limits the propagation of temporal faults to
resource-sharing components by disabling local preemptions in a component
during resource access. We finally show that HSTP is SRP-compliant and applies
to existing synchronization protocols for HSFs.

Paper E

244

1 INTRODUCTION

Many real-time embedded systems implement increasingly complex and safety-
critical functionality while their time to market and cost is continuously under
pressure. This has resulted in standardized component-based software architec-
tures, e.g. the AUTomotive Open System ARchitecture (AUTOSAR), where each
component can be analysed and certified independently of its performance in
an integrated system. Hierarchical scheduling frameworks (HSFs) have been
investigated as a paradigm for facilitating such a decoupling [1] of develop-
ment of individual components from their integration. HSFs provide temporal
isolation between components by allocating a budget to each component. A
component that is validated to meet its timing constraints when executing in
isolation will therefore continue meeting its timing constraints after integration
or admission on a shared uniprocessor platform.

An HSF without further resource sharing is unrealistic, however, since
components may for example use operating system services, memory mapped
devices and shared communication devices which require mutually exclusive
access. Extending an HSF with such support makes it possible to share logical
resources between arbitrary tasks, which are located in arbitrary components,
in a mutually exclusive manner. A resource that is used in more than one
component is denoted as a global shared resource. A resource that is only shared
by tasks within a single component is a local shared resource. If a task that
accesses a global shared resource is suspended during its execution due to
the exhaustion of its budget, excessive blocking periods can occur which may
hamper the correct timeliness of other components [2].

To accommodate resource sharing between components, three synchroniza-
tion protocols [3], [4], [5] have been proposed based on the stack resource
policy (SRP) [6]. Each of these protocols describes a run-time mechanism to
handle the depletion of a component’s budget during global resource access.
In short, two general approaches are proposed: (i) self-blocking before accessing
a shared resource when the remaining budget is insufficient to complete a
critical section [4], [5] or (ii) overrun the budget until the critical section ends [3].
However, when a task exceeds its specified worst-case critical-section length,
i.e. it misbehaves during global resource access, temporal isolation between
components is no longer guaranteed. The protocols in [3], [4], [5] therefore
break the temporal encapsulation and fault-containment properties of an HSF
without the presence of complementary protection.

A common practice to temporal protection is based on watchdog timers,
which (i) trigger the termination of a misbehaving task, (ii) release all its
locked resources and (iii) call an error handler to execute a roll-back strategy [7].
For some shared resources, e.g. network devices, it may be advantageous to
continue a critical section, because interrupting and resetting a busy device

Paper E

245

can be time consuming. In addition, an eventual error handler needs to be
constrained, so that it does not interfere with independent components.

A solution to confine temporal faults to those components that share global
resources is considered in [8]. Each task is assigned a dedicated budget per
global resource access and this budget is synchronous with the period of that
task. After depletion of this budget, a critical section is discontinued until its
budget replenishes and the task will therefore miss its deadline. To improve
reliability, they propose a donation mechanism for tasks that encounter a locked
resource, so that a critical section can continue and both the blocking as well as
the resource-locking task may still meet their deadlines. However, in [8] they
allow only a single task per component.

The first problem is to limit the propagation of temporal faults in HSFs, where
multiple concurrent tasks are allocated a shared budget, to those components
that share a global resource. However, when a critical-section exceeds its
specified length, a component may nevertheless have remaining budget apart
from the budget assigned to that critical section. The second problem is to
allocate these unused budgets to accelerate a resource release before a resource-
sharing component blocks on the locked resource. We aim to increase the
reliability of resource-sharing components, while preserving the schedulability
of independent components, by self-donations of the remaining budget of a
resource-locking component itself and, next, by budget donations from others
to critical sections.

Contributions
To achieve temporal isolation between components, even when resource-sharing
components misbehave, we propose a modified SRP-based synchronization
protocol, named Hierarchical Synchronization protocol with Temporal Protection
(HSTP). It supports fixed-priority as well as earliest-deadline-first (EDF) sched-
uled systems and it complements existing synchronization protocols [3], [4], [5]
for HSFs. We efficiently achieve fault-containment by disabling preemptions of
other tasks within the same component during global resource access. Secondly,
we allow a cascaded continuation of a critical section via self-donations as
long as a component has remaining budget, or via budget donations from
dependent components. Thirdly, we present HSTP’s analysis and show that
sufficiently short critical sections can execute with local preemptions disabled
and preserve system schedulability. Finally, we evaluate HSTP’s implementation
in a real-time operating system.

Organization
The remainder of this paper is organized as follows. Section 2 describes
related works. Section 3 presents our system model. Section 4 presents our

Paper E

246

dependable resource-sharing protocol, HSTP, including a donation mechanism
that enhances the reliability of inter-dependent components. Section 5 presents
HSTP’s corresponding schedulability analysis. Section 6 discusses HSTP’s
implementation and investigates its corresponding system overhead. Finally,
Section 7 concludes this paper.

2 RELATED WORK

Our basic idea is to use two-level SRP to arbitrate access to global resources,
similar as [3], [4], [5]. In literature several alternatives are presented to accom-
modate task communication in reservation-based systems. De Niz et al. [8]
support resource sharing between reservations based on the immediate priority
ceiling protocol (IPCP) [9] in their fixed-priority preemptively scheduled (FPPS)
Linux/RK resource kernel and use a run-time mechanism based on resource
containers [10] for temporal protection against misbehaving tasks. Steinberg
et al. [11] showed that these resource containers are expensive and efficiently
implemented a capacity-reserve donation protocol to solve the problem of
priority inversion for tasks scheduled in a fixed-priority reservation-based
system. A similar approach is described in [12] for EDF-based systems and
termed bandwidth-inheritance (BWI). BWI regulates resource access between
tasks that each have their dedicated budget. It works similar to the priority-
inheritance protocol [9], i.e. when a task blocks on a resource it donates its
remaining budget to the task that causes the blocking. BWI does not require
a-priori knowledge of tasks, i.e. precalculated ceilings are unnecessary. BWI has
been extended with the Clearing Fund Protocol (CFP) [13], which makes a task
pay back its inherited bandwidth, if necessary. All these approaches assume a
one-to-one mapping from tasks to budgets, and inherently only have a single
scheduling level.

In HSFs a group of concurrent tasks, forming a component, are allocated
a budget [14]. A prerequisite to enable independent analysis of interacting
components and their integration is the knowledge of which resources a
task will access [4], [5], [15]. When a task accesses a global shared resource,
one needs to consider the priority inversion between components as well
as local priority inversion between tasks within the component. To prevent
budget depletion during global resource access, three synchronization protocols
have been proposed based on SRP [6], i.e. HSRP [3], SIRAP [4] and BROE [5].
Although HSRP [3] originally does not integrate into HSFs due to the lacking
support for independent analysis of components, Behnam et al. [15] lifted this
limitation. However, these three protocols, including their implementations
in [16], [17], assume that components respect their timing contract with respect
to global resource sharing. In this paper we smooth and limit the unpredictable

Paper E

247

interferences caused by contract violations to the components that share the
global resource.

3 REAL-TIME SCHEDULING MODEL

We consider a two-level HSF using the periodic resource model [1] to specify
guaranteed processor allocations to components. The global scheduler and
each individual component may apply a different scheduling algorithm. As
scheduling algorithms we consider EDF, an optimal dynamic uniprocessor
scheduling algorithm, and the deadline-monotonic (DM) algorithm, an optimal
fixed-priority uniprocessor scheduling algorithm. We use an SRP-based syn-
chronization protocol to arbitrate mutually exclusive access to global shared
resources.

3.1 Compositional model
A system contains a set R of M global logical resources R1, R2, . . ., RM , a set C
of N components C1, C2, . . ., CN , a set B of N budgets for which we assume a
periodic resource model [1], and a single shared processor. Each component Cs

has a dedicated budget which specifies its periodically guaranteed fraction of
the processor. The remainder of this paper leaves budgets implicit, i.e. the timing
characteristics of budgets are taken care of in the description of components.

The timing characteristics of a component Cs are specified by means of a
triple < Ps, Qs,Xs >, where Ps ∈ R

+ denotes its period, Qs ∈ R
+ its budget,

and Xs the set of maximum access times to global resources. The maximum
value in Xs is denoted by Xs, where 0 < Qs +Xs ≤ Ps. The set Rs denotes the
subset of Ms global resources accessed by component Cs. The maximum time
that a component Cs executes while accessing resource Rl ∈ Rs is denoted by
Xsl, where Xsl ∈ R

+ ∪ {0} and Xsl > 0 ⇔ Rl ∈ Rs.

3.1.1 Processor supply
The processor supply refers to the amount of processor allocation that a component
Cs can provide to its workload. The supply bound function sbfΓs(t) of the
periodic resource model Γs(Ps, Qs), that computes the minimum supply for
any interval of length t, is given by [1]:

sbfΓs(t) =

{
t− (k + 1)(Ps −Qs) if t ∈ V (k)

(k − 1)Qs otherwise,
(1)

where k = max
(⌈(

t − (Ps − Qs)
)
/Ps

⌉
, 1
)

and V (k) denotes an interval [(k +

1)Ps − 2Qs, (k + 1)Ps −Qs]. The longest interval a component may receive no
processor supply is named the blackout duration, BDs, i.e. BDs = 2(Ps −Qs).

Paper E

248

3.1.2 Task model
Each component Cs contains a set Ts of ns sporadic tasks τs1, τs2, . . ., τsns

.
Timing characteristics of a task τsi ∈ Ts are specified by means of a triple
< Tsi, Esi, Dsi >, where Tsi ∈ R

+ denotes its minimum inter-arrival time,
Esi ∈ R

+ its worst-case computation time, Dsi ∈ R
+ its (relative) deadline,

where 0 < Esi ≤ Dsi ≤ Tsi. We assume that period Ps of component Cs is
selected such that 2Ps ≤ Tsi(∀τsi ∈ Ts), because this efficiently assigns a budget
to component Cs [1]. The worst-case execution time of task τsi within a critical
section accessing Rl is denoted csil, where csil ∈ R

+ ∪ {0}, Esi ≥ csil and
csil > 0 ⇔ Rl ∈ Rs. For notational convenience we assume that tasks (and
components) are given in deadline-monotonic order, i.e. τs1 has the smallest
deadline and τsns

the largest.

3.2 Synchronization protocol
Traditional synchronization protocols such as PCP [9] and SRP [6] can be used
for local resource sharing in HSFs [18]. This paper focuses on arbitrating global
shared resources using SRP. To be able to use SRP in an HSF for synchronizing
global resources, its associated ceiling terms need to be extended and excessive
blocking must be prevented.

3.2.1 Preemption levels
Each task τsi has a static preemption level equal to πsi = 1/Dsi. Similarly,
a component has a preemption level equal to Πs = 1/Ps, where period Ps

serves as a relative deadline. If components (or tasks) have the same calculated
preemption level, then the smallest index determines the highest preemption
level.

3.2.2 Resource ceilings
With every global resource Rl two types of resource ceilings are associated; a
global resource ceiling RC l for global scheduling and a local resource ceiling
rcsl for local scheduling. These ceilings are statically calculated values, which
are defined as the highest preemption level of any component or task that
shares the resource. According to SRP, these ceilings are defined as:

RC l = max(ΠN ,max{Πs | Rl ∈ Rs}), (2)
rcsl = max(πsns ,max{πsi | csil > 0}). (3)

We use the outermost max in (2) and (3) to define RC l and rcsl in those
situations where no component or task uses Rl.

Paper E

249

3.2.3 System and component ceilings
The system and component ceilings are dynamic parameters that change during
execution. The system ceiling is equal to the highest global resource ceiling of
a currently locked resource in the system. Similarly, the component ceiling is
equal to the highest local resource ceiling of a currently locked resource within
a component. Under SRP a task can only preempt the currently executing task
if its preemption level is higher than its component ceiling. A similar condition
for preemption holds for components.

3.2.4 Prevent excessive blocking
HSRP [3] uses an overrun mechanism [15] when a budget depletes during
a critical section. If a task τsi ∈ Ts has locked a global resource when its
component’s budget Qs depletes, then component Cs can continue its execution
until task τsi releases the resource. To distinguish this additional amount of
required budget from the normal budget Qs, we refer to Xs as an overrun budget.
These budget overruns cannot take place across replenishment boundaries, i.e.
the analysis guarantees Qs +Xs processor time before the relative deadline Ps

of component Cs [3], [15].
SIRAP [4] uses a self-blocking approach to prevent budget depletion inside

a critical section. If a task τsi wants to enter a critical section, it enters the
critical section at the earliest time instant so that it can complete the critical
section before the component’s budget depletes. If the remaining budget is
insufficient to lock and release a resource Rl before depletion, then (i) the task
blocks itself until budget replenishment and (ii) the component ceiling is raised
to prevent tasks τsj ∈ Ts with a preemption level lower than the local ceiling
rcsl to execute until the requested critical section has been finished.

BROE [5] uses an other self-blocking variant than SIRAP uses. Contrary to
SIRAP and HSRP, BROE only works with a global EDF scheduler. Its major
advantage is that when the remaining budget of a component is insufficient
to complete a critical section, it discards this remainder without violating the
periodic resource supply [1]. BROE does therefore not waste processor resources
during self-blocking and it is also unnecessary to allocate overrun budgets to
components.

In this paper we ignore the relative strengths of the mechanisms presented
by the protocols in [3], [4], [5], [15]. We focus on mechanisms to extend these
existing protocols with dependability attributes and merely investigate their
relative complexity with respect to our mechanisms.

4 DEPENDABLE RESOURCE SHARING

Dependability encompasses many quality attributes [7], i.e. amongst others:
safety, integrity, reliability, availability and robustness. Temporal faults can have

Paper E

250

catastrophic consequences, making the system unsafe. These temporal faults
may cause improper system alterations, e.g. due to unexpectedly long blocking
or an inconsistent state of a resource. Hence, it affects system integrity. Without
any protection a self-blocking approach [4], [5] may miss its purpose under
erroneous circumstances, i.e. a task still overruns its budget to complete its
critical section. Even an overrun approach [3], [15] must guarantee a maximum
duration of the overrun situation. Otherwise, overruns can hamper temporal
isolation and resource availability to other components due to unpredictable
blocking effects. A straightforward implementation of the overrun mechanism,
e.g. as implemented in the ERIKA kernel [19], where a task is allowed to
indefinitely overrun its budget as long as it locks a resource, is therefore
unreliable. The extent to which a system tolerates such unforeseen interferences
defines its robustness.

