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1Self-organisation of anisometric

particles

A general introduction is given to the rich behaviour of the self-organisation of non-
spherical particles in soft condensed matter that provides the motivation for this work.
We start with discussing some typical characteristics of soft condensed matter and we
describe the phase behaviour of dispersions of spherical colloidal particles. Next, we dis-
cuss non-spherical, hard particles with a sufficiently large aspect ratio that may have
strong, anisotropic interactions, which leads to even richer behaviour, including liquid-
crystalline phases at sufficiently large densities or low enough temperatures. We discuss
the different phases of rod-like and plate-like colloidal particles and the effect of size
polydispersity and flexibility. In the isotropic phase these particles can form temporal,
self-assembled networks that span a macroscopic system at very low loadings. This net-
work formation can be described by connectedness-percolation theory and we outline the
concepts of that theory after giving a brief introduction to lattice percolation. Then we
focus on the liquid-crystalline nematic phase in which the particles exhibit long-range
orientational order but no long-range positional order. We discuss how a competition
between surface and bulk forces determines the shape and structure of nematics under
soft confinement. Finally, the scope of this thesis is discussed.

9



10 Chapter 1. Self-organisation of anisometric particles

1.1 Soft condensed matter

Materials that consist of molecules or small particles of more or less spherical shape
exhibit at, say, room temperature only a gas, liquid, and a solid phase, but may form
plasmas at high temperatures or exhibit quantum behaviour at low temperatures [1, 2].
The gas phase is characterised by a low particle density and short-range positional order.
The liquid phase also has short-range positional order but a density that away from the
critical point is roughly a thousand times larger than that of a gas. Ideal gases and
liquids flow once a shear stress has been applied. The strain rate is proportional to the
shear stress, and the constant of proportionality is called the viscosity. In a solid the
particles have long-range positional order because they are confined to a lattice, whereas
the mean density is usually close to that of the liquid. Sometimes particles do not form
a crystal but are arrested in a glassy state. A solid responds elastically to an applied
shear stress with a shear strain. In an ideal solid the shear strain is proportional to
shear stress and the constant of proportionality is the shear modulus [3].

There exist also many materials that have both liquid-like and solid-like properties,
and the class of these materials is generally referred to as soft (condensed) matter. It
includes gels, foams, glues, paints, polymers, granular materials, colloids, and liquid
crystals. They are chemically complex and usually contain more than a single com-
ponent. The materials that can be classified as soft matter have in common that the
particles have a size in the mesoscopic range from a few nanometres to a few microme-
tres, where atomistic details are less important and gravity also plays a subdominant
role. Their interactions take place on the energy scale of the thermal energy kBT , which
is the energy scale associated with the random Brownian motion of particles, and where
kB is Boltzmann’s constant and T the absolute temperature. Associated with this Brow-
nian motion is the Boltzmann statistics that collections of particles obey: spontaneous
thermal fluctuations have a probability to overcome an energy barrier ∆F that decays
exponentially with ∆F/kBT .

Another common feature observed in all types of soft matter is their propensity to
self-organise into complex structures [3]. The theoretical framework that can be used
to describe the self-organisation of this type of material is that of statistical mechan-
ics provided the system is ergodic, i.e., the time average of a system property equals
its statistical ensemble average. In statistical mechanics the microscopic interactions of
many-particle systems with a huge number of degrees of freedom are described statisti-
cally to predict their macroscopic behaviour. Throughout this thesis we make use of the
framework of statistical mechanics and we focus on colloidal dispersions in which parti-
cles in the mentioned mesoscopic size range are dispersed in a fluid host material. These
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colloidal particles move around randomly in the dispersion due to Brownian motion but
once they come into contact, they tend to stick together because of strong, short-range
van der Waals forces. So, if one aims to stabilise the dispersion against aggregation,
a repelling force between the particles is required, which can be the result of electro-
static forces via charge stabilisation, or attaching polymer chains to the surfaces, which
is called steric stabilisation [3]. We consider both types of dispersion in chapters 7, 8,
and 9 and find that the type of stabilisation can make quite a difference in the particle
behaviour.

Hence, in theory the dispersion is stable if the attractive and repulsive forces between
the particles are in balance such that thermal fluctuations cannot drive the system to
another state, but in practice most dispersions are only kinetically stable, not thermo-
dynamically. If the particles are spherical and there is little variation in their size, they
form colloidal crystals in a perfectly organised lattice structure with long-range order if
one increases the concentration. However, this only occurs provided the colloids have
enough time to adopt the lattice positions. Indeed, if the increase in concentration is
very rapid, the particles are not given this time and they form a colloidal glass in a
kinetically arrested state. If there is a large variation in particles size, colloidal hard
spheres form no crystal either and enter a glassy state [4].

If the particles are rigid and non-spherical, also called anisometric, the analysis of
these interactions is much more intricate than in the case of spherical particles, because
the relative angles between the particles have a large impact on them. On a positive
note, however, the anisometric shape and associated interactions lead to many interesting
physical phenomena that in the macroscopic world have led and will undoubtedly lead
to many applications in modern technology that are discussed below. These phenomena
are particularly observed if the aspect ratio of the particles is large, say, more than a
hundred, meaning that they are either very slender or very flat.

Indeed, this anisotropy introduces additional degrees of freedom, e.g., if the non-
spherical particles are sufficiently stiff. At low particle concentrations the excluded-
volume interactions do allow for an isotropic distribution of orientations. If the aspect
ratio is large enough, then the particles can form temporal, connected networks that
span macroscopic scales at very low particle loadings. It is important to emphasise
that both transient and permanent networks may form, the latter, e.g., in systems that
become in some sense kinetically arrested because the particles stick permanently to
each other. In this thesis we shall focus on thermalised, temporal networks that form in
thermodynamically stable dispersions. Note that the particles, if electrically conducting
and dispersed in a non-conducting medium, need not make actual physical contact to
allow for electrical contact via hopping or tunneling of charge carriers from one particle
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to another. It turns out that a minimal loading much less than close packing is required
for the dispersions to become electrically conducting. This minimal loading is called the
percolation threshold.

Above this threshold the particles form a network that spans the whole system. If
the fluid carrier phase can be solidified sufficiently quickly, the network gets frozen in
the final solid composite, the material properties of which can be significantly improved
by the network, despite the low loading of the nanofillers. Colloidal fluid stages in the
production are often encountered in the processing of solid functional materials. Hence,
this is a field where soft and hard matter connect, and for these cases material properties
of the solid composites potentially allow for a theoretical description from the point of
view of soft condensed matter.

Besides network formation at very low particle loadings, which parenthetically can be
probed by, e.g., dielectric spectroscopy [5], the particle anisotropy also causes ordered,
so-called liquid-crystalline phases to become possible different from the usual states
of matter. If the interactions between the particles are mainly repulsive, e.g., due to
excluded volume, this turns out to occur at somewhat higher particle densities than
required for a temporal percolating network to form. These liquid-crystalline phases
are often referred to as mesophases because they are found under conditions in between
those of liquids and crystalline solids. As is true in general for all soft matter, liquid
crystals combine properties characteristic of liquids and solids: they flow like ordinary
liquids but at the same time are also able to withstand and respond elastically to certain
static deformations, giving them solid-like properties [6].

Liquid crystals are formed in a large range of materials, such as low-molecular-
weight fluids, surfactant systems, polymers, colloidal dispersions and so on. There are
two classes of liquid crystal, referred to as lyotropic and thermotropic [7]. Lyotropic
liquid crystals consist of particles in the colloidal size range dispersed in a fluid. In
these systems the control variable is the density, so particle alignment creates the free
volume that the system runs out of upon a density increase. Thermotropic liquid crystals
are usually single-component systems, and include both low and high molecular-weight
compounds or polymers. In this type of system anisotropic attractive interactions induce
particle alignment between the particles, and the temperature of the system is the control
variable.

The different phases of anisometric particles can be distinguished by the degrees
of freedom the particles have. The state of a rigid body can be represented by three
positional and two rotational degrees of freedom, provided it is not chiral, meaning that
it can be superimposed on its own mirror image. Any combination of the positional and
angular degrees of freedom can in principle be frozen in. If the particles are chiral, this
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gives rise to even richer behaviour. For rod-like particles the simplest liquid-crystalline
phase is the nematic phase in which the particles are aligned along a common axis, but
there is no long-range positional order, and we return to this phase in detail in section
1.4. See also Fig. 1.1. If one positional and one orientational degree of freedom are
frozen in, the rods are aligned in a single direction like in a nematic, but on top of that,
they are positionally ordered in layers. The phase is called smectic-A if the layer is
perpendicular to the axis of orientational symmetry, and smectic-C if the layer is tilted
with a different angle. If the particle orientation is perpendicular to the smectic plane
with liquid-like behaviour in the layers, but the particles have short-range positional and
a quasi-long-range orientational order, this is called a hexatic smectic-B phase [6].

Figure 1.1: With increasing concentration (in entropy-dominated systems) or decreasing tem-
peratures (in energy-dominated systems) rod-like particles become more ordered and normally
exhibit an isotropic, a nematic, a smectic, and a crystal phase (top row), whereas plate-like
particles usually have an isotropic, a nematic, a smectic, and a crystal phase (bottom row).

For plate-like particles without cylindrical symmetry there is, besides a nematic
phase, also a bi-axial nematic, in which two orientational degrees of freedom are frozen
in. Moreover, in a columnar phase there is only one unrestrained orientational degree
of freedom, like in the nematic and smectic phases, but the particles are arranged in
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columns in which there is still liquid-like freedom; the columns can form two-dimensional
crystals, e.g., packed hexagonally or in rectangles [7]. See also Fig. 1.1. In a rotator
phase, also referred to as a plastic crystal, all positional degrees of freedom are frozen
in, so the particles are located on a lattice, but there are still two orientational degrees
of freedom. Finally, if all positional and orientational freedom is restricted for both rod-
like and plate-like particles they are packed in a crystalline solid. For rod-like particles
computer simulations indicate that there are two main types of crystalline packing: in
AAA stacking a rod is positioned exactly above a rod in the layer below it, as shown in
the top-right corner of Fig. 1.1, whereas in ABC stacking there is a shift in the layers [8].

The above phases emerge if the particles are all of the same size and are perfectly
rigid. If there is a significant size polydispersity in the dispersion of rod-like particles,
this suppresses the formation of the smectic phase and favours the columnar phase [9],
as does a finite flexibility of the rods [10]. In dispersions of plate-like particles a diameter
polydispersity causes no such suppression of the columnar phase, but at high concentra-
tions smectic-like ordering is observed, which in turn is suppressed by a polydispersity
in the thickness [11,12].

In this thesis we consider the large-scale self-organisation of elongated and flat col-
loidal particles, and our aim is to gain a better insight into this self-organisation to
predict macroscopic behaviour that results from their anisotropic interactions. More
specifically, the purpose is to show how the network formation is affected by the ma-
terial properties of the nanofillers, such as a size polydispersity and their conductance,
particle alignment, and how it competes with the transition to a nematic phase. This
nematic phase in turn exhibits interesting phenomena under soft confinement, e.g., in
case of the capillary rise of an isotropic-nematic interface up a vertical wall and the
formation of nematic droplets.

To study percolation phenomena we invoke a microscopic theory that describes par-
ticle interactions at the molecular level, because this allows us to directly incorporate
the effect of angular correlations between the particles. These turn out to be very im-
portant. For the nematics we could also have used a microscopic Onsager-type theory
that is suited for lyotropic nematics of rod-like particles, albeit that it is not as accurate
for plate-like particles [13]. However, it turns out to be convenient to use a mesoscopic or
even macroscopic Frank-Oseen elasticity theory because it suffices to use the cylindrical
symmetry of the nematogens [14]. The reason is that the particle shape is coupled to
the (ratios of) values of the elastic constants, surface tension, and anchoring strength,
so we need not consider the microscopic details. The common ground of the theories we
use for the percolation phenomena and nematic liquid crystals is that the anisotropic,



1.2. Percolation 15

hard-core interactions dictate the structure of networks and are at the root of the forma-
tion of liquid-crystalline phases and the elastic and surface properties of these phases.
Both network properties and the properties of liquid crystals under conditions of soft
confinement depend crucially on particle shape.

In the remainder of this chapter, we first present a brief introduction to percolation
theory in section 1.2 and the elements of connectedness-percolation theory that we use
in section 1.3. Next, we give a brief introduction into liquid-crystal theory with in
particular the nematic phase in section 1.4, and we discuss the competition between
surface and bulk forces characteristic of the nematic in section 1.5. Finally, the scope of
the thesis is outlined in section 1.6.

1.2 Percolation

Broadbent and Hammersley coined the term percolation to describe the fluid flow
through a porous material consisting of fixed channels (bonds) of which a fraction is
randomly chosen to be blocked [15]. They showed that there is no fluid flow if the
fraction p of open channels is smaller than some critical fraction pp. Hence, at a critical
fraction of connected channels, they form a network that allows fluid to traverse the
whole system, and this critical point is referred to as the percolation threshold [16]. See
also Fig. 1.2. For p > pp the flow increases monotonically, to reach a maximum at p = 1.
Alternatively, the flow process can be described in terms of valves that may block the
flow at the junctions of the pipes. These two types of a flow in terms of open channels
and valves on a fixed lattice are referred to bond and site percolation, respectively.

In continuum percolation there is no lattice and the sites are distributed continu-
ously in space. If these sites are molecules or small particles that are dispersed in a
host solvent, a certain connectedness criterion has to be defined to determine for what
configuration two particles can be considered connected. Analogous to lattice percola-
tion, there is a critical, minimum loading of particles at which they form a connected
network that spans the entire system. This allows rod-like and plate-like particles to
significantly enhance the properties of the host material after solidification, as already re-
ferred to in section 1.1. In practice, carbon nanotubes, graphene sheets, silver nanowires,
self-assembled anorganic nanotubes, and fibers of nanowire-forming materials based on
transition metal-chalcogenides can be used for this to improve the properties of a host
material [17–21]. Experiments on these composites are usually performed on the final
solid composites, although percolation of carbon nanotubes in the fluid phase has been
studied with dielectric spectroscopy [5], including the role of shear on the insulator-
conductor transition [22]. These studies also show the sensitive dependence of the final
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Figure 1.2: The simplest lattice in two dimensions is a square lattice. In bond percolation
the bonds are occupied (solid lines) with a probability p. In nearest-neighbour site percolation
sites are occupied (filled circles) with a probability p and two neighbouring sites are defined
to be connected if both of them are occupied. In both cases there is no network of connected
bonds/sites that spans the whole system if the fraction p is smaller than a critical fraction
pp (left), whereas there is one for p ≥ pp (right). For an infinite system pp = 1/2 for bond
percolation, whereas pp = 0.5927 for nearest-neighbour site networks [25].

properties on the processing conditions that we discuss in more detail in chapters 2, 3,
4, and 5 [23,24].

We compare our results to experiments on composites containing carbon nanotubes
and graphene sheets, in which a so-called Latex technology is applied in the manufactur-
ing steps [26,27]. See Fig. 1.3. The nanofillers are distributed in water and a surfactant is
added, after which the dispersion is sonicated to separate stacks and bundles of particles.
The next step is to separate the remaining bundles and stacks from the single-walled
nanotubes and single-layer graphene sheets by centrifugation. The bundles are removed
and the spherical latex particles are added and the next step is to remove the water
by freeze drying. This means that only a powder remains, after which the substance is
compressed and heated in a compression-moulding step, making the latex particle fuse
together to obtain a continuous latex-based matrix as the continuous phase. It may seem
that there is no (real) thermodynamics left in the composite because of the powder that
remains after freeze drying and the fact that we study a solid final composite. However,
the system is allowed to equilibrate when the latex particles are added and during the
compression moulding, so the processing in fact contains two equilibration steps.

As a consequence, the formation of the percolating network may allow for a theo-
retical description in the framework of connectedness-percolation theory if we presume
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I II III

IVVVI

Figure 1.3: The steps in the Latex technology that are used to obtain composite with a
random distribution in position and orientation of the carbon nanotubes and graphene sheets.
It consists of sonication (I), centrifugation (II), removal of the remaining stacks and bundles
(III), adding latex particles (IV), freeze drying (V), and finally compression moulding (VI).

that an equilibrium configuration has solidified in the final composite. As alluded to in
section 1.1, in this theory a connectedness criterion has to be defined for what configu-
ration of particles they can be considered to be connected because we consider temporal
networks of particles that need not make physical contact. This connectedness criterion
is different for different types of percolation and associated properties of interest, such as
electrical and mechanical percolation. In this work we focus on the electrical properties
so we can compare our results to experiments on the conductivity of composites that
have been produced with the Latex technology to enhance the properties of polymeric
materials. Theoretical results indicate that the scaling of the percolation threshold for
rod-like particles is the same for rigidity percolation and geometric percolation [28].

As already alluded to, it turns out that the carbon nanofillers in the experiments
that use the Latex technology do not touch each other in this final product [26], so
charge transport occurs by charge tunneling or hopping from one nanofiller to the other,
see Figure 1.4. Note that if the criterion was that two particles actually need to touch
to be connected, this would statistically happen with vanishing probability, making
the percolation threshold diverge. Given that charge-carrier hopping is a quantum-
mechanical process that has a probability that decays exponentially with the ratio of
the distance between the particles and a typical decay length, or hopping distance, we
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would have to incorporate these probabilities in the connectedness criterion. However, if
we define a sharp cutoff in the maximum separation allowed for charge transport with a
penetrable shell as the connectedness zone around each particle, it turns out that for rod-
like particles this so-called cherry-pit model or core-shell model gives the same result
as a model with the incorporation of an exponentially decaying hopping probability.
Defining such a typical hopping distance as a maximum distance between two connected
particles then provides the link between geometrical and electrical percolation that we
are interested in in the end.

Figure 1.4: Schematic of the percolation process and the cherry-pit model. For a low particle
loading the nanofillers are on average too far away from each other to form large clusters.
At a critical loading ϕp, referred to as the percolation threshold, the clusters form a network
that spans the whole system (the thick path). At this point electrical conductivity of the host
material increases with many orders of magnitude. Charge transport from one rod-like or plate-
like particle to the other takes places via electron hopping if two nanofillers are sufficiently close
to each other, meaning that the transparent cylinders overlap.

As argued above, the hopping probability decays exponentially with the distance
between two particles, suggesting that any two particles are always connected and that
a well-defined percolation threshold cannot be identified, but this is not the case. In order
to understand this we have to take a closer look at the connection between electrical and
geometrical percolation. For penetrable spherical particles of a fixed radius in continuum
space there is a critical number of contacts (overlaps) between the spheres, and, as a
result, a critical volume fraction occupied by the spheres at which the connected spheres
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form a percolating network [29]. This geometrical percolation can be translated into
electrical percolation if one considers randomly distributed conducting point sites (we
extend this to conducting particles below) because it can be shown that even with an
exponentially decaying overlap probability, there is still a critical sphere radius Rc and an
associated number of contacts (neighbours) that is required for a percolating network in
the limit of Rc À L, with L the localisation length of the host material [30,31]. Computer
simulations have shown that this is also true for the special case of variable-range hopping
[32]. In the limit of Rc ≈ L the sites are much closer to each other and the critical
sphere now has an effective radius equal to the localisation length L, which is a material
constant. This means that there is a smooth crossover to geometrical percolation of
penetrable spheres of radius L. In case of particles of a finite size instead of conducting
point sites the we have to consider surface-to-surface tunneling instead of centre-to-centre
tunneling. Clearly, this changes the geometry of the problem, but the concept remains
the same. It is for this reason that we use a model with a constant hopping distance
throughout this thesis in a model for the geometrical percolation threshold to predict the
electrical percolation threshold of composites containing rod-like and plate-like particles.

The percolation threshold is often expressed in terms of the volume fraction ϕp

that the filler particles occupy. Many percolation properties exhibit power-law scaling
behaviour close to this critical loading. For instance, for volume fractions ϕ with |ϕ −
ϕp| ¿ 1, we have

F ∼ |ϕ− ϕp|β

S ∼ |ϕ− ϕp|−γ

ξ ∼ |ϕ− ϕp|−ν

Σ ∼ |ϕ− ϕp|t,
where F , S, ξ, and Σ are the percolation probability, the weight-average cluster size, the
correlation length, and the conductivity respectively [25]. The quantity F denotes the
probability that an arbitrarily chosen particle is part of the percolating cluster. Note
that F is only defined for ϕ < ϕp, whereas ξ and S (if the infinite cluster is excluded)
and Σ are defined on both sides of the percolation threshold [25]. The weight-average
cluster size S is the average size of a cluster of connected particles that an arbitrarily
selected particle is part of. This we discuss in more detail below. The correlation
length ξ measures the range of particle correlations and is also a measure of the cluster
dimensions as we show in chapter 5, or of the cluster heterogeneity for ϕ > ϕp [25].

For both lattice and continuum percolation it has been shown that theoretically the
critical exponents β, γ, and ν are universal, meaning that their value only depends on
the dimensionality of the system. However, experimentally this is certainly not the
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case [33]. The critical exponents β, γ, and ν are coupled by the so-called hyperscaling
relation dν = 2β+γ, with d the dimensionality of the system, whereas t can be considered
as an “independent” exponent [16]. Such a scaling relation is believed to hold for d ≤ dc,
where dc is a critical dimension above which the exponents are believed to adopt their
dimension-independent mean-field values. For mean-field theories β = γ = 1, and
ν = 1/2, so the hyperscaling relation gives dc = 6, so in six or more dimensions mean-
field theory is exact [25]. The mean-field exponent of the conductivity is t = 3 [25],
and we return to this in chapter 4. We find in this work that mean-field connectedness
theory is exact for rod-like particles in three dimensions, albeit that this only holds in
the limit of infinite aspect ratio. The concepts of this connectedness-percolation theory
we discuss in the next section.

1.3 Connectedness percolation

In order to calculate the average cluster size of connected particles, and from that
the percolation threshold, we presume that the configuration of dispersed nanofillers
that is frozen in, is an equilibrium configuration. This allows us to apply equilibrium
connectedness-percolation theory in chapters 2, 3, and 5. Here, we outline the principles
of this theory. The weight-averaged cluster size S can be expressed in terms of the
number of clusters nk consisting of k particles, also called a k-mer. Then the probability
that an arbitrarily chosen particle is part of a k-mer is sk = knk/N , with N =

∑
k knk

the total number of particles. This gives for S =
∑

k ksk =
∑

k k2nk/
∑

k knk [25].
Given the distribution of the cluster sizes nk we find that the total number of contacts
between two particles within the same cluster, defined as the number of pairs of particle
that have a direct or an indirect connection within the same cluster, is given by Nc =∑

k

(
k
2

)
nk = 1

2

∑
k k(k− 1)nk. Hence, we deduce that S =

∑
k(knk + k(k− 1)nk)/N =

1 + 2Nc/N , which is an exact result. The first term, unity, stems from choosing a
particle, and the second, 2Nc/N , from counting the particles it is in contact with in the
same cluster.

The number of contacts, Nc, and the weight-average cluster size, S, can also be
described in terms of the so-called pair-connectedness function P . For simplicity we
consider spherical particles of equal size; the generalisation to anisometric particles is
discussed below. P is defined such that ρ2P (r, r′)drdr′ is the probability of simultane-
ously finding a particle in a volume element dr at position r and a second particle in dr′

at r′, given that they are part of the same cluster. Here, ρ is the number density of the
particles that we presume to be uniformly distributed. So P decomposes the radial dis-
tribution function g into a “connected” and a “disconnected” part: g(r) = P (r)+ D(r),
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where ρ2D(r, r′)drdr′ is the probability of simultaneously finding two particles at r and
r′ that are not in the same cluster [34].

The definition of P implies that Nc = 1
2ρ2

∫∫
drdr′P (r, r′) must be the total number

of pairs of particle that are in contact (either directly or indirectly) in a cluster, where
the factor 1/2 corrects for double counting. If we use the property of the translational
invariance of P we can write Nc = 1

2ρN
∫

drP (r, r′), which hence gives for the cluster
size,

S = 1 + ρ

∫
drP (r, r′) = 1 + ρ lim

q→0
P̂ (q), (1.1)

where the hat ( ˆ. . .) ≡ ∫
dr(. . .) exp(iq ·r) denotes a spatial Fourier transform with q the

wave vector.
The description can straightforwardly be generalised to anisometric particles for

which P also depends on their orientations. The weight-average cluster size S then
reads

S = 1 + lim
q→0

ρ
〈〈

P̂ (q,u,u′)
〉

u

〉
u′

, (1.2)

with u ≡ (u1,u2) with u1 and u2 the unit vectors in the direction of the main
axes of a particle. For the sake of notational convenience we introduced the notation
〈. . .〉un

≡ ∫
duψ(u)(. . .) to denote the orientational average, with a similar prescription

for the primed variables, and where ψ(u) denotes an orientational probability distribu-
tion function. In chapters 2 and 3 we consider a uniform distribution of orientations
with ψ = 1/4π, but in chapter 5 we focus on the effect of particle alignment, i.e., a
non-uniform distribution on the network formation.

The probability P can be obtained from the orientation-dependent connectedness
Ornstein-Zernike equation [34], the Fourier transform of which reads

P̂ (q, u,u′) = Ĉ+(q, u, u′) + ρ
〈
Ĉ+(q, u, u′′)P̂ (q, u′′, u′)

〉
u′′

. (1.3)

Here, C+ denotes the direct pair-connectedness function that in essence measures short-
range correlations, discussed more extensively below. An intuitive interpretation of Eq.
(1.3) may be given as follows, where we are ignoring the angular dependence for con-
venience and write it as P (r, r′) = C+(r, r′) +

∫
dr′′P (r′′, r′)C+(r, r′′). The functions

P (r, r′) and C+(r, r′) describe different kinds of cluster† in which two particles at r

and r′ are connected, and the Ornstein-Zernike equation states that all clusters in the
fluid described by the probability P (r, r′), can be subdivided into the sum of clusters
with probability C+(r, r′) that do not have any bottleneck particles that upon removal

†In fact, P and C+ can be expressed in terms of a sum of graphs and describe average probabilities
of having the particles connected in such a graph, which is not an actual cluster.
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split a cluster into two disconnected ones, and those clusters that do contain such par-
ticles [34]. Clusters from this latter type can then be divided into those that connect
the first particle at r to the closest bottleneck particle at r′′ and another that connects
r′′ to the second particle at r′, giving C+(r, r′′)P (r′′, r′). Averaging over all possible
positions of r′′ then gives the second term in the Ornstein-Zernike equation.

However, the direct-connectedness function is not known a priori. The closure that we
make throughout this thesis is the so-called second-virial approximation. It implies that
we consider only linear pair correlations between the particles, i.e., no loop correlations,
and it is also referred to as a random-phase approximation [35], or the bare-chain sum
approximation [36]. As we show in chapter 2, this absence of loop correlations has a
significant consequence for non-additive mixtures. This approximation also allows us
to invoke the analogy with percolation on a Bethe lattice. For rod-like particles with a
large aspect ratio in excess of 100, such as carbon nanotubes, the approximation is an
accurate closure as we show in chapter 2. In the limit of rods with an infinite aspect
ratio, the theory becomes even exact. We also show that it may not be very accurate for
plate-like particles, but recent calculations show that the topologies of phase diagrams for
binary mixtures of hard platelets of different sizes are the same for a second-virial theory
and fundamental measure theory [37], which is known to be very accurate. Hence, the
second-virial approximation may still provide reasonably accurate results for percolation
of plate-like particles.

The second-virial approximation implies that Ĉ+ = f̂+ [34,38], with f+ = exp(−βu+)
the connectedness Mayer function of particles that belong to the same cluster and in-
teract via the connectedness potential u+. Here, β−1 = kBT , with kB Boltzmann’s
constant and T the absolute temperature. This definition of f+ is an extension of the
regular Mayer function f = exp(−βu) − 1, with u the interaction potential, because
of the added constraint in u+ that particles belong to the same cluster. The potential
u for hard, impenetrable particles is infinitely large for all configurations in which two
particles intersect and zero otherwise. The two-body connectedness potential u+ by
definition is infinitely large not only for any configuration where two particles overlap,
but also if they are not connected. In this thesis we make use of the so-called cherry-pit
or core-shell model in which the particles have a penetrable shell of thickness λ around
their hard core [39], where λ then denotes a typical hopping distance, but in case of
rod-like particles this turns out to be equivalent to an connectedness probability that
decays exponentially with decay length λ. See also Figure 1.4. In this cherry-pit model
we can define the contact volume, which equals the volume 〈〈f̂+〉u〉u′ that the centre
of mass of a particle can occupy such that it is in contact with a second particle. For
both rod-like and plate-like particles the contact volume to leading order scales with
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the sine of the relative angle between the particles, implying that for long rods and
large plates the contact volume is much larger for a configuration where the particles
are perpendicular to each other than for one where they are parallel.

A direct estimate of the percolation threshold can be obtained by presuming that
there is on average one particle per contact volume, giving a critical density of ρp =
1/〈〈f̂+〉〉, where we omit the arguments of f̂+ for the sake of readability. In Eqs.
(1.2) and (1.3) this amounts to neglecting angular correlations, meaning that the con-
volution term in Eq. (1.3) is presumed to be separable and that it can written as
〈f̂+(q,u,u′′)〉u′′〈P̂ (q, u′′, u′)〉u′′ if we substitute f̂+ for Ĉ+. It follows that 〈〈P̂ 〉〉 =
〈〈f̂+〉〉/(1− ρ〈〈f̂+〉〉). As a result, in this approximation the density where 〈〈P̂ 〉〉, and,
consequently, S diverge, equals ρp = 1/〈〈f̂+〉〉, in agreement with the above result. If we
apply this to rod-like particles, we find to leading order ρp = πλL2/2, so ϕp = D2/2λL,
with L and D the rod length and diameter. This means that the percolation threshold
diverges for a vanishing hopping distance and decreases with increasing aspect ratio
L/D of the rods. For plate-like nanofillers of diameter D and thickness L, we have
ρ−1

p = πλD2(5π +6)/8, so ϕp = 2L/(λ(5π +6)). Again, the percolation threshold scales
inversely with the hopping distance, but more importantly, it is independent of the plate
diameter D. In chapter 2 we find the same scaling by taking into account the angular
correlations, but this is only true in the monodisperse limit. More generally, we show in
chapters 2, 3, and 5 that the above results have the correct scaling behaviour, but the
contact-volume approach significantly underestimates the effect of a polydispersity in
the linear dimensions and of particle alignment, meaning that for anisometric particles
the angular correlations between particles are very important indeed.

The reason that we consider this size and connectivity polydispersity is that in prac-
tice the composites exhibit these non-ideal characteristics. Indeed, carbon nanotubes
and graphene sheets are inherently very polydisperse and the connectivity ranges plau-
sibly depend sensitively on the material properties, e.g., the dielectric constant and the
quality of the nanofillers. Therefore, we extend Eqs. (1.2) and (1.3) in chapters 2 to
particles with polydispersity in size and connectivity range and find a very sensitive
dependence of the percolation threshold. This explains, at least partly, the huge scatter
of many orders of magnitude of measured percolation thresholds for carbon-nanotube
composites that have been observed experimentally for systems with the same average
dimensions. If the length and diameter distributions are independent, we find that a few
larger sheets added to a collection of smaller ones can drastically lower the percolation
threshold, and the same is true for adding a few longer rods to a set of short ones, whereas
adding thicker ones raises the threshold. On the other hand, if the length and diameter
distributions are coupled, the situation is completely different and polydispersity raises
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the percolation threshold. This coupling may seem plausible if, e.g., a sonication step
or ball-milling step, in which the nanofillers are put in a type of grinder that is rotated
to separate stacked or bundled particles, is used in the processing because the probabil-
ity of a thick (multi-walled) carbon nanotube breaking into two shorter particles seems
smaller than that for a thin (single-walled) nanotube. This is discussed in chapter 3.

The processing may also lead to a composite with the nanofillers sharing a certain
orientation, which is the reason that we study it in chapter 5 by switching on an external
alignment field. We find such an orientation to considerably raise the percolation thresh-
old and an infinite network to even be absent in a sufficiently strong field. Interestingly,
for a given field strength the percolating network even breaks up at higher particle load-
ings. At these higher loadings it is more favourable for the particles to align and, as a
consequence, the temporal network breaks up because of interaction-induced alignment
of the particles. We find the percolation threshold to interfere with a transition to a
nematic liquid-crystalline phase, which we discuss in detail in section 1.4.

1.4 Nematic liquid crystals

As mentioned in section 1.1, at sufficiently large nematogen concentrations (lyotropic
nematic) or low enough temperature (thermotropic) the particles start to align in a
certain preferred direction in the nematic phase, where the particles have liquid-like,
short-range positional order and long-range orientational order. As a result, it is a fluid
with a broken symmetry because the properties of the material depend on the direction
one is viewing. Because of this the material is also optically anisotropic or birefringent,
allowing it to be probed by, e.g., polarisation microscopy. This technique makes use of
the fact that the refractive index of the nematic is different along the main optical axis
from the orientation perpendicular to it. Hence, if a nematic liquid crystal is observed
between crossed polarisers, and the particle orientation is not parallel to either polariser,
light is transmitted. This property is at the basis of the application of these materials
in liquid-crystal displays (LCDs).

The average orientation of the particles is indicated by a normalised vector field n

that is called the director field. The fact that it is normalised means that it obeys
n ·n = 1. The director field of a nematic is a local axis of symmetry, around which the
field has cylindrical symmetry. It also has up-down or inversion symmetry because it
only indicates an orientation and not a direction, so it must be symmetric with respect
to the transition n → −n. As introduced in section 1.2, the orientational distribution
of anisometric particles is given by a function ψ(u) that describes the probability that
the main-axis vector points in a certain direction u, relative to an axis that here we
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take to be the nematic director n. Given that ψ represents a distribution function, it is
normalised such that

∫
duψ(u) = 1. The cylindrical and inversion symmetry causes ψ

to be separable in a product of ψϑ(ϑ) and ψϕ(ϕ) of distribution functions of the polar
angle ϑ and azimuthal angle ϕ, respectively.

The cylindrical symmetry causes ψϕ = 1/2π to be uniform, so ψ = ψ(ϑ) only depends
on the polar angle. The degree of order in a nematic liquid crystal is usually expressed
in terms of an order parameter S2 that is defined via [6]

S2 =
∫ π

0

dϑ sin ϑψ(ϑ)P2(cos ϑ) (1.4)

where P2(x) = (3x2 − 1)/2 is the second Legendre polynomial. Eq. (1.4) is used
in chapter 5 to determine the degree of alignment of rod-like particles. For perfectly
aligned particles S2 = 1, for an isotropic angular distributions S2 = 0, and S2 = −1/2 if
all the nematogens point their main axis perpendicular to the director. In the nematic
phase S2 > 0 and a typical value of S2 for the isotropic-nematic transition is between 0.3
and 0.4 in thermotropic systems and between 0.4 and 0.8 in lyotropic systems, showing
that it is a first-order phase transition.

The broken symmetry characteristic of a nematic causes the surface properties to be
quite complex. Indeed, there are three types of surface tension, where one is the bare,
i.e., isotropic surface tension and the other two are called anchoring energies. The latter
energies arise from the preference of the director field to align at a certain angle with an
interface of a liquid, solid or gas phase. These comprise a polar anchoring energy and
an azimuthal anchoring energy along some preferred direction that is usually caused by
surface inhomogeneities, and is only present if the surface is solid and has a symmetry
axis. Usually, this term is much smaller than the other two energies, so we presume it
to be negligible. The polar anchoring of the nematic to a surface can be the result of
the particle shape and/or of specific interactions between the surface and nematogens.
The interfacial energy then consists of a bare surface energy and the anchoring energy
Fst + Fsa that we take of the Rapini-Papoular type [40],

Fst + Fsa =
∫

A

dA
(
γ + ζ sin2 α

)
, (1.5)

where the integration is taken over the entire surface area A of the drop and α is the angle
between the surface normal q = q(r) and the director field n = n(r) at the interface.
See also Figure 1.5. This Rapini-Papoular form of the interfacial energy has been shown
to be a very accurate representation for rod-like particles [41], and we presume it to be
reasonable for disk-like ones as well.

Generally, we distinguish between planar anchoring, where the director field is paral-
lel to the surface, and homeotropic, in which case the director field is perpendicular to the
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Figure 1.5: Interactions between nematogens and the molecules of another phase (in this case
isotropic) they are in contact with favour a particular alignment of the director field (dashed
lines) relative to the interface, which is measured by the angle α between the director field n
and the surface normal q. Phenomenologically, this is usually expressed in a surface tension σ
of the Rapini-Papoular type [40], as given by Eq. (1.5) in the main text.

surface. In lyotropic systems plate-like particles for entropic reasons prefer homeotropic
anchoring [42], implying ζ > 0 in Eq. (1.5), whereas rod-like particles prefer planar
anchoring, giving ζ < 0. Typical values of the surface tension can directly be estimated
from a dimensional analysis. The dimension of the surface tension is J/m2, so we have to
divide a typical energy scale by the square of a relevant length scale. The relevant energy
scale is the thermal energy kBT , with kB Boltzmann’s constant and T the absolute tem-
perature, and the relevant length scale depends on the type of nematogen. For rod-like
particles these are the length L and the diameter D, giving γ ≈ kBT/LD ≈ 10−9−10−7

J/m2 as a characteristic value for lyotropic nematics [43,44]. For plate-like particles the
diameter D is the determining scale, from which we obtain γ ≈ kBT/D2 ≈ 10−9− 10−5

J/m2 as a typical value for homeotropic anchoring [45]. These ultra-low values of the sur-
face tension make surfaces easily deformable and the consequences of this we encounter
in chapters 6, 7, 8, and 9.

This surface anchoring of the director field couples the interfacial energy to the bulk
elastic energy, for which we can apply the Frank-Oseen elasticity theory [14]. It describes
the free-energy cost of deforming a director field away from the ground-state uniform
spatial distribution, i.e., a homogeneous director field. The elastic energy Fe comprises
three contributions that arise from a splay, twist and bend distortion and have associated
elastic constants K1, K2, and K3. See also Fig. 1.6. These constants are linear elastic
constants and only apply to small deformations. The elastic deformation energy can
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then be written as [6]

Fe =
1
2

∫

V

dV
(
K1(∇ · n)2 + K2(n · (∇× n))2 + K3(n× (∇× n))2

)
, (1.6)

where we omitted the splay-bend term K13

∫
dV ∇·(n∇·n)/2 and the saddle-splay term

K24

∫
dV ∇ · (n∇ · n + n × (∇× n))/2. These are often presumed to be subdominant

because they can be converted to a surface integral via Gauss’s divergence theorem.
However, the K13 term has been claimed to be problematic because it would not be
bounded from below [46]. It is rather contentious because K13 has also been asserted to
be zero [47] or even negative [48,49]. An additional approximation that is often employed
and that we use in chapter 6, is the equal-constant approximation where K1 = K3 = K

is presumed, with K the average elastic constant. This we use in chapter 6 to model
the capillary rise of an isotropic-nematic interface up a solid vertical wall.

Figure 1.6: The three main types of elastic-energy contributions are associated with director-
field deformations of the splay type with elastic constant K1 (left), the twist type with constant
K2 (middle), and the bend type with constant K3 (left).

Typical values of the elastic constants can again be estimated from a dimensional
analysis. The constants Ki have dimension N, or J/m, and the only relevant energy is
again the thermal energy kBT , whereas the relevant length scale depends on the type of
particle. For lyotropic hard rods it turns out that Ki ≈ kBT/D, with D the rod diameter,
giving Ki ≈ 10−13 − 10−11 N [50, 51]. For lyotropic hard platelets Ki ≈ kBT/D, with
D the plate diameter [52], and this provides Ki ≈ 10−14 − 10−11 N.

Both the surface tension, anchoring energy and the elastic constants define an energy
cost associated with a deviation from the zero-energy state of a zero surface area, perfect
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particle alignment to the interface, and a uniform director field, respectively. This gives
rise to a competition between the anisotropic surface tension and bulk elasticity of
nematics that governs interfacial phenomena involving liquid-crystalline fluids such as
nematic liquid crystals. This competition can be probed, e.g., in a flat-cell geometry in
a setup where an external magnetic (or electric) field is applied and the response of the
director field measured, providing access to information on the elastic constants and the
surface anchoring energies [6]. We discuss it in more detail in the next section.

1.5 Competing surface and bulk forces

The competition between the anisotropic surface tension and bulk elasticity man-
ifests itself in, e.g., nematic droplets, referred to as tactoids, that are often observed
in dispersions of sufficiently anisometric colloidal particles under conditions where the
isotropic and nematic phase co-exist. Recently, it has been suggested that quantitative
information can be obtained on the material parameters of the nematic by studying the
shape and director-field structure these tactoids [53–57]. Especially in lyotropic nemat-
ics that consist of dispersions of rod-like and plate-like colloidal particles in a fluid host
medium this should be the case because of their ultra-low interfacial tensions that we
discussed above. Presently, much more information is available (both experimentally
and theoretically) on dispersions of rod-like particles [43,44,50,51,57–77] than on those
of plate-like ones [11, 45, 78–83], presumably because plate-like colloids are much more
difficult to stabilise [11, 78, 79]. However, recently interesting experiments on tactoids
consisting of plate-like gibbsite particles have been carried out in the presence and ab-
sence of a magnetic field [84–86] and in chapters 7, 8, and 9 we study the tactoids shapes
and director fields theoretically and compare our results with the experiments. Contin-
uum theories [53, 54, 61, 62, 87] have been fitted to experimental results [56, 63–65] on
nematic droplets in fluid dispersions of rod-like particles, giving anchoring strengths that
are at least an order of magnitude larger than theoretical predictions [88, 89], whereas
these have proved to be reliable in determining other properties, such as the surface
tension and elastic constants [51,57–60,66–69]. One could argue that this discrepancy is
the result of the quite strong curvature of the droplets relative to the micrometre scale
of the rod-like colloidal particles [90], but this is not certain at all.

An alternative method for probing the interfacial properties of nematic liquid crystals
that we address here is provided by the examination of their wetting properties if brought
into contact with a solid surface, and in particular the capillary rise against a vertical
wall. For isotropic fluids, this is caused by differences in interfacial tensions between the
solid and fluid phases, and the capillary-rise height (as well as the interface profile) is
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determined by the competition between the Laplace pressure associated with the curved
surface and the hydrostatic pressure associated with the density difference between the
two fluids. If one of the fluid phases is a nematic liquid crystal the situation is more
complicated because of the anchoring properties of the director field to the various
surfaces. The interface profile (meniscus shape) and the director-field structure in the
capillary-rise region are in that case in addition determined by these anchoring strengths
and the Frank elasticity due to the response of the director field to the presence of
two interfaces [91]. As argued above, the analysis of the capillary rise might in fact
be more suitable for finding the anisotropic surface tensions than analysing tactoid
shapes, provided that the curvature of the profile is sufficiently small, that is, the radius
of curvature of the meniscus shape should be very large compared to the size of the
particles. This capillary rise of an isotropic-nematic interface is the topic of chapter 6.

For both the nematic droplets and the capillary-rise profile the minimisation of the
sum of free energies as given by Eqs. (1.5) and (1.6) with respect to the director field
and interface profile turns out to be a boundary-value problem that is probably impos-
sible to solve analytically, and even quite hard numerically, but straightforward scaling
arguments can already provide some insight into different regions where either energy is
dominant over the other. The competition between surface tension and anchoring and
bulk elasticity expresses itself in a length scale that presents itself naturally from the free
energies and must be compared to a length scale that follows from the problem in hand.
It follows from Eqs. (1.5) and (1.6) that for nematic droplets the bulk elastic energy
scales as K times the volume R3 times the square of the inverse radius of curvature of
the director field, 1/R2, with K the relevant elastic constant and R the relevant length
scale of the problem at hand that we discuss below, whereas the surface energy scales as
ζR2. This immediately gives a cross-over scale λ ≡ K/ζ, called the extrapolation length,
that can be used to estimate the type of director field in the rise region or droplet given
the magnitude of the extrapolation length relative to the relevant length scale. For the
capillary-rise profile we consider the energies per unit length of the meniscus, and this
gives the same cross-over scale.

In case of the capillary rise of an isotropic-nematic interface, the relevant length
scale turns out to be the capillary length `c =

√
2γ/∆ρmg, with g the gravitational

acceleration and ∆ρm the mass-density difference between the isotropic and nematic
phase. This length scale provides a measure of the capillary-rise height and follows from
equating the aforementioned hydrostatic pressure associated with lifting the interface
and the Laplace pressure associated with the curved interface. If λ À `c, then the
director field in the rise region should be approximately uniform on account of the
rigidity of the field on that scale. Conversely, if λ ¿ `c, the field in the rise region
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also deforms to accommodate the predominance of the surface anchoring. Associated
with the hydrostatic pressure is a gravitational free-energy cost of raising the isotropic-
nematic interface up the wall. It reads

Fg = ∆ρmg

∫

V

dV y, (1.7)

where V is the volume of the nematic phase that is raised above the horizontal reference
state y = 0. The detailed analysis of the interface profiles and director fields in the
capillary-rise region can be found in chapters 6.

In case of the nematic droplets the relevant length scale is simply the drop size R,
hence the radius in case of a spherical drop. The drops are presumed to be floating freely
in the isotropic phase, so the density difference and gravitational energy play no role.
If R is large relative to the extrapolation length λ, the surface anchoring is dominant
and the director field has to comply with the preferred anchoring, leading to a curved
director field. On the other hand, if R is small compared to λ, then the elasticity is
dominant and the director field is more or less uniform. The details of our analysis
of the shape and structure of tactoids consisting of plate-like particles can be found
in chapters 7, 8, and 9. In these chapters we also study the influence of a magnetic
field on these droplets, because it couples to their shape and director field and this may
provide access to additional information on the material parameters. Such a magnetic
field imposes a certain orientation of the particles, which complicates the competition
between the anisotropic surface energy and elastic bulk energy. In this case we have an
additional magnetic energy that reads

Fm = −1
2
ρ∆χ

∫

V

dV (n ·B)2, (1.8)

where we have dropped a spatially invariant term [6], ρ is the particle number density,
∆χ the diamagnetic susceptibility anisotropy (dimensions J/T2), and B the magnetic
field. If ∆χ < 0, which is the case for gibbsite platelets, the particles have a tendency
to orient their director perpendicular to the magnetic field. We compare our results to
experiments on tactoids in dispersions of gibbsite particles in chapters 6, 7, 8, and 9. In
these chapters we observe that if the field is sufficiently strong, this leads to interesting,
non-trivial shapes and director fields. Finally, we summarise our main conclusions from
this thesis and suggest a number of theoretical and experimental challenges for future
investigation in chapter 10.
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1.6 Thesis outline

The general purpose of this work is to gain a better insight into how the large-scale
self-organisation of anisotropic particles originates from their anisotropic interactions.
More specifically, we aim to understand how the self-assembled system-spanning net-
works in solution are affected by particle shape and size, and connectivity ranges, and
how soft interfaces in liquid-crystalline (symmetry-broken) states are influenced by par-
ticle shape, surface properties, and external fields. This understanding then should
help in the production of a composite with an as low as possible nanofiller loading
and high conductivity, and the comparison of our results on isotropic-nematic inter-
faces with experimental studies should enable us to extract material properties of the
liquid-crystalline materials.

The remainder of this thesis is organised as follows. We start in chapter 2 with
studying the effect on the percolation behaviour of a polydispersity in the linear di-
mensions and connectivity range of rod-like and plate-like particles. Next, we apply the
results from this chapter to realistic size distributions of carbon nanotubes and graphene
in chapter 3. In chapter 4 we consider the conductivity of the percolating network of
rod-like particles beyond the percolation threshold. We then focus on how an externally
applied alignment field and excluded-volume interactions conspire against the forma-
tion of a percolating network in chapter 5, where the percolation transition is found to
interfere with the transition to a uniaxial nematic phase. Such a nematic phase in con-
tact with its isotropic phase gives rise to interesting interfacial shapes and director-field
structures. This we show in chapter 6 where we study the rise of an isotropic-nematic
interface up a solid vertical wall, and in chapters 7, 8, and 9, where we consider the shape
and internal structure of homeotropic nematic droplets in the presence of a magnetic
field. In chapters 7 and 8 we consider the limiting cases of strong surface anchoring
(ζ/γ → ∞) and spherical shapes (ζ/γ → 0), and in chapter 9 we present the general
case of imperfect surface anchoring and non-spherical tactoid shapes.





2
Connectedness percolation of

polydisperse nanofillers: theory

We present a generalised connectedness-percolation theory reduced to a compact form
for a large class of anisotropic particle mixtures with variable degrees of connectivity.
Even though allowing for an infinite number of components, we derive a compact yet
exact expression for the mean cluster size of connected particles. We apply our theory
to rod-like particles taken as a model for carbon nanotubes and find that the percolation
threshold is sensitive to polydispersity in length, diameter, and the level of connectiv-
ity, which may explain large variations in experimental values for the electrical percola-
tion threshold in carbon-nanotube composites. The calculated connectedness-percolation
threshold depends only on a few moments of the full distribution function. If the length
and diameter distributions are independent, then the percolation threshold is raised by the
presence of thicker rods whereas it is lowered by any length polydispersity relative to the
monodisperse one with the same average length and diameter. The ef fect of connectivity
polydispersity is studied by considering non-additive mixtures of conductive and insulat-
ing particles. Finally, we present tentative predictions for the percolation threshold of
graphene sheets modelled as perfectly rigid, disk-like particles.†

†The contents of this chapter have been published as:
R. H. J. Otten and P. van der Schoot, Phys. Rev. Lett. 103, 225704 (2009),
R. H. J. Otten and P. van der Schoot, J. Chem. Phys. 134, 094902 (2011).

