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GENERAL INTRODUCTION. 

In this thesis we deal with some topics from the theory which 

is classically called the calculus of variations. The motivation 

is the fact that a large class of problems from mathematica! physics 

can be given a variatio.nal formulation. 

To place some of the following in a more general context let us state 

some standard terminology first. Let '11l be a given set of functions 

(~ is a subset of a metric linear space V) and let f be a functional 

defined on1/f. 

A variational p:f'inaiple~ denoted by 

(I) stat f(u) 
!.:k.'111 

is the problem of determining all those functionsu E 1'll for which 

the functional f has a stationary value on ll'l. (i.e. for which there 

exists some neighbourhood of ii inhlsuch that for every u E ?!/in 

this neighbourhood the difference f(u) - f(~) is of smaller order 

that the distance from u to ~). Such points~ are solutions of (I) 

and called stationary points of f on 1il . 
An e:i:t:r>emwn p:f'inaiple~ say the minimum principle 

(2) inf 
uE11'l f(u) • 

asks for the elements û E 111 ( called minimal points of f on 111) for 

which f takes its smallest value on m. i.e. f(u) ~ f(û) for all 

u €11/. To say that a specific problem is describ.ed by a variational 

(extremal) principle means that the solutions of the problem are in 

a one-to-one correspondence with the solutions of (I) ((2) respectively). 

One of the basic problems' in the classical theory of calculus of 

variations is to determine the equation satisfied by the solutions 

of (I). Assuming th.e existence of a sufficiently smooth solution. 

a local investigation (theory of first variation) leads to this 



so-called Euler (Euler-Lagrange) equation (or set of equations). 

In general this is a (partial) differential equation, together with 

a set of boundary conditions. 

Problems which are described by a variational principle are 

advantegeous above others for several reasons, of which we mention: 

(i) the notion of generalized solution of the Euler equation is 

defined in a natural way by bringing the solutions of (1) into 

a one-to-one correspondence with the generalized solution set of the 

Euler equation: (ii) a transformation of the Euler equation is 

usually easier performed via a transformation of the functional, 

and (iii) Noether 's theorem provides us in a simpleway, with every 

continuous group of transformations for which the functional f and 

the set 711 are invariant, with an identity between the Euler expres

sion and a quantity which is a divergence (these identities reduce 

for stationary points to the "local conservation laws" ofldynamical 
systems). ' 

If it is known that a specific stationary point is a (local) 

extremum, some additional extremality properties can be derived 

(theory of second variation): Alocal analysis which gives the 

resul ts stated above assumes the existence of a stationary point. As 

this is no minor point one looks for methods to prove the existence 

of stationary points for specific cases. There seems to be no unified 

way to get such results unless some additional information is known 

(or can be obtained) about the global character of the stationary 

points. In the simplest case when the problem is described by an 

extremum principle as (2), the proof of the existence of at least 

one stationary point may run along the following variational lines. 

Firstly one shows that the functional f is bounded from below on11l .• 

Then one proves that the infimum of f on 1JZ. is actually attained 

at some point û € '}11.. The existence of such a minimal point û being 

proved, a local analysis in the neighbourhood of û (if û is not 

isolated) shows that û is a statianary point of f on 1fl (he!nce û is 

a solution of (1)), and, being a global minimal p~int of f on~. 

û is also a local extremal point for which some extremality properties 

hold. 

As is well known, apart from an existence statement, an extremum 

principle (2) may also allow the actual construction of a minimal 
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element as the limit of a minimizing seq~ence. 

With this short general description we have indicated some 

important aspects of problems which can be given a variational 

formulation and emphasized the difference between a local variational 

principle as (I) and a global extremum principle as (2) with respect 

to the potential possibility to prove the existence of solutions. 

So far we have not specified the set '/11.. The theory of first and 

second variation is completely s tandard if '»>is the whole linear 

space V or if 'In is an affine set of the form 

(3) ={u=u +vlvEV}, 
0 0 

wberein u is a fixed element from V (usually meant to satisfY 0 . 

specified boundary conditions) and V is a linear subspace of V (the 
0 ' 

"set of admissible variations"). In these cases the variational 

(extremum) principles are said to be unconstrained. 

Matters are much more complicated if the set~ is defined as the 

set of elements which satisfy a given operator equatio.n, e.g. 

111 = {u E V IT(u) = y } , 
0 

wherein T is a (nonlinear) mapping defined on V and y 
0 

is some 

element from the range of T. 

In part I (chapters I and 2) we deal with these socalled constrained 

variational principles. 

In chapter I we state conditions on f and T which assure that problem 

(2) bas a solution and treat the local theory of first and second 

variation. The theory of first variation leads to the multiplier 

rule, a result which in its present generality is due to Lusternik. 

As a recipe to find this governing equation as the equation for the 
stationary points of a related unconstrained variational principle, 

this result is well known and often applied in mathematica! physics. 

Nevertheless, it seems not to be possible to give a convenient 

reference to a thorough investigation of this local theory [ See 

however the recent monograph of M.S. Berger, Nonlinearity and 

Functional Analysis, Academie Press 1977, where, insection 3.1 F, 

this local theory is dealt with in a Hilbert space context ]. 
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For the special case that the mapping T is a functional t on V, the 

multiplier rule states that the stationary points of the constrained 

extremum principle 

(4) inf 
t(u)= p f(u) p E RZ (u E V) 

are also stationary points of the unconstrained variational principle 

(5) stat 
uEV [f(u) - J.lt(u)] 

forsome multiplier 1.1 E RZ. The actual equation forthese stationary 

points can be envisaged as a (nonlinear) eigenvalue problem, with 

the multiplier 1.1 playing the role of eigenvalue. For this reason 

these variational principles are important for bifurcatioh theory. 

In chapter 2 we show that in a number of interesting cases, solutions 

of (4) can be given several alternative formulations. Using some 

ideas and notions which stem from the theory of convex analysis, 

we shall show that with problem (4) there c·an be associated a dual 

variational principle which is closely related to unconstrained 

extremum principles 

(6) inf 
uEV [f(u) - J.lt(u)] ll E RZ 

and with which a variational formulation for the multiplier Jl of (4) 

can be given. Furthermore, we investiga;te when the solutions of (4) 

are in a one-to-one correspondence with solutions of one of the 

"inverse" extremum principles 

(7) sup 
f(u)=r t(u) inf 

f(u)= r t(u) • 

An important class of problems which can be formulated by (4) are 

problems for which a "principle of least energy" holds, with f denoting 

the energy and t being some constraint. For many specific systems 

the multiplier Jl and the alternative formulations can be given a 

clear physical interpretation. Despite this fact, a precise 

investigation of these alternative global characterizations for 
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solutions of (4) as given bere seems to be new. 

In part II of·this thesis (chapters 3-6) we deal with several classes 

of dynamica! systems whose equations can be derived from a variational 

principle as ( 1) wherein 1/l is essentially as in (3). From a physical 

point of view these problems are characterized by the fact that one 

special coordinate (viz •. the time) plays a distinguished role. 

Mathematically speaking these problems have the property that no 

extremum principle of the form (2) is available as the functionals 

are usually unbounded from below and above on~. Therefore it is 

not possible to prove the existence of solutions of (1) along the 

vatiational lines indicated above. [ However, for a restricted class 

of solutions, such as stationary or steady-state solutions, it may 

be possible to transform the variational principle to an extremum 

principle of the form (2) and then prov~ the existence]. 

Two main types of variational dynamica! systems are Lagrangian and 

Hamil tonian system, the equationsof which can be described as the 

stationary points of an action functional defined on configuration 

space and a canonical action functional on phase space respectively. 

These systems and some ideas fromClassical Mechanica are described 

in chapter 3. Using the notion of polar functional we show that 

under some conditionsa Lagrangian system is also a Hamiltonian 

system and conversely. This result is usually obtained by applying 

a Legendre transformation to the respective Euler equations 

(equationsof motion), but using the variational formulation of a 

Legendre transformation (which is the idea of a polar functional) 

we derive this result from the variational principles. In this way 

one is immediately led to the notion of a modified action functional. 

