

Approximate performance analysis of production lines with
continuous material flows and finite buffers
Citation for published version (APA):
Bierbooms, R., Adan, I. J. B. F., & Vuuren, van, M. (2011). Approximate performance analysis of production
lines with continuous material flows and finite buffers. (Report Eurandom; Vol. 2011025). Eurandom.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/bd020bc3-8661-4d65-9430-5b5447024a4e

EURANDOM PREPRINT SERIES
2011-025

Approximate performance analysis of production lines with
continuous material flows and finite buffers

Remco Bierbooms, Ivo J.B.F. Adan, Marcel van Vuuren
ISSN 1389-2355

1

APPROXIMATE PERFORMANCE ANALYSIS OF PRODUCTION LINES WITH
CONTINUOUS MATERIAL FLOWS AND FINITE BUFFERS

Remco Bierbooms, Ivo J.B.F. Adan, and Marcel van Vuuren
Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

E-mail: r.bierbooms@tue.nl, iadan@tue.nl, vanvuuren@cqm.nl

Abstract: In this paper, we analyze production lines consisting of a number of machines or servers in
series with a finite buffer between each pair of machines. The flow of products through the machines
is continuous. Each machine suffers from breakdowns, because of, for example, failures, cleaning and
changeover. The up- and downtimes are independent and generally distributed. We develop a new method
to efficiently and accurately estimate the throughput and the mean buffer content of the production line.
This method relies on decomposition of the production line into two-stage, one-buffer subsystems aggre-
gating the up- and downstream part of the line. For each subsystem, the parameters of the aggregate
up- and downtimes are determined iteratively by employing matrix-analytic techniques. The proposed
method performs very well on a large test set consisting of over 49,000 cases. Remarkably, the perfor-
mance of the method does not deteriorate in case of highly unpredictable up- and downtimes, as often
seen in practice. We apply the method to a bottling line at brewery Heineken Den Bosch and an assembly
line at NXP Semiconductors.

Keywords: approximation, decomposition, finite buffer, fluid flow, matrix-analytic method, production
line

1 Introduction

This paper considers production lines consisting of a number of machines in series. Each pair of ma-
chines is separated by a finite buffer. The flow through the machines is continuous. Figure 1 shows
an example of a four-machine production line, where Mi is the ith machine and Bi is the ith buffer in
betweenMi−1 andMi. The size of bufferBi is bi. MachineMi produces at a maximum speed of si units
per time unit, but Mi adjusts its speeds to the speed of Mi−1 when it depletes upstream buffer Bi−1, and
to the speed of Mi+1 when it fills up downstream buffer Bi. Each machine suffers from breakdowns.
When a breakdown occurs, the machine is immediately taken into repair. During repair, the machine is
not able to produce (i.e., it is down), possibly causing starvation of downstream machines and blocking
of upstream machines. Successive up- and downtimes are assumed to be independent and generally dis-
tributed. Further, the lengths of the uptimes are assumed to be independent of the machine speed. The
lenght of an uptime Ui of Mi is characterized by rate λUi and coefficient of variation (cv) cUi , where the
scv is defined as the variance divided by the squared mean. The length of a downtime (or repair time)
Vi of Mi is characterized by rate λVi and cv cVi . We assume that a machine cannot break down while
it is not producing because of starvation or blocking, referred to as “operational dependent failures” [5].
Hence, during starvation or blocking, the uptime of Mi is “frozen” and resumed when Mi starts produc-
ing again. The production lines described above are too complex to analyze exactly. Therefore, we aim
to find a robust and efficient method to approximate the performance of such lines.

M1L M2 M3 M4B1 B2 B3

Figure 1: A production line L with four servers, labeled M1 up to M4

Fluid flow models are natural to describe production systems producing continuous material, but such

1

models also appear to be very useful in describing discrete production systems, especially when discrete
parts are produced at very high speed. The advantage of continuous models is that these models simplify
and speed up discrete-event simulation (in comparison to discrete systems), and, as demonstrated in this
paper, their performance can also be accurately and efficiently assessed analytically. Examples of dis-
crete systems that can be adequately described by fluid flow models can be found in data communication
networks and semiconductor manufacturing. In fact, our research is inspired by two real-life discrete
production lines. The first one is a bottling line at the Heineken brewery in ’s-Hertogenbosch. This
line consists of eleven machines in series, in which retour bottles are filled and processed. The machine
speeds are very high compared to the uptimes of the machines, making it natural to model the flow of
bottles as being continuous. A conveyor belt transports bottles from one machine to the next, and it also
acts as buffer in case of machine breakdowns due to, for example, failures, cleaning and changeover. The
up- and downtimes are obtained from large files or data, showing high variations in up- and downtimes;
especially the squared coefficients of variation of downtimes are very high. The second one is an assem-
bly line at NXP semiconductors in Guangdong, China, consisting of eight machines in series. A tape (or
lead frame) flows through the machines attaching small electronic components. The tape between each
pair of machines can continuously vary in length, up to maximum, which can be seen as the buffer size.
Also in this case, we find high variations in up- and downtimes.

There is a huge literature on production lines with continuous flows. Lines consisting of two machines
and exponential (or phase type) up- and downtimes can be analyzed exactly by modeling it as a Markov
chain, the steady-state distribution of which satsifies a set of linear differential equations. A straight-
forward approach to solve these equations is by using spectral analysis or matrix exponential functions,
see, e.g., [11, 12, 19, 23, 25]. However, since numerical problems arise in case of large buffers, another
approach has been developed recently. This approach is initiated by a connection between fluid-flow
production lines and discrete quasi-birth-and-death-processes (QBDs) as found by Adan et al. [1] and
Ramaswami [20]. Soares and Latouche [21] construct a numerically stable approach for two-stage pro-
duction lines with continuous flows and time-dependent failures, using a mixture of two matrix exponen-
tial functions. Using matrix-analytical techniques, as typically used for discrete QBDs, they determine
the steady-state distribution. Their method is adapted in [22] for the case of operational dependent fail-
ures. We adopt this method as a building block in our approximation for longer production lines.

For production lines consisting of more than two machines, we have to rely on approximative meth-
ods. De Koster [15] made a first attempt by repeatedly aggregating two machines and one buffer into
a single machine, until a two-stage production line remains to be analyzed. This method works well
for lines with equal machine speeds. However, for lines with non-equal machine speeds, it can produce
large errors. The idea of decomposition was introduced by Gershwin [11] to analyze production lines
with equal machine speeds, and it was later improved by Dallery et al. [6]. The first approximation for
lines with non-equal machine speeds and exponentially distributed up- and downtimes was constructed
by Burman [4]. This paper assumes a linear dependence between machine speeds and the rate at which
machines break down. The approximation of Burman [4] suffers from convergence problems, which
may be avoided by (ad-hoc) modifications in the algorithm. Bierbooms et al. [2] propose another de-
composition method, where new decomposition equations are combined with the use of matrix-analytic
techniques to solve the two-stage subsystems. This method has no convergence problems, however it
assumes exponential up- and downtimes. Levantesi et al. [17] deal with phase-type up- and downtimes.
This approximation performs well, but it is unable to handle long production lines because of a state
space explosion.