4.1 Resource monitoring and enforcement
A common approach to ensure temporal isolation and prevent propagation of
temporal faults within the system is to group tasks that share resources into
a single component [18]. However, this might be too restrictive and leading
to large, incoherent component designs, which violates the principle of HSFs
to independently develop components. Since a component defines a coherent
piece of functionality, a task that accesses a global shared resource is critical
with respect to all other tasks in the same component.

To guarantee temporal isolation between components, the system must moni-
tor and enforce the length of a global critical section to prevent a malicious task
to execute longer in a critical section than assumed during system analysis [8].
Otherwise such a misbehaving task may increase blocking to components with
a higher preemption level, so that even independent components may suffer,
as shown in Figure 1.

Legend: critical section normal execution budget arrival

C1

C2

C3

timetet0 t1

Fig. 1. Temporal isolation is unassured when a component, C3, exceeds its
specified critical-section length, i.e. at time instant te. The system ceiling, defined
by resource ceiling RC l = Π1, blocks all other components.

Paper E

251

To prevent this effect we introduce a resource-access budget qs in addition to
a component’s budget Qs, where budget qs is used to enforce critical-section
lengths. When a resource Rl gets locked, qs replenishes to its full capacity,
i.e. qs ← Xsl. To monitor the available budget at any moment in time, we
assume the availability of a function Qrem

s (t) that returns the remaining budget
of Qs. Similarly, qrems (t) returns the remainder of qs at time t. If a component
Cs executes in a critical section, then it consumes budget from Qs and qs in
parallel, i.e. depletion of either Qs or qs forbids component Cs to continue its
execution. We maintain the following invariant to prevent budget depletion
during resource access:

Invariant 1: Qrem
s (t) ≥ qrems (t).

The way of maintaining this invariant depends on the chosen policy to prevent
budget depletion during global resource access, e.g. by means of SIRAP [4],
HSRP [3] or BROE [5]. For ease of presentation we will first complement HSRP’s
overrun mechanism with a mechanism for temporal protection. In Section 5.4
we show how our resulting protocol, HSTP, applies to both SIRAP’s and BROE’s
self-blocking mechanisms.

4.1.1 Fault containment of critical sections
Existing SRP-based synchronization protocols in [4], [5], [15] make it possible to
choose the local resource ceilings, rcsl, according to SRP [6], see (3). In [20], [21]
techniques are presented to trade-off preemptiveness against resource holding
times. Given their common definition for local resource ceilings, a resource
holding time, Xsl, may also include the interference of tasks with a preemption
level higher than the resource ceiling. Task τsi can therefore lock resource Rl

longer than specified, because an interfering task τsj (where πsj > rcsl) exceeds
its computation time, Esj .

To prevent this effect we choose to disable preemptions for other tasks within
the same component during critical sections, i.e. similar as HSRP [3] we choose
local resource ceilings by ∀Rl ∈ Rs : rcsl = πs1 . As a result Xsl only comprises
task execution times within a critical section, i.e.

Xsl = max
1≤i≤ns

csil. (4)

Since Xsl is enforced by budget qs, temporal faults are contained within a
subset of resource-sharing components.

4.1.2 Maintaining SRP ceilings
To enforce that a task τsi resides no longer in a critical section than specified by
Xsl, a resource Rl ∈ R maintains a state locked or free. We introduce an extra
state busy to signify that Rl is locked by a misbehaving task. When a task τsi
tries to exceed its maximum critical-section length Xsl, we update SRP’s system

Paper E

252

ceiling by mimicking a resource unlock and mark the resource busy until it is
released. Since we decrease the system ceiling after τsi executes for a duration
of Xsl in a critical section to resource Rl, we can no longer guarantee absence
of deadlocks. Nested critical sections to global shared resources are therefore
unsupported1. One may alternatively aggregate global resource accesses into a
simultaneous lock and unlock of a single artificial resource [22]. Many protocols,
or their implementations, lack deadlock avoidance [8], [11], [12], [17].

Although it seems attractive from a schedulability point of view to release
the component ceiling when the critical-section length is exceeded, i.e. similar
to the system ceiling, this would break SRP compliance, because a task may
block on a busy resource instead of being prevented from starting its execution.
Our approach therefore preserves the SRP property to share a single, consistent
execution stack per component [6]. At the global level tasks can be blocked by
a depleted budget, so that components cannot share an execution stack anyway.

4.1.3 Repetitive self-donation to resource-access budgets
A component that accesses a resource Rl maintains a dedicated resource-access
budget qs synchronous to its normal budget Qs, i.e. similar to [8]. Since critical
sections are often shorter than budget Qs is, a component may still have
remaining budget Qrem

s (t) > 0 when qs depletes. Contrary to [8], when qs
depletes we repeatedly replenish it by a self-donation of Xsl until budget Qs is
exhausted. Although we need to decrease the system ceiling before replenishing qs to
avoid excessive blocking durations to other components, we may again increase
the system ceiling for a duration of Xsl as soon as component Cs is selected
by the global scheduler to continue its execution. This increases the likelihood
that a resource-using component meets its deadline despite a misbehaving
critical section and it reduces the likelihood that a resource-sharing component
encounters a busy resource. Our resource-access budgets are therefore more
reliable and robust than those in [8] are.

4.2 HSTP with self-donation
We specify four rules to manipulate a component’s budget qs when a resource

is locked or unlocked and change the way budgets Qs and qs are replenished
and depleted. This scheme defines HSTP, a protocol that maintains temporal
protection between components during global resource access.

4.2.1 Lock resource
Upon an attempt of task τsi ∈ Ts to lock resource Rl ∈ Rs at time tl, we raise
the component ceiling independent of whether or not Rl is free.

1. We allow nesting of a (sequence of) global resource access(es) inside local critical sections.

Paper E

253

If resource Rl is free, then τsi locks the resource and qs replenishes, i.e.
qs ← Xsl. Component Cs now runs in parallel on budget Qs and qs. We need to
guarantee that Cs’ normal budget Qs does not deplete during global resource
access. We therefore first save Cs’ remaining budget as Q�

s ← Qrem
s (tl) and then

provide an overrun budget Qrem
s (tl) ← Xsl.

By virtue of SRP, a resource Rl can never be locked when a task τsi attempts
to lock it. If there exists a task τuj ∈ Tu which currently holds Rl busy, then we
immediately deplete the remaining budget of Cs, i.e. Qrem

s (tl) ← 0. After the
budget Qs of component Cs has replenished, the blocked task τsi again tests
whether or not resource Rl is free.

4.2.2 Unlock resource
If task τsi ∈ Ts unlocks a resource Rl ∈ Rs at time tf , then the component
and system ceilings are decreased according to the rules of SRP and resource
Rl is marked free. Moreover, component Cs no longer consumes budget qs
and we need to restore Cs’ budget. When a budget overrun has occurred, i.e.
Q�

s < Xsl − qrems (tf), then component Cs is suspended on its depleted budget
Qs. Otherwise, component Cs continues within its remaining budget, i.e. we
restore Qs with max(0, Q�

s − (Xsl − qrems (tf))).

4.2.3 Budget depletion
If component Cs’ budget Qs or qs depletes and all resources Rl ∈ Rs are free,
then nothing changes compared to default budget-depletion policies. However,
if a task τsi holds a resource Rl ∈ Rs so that qs has been depleted, then
(i) resource Rl is marked busy; (ii) the system ceiling is decreased according to
the rules of unlocking an SRP resource and (iii) the budget Qs of component
Cs is restored with max(0, Q�

s −Xsl).
These actions guarantee that τsi can overrun at most an amount Xsl and a

component Cs can therefore at most request Qs +Xs processor time during
each period Ps. If no other component Ct can preempt based on its preemption
level Πt > Πs after decreasing the system ceiling, the system ceiling can be
raised again for a duration of Xsl without increasing the blocking times that
component Ct may experience. Since the component ceiling is persistently raised
during global resource access, other tasks in Ts than the resource-accessing
one cannot execute. Hence, as long as a resource Rl is kept locked or busy by
component Cs, task τsi may entirely consume the remaining budget Qrem

s (t)
with a raised component and system ceiling via self-donations, if it decreases
the system ceiling after every Xsl and performs a global preemption test.

4.2.4 Budget replenishment
If component Cs’ budget Qs replenishes, it is guaranteed that at most one
resource Rl ∈ Rs is kept busy via component Cs and the corresponding

Paper E

254

resource-access budget qrems (t) = 0. If component Cs does not keep any resource
busy, then nothing changes compared to default budget-replenishment policies.
Otherwise, we restrict the replenishment of component Cs, so that it may
continue its critical section, i.e (i) the budget to be restored upon unlocking,
Q�

s , replenishes to Qs; (ii) the budgets qs and Qs that allow continuing resource
access to Rl replenish with Xsl and (iii) a resource lock is mimicked by
raising the system ceiling according to SRP. Hence, component Cs continues
its execution with a raised system ceiling.

4.2.5 Final remarks
A component Cu may block on a busy resource Rl at a time tb and subsequently
Rl can become free at a time tf before the replenishment of Cu’s budget, Qu.
If we signal component Cu to continue its execution within Qrem

u (tb) at time
tf , we can no longer guarantee the provisioning of budget Qu within its
period boundaries Pu due to the self-suspension interval [tb, tf] of budget Qu.
This introduces unpredictable interferences and scheduling anomalies to other
components in the system [23]. We can therefore either let a blocking task
spinlock on a busy resource, so that it consumes its component’s budget, or
suspend a blocking component until its replenishment before allowing this
component to resume its execution, similar to [8].

4.3 HSTP extended with third-party donations
The basic HSTP specification in Section 4.2 immediately depletes the budget
of a component Cu upon an attempt at time tb to lock a busy resource Rl.
As a result, all remaining budget, Qrem

u (tb), of the blocking component Cu is
discarded until its next replenishment. Since Cu is unable to consume its budget
due to the raised component ceiling, Cu may alternatively donate its budget to
the misbehaving component Cs with the aim to reduce the waiting time on
the busy resource Rl. In this section we complement HSTP with a donation
mechanism.

4.3.1 Attempt to lock a busy resource
When component Cu encounters a busy resource at time tb, we can repeatedly
donate Xul to misbehaving component Cs until Qu is depleted with the
aim to reduce its waiting time on resource Rl. Such a donation from donor
Cu to donatee Cs (i) mimics a resource lock by raising the system ceiling,
(ii) saves donor Cu’s remaining budget as Q�

u ← Qrem
u (tb), (iii) saves donatee Cs’

remaining budget as Q�
s ← Qrem

s (tb) and (iv) allocates budget Qrem
s (tb), qs ← Xul

to the critical section of component Cs. Due to the raised system ceiling,
component Cs effectively runs at the resource-ceiling’s preemption level RC l.
It is therefore unnecessary to change the deadline or priority of the donatee,
because all components that may use Rl are blocked by the system ceiling.

Paper E

255

4.3.2 Unlock resource
If an erroneous component Cs unlocks resource Rl at time tf while consuming
a donation, then any remaining resource-access budget qrems (tf) is donated
back to donor Cu, i.e. Qrem

u (tf) ← max(0, Q�
u − (Xul − qrems (tf))). Donatee Cs

has consumed a part of the donated budget, Xul − qrems (tf), in the place of
donor Cu. This part is accounted to donor Cu rather than to donatee Cs, so
that the budget of donatee Cs is restored to Qrem

s (tf) ← Q�
s . As a result both

resource-sharing components Cs and Cu may resume execution within their
restored budgets.

4.3.3 Budget depletion
When a donated budget Xul is depleted by donatee Cs, the system ceiling
is decreased and Xul is subtracted from donor Cu’s budget, i.e. Qrem

u (t) ←
max(0, Q�

u −Xul). The budget of donatee Cs is restored with its original value
Qrem

s (t) ← Q�
s . If donor Cu gets re-selected by the global scheduler for execution

and resource Rl is still busy, it may again donate Xul to component Cs.

4.3.4 Budget replenishment
During the consumption of donated budget Xul from donor Cu, the budget
of donatee Cs itself can get replenished. The replenishment of budget Qs

remains unchanged compared to Section 4.2.4. However, we can only replenish
a depleted resource-access budget, i.e. qrems (t) = 0. Otherwise, component Cs

may cause double blocking to other components, i.e. Xul +Xsl instead of Xsl,
see Figure 2. How to avoid this effect is unclearly described in [8], however.
Because it is unattractive to account for double blocking in the system analysis,
we avoid this blocking.

C1

C2

C3

timetet1

X1l +X3l

Legend:

critical section

normal execution

budget arrival

donate budget

Fig. 2. If resource-access budget q3 gets replenished and a task τ3i ∈ T3 executes
in a critical section, then component C3 may double block other components.

The key to the solution to avoid the double-blocking problem is to allow
preemption before replenishing qs. We can either choose to immediately deplete
qrems (t) > 0 or we can defer replenishment until qs depletes. Note that the first

Paper E

256

alternative is less reliable, because the donor will not receive any of its donation
back. However, in both cases the system ceiling must be decreased according
to SRP’s rules and the global scheduler must be called prior to replenishing qs.

4.4 Donation policies
When a component depletes its resource-access budget or blocks on a busy
resource, it cannot continue its execution. We allow two alternative budget-
donation policies, symmetrically for a donatee Cs via self-donation or a third-
party donor Cu:

4.4.1 At-once donation
A component Cu may (self-)donate its remaining budget Qrem

u (t) at once to a
donatee Cs using BWI [8], [12]. However, component Cs must consume such
donations in the place of donor Cu [24], i.e. at the donor’s preemption-level
rather than at the resource-ceiling level. This requires multiple budgets per
component and migration of tasks to enable the execution of tasks over several
budgets [8], which is costly [11] and breaks SRP’s stack-sharing property. Hence,
at-once donation causes additional run-time penalties compared to a regular
two-level HSF implementation.