The corresponding modified action principle is trivially equivalent 

to the action principle, but its specific form made it possible to 

recognize some well known variational principles from the theory 

of fluid dynamics to be of this form, and this led to a constructive 

way to derive from first principles all variational principles in 

this field which were previously found in an ad hoc way (see section 

3.5 fora short description). 

In chapter 4 we consider socalied first order Hamiltonian systems, 

and investigate the relation with the classica! notion of Hamiltonian 

system. The canonical transformation theory for classica! Hamiltonian 
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systems ceases to be valid for these first order Hamiltonian systems. 

In fact, we show that merely the requirement that a (non-linear) 

transformation maps one class of first order Hamiltonian systems into 

another class of first order Hamiltonian systems almost inevitable 

leads to the well known Miura transformation, a transformation mapping 

the (class of higher order) Korteweg-de Vries equation(s) into the 

(class of higher order)modified KdV equation(s). 

In chapter 5 we deal with ·some problems of a more physical character. 

For one-dimensional dynamica! systems (i.e. with one space variable}, 

one often speaks about (tinidirectional) wave propagation. For 

translational invariant classica! Hamiltonian systems there is no 

preferred direction of propagation in the sense that if there is a 

solution which may be called unidirectionally propagative, then there 

exists also a corresponding solution running in the opposite direction. 

This symmetry is not present in translational invariant first order 
I 

Hamiltonian systems, and these systems are often calledunidirectionally 

propagative (e.g. KdV- and BBM-equation}. However, because this notion 

is not explicitly defined in literature, it is difficult to understand 

the meaning of such statements. Therefore we pose a definition of 

unidirectional propagativity. This definition has some physical 

evidence and leads to the acceptable result that for firs~ order 

linear Hamiltonian systems the energy velocity (defined as the 

velocity of the centre of gravity of the energy density) is a 

weighted average of the group velocity. Surprisingly enough, fora 

restricted class of nonlinear first order Hamiltonian systems the 

group velocity of the linearized equations plays an equalty important 

role in the exact expression for the energy velocity. With this result 

we are able to formulate in a precise way in which sense the BBM 

equation is unidirectionally propagative. Furthermore, in chapter 5 

we describe how some classical Hamiltonian systems may approximately 

be sepat'ated into two (unidirectionally propagative) first order 

Hamiltonian systems, and investigate exact separation for linear 

systems. 

In the final chapter 6 we consider the classical problem of surface 

waves on a two-dimensional inviscid layer of fluid over a horizontal 

bottom under influence of gravity. Leaning heavily on the Hamiltonian 

character of this system, we describe several approximations of the 
Boussinesq type, comment on their peculiarities and describe for some 

6 



of them the approximate separation into two first order Hamiltonian 

systems. 

Tb conetude this general introduetion we have to mention the 

introducÜonacy chapter 0. This chapter is included to introduce 

the notation and to facilitate the reading for those who are not 

acquainted with those standard resul ts from ("non-linear") functional 

analysis which will be u~ed in the rest of this thesis. 
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CHAPTER 0: SOME TOPICS FROM FUNCTIONAL ANALYSIS. 

0, I , BANACH SPACES AND DUALITY, 

0.1.1. INTRODUCTION. 

Here and in the rest of this chapter, V and W will stand for Banach 

spaces (B-spaces) over the scalar field' of real numbers. The norm will 

be denoted by 11 11 or, if there is a chance of· misunderstanding by 

11 llv and 11 I Iw respectively. 
Convergenae (in norm) of a sequence {u} c V to some element 

n 
û € V will be denoted by u + û, thus u+ û in V means I Iu -ûl lv + 0 n n n 
for n + co, 

A mapping from V into W is said to be bounded if it maps boun

ded sets of V into bounded sets of W. The linear space (over the real 

numbers} consisting of all bounded, linear mappings from V into W 

will be denoted by B(V,W). 

DUAL SPACE. Of particular importance is thespace which consiste of 

all bounded linear tunetionals defined on V, i.e. B(V,RL), which will 

* be denoted by V • Supplied with the norm 

lltll: = SU? l9..(u)l 
11 uiJ.<l 

* for R. € V , u € V, 

it is a B-space 

of V. A typical 

on some u € V, 

(c.f. section 0.2.1.), and is called the no!'med dual 

* * element of V is often written as u , and its effect 
* lil u (u), as <u ,u>. Thus we have for instanee 

( 1.1) * . * * * 11 u 11 == SU? I <u , u> I for u € V , u € V, 
lluii:S_I 
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from which it follows that 

(I .2) * * * * l<u ,u>l _:: !Iu ll·llull Vu € V Vu € V. 

* The expression <u ,u> is (by definition) linear in u € V for fixed 
* * * * u € V , but it is also linear in u € V for fixed u € V. This 

* * clarifies the notation <u ,u> for u (u) and the adverb "dual" in the 

term dual space. 
* The dual space V has the following fundamental 

* PROPERTIES 0.1.1. (i) V separates points on V, i.e. if u1,u2 € V 
* * * * ~ith u

1 
~ u

2
, there e~sts u € V suah that <u ,u

1
> ~ <u ,u

2
>. 
. * 

(ii) For ever>y u € V, u ~ 0~ there erists u* € V 

* * suah that <u ,u>= I and I Iu 11·1 lul I =I. 

PROOF: These properties are weak formulations of the Hahn-Banach 

theorem. See e.g. Rudin [1, theorema 3.3, 3.4, 3.5]. c 

In many practical situations, e.g. when V is some fuhction space, . * 
one looks for a representation of V • 

* DEFINITION 0.1.2. A representation of V is a space V* with elements 

U. say, together with a bilinear mapping [,] : V* x V+ RZ such that 
* the elementsof V are in a one-to-one correspondence with the func-. 

tionals 

(1.3) [u*' ] : V+ RZ 

* In practice, this isomorphism between V and the functionals defined 

* by (1.3) is used to identify V* and V. However it must be emphasized 

that in this case the duality map <,> has got a definite meaning! 

* A very simple representation of V can be given if V is a Hilbert 

space. 

THEOREM 0.1.3. (Riesz representation theorem) 

* Let H be a HUbert space ~ith innel"product (,). Then H C(m be identi-

fied ~th H if for the duaUty mzp the innel"produat is ta.'l<.l:iln. Thus, 

10 



if t is any bounded lineCll' functionaZ on H~ theN e:cists a unique 
* * eZe~nt u € H suah that t(u) = (u ,u) Vu € H. 

PROOF. See e.g._ Brown & Page [;2, p.348] or Lj.usternik & Soboll.ew 

[3, p.l33]. c 

Q, 1.2. WEAK CONVERGÉNCE. 
i ' 

The norm on a B-spaee V induees a topology on V, called the original 

or norm topology. With this topology, -aueh notions as (norm-) elosed 

and (no~) compact sets can be defined. However, in many important 

situations, viz. when V is infinite dimensional, this original topolo

gy is too strong in many respects and one wants to deal with a coarser 

topology, The coarsest topology sueh that all the functionals 

* <u , > V -+ RZ * * u € V 

* are continuous (i.e. the topology on V induced by V ) is called the 

weak topoZogy. This weak topology is of extreme. importance, and with 

it such notions as weak-closure and'Wea~ompactnessof a subset of V 

can be defined. However, because of the limited needs in the rest of 

this thesis (in fact, mainly dealing with convergence of sequences of 

elements from V) it is possible to describe the desired results in a 

somewhat simpler way. 

DEFINITION 0,1.4. A sequence {u} cV is said to converge weakZy to 
n 

soma element û € V if 

* * <u ,un> -+ <u ,û> as n-+ ~ 

This weak convergence is written as u ~ û in V. 
n 

* * Vu € V • 

The following results are easy consequences of the foregoing 

PROPERTIES 0.1.5. (i) If u -+ û in V~ then u ~ û in V. 
n - n 

(ii) If un-+ û in v, then {un} cV is uniformZy bounded in v~ i.e. 

theroe e:ciete a number m '> 0 suah that I I uni I ~ m Vn. 