Another approach is based on the use of homogenization techniques, see e.g. [7, 10, 18]. These tech-
niques attempt to replace a non-homogeneous production line with non-identical machine speeds by an
equivalent homogeneous line. Dallery and Le Bihan [8] propose a combination of several homogeniza-
tion techniques. Strong results are reported using these techniques. However, homogenization techniques
are “case-specific,” prohibiting implementation and use in practice.

2

The novelty of our approach is that it is able to analyze long production lines with generally distributed
up- and downtimes. The approach relies on decomposition of the production line into subsystems, each
subsystem consisting of an “arrival” server, “departure” server, and a buffer in between. The arrival
server mimics (or “aggregates”) the behavior of the whole upstream part of the production line and the
departure server is doing this for the downstream part. This is the key to our approach: instead of keeping
track of the phases of the up- and downtimes of all machines and all buffer contents in the upstream and
downstream part of the production line, we use aggregation to avoid a state space explosion for long
production lines. The unknown parameters of the up- and downtime distributions for the arrival and
departure servers are determined iteratively. The equations used to update the parameters are new and
provide the crucial ingredient to the iterative algorithm.

We test our method on a large test set of 49,152 cases including long production lines and high variations
in up- and downtimes. Over the whole test set, we find an average error of 1.36% in throughput and
0.62% in mean total buffer content compared to simulation. The method in [2], assuming exponential
up- and downtime distributions, produces an average error of 5.15% in throughput on this test set. Fur-
thermore, we find strong results for the practical cases of Heineken and NXP. We experience that our
method converges rapidly and that conservation of flow is satisfied automatically, without the need of
explicitly adding a conservation of flow equation in the algorithm.

In Section 2, we decompose the production line into two-stage, one-buffer subsystems and we specify
the elements of a subsystem. Section 3 constructs the iterative method to obtain the throughput and mean
total buffer content of the production line as a whole. In Section 4, we analyze a subsystem by going
through the steps of the iterative algorithm. Section 5 is devoted to experimental results and discussion
on the test cases and the two practical cases. Finally, Section 6 concludes the paper and gives directions
for further research.

2 Decomposition

We decompose the production line L into two-stage subsystems, as illustrated in Figure 2. Each subsys-
tem Li consists of three elements:

• Arrival server Ai. In the description of the arrival server we include the influence of the upstream
part of the production line on machine Mi, comprising starvation and speed adaption. We describe
the behavior of this server as a continuous-time Markov chain with k(i)A states and generator Q

(i)
A .

Each state of the Markov chain has a corresponding production speed. We define r
(i)
A as the speed

vector, the jth element of which denotes the speed in state j, j = 1, . . . , k
(i)
A .

• Buffer Bi of size bi.

• Departure serverDi. In the description of the departure server we include the influence of blocking
and speed adaption caused by the downstream part of the production line on machine Mi+1. The
departure server is modeled as a continuous-time Markov chain with k(i)D states, generator Q

(i)
D ,

and speed vector r
(i)
D .

In the description of Ai and Di, starvation and blocking play important roles. We formally define star-
vation and blocking as follows:

• Arrival server Ai is starved by the upstream part of the production line if Ai−1 is down or starved
and Bi−1 is empty.

• Departure server Di is blocked by the downstream part of the production line if Di+1 is down or
blocked and Bi+1 is full.

3

L M1 B1 M2 B2 M3 B3 M4

L1 A1 B1 D1

L2 A2 B2 D2

L3 A3 B3 D3

Figure 2: Decomposition of a production line L in three two-stage subsystems L1, L2 and L3

The challenge is to determine the structure of the Markov chains and the elements of Q
(i)
A , Q

(i)
D , r

(i)
A , and

r
(i)
D , which we do in an iterative way. In the next section, we present the iterative method to obtain these

elements, and ultimately, the throughput and mean buffer content of the system.

3 Iterative method

In this section, we construct an iterative method to obtain the throughput and mean buffer content dis-
tribution of N -stage production line L. This algorithm relies on the decomposition into subsystems
L1, ..., LN−1 as explained in the previous section.

Step 0: Initialization

We assume that initially Ai is not affected by starvation and speed adaption and Di is not affected by
blocking and speed adaption, i = 1, ..., N . The corresponding parameters are set accordingly.

Step 1: Evaluation of subsystems

In this step, we analyze all subsystems, starting with L1 and going onwards to LN .

(a) Construction of Markov chains for Ai and Di

Using information from the preceding subsystem, we construct a continuous-time Markov chain describ-
ing the behavior ofAi. The elements of Q

(i)
A and r

(i)
A corresponding to this Markov chain are determined.

Similarly, we construct a Markov chain for Di using information from the succeeding subsystem, and
we determine the elements of Q

(i)
D and r

(i)
D . This step is explained in detail in Section 4.2.

(b) Determination of steady state distribution
We merge the Markov chains for Ai and Di into a Markov chain with state space S(i) of size k(i) =

k
(i)
A × k

(i)
D , generator Q(i), and net speed vector r(i). Next, we determine the steady state distribution of

subsystem Li. The cdf F (i)
j (x) of this distribution denotes the probability that subsystem Li is in state

j ∈ S(i) and the content of buffer Bi does not exceed x, 0 ≤ x ≤ bi. We elaborate further on this step in

4

Section 4.3.

(c) Determination of throughput estimate
Using the steady state distribution from the previous step, we obtain the estimated throughput t(i)h of
subsystem Li. The subscript h indicates that the estimate is obtained from iteration h.

(d) Update starvation, blocking, and speed parameters
Following the definition of starvation in Section 2, we obtain information on starvation ofAi+1 using the
steady state distribution of subsystem Li. If i < N − 1, we obtain the rate at which Ai+1 gets starved
and the rate and coefficient of variation of the starvation time of Ai+1. Since the coefficient of variation
of the uptime till starvation is hard to determine, we assume that this transition occurs at an exponential
rate. We also determine the speed s(i+1)

A at which Ai+1 is producing (when Ai+1 is up) as the average of
speed si+1, when Di is up and Bi is non-empty (note that Mi+1 is the underlying machine of departure
server Di), and s(i)A , when Di and Ai are both up and Bi is empty (see (12)). Furthermore, we obtain
information on blocking of Di−1 using the steady state distribution of Li. If i > 1, we update the rate at
which Di−1 becomes blocked and the rate and coefficient of variation of the blocking time Di−1. Also
for Di−1, we determine the speed s(i−1)D , similar as done for s(i)A (see (13)). This step is explained in
detail in Section 4.4.

Step 2: Repeat
We repeat step 1 until the throughput for all subsystems has converged. If for some small ε it holds that

t
(i)
h − t

(i)
h−1

t
(i)
h−1

< ε for all i ≤ N − 1

we stop, otherwise we perform another iteration.