4.4.2 Repetitive donation
Similar to the misbehaving component Cs, the blocking component Cu may
entirely donate its remaining budget Qrem

u (t) with a raised system ceiling if it
decreases the system ceiling after every Xsl and performs a preemption test to
avoid double blocking. As a result, after a preemption test the component with
the highest preemption level, which is ready to execute, resumes its execution,
so that a donatee always receives donated budget from the resource-dependent
component with the highest preemption level.

Similar to at-once donation, however, a component Cu may (repetitively)
donate its budget to a component Cs with a depleted resource-access budget
qs, although donatee Cs has remaining budget Qrem

s (t) > 0. An advantage
of repetitive self-donations is that it reduces the number of such unnecessary
donations to third-parties, because a replenished component can be prevented
by the system ceiling from starting its execution and donation for a duration
of Xsl; see Figure 3.

Given the repetitive donation policy, the following lemma follows from our
HSTP specification:

Lemma 1: At each time instant t there is at most one donor component Cu

per donatee Cs and each component Cs can only execute a single global critical
section.

Paper E

257

Legend:

critical section

normal execution

budget arrival

C1

C2

timet1

donate budget

X2l

ε

X2l X1l

B1

Fig. 3. Repetitive consumption of remaining budget can reduce unnecessary
donations from blocking components. In this example component C1 arrives an
infinitesimal amount of time, ε, after the first depletion and preemption test of C2,
so that donation is deferred until component C2 depletes its replenished budget
q2 = X2l.

Proof: As long as a resource Rl is kept locked or busy by component Cs, its
component ceiling prevents all other tasks within the component from starting
their execution. By absence of nested critical sections, no other resource Rk can
be kept locked or busy by the same component Cs.

A component Cu which attempts to lock Rl may donate a budget of length Xul

and immediately raises the system ceiling. Hence, other Rl-sharing components
Ct cannot preempt while donatee Cs consumes the donated budget Xul.

In the remainder of this paper we use the repetitive-donation policy, because
it eliminates donations at arbitrary moments in time, which increases the
reliability of a system. Secondly, it eliminates transitive donations, so that we
need to track at most a single donor component within the context of a donatee.

5 DEPENDABLE AND COMPOSITIONAL ANALYSIS
We presented a synchronization protocol, HSTP, which enables a dependable
execution of components that exceed their specified resource holding times.
Contrary to [8], a mechanism to monitor blocking times is unnecessary, because
we will show that HSTP complies to SRP’s blocking times. To make HSTP
applicable in HSFs we reuse the analysis results presented in [4], [15], so that
we obtain independent analysis for individual components and their integration.
To summarize, the HSTP specification implies the following system invariant:

Invariant 2: If component Cs executes on the processor and holds resource
Rl (locked or busy), then either (i) the system ceiling is raised to RC l or (ii) Cs

has the highest preemption level Πs > Πu among all components Cu that share
Rl and are ready to execute (i.e. qremu (t) > 0).

Lemma 2: The HSTP specification in Section 4.2 and Section 4.3 implies
Invariant 2.

Proof: If component Cs executes and keeps resource Rl locked or busy, then
qrems (t) > 0 and the system ceiling equals RC l. Hence, no Rl-sharing component
can preempt.

Paper E

258

Similarly, if component Cs received Xul from a donor Cu, then Cs executes
with a raised system ceiling (RC l) and keeps resource Rl busy. For donor Cu

holds: qu = 0, so that it is suspended and other Rl-sharing components cannot
preempt.

Hence, component Cs has the highest preemption level among all ready
components that share Rl.

5.1 SRP-compliant blocking
When a task exceeds its maximum duration inside a critical section, only
components that are involved in the interaction are affected. Although we
decrease SRP’s system ceiling when a task exceeds its specified critical-section
length, HSTP has the same calculation of the global blocking terms as SRP.

Theorem 1: Invariant 2 guarantees that a component Cs does not suffer more
blocking or interference on unused resources Rl, i.e. Rl /∈ Rs, compared to SRP.

Proof: As long as the busy state of a resource Rl is unreached, i.e. Rl is
either free or locked, our protocol strictly follows SRP. Given Lemma 1, we need
to consider only a single busy resource Rl for each component in the system.

Consider an erroneous component Cs that exceeds its worst-case critical-
section length Xsl for resource Rl. Component Cs may receive a donation from
Cw with a lower preemption level Πw < Πs or component Ch with a higher
preemption level Πh > Πs. We can therefore have independent components Ct

with Rl /∈ Rt at four different preemption levels:
1) Ct with Πt > Πh > Πs > Πw;
2) Ct with Πh > Πt > Πs > Πw blocked by Cw or Cs and preempted by Ch;
3) Ct with Πh > Πs > Πt > Πw blocked by Cw and preempted by Cs and

Ch;
4) Ct with Πh > Πs > Πw > Πt preempted by Cw, Cs and Ch.
Without loss of generality, we may restrict ourselves to an artificial system

comprising each of these cases, i.e. a system C1, . . . , C7 ∈ C with a single shared
resource Rl ∈ R2 ∩R4 ∩R6 and Rl /∈ R1 ∪R3 ∪R5 ∪R7 and resource ceiling
RC l = Π2. Furthermore, C4 keeps Rl busy after it has executed for X4l with a
raised system ceiling. We now prove the theorem by contradiction, i.e. assume
there exists an independent component C1, C3, C5 or C7 that can experience
more than one blocking occurrence and additional interference in the presence
of HSTP while this cannot happen with SRP.

Because C1 has Π1 > RC l, it cannot be blocked by (or suffer interference
from) any Rl-sharing component (case 1).

After the system ceiling is decreased, component C2 can preempt according
to its preemption level, Π2 > Π4. If component C2 tries to access Rl, it may
donate at most X2l to component C4. This is already accounted as interference

Paper E

259

for C3 . . . C7. Hence, C3, C5 and C7 do not suffer more blocking or more
interference from C2 (case 2).

If component C6 tries to access Rl it may donate at most X6l to C4, which
will block C3 and C5 no longer than X6l. This donation, X6l, is accounted as
interference for C7 and blocking for C2 . . . C5. Hence, C3, C5 and C7 do not
suffer more blocking or more interference from C6 (case 3).

Although component C4 may consume the remainder of its budget Qrem
4

while it keeps Rl busy, the interference for component C7 remains the same
compared to SRP (case 4).

By contradiction and using Lemma 2 we conclude that HSTP preserves SRP’s
blocking properties.

Since Theorem 1 has shown that HSTP complies to SRP’s blocking term, we
can safely reuse existing global analysis for component integration [1], [4], [15]
without the implicit assumption that tasks behave according to their contract.

5.2 Global analysis under temporal protection
In line with our specification, we first first present the global analysis of
components based on HSTP and an overrun mechanism. In Section 5.4 we
adapt this analysis for SIRAP and BROE which each apply a self-blocking
mechanism.

The following sufficient schedulability condition holds for global EDF-based
systems [25]:

∀t > 0 : B(t) + dbfEDF(t) ≤ t. (5)

The blocking term, B(t), is defined in [25] according to SRP. The demand bound
function dbfEDF(t) computes the total processor demand of all components in
the system for every time interval of length t, i.e.

dbfEDF(t) =
∑
Cs∈C

⌊
t

Ps

⌋
(Qs +Os(t)) (6)

A component Cs, using an overrun mechanism to prevent budget depletion
during global resource access, demands Os(t) more resources in its worst-case
scenario [15], where

Os(t) =

{
Xs if t ≥ Ps

0 otherwise (7)

For global FPPS the following sufficient condition holds:

∀1 ≤ s ≤ N : ∃t ∈ [0, Ps] : Bs + dbfDM(t, s) ≤ t, (8)

Paper E

260

where the blocking term, Bs, is defined as in [6] and dbfDM(t, s) denotes the
worst-case cumulative processor request of Cs for a time interval of length t [1],
i.e.

dbfDM(t, s) = Qs +Os +
∑

1≤r<s

⌈
t

Pr

⌉
(Qr +Or). (9)

A component Cs, using an overrun mechanism, demands Os = Xs more
resources in its worst-case scenario [15].

5.3 Local analysis for donating components
By filling in task characteristics in the dbf of (5) and (8) and replacing their
right-hand sides by (1), i.e. replace t for sbfΓs

(t), the same schedulability
analysis holds for tasks within a component as for components at the global
level. The processor supply to a component, as specified by (1), is only affected
when the component blocks on a busy resource.

Inherent to HSFs, however, the local schedulability of tasks in Ts is only
guaranteed when all tasks τsi ∈ Ts respect their timing characteristics. For
example, when a task τsi exceeds its worst-case execution time, all other tasks
in Ts may miss their deadline, even when tasks are independent. A similar
argument applies when a task shares mutually non-preemptive resources, i.e. a
task may unpredictably block for an unbounded duration on a busy resource.
It may be useful for a task to test whether a resource is busy, so that a task can
compensate by providing a reduced functionality [7].

If a task τsi in component Cs exceeds its specified critical-section length
with an amount c′sil, then its finishing time is potentially delayed. This can
be modeled as extra interference of c′sil processor time for task τsi as well
as all other tasks in the same component, τsj ∈ Ts. For a donor Cu the
situation is symmetrical, i.e. all tasks τuj ∈ Tu of donor Cu experience c′sil
extra interference. Since the local cost of consuming a donation is the same
as the local cost of a donation itself, we can consider the longest duration of
c′sil for any component Cs ∈ C independently, so that all tasks τsi ∈ Ts can
still make their deadline. However, a corresponding allocation of budgets to
components while maximizing the system robustness is left as a future work.

5.4 HSTP and self-blocking
HSTP also applies to SIRAP and BROE, which cancels the allocation of overrun
budgets in (6) and (9), i.e. Os(t) = Os = 0. When the budget is insufficient
to complete a critical section, both protocols postpone the execution of the
critical section until sufficient budget Qrem

s (t) ≥ Xsl is guaranteed. This self-
blocking condition also applies for donations to third-parties, i.e. we can only

Paper E

261

donate budget to others when there is sufficient budget to donate. This gives
the misbehaving component Cs the opportunity to resolve its own malicious
behaviour until component Cu has sufficient resources and gets selected for
execution.

Consider a misbehaving component Cs that accesses resource Rl. When
component Cs needs more processor time to complete its critical section than
specified by Xsl, we can repetitively self-donate any remaining budget Qrem

s (t) >
0 to resource-access budget qs. It is unnecessary to check for sufficient budget
before a self-donation. To prevent budget overruns, however, we constrain a
self-donation by only providing Qrem

s (t) ≤ Xsl, i.e. qs ← min(Qrem
s (t), Xsl).

Assume that a resource-sharing component Cu attempts to lock the busy
resource Rl at time tb. Before donating a budget Xul to component Cs, a self-
blocking mechanism applies (either SIRAP or BROE). The first time instant
tl at which component Cu resumes its execution after budget Qu has been
replenished, is the actual time that a task tries to lock resource Rl. Within
time interval [tb, tl] the resource may get released. If resource Rl is busy at
time tl, then, similar to self-donations, component Cu can repetitively donate
budget without further self-blocking to accelerate the resource release. When a
component Cu starts donating its budget, however, its tasks will miss deadlines,
unless it donates slack time.

5.4.1 An example
Consider a component C1 serviced by BROE [5], see Figure 4, which self-blocks
on its budget Q1 upon an attempt to lock a busy resource Rl at time tb. Within
component C1 virtual time advances with a rate Q1

P1
. When the absolute time

of the current budget Qrem
1 (tb) reaches the virtual time, i.e. component C1 was

running ahead of absolute time, a replenished budget becomes available at
time ta = tdk

− P1

Q1
Qrem

1 (tb) with a deadline tdk+1
= ta + P1. A replenishment

can happen even without self-blocking if the component was lagging behind.
After we would have donated Qrem

1 (tb), a replenishment happens at tdk
, but

with a larger absolute deadline t′dk+1
= tdk

+ P1 where tdk
< tdk+1

≤ t′dk+1
.

By refraining a donation at time tb, potential deadline misses of tasks in
T1 can be prevented. If the busy resource Rl is released before component C1

continues its execution, it is unnecessary for component C1 to donate budget.

Paper E

262

Legend:
self-blocking

normal execution

budget arrival
C1

time
t0

budget deadline

P1

tdk
t′dk+1

tdk+1

P1

P1

Q1
Qrem

1 (tb)

tatb

Fig. 4. Donating Qrem
1 (tb) (in grey) instead of self-blocking (in black) can cause

unnecessary deadline misses.

5.4.2 Gain-time provisioning
Contrary to BROE, SIRAP needs to account for an additional self-blocking term
in its local demand bound function of DM-scheduled tasks [4], i.e.2

Is(i, t) = bsi +
∑

Rl∈Rs

(csil +
∑

1≤j<i

⌈
t

Tsj

⌉
csjl), (10)

where the blocking term, bsi, for tasks is defined as in [6]. We can similarly
adapt (6) for local EDF-scheduling of tasks that share resources arbitrated
by SIRAP. Since we disable local preemptions during global resource access,
the allocated processor time to a component for self-blocking is unused. We
can make this unused processor time available as gain time by also donating
Qrem

s (tb) < Xsl, i.e. independent of the self-blocking condition.

5.5 Locally non-preemptive critical sections
Local preemptions during global resource access can decrease the required
budget to make a task set Ts schedulable, but this may on its turn adverse the
global schedulability of components due to increased resource holding times.
In this paper we are not interested in this schedulability trade-off [20], [21],
however, but merely in the containment of temporal faults in critical sections.
For this purpose we can introduce an intermediate reservation level assigned
and allocated to critical sections in order to enforce that blocking times to other
components are not exceeded due to locally preempting tasks [8]. Since this
approach causes performance penalties [11], HSTP disables local preemptions
during global resource access. In this section we propose an efficient algorithm
to check whether off-the-shelf components can be integrated in our dependable
resource-sharing framework, which enables a fast design-space exploration
during system composition.

We consider a component Cs with a given interface description < Ps, Qs,Xs >,
where resource ceilings are locally and globally configured according to SRP, i.e.

2. For the ease of presentation, Equation 10 assumes that each instant of a task (i.e. a job) accesses
a shared resource at most one time.