33



34 Chapter 2. Connectedness percolation of polydisperse nanofillers: theory

2.1 Introduction

Since their discovery in the early 1990s carbon nanotubes have attracted a lot of at-
tention on account of their excellent mechanical, electrical, and thermal properties. More
recently, the arguably even more remarkable characteristics of another carbon allotrope,
graphene sheets, were discovered [17]. Both these allotropes manifest their properties
on a macroscopic level in, e.g., polymer-based composites through the networks that
they form in such media. It is not surprising, then, that the network formation of these
nanofillers has also attracted much attention [18, 19]. Indeed, a crucial requirement for
obtaining the desired properties of the final composite material is controlling network
formation. Provided their level of connectivity meets the criteria set by the physical
property of interest, and provided they form a system-spanning network, the nanofillers
can considerably improve the physical properties of the host material [16]. For example,
in order to enable charge-carrier hopping or tunneling from a particle to a neighbouring
one in the network they ought to be sufficiently close to each other. This required prox-
imity sets a connectedness criterion, which in turn determines the so-called percolation
threshold, i.e., the minimal loading of nanofillers needed to form a domain-spanning net-
work [16]. Around this critical point, the electrical conductivity increases many orders
of magnitude [18,19].

A considerable research effort has been devoted to determining the percolation
threshold of anisometric nanofillers in composites and values as small as or smaller
than 10−3, measured in terms of the volume fraction that they occupy, have been found
for both carbon nanotubes [26] and graphene [19]. Such small values are not entirely
surprising because both for rod-like and plate-like particles the percolation threshold
has been predicted to scale inversely with their aspect ratio that typically is on the
order of one thousand [38, 92–96]. Indeed, graphene, being a single layer of graphite,
has a typical thickness of a few tenths of nanometres and a diameter on the order of
a micrometre. For the rod-like carbon nanotubes the diameters range from about one
nanometre for single-walled carbon nanotubes to tens of nanometres for multi-walled
carbon nanotubes, whereas their lengths are generally on the micrometre scale.

In practice, preparations of nanofillers, including those of the mentioned carbon
allotropes, exhibit a number of characteristics that potentially affect network formation
in the preparatory stages of the composite material and hence the percolation threshold.
These include a size polydispersity and the presence of non-conducting species [19, 26,
97, 98]. In this work we focus attention on these two issues from a theoretical point
of view, where we note that both carbon nanotubes and graphene sheets in the final
composite normally show a large distribution in their linear dimensions. One cause of
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this size polydispersity is that because of strong van der Waals forces they tend to form
bundles or stacks that, even after processing, are difficult to exfoliate [26]. Because
percolation phenomena are intimately related to phase transitions, which are known to
be strongly influenced by polydispersity effects [99], we expect a significant impact of
polydispersity on the percolation threshold. As we show in this chapter this turns out
to be the case. Whether or not there is a correlation between the diameters and lengths
of the nanofillers we find to be a crucial question in this context, and our main claim
is that the inverse-aspect-ratio scaling mentioned in section 1.3 is only true if the linear
dimensions are independent of each other. A coupling between them leads to completely
different behaviour.

The other issue we focus on is non-additivity. Non-additivity of interactions has been
shown to have a strong effect on the phase behaviour of hard-rod dispersions [100] and
hence could also be important here. As an example, we consider non-additivity of charge
transport between different kinds of particle, which implies that the connectivity range
of two unlike particles differs from the average of those between pairs of like particles.
In particular, we focus on the presence of non-conductive species and again expect a
significant impact on the percolation threshold because in practice only one third of the
single-walled carbon nanotubes are metallic and two thirds are semi-conducting.† This
expectation turns out to be correct because we find a percolation threshold that depends
very sensitively on the connectivity ranges.

The combined effects of size and connectivity variations in our view may explain, at
least in part, the variation of several orders of magnitude observed in percolation thresh-
olds of carbon nanotubes that have approximately the same mean aspect ratio [101].
Theoretically, neither the effect of polydispersity in size nor that of conductivity of the
nanofillers is well understood for either allotrope, and often ignored in computer sim-
ulations and model predictions. For graphene, and flat particles in general, there is
only a limited number of theoretical works devoted to their percolation behaviour for
reasons that will become apparent below. For rod-like particles there are indeed nu-
merous predictions but most approaches, including the reference-interaction-site model
(RISM) [96] and excluded or contact-value theorems [38,92–95], preaverage angular cor-
relations or neglect long-range correlations [2, 96]. In this chapter we show, by taking
a more fundamental approach, that these correlations can in fact be very important.
We demonstrate that a generalised connectedness percolation theory can be reduced to
a tractable form for a large class of mixtures of anisometric particles. We make use of
the multi-component pair-connectedness Ornstein-Zernike equation, which has an ana-

†As produced graphene sheets are conductive but if they are first oxidised and later reduced in the
processing of the nanocomposites, their conductivity can be strongly reduced [114].
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logue in liquid-state theory [34], where we allow for polydispersity in all three linear
dimensions and connectivity ranges of the particles. From this we obtain an explicit
expression for the average cluster size, with the underlying assumption that the network
is formed in the fluid stages of the nanocomposite production process. This means that
we presume an equilibration configuration to be frozen in because of the equilibration
steps in the processing, as discussed in section 1.2 [26,27].

For definiteness, we apply our theory to harshly repulsive (non-overlapping) rod-like
carbon nanotubes, invoke a second-virial approximation and use a generalised version of
the so-called cherry-pit, or core-shell model that considers two particles to be connected
if they are sufficiently close to each other [20,39]. This is reasonable because nanotubes
in conducting networks do not actually touch each other in the final product and charge
transport across nanotubes occurs via electron hopping between them. An advantage of
the cherry-pit model is that it can straightforwardly be applied to study non-additive
mixtures of conductive and non-conductive particles. With these model ingredients we
find an analytical expression for the percolation threshold from the nanofiller fraction
at which the cluster size diverges. Similar to what was found previously for the geo-
metrically much simpler case of spherical particles [102], the percolation threshold that
we obtain is a function only of a few higher-order moments of the full size distribution
notwithstanding the presence of angular correlations between the filler particles caused
by translation-rotation coupling.

Our findings may be summarised as follows.

1. The percolation threshold of carbon nanotubes only depends on a few moments
of the full distribution function of sizes and connectivity ranges, meaning that
the details (higher moments) of these distributions are irrelevant. The combined
influence of length and width polydispersity on the percolation threshold is a highly
non-trivial function of the prevalence of the various species in the mixture;

2. If we assume that all carbon nanotubes are conductive and that the length and
width distributions are independent of each other, then the percolation threshold
is inversely proportional to the weight average of the distribution of rod lengths.
This implies that a small fraction of longer rods significantly lowers the threshold
of a dispersion of short ones it is added to. This generalises prior calculations
and puts these on a much firmer theoretical footing [97, 103]. Thicker carbon
nanotubes, on the other hand, have the opposite effect: they raise the percolation
threshold and more so than expected from the inverse-aspect-ratio dependence
valid for monodisperse tubes;

3. In mixtures of conductive and insulating carbon nanotubes, which are inherently
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non-additive, the percolation threshold scales with the inverse fraction of conduc-
tive filler implying that the concentration of conductive filler particles determines
the percolation threshold and the insulating ones act, in a way, as dead mass. This
is specific to rod-like particles and is caused by the predominance of linear chains
of interactions in the long-range correlations between them.

In the remainder of this chapter we derive in section 2.2 an equation for the average
cluster size of mutually connected nanofillers with arbitrary distributions of their linear
dimensions. In section 2.3 we choose an appropriate closure and discuss the connectivity
model that we use to derive the percolation threshold for rod-like carbon nanotubes,
which, even in the monodisperse limit, is a non-trivial result due to the influence of
translation-rotation coupling on the long-range correlations between the particles [97].
In section 2.4 we show the effect on the percolation threshold of a tetradisperse size
distribution. For the effect of a size polydispersity on the percolation threshold of
several more realistic size distribution functions the reader is referred to chapter 3. In
this chapter we apply our model to compute the effect of the presence of non-conductive
particles on the percolation threshold in section 2.5. Finally, we draw our conclusions
in section 2.6, discuss the applicability of the second-virial approximation to fillers with
a different shape, and we make tentative but surprising predictions for the percolation
threshold of graphene sheets that we model as idealised mutually repelling (“hard”)
disks, because we presume them to be randomly distributed in the final composite.

2.2 Cluster-size calculation

In order to find the percolation threshold from connectedness-percolation theory, we
have to find the critical density where the (weight) average cluster size S, as given by Eq.
(1.1), diverges. This description can straightforwardly be generalised to polydisperse,
anisometric particles for which P and C+ also depend on their linear dimensions and
orientations. To describe these particles with arbitrary linear dimensions, let xiα† denote
the mole fraction of particles of length Li, width Dα, and height H†. In the following,
we use indices with Roman symbols to denote length polydispersity, Greek ones for
variations in width and the symbols †, ‡, and § to indicate different heights. The weight-
average cluster size S is now the sum over the indices of the weight-average “partial
cluster sizes” Sijαβ†‡ that contain averages over the orientations

Sijαβ†‡ = xiα†δijδαβδ†‡ + lim
q→0

xiα†xjβ‡ρ
〈
P̂ijαβ†‡(q, u, u′)

〉
u,u′

. (2.1)

Here, δij is the Kronecker delta and u ≡ (u1, u2) with u1 and u2 the unit vectors in
the direction of the main axes of a particle. For the sake of notational convenience we
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introduced the notation 〈. . .〉un
≡ (4π)−1

∫
dun(. . .), n = 1, 2 to denote the orientational

average, with a similar prescription for the primed variables. The short-hand notation
〈. . .〉u,u′ implies the compound average 〈〈. . .〉u〉u′ . The first term of Eq. (2.1) is only
nonzero for the particle chosen to start counting the contacts, i.e., i = j, α = β and
† = ‡, or for two different particles of equal dimensions, because for those Sijαβ†‡ is the
same. The second term gives the number of intra-cluster contacts between a particle of
dimensions Li, Dα, and H† and one of dimensions Lj , Dβ , and H‡, weighted by their
mole fractions to give the correct sum.

The probability P̂ijαβ†‡ obeys the multi-component analogue of the pair-connectedness
Ornstein-Zernike equation, Eq. (1.3), and its Fourier transform reads

P̂ijαβ†‡(q, u, u′) = Ĉ+
ijαβ†‡(q, u,u′)+ρ

∑

k,γ,§
xkγ§

〈
Ĉ+

ikαγ†§(q,u, u′′)P̂kjγβ§‡(q, u′′, u′)
〉

u′′
.

(2.2)
Because the cluster size obeys S ≡ ∑

p Sp with p ≡ {i, j, α, β, †, ‡}, we see from Eqs.
(2.1) and (2.2) that we need not solve the individual components of P̂ but have to obtain
information only on a weighted average of P̂ over its six indices and four orientations.
Therefore, detailed knowledge of the individual components of P̂ijαβ†‡ is not required
to calculate the cluster size and the trick to solving Eq. (2.2) is to take averages over j,
β, ‡, and u′. For this purpose we now introduce the generalised notation 〈. . .〉jβ‡,u ≡
(4π)−1

∫
du′

∑
j,β,‡ xjβ‡(. . .) for an average over the size distribution and the orientations

of a single particle. We next define the functions Πiα† and Γiα† and the operator Oiα†
as

Πiα†(q, u) ≡
〈
P̂ijαβ†‡(q,u,u′)

〉
jβ‡,u′

(2.3)

Γiα†(q,u) ≡
〈
Ĉ+

ijαβ†‡(q,u,u′)
〉

jβ‡,u′
(2.4)

Oiα†fkγ§ ≡ ρ
〈
Ĉ+

ikαγ†§(q,u,u′′)fkγ§(q, u′′)
〉

kγ§,u′′
, (2.5)

where fkγ§ is an arbitrary integrable function. This allows us to rewrite the averaged
version of the Ornstein-Zernike equation (2.2) into a more compact form as

Πiα†(q, u) = (Ikγ§ −Okγ§)
−1 Γkγ§(q, u), (2.6)

with Iiα† an operator that changes the indices of a function, so Iiα†fkγ§
=

∑
k,γ,§ δikδαγδ†§fkγ§ = fiα†.

According to Eq. (2.1), this gives for the overall average cluster size

S = 1 + lim
q→0

ρ 〈Πiα†(q,u)〉iα†,u . (2.7)
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We insert Eq. (2.6) in Eq. (2.7) for the cluster size S, note that Γkγ§(q, u) = ρ−1Okγ§1,
and invoke the identity 1 + (Ikγ§ −Okγ§)

−1
Okγ§1 = (Ikγ§ −Okγ§)

−1
Ikγ§1 =(

I−1
kγ§ (Ikγ§ −Okγ§)

)−1

1. This gives S =
〈
(I −Oiα†)

−1 1
〉

iα†,u
, with I the identity

operator. To solve for S, we write

S = 〈Tkγ§(u)〉kγ§,u , (2.8)

where T must be solved from the following simplified integral equation,

Tkγ§(u)− ρ
〈
Ĉ+

kmγδ§†(0, u, u′)Tmδ†(u′)
〉

mδ†,u′
= 1. (2.9)

Eqs. (2.8) and (2.9), which represent our central result, involve averages over the indices
and orientation of a single particle as opposed to those of two particles in the original
Ornstein-Zernike equation (2.2), and it follows that finding certain averages of T over its
indices and argument suffices to compute the cluster size. This simplifies the calculation
significantly. In section 2.3 we apply our theory, valid for particles of arbitrary linear
dimensions, to the rod-like carbon nanotubes. For this we invoke an appropriate closure
because the direct-connectedness function Ĉ+ is an as yet unknown quantity.

2.3 Application to carbon nanotubes

We now apply our model to carbon nanotubes, which we assume to have perfect
cylindrical symmetry, so only two dimensions and a single orientation are required to
describe their properties. Carbon nanotubes have a typical aspect ratio of 102 to 104

and for such slender particles an accurate closure of Eq. (2.9) for the average cluster
size is provided by the second-virial approximation [104]. See also Appendix 2.A. This
means that we consider only linear pair correlations between the particles, i.e., no loop
correlations, which, as is shown below, has a significant consequence for non-additive
mixtures. The accuracy of the second-virial approximation and the possible applicabil-
ity to other types of particle are considered in the discussion in section 2.6. We first
elaborate on this approximation and the connectivity model that we use, and compute
the percolation threshold using this approximation. To show the strong effect of poly-
dispersity we apply the result to a tetradisperse distribution in section 2.4. Finally, the
results are applied to non-additive mixtures in section 2.5.

As already announced in the chapter 1, the second-virial approximation implies that
Ĉ+ = f̂+ [34, 38], with f+ = exp(−βu+) the connectedness Mayer function, u+ the
connectedness potential of particles that belong to the same cluster, and β−1 = kBT ,
where kB is Boltzmann’s constant and T the absolute temperature. For any configu-
ration where two rods are not connected this two-body connectedness potential u+ by
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Figure 2.1: (a) Schematic representation of two nanotubes with orientations u and u′, lengths
Li and Lj and diameters Dα and Dβ , separated by a distance r between their centrelines
and skewed at an angle θ. Charge transport between the rods requires r to be smaller than
D + λ = ∆: the dashed cylinders of diameter ∆ enclosing the rods must overlap. (b) Solid
line: the connectedness potential u+ for the idealised “cherry-pit” model between two particles
in the same cluster versus their distance r for ideal (ε = 0) and hard particles (ε → ∞). The
dashed line shows an alternative connectedness potential βu+ = (r−D)/λ for r > D that may
provide a more realistic description of an exponentially decaying electron-tunneling probability
with a decay length λ. Within the second-virial approximation described in the main text, both
connectedness potentials produce identical results.

definition is infinitely large. The potential that we use interpolates between ideal, pen-
etrable particles and hard ones that interact via a strongly repulsive excluded-volume
interaction, but our final purpose is to model particles of the latter type, see Fig. 2.1.
For intersecting particles, for which the distance r between them satisfies r ≤ Dαβ , we
have u+ = ε, where ε → ∞ for impenetrable rods and ε = 0 for ideal (penetrable)
ones and where Dαβ ≡ 1

2 (Dα + Dβ) denotes their average diameter. In the overlap
or connectedness zone u+ = 0 for Dαβ ≤ r ≤ ∆αβ and u+ → ∞ for r ≥ ∆αβ away
from it. The length ∆αβ is an adjustable parameter in our model and indicates the
maximal range for effective charge transport [97]. This means that beyond this range
charge transport is neglected and below we discuss the effect of a hopping probability
with a longer range. The concept of the connectedness criterion is corroborated by the
experimental observation that in practice the nanotubes in conducting networks do not
actually touch each other [26]; our model is therefore a generalisation of the so-called
cherry-pit model that has earlier been used for spherical particles [36,39].

The next step is to compute f̂+, for which it is convenient to make use of Straley’s
oblique coordinate system [105]. This means instead of Cartesian coordinates r we shift
to one that has two axes along the orientations u and u′ of two test rods and the third



2.3. Application to carbon nanotubes 41

one along the shortest line connecting them,

r = ξu + ηu′ + ζ
u× u′

|u× u′| . (2.10)

The associated volume element is dr = | sin θ|dξdηdζ, with θ(u, u′) the angle between
the particles. For slender rods of lengths Li and Lj we find to leading order [13]

f̂+
ijαβ(0,u,u′) =

∫ Li/2

−Li/2

dξ

∫ Lj/2

−Lj/2

dη

(∫ ∆αβ

−∆αβ

dζ −
∫ Deff

αβ

−Deff
αβ

dζ

)
| sin θ|

= 2LiLj

(
∆αβ −Deff

αβ

) | sin θ|, (2.11)

where Deff
αβ ≡ Dαβ(1 − exp(−βε)) an effective diameter, so Deff

αβ = 0 for ideal and
Deff

αβ = Dαβ for hard rods. See also Fig. 2.1. This figure also shows an alternative
potential βu+ = (r − D)/λ for r > D that more realistically mimics an exponentially
decaying electron-tunneling probability with a decay length λ, because in that case
f̂+ = exp(−(r−D)/λ) [106]. If we use this potential instead of the cherry-pit potential
and set λ = ∆αβ − Dαβ as the characteristic tunneling distance, then this leaves our
result Eq. (2.11) for f̂+ invariant, so our cherry-pit model implicitly takes this effect
into account.

We are now in a position to solve Eqs. (2.8) and (2.9) with the closure Ĉ+ = f̂+,
where f̂+ is given by Eq. (2.11). Let us first tentatively presume additivity of charge-
carrier hopping distances, so ∆αβ = (∆α + ∆β)/2. Non-additivity effects caused, e.g.,
by a fraction of the particles not contributing to charge transport through the network,
are extensively discussed in section 2.5. For the case of additive hopping distances the
cluster size S for our polydisperse carbon nanotubes can be obtained by substituting f̂+

into Eq. (2.9), giving

Tkγ(u)− ρLk(∆γ −Deff
γ ) 〈Lm| sin θ|Tmδ(u′)〉mδ,u′ −

ρLk

〈
Lm(∆δ −Deff

δ )| sin θ|Tmδ(u′)
〉

mδ,u′ = 1, (2.12)

where we have inserted within the second-virial approximation Ĉ+ = f̂+ and Eq. (2.11)
for f̂+, which tacitly presumes the additivity of the overlap distance ∆αβ . If we average
the above integral equation over u and use that 〈| sin θ|〉u = 〈〈| sin θ|〉u〉u′ = π/4 for an
isotropic distribution of the orientations [13], then subsequent averaging the resulting
equation over the variables k and γ produces an expression for S = 〈Tkγ(u)〉kγ,u and
two of its higher moments,

〈Tkγ(u)〉kγ,u − ρ
π

4
〈
Lk(∆γ −Deff

γ )
〉

kγ
〈LmTmδ(u′)〉mδ,u′ −

ρ
π

4
〈Lk〉k

〈
Lm(∆δ −Deff

δ )Tmδ(u′)
〉

mδ,u′ = 1. (2.13)
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To solve for S, we repeat this exercise after multiplying the integral equation by Lk and
Lk(∆γ −Deff

γ ), respectively.
The solution of the set of three equations that we thus obtain gives an expression for S

that diverges at the percolation threshold if the rod volume fraction ϕp = π
4 ρ

〈
LkD2

γ

〉
kγ

obeys

ϕp =

〈
LkD2

γ

〉
kγ〈

L2
kλeff

γ

〉
kγ

+
√
〈L2

k〉k
〈
L2

k(λeff
γ )2

〉
kγ

, (2.14)

with λeff
γ ≡ ∆γ − Deff

γ . The other two equations from the set of three provide the
moments 〈LkTkγ〉kγ and

〈
Lk(∆γ −Deff

γ )Tkγ

〉
kγ

, and these diverge at the same perco-
lation threshold as given by Eq. (2.14). This equation is our main result for disper-
sions of rod-like particles. We find that the percolation threshold depends only on
several higher-order moments of the full distribution function. A similar result was
found for spherical particles, although these obviously do not exhibit angular corre-
lations [102]. That these are important for rods is straightforward to illustrate by
means of a so-called contact-volume argument [93]. This implies that we presume that
percolation requires that there is about one rod per average contact or overlap vol-
ume, which is equal to Vcont = 2

〈
L2

kλeff
γ | sin θ|〉

kγ,u
=

〈
L2

kλeff
γ

〉
kγ

π/2. We then find
ϕp = π

4

〈
LkD2

γ

〉
kγ

/Vcont =
〈
LkD2

γ

〉
kγ

/2
〈
L2

kλeff
γ

〉
kγ

, so we retrieve Eq. (2.14), except
that the denominator now becomes two times the first term of the denominator of Eq.
(2.14), so

〈
L2

kλeff
γ

〉
kγ

. The neglect of translation-rotation coupling between the rods in
the “simple” contact-volume argument causes the discrepancy between the two results.

Eq. (2.14) holds for arbitrary length and diameter distributions that are even allowed
to be coupled, in which case

〈
LkD2

γ

〉
kγ

6= 〈Lk〉k
〈
D2

γ

〉
γ
. We shall see later that a

positive correlation between the distributions leads to interesting results but we first
presume the distributions to be independent. In that case ϕp is inversely proportional
to the weight average 〈L〉w ≡

〈
L2

k

〉
k
/ 〈Lk〉k of the distribution of rod lengths. A direct

consequence is that a monodisperse system with only very long rods produces the lowest
percolation threshold, that is, the lowest absolute value. However, the fact that the
percolation threshold scales inversely with 〈L〉w, not the number average 〈Lk〉k, causes
cooperative behaviour between the rods that has a significant impact on the percolation
threshold. Indeed, the dependence on the weight average implies that increasing the
length polydispersity lowers the percolation threshold for a constant average length
because longer rods contribute more to the growing network than shorter ones do, and
the effect is stronger for a larger length difference.

In the next two sections, the results from this section are applied to somewhat ide-
alised systems that can be considered as implementations of our model that are intended
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to provide some insight into the effect on the percolation threshold of a polydispersity
in the linear systems and the degree in which the particles conduct electricity. In section
2.4 we first consider a system of tetradisperse rods that shows a sensitive dependence of
the percolation threshold on a size polydispersity. The second application of our model
is in section 2.5, where we find a sensitive dependence of the percolation threshold on the
presence of non-conductive particles in the distribution. More realistic size distributions
are considered in chapter 3, where we demonstrate that a large decrease in the perco-
lation threshold requires a length distribution that is strongly skewed towards shorter
lengths.

2.4 Tetradisperse distribution

We first apply our main result for rod-like particles, Eq. (2.14), to a tetradisperse
system of long, short, thick, and thin rods, where the thick rods model either multi-
walled carbon nanotubes or bundles of carbon nanotubes. This distribution has a very
strong effect on the percolation threshold, as is illustrated in Fig. 2.2. We see that the
percolation threshold increases linearly with the mole fraction of thick rods, whereas it
decreases with the fraction of long rods. The larger the length difference, the smaller
the fraction of long rods required to realise a significant reduction in the percolation
threshold. For a length ratio of more than 8 the percolation threshold is decreased by
a factor of more than 4 by adding only 10 % of long rods, and it is reduced further
only slightly by adding long ones. We note that here the distributions are presumed
to be independent of each other, which turns out to be an important assumption to be
discussed in the next chapter 3.

The reciprocal weight-average length dependence of the percolation threshold that
we find agrees with results for interpenetrable sticks [93] and hard rods with monodis-
perse diameters and connectivity ranges [97], for which we find ϕp = D2/2 〈L〉w λ

with λ = ∆ − D. The value of λ plausibly depends on the dielectric constant of
the host medium [97] and can also effectively be manipulated by a penetrable conduc-
tive coating of the carbon nanotubes, such as the conductive polymer blend poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) [27, 107], discussed in
more detail in section 2.5. In the monodisperse limit we find ϕp = D2/2λL for hard
particles, in agreement with recent analytical work [106]. For ideal particles in the same
limit we find ϕp = D2/2∆L = D/2L with Deff

γ = 0, where we put ∆ = D [97]. This
is also consistent with computer simulations [108] and with results that were based on
geometric arguments [38,103,109].

In order to highlight the strong cooperative behaviour between the rods for small
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Figure 2.2: For a tetradisperse mixture of thick, thin, long, and short rods the percolation
threshold ϕp is shown as a function of the number fractions xL of long rods and xD of thin
rods. The tunneling length λ is taken as a constant and drops out of the description. The
graphs are for different length ratios (n ≡ Llong/Lshort), and width ratios (Dthick/Dthin), which
is taken equal to n. From top to bottom: n = 2, 4, 8, and 16. Inset: the non-linear behaviour
of ϕp is demonstrated by a cross section for constant ϕp(xL, xD)/ϕp(0, 0) = 0.25 (0.15) for the
solid (dashed) lines. Pairs of line from top right to bottom left: n = 2, 4, 8, and 16.

fractions of long ones and to make the highly non-linear effect of polydispersity more
quantitative, we calculate Eq. (2.14) and compare this with that for the monodisperse
case for which

〈
La

i Db
α

〉
iα

= LaDb for the powers a, b = 0, 1, 2 . . . We consider poly-
disperse distributions that obey 〈Li〉ai 〈Dα〉bα = LaDb, so they have the same number
averages as the reference monodisperse case. It appears reasonable to presume the hop-
ping distance λ to be an invariant of the dimensions of the carbon nanotubes, so we
divide Eq. (2.14) by 〈Dα〉2α /2λ 〈Li〉i and obtain for the ratio of percolation thresholds
ϕp(x, y)/ϕp(x0, y0) = 〈Li〉2i

〈
D2

α

〉
α

/
〈
L2

i

〉
i
〈Dα〉2α. Here, x and y are as yet unspeci-

fied parameters that depend on the type of length and diameter distribution adopted
and that measure the degree of polydispersity; x0 and y0 are the values for which the
distribution is monodisperse, i.e., very strongly peaked, with the same number average.

We observe that the polydispersity indices
〈
L2

i

〉
i
/ 〈Li〉2i and

〈
D2

α

〉
α

/ 〈Dα〉2α of the
distributions suffice to determine the effect of polydispersity on the percolation thresh-
old. If we insert the identities

〈
D2

α

〉
α

= Var(Dα) + 〈Dα〉2α and 〈Li〉2i = Var(Li) + 〈Li〉2i ,
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where Var denotes the variance of a distribution, we obtain

ϕp(x, y)
ϕp(x0, y0)

=
m + 1
s + 1

, (2.15)

with m ≡ Var(Dα)/ 〈Dα〉2α and s ≡ Var(Li)/ 〈Li〉2i the relative magnitudes of the vari-
ances of the diameter and length distribution.‡ Eq. (2.15) shows that a small value of
m and large value of s are required for a significant reduction of the percolation thresh-
old relative to the equivalent monodisperse distribution. Given that m is positive for
any distribution that is not monodisperse, width polydispersity apparently raises the
percolation threshold. However, in practice m remains close to unity because for both
single-walled carbon nanotubes and multi-walled carbon nanotubes we estimate it to be
at most 0.2 [110,111]. As to the influence of a length polydispersity, the fact that a large
value of s leads to a low percolation threshold is an important issue that we return to
in the discussion.

Figure 2.3: For a bidisperse mixture of long and short rods the ratio of the actual percolation
threshold ϕp(xL) and that of the corresponding monodisperse solution ϕp(x0) with the same
mean length 〈Lk〉k is shown as a function of the number fraction xL of long rods. The tunneling
length λ is taken as a constant and in that case drops out of this ratio. The graphs are for
different length ratios n ≡ Llong/Lshort and we find x0 = nx/(1 + (n − 1)x). From top to
bottom, n = 2, 4, 8, and 16. Inset: the largest reduction of the ratio of percolation thresholds
is ϕp(n)/ϕp(n0) = 4n/(n + 1)2, with n0 = (3n − 1)/(n + 1), obtained for x = 1/(n + 1), i.e.,
the minima in the main graph.

If we consider a bidisperse mixture consisting of long and short rods, we find that
x0 = nx/(1+(n−1)x), with n > 1 the length ratio, and we observe that a large value of

‡In probability theory,
√

s =
√

Var(Li)/ 〈Li〉i is called the coefficient of variation (or variation
coefficient) of the distribution of Li [125].
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s is obtained for a large skewness of the distribution, that is, a skewness towards smaller
lengths, as is illustrated in Fig. 2.3. Indeed, by adding a small fraction of long rods to a
dispersion of short ones that are n times shorter, a significant non-linear reduction can
be obtained. This additional reduction decreases again with increasing fraction of long
rods, where we note that the absolute minimal percolation threshold is course obtained
if all rods are long. The maximal reduction of the percolation threshold relative to
the equivalent monodisperse system is reached for a number fraction xL of long ones
that satisfies xL = 1/(n + 1). So, the larger the length difference, the smaller the
number fraction of long rods required to realise a significant reduction of the percolation
threshold. At this optimum number fraction the relative percolation threshold equals
ϕp(n)/ϕp(n0) = 4n/(n+1)2, where, n0 = (3n−1)/(n+1), see also Fig. 2.3. So, a mixture
containing only 11 % of rods that are 8 times longer has a percolation threshold that is
more than 60 % lower than the monodisperse system with the same average length. This
finding may then provide an explanation for the large scatter in observed percolation
thresholds of carbon nanotubes with the same (number) average dimensions [101]. A
more generalised analysis that we present in the next chapter 3 teaches us that a length
distribution that is strongly skewed towards shorter lengths, as shown in Fig. 2.3, is
in fact a requirement for a large reduction of the percolation threshold. In chapter 3
we will also consider the impact of polydispersity on the percolation threshold of other
length and width distributions inspired by experimental observations.

We next address another form of polydispersity often ignored in theoretical studies,
being that in the level of conductance of the carbon nanotubes.

2.5 Mixtures of conductive and insulating particles

In the preceding sections we have tacitly assumed that all carbon nanotubes po-
tentially contribute to the percolating network, and that connectivity is an additive
property, i.e., we have ∆αβ = (∆α + ∆β)/2. If the nanocomposite contains not only
conductive but also semi-conductive or insulating particles, which certainly is true for
single-walled carbon nanotubes, then this additivity assumption breaks down because a
charge carrier can only move between a pair of conductive particles and its transport is
effectively blocked if one or both of them are poor conductors. Fortunately, our theory
can quite straightforwardly be adjusted to model a mixture of metallic and electrically
insulating rods, at least if they are of equal diameter. This is obviously an idealisation
because the single-walled carbon nanotubes that do not possess metallic properties are
not perfect insulators and, as already alluded to, exhibit semi-conducting behaviour [18],
but for our purposes this model suffices.
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In our model description we take our familiar criterion for connectivity of a pair of
conductive rods, i.e., ∆11 = D+λ with the subscript 1 referring to the conductive species,
and we require that particles of any other pair need to touch for charge transport to take
place, which statistically occurs with zero probability. This means that ∆12 = ∆22 = D,
where the subscript 2 indicates an insulating rod. This enforces non-additive charge-
transport properties by blocking charge transport if at least one of the particles in a pair
is not metallic. We consider a binary mixture of conductive and insulating rods of mole
fractions x and 1− x, respectively. We then start from Eq. (2.12) that we average over
u, and obtain

〈Tkγ(u)〉u −
π

2
ρLk 〈(∆γδ −D)LmTmδ(u′)〉mδ,u′ = 1. (2.16)

If the index γ = 2 refers to the insulating particles, we have 〈(∆2δ −D)LmTmδ(u′)〉δ = 0
and for γ = 1, denoting the conducting particles, we have 〈(∆1δ −D)LmTmδ(u′)〉δ =
λx Tm1(u′). We substitute this in Eq. (2.16) and obtain 〈Tk1(u)〉u
− π

2 ρ λ x Lk 〈LmTm1(u′)〉m,u′ = 1. We take averages over k after subsequently mul-
tiplying it by unity and by Lk. Solving the resulting set of equations for 〈Tk1(u)〉k,u

and 〈LkTk1(u)〉k,u gives for the former

〈Tk1(u)〉k,u =
1− π

2 ρ λx Var(Lk)
1− π

2 ρλ x 〈L2
k〉k

, (2.17)

which diverges if the denominator is zero, leading to the critical number density ρp =
(π

2 λx
〈
L2

k

〉
k
)−1. From this we find for the percolation threshold

ϕp =
π

4
〈Lk〉k D2ρp =

D2 〈Lk〉k
2 λx 〈L2

k〉k
. (2.18)

We see that we retrieve our previous result Eq. (2.14) for polydisperse lengths
but monodisperse widths, except for an additional factor 1/x. Hence, we find that the
percolation threshold is governed by the fraction xϕ of conductive particles. This means
that if one third of the single-walled carbon nanotubes is conductive, as is believed to be
the case [112], then the percolation threshold is three times larger than would have been
if all of them had been conductive, implying that increasing the fraction of conductive
carbon nanotubes is a useful endeavor if a low percolation threshold is required for
the nanocomposite application envisaged [26, 112, 113]. The fact that the percolation
threshold is governed completely by the concentration of conductive particles may seem
counter-intuitive, the reason being that the presence of non-conductive fillers should
cause a disproportionate increase of the percolation threshold because they can take
out entire conductive paths in a network that spans the whole system. We surmise
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that this effect is counteracted by non-conductive particles that sit in dead branches
and would have no contribution to the network anyway. In fact, this prediction can
be understood at a deeper level if we consider percolation on a Bethe lattice. A Bethe
lattice is a cycle-free tree with z branches per lattice site allowing us to readily deduce
that provided a fraction x of these particles contributes to the charge transport, it must
have a percolation threshold of ϕp = 1/x(z − 1) if expressed in terms of the fraction of
occupied sites [16]. From this result we conclude that the 1/x scaling in the percolation
threshold must be the result of the absence of loop correlations in the Bethe lattice,
which it has in common with the second-virial approximation in continuous space.

Another way to achieve the goal of lowering the percolation threshold is to make use
of an electrically conducting coating of the carbon nanotubes, replacing the surfactants
that often are used to disperse the carbon nanotubes in water in the early stages of the
production process of the nanocomposite [27]. This coating then in a way manipulates
the (effective) hopping distance λ provided it is in a way soft and physically penetrable to
other carbon nanotubes.§ For such a coating, a polymeric latex known as PEDOT:PSS
has been used that also effectively stabilises the carbon nanotubes in solution [27,107].
We note that the envisaged conduction mechanism of nearest-neighbour hopping in our
model may lose its meaning for the rods with the soft conductive coating, because the
conduction mechanism could become variable-range hopping [27]. Still, if we presume
that the effective hopping distance is much larger for a coated carbon nanotube than
for one without a coating, then the probability of charge transport between two carbon
nanotubes without a coating is negligible compared to that of a pair with at least one
coated particle. This implies that ∆11 = D+λ,∆12 = D+λ/2 and ∆22 = D, where the
subscript 1 (2) indicates the (non-)conductive particle. In this model conduction takes
place via the intersection of two coatings or via the intersection of a coating and a rod.

If this is so, we have for the average 〈(∆2δ −D)Tmδ(u′)〉δ = λ
2 xTm1(u′) in Eq. (2.16)

for the index γ = 2 and 〈(∆1δ −D)Tmδ(u′)〉δ = λx Tm1(u′) + λ
2 (1− x)Tm2(u′) for the

index γ = 1, where x now stands for the mole fraction of coated carbon nanotubes. If
we insert this in Eq. (2.16) we obtain the following set of equations

〈Tk1(u)〉u −
π

2
ρLk

(
λx 〈LmTm1(u′)〉m,u′ +

λ

2
(1− x) 〈LmTm2(u′)〉m,u′

)
= 1, (2.19a)

〈Tk2(u)〉u −
π

4
ρ λ xLk 〈LmTm1(u′)〉m,u′ = 1, (2.19b)

for the two types of particle in the dispersion. If we take the average of Eqs. (2.19a)
and (2.19b) over k after multiplying them by unity and by Lk, we have four equations

§This requires the conductive layer to be above its glass temperature in the preparatory phase in
the production stages of the composite. This in practice is the case [27].
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Figure 2.4: The ratio of the percolation thresholds for two systems of rods with a conductive
penetrable coating, where one (ϕcon

p ) consists of conductive particles and the other (ϕins
p ) of

insulating particles, as a function of the fraction x of coated rods. In the non-additive mixture
of insulating rods charge transport only occurs between two coated particles, whereas in the
additive system of metallic rods, charge transport is possible if at least one of the particles in a
pair is coated. This is because we presume the effective hopping distance for a coated particle
to be much larger than for one without a coating.

for the four unknowns 〈Tk1(u)〉k,u , 〈Tk2(u)〉k,u , 〈LkTk1(u)〉k,u, and 〈LkTk2(u)〉k,u. We
solve these and find that the solutions have as a common denominator
16−πλ ρ x

〈
L2

k

〉
k

(
8 + πλ ρ (1− x)

〈
L2

k

〉
k

)
, which vanishes at the critical number density

ρp =
(
(
√

x + x)
〈
L2

k

〉
k
πλ/4

)−1. This then gives

ϕp =
D2 〈Lk〉k

(
√

x + x)λ 〈L2
k〉k

, (2.20)

for the percolation threshold. So, we find a non-trivial dependence of the percolation
threshold on the fraction of coated rods x. Again, the larger the fraction of coated rods,
the lower the percolation threshold, as is to be expected.

One may ask what would be the percolation threshold of PEDOT:PSS-coated nan-
otubes that are poor conductors instead of metallic ones − an experiment recently
conducted by Hermant and co-workers [27, 107]. In that case the particles may only
serve as a scaffold that still allows the conductive material to percolate at very low
loadings, so charge transport is then only possible provided two coatings intersect. This
case is equivalent to the one we discussed earlier, i.e., mixtures of conducting and non-
conducting nanotubes. So Eq. (2.18) also gives the percolation threshold for a system
of insulating nanotubes, of which a fraction x has been coated. Comparing Eqs. (2.18)
and (2.20) we conclude that there is an additional factor 2x/(

√
x + x) determining the

percolation threshold that can be gained by taking conductive instead of insulating rods,
which is quite significant if x is not very close to unity. See also Fig. 2.4.
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Inspired by the experiments of Hermant, we can now perform a thought experiment to
demonstrate this effect. We determine the percolation threshold of high-quality (metal-
lic) single-walled carbon nanotubes, and use a small amount of conductive, penetrable
coating material that we presume to fully cover a small fraction of the single-walled
carbon nanotubes. If we perform the same experiment on poor-quality (insulating)
single-walled carbon nanotubes, then, according to the above observation, the percola-
tion threshold should be more than a factor two lower for a fraction of coated carbon
nanotubes that is less than only 10 %. Hence, there should be a considerable difference
between using conductive and insulating filler particles, suggesting that for incomplete
surface coverage the fillers not only serve as a scaffold.

2.6 Discussion and conclusions

In this chapter we have presented a systematic approach to study the effect of size
and connectivity polydispersity on connectedness percolation for a large class of particle
dispersions. Using the multi-component pair-connectedness Ornstein-Zernike equation
that depends on the properties of pairs of particle, we derived an expression for the
average cluster size of connected particles requiring as input only some average of a
function that depends on the properties of a single (test) particle. By choosing an
appropriate closure for this expression, we obtained an analytical expression for the
percolation threshold of conductive rod-like particles. It turns out to be a non-trivial
function of the distribution of lengths, widths and connectivity ranges, yet depends on
a few moments of the full distribution. This implies that for the percolation threshold
one only needs to know these moments and the details of the distribution are irrelevant.

If the length and width distributions are uncorrelated, which may be quite a strong
assumption considering the sonication step often used in the nanocomposite production
process, we deduce that the presence of wider rods raises the percolation threshold and
slightly more so than based on the inverse-aspect-ratio dependence of it for monodisperse
ones, whilst a length polydispersity significantly lowers the percolation threshold at equal
number average for small fractions of longer rods because the percolation threshold scales
inversely with the weight average of rod lengths. For a bidisperse system this latter effect
is very strong indeed provided the length difference is large and the main component of
the mixture consists of short rods. In chapter 3 we will consider more realistic length
distributions and show that such a skewed distribution towards short rods is in fact
required for a low percolation threshold. A reciprocal weight-average length dependence
of the percolation threshold was also found for systems of interpenetrable sticks [93,94].
For hard rods with Deff

γ = Dγ we obtain for the case of monodisperse rod widths,
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i.e., Dγ = D and ∆γ = ∆, that the percolation threshold ϕp = D2/(2 〈L〉w (∆ − D)),
in agreement with earlier work based on a formal mapping of the cluster size to the
osmotic compressibility of the rod fluid [97]. For ideal particles with Deff

γ = 0 the
percolation threshold in the monodisperse limit reduces to ϕp = D2/2∆L = D/2L,
where by convention we put ∆ = D, making D the diameter of the penetrable rod [97].
This is also consistent with earlier findings based on geometric arguments [38, 103] and
with computer simulations [108].

The other type of polydispersity we considered in this chapter is that in the way that
the particles conduct electricity. For a binary mixture of conductive and non-conductive
rods of respective number fractions x and 1 − x, we find that the size of a cluster of
conductive particles diverges at a packing fraction ϕp ≈ D2/2xλ 〈L〉w ∼ 1/x. Hence,
if, say, one third of the carbon nanotubes is conductive, then the percolation threshold
is three times higher than would have been if all of them had been conductive. It does
indeed seem sensible, then, to select for high fractions of conductive carbon nanotubes
if as low as possible a percolation threshold is required for the envisaged nanocomposite
application [26]. Our prediction that the percolation threshold is governed solely by
the concentration of conductive nanotubes, i.e., xϕ, might appear counter-intuitive be-
cause one would expect that if only contacts between conductive rods contribute to the
network, the presence of small numbers of insulating ones should raise the percolation
threshold disproportionately. The reasoning is that the presence of a single insulating
nanotube in it potentially takes out at least one complete conductive path in a system-
spanning network. On the other hand, if this nanotube sits in a dead branch its impact
is zero, and it is likely this effect that provides the compensation.

Another way to lower the percolation threshold is to make use of a conductive pen-
etrable (“soft”) coating of the rod-like particles to effectively manipulate the hopping
distance. In our model description of this we presume the effective hopping distance to
be substantially increased by the coating so that charge transport predominantly occurs
via the intersection of either the coating and a particle or of two coatings. We find that
a significant reduction of the percolation threshold can be gained by taking conductive
instead of insulating particles if the fraction of coated rods is not very large. The con-
ductive polymer latex PEDOT:PSS has been used as the coating material for the carbon
nanotubes [27] and it was argued that the contribution of the carbon nanotubes could
be neglected because the filler particles merely serve as a template for a percolating PE-
DOT:PSS network. However, we conclude that if the fraction of the particles without a
coating is not negligible, then neither is the conductivity of the carbon nanotubes. If the
experiments are performed with insulating particles the mixture is non-additive because
charge transport is only possible between two coated particles and charge transport is
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blocked by any particle in a pair that has no coating. As a consequence, the percolation
threshold is governed solely by the concentration of coated particles.

In fact, our prediction can be understood more quantitatively by considering the
simplified case of percolation on a Bethe lattice. This connected cycle-free tree, sprout-
ing z branches per lattice site, can straightforwardly be shown to have a conductivity
threshold, defined here in terms of the fraction of sites occupied, of ϕc

p = 1/x(z−1), if a
fraction x of these particles contributes to the charge transport [16]. We conclude that
the absence of loop correlations between particles on a Bethe lattice and ones in free
space within the second-virial approximation causes the percolation threshold to scale
as 1/x. This corresponds in fact to a mean-field theory and the question is justified how
good a mean-field theory is for describing percolation. As is well-known, for percolation
on a lattice the upper critical dimension is 6 [25], and one would perhaps naively infer
from it that in continuum space this must be true also. However, for rod-like particles
this turns out not the case. Indeed, as is well established, the thermodynamics of rod
dispersions are well described by the second-virial approximation in the limit of large as-
pect ratios [104]. To quantify this connection between continuum percolation of rod-like
particles and percolation on a Bethe lattice, we can equate ϕp = 1/(z− 1) for the Bethe
lattice to ϕp = D2/2λL in continuum space in the monodisperse limit, if we presume
that fraction of sites occupied can be mapped onto the volume fraction ϕ. This gives
z = 1 + 2λL/D2, which is quite a large number for single-walled carbon nanotubes for
which λ ≈ D and L À D. We again invoke the analogy between percolation on a Bethe
lattice with a large coordination number and percolation of rods in continuum space in
chapter 4, where we study the conductivity of a percolating network of rods.

It is instructive to explicitly evaluate the accuracy of the second-virial approximation
for connectedness percolation also. For this purpose we consider the following (virial)
expansion for the direct pair-connectedness function Ĉ+ at zero wave vector, Ĉ+(0) =
Ĉ+

2 (0) + ρ Ĉ+
3 (0) + ρ2Ĉ+

4 (0) + . . ., where Ĉ+
n (0) denotes the n-body contribution, ρ the

number density and angular averages are implied [34,38,118]. We refer to Appendix 2.A
for details of the diagrammatic contributions to the first-order correction, stemming in
effect from the third virial term. For rod-like particles we find that Ĉ+

2 = O(λL2) and
Ĉ+

3 = O(λ3L3), so Ĉ+
3 /(Ĉ+

2 )2 = O(λ/L). This implies that the impact of the three-body
virial is indeed negligibly small because the hopping distance λ is much smaller than
the rod length L. A similar argument can be shown to hold for the higher-order terms,
which justifies the truncation of the virial expansion after the first term, at least for
rod-like particles. In practice, the approximation can be considered to be quantitative,
meaning that the third-virial contribution is less than 10 % of that of the second virial,
if 〈L〉 /λ > 100, with 〈L〉 the mean length, and semi-quantitative for 〈L〉 /λ > 20, in
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which case the third-virial and second-virial contribution are comparable [104]. Even
the former, more strict condition, quite generally holds for individual carbon nanotubes,
i.e., collections of exfoliated carbon nanotubes not dominated by bundles.

The second-virial approximation, also sometimes called the bare chain sum approxi-
mation [36] and random-phase approximation [35], is as far as we are aware only accurate
for rod-shaped particles, even though our central equations (2.8) and (2.9) of our theory
apply to other types of particle as well, including spherical and plate-like nanofillers. The
latter may serve as a model for graphene. Unfortunately, for these the second-virial ap-
proximation should be expected to break down. Indeed, for both plate-like and spherical
particles of diameter D we find that Ĉ+

2 = O(λD2) and Ĉ+
3 = O(λD5), both to leading

order in λ/D. See also Appendix 2.A. Hence, Ĉ+
3 /(Ĉ+

2 )2 = O(D/λ), which is much
larger than 1 for small hopping distances on the scale of the particle size. This means
the virials to all orders in the density should contribute to the percolation threshold for
both types of particle. On the other hand, and rather surprisingly, it has been shown
by means of Monte Carlo simulations that the second-virial approximation is reasonably
accurate for spherical particles too, provided that the hopping distance is small relative
to the particle size [36]. It is not clear why this is so but presumably this is caused by
mutual cancellation of higher-order virials. It is reasonable to presume that this is also
the case for plate-like particles. Indeed, recent calculations show that the topologies of
phase diagrams of binary mixtures of hard platelets of different sizes are the same for
a second-virial theory and fundamental measure theory [37]. The latter is known to be
highly accurate.