11 



(iii) Weak limits are unique~ 

then û • v. 
i.e. if u .... û and u .... vin v~ 

n n 

DEFINITION 0.1.6. Let M be a subset of V. 

(i) M is weakly sequentiaUy alosed if for every weakly convergent 

sequence in M the weak limit belongs to M; 

(ii) M is weakly sequentiaUy aompaat if every sequence in M contains 

a subsequence which converges weakly to soma element from M. 

As will become clear insection 0.5., B-spaces for which the 

closed unit ball is weakly sequentially compact are of special impor

tance. B-spaces with this propety are reflexive B-spaces, as shall be 

shown in the next subsection. 

0.1.3, REFLEXIVE B-SPACES, 

As we have seen in subsection 0.1.1., the expression 

* <u ,u> * * u e: V • u E V 

* *" is for fixed u e: V (by definition) a bounded linear functional on 

V. With the estimate (1.2) it followsthat the mapping 

* * * V 3 u t-+ <u ,u> € Rl u € V 

* is for every u e: V a bounded linear functional on V , i.e. 

(1.4) * * <•,u> E:(V) for every u e: V, 

( * * ** . d * . where V ) • V 1s the ual space of V and 1s called the seaond 

dual of V. Functionals of the form (1.4) with u ranging over V de-
. ** . ** f1ne a subspace of V • If th1s subspace is the whole of V , V is 

called reflexive: 

DEFINITION 0.1.7. The B-space V is called reflexive if the aananiaal 
. ** mapp~ng K : V ~ V defined by 

12 



** maps V onto all of V 

* * <K(u),u > =<u ,u> * * Vu € V 

The following theorem can serve as an alternative definition and 

emphasizes the de.sired property. 

THEOREM 0.1.8. A B-space V is ~eflexive ifand only ifits closed 

unit baU is !J)eakly sequentiaUy compact. 

PROOF: From Rudin [I, theorem 3.1.2.] it follows that a convex and 

(norm-) closed set in an arbitrary B-space is closed in the weak to

pology. From Dunford & Schwartz [4, theorem 6.1] it f?llows that in 

an arbitrary B-space a set which is closed in the weak topology, is 

weakly sequentially compact if and only if it is compact in the weak 

topology. Hence, in an arbitrary B-space, the closed unit ball is 

weakly sequentially compact if and oply' if it is compact in the weak 

topology. The theorem t~en follows from Dunford & Schwartz [4, theo-

rem 4.7]. c 

As a useful consequence of this concept we state 

COROLLARY 0.1.9 In a ~eflexive B-space V eve~y bounded sequence 

{u } cV,. !J)ith llu I[ " m Vn,. has a !J)eakly conve~gent subsequence,. n n 
say u , ...,.. û e: V and l'IIOl'eove~ 11 û I! < m. 

n -

EX.AMPLE 0.1.10. It is an im:nediate consequence ofR.iesz representation 

theorem 0.1.3. that every Hilbert space is a reflexive B-space. 

The following lemma plays a fundamental role in many applica

tions. 

* * DEFINITION 0.1.11. A subset Z of V is said to be a cpmpl:et:e set of 

linear functionals if 
* * * [u e: V , Vz E Z <z ,u> = 0} • u = 0 

* LEMMA 0.1.12. Let V be a Peflexive »-space. Suppose Z is a complete 
* * * set: in V • '!'hen· Z is adense subset: of V • 

13 



* * PROOF: Suppose Z is not-dense in V • Then there exists some 
* * * * * * v € V , v I 0, and a neighbourhood O(v ) c V of v sucb that 
·o * *o o o 

Q(v ) n Z = ~· According to the separation theorem of Habn~Banach 
0 ** ** (cf. Rudin [1, theorem 3.5]) there exists u € V such that 

** * ** * * * u (v ) = 1 and u (z ) = 0 Vz € Z • 
0• 

** ** As V is a reflexive B-space, with u € V there corresponds an 

element u € V such that 
** * * * * u (v ) = <v ,u> Vv € V 

(ei. definition 0.1.7.). In particular, 
** * * * * u (z ) = <z ,u> • 0 Vz € Z • 

* As Z is a complete set, this implies that u = O, which contradiets 
** * * * * the result u (v )..<v ,u> = 1. Hence Z must be dense in V • c 

0 0 

The foregoing lemma makes it possible in many important situations 

to construct a representation of the dual space for a giv~n reflexive 

B-space. 

COROLLARY 0.1.13. Let V be a refle:dve B-space, and let H! be a HU

bert space, 1itith (,)H as innerprod:uct. Suppose V is cont4uously 

el'libedded in H (i.e. V c H and there e:dsts a constant c > 0 such that 

llviiH ~ c•llvllv for aU v € V; c.f. subsection 0.2.3). Let H~ be 

the completion of H ~ith respect to the no~ 11 llv*: 

= sup 
v€V 
V I 0 

I (h,v)HI 

llvllv 
, h € H. 

* { I . * * PROOF: Let Z : = (h,•)H : V~ Rl h € H}. ~en' Z cV as follows 

from 

Vv € V, Vh € H. 

* Moreover, Z is a complete set: if (h,v)H = 0 Vh € H• v • 0. 
* . * From lemma 0.1.12 it follows that Z is dense 1n V , and the comple-

* ting operation gives a representation for V • c 
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0. I • 4. FUNC.TIONSP ACES • 

We shall now briefly describe some function spaces which will be used 

in the sequel. Let n be an open domain of RZn. We consider real valued 

functions defined on n. For simplicity we shall restriet to the case 

n = I because that is all we shall need, but the following defini

tion and results can be generalized to arbitrary n c RZn provided the 

boundary an of Q is sufficiently smooth. 

m C -spaces, 0 ~ m~ ~ 

Cm(Q) the space of functions defined and m-times continuously dif

ferentiable in n; 

(if n is bounded) : subspace of Cm(Q) consisting of func tions 

all of whose derivatives of otder < m can be extended as 

continuous functions to ä. Equiped with the norm 
m. k 

11 uil : • I sup _ I o u I 
cm k=l x € n x 

it is a B-space (if m < ~); 

(if nis bounded}: subspace of Cm(Q} consisting of functions 
with çompact support in n: 
With the [[.!lcm-norm this is also a B-space; 

Cm(RZ}: Subspace of cnf(RZ} of functions which have compact support. 
0 

L ~spaces, I < p < ~ p . 
L (Q) space of measurable functions u for which the p-th power of 

p . 
[u[ is integrable over n. Equipped with the norm 

[ lu!IL : '" { flul'11dll} 1/ P . 
,p Q, 

i~ is a B~space. In part~cular: 

L2(Q) . is a Hilbert-space with innerproduct 

(u,v) = J w(x)•v(x) dx. 

n 
It is well known that with the L2-innerproduct as duality map, the 

dual space of L is the space L for appropriate q: p q 

Consequently, L -spaces, I < p < oo, are reflexive B-spaces. 
p 
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m Sobolev-spaces H • 0 ~ m < = 
Hm(Q) : space of functions u in Q such that a:u € t 2(Q) for every 

k 
k, 0 < k < m, where a denotes the distributional derivative. 

- - x 
Equipped with the innerproduct 

m k k 
(u,v) : = I (a u, a v) 

Hm k•1 x x 

it is a Hilbert-space, and the corresponding norm will be de

noted by !I I IHm; 
closure is Hm(f!) of {u € Cm(Q) I' u bas compact support in Q}. 