Paper E

263

see (2) and (3). We want to check whether executing the global critical sections of
component Cs with local preemptions disabled hampers the schedulability of a
task set Ts for the given periodic resource model Γs(Ps, Qs) of component Cs. In
many practical cases local preemptions can be disabled temporary, because the
budget Qs assigned to a component is typically pessimistic due to abstraction
overheads in its calculation [1]. Each task τsi ∈ Ts may therefore finish its
execution before its deadline, so that small finalization delays do not cause a
deadline miss.

5.5.1 Delay tolerance
From our assumption 2Ps ≤ Tsi(∀τsi ∈ Ts) we can deduct the following lemma:

Lemma 3: Given 2Ps ≤ Tsi(∀τsi ∈ Ts), all tasks τsj that are allowed to preempt,
can preempt at most once during an access to a global shared resource Rl by
task τsi.

Proof: The proof for SIRAP and overrun is presented in [26]. The proof for
BROE is presented in [27].
Using Lemma 3 we can efficiently calculate how long local preemptions can be
disabled without affecting the local schedulability of tasks.

We define the laxity δsi of a task τsi, such that τsi finishes its execution at
least δsi time units prior to its deadline Dsi if it has the entire processor at its
disposal. For each resource Rl ∈ Rs with a local ceiling rcsl < πs1, we compute
the least laxity of all tasks with a preemption level higher than rcsl. The largest
common delay tolerance of these preempting tasks is:

Δ′
sl = (min i : πsi > rcsl : δsi = Dsi −

∑
1≤j≤i

Esj). (11)

Note that each task τsj can only preempt once and all tasks are ordered
according to their preemption level, i.e. the lowest index gives the highest
preemption level.

The laxity of each task must at least exceed a single blackout duration of
its component, i.e. δsi ≥ BDs(∀τsi ∈ Ts), in order to be schedulable with a
periodic processor supply of Γs(Ps, Qs). An additional blackout is impossible
in the processor supply of preempting tasks, because a critical section of length
Xsl is guaranteed to fit within a single budget provisioning by virtue of the
protocols in [3], [4], [5]. Tasks may nevertheless have more delay tolerance than
required to bridge the blackout duration. We now need to subtract BDs from
the calculated delay tolerance, i.e.

Δsl ← Δ′
sl − BDs, (12)

so that the result is Δsl ≥ 0. This final value Δsl defines the longest time that
a task τsi ∈ Ts that may preempt during resource access to Rl can be deferred
without missing any deadline. By construction the following theorem follows:

Paper E

264

Theorem 2: Given that a component Cs accessing resource Rl ∈ Rs with
resource ceiling rcsl is schedulable on a component with parameters (Ps, Qs,Xs)
using the periodic resource model Γs(Ps, Qs): if csil ≤ Δsl, then component Cs

can be scheduled on the same component using Γs(Ps, Qs) and can execute
each critical section of τsi to Rl with local preemptions disabled, where Δsl is
defined in (12).

Proof: Given Lemma 3, all tasks that may preempt a critical section with
resource ceiling rcsl finish within a budget of Qs + Xs and preempt only
once. After increasing the resource ceiling, the total required budget to meet
the resource demands of csil and the execution times of these tasks that
now suffer blocking does not increase. We are given two facts: (i) each task
instance may experience only one blocking occurrence under SRP-based resource
arbitration [6] and (ii) using the original resource ceiling, each preempting tasks
completes its execution at least Δsl time units prior to its deadline on periodic
resource Γs(Ps, Qs). Hence, a blocking duration of csil ≤ Δsl cannot cause a
deadline miss.

5.5.2 An algorithm
Theorem 2 makes it possible to exactly determine whether or not all critical
sections within a component Cs can be executed with local preemptions disabled
by (i) calculating Δsl using (11) and (12) for each Rl ∈ Rs and subsequently
(ii) apply Theorem 2 on each task to verify csil ≤ Δsl. This algorithm has a time
complexity of O(Ms × ns) for a single component Cs with Ms global shared
resources. Note that it only needs to inspect the laxity for interfering tasks,
which makes our algorithm much more efficient than the algorithms in [20],
[21].

5.5.3 A special case
BROE has a sufficient test, i.e. Δsl = 1

2BDs = Ps − Qs, for disabling local
preemptions of EDF-scheduled task sets [5]. Our algorithm determines exactly
which critical sections can execute without local preemptions and it applies to
any periodic resource model, independent of the local scheduler, with SRP-based
resource arbitration.

6 EVALUATION

We have recently extended a commercial real-time micro-kernel, μC/OS-II [28],
with an HSF and synchronization support by means of SIRAP, HSRP and
BROE [16]. In this section we investigate the complexity and overheads of the
synchronization primitives of HSTP within our framework.

Because we need to set a budget-expiration timer to track the component’s
resource-access budget in every lock operation and we need to cancel the same

Paper E

265

timer in every unlock operation, HSTP primitives are more expensive than a
straightforward two-level SRP implementation. If this budget-depletion timer
expires during global resource access, i.e. it is not canceled before expiration,
then it executes a handler which implements HSTP’s unlock policy and marks
the resource busy. Based on our measurements, the timer manipulations triple
the execution times of the lock and unlock operations compared to the imple-
mentations of these primitives in [16]. However, this is the price for preventing
the propagation of temporal faults to resource-independent components.

The self-donation mechanism can be easily implemented by extending the
global scheduler. Upon a context switch the global scheduler must check whether
or not the selected component keeps a resource busy and at the same time has a
depleted resource-access budget. This if-statement only takes a few instructions
in a reservation-based framework and is therefore relatively cheap compared
to the cost of context switching itself. Only when a task within the selected
component misbehaves by exceeding its critical-section length, the scheduler
executes the expensive operations corresponding to locking a resource, i.e. reset
a budget-expiration timer for the selected component, update its normal budget
and raise the system ceiling.

Third-party donations can be implemented similarly, but in the lock operation
rather than in the global scheduler. If a task attempts to lock a busy resource,
the lock operation disables all local preemptions, donates budget by setting a
new budget-timer for the donatee and raises the system ceiling. As a result the
donor component itself is blocked from continuing its execution. These actions
are repeated every time the donor task gets selected by the local scheduler to
continue its execution, until the requested resource becomes free.

Since Lemma 1 tells that we only need to keep track of at most a single
donor at each time instant, each component maintains a single variable to track
its current donor. Upon donation, the donor writes its component identifier
into this variable. When it contains a valid identifier when a busy resource is
unlocked, a donation back to the donor is executed. The variable is cleared
when either the resource is freed or the donated budget is depleted.

7 CONCLUSION

This paper presented HSTP, an SRP-based synchronization protocol, which
provides temporal protection between components in which multiple tasks
share a budget, even when interacting components exceed their specified
critical-section lengths. Prerequisites to dependable resource sharing in HSFs
are mechanisms to enforce and monitor critical-section lengths. We followed the
choice in [3] to make critical sections non-preemptive for tasks within the same
component, because this makes containment of temporal faults within critical
sections efficient. Moreover, sufficiently short critical sections can execute with

Paper E

266

local preemptions disabled and preserve system schedulability. A reservation-
based mechanism to monitor and enforce blocking times is unnecessary, see [8],
because HSTP complies to existing SRP-based global analysis for HSFs.

We proposed an SRP-compliant budget donation mechanism. Our repetitive
self-donation mechanism, complemented with donations from other compo-
nents, limits preemptions during global resource access as long as possible and
preserves the schedulability of independent components. Moreover, it enhances
the reliability of resource-sharing components when one of the components
misbehaves by accelerating the resource release. HSTP expands across existing
protocols in the context of HSFs [3], [4], [5] and integrating its primitives into
a reservation-based kernel is straightforward. Our protocol therefore promises
a dependable solution to resource sharing in future safety-critical industrial
applications for which temporal and functional correctness is essential.

REFERENCES
[1] I. Shin and I. Lee, “Periodic resource model for compositional real-time guarantees,” in

Real-Time Systems Symp., Dec. 2003, pp. 2–13.
[2] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline scheduling environment,”

Real-Time Syst., vol. 9, no. 1, pp. 31–67, 1995.
[3] R. Davis and A. Burns, “Resource sharing in hierarchical fixed priority pre-emptive systems,”

in Real-Time Systems Symp., 2006, pp. 257–267.
[4] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization protocol for hierarchical

resource sharing in real-time open systems,” in Conf. on Embedded Software, Oct. 2007, pp.
279–288.

[5] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers for open environments,”
IEEE Trans. on Industrial Informatics, vol. 5, no. 3, pp. 202–219, Aug. 2009.

[6] T. Baker, “Stack-based scheduling of realtime processes,” Real-Time Syst., vol. 3, no. 1, pp.
67–99, March 1991.

[7] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of
dependable and secure computing,” IEEE Trans. on Dependable and Secure Computing, vol. 1,
no. 1, pp. 11–33, 2004.

[8] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource sharing in reservation-based
systems,” in Real-Time Systems Symp., Dec. 2001, pp. 171–180.

[9] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an approach to real-time
synchronisation,” IEEE Trans. on Computers, vol. 39, no. 9, pp. 1175–1185, Sept. 1990.

[10] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: A New Facility for Resource
Management in Server Systems,” in Symp. on Operating Systems Design and Implementation,
1999, pp. 45–58.

[11] U. Steinberg, J. Wolter, and H. Härtig, “Fast component interaction for real-time systems,” in
Euromicro Conf. on Real-Time Systems, July 2005, pp. 89–97.

[12] G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in reservation-based real-time
systems,” IEEE Trans. on Computers, vol. 53, no. 12, pp. 1591–1601, Dec. 2004.

[13] R. Santos, G. Lipari, and J. Santos, “Improving the schedulability of soft real-time open
dynamic systems: The inheritor is actually a debtor,” Journal of Systems and Software, vol. 81,
pp. 1093–1104, July 2008.

[14] Z. Deng and J.-S. Liu, “Scheduling real-time applications in open environment,” in Real-Time
Systems Symp., Dec. 1997, pp. 308–319.

[15] M. Behnam, T. Nolte, M. Sjodin, and I. Shin, “Overrun methods and resource holding times
for hierarchical scheduling of semi-independent real-time systems,” IEEE Trans. on Industrial
Informatics, vol. 6, no. 1, pp. 93 –104, Feb. 2010.

Paper E

267

[16] M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Protocol-transparent resource
sharing in hierarchically scheduled real-time systems,” in Conf. Emerging Technologies and
Factory Automation, 2010.

[17] M. Åsberg, M. Behnam, T. Nolte, and R. J. Bril, “Implementation of overrun and skipping in
VxWorks,” in Workshop on Operating Systems Platforms for Embedded Real-Time Applications, July
2010.

[18] L. Almeida and P. Peidreiras, “Scheduling with temporal partitions: response-time analysis
and server design,” in Conf. on Embedded Software, Sept. 2004, pp. 95–103.

[19] G. Buttazzo and P. Gai, “Efficient implementation of an EDF scheduler for small embedded
systems,” in Workshop on Operating System Platforms for Embedded Real-Time Applications, July
2006.

[20] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and resource hold times,”
in Parallel and Distrib. Processing Symp., 2007.

[21] N. Fisher, M. Bertogna, and S. Baruah, “Resource-locking durations in EDF-scheduled systems,”
in Real-Time and Embedded Technology and Applications Symp., April 2007, pp. 91–100.

[22] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synchronization protocols for multiprocessors,”
in Real-Time Systems Symp., Dec. 1988, pp. 259–269.

[23] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling independent hard
real-time tasks with self-suspensions,” in Real-Time Systems Symp., Dec. 2004, pp. 47–56.

[24] R. J. Bril, W. F. J. Verhaegh, and C. C. Wüst, “A cognac-glass algorithm for conditionally
guaranteed budgets,” in Real-Time Systems Symp., Dec. 2006, pp. 388–397.

[25] S. K. Baruah, “Resource sharing in EDF-scheduled systems: A closer look,” in Real-Time
Systems Symp., 2006, pp. 379–387.

[26] M. Behnam, T. Nolte, M. Åsberg, and R. J. Bril, “Overrun and skipping in hierarchically
scheduled real-time systems,” in Conf. on Embedded and Real-Time Computing Systems and
Applications, 2009, pp. 519–526.

[27] M. Behnam, T. Nolte, and N. Fisher, “On optimal real-time subsystem-interface generation in
the presence of shared resources,” in Conf. on Emerging Technologies and Factory Automation,
Sept. 2010.

[28] Micrium, “RTOS and tools,” March 2010. [Online]. Available: http://micrium.com/

Paper E

268

PAPER F:

TEMPORAL ISOLATION IN AN HSF-ENABLED REAL-TIME KERNEL
IN THE PRESENCE OF SHARED RESOURCES

M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien

In proceedings of the 7th International Workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications (OSPERT),
pp. 39–48, July 2011

269

ABSTRACT

Hierarchical scheduling frameworks (HSFs) have been extensively investigated
as a paradigm for facilitating temporal isolation between components that need
to be integrated on a single shared processor. To support resource sharing within
two-level, fixed priority scheduled HSFs, two synchronization protocols based
on the stack resource policy (SRP) have recently been presented, i.e. HSRP [1]
and SIRAP [2]. In the presence of shared resources, however, temporal isolation
may break when one of the accessing components executes longer than specified
during global resource access. As a solution we propose a SRP-based synchro-
nization protocol for HSFs, named Basic Hierarchical Synchronization protocol
with Temporal Protection (B-HSTP). The schedulability of those components
that are independent of the unavailable resource is unaffected.

This paper describes an implementation to provide HSFs, accompanied by
SRP-based synchronization protocols, with means for temporal isolation. We
base our implementations on the commercially available real-time operating
system μC/OS-II, extended with proprietary support for two-level fixed priority
preemptive scheduling. We specifically show the implementation of B-HSTP and
we investigate the system overhead induced by its synchronization primitives
in combination with HSRP and SIRAP. By supporting both protocols in our
HSF, their primitives can be selected based on the protocol’s relative strengths.