Because of this our model may within the second-virial approximation still give
qualitative results for plate-like particles, where we repeat that in this approximation of
the pair-connectedness function P corrections to all orders in the density are included
through linear graphs, i.e., all multi-particle correlations that have no loops in them
are taken into account. We calculate f̂+ for hard polydisperse plate-like particles [13]
of thickness L and by following a similar procedure as for the rods, we find for the
percolation threshold,

ϕp =
4

〈
LkD2

γ

〉
kγ

(
B −√B2 − C

)

λC
, (2.21)

with

B = 4(π + 5) 〈LkDγ〉kγ + (5π + 6)
〈
D2

γ

〉
γ

+ (7π + 16)λ 〈Dγ〉γ , (2.22a)

C = (π + 6)
(
−16π 〈Dγ〉γ

〈
D3

γ

〉
γ
− (π + 6)

〈
D4

γ

〉
γ

+ (17π + 6)
〈
D2

γ

〉2

γ

)
. (2.22b)

Eq. (2.21) holds provided L, λ ¿ D and provided L and λ are of the same order
of magnitude. In the monodisperse limit, it reduces to ϕp = 2L/(λ(5π + 6)), which,
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Figure 2.5: The percolation threshold of a binary mixture of large (Dlarge) and small disks
(Dsmall) of equal thickness is shown as a function of the mole fraction xL of large plates relative
to its value ϕp(x0) = 2L/λ(5π +6) of that of the corresponding monodisperse distribution with
equal mean length. The tunneling distance λ is presumed to be a constant and drops out of
the equation. From top to bottom: Dlarge/Dsmall = 2, 4, 8, and 16. The ratio of percolation
thresholds is lowered substantially by adding a small fraction of large plates to a dispersion of
small ones.

interestingly, is independent of the disk diameter D. This may seem surprising but if we
again invoke our simple contact-volume argument as we did for the rod-like particles,
we obtain a result consistent with it [106]. If we substitute typical values for single-
layer graphene, i.e., L ≈ 0.3 nm and λ ≈ 1 nm [97], we find ϕp ≈ 0.03. This is
(considerably) larger than experimental values of 10−4−10−2 found in the literature [19,
114,115], but the discrepancy may partly be explained by polydispersity effects and/or
the influence of attractive interactions between them [97]. In spite of the percolation
threshold being independent of the diameter in the monodisperse limit, the effect of
diameter polydispersity is actually very strong as is shown in Fig. 2.5. Similar to what
we found to be the case for bidisperse rods in Fig. 2.3, adding a small quantity of wider
sheets to any given collection lowers the percolation threshold and quite considerably
so if they are sufficiently large relative to those already present in this collection. The
effect wears off with increasing quantities, and our conjecture is that this is because
while the small disks can form bridges between the large ones and have a relatively large
freedom in their orientations, the large plates have are very restricted in their angular
margin due to the excluded-volume interactions. The effect on the percolation threshold
of experimentally observed diameter distributions of graphene is discussed in chapter 3.

It appears that any kind of size bidispersity can have a large influence on the perco-
lation threshold of a composite. To see if shape polydispersity has a similar impact, we
also computed the percolation threshold for a mixture of rod-like and plate-like particles
to model a mixture of carbon nanotubes and graphene sheets. See also Fig. 2.6. For
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Figure 2.6: For a bidisperse mixture of plates with diameter W and thickness T and rods
with length L and diameter D, the percolation threshold ϕp relative to its value of that of the
corresponding monodisperse case consisting of only rods is shown as a function of the mole
fraction xR or rods. The arrows indicate increasing values of W/L: 0.1, 0.3, 1 and 3. (a) For
typical values for graphene and carbon nanotubes, L/T = 1500, L/λ = L/D = 500, where
λ is the hopping distance, a mixture with only rods gives the lowest percolation threshold.
For sufficiently large rod aspect ratios L/D, the shape of the curves is almost insensitive to
changes in L/T and L/λ, which only change the vertical scale. (b) For rods with a smaller
L/D, a mixture with plates can have a lower percolation threshold than the one for only rods,
as shown for L/T = 60, L/λ = L/D = 15.

this we used the connectedness Mayer function f̂+ for the interactions between two rods
and two plates as derived before, and computed that of the rod-plate interaction. If
we solve Eq. (2.9), we find that for thin rods (say, single-walled carbon nanotubes) the
lowest percolation threshold is obtained in a dispersion of only rods but for thicker rods
(multi-walled carbon nanotubes), adding a few plates becomes increasingly favourable
albeit that the effect is modest. However, it must be noted that we presumed the rods
and plates to exhibit cooperative connectivity behaviour, i.e., the hopping distance be-
tween a rod and a plate equals that between two rods and between two plates, and this
may be a somewhat tenuous supposition [116].

2.A Second-virial approximation

In order to assess the accuracy of the second-virial approximation for several particle
shapes, we aim to compute the relative magnitude of the first and second term in the
density expansion of the Fourier transform of the direct pair-connectedness function at
zero wave vector Ĉ+(0), Ĉ+(0) = Ĉ+

2 (0) + ρ Ĉ+
3 (0) + . . . Here, Ĉ+

2 and Ĉ+
3 are the

two-body and three-body direct-connectedness functions, and we omit the arguments
u and u′ for notational convenience. In order to compare the third virial term with
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the second, we note that for the critical number density of particles at the percolation
threshold ρp we have ρp

〈
Ĉ+(0)

〉
u,u′

≈ 1 [34, 38]. If we truncate the virial expansion

after Ĉ+
3 , we have ρpĈ

+
2 (0) + ρ2

pĈ
+
3 (0) = 1. This gives

ρp

〈
Ĉ+

2 (0)
〉

u,u′


1 + ρp

〈
Ĉ+

3 (0)
〉

u,u′〈
Ĉ+

2 (0)
〉

u,u′


 = 1, (2.23)

so the second-virial approximation is valid if 〈Ĉ+
3 (0)〉u,u′/〈Ĉ+

2 (0)〉2u,u′ ¿ 1. To evaluate
Ĉ+

3 (0), we follow the approach introduced by Coniglio and co-workers [34]. According
to their definition, C+

n (r, r′, u, u′) contains all graphs (diagrams) consisting of n points
in a diagrammatic expansion with at least one continuous path of f+ bonds between
the two particles at r and r′, so they are part of the same cluster and interact via
a potential u+. Particles that are not directly connected within the same cluster are
said to be “connected” by an f∗ bond and interact via the potential u∗. This bond
is defined as f∗ ≡ exp(−βu∗) − 1, such that f ≡ f+ + f∗ is the Mayer function with
exp(−βu+) + exp(−βu∗) = exp(−βu) = f + 1 [117]. We consider hard particles in the
cherry-pit model, so f+ = 1 for D < r < ∆ and f+ = 0 otherwise, with r the distance
between the particles, so it is nonzero only if two particles are connected, i.e., if their
connectedness zones overlap. For f∗ we have f∗ = −1 for r < ∆ and f∗ = 0 for r > ∆,
meaning that f∗ is nonzero if the particles either intersect or if they are connected.
Furthermore f = f+ + f∗, which equals -1 for r < D, i.e., if two particles intersect, and
zero otherwise.

For the second virial coefficient Ĉ+
2 , the diagrams consist only of the points 1 and

2, so only the one with an f+ bond between these points meets the criterion and
Ĉ+

2 (0, u, u′) =
∫

dr12f
+(r12), with r12 = r2 − r1, which is the contact volume for

particles that can be obtained from the excluded volume for cylindrical particles of
length L and diameter D [13]. In the case of rod-like particles in an additive system
this gives Eq. (2.11), so Ĉ+

2 (0, u,u′) = 2L2λ| sin γ| for a constant rod length L and
hopping distance λ and where γ is the angle between the orientations u and u′. For
plate-like particles the excluded volume gives to leading order for large aspect ratios
Ĉ+

2 (0, u, u′) = 3
2πD2λ| sin γ|, with D the disk diameter.

For the third virial coefficient we can form five diagrams, shown in Fig. 2.7, that
meet Coniglio’s criterion [118], which then gives,

Ĉ+
3 (0,u,u′) =

∫∫
dr12dr13

(
f+
12f

+
13f

+
23 + f+

12f
+
13f

∗
23 + f+

12

f∗13f
+
23 + f∗12f

+
13f

+
23 + f+

12f
∗
13f

∗
23

)
. (2.24)
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Figure 2.7: Five diagrams consisting of three points can be formed such that point 1 and 2
are connected via a continuous path of f+ bonds (dashed lines), where the wavy lines represent
f∗ bonds. This path between 1 and 2 can be either direct, as in the top three and the bottom
left diagram, or via a third particle, shown by the bottom right diagram. These diagrams give
rise to the five terms in the expression (2.24) for Ĉ+

3 (0, u, u′).

To compute this integral we note that f∗ = −1 if the two particles either intersect or
if they are connected, which can be subdivided into the intersection (f = −1) and the
connection (f = +1). We can thus replace f+ by c and f∗ by s − c, where c and s

indicate a configuration where two particles are connected and intersect, respectively.
We then find Ĉ+

3 (0,u,u′) = −c3 + c2s + cs2, so we have to compute the “volume” of a
configuration where the three particles are mutually connected, one where two contacts
are connections in the overlap zone and the third is an intersection, and one with two
intersections and one connection.

For rod-like particles we obtain the following estimate for the order of magnitude
of the different terms. The configuration in which the three particles are mutually
connected gives λL2 for the first contact between two rods, ignoring a constant of the
order unity. The third rod needs to be connected to both other rods, which gives an
additional volume proportional to λL2 it can occupy but it has only a very small angle
of the order λ/L that it can move, which then gives λ3L3 in total. The second and
third term cs(s + c) can be combined by starting again with two connected rods, giving
λL2 for the c. The third particle then has to intersect one of the first two (a factor D

from the s), it has to intersect or make contact with the other (a factor D + λ from the
s + d), and then has a freedom L in the third direction. So we find for this contribution
λD(D + λ)L3. For single-walled carbon nanotubes D is probably larger than λ and for
multi-walled carbon nanotubes it is much larger, so the third virial term is of the order
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Figure 2.8: Possible configurations of three disks that are mutually connected and that con-
tribute to the three-body direct-connectedness function Ĉ+

3 (0). The disks have diameter D and
the tunneling distance between them is λ ¿ D. If we fix disk 1 and if the difference between
the orientations of disk 1 and 2 are almost perpendicular to each other, the overlap criterion
is met in a triangle (a) or a branched configuration (b). If this difference is very small, on
the other hand, we distinguish between almost complete (c) and limited overlap (d) between
particles 1 and 2. In the latter case the angle α that disk 2 and 3 make is of the order λ/D. λ
and D denote the ranges of motion in three directions for the disk 2 so that it is connected to
disk 1 and for the disk 3 so that is connects to 1 and 2. In all cases we find Ĉ+

3 (0) = O(λ3D3).

λD2L3. Its relative magnitude is then λD2L3/(λL2)2 = D2/λL ¿ 1 because L ¿ D,
and the second-virial approximation is accurate for rod-like particles.

For plate-like particles the situation turns out to be quite different. From a similar
argument as that for the rods we find that the c3 term gives a contribution to Ĉ+

3 is
of the order λ3D3, where D now denotes the disk diameter. The way this estimate
is obtained is explained in Fig. 2.8. We again take the terms c2s and cs2 together,
so the two connected plates give λD2 for the c. The third particle then intersects the
first, giving a D, is either connected to the second or intersects it, giving a D + λ,
and has the freedom to move a distance D in the third direction. Hence, for these
terms we find a contribution λ(D + λ)D4 ≈ λD5, which is much larger than the first
term from the three mutually connected disks. Compared to the second virial term its
magnitude is λD5/(λD2)2 = D/λ, which is much larger than unity and would make the
truncation of the virial expansion of Ĉ+ after the first term unjustified. The scaling for
spherical particles gives similar results for Ĉ+

2 and Ĉ+
3 , where D then denotes the sphere

diameter. So for spheres the second-virial approximation would not be suitable either,
but it turns out not to be very inaccurate if λ ¿ D, [36] possibly because of cancellation
of higher-order virials.



3
Connectedness percolation of

polydisperse nanofillers: applications

In this chapter we apply our generalised connectedness percolation theory that we
presented in chapter 2 to realistic size distributions for carbon nanotubes and graphene
sheets. We show that if the size distribution function of rod-like particles factorises, a
length distribution that is strongly skewed to shorter lengths is a requirement for a low
threshold relative to the monodisperse one with the same average length and diameter.
However, the effect of such realistic size distributions seems not to be strong enough
the fully explain the large scatter in observed percolation thresholds of dispersions with
approximately the same mean aspect ratio [101]. We show that this may be caused by a
coupling of the length and diameter distribution, because this leads to completely different
results. Indeed, if the lengths and diameters of the particles are linearly correlated, poly-
dispersity raises the percolation threshold and more so for a distribution skewed towards
smaller lengths. Our predictions for the percolation threshold of graphene sheets are
applied to distributions that have been experimentally determined by means of dynamic
light scattering and the results explain qualitatively the discrepancies in the percolation
thresholds of four different dispersions.†

†The contents of this chapter are based on the following publications:
R. H. J. Otten and P. van der Schoot, J. Chem. Phys. 134, 094902 (2011),
E. Tkalya, M. Ghislandi, R. H. J. Otten, M. Lotya, A. Alekseev, P. van der Schoot, J. Coleman,
and C. E. Koning, Influence of dispersion state of graphene on percolation threshold of conductive
graphene/polymer nanocomposites, submitted.

59
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3.1 Introduction

In chapter 2 we have discussed how rod-like and plate-like particles, such as carbon
nanotubes and graphene, after solidification can significantly improve the mechanical,
thermal, and electrical properties of the host material they have been dispersed in by
forming system-spanning networks at very low particle loadings. We showed how the
percolation threshold of rod-like and plate-like particles depends sensitively on poly-
dispersity in their linear dimensions and connectivity ranges. This we demonstrated by
considering the idealised case of a bidisperse distribution of either large and small or con-
ductive and non-conductive species, and we found that a distribution that is strongly
skewed towards smaller lengths/diameters provides the lowest percolation threshold.
In this chapter we consider more realistic size distributions for carbon nanotubes and
graphene platelets that follow from experimental observations and determine the impact
on the percolation threshold. The graphene distributions have been determined from ex-
periments using dynamic light scattering for four dispersions with different preparation
routes. Our findings may be summarised as follows.

1. If we assume that all carbon nanotubes are conductive and that the length and
width distributions are independent of each other, then a length distribution that is
strongly skewed towards shorter lengths produces the lowest percolation threshold
for a fixed mean length. In fact, such a large skewness is a requirement for a large
decrease in the percolation threshold relative to the equivalent monodisperse one.

2. If the length and width distributions are coupled, which may be the case because of
a sonication step, or, e.g., of a screw-milling procedure in the production process,
then neither the length nor the aspect ratio is the determining factor for a low per-
colation threshold. If this correlation between the length and diameter distribution
is linear, the situation is completely the opposite of that of uncorrelated lengths
and breadths: polydispersity raises the percolation threshold and very strongly so
for a relatively small number of long rods.

3. The model provides a slightly too high prediction for three of the four graphene
dispersions under consideration, but the trend in the percolation thresholds agrees
with the measured percolation thresholds. For these predictions the thickness
of the graphene sheets has to be estimated, and the dispersion with the best
theoretical prediction for the experimental percolation threshold presumably has
the most accurate fit for the thickness.

In the remainder of this chapter we first show in section 3.2 the effect of realistic
length distribution functions on the percolation threshold. We next apply our model
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Figure 3.1: (a) The influence of length polydispersity on the ratio of the percolation thresholds
of the Gamma distribution and that of the corresponding monodisperse distribution with equal
mean length, ϕp(k)/ϕp(∞) = k/(k + 1). The tunneling length λ is taken as a constant and
in that case drops out of the equation. The ratio ϕp(k)/ϕp(∞) depends only on the shape
parameter k, which is infinitely large for a monodisperse distribution. (b) For k = 1/2, 2, and
8 from (a) the distributions are shown for ϕp(k)/ϕp(∞) = 1/3 (solid), 2/3 (dashed), and 8/9
(dash-dotted). Inset: the impact of the length polydispersity as a function of the skewness
γ = 2/

√
k of the distribution. The three points marked on the graph correspond to the three

distributions.

from chapter 2 to the experimentally determined size distributions of graphene sheets
in section 3.3. Finally, we discuss our results and draw our conclusions in section 3.4.

3.2 Realistic carbon-nanotube distributions

In this section we consider more realistic size distributions of carbon nanotubes than
the bivalent and tetravalent ones discussed in chapter 2, and for these we compute the
effect that they have on the percolation threshold. Because of a lack of experimental data
on the covariance of the length and width distributions, we first consider independent
distributions; coupled distributions are discussed further on in this section. We showed
in chapter 2 that a width polydispersity in practice raises the percolation threshold only
marginally, so we take constant carbon-nanotube diameters and we focus on length poly-
dispersity. The experimental determination of the size distribution is difficult, e.g., with
electron microscopy it is hard to obtain reliable statistics. Based on the few available
experimental measurements of the length distribution of carbon nanotubes we choose
a Gamma distribution and the related Weibull distribution [119–122]. A limiting case
of both of these distributions is the exponential distribution with a probability density
function fe(L, η) = η exp(−ηL) that has also been measured [123, 124]. If we compute
the percolation threshold relative to its value of that of the monodisperse case with
the same average length, as was done in chapter 2, we have ϕp(η)/ϕp(η0) = 1/2, with
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η0 = η/2, irrespective of the value of the distribution parameter η that takes the form of
the inverse mean length [125]. So, an exponential distribution reduces the percolation
threshold by a factor two (relative to the equivalent monodisperse case). Parentheti-
cally we note that the exponential distribution is characterised by a single independent
moment only.

The Gamma distribution is described by two independent moments and obeys a prob-
ability density function of the form fΓ(L, k, θ) = Lk−1 exp(−L/θ)θ−k/Γ(k), with Γ(k)
the Gamma function [125]. Its first few moments are 〈Li〉i = k θ,

〈
L2

i

〉
i
= k(k + 1) θ2,〈

L3
i

〉
i

= k(k + 1)(k + 2) θ3, where i is a dummy index. The scale parameter θ leaves
the shape invariant and only rescales the distribution; k is the shape parameter and
for smaller values the spread in the distribution increases because the scaled variance
s ≡ Var(Li)/ 〈Li〉2i that was introduced in chapter 2, obeys s = 1/k. The monodis-
perse limit corresponds to k → ∞, whereas for smaller values of k the distribution
becomes more skewed towards smaller lengths. The skewness γ is usually defined as
γ ≡ 〈

(Li − 〈Li〉i)3
〉

i
/
〈
(Li − 〈Li〉i)2

〉3/2

i
[125], implying that there are many more short

carbon nanotubes than long ones for a large positive skewness and vice versa for a large
negative one. For the Gamma distribution the skewness and shape parameter are related
via γ = 2/

√
k > 0, which goes to zero for a large value of k. From Eq. (2.15) with

m = 0 for monodisperse widths and s = 1/k, we find that ϕp(k)/ϕp(∞) = k/(k + 1),
which becomes very small for a small k, or, equivalently, a large positive skewness. The
results are shown in Fig. 3.1. Given that we consider the distributions at equal first
moment 〈Li〉i and that we have only two independent moments, ϕp(k)/ϕp(∞) can also
be expressed in terms of the relative magnitude s of the variance because s = 1/k and
γ = 2

√
s. This agrees with the earlier result, Eq. (2.15), so ϕp(s)/ϕp(0) = 1/(s+1), and

shows that a large value of s is accompanied by a large skewness for this distribution.
The Weibull distribution is defined by the probability density function fW (L, a, b) =

a bLb−1 exp(−aLb), with a > 0 the scale parameter and b > 0 the shape parameter. The
distribution has as its first moments 〈Li〉i = Γ(1/b)/(b a1/b),

〈
L2

i

〉
i
= Γ(1 + 2/b)/a2/b,〈

L3
i

〉
i
= Γ(1 + 3/b)/a3/b. The parameter a has no effect on the skewness γ nor on the

scaled variance or spread s = −1 + 2bΓ(2/b)/Γ(1/b)2. The skewness is a complicated
expression of Gamma functions and can become negative, unlike that of the Gamma
distribution. The monodisperse limit corresponds to a vanishing spread s, which occurs
in the limit of b → ∞, in which case γ converges to the finite value −12

√
6 ζ(3)/π3 ≈

−1.14, with ζ the Riemann Zeta function [126].† The ratio of the percolation thresholds

†The skewness γ ≡ 〈
(Li − 〈Li〉i)3

〉
i
/

〈
(Li − 〈Li〉i)2

〉3/2

i
need not go to zero in the monodisperse

limit, because both the numerator and the denominator go to zero and the speed of convergence of both
determines the monodisperse value of γ.
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Figure 3.2: (a) For a Weibull distribution the effect of length polydispersity on the ratio of the
percolation thresholds of the Weibull distribution and that of the corresponding monodisperse
distribution with equal mean length, ϕp(b)/ϕp(∞) = Γ(1+1/b)2/Γ(1+2/b) with Γ the Gamma
function [125]. The tunneling length λ is taken as a constant and in that case drops out of
the equation. The ratio depends only on the shape parameter b. The scaled variance s goes
to zero in the monodisperse limit that b → ∞, in which case the skewness γ → −1.14. (b)
Three distributions are shown for b = 1/2, 1, and 2, for which ϕp(k)/ϕp(∞) = 0.17 (solid), 0.5
(dashed), and 0.79 (dash-dotted). Inset: the impact of polydispersity as a function of γ. The
three points marked on the graph correspond to the three distributions.

again only depends on the shape parameter via ϕp(b)/ϕp(∞) = Γ(1 + 1/b)2/Γ(1 + 2/b).
We have plotted this function in Fig. 3.2, and we again observe that for the polydisperse
and equivalent monodisperse cases this ratio decreases for increasing skewness, which
also implies an increase of the variance, just as is the case for the Gamma distribution.

In conclusion, we find from Figs. 3.1 and 3.2 that for both the Gamma and the
Weibull distributions the non-linearity in the reduction and hence also the absolute
reduction of the percolation threshold can be significant, and that a length polydispersity
can substantially lower the percolation threshold at equal number-average length. For
this to be the case, the distributions need to have a large positive skewness γ (larger
than, say, 2), or, equivalently, a large scaled variance s. Clearly, this coupling between
the skewness and the spread is not necessarily present for a distribution with more than
two independent moments but in the discussion below we show that a large value of s

does in fact imply a large skewness, and that a large variance without any skewness is
not sufficient to obtain a low percolation threshold. In any event, for those few carbon
nanotube systems for which the moments of the length distributions have actually been
determined, the skewness and spread seem to be quite small, i.e., γ = 0.40 and s = 0.20,
giving ϕp(x)/ϕp(x0) = 0.84 [120], or ϕp(x)/ϕp(x0) = 0.64 [127], or ϕp(x)/ϕp(x0) = 0.50
for an exponential distribution [123, 124], so for these the effect of polydispersity is
modest. In view of the very large scatter in measured percolation thresholds of carbon-
nanotube composites that we here presume to be caused by polydispersity [101], we
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conclude that the skewness in the distributions must usually in fact be much larger than
this. In support of this conjecture, we note that it is quite plausible that the sonication
of the carbon nanotubes, a necessary exfoliation step in the production process of the
nanocomposite, pushes the distribution of carbon nanotubes to become very skewed
towards the direction of the shorter rods [26,27]. Indeed, exfoliation goes hand-in-hand
with tube scission, and long tubes break more easily than short ones [128]. In fact,
wide tubes break less easily than narrow ones, casting doubt on the assumption of
independent length and width distributions that we presumed so far. This turns out
to be a crucial insight and implies that the length and diameter distributions must be
positively correlated.

We saw above that in order to obtain a low percolation threshold, all rods should be
thin and the length distribution must have a large positive skewness, so it must decay
rapidly with the rod length. However, if the length and width distributions have a
positive correlation, then the consequences of such a length distribution are completely
different. To estimate the level of correlation, one could argue that the probability of
breaking a rod in two is proportional to the required scission energy under sonication,
which in turn scales with the area of the cross section of, e.g., multi-walled carbon
nanotubes at least if they are sufficiently wide. We recall that multi-walled carbon
nanotubes tend to have a broad spread in widths. But if Li = αD2

γ , with α a positive
constant, then there would be no dependence of the percolation threshold on the size
distributions at all because according to Eq. (2.14) the percolation threshold then
becomes equal to ϕp = (2αλ)−1, that is, if we presume the tunneling range λ to be
constant. (This is by no means certain of course.)

Single-walled carbon nanotubes also exhibit a diameter variation [119, 129] and for
these the scission energy, which is proportional to the number of bonds that have to be
broken, presumably scales linearly with the diameter. If Dγ = αLi, we find that ϕp(x) =
α2

〈
L3

i

〉
i
/2λ

〈
L2

i

〉
i

and ϕp(x0) = α2 〈Li〉i /2λ, so ϕp(x)/ϕp(x0) =
〈
L3

i

〉
i
/(〈Li〉i

〈
L2

i

〉
i
).

If we evaluate this for a Gamma, a Weibull and an exponential distribution, we find that
the competition between a desired large length and small diameter causes the percolation
threshold to be raised by polydispersity, not decreased, so the percolation threshold is
in that case always higher than that of the corresponding monodisperse distribution, see
Fig. 3.3. The effect becomes stronger for smaller values of b and k, i.e., a larger positive
skewness and lower spread in the distribution. This result is exactly the opposite of
what we obtained for uncorrelated distributions.

In conclusion, we find that the level of correlation between the length and width
distributions of rod-like particles is indeed crucial for the dependence of the percolation
threshold upon the polydispersity. Depending on the type of coupling, polydispersity
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Figure 3.3: The percolation threshold ϕp for a polydisperse distribution relative to its value
ϕp(x0) for the corresponding monodisperse case with the same mean length and diameter is
shown for a length and diameter distribution that are linearly correlated, i.e., Li = αDi,
with α a constant. For a constant tunneling length λ, polydispersity raises the percolation
threshold for the Weibull, Gamma and exponential distribution, and most predominantly for
small values of the shape parameter b and k of the Weibull and Gamma distribution, meaning
a large skewness and large spread. For the exponential distribution the percolation threshold is
raised by a factor 3, regardless of the shape parameter η that equals the reciprocal of the mean
value of the distribution.

effects may either raise or lower the percolation threshold relative to that of the monodis-
perse case. We next focus on the applications of our model to experimentally determined
diameter distributions of graphene.

3.3 Graphene size distributions

Our model can be applied to any graphene size distribution, as given by Eq. (2.21)
from chapter 2, as long as the relevant moments of the distribution are known. In this
section we consider four graphene composites with different preparation routes as pro-
duced by Tkalya and co-workers [130] and consequently, different size distributions, to
determine the effect of size polydispersity. Dispersions A, A-LC (LC being an abbrevia-
tion of “low concentration”) and B were prepared out of graphene, preliminary produced
by thermal reduction of graphite oxide [131]. Dispersions A and B were prepared under
similar conditions, meaning that the same energy was provided per graphene weight unit
to both systems during the sonication process (Table 1). The difference between those
two relates to the graphene and surfactant concentrations; 1 mg/ml, 1:1 weight ratio
graphene/sodium cholate and 0.1 mg/ml, 1:1 weight ratio graphene/sodium cholate for
dispersion A and for dispersion B, respectively, meaning that dispersion B was exposed
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to a ten times larger amount of energy per graphene flake than dispersion A. Dispersion
A-LC with a graphene concentration 0.1 mg/ml and a ratio graphene/sodium cholate
1:1 was exposed to a ten times lower amount of energy than dispersions A and B. This
implies that the absorbed amount of energy per graphene unit was the same as in the
case of sample A and ten times less than for sample B. Graphene for dispersion C did
not have to be sonicated additionally, since it had been obtained in the form of a sta-
ble aqueous solution after 100 hours sonication of graphite of concentration 5 mg/ml
in 0.1 mg/ml solution of sodium cholate, followed by centrifugation, resulting in a final
concentration of graphene of 0.1 mg/ml [132]. The experimental details can be found
in [130].

In order to obtain a rough indication of the size distributions in the exfoliated aqueous
dispersions of graphene/sodium cholate, dynamic-light-scattering measurements were
performed. The graphene platelets can be quite accurately described as two two-
dimensional objects, so the data obtained from dynamic-light-scattering measurements
are not the real dimensions of the platelets but rather the effective hydrodynamic diam-
eter of an equivalent sphere described by tumbling platelets [133]. From the dynamic-
light-scattering measurements the dispersions turned out to have quite some variation in
their size distributions, with a difference in the average values as well as a difference in
the thickness of the tail of the distribution for large sheets. See Fig. 3.4. In order to ra-
tionalise these experimental observations we attempt to assess whether the difference in
the percolation thresholds could be explained by the variations in the size distributions.
For this we make use of Eq. (2.21).

To determine the required moments of the distribution, we presume the thickness of
the graphene sheets to be a constant and, hence, the diameter and thickness distribution
to be independent. This may be a tenuous approximation because one might expect that
in the sonication process the probability of a thinner sheet to break up into smaller ones
to be larger than that of a thicker one. However, due to a lack of experimental informa-
tion, we for simplicity invoke this approximation that should allow us to assess whether
the discrepancies in the observed percolation thresholds are caused by a polydispersity
in the diameters. Given the distributions of the diameters, there are two tuneable pa-
rameters in the model: the sheet thickness L and the hopping distance λ, which is the
largest separation between two particles that still allows a charge carrier to hop from
one graphene sheet to the other. We take L = 0.3 nm as a typical value and in view
of the sensitive dependence of the model on λ and the fact that its exact value is not
known accurately, we take three sensible values for λ to fit the data: λ = 0.9, 1.2 and 1.5
nm [97]. The volume fractions ϕp we find are then converted into weight fractions using
a conversion factor of 2, because the density of graphene is twice that of the polymer.
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Figure 3.4: The diameter distributions that follow from the dynamic-light-scattering mea-
surements of the four graphene nanocomposites under consideration.

The results are shown in Table 3.1.

Table 3.1: Experimentally determined percolation thresholds for polystyrene/graphene
nanocomposites based on the four aqueous graphene dispersions A, A-LC, B and C using sodium
cholate as a surfactant and the corresponding theoretical predictions for different values of the
hopping distance λ.

dispersion A (wt %) B (wt %) A-LC (wt %) C (wt %)
experiment 2.0 3.0 2.3 4.5

theory (λ = 0.9 nm) 3.4 4.9 4.3 4.6
theory (λ = 1.2 nm) 2.6 3.7 3.2 3.4
theory (λ = 1.5 nm) 2.0 2.9 2.5 2.7

The agreement between theory and experiment is remarkably good, considering the
crudeness of the model. Indeed, for all three values of the hopping distance λ, the trends
fully agree. For λ = 1.5 nm the numerical agreement between theory and experiment
is almost perfect for composites A, B, and A-LC, but this value underestimates the
experimental value of composite C. For λ = 0.9 nm nanocomposite C exhibits the
best numerical agreement, but for the same λ the other three theoretical values are
significantly larger than the corresponding experimental ones. Hence, λ = 0.9 nm and
λ = 1.5 nm give a lower and upper bound on the hopping distance, whereas the value
λ = 1.2 nm provides a compromise that fits all four systems reasonably well. As already
alluded to, we use three values of the hopping distance because its value is not known
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accurately, but the lower and upper bound λ = 0.9 and λ = 1.5 nm we find are in
agreement with the estimate of λ = 1 nm used in chapter 2 [97]. The thickness of the
graphene is not used as a fitting parameter, but it is kept at a constant value L = 0.3
nm. However, nanocomposite C shows the highest UV absorbance and therefore has
the highest degree of exfoliation [130]. This means that the sheets in dispersion C are
presumably thinner than those in the other three dispersions and that L = 0.3 nm is quite
accurate for dispersion C but it may be too low a value for the other three systems, i.e.,
the sheets of the other three may consist of a few layers of graphene and are not actually
graphene but graphite platelets. However, a larger value of the thickness L as a fit
parameter would only raise the theoretically predicted values and make the discrepancy
larger for any value of the hopping distance λ. An interesting point to note here is that
the graphene sheets are modelled as flat disks in the model, which obviously is not the
case in practice. Indeed, if the sheets in aqueous graphene dispersion C are thinner than
those in the other three dispersions because of the higher degree of exfoliation, their
effective diameter as observed in the dynamic-light-scattering measurements should be
smaller, which in fact is the case. The diameter in the model then represents this effective
sheet diameter, which leads to a good agreement between experiment and theory for the
polystyrene/graphene nanocomposite based on this dispersion.

Again, one could argue that even though the theoretical values of the percolation
thresholds for the nanocomposites based on dispersions A, B and A-LC are too high for
λ = 1.2 and λ = 1.5 nm and would be even higher with a larger thickness as indicated
above, the trend in them agrees with that in the experimental values. This means that
there could be a systematic deviation in the theoretical predictions, which could, e.g.,
be due to attractive van der Waals interactions that are not accounted for in the model,
and that have been shown to lower the percolation threshold of carbon nanotubes in a
polystyrene matrix considerably [97]. Here, it must be noted that the attraction should
not be too large because that would lead to stacking of sheets (or bundling of nanotubes),
which would raise the percolation threshold of the polystyrene/graphene nanocomposite.
So, if the effect of such a systematic deviation in nanocomposites A, A-LC and B is the
same, then we could argue that the differences between their percolation thresholds are
indeed related to the polydispersities of their sheet diameters.

3.4 Discussion and conclusions

In this chapter we have applied the results from chapter 2 to physically more realistic
size distributions of carbon nanotubes and graphene sheets than the binary dispersions
from chapter 2 that served as an example to demonstrate the potentially huge impact
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of polydispersity on the percolation threshold. We find that the inverse-aspect-ratio
scaling of the percolation threshold, although often assumed, only holds if the length
and width distributions are uncorrelated, which, as pointed out before, may be quite
a strong assumption considering the sonication step often applied in nanocomposite
production processes. If the length and width distributions are indeed uncorrelated, we
deduce for a binary system that a distribution that is strongly skewed towards the short
rods produces the lowest percolation threshold relative to that of the monodisperse one
with the same average length. For the plausibly more realistic length distributions such
as the Gamma and Weibull distributions, we also find a large decrease in the percolation
threshold, again only if the distribution is strongly skewed towards shorter lengths.

This may seem somewhat surprising because ϕp(x)/ϕp(x0) = 1/(s + 1), with s ≡
Var(Li)/ 〈Li〉2i , depends only on the ratio of the variance and the mean of the rod
lengths. However, it so happens that a large positive skewness γ is a necessary condition
for a significant decrease of the percolation threshold, and that a large variance is not
sufficient to obtain a large value of the parameter s that is required for such a decrease.
The reason is that a standard deviation of a positive stochastic variable cannot be large
compared to the mean value unless the distribution is strongly skewed. This we cannot
prove conclusively from our results for the Gamma and Weibull distributions because
these distributions have only two independent moments. For these distributions only
one moment can be varied independently, and for a fixed average length a large positive
skewness goes hand in hand with a large value of s. On the other hand, for symmetric
distributions, so without any skewness, we can show that the one with the largest value
of s, which is a bidisperse mixture, has a maximum value of s = 1. We refer to Appendix
3.A for details. This means that the largest decrease of the percolation threshold as a
result of a symmetric length distribution is a factor two.

From the bidisperse mixture in Fig. 2.3 in chapter 2 we have seen that a considerably
larger reduction of the percolation threshold can be obtained by taking a distribution
that is strongly skewed. Also, from our results for the skewed Gamma and Weibull dis-
tributions it follows that polydispersity can cause the percolation threshold to decrease
much more than this factor of two. It is for these reasons that a large positive skewness
in the length distribution is a requirement for a significant decrease in the percolation
threshold. Still, for the realistic distributions with a large skewness we studied, the
effect of length polydispersity appears not to be strong enough to explain the scatter
of multiple orders of magnitude in observed percolation thresholds of carbon nanotubes
with the same average dimensions [101]. We speculate that the few size distributions
available in the literature [110, 111, 119–124] are not representative for the actual ones
encountered in practice. Although it remains a speculation, we feel it is plausible because
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sonication and in some cases other preparation procedures, like screw extrusion [134],
cause a larger skewness towards short lengths.

These processing steps may in fact have an additional and rather profound effect on
the percolation threshold because the breakup of larger nanotubes into smaller ones may
induce a positive correlation between the length and diameter distribution. This leads
to a completely different situation from the one where their covariance is zero. Most
importantly, we find that neither the aspect ratio nor the length of the carbon nanotubes
is the determining factor for the percolation threshold, but there is a sensitive dependence
on the coupling of the distribution functions and the relevant higher-order moments.
A linear correlation seems plausible for single-walled carbon nanotubes because the
probability of breaking is proportional to the scission energy, which in turn scales with
the number of bonds to be broken and has a linear relation with the perimeter. In that
case the effect of polydispersity is exactly the reverse of what we observe for independent
distributions: polydispersity raises the percolation threshold and the effect is stronger
for a larger positive skewness in the distribution.

The sensitivity to the coupling is exemplified even more if we assume the length
to be proportional to the square of the diameter, which seems more appropriate for
multi-walled carbon nanotubes because for those the number of bonds scales linearly
with the area of the cross section. This correlation would remove the dependence of the
percolation threshold on the distributions altogether. Therefore, control of the break-up
process and monitoring the relation between the size distributions could be essential if
as low as possible a percolation threshold is required for the envisaged nanocomposite
application.

A similar conclusion we can also draw for graphene sheets, not only theoretically
but this also follows from the observed sensitive dependence of the percolation threshold
on relatively modest variations in the size distribution. Our model seems to explain
the trends in the observed percolation thresholds, even though the accuracy of our
second-virial approximation should be much lower for plate-like particles than for rod-
like ones, as shown in chapter 2. Indeed, the trend in the theoretical predictions for all
four graphene nanocomposites is in agreement with percolation thresholds as measured
by dynamic light scattering, suggesting that size polydispersity is indeed an important
factor determining the electrical percolation threshold. The comparison provides a lower
and upper bound for the hopping distance of λ = 0.9 nm and λ = 1.5 nm, respectively.

In the next chapters we aim to investigate the impact on the network formation of
other aspects that play a role in the nanocomposite processing, such as particle align-
ment in chapter 5.
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3.A Symmetric length distributions

We consider symmetric distributions, i.e., with zero skewness, to compute the maxi-
mum effect the spread in the length distribution can have on the percolation threshold,
i.e., the largest value of s in ϕp(x)/ϕp(x0) = 1/(s + 1) that was derived in section 2.3.
For a truly symmetric distribution we can write

〈Li〉i =
1
2

(Llong + Lshort) , (3.1)

with Llong (Lshort) the length of the longest (shortest) rod in the distribution.‡ In that
case we find that the largest value of s = Var(Li)/ 〈Li〉2i = 4Var(Li)/ (Llong + Lshort)

2

for given Llong and Lshort is obtained for a distribution with all Li taking either the
value Llong or Lshort, because any rod with a length larger than Lshort or smaller than
Llong would lower Var(Li). Obviously, the number of rods with length Llong and Lshort

must be equal to make the distribution symmetric. This then implies that a bidisperse
distribution with a probability density

f(L) =
1
2
δ(L− Llong) +

1
2
δ(L− Lshort), (3.2)

with δ the familiar Dirac delta function, produces the largest value of s feasible for
symmetric distributions. If we write Llong = nLshort with n a real number larger than
unity, as we did for the bidisperse mixture in Fig. 2.3, we find Var(Li) = L2

short(n
2 −

1)/4, and 〈Li〉i = 1
2Lshort(n + 1), and

s =
(n− 1)2

(n + 1)2
. (3.3)

Expression (3.3) for s is a monotonically increasing function of n and has a max-
imum value of 1 in the limit of n → ∞, i.e., for an infinite length ratio. With
ϕp(x)/ϕp(x0) = 1/(s+1) this means that the reduction of the percolation threshold that
can be obtained with a symmetric length distribution is at most a factor 2 relative to
that of the monodisperse case, denoted by x0 and achieved for the limit Lshort → Llong.

‡For a Gaussian distribution centred around 〈Lk〉k this is not strictly the case because by definition
Lk > 0; however, for s ¿ 1 it becomes approximately true with Lshort = 0 and Llong = 2 〈Lk〉k.





4
Conductivity of temporal networks of

rod-like particles

We present a model for the electrical conductivity of a percolating statistical network
of rod-like particles in a solvent. We invoke the analogy between continuum percola-
tion of rod-like particles and percolation on a Bethe lattice, and from that deduce that
for particle loadings just above the percolation threshold, the microscopic conductivity
should increase quadratically with the concentration albeit that for larger concentrations
this crosses over to a linear concentration dependence. The width of the quadratic regime
turns out to be the narrower the larger the aspect ratio of the rods. We compare our pre-
dictions with experiments on solid-state composites that were produced from dispersions
containing carbon nanotubes and electrochemically grown silver nanowires, and find for
nanotubes that our prediction for the conductivity exponent of 2 for particle loadings just
above the percolation threshold and 1 for larger concentrations seems reasonable. How-
ever, the experiments on silver nanowires exhibit much higher exponents with a large
scatter for particles with different aspect ratios.

73
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4.1 Introduction

In chapters 2 and 3 we applied continuum connectedness-percolation theory to tran-
sient (temporal) networks of anisometric particles and investigated the effect of polydis-
persity in size and connectivity range on the percolation threshold, i.e., the minimum
loading required to form a system-spanning network. Around this critical loading the
quantity of interest, e.g., the conductivity of the system, increases many orders of mag-
nitude. In these chapters we limited ourselves to the value of the percolation threshold,
as in fact we do in the next chapter 5, where we compute how an externally applied
alignment field acts upon it and how this field affects the cluster sizes and shapes upon
approach of the percolation threshold. In this chapter we focus on the conductivity
itself, that is, beyond the percolation threshold, and assess how strongly it increases
with increasing particle loadings. The approach we follow is to make use of the analogy
between continuum percolation of rod-like particles and site percolation on a Bethe lat-
tice suggested and exploited recently by Chatterjee [109]. Site and bond percolation on
Bethe lattices have been studied extensively in the literature, allowing us to translate
predictions based on it to conductivity in connectedness-percolation networks of rod-like
particles in solution.

In chapter 1 we briefly discussed the critical behaviour of the conductivity Σ of a
system of connected particles just above the percolation threshold, a volume fraction
ϕp,

Σ ∼ |ϕ− ϕp|t, (4.1)

for volume fractions ϕ − ϕp ¿ 1 and where t indicates a critical exponent. In mean-
field theory (supposedly exact for rod-like particles with infinite aspect ratio) t = 3,
whereas beyond mean-field theory t = 2 [25]. The value t = 3 is the conductivity
exponent in dc = 6 of more dimensions, where dc is the critical dimension above which
mean-field theory becomes exact [25]. For spherical particles, for which the mean-field
approximation should not be accurate, experimental values for quite diverse systems
such as carbon black, oxide-based thick film resistors, and granular metals exhibit a
huge scatter and range from t = 1 to t = 11 [33]. However, even for rod-like particles
such as carbon nanotubes for which mean-field theory should be accurate, no universal
behaviour is observed either, because experimental values for the exponent range from
0.9 to 7.6, albeit that most studies do point at a value of about 2 [135]. To explain the
discrepancy, theories have been put forward suggesting that the critical conductivity
exponent, close to the percolation threshold, consists of the sum of a universal part, t,
and a non-universal part often denoted u that depends on the particular system under
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study and that depends on, e.g., the distribution of contact resistivities between touching
or nearly touching particle parts of the percolating electrical network [30, 144, 145]. In
this case Eq. (4.1) transforms to Σ ∼ |ϕ−ϕp|t+u. Note that away from the percolation
threshold the scaling relation Eq. (4.1) need not hold, although often it seems to do.
There is no reason to suspect that the critical exponent t remains the same, and, indeed,
many experimental measurements of t in particular in carbon-nanotube composites are
done far from rather than close to ϕp.

The formalism of connectedness-percolation theory that we have used in chapters 2
and 3 and that we apply again in the next chapter 5, allows for the computation of the
weight-average cluster size S via the connectedness function P , as explained in chapter
1, but provides no information on the full distribution of the cluster sizes. Moreover,
continuum connectedness theory breaks down above the percolation threshold, as may
be deduced from the fact that S ∝ (ϕp−ϕ)−1 < 0 for ϕ > ϕp. This means that in order
to make predictions for the properties of the network beyond the percolation threshold,
we should somehow “subtract” the infinite cluster and consider the remaining clusters,
which is a non-trivial modification of the theory as we have used it so far. It is for this
reason that we take the following alternative approach.

In chapter 2 we showed that the neglect of loop correlations in the second-virial
approximation is an accurate closure for rod-like particles, provided the ratio D2/λL

is sufficiently small, with D the rod diameter, L its length, and λ the typical hopping
distance. The analogy with percolation on a cycle-free Bethe lattice enabled us to
understand the findings we obtained for the presence of non-conducting particles in the
dispersion. In this chapter we once again invoke this analogy to predict the conductivity
of an infinite network of rod-like particles above the percolation threshold, where we need
not limit ourselves to particle loadings that are only slightly higher than the critical value
as is the case in Eq. (4.1). We make use of a theory by Stinchcombe [136,137] for what
is often considered to be a microscopic conductivity that gives conductivity exponent of
t = 2 instead of the mean-field exponent t = 3 one expects for the Bethe lattice [138,139].
We focus on the microscopic conductivity because it allows us to make predictions for
the conductivity beyond the critical regime, which in fact is very small and even goes to
zero width in the limit of infinite an aspect ratio of the rods. Because the macroscopic
conductivity can be calculated, albeit non-trivially, from the microscopic conductivity,
we believe that this conclusion transfers to the macroscopic conductivity.

We find that if the contact resistivities of connected rod-like particles are fixed, the
conductivity of the network should increase quadratically with the particle loading just
above the percolation threshold but linearly beyond that. It is important to emphasise
that these values may coincide with the values t = 2 close to the percolation threshold for,
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e.g., spherical particles [25] and t = 1 away from it as follows from an Effective-Medium
Approximation [140], but our results are specific for our system of rod-like particles
without loop correlations. In section 4.2 we present the model for the conductivity by
using established results for cluster growth on the Bethe lattice, and present an intuitive
picture for our results in section 4.3. Next, we compare our results to experiments on
composites containing carbon nanotubes and silver nanowires in section 4.4. Finally, we
draw our conclusions and discuss our results in section 4.5.

4.2 Model

The electrical conductivity Σ and its dependence on the concentration beyond the
percolation threshold has been investigated extensively on a Bethe lattice [136, 137],
which allows us, as announced in the introduction, to invoke the analogy with perco-
lation of rod-like particles in continuum space. We again emphasise that the type of
conductivity our theory predicts is presumably microscopic, but it will turn out to give
reasonable results and on top of that it allows for predictions beyond the critical regime.
We explicitly make use of the fact that the Bethe lattice is a cycle-free tree, which, again,
is analogous to the absence of loop correlations in the second-virial approximation that
we used as a closure in these earlier chapters. See also Fig. 4.1. The lattice consists of z

branches per site, so in order to translate the results from the Bethe lattice to our rod-
like particles, we have to determine the value of z for rod-like particles. The connection
between percolation on a Bethe lattice and continuum percolation of penetrable rods
was recently made by Chatterjee by invoking the contact-volume argument (see chapter
1) [109]. With this approach our Eq. (2.14) can be retrieved for penetrable particles
with independent length and diameter distribution to leading order in the coefficient of
variation of the diameter distribution (see section 2.4) [109]. Apparently, it is even pos-
sible to fully reproduce Eq. (2.14) for hard particles with coupled length and diameter
distribution [147].

The mapping Chatterjee makes is as follows. The first step is to compute the average
number of contacts 〈n〉, i.e., intersections, a spherocylinder of length L and diameter
D has with other particles of the same length in a dispersion, presuming they are ran-
domly distributed. In the connectedness model that we applied in chapters 2 and 3,
we considered two particles to be connected if their connectedness zones overlap. (For
rod-like particles this sharp cutoff turned out to be equivalent to an exponentially de-
caying probability of being connected.) Hence, in order to adapt Chatterjee’s theory to
our model, we replace the contact volume πL2D/2 for ideal rods by that of hard rods,
πL2λ/2, with λ the connectedness distance presumed fixed and the same for all rods.
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Figure 4.1: A part of a Bethe lattice above the percolation threshold for z = 3, so every site
has three neighbours. The bonds that are part of the percolating network are shown by the
solid lines. The backbone of the percolating path is shown by the thick solid lines, whereas
the dangling ends are indicated by the thin solid lines. The former contribute to the charge
transport, whereas the latter do not.

This gives to leading order

〈n〉 = 2ϕ
λL

D2
(4.2)

for L/D À 1, with ϕ the volume fraction of rods [163]. The next step is to equate 〈n〉 to
the average number of occupied neighbours any site has on a Bethe lattice with vertex
degree z and probability p of a site being occupied. The average number of occupied
neighbouring sites np equals pz, because this is simply the average of the binomial
probability distribution of np with z “trials” a probability p of “success”. Chatterjee
finally argues that a rod-like particle in continuum space is analogous to an occupied
site on the lattice, implying that a bond in the lattice represents the contact between
two rods. Then it follows that p = ϕ and np = 〈n〉 and, as a result, z = 〈n〉/ϕ with 〈n〉
given by Eq. (4.2).