With (,) this is also a Hilbertspace. 
Hm 

REMARKS 0.1.14 (i) Note that H0 (Q) ~ H0 (Q) = t 2(Q), 
0 00 

( ii) If Q = RZ, we have Hm(RZ) = Hm(Rt) and C (Rt) is a dense subset 
o .·o 

for every m .?:_ 0 ( see Treves [ 5, prOpos i ti on 13. I ]) • 

(iii) It is to be noted that the Sobolev spaces can also be obtained 

by a closure operation: H(:)(Q) is the closure of c(:)(Q) under the 

norm 11 11 (c.f. Treves [5, proposition 24.1]). 
Hm 

(iv) As H(:)(Q) is a*Hilbert space, it is a reflexive B-space and the 

dual space (H(o) (Q)), can be identified with H(:) itself if for the 

duality map the innerproduct (,) m is taken. However, in many appli

cations it is necessary to consi~er Sobolev spaces of different order, 

which would cause to take different duality maps in each case. This 

inconvenience can be circumvented by taking a fixed bilinear form, 

usually the t 2-innerproduct (,),as duality map. As H(:)(Q), m.?:_ 0, 

is clearly continuously embedded in t 2(n), a representation of 

(H(:)(Q))* with (,) as duality map may be constructed as described 

in corollary 0.1.13: 

Writing H-m = (a:(Q))*, H-m is the completion of t 2 with respect to 

11 11 m: 
H""' 

* I Iu 11 ~ sup · 
H-m u € lim 

1 (u* ,u_2l 

~ 

It can be proved that 

proposition 24.2]); 

.. H 
u 'I 0 

H-m(n) is a space of distribution§(Treves [5, 

H-m(n) , m > I: space of distributions in Q which can be written as 

finite sums of derivativès of order < m of functions belong-

ing to L2(Q). 

16 



0.2. OPERATORS ON BANACH SPACES 

0. 2. 1 • LINEAR OPERATORS. 

The linear spaee consisting of all bounded, linear operators L from 

V into W (V and Ware B-space) bas already been denoted by B(V,W). 

THEOREM 0.2.1. B(V,W) is a B-spaae if equipped with the ope~to~ norm: 

(2. 1) lltll = sup 
u; 0 
u E V 

11 Lul! w 
llullv 

sup lltullw• 
llullv = 1 

PROOF: See Rudin [1; theorem 4.1] 

For given L E B(V,W) the expression 

* * * <w ,Lv> , v E V, w E W 

L E B(V,W). 

0 

f • * * V d . * * is de 1ned for every w E W , v E an 1s, for fixed w- E W a boun-

ded, linear functional on V. This leads one to define the adjoint of 

L: 

(2.2) * * ; * * * * L : W +V , <Lw ,v> = <w , Lv>. 

* * * * It is easily seen that L E B(W ,V ), that L is uniquely defined by 

(2.2) and 

(2.3) * [!t[l = [!L 11· 

* * * If V is a reflexive B-space, and L : V + V , then L V + V In 

that case, L is said to be se~fadjointif L = 1*, i.e. if 

(2.4) <v,Lu> = <Lv,u> VuEV VvEV 

For L : V + W, the nu~~-spaae 

~(L) = {u E V[Lu • O} 

and the ~ge 

~(L) = {wE W[3u E V, Lu = w} 

are linear subspaces of V and W respectively. 

Because we shall need these results in the next chapter, we shall des-
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cribé heré some relations between the null space and range of L and 

those of its adj,oint L , Therefore •.we reeall that if N is an arbitra

ry subspace of V, the a:n:nihi Za. tor N1 of N is defined as 

(2.5) l * * * * N : = {v € V j<v ,v> = 0 Vv € V} cV • 

* [No.te that H Y is a Rilbere space.n, and Jl is identified with ll, 

<,> is the innerproduct of H and N1 is the orthogonal complement of N. 

This specific situation may be a guide for the following manipulations). 

If Ris an arbitrary subspace of v*, the annihilator~ of Ris de

fined as 

(2.6) l.R : = {v € vl<v*,v> = 0 Yv* € R} cV. 

It is easily seen that in general 

R c (~)1 , 
and it can be proved (c.f. Rudin [1, theorem 4.7]) that 

( 7) (1 ).1 • • ~ d * 2. R = R 1f R 1s a c~ose subapace of V • 

With these definitions, note that 

~L*) = {v € vl<v*,v> • 0 vv* € Yl<L*)J 
* * * * = {v € Vj<L-w ,v> = 0 Yw € W} 

"; {v € VjLv = O} 
= .ftL) • 

Hence, in general 

(2.8) -':f(L *) • ./'(L), 

and with (2.7) it follows that 

(2.9) 

Finally we shall need the following result: 

(2.10) 

(c.f. Rudin [I; theorem 4.14]), 
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0. 2. 2. CONTINUITY OF OPERATORS • 

Now let T be an arbitrary (not necessarily linear) operator from V 

into ~.As we.have introduced two conceptsof converganee (viz. weak 

converganee and converganee in norm) there are several notions of 

continuity, of which we shall need the following ones: 

DEFINITION 0.2.2. 

(i) T is aontinuoua at û € V if for every sequence {u } c V for which 
n 

u -+- û in V, it follows that T(u ) -+- T(û) inW. 
n n 

(ii) T is strongty aontinuous at û € V if for every sequence {u} cV 
n 

for which u ~ û in V it follows that 
n T(un) -+- T(û) in w. 

(iii) T is weakty aontinuoua at û € V if for every sequence 

for which un ~ û in V it follows that T(un) ~ T(û) in W. 

{u} cV 
n 

REMARK 0.2.3. As is well known, for liriear operators the concepts of 

boundedness and continuity are equivalent. For non-linear operators 

this is no longer true. Furthermore for linear operators continuity 

implies weak continuity. 

For functionals f: V-+- Rt. tbe definitions of strong continuity 

and weak continuity coincide as in Rt the concepts of convergence 

(in norm) and weak convergence coincide. According to custom we de

fine 

DEFINITION 0.2.4. The functional f: V-+- R is called weakty aonti

nuous (w.c) at û € V if for every sequence {u} cV with u ~ û in V n n 
it follows that f(un) -+- f(û) (in Rt). 

In many applications functionals are met which are not w.c. but 

which have one of the following properties. 

DEFINITION 0.2.5. f: V-+- RI is called weakty ttJI;.'!eX' semi-aontinuous 
(w.l.s.c) at û € V if for every sequence {u } c V with u ~ û in V n n 
the following inequality holds 

(2.11) f(û) < lim inf f(u ) ; . n 
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weakly upper semi-continuity at û is defined likewise with (2.11) re

placed by 

REMARKS 0.2.6 (i) If f is w.c. at û € V, then f is both w.l.s.c. and 

w.u.s.c. at û and conversely. 

(ii) It is well known that the norm in a Hilbert space H is w.l.s.c., 

but is not w.c. (if H is infinite dimensional). More generally, if 

* L : V+ V is a linear, selfadjoint operator on a reflexive B-space V 

which satisfies 

<Lu,u> ~ 0 Vu € V, 

the functional f(u) = <Lu,u> is w.l.s.c. at all of V. 

As à last concept we state 

DEFINITION 0.2. 7. F: V + RL is called aoer>aive on V if 

f(u) + "' if 11 uil + "' (uniformly} 

i.e. VM > 0 3R > 0 Vu E. V [ 11 uil .:::_ R • f(u) > M]. 

The following peculiar properties show that a w.c. functional 

can not be coercive: 

PROPERTY 0.2.8.If t: V +RL is w.a. then fo:ro a:robitro:ry R > 0: 

inf t(u) inf t(u) 

I I uil = R I I uil < R 

sup t(ul sup t(u} 

I lul I =R I I uil < R 

PROOF: See Vainberg [9, theorem 8.3] 

0.2.3 EMBEDDINGTHEOREMS FOR FUNCTION SPACES. 

c 

In subsection 0.1.4 we have introduced some function spaces. At ëhis 

place we shall describe how some of these spaces are related to each 

other. These properties can best be described with the aid of embed-
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ding operators. If V c W, the embedding operator from V into W (the 

natural injection) is the identity operator 

Id: V-+ W 

which maps each element from V onto the same element considered as an 

element from W. If V and W are normed spaces, continuity properties 

of this embedding operator are of particular importance. E.g. if the 

embedding operator is continuous it is a bounded mapping, which means 

that there exists a constant c > 0 such that 

llullw::_c[lullv VuE V. 