Paper F

270

1 INTRODUCTION

The increasing complexity of real-time systems demands a decoupling of (i)
development and analysis of individual components and (ii) integration of
components on a shared platform, including analysis at the system level.
Hierarchical scheduling frameworks (HSFs) have been extensively investigated
as a paradigm for facilitating this decoupling [3]. A component that is validated
to meet its timing constraints when executing in isolation will continue meeting
its timing constraints after integration (or admission) on a shared platform. The
HSF therefore provides a promising solution for current industrial standards,
e.g. the AUtomotive Open System ARchitecture (AUTOSAR) [4] which specifies
that an underlying OSEK-based operating system should prevent timing faults
in any component to propagate to different components on the same processor.
The HSF provides temporal isolation between components by allocating a
budget to each component, which gets mediated access to the processor by
means of a server.

An HSF without further resource sharing is unrealistic, however, since
components may for example use operating system services, memory mapped
devices and shared communication devices which require mutually exclusive
access. Extending an HSF with such support makes it possible to share logical
resources between arbitrary tasks, which are located in arbitrary components,
in a mutually exclusive manner. A resource that is used in more than one
component is denoted as a global shared resource. A resource that is only shared
by tasks within a single component is a local shared resource. If a task that
accesses a global shared resource is suspended during its execution due to
the exhaustion of its budget, excessive blocking periods can occur which may
hamper the correct timeliness of other components [5].

Looking at existing industrial real-time systems, fixed-priority preemptive
scheduling (FPPS) is the de-facto standard of task scheduling, hence we focus
on an HSF with support for FPPS within a component. Having such support
will simplify migration to and integration of existing legacy applications into
the HSF. Our current research efforts are directed towards the conception
and realization of a two-level HSF that is based on (i) FPPS for both global
scheduling of servers allocated to components and local scheduling of tasks within
a component and (ii) the Stack Resource Policy (SRP) [6] for both local and
global resource sharing.

To accommodate resource sharing between components, two synchronization
protocols [1], [2] have been proposed based on SRP for two-level FPPS-based
HSFs. Each of these protocols describes a run-time mechanism to handle the
depletion of a component’s budget during global resource access. In short, two
general approaches are proposed: (i) self-blocking when the remaining budget is
insufficient to complete a critical section [2] or (ii) overrun the budget until the

Paper F

271

critical section ends [1]. However, when a task exceeds its specified worst-case
critical-section length, i.e. it misbehaves during global resource access, temporal
isolation between components is no longer guaranteed. The protocols in [1], [2]
therefore break the temporal encapsulation and fault-containment properties of
an HSF without the presence of complementary protection.

1.1 Problem description
Most off-the-shelf real-time operating systems, including μC/OS-II [7], do
not provide an implementation for SRP nor hierarchical scheduling. We have
extended μC/OS-II with support for idling periodic servers (IPS) [8] and two-
level FPPS. However, existing implementations of the synchronization protocols
in our framework [9], [10], as well as in the framework presented in [11], do
not provide any temporal isolation during global resource access.

A solution to limit the propagation of temporal faults to those components that
share global resources is considered in [12]. Each task is assigned a dedicated
budget per global resource access and this budget is synchronous with the
period of that task. However, in [12] they allow only a single task per component.

We consider the problem to limit the propagation of temporal faults in
HSFs, where multiple concurrent tasks are allocated a shared budget, to those
components that share a global resource. Moreover, we present an efficient
implementation and evaluation of our protocol in μC/OS-II. The choice of
operating system is driven by its former OSEK compatibility1.

1.2 Contributions
The contributions of this paper are fourfold.

• To achieve temporal isolation between components, even when resource-
sharing components misbehave, we propose a modified SRP-based syn-
chronization protocol, named Basic Hierarchical Synchronization protocol with
Temporal Protection (B-HSTP).

• We show its implementation in a real-time operating system, extended
with support for two-level fixed-priority scheduling, and we efficiently
achieve fault-containment by disabling preemptions of other tasks within
the same component during global resource access.

• We show that B-HSTP complements existing synchronization protocols [1],
[2] for HSFs.

• We evaluate the run-time overhead of our B-HSTP implementation in
μC/OS-II on the OpenRISC platform [13]. These overheads become relevant
during deployment of a resource-sharing HSF.

1. Unfortunately, the supplier of μC/OS-II, Micrium, has discontinued the support for the
OSEK-compatibility layer.

Paper F

272

1.3 Organization
The remainder of this paper is organized as follows. Section 2 describes related
works. Section 3 presents our system model. Section 4 presents our resource-
sharing protocol, B-HSTP, which guarantees temporal isolation to independent
components. Section 5 presents our existing extensions for μC/OS-II comprising
two-level FPPS-based scheduling and SRP-based resource arbitration. Section 6
presents B-HSTP’s implementation using our existing framework. Section 7
investigates the system overhead corresponding to our implementation. Sec-
tion 8 discusses practical extensions to B-HSTP. Finally, Section 9 concludes
this paper.

2 RELATED WORK

Our basic idea is to use two-level SRP to arbitrate access to global resources,
similar as [1], [2]. In literature several alternatives are presented to accommodate
task communication in reservation-based systems. De Niz et al. [12] support
resource sharing between reservations based on the immediate priority ceiling
protocol (IPCP) [14] in their FPPS-based Linux/RK resource kernel and use a
run-time mechanism based on resource containers [15] for temporal protection
against misbehaving tasks. Steinberg et al. [16] showed that these resource con-
tainers are expensive and efficiently implemented a capacity-reserve donation
protocol to solve the problem of priority inversion for tasks scheduled in a
fixed-priority reservation-based system. A similar approach is described in [17]
for EDF-based systems and termed bandwidth-inheritance (BWI). BWI regulates
resource access between tasks that each have their dedicated budget. It works
similar to the priority-inheritance protocol [14], i.e. when a task blocks on a
resource it donates its remaining budget to the task that causes the blocking.
However, all these approaches assume a one-to-one mapping from tasks to
budgets, and inherently only have a single scheduling level.

In HSFs a group of concurrent tasks, forming a component, are allocated
a budget [18]. A prerequisite to enable independent analysis of interacting
components and their integration is the knowledge of which resources a task
will access [2], [19]. When a task accesses a global shared resource, one needs
to consider the priority inversion between components as well as local priority
inversion between tasks within the component. To prevent budget depletion during
global resource access in FPPS-based HSFs, two synchronization protocols
have been proposed based on SRP [6]: HSRP [1] and SIRAP [2]. Although
HSRP [1] originally does not integrate into HSFs due to the lacking support for
independent analysis of components, Behnam et al. [19] lifted this limitation.
However, these two protocols, including their implementations in [9], [10], [11],
assume that components respect their timing contract with respect to global

Paper F

273

resource sharing. In this paper we present an implementation of HSRP and
SIRAP protocols that limits the unpredictable interferences caused by contract
violations to the components that share the global resource.

3 REAL-TIME SCHEDULING MODEL

We consider a two-level FPPS-scheduled HSF, following the periodic resource
model [3], to guarantee processor allocations to components. We use SRP-
based synchronization to arbitrate mutually exclusive access to global shared
resources.

3.1 Component model
A system contains a set R of M global logical resources R1, R2, . . ., RM , a set C
of N components C1, C2, . . ., CN , a set B of N budgets for which we assume a
periodic resource model [3], and a single shared processor. Each component Cs

has a dedicated budget which specifies its periodically guaranteed fraction of
the processor. The remainder of this paper leaves budgets implicit, i.e. the timing
characteristics of budgets are taken care of in the description of components. A
server implements a policy to distribute the available budget to the component’s
workload.

The timing characteristics of a component Cs are specified by means of a
triple < Ps, Qs,Xs >, where Ps ∈ R

+ denotes its period, Qs ∈ R
+ its budget,

and Xs the set of maximum access times to global resources. The maximum
value in Xs is denoted by Xs, where 0 < Qs +Xs ≤ Ps. The set Rs denotes the
subset of Ms global resources accessed by component Cs. The maximum time
that a component Cs executes while accessing resource Rl ∈ Rs is denoted by
Xsl, where Xsl ∈ R

+ ∪ {0} and Xsl > 0 ⇔ Rl ∈ Rs.

3.2 Task model
Each component Cs contains a set Ts of ns sporadic tasks τs1, τs2, . . ., τsns

.
Timing characteristics of a task τsi ∈ Ts are specified by means of a triple
< Tsi, Esi, Dsi >, where Tsi ∈ R

+ denotes its minimum inter-arrival time,
Esi ∈ R

+ its worst-case computation time, Dsi ∈ R
+ its (relative) deadline,

where 0 < Esi ≤ Dsi ≤ Tsi. The worst-case execution time of task τsi within
a critical section accessing Rl is denoted csil, where csil ∈ R

+ ∪ {0}, Esi ≥ csil
and csil > 0 ⇔ Rl ∈ Rs. All (critical-section) execution times are accounted
in terms of processor cycles and allocated to the calling task’s budget. For
notational convenience we assume that tasks (and components) are given in
priority order, i.e. τs1 has the highest priority and τsns has the lowest priority.

Paper F

274

3.3 Synchronization protocol
Traditional synchronization protocols such as PCP [14] and SRP [6] can be used
for local resource sharing in HSFs [20]. This paper focuses on arbitrating global
shared resources using SRP. To be able to use SRP in an HSF for synchronizing
global resources, its associated ceiling terms need to be extended and excessive
blocking must be prevented.

3.3.1 Resource ceilings
With every global resource Rl two types of resource ceilings are associated; a
global resource ceiling RC l for global scheduling and a local resource ceiling
rcsl for local scheduling. These ceilings are statically calculated values, which
are defined as the highest priority of any component or task that shares the
resource. According to SRP, these ceilings are defined as:

RC l = min(N,min{s | Rl ∈ Rs}), (1)
rcsl = min(ns,min{i | csil > 0}). (2)

We use the outermost min in (1) and (2) to define RC l and rcsl in those situations
where no component or task uses Rl.

3.3.2 System and component ceilings
The system and component ceilings are dynamic parameters that change during
execution. The system ceiling is equal to the highest global resource ceiling of
a currently locked resource in the system. Similarly, the component ceiling is
equal to the highest local resource ceiling of a currently locked resource within
a component. Under SRP a task can only preempt the currently executing
task if its priority is higher than its component ceiling. A similar condition for
preemption holds for components.

3.3.3 Prevent excessive blocking
HSRP [1] uses an overrun mechanism [19] when a budget depletes during
a critical section. If a task τsi ∈ Ts has locked a global resource when its
component’s budget Qs depletes, then component Cs can continue its execution
until task τsi releases the resource. These budget overruns cannot take place
across replenishment boundaries, i.e. the analysis guarantees Qs+Xs processor
time before the relative deadline Ps [1], [19].

SIRAP [2] uses a self-blocking approach to prevent budget depletion inside a
critical section. If a task τsi wants to enter a critical section, it enters the critical
section at the earliest time instant so that it can complete the critical section
before the component’s budget depletes. If the remaining budget is insufficient
to lock and release a resource Rl before depletion, then (i) the task blocks itself

Paper F

275

until budget replenishment and (ii) the component ceiling is raised to prevent
tasks τsj ∈ Ts with a priority lower than the local ceiling rcsl to execute until
the requested critical section has been finished.

The relative strengths of HSRP and SIRAP have been analytically investigated
in [21] and heavily depend on the chosen system parameters. To enable the
selection of a particular protocol based on its strengths, we presented an
implementation supporting both protocols with transparent interfaces for the
programmer [9]. In this paper we focus on mechanisms to extend these protocols
with temporal protection and merely investigate their relative complexity with
respect to our temporal-protection mechanisms.

4 SRP WITH TEMPORAL PROTECTION

Temporal faults may cause improper system alterations, e.g. due to unexpectedly
long blocking or an inconsistent state of a resource. Without any protection a self-
blocking approach [2] may miss its purpose under erroneous circumstances, i.e.
when a task overruns its budget to complete its critical section. Even an overrun
approach [1], [19] needs to guarantee a maximum duration of the overrun
situation. Without such a guarantee, these situations can hamper temporal
isolation and resource availability to other components due to unpredictable
blocking effects. A straightforward implementation of the overrun mechanism,
e.g. as implemented in the ERIKA kernel [22], where a task is allowed to
indefinitely overrun its budget as long as it locks a resource, is therefore not
reliable.

4.1 Resource monitoring and enforcement
A common approach to ensure temporal isolation and prevent propagation
of temporal faults within the system is to group tasks that share resources
into a single component [20]. However, this might be too restrictive and lead
to large, incoherent component designs, which violates the principle of HSFs
to independently develop components. Since a component defines a coherent
piece of functionality, a task that accesses a global shared resource is critical
with respect to all other tasks in the same component.

To guarantee temporal isolation between components, the system must moni-
tor and enforce the length of a global critical section to prevent a malicious task
to execute longer in a critical section than assumed during system analysis [12].
Otherwise such a misbehaving task may increase blocking to components with
a higher priority, so that even independent components may suffer, as shown
in Figure 1.

To prevent this effect we introduce a resource-access budget qs in addition to
a component’s budget Qs, where budget qs is used to enforce critical-section

Paper F

276

Legend: critical section normal execution budget arrival

C1

C2

C3

timetet0 t1

Fig. 1. Temporal isolation is unassured when a component, C3, exceeds its
specified critical-section length, i.e. at time instant te. The system ceiling blocks
all other components.

lengths. When a resource Rl gets locked, qs replenishes to its full capacity,
i.e. qs ← Xsl. To monitor the available budget at any moment in time, we
assume the availability of a function Qrem

s (t) that returns the remaining budget
of Qs. Similarly, qrems (t) returns the remainder of qs at time t. If a component
Cs executes in a critical section, then it consumes budget from Qs and qs in
parallel, i.e. depletion of either Qs or qs forbids component Cs to continue its
execution. We maintain the following invariant to prevent budget depletion
during resource access:

Invariant 1: Qrem
s (t) ≥ qrems (t).

The way of maintaining this invariant depends on the chosen policy to prevent
budget depletion during global resource access, e.g. by means of SIRAP [2] or
HSRP [1].

4.1.1 Fault containment of critical sections
Existing SRP-based synchronization protocols in [2], [19] make it possible to
choose the local resource ceilings, rcsl, according to SRP [6]. In [23] techniques
are presented to trade-off preemptiveness against resource holding times. Given
their common definition for local resource ceilings, a resource holding time,
Xsl, may also include the interference of tasks with a priority higher than the
resource ceiling. Task τsi can therefore lock resource Rl longer than specified,
because an interfering task τsj (where πsj > rcsl) exceeds its computation time,
Esj .