Inserting Eq. (4.2) gives for the equivalent number of branches z per lattice site to
leading order

z =
2L

D

λ

D
, (4.3)
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for large aspect ratios L/D À 1. Because for percolation on a Bethe lattice ϕp =
1/(z − 1) ≈ 1/z for large z, so we obtain ϕp = D2/2λL, consistent with our result of
chapter 2. Eq. (4.3) together with the identification ϕ = p constitutes the mapping
of percolation on a Bethe lattice on the continuum percolation of rods. It hinges on
the second-virial approximation being accurate, which is only true for slender rods.
Indeed, z can also be identified as two times the ratio of the second-virial contribution
in the expansion of the direct-connectedness function C+ over the third, as discussed in
Appendix 2.A. The second-virial approximation that we make of neglecting this third
term is valid for L/D À 1 or ϕ ¿ 1, so the larger z, the more accurate it is. For
single-walled carbon nanotubes D ≈ λ, whilst for multi-walled nanotubes D is a few
times larger than λ [97]. On the other hand, the silver nanowires that we compare our
results to in section 4.4 have an aspect ratio 8, 16, and 31, so the approximation of large
values of z may not be very accurate.

Figure 4.2: The conductivity Σ of the Bethe lattice on a double logarithmic scale, normalised
to the value Σ1 of a bond, as a function of the volume fraction ϕ relative to the percolation
threshold ϕp = 1/9 (so z = 10, dashed line), ϕp = 1/99 (z = 100, dashdotted line), and
ϕp = 1/999 (z = 1000, solid line). After a small interval of quadratic increase, the conductivity
increases linearly with the concentration ϕ for large enough coordination number z, as shown
by the dotted lines with slopes 1 and 2.

The conductivity of networks on the Bethe lattice can be computed by using the fact
that there are no loops, implying that it is a network of parallel paths of resistances that
are connected in series [137]. By using moment-generating functions for the distribution
of bond resistivities, an implicit equation for the conductivity of the network can be
derived. For a binary distribution of conductivities, i.e., only conducting and insulating
bonds, and in the limit of large coordination number z À 1, the resulting microscopic
conductivities, defined as that between any node in the network and all nodes at the
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end of the tree presumed infinitely large, can be approximated by [137]

Σ
Σ1

∼ − ϕ

ϕp

(
ϕp

ϕ
− 1 +

ϕ2
p

ϕ2

(
1− ϕp

ϕ

)
(1− ϕ)

)
+O

(
ϕp

ϕ

)3

, (4.4)

if we express it in terms of our continuum percolation model of hard rods in continuous
space, and where Σ1 is the conductivity of a bond, and ϕp = 1/(z − 1) ≈ 1/z. We
neglected higher-order terms in ϕp/ϕ that are of order 1/z3, so very small for large z.
We plotted Eq. (4.4) in Fig. 4.2 for three values of z. The conductivity initially increases
as Σ ∼ (ϕ−ϕp)2 with exponent t = 2 for ϕ−ϕp < ϕp in the limit of very large z, after
which it exhibits a linear increase with the concentration ϕ for ϕ−ϕp & 1/z ≈ ϕp. For
0 ≤ ϕ− ϕp < ϕp the quadratic dependence holds, which indeed is a very small interval
for large aspect ratios of rods [137].

The above result may not provide a clear physical picture of the origin of the con-
ductivity exponents, so we rationalise it in the next section by computing the fraction
of the lattice that contributes to the charge transport, the so-called backbone fraction.

4.3 Backbone fraction

To rationalise the findings of section 4.2, we next present an analysis of the conduc-
tivity of networks of rods by considering what fraction of sites on a lattice contributes
to the percolating electrical networks. We consider site percolation and not bond perco-
lation, because in our mapping a site is equivalent to the position of a rod-like particle.
A percolating cluster is a sparse network, meaning not only that the network occupies
only a fraction of three-dimensional space but also that not all particles in the infinite
cluster contribute to the charge transport. The branches that have no contribution to
the macroscopic charge transport are called dead or dangling ends and the part of the
cluster that does contribute is referred to as the backbone. See Fig. 4.1. It is this
fraction that contributes to the conductivity, although often the overall fraction of sites
part of the percolating network, given by the backbone and the dangling ends, is taken
as a measure of the level of conductivity produced by the network. As we shall see, only
the backbone fraction reproduces the prediction of Eq. (4.4).

The Bethe lattice with z branches per lattices site has a percolation threshold of
pp = 1/(z − 1), where p is the probability of a site being occupied. The percolation
probability F is the probability that an arbitrarily selected site is part of an infinite
conducting path. If R is the probability that any of the z branches arbitrarily chosen
that sprouts from a given site is not infinitely long, then [136,137]

F (p) = 1−R(p)z, (4.5)
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because the probability R for a branch is independent of that of another branch. So,
R(p) = 1 for p ≤ pp and 0 ≤ R(p) < 1 for p > pp. If the branch that has been chosen
is finite, then either the site 1 that begins with it is unoccupied with probability 1− p,
or if it is occupied (with probability p) the other remaining z − 1 branches that sprout
from site 1 are finite (with probability Rz−1), hence

R = 1− p + pRz−1, (4.6)

which provides us with an implicit equation for R, so we can calculate F from that. See
Fig. 4.3. F depends differently on p and hence on ϕ than Σ, telling us indeed that the
conductivity is not proportional to the fraction of particles that is part of the percolating
network.

The percolation probability determines the percolation fraction PS , which is the
fraction of sites in the Bethe lattice belonging to an infinite cluster of occupied sites.
The backbone fraction BS is then defined as the part of PS that would carry current if
a voltage drop were imposed across the infinite cluster [141]. The percolation fraction
PS is closely related to the percolation probability F (p):

PS = pF, (4.7)

because PS is the probability that a randomly selected is occupied, p, times the proba-
bility that it is part of the infinite network, F . One can calculate the tag-end fraction,
which is the fraction of occupied sites that are connected to an infinite cluster but are
not part of the backbone of that fraction, by considering the sites one must pass to cross
the network. It then follows that the backbone fraction BS obeys [141]

BS = (z − 1)PS + zp

(
1−

(
1− PS

p

)(z−1)/z
)
≈ 2zpF, (4.8)

where the approximation holds for large values of z. The functional dependence of BS

on the packing fraction is shown in Fig. 4.3 for various values of z, i.e., of ϕp. For
ϕ = p close to the percolation threshold ϕp = 1/(z − 1), an expansion around ϕp for
ϕ − ϕp ¿ ϕp shows that BS increases with (ϕ − ϕp)2, so indeed the exponent for the
conductivity Σ that we discussed in section 4.2 [141, 142]. For larger values of ϕ, BS

increases linearly with (ϕ − ϕp) if value of (ϕ − ϕp)/ϕp exceeds unity, analogous to
what we observed above for the conductivity. For large coordination numbers z this
also follows from Eqs. (4.5), (4.6), (4.7), and (4.8). Indeed, we find that F ≈ 1 for
ϕ − ϕp > ϕp because then R(ϕ) ≈ 1, PS ≈ ϕ, and as a result BS ∝ ϕ. It also follows
from Fig. 4.3 that Bs/(Σ/Σ1) depends only very weakly on ϕ for large values of z,
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Figure 4.3: The percolation probability F (a) and the backbone fraction BS (b) of the Bethe
lattice, which plausibly is a measure of the conductivity, shown on a double logarithmic scale
as a function of the concentration ϕ relative to the percolation threshold ϕp. The curves are
for ϕp = 1/9 (so z = 10, dashed line), ϕp = 1/99 (z = 100, dashdotted line), and ϕp = 1/999
(z = 1000, solid line). Close to the percolation threshold ϕp, BS grows quadratically with ϕ
for large enough z, after which it increases linearly. The crossover occurs for (ϕ− ϕp)/ϕp ≈ 1,
as expected. Inset: for z = 100 (top) and z = 1000 (bottom), BS/(Σ/Σ1) depends only very
weakly on ϕ.

i.e., for large aspect ratios of the rods, so indeed the conductivity seems to be almost
proportional to the backbone fraction.

In conclusion, the theoretical result for the quadratic and then linear regime in the
conductivity from section 4.2 can be understood by considering the backbone fraction of
links. In the next section we compare our predictions with experimental observations.

4.4 Comparison with experiments

In this section we test our predictions from section 4.2 against experimentally de-
termined values of the electrical conductivity of networks or rod-like particles. First
we consider composites containing carbon nanotubes that we have considered before in
chapters 2 and 3. In Fig. 4.4 a curve fit using Eq. (4.4) is shown to a composite of
multi-walled nanotubes and polystyrene stabilised with the surfactant sodium dodecyl
sulfate (SDS), with a percolation threshold of ϕp ≈ 0.006. From Eq. (4.3), ϕp ≈ 1/z,
and D ≈ 5λ, we find that L/D ≈ 400 for this composite, which is larger than the
observed aspect ratio of 150 in the experiments, but of the same order of magnitude.
Our prediction seems to fit the data reasonably well, albeit that the available range of
data points for ϕ− ϕp is quite narrow and does not quite enter the regime where t = 1
is expected. This means that the data seems to obey our prediction of t = 2 close to
percolation threshold. For the curve fits we have to make a choice for the value of Σ1

and we return to this in section 4.5.
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Figure 4.4: Curve fit to experimentally obtained conductivities (dots) for composites of
polystyrene and multi-walled carbon nanotubes on a double logarithmic scale, using Eq. (4.4),
where Σ1 = 70 S/m has been taken to make the best fit. The conductivity Σ/Σ1 is shown as a
function of the concentration ϕ for ϕp = 0.006 (solid line) and ϕp = 0.0065 (dashed line) (a),
and as a function of (ϕ− ϕp)/ϕp for ϕp = 0.006 (b). The former graph is very sensitive to the
choice of ϕp, whereas the latter is not. The error bars are roughly half an order of magnitude
in the conductivity.

Fig. 4.5 shows a curve fit to conductivities of composites of single-walled carbon
nanotubes in polystyrene, where one dispersion was stabilised using SDS and one using
the polymer latex PEDOT:PSS that we discussed in chapter 2 as a conductive coating
material [27]. The system with PEDOT:PSS has a percolation threshold of ϕp ≈ 0.001
and the curve fit of Eq. (4.4) matches the data quite well. The percolation threshold
gives from Eq. (4.3), and D ≈ λ for single-walled nanotubes [97], that L/D ≈ 500,
which is in the same order of magnitude as the experimentally determined value of
500 − 1000 [148]. For the system with SDS as stabiliser, the percolation threshold is
ϕp ≈ 0.0025, giving an average aspect ratio of L/D ≈ 200, and the fit of the conductivity
using Eq. (4.4) is less accurate than for the system with PEDOT:PSS. It must be
remarked that in both cases the uncertainty in the data points is quite large [27]. Note
also the large difference in the percolation thresholds of the three systems we consider,
which shows the sensitive dependence on the processing conditions [23].

This sensitivity is also observed in different experiments on multi-walled carbon
nanotubes, in which the mixture was evaporated and freeze-dried and conductivity ex-
ponents of 1.7 and 3.9 have been obtained, respectively [108]. Both of these exponents
were obtained in the regime that according to our calculations should give t = 2. Con-
ductivity measurements have also been performed with other types of rod-like nanofiller,
such as electrochemically grown silver nanowires in polystyrene. For rods with an as-
pect ratio of 8, 16, and 31, conductivity exponents of t = 3.3, 6.7, and 2.8 have been
obtained, respectively [20]. These also fall in the regime where we expect t = 2, so the
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Figure 4.5: Curve fit of Eq. (4.4) to experimentally obtained conductivities on a double
logarithmic scale for composites of polystyrene and single-walled carbon nanotubes that were
stabilised using the polymer latex PEDOT:PSS (a) and the surfactant sodium dodecyl sulfate
(SDS) (b) [27]. The data of PEDOT:PSS is fitted with Σ1 = 50 S/m and ϕp = 0.0008 (solid
line) and ϕp = 0.0012 (dashed line). With SDS the conductivity is fitted with Σ1 = 20 S/m,
ϕp = 0.0023 (solid line) and ϕp = 0.0027 (dashed line). Insets: the conductivity as a function
of (ϕ − ϕp)/ϕp, which is not so sensitive to the choice of ϕp. The values ϕp = 0.001 (a) and
ϕp = 0.0025 (b) have been taken.

range of experimental values is too narrow to verify our prediction of t = 1 for larger
concentrations.

4.5 Conclusions and discussion

In this chapter we have presented a model for the electrical conductivity of temporal
percolating networks of randomly dispersed rod-like particles, where we again invoked
the analogy between continuum percolation of rods and percolation on a Bethe lattice
that is based on the absence of loop correlations in both. We extended the connection
for penetrable rods as made by Chatterjee to hard particles [109], and find that the
number of branches per lattice site z, which satisfies z ≈ 1/ϕp, with ϕp the percolation
threshold, is of the order of the aspect ratio of the rods. For carbon nanotubes this is a
very large number, which allows us to consider the limiting case of very large z and to
derive analytical expressions for the conductivity.

According to our predictions, the conductivity should increase quadratically for con-
centrations that satisfy ϕ − ϕp ≤ ϕp, i.e., just above the percolation threshold ϕp ¿ 1
for large z (large aspect ratio). Beyond this regime we find a linear increase of the con-
ductivity with increasing particle loading. We rationalised our findings by noting that
the conductivity is governed by the backbone fraction of the percolating network and
not by the so-called dangling chains. For this backbone fraction on a Bethe lattice the
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exponent is 2 close to the percolation threshold and 1 for ϕ − ϕp > ϕp. We find that
the backbone fraction to a very good approximation proportional to the conductivity Σ
(see Fig. 4.3), so this supports our results for the conductivity.

We note that the theory in this chapter should be considered as tentative. We pre-
sumed that the conductivity on the idealised case of a Bethe lattice can be translated
into the conductivity of rods in real three-dimensional space, but it is not obvious that
this mapping is so straightforward to make [144]. We assumed a constant junction resis-
tivity of any contact between two rod-like particles, but any distribution in these resis-
tivities possibly has a large impact on the overall conductivity and our simplified model
presumably breaks down [137, 146]. More importantly, we focused on the microscopic
conductivity that gives a different critical exponent (t = 2) than what mean-field theory
predicts (t = 3) [25]. The main advantage of our approach, though, is that it allows for
predictions beyond the critical regime, which we have shown to be very small. Surpris-
ingly, our model for the microscopic conductivity predicts the macroscopic conductivities
that are observed in carbon-nanotube composites reasonably well. We speculate that
the type of conductivity one measures in an experiment depends on the way in which
the experiments are conducted, and perhaps the two-point and four-point measurements
often used in the experiments on such composites produce microscopic conductivities.

In fact, results for the Bethe lattice can provide quantitative predictions for con-
tinuum percolation of rods, because Chatterjee recently derived our Eq. (2.14) for the
effects of length and diameter polydispersity of rod-like particles on the percolation
threshold by using the same mapping of the Bethe lattice [147]. Indeed, the compari-
son with experimentally determined exponents shows reasonable agreement for the first
two systems with carbon nanotubes we considered, but strong deviations in the third
nanotube composite and the one with silver nanowires. The varying success in the fit-
ting of the three carbon-nanotube composites may be caused by the sensitivity of the
material properties on preparation route that we discussed in chapter 3, and the large
scatter observed in the exponents may be the result of a crossover from the regime were
t = 2 to that where t = 1. Making these curve fits requires a choice for the reference
conductivity Σ1 that in our mapping represents the conductivity of the bond between
two particles where hopping of charge carriers takes place, e.g., the polymer matrix
between them in the carbon-nanotube composite. The values we find for Σ1 for the nan-
otube composites are of the order or 10 S/m. It is difficult to compare these values to
macroscopic conductivities, because our model provides prediction for the microscopic
conductivities, as discussed above. In our model we presume the particles to have neg-
ligible resistivity, which is of course not completely true, particularly for single-walled
carbon nanotubes because in practice only one third of them are metallic and two thirds
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are semi-conducting.
Regarding the cited experiments on silver-nanowires, the aspect ratios of the parti-

cles (O(10)) are much smaller than, e.g., those of carbon nanotubes, but according to
our analysis of the backbone fraction on the Bethe lattice, they should still be large
enough to observe the linear dependence of the conductivity on the concentration. We
remark, though, that this aspect ratio may not be large enough for the second-virial
approximation to be accurate, and, consequently, the neglect of loop correlations that
allowed us to invoke the analogy with percolation on the Bethe lattice, to provide quan-
titative predictions [104]. In addition, the number of data points is very limited in these
experiments, so the uncertainty in these measurements is presumably quite large. We
note that very few experiments have been done in the range of particle loadings where
we expect t = 1 to be observed, i.e., for ϕ − ϕp > ϕp. The reason is presumably that
the purpose is usually to produce a nanocomposite with a loading of the (expensive)
nanofillers that is as low as possible. Also, such high loadings could lead to rheological
problems because of very high viscosities.

Hence, this suggests that more experimental data are required to assess whether our
theory is valid, and in particular, measurements far beyond the percolation threshold.
However, even a sufficiently large number of accurate measurements of the conductivity
may still exhibit a large spread in the exponents, as we also noted for the experiments
on silver nanowires [20]. This may be the result of the different processing conditions
that have been shown to have a large impact on the electrical conductivity and the com-
posite properties in general [23, 108]. However, it has been argued that non-universal
behaviour can even be expected in systems that are dominated by tunneling as a charge
transport mechanism [143]. The critical conductivity exponent, so close to the percola-
tion threshold, may in that case consist of a universal part t and a non-universal part
u that depends on the particular system under study [30, 144, 145], but these theories
make no prediction for the conductivity behaviour away from the percolation threshold.

We thank Evgeniy Tkalya for providing us with the experimental data on the carbon-
nanotube composites.





5
Connectedness percolation of hard

rod-like particles in an external field

An analytical theory is presented of how an external orienting field and excluded-
volume interactions conspire against the formation of a percolating network in fluid dis-
persions of elongated particles. We find the system-spanning network that forms above
some very low loading to break up again at higher loadings due to interaction-induced
enhancement of alignment of the particles. We also find that upon approach of the
percolation threshold the dimensions of the clusters of connected particles diverge differ-
ently in the directions parallel and perpendicular to the orienting field. This is caused
not by different critical exponents associated with these two directions but by different
prefactors.†

†The contents of this chapter are based on the following publication:
R. H. J. Otten and P. van der Schoot, Connectedness percolation of elongated nanoparticles in an
external field, submitted.
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5.1 Introduction

As discussed in chapters 2 and 3, high-aspect-ratio nanofillers potentially enhance
the physical properties of the material they are dispersed in. The main application we
focused on were composites containing carbon nanotubes or graphene sheets that acquire
(some of) the remarkable thermal, mechanical and electrical properties of these carbon
allotropes even at loadings below one volume per cent [18, 19]. In chapters 2 and 3 we
have seen how the percolation threshold, i.e., the critical concentration beyond which
clusters of connected particles are formed, and beyond which the conductivity of the
composite exhibits a massive increase, sensitively depends on the distributions of the
linear dimensions and connectivity ranges of the particles.

This polydispersity originates from the nanotube synthesis and the processing that
takes place in the fluid stages of the nanocomposite fabrication, e.g., ultrasonication,
compression moulding, compounding and extrusion [26, 149, 150]. If the fluid is not
allowed to relax post processing, this may not only affect the size distribution of the
particles, but also the network structure in the final solid product through alignment
of filler particles. In fact, particle alignment has been induced deliberately by electric
and magnetic fields to enhance and/or induce anisotropy in the conductivity of the
material [95, 151–153, 155]. Naively, one expects the percolation threshold to go up if
the particles become mutually aligned, as this increases the shortest distance separating
them. This is confirmed by computer simulations for penetrable sticks in two [151]
and three dimensions [154], and for impenetrable ones in three [153]. Contact-volume
theories confirm this also: the mean volume swept out by the particles decreases with
increasing alignment [95,151,156,157]. Unclarified, however, is how this competes with
the transition to the nematic liquid-crystalline phase, which takes place in the absence
and presence of orienting fields [158].

In order to shed light on this, we present an analytical theory showing how an
externally applied alignment field and excluded-volume interactions conspire against
the formation of a percolating network in fluid dispersions of elongated particles. Our
anisotropic continuum percolation theory self-consistently links (i) connectedness-
percolation theory for the cluster size and (ii) Onsager theory for the interplay be-
tween interactions and the field-induced particle alignment. Angular correlations be-
tween the particles, ignored in contact-volume theories, are explicitly taken into ac-
count [95,151,156,157]. We find that the system-spanning, self-assembled network form-
ing above some critical loading that depends on the strength of the external quadrupole
field, breaks up again at higher loadings. See Fig. 5.1. This kind of re-entrance behaviour
is caused by the interaction-induced enhancement of the alignment of the particles and
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not unlike disentanglement of rod-like particles in elongational flow fields [159]. For weak
fields, the densities at which this happens is preempted by the transition to the uniaxial
nematic phase. For sufficiently strong fields, the low-density percolation threshold is
suppressed completely.

Finally, according to our calculations the dimensions of the clusters are different
parallel and perpendicular to the field direction albeit that both diverge with the same
critical exponent. This field-induced cluster anisotropy might in thin-film setups be
utilised to fabricate nanocomposites with strongly anisotropic electrical conductivities
and with a very low particle loading [152,155].

5.2 Model ingredients

In our model, we presume the network to be formed in the fluid stages of the com-
posite processing and this network to be frozen in upon solidification. This allows us to
invoke the connectedness analog of the Ornstein-Zernike equation of liquid-state theory,
and calculate the (weight) average cluster size of connected particles, S. As introduced
in chapter 1 and used in chapters 2 and 3, we have within connectedness percolation
theory [34]

S = 1 + lim
q→0

ρ〈〈P̂ (q,u,u′)〉u〉u′ , (5.1)

in terms of the Fourier transform P̂ (q,u,u′) of the pair-connectedness function
P (r, r′, u, u′) that describes the probability that two particles at positions r and r′,
and with orientations u and u′, are part of the same cluster. In Eq. (5.1), ρ is the
overall number density of our particles, presumed cylindrical with a main body-axis
vector u that obeys an as yet unknown orientational probability distribution function
ψ(u). As defined before, 〈. . .〉u ≡

∫
du (. . .)ψ(u) denotes an orientational average, and

( ˆ. . .) =
∫

dr(. . .) exp(i q · r) a Fourier transform with q the wave vector [34,160].
As introduced in chapter 1, the connectedness function P can be calculated from the

connectedness Ornstein-Zernike equation [34], which in Fourier space reads

P̂ (q, u, u′) = f̂+(q, u, u′) + ρ
〈
f̂+(q,u,u′′)P̂ (q, u′′, u′)

〉
u′′ , (5.2)

if we invoke the second-virial approximation that replaces the direct-connectedness func-
tion C+ by the connectedness Mayer function f+. As shown in Appendix 2.A, this is
accurate provided the rod length is much larger than its width, which we presume to
be of the order of the typical distance over which charge transport can take place [160].
We have f+ = exp(−βu+), with β = 1/kBT , kB Boltzmann’s constant, and T the abso-
lute temperature. Charge transport enters effectively in Eq. (5.2) via u+ because it is
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the connectedness potential that we choose such as to mimic an exponentially decaying
conductivity between two rods, presumed impenetrable. This we do below.

Solving Eq. (5.2) for P̂ , averaging this function over the orientation distribution ψ(u)
and inserting this in Eq. (5.1) gives the cluster size S. The critical density ρp for which
this quantity diverges we identify with the percolation threshold. The distribution of the
particles in the absence of an external field is isotropic, ψ = 1/4π, at least for densities
below which the fluid undergoes a spontaneous transition to the uniaxial nematic liquid-
crystalline state. In the presence of an orienting field the distribution function becomes
a function of the strength of this field and the density of the particles.

The orientation distribution function we calculate from Onsager’s density functional
theory for impenetrable rods in an alignment field [13]. The degree of alignment of the
rods depends self-consistently on the sum of the external and molecular field strengths,
because the latter is a function of excluded-volume interactions that themselves are a
function of the degree of alignment. This makes ψ(u) depend on both the field strength
and the density. According to Onsager’s second-virial theory [13], it obeys the non-linear
self-consistent field equation [161,162]

log ψ(u) = µ + ρ
〈
f̂(0, u, u′)

〉
u′
− U(u), (5.3)

where f̂(0, u, u′) is the zero-wave vector Fourier transform of the Mayer function f(r, r′) =
exp(−βu) − 1 for the inter-particle interaction potential u, µ serves as a Lagrange pa-
rameter, and U is the dimensionless external potential.

We presume U to be of the quadrupole type, so U = βK cos2 ϑ, where K is the
field strength and ϑ the polar angle between the field direction and the main body-axis
vector. For negative values of K the rods align along the field direction (orienting field),
while for positive ones they align perpendicular to it (disorienting). The field strength
depends on the type of field that is used to align the particles. If we align them in
an electric field of strength E, and they do not have a permanent dipole moment, we
have K = −∆αE2/2 with ∆α their electric-polarisability anisotropy. For a magnetic
field, then K = −∆χH2/2 with H the magnetic-field strength and ∆χ the diamagnetic
susceptibility anisotropy of the rods. If they are coupled to an extensional flow field,
K = −3ε̇/4Dr, with ε̇ the strain rate and Dr the rotational diffusivity [162,163].

Eqs. (5.1), (5.2) and (5.3) form the basis of our model and connect the cluster size S,
the external field strength K, the orientation distribution function ψ, and the particle
density ρ. Evidently, the calculation of the particle density at which the mean cluster
size diverges (the percolation threshold) requires a self-consistent treatment of this set
of three equations. The complicating term here is the interaction term in Eq. (5.3)
that makes solving them a non-trivial exercise. To actually perform the calculation, we
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need to specify the connectedness potential u+ and the interaction potential u. Again,
we presume the rods to behave as mutually impenetrable, rigid cylinders of length L

and diameter D. This implies that u →∞ and u+ →∞ for all centreline-to-centreline
distances r < D between two rods. Furthermore, u = 0 for r > D.

As discussed in chapter 2, we effectively incorporate an exponentially decaying prob-
ability of charge transport between two rods for distances r > D in our description by
taking βu+ = (r −D)/λ, with λ the typical hopping distance. This produces an expo-
nentially decaying connectedness Mayer function that in our model describes short-range
correlations between connected particles. With these ingredients, presuming the rods to
be long relative to their width D and to the length λ, and using Straley’s [105] oblique
coordinate system, we find for nonzero wave vectors

f̂+
q = 2L2λj0(q · uL/2)j0(q · u′L/2)| sin γ| (5.4)

and

f̂q = −2L2Dj0(q · uL/2)j0(q · u′L/2)| sin γ|, (5.5)

at least in the slender-rod limit where L À λ,D and |q|D ¿ 1 [160]. Here, γ = γ(u, u′)
is the angle between two rods with orientations u and u′, and j0(x) ≡ sinx/x. See
section 2.3 for the derivation of f̂+ in the limit of zero wave vector. Here, we relax
this condition because we need nonzero wave vectors below in determining the cluster
anisotropy.

It turns out not to be necessary to know the full angular and wave-vector dependence
of the pair-connectedness function P̂ (q,u,u′) to calculate the percolation threshold.
The reason is that the cluster size can be written as S = 1 + ρ 〈g(u)〉u with g(u) ≡
〈P̂ (0,u, u′)〉u′ . The latter function we obtain from the Ornstein-Zernike equation Eq.
(5.2), which for q = 0 reduces to

g(u) =
〈
f̂+(0,u,u′)

〉
u′

+ ρ
〈
f̂+(0, u, u′)g(u′)

〉
u′

(5.6)

that can be viewed as a “reduced” Ornstein-Zernike equation. Because of the cylindrical
symmetry of the problem in hand, the angular distribution function ψ(u) = ψ(ϑ) de-
pends only on the polar angle ϑ, implying that the integration over the azimuthal angle
φ involves only the | sin γ| in the connectedness Mayer function that enters the reduced
Ornstein-Zernike equation.

Further headway can be made by expressing this integral over ϕ in terms of the
Legendre polynomials P2n [126] by invoking the addition theorem,

1
2π

∫ 2π

0

dφ′| sin γ| =
∞∑

n=0

d2nP2n(cosϑ)P2n(cos ϑ′), (5.7)
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with d0 = π/4, and

d2n = −π(4n + 1)
(2n− 3)!!(2n− 1)!!

22n+2n!(n + 1)!
, (5.8)

for n ≥ 1 [164]. If we use Eq. (5.7) in Eq. (5.6), we obtain an equation for g that
depends only on ϑ:

g(ϑ) =2L2λ

∞∑
n=0

d2nP2n(cos ϑ)
〈
P2n(cosϑ′)

〉
ϑ′

+ 2ρL2λ

∞∑
n=0

d2nP2n(cosϑ)
〈
P2n(cos ϑ′)g(ϑ′)

〉
ϑ′ , (5.9)

where the brackets denote an orientational average over the polar angle, so 〈m(ϑ)〉ϑ =∫
dϑ sin ϑ m(ϑ)ψ(ϑ). Because of cylindrical symmetry we next write ψ(u) = ψ(ϑ) =

(a0 + a2P2(cos ϑ) + a4P4(cos ϑ))/2π, where a0 = 1/2 because ψ is normalised. For
this expansion to be meaningful the last term needs to be subdominant, i.e., a4 ¿
a2. These expansions we insert in the reduced Ornstein-Zernike equation. Because
(i) we are not actually interested in the actual functional form of g(ϑ) but only in
an orientational average of this quantity that determines the cluster size, and (ii) we
truncate the expansion of the distribution function after the third term, we find that
we only need to account for three moments of the type 〈P2n(cos ϑ)g(ϑ)〉ϑ, i.e., those for
n = 0, 1, 2. To do so, we can use that for the product of two Legendre polynomials we
have

P2k(x)P2`(x) =
∑

n

(4n + 1)I2n,2k,2`P2n(x), (5.10)

with I2n,2k,2` = 0 if k + `−m < 0, k − ` + m < 0, or −k + ` + m < 0, and

I2n,2k,2` =
(2n + 2k − 2`)!(2n− 2k + 2`)!(−2n + 2k + 2`)!

(2n + 2k + 2` + 1)!
×

(
(n + k + `)!

(n + k − `)!(n− k + `)!(−n + k + `)!

)2

(5.11)

otherwise. If we compute from Eq. (5.9) 〈P2`g(ϑ)〉0, with 〈. . .〉0 ≡ (4π)−1
∫

du (. . .),
this gives a tri-diagonal matrix. A test of truncating the series after the ` = 2 shows that
it gives results for the percolation threshold that are numerically indistinguishable from
those found after truncating after ` = 3 and ` = 4, so we ignore the terms of 〈P6g(ϑ)〉ϑ
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and higher order moments to compute S. We then find

〈g〉0 =4τa0d0 + 2τρd0 (a0 〈g〉0 + a2 〈P2g〉0 + a4 〈P4g〉0) , (5.12a)

〈P2g〉0 =
4
25

τa2d2 +
2
5
τd2ρ

(
1
5
a2 〈g〉0 +

(
a0 +

2
7

(a2 + a4)
)
〈P2g〉0

+
(

18
35

a2 +
180
693

a4

)
〈P4g〉0

)
, (5.12b)

〈P4g〉0 =
4
81

τa4d4 +
2
9
τρd4

(
1
9
a4 〈g〉0 +

(
2
7
a2 +

100
693

a4

)
〈P2g〉0 +

+
(

a0 +
180
693

a2 +
162
1001

a4

)
〈P4g〉0

)
, (5.12c)

with τ ≡ 2L2λ. If we then compute S = 1+ρ 〈g〉ϑ = 1+ρ (a0 〈g〉0 + a2 〈P2g〉0 + a4 〈P4g〉0),
we obtain a fraction with a third-order polynomial in ρ in the denominator. The root
ρp of this polynomial is the percolation threshold, so it satisfies

b0 + b1πτρ + b2(πτρ)2 + b3(πτρ)3 = 0, (5.13)

with coefficients

b0 =− 2029547520, (5.14a)

b1 =− 55440(−7865 + 728a2 + 700a4), (5.14b)

b2 =630
(

143
(

781
4

+ 109a2 − 140a2
2

)
+ 44(342 + a2)a4 − 1412a2

4

)
, (5.14c)

b3 =5
(
−1287

8
(−77− 84a2 + 84a2

2 + 32a3
2

)
+ 198

(
56− 7a2 + 41a2

2

)
a4

+
9
2
(−1127 + 572a2)a2

4 − 3146a3
4

)
. (5.14d)

It is important to note that the coefficients themselves also depend on the density
ρ as well as on the field strength K because they obey Onsager’s equation (5.3). To
determine the functional dependence of these coefficients on ρ and K, we apply the
addition theorem once more in Eq. (5.3), use Eq. (5.10) again, and expand the logarithm
for small values of a2/a0 and a4/a0. This gives

log (a0) + h0 + h2P2 + h4P4 = µ− 16c
(
2a0d0 P0(cos ϑ)+

2
5
a2d2P2(cosϑ) +

2
9
a4d4P4(cos ϑ)

)− βK cos2 ϑ, (5.15)
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where we introduced a dimensionless concentration c ≡ πρL2D/4, and where

h0 = − 1
10

a2
2

a2
0

, (5.16a)

h2 =
a2

a0
− a2

2

7a2
0

− 2
7

a2a4

a2
0

, (5.16b)

h4 =
a4

a0
− 9

35
a2
2

a2
0

− 180
693

a2a4

a2
0

. (5.16c)

We write cos2 ϑ = 2
3P2(cos ϑ)+ 1

3P0(cos ϑ) and take the inner product of the result with
P2(cos ϑ) and with P4(cos ϑ), giving two equations for a2 and a4,

a2

a0
− a2

2

7a2
0

− 2
7

a2a4

a2
0

= −16c

5π
d2a2 − 2

3
βK (5.17a)

a4

a0
− 9

35
a2
2

a2
0

− 180
693

a2a4

a2
0

= −16c

9π
d4a4. (5.17b)

This fixes a2 and a4, were we note that from the normalisation of ψ it follows that
a0 = 1/2. If we put a4 = 0 and insert a0 = 1/2, we find from Eq. (5.17a) that
a2 = −4βK/ (3(4− c)) for weak fields. Hence, a2 diverges as c → 4, which, not surpris-
ingly, coincides with the nematic spinodal where the isotropic phase becomes absolutely
unstable [104].

5.3 Results

The polynomial equation (5.13) for the percolation threshold ρp needs to be combined
with Eqs. (5.17a) and (5.17b). This gives three equations for the three unknowns a2,
a4, and ρp in terms of the field strength K and the ratio λ/D that measures how
easily charge transport between two rods takes place. The percolation threshold we
calculated is plotted for reasonable values of λ/D for single-walled and multi-walled
carbon nanotubes [97, 160] in Fig. 5.1. The figure shows that the percolation threshold
quite strongly increases with increasing field strengths, irrespective of whether the field
is of the orienting or disorienting type. For large enough field strengths |βK| & 0.5 that
depends on the precise value of λ/D a percolating network does not form, at least in
the low-loading regime where cp is of the order unity and the volume fraction is of the
order ϕp = cpD/L = O(D/L) ¿ 1. We return to this below.

Another remarkable result that we read off from Fig. 5.1 is that for values of βK,
where a percolating network does form at some low particle concentration, the network
dissolves again at higher particle loadings, i.e., exhibits re-entrance behaviour. Inter-
estingly, a similar kind of re-entrance with increasing, imposed alignment was observed
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Figure 5.1: Scaled particle concentration cp = ϕpL/D = πDL2ρp/4 at the percolation thresh-
old as a function of the dimensionless field strength βK. Solid lines: connectivity percolation,
dashed curves: contact-volume approach for λ/D = 0.3 (top), 0.6 (middle), and 1 (bottom).
Only in the enclosed areas a percolating network exists. The shaded area is the region of
co-existing isotropic (paranematic) and nematic phases [161]. Inset: calculated percolation
thresholds scaled to the zero-field value c0

p. The dots indicate the largest value of |βK| that
allows for a percolation threshold.

in computer simulations of the electrical conductivity of systems of penetrable rod-like
particles [154]. According to our calculations, this is caused by the field-induced align-
ment that is enhanced by the anisotropic excluded-volume interactions. For small field
strengths this causes the re-entrant transition to penetrate the non-percolating regime
the region where the transition to a nematic phase occurs [165]. The shape and size of
the percolating regime depends sensitively on the ratio λ/D. We see from Fig. 5.1 that
the lower percolation threshold decreases with increasing λ/D, whereas the re-entrance
threshold depends weakly on λ/D.

If we amend the contact-volume approach [95,151,156,157] with the Onsager theory
for the alignment of hard rods in an external field, we presume the convolution of Eq.
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Figure 5.2: The order parameters S2 = 2a2/5 (a) and S4 = 2a4/9 (b) as a function of
the dimensionless field strength βK at the percolation threshold. From steepest to flattest:
λ/D = 0.3, 0.6 and 1. A positive βK causes a preference for alignment perpendicular to the
field (S2 < 0), whereas a negative βK imposes a preferred orientation along the field direction
(S2 > 0). The dots in (a) show the largest value of |βK| that allows for a percolation threshold,
beyond which |S2| increases further, see also Fig. 5.1.

(5.2) to be separable, which gives the familiar expression ρ−1
p =

〈〈
f̂+(0, u, u′)

〉
u

〉
u′

that was introduced in chapter 1. If we insert our result for f̂+(0, u, u′) we find

1
ρp

= 2L2λ

∞∑
n=0

d2n

〈
P2n(cos ϑ)

〉2

ϑ
=

L2λπ

1440
(
720− 288π2a2

2 − 20π2a2
4

)
. (5.18)

If we combine this with Eqs. (5.17a) and (5.17b) to find the percolation threshold ρp as
a function of βK and compare the result to our theory, we have to conclude that the
contact-volume approach (dashed lines) significantly underestimates the impact of the
external field on the percolation threshold. For small field strengths the underestimation
is roughly 10 %, but at re-entrance for high loadings the error can be up to a few 100
%. It appears that ignoring couplings between angular correlations of particles is at the
root of this discrepancy [160].

It is instructive to evaluate the relevant order parameters along the stability boundary
of our model of electrical percolation in rod dispersions. These are the familiar nematic
order parameters S2 ≡ 〈P2(cos ϑ)〉u = 2a2/5 and S4 ≡ 〈P4(cos ϑ)〉u = 2a4/9, shown in
Fig. 5.2. First, we find S4 to be always positive and much smaller than the corresponding
value of S2, justifying our earlier assumption. Second, we find that the order parameter
S2 increases along the curves where the percolation threshold increases, even beyond the
inflection point where |S2| ≈ 0.1. The curves confirm that for a given field strength, the
degree of order increases with increasing density, which is the running variable along the
curves. The largest value of S2 for which percolation occurs is below that of the nematic
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phase [161], so there percolation is lost completely.

Figure 5.3: Top left: scaled particle concentration cp = πL2Dρp/4 at the percolation threshold
as a function of the dimensionless field strength βK for λ/D = 0.3 from Fig. 5.1. Paths a,
b, and c are traversed in the calculation of the correlation lengths ξ‖ (solid) and ξ⊥ (dashed),
as shown in the corresponding graphs on the right for βK = −0.27 (a), βK = 0.33 (b), and
a horizontal traversal of Fig. 5.1 for cp = 1.67 (c). Away from the percolation threshold the
correlation lengths decay to the radius of gyration L/

√
12 of a rod.

In order to investigate the structure of our clusters upon approach of the percolation
threshold, we need to probe the wave-vector dependence of the connectedness function
〈〈P̂ (q,u,u′)〉u〉u′ = 〈〈P̂ (0,u,u′)〉u〉u′ + 〈〈M(u, u′)〉u〉u′ : qq/2+ . . ., with M(u,u′) ≡
∂2P̂ /∂q2

∣∣
q=0

[34]. The linear term in q drops out for symmetry reasons. From Eq.
(5.2) we obtain a self-consistent equation for

〈M(u, u′)〉u′ =2λL2ρ〈| sin γ(u,u′)|〈M(u′,u′′)〉u′′〉u′

+
λL4

6
〈| sin γ(u, u′)| (uu + u′u′) (1 + ρg(u′))〉u′ . (5.19)

This equation for M(u) is quite analogous to the one for g(u) we found to compute
the cluster size (the mean number of particles in a cluster), because only the term that
has no dependence on the variable in question (here M instead of g), is different. As a
consequence, the point where the moments of M(u) diverge, is the same as that for the
moments of g(u), i.e., for the isotropic case discussed above [152]. Because of azimuthal
symmetry the matrix 〈〈M(u, u′)〉u〉u′ has nonzero elements on its diagonal only, one
associated with cluster growth parallel to the field direction and the others with that
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perpendicular to it. The wave vector q separates into components q‖ parallel and q⊥
perpendicular to the field. We compute 〈〈M(u)〉u〉u′ in manner similar to that of the
cluster size S. Our final result can be expressed as 〈〈P̂ 〉u〉u′/〈〈P̂ 〉u〉u′ = 1+ξ2

‖q
2
‖+ξ2

⊥q2
⊥,

with correlation lengths ξ‖ and ξ⊥. Values of ξ‖ and ξ⊥ for a vertical and horizontal
traversal of the phase diagram of Fig. 5.1 are shown in Fig. 5.3.

Both correlation lengths ξ‖ and ξ⊥ diverge as 1/|ρp − ρ|1/2 for constant K and as
1/|βKp − βK|1/2 for constant ρ, with Kp the critical field strength for a given density.
The mean-field exponents ν‖ = ν⊥ = 1/2 that we find are exact for hard rods in the
limit of infinite aspect ratio [160]. However, the prefactors are not equal and depend on
the density, the sign and strength of the external field. For a disorienting field, βK > 0,
the clusters are flat because ξ⊥ > ξ‖, while for an orienting field, βK < 0, they are
elongated: ξ⊥ < ξ‖. Although percolation in systems of aligned rods seems superficially
related to that of directed percolation, the critical exponents for the latter have been
found to be ν‖ = 1 and ν⊥ = 1/2 in three dimensions in mean-field theory [166]. Hence,
anisotropic continuum connectedness percolation of elongated particles is not in the
universality class of directed percolation.

5.4 Conclusions

In this chapter we have presented an analytical theory that combines Onsager theory
and connectedness-percolation theory to show how an externally applied field enhanced
by excluded-volume interactions significantly destabilises percolating clusters of hard,
rod-like particles. We find that the percolating network is limited to an island of stability
in the phase diagram, bounded from above by the isotropic-nematic phase transition.
These effects are stronger than predicted by the contact-volume approach because of
translation-rotation coupling, similar to what we observed in chapters 2 and 3 for the
effect of a polydispersity in size and connectivity range.

Upon approach of the percolation threshold, the size of clusters of connected par-
ticles diverges with the same scaling exponent parallel and perpendicular to the field
direction. Hence, directed percolation and anisotropic continuum percolation of elon-
gated particles do not belong to the same universality class. Still, due to non-universal
prefactors the clusters are anisotropic; they are elongated for orienting and flat for dis-
orienting fields. This suggests that this cluster anisotropy could be used in thin films to
fabricate composites with strongly anisotropic electrical conductivities despite the very
low particle loading [152,155].

A limitation of our model is that it only allows for modest degrees of orientation,
meaning that the orientation distribution can be written as ψ(ϑ) = a0 + a2P2(cos ϑ) +
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a4P4(cosϑ), with |a4| ¿ |a2|. Higher degrees of orientation require more terms in this
expansion or a different functional description of ψ, both of which prohibit an analytical
solution of the problem. However, the limiting case of perfectly ordered particles can
again be dealt with analytically because in that case there is no angular dependence of
the distribution function and the Mayer functions. This means that the contact-volume
approach can be used, which gives 〈〈f̂+〉u〉u′ = 2πλL(2D + λ) for an orienting field.
Hence, in volume fraction ϕp = D2/8λ(2D + λ), so cp = LD/(8λ(2D + λ)) for an
orienting field, so cp ∼ L/(D + λ) because D/8λ = O(1). The reason is that for an
orienting field the excluded volume has the same scaling as the rod volume. Such an
orientation in the direction of the external field can be the result of a high density or a
very strong field, so it is located for negative values of βK at large values of cp above
the island of stability in the phase diagram of Fig. 5.1.

For a disorienting field the situation is different because in this case the excluded
volume scales as L2D like in the isotropic distribution. This gives 〈〈f̂+〉〉′ = 2λL2/π, so
ϕp = π2D2/8λL and cp = π2D/8λ = O(1). A perfectly disorienting field can only be
caused by a very strong field, so it is located at a value cp = π2D/8λ for large values of
βK in Fig. 5.1. As an explanation for the discrepancy between the values of cp for both
types of field, we note that in an orienting field the rods are all parallel and therefore
cannot span large distances, implying small contact volumes, whereas a disorienting
field causes the rods to line up in layers in which there is rotational freedom, making
the contact volume much larger.

This chapter is the last one of four chapters that deals with the effect that the particle
formulation and the processing in the fluid stages of the nanocomposite fabrication
has on the network formation of hard rod-like and plate-like particles that have been
dispersed in a liquid host material. Clearly, the central message that we obtain from
our calculations in this chapter and chapters 2 and 3 is that connectivity percolation
is a highly sensitive function of all thinkable system parameters. These include size,
shape, connectivity, alignment, and any variation in and correlations between them.
This suggests that in order to draw qualitative conclusions from experiments complete
control over, or at least a full description of these system parameters is necessary. In
this light it seems reasonable to suggest that the processing conditions leading up to the
final nanocomposite must be as important as the properties of the nanofillers used in it.

In this chapter we have encountered a competition between the transitions from an
isotropic, non-percolation phase to a percolating one and that to a nematic phase, which
may or may not percolate. As already alluded to in the Introduction in chapter 1, this
nematic phase has cylindrical and inversion symmetry in which the particles exhibit
short-range, liquid-like positional order. A nematic is a symmetry-broken fluid,which



100 Chapter 5. Connectedness percolation of hard rods in an external field

makes the elastic and surface properties quite complex. This gives rise to interesting in-
terfacial phenomena because of the competition between the anisotropic surface tension
and bulk elasticity of the liquid crystal. This competition manifests itself in, e.g., capil-
lary rise profiles and intriguing shapes and structures of nematic droplets. The capillary
rise of an isotropic-nematic interface up a vertical wall is the topic of chapter 6, where
we find surprising meniscus profiles. Another manifestation of this competition is in
nematic droplets, also called tactoids, that emerge under conditions where the isotropic
and nematic phase co-exist and these we focus on in chapters 7, 8, and 9.



6
Capillary rise of an isotropic-nematic

fluid interface

A theoretical study is presented on the shape of the interface between co-existing
isotropic and nematic phases in contact with a solid vertical wall. The interface profile
is determined by a competition between three surface tensions, two anchoring strengths,
gravity and the Frank elastic constants of the director field. In the weak-anchoring limit
the director field is rigid and uniform, and we find the capillary-rise height to depend
non-trivially on the orientation of the director field relative to the solid-fluid interface.
For strong surface anchoring the director field adjusts to the preferred homeotropic or
planar anchoring at the solid-liquid and liquid-liquid interfaces. The shape of the inter-
face profile is now a function of the balance between the surface energy and the splay
and bend elastic-deformation energies. Interestingly, for both weak and strong anchor-
ing the profile decays non-monotonically albeit only very weakly so, in agreement with
recent observations. We compare our theory with experimental data on dispersions of
gibbsite platelets and are able to extract from them the surface tension and the anchoring
strength.†

†The contents of this chapter have been published as:
R. H. J. Otten and P. van der Schoot, Langmuir 25, 2427 (2009).
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6.1 Introduction

As already alluded to in the introduction in chapter 1, the competition between
the anisotropic surface tension and bulk elasticity of the liquid crystal manifests itself
in the capillary rise of an isotropic-nematic interface up a vertical wall. Clearly, the
gravitational force plays an important role as well, and this competition between gravity,
surface tension and anchoring, and bulk elasticity in the capillary-rise region, expresses
itself in the ratio of two length scales that present themselves naturally for the problem
in hand, and that demarcates the boundary between two regimes with different director-
field structures, see Fig. 6.1.

Figure 6.1: Two types of director field in the capillary-rise region enclosed by the isotropic-
nematic (IN) interface profile and a vertical wall (W). The field away from this region is dom-
inated by surface anchoring. (a) If the capillary length `c measuring the rise height is much
smaller than the extrapolation length λ that is a measure of the stiffness of the director field,
then the field in the rise region is approximately uniform. (b) On the other hand, if the reverse
is true and λ/`c ¿ 1, then the field in the rise region is deformed because the surface anchoring
is dominant. In these two examples we assume homeotropic anchoring at the IN and the NW
interface.

The first length is the extrapolation length λ ≡ K/|ζIN|, where K is some average of
the Frank elastic constants and ζIN ≷ 0 the anchoring strength of the director field to the
isotropic-nematic interface, and the second the usual capillary length `c ≡

√
2γIN/∆ρmg.

The sign of the anchoring strength indicates a preference for homeotropic or planar
anchoring, see the caption to Fig. 1.5. The capillary length is a function of the “bare”
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interfacial tension γIN between the co-existing isotropic and nematic phases, the mass-
density difference ∆ρm between the two phases and the gravitational acceleration g.
The rise height is proportional to the capillary length and becomes exactly equal to the
rise height for isotropic fluids of which one completely wets the surface and the contact
angle is zero [167].