Note that this algorithm does not guarantee that the throughput values for all subsystems are equal.
However, this appeared to be true in all experiments performed in Section 5. In the next section, we
explain the steps of the iterative algorithm in more detail.

4 Subsystem analysis

This section describes the analysis of subsystem Li, i = 1, ..., N − 1, by consecutively going through
steps 1(a)-1(d) in detail. We start by describing a class of distributions called phase-type distributions.
Section 4.1 describes how to fit a phase-type distribution on a given rate and (squared) coefficient of
variation. Section 4.2 models the behavior of arrival server Ai and departure server Di as continuous-
time Markov chains. The steady state distribution of subsystem Li satisfies a set of linear differential
equations, which are solved in Section 4.3 by using matrix-analytic techniques as in [22]. From this dis-
tribution, we update parameters for the arrival server of subsystem Li+1 and the departure server of Li−1.

4.1 Phase-type distributions

For every random variable Y ≥ 0 with rate λY = 1/E(Y) and cv cY = σ(Y)/E(Y), we can determine
a phase-type distribution with the same rate and cv, according to the following recipe, see [24]. If
cY ≤ 1, we use the Erlangk−1,k distribution to match λY and cY , where the integer k > 1 satisfies

5

1/k < c2Y ≤ 1/(k−1). As illustrated in the left part of Figure 3, an Erlangk−1,k random variable is with
probability p the sum of k − 1 exponential phases and with probability 1 − p the sum of k exponential
phases. By choosing

p =
1

1 + c2Y
(kc2Y − (k(1 + c2Y)− k2c2Y)1/2), µ = (k − p)λY ,

the rate and cv of the Erlangk−1,k distribution matches λY and cY . If cY > 1, we fit a Coxian2 dis-
tribution with k = 2 phases. A Coxian2 random variable is with probability p an exponential phase
with rate µ1 and, with complementary probability, it is an exponential phase with rate µ1 followed by an
exponential phase with rate µ2; see the right part of Figure 3. To match λY and cY , we choose

µ1 = 2λY , p = 1− 0.5/c2Y , µ2 = µ1(1− p).

It is also possible to use other phase-type distributions to match λY and cY . However, numerical ex-
periments show that the use of other distributions does not significantly affect the results, see [14]. The
Erlangk−1,k and Coxian2 distributions of Y can be represented as a transient Markov process with states
1, . . . , k, and generator ΦY ; the column vector ψY = −ΦY 1k contains the rates at which the Markov
process exits, where 1k is the all-one column vector of size k. Then Y is the time till exit, starting in
phase 1.

...

11 22 k − 1 k

µµµµ
1− p1− p

pp
µ1 µ2

Figure 3: Phase diagram of Erlangk−1,k distribution (left) and Coxian2 distribution (right).

For example, we have the following ΦY and ψY for the Erlang3,4 distribution:

ΦY =

−µ µ 0 0
0 −µ µ 0
0 0 −µ (1− p)µ
0 0 0 −µ

 , ψY =

0
0
pµ
µ

 .

For the Coxian2 distribution, we have

ΦY =

(
−µ1 pµ1

0 −µ2

)
, ψY =

(
(1− p)µ1

µ2

)
.

This representation will be used in the next section.

4.2 Behavior of arrival and departure server

In this section, we subsequently model the behavior of arrival server Ai and departure server Di as a
continuous-time Markov chain. For Ai, we divide the state space into three sets: states where Ai is
producing (up), states where Ai is not producing because of a breakdown of the underlying machine Mi

(down), and states where Ai is not producing because it has no input (starved). This division of states is
illustrated in the left part of Figure 4. The three sets are formally defined as follows:

• The set of up-states S(i)
A,u: Ai is up when Mi is up, and either Bi−1 is not empty or Bi−1 is empty

and Ai−1 is up.

6

• The set of down-states S(i)
A,d: Ai is down when Mi is down.

• The set of starved-states SA,st: Ai is starved when Mi is up, Bi−1 is empty, and Ai−1 is down or
starved.

Ai Di

UpUp

DownDown Star- Bloc-
ved ked

Figure 4: Division of states for Ai and Di.

We define Q
(i)
A as the generator of the Markov process for Ai, containing the transition rates within and

between the three sets of states. The state space of this Markov chain is given by S(i)
A = S

(i)
A,u

⋃
S
(i)
A,d

⋃
S
(i)
A,st.

Because of operational dependent failures, no transitions are possible from the starved-states to the down-
states and vice versa. To obtain the transition rates, we first fit phase-type distributions on the rate and cv
of the following random variables:

• The uptime Ui of Mi with rate λUi and cv cUi .

• The repair time Vi of Mi with rate λVi and cv cVi .

• The starvation time SU (i) with rate λ(i)SU and cv c(i)SU , which follow from the analysis of Li−1 (see
Section 4.4).

We also determine from the analysis of Li−1:

• The rate λ(i)US at which Ai jumps from up to starved; we act as if this rate is exponential.

The number of phases for Ui, Vi and SU (i) are kUi , kVi , and k
(i)
SU respectively, with corresponding

generators ΦUi , ΦVi , Φ
(i)
SU , and exit-rate vectors ψUi

, ψVi
, and ψ(i)

SU (see Section 4.1).

Before specifying the generator Q
(i)
A , we define the Kronecker product: If A is an n1 × n2 matrix and B

is an n3 × n4 matrix, the Kronecker product is defined as

A⊗B =

 A(1, 1)B . . . A(1, n2)B
...

...
A(n1, 1)B . . . A(n1, n2)B

 .

The generator Q
(i)
A is given by,

Q
(i)
A =

Q

(i)
A,(u,u) Q

(i)
A,(u,d) Q

(i)
A,(u,st)

Q
(i)
A,(d,u) Q

(i)
A,(d,d) 0

Q
(i)
A,(st,u) 0 Q

(i)
A,(st,st)

 ,

7

where

Q
(i)
A,(u,u) = ΦUi − λ

(i)
USI(kUi), Q

(i)
A,(u,d) = e1(kVi)⊗ψUi

, Q
(i)
A,(u,st) = λ

(i)
USI(kUi)⊗ e1(k

(i)
SU),

Q
(i)
A,(d,u) = e1(kUi)⊗ψVi

, Q
(i)
A,(d,d) = ΦVi ,

Q
(i)
A,(st,u) = I(kUi)⊗ψ

(i)
SU , Q

(i)
A,(st,st) = I(kUi)⊗Φ

(i)
SU

In these expressions, I(y) is the y-size identity matrix and e1(y) is a y-size row vector with first element
one and other elements zero. On the diagonal blocks we find the transitions within either of the three sets
of states. If Ai is starved, we store (“freeze”) the phase of the uptime Ui, resuming in this phase as soon
as Ai returns to up again. The total number of states of the Markov chain for Ai is given by

k
(i)
A = kUi + kVi + k

(i)
SUkUi .