To prevent this effect we choose to disable preemptions for other tasks within
the same component during critical sections, i.e. similar as HSRP [1]. As a
result Xsl only comprises task execution times within a critical section, i.e.

Xsl = max
1≤i≤ns

csil. (3)

Since Xsl is enforced by budget qs, temporal faults are contained within a
subset of resource-sharing components.

Paper F

277

4.1.2 Maintaining SRP ceilings
To enforce that a task τsi resides no longer in a critical section than specified
by Xsl, a resource Rl ∈ R maintains a state locked or free. We introduce an
extra state busy to signify that Rl is locked by a misbehaving task. When a task
τsi tries to exceed its maximum critical-section length Xsl, we update SRP’s
system ceiling by mimicking a resource unlock and mark the resource busy until
it is released. Since the system ceiling decreases after τsi has executed for a
duration of Xsl in a critical section to resource Rl, we can no longer guarantee
absence of deadlocks. Nested critical sections to global resources are therefore
unsupported. One may alternatively aggregate global resource accesses into a
simultaneous lock and unlock of a single artificial resource [24]. Many protocols,
or their implementations, lack deadlock avoidance [11], [12], [16], [17].

Although it seems attractive from a schedulability point of view to release
the component ceiling when the critical-section length is exceeded, i.e. similar
to the system ceiling, this would break SRP compliance, because a task may
block on a busy resource instead of being prevented from starting its execution.
Our approach therefore preserves the SRP property to share a single, consistent
execution stack per component [6]. At the global level tasks can be blocked by
a depleted budget, so that components cannot share an execution stack anyway.

4.2 An overview of B-HSTP properties
This section presented a basic protocol to establish hierarchical synchroniza-
tion with temporal protection (B-HSTP). Every lock operation to resource Rl

replenishes a corresponding resource-access budget qs with an amount Xsl.
After this resource-access budget has been depleted, the component blocks
until its normal budget Qs replenishes. We can derive the following convenient
properties from our protocol:

1) as long as a component behaves according to its timing contract, we
strictly follow SRP;

2) because local preemptions are disabled during global resource access and
nested critical sections are prohibited, each component can only access a
single global resource at a time;

3) similarly, each component can at most keep a single resource in the busy
state at a time;

4) each access to resource Rl by task τsi may take at most Xsl budget from
budget Qs, where csil ≤ Xsl.

5) after depleting resource-access budget qs, a task may continue in its
component normal budget Qs with a decreased system ceiling. This
guarantees that independent components are no longer blocked by the
system ceiling;

Paper F

278

6) when a component blocks on a busy resource, it discards all remaining
budget until its next replenishment of Qs. This avoids budget suspension,
which can lead to scheduling anomalies [25].

As a consequence of property 2, we can use a simple non-preemptive locking
mechanism at the local level rather than using SRP. We therefore only need to
implement SRP at the global level and we can use a simplified infrastructure
at the local level compared to the implementations in [9], [10], [11].

5 μC/OS-II AND ITS EXTENSIONS RECAPITULATED

The μC/OS-II operating system is maintained and supported by Micrium [7],
and is applied in many application domains, e.g. avionics, automotive, medical
and consumer electronics. Micrium provides the full μC/OS-II source code with
accompanying documentation [26]. The μC/OS-II kernel provides preemptive
multitasking for up to 256 tasks, and the kernel size is configurable at compile
time, e.g. services like mailboxes and semaphores can be disabled.

Most real-time operating systems, including μC/OS-II, do not include a
reservation-based scheduler, nor provide means for hierarchical scheduling. In
the remainder of this section we outline our realization of such extensions for
μC/OS-II, which are required basic blocks to enable the integration of global
synchronization with temporal protection.

5.1 Timed Event Management
Intrinsic to our reservation-based component scheduler is timed-event manage-
ment. This comprises timers to accommodate (i) periodic timers at the global
level for budget replenishment of periodic servers and at the component level
to enforce minimal inter-arrivals of sporadic task activations and (ii) virtual
timers to track a component’s budget. The corresponding timer handlers are
executed in the context of the timer interrupt service routine (ISR).

We have implemented a dedicated module to manage relative timed event
queues (RELTEQs) [27]. The basic idea is to store events relative to each other,
by expressing the expiration time of an event relative to the arrival time of the
previous event. The arrival time of the head event is relative to the current
time, see Figure 2

A system queue tracks all server events. Each server has its own local queue
to track its tasks’ events, e.g. task arrivals. When a server is suspended its
local queues are deactivated to prevent that expiring events interfere with
other servers. When a server resumes, its local queues are synchronized with
global time. A mechanism to synchronize server queues with global time is
implemented by means of a stopwatch queue, which keeps track of the time
passed since the last server switch.

Paper F

279

56 4 5 3 10system queue

74 21 4
active server

queue

-9 2 15 7
inactive server

and virtual server
queues

37 4

Legend: N event decremented upon every tick N event not decremented

27 5 101
active virtual
server queue

-7 -2nstopwatch queue

Fig. 2. RELTEQ-based timer management for two-level HSFs.

A dedicated server queue provides support for virtual timers to trigger timed
events relative to the consumed budget. Since an inactive server does not consume
any of its budget, a virtual timer queue is not synchronized when a server
is resumed. We consider only budget depletion as a virtual event, so that a
component can inspect its virtual-timer in constant time.

5.2 Server Scheduling
A server is assigned to each component to distribute its allocated budget to the
component’s tasks. A global scheduler is used to determine which server should
be allocated the processor at any given time. A local scheduler determines
which of the chosen server’s tasks should actually execute. Although B-HSTP
is also applicable to other server models, we assume that a component is
implemented by means of an idling periodic server (IPS) [8]. Extending μC/OS-II
with basic HSF support requires a realization of the following concepts:

5.2.1 Global Scheduling
At the system level a RELTEQ queue is introduced to keep track of server
periods. We use a bit-mask to represent whether a server has capacity left.
When the scheduler is called, it traverses the RELTEQ and activates the ready
server with the earliest deadline in the queue. Subsequently, the μC/OS-II

Paper F

280

fixed-priority scheduler determines the highest priority ready task within the
server.

5.2.2 Periodic Servers
Since μC/OS-II tasks are bundled in groups of sixteen to accommodate efficient
fixed-priority scheduling, a server can naturally be represented by such a group.
The implementation of periodic servers is very similar to implementing periodic
tasks using our RELTEQ extensions [27]. An idling server contains an idling
task at the lowest, local priority, which is always ready to execute.

5.2.3 Greedy Idle Server
In our HSF, we reserve the lowest priority level for a idle server, which contains
μC/OS-II’s idle task at the lowest local priority. Only if no other server is
eligible to execute, then the idle server is switched in.

5.3 Global SRP implementation
The key idea of SRP is that when a component needs a resource that is not
available, it is blocked at the time it attempts to preempt, rather than later.
Nice properties of SRP are its simple locking and unlocking operations. In turn,
during run-time we need to keep track of the system ceiling and the scheduler
needs to compare the highest ready component priority with the system ceiling.
Hence, a preemption test is performed during run time by the scheduler: A
component cannot preempt until its priority is the highest among those of
all ready components and its priority is higher than the system ceiling. In the
original formulation of SRP [6], it introduces the notion of preemption-levels.
This paper considers FPPS, which makes it possible to unify preemption-levels
with priorities.

The system ceiling is a dynamic parameter that changes during execution.
Under SRP, a component can only preempt the currently executing component
if its priority is higher than the system ceiling. When no resources are locked the
system ceiling is zero, meaning that it does not block any tasks from preempting.
When a resource is locked, the system ceiling is adjusted dynamically using
the resource ceiling, so that the system ceiling represents the highest resource
ceiling of a currently locked resource in the system. A run-time mechanism
for tracking the system ceiling can be implemented by means of a stack data
structure.

5.3.1 SRP data and interface description
Each resource accessed using an SRP-based mutex is represented by a Resource
structure. This structure is defined as follows:

Paper F

281

typedef struct resource{
INT8U ceiling;
INT8U lockingTask;
void* previous;

} Resource;

The Resource structure stores properties which are used to track the system
ceiling, as explained in below. The corresponding mutex interfaces are defined
as follows:

• Create a SRP mutex:
Resource* SRPMutexCreate(INT8U ceiling,

INT8U *err);

• Lock a SRP mutex:
void SRPMutexLock(Resource* r, INT8U *err);

• Unlock a SRP mutex:
void SRPMutexUnlock(Resource* r);

The lock and unlock operations only perform bookkeeping actions by increasing
and decreasing the system ceiling.

5.3.2 SRP operations and scheduling
We extended μC/OS-II with the following SRP rules at the server level:

Tracking the system ceiling: We use the Resource data-structure to
implement a system ceiling stack. ceiling stores the resource ceiling and
lockingTask stores the identifier of the task currently holding the resource.
From the task identifier we can deduct to which server it is attached. The
previous pointer is used to maintain the stack structure, i.e. it points to the
previous Resource structure on the stack. The ceiling field of the Resource
on top of the stack represents the current system ceiling.

Resource locking: When a component tries to lock a resource with a
resource ceiling higher than the current system ceiling, the corresponding
resource ceiling is pushed on top of the system ceiling stack.

Resource unlocking: When unlocking a resource, the value on top of the
system ceiling stack is popped. The absence of nested critical sections guarantees
that the system ceiling represents the resource to be unlocked. The scheduler
is called to allow for scheduling ready components that might have arrived
during the execution of the critical section.

Global scheduling: When the μC/OS-II scheduler is called it calls a function
which returns the highest priority ready component. Accordingly to SRP we
extend this function with the following rule: when the highest ready component
has a priority lower than or equal to the current system ceiling, the priority of
the task on top of the resource stack is returned. The returned priority serves
as a task identifier, which makes easily allows to deduct the corresponding
component.

Paper F

282

Local scheduling: The implementations of two-level SRP protocols in [9],
[10], [11] also keep track of component ceilings. We only have a binary local
ceiling to indicate whether preemptions are enabled or disabled, because we
explicitly chose local resource ceilings equal to the highest local priority. During
global resource access, the local scheduler can only select the resource-accessing
task for execution.

6 B-HSTP IMPLEMENTATION

In this section we extend the framework presented in Section 5 with our
proposed protocol, B-HSTP. In many microkernels, including μC/OS-II, the
only way for tasks to share data structures with ISRs is by means of disabling
interrupts. We therefore assume that our primitives execute non-preemptively
with interrupts disabled.

Because critical sections are non-nested and local preemptions are disabled,
at most one task τsi at a time in each component may use a global resource.
This convenient system property makes it possible to multiplex both resource-
access budget qs and budget Qs on a single budget timer by using our virtual
timer mechanism. The remaining budget Qrem

s (t) is returned by a function that
depends on the virtual timers mechanism, see Section 5.1. A task therefore
merely blocks on its component’s budget, which we implement by adjusting
the single available budget timer Qrem

s (t).

6.0.1 Resource locking
The lock operation updates the local ceiling to prevent other tasks within the
component from interfering during the execution of the critical section. Its
pseudo-code is presented in Algorithm 1.

In case we have enabled SIRAP, rather than HSRP’s overrun, there must
be sufficient remaining budget within the server’s current period in order
to successfully lock a resource. If the currently available budget Qrem

s (t) is
insufficient, the task will spinlock until the next replenishment event expires.
To avoid a race-condition between a resource unlock and budget depletion,
we require that Qrem

s (t) is strictly larger than Xsr before granting access to a
resource Rr.

A task may subsequently block on a busy resource, until it becomes free.
When it encounters a busy resource, it suspends the component and discards
all remaining budget. When the resource becomes free and the task which
attempted to lock the resource continues its execution, it is guaranteed that
there is sufficient budget to complete the critical section (assuming that it does
not exceed its specified length, Xsr). The reason for this is that a component
discards its budget when it blocks on a busy resource and can only continue
with a fully replenished budget. This resource holding time Xsr defines the

Paper F

283

Algorithm 1 void HSF lock(Resource∗ r);

1: updateComponentCeiling(r);
2: if HSF MUTEX PROTOCOL == SIRAP then
3: while Xsr >= Qrem

s (t) do {apply SIRAP’s self-blocking}
4: enableInterrups;
5: disableInterrups;
6: end while
7: end if
8: while r.status = busy do {self-suspend on a busy resource}
9: setComponentBudget(0);

10: enableInterrups;
11: Schedule();
12: disableInterrups;
13: end while
14: Q�

s ← Qrem
s (t);

15: setComponentBudget(Xsr);
16: Cs.lockedResource ← r;
17: r.status ← locked
18: SRPMutexLock(r);

resource-access budget of the locking task and component. The component’s
remaining budget is saved as Q�

s and reset to Xsl before the lock is established.
setComponentBudget(0), see line 9, performs two actions: (i) the server is

blocked to prevent the scheduler from rescheduling the server before the next
replenishment, and (ii) the budget-depletion timer is canceled.

6.0.2 Resource unlocking
Unlocking a resource means that the system and component ceilings must be
decreased. Moreover, the amount of consumed budget is deducted from the
components stored budget, Q�

s . We do not need to restore the component’s
budget, if the system ceiling is already decreased at the depletion of its resource-
access budget, i.e. when a component has exceeded its specified critical-section
length. The unlock operation in pseudo-code is as follows:

Algorithm 2 void HSF unlock(Resource∗ r);

1: updateComponentCeiling(r);
2: r.status ← free;
3: Cs.lockedResource ← 0;
4: if System ceiling == RCr then
5: setComponentBudget(max(0, Q�

s − (Xsr −Qrem
s (t))));

6: else
7: ; {we already accounted the critical section upon depletion of Xsr}
8: end if
9: SRPMutexUnlock(r);

Paper F

284

6.0.3 Budget depletion
We extend the budget-depletion event handler with the following rule: if any
task within the component holds a resource, then the global resource ceiling is
decreased according to SRP and the resource is marked busy. A component
Cs may continue in its restored budget with a decreased system ceiling. The
pseudo-code of the budget-depletion event handler is as follows:

Algorithm 3 on budget depletion:

1: if Cs.lockedResource 	= 0 then
2: r ← Cs.lockedResource;
3: r.status ← busy;
4: SRPMutexUnlock(r);
5: setComponentBudget(max(0, Q�

s −Xsr));
6: else
7: ; {apply default budget-depletion strategy}
8: end if

6.0.4 Budget replenishment
For each periodic server an event handler is periodically executed to recharge
its budget. We extend the budget-replenishment handler with the following
rule: if any task within the component holds a resource busy, then the global
resource ceiling is increased according to SRP and the resource-access budget
is replenished with Xsr of resource Rr. A component Cs may continue in its
restored budget with an increased system ceiling for that duration, before the
remainder of its normal budget Qs becomes available. The pseudo-code of this
event handler is shown in Algorithm 4.