Relying on scaling arguments, Van der Beek and collaborators [45] argued recently
that if the extrapolation length greatly exceeds the capillary length, so λ/`c À 1, then
the director field in the rise region should be approximately uniform on account of the
rigidity of the field on that scale albeit that on large scales (away from the rise region)
the director field does deform to accommodate the preferred anchoring. Conversely, if
λ/`c ¿ 1 the field in the rise region also deforms to accommodate the predominance
of the surface anchoring, see Fig. 6.1. The former regime we refer to as the weak-
anchoring regime, the latter the strong-anchoring regime. In the intermediate case,
where λ/`c ≈ 1, the director field crosses over smoothly from uniform to curved in the
capillary-rise region. The question arises what in practice is the most prevalent regime,
i.e., weak anchoring with λ/`c À 1, intermediate anchoring with λ/`c ≈ 1, or strong
anchoring, λ/`c ¿ 1.

Capillary-rise experiments on the lyotropic system of co-existing isotropic and ne-
matic phases of dispersions of gibbsite platelets in the solvent toluene show that λ ≈
70 µm, whilst `c ≈ 6 µm, so for this type of system λ/`c À 1 [45]. For thermotropic
liquid crystals we would expect the opposite limit to hold, λ ¿ `c, because, e.g., for
an interface of water and the thermotropic nematic 5CB (4-cyano-4’-pentylbiphenyl),
K ≈ 10−12 N, γIN ≈ |ζIN| ≈ 10−3 N/m, and ∆ρm ≈ 50 kg/m3 [168–170], giving
λ ≈ 10−9 m and `c ≈ 10−3 m and hence λ/`c ¿ 1. We argue that for lyotropic systems
generally λ/`c À 1, while for thermotropic systems λ/`c ¿ 1. Simple scaling arguments
bear out this fundamental difference in behaviour of lyotropics and thermotropics, which
is related to the huge size difference of the nematogens involved.†

Theoretically, the capillary rise of the interface between a nematic and an isotropic
fluid against a vertical wall has not been studied in detail albeit that several more general
aspects of the problem have been discussed in the literature [43–45,70–74,91, 171–176].
The purpose of this chapter is to fill in this gap and provide a tool for estimating surface
anchoring energies from capillary-rise experiments. This is possible because we obtain
analytical expressions for the contact angle and rise height in the relevant limits of weak
and strong anchoring. We apply our theory to experimental observations of Van der

†Because K ≈ kBT/ξ and γIN ≈ |ζIN| ≈ kBT/ξ2 with ξ the average dimensions of the nematogens,
we must have λ/`c ∝ ξ2. So, the larger the particles, the larger λ/`c. For thermotropics ξ = O(1)
nm, whilst for lyotropic ξ = O(102 − 103) nm. Hence, we expect the quantity λ/`c for the latter to be
O(104 − 106) times larger than that for the former.
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Beek et al. [45], and are able to extract more accurately values for both the interfacial
tension and the anchoring strength than provided in that work.

The approach we follow to find the meniscus shape and director field in the capillary-
rise region is first to set up an appropriate free-energy functional and subsequently to
minimise this with respect to both the profile and the director field. Just as is the case
for nematic droplets [53, 54, 88], this produces governing equations that are not easily
solved analytically. Hence, we simplify the problem by prescribing plausible director-field
geometries inspired by the limiting cases of a uniform and a curved director field. The
advantage of our approach is that it is straightforward to apply in arbitrary geometries
and, as already announced, produces analytical predictions [91,171–176].

The main conclusions of our work can be summarised as follows.

1. In the weak-anchoring limit, the capillary-rise height, contact angle as well as the
far-field decay length of the profile depend non-trivially on two anchoring strengths
and the angle of the nematic director field relative to the bulk interfaces.

2. In the strong-anchoring limit, the capillary-rise height by and large obeys the
classical results for isotropic fluids because the surface enslaves the director field.
The shape of the interface profile, however, deviates strongly from the classical
result, and is due to a competition between surface tension and the splay and
bend deformation of the director field.

3. For both weak and strong anchoring we find the interface profiles to be weakly non-
monotonic. A closer analysis of polarisation micrographs of the contact-line region
in co-existing isotropic and nematic dispersions of gibbsite in toluene confirms this.

The remainder of this chapter is organised as follows. First, we show in section 6.2 how
for a nematic liquid crystal with a uniform director field in the capillary-rise region the
interface profiles can be obtained from a combination of the surface and gravitational
free energies. For the surface free energy we use the familiar expression proposed by Rap-
ini and Papoular [40]. Next, in section 6.3, we adopt the same free-energy-functional
approach, where we impose homeotropic anchoring of the director field to both the
isotropic-nematic and the nematic-wall interface, and invoke the equal-constant approx-
imation to describe the contribution from the elastic deformation of the director field.
Finally, conclusions and a discussion of our findings are presented in section 6.4.
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6.2 Weak surface anchoring

Consider an interface between an isotropic (I) and a nematic (N) fluid in contact
with a flat vertical wall (W). The fluid interface rises up the wall because the surface
tensions between the IW and the NW interfaces are not equal. We consider a nematic
fluid domain that is assumed to be large enough not to be influenced by other boundaries
and to be denser than the isotropic phase. For lyotropic liquid crystals this is usually
the case on account of the larger particle concentration in the nematic phase [6].

The location of the interface is indicated by y(x), where y is the coordinate along
the wall relative to a reference plane and x is the coordinate perpendicular to it, see
Fig. 6.2. The wall in the z-direction, i.e., perpendicular to the plane of interest, is
supposed to be infinitely long so a quasi two-dimensional analysis suffices. The director
field in the nematic domain is presumed to be rigid, that is, uniform, and to make a
fixed angle φ with respect to the normal to the solid wall. So, formally we presume the
limit λ/`c →∞ to hold. Below we relax this condition and discuss what happens when
λ/`c is large but finite.

The (contact) angle that the fluid-fluid interface makes with the wall we denote ϑ.
We shall not treat it as a given material parameter but in fact derive the pertinent
Young’s equation that describes it as a function of the various surface tensions. The
surface tensions of the three interfaces we denote σIN, σNW, and σIW, of which σIN and
σNW are assumed to be of the Rapini-Papoular type [40] that was introduced in chapter
1, so of the generic form σ = γ + ζ sin2 α, with γ the usual (bare) surface tension and ζ

the anchoring strength; α is the angle between the field and the normal to the interface,
see Fig. 1.5.

We now have to distinguish the NW interface from that of the co-existing isotropic
and nematic phases. Let α = φ denote the angle of the director field and the normal to
the NW interface and α = β that at the IN interface. These two angles are related to
each other if we presume the tangent y′(x) ≡ dy/dx to the profile of the IN interface
(the meniscus) to be a known function of the distance x from the wall. Simple geometry
then gives β = π/2 − χ − φ, with χ = − arctan y′, see Fig. 6.2. Hence, the surface
tensions obey the relations

σIN = γIN + ζIN sin2 β = γIN + ζIN
(cos φ + y′ sin φ)2

1 + y′2
(6.1a)

σNW = γNW + ζNW sin2 φ, (6.1b)

σIW = γIW. (6.1c)

As already alluded to in chapter 1, the sign of the anchoring strength ζ indicates the
preferred type of anchoring. If ζ > 0, the preferred anchoring is homeotropic and if
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Figure 6.2: The capillary rise of isotropic-nematic (IN) interface up a solid flat wall (W).
The director field (dashed lines) is assumed to be homogeneous. It makes an angle φ with the
normal qW to the wall and an angle β with the normal qM to the IN interface. The tangent
to the profile and the horizontal make an angle χ and ϑ is the contact angle of the profile with
the wall.

ζ < 0, it is planar. Nematic dispersions of rod-like colloids for entropic reasons prefer
planar anchoring, whilst in those of disk-like colloids the favoured type of anchoring
is homeotropic [80, 81, 87]. This applies to the anchoring at flat walls but also to the
interface with the isotropic phase [61, 75]. It is for this reason that we only consider
symmetric anchoring conditions.

We presume weak surface anchoring to hold, implying that the director field in the
capillary-rise region is rigid and remains uniform, so the elastic energy Fe = 0. This
must be the case if the extrapolation length λ ≡ K/|ζ| is very much larger than the rise
height h ≡ y(0), where we plausibly assume that ζ ≈ ζIN ≈ ζNW that for dispersions of
hard rods and disks seems to be valid [45, 76, 82, 87]. Refer again to Fig. 6.1. In the
weak-anchoring limit, and the excess free energy F per unit length of the meniscus is
given by

F [y, y′] =
∫ ∞

0

dx

(
σIN

(√
1 + y′2 − 1

)
+ (σNW − σIW)y δ(x) +

1
2
∆ρmg y2

)
, (6.2)

if we take as a reference a flat interface with y(x) = 0 for all x > 0, and where we remind
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the reader that for now we let λ/h ∝ λ/`c → ∞. Because of the presence of the Dirac
delta “function” δ(x) in Eq. (6.2), we formally have to extend the integration slightly
below zero, so the lower bound should in reality read 0−. Again, ∆ρm denotes the
mass-density difference between the nematic and isotropic fluid and g the gravitational
acceleration. The first term in Eq. (6.2) represents the energy associated with the
additional length of the IN interface when it creeps up the wall, the second term gives the
contribution due to the difference in surface tension between the IW and NW interface
when a part of the wall is wet by the nematic and the third term accounts for the
gravitational energy.

In equilibrium, the optimal profile y(x) minimises the free energy. Functional min-
imisation of F with respect to the profile y(x), i.e., putting δF/δy = 0 [177], gives a
second-order integral term for the bulk profile and a boundary term that is the gener-
alisation of the familiar Young’s law for the contact angle. The bulk profile we find to

Figure 6.3: The isotropic-nematic interface profile close to the wall for several values of the
attack angle of the director φ, assuming complete wetting for the weak homeotropic anchoring
case with ω ≡ ζIN/γIN = 0.5. The rise height (solid line) depends on the value of the function
f(φ) = sin2 φ + sin 2φ, which indicates whether the rise height is smaller, f < 0, or larger,
f > 0, than that of an isotropic fluid, at least if ω > 0. See also the discussion in the main text.
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obey the following highly non-linear differential equation,

1 + ω sin2 φ = ŷ2 +
1

2(1 + ŷ′2)2

(
(2 + ω)(1 + ŷ′2)3/2+

ω(−2 +
√

1 + ŷ′2)
(
(1 + 3ŷ′2) cos 2φ + 2ŷ′3 sin 2φ

))
, (6.3)

where we have introduced the dimensionless variables ŷ ≡ y/`c and x̂ ≡ x/`c, which are
the profile coordinates on the scale of the capillary length `c, and where we also have
introduced the dimensionless IN anchoring strength ω ≡ ζIN/γIN. To obtain Eq. (6.3),
we have multiplied the result of the free-energy minimisation by ŷ′, integrated left and
right of the equal sign and used the condition that for x̂ → ∞, ŷ = ŷ′ → 0, to fix the
integration constant. A consequence of this is that ŷ′ = 0 can only hold for ŷ = 0, so
for x̂ →∞. This means that ŷ′ < 0 for all x̂, so the profile decreases monotonically, at
least in the limit λ/`c → ∞. As we shall see below, for any finite value of λ/`c this is
strictly not true for x & λ.

In Fig. 6.3 we have plotted our numerically obtained solutions to Eq. (6.3), showing
that the capillary-rise height, the far-field decay of the profile and the contact angle of
the profile at the wall depend non-trivially on the angle φ between the director field
and the normal to the wall. The figure shows that the average radius of curvature
of the profile is of the order `c, as to be expected. Referring to the discussion of the
Introduction, we estimate that if the radius of curvature is large compared to the size of
the particles, i.e., if the capillary length is large compared to the particle size, we need
not explicitly consider any impact of curvature on the surface tension.

Salient features of our findings may be summarised as follows. We focus on the
capillary-rise height, the far-field profile and the contact angle.

i) Capillary-rise height. We need not solve this Eq. (6.3) in order to obtain an
analytical expression for the capillary-rise height h ≡ y(0). By inserting the identity
ϑ = − arctan (1/y′(0)) into Eq. (6.3), we obtain,

(
h

`c

)2

=1 + ω sin2 φ− 1
4

sin ϑ

(
4 + 2ω

+ ω

(
−2 +

1
sin ϑ

) (
3 sin(ϑ− 2φ) + sin(3ϑ− 2φ)

)
)

, (6.4)

which is still a function of the as yet unknown contact angle ϑ. For ω = 0, the classical
result h = `c

√
1− sin ϑ for isotropic fluids is immediately retrieved. We note that our

expression for the rise height simplifies enormously in the limit of complete wetting
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where ϑ = 0. In that case we obtain,

h = `c

√
1 + ω

(
sin2 φ + sin 2φ

)
, (6.5)

which, depending on the angle φ between the director and the normal to the wall, can be
larger or smaller than that of an equivalent isotropic fluid of the same capillary length,
and for which ω = 0. If ω > 0, so for homeotropic anchoring, h is larger than `c if
φ > 0 or φ < − arccos(1/

√
5) ≈ −1.11 radians. The maximal rise height of h = 1.35

`c is for φ = arccos
(√

(5−√5)/10
)
≈ 1.02 and the minimal rise of h = 0.83 `c is for

φ = − arccos
(√

(5 +
√

5)/10
)
≈ −0.55.

One might wonder what the origin is of the different terms in Eq. (6.5) for the rise
height. In fact, one could argue that the rise height seems to contain contributions from
both the near- and far-field of the profile. This we deduce from the fact that the sin 2φ
term is characteristic of the presence of the wall, as can be verified by letting ŷ′ → −∞
in Eq. (6.3), because then the second term in the right-hand-side of Eq. (6.3) reduces
to ω sin 2φ. The sin2 φ term describes the influence from the profile far from the wall as
follows from setting ŷ′ → 0, to give 1 + ω sin2 φ for the second term in the right-hand
side of Eq. (6.3).

ii) Far field. Away from the wall, i.e., in the far field x̂ À 1, the solution to Eq.
(6.3) for the interface profile y(x) ∼ exp (−x/`∞) turns out not to depend on the angle
ϑ, with decay length

`∞ =
`c√
2

√
1 + ω cos2 φ . (6.6)

This shows that the profiles for isotropic fluids with ω = 0 and decay length `∞ = `c/
√

2
decay more rapidly than those of nematic fluids if ω > 0 and less rapidly if ω < 0. We are
also able to conclude from Eqs. (6.5) and (6.6) that the rise height and the decay length
are not symmetric for the cases ω and −ω, so biases for homeotropic or planar anchoring
produce quite different interface profiles. In fact, the rise height and the far-field decay
depend in very different ways on the angle φ, as shown in Fig. 6.4. This means that the
profiles for different attack angles φ, presented in Fig. 6.3, must intersect if plotted in
the same figure, as in fact they do.

iii) Contact angle. From the boundary term we obtain by functionally minimising
the free energy, Eq. (6.3), we extract an implicit equation for the contact angle ϑ =
− arctan (1/y′(0)). It reads

cos ϑ + ω
(
cosϑ sin2(ϑ− φ) + (sin ϑ− sin2 ϑ) sin(2φ− 2ϑ)

)
+ k = 0, (6.7)
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Figure 6.4: The capillary-rise height h (dashed line) and the decay length `∞ (solid line),
as a function of the attack angle φ of the uniform director field. (a) ω ≡ ζIN/γIN = 0.5. (b)
ω = −0.5. Complete wetting is presumed.

where k ≡ (γNW + ζNW sin2 φ − γIW)/γIN. Note that Eq. (6.7) for the contact angle is
also asymmetric for the cases of planar (ω < 0) and homeotropic alignment (ω > 0). For
isotropic fluids with ζIN = ζNW = 0 we retrieve the relation cos ϑ = (γIW − γNW)/γIN,

which is the familiar Young’s law [178]. Hence, Eq. (6.7) represents a generalisation of
Young’s law for uniaxial, symmetry-broken fluids. For near-complete wetting, i.e., for
small contact angles |ϑ| ¿ 1, Eq. (6.7) can be approximated by

ϑ2

2
∼ 1 + ω sin2 φ + k

1 + ω
2 (1 + 3 cos 2φ + 4 sin 2φ)

, (6.8)

so that we have complete wetting, ϑ = 0, if the numerator of Eq. (6.8) is zero, that is, if

1 + ω sin2 φ +
γNW + ζNW sin2 φ− γIW

γIN
= 0, (6.9)

as in fact also follows directly from Eq. (6.7) by inserting ϑ = 0.
Our prediction for the rise height h is a real number only for all attack angles φ ∈

[−π/2, π/2] if the dimensionless anchoring strength ω obeys −0.62 < ω < 1.62, implying
that for values outside this range not all angles φ are permitted. One has to bear
in mind, however, that this angle φ is not a free parameter but is determined by the
various interfacial tensions and the geometry of the entire three-dimensional domain.
Presumably, φ sets itself so not as to violate the indicated bounds on it.

Computer simulations [43, 62] and theoretical predictions [61, 75, 77] give values of
−0.6 . ω . −0.4, at least for idealised rod-like model particles. Different values of ω

have been extracted from experimental observations on the shape of tactoids by fitting
macroscopic theories with similar ingredients as the one we put forward here. For
nematic droplets of vanadium-pentoxide ribbons in water, for instance, Prinsen et al.
and Kaznacheev and et al. found values in the range of −1 . ω . −0.83 [54, 63, 64].
For tactoids of actin fibers in water, Oakes and co-workers [179] were able to get a
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good description of their (somewhat noisy) data by presuming rigid parallel anchoring,
implying ω → −1. In fact, we deduce that any value between −1 ≤ ω . −0.8 should
produce a fit consistent with their data [53]. Experimental observations on nematic
tactoids in aqueous dispersions of the rod-like feline-distemper (fd) virus mixed with the
polymer dextran suggest that for this particular system −1 . ω . −0.88 [53]. All these
values of ω are quite outside the range predicted by simulations and theory. It is not
clear what causes the discrepancy but we speculate that curvature effects on the surface
tension may have something to do with it. As already discussed in the introduction,
capillary-rise experiments of the sort described here might resolve this issue but these
have yet to be performed.

For disk-like colloidal particles that are known to favour homeotropic anchoring little
is known about what typical values of ω to expect albeit that density functional theory
simulations predict a value of ω ≈ 0.87 for infinitely thin hard platelets [180]. However,
using Eq. (6.5) and the experimental data of Van der Beek et al. we can find an estimate
for this quantity for a suspension of sterically stabilised gibbsite platelets in the solvent
toluene [45]. From polarisation-microscopy images these authors conclude that φ ≈ π/4,
λ ≈ 70 µm, and ϑ ≈ 0. Inserting K = K3 ≈ 7 · 10−14 N, obtained from experiments on
the Frederiks transition in the same system [83], we deduce that ζIN ≈ 1 nN/m. The rise
height h ≈ 6 µm is much smaller than the extrapolation length, λ, so the weak-anchoring
limit holds. Inserting ∆ρm = 20 kg/m3, we obtain from Eq. (6.5) γIN = 2 nN/m. This
is comparable to but smaller than the estimate of 3 nN/m cited in the work of Van der
Beek et al. [45]. Hence, we find ω = 0.5. This value is quite insensitive for the precise
value of the attack angle φ, because the values of γIN for φ = π/6, π/4, and π/3 we
obtain are γIN = 2.0, 2.1, and 2.5 nN/m, respectively. A point worthy of mention is that
the diameter of the platelets is D = 240 nm, so that `c ' h À D and the requirement
for the negligibility of curvature effects should be fulfilled.

Clearly, in this example λ/`c = 70/6 ≈ 11 is not infinite, implying that for x & 70 µm
away from the wall the director field is no longer rigid but bends to minimise the surface
energy on large scales. The polarisation-microscopy images of Van der Beek et al.
[45] confirm this. The far field we discuss is in actual fact an intermediate field, valid
if `c . x . λ. For x > λ, we do have strong anchoring conditions. As we shall
explore in the following section in more detail, the actual far field then does not obey
y(x) ∼ exp(−x/`∞), but Eq. (6.14), i.e., y(x) ∝ −(`c/x)2. For x ¿ λ, y(x) > 0, whilst
for x À λ, y(x) ↑ 0, i.e., the profile is non-monotonic in the far field. This remarkable
feature of nematic liquid crystals not seen in isotropic fluids we investigate in more detail
next.
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6.3 Strong surface anchoring

We now consider the limit of strong surface anchoring, as defined in section 6.1,
where we formally take the limit λ/`c → 0. The director field deforms and adjusts to
accommodate the anchoring conditions that we now presume to be rigid. This implies
that there should be an additional elastic free-energy cost associated with the director-
field distortion. In our two-dimensional model the energy density associated with the
elastic deformation of the director field n comprises only a splay and a bend contribu-
tion, given by 1

2K1(∇ ·n)2 and 1
2K3(∇×n)2, respectively.‡ Within the equal-constant

approximation where the splay and bend elastic constants are presumed to be equal to
each other, we have for the elastic deformation energy per unit length [14]:

Fe =
K

2

∫
dxdy

(
(∇ · n)2 + (∇× n)2

)
, (6.10)

with n(x, y) the director field that is a function of the spatial coordinates (x, y) and
K ≡ K1 = K3 the Frank elastic constant. For lyotropic nematic phases of gibbsite
platelets dispersed in the solvent toluene K3 ≈ 7 · 10−14 N [83], and in chapter 9 we find
value for K1 for these platelets of K1 = (1.0± 0.5) · 10−13 N, suggesting that the equal-
constant approximation is acceptable for this kind of material. For stiff rod-like colloids
typically K3 À K1 [50, 57, 58], the equal-constant approximation is more tenuous. On
the other hand for thermotropic nematics, K3/K1 ≈ 1–2 and the approximation seems
appropriate [182,183].

The question arises what boundary condition to impose, i.e., homeotropic or pla-
nar. In the equal-constant approximation, however, this question is vacuous because it
is straightforward to show that for any pair of two-dimensional vector fields n and n⊥
that are perpendicular to each other at every point in space and that obey n2 = n2

⊥ = 1,
we have (∇ · n)2 = (∇ × n⊥)2 and (∇ × n)2 = (∇ · n⊥)2, so the overall elastic defor-
mation energies are equal in any geometry. This means that both cases of (symmetric)
homeotropic-homeotropic and planar-planar anchoring at the isotropic-nematic and the
nematic-wall interfaces are captured by a single calculation. However, we note here that
this requires that the area of the plane we consider is larger than that of the plane per-
pendicular to it, because otherwise a homogeneous director field perpendicular to this
plane would be the most favourable configuration.

We arbitrarily invoke homeotropic anchoring of the nematic at both interfaces it is in
contact with. To simplify the calculations, we now seek to directly connect the director
field n(x, y) to the interface profile y(x). To do this, we have to make a presumption

‡The term (∇×n)2 = (n · (∇×n))2 + (n× (∇×n))2 comprises both the twisting (former) and
bending (latter) of the field. In the two-dimensional consideration, we only have the latter.
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about the geometry of the director field. Because of the imposed homeotropic anchoring,
a plausible ansatz would be to presume the director field lines to be circle sections that
intersect both surfaces perpendicularly. This implies that we can uniquely connect the
director n(x, y) at every point (x, y) in the nematic domain to a corresponding point at
the fluid-fluid interface and a point at the solid wall.

Referring the interested reader to the Appendix 6.A for details, we merely quote our
ansatz for the free energy per unit length for the case of rigid (homeotropic or planar)
boundary conditions,

F [y, y′, y′′] =
∫ ∞

a

dx

{
γIN

(√
1 + y′2 − 1

)
+ (γNW − γIW)y δ(x− a)

+
1
2
∆ρmgy2 +

K

2

(
arctan y′

x
+

y′′(1 + y′(π
2 + arctan y′))

1 + (y′)2

)}
, (6.11)

where again a flat reference profile has been subtracted and a microscopic cut-off length
a has been introduced to avoid a divergence of the elastic free energy at the three-phase
boundary. We expect a ≈ D with D the largest dimension of the nematogen – it is the
core size of the defect line that sits at the three-phase contact line. Below we discuss
this point in more detail. Variational minimisation of this free energy with respect to y

produces the following differential equation for the optimal interface profile,

− ŷ′′

(1 + ŷ′2)3/2
+ 2ŷ +

λ̂′

2
1 + ŷ′2 + 2x̂ŷ′ŷ′′

x̂2(1 + ŷ′2)2
= 0, (6.12)

where we again make use of the dimensionless variables ŷ ≡ y/`c and x̂ ≡ x/`c. We also
define a dimensionless length λ̂′ ≡ λ′/`c, with λ′ ≡ K/γIN that we expect to be of the
order of the extrapolation length λ = K/|ζIN|. In the absence of gravity, or, equivalently,
if the density difference is negligible, the second term in Eq. (6.12) is absent, making
the equation integrable with respect to x. This gives a differential equation consistent
with that found by Poniewierski [172] who studied the wetting of a horizontal substrate
by a nematic fluid. (See again Appendix 6.A for details.)

The first two terms of Eq. (6.12) are identical to what one would obtain for isotropic
fluids, the last term accounts for the impact of the elastic deformation of the director
field. This term should be subdominant because in the limit of rigid anchoring conditions
surface tension effects should be stronger than elastic effects. If we ignore this for a
moment, then we read off from Eq. (6.12) that the profile ŷ(x̂) must be non-monotonic.
Our numerical solutions to this equation, presented in Fig. 6.6, confirm this. For
isotropic fluids with λ̂′ = 0, the minimum is located infinitely far from the wall, and
the profile decays monotonically as expected. However, for λ̂′ > 0 the third term of
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Eq. (6.12) drives the profile to develop a minimum. With increasing values of λ̂′, the
position of the minimum x̂ moves in from infinity and becomes increasingly smaller for
larger λ̂′ to balance the increasing magnitude of the isotropic terms.

Figure 6.5: Polarisation micrographs of an isotropic-nematic (I-N) interface of charge-
stabilised gibbsite platelets, dispersed in a 10−2 M NaCl solution. Indicated are the orientations
of the polarisers (arrows at right angles in the top left-hand corner) [202].

The non-monotonic profiles may seem physically unrealistic but we have a direct
experimental observation of the capillary-rise profile of a sterically stabilised dispersion
of gibbsite platelets, see Fig. 6.5. In fact, if one takes a very close look at the capillary-
rise profile presented in the experiments we referred to above [45], one can also observe
a shallow minimum in the profile of Fig. 1 of that paper. However, we note that the
capillary-rise profile seems to be quite sensitive to the experimental procedure [181].
This is an important point that we return to in the discussion in section 6.4 and in the
next chapters. In the discussion we also provide arguments to rationalise these profiles
in terms of competing types of elastic deformation. Note that in agreement with the
observations, the depth of the minimum should be expected to be very shallow. Indeed,
if λ′ ≈ λ and the anchoring is rigid, we have to insist λ′ ¿ `c for the strong-anchoring
conditions to hold. In fact, for the theory to be internally consistent we must have
λ′ < a, otherwise the (molten) defect core would “escape” into a core with uniform
director field. A conservative upper bound for λ′ is therefore a, making the minimum
in the profile exceedingly shallow.

We now address aspects of the profiles presented in Fig. 6.6 that can be analysed
analytically. For details the reader is referred to Appendix 6.A.

i) Capillary-rise height. The capillary-rise height h/`c ≡ ŷ(â) → ŷ(0), with
â ≡ a/`c, can be estimated from Eq. (6.12). We discussed above that λ̂′ must be
small, so the rise height cannot deviate strongly from that for λ̂′ = 0, i.e., the equivalent
isotropic case. Then we find the familiar result h0/`c =

√
1− sinϑ with ϑ the contact
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Figure 6.6: Left: fixed contact angle ϑ = 25◦, with various values of the parameter λ̂′ ≡ λ′/`c.
Right: constant values of the parameter λ̂′ = 0.2 for different values of the contact angle ϑ.
Profile of an isotropic fluid: ϑ = 25◦. The cutoff a = 0.2 `c for both graphs. For any value
λ̂′ > 0 the profiles decay more rapidly than that of the isotropic fluid and the profiles drop
below zero next to rise again further away from the wall. However, λ̂′ ¿ 1 in the rigid anchoring
limit so the minima are very shallow indeed.

angle defined at the cutoff. We define h1 as the first order correction to h0 for small
values of λ̂′, so h ≡ h0 + λ̂′h1. We then find

h1

`c
=

cos ϑ
√

1− sin ϑ

â
− sin2 ϑ

4â2
, (6.13)

where we have used the identity ŷ′(â) = −1/ tan ϑ. For complete wetting we then obtain
h/`c = 1 + λ̂′/â = 1 + λ/a.

ii) Far field. The far-field solution for x̂ À 1 can be found by presuming that the
first derivative of the profile is small, giving the following asymptotic relation,

ŷ(x̂) ∼ C exp(−
√

2 x̂)− λ̂′

4x̂2
, (6.14)

with C an integration constant. The exponential part is due to the bare surface tension
and the algebraic part comes from the deformation of the director field. This means
that there is no typical length scale describing the decay. The minus sign in front of the
second term indicates that the profile rises to zero at infinity, coming from a negative
value.

iii) Contact angle. The boundary condition at the cutoff a that follows from the
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minimisation of the free energy, Eq. (6.11), with respect to y we find to obey

cos ϑ +
γNW − γIW

γIN
− λ′

2a
sin2 ϑ = 0. (6.15)

Eq (6.15) agrees with earlier work [91,172,184] and is a generalised Young’s law for the
contact angle of a nematic with symmetric homeotropic (or planar) alignment. The first
two terms are the usual ones for fluids governed by surface tensions, i.e., isotropic fluids,
and the third contribution is that from the elastic deformation that depends explicitly
on the cut-off length a. If λ′ ¿ a, we retrieve Young’s law and the contact angle
depends only on the surface tensions. In the (hypothetical) limit of very large λ′ À a,
we approach cos ϑ = ±1, i.e., complete wetting or dewetting. Again, we expect λ′ ¿ a

to hold for internal consistency. If this is not the case, then the defect escapes in a
uniform field near to the three-phase contact line. If λ′ ≈ λ À `c, then the theory of the
preceding section applies. If a ¿ λ′ ¿ `c, this requires a description that interpolates
between the two presented in this manuscript. We intend to investigate this intermediate
regime in future work.

6.4 Discussion and conclusions

We put forward a model for the capillary rise of a semi-infinite isotropic-nematic
interface up a single vertical wall, extending earlier work of Rey [91] on a nematic
between two walls at very close separation and find that the type of director field in the
rise region depends on the relative size of the extrapolation length λ and the capillary
length `c. In the limit that λ À `c, which we claim is generally the case in lyotropic
systems, the director field is uniform in the rise region and the capillary-rise height,
decay length and contact angle depend in different, non-trivial ways on the angle φ that
the field makes with the normal to the wall. Moreover, these three properties are not
symmetric for positive and negative values of the dimensionless anchoring strength ω,
making the cases ω < 0 (corresponding to planar anchoring) and ω > 0 (corresponding
to homeotropic anchoring) fundamentally different.

We applied our analytical expression for the rise height to capillary-rise experiments
on a suspension of gibbsite platelets, under conditions of co-existing isotropic and ne-
matic phases where conditions of strong surface anchoring and complete wetting were
observed [45]. Using our model, we find a very low surface tension of 2 nN/m of the
nematic-isotropic interface, and a value for the anchoring strength of ω = 0.5. The value
of ζIN = ωγIN that we deduce from this depends rather weakly on the attack angle φ of
the director field, so the obtained value can be qualified as reliable. Of course, more ex-
perimentation is needed in particular on systems of rod-like particles where experimental
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and theoretical values of ω disagree quite considerably. Capillary-rise experiments might
give more accurate values of ω than studies of tactoid shapes because of the potentially
more prominent effects of curvature on the surface free energy.

In the opposite limit with λ ¿ `c, which seems more typical for thermotropic systems,
the field in the capillary-rise region deforms to accommodate the predominance of the
surface anchoring energy, leading to a curved director field with either homeotropic
or planar anchoring at the surfaces. In the equal-constant approximation both types
of strong anchoring are equivalent if the anchoring conditions are symmetric on both
interfaces, allowing us to capture symmetric parallel and perpendicular alignment in
a single calculation. The usual equation describing the meniscus profile contains an
additional term that accounts for the distortion of the director field. However, this term
is proportional to the ratio of the extrapolation length and capillary length λ′/`c ≈ λ/`c,
so it should be subdominant because in the limit of rigid anchoring conditions surface
tension effects must be stronger than elastic effects. Therefore, the capillary-rise height
approximately obeys the classical results for isotropic fluids albeit that the actual profile
does deviate from the classical one: we find that the profile exhibits a minimum, i.e.,
is a non-monotonic function of the distance to the wall. In fact, the minimum that we
predict in the strong-anchoring limit persists in the weak-anchoring regime because for
large enough x & λ surface anchoring is always dominant.

The minimum in the profile might seem counter-intuitive but makes perfect sense
if, given the rigid homeotropic boundary conditions, locally the bend deformation is
relaxed. This is only possible at the expense of a splay deformation of the director field,
near a virtual defect centred just above the minimum, see Fig. 6.7(a). Of course, there
is a second energy cost associated with the increase of the interface length but there
might be an additional energetic advantage because the non-monotonic profile is steeper
close to the wall than the corresponding monotonic profile, which makes the field lines
less curved in the capillary-rise region. We conclude that these combined effects must
lead to a net free-energy gain favouring the non-monotonic profile. The argument for
planar anchoring is analogous.

In fact, in order to support this explanation we can visualise the relative magnitudes
of the elastic deformation densities. From the numerically obtained solution to Eq. (6.12)
we compute the splay and bend deformation density, fs ≡ (∇ · n)2 and fb ≡ (∇× n)2,
respectively. We then evaluate the relative contribution of splay deformation to the
total director-field distortion, fs/(fs + fb), indicated by the colours in Fig. 6.7(b). We
take the rather large value λ̂′ = 4 to clarify the statement, and see that indeed the
splay deformation is concentrated near the minimum in the profile, as sketched in Fig.
6.7(a). In that region the splay deformation even dominates, whereas away from it,
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Figure 6.7: (a) Schematic representation of the deduced director field with fixed homeotropic
anchoring. The minimum develops to minimise the bend distortion at the expense of an elastic
splay and surface deformation. The envisaged field-line pattern gives rise to a virtual defect
line indicated by the dot at the centre of the radius of curvature associated with the minimum
of the profile. (b) The relative contribution of the splay deformation to the total director-field
distortion for a monotonic profile with λ̂′ = 0 (top) and a non-monotonic profile with λ̂′ = 4
(bottom). The splay deformation is significant only near the minimum in both cases and it is
even dominant for λ̂′ = 4.

the bend deformation is completely dominant. The distribution of splay deformation is
asymmetric with respect to the minimum, just as the profile itself is, see Fig. 6.6. Note
that for λ̂′ = 0, for which case the interface profile is monotonic, there is also some splay
deformation in the bulk nematic but it is nowhere dominant.

A point worthy of mention is that for plate-like particles theoretical estimates predict
that K1 > K3 [185], implying that the exchange of bend for splay distortion is ener-
getically more expensive than one leads to suspect on the basis of the equal-constant
approximation, presumably partially undoing the effect that we think causes the min-
imum in the capillary profile. On the other hand, for gibbsite platelets the two Frank
constants differ not by much, K1 ≈ 1.5 · 10−13 N and K3 ≈ 7 · 10−14 N [83,181,186], ex-
plaining why the minimum can clearly be observed in Fig. 6.5. However, the rise height
and depth of the minimum as well as the director field are very sensitive to the experi-
mental procedure because, e.g., surface inhomogeneities in the capillary wall might lead
to pinning of the three-phase contact line. This is not too far-fetched a possibility on
account of the very low interfacial tensions. For rod-like particles it is well established
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that K3 À K1 [50,57,58], so for these it might be quite difficult to observe the minimum
in the profile.

The question remains what the influence of elasticity is in the intermediate regime
where λ and `c are of the same order of magnitude, and the anchoring is moderately
strong. This influence must evidently be there, as outside these limits it is absent or
quite weak. We leave it for future investigation. In the next three chapters we focus on
another manifestation of the competition between elastic and anchoring forces charac-
teristic of isotropic-nematic interfaces, namely that in nematic droplets.

We would like to thank Lia Verhoeff for the capillary-rise experiments on gibbsite
platelets and for providing us with the experimental value of the elastic constant K1 of
the nematic phase of gibbsite platelets.

6.A Strong surface anchoring

In the strong-anchoring limit we for simplicity but without loss of generality pre-
sume symmetric homeotropic anchoring because it allows for a convenient mathematical
construction of the director field, which is worked out in this Appendix. As explained
in section 6.3, the invoked equal-constant approximation makes the result also valid for
planar anchoring, provided that the area of the plane we consider is larger than that
of the plane perpendicular to it. From the profile equation we next derive interesting
properties such as the decay length and the contact angle.

i) Parametrisation. For a point (x̃, ỹ) in the bulk of the rise region, we find
the section of a circle that has its centre on the y-axis, and intersects the profile y(x)
perpendicularly in (x0, y0), see Fig. 6.8. The line tangent to this point intersects the
vertical axis at height ξ = y0 − y′(x0)x0. The profile is assumed to decay completely
within a finite distance R from the wall. We formally let R → ∞ at the end of the
calculation. The points (x̃, ỹ) satisfying x̃2 +(ỹ−ξ)2 = x2

0 +(y0−ξ)2 = x2
0(1+(y′(x0))2)

are on the same distance from (0, ξ), so they are on the same field line. We then find
for the director field at (x̃, ỹ):

n(x̃, ỹ) =

(
− ỹ − ξ√

x̃2 + (ỹ − ξ)2
,

x̃√
x̃2 + (ỹ − ξ)2

)
, (6.16)

where ξ depends on x̂ and ŷ implicitly. In order to find the elastic energy, we must
perform an integration over the domain, for which a suitable parametrisation is chosen.
Let the parameter x pass through the profile y, taking on values between 0 and R. So
we have x0 = x, y0 = y(x). For every x we then integrate over the azimuthal director
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Figure 6.8: Explanation of the parametrisation of the surface that is used in order to calculate
the elastic deformation energy for the prescribed director field. The director field in a point
(x̃, ỹ) in the bulk lies on the circle section that intersects the profile y(x) perpendicularly in
(x0, y0). This circle has centre (0, ξ) and radius r. φ is the angle that the line connecting a
point on the circle section and (0, ξ) makes with the horizontal. y′(R) = 0 is presumed, giving
ξ = 0 and φ ∈ (0, π/2) for points on the bottom circle section.

field from the profile to the vertical axis. This means crossing the circle section, the
centre of which is at (0, ξ), with ξ(x) = y(x) − y′(x)x. The radius r of the circle then
obeys r2 = x2(1 + y′(x)2). The angle that the tangent makes with the horizontal is φ.
We now shift from the coordinates x̃ and ỹ to coordinates x and φ. These are not the
usual polar coordinates because the origin is not fixed. Abbreviating y′ for y′(x), we
find

x̃ = r cos φ = x
√

1 + y′2 cos φ, (6.17a)

ỹ = ξ − r sin φ = y − y′x− x
√

1 + y′2 sin φ. (6.17b)

The Jacobian of our coordinate transformation is
∣∣∣∣
∂(x̃, ỹ)
∂(x, φ)

∣∣∣∣ = x(1 + y′2) + x2y′′
(
y′ +

√
1 + y′2 sin φ

)
. (6.18)

The boundaries for x are (0, R), the upper bound for φ is φ = π/2; the lower bound
follows from Fig. 6.8: tan φ = (ξ − y)/x = −y′, so φ = − arctan y′.
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ii) Elastic free energy. The director field can easily be expressed in terms of the
new variables, which gives for the elastic energy density

fe = (∇ · n)2 + (∇× n)2 =
1

x2(1 + y′2)
. (6.19)

fe diverges for x → 0, so we introduce a cut-off radius a to avoid this divergence.
The cut-off radius can be estimated as follows. The elastic energy Fe in the reference
state is Fe = ϑK log (R/a) /2, which follows from the elastic energy of a wedge with
angle ϑ and multiplied by R [187]. The difference in free energy when replacing the
volume that has been cut off of the nematic phase by the isotropic phase is equal to
Fc = −ϑa2(fN − fI)/2, where fN and fI are the energy densities of the nematic and
isotropic phases. The length scale a is found by minimising Fe + Fc with respect to a,
which gives a =

√
K/(2fI − 2fN ), independent of the opening angle ϑ. The order of

magnitude of a we estimate by assuming that fN − fI ∼ kBT/D3, D being the length
(diameter) of a particle, as kBT is the only energy scale and D the only suitable length
scale in the system. Furthermore, K ∼ kBT/D for the same reasons. This then gives
a ∼ D.

For an arbitrary shape of the interface we have for the Frank elastic energy per unit
length

Fe =
K

2

∫ R

a

dx

∫ π/2

− arctan y′
dφ

∣∣∣∣
∂(x̃, ỹ)
∂(x, φ)

∣∣∣∣
1

x2(1 + y′2)

=
K

2

∫ R

a

dx

(
π

2x
+

arctan y′

x
+

y′′(1 + y′(π
2 + arctan y′))

1 + y′2

)
. (6.20)

After noting that the first term of the last integrand of Eq. (6.20) gives the deformation
energy in the reference state, Eq. (6.11) then follows for the excess free energy per unit
length, F , when going from a flat interface to the capillary rise, where the limit R →∞
has been taken. For this the weight of a column of width a and height y(a) must be
neglected in order to obtain an expression within one integral, which seems acceptable
given that a ∼ D. Note that this excess free energy is zero for a flat interface.

iii) Free energy minimisation. To functionally minimise F , we compute δF ≡
F [y + δy, y′ + δy′, y′′ + δy′′] − F [y, y′, y′′] = 0 with the boundary condition δy(R) = 0
to first order in δy. We note that last term in the last integrand of Eq. (6.20) can be
integrated explicitly, meaning that this term only has a contribution in the boundary
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condition. This gives for δF

δF = γIN

∫ R

a

dx
y′√

1 + y′2
δy′ + (γNW − γIW)

∫ a+c

a−c

dx δ(x)δy + ∆ρmg

∫ R

a

dx yδy+

K

2

∫ R

a

dx
1

x(1 + y′2)
δy′ +

K

2
1 + y′(π

2 + arctan y′)
1 + y′2

δy′
∣∣∣
x=R

x=a
= 0, (6.21)

with c a positive constant. The last boundary term with δy′ can be rewritten in terms
of δy by integration by parts. Therefore, both resulting terms must be equal to zero.
The integrands containing δy′ in Eq. (6.21) can be integrated by parts to give

δF =− γIN
y′(a)√

1 + y′(a)2
δy(a)− γIN

∫ R

a

dx
y′′

(1 + y′2)3/2
δy + (γNW − γIW)δy(a)

+ ∆ρmg

∫ R

a

dx yδy +
K

2
1

x(1 + y′2)
δy

∣∣∣
x=R

x=a
+

K

2

∫ R

a

dx
1 + y′2 + 2xy′y′′

x2(1 + y′2)2
δy = 0.

(6.22)

This equation must hold for arbitrary functions δy and δy′, so that the terms propor-
tional to δy′ produce a boundary condition and the collection of the δy terms gives a
differential equation for y. For the boundary condition we have, using that δy(R) = 0
and approximating y′(0) by y′(a),

−γIN
y′(a)√

1 + y′(a)2
+ (γNW − γIW)− K

2
1

a(1 + y′(a)2)
= 0. (6.23)

With y′(a) = −1/ tanϑ, this gives Eq. (6.15).
For the profile y(x) we obtain Eq. (6.12). The far-field behaviour of the profile is

computed by solving the differential equation that remains after taking the limit ŷ′ → 0
in Eq. (6.12). The solution reads

ŷ(x̂) ≈ C exp(−
√

2x̂)− λ̂′

4

(
exp(

√
2x̂)I(−

√
2x̂) + exp(−

√
2x̂)I(

√
2x̂)

)
, (6.24)

with C an integration constant, λ̂′ ≡ λ′/`c = K/(γIN`c), and I(z) = − ∫∞
−z

dt exp(−t)/t.

For large x̂ the solution obeys Eq. (6.14), showing a combination of exponential and
algebraic decay.

iv) Comparison with earlier work. In the absence of gravity, Eq. (6.12) can be
integrated with respect to x,

−γIN
y′√

1 + y′2
− K

2
1

x(1 + y′2)
= C (6.25)

with C an integration constant equal to −K/(2R) because of the boundary condition
that y′(R) = 0. Eq (6.25) is consistent with Eq. (40) of work by Poniewierski [172]
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for ` = a, where wetting of a horizontal substrate is considered and `(x) is the distance
between the IN interface and the substrate as a function of the horizontal coordinate x.
This equation follows from our Eq. (6.25) by substituting `(x) for x(−y) and `′ = −1/y′.
The constants appearing in that equation follow from boundary conditions and are
incorporated in our integration constant. The boundary condition, Eq. (41) in the
paper mentioned [172], for the contact angle (or the local tilt angle) is in agreement
with our Eq. (6.15), assuming that V (a) = γIN with V (`) the excess free energy per unit
area of a uniform nematic film of thickness `. Here, V (∞) = γIN + γNW − γIW = −S,
where S is the spreading coefficient [178]. Our boundary condition is also in accord
with Eqs. (58) and (85) in papers by Rey [91,184], where it must be noted that in those
papers the cut-off distance is measured radially, explaining why those equations have
sin ϑ instead of sin2 ϑ in the last term.





7
Deformable homeotropic nematic

droplets in a magnetic field: strong

surface anchoring

We present a simple Frank-Oseen elasticity theory to study the effect of a magnetic
field on the shape and director field of nematic droplets, also known as tactoids, with
homeotropic surface anchoring. In the model we presume a spherocylindrical droplet
shape, strong anchoring of the director field to the surface of the tactoid, and a negative
diamagnetic susceptibility of the nematogens. We find that above a critical field strength
spherical tactoids with a radial director field undergo a drastic reorganisation of the di-
rector field and the drop shape as a split-core line defect develops in an elongated tactoid.
We compare our results with experiments on droplets in sterically stabilised dispersions
of gibbsite platelets that indeed have a negative magnetic susceptibility, allowing us to
extract values for the interfacial tension and the splay elastic constant.†

†The contents of this chapter have been published as:
A. A. Verhoeff, R. H. J. Otten, P. van der Schoot, and H. N. W. Lekkerkerker, Journal of Physical
Chemistry B 113, 3704-3708 (2009).
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7.1 Introduction

In chapter 6 we considered the competition between the anisotropic surface tension
and bulk elasticity of a nematic liquid crystal in the capillary rise of an isotropic-nematic
interface up a vertical wall. In this and the next two chapters we focus on a different
manifestation of this competition, namely that in the shape and structure of nematic
droplets. These droplets are often observed in dispersions of sufficiently anisometric
colloidal particles under conditions where the isotropic and nematic phases co-exist
[41,55,63,64,179,188,190]. Nematic droplets, also called tactoids, have been investigated
quite intensively over the last few decades, not least because of their interesting and
sometimes unusual shapes and internal structures. These include oblate and prolate
droplet shapes with round and sharp edges, and director-field structures involving surface
and bulk point defects as well as ring-shaped disclination lines and bipolar twisted
“parity-broken” director fields, all depending the size of the drops and the shape of the
colloids [41,53,54,63,64,179,188,190].

Because the shape and structure of tactoids result in effect from a competition
between surface and elastic forces, studying them provides quantitative information
on material properties, including the elastic constants, surface tension and anchoring
strength of the director field to the interface between the co-existing isotropic and ne-
matic phases [6, 41, 53, 54, 56, 57, 63, 64, 190]. Tactoids in lyotropic systems are more
suitable for this purpose than those in thermotropic ones because of the extremely low
surface free energies typical of lyotropics [45,66,67].

Studies on tactoids in dispersions of rod-like colloidal particles such as vanadium
pentoxide [63, 64, 191], f-actin [179], tobacco mosaic virus [192], boehmite [193], and fd
virus [65], have shown that these drops tend to have a bipolar director field, in which the
curved field lines run from one virtual surface point defect (boojum) to another on the
other side of the drop. The cause of this tendency for bipolar director fields is that rod-
like particles for entropic reasons prefer planar alignment of the director to the interface.
Theoretically one only expects this to be so if the drops are sufficiently large relative
to some length scale set by the elastic and interfacial properties of the nematic drops
[87]. Tactoids with uniform director fields have been observed in computer simulations
and recently also in dispersions of carbon nanotubes [41, 62, 194]. The structure of
tactoids with planar anchoring conditions have been studied theoretically in great detail
[41, 53,54,63,64,179,193].

Tactoids of plate-like colloids seem to have a very different director field from those
of rod-shaped ones, although it has to be said that to date much fewer systems have been
studied. The rather intricate stabilisation of plate-like colloids is presumably the reason



7.1. Introduction 127

for this [11, 42, 78, 79, 195]. Tactoids have been observed in dispersions of sterically
stabilised and charge-stabilised gibbsite platelets [78, 84–86]. For these systems both
uniform and radial director fields have been observed, the latter a result of the tendency
of plate-like particles to align homeotropically to interfaces, again for entropic reasons
[85]. The radial director field is characterised by a hedgehog point defect in the centre
of the drop [55,84,196,197], which could also be a small ring defect [198,200].