The generator Q
(i)
D of departure server Di is derived similarly. The following three sets are introduced

for Di (see right part of Figure 4):

• The set of up-states S(i)
D,u: Di is up when Mi+1 is up, Bi+1 is not full or Bi+1 is full and Di+1 is

up.

• The set of down-states S(i)
D,d: Di is down when Mi+1 is down.

• The set of blocked-states S(i)
D,bl: Di is blocked when Mi+1 is up, Bi+1 is full and Di+1 is down or

blocked.

The Markov chain of Di has state space S(i)
D = S

(i)
D,u

⋃
S
(i)
D,d

⋃
S
(i)
D,bl. To determine the transition rates

of Q
(i)
D , we first fit phase-type distributions on the rate and cv of the following random variables:

• The uptime Ui+1 of Mi+1 with rate λUi+1 and cv cUi+1 .

• The repair time Vi+1 of Mi+1 with rate λVi+1 and cv cVi+1 .

• The blocking time BU (i) with rate λ(i)BU and cv c(i)BU , determined from the analysis of Li+1 (see
Section 4.4).

Further, we determine from the analysis of Li+1:

• The rate λ(i)UB at which Di jumps from up to blocked, and we act as if this rate is exponential.

The number of phases for Ui+1, Vi+1 and BU (i) are kUi+1 , kVi+1 , and k(i)BU , respectively, and the cor-

responding generators are denoted by ΦUi+1 , ΦVi+1 , Φ
(i)
BU , and the exit-rate vectors ψUi+1

, ψVi+1
, and

ψ
(i)
BU . The generator Q

(i)
D is given by

Q
(i)
D =

Q

(i)
D,(u,u) Q

(i)
D,(u,d) Q

(i)
D,(u,bl)

Q
(i)
D,(d,u) Q

(i)
D,(d,d) 0

Q
(i)
D,(bl,u) 0 Q

(i)
D,(bl,bl)

 ,

where

Q
(i)
D,(u,u) = ΦUi+1 − λ

(i)
UBI(kUi+1), Q

(i)
D,(u,d) = e1(kVi+1)⊗ψUi+1

, Q
(i)
D,(u,bl) = λ

(i)
UBI(kUi+1)⊗ e1(k

(i)
BU)]

Q
(i)
D,(d,u) = e1(kUi+1)⊗ψVi+1

, Q
(i)
D,(d,d) = ΦVi+1 ,

Q
(i)
D,(bl,u) = I(kUi+1)⊗ψ(i)

BU , Q
(i)
D,(bl,bl) = I(kUi+1)⊗Φ

(i)
BU .

The number of states is

k
(i)
D = kUi+1 + kVi+1 + k

(i)
BUkUi+1 .

8

4.3 Steady state distribution

This section is devoted to the determination of the steady state distribution of subsystem Li. First, for
notational convenience, we drop the subscript i and superscript (i) referring to the ith subsystem. Based
on the Markov chains for arrival server A and departure server D, we now construct the Markov chain
describing the behavior of the whole subsystem. This Markov chain has state space S = SA

⋃
SD,

generator Q, and net speed vector r. The number of states is given by k = kA × kD. By ordering the
states of A and D lexicographically, we get

Q = QA ⊗ IkD + IkA ⊗QD,

r = rA ⊗ 1kD − 1kA ⊗ rD,

where In is an identity matrix of size n× n and 1n is the all-one column vector of size n.

Note that, because of the assumption of operational dependent failures, A cannot go down or starved
whenever B is full and D is not producing, and D cannot go down or blocked whenever B is empty and
A is not producing. This implies that the transition rates are different in case of an empty or full buffer.
Therefore, we introduce a “full-buffer” generator QF and an “empty-buffer” generator QE . For QF , we
argue that when D is in a state with zero-speed and B is full, A cannot jump to a state with zero-speed.
In all other situations, the transition rates in QF are the same as the ones in Q. Hence, denoting by
QF

(iA,iD)→(jA,jD) the transition rate from state (jA, jD) to (jA, jD) when B is full, we get

QF
(iA,iD)→(jA,jD) =

{
0 if rjA = 0 ∧ riD = 0,
Q(iA,iD)→(jA,jD) else.

Similarly, whenA is in a state with zero-speed andB is empty,D cannot jump to a state with zero-speed,
yielding

QE
(iA,iD)→(jA,jD) =

{
0 if rjD = 0 ∧ riA = 0,
Q(iA,iD)→(jA,jD) else.

The state of subsystem L can be described by the pair of variables (i, x), where i ∈ S is the state of
the phase process and 0 ≤ x ≤ b is the fluid level of the buffer. We define Fi(x) as the probability that
the phase process is in state i and the fluid level does not exceed x, also referred to as the cumulative
distribution function (cdf) of subsystem L. Since there is probability mass at the boundary levels 0 and
b, we introduce p(0)i as the probability of being in state (i, 0), and p(b)i as the probability of being in (i, b).
So

p
(0)
i = Fi(0), p

(b)
i = Fi(b)− lim

x↑b
Fi(x).

Since the buffer cannot be empty in a state with positive net speed, we have p(0)i = 0 for all i ∈ S with
ri > 0. Similarly, p(b)i = 0 for all i ∈ S with ri < 0. Besides the boundary probabilities, we define
πi = Fi(b) as the probability that the phase process is in state i ∈ S. To derive a system of (differential)
equations for Fi(x), we balance the probability flux into and out of the set of states {(i, y), 0 ≤ y ≤ x}:

9

ri
dFi(x)

dx
+
∑
j 6=i

Qi,jFi(x) =
∑
j 6=i

Qj,iFj(x).

Rearranging terms yields

dFi(x)

dx
=
∑
j∈S

1

ri
Qj,iFj(x) for all i ∈ S with ri 6= 0. (1)

and

∑
j 6=i

Qi,jFi(x) =
∑
j 6=i

Qj,iFj(x) for all i ∈ S with ri = 0. (2)

To solve the balance equations for Fi(x), we first remove from (1) all the states i ∈ S for which ri = 0
by substituting (2); we include these states later. The reduced state space is denoted by S̃ of size k̃.
Accordingly, we adjust Q, QE , QF , and r to obtain Q̃, Q̃E , Q̃F , and r̃. Hence, (1) reduces to

dF̃i(x)

dx
=
∑
j∈S̃

1

r̃i
Q̃j,iF̃j(x) for all i ∈ S̃. (3)

The equations (3) can be interpreted as the balance equations for the Markov chain conditional on being
in S̃. Now we define F̃(x) as the column vector with elements F̃i(x) and f̃(x) = dF̃(x)

dx as the corre-
sponding probability density vector (pdf). Further, we define R as the diagonal matrix with (non-zero)
diagonal elements Ri,i = r̃i. By writing (3) in matrix-notation and differentiating, we obtain

df̃(x)

dx
= Zf̃(x),

where Z = R−1Q̃. The solution of this differential equation is the matrix-exponential function

f̃(x) = ceZx, (4)

where c is a k̃-size vector of constants to be determined. We define p̃(0)i and p̃(b)i as the probabilities of
being in state i ∈ S̃ for the conditional Markov chain. By balancing the probability flux into and out of
state (i, 0), we get the following balance equation,