Algorithm 4 on budget replenishment:

1: Q�
s ← Qs;

2: if Cs.lockedResource 	= 0 then {Cs keeps a resource busy}
3: r ← Cs.lockedResource;
4: setComponentBudget(Xsr);
5: SRPMutexLock(r);
6: else
7: ; {Apply default replenishment strategy}
8: end if

7 EXPERIMENTS AND RESULTS
This section evaluates the implementation costs of B-HSTP. First, we present a
brief overview of our test platform. Next, we experimentally investigate the
system overhead of the synchronization primitives and compare these to our
earlier protocol implementations. Finally, we illustrate B-HSTP by means of an
example system.

Paper F

285

7.1 Experimental setup
We recently created a port for μC/OS-II to the OpenRISC platform [13] to
experiment with the accompanying cycle-accurate simulator. The OpenRISC
simulator allows software-performance evaluation via a cycle-count register.
This profiling method may result in either longer or shorter measurements
between two matching calls due to the pipelined OpenRISC architecture. Some
instructions in the profiling method interleave better with the profiled code
than others. The measurement accuracy is approximately 5 instructions.

7.2 Synchronization overheads
In this section we investigate the overhead of the synchronization primitives of
B-HSTP. By default, current analysis techniques do not account for overheads
of the corresponding synchronization primitives, although these overheads
become of relevance upon deployment of such a system. Using more advanced
analysis methods, for example as proposed in [28], these measures can be
included in the existing system analysis. The overheads introduced by the
implementation of our protocol are summarized in Table 1 and compared to
our earlier implementation of HSRP and SIRAP in [9], [10].

7.2.1 Time complexity
Since it is important to know whether a real-time operating system behaves in
a time-wise predictable manner, we investigate the disabled interrupt regions
caused by the execution of B-HSTP primitives. Our synchronization primitives
are independent of the number of servers and tasks in a system, but intro-
duce overheads that interfere at the system level due to their required timer
manipulations.

Manipulation of timers makes our primitives more expensive than a straight-
forward two-level SRP implementation. However, this is the price for obtaining
temporal isolation. The worst-case execution time of the lock operation increases
with 380 instructions in every server period in which a component blocks, so
that the total cost depends on the misbehaving critical-section length which
causes the blocking. The budget replenishment handler only needs to change
the amount to be replenished, so that B-HSTP itself does not contribute much to
the total execution time of the handler. These execution times of the primitives
must be included in the system analysis by adding these to the critical section
execution times, Xsl. At the local scheduling level B-HSTP is more efficient,
however, because we use a simple non-preemptive locking mechanism.

7.2.2 Memory complexity
The code sizes in bytes of B-HSTP’s lock and unlock operations, i.e. 1228 and
612 bytes, is higher than the size of plain SRP, i.e. 196 and 192 bytes. This

Paper F

286

TA
B

LE
1

B
es

t-c
as

e
(B

C
)a

nd
w

or
st

-c
as

e
(W

C
)e

xe
cu

tio
n

tim
es

fo
rS

R
P

-b
as

ed
pr

ot
oc

ol
s,

in
cl

ud
in

g
B

-H
S

TP
,m

ea
su

re
d

on
th

e
O

pe
nR

IS
C

pl
at

fo
rm

in
nu

m
be

ro
fp

ro
ce

ss
or

in
st

ru
ct

io
ns

.

E
v

e
n

t
si

n
g

le
-l

e
v

e
l

S
R

P
[1

0]
H

S
R

P
(s

ee
[9

],
[1

0]
)

S
IR

A
P

(s
ee

[9
],

[1
0]

)
B

-H
S

T
P

BC
W

C
BC

W
C

BC
W

C
BC

W
C

R
es

ou
rc

e
lo

ck
12

4
12

4
19

6
19

6
21

4
22

4
76

3
-

R
es

ou
rc

e
un

lo
ck

10
6

10
6

19
6

72
5

19
2

19
2

68
8

69
7

Bu
dg

et
de

pl
et

io
n

-
-

0
38

3
-

-
59

38
2

Bu
dg

et
re

pl
en

is
hm

en
t

-
-

0
15

-
-

65
76

Paper F

287

includes the transparently implemented self-blocking and overrun mechanisms
and timer management. μC/OS-II’s priority-inheritance protocol has similar
sized lock and unlock primitives, i.e. 924 and 400 bytes.

Each SRP resource has a data structure at the global level, i.e. we have
M shared resources. Each component only needs to keep track of a single
globally shared resource, because local preemptions are disabled during global
resource access. However, each component Cs needs to store its resource-access
durations for all its resources Rl ∈ Rs.

7.3 SIRAP and HSRP re-evaluated
From our first implementation of SIRAP and HSRP, we observed that SIRAP
induces overhead locally within a component, i.e. the spin-lock, which checks
for sufficient budget to complete the critical section, adds to the budget
consumption of the particular task that locks the resource. SIRAP’s overhead
consists at least of a single test for sufficient budget in case the test is passed.
The overhead is at most two of such tests in case the initial test fails, i.e. one
additional test is done after budget replenishment before resource access is
granted. All remaining tests during spinlocking are already included as self-
blocking terms in the local analysis [2]. The number of processor instructions
executed for a single test is approximately 10 instructions on our test platform.

HSRP introduces overhead that interferes at the global system level, i.e. the
overrun mechanism requires to manipulate event timers to replenish an overrun
budget when the normal budget of a component depletes. This resulted in
a relatively large overhead for HSRP’s unlock operation compared to SIRAP,
see Table 1. Since similar timer manipulations are required for B-HSTP, the
difference in overhead for HSRP and SIRAP becomes negligible when these
protocols are complemented with means for temporal isolation. Furthermore,
the absolute overheads are in the same order of magnitude.

7.4 B-HSTP: an example
We have recently extended our development environment with a visualization
tool, which makes it possible to plot a HSF’s behaviour [29] by instrumenting
the code, executed on the OpenRISC platform, of our μC/OS-II extensions. To
demonstrate the behavior of B-HSTP, consider an example system comprised
of three components (see Table 2) each with two tasks (see Table 3) sharing a
single global resource R1. We use the following conventions:

1) the component or task with the lowest number has the highest priority;
2) the computation time of a task is denoted by the consumed time units

after locking and before unlocking a resource. For example, the scenario

Paper F

288

– Es1,1; Lock(R1); Es1,2; Unlock(R1); Es1,3 – is denoted as Es1,1+Es1,2+
Es1,3 and the term Es1,2 represents the critical-section length, cs1l;

3) the resource holding time is longest critical-section length within a com-
ponent, see Equation 3.

4) the component ceilings of the shared resource, R1, are equal to the highest
local priority, as dictated by B-HSTP.

The example presented in Figure 3 complements HSRP’s overrun mechanism
with B-HSTP.

TABLE 2
Example System: component parameters

Server Period (Ps) Budget (Qs) Res. holding time (Xs)

IPS 1 110 12 4.0
IPS 2 55 8 0.0
IPS 3 50 23 7.4

TABLE 3
Example System: task parameters

Server Task Period Computation time

IPS 1 Task 11 220 6.5 +4.0+6.5
IPS 1 Task 12 610 0.0+0.17+0.0
IPS 2 Task 21 110 5.0
IPS 2 Task 22 300 7.0
IPS 3 Task 31 100 12+7.4+12
IPS 3 Task 32 260 0.0+0.095+0.0

At every time instant that a task locks a resource, the budget of the attached
server is manipulated according to the rules of our B-HSTP protocol, e.g. see
time 11 where task 31 locks the global resource and the budget of IPS 3 is
changed. After task 31 has executed two resource accesses within its specified
length, in the third access it gets stuck in an infinite loop, see time instant
211. Within IPS 3, the lower priority task is indefinitely blocked, since B-HSTP
does not concern the local schedulability of components. IPS 1 blocks on
the busy resource at time instant 227 and cannot continue further until the
resource is released. However, the activations of the independent component,
implemented by IPS 2, are unaffected, because IPS 3 can only execute 7.4 time
units with a raised system ceiling, e.g. see time interval [220, 235] where IPS 3
gets preempted after by IPS 1 that blocks on the busy resource and IPS 2 that
continues its execution normally. Moreover, IPS 3 may even use its overrun
budget to continue its critical section with a decreased system ceiling, see time
interval [273, 280], where IPS 3 is preempted by IPS 2. This is possible due

Paper F

289

0 50 100 150 200 250 300 350

Task11

Task12

Task21

Task22

Task31

Task32

0

6

12

IPS1

0

4

8

IPS2

0

12

23

IPS3

OS-Idle

IPS2-Idle

IPS3-Idle

IPS1-Idle

Legend: active holding mutex

Fig. 3. Example trace, generated from instrumented code [29], combining HSRP
and B-HSTP to arbitrate access between IPS 1 and IPS 3 to a single shared
resource. IPS 2 is independent and continues its normal execution even when
task 31 exceeds its specified critical-section length, i.e. starting at time 219. IPS 1
blocks on a busy resource and looses its remaining budget at time 227.

to the inherent pessimism in the overrun analysis [1], [19] which allocates an
overrun budget at the global level without taking into account that in normal
situations the system ceiling is raised for that duration.

Paper F

290

8 DISCUSSION

8.1 Component ceilings revisited
We assume locally non-preemptive critical sections, which may reduce the
component’s schedulability. Suppose we allow preemptions of tasks that are
not blocked by an SRP-based component ceiling, see (2). The blocking times
of all tasks with a lower preemption level than the component ceiling do not
change, providing no advantage compared to the case where critical sections
are non-preemptive. Moreover, enforcement of critical-section lengths is a
prerequisite to guarantee temporal isolation in HSFs, see Section 4.

As a solution we could introduce an intermediate reservation level assigned
and allocated to critical sections. In addition, we need to enforce that blocking
times to other components are not exceeded due to local preemptions [12].
This requires an extension to our two-level HSF and therefore complicates
an implementation. It also affects performance, because switching between
multiple budgets for each component (or task) is costly [16] and breaks SRP’s
stack-sharing property.

8.2 Reliable resource sharing
To increase the reliability of the system, one may artificially increase the resource-
access budgets, Xsl, to give more slack to an access of length csil to resource
Rl. Although this alleviates small increases in critical-section lengths, it comes
at the cost of a global schedulability penalty. Moreover, an increased execution
time of a critical section of length csil up to Xsl should be compensated with
additional budget to guarantee that the other tasks within the same component
make their deadlines. Without this additional global schedulability penalty,
we may consume the entire overrun budget Xs when we choose HSRP to
arbitrate resource access, see Figure 3, because the analysis in [1], [19] allocate
an overrun budget to each server period at the server’s priority level. In line
with [1], [19], an overrun budget is merely used to complete a critical section.
However, we leave budget allocations while maximizing the system reliability
as a future work.

8.3 Watchdog timers revisited
If we reconsider Figure 1 and Figure 3 we observe that the time-instant at
which a maximum critical-section length is exceeded can be easily detected
using B-HSTP, i.e. when a resource-access budget depletes. We could choose to
execute an error-handler to terminate the task and release the resource at that
time instant, similar to the approach proposed in AUTOSAR. However, instead
of using expensive timers, we can defer the execution of such an error handler
until component Cs is allowed to continue its execution. This means that the

Paper F

291

error handler’s execution is accounted to Cs’ budget of length Qs. A nice result
is that an eventual user call-back function can no longer hamper temporal
isolation of other components than those involved in resource sharing.

9 CONCLUSION

This paper presented B-HSTP, an SRP-based synchronization protocol, which
achieves temporal isolation between independent components, even when
resource-sharing components misbehave. We showed that it generalizes and
extends existing protocols in the context of HSFs [1], [2]. Prerequisites to
dependable resource sharing in HSFs are mechanisms to enforce and monitor
maximum critical-section lengths. We followed the choice in [1] to make critical
sections non-preemptive for tasks within the same component, because this
makes an implementation of our protocol efficient. The memory requirements
of B-HSTP are lower than priority-inheritance-based protocols where tasks
may pend in a waiting queue. Furthermore, B-HSTP primitives have bounded
execution times and jitter. Both HSRP [1] and SIRAP [2], which each provide a
run-time mechanism to prevent budget depletion during global resource access,
have a negligible difference in implementation complexity when complemented
with B-HSTP. Our protocol therefore promises a reliable solution to future
safety-critical industrial applications that may share resources.

REFERENCES
[1] R. Davis and A. Burns, “Resource sharing in hierarchical fixed priority pre-emptive systems,”

in Real-Time Systems Symp., 2006, pp. 257–267.
[2] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization protocol for hierarchical

resource sharing in real-time open systems,” in Conf. on Embedded Software, Oct. 2007, pp.
279–288.

[3] I. Shin and I. Lee, “Periodic resource model for compositional real-time guarantees,” in
Real-Time Systems Symp., Dec. 2003, pp. 2–13.

[4] AUTOSAR GbR, “Technical overview,” 2008. [Online]. Available: http://www.autosar.org/
[5] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline scheduling environment,”

Real-Time Syst., vol. 9, no. 1, pp. 31–67, 1995.
[6] T. Baker, “Stack-based scheduling of realtime processes,” Real-Time Syst., vol. 3, no. 1, pp.

67–99, March 1991.
[7] Micrium, “RTOS and tools,” March 2010. [Online]. Available: http://micrium.com/
[8] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,” in Real-Time

Systems Symp., Dec. 2005, pp. 389–398.
[9] M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Protocol-transparent resource

sharing in hierarchically scheduled real-time systems,” in Conf. Emerging Technologies and
Factory Automation, 2010.