EMBEDDING THEOREM 0.2.9 Let 0 be a bounded or unbounded intewaZ of 

Rt. (1) H(:) (Q) is aontinuousZy embedded in H(~)(O) if k ::_ m: 

thus Id: H(~)(Q)-+ H(:)(Q) for k 2_ mand l!ui!Hk 2_ I lul I~ 
Vu E H(:) (Q). If 0 is bouruied, the embedding operator ia strongty 

aontinuous if k < m: if un ~ u in H(:) (Q), then un·-+ u in H(:) (0). 

(ii) H(:)(O), m~ I, is aontinuousty embedded in C~i(Q): thus 

Id: H(~)(Q) + C(~~(Q) m ~I, and llullam-1 ::_c-l lullam 
Vu EH(:) (Q) for some aonatant c: > 0. depending onty on mand Q, 

If 0 is bounded the embedding operator is strongty aontinuous: 

if un ~u in H(~)(O), then un-+ u in c(~~(Q), 

PROOF: See Sobolew [6, §8- §11]; see also Treves [ 5; section 24] 0 

0.3. DIFFERENTIATI.ON OF OPERATORS. 

0.3.1 FRECHET-DERIVATIVE. 

Let T : V~ W be an aróitrary operator. The following notion of 

Frechet derivative is a direct generalization of the special case 
where V • Rtn and W • Rtm. 

DEFINI.TI.ON 0.3.1. The operator T is said to be differentiabte at 

û E V if there exist a bounded, linear operator (depending on û 

ingeneral), denoted by T'(ûl, from V into W such that 

(3.11 [[T(û + k) - T(û) - T' (Û)•h[ f = O(i [h![) fór [[h[[ -+ 0; 
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T'(û) is called the (Frechet-) derivative of T at û: 

(3.2) T' (û) V+ W T'(û) E B(V,W). 

If T is differentiable.at every point of some set Ac V, T is said to 

be differentiable on A, and the mapping 

A3 u+ T'(û) E B(V,W) 

is called the derivative of T on A: 

(3.3) T' A+ B(V,W). 

If this mapping iscontinuou~ T is said to be aontinuously diffePen

tiable on A, and we write T E c 1 (A;W). T is said to be continuously 

differe~tiable at û E V if there exists some neighbourhood O(û) c V 

of û such that TE c1(n(û);W). 

REMARKS 0.3.2. (i) The operator T'(û), if it exists, is uniquely de

termined by (3.1) (c.f. Brown & Page [2, chapter 7]). 

(ii) As B(V,W) itself is a B-space (c.f. Theorem 0.2.1) it makes sense 

to refer to continuity properties of the derivative T'. 

(iii) It is easily seen that if T is differentiable a.t û, then T is 

continuous at û. 

(iv) Example: if T : Rln + Rlm, let us write T(x) • (t
1
(x), .. ,tm(x)), 

where x • (x
1

, ••• ,x) E Rln and t. : Rln + Rl, i • l, •• ,m. Then n 1 

T is (Frechet-) differentiable at x if t. is different-iabie at x for 
1 

i = l, ••• ,m, and T'(x) is the n x m Jacobian matrix with elements 
ot. 

[ 0~ (x)], i= l, •• ,m;k = l, •. ,m, which has to be envisaged as a 

bounded, ·linear mapping from Rln into Rlm. The derivative T' sends 

x E Rln onto the Jacobian matrix evaluated at x. 

For the explicit construction of the derivative of a given 

operator one may advantageously use the following lemma, 

LEMMA 0.3.3 Suppose there exists a bounded linear operator, whiah We 

shall again denote by T'(û), suah that 

(3.4) 
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!ûhere the limit is t;;aken for reaZ E anti aonvergenae in the norm of W 

is meant. (This mapping T'(û) is known as the Gateaux derivative of 

T at û.) Furthermore, if T' ea:ists in some neighbourhood of û anti is 

continuous at á, then T is (Frechet) differentiabZe at û anti T'(û) 

is infact the (Freahet-) derivative of T at û. (~n other rJJOrds: a 

continuous Gateaux derivative is a Preehet derivative.) 

PROOF: See Vainberg [7, theorem 2.1], D 

Finally we note that the chain-rute:for differentiable.operators 

holds: 

THEOREM 0.3.4. Let T : V +U anti S : W + z, rJJhere z is another B

spaae. Suppose T is .differentiabZe at û E V anti S is differentiabZe 

at w = T(û) E W. Then the aomposite mapping SoT : V+ z is differenti
abZe at û anti rJJe have 

(3.5) (SoT)
1
(û) • S

1
(T(B)) • T'(B). 

PROOF: See Brown & Page [2, p.276], D 

0.3.2. HIGHER ORDER DERIVATIVES; TAYLOR EXPANSION. 

As B(V,W) itself is a B-space (equipped with the operator norm) 

one may investigate the differentiability of the operator T' as gi

ven by (3.3). Let us suppose for simplicity that T' is defined on all 

of V: 

T': V+ B(V,W). 

Then T' is differentiable at B, with derivative which shall be deno

ted by T" (û) , if 

(3.6) T"(û) V + B(V,W) 

such that 

IIT'(û+h)- T'(B) - T"(B)•kll = G>(ilk!l> for lik! I + 0, k EV. 
By definition of operator norm this is equivalent to 
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llhÎÏP= IIT'(û+k)·h- T'(û)•h- T"(û)•k•hll = o([[kll), 

thus 

IIT'(û+k)•h- T'(û)•k- T"(û)•k•hll = I [hll•(!)(llkll> 

From these observations it follows that T"(û) may also be 

considered as a biZinea~ mapping from V x V into W 

(3.7) T"(û) : V x V+ W, V x V 3 (h,k) + T"(û)•h•k € W 

which is symmet~a 

(3.8) T"(û)•h•k = T"(û) •k•h Vb. E V, 'v'k E V. 

Of course, T"(û) is called the seaond de~7Jative of T at û, and 

one bas the usual formula 

(3.9) [[T(û+h) - T(û) - T'(û)•h- !T"(û)•h•hl I .. o([ \.hl[-2 ) 

for llhll + 0. 

Proceding along the same linea one may define higher order

derivatives: the m-th o~de~ de~vative of T at û, denoted by T(m)(û) 

is a m-Zinea~ operator: 

T(m)(û) :r: V+ W. 

If T(m) exis ts and is continuous o!•Aome subset A cv, we write 

T E Cm(A;W) 

'tor differentiable operators, TaZyZo~ e:cpansion is posáible: 

THEOREM 0.3.5 Let Ac V and T E Cn+I(A;V}. Let û E A and hE V such 

that û+t•h E A,fo~ eVe1'JJ 0 ~ t ~ t. Then we have: 

n 
T(û+h)- T(û) =I br T(m)(û)•h•h• ••• •h + R, 

I m. 
m= ~times 

(3. 1 0) 

whe~ the ~mainde~ RE w·satisfies 

(3. IJ) 

PROOF: See Dieudonné [8, sec. 8. 14]; · see also Vainberg [7.;sec.4.6], c 
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0.3.3 DIFFERENTlATION OF FUNCTIONALS. 

As a special case, the definitions and statements of the foregoing 

subsections hold eQuallv well if W • RZ, i.e. if we are dealing with 

functionals on V. If f : V+ RZ is differentiable at û € V, the 
* derivative of fat û is written as f'(û) and as f'(û) € B(V,Rl) =V 

we may write 

(3.12) f(û+h)- f(û) = <f'(û),h> + o<llhll>, llhll + 0. 

If f is differentiable on a set Ac V, the derivative of f on A 

* f' : A+ V 

is often called the ~ient of the functional and written as 

-f'(u) = grad f(u). 