∑
j 6=i

Q̃E(j, i)p̃
(0)
j =

∑
j 6=i

Q̃E(i, j)p̃
(0)
i + r̃if̃i(0), for all i ∈ S̃ with r̃i < 0,

and similarly, for state (i, b),

10

∑
j 6=i

Q̃F (j, i)p̃
(b)
j + r̃if̃i(b) =

∑
j 6=i

Q̃F (i, j)p̃
(b)
i , for all i ∈ S̃ with r̃i > 0,

From the boundary equations and the normalization equation we obtain the following set of equations to
solve for c, p̃(0)i for i ∈ S̃ with r̃i < 0, and p̃(b)i for i ∈ S̃ with r̃i > 0:

∑
j∈S̃

Q̃E(j, i)p̃
(0)
j − r̃if̃i(0) = 0, for all i ∈ S̃ with r̃i < 0, (5)

∑
j∈S̃

Q̃F (j, i)p̃
(b)
j + r̃if̃i(b) = 0, for all i ∈ S̃ with r̃i > 0, (6)

∑
i∈S̃

F̃i(b) = 1, (7)

where

F̃i(b) = p̃
(0)
i +

∫ b

0
f̃i(x)dx+ p̃

(b)
i .

In principle, we can determine F̃(x) from (5)-(7). However, this solution suffers from numerical insta-
bility. The reason is that eZb in (4) can become very large, whenever b is large and Z has (large) positive
eigenvalues. Scaling with e−Zb does not help, since then the same problem appears with the negative
eigenvalues. For the same reason, the use of spectral analysis can be numerically instable and time con-
suming, since Z may have defective eigenvalues. Therefore, we adopt another approach by splitting
the state space in two parts: states with positive net speeds and states with negative net speeds. Each
part has its corresponding transition rate matrix. To analyze each part separately (i.e., conditionally), we
need “return probabilities.” These probabilities can be determined using matrix-analytic techniques, as
widely used for discrete QBDs. This method to determine F̃(x) is numerically stable, and it is developed
in [21, 22] for both time and operational dependent failures. In [2], the method is used in a production
line setting with exponential up- and downtimes. In [22, 2], it is also explained how the throughput and
mean buffer content can be obtained from the matrix-analytic solution.

Once F̃i(x) is known for i ∈ S̃, the next step is to determine the unconditional Fi(x) for i ∈ S. Note
that

Fi(x) = (1−
∑
j∈S0

Fj(b))F̃i(x), i ∈ S̃, (8)

where S0 = S\S̃ denotes the set of states with a net speed of zero. Substitution of (8) in (2) with x = b
yields a set of linear equations for the unknown probabilities Fj(b), j ∈ S0. Hence, the solution to this
set of equations yields Fi(x) by (8) and (2), and subsequently p(0)i , p(b)i , and πi, for all i ∈ S.

4.4 Update parameters

In this section, we present a crucial step in our algorithm: the calculation of new (better) estimates of the
parameters for Ai+1 and Di−1, based on the steady state distribution of subsystem Li. More specifically,
we use the following:

11

• Π
(i)
j,l , matrix of steady state probabilities, the (m,n)th element of which is the probability that Ai

is in state m ∈ S(i)
A,j , j ∈ {u, d, st}, and Di is in state n ∈ S(i)

D,l, l ∈ {u, d, bl}. The scalar π̄(i)j,l is

the sum of all probabilities in Π
(i)
j,l .

• P
(i)
j,l (0) and P

(i)
j,l (b), matrices of boundary probabilities at the levels 0 and b. The subscript (j, l) has

the same interpretation as for Π
(i)
j,l . The scalars p̄(i)j,l (0) and p̄(i)j,l (b) are the sum of all probabilities

in P
(i)
j,l (0) and P

(i)
j,l (b), respectively.

• F
(i)
j,l (0) and F

(i)
j,l (b), pdf matrices at the levels 0 and b. The scalars f̄ (i)j,l (0) and f̄ (i)j,l (b) are the sum

of elements in F
(i)
j,l (0) and F

(i)
j,l (b) respectively. We can also see f̄ (i)j,l (0) and f̄ (i)j,l (b) as the number

of level crossings at level 0 and b in state (j, l), j ∈ {u, d, st}, l ∈ {u, d, bl}.

We start to determine the rate λ(i+1)
US at which Ai+1 jumps from up to starved and the rate λ(i+1)

SU and cv
c
(i+1)
SU of the starvation time SU (i+1). These parameters are used to specify the generator Q

(i+1)
A (see

Section 4.2). Recall that Ai+1 is starved when Mi+1 is up, Ai is down or starved and Bi is empty. A
jump from up to starved can be caused by either of the following two events (note that the “underlying
machine” of departure server Di is the same as the one of Ai+1, namely Mi+1):

(i) Ai is down or starved, Di is up and draining the (non-empty) buffer Bi, and then, it happens that
Bi becomes empty, and thus, Ai+1 gets starved.

(ii) Ai and Di are both up, and Bi is empty, and then, it happens that Ai goes down or starved, and
thus, Ai+1 gets starved.

The number of type-(i) jumps per time unit is equal to (f̄
(i)
d,u(0)+ f̄

(i)
st,u(0))s

(i)
D . To obtain the rate at which

type-(ii) jumps occur, note that the jth element of P
(i)
u,u(0)1 is the fraction of time that Bi is empty and

Di is in up-state j, and the jth element of
(

Q
(i)
A,(u,d) Q

(i)
A,(u,st)

)
1 is the rate from up-state j to the set

of down- and starved-states. Hence, the (inner) product of the two vectors yields the number of type-(ii)
per time unit. The rate of type-(i) and type-(ii) events is also equal to λ(i+1)

US times the fraction of time
Di is generating output, which is π̄(i)u,u + π̄

(i)
d,u − p̄

(i)
d,u(0) + π̄

(i)
st,u − p̄

(i)
st,u(0). Hence,

λ
(i+1)
US =

(f̄
(i)
d,u(0) + f̄

(i)
st,u(0))s

(i)
D + (P

(i)
u,u(0)1)′

(
Q

(i)
A,(u,d) Q

(i)
A,(u,st)

)
1

π̄
(i)
u,u + π̄

(i)
d,u − p̄

(i)
d,u(0) + π̄

(i)
st,u − p̄

(i)
st,u(0)

, (9)

where 1 is a column vector of ones of appropriate size and (·)′ is the transpose.

