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A Complex-like Calculus
for

Spherical Vectorfields
J. de GRAAF

Dedicated to Professor Bob Mattheij at his retirement

Abstract

First, R 1+d , d ∈ IN, is turned into an algebra by mimicing the usual complex
multiplication. Indeed the special case d = 1 reproduces C. For d > 1 the con-
sidered algebra is commutative, but non-associative and even non-alternative.
Next, the Dijkhuis class of mappings (’vectorfields’) R 1+d → R

1+d, suggested
by C.G. Dijkhuis for d = 3 , d = 7, is introduced. This special class is then fully
characterized in terms of analytic functions of one complex variable.
Finally, this characterization enables to show easily that the Dijkhuis-class is
closed under pointwise R d+1-multiplication: It is a commutative and associative
algebra of vector fields.
Previously it had not been observed that the Dijkhuis-class only contains vec-
torfields with a ’time-dependent’ spherical symmetry. Such disappointment was
to be expected!
The class of functions which are differentiable with respect to the algebraic
structure, that we impose on R

1+d, contains only linear functions if d > 1.
The Dijkhuis-class does not appear this way either!
In our treatment neither quaternions nor octonions play a role.
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1 Imitation of complex calculus in higher dimensions
On R 1+d, with d ∈ IN, a commutative multiplication structure is introduced by

(α ; a) · (β ; b) = (αβ − a>b ; αb+ βa), α, β ∈ R , a, b ∈ R d. (1.1)

Note 1. This multiplication structure is non-associative (non-alternative) if d > 1.
Indeed (

(α ; a) · (β ; b)
)
· (γ ; c)− (α ; a) ·

(
(β ; b) · (γ ; c)

)
= (0 ; b>ca− a>bc),

which may not vanishe if for (λ , µ) 6= (0, 0) one has λa+ µc 6= 0.
Clearly, with suitable interpretation, b>ca−a>bc = −b×(c×a). Note 2. If d = 3 or d = 7,
the product (α ; a) · (α ; a) of equal elements corresponds, respectively, to the quaternion
product and the octonion product.
Note 3. Symbolically, and sometimes conveniently, (1.1) can be written

(α + ia) · (β + ib) = (αβ − a>b) + i(αb+ βa).

Note 4. If for v = v1 + iv2 ∈ C and ξ ∈ R d we introduce vξ ∈ R 1+d by

vξ = (v1 ;
v2

|ξ|
ξ) ,

we have the multiplication rule
vξ · wξ = (vw)ξ.

Here vw is the usual product of complex numbers.
Note 5. By induction one easily shows that, with r = |x|, one has for n = 1 , 2 , . . .(

t ; x)n = ( Re (t+ ir)n ;
Im (t+ ir)n

r
x
)
.

Some calculations

• (α ; a) · (t ; x)n =
(
αRe (t+ ir)n− Im (t+ ir)n

r
x>a ; α

Im (t+ ir)n

r
x+ Re (t+ ir)n a

)
• (t ; x)m ·

(
(α ; a) · (t ; x)n

)
=
(
(α ; a) · (t ; x)n

)
· (t ; x)m = (t ; x)n ·

(
(α ; a) · (t ; x)m

)
=

=
(
αRe (t+ ir)m+n − Im (t+ ir)m+n

r
x>a ;

;
{
α

Im (t+ ir)m+n

r
− Im (t+ ir)m

r

Im (t+ ir)n

r
x>a

}
x+
{

Re (t+ir)m Re (t+ir)n
}
a
)
.
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Definition 1.1 1(Dijkhuis: A special class of functions )
On open sets in R 1+d we introduce the class of functions

(t ; x) 7→ (T (t ; x) ; X(t ; x)) ∈ R 1+d, (1.2)

where T and X = column[X1, . . . , Xd ] are supposed to satisfy

∇T = −∂X
∂t

∇×X = 0

x×X = 0

(x · ∇)X =
∂T

∂t
x.

(1.3)

Here we denote
∇T = column[ ∂1T, . . . , ∂dT ] ,

x×X stands for the anti-symmetric matrix [xXT −X xT ]k` = [xkX` − x`Xk] ∈ R d×d,

∇×X stands for the anti-symmetric matrix [(DX)T −DX]k` = [∂kX` − ∂`Xk] ∈ R d×d.

If d = 3 the identities in (1.3) correspond with the usual interpretation!