As already alluded to, quantitative information can be obtained on the material pa-
rameters by fitting theoretical models to experimental results on tactoids. Additional
information on the material properties can be obtained by means of an externally ap-
plied electrical or magnetic field because these couple to the shape and director field of
tactoids [63]. In recent experiments on tactoids in suspensions of sterically stabilised
plate-like gibbsite particles in bromotoluene, it was shown that these tactoids respond to
an increasing magnetic field not by a continuous deformation but by a sudden rearrange-
ment of the director field if the field strength exceeds a critical value, a phenomenon
reminiscent of a Frederiks transition in which the director field of a thin layer of a well-
aligned nematic between parallel plates suddenly changes at a critical magnetic-field
strength [199]. Free-floating bipolar tactoids in colloidal dispersions of rod-like colloidal
particles have been shown to orient and stretch under the influence of a magnetic field,
but do not exhibit a Frederiks transition [63]. This observation can be understood by
applying standard elastic theory and by realising that the drops are freely suspended in
solution.

Interestingly, such a split-core line defect was predicted theoretically about a decade
ago by Mkaddem and Gartland [200], suggesting that the split-core defect could be sta-
bilised by an externally applied magnetic field but only if the nematogens have a negative
diamagnetic susceptibility. Gibbsite has a negative diamagnetic susceptibility, so this
corresponds exactly to the situation that was experimentally investigated in dispersions
of gibbsite platelets [84, 86], and confirmed that this configuration can be stabilised by
the magnetic field. Inspired by these experiments, we present in this chapter a Frank-
Oseen elasticity theory for the shape and structure of nematic droplets with homeotropic
surface anchoring in the presence of a magnetic field, and we focus on negative values
of the diamagnetic susceptibility. For a positive value we expect completely different
behaviour, because in that case the magnetic field would presumably drive the radial
director field with point defect into a uniform orientation via the formation of a ring
defect rather than into a split-core defect [201]. We use a simple model that presumes a
spherocylindrical droplet shape and strong anchoring of the director field to the surface.
In chapters 8 and 9 we relax this condition and consider imperfect surface anchoring.
With our simple model in this chapter a spherical drop with a radial director field
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stretches to an elongated drop with a split-core line defect at a critical magnetic-field
strength. This is in agreement with the experiments on tactoids consisting of sterically
stabilised gibbsite platelets in an organic solvent [84], and the comparison allows us the
extract values for the splay elastic constant from the critical magnetic-field strength at
which the director field starts to change, and the interfacial tension from the degree of
deformation of the tactoid at higher magnetic-field strengths.

In the remainder of this chapter, we first present in section 7.2 the theoretical in-
gredients, which we use in this chapter and the next chapters, and discuss our simple
model for the tactoid deformation in section 7.3. From this we derive the optimal shape
in section 7.4 and we compare our results with the experiments on tactoids consisting
of gibbsite platelets in section 7.5. Finally, we discuss our results in section 7.6.

7.2 Model ingredients

In this section we present the ingredients of our macroscopic Frank-Oseen elasticity
theory that should enable us to rationalise the experimental observations described in the
introduction and that we also use in the next two chapters [14]. The basics of this theory
were described in chapter 1, and we here discuss the free-energy contributions that we
deal with in our case. The free energy F = Fst + Fsa + Fe + Fm of a tactoid of volume
V consists of four contributions associated with the bare surface tension (subscript st)
and surface anchoring (sa), the elastic deformation (e) and the magnetic field (m).

1. The bare surface energy and the anchoring energy form the surface energy Fst+Fsa

that we take is of the Rapini-Papoular type [40],

Fst + Fsa =
∫

A

dA
(
γ + ζ sin2 α

)
, (7.1)

where the integration is taken over the entire surface area A of the drop and α is the
angle between the surface normal q = q(r) and the director field n = n(r) at the
interface. Eq. (7.1) comprises a contribution from the bare surface tension γ and
one from the surface anchoring, where ζ is the surface-tension anisotropy, i.e., the
anchoring free energy per unit area of the drop interface. As already announced,
platelets for entropic reasons prefer homeotropic alignment of the director field
to the interface [42], implying ζ > 0. This form of the interfacial energy has
been shown to be a very accurate representation for rod-like particles [41], and we
presume it to be reasonable for disk-like ones as well;
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2. The Oseen-Frank free energy of elastic deformation reads

Fe =
1
2

∫

V

dV
(
K1 (∇ · n)2 + K3 (∇× n)2

)
, (7.2)

if we ignore any twist deformation, where the integration is over the volume V of
the drop, and K1 and K3 are the splay and bend elastic constant, respectively.
In Eq. (7.2) we omitted the splay-bend term with constant K13 and the saddle-
splay term with constant K24, and we discuss this in section 7.6. Inspired by the
experimental observations, we ignore any contributions from bend deformations,†

and we return to this in the discussion;

3. The magnetic energy of a nematic drop is given by [6]

Fm = −1
2
ρ∆χB2

∫

V

dV (n · ex)2, (7.3)

where we have dropped a spatially invariant term [6], ρ is the particle number
density, ∆χ the diamagnetic susceptibility anisotropy (dimensions J/T2), and B

the magnitude of the magnetic field that we choose to be in the x-direction with
unit vector ex. As our theory intends to explain the observations on dispersions of
gibbsite platelets that have a negative magnetic susceptibility, we presume ∆χ < 0
[42,83,84,86], so the particles have a tendency to orient their director perpendicular
to the magnetic field.

Clearly, we should simultaneously minimise the free energy F with respect to both
shape and director field of a tactoid to obtain the optimal structure of the tactoid. How-
ever, this is a formidable constrained-free boundary-value problem that is most probably
impossible to solve analytically, and even hard to solve numerically. Therefore, in section
7.3 we first presuppose a particular shape and internal structure of the elongated droplet
that permits a straightforward calculation of the magnitude of the deformation of the
director field and the computation of the overall surface area. This approach should
then allow us to explain the director-field transition and the accompanying tactoid elon-
gation for a sufficiently strong magnetic field. In chapters 8 and 9 we present a more
sophisticated model with a more realistic tactoid shape and more realistic anchoring
conditions. The approach we follow here is first to minimise the free energy with respect
to a variational parameter that describes the elongated shape of the tactoid, as is done
in section 7.4. The application of this model to the experimental data in section 7.5
then enables us to extract values for the splay elastic constant and the surface tension.

†In section 8.3 we consider a ring defect that has a director field with both a splay and a bend
deformation, but in the parameter range where this configuration is most favourable, it has hardly any
bend deformation.
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Figure 7.1: Left: for a magnetic field B with a magnitude B smaller than a critical value
Bc, the droplet is spherical with radius R: the director field (dashed lines) is radial in three
dimensions (pure splay) with a point defect in the centre (dot). Right: for a magnetic field
larger than Bc, the tactoid adopts an elongated shape that we model by a cylinder of length L
and radius Rt with hemispherical end caps. In the cylinder, the field is radial in two dimensions
with a defect line on the axis and in the caps the field is radial in three dimensions, originating
from the ends of the defect line.

7.3 Tactoid model

The strong-anchoring condition expresses itself in a radial director field characterised
by a hedgehog point defect at the centre of a spherical drop. For a sufficiently strong
magnetic field, its influence on the orientation of the particles becomes significant. This
field biases a certain orientation of the platelets, determined by the sign of the dia-
magnetic susceptibility anisotropy ∆χ. In the spherical droplet with radially symmetric
director field, the orientation of the particles does minimise the surface energy but not
their magnetic energy. Therefore, by way of compromise a non-spherical shape, elon-
gated in the direction of the magnetic field, allows more particles to align with the
magnetic field and yet retain their homeotropic alignment to the surface.

In our model we presume the droplet shape to be described by a cylinder of length
L and radius Rt with two hemispherical end caps, see Fig. 7.1. In addition, we suppose
the director field in the end caps to be of the same type as in the spherical tactoid, i.e.,
radial in three dimensions, and in the cylindrical part to be radial in two dimensions
with the cylinder axis as the axis of symmetry. This implies that the point defect in
the spherical configuration is stretched to a line (or disclination) defect of topological
charge +1, as predicted by Mkaddem and Gartland [200]. Associated with the formation
of the line defect from the point defect is an increase of the elastic free energy of the
director field. Furthermore, the surface area increases with the elongation, giving rise
to an additional surface free-energy cost. These two effects are compensated for by the
free-energy gain on account of an increase of the number of particles aligning with the
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magnetic field.
For the magnetic energy we find from Eq. (7.3)

Fm =
2
9
πΣR3

t , (7.4)

with Σ ≡ −ρ∆χB2. This contribution comes from the end caps, since the director field
is perpendicular to the magnetic field in the cylinder. The elastic energy Fe associated
with the distortion of the director field has contributions from the hemi-spherical end
caps and from the cylindrical mid section. The contribution of the cylindrical part can in
turn be divided into a part from the bulk and a part from the core containing the defect
line on the cylinder axis. This gives an elastic free energy proportional to fcoreLa2, with
fcore the energy density of the core of the defect and a the core diameter of the defect
line. We absorb this contribution into the bulk free energy of the cylindrical portion
of the drop by introducing an effective defect core diameter b that we expect to be of
the order of the diameter of the platelets because defects have been observed to be of
the size of the nematogens in lyotropic nematics [203]. Note that in this study this
contribution is not important for the transition because we compare a spherical drop
and an elongated one that both have this core.

A radial director field in the cylinder portion and in the end caps implies that it is
irrotational in the entire droplet. In the cylindrical part we have ∇ ·n = 1/r̂ with r̂ the
radial coordinate in two dimensions, whereas in the end caps ∇ · n = 2/r, with r the
radial coordinate in three dimensions. Using cylindrical coordinates for the axis part
and spherical coordinates for the ends caps we conclude that the elastic energy of our
model tactoid must obey

Fe = πK1L log
(

Rt

b

)
+ 8πK1Rt. (7.5)

The interfacial energy has only a contribution Fst from the bare surface tension because
Fsa = 0, so it is proportional to the surface area of the elongated droplet, and

Fst = γ(2πRtL + 4πR2
t ). (7.6)

In the next section we compute the optimale shape by minimising the total free energy,
equal to the sum of F ≡ Fm + Fe + Fst, with respect to the shape.



132 Chapter 7. Deformable homeotropic tactoids in a magnetic field: strong anchoring

7.4 Optimal shape

By introducing the dimensionless variables r ≡ Rt/R, b0 ≡ b/R, and ` ≡ L/R, the
Helmholtz free energy F can be rewritten as

F =
2
9
πΣR3r3 + K1πR` log

(
r

b0

)
+ 8πK1Rr + 2πγR2(r` + 2r2). (7.7)

The free energy is made dimensionless by division by K1R, giving f ≡ F/K1R, and we
subtract the reference energy of the spherical droplet with r = 1 and ` = 0, to find the
excess free energy ∆f :

∆f =
2πΣR2

9K1
(r3 − 1) + π` log

(
r

b0

)
+ 8π(r − 1) + 2π

γR

K1

(
r` + 2(r2 − 1)

)
. (7.8)

We introduce the dimensionless variables < = Rγ/K1 and β2 ≡ ΣK1/γ2, and use that
the variable ` depends on r via volume conservation,

4
3
πR3 = πR3r2` +

4
3
πR3r3, (7.9)

so ` =
(
4/r2 − 4r

)
/3. This enables us to express the shape in terms of a single param-

eter, i.e., the radius r of the cylinder, so the minimisation of F can be performed by
differentiation with respect to r.

This gives the excess free energy ∆f that we then differentiate with respect to r to
find for the optimal shape

2
3
πβ2<2r2 +

4π

3

((
− 2

r3
− 1

)
log

(
r

b0

)
+

1
r3
− 1

)
+ 8π +

8π

3
<

(
r − 1

r2

)
= 0. (7.10)

If the optimal value of Rt is larger than R, or r > 1, then by construction Rt ≡ R

because the model allows for negative values of the length of the cylindrical part of the
drop. This is the case for magnetic-field strengths smaller than a critical value. This
critical value Bc, where the director-field transition occurs, can be obtained from Eq.
(7.10) by insisting that r = Rt/R = 1, giving β2

c = −6(log b0 + 2)/<2, or

B2
c =

6K1

ρ∆χR2

(
log

(
b

R

)
+ 2

)
. (7.11)

In order to have a positive Bc, Eq. (7.11) requires that b/R < exp(−2) ≈ 0.14. Hence,
if b is of the order of a platelet diameter (∼ 200 nm), this gives R > 1.5 µm. For such
a small droplet size one may wonder whether a macroscopic theory is still meaningful.
This critical magnetic field is independent of the surface tension γ because at the onset
of the transition the droplet is not deformed yet. This allows us to determine K1 from
Eq. (7.11), which can then be used to find γ by fitting Eq. (7.10) to the experimental
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data of the tactoid size for different magnetic fields. This we do in the next section. The
fact that a minimum magnetic-field strength is required agrees with the experiments on
the sterically stabilised gibbsite platelets that we mentioned in section 7.1. Eq. (7.11)
is reminiscent of a Frederiks transition because it describes a critical field strength that
is required for a sudden change in the director field and that scales with K/∆εR2, with
∆ε the dielectric anisotropy [199], but the type of director-field distortion is different
and here we have no solid boundary.

In Fig. 7.2 the degree of tactoid elongation, expressed by r, is shown as a function
of β2, for various values of <. These values have been chosen such that < > 3, because
for smaller values a homogeneous director field is formed instead of a radial one, as we
will show in chapter 8.

Figure 7.2: (a) The radius of the cylinder relative to that of the initial spherical tactoid r ≡
Rt/R, which is a measure of the degree of tactoid elongation, as a function of the dimensionless
magnetic-field strength β2 for < = 5 (top), 15, and 25 (bottom). (b) The increase in the aspect
ratio a as a function of the dimensionless magnetic-field strength β2 for < = 5 (top), 15, and
25 (bottom).

As already alluded to in section 7.1, the simple model allows use to find analytical
predictions for the transition that follows from the model. Indeed, if we consider small
deviations δ from the spherical shape with r = 1 and ε from the critical magnetic-field
strength Bc, so we substitute r = 1−δ and β2 = β2

c (1+ε) in Eq. (7.10), with 0 < δ ¿ 1
and 0 < ε ¿ 1 as perturbation parameters, we find

δ =
6− 2<+ 4 log

(
b
R

)

log
(

b
R

)
+ 2

ε, (7.12)

to first order in δ and ε. Again, this poses the restriction that b/R < exp(−2) to make
this a meaningful expression. By using volume conservation, Eq. (7.9), we find for
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a = 1 + `/2r that

a = 1 +
2
3

(
2
r3
− 1

)
. (7.13)

If we substitute r = 1 − δ, we find as a first-order approximation that a = 1 + 2δ. We
combine this with Eq. (7.12) to determine how rapidly the aspect ratio increases with
increasing magnetic-field strength, just above the critical value. The result is shown
in Fig. 7.2. In section 7.5 we find that such a linear approximation for the shape
deformation is quite accurate.

A second analytical result is that we can determine the scaling of r that follows
from Eq. (7.10) in the limit of very strong magnetic field where the tactoid is strongly
elongated. Clearly, r cannot become smaller than b0 as the cylinder must be larger than
the core of the defect, so we cannot simply take a limit r → 0. If we assume that r can
still be so small that r < 1/<, we find as a first approximation from that

β2<2r2 ≈ 4
3r3

log
(r

b

)
. (7.14)

So, r ∝ β−2/5<−2/5 up to logarithmic corrections, which gives for the aspect ratio
a according to Eq. (7.13) that a ∝ β6/5<6/5. This is a testable result amenable to
experimental verification.

7.5 Comparison with experiments

The theoretical predictions from the previous section can be tested against experi-
mental results on tactoids in sterically stabilised dispersions of gibbsite platelets with
homeotropic anchoring [84]. From the fact that there is rotational symmetry and from
the observed interference colours, the director field can be deduced. For weak magnetic
fields the tactoid has a radial director field with a hedgehog point defect of topological
charge +1 in its centre. From a certain critical field strength on the dark cross inside
the tactoid (where the platelets are oriented along the polarisers) transforms into a dark
line along the magnetic field, as depicted in Fig. 7.3. Platelets in this dark region
are oriented with their director perpendicular to the focal plane, and therefore do not
exhibit birefringence. This implies that the point defect in the centre of the tactoid
is stretched to a line defect along the direction of the magnetic field, from which the
director lines go to the surface, as illustrated in Fig. 7.1. When the magnetic field is
increased further, the tactoid becomes discernably elongated with its long axis in the
direction of the magnetic field. Upon decreasing the magnetic field the tactoid relaxes
back to its original configuration within a few minutes, so the process is reversible.
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Figure 7.3: Polarisation-microscopy image of the deformation of a tactoid of colloidal gibbsite
platelets in a magnetic field [84, 202]. The white arrows indicate the polarisers, meaning that
platelets in a dark region are oriented with their director perpendicular to one of the polarisers.
The point defect is stretched to a line defect, and the tactoid becomes elongated. When the
field is decreased the tactoid relaxes back to its original configuration.

Fig. 7.4 shows the degree of deformation as a function of magnetic-field strength of
two different tactoids in terms of the aspect ratio a = (L + 2Rt)/2Rt, and the fits of
our model that follow from Eq. (7.10). This comparison enables us to extract material
parameters of the liquid crystal from the deformation of the tactoid in the magnetic
field. First of all, from the critical magnetic field, where the deformation starts, we
obtain the splay elastic constant K1. From Fig. 7.4 we find for the tactoid with R = 28
µm a critical field strength Bc = 0.3 - 0.4 T and for the tactoid with R = 31 µm a
critical field strength Bc = 0.2 - 0.3 T. Using Eq. (7.11), with ∆χ = −10−22 J/T2,
ρ = 4 × 1020 m−3 [42, 83], and b0 = 10−2, where we assume that the size of the defect
is of the order of the platelet diameter, we find K1 = (1.4 − 2.6) × 10−13 N for the 28
µm tactoid and (0.9 − 2.0) × 10−13 N for the 31 µm tactoid. From the deformation of
the shape above the critical field strength the interfacial tension γ can be determined.
Fig. 7.4(a) depicts a fit of the deformation of the 28 µm tactoid with Eq. (7.10), using
γ = 5× 10−7 N/m. The dashed lines, representing theoretical results for γ = 3× 10−7

N/m and γ = 7×10−7 N/m, show that the shape is strongly dependent on the interfacial
tension where a lower interfacial tension results in a stronger deformation, and the value
we find for γ is therefore robust. A similar fit for the 31 µm tactoid, depicted in Fig.
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Figure 7.4: Aspect ratio a = (L + 2Rt)/2Rt of tactoids of plate-like gibbsite particles as a
function of the square of the magnetic-field strength. The points depict the experimental data
and the lines our theoretical model. (a) Fit of the deformation data of the 28 µm tactoid, using
K1 = 3×10−13 N, and for the solid line γ = 5×10−7 N/m. Dashed lines represents theoretical
results with lower and higher values for the interfacial tension (γ = 3×10−7 and 7×10−7 N/m).
(b) The same results for the 31 µm tactoid with K1 = 2 × 10−13 N and γ = 2 × 10−7 N/m
(solid line), and 0.2 and 5 (dashed lines) ×10−7 N/m. The steepest lines correspond to the
smallest γ. The measured aspect ratio smaller than unity presumably arise from fluctuations
or the fact that the tactoid is creaming or sedimenting. The value for Bc follows from the best
fit to the data as given by Eq. (7.10).

7.4(b), gives an interfacial tension of 2× 10−7 N/m, with the dashed lines representing
0.2 and 5 × 10−7 N/m. As argued in section 7.4, such a value can also be obtained by
using Eq. (7.12) and the observation that a = 1 + 2δ for small values of deviations δ in
the value of r = 1 for the spherical drop.

7.6 Discussion and conclusions

In this chapter we have presented model for nematic droplets with perfect homeotropic
anchoring in a magnetic field. We focused on negative values of the magnetic suscepti-
bility ∆χ because this is the case for gibbsite platelets, but in case of a positive ∆χ the
point defect presumably transforms into a ring defect in the plane perpendicular to the
magnetic field [201]. The ring increases in size with increasing field strength and gives a
uniform director field inside the ring to minimise the magnetic energy cost. For negative
∆χ the magnetic field imposes an orientation of the particles perpendicular to that field.
If the magnetic field is sufficiently strong, the magnetic energy cost becomes so large
that a configuration with split-core line defect is more favourable, because it allows more
particles to comply with the magnetic field. Therefore, at this critical field strength the
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radial director field with hedgehog point defect in the centre transforms to an elongated
shape with split-core line defect. The observed transformation is a Frederiks-like tran-
sition, and we have also derived an analytical expression for the critical magnetic-field
strength. Our results are confirmed by experiments on tactoids of plate-like particles in
a magnetic field [84], where indeed a minimum magnetic-field strength was required to
observe the Frederiks-like transition in these dispersions. This is in agreement with the
prediction by Mkaddem and Gartland that such a line defect could be stabilised by a
magnetic field in case of a negative value of ∆χ.

From a comparison our of theory and these experiments we have been able to deter-
mine both the splay elastic constant and the interfacial tension. The value we find for the
splay elastic constant K1 = (0.9−2.6)×10−13 N should be compared to the value for the
bend elastic constant K3 measured by Van der Beek and co-workers, K3 = (7±1)×10−14

N [83]. We see that K1 is 2 to 3 times larger than K3, in agreement with theoretical
predictions by Osipov and Hess [189] and recent computer simulations by O’Brien and
co-workers [52]. As expected for these large particles, the interfacial tension is low [6],
though recent capillary rise experiments resulted in an even lower value for the interfa-
cial tension of γ = 7 × 10−9 N/m [42]. In chapter 6 we found values for γ of the same
order of magnitude by fitting our model for the capillary rise to these experiments.

In order to understand this rather significant difference it should be noted that in
our analysis of the elastic free energy we ignored the so-called saddle-splay deformation
of the field [14], which is nonzero for a three-dimensional radial director field. This
means that the second term of Eq. (7.5), originating from the elastic deformation in the
end caps, actually contains a renormalised elastic constant K1 −K24. Here, K24 is the
saddle-splay deformation constant that is unknown, although K24 = (K11 −K22)/2 has
been estimated from a molecular approach. We note that the saddle-splay deformation
is zero for the two-dimensional radial around the defect line. Still, even invoking a
renormalised splay elastic constant cannot quite account for the discrepancy because
the corresponding third term of Eq. (7.10) is relatively small compared to the first and
second term with b0 ≈ 10−2. So the shape is determined primarily by a balance between
the magnetic contribution and the term associated with the director field deformation
in the cylinder.

A moot point in our model is that we neglected the effect of the magnetic field on
the material parameters in this work, which may be questionable because of, e.g., the
alignment of the background isotropic phase for with increasing field strength. The
alignment of the isotropic phase must affect the values of the surface tension and an-
choring strength that presumably become smaller due to the alignment. Moreover, the
magnetic field increases the order parameter S2 of the nematic phase, defined in Eq.
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(1.4), which should affect the splay elastic constant K1 and the anchoring strength ζ.
The elastic force together with surface anchoring force compete with the magnetic force
against the deformation, so an underestimation of K1 would lead to a too large value of
the surface tension. Still, it is not certain by any means that this effect is strong enough
to explain the large difference in the values of the surface tension.

A possible explanation for the discrepancy may lie in the imperfect surface anchor-
ing that is neglected in the theory, which may be too strong an assumption both in
the cylinder and the end caps. In the end caps, this assumption implies that there are
relatively many particles that show (almost) perpendicular alignment with the magnetic
field, which is expensive energetically. In the cylinder, complete anchoring is imposed
by choosing a cylindrical tactoid shape, whereas a shape with nonzero curvature of the
tactoid surface along the direction of the magnetic field, e.g., an ellipsoid, is probably
a more realistic model of a tactoid. A model with imperfect surface anchoring is dealt
with in the next two chapters. The interfacial energy in Eq. (7.1) then contains not
only a contribution originating from the bare surface tension γ, but also one associated
with the anchoring strength ζ of the director field to the tactoid interface. In chapter
8 we focus on the limiting case of very small ω ≡ ζ/γ, meaning that surface tension
dominates the anchoring strength and the droplets remain spherical. In chapter 9 we
combine the approach of this chapter and chapter 8 and allow for non-spherical shapes
as well as split-core defects within a spherical shape. This difference in the value of
the dimensionless anchoring strength ω is reflected in the experiments in two types of
solvent: an aqueous one in the next chapter for ω → 0 and the one with bromotoluene
with ω > 0 that we considered in this chapter and return to in chapter 9.

We thank Lia Verhoeff for performing the experiments on the tactoids.
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Spherical homeotropic nematic

droplets in a magnetic field

We present a Frank-Oseen elasticity theory for the effect of a magnetic field on
homeotropic nematic droplets in a different regime from that of chapter 7, namely that of
weak anchoring, where the surface tension dominates over the anchoring of the director
field to the drop interface. This implies that the drops remain spherical and, as a result,
they have imperfect surface anchoring. We find that small drops have a homogeneous
director field for any magnetic field strength, whereas larger drops have a radial director
field in a weak magnetic field. We discuss two cross-over routes from the homogeneous
director field to the radial configuration: (i) via the gradual displacement of the central
hedgehog to infinity, and (ii) via the formation of a ring defect that increases its radius
to far outside the drop where it becomes virtual. In both cases an energy barrier has to be
overcome to complete the crossover. For strong magnetic fields the hedgehog point defect
transforms into a split-core line defect to reduce the magnetic energy cost. We present
a phase diagram that shows the director field for a given tactoid size and magnetic field
strength. Our findings rationalise the different structures that have been observed exper-
imentally in charge-stabilised dispersions of gibbsite platelets, and the comparison allows
us to extract values for the splay elastic constant and the anchoring strength.†

†The contents of this chapter are based on the following publications:
A. A. Verhoeff, I. A. Bakelaar, R. H. J. Otten, P. van der Schoot, and H. N. W. Lekkerkerker, Langmuir
27, 116-125 (2011),
A. A. Verhoeff, R. H. J. Otten, P. van der Schoot, and H. N. W. Lekkerkerker, Journal of Chemical
Physics 134, 044904 (2011),
R. H. J. Otten and P. van der Schoot, in manuscript.
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8.1 Introduction

In chapter 7 we presented a model for a drastic change in the director field and shape
of tactoids with homeotropic anchoring in a sufficiently strong magnetic field. The model
presumed the limiting case of strong anchoring of the director field to the tactoid surface
and that the change in director field is accompanied by an elongation of the drop itself.
These model ingredients were inspired by recent experimental observations in dispersions
of sterically stabilised gibbsite particles in an organic solvent. In this chapter we present
a model for a different limiting case, namely where the surface tension dominates the
anchoring strength, meaning that the drops are spherical because an increase in the
surface area of the drop is prohibitively large. The fact that the drops remain spherical
implies that the director field exhibits imperfect surface anchoring. With this model
we aim to rationalise different experiments on the same gibbsite particles, but in this
case in a charge-stabilised dispersion, in which a similar Frederiks-like transition of the
director field was observed as in the sterically stabilised dispersion, but the drops showed
no discernable deviation from the spherical shape [85,86].

A second interesting observation in these experiments is that the crossover from a
radial director field to a uniform one with decreasing drop size seems to occur via two
different routes. In one route the point defect transforms into a small ring defect that
increases its radius until it has left the confines of the drop and becomes virtual, and in
the second route, the point defect is displaced from the centre and also becomes virtual
when it is outside the drop.

In this chapter and the next chapter we present a macroscopic theory that rationalises
these experimental observations, where we presume surface tension to be the dominant
force, so we focus on spherical drops. We describe how the director-field configuration is
governed by a competition between the anchoring strength, bulk elastic properties of the
nematic, and the magnetic field. Based on the experimental observations, we consider
a homogeneous and a radial director field, and one with a split-core defect, and we
determine the director field with the lowest free energy for given values of the material
parameters. We assemble our results in a stability diagram and find that small drops
have a homogeneous director field for any magnetic-field strength and larger drops have
a hedgehog point defect for weak or zero magnetic field. If the magnetic field is strong
enough, a split-core line defect in the direction of this field becomes more favourable
than the point defect.

We also discuss the crossovers between the different director fields. The crossover
from point defect to line defect is smooth and we find an analytical expression for the
critical magnetic-field strength that is reminiscent of the Frederiks transition. For the
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transition from radial field to to split-core defect we consider two conceivable cross-over
routes, as observed in the experiments mentioned above. A point defect that is located
off-centre is not a free-energy minimum, so it cannot be a stable situation, whereas a
small ring defect in the centre could be stable. However, in both hypothetical cross-over
routes in the phase diagram an energy barrier must be overcome. This means that both
crossovers are abrupt and that the intermediates cannot occur in a stable dispersion.
Our results agree with the experiments on tactoids in charge-stabilised dispersions of
gibbsite platelets and the comparison allows us to extract values for the splay elastic
constant and the anchoring strength.

In the remainder of this chapter we first discuss the free energies of the possible
director fields in section 8.2. Then we present our phase diagram for the optimal tactoid
structure and the cross-over routes from a uniform to radial director field in section 8.3.
Next, we compare these results with experimental observations in section 8.4 and finally,
we discuss our model and the results in section 8.5.

8.2 Free energy

From Eqs. (7.1), (7.2), and (7.3) as presented in chapter 7 we deduce that the
four free energies scale as Fst ∼ γR2, Fsa ∼ ζR2, Fe ∼ K1R, and Fm ∼ ΣR3, with
Σ ≡ −ρ∆χB2 a measure of the strength of the magnetic field B, and R the radius of
the drop. We immediately see that for sufficiently small tactoids the elastic deformation
must be dominant, giving rise to a uniform director field irrespective of the magnetic-
field strength. On the other hand, for very large drops the magnetic energy becomes
dominant, forcing the particles to comply with the orientation imposed by this field.
If we ignore the prefactors for a moment, the relative magnitude of these free-energy
scalings provides us with more information in terms of three dimensionless groups that
follow naturally from this comparison and turn out to be important for the remainder
of this chapter and the next one.

1. If we compare both surface terms, we find a dimensionless anchoring strength
ω ≡ ζ/γ. For large values of ω the anchoring is dominant over the bare sur-
face tension, indicating a preference to deform the interface over an unfavourable
surface anchoring of the director field to the drop interface.

2. Combining Fe with Fst or Fsa gives a scaled droplet size < ≡ Rγ/K1 or Rζ/K1 =
<ω. For small values of < and <ω the elastic energy dominates over the surface
and anchoring energy, leading to a homogeneous director field at the expense of a
deformed droplet and imperfect surface anchoring, respectively.
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3. Taking the ratio of Fm and Fst gives ΣR/γ = β2<, where we defined β2 ≡ ΣK1/γ2.
The square of β is taken because it has a factor B2 in it, making it a positive
quantity, at least for Σ > 0, i.e., ∆χ < 0. We can write β2 ∼ FmFe/F 2

st, so a large
value of β2 means either a dominant magnetic field or dominant elasticity. As we
will see below, this leads to the director field either becoming uniform or forming
a split-core line defect in the direction of the magnetic field.

As already alluded to in chapter 7, the simultaneous minimisation of the free energy
F with respect to both shape and director field is a constrained-free boundary-value
problem that is virtually impossible to solve analytically, and even hard to solve numer-
ically. Hence, the approach we adopt here is to impose four types of director field and
three types of tactoid shape based on the experimental observations and then to calcu-
late the combinations of a shape and a director field that have the lowest free energy for
given value of our dimensionless parameters ω, <, and β2.

From the analysis above it follows that for a sufficiently small spherical drop the zero
energy cost associated with the elastic deformation and the magnetic field outweighs
the surface anchoring cost of the uniform field. This argument is valid regardless of
the magnetic-field strength. This means that there is only an interfacial energy Fu

st =
4πγR2, with R the drop radius, and an anchoring anchoring energy Fu

sa. The superscript
indicates the type of director field, which is in this case u for uniform. Using spherical
coordinates we find Fu

sa = 8πζR2/3, so

Fu = 4πγR2 +
8
3
πζR2. (8.1)

Recall that in this chapter we consider the case of ω = ζ/γ ¿ 1, so the surface-tension
term is dominant in Eq. (8.1). For larger tactoids the anchoring conditions become
increasingly important, so the uniform director field can no longer be maintained. The
strong anchoring requirements are fulfilled by a three-dimensional radial director field
with a hedgehog point defect in the centre of the tactoid. Its free energy has contributions
associated with a director-field distortion and the magnetic field. In the case of a three-
dimensional radial director field with a hedgehog point defect (superscript h), there is
perfect anchoring to the tactoid surface, so Fsa = 0 and the only contribution from the
interfacial energy is Fh

st = 4πγR2. Using spherical coordinates, the elastic deformation
energy and magnetic energy are directly found to be

Fh
e = 8πK1R, (8.2)

because (∇ · n)2 = 4/r2, with r the radial coordinate in three dimensions, and

Fh
m =

2
9
πΣR3, (8.3)
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with Σ ≡ −ρ∆χB2 as introduced before. Note that we ignored the free energy associated
with the core of the defect. This contribution will become significant in the analysis of
the split-core defect.

The total free energy of the spherical tactoid with radial director field becomes

Fh = 4πγR2 + 8πK1R +
2
9
πΣR3. (8.4)

In the absence of a magnetic field, we can estimate for what droplet size R the hedgehog is
energetically more favourable than the uniform field. A comparison with experimental
data can then provide a lower bound for ζ. We see from Eqs. (8.1) and (8.4) that
Fh < Fu gives 8πK1R < 8

3πζR2, or <ω > 3. Hence, for droplets with a radius larger
than 3K1/ζ anchoring has the upper hand such that the surface-anchoring forces drive
the director field into the hedgehog configuration. In chapter 9 we will see that for
ω > 0 the drops are lens-shaped, and the cross-over value can be very well described by
<ω = 3 + 4ω/5, but in order to determine an approximate lower bound for the value of
ζ from the experimental data the estimate <ω > 3 will do.

Figure 8.1: In order to lower the magnetic energy of the drop in a sufficiently strong magnetic
field, the point defect (left) can stretch to a split-core line defect in the direction of the magnetic
field B. Middle: the field around the defect has a two-dimensional splay deformation with zero
magnetic energy cost, whereas the director field is radial in three dimensions emanating from
the ends of the defect line. Right: for a line defect throughout the entire tactoid the magnetic
energy attains its minimum value.

For large enough tactoids the hedgehog configuration is more favourable than the
homogeneous one, but for a sufficiently strong magnetic field it cannot be maintained
either because in that case the magnetic energy becomes too large. To comply with
the orientation imposed by the magnetic field for a larger fraction of the particles that
make up the drop, the tactoid can, besides adopting a uniform director field, stretch the
point defect to a line defect of topological charge +1 in the direction of the magnetic
field. See Fig. 8.1. This in turn goes at the expense of the perfect homeotropic surface
anchoring, which can be reduced by elongating the drop (see chapter 9). Note that this
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anchoring cost is low relative to the bare surface energy, because we consider the case
where ζ ¿ γ. If the point defect stretches to a line defect and we presume the director
field around this line to be radial in two dimensions, the volume around the defect line
has minimal magnetic energy penalty. In the remainder of the tactoid the director field
is presumed to have a three-dimensional splay deformation. In summary, compared to
the hedgehog this configuration has a lower magnetic energy penalty, which is even zero
for a defect throughout the entire tactoid, but it has a higher elastic deformation energy
and nonzero anchoring cost.

The derivation of the free energy

F sc = F sc
st + F sc

sa + F sc
e + F sc

m (8.5)

is quite technical and the details of the calculation can be found in Appendix 8.B. Here,
we only give the result for the components of F sc that read F sc

st = 4πγR2 for the bare
surface energy,

F sc
sa =

πζL3

6R
+

πζ

16LR

(
16LR3 + 4L3R −4L4 − 2(L2 − 4R2)2 coth−1

(
2R

L

))
(8.6)

for the surface energy, where L is the as yet unknown line-defect length to be determined
a posteriori, and

F sc
e =

πK1

L

(
(
8R2 − 2L2 + 2LR

)
coth−1

(
2R

L

)
+ 4LR− 3L2 + L2 log

√
4R2 − L2

4b2

)

(8.7)

for the elastic energy, with b the diameter of the core of the line defect that we presume
to be of the order of the nematogens, because it must be a microscopic length in lyotropic
nematics [203, 205]. Given that b enters only logarithmically in our equations, its value
has only a very limited effect on our results. For the magnetic energy we find

F sc
m =

πΣ
576L3

(L− 2R)3
(

4L(L2 + 9LR + 6R2)− 6(L + 2R)3 coth−1

(
2R

L

))
. (8.8)

For L/R → 0 of zero line-defect length we retrieve F sc → Fh, with Fh the free energy
of the central hedgehog as given by Eq. (8.4). In the limit of L → 2R, so a line defect
throughout the entire tactoid, we find

F sc → 4πγR2 +
4
3
πζR2 + 2πK1R

(
log

(
Rω

b

)
− 1

)
. (8.9)

This requires an infinitely strong magnetic field, as we will also see below, and which is
also reflected in the leveling off of the curves of L/R to the value 2 with increasing value
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of B in Fig. 8.2. If L/R = 2 the drop only has energetic costs associated with elastic
deformation and surface anchoring (and the irrelevant surface energy). By equating Eqs.
(8.9) and (8.1) we obtain an equation for the tactoid size R beyond which the drop with
split-core defect throughout the drop is more favourable than the homogeneous one. We
find

log
(

Rω

b

)
− 1 =

2ζR

3K1
. (8.10)

Figure 8.2: (a) The length of the line defect L relative to the tactoid radius R as a function
of the magnetic-field strength β2/ω2 as given by minimising Eq. (8.5) with respect to L. The
line defect starts to grow at a critical magnetic-field strength β2

c /ω2 = ΣB2
c K1/ζ2, where Bc is

given by Eq. (8.16), and levels off to L/R = 2 for larger field strengths. (b) For field strengths
a little larger than B2

c a linear approximation is accurate. In both graphs: < = 5 (left), 10, and
20 (right).

We compute the optimal length of the line defect by putting ∂F sc/∂L = 0. The
resulting equation, which is given by Eq. (8.30) in Appendix 8.B, is used to eliminate
the variable L from the free energy F sc, giving a too large expression to show here, but it
enables us to compare the free energy of the split-core configuration with the hedgehog
and the drop with uniform director field. The length of the line defect that follows from
this minimisation is shown in Fig. 8.2. The line defect starts to grow at a critical field
strength from a zero value, showing that it is a second-order transition.

If the field strength is slightly larger than Bc, we can approximate Eq. (8.30) by
making a Taylor expansion around Bc as given by Eq. (8.16) and L = 0. We substitute
B2 = B2

c (1 + ε), with 0 < ε ¿ 1, and find for small L that

L =
15(4 + 2 log

(
b
R

)

72− 40<ω + 16 log
(

b
R

)Rε, (8.11)

to first order in ε. As in chapter 7, we have the restriction that b/R < exp(−2). Eq.
(8.11) is shown in Fig. 8.2 together with the full dependence of L on β as follows from
Eq. (8.30).
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Figure 8.3: Stability diagram for the type of director field in the limit of ω → 0 where the
tactoid is spherical, as a function of <ω ≡ Rζ/K1 and β2/ω2 ≡ −ρ∆χB2K1/ζ2 that indicate
the drop size and the magnetic-field strength, respectively. For sufficiently small tactoids the
field is uniform, regardless of the magnetic-field strength. Larger tactoids have a hedgehog field
but for a strong enough magnetic field this becomes a drop with a split-core line defect. The
dashed lines show a constant line-defect length L relative to the drop radius R. The vertical
asymptote (dotted line) shows the limit of L = 2R, i.e., a line defect throughout the entire
tactoid, as given by Eq. (8.10). The crossovers I, II, and III are discussed in section 8.3.

In the limit of ω → 0 the surface anchoring plays a subdominant role relative to the
bare surface tension γ, making the tactoids spherical and, perhaps counter-intuitively,
making the problem independent of γ. This means that the relevant dimensionless
groups are given by <ω = Rζ/K1 and β2/ω2 ≡ −ρ∆χB2K1/ζ2. The director field is
then determined by a balance between the anchoring energy, the elastic deformation
energy, and the magnetic energy.

The results that follow from comparing the free energies of the three director fields
from section 8.2 are shown in Fig. 8.3. As already expected from the scaling argu-
ment in section 8.2, small tactoids have a uniform director field irrespective of the
magnetic-field strength, whereas larger tactoids have a hedgehog point defect, provided
the magnetic-field strength is small. For larger field strengths this configuration can no
longer be maintained because of a prohibitively large magnetic energy, and the point
defect stretches to a split-core line defect to allow more particles to align in the direction
imposed by the magnetic field. The length of the line defect increases with increasing
magnetic-field strength. In the limit of an infinitely strong field the line defect even
stretches through the entire drop to minimise the magnetic energy cost, see also Figs.
8.1. This leads to the vertical asymptote in the phase diagram, and the value of the
drop size R associated with it satisfies Eq. (8.10).
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8.3 Intermediates

The crossovers in the stability diagram of Fig. 8.3 raises two interesting questions
that we discuss in this section.

1. If we examine crossover I from uniform to radial field more closely, what happens
to two small drops with a uniform director field in zero or weak magnetic field
that coalesce to form one that is larger than the cross-over value, so how does the
resulting drop acquire the point defect that it should have according to the phase
diagram?

2. Are the crossovers I, II, and III between the three type of director field gradual or
sharp?

To answer these questions, we consider the intermediates below.
In order to answer question 1, we note that in the experiments on aqueous dispersions

of gibbsite platelets, the population distribution of director fields for different drop sizes
is almost bimodal, i.e., its shows predominantly uniform and radial director fields, and
very few intermediates [85]. Moreover, these intermediates are configurations with a
point defect close to the tactoid boundary. This means that the coalescence of two
uniform drops would give a drop that according to its size, cannot be uniform anymore.
So, this analysis suggests that the intermediates cannot be stable configurations and we
support this by a calculation next.

Hence, we first focus on the first part of question 2, and we note that the interme-
diates between a uniform and a radial director field, shown by crossover I in Fig. 8.3,
may involve off-centre hedgehog defects. To investigate their stability, we compute the
free energy of this configuration for an arbitrary location of the defect. Details of our
calculations can be found in Appendix 8.A. We compute the free energy Fh(f) of the
hedgehog at an arbitrary location, with its distance f from the centre acting as the
continuous variable, expressed in units of the drop radius. See Fig. 8.4.

gives Fh
sa(f) = 0, as is the case for the central hedgehog. If the hedgehog is displaced

from the centre of the tactoid but retains its three-dimensional radial director field, this
introduces an additional anchoring cost and changes the elastic and magnetic energy.
Inspired by the experimental observations on tactoids in dispersions of gibbsite, we
presume the defect to be located on the z-axis at (x, y, z) = (0, 0,−fR) for a magnetic
field in the x-direction, where f < 1 (f > 1) represents a defect inside (outside) of
the droplet. See also Fig. 8.4. The total free energy Fh(f) is given by Fh(f) =
Fh

st(f) + Fh
sa(f) + Fh

e (f) + Fh
m(f), which by construction obeys Fh(f) = Fh(−f). We
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Figure 8.4: A possible cross-over route from a radial to uniform director field. The hedgehog
is located at a distance fR from the centre of the tactoid of radius R, so f > 0 introduces an
additional anchoring cost compared with the central hedgehog (f = 0). For f < 1 the defect
is inside the drop (left), the hedgehog on the boundary follows from putting f = 1 (middle),
and for f > 1 it is virtual, meaning located outside the tactoid (right), with the limit f → ∞
giving a homogeneous director field.

find Fh
st(f) = 4πγR2,

Fh
sa(f) = πζR2
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, (8.12)
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and

Fh
m(f) =

πΣR3

288f3

(
4f(3 + 8f2 − 3f4)− 3(f2 − 1)3 log

(
f − 1
f + 1

)2
)

. (8.14)

In the limits of f → 0 and f →∞ of Fh
m(f), we recover the known results for a uniform

director field and the central hedgehog, as given by Eqs. (8.1) and (8.4). Equating
limf→∞ Fh(f) and Fh(1) retrieves the crossover I in Fig. 8.3. If we take the limit
f → 1 we find for the free energy of a hedgehog point defect located on the surface of
the drop

Fh(1) = 4πγR2 + 2πζR2 + 4πK1R +
π

9
ΣR3. (8.15)

This means that the director field associated with the hedgehog on the surface has an
anchoring cost that is absent for the centrally positioned hedgehog, but this is compen-
sated by an elastic deformation and magnetic penalty that are exactly half of those in
the central hedgehog. If we compare the free energy to that of the central hedgehog
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and the uniform director field, we find that no configuration with the hedgehog defect
at a finite distance from the centre can be a free-energy minimum, meaning that either
the central hedgehog or the uniform field is always more favourable for given values of
the parameters < and β2. See also Fig. 8.5. The fact that for a fixed value of < an
energy barrier must be overcome, means that it is a first-order transition. We remark
that putting ∂Fh(f)/∂f = 0 and requiring ∂2Fh(f)/∂f2 > 0 to find the value of f with
the lowest free energy, provides only f = 0 as an analytical solution.

Figure 8.5: The free energy F of a spherical drop of radius R with a point defect with radial
director field, with K1 the splay elastic constant, is shown as a function of the distance f
between the defect and the centre of the drop, expressed in units of R. See also Fig. 8.4. (a)
For <ω = Rζ/K1 = 3 and from top to bottom −ρ∆χB2K1/ζ2 = β2/ω2 = 1, 0.5 and 0. (b) For
zero magnetic field the three curves show the free energies for <ω = 1 (dashed), 3 (solid) and
5 (dot-dashed). For <ω = 3 the free energy of the central defect and the uniform director field
(f →∞) are the same.

Figure 8.6: The second conceivable cross-over route from radial to uniform director field. The
hedgehog point defect develops into a small ring defect that introduces a bend deformation
and an anchoring cost, but this is compensated for by a smaller splay deformation and a lower
magnetic energy cost than in the hedgehog configuration. A large ring radius compared to the
sphere radius leads to a uniform director field within the drop.

We note that in the experiments on the charge-stabilised system it seems that the
observed tactoid with hedgehog point defect close to the boundary is somewhat oblate
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rather than spherical. However, a perturbation calculation shows that even such an
oblate shape cannot have a lower free energy than both the central hedgehog and the
uniform droplet for any values of the material parameters. See also Appendix 8.C.
Therefore, we conclude that any hedgehog configuration off-centre in general, and the
boundary hedgehog in particular, must be an unstable configuration, at least for pure
splay fields. We surmise that its occurrence must be caused by the effects of the flow
field around the creaming tactoid [85], and we return to this point in the discussion in
section 8.5.

The second scenario for crossover I in the phase diagram from a central point defect
with radial director field to a uniform director field is by means of the formation of a ring
defect that with an increasing radius leads to a homogeneous field inside the tactoid if
the ring is much larger than the drop. See also Fig. 8.6. It turns out that this route has
in fact been analysed by Terentjev [201], although he did ignore the impact of imperfect
anchoring. Terentjev considered a positive diamagnetic susceptibility and a magnetic
field parallel to the ring axis, and this symmetry makes the problem equivalent to ours.
He showed that in the equal-constant approximation K1 = K3 a small ring defect can
be stable in a magnetic field. For small rings on the scale of the drop the director field
is predominantly of the splay type, so the assumption of negligible anchoring energy
is reasonable. For larger ring defects this configuration is more favourable than the
hedgehog only for large magnetic fields, for which we have seen in Fig. 8.3 that neither
configuration has the lowest free energy. We see from Fig. 4 in that paper that an
energy barrier has to be overcome for <2β2 . 15 [201]. From Fig. 8.3, we deduce that
this condition is met for a spherical drop for almost any cross-over values of <ω and
β2/ω2. Moreover, if we incorporate the anchoring energy cost, this makes the energy
barrier even higher. So we conclude that only a ring defect that is small on the scale of
the tactoid radius can be energetically more favourable than the hedgehog in a spherical
drop. For such a small ring defect there is little deviation from the radial director field
emanating from the hedgehog point defect, so we chose to omit this configuration in the
phase diagram.

Next, we consider transition II from a spherical tactoid with a central hedgehog
to one with a split-core disclination, which is reminiscent of a Frederiks transition. It
requires the magnetic field to be sufficiently strong in order to allow more particles to
comply with orientation imposed by the field. The critical magnetic-field strength Bc

associated with this transition reads

B2
c = − 4K1

ρ∆χR2

(
log

(
b

R

)
+ 2

)
. (8.16)
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The expression (8.16) for Bc is a factor of exact two thirds smaller than what we found
earlier in our cruder model, Eq. (7.11), where we presumed perfect surface anchoring and
the elongation of the defect to be simultaneously accompanied by a stretch of the drop
itself that we presumed to be spherocylindrical [84]. The discrepancy can be explained
from the difference in magnetic energy between the two different shapes.

The last crossover from Fig. 8.3 is III from uniform field to split-core defect. The
cross-over line follows from equating the free energies of the uniform drop and the one
with a split-core, Eqs. Fu and F sc, with the added constraint the line-defect length obeys
∂F sc/∂L = 0.Similar to the radial-to-uniform crossover discussed above, we imagine it
to occur via the formation of a ring defect out of the line defect that with increasing
size gives a homogeneous director field inside the ring. Given the barrier to be overcome
that we discussed above, we expect crossover III also to be abrupt.