To determine the rate and cv of the starvation time SU (i+1), we first state the following result. Consider
a transient Markov chain with k states, transition rate matrix Γ and entrance probability vector α, and let
the random variable Y denote the time till exit. Then the nth moment of Y is given by (see, e.g., [16])

E(Y n) = (−1)nn!αΓ−n1, (10)

from which the rate λY = 1/E(Y) and cv cY =
√
E(Y 2)− E2(Y)/E(Y) readily follow. The starva-

tion time of Ai+1 can be described as an exit time: the starvation time ends when Ai returns to up from
either a down-state or starved-state. Thus, the starvation time SU (i+1) can be seen as the exit time of
the Markov chain, the states of which are the down-states and starved-states of Ai, and with (transient)
generator

Γ
(i+1)
SU =

(
Q

(i)
A,(d,d) 0

0 Q
(i)
A,(st,st)

)
.

12

Further, the entrance probability vector α(i+1)
SU is given by

α
(i+1)
SU = ξ

(i+1)
SU

[((
F
(i)
d,u(0)

F
(i)
st,u(0)

)
1

)′
s
(i)
D + (P(i)

u,u(0)1)′
(

Q
(i)
A,(u,d) Q

(i)
A,(u,st)

)]
, (11)

where ξ(i+1)
SU is a normalization constant. Note the similarity between (11) and (9).

Next, we determine the speed s
(i+1)
A at which Ai+1 produces, whenever it is up. If the speed si+1

of Mi+1 is less or equal to the speed s(i)A of Ai, then Ai+1 can always produce at speed si+1, when-
ever up, so s(i+1)

A = si+1. If si+1 > s
(i)
A , then Ai+1 has to lower its speed to s(i)A when Bi is empty

and Ai is up. The fraction of time, conditional on Ai+1 (or equivalently, Di) producing, is equal to
p̄
(i)
u,u(0)/

(
π̄
(i)
u,u + π̄

(i)
d,u − p̄

(i)
d,u(0) + π̄

(i)
st,u − p̄

(i)
st,u(0)

)
. Hence,

s
(i+1)
A =

si+1 if si+1 ≤ s(i)A

si+1 −
p̄(i)u,u(0)

π̄(i)u,u + π̄
(i)
d,u − p̄

(i)
d,u(0) + π̄

(i)
st,u − p̄

(i)
st,u(0)

(si+1 − s(i)A) if si+1 > s
(i)
A

(12)

The expressions for the parameters of Di−1 are symmetrical to the ones for Ai+1. The rate at which
Di−1 jumps from up to blocked is given by

λ
(i−1)
UB =

(f̄
(i)
u,d(b) + f̄

(i)
u,bl(b))s

(i)
A + 1′P

(i)
u,u(b)

(
Q

(i)
D,(u,d) Q

(i)
D,(u,bl)

)
1

π̄
(i)
u,u + π̄

(i)
u,d − p̄

(i)
u,d(b) + π̄

(i)
u,bl − p̄

(i)
u,bl(b)

The rate λ(i−1)BU and cv c(i−1)BU of a blocking time BU (i−1) follow from (10) with

Γ
(i−1)
BU =

(
Q

(i)
D,(d,d) 0

0 Q
(i)
D,(bl,bl)

)

and

α
(i−1)
BU = ξ

(i−1)
BU

[
1′
(

F
(i)
u,d(b) F

(i)
u,bl(b)

)
s
(i)
A + 1′P(i)

u,u(b)
(

Q
(i)
D,(u,d) Q

(i)
D,(u,bl)

)]
.

Lastly, the average speed at which Di−1 produces in the up-states is given by

s
(i−1)
D =

si if si ≤ s(i)D

si −
p̄(i)u,u(b)

π̄(i)u,u + π̄
(i)
u,d − p̄

(i)
u,d(b) + π̄

(i)
u,bl − p̄

(i)
u,bl(b)

(si − s(i)D) if si > s
(i)
D

(13)

5 Results and discussion

In this section we investigate the quality of the proposed method. We also compare the method to the one
in [2]. This method assumes exponential up- and downtimes, thus neglecting possible non-exponential
behavior, but it might be used as a first rough approximation. This section is divided into two parts. First,
Subsection 5.1 shows the performance of the proposed method on a large test set. In Subsection 5.2 we
apply our method to two case studies with data from practice.

13

5.1 Test set

We test the performance of our method on a large test set, in which we vary the values of seven input
parameters: the number of machines in the line, mean uptimes, mean downtimes, squared coefficient
of variation (scv) of uptimes, scv of downtimes, machine speed configuration, and buffer sizes. Table 1
lists the different settings for each input parameter. By making all combinations, we obtain a test set of
4 × 4 × 8 × 4 × 8 × 3 × 4 = 49, 152 cases. As shown in Table 1, cases are included with imbalance
in mean up- and downtimes, and scv of up- and downtimes. We choose three different machine speed
configurations, the first being a homogeneous speed configuration, in which each machine has the same
speed. Secondly, we have a jumping speed configuration, in which each odd machine has a speed of 10
and each even machine has a speed of 15. The last setting, a V-shape speed configuration, is motivated
by practice. In this setting, the first and last machine are the fastest, speeds decrease linearly in the first
part of the production line, and speeds increase linearly in the second part of the production line. For
instance, in a 6-machine production line, the machine speeds would be {15, 12.5, 10, 10, 12.5, 15}.

Table 1: Input parameter values of the test set
Input parameter Values
Number of machines 4, 8, 12, 16
Mean uptimes {10,10,10,10,...}, {10,5,10,5,...}, {20,20,20,20,...}, {20,10,20,10,...}
Mean downtimes {1,1,1,1,...}, {1,0.5,1,0.5,...}, {2,2,2,2,...}, {2,1,2,1,...}
Scv of uptimes {0.5,0.5,0.5,0.5,...}, {0.5,1,0.5,1,...}, {1,1,1,1,...}, {1,2,1,2,...},

{2,2,2,2,...}, {2,4,2,4,...}, {4,4,4,4,...}, {4,8,4,8,...}
Scv of downtimes {0.5,0.5,0.5,0.5,...}, {0.5,1,0.5,1,...}, {1,1,1,1,...}, {1,2,1,2,...},

{2,2,2,2,...}, {2,4,2,4,...}, {4,4,4,4,...}, {4,8,4,8,...}
Machine speeds {10,10,10,10,...}, {10,15,10,15,...}, {15,...,10,...,15}
Buffer size {1,1,1,1,...}, {10,10,10,10,...}, {25,25,25,25,...}, {50,50,50,50,...}

We test the performance of our method by comparing the estimated throughput and mean total buffer
content to the same quantities obtained from a discrete-event simulation model. The 95% confidence
intervals in the simulation have a width of at most 0.5%. In Tables 2-8, we show the average relative
errors of our approximation (column ”Model PHT”) and the one in [2] (column ”Model EXP”). Each
table row provides the average relative errors over all cases in which the input parameters have the values
as specified in the first column. For instance, the first row of Table 2 gives the average errors over all
12,288 cases with four machines in the production line.