Note 6. From [xX>−Xx>] = [0] it immediately follows thatX can only be a multiple of x.

Theorem 1.2 Suppose (1.3). Then the function

(t ; x) 7→ (t ; x) ·
(
T (t ; x) ; X(t ; x)

)
(1.4)

also satisfies (1.3).

Proof In index notation the conditions (1.3) read

∂kT = −∂0Xk , ∂iXj − ∂jXi = 0 , xi(∂iXk) = (∂0T )xk, 1 ≤ i, j, k ≤ d.

The product (1.4) reads (tT − x>X ; tX + Tx). We list the components of all derivatives
needed. Summation over repeated indices.

∇(tT − x>X) : ∂k(tT − xiXi) = t(∂kT )− δkiXi − xi(∂kXi) =

= t(∂kT )−Xk − xi(∂iXk) + xi(∂iXk − ∂kXi)

∂t(tT − x>X) : T + t∂0T − xi∂0Xi = T + t∂0T + xi∂iT

∇× (tX + Tx) : ∂k(tX` + Tx`)− ∂`(tXk + Txk) =

= t(∂kX` − ∂`Xk) + (∂kT )x` − (∂`T )xk =

= t(∂kX` − ∂`Xk) + ∂0(X`xk −Xkx`)

∂t(tX + Tx) : Xk + t(∂0Xk) + (∂0T )xk

(x · ∇)(tX + Tx) : xi∂i(tXk + Txk) = txi(∂iXk) + xi(∂iT )xk + xiTδik

1Introduced by G.C. Dijkhuis for R 1+3 and R
1+7. Private communication.
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Taking into account (1.3) leads to the desired result. �

Corollary 1.3 Convergent power series with real coefficients cn

(T (t ; x) ; X(t ; x) =
∞∑

m=0

cn(t ; x)m , (1.5)

all lead to functions which satisfy (1.3).

Note 7. The ’vectorial part’ of the sum of such power series is always a multiple of x.

Note 8. If d = 3 or d = 7 these series correspond to quaternion and octonion power series,
respectively. It is emphasized again that the coefficients are real!

Inspired by Note 5. we come to a full description of functions (1.2) that satisfy (1.3).

Theorem 1.4 The functions (1.2) satisfy (1.3) if and only if, locally, there exists an
analytic function t+ ir 7→ F(t+ ir) = Re F(t, r) + i Im F(t, r), such that

(t ; x) 7→
(
T (t ; x) ; X(t ; x)

)
=
(

Re F(t, r) ;
Im F(t, r)

r
x
)
.

For convenience in the proof I first summarize

Some properties of analytic functions
• A function f : C→ C ia analytic iff f(z) = f(x+ iy) = Re f(x, y) + i Im f(x, y) satisfies
the Cauchy-Riemann identities

∂

∂z
f(z) =

1

2
(∂x + i∂y)f(x+ iy) =

1

2
(∂x + i∂y)

(
Re f(x, y) + i Im f(x, y)

)
= 0,

which corresponds to

∂x Re f − ∂y Im f = 0 , ∂y Re f + ∂x Im f = 0.

• For the ’complex’ derivative we have

∂

∂z
f(z) = f ′(z) =

1

2
(∂x − i∂y)f(x+ iy) =

1

2
(∂x − i∂y)

(
Re f(x, y) + i Im f(x, y)

)
=

=
1

2
{∂x Re f + ∂y Im f}+

i

2
{∂x Im f − ∂y Re f} = ∂x Re f − i ∂y Re f.

• Analytic functions are harmonic, indeed

∆( Re f(x, y) + i Im f(x, y)) = 4
1

2
(∂x − i∂y)

1

2
(∂x + i∂y)( Re f(x, y) + i Im f(x, y)) = 0
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= ∆ Re f(x, y) + i∆ Im f(x, y) = 0.

• z
d

d z
f = zf ′(z) = (x∂x + y∂y) Re f − i (x∂y − y∂x) Re f

• If (x, y) 7→ h(x, y) is harmonic, that means ∆h(x, y) = 0, then the function

z = x+ iy 7→ ∂xh(x, y)− i∂y(x, y),

is analytic.

Proof of Theorem 1.4 (⇐) If T = Re F and X =
Im F

r
x, the 2nd and 3rd property in

(1.3) follow from the symmetry of

xixj =
xixj

r
F and ∂iXj =

xixj

r2
(∂rF) +

(δij
r
− xixj

r3

)
F .