In a special context also the name functional derivative is used. In 

this respect we want to make the following remark about a point which 

may cause some confusion. 

REMARK 0.3.6. As was noted before, for a given B-space V there may be ----- . * 
several representations of V , Connected with this is the observation 

that fora given functional f the actual form of f'(u) depends on the 

representation chosen. By way of example consider 

f : H
1 

(0) + RZ, f(u) = f (!u2 + !u2 ) dx. o 
0 

x 

Then f is differentiable at every u € H
1 and we have 
0 

If we take 

have 

<f'(u),v> = f (u •v + u•v) dx, u,v € H
0

1 
x x 

t* 1. 0 . 1 (H ) = H W1th the 1nnerproduct of H as duality map we 
0 0 

f' : H
1 

+ H
1 f'(u) =u. 

0 0 

But if we take the L2-innerproduct as duality map, (H1)* =H-l 
0 

(c.f. subsection 0.1.4) and then 

f'(u) = ru +u. 
XX 

This very simple example expresses the necessity to specify the 

duality map in these situations. 

In most applications from mathematica! physics dealing with 

function spaces, it is custom to take the L2 -innerproduct as duality 
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map. Because in that case one often speaks about functional deriva

tive, we shall restriet that name to this situation. 

* DEFINITION 0.3.7. Let V be a function space and V the dual space of 

V with respect to the L2-innerproduct. If f : V + Rl is differentiable 

at û, the derivative_of fat û, f'(û) considered as an element from 
* . V is called the jUnat~onal derivative, so that we have 

(3. 13) f(û+h)- f(û) = f f'(u)•h dx + o(l I hl I> for I lhl I+ O. 
n 

[This functional derivative is often written as ~! but, unfortunately, 

the same symbol is usually used to denote the functional derivative 

at the point u E V. (This inadequate notation can be considered to be 

a straight forward generalization of the imperfect notation :~ for 

ordinary functions f : Rl + Rl.)] 

To complete the specialization to functionsls, we note that if f 

is twice differentiable at û then 

(3.14) f(Û+h)-f(û) • <f'(û),h>+i<f"~û)•h,h:;+o(llhll 2 ) for-llhll + 0 

and 

* f"(û) : V + V 

may also be considered as a bilinear functional on V x V 

f" (û) : V x V + Rl 
which is symmetrie 

(3. 15) <f"(û)•h,k> • <f"(û)•k,h> Vh € V Vk EV. 

The following result shall be needed in the sequel 

LEMMA 0.3.8. Let L be a linear, bounded ope:rtatox> fx>om V into W, t.Jith 
~.:t:: • * * * YMVo~nt L : W + V and let f : W + Rl be differentiable at w = Lû 

Then the mapping foL : V + Rl is differentiable at û € V and 

(3.16) (foL)'(û) = f'(Lû)•L = L*f'(Lû) € v*. 
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PROOF: As L is a linear and bounded mapping, it is differentiable at 

every u E V and L'(u)•h • Lh for all hE V. Then the result follows 

from the chain rule (theorem Ó.3.4) and soma manipulations with duali

ty maps: if we.use subscripts to distinguish between the duality maps 

of V and W we have: 

<(foL) 1 (û), h>V • <f'(LO.)•L'(û),h>V = <f'(Lû)•L,h>V • 

* • <f'(Lû), L h>W • <L f'(Lû),h>V' 

valid for arbitrary he V. Hénce the result (3.16). c 

0. 4, POTENTIAL OPERATORS , 

In classical mechanica when dealing with systems which have a 

finite number of degreesof freedom, one is somstimes interested in the 

question whether a given force-field F :, RZ.n + Rl.n is a "conservative" 

field, i.e. whether there exist a function f : Rl.n + Rl., usually 

called the potential, such that 

(4. 1) f'(x) • F(x) Vx E Rl.n. 

(If F is represented as (F1, ••• , F ), F. : Rl.n + Rl., (4.1) is equi
n . ~ 

valent to 

!f- (x) • F.(x), i • t, ••• ,n.). ax. ~ 
~ 

In a more general setting this question is even more important and 

amounts to· the question whether fora given operator F :V+ W there 

exists a functional f : V + R such that 

f 1 (u) = F(u) Vu € V. 

This qûestion will be answered in the following, and it is shown that 

thenecessary and sufficient condition for the finite dimensional case, 

viz. oF. i)F .• 
~ • J rx:- rx:- i"j = l, .•• ,n, 
J ~ ·• 

generalizes to the more general setting. 

* DEFINITION 0.4.1. An operator F V+ V is called a potentiaZ. ope~-
tor (or gradient operator) on (the set A c) V if there exists a diffe

rentiable functional f : V + Rl. such that 
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(4. 2) F(ü) = f' (u) Vu E (Ac) V. 

This functional f is called the potentiaZ of F on (Ac) V. 

* THEOREM 0.4.2. Let F : V -+ V be continuousZy diffe:r.>entiable an aH 
* . 

of V, with de:r.>ivative.F': V .... B(V,V ). Then3 in o:r.>de:r.> that F be a po-

tentiaZ ope:r.>ato:r.> it is necessa:r.>y and sufficient th.at the bi.tinea:r.> 

functionaZ 
<F' (u)•, , .> : V .x V + RZ : (h,k) + <F' (u) •h,k> 

is symmet:r.>ic fo:r.> eve:r.>y u E V i.e. that 

(4.3) <F'(u)'h,k> ==<F'(u)•k,h> VhEV VkEV. 

Mo:r.>eove:r.>3 if (4.3) is satisfied3 the potentiaZ f of F on V is uniqueZy 

dete:r.>rrrined up to an a:r.>bit:r.>a:r.>y constant3 and is given by 

1 . 

(4.4) f(u) = f(u) +I ds <F(u + s(u-u )), u-u
1

.> 
0 0 0 0 

Vu € V, 

0 

whe:r.>e u € V is a:r.>bit1'a:r.>y. (If u is chosen to be the ze:r.>o-etement3 0 0 

(4.4) simplifies to 

I 

(4.5) f(u) '" f(O) + I ds <F(su) ,u> 

0 

PROOF: See Vainberg [9, §5]. 

* 

Vu € V). 

COROLLARY 0.4.3. If T : V-+ V is a bounded and tinea:r.> ope:r.>ato:r.>3 it 

is a potentiat ope:r.>ato:r.> if and onZy if T is eelfadjoint3 i.e. if 
*and· ha • T = T 3 1.n t t case '!.te potentiat up to an a:r.>bit:r.>a:r.>y constant is 

given by 

(4.6) f(u) ~ <Tu,u>, 

PROOF: The requirement that T be selfadjoint, i.e. equation (2.4), is 

equivalent to the requirement (4.3). Then the potential can be found 

from (4 .5) or verified by differentiation of (4,'~}. 
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REMARK 0.4.4. When dealing with operator equations of the form 

(4.7) T(u) o, u € V 

one is often interested in the question whether this equation can be 

derived from a variational principle. Formulated in a fairly general 

way, this amounts to the question whether there exists a functional, 

say f : V ~ Rl, such that the stationary points of f, i.e. the solu-

tion of f' (u) = 0 

(c.f. subsection 0.5.1), areinsome sense related .to the solutions 

of (4.7}. The foregoing definition and theorem answer this question 

only in a 'V'er.y restrkted. s~nse, 'The limited applicability ·of these'. re
sults is easily demonstrated: if f : W ~ Rl is a functional and 

. * * . L: V~ W a l1near operator, the operator L of'oL: V~ V 1s 

tial one (with potential foL, c.f. lemma 0.3.8}, whereas f'oL 

a poten

* :v~w 

is nota potential operator (unless L = h I forsome constant c). 

Nevertheless, the solution:sets of the equations 

* L f'(Lu) = 0 and f'(Lu) • 0 

are the same if L is a one-to-one mapping. 

We shall now describe a simple class of potential operators which 

will frequently be used in the following. 