In Table 2 we see that our method produces reliable throughput estimates for production lines of up to
16 machines. The error in mean buffer content even decreases for longer production lines. In Tables 3
and 4, we see that the method performs slightly worse for lines with small mean uptimes and larg mean
downtimes. This may be due to the fact that starvation and blocking are more prominent when downtimes
are large compared to uptimes. Table 5 and 6 show that our method performs well for both small and
large the scv of up- and downtimes, a feature which is definitely not shared by the method in [2]. In Table
7 we see that our method performs excellent for cases with a V-shape speed configuration, but slightly
less for cases with a “jumping” speed configuration. Finally, Table 8 shows that our method performs
well for cases with very small buffers up to large buffers.

Table 2: Results for production lines with different lengths
Line Error (%) in Error (%) in
length the throughput mean buffer content

Model PHT Model EXP Model PHT Model EXP
4 0.57 2.00 1.30 1.65
8 1.03 4.37 0.53 0.80
12 1.65 6.30 0.36 0.61
16 2.18 7.91 0.29 0.55

14

Table 3: Results for production lines with different mean uptimes
Mean Error (%) in Error (%) in
uptimes the throughput avg buffer content

Model PHT Model EXP Model PHT Model EXP
10,10,10,10,... 1.56 5.52 0.56 0.77
10,5,10,5,... 1.64 7.17 0.65 0.95
20,20,20,20,... 1.05 3.35 0.58 0.85
20,10,20,10,... 1.18 4.53 0.67 1.04

Table 4: Results for production lines with different mean downtimes
Mean Error (%) in Error (%) in
downtimes the throughput avg buffer content

Model PHT Model EXP Model PHT Model EXP
1,1,1,1,... 1.18 4.55 0.71 1.04
1,0.5,1,0.5,... 1.08 3.22 0.61 1.12
2,2,2,2,... 1.62 7.15 0.61 0.66
2,1,2,1,... 1.55 5.65 0.54 0.80

Table 5: Results for production lines with different scv of uptimes
Scv of Error (%) in Error (%) in
uptimes the throughput avg buffer content

Model PHT Model EXP Model PHT Model EXP
0.5,0.5,0.5,0.5,... 1.09 4.06 0.56 0.89
0.5,1,0.5,1,... 1.12 4.23 0.52 1.01
1,1,1,1,... 1.36 4.59 0.52 0.78
1,2,1,2,... 1.29 4.83 0.59 0.93
2,2,2,2,... 1.44 5.26 0.59 0.77
2,4,2,4,... 1.37 5.62 0.67 0.97
4,4,4,4,... 1.62 6.12 0.71 0.85
4,8,4,8,... 1.57 6.45 0.76 1.03

Table 6: Results for production lines with different scv of downtimes
Scv of Error (%) in Error (%) in
downtimes the throughput avg buffer content

Model PHT Model EXP Model PHT Model EXP
0.5,0.5,0.5,0.5,... 1.32 1.51 0.55 0.78
0.5,1,0.5,1,... 1.37 1.63 0.52 0.77
1,1,1,1,... 1.42 2.32 0.46 0.50
1,2,1,2,... 1.49 3.86 0.57 0.92
2,2,2,2,... 1.30 5.13 0.51 0.66
2,4,2,4,... 1.28 6.92 0.73 1.18
4,4,4,4,... 1.28 8.81 0.67 1.03
4,8,4,8,... 1.38 10.98 0.92 1.39

Table 7: Results for production lines with different machine speeds
Machine Error (%) in Error (%) in
speeds the throughput avg buffer content

Model PHT Model EXP Model PHT Model EXP
10,10,10,10,... 1.16 5.19 0.34 0.61
10,15,10,15,... 2.18 6.32 1.11 1.32
15,...,10,...,15 0.73 3.93 0.40 0.78

Table 8: Results for production lines with different buffer sizes
Buffer Error (%) in Error (%) in
sizes the throughput avg buffer content

Model PHT Model EXP Model PHT Model EXP
1 0.47 1.51 0.27 0.39
10 1.65 6.43 0.62 0.68
25 1.72 6.88 0.75 1.02
50 1.58 5.76 0.82 1.51

15

5.2 Practical cases

In this section we apply the proposed method to two practical cases. The first case is a production
line at Heineken brewery in ’s-Hertogenbosch, the Netherlands, where retour bottles are being re-used
and refilled. Bottles enter the production line in crates on pallets and subsequently go through the (1)
depallatizer, (2) logo-detection, (3) depacker, (4) bottle-washer, (5) EBI (Empty Bottle Inspector), (6)
filler, (7) pasteurizer, (8) labeler, (9) packer, (10) cratemanco, and (11) palletizer. Since the number of
bottles going through the machines per hour is very large, we approximate this flow as a fluid. In Table 9,
all the input parameter values are listed for this production line. The mean and scv of up- and downtimes
are retrieved directly from industrial data. Typical for this production line are the high variations in
uptimes and (especially) in downtimes. Therefore, it is necessary to have an approximation method that
properly takes into account this variation. Furthermore, the setup of machine speeds corresponds to
the V-shape setup, as we have seen in the previous subsection. The buffer sizes reflect the maximum
number of bottles on the conveyor belt in between two successive machines. In [3] the modeling of the
bottling line is described in detail, and the resulting fluid flow model is extensively validated by means
of industrial data. The purpose of this section is to show that the current method accurately predicts the
throughput of the fluid flow model, the parameter values of which are based on the Heineken data.

Table 9: Data for the Heineken production line

Machine name Mean uptime (hrs) Scv of uptime Mean downtime (hrs) Scv of downtimes Machine speed Buffer size
Depalletizer 1.37 2.37 0.060 16.32 48349 3647
Logo-detection 0.58 2.16 0.026 38.15 43284 1823
Depacker 0.14 2.82 0.028 10.22 43284 6895
Bottle-washer 0.32 1.86 0.047 34.72 40389 5300
EBI 0.58 3.09 0.034 36.54 37407 270
Filler 0.42 2.65 0.036 18.99 37407 4874
Pasteurizer 3.94 6.31 0.081 3.30 40170 7014
Labeler 0.29 2.13 0.025 19.12 37094 6622
Packer 0.27 2.87 0.035 16.95 40988 4630
Cratemanco 2.82 4.07 0.152 3.27 41500 6945
Palletizer 1.96 2.34 0.069 25.45 42559 -

A discrete-event simulation using empirical up- and downtime data predicts a throughput of 27,735
bottles per hour. The method in [2], assuming exponential up- and downtimes provides a throughput
estimate of 31,979 bottles per hour, which is an overestimate of 15.30% compared to simulation. Hence,
neglecting the high variations in up- and downtimes leads to a poor estimate. The method in this paper
gives a much better throughput estimate of 26,679 bottler per hour, which is an underestimate of 3.81%.