Substitution in the 1st condition leads to

∂r( Re F)
1

r
x = −∂t Im F

1

r
x,

which is OK because of one of the Cauchy-Riemann properties. Substitution in the 4th

condition, because of (x · ∇)(
1

r
x) = 0, leads to

r(∂r Im F)
1

r
x = (∂t Re F)x,

which is also OK because of the other Cauchy-Riemann property.

(⇒) Since X has rotation 0 it has a potential. Write X(t;x) = −∇G(t, x). Further, from
[xX> − Xx>] = [0] it follows that X can only be a multiple of x. It follows that there
exists a scalar function (t ; x) 7→ α(t ; x), such that ∇G(t, x) = α(t ; x)x. We want to
show that, for all fixed t, the function x 7→ G(t, x) is constant on spheres |x| = r. Take a , b
with |a| = |b| = r. Let C be an oriented curve s→ x(s) which runs from a to b and which
lies entirely on the sphere |x| = r. Then G(t, b) − G(t, a) =

∫
C
∇G(t, x(s)) · ẋ(s) ds. The

integrand vanishes at all points of the curve because ∇G is orthogonal to the sphere at all

points of it. From now on we write G(t, x) = G(t, r). Therefore X(t;x) = −(∂rG(t, r))
1

r
x.

Put T (t, r) = ∂tG(t, r) and we only have to satisfy the final condition in (1.3). Substitute
our T and G. The condition reads

−r(∂r∂rG)
1

r
x = ∂t∂tGx.

It follows that G has to be harmonic: ∆G = 0. We now define

F(t+ ir) = ∂tG(t, r)− i∂rG(t, r),

and we are done. �

Examples The analytic functions F(t, r) = (t + ir)m , m ∈ IN, represent the polynomial
vectorfields (t ; x)m.
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Theorem 1.5 Endowed with pointwise multiplication the Dijkhuis class of vectorfields,
defined by (1.3), is a commutative and associative algebra.

Proof For analytic F,G we only have to check the multiplication(
Re F ;

Im F

r
x
)
·
(

Re G ;
Im G

r
x
)

=
(

Re FG ;
Im FG

r
x
)
.

Associativity follows because all vectorial parts are multiples of x. �

Further Consequences
It will be clear by now that operations on the Dijkhuis class can be represented fully by
operations on analytic functions. We mention some examples

• Multiplication by (t ; x) corresponds to F 7→ {z 7→ zF(z)}.

• The Kelvin transform corresponds to F 7→ {z 7→ F(1
z
)}.

• The harmonic conjugate corresponds to F 7→ {z 7→ iF(z)}.

• The Euler operator corresponds to F 7→ {z 7→ z d
dz

F(z)}.

• Meaningful derivatives are given by F 7→ {7→ z dm

dzm F(z)}.

2 Differentiability with respect to the algebra
A mapping

R
1+d → R

1+d :

[
t
x

]
7→

[
T (t ; x)
X(t ; x)

]
, (2.1)

is differentiable (in the usual sense) at
[
t
x

]
∈ R 1+d, if for any

[
h
k

]
∈ R 1+d, we have

[
T (t+ h ; x+ k)
X(t+ h ; x+ k)

]
=

[
T (t ; x)
X(t ; x)

]
+

[
∂tT (t;x) ∇T (t;x)

∂tX(t;x) DX(t;x)

][
h
k

]
+ o(

√
h2 + |k |2 ) .

(2.2)
Here, ∇T = row(∂1T , . . . , ∂dT ) and DX = matrix[∂jX`] , 1 ≤ j, ` ≤ d.
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For left/right differentiability with respect to the algebraic structure imposed on R 1+d, it is
required that the linearization term in (2.2) has the form[

∂tT (t;x) ∇T (t;x)

∂tX(t;x) DX(t;x)

][
h
k

]
=

[
α(t;x) −a>(t;x)

a(t;x) α(t;x)I

][
h
k

]
. (2.3)

As a consequence the conditions for differentiability, with respect to the algebra, are

∂jX` = 0, if j 6= ` , α = ∂tT = ∂jXj , 1 ≤ j, ` ≤ d , a = −∇T = ∂tX . (2.4)

It follows that, for d > 1, the only differentiable functions are

T = Bt− A · x+D , X = Bx+ tA , B,D ∈ R , A ∈ R d , (2.5)

which does not look very exciting.
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J. de Graaf, May 2011.
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