NEMYTSKY OPERATORS 0.4.5. Let y : Rl ~ Rl be a continuous function 

and let V be a function space of functions u defined on g c Rl. Then 

the function y(u(x)) is defined on n and the mapping 

G : u ~ G(u) where G(u)(x) : == Y(u((x)) Vx € n 
is an operator on V into some function space W, consisting of functions 

defined on n. Operators of this kind are called Nemytaky opePatoPe, 

and it can be proved that if y satisfies an estimate of the form 

(4.8} 

where a and bare positive constants and r = p/q ~th p,q € [t,~), 

then G maps all of L (nJ into L (fll and is continuous and bounded (and 
p q 

conversely, if G maps all of L (n} into L (fl) for some p,q € [1,~), 
p q 

then Gis necessarily continuous and.bounded and y satisfies an esti-

mate of the form (4.8); see Vainberg [!l; § 19]1. 
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P'or simplycity we shall consider the case where V = H 1 
(Q) atid where 

Y satisfîes 

(4.9) y E c 1(Rl) and y(O) = 0 if Q is unbounded. 

Then, as the embeddi~g operator Id : H1(Q) + C
0

(Q) is continuous 

(c.f. theorem 0.2.9), Gis a mapping from H1(Q) into itself: 

(4. 10) 

Moreover, ît is 

with potential 

I easily seen that G is a potential operator on H (Q) 

g (chosen to satisfy g(O) = 0) 

u(x) 

(4.11) g(u) = I dx J y(z) dz, u € H
1
(Q), 

Q 0 

for which we have 

i 
(4.12) <g'(u),v> =I dx G(u)(x) • v(x) 

Q 

Vu E H I (Q) , : Vv € H I (Q). 

Hence G is the functional derivative of g (the L2-innerproduct as 

duality map) and the range of Gis a subspace of (H1
(fl))*, viz. 

H 1 (Q) itself. 

0.5. FUNCTIONALS ON BANACH SPACES 

0.5.1. EXTREME POINTS. 

Let f be a real valued functional defined on all of a B-space V. We 

shall be interested in the range of the functional f, i.e. in the set 

{f(u)iu E V} c Rl. 

..;;.;;;;.;.;..;;..;;..;;;..;;..;;;....;;;.;. 0.5.1. A point û E V is called alocal extremum of f if 

there exists a neighbourhood Q(û) of û in V such that 

f(u) ~ f(û) for all u E Q(û) : f is maximal at û 

or f(u) ~ f(û) for all u € Q(û) : f is minimal at û. 

If for this neighbourhood Q(û) the whole space V ean be taken, û is 

called a global extremum. 



If .f is differentiab le at û, then û is called a stationa:r>y point (or 

a aritical point) of f if f'(û) = 0, 

The next theorem summarizes the results of the theory of first 

and seaond variation for functionals on B-spaces. 

THEOREM 0.5.2. Consider f on some subset Q cV, and let û be an 

interior point ofQ. Suppose fis minimal at û. 
Then~ if f is differentiable at û, û is a stationary point of f: 

(5.1) f' (û) .. 0, 

and if f is wice differentiable at û,f"(û) 

negative operator in the sense that 

(5.2) <f"(û)·h,h> 2:0 V'h € v. 

PROOF: Let h € V be arbitrary and consider 

~(t) = f(û + th). 

V x V -+ Rl . is a non-

As w is an interior point of Q, ~ is defined in some neighboorhood 

of t = 0, Moreover, ~ is (twice) differentiable at t • 0 if f is 

(twice) differentiable at û, and we have 

:~ (O) = <f'(û),h>, ::<J' (O) • <f"(û)•h,h>. 

As f is minimal at û, ~ must be minimal at t = 0, and thus 

~ d2~ 
~0) = 0, dtz (0) > 0. 

Then (5.1) and (5.2) follow because h € V is arbitrary. 

The inequality (5.2) may be ~nvisaged as a necessary condition 

for a stationary point û to be minimal. lt is also possible to give 

a sufficient condition. 

c 

THEOREM 0.5.3. Let f be wiae aontinuously differentiable at the sta

tionary point û, and suppose that there e:t:ists some constant c > 0 

suah that 

V'h € v. 
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Then û is a minimal point of f, and moreover there exists a neigh

bourhood Q(û) of û suah that 

f(u)- f(û) > icllu-ûll 2 'v'u € Q{û). 

PROOF: Writing u = Û+h the statements immediately follow from 

f(u)-f{û) <f'(û),~>+!<f"(û)•h,h>+ó(llhll 2 ) for 11~11 +0 

~ <f"(û)·•h,h> + o<llhll 2
) 

> !cllhll 2 +o<llhll 2
) 

> icllu-ûll 2 for llu..:ûll=llhll sufficiently ~mall c, 

0.5.2. EXISTENCE OF EXTREME POINTS 

If V is a finite dimensional space, We'ier·Strasz' theorem 1states that 

a continuous function on a bounded and closed subset, e.g'. the closed 

unit ball, is bounded from above and from below and attains its 

maximum and minimum on that set. But if V is aninfinite dimensional 

space, a closed and bounded set needs not to be compact and 

Weierstrasz' theorem ceases to be val id. However, we know that in a 

reflexive B-space the closed unit ball is weakly. (sequentially) com

pact (c.f. theorem 0.1.8). By requiring a functional to b;e continu

ous with respect to weak convergence, Weierstrasz' theorem may be 

generalized as shall be shown. 

THEOREM 0.5.4. Let V be a reflexive B-spaae and Q cV a bou:nded 

and weakZy sequentiaZZy aZosed subset. Let f: V+ RZ be w.Z.s.a. on 

Q, Then f is bou:nded from beZow on Q and attains itsinfinum at some 

point û € Q, 

PROOF: The proof is standard and will be given as an illustration of 

some concepts introduced earlier. 

Suppose first that f is not bounded from below on Q, Then there 

exists a sequence {u } c Q such that f(u ) +•oo for n + oo, As Q is 
n n 

bounded, this sequence is bounded and has a weakly convergent subse-

quence (corollary 0. I. 9), say u 1 ~ û in V. As Q is weakly sequentiai
n 

ly closed, û € Q, For this subsequence we also have f(u ,) + -oo for 
n 

n' + oo, But as fis w.l.s.c., f(û) < lim inf f(u ,) = -oo, which is im-- . n 
possible. Hence: f is bounèed from below on Q, 
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Now, let a: = inf {f(u) I u € n}. Then a > '"""'• and there exists a mini

mizing sequence {u } c n for which f(u ) ~ a for n ~ ~. Again this n n 
sequence is bounded and has a weakly convergent subsequence, say 

u,~ û with û"€ n. As f(u ,) ~a for n' ~ =, and as fis w.l.s.c., 
n n . 

we have f(û) < lim inf f (u ,) = a. By definition we also have 
- n 

f(Û) ~a. Consequently f(û) = a, which means that f attains its in-

fimum at û. This completes the proof. IJ 

REMARK 0.5.5. From the proof it is easily seen that theorem 0.5.3. re

mains valid if the requirement n is bounded is replaced by the require

ment that f is aoe~aive on V, i.e. 

f(u) ~ ~ for I lul! + ~. u € V. 

mEOREM 0.5.6. (Gen.eraUsed Weiel'strasz' theorem). 

Let V be a ~efle:d.ve B-apaae and n a bounded and weakly sequentiaUy 

aloeed subset of V. Let t : V~ Rl be w:a. Then t is bounded from 

above and from be loü1 on n and attains i ts infinuum and 1.ts sup~emum 

at points of n. 

PROOF: If gis a functional which is w.u.s.c., it follows from theo

rem 0.5.3., applied to f = -g, that gis bounded from above on n and 

attains its supremum at some point of n. With this observation the 

theorem easily follows: as t is w.c. it is both w.l.s.c. and w.u.s.c. 