The second practical case is an assembly line of small electronic components in Guangdong, China. A
tape (or lead frame) flows through eight machines at a high speed. At each machine small components
(dies and wire bonds) are placed on the lead frame. If one of the machines goes down, the upstream
machine can still produce until the length of the lead frame in between the two machines has reached
a maximum level. The number of components that fit on this maximum length of lead frame can be
seen as the maximum size of the buffer. Again, the processing speeds are high, so that we can treat the
flow of products as being a fluid. The mean and scv of up- and downtimes are retrieved from actual
machine data, showing high variability in up- and downtimes. The speeds of the eight machines only
differ slightly, making the speed configuration almost homogeneous. The input parameter values for this
case can be found in Table 10. The modeling of the assembly line as fluid flow model and the validation
of this model are described in detail in [9].

By using discrete-event simulation with empirical up- and downtime data, we obtain a throughput es-
timate of 12,279 products per hour. The approximation of [2] gives a throughput estimate of 13,882
products per hour, which is an overestimation of 13.05%. The current approximation provides a much
better throughput estimate of 12,029 products per hour, which is an underestimation of 2.04%. This re-
sult again indicates that the non-exponential character of up- and downtimes should be taken into account

16

Table 10: Data for the NXP production line

Machine name Mean uptime (hrs) C2 of uptime Mean downtime (hrs) C2 of downtimes Machine speed Buffer size
A1 0.36 2.30 0.054 8.45 17225 2250
A2 0.45 2.10 0.062 22.40 17270 2250
A3 0.51 2.03 0.048 11.60 16885 2250
A4 0.43 1.74 0.044 14.27 16795 2250
P1 0.77 2.14 0.064 5.80 16446 2250
P2 0.76 2.45 0.059 4.57 16559 5750
P3 0.54 2.56 0.059 5.06 16708 5750
P4 0.43 2.61 0.050 5.61 16785 -

to be able to produce accurate performance estimates.

6 Conclusions

In this paper, we construct an approximative method to analyze production lines with continuous flows.
The distinguishing feature of this method is that it takes into account the generality of up- and downtime
distributions without experiencing a state space collapse for longer production lines. The sophisticated
use of aggregation techniques is crucial in our method. We find a strong performance of our method on
a large test set and on two practical cases. The performance of our method is almost insensitive to the
coefficient of variation in up- and downtimes, proving that our method takes into account the variations
in up- and downtimes in a correct way.

The following limitation should be stated about this model. For cases with low coefficients of variation of
up- and downtimes, the method might become slower, since we need phase-type distributions with more
exponential phases for these cases. Further research might include the search for a state space reduction
for these cases. However, when the coefficients of variation of up- and downtimes become very low, it
might be better to treat the downs as planned downtimes, such that the production line can be analyzed
using easier techniques. Further research can also include the adaption of this model to more complicated
production lines, such as lines with multi-server workstations, assembly lines or feed-forward networks.

References

[1] I.J.B.F. Adan, V.G. Kulkarni, J.A.C. Resing (2003) Stochastic discretization for the long-run average reward
in fluid models. PEIS 17, 251-265.

[2] R. Bierbooms, I.J.B.F. Adan, M. van Vuuren (2010) Performance analysis of production lines with continu-
ous material flows and finite buffers. EURANDOM report 2010-044, Eindhoven University of Technology.

[3] R. Bierbooms, I.J.B.F. Adan (2011) Modeling and performance analysis of a bottling line; a case study. In
preparartion.

[4] M.H. Burman (1995) New results in flow line analysis. Ph.D. thesis, Massachusetts Institute of Technology.

[5] J. A. Buzacott, J.G. Shanthikumar (1993) Stochastic Models of Manufacturing Systems. Prentice Hall.

[6] Y. Dallery, R. David, X.L. Xie (1988) An efficient algorithm for analysis of transfer lines with unreliable
machines and random processing times IIE Transactions 20 (3), 280-283.

[7] Y. Dallery, R. David, X.L. Xie (1989) Approximate analysis of transfer lines with unreliable machines and
finite buffers IEEE Transactions on Automatic Control 34 (9), 943-953.

[8] Y. Dallery and H. Le Bihan (1997) Homogenization techniques for the analysis of production lines with
unreliable machines having different speeds. European Journal of Control 3 (3), 200-215.

17

[9] G. Kesuma, R. Martono (2010) Dynamic line modeling. Mathematics for Industry report, Eindhoven Uni-
versity of Technology.

[10] M. Di Mascolo (1988) Méthode analytique d’évaluation des performances d’une ligne d’assemblage. Rap-
port de DEA, Laboratoire d’Automatique de Grenoble.

[11] S.B. Gershwin and I.C. Schick (1980) Continuous model of an unreliable two-machine material flow system
with a finite interstage buffer. Report LIDS-R-1039, Massachussets Institute of Technology.

[12] S.B. Gershwin (1987) An efficient decomposition algorithm for the approximate evaluation of tandem queues
with finite storage space and blocking Operations Research 35 (2), 291-305.

[13] S.B. Gershwin (1987) Representation analysis of transfer lines with machines that have different processing
rates. Annals of Operations Research 9, 511-530.

[14] M.A. Johnson (1993) An empirical study of queueing approximations based on phase-type distributions.
Commun. Statist.-Stochastic Models 9, 531-561.

[15] M.B.M. de Koster (1987) Estimation of line efficiency by aggregation. International Journal of Production
Research 25 (4), 615-626.

[16] G. Latouche and V. Ramaswami (1999), Introduction to matrix-analytic methods in stochastic modeling.
ASA-SIAM Series on Statistics and Applied Probability, Philadelphia.

[17] R. Levantesi, A. Matta, and T. Tolio (2003) Performance evaluation of continuous production lines with
machines having different processing times and multiple failure modes. Performance Evaluation 51, 247-
268.

[18] X.G. Liu and J.A. Buzacott (1990) Approximate models of assembly systems with finite banks. European
Journal of Operational Research 45, 143-154.

[19] D. Mitra (1988) Stochastic theory of a fluid flow model of multiple failure-susceptible producers and con-
sumers coupled by a buffer. Advances in Applied Probability 20, 646-676.

[20] V. Ramaswami (1999) Matrix analytic methods for stochastic fluid flows. Teletraffic Engineering in a Com-
petitive World (Proceedings of the 16th International Teletraffic Congress Elsevier Science B.V., Edinburgh,
UK, 1019-1023.

[21] A. da Silva Soares and G. Latouche (2006) Matrix-analytic methods for fluid queues with finite buffers.
Performance Evaluation 63, 295-314.

[22] A. da Silva Soares and G. Latouche (2005) A matrix-analytic approach to fluid queues with feedback control.
International Journal of Simulation: Systems, Science and Technology 6 (1-2), 4-12.

[23] B. Tan and S.B. Gershwin (2009) Analysis of a general Markovian two-stage continuous-flow production
system with a finite buffer. International Journal of Production Economics 120, 327-339.

[24] H.C. Tijms (1994) Stochastic models: an algorithmic approach. John Wiley & Sons, Chichester.

[25] J. Wijngaard (1979) The effect of interstage buffer storage on the output of two unreliable production units
in series with different production rates. AIIE Transactions 11 (1), 42-47.

18