[10] M. M. H. P. van den Heuvel, R. J. Bril, J. J. Lukkien, and M. Behnam, “Extending a HSF-enabled
open-source real-time operating system with resource sharing,” in Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, July 2010, pp. 71–81.

[11] M. Åsberg, M. Behnam, T. Nolte, and R. J. Bril, “Implementation of overrun and skipping in
VxWorks,” in Workshop on Operating Systems Platforms for Embedded Real-Time Applications, July
2010.

Paper F

292

[12] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource sharing in reservation-based
systems,” in Real-Time Systems Symp., Dec. 2001, pp. 171–180.

[13] OpenCores. (2009) OpenRISC overview. [Online]. Available: http://www.opencores.org/
project,or1k

[14] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an approach to real-time
synchronisation,” IEEE Trans. on Computers, vol. 39, no. 9, pp. 1175–1185, Sept. 1990.

[15] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: A New Facility for Resource
Management in Server Systems,” in Symp. on Operating Systems Design and Implementation,
1999, pp. 45–58.

[16] U. Steinberg, J. Wolter, and H. Härtig, “Fast component interaction for real-time systems,” in
Euromicro Conf. on Real-Time Systems, July 2005, pp. 89–97.

[17] G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in reservation-based real-time
systems,” IEEE Trans. on Computers, vol. 53, no. 12, pp. 1591–1601, Dec. 2004.

[18] Z. Deng and J.-S. Liu, “Scheduling real-time applications in open environment,” in Real-Time
Systems Symp., Dec. 1997, pp. 308–319.

[19] M. Behnam, T. Nolte, M. Sjodin, and I. Shin, “Overrun methods and resource holding times
for hierarchical scheduling of semi-independent real-time systems,” IEEE Trans. on Industrial
Informatics, vol. 6, no. 1, pp. 93 –104, Feb. 2010.

[20] L. Almeida and P. Peidreiras, “Scheduling with temporal partitions: response-time analysis
and server design,” in Conf. on Embedded Software, Sept. 2004, pp. 95–103.

[21] M. Behnam, T. Nolte, M. Åsberg, and R. J. Bril, “Overrun and skipping in hierarchically
scheduled real-time systems,” in Conf. on Embedded and Real-Time Computing Systems and
Applications, 2009, pp. 519–526.

[22] G. Buttazzo and P. Gai, “Efficient implementation of an EDF scheduler for small embedded
systems,” in Workshop on Operating System Platforms for Embedded Real-Time Applications, July
2006.

[23] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and resource hold times,”
in Parallel and Distrib. Processing Symp., 2007.

[24] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synchronization protocols for multiprocessors,”
in Real-Time Systems Symp., Dec. 1988, pp. 259–269.

[25] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling independent hard
real-time tasks with self-suspensions,” in Real-Time Systems Symp., Dec. 2004, pp. 47–56.

[26] J. J. Labrosse, Microc/OS-II. R & D Books, 1998.
[27] M. M. H. P. van den Heuvel, M. Holenderski, R. J. Bril, and J. J. Lukkien, “Constant-bandwidth

supply for priority processing,” IEEE Trans. on Consumer Electronics, vol. 57, no. 2, May 2011.
[28] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, “Evolving real-time systems using

hierarchical scheduling and concurrency analysis,” in Real-Time Systems Symp., Dec. 2003, pp.
25–36.

[29] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Grasp: Tracing,
visualizing and measuring the behavior of real-time systems,” in Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, July 2010, pp. 37–42.

Paper F

293

CURRICULUM VITAE

Martijn Marianus Henricus Petrus van den Heuvel was born in Eindhoven,
The Netherlands, on December 9th, 1984. After finishing secondary school at
Heerbeeck College, Best, in 2003, he started his studies in computer science.
He received the B.Sc. degree in computer science (2008)
and the M.Sc. degree in embedded systems (2009) from
the Technische Universiteit Eindhoven, Eindhoven, The
Netherlands. During his studies he worked part-time in
industry as a junior software engineer for two years. He also
did a one-semester internship at Brandenburg University of
Technology (BTU), Germany, where he conducted research
on managing the quality-of-service (QoS) of video applica-
tions. After completing his master studies in 2009, Martijn
started working towards the Ph.D. degree in the System
Architecture and Networking (SAN) Group, Department of
Mathematics and Computer Science, Technische Universiteit Eindhoven. The
main results of his research are presented in this dissertation. His main research
interests are in the area of real-time embedded systems. He has published more
than 20 papers in peer-reviewed fora (see below).

Accepted publications (April 2013)
Journal/Transactions

1) M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Transparent Synchro-
nization Protocols for Compositional Real-Time Systems, IEEE Transactions on
Industrial Informatics (TII), pp. 322–336, vol. 8, issue 2, May 2012.

2) M.M.H.P. van den Heuvel, R.J. Bril, S. Schiemenz, C. Hentschel and C.
Tempelaars, Real-Time Priority Processing on an Embedded CE Device, IEEE
Transactions on Consumer Electronics (TCE), pp. 1969–1977, vol. 57, issue
4, November 2011.

3) M.M.H.P. van den Heuvel, M. Holenderski, R.J. Bril and J.J. Lukkien,
Constant-Bandwidth Supply for Priority Processing, IEEE Transactions on
Consumer Electronics (TCE), pp. 873–881, vol. 57, issue 2, May 2011.

4) M.M.H.P. van den Heuvel, R.J. Bril, S. Schiemenz and C. Hentschel,
Dynamic Resource Allocation for Real-time Priority Processing Applications,
IEEE Transactions on Consumer Electronics (TCE), pp. 879–887, vol. 56,
issue 2, May 2010.

International refereed Conferences

1) M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Virtual scheduling for
compositional real-time guarantees, 8th IEEE International Symposium on
Industrial Embedded Systems (SIES), in press, Porto, Portugal, June 2013.

295

Curriculum Vitae

2) I. David, M.M.H.P. van den Heuvel, R. Mak and J.J. Lukkien, Resource-usage
Modes Detection for Run-Time Resource Prediction of Video Components, 31st
IEEE International Conference on Consumer Electronics (ICCE), Digest of
Technical Papers, pp. 167–168, Las Vegas, NV, USA, January 2013.

3) M.M.H.P. van den Heuvel, R.J. Bril, J.J. Lukkien, D. Isovic and G. Sankar
Ramachandran, RTOS support for mixed time-triggered and event-triggered
task sets, 10th IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing (EUC), pp. 578–585, Paphos, Cyprus, Dec. 2012.

4) R.J. Bril, M.M.H.P. van den Heuvel, U. Keskin, J.J. Lukkien, Generalized
fixed-priority scheduling with limited preemptions, 24th Euromicro Conference
on Real-Time Systems (ECRTS), pp. 209–220, Pisa, Italy, July 2012.

5) S.A.B. Rao, T. Ozcelebi, M.M.H.P. van den Heuvel, R. Verhoeven and
J.J. Lukkien, Dependable Partitioning for Autonomous Agents in Adaptive
Lighting Environments, 30th IEEE International Conference on Consumer
Electronics (ICCE), Digest of Technical Papers, pp. 435–436, Las Vegas,
NV, USA, January 2012.

6) M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Dependable resource
sharing for compositional real-time systems, 17th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp. 153–163, Toyama, Japan, August 2011.

7) U. Keskin, M.M.H.P. van den Heuvel, R.J. Bril, J.J. Lukkien, M. Behnam
and T. Nolte, An engineering approach to synchronization based on overrun
for compositional real-time systems, 6th IEEE International Symposium on
Industrial Embedded Systems (SIES), pp. 274–283, Västerås, Sweden, June
2011.

8) M.M.H.P. van den Heuvel, M. Holenderski, R.J. Bril and J.J. Lukkien,
Constant-Bandwidth Supply for Priority Processing, 29th IEEE International
Conference on Consumer Electronics (ICCE), Digest of Technical Papers,
pp. 884–885, Las Vegas, NV, USA, January 2011.

9) C. Tempelaars, M.M.H.P. van den Heuvel, R.J. Bril, S. Schiemenz and C.
Hentschel, Real-Time Priority Processing on the Cell Platform, 29th IEEE
International Conference on Consumer Electronics (ICCE), Digest of
Technical Papers, pp. 157–158, Las Vegas, NV, USA, January 2011.

10) M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Protocol-Transparent
Resource Sharing in Hierarchically Scheduled Real-Time Systems, 15th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA), Bilbao, Spain, September 2010.

11) M.M.H.P. van den Heuvel, R.J. Bril, S. Schiemenz and C. Hentschel,
Dynamic Resource Allocation for Real-time Priority Processing Applications, 28th
IEEE International Conference on Consumer Electronics (ICCE), Digest of
Technical Papers, pp. 67–68, Las Vegas, NV, USA, January 2010.

296

Curriculum Vitae

International refereed Workshops/Work-in-Progress

1) M.M.H.P. van den Heuvel, R.J. Bril, J.J. Lukkien, D. Isovic and G. Sankar
Ramachandran, Towards RTOS support for mixed time-triggered and event-
triggered task sets, Work-in-progress (WiP) session of the 17th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), Kraków, Poland, September 2012.

2) M.M.H.P. van den Heuvel, M. Behnam, R.J. Bril, J.J. Lukkien and T.
Nolte, Opaque analysis for resource sharing in compositional real-time systems,
4th Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS), pp. 3–10, Vienna, Austria, November 2011.

3) M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien, Temporal isolation
in an HSF-enabled real-time kernel in the presence of shared resources, 7th
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT), pp. 39–48, Porto, Portugal, July 201.

4) C.G.U. Okwudire, M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien,
Exploiting Harmonic Periods to Improve Linearly Approximated Response-Time
Upper Bounds, Work-in-progress (WiP) session of the 15th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), Bilbao, Spain, September 2010.

5) M. Holenderski, M.M.H.P. van den Heuvel, R.J. Bril and J.J. Lukkien,
Grasp: Tracing, Visualizing and Measuring the Behavior of Real-Time Systems,
1st International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), pp. 37–42, Brussels, Belgium,
July 2010.

6) M.M.H.P. van den Heuvel, R.J. Bril, J.J. Lukkien and M. Behnam, Extending
a HSF-enabled Open-Source Real-Time Operating System with Resource Sharing,
6th International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT), pp. 71–81, Brussels, Belgium, July 2010.

7) M.M.H.P. van den Heuvel, R.J. Bril, P. van de Velde and J.J. Lukkien,
Towards Verification-based Development of In-Vehicle Safety Critical Software:
A Case Study, 1st ACM Workshop on Critical Automotive applications:
Robustness and Safety (CARS), pp. 35–38, Valencia, Spain, April 2010.

8) M.M.H.P. van den Heuvel, M. Holenderski, W. Cools, R.J. Bril and J.J.
Lukkien, Virtual Timers in Hierarchical Real-time Systems, Work-in-Progress
(WiP) session of the 30th IEEE Real-time Systems Symposium (RTSS), pp.
37–40, Washington D.C., USA, December 2009.

297

Titles in the IPA Dissertation Series since 2007

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormali-
ties in Locally Autonomous Distributed
Systems. Faculty of Mathematics and
Computing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional Ge-
ometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty of
Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Processes.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems.
Faculty of Mechanical Engineering,
TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in
Time. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of
Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Deliv-
ery. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of

Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty of
Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-
tech Multi-disciplinary Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and
Assimilation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification
of Optimistic Fair Exchange Proto-
cols. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical En-
gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Math-
ematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty of
Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-
tal Study of Geometric Networks. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Speci-
fications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-based Verifi-
cation for Robust Composition of As-

pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Me-
chanical Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream
Processing Systems. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty of
Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid
Systems: Comparison and Development.
Faculty of Mathematics and Com-
puter Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance Eval-
uation. Faculty of Mathematics and
Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Pro-
visioning. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-

neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty of

Electrical Engineering, Mathematics
& Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Privacy
in Voting and Fairness in Digital Ex-
change. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-16

T. Chen. Clocks, Dice and Processes.
Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty of
Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Envi-
ronments. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division of

Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discov-
ery of Knowledge - Foundations, Imple-
mentations and Applications. Faculty of
Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time
and Distributed Services. Faculty of
Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty

of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT Avail-
ability Planning: Methods and Tools.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refinement.
Faculty of Mathematics and Natural
Sciences, UL. 2011-04

J. Proença. Synchronous coordination
of distributed components. Faculty of
Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Confi-
dentiality Risk Assessment in Networks
of Organizations. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of
Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computability
to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty of
Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime En-
forcement. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2011-14

M. Raffelsieper. Cell Libraries and
Verification. Faculty of Mathematics
and Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Qual-
ity of Service of Component Connectors.
Faculty of Mathematics and Natural
Sciences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-
ing Abstract Views of States in OO
Verification. Faculty of Mathematics
and Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transfor-
mations. Faculty of Mathematics and
Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fac-
ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural
Sciences, UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics
and Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Pro-
gram Properties with Attribute Gram-
mars, Revisited. Faculty of Science,
UU. 2012-02

Z. Hemel. Methods and Techniques
for the Design and Implementation of
Domain-Specific Languages. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and Prac-
tice. Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on
Verification of Wireless Sensor Net-
works and Abstraction Learning for
System Inference. Faculty of Science,
Mathematics and Computer Science,
RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Composi-
tional Interchange Format for Hybrid
Systems: Design and Implementation.
Faculty of Mechanical Engineering,
TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by Means
of Annotated Graph Mining Algorithms.
Faculty of Mathematics and Natural
Sciences, UL. 2012-09

S.D. Vermolen. Software Language
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches
to Reliable Software. Faculty of Math-
ematics and Computer Science,
TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2012-12

W. Heijstek. Software Architecture
Design in Global and Model-Centric
Software Development. Faculty of
Mathematics and Natural Sciences,
UL. 2012-13

C. Kop. Higher Order Termination. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems
Domain. Faculty of Mathematics and
Computer Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2012-16

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of
Real-Time Task Systems using Timed
Automata. Faculty of Science, Math-
ematics and Computer Science,
RU. 2013-02

E. Zambon. Abstract Graph Transforma-
tion – Theory and Practice. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2013-06

L.E. Mamane. Interactive mathematical
documents: creation and presentation.
Faculty of Science, Mathematics and
Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time
components upon one processor. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2013-08