In conclusion, there are three crossovers in the stability diagram of Fig. 8.3 between
the uniform director field, radial director field with point defect, and field with split-core
defect. Crossover II from point defect to line defect is gradual and therefore a second-
order one, and the critical magnetic-field strength is given by Eq. (8.16). By contrast,
crossovers I and III from uniform field to radial field and from uniform field to split-core
defect, are abrupt and, as a result, of first order. Neither cross-over route from uniform to
radial director field seems to be a favourable one, and we return to this in the discussion
in section 8.5. How exactly two coalescing small drops with a homogeneous director
field acquire a hedgehog point defect that the resulting drop should have according to
the stability diagram is not obvious, and we leave it for future work.

8.4 Comparison to experiments

We can directly apply the theoretical model described in the previous section to ex-
perimental data on tactoids in charge-stabilised aqueous dispersions of gibbsite platelets,
and extract material parameters relating to our liquid crystal droplets. Of particular use
here are the length of the split-core defect, obtained as a function of the magnetic-field
strength, and the critical magnetic-field strength at which this line defect starts to grow.
Because of the numerous ways in which the parameters can be determined, we first give
an outline of the approach that we have taken, and then present the resulting curve fits
and parameter values.

In the limit of ω = ζ/γ, the model is independent of the surface tension γ and
the relevant dimensionless groups are −ρ∆χB2K1/ζ2 ≡ β2/ω2 and Rζ/K1 = <ω, as
shown on the axes of Fig. 8.3. The data of both the length of the split-core defect
are a function of the magnetic-field strength, which means that for the curve fits we
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have to traverse the phase diagram vertically for a chosen scaled drop size <ω for the
charge-stabilised system that has the best match with the data points of the line-defect
length. The quality of this match is then determined by choosing the value of the
dimension-bearing quantity ω2B2/β2 = ζ2/(−ρ∆χK1) and the curve fitting amounts
to finding a compromise between the best fit to the critical magnetic-field strength Bc

where the split-core defect starts to grow, and the best fit to the data beyond those
critical field strengths. These two choices then produce a value for ζ/K1 and ζ2/K1

for the charge-stabilised gibbsite, from which both individual parameter values can be
deduced.

We remark that even though a line defect running throughout the entire tactoid
was observed at very high field strengths, we omit these last few data points from our
curve-fitting procedure, not least because we found in section 8.2 that according to our
calculations this requires and infinitely strong magnetic field. A second reason is that
including these points would make the general fit to the other points very poor indeed,
e.g., with a critical magnetic-field strength that vanishes almost completely and, more
worryingly, give the fitted curve the wrong curvature. See also Fig. 8.7. On the other
hand, and in support of this choice, it is also true that the experimental points at high
magnetic-field strength have a large degree of uncertainty because the contrast strongly
diminishes as the “isotropic” (or rather, paranematic) background also aligns in the
magnetic field. By way of consistency check, we use the analytic Eq. (8.16) for Bc in
combination with the experimental data to derive a value for K1 that we compare with
the values found from our curve fitting procedure.

Finally, as already alluded to in section 8.2, the emergence of a radial hedgehog
director field in the absence of a magnetic field produces a lower bound for the anchoring
strength, because this happens according to our theory only if ζ > 3K1/R. Strictly
speaking this is true only for the crossover from a spherical drop with a uniform field to
a radial field; a slightly sharper, i.e., higher, lower bound can be found if we allow for the
equilibrium lens shape, which we discuss in chapter 9. For convenience we here use the
simple, but very accurate result that follows from the spherical drops, so then the choice
for ω and < requires that <ω > 3. The values for ω, γ and ζ that follow from these
choices and the lower bound mentioned, above should then all be internally consistent.
Because uniform tactoids have been observed in the aqueous gibbsite system, we have
yet another check for the obtained values for K1 and ζ, because we can independently
determine the ratio of K1/ζ from the tactoid size where the cross-over from a uniform
to a radial director field takes place.

As explained above, we have to find the value of <ω that gives the best agreement
with the critical magnetic-field strength Bc, where we again disregard the points at
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Figure 8.7: Ratio of the length of the split-core defect relative to the tactoid radius, L/R,
as a function of the square of the magnetic-field strength B2 for the case of a charge-stabilised
gibbsite in water. Experimental data: points, the left and right drawn curves: theoretical
curves, optimised with respect to the critical magnetic-field strength Bc and to the experimental
values of L/R at larger field strengths. (a) Tactoid of R = 30 µm with ω2B2/β2 = 0.4 T2 and
Bc = 0.34 T (left drawn curve) and ω2B2/β2 = 0.5 T2 and Bc = 0.38 T (right drawn curve).
(b) Tactoid of R = 19 µm with ω2B2/β2 = 0.18 T2 and ω2B2/β2 = 0.24 T2, giving Bc = 0.35
T and Bc = 0.40 T, respectively. Inset: the full set of experimental data [86]. See also the
main text.

very high field strengths where L/R ≈ 2. The fits give a lower and upper bound for
ω2B2/β2 = ζ2/(−ρ∆χK1). We use the measured length of the split-core defect of two
tactoids of radius 30 and 19 µm, respectively [86]. For the drop with R = 30 µm we
obtain the value <ω = 10, and the fits with the best curvature and the best fit to the
data give a lower and upper bound for ζ of ζ = 4.8 · 10−8 N/m and ζ = 6.0 · 10−8

N/m, and K1 between 1.4 · 10−13 N and 1.8 · 10−13 N, where the critical magnetic-field
strengths vary between Bc = 0.34 T and Bc = 0.38 T, see Fig. 8.7. If we use Eq. (8.16)
with the data for the line-defect length we find Bc = 0.3 ± 0.2 T, which results in a
value for K1 = (3.5 ± 0.4) · 10−13 N. For the smaller drop with R = 19 µm we obtain
<ω = 6.3, and we find from the best fit to the data bounds of ζ of ζ = 2.2·10−8 N/m and
ζ = 2.9 ·10−8 N/m, and K1 between 6.5 ·10−14 N and 8.7 ·10−14 N, and Bc between 0.35
T and 0.40 T. From Eq. (8.16) and data for the line-defect length we find Bc = 0.3±0.2
T and K1 = (1.4 ± 0.2) · 10−13 N. These values for K1 are again reasonably consistent
with each other.

The values for K1 and ζ in aqueous gibbsite that we obtained from the fits of the
theoretical model to the experimental data are summarised in Table 8.1. If we average
the obtained values we find for K1 a value of (2 ± 1) · 10−13 N, and for ζ a value of
(4 ± 2) · 10−8 N/m. As explained in the previous section, we can also independently
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Table 8.1: Values for the splay elastic constant K1 and the anchoring strength ζ of the
charge-stabilised gibbsite, obtained by fitting our theory to the experimental data for droplets
of radius 30 and 19 µm. Values for K1 are obtained individually from the critical magnetic-field
strength, Bc, and together with values for ζ from fit to the magnetic-field dependence of the
dimensionless length of the line defect L/R in Figure 8.7, i.e., from the choice of < as well as
from the curvature fits. The values from the fits of L/R are averaged over the values obtained
from the upper and lower bound fits. See also the main text.

K1 [10−13 N] ζ [10−8 N/m]
Bc fit L/R fit L/R

R = 30 µm 3.5 ± 0.4 1.6 ± 0.2 5.4 ± 0.6
R = 19 µm 1.4 ± 0.2 0.8 ± 0.1 2.5 ± 0.4

determine a value for the ratio of K1/ζ from the cross-over tactoid size of the crossover
from a uniform to a radial director field with increasing tactoid size. Tactoids with a
uniform director field with size up to about 40 µm have been observed, while the smallest
tactoid with a radial director field measured 38 µm in diameter. As the cross-over tactoid
radius is determined by R = 3K1/ζ, this provides us with a value of K1/ζ of 6.5 µm. The
value for K1/ζ that follows from our curve fitting is 5 µm, which is surprisingly close. It
is, we repeat, not possible to extract a value for γ in aqueous gibbsite suspensions because
the tactoids remain spherical, at least to within the measurement error. What we can
say, though, is that ω must be at least smaller than 1, and γ therefore larger than 4·10−8

N/m, because if this had not been the case, it would have lead to a tactoid elongation
of 10%, which should have been perceptible in the experiments. These elongated drops
are discussed in chapter 9.

8.5 Conclusions and discussion

In this chapter we have presented a theoretical study of the shape and internal struc-
ture of nematic droplets with preference for homeotropic interfacial anchoring of the
director field to the surface. If the drops are subject to a magnetic field that imposes
a perpendicular orientation of the particles relative to that field, which is the case for
a negative diamagnetic susceptibility, this complicates the competition between surface
and bulk elastic forces characteristic of isotropic-nematic interfaces. We focused on the
case where surface tension dominates over the surface anchoring, such that the energetic
cost of any deviation from the spherical shape is prohibitively large. By minimising the
free energies of different director fields in a Frank-Oseen elasticity theory, we have com-
puted the most favourable one for a given value of the interfacial anchoring strength, the
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magnetic-field strength, and the tactoid size. The stability diagrams confirm the scaling
argument that in small tactoids the bulk elasticity of the director field is dominant,
giving the drop a homogeneous director field, regardless of the magnetic-field strength.

For larger tactoids in a weak magnetic field, a hedgehog point defect develops for
weak magnetic field because of the predominance of surface anchoring over the bulk
elasticity of the director field. As has recently been observed in experiments on tactoids
in dispersions of gibbsite plate-like particles, the crossover from a radial to a uniform
director field may occur via the formation of a ring defect that increases to infinite radius
or via a dislocation of the point defect from the centre to the boundary and eventually,
to infinity [85, 86]. We found that neither intermediate configuration can be a stable
configuration because in both cross-over routes there is an energy barrier that has to
be overcome, as is already suggested by the few intermediates in the experimental pop-
ulation distribution. Substituting typical values into the free energies shows that the
height of both energy barriers ranges from hundreds to thousands times the thermal
energy kBT , ruling out the option of completing the crossover spontaneously in a single
drop via thermal fluctuations. We surmise that the occurrence of the transient config-
urations in the experiments must be the result of the flow field in the sedimentation
process of the phase separation of the isotropic and nematic phase where the droplets
emerge. This conjecture is corroborated by the observation that the boundary defects
are always observed on the same (far) side of the tactoids [86]. In fact, flow fields are
known to affect director fields in nematic droplets [204].

For strong enough magnetic fields the hedgehog configuration with a radial director
field has such a high magnetic energy cost that the point defect stretches to a split-core
line defect that allows more particles to comply with the orientation imposed by the
magnetic field. The crossover from the drop with a hedgehog point defect to a split-core
defect is a continuous, i.e., second-order one, and reminiscent of a Frederiks transition.
Finally, the transition from a uniform field to the split-core defect is an abrupt one,
and we imagine it to occur, in analogy with the uniform-to-radial crossover, via the
formation of a ring defect that with increasing radius becomes virtual outside the drop
and gives a homogeneous field inside the ring. Given that the intermediates between a
uniform and a radial director field cannot be stable, we expect the same to be true for
intermediates between a uniform director field and one with a split-core defect.

The prediction that intermediates between a uniform and radial director field are
unstable is not the only one confirmed by experiments, because many more of our the-
oretical results are borne out by the experiments that were conducted recently. Firstly,
a uniform director field was observed for small enough droplets that for a weak or no
magnetic field turn into a spherical hedgehog defect with a radial director field in a
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spherical drop [85, 86]. Secondly, for sufficiently large drops in a weak or no magnetic
field, a hedgehog point defect with radial director field develops. Thirdly, in the split-
core configuration for even stronger fields the length of the line defect increases with
increasing magnetic-field strength up to a point were the defect line runs through the
entire tactoid. We note that such a large line defect case requires a very strong field such
that the alignment of the isotropic background becomes significant, making it difficult
to observe the details of the drop experimentally.

As mentioned in chapter 7, we neglected this alignment of the isotropic background
by the magnetic field in the model. If we had taken this into account, this probably
would have given lower values of the surface tension and anchoring strength than what
we find here. A second caveat is that we neglected the energy associated with the core of
the hedgehog point defect and the split-core line defect. In chapter 7 this was irrelevant
because we only focused on these two configurations, whereas in this chapter we also
considered a uniform field that has no such core.

In chapter 9 we release the constraint of a dominant surface tension over anchoring
strength, implying that we extend our model to non-spherical particles. There we also
discuss the possible caveats of our model more extensively.

We express our gratitude to Lia Verhoeff for conducting the experiments.

8.A Hedgehog point defect

In this appendix we aim to determine the free energy of a spherical tactoid with
hedgehog point defect at an arbitrary location. The free energy of the oblate shape with
boundary defect then follows from a perturbation calculation. Let the point defect with
any loss of generality be located on the z-axis at (x, y, z) = (0, 0,−fR), such that f > 1
(f > 1) represents a defect inside (outside) of the droplet. The bare surface energy is
simply Fh

st(f) = 4πγR2. For the anchoring energy, we have to integrate sin2 α over the
surface A of the tactoid, with α the angle between the director and the surface normal.
cos α is given by the inner product of the normal and the director. From this we find

sin2 α =
f2R2(x2 + y2)

(x2 + y2 + z2)(x2 + y2 + (z + fR)2)
=

f2 sin2 ϑ

1 + f2 + 2f cosϑ
. (8.17)

This then gives

Fh
sa(f) = πζR2
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f2 + 1 +

1
4f

(f2 − 1)2 log
(

f − 1
f + 1

)2
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In the limit f → ∞ we retrieve Fh
sa(f) = 8

3πζR2, i.e., the result for a homogeneous
director field. The limits f → 0 and f → 1 give Fh

sa(f) = 0 and Fh
sa(f) = 2πζR2, which

are the values for the central and the boundary hedgehog, respectively.
For the elastic energy we have to integrate (∇ · n)2 = 4/(x2 + y2 + (z + fR)2) over

the tactoid volume, which gives

Fh
e (f) = 4πK1R

(
1 +

1
4f

(f2 − 1) log
(

f − 1
f + 1

)2
)

. (8.19)

In the limits of f → 0, f → 1, and f →∞, we recover the known results 8πK1R, 4πK1R,
and 0 for the hedgehog in the centre, on the boundary and for the uniform director field,
respectively.

For the magnetic energy we assume that the magnetic field is in the x-direction, as
follows from the experimental observations. We then must integrate (n ·B)2 over the
tactoid volume, with

(n ·B)2 = B2 r2 cos2 φ sin2 ϑ

r2 + f2R2 + 2rfR cosϑ
. (8.20)

Integration then gives

Fh
m(f) =

πΣR3

288f3

(
4f(3 + 8f2 − 3f4)− 3(f2 − 1)3 log

(
f − 1
f + 1

)2
)

, (8.21)

with Σ ≡ −ρ∆χB2. In the limits of f → 0, f → 1, and f → ∞, we recover the known
results 2πΣR3/9, πΣR3/9, with Σ ≡ −ρ∆χB2, and 0 for the hedgehog in the centre, on
the boundary and for the uniform director field, respectively.

8.B Split-core defect

The split-core line defect configuration has a director field with a two-dimensional ra-
dial field around the defect and a three-dimensional radial field that originates from the
ends of the defect line. The drop is initially presumed to be spherical, giving a surface
energy of 4πγR2; the free energy of the prolate drop with line defect is then computed
from a perturbation of the spherical tactoid because the experimentally observed de-
viation is small. The computation of the anchoring, elastic and magnetic energies is
separated into a part from the “axis” with the two-dimensional splay deformation, and
a part from the ends with the three-dimensional splay deformation.

For the anchoring energy we use spherical coordinates, where R is constant. The
azimuthal angle φ ∈ (0, 2π) and the polar angle ϑ runs from arccos(L/2R) to π/2 and
the result is then doubled because of symmetry. We split it into a part from the axis
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and a part from the ends. For the axis part we have to integrate sin2 α over the surface
area A of the axis part of the tactoid, with α = π/2− γ the angle between the normal
and the director field, see Fig. 8.8. The cosine of this angle is the inner product of the
radial unit vectors in two and three dimensions, equal to sin ϑ, so we have to integrate
cos2 ϑ = cos2 γ. This gives

F sc
sa,ax =

πζL3

6R
. (8.22)

For the part in the ends we have to integrate sin2 β over the surface of the ends of the

Figure 8.8: Explanation of the boundaries of the polar angle ϑ for a quarter of a spherical
droplet for the anchoring energy (left) and the magnetic energy (right).

tactoid, see Fig. 8.8. If we use the sine rule, we see that sin β/(L/2) = sin ϑ/k, with
k2 = r2 + (z − L/2)2 = R2 − z2 + (z − L/2)2 = R2 + L2/4 − zL. We then use that
z = R cos ϑ, so

sin2 β =
L2

4
sin2 ϑ

R2 −RL cos ϑ + L2/4
. (8.23)

Note that this expression becomes zero in the limit that L/R → 0, as in that case we
have perfect anchoring in the entire droplet. We then have for the anchoring energy

F sc
sa,ends =

πζ

16LR

(
16LR3 + 4L3R− 4L4 + (L2 − 4R2)2 log

(
2R− L

2R + L

))
. (8.24)

The total anchoring energy is then F sc
sa = F sc

sa,ax + F sc
sa,ends, which goes to zero in the

limit that L/R → 0, because then we retrieve the director field with hedgehog point
defect that has perfect anchoring.

We divide the calculation of the elastic deformation energy into a part from the
axis a part from the ends. In the axis part we have a two-dimensional splay defor-
mation for which we use cylindrical coordinates. z ∈ (−L/2, L/2), φ ∈ (0, 2π) and
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r ∈ (b,
√

R2 − z2), with b the radius of the defect line. Note that in two dimensions
∇ · n = 1/r, whereas in three dimensions ∇ · n = 2/ρ with ρ2 = r2 + z2. We find for
the axis part

F sc
e,ax = 2πK1R coth−1

(
2R

L

)
+ πK1L

(
−1 + log

√
4R2 − L2

4b2

)
, (8.25)

which goes to zero for L → 0. In the ends we have a three-dimensional splay deformation
so∇·n = 2/ρ′, with ρ′ =

√
x2 + y2 + (z ± L/2)2 for the left (+) and right (-) end. Using

again cylindrical coordinates we have for the right end: z ∈ (L/2, R), φ ∈ (0, 2π), r ∈
(0,
√

R2 − z2). This gives

F sc
e,ends =

πK1

L
(2R− L)

(
L + (L + 2R) coth−1

(
2R

L

))
(8.26)

The contribution from the left end is the same because of symmetry. This gives for the
total deformation energy

F sc
e =

πK1

L

{
(
8R2 − 2L2 + 2LR

)
coth−1

(
2R

L

)
+ 4LR− 3L2 + L2 log

√
4R2 − L2

4b2

}
.

(8.27)

In the limit of L/R → 0 we retrieve the familiar result F sc
e = 8πK1R for the hedgehog.

The magnetic energy is also divided into an axis part and a part from the ends.
The axis part is immediately seen to be zero because the magnetic field is perpendicular
to the two-dimensional radial director field. For the part from the ends we use the
azimuthal symmetry around the z-axis, so we need to compute the integral of cos2 β

over the volume of the ends, see Fig. 8.8. We take the right end for the calculation,
but the answer for the left end is the same because of symmetry. With cylindrical
coordinates we have for the right and φ ∈ (0, 2π), z ∈ (L/2, R), and r ∈ (0,

√
R2 − z2).

We have cos β = (z − L/2)/d with d2 = r2 + (z − L/2)2. We find

F sc
B,ends =

πΣ
576L3

(L− 2R)3
(

4L(L2 + 9LR + 6R2) + 3(L + 2R)3 log
(

2R− L

2R + L

))
.

(8.28)

If we then take the limit that L/R → 0, we find the expected result FB = 2
9πΣR3.

Furthermore, in the limit L → 2R, i.e., a line defect through the entire tactoid, F sc
B,ends →

0. In this case the ends have zero volume and the director field is two-dimensional splay
in the whole tactoid, which is perpendicular to the magnetic field everywhere.

The total free energy F sc of the tactoid with split-core line defect now reads

F sc = 4πγR2 − πζL3

12R
+

πζ

16LR

{
4LR(L2 + 4R2) + (L2 − 4R2)2 log

(
2R− L

2R + L

)}
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+
πK1

L

{
(
8R2 − 2L2 + 2LR

)
coth−1

(
2R

L

)
+ 4LR− 3L2 + L2 log

√
4R2 − L2

4b2

}

+
πΣ

576L3
(L− 2R)3

{
4L(L2 + 9LR + 6R2) + 3(L + 2R)3 log

(
2R− L

2R + L

)}
. (8.29)

For L/R → 0 we retrieve Eq. (8.4) for the hedgehog. We compute the optimal length
of the line defect by putting ∂F sc/∂L = 0. The resulting equation is used to determine
the value of L, enabling us to compare the free energy of the split-core configuration
with the hedgehog and the drop with uniform director field.

The optimal value of the line-defect length L is computed by computing ∂F sc/∂L =
0, which gives

12ζL2

(
4L(L− 2R)2(L + R) +

(
16R4 − 3L4 + 8L2R2

)
log

(
2R− L

2R + L

))

+192KL2R

(
2

(
L2 + 4R2

)
coth−1

(
2R

L

)
+ 2L2 − 4RL− L2 log

√
4R2 − L2

4b2

)

−ΣR
(
4L(L− 2R)2

(
L3 + 7L2R + 12LR2 + 12R3

)

+3
(
L2 − 4R2

)2 (
L2 + 4R2

)
log

(
2R− L

2R + L

))
= 0. (8.30)

In the limit of L → 0 we find Bc as given by Eq. (8.16). To find the computation of
the crossover from uniform director field to the one with the split core we put F sc = Fu

and use Eq. (8.30) to eliminate the dependence on L. The lines of constant L/R = c in
Fig. 8.3 are determined by directly plotting Eq. (8.30) for L = cR.

8.C Oblate drop with boundary hedgehog

In the experiments on aqueous dispersions of gibbsite platelets it seems that the
drop with hedgehog point defect close to the boundary is slightly oblate rather than
spherical [85]. Because the deviation from the sphere is small, we perform a perturbation
calculation to the free energy Fh(f) for f = 1 as given by Eq. (8.15). This means
that we presume the tactoid to be slightly elongated in the x and y direction and
slightly compressed in the z direction, thereby keeping the volume fixed. So we relax
the condition of a spherical droplet for a moment for the sake of the argument. We start
from an oblate ellipsoid that is compressed in the z-direction,

(x

a

)2

+
(y

a

)2

+
(z

c

)2

= 1, (8.31)

where we take a = (1+ε)1/3R and c = (1+ε)1/3R/(1+ε) = R(1+ε)−2/3 so the volume is
kept the same as that of the sphere and the drop has an aspect ratio of 1/(1+ε) ≈ 1−ε.
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For this perturbed shape we compute the contributions to the free energy for a radial
director field point defect the tactoid boundary at (x, y, z) = (0, 0,−R/(1 + ε)2/3). We
then find for the free energy

Fh
obl(1) = Fh(1) +

(
4
3
πK1R− 8

3
πζR2 +

1
9
πΣR3

)
ε+

(
−10

9
πK1R +

152
45

πζR2 +
32
45

πγR2 − 1
30

πΣR3

)
ε2 +O(ε3), (8.32)

where 0 < ε ¿ 1 is the perturbation parameter that equals the inverse drop aspect ratio
minus one. For ellipsoids the aspect ratio is defined as the ratio of the axis of cylindrical
symmetry and the one perpendicular to it, so it is smaller than unity for oblate shapes
and larger than for prolate ones. The latter type we encounter in chapter 9.

We find that the surface anchoring to the interface relaxes the oblate shape because
its anchoring energy is lower than in the spherical drop (− 8

3πζR2), but this goes at the
expense of a larger magnetic (+ 1

9πΣR3), and elastic (+ 4
3πK1R) energy. The increase

in surface area is a second-order effect, so this effectively has no additional energy cost
in a first approximation. To find the optimal value of the ε that by construction needs
to be positive, we take ∂Fh

obl(1)/∂ε = 0 in Eq. (8.32). However, if we substitute the
result for ε, we find that there are no values of ω, < and β2 for which the oblate shape
has a lower free energy than the central point defect with radial director field and the
lens shape with a homogeneous field. Hence, in order to make the crossover from the
radial to the uniform director field a free-energy maximum has to be overcome that is
associated with a configuration with the defect close to the surface of the tactoid.





9
Deformable homeotropic nematic

droplets in a magnetic field

We generalise our macroscopic elasticity theory from chapters 7 and 8 for the ef-
fect of a magnetic field on nematic droplets with homeotropic surface anchoring to the
case where the shape and structure of the tactoids are dominated by neither the surface
anchoring, nor the surface tension. This means that we allow for imperfect surface an-
choring and non-spherical droplet shapes. We again focus on the case where the magnetic
susceptibility is negative and find that small drops have a homogeneous director field and
a lens shape for any magnetic field strength. Larger drops have a radial director field
with a hedgehog point defect in weak magnetic fields, whereas for stronger magnetic fields
it transforms into a split-core line defect. For even stronger magnetic fields the tactoid
itself stretches to a prolate shape. We present a three-dimensional phase diagram that
shows the tactoid shape and director field for a given anchoring strength, tactoid size and
magnetic field strength. Our findings rationalise the different shapes and structures that
recently have been observed experimentally for nematic droplets in sterically stabilised
and charge-stabilised dispersions of gibbsite platelets. From a comparison with these ex-
periments we are able to extract values for the splay elastic constant, the surface tension
and anchoring strength.†

†The contents of this chapter are based on the following publications:
A. A. Verhoeff, I. A. Bakelaar, R. H. J. Otten, P. van der Schoot, and H. N. W. Lekkerkerker, Langmuir
27, 116-125 (2011),
A. A. Verhoeff, R. H. J. Otten, P. van der Schoot, and H. N. W. Lekkerkerker, Journal of Chemical
Physics 134, 044904 (2011),
R. H. J. Otten and P. van der Schoot, in manuscript.
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9.1 Introduction

In this chapter we consider the general case of nematic droplets with a preference
for homeotropic surface anchoring of the director field, and again focus on the case of
a negative diamagnetic susceptibility. As we have shown in chapter 8, the ground state
of the director field is uniform in small drops and radial with a hedgehog point defect
in larger drops. In this chapter we examine how these ground states respond to the
presence of a magnetic field and what the associated drop shape is.

In chapters 7 and 8 we presented a macroscopic theory for the shape and structure
of nematic droplets with homeotropic surface anchoring in a magnetic field. In these
chapters we considered two limiting cases: in chapter 7 we presumed strong anchoring
of the director field to the interface and the formation of a split-core defect that goes
hand-in-hand with an elongation of the droplet, whereas in chapter 8 we focused on
a dominant surface tension relative to the anchoring strength, such that the droplets
remain spherical and the formation of a line defect is decoupled from the drop shape.
These two limiting cases were inspired by experiments on sterically stabilised and charge-
stabilised dispersions; both systems exhibit a Frederiks-like transition via the formation
of a split-core line defect, in the former system this is accompanied by an elongation of
the tactoid itself, whereas in the latter it is not.

In this chapter we release these constraints and consider the general case where
we allow for imperfect surface anchoring of the director field and non-spherical droplet
shapes. Based on the experiments mentioned above, we consider three director fields
and three tactoid shapes: a uniform director field, a radial director field with point
defect, and one with a split-core defect, and spherical, prolate, and oblate shapes. We
then calculate which combination of director field and shape has the lowest free energy
for a given magnetic-field strength, drop size and anchoring strength, and these results
we assemble in a three-dimensional stability diagram.

For the homogeneous tactoids we use the so-called Wulff construction that provides
the optimal shape that only depends on the ratio ω of the anchoring strength and surface
tension. As announced above, the split-core defect is allowed to develop independently
of the drop shape. Hence, we consider the split-core defect in spherical drops, as was
done in chapter 8, but also in prolate shapes. To model a more realistic shape than
the spherocylinder from chapter 7 we study a prolate ellipsoid that we compute by a
perturbation calculation of the sphere with line defect from chapter 8. Such a perturba-
tion calculation is permitted because the deviations from the spherical shape observed
in the experiments on sterically stabilised dispersions are not very large. We are able to
extract values for the splay elastic constant, the surface tension and anchoring strength
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from a comparison with the experiments of the critical magnetic-field strength where
the split-core defect develops, the length of this line defect and the degree of tactoid
elongation.

We again find that small droplets have a uniform director field for any magnetic-field
strength, and larger droplets in a weak or zero magnetic field are again spherical with a
radial director field with a hedgehog point defect in the centre. Salient features of our
findings that were not obtained in chapters 7 and 8 may be summarised as follows.

1. Small drops have a lens shape that becomes flatter with increasing values of ω.
For small ω their shape is smooth, but for large values they have a sharp rim.

2. In a strong enough magnetic field, a split-core defect develops inside a spherical
drop. At a stronger magnetic field, the tactoid itself stretches to a prolate shape.

3. The elongation disappears again for even strong magnetic fields, whereas the line-
defect length keeps increasing with increasing field strength.

4. The larger the value of ω, the larger the regime where elongated tactoids with a
split-core defect are stable.

In the next sections of this chapter we first discuss the free energies of the possible
shapes and corresponding director fields in section 9.2. Then we present our phase
diagrams for the optimal tactoid shape and structure in section 9.3 and compare our
results with experiments in section 9.4. Finally, we discuss the validity of our model and
the results in section 9.5.

9.2 Tactoid configurations

As discussed in chapters 7 and 8, minimising the free energy F = Fst+Fsa+Fe+Fm,
with the components as given by Eqs. (7.1), (7.2), and (7.3), with respect to the tactoid
shape and director field, is a formidable free-boundary value problem. In chapter 7 we
presumed strong surface anchoring of the director field and the formation of the split-core
to be coupled to a shape deformation. In chapter 8 we imposed a spherical shape, but
even then finding the optimal director field is difficult, so we chose to consider certain
different types of director field. In this chapter we allow for non-spherical tactoid shapes
and the approach we adopt is to impose the same types of director field (uniform, radial,
and split-core) and three types of tactoid shape based on the experimental observations
and then to calculate the combinations of a shape and a director field that have the
lowest free energy for given value of our dimensionless parameters ω, <, and β2. See
also Fig. 9.1.
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Figure 9.1: Based on recent experimental observations [84–86] we consider three types of
director field: a homogeneous field, a three-dimensional radial field, and a two-dimensional
radial field around a split-core line defect, capped by a three-dimensional radial field. The
uniform field only has an interfacial energy, whereas the other three also have elastic and
magnetic energy costs. These three director fields can occur in spherical, oblate and prolate
shapes and by taking a free-energy approach, we compute which combination of director field
and shape are energetically most favourable for given magnetic field B. The disks are not
drawn to scale and merely serve to indicate the platelet orientation.

From the scaling argument presented in the previous chapter it follows that for
sufficiently small tactoids the surface energy and magnetic energy are dominated by
the rigidity of the director field, making it uniform, provided the elastic constants are
positive. Based on the experimental observations, we presume the drop to orient such
that it minimises the magnetic energy cost, so it only has a bare surface energy and an
anchoring energy contributing to the free energy Fu. The superscript u indicates the
type of director field, which is in this case u for uniform. We make use of the so-called
Wulff construction that provides the (exact) optimal shape for a homogeneous director
field [206]. This has been worked out for the case of planar anchoring, i.e., ζ < 0 [53], and
we extend it here to homeotropic anchoring, so ζ > 0. An approximate and somewhat
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Figure 9.2: The aspect ratio a (a), i.e., the ratio of the short and long axis of the lens shape,
the opening angle (b), and the energy difference ∆F of the lens shapes that follow from the
Wulff construction and cutting a sphere (c), as a function of the anchoring strength ω. The
dashed lines are the results for the cut-sphere lens. The aspect ratio is a smoothly decreasing
function of ω, whereas the opening angle shows a non-differentiable cross-over from a smooth
to a sharp boundary. The free-energy difference is at most 0.5 %.

simpler shape optimiser may be based on lenses constructed from cut-spheres. We find
that, although the shape is different (see Fig. 9.2), the difference in the free energy
of both types of lens is negligible. We refer the interested reader to Appendix 9.B for
details.

For a homogeneous director field the optimal shape can be obtained from a geomet-
rical construction called the Wulff construction [206]. The derivation is quite technical
and the details can be found in Appendix 9.A. Here we only present the main results.
The shape that follows from this construction is completely governed by the dimension-
less anchoring strength ω. The aspect ratio a is defined as the ratio of the drop size in
the direction of the axis of rotational symmetry and that perpendicular to it, so it is a
number smaller than unity for oblate ellipsoids and larger than unity for prolate ones.
We find

a =





1
1 + ω

, 0 ≤ ω ≤ 1

1
2
√

ω
, ω ≥ 1.

(9.1)

It is shown in Fig. 9.2 together with that of the lens that follows from cutting a part
from a sphere. The difference in the aspect ratios is very small. See Appendix 9.B for
details.

The opening angle α of the Wulff shape satisfies

α =





π/2, 0 ≤ ω ≤ 1

− arctan(−√ω − 1), ω ≥ 1.

(9.2)
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So for 0 ≤ ω ≤ 1 the boundary is smooth, but for ω > 1 it has a sharp rim. The opening
angle is shown in Fig. 9.2. The free energy is a rather large expression and can be found
in Appendix 9.A.

As follows from the scaling argument from chapter 8, for larger tactoids the interfacial
energy becomes so large that the uniform director field cannot be maintained. As argued
in that chapter, for Rζ/K1 > 3 the radial director field with hedgehog configuration
becomes more favourable for weak magnetic fields, at least for spherical droplets. For
such a radial director field a spherical shape is indeed the most favourable one because
it allows for perfect homeotropic anchoring, and its free energy Fh is given by Eq. (8.4).

As discussed in chapter 8, for a sufficiently strong magnetic field the hedgehog con-
figuration cannot be maintained because in that case the magnetic energy becomes too
large. To comply with the orientation imposed by the magnetic field for a larger fraction
of the particles, the tactoid can stretch the point defect to a line defect of topological
charge +1 in the direction of the magnetic field. The free energy of this configuration is
given by F sc = 4πγR2 + F sc

sa + F sc
e + F sc

m , with F sc
sa , F sc

e , and F sc
m given by Eqs. (8.6),

(8.7), and (8.8), respectively.
The formation of this split-core defect in turn goes at the expense of the perfect

homeotropic surface anchoring, which can be reduced by elongating the drop. This has
been observed to be the case in sterically stabilised dispersions of gibbsite platelets, for
which we presented a simple model with strong anchoring conditions in chapter 7. As
announced in section 9.1, we perform a perturbation calculation to determine the free
energy of the prolate drop with line defect because the experimentally observed deviation
from the spherical shape is small [86]. Such a perturbation calculation implies that we
write the solution in terms of a formal power series in a parameter that quantifies the
deviation from the exactly solvable problem. This perturbation we perform in both the
shape and the line-defect length, so one perturbation parameter is the deviation in the
aspect ratio from that of the sphere, i.e., unity, and the other is the deviation from the
line-defect length in the sphere. It is a highly non-trivial calculation and the details can
be found in Appendix 9.C.

The free energies of the spherical drop with point defect and split-core split-core
line defect are given by Eqs. (8.4) and (8.5), respectively. In the experiments of [86]
on gibbsite platelets that we referred to before, the tactoids in dispersions of sterically
stabilised gibbsite were observed to stretch to a prolate shape in a sufficiently strong
magnetic field. To rationalise this observation, we perform a perturbation calculation
of the free energy mentioned above to compute the free energy of a prolate ellipsoid of
revolution with line defect, which is reasonable given that the observed aspect ratio was
always smaller than 1.3 [86]. This amounts to a perturbation both in the shape, i.e.,
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aspect ratio, and the split-core defect length. The reason that we preform a perturbation
calculation instead of a full calculation for a prolate ellipsoid of revolution is that in the
latter case neither the bare surface energy nor the anchoring energy can be evaluated
analytically. The free energy F sc

pr of the prolate shape we find from the free energy
F sc(Ls, ε = 0) for the sphere with defect length Ls and deviation ε = 0 from the aspect
ratio of unity of the sphere. The equation for F sc

pr reads

F sc
pr (L, ε) = F sc(Ls, 0) + ε

∂F sc

∂ε

∣∣∣
(Ls,0)

+ δL
∂F sc

∂L

∣∣∣
(Ls,0)

+
1
2
ε2 ∂2F sc

∂ε2

∣∣∣
(Ls,0)

+
1
2
(δL)2

∂2F sc

∂L2

∣∣∣
(Ls,0)

+ ε δL
∂2F sc

∂ε∂L

∣∣∣
(Ls,0)

+O(ε3, (δL)3), (9.3)

where L = Ls + δL is the length of the line defect in the prolate ellipsoid. We optimise
F sc

pr with respect to the parameters ε and δL, so we put ∂F sc
pr /∂L = 0 and ∂F sc

pr /∂ε = 0.
The different energy terms of F sc

pr are found by taking a prolate ellipsoidal drop shape
with aspect ratio 1 + ε and by using the cylindrical symmetry of the drop around the
line defect, so we use cylindrical coordinates. The details can be found in Appendix 9.C.

On the boundary of the regime of the prolate drop in the stability diagram we have
ε = δL = 0, so to find that boundary it suffices to compute the values of β2 and < that
satisfy ∂F sc/∂ε

∣∣∣
(Ls,0)

= 0 and ∂F sc/∂δL
∣∣∣
(Ls,0)

= 0. The result then gives the critical

value B∗ of the magnetic-field strength where the prolate drop becomes more favourable
than the spherical one for a given value of <. Inside the area where the prolate drop
has the lowest free energy, we need the full equations that result from minimising with
respect to F sc

pr to find the optimal value of ε and δL, plus the added constraint that

Ls is still the optimal solution for the spherical shape, hence ∂F sc/∂L
∣∣∣
(Ls,0)

= 0. So

we have three equations for the three unknowns ε, Ls, and δL, where a value for the
fourth unknown, ω, is selected for every diagram. The lines of constant aspect ratio and
constant line-defect length in the stability diagram we then compute by fixing the values
of ε and L = Ls + δL, respectively.

We find that the growth of the line defect is indeed decoupled from the elongation
of the tactoid because the former starts at lower magnetic-field strength than the latter,
i.e., Bc < B∗, albeit that the difference is small. To compare the approach of a coupled
growth of the line defect and the tactoid elongation from chapter 7 with the decoupled
growth in this chapter, we show the results for the line-defect length and the aspect
ratio as a function of the magnetic-field strength for ω = 2 in Fig. 9.3. We see that
initially, i.e., for weak magnetic fields, the growth of the split-core defect and the tactoid
elongation have the same growth “rate” with increasing field strength, so the approxi-
mation the coupling from chapter 7 is quite accurate. However, for larger field strength
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Figure 9.3: The length of the line defect L relative to the tactoid length ` = 2R(1+ ε)2/3 and
the increase ε in the aspect ratio a = 1 + ε as a function of the dimensionless magnetic-field
strength β2 for ω = 2 and < = 10 (a), 15 (b), and 20 (c). At the critical magnetic-field strength
β2

c = ΣB2
c K1/γ2 the line defect starts to grow, and for β2

∗ = ΣB2
∗K1/γ2 the tactoid itself

elongates.

the aspect ratio exhibits re-entrance behaviour because it decreases again, whereas the
line defect elongates further. We return to this in section 9.3.

We are now in a position to compare our free energies and assemble the results in a
stability diagram that shows the optimal configuration and shape from our class given
the dimensionless anchoring strength ω ≡ ζ/γ, drop radius < ≡ Rγ/K1, and magnetic-
field strength β2 ≡ −ρ∆χB2K1/γ2. The results are presented in the next section.

9.3 Stability diagrams

In chapter 8 we considered the limit of ω → 0 where the drops are spherical. For
nonzero values of ω the surface tension no longer fully dominates the anchoring energy,
allowing the drop to deviate from the spherical shape. The results of our numerical
calculations are summarised in Fig. 9.4, where we have taken the value of the dimen-
sionless anchoring strength equal to ω = 0.25, 0.5, 1 and 2. A value of approximately
ω = 0.5 was found from capillary-rise experiments for gibbsite platelets in toluene that
were sterically stabilised [45]. However, to reach the aspect ratios that we observed
recently in the experiments on sterically stabilised gibbsite using bromotoluene, a value
of ω = 2 is required [86].

The stability diagram shows that we can distinguish four regimes. i) Small drops
have a homogeneous director field and a lens shape, irrespective of the magnetic-field
strength. ii) Larger drops in a weak magnetic field are spherical with a radial director
field and a hedgehog point defect. iii) For stronger magnetic fields the point defect
transforms into a split-core line defect within the spherical drop. iv) For even stronger
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magnetic fields the tactoid itself stretches to a prolate shape.
The larger the anchoring strength ω = ζ/γ, the larger the area occupied by the

prolate drop with split-core defect in the stability diagram. The reason is that a higher
value of ω means a larger energetic penalty for imperfect surface anchoring, making
the prolate drop more favourable than the spherical drop with split-core defect. With
increasing ω, the scale of the horizontal axis decreases, whereas that of the vertical axis
increases, but the topology of the diagrams is the same as that of the spherical drop in
Fig. 8.3 for all values of ω, except for the invasion of the phase diagram by the prolate
drop. That is, small drops again adopt a uniform director field, and the shape is now
that of a lens that becomes more oblate for larger values of ω. Larger drops adopt a
hedgehog configuration in weak magnetic fields, for which the cross-over size for zero
field is shown in Fig. 9.5, whereas in stronger magnetic fields the split-core line defect
develops. See also Appendix 9.B.

For ω = 2 the length of the line defect L relative to the drop size R, which is the radius
of the spherical drop determining the volume that is the same for all configurations,
shows a remarkable re-entrance for an increasing magnetic-field strength. Note, however,
that there is quite a large gradient in the aspect ratio a close to the second crossover
from prolate ellipsoid to the sphere with line defect and that for values a & 1.4 our
perturbation approximation loses its accuracy.

The split-core configuration also occurs in prolate drops because for all values of the
anchoring strength ω that we take, there are values of the dimensionless radius < and
magnetic-field strength β2 for which it is the most favourable one of all configurations.
For this the tactoid must be sufficiently large to make surface anchoring dominant over
elasticity in order to rule out the homogeneous drop, and the magnetic field must be
strong enough to force more particles to comply with the orientation imposed by this
field than in the hedgehog configuration. The magnetic field must be stronger than a
critical value B∗ larger than Bc to make the elongated drop with split-core defect more
favourable than the spherical one. The value of B∗ that follows from it provides the
boundary of the area in the phase diagrams in Fig. 9.4 where the prolate drop with split
core has the lowest free energy and the way is it computed is explained in Appendix
9.C. At this transition the length L of the line defect is approximately L ≈ R/2, see Fig.
9.4. In that figure we plot the lines of constant L/R in the ellipsoid region that have
a small downward deflection, implying that the line-defect length in the prolate drop is
larger than that in equivalent spherical tactoid. See also Fig. 9.3. For a given value of
< the line-defect length increases with increasing magnetic-field strength until it runs
throughout the entire tactoid to minimise the magnetic energy cost. However, we have
seen in chapter 8 that in theory this requires an infinitely strong magnetic field.
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Figure 9.4: The stability diagrams for dimensionless anchoring strength ω = 0.25 (top left),
ω = 0.5 (top right), ω = 1 (bottom left), and ω = 2 (right) as a function of the dimensionless
radius < ≡ Rγ/K1 and β2 ≡ −ρ∆χB2K1/γ2 that measure the drop size and the magnetic-field
strength. The volume is constant for all shapes and equals that of the sphere with radius R
The dashed lines indicate a constant split-core defect length L relative to R. The dashdotted
lines show a constant aspect ratio a of the prolate ellipsoid, where a = 1 at the crossover from
sphere to prolate ellipsoid.

The aspect ratio initially also increases with increasing field strength, but, surpris-
ingly, according to our model the aspect ratio should decrease again to unity for very
strong fields, so the spherical tactoid with a split-core defect should re-appear for even
larger magnetic-field strengths. See also Figs. 9.3 and 9.4. The reason is that the length
of the line defect affects the balance between the magnetic and anchoring energy. That
is to say, the additional free energy of the ellipsoid compared to the sphere with line
defect contains mainly a competition between the magnetic energy and the anchoring
energy, i.e., the elastic deformation is subdominant. The prolate ellipsoid has a lower
anchoring energy throughout the entire tactoid than the sphere, whereas its magnetic
energy is higher. Note that this magnetic energy comes only from the ends of the tac-
toid, and not from the axis part where the director field is radial in two dimensions and
has minimal magnetic energy cost. For a weak magnetic field B < B∗,1, with B∗,1 the
smallest of the two values of B∗ for given <, the line defect is small and almost the en-
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Figure 9.5: The critical value of the dimensionless drop size < ≡ Rγ/K1 for the crossover
from a uniform director field in the lens to a radial director field in the sphere as a function of
the dimensionless anchoring strength ω ≡ ζ/γ. The solid line shows the critical value at zero
magnetic field with β2 ≡ −ρ∆χB2K1/γ2 = 0, and the dashed line indicates the limit for a very
strong magnetic field where the defect is stretched through the entire tactoid (L/R = 2), which
is the vertical asymptote (dotted line) in the phase diagram in Fig. 9.4.

tire volume of the tactoid is in the ends, which makes the prolate ellipsoid energetically
expensive compared to the spherical drop. The larger magnetic energy outweighs the
gain in anchoring energy of the elongated drop relative to the spherical one because this
is mainly caused in the ends, which is small because of the small line defect.

For a stronger magnetic field B > B∗,1 the line-defect length is about the size of
the tactoid radius and the difference in magnetic energy between the prolate ellipsoid
and the sphere becomes even larger than for a smaller value of B. However, this is
compensated for by the gain in anchoring energy because of the longer line defect that
is mainly due to the better anchoring in the ends. For even stronger magnetic fields
B > B∗,2 with B∗,2 the largest of the two values of B∗ for the same value of <, there
comes a point where the magnetic energy of the prolate drop is too expensive to be
compensated for by the more favourable anchoring than in the sphere, which is now
mainly in the axis part. This is because the line defect is larger than half the size of
the tactoid. In the experiments this re-entrance of the spherical drop with line defect
turned out not to be observable because of the poor contrast due to alignment of the
isotropic phase in the strong magnetic field [86]. With ω ≈ 2, β2 ≈ 3,∆χ = −10−22

J/T2, ρ = 4 · 1020 m−3 [42, 83], and K1 ≈ 0.8 · 10−13 N and γ = 1.3 · 10−7 N/m that
we find in section 9.4, we estimate the required magnetic-field strength for this to be
observed to be 4 T.

In the next section we compare our results to experiments on tactoids in sterically
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stabilised dispersions of gibbsite platelets.

9.4 Comparison with experiments

Just as in the case of the aqueous gibbsite in chapter 8, we can directly apply the
theoretical model from the previous sections to the experimental data, and extract ma-
terial parameters relating to our liquid crystal droplets. Here we not only use the length
of the line defect and the critical magnetic-field strength Bc where it starts to grow,
but also the degree of tactoid elongation as a function of the magnetic-field strength.
The fitting procedure is similar to the one described in section 8.4, except that the
relevant variables are β2 ≡ −ρ∆χB2K1/γ2 and < ≡ Rγ/K1, as shown on the axes of
Fig. 9.4. The fitting procedure amounts to finding a compromise between the best fit
to the critical magnetic-field strengths where the aspect ratio (B∗) or split-core defect
(Bc) starts to grow, and the best fit to the data beyond those critical field strengths.
This compromise then produces values for γ/K1 and for γ2/K1, from which we deduce
both individual parameter values.

For the curve fitting to the tactoid elongation data that we have obtained for the
sterically stabilised system, there is an additional constraint compared to the aqueous
system that we require a minimum value of ω for the observed aspect ratios to occur
in the phase diagram. This value turns out to be higher than expected from previous
experiments in gibbsite platelets [42], which, in fact, is an important observation that
we return to later. A value of ω = 1.5 turns out not to suffice, but ω = 2 does and
gives a good fit, so we choose to take this value, which agrees with density functional
simulations on hard rectangular platelets [80]. Here, it must be noted that a value that
is, say, 10 % smaller or larger presumably also allows for an acceptable fit, and that
it agrees with the lower bound of ω > 1 that was obtained from comparing the aspect
ratio of lens-shaped tactoids with a homogeneous director field with Eq. (9.8) [85].

We rely on the same data for the tactoid elongation as in our chapter 7, where we
presumed perfect homeotropic surface anchoring [84]. Hence, we reanalyse these data in
the light of our more accurate model described in this chapter, allowing us to assess the
effect of imperfect anchoring on the value of the obtained surface tension, γ. We begin
with a curve fit of our model to the measured length of the split-core defect of a tactoid
with an initial radius of 32 µm in this system. Similar to the charge-stabilised system,
a line defect running throughout the entire tactoid was also observed at very high field
strengths, but again omit these last few data points from our curve-fitting procedure for
the same reasons as mentioned in section 8.4. The value of < that produces the best fit
to the critical magnetic-field strength turns out to be < = 100, which is rather large, as
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Figure 9.6: Ratio of the length of the split-core defect and the radius of the drop, L/R,
as a function of the square of the magnetic-field strength B2 for a tactoid in a suspension
of sterically stabilised gibbsite in bromotoluene. Tactoid radius: R = 32 µm. Experimental
data: points, theoretical fits to the data: drawn lines. In order to get good agreement for both
the critical magnetic-field strength and the ratio L/R, we derive a lower and upper bound for
B2/β2 = γ2/(−ρ∆χK1). We find B2/β2 = 25 T2 (left drawn curve) and B2/β2 = 35 T2 (right
drawn curve), respectively. See also the main text.

we will see later. We obtain lower and upper bounds for the interfacial tension γ and the
elastic constant K1, of γ = 2.1 · 10−7 N/m and γ = 2.8 · 10−7 N/m, and K1 = 0.4 · 10−13

N and K1 = 0.6 · 10−13 N respectively, with Bc = 0.16 T and Bc = 0.18 T, see Fig.
9.6. From Eq. (8.16) we can obtain another value for K1 by determining Bc from the
data for the defect length. We determine Bc = 0.18 ± 0.2 T, which results in a value
for K1 = (1.1 ± 0.5) · 10−13 N. These values agree reassuringly well, implying that we
believe them to be robust.

Next, we attempt to confirm the previous analysis by a curve fit of our model this
time to the aspect ratio of two elongated tactoids with an initial radius of 28 and 31
µm respectively, again for the system of sterically stabilised gibbsite. In order to obtain
the correct aspect ratio of a ≈ 1.3 for the tactoids, we have to take ω = 2 as described
above. The value of < that produces the best fit to the critical magnetic-field strength
is smaller than in our curve fitting to the length of the split-core line defect, because the
critical field strength Bc needed to elongate a tactoid is larger. For the tactoid of 28 µm
we take < = 25, and the condition that <ω > 3 is then also satisfied. See Fig. 9.7.

From the fit we find B∗ = 0.47 T and a value of γ = 0.9 · 10−7 N/m with a lower
and upper bound of γ = 0.6 · 10−7 N/m and γ = 1.2 · 10−7 N/m. The same fit gives
K1 = 1.0 ·10−13 N, with bounds K1 = 0.7 ·10−13 N and K1 = 1.3 ·10−13 N. For the drop
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Figure 9.7: The aspect ratio a of two tactoids in the sterically stabilised gibbsite dispersion
in bromotoluene as a function of the square of the magnetic-field strength B2, where both
the critical magnetic-field strength B∗ and the values of a are fitted. The points represent
experimental data and the solid lines are fits to our model. For both fits ω = 2 has been taken
to reach the desired aspect ratios. The fit gives a value for B2/β2 = γ2/(−ρ∆χK1) and the
dashed lines indicate a lower and upper bound (see the main text). (a) Tactoid with R = 28
µm with B2/β2 = 1.9 T2, giving γ = 0.9 · 10−7 N/m and K1 = 1.0 · 10−13 N. (b) Tactoid with
R = 31 µm with B2/β2 = 0.7 T2 (solid line), giving γ = 0.4 · 10−7 N/m and K1 = 0.5 · 10−13

N.

with a radius of 31 µm we take < = 23 and the best fit then produces B∗ = 0.30 T and
values of γ and K1 of γ = 0.4 ·10−7 N/m with a lower and upper bound of γ = 0.2 ·10−7

N/m and γ = 0.7 · 10−7 N/m, and K1 = 0.5 · 10−13 N, with bounds K1 = 0.3 · 10−13 N
and K1 = 1.0 · 10−13 N. Again, these values are quite consistent with those obtained for
the smaller drop.

Comparison of the found values for Bc (the critical field strength at which the line
defect starts to grow) and B∗ (the critical field strength at which the tactoid elongation
starts) shows that Bc < B∗, in agreement with what was found in the theoretical model:
upon an increase of the magnetic field first the point defect stretches to a line defect
and subsequently at higher magnetic-field strength the tactoid is elongated in the field
direction. The theory also predicts that the tactoid should become spherical again at an
even higher magnetic-field strength, but this was not confirmed by the experiments. It
must be noted, though, that at high magnetic-field strength a precise measurement of
the tactoid properties becomes increasingly difficult, due to alignment of the isotropic
background.

All the obtained values for γ and K1 are summarised in Table 9.1, which also shows
the values from chapter 7, obtained with the model that assumes complete anchoring. If
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Table 9.1: Results of the fitting procedure for sterically stabilised gibbsite in bromotoluene.
The first three columns of the table give values for K1 from Eq. (8.16) for Bc and average values
for K1 and γ that follow from the upper and lower bound fits of the model to the relative split-
core-defect length L/R, as depicted in Fig. 9.6. The next two columns give the best fit values
for for K1 and γ that follow from the fits of the model to the elongation of the tactoid, i.e., the
aspect ratio a, as depicted in Fig. 9.7. The last column presents results obtained with the old
model from chapter 7 involving complete anchoring (ω →∞). All values for K1 are in units of
10−13 N and those of γ in units of 10−7 N/m.

ω = 2 ω →∞
line defect elongation elongation

K1 K1 γ K1 γ γ
R[µm] Bc fit L/R fit a fit a

32 1.1 ± 0.5 0.5 ± 0.1 2.5 ± 0.4 - - -
28 - - - 1.0 ± 0.3 0.9 ± 0.3 5 ± 2
31 - - - 0.5 ± 0.5† 0.4 ± 0.3 3 ± 2

†This rather large value of the error is a consequence of the fact that the upper and lower

bounds are asymmetrically deviating from the best fit, thus the lower bound is not zero, but

0.3 · 10−13 N.

we compare the values for γ obtained from the tactoid elongation with both models, it
is clear that significantly lower values are obtained when incomplete anchoring is taken
into account, (0.4 − 0.9) · 10−7 N/m versus (2 − 5) · 10−7 N/m, in agreement with the
expectation put forward in the chapter 7 [84]. However, the value we obtained with
the new model by the fitting of the length of the line defect as a function of magnetic-
field strength is somewhat larger, namely (2.5 ± 0.4) · 10−7 N/m, which results in an
average value for the interfacial tension of sterically stabilised gibbsite in bromotoluene
of γ = 1.3 · 10−7 N/m. So, all of the values of the surface tension we extract from the
tactoid experiments are much larger than the value of γ = 3 · 10−9 N/m obtained from
capillary-rise experiments, in the comparable system of sterically stabilised gibbsite in
toluene as opposed to bromotoluene [42]. We come back to some of the drawbacks of our
tactoid model below, although we do not believe these drawbacks can actually explain
this discrepancy. The values for the elastic splay constant K1 of both the fits to the
line-defect length and the aspect ratio and Bc produce an average of (0.8± 0.3) · 10−13

N, which is somewhat smaller than the values that we established in chapter 7 of K1 =
(0.9− 2.6) · 10−13 N, yet still consistent.

Even though we claimed in chapter 8 that the tactoids in the charge-stabilised system
showed no deviation from the spherical shape for sufficiently large tactoids with a split-
core defect, i.e., ω → 0, for smaller tactoids a non-spherical shape with a uniform director
field was observed in the absence of a magnetic field in this system [85]. In agreement
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with our predictions, the drops were observed to be lens-shaped with an aspect ratio that
is independent of the drop size, as predicted by Eq. (9.8). From this aspect ratio a value
ω = 0.6 was readily deduced, so this suggests the aqueous system is not characterised
by ω → 0. If we reconsider the calculated phase diagram of Fig. 9.4 for ω = 0.5, close to
what we find here, a tactoid elongation of 3 to 5 % is expected, which could have easily
been missed in the experiments [86]. So, the apparent discrepancy does not seem to be
a real one.

9.5 Conclusions and discussion

In this chapter we have extended our theoretical study from chapters 7 and 8 of the
shape and internal structure of spherical nematic droplets to the general case of imper-
fect surface anchoring and non-spherical droplets, so neither the surface anchoring, nor
the surface tension is the dominant force. By minimising the free energies of shapes and
director fields in a Frank-Oseen elasticity theory, we have computed the most favourable
combination of shape and director field for a given value of the interfacial anchoring
strength, the magnetic-field strength, and the tactoid size. The stability diagrams con-
firm the scaling argument that in small tactoids the bulk elasticity of the director field is
dominant, giving the drop a homogeneous director field, regardless of the magnetic-field
strength. The shape associated with this uniform director field is that of a lens, and
its aspect ratio, defined as the ratio of the axis of rotational symmetry and the one
perpendicular to it, decreases with increasing anchoring strength to accommodate with
the preferred homeotropic surface anchoring.

For larger tactoids in a weak magnetic field, a hedgehog point defect develops in a
spherical drop for a weak magnetic field because of the predominance of surface anchoring
over the bulk elasticity of the director field. For strong enough magnetic fields the
hedgehog configuration with radial director field has such a high magnetic energy cost
that the point defect stretches to a split-core line defect that allows more particles to
comply with the orientation imposed by the magnetic field. We showed here that also in
a sterically stabilised dispersion a split-core defect can be stabilised by a magnetic field
for particles with a negative diamagnetic susceptibility anisotropy, again confirming the
prediction by Mkaddem and Gartland [200].

Our calculations predict that for positive values of the dimensionless anchoring
strength ω ≡ ζ/γ the tactoid stretches to a prolate shape and that this occurs for
stronger fields than that at which the split-core defect starts to grow and this is con-
firmed by the experiments on sterically stabilised dispersions of gibbsite platelets. For
even stronger fields the aspect ratio of the prolate shape should decrease again to unity.



9.5. Conclusions and discussion 179

This presumably requires such a strong magnetic field that the contrast is too low for
this re-entrance of the spherical shape to be observable experimentally. Our stability
diagrams show that the larger the value of ω, the larger the regime for which elongated
tactoids with a line defect are stable.

We have demonstrated the effect of decoupling of the elongation of the line defect
and that of the tactoid, and find that for weak magnetic fields the approximation of
coupling both elongations, as done in chapter 7, is an accurate approximation because
the defect length and tactoid length grow equally rapidly with increasing magnetic-field
strength. However, for stronger magnetic fields the defect keeps growing until it runs
throughout the entire tactoid, whereas the aspect ratio decreases again to unity.

By fitting the observed aspect ratio of the drops and line-defect length in the sterically
stabilised system to our theoretical predictions, we extracted values of K1 ≈ (1.0 ±
0.5) · 10−13 N, γ = (2 ± 1) · 10−7 N/m, and ω ≈ 2 [85, 86]. The values of K1 are in
agreement with earlier results from a much cruder model [84] and also with capillary
rise experiments [45], but the value of the surface tension of γ = 3 · 10−9 N/m in that
work is much smaller than what we find here.

There are two possible caveats of our model one could imagine to be responsible
for this discrepancy. The first is that we neglected the influence of the magnetic field
on the material parameters and this we return to below. The second is that except
for the configuration with a ring defect, we only consider splay deformations of the
director field. Although it might appear that the observed director fields exhibit merely
a splay deformation, any bend deformation could give a significant contribution because
a value of K3 ≈ 7 · 10−14 N has recently been determined for platelets [83], which
would favour a bend deformation over a splay distortion because it is lower than the
value for K1 that we extracted above. Although difficult to infer from the polarised-
light-microscopy experiments, the curvature in the dark horizontal band might point
in that direction. Indeed, for plate-like particles, the bend elastic constant is thought
to be smaller than the splay constant [52], so some elastic energy can be gained. An
appropriate bend deformation also makes the anchoring less unfavourable, producing an
additional reduction of the free energy. At this point, it is difficult to judge in what way
that this should influence the results of our curve fitting. However, it seems unlikely that
the incorporation of the bend and/or saddle-splay elastic constant can account for the
large discrepancy between the calculated values of the anchoring strength and surface
tension that follow from the model and the value obtained earlier from capillary rise
experiments [45,84].

Finally, we once again mention the neglect of the effect the magnetic field on the
material parameters in this chapter and chapters 7 and 8. Firstly, the magnetic field
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aligns the background isotropic phase and presumably lowers the value of the surface
tension and anchoring strength. Secondly, the magnetic field raises the order parameter
S2 of the nematic phase, defined in Eq. (1.4), which should affect the splay elastic con-
stant K1 and the anchoring strength ζ. Quite plausibly, K1 and ζ depend differently on
the order parameter [6]. Because both the elastic constant and the anchoring strength
counterbalance the deformation by the magnetic field, an underestimation of K1 could
lead to a too high value for the anchoring strength and interfacial tension. Furthermore,
the anchoring strength might also depend on the magnetic-field strength due to align-
ment of the isotropic phase in the field. However, correction for the latter would lead to
an even higher value for the anchoring strength in zero field.

A difference in the order parameter may also partly explain the aforementioned
difference of almost two orders of magnitude between the interfacial tension that we
find here and the value obtained from capillary rise experiments. This difference may
be caused by the different stages in which the respective experiments are carried out.
Our tactoid experiments were carried out when the phase separation process is not quite
finished, whereas the capillary-rise experiments require a fully equilibrated sample where
all tactoids have sedimented and the different domains in the nematic phase have an-
nealed. Such an equilibrated sample might very well have a higher order parameter.
This implies that a higher order parameter would lead to a larger value for the extrap-
olation length. Moreover, during the equilibration, a sedimentation equilibrium might
have started to develop, which would change the concentrations in the co-existing phases
and, as a consequence, also change the elastic and surface properties of the nematic.

In any event, it seems quite unlikely that these caveats could be responsible for the
difference of almost two orders of magnitude between the two types of system.

We thank Lia Verhoeff and Henk Lekkerkerker for their experimental work on tac-
toids consisting of gibbsite platelets.

9.A Wulff construction

The geometrical Wulff construction provides a polar plot of the interfacial tension,
and every point on the surface is connected to the origin of the coordinate system by
a radial vector. A plane perpendicular to each of these vectors is defined at their tips,
and the convex envelope of these planes then provides the droplet shape. Our problem
is cylindrically symmetric with the z-axis as the symmetric axis, so a two-dimensional
approach suffices. This means that the shape that we find in terms of the z-coordinate
as a function of the radial distance r that must be rotated around the z-axis. If we
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consider the plane of positive z and r values, the line perpendicular to the radial vector
of an arbitrary point on the polar plot of the interfacial tension obeys [53]

zϑ(r, ϑ) = −r tan ϑ +
1

cosϑ
− ω

1 + ω
cos ϑ, (9.4)

where ϑ is the angle between the vector and the z-axis and where z and r have been
made dimensionless by dividing them by a scale that fixes the volume of a spherical drop
of radius R. We return to this below.

The envelope of the lines for z(r, ϑ) ≥ 0 is found from minimising z with respect to
the polar angle ϑ for every r, giving z(r) ≡ minϑ∈[0,π/2] zϑ(r, ϑ). With u ≡ sin ϑ, this
gives [53]

z(r) =
1− ω

1+ω (1− u2)− ur√
1− u2

. (9.5)

The optimal value of u satisfies

− ω

1 + ω
u3 +

1 + 2ω

1 + ω
u− r = 0. (9.6)

The shape is now defined for r ∈ (0, r0), with r0 the smallest zero of z(r). To find r0 we
combine Eqs. (9.5) and (9.6), giving

z(r) =
√

1− u2

(
1− ω

1 + ω
(1 + u2)

)
. (9.7)

Eq. (9.7) has a zero for u = 1 and u = 1/
√

ω. From Eq. (9.6) this gives r0 = 1 for
ω ≤ 1 and r0 = 2

√
ω/(ω + 1) for ω ≥ 1.

The aspect ratio a is defined as the ratio of the drop size in the direction of the
axis of rotational symmetry and that perpendicular to it, implying that it is a number
smaller than unity for oblate ellipsoids and larger than unity for prolate ones. This
means that it follows from a = z(0)/r0. For r = 0 it we find from Eq. (9.6) that u = 0
or u = ±

√
1− 1/ω, but the latter solution has no real solution for u = sin ϑ. This gives

from Eq. (9.7) that z(0) = 1/(1 + ω). The aspect ratio is then

a =





1
1 + ω

, 0 ≤ ω ≤ 1

1
2
√

ω
, ω ≥ 1.

(9.8)

The opening angle α of the Wulff shape satisfies α = − arctan(−zr(r0)), with zr =
∂z/∂r. We have from Eq. (9.6)

(
∂u

∂r

)−1

= − 3ω

1 + ω
u2 +

1 + 2ω

1 + ω
(9.9)
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that we use in Eq. (9.7) to compute ∂z/∂r = ∂z/∂u× ∂u/∂r. This then gives ∂z/∂r =
−u/

√
1− u2. For ω ≤ 1 we have r0 = 1 and we find from Eq. (9.6) that u = 1, so

α = π/2, whereas for ω ≥ 1 we have r0 = 2
√

ω/(ω + 1) and Eq. (9.6) gives u = 1/
√

ω,
so α = − arctan(−√ω − 1). The Wulff shape has a smooth boundary for 0 ≤ ω ≤ 1 and
a sharp rim for ω > 1, whereas the cut-sphere shape has a smooth boundary only for
ω = 0 and a sharp one for ω > 0. As we show in Appendix 9.B, this difference is not
reflected in a significant difference in the free energies of both shapes.

To find the free energy Fu of the drop we first need to compute the volume V u =
4πR3

∫ r0

0
dr rz(r). Using Eqs. (9.6) and (9.9), we remove the dependence on r and

switch to u as integration variable. The integration boundaries are u = 0 and u = 1 for
0 ≤ ω ≤ 1 and u = 0 and u = 1/

√
ω for ω ≥ 1. We find

V u

4πR3/3
=





k(ω), 0 ≤ ω ≤ 1

8(ω − 1)7/2

35
√

ω(ω + 1)3
+ k(ω), ω ≥ 1,

(9.10)

with

k(ω) ≡ 35 + 70ω + 28ω2 − 8ω3

35(ω + 1)3
. (9.11)

This volume decreases with increasing values of ω, so to ensure that the volume of the
drop is kept equal to that of the spherical tactoid that we have for ω = 0, we have
to rescale the length scale R with a factor s1 for 0 ≤ ω ≤ 1 and s2 for ω ≥ 1 in the
surface and anchoring energy. Hence, we equate Eq. (9.10) to unity and from that find
s1 ≡ k(ω)1/3 and s2 ≡

(
8(ω − 1)7/2/(35

√
ω(ω + 1)3) + k(ω)

)1/3
.

With the rescaled volume the bare surface energy obeys Fu
st =

4πγ(R/si)2
∫ r0

0
dr r

√
1 + z2

r and the anchoring energy Fu
sa =

4πζ(R/si)2
∫ r0

0
dr rz2

r/
√

1 + z2
r , with i = 1 for 0 ≤ ω ≤ 1 and i = 2 for ω ≥ 1. We

find

Fu
st

4πγR2
=





15 + 20ω + 4ω2

15(ω + 1)2s2
1

, 0 ≤ ω ≤ 1

15− 4c/ω + 8c− 4c ω + 4ω(ω + 5)
15(ω + 1)2s2

2

, ω ≥ 1,

(9.12)



9.B. Cut-sphere lens 183

with c ≡
√

ω(ω − 1), and

Fu
sa

4πγR2
=





(70 + 56ω − 24ω2)ω
105(ω + 1)2s2

1

, 0 ≤ ω ≤ 1

ω

105(ω + 1)2s2
2

(
70 + 4c/ω2 + 16c/ω

−44c + 24c ω + 56ω − 24ω2 − 12c
)

ω ≥ 1.

(9.13)

In the limit ω → 0 we find a spherical droplet with a free energy that is simply Fu =
4πγR2. Note that if we impose a uniform director field in a spherical drop without any
restriction on ω, we retrieve Eq. (8.1).

9.B Cut-sphere lens

In this appendix we show how a lens shape associated with the uniform director field
can also be constructed from a sphere, and that its free energy is only slightly larger than
the exact lens that follows from the Wulff construction [206]. We cut a part from the top
for a polar angle ϑ = α < π/2 and mirror it in the rφ-plane with azimuthal symmetry,
see Fig. 9.8. This means that the director field is in the z-direction to minimise the
magnetic energy and that α is the opening angle of the cut-sphere (superscript cs) shape.
For the volume we find

V cs =
8
3
πR3(2 + cos α) sin4

(α

2

)
. (9.14)

For the volume of the lens to be equal to the volume of the sphere with radius R, we need
to re-scale the radius R in Eq. (9.14) by a factor s(α) = ((4 + 2 cos α) sin4(α/2))−1/3

that can be rewritten as

s(α) =
2

(8− 9 cos α + cos 3α)1/3
, (9.15)

which gives s(π/2) = 1 for the sphere. As already alluded to, we have only the surface
energy and the anchoring energy that contribute to the free energy. We find for the bare
surface energy

F cs
st = 4πγs(α)2R2(1− cosα). (9.16)

For the surface anchoring term F cs
sa we have to integrate the square of the sine of the

angle between the director field and the tactoid normal, which is the polar angle ϑ,
giving

F cs
sa =

16
3

πζs(α)2R2(2 + cos α) sin4
(α

2

)
. (9.17)
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The total free energy of the lens-shaped tactoid is F cs = F cs
st +F cs

sa . The optimum value
of α is found by putting ∂F cs/∂α = 0, which gives

∂F cs

∂α
=

1
3
πs(α)2R2

(
4ζ sin3 α− 6γ

sin 2α

2 + cos α

)
. (9.18)

To find the roots of the right-hand side, we need to solve a third order polynomial in
cos α, which gives for the optimum α:

αopt(ω) = arccos
(
−2

3
+

7ω − 9
3g(ω)

+
h(ω)
3ω

)
, (9.19)

with ω ≡ ζ/γ and

h(ω) =
(
ω2(10ω + 27) + 9

√
ω3(−3ω3 + 23ω2 − 12ω + 9)

)1/3

. (9.20)

The opening angle is shown in Fig. 9.2, and compared to the opening angle of lens that
follows from the Wulff construction. The latter has a smooth boundary for 0 ≤ ω ≤ 1,
but the cut-sphere lens has one only in the spherical limit of ω → 0 and has a sharp rim
for ω > 0. Interestingly, this has hardly any consequences for the free energy, because
it is at most 0.5% larger than that of the Wulff shape, see Fig. 9.2.

Figure 9.8: The lens shape is constructed by cutting a piece from taking a piece (shaded
area) from a sphere of radius R. The cutting angle defines the opening angle α. The relative
difference between the free energy of the shape that follows from the Wulff construction F u

and the cut-sphere shape F cs is at most 0.5%, as shown in Fig. 9.2.

Using the optimal value of α as given by Eq. (9.19) we can compute the aspect ratio
a of the tactoid, which depends only on ω. It reads

a =
sin αopt

1− cosαopt
=

√
3 + y

3− y
(9.21)

with

y = −2 +
7ω − 9
h(ω)

+
h(ω)

ω
(9.22)
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and h(ω) given by Eq. (9.20). The aspect ratio is shown in Fig. 9.2.
By comparing the free energy Fu

st +Fu
sa of the lens shape with uniform director field,

where Fu
st and Fu

sa are given by Eqs. (9.12) and (9.13), and that of the spherical droplet
with the central hedgehog in zero magnetic field,

Fh = 4πγR2 + 8πK1R, (9.23)

we can determine the drop size R at which the latter becomes more favourable than the
former. The energy difference between the lenses that follow from the Wulff and the
cut-sphere construction is negligible, as shown in Fig. 9.8, and that of the cut-sphere
requires no separation for ω < 1 and ω > 1, so we choose to use the cut-sphere lens with
free energy given by F cs

st + F cs
sa as given by Eqs. (9.16) and (9.17). We find

Rcζ

K1
= <cω =

24ω

s(α)2 (12 + 8ω(12 + 9ω) cos(α) + ω cos(3α))− 12
, (9.24)

with α the optimum opening angle given by Eq. (9.19). For the values of ω we consider
in this work, i.e., ω . 2, Eq. (9.24) can be very well approximated by <cω = 3 + 4ω/5.
See also Fig. 9.5.

9.C Split-core defect

The derivation of the free energy Fsc of the sphere with split-core defect is given
in Appendix 8.B. The optimal defect length satisfies Eq. (8.30) and to determine the
crossover from the lens with uniform field to the sphere with split-core defect in the
stability diagram of Fig. 9.4, we put F sc = Fu and use Eq. (8.30) to eliminate the
dependence on L. The lines of constant L/R = c in Fig. 9.4 are determined by directly
plotting Eq. (8.30) for L = cR.

To find the free energy F sc
pr of the prolate shape with split-core defect, we perform a

perturbation in both in the shape, i.e., aspect ratio, and the split-core defect length of the
sphere with line defect. The free energy then follows from the free energy F sc(Ls, ε = 0)
of the sphere with defect length Ls and deviation ε = 0 from the aspect ratio of unity
of the sphere, giving Eq. (9.3). Hence, δL = L − Ls is the perturbation in the defect
length and ε that in the aspect ratio. We optimise the free energy of the prolate shape
with respect to the parameters ε and δL, so

∂F sc

∂ε

∣∣∣
(Ls,0)

+ ε
∂2F sc

∂ε2

∣∣∣
(Ls,0)

+ δL
∂2F sc

∂ε∂L

∣∣∣
(Ls,0)

= 0, (9.25a)

∂F sc

∂L

∣∣∣
(Ls,0)

+ δL
∂2F sc

∂L2

∣∣∣
(Ls,0)

+ εδL
∂2F sc

∂ε∂L

∣∣∣
(Ls,0)

= 0. (9.25b)



186 Chapter 9. Deformable homeotropic tactoids in a magnetic field

To calculate the different terms in the expansion, we note that the derivatives with
respect to L can be found by direct differentiation; the derivatives with respect to ε we
obtain by performing a perturbation of each of the free-energy terms of the spherical
tactoid. This we do as follows. We start from equation of a prolate ellipsoid that is
elongated in the z-direction,

(x

a

)2

+
(y

a

)2

+
(z

c

)2

= 1, (9.26)

where we take a = R/(1 + ε)1/3 and c = R(1 + ε)/(1 + ε)1/3 = R(1 + ε)2/3 to keep the
volume the same as that of the sphere and to give the shape an aspect ratio of 1 + ε.
For this perturbed shape we compute the contributions to the free energy for a given
director field with line-defect length Ls, so the same director field as in the spherical
shape with two-dimensional radial field around the defect line and a three-dimensional
field originating from the ends of the defect line. So we write

∂F sc

∂ε

∣∣∣
(Ls,0)

= F sc
st,ε + F sc

sa,ε + F sc
e,ε + F sc

m,ε. (9.27)

We find F sc
st,ε = 0 because the effect on the bare surface energy is of second order,

F sc
sa,ε = πζ

(
3L5

40R3
− 11L3

18R

)

+
πζ

768L3R3

(
i
(
9L8 − 80L6R2 − 160L4R4 + 768L2R6 + 2304R8

) (
π + i log

[
L + 2R

L− 2R

])

+4L
(−24L7 + 9L6R + 224L5R2 − 68L4R3 − 384L3R4 + 240L2R5 + 576R7

))
, (9.28)

F sc
e,ε =

πK1

3L3

((
6L

(
L3 − L2R− 4R3

)
+

(
3L4 + 8L2R2 + 48R4

)
coth−1

[
2R

L

])

+

(
3L4 + L3R

(
2i coth−1

[
2R(

i +
√

3
)
L− 2

√
3R

]
+

2i coth−1

[
2R(

i +
√

3
)
L + 2

√
3R

]
+ log

(
L + i

√
3L− 4R

)
(L− 2R)(

L + i
√

3L + 4R
)
(L + 2R)

)))
, (9.29)

and

F sc
m,ε = −ρ∆χB2

384L5

(
π

(
L2 − 4R2

)2 (
12LR

(
L2 + 4R2

)
+ i

(
3L4 + 8L2R2 + 48R4

)
(

π + i log
[
L + 2R

L− 2R

])))
. (9.30)

Note the appearance of the imaginary unit i the in equations, but their values are real.
The second-order terms in ε are the second terms in the perturbation as described above
and give very large expressions.



10
Conclusions and outlook

10.1 Aim of the thesis

The general aim of this work has been to gain a better insight into the large-scale self-
organisation of anisometric colloidal particles dispersed in a solvent. We considered two
prototypes of this self-organisation, namely the formation of system-spanning networks
of loosely connected particles and the response of nematic liquid-crystalline (symmetry-
broken) states to hard and soft confinement. To investigate the former, we applied a
microscopic, particle-based theory and studied the effect of particle shape and dimen-
sions and external fields. For the latter we made use of a mesoscopic, structure-based
theory to study how surface and elastic properties, which depend crucially on the particle
shape, affect how the liquid-crystalline fluid in contact with its isotropic phase creeps up
a solid wall, and how droplets of that liquid-crystalline phase respond to magnetic fields.
The common denominator of both problems is that the same anisotropic interactions
dictate the structure of particle networks and drive the formation of liquid-crystalline
states, and determine their elastic and surface properties.

In the remainder of this chapter we summarise our main results on connectedness
percolation in section 10.2 and on nematics under soft confinement in section 10.3, and
we propose a number of issues for future research in section 10.4.

10.2 Build-up of networks of colloidal particles in fluid media

In the first part of this thesis we focused on the formation of temporal networks in
dispersions of rod-like and plate-like particles interacting by a harshly repulsive excluded-
volume interaction. The work was inspired by electrical-conductivity measurements
on composites containing carbon nanotubes and graphene sheets, which turn out to
be quite sensitive to their formulation and processing. To gain understanding of this,
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we calculated within the framework of connectedness-percolation theory how having
a distribution of particle shape, size and, loosely speaking, ease of charge transport,
affects the percolation threshold, i.e., the minimal particle loading required for the onset
of conduction. We mimicked some of the potential effects of processing by allowing
for particle alignment due to, e.g., an elongational flow field, and calculated not only
the percolation threshold, but also the size and shape of the clusters upon approach of
this percolation threshold. Finally, the conductivity of the network of rod-like particles
above the percolation threshold was computed by making use of a connection between
connectedness-percolation theory for rods and percolation on a particular kind of lattice.

The main conclusions of this part of the thesis are as follows.

1. The often-assumed inverse-aspect-ratio scaling of the percolation threshold for
anisometric filler particles is modified both by hard-core interactions and by poly-
dispersity. This explains, in part, large variations in measured values.

2. Whether the percolation threshold in- or decreases relative to that of the idealised
case of monodisperse, non-interacting particles, depends in a complicated way
on the effective range of electron transport, the shape of the length and width
distributions, and whether these are coupled.

3. The lowest percolation threshold for rod-like particles is obtained for uncoupled
length and width distributions, provided the length distribution is strongly skewed
towards shorter lengths. The presence of thicker-than-average rods always raises
the percolation threshold.

4. For monodisperse, mutually avoiding plate-like particles the inverse-aspect-ratio
scaling fails completely and for these low percolation thresholds are not to be
expected. If a low threshold is required, then rods (carbon nanotubes) are in
principle better suited than platelets (graphene). For platelets low percolation
thresholds are only possible in mixtures containing a small quantity of much wider
particles or rod-like ones.

5. For rods, the percolation threshold is governed solely by the fraction of conductive
ones. Insulating rods act as dead mass, so removing them improves percolation. A
soft conductive coating potentially improves the contribution of already conductive
ones and certainly that of insulating ones.

6. Alignment fields raise the percolation threshold of rod-like particles. Percolating
networks in external fields disintegrate due to interaction-induced alignment at
sufficiently high concentrations in the region where the isotropic-nematic transition
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occurs. This limits the existence of percolating networks to relatively weak fields
and a range of concentrations.

7. Particle alignment affects cluster shapes off percolation. Orienting fields give rise
to elongated clusters and disorienting fields to flat ones. However, the size of
clusters diverges with the same scaling exponent parallel and perpendicular to the
field direction upon approach of the threshold.

8. If the electrical conductivity of a percolating network of rod-like particles is gov-
erned by the microscopic conductivity and proportional to the backbone fraction,
then it increases quadratically with the particle loading just above the percolation
threshold and linearly away from it.

9. Connectedness-percolation theory for infinitely many components involving cylin-
drical particles, elongated and/or flat, can be solved exactly within the second-
virial approximation.

10. The percolation threshold depends on a few moments of the length and width
distribution only, which are relatively straightforwardly accessible experimentally,
implying that the theory itself can relatively straightforwardly be applied in prac-
tice.

10.3 Nematics of colloids under soft confinement

In the second part of this thesis we focused on providing a theoretical understand-
ing of experimental findings relating to the interface between co-existing isotropic and
nematic phases of dispersions of colloidal clay platelets in two different kinds of solvent,
requiring different kinds of colloidal stabilisation. We considered i) the capillary rise
of that interface and ii) the shape and structure of nematic droplets, the latter also in
the presence of a magnetic field. In both the competition between surface and bulk
elastic forces gives rise to unusual interface shapes and spatial distributions of the lo-
cal symmetry axis of the liquid crystal, the so-called director, observed in experiment.
Comparison of our theory with polarisation-microscopic images enabled us to extract
material constants including surface free energies and elastic constants of the colloidal
liquid crystal of the clay. Our main conclusions pertaining to the second part of the
thesis are the following.

1. The competition between surface free energy and bulk elasticity expresses itself
in a length scale. On length scales below this extrapolation length elasticity wins
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out and above it surface forces are predominant. This causes large-scale struc-
tural reorganisations of the interface shape and director field of the nematic liquid
crystal.

2. The capillary-rise profile of the interface between co-existing nematic and isotropic
phases in contact with a vertical wall is a non-monotonic function of the distance
to the wall. Near the wall the director field is rigid, distances further away than
the extrapolation length the surface anchoring is rigid.

3. The depression in the interfacial profile is stabilised by the presence of a virtual
disclination defect line parallel to the wall. The virtual disclination lowers the
overall elastic deformation of the nematic at the expense of an additional interfacial
area.

4. Nematic droplets with a preferential perpendicular alignment of the director to
the interface tend to be flat and have a uniform director field if they are smaller
than the extrapolation length. The larger the anchoring strength, the flatter the
drop.

5. Droplets larger than the extrapolation length are spherical with a radial field
emanating from a point defect, also in the presence of a weak magnetic field. The
crossover from the uniform to radial director field is discontinuous, i.e., of first
order.

6. In a stronger magnetic field, and provided the diamagnetic susceptibility anisotropy
is negative, the radial field transforms to a split-core disclination line but only if
this field is sufficiently strong. This transformation resembles a Frederiks transi-
tion. The length of the defect increases with increasing magnetic-field strength.

7. For strong fields the droplet itself stretches to a prolate shape if the anchoring
strength is sufficiently large relative to the surface tension. For very strong fields
it reverts to the spherical shape, whereas the line defect grows further until it runs
throughout the entire drop.

8. The transition from spherical to prolate and back to spherical occurs at a well-
defined magnetic-field strength and is of second order. The range of magnetic fields
over which that this happens, depends on droplet size and anchoring strength.

9. Our variational theory produces approximate but analytical expressions for the
crossovers between uniform and radial and between radial and split-core configu-
rations. This allows us to extract from experimental data values for the anchoring
strength, surface tension, and an elastic constant.
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10. By comparing theory to experimental data, it appears that the interfacial proper-
ties of the co-existing isotropic and nematic phases depend rather strongly on the
type of solvent, i.e., on the type of stabilisation. The elastic constant, however,
turns out be insensitive to that.

10.4 Outlook

Our generalisation of connectedness-percolation theory applied to rods and disks
shows that the percolation threshold depends sensitively on the size and connectivity
distributions as well as the degree of alignment of the particles. In practice, these are
connected with the formulation and processing of the composite. Therefore, it would
be most useful to gain further insight experimentally and theoretically into how the
percolating network is affected by each step in the processing. Therefore, we suggest
the following avenues of follow-up investigation.

1. It is of crucial importance to obtain quantitative data on the coupling between the
length and breadth distributions of, e.g., carbon nanotubes. An obvious way to
do this is, is by electron microscopy and/or atomic-force microscopy. Another is
to investigate in more detail the break-up mechanism of carbon nanotubes during
sonication theoretically and experimentally.

2. Comparison of experimentally determined percolation thresholds of carbon nan-
otubes and graphene is only possible if their dimensions are known, as well as
the degree of polydispersity in them and their degree of alignment in the compos-
ite. The latter can be probed by, e.g., radiation-scattering techniques and Raman
spectroscopy [207].

3. Systematic probing of alignment should be possible by making use of an externally
applied electric field during compression moulding. Experimental equilibration
studies are sorely needed to ascertain whether the theory described in this thesis
actually applies.

4. The dynamics in the initial stages of the network formation could also be modelled.
Starting point of such a theory could be the two-particle Smoluchowski equation
[163] from which, in analogy with the Ornstein-Zernike equation, a connectedness
counterpart should be derived.

5. A potentially more accurate theory for connectedness percolation in systems of
plate-like particles requires a different closure of the Ornstein-Zernike equation
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from the one that we have used. Inspiration may be drawn from closures that
have been developed for spherical particles.

6. To test our predictions for the electrical conductivity of percolating networks of
rod-like particles, more accurate measurements are required with more data points
both close to the percolation threshold and away from it.

In the second part of the thesis we found a discrepancy for the same system of
gibbsite platelets of more than an order of magnitude between the surface tension and
anchoring strength as obtained from the capillary-rise experiments and from studying
nematic droplets. Both studies also offer new theoretical and experimental challenges for
future research, so here we propose a few issues that would be interesting to investigate.

1. In our calculation of the capillary-rise profile we only considered the limits of weak
and strong surface anchoring. A challenge would be to compute the profile without
such assumptions to see if the prediction of a non-monotonic profile survives.

2. The few experiments that have been conducted on the capillary-rise profile turned
out to be very sensitive to the preparation procedure [181]. More extensive ex-
perimentation could provide reliable statistics on the rise height and the inter-
face shape. Moreover, these may provide more conclusive evidence of the non-
monotonicity of the profile that we predict.

3. Our tactoid model ignores the effect of the magnetic field on the material param-
eters and the background isotropic phase. A more sophisticated theory is required
to quantify these effects.

4. Our calculations presumed purely radial director fields in the tactoids caused by
homeotropic anchoring of the director to the interface. The influence of a potential
bend deformation can be investigated by perturbation theory.

5. A precise cross-over mechanism between uniform and radial director fields remains
elusive. Experimentally, this should be possible by investigating the director field
of a tactoid just large enough to support a radial field in the absence of a magnetic
field. At strong enough fields it should become uniform.

6. An interesting but largely unexplored area, theoretically and experimentally, is the
coalescence of two nematic drops. For instance, the coalescence of two drops just
small enough to have a uniform director field, requires the creation of a hedgehog
defect if the anchoring is homeotropic. Theoretically, this may be investigated
with the aid of the usual nematodynamic equations, which describe the relaxation
of the director field.
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Summary

Colloidal particles dispersed in a fluid exhibit rich and unusual behaviour, in partic-
ular if the particles are strongly anisometric, i.e., highly elongated or very flat. Fluid
dispersions containing anisometric colloids are, apart from being interesting in their
own right, relevant to the industrial production and processing of nanocomposites,
high-performance fibers, gels and so on. Their unusual properties result from strongly
anisotropic interactions that, amongst others, give rise to the build-up of temporal,
system-spanning networks of particles as well as various liquid-crystalline states even
at quite low concentrations below one volume per cent. By invoking microscopic and
mesoscopic statistical theories, we investigate in this thesis aspects of both network for-
mation and liquid crystallinity as they present themselves on a macroscopic scale. We
find that both are strongly affected by the particle shape.

Our work on network formation focuses on the critical concentration where the in-
finite network forms, and the properties of the clusters at concentrations just below
and above this. We investigate how particle shape, variation in the dimensions, exter-
nally applied fields, and so on impact upon them. Our calculations, based on so-called
connectedness-percolation theory, are inspired by observations of strong variations in
the emergence of electrical conduction in composites containing carbon nanotubes and
graphene. We make plausible that this is caused by the formulation of the nanocom-
posite on the one hand and the processing conditions on the other. Our predictions
agree favourably with experimental data on polymeric composites containing graphene
of known size distribution, and confirm that the presence of very few, very elongated or
very flat particles dictate the critical loading.

Our calculations also predict that at higher particle concentrations, the particle net-
work breaks down due to a competition with a transition to the uniaxial, nematic liquid-
crystalline phase. This phase presents itself initially in the form of droplets that even-
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tually coalesce to become a macroscopic fluid. Properties of both we investigate at the
level of Frank-Oseen-Rapini-Papoular theory to describe the competition between elastic
and surfaces forces. These determine the interfacial shape and spatial structure of the
uniaxial symmetry axis. We predict that under conditions of isotropic-nematic phase
co-existence, the capillary rise of a macroscopic nematic fluid up a vertical solid wall
produces a non-monotonic isotropic-nematic fluid interface. Our theory allows us to ex-
tract from capillary-rise experiments on dispersions of plate-like clay particles estimates
for the surface tension and the anchoring strength of the nematic symmetry axis to the
interface.

Observations on droplets of the same (gibbsite) clay particles, which have a negative
diamagnetic susceptibility and prefer perpendicular anchoring of the symmetry axis to
the isotropic-nematic fluid interface, have shown that their internal structure and shape
depend strongly on their size and on the strength of an externally applied magnetic
field that aligns them. Our calculations show that the transitions between spherical and
elongated droplets, and between different kinds of internal organisation of the symmetry
axis, are sharp, i.e., resemble phase transitions. By comparing our theory to shape and
internal-structure measurements, we have been able to extract values for an elastic
constant, the surface tension and anchoring strength. We find that whether or not the
droplets elongate under the presence of a magnetic field, depends only on the ratio of
the anchoring strength and surface tension.



Samenvatting

Langwerpige of platte deeltjes die opgelost zijn in een vloeistof kunnen zeer interes-
sant en opmerkelijk gedrag vertonen. Als de deeltjes klein genoeg zijn ondergaan ze door
thermische fluctuaties een zogeheten Brownse beweging, waarin ze zowel in translatie als
in rotatie willekeurig door de vloeistof bewegen in een fase die isotroop wordt genoemd.
Deze oplossingen zijn relevant voor industriële toepassingen in bijvoorbeeld versterkte
plastics en vezels. Als de deeltjes fijn worden verdeeld zodat ze niet samenklonteren en
de concentratie zo laag is dat ze elkaar nauwelijks in de weg zitten, kunnen ze een open
netwerk vormen dat het materiaal op macroscopische schaal omvat, dus het hele systeem
overspant. Via een ingewikkeld chemisch proces kan zo’n netwerk ingevroren worden,
zodat er een vaste stof overblijft die een (nano)composiet wordt genoemd. De thermis-
che, mechanische en elektrische eigenschappen van het composiet kunnen sterk verbeterd
worden door de aanwezigheid van het netwerk van nanodeeltjes. Zie ook Figuur 1.

De vorming van dit netwerk wordt percolatie genoemd en de minimale hoeveelheid
nanodeeltjes die benodigd is om zo’n systeemoverspannend netwerk te vormen de per-
colatiegrens, die wordt uitgedrukt in de volumefractie die de deeltjes innemen. Voor
de deeltjes kunnen bijvoorbeeld langgerekte koolstofnanobuizen of plaatvormig grafeen
gebruikt worden die worden verdeeld in een polymeren (plastic) matrix. Omdat de
nanobuizen en grafeen zo enorm langgerekt en plat zijn, is deze grens zeer laag, typisch
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minder dan één procent. Hierdoor is het mogelijk om met zeer kleine hoeveelheden van
de dure nanodeeltjes een elektrisch goed geleidend, lichtgewicht en relatief makkelijk te
verwerken polymeer te maken. Het optimaliseren van de percolatiegrens en de elektrische
geleidbaarheid van het nanocomposiet blijkt echter geen sinecure, omdat er een enorme
spreiding is in percolatiegrenzen, zelfs als de productieomstandigheden gelijk lijken te
zijn. De eigenschappen van het composiet blijken zeer gevoelig voor eigenschappen van
de deeltjes waarmee begonnen wordt en voor de productieprocedure, die bijvoorbeeld
zorgen voor een sterke spreiding in de deeltjesgrootteverdelingen, gedeeltelijke oplijning
en matige geleiding van een fractie van de deeltjes.

Figuur 1: Als de platte of in dit geval langwerpige deeltjes willekeurig verdeeld zijn in het
achtergrondmateriaal is er een kritieke concentratie waarbij er een netwerk ontstaat dat het
hele systeem beslaat. Op dat punt schiet de elektrische geleiding met vele ordes van grootte
omhoog. Hiervoor hoeven de deeltjes elkaar niet te raken want een lading e− springt door het
achtergrondmateriaal van het ene deeltje naar het andere.

In het eerste deel van dit proefschrift presenteren we een theoretisch model om het
effect hiervan op de netwerkvorming te bepalen. Hierbij kijken we naar interacties tussen
deeltjes op microscopische schaal (deeltjesniveau) om zo voorspellingen te doen van het
composiet op macroscopische schaal. We vinden dat de percolatiegrens sterk afhangt
van de lengte- (breedte-) en dikteverdelingen van de deeltjes en of deze gekoppeld zijn,
hoe goed ze elektriciteit geleiden en hoe de oriëntaties verdeeld zijn. Oplijning van de
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deeltjes verhoogt namelijk de percolatiegrens, omdat ze gemiddeld verder van elkaar
verwijderd zijn en extra deeltjes nodig zijn om deze gaten te dichten. Bij nog hogere
dichtheden kan het percolerende netwerk zelfs afbreken omdat de deeltjes elkaar zo in
de weg gaan zitten dat de oplijning versterkt wordt.

Figuur 2: Als de concentratie groot genoeg is, gaat de isotrope fase (a) over in de nematische
fase (b), wat vaak begint met de vorming van nematische druppels. Kleine druppels bestaande
uit schijfvormige deeltjes zijn plat met een uniforme oriëntatie (c), terwijl grote druppels rond
zijn met een radiële oriëntatie met puntdefect als het magneetveld zwak is (d). Sterke velden
rekken het puntdefect uit naar een lijndefect (e) en nog sterkere velden kunnen de druppel zelf
langgerekt maken (f). De stippellijnen geven de oriëntatie van de schijfjes weer, die hier niet
op schaal zijn weergegeven.

Bij deze hogere dichtheden is er dus geen macroscopisch netwerk meer en komt er
een punt (concentratie) dat de langwerpige of platte deeltjes zich spontaan gaan oplijnen
in een fase die nematisch wordt genoemd. Zie ook Figuur 2. De nematische fase is de
eenvoudigste toestand die een zogeheten vloeibaar kristal kan aannemen. Een vloeibaar
kristal is een materiaal dat bestaat uit relatief stijve deeltjes die plat of langgerekt zijn
en eigenschappen heeft die typisch zijn voor vaste stoffen (elasticiteit) en vloeistoffen
(stromen). In de nematische fase hebben de staafjes of schijfjes allemaal min of meer
dezelfde oriëntatie, maar is er nauwelijks positionele ordening, die er bijvoorbeeld wel
is in een kristallijne vaste stof. Bij een kritieke concentratie begint de vorming van de
nematische fase uit de isotrope fase vaak met de vorming van druppels met deze orden-
ing, die dan zweven in de isotrope fase waarin er geen ordening in de oriëntaties is. De
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druppels zakken heel langzaam naar de bodem tot er uiteindelijk totale fasescheiding is
met een nematische fase onder een isotrope fase. In het tweede deel van dit proefschrift
bestuderen we deze druppels en de vorm van het grensvlak tussen de isotrope en nema-
tische fase. Hierdoor kunnen we informatie verkrijgen over materiaaleigenschappen van
het vloeibare kristal.

Gëınspireerd door experimenten aan druppels bestaande uit het schijfvormige gibb-
siet, een aluminiumerts, zien we daarin verrassende vormen, waarbij we ook hebben
gekeken naar het effect van een magnetisch veld dat ervoor zorgt dat de gibbsietschijfjes
zich loodrecht op het magneetveld oriënteren. In overeenkomst met de experimenten
vinden we dat kleine druppels afgeplat zijn met een uniforme deeltjesordening, terwijl
grotere druppels rond zijn met een driedimensionale radiële ordening in een zwak mag-
neetveld, wat een zogeheten puntdefect geeft. Zie Figuur 2. In een sterker magneetveld
rekt dit puntdefect uit tot een lijndefect met tweedimensionale radiële ordening daar
omheen. Afhankelijk van de materiaalconstanten kan de druppel zelf ook nog uitrekken
in een nog sterker magneetveld. Het bestuderen van het grensvlak tussen de isotrope
en nematische fase is niet alleen interessant bij nematische druppels, maar ook vlak bij
een vaste wand, waar de vloeistof in de nematische fase omhoog kruipt tegen de wand,
zoals water in een glas dat ook doet. Door de ordening van de deeltjes in de nematische
fase is het niet evident wat de vorm van het grensvlak dicht bij de wand is en hoe de
ordening van de deeltjes er daar uitziet. Uit onze berekeningen vinden we dat deze op
een niet triviale manier afhangen van de materiaalparameters, maar bovendien dat het
grensvlak een minimum vertoont en dus niet geleidelijk afvalt naar het niveau ver van
de wand. Experimenten aan dezelfde gibbsietschijfjes lijken dit te bevestigen.
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