(c.f. remark 0.2.6.). IJ 

0.6. POLAR FUNCTIONS AND SUBDIFFERENTIABILITY. 

In this section we shall briefly describe some notions from the theo

ry of Conve_x ' Analysis which will be used in chapters 2 and 3. We 

consider the simplest case first (functions defined on Rl); an ex

tension to functionals on a reflexive B-space is then an easy genera

lization. 

Let h be a function defined on Rl 

h : Rl ~ iü, 
Here Ri is the extended real line, i.e. Ri = Rl U{-a:>} u{~}. 

(Allowing functions taking infinite values tums out to be useful in 
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what follows. For instance, if g is a function defined on some inter

val I c Rl, we have 

if we agree to set 

inf inf 
€ I . g(x)?= x € Rl h(x) x. . 

jS(x) 
h(x) .. l oo 

for x € I 

for x (I ) . 

DEFINITION 0.6.1. The potar jUnction (or aonjugate function, or sup
* po~ting function) of h is a function h : Rb ~.Ri defined by 

(6 .I) * h (~) = sup [~p - h(p)] , ~ € Rl. 
p € Rl 

* If for some ~ € Rl. h (~) is finite this number bas a clear inter-

pretation: it is the smallest value of a such that the linear function 

with slope ~.i.e. ~p-a. is dominated by h(p): 

h(p) _:: ~p - a Vp € Rl. 

- * -DEFINITION 0.6.2. If the linear function ~p - h (~) is ereact at some 

p € Rl, i.e. if 

(6.2) -- *-~p - h (~) .. h(p), 

we shall say that h is subdiffe~entiable at p and ~ is called a 

sub~ient of h at p. The set of all subgradients at p is called the 

subdiffe~ential of h at p, and this set is written as ah(p). We wr.ite 

~ € ah(p) if ~ is a subgradient of h at p, and ab(p) = 0 if h is not 

subdifferentiable at p (i.e. if there exists no linear function which 

is exact at pand dominated by the function h). 

REMARK 0.6.3. It must be noted that subdifferentiability of h at p 

bas nothing to do with the smoothness of the function in a neighbour

hood of p but depende crucially on the global behaviour o~ h. This in 

sharp contrast to the more familiar concepts of differentiation. 

** DEFINITION 0.6.4. The bipola~ function h of h is defined as the po-
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* lar function of h 
** ** * h RL~ Ri, h (p) • sup [vp- h (v)]. 

V E Rl 
The polar function is defined (as a function into Ri) for arbi-

trary functions h, but this notion is especially useful when h is a 

convex function. 

DEFINITION 0.6.5. The function h Rl ~ Ri is aonvex if h satisfies 

h(~p+(h\)q) ~ ~·h(p)+(l-...\)•h(q) for all .À .. O<À<I, 

for all values of p and q for which both h(p) and h(q) are finite. 

The following properties are direct consequences of the foregoing 

definition. 

PROPERTIES 0.6,6. Let h : RL ~ Ri be an a:ribitroary funation. 
* -(a) The polar funation h : RL ~ RZ is a aonvex funation. 

** .(b) h (p) < h(p) for aU p e Rl. 
- ** * *** * (c) The polar [unation of h equals 'h : h = h 

(d) ~ e 3h(p) ifand only if (i) h(p) is finite 
(ii) p(q-p) + h(p) < h(q) Vq E Rl. 

- - ** -(e) if 3h(p) ~ ~. then h(p) • h (p). 
- ** - - ** -(f) if h(p) = h (p) then ah(p) ·ah (p). 

(g) if oh(p) ~ ~. and if h is differentiable at p then 3h(p)={h'(p)}. 

PROOF: See Rockafellar [10, part III, VJ. [J 

REMARK 0.6.7. There is a close analogy between the Legen~e troansfo~ --- * 
of a smooth, convex function h € C2 (RL) and the polar function h : 

* if I:= {h'(p)lp € Rl}, then the restrietion of h to I is the 

** Legandre transform of h, and h = h on all of Rl (See Rockafellar 

rtq;section 26}; c. f. a lso sec ti on 2. 2). 

The foregoing definitions and properties are easily generalized 

for functionals defined on a reflexive B-space. 

* Let V be a reflexive B-space, v· its dual and <,> the duality map. 

Let f : V~ Rl be a functional, possibly taking infinite values. 

DEFINITION 0,6.8, The poZar-funationaZ of f is a functional 
* * -f : V ~ RZ defined by 
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* * f (u )- • sup * [<u,.ou>- f(u)l • * * u € V • 
u € V 

The bipola:r-functional 

** 
** f : V -+ * Ri is the polar functionali of f : 

f (u) * * * = S'~P ? [<u • u, - f (u ) l • u e: V. 
u* E v* 

The functional f is said to be subdifferentiable at Ü e: V with sub
-* * gradient u E V if · 

-* - * -* -<u ,u>- f (u) = f(u). 
-* -The definition of subdifferential and the notation u e: af(u) are de-

fined as in. .definition 0.6.2. 

With the obvious changes, the properties listed in 0.6.6. can be 

shown to hold in this case too. (c, f, Ek.eland & , Temà.m [ 11, Ch. I, 

section 4,5]; see also Vainberg [7; section 8.4}) As we shall not need 

these results in the rest of this thesis, we shall not pursue this 

subject any further bere. 
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PART I: CONSTRAINED EXTREMUM PRINCIPLES. 

CHAPTER 1 : EXISTENCE AND LOCAL ANALYSIS. 

l.I. INTRODUCTION • 

. I.n this. éhapter we .shall deal with- the following problem. 

Let V and Y be two reflexive B-spaces, and let f : V + Rl be a real 

valued functional defined on all of V. ,Furthermore, let T : V+ Y 

be ari operator (generally non linear), and Y E Y. We shall be 
0 

concerned with the range of the functional f on the set of points 

u E V for which T(u) = Y • More particularly we shall study the 
0 

existence and look for possible characterizations of solutions 

(c.f. definition 1.1.1. below) of what shall be called 

Pr>oblem f 

(I.I)f: inf {f(u) I u E V • T(u)=y } 
0 

Minimization problems of this kind are called aonstrained extremum 

problems. in contradistinction to unconstrained minimization problems 

fora functional f when fin considered•on all of the space V. We 

shall use the name manifold for the set of points 

(I. 2) m :• {u E V I T(u) = y } • 
0 

DEFINITION 1.1.1. An element~ E~is said to be a aonstrained global 

minimwn point of f with respect to m if 

(1.3) f(u) ~ f(u) for all u Em.. 
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An element ti € ?fl is said to be a constrained ZocaZ minilllllm point 

of f with respect to7ll if there exists a neighbourhood Q(~) of ~ in 

V such that 

(I .4) f(~) < f(u) for all u € 71! n O(Û) 

Furthermore, ~ € l7l is said to be a soZution of proobZem .f if and only 

if îi is a constrained global minilllllm point of f on 1/l, and then the 

infilllllm of f on mis attained at îi and we write 

(I. 5) 

Insection 1.2 we shall state conditions for the functional 

f and the operator T which assure that problemf has at least one 

solution. Camparing the value of f at a s~lution îi of pro~lem f with 

the value of f at neighbouring points of u on the manifold lead in 

first order to an equation for îi (the lllllltiplier rule, section 1.4) 

and in second order to a statement about the non-negativity of a 

certain operator (section 1.5). Alocal investigation of this kind 

is an adapted version of the theory of first and second v~riation 

for unconstrained minimization problems (c.f. theorem 0.5.2). 

However, in order that such a local investigation is possible it is 

necessary that the manifold 11lis sufficiently "regular" in a 

neighbourhood of the point îi. This will be stuclied in lllOre detail 

insection 1.3. Because these results are obtained by an investigation 

which is essentially local in character, they also hold for points 

which are local, but not global minimum points. 

Because of its importance for the rest of this thesis, the foregoing 

results are specialized insection 1.6 to the case where Y = RZ, i.e. 

where the operator T is a funct ional t : V -+ RZ. In section I . 7 some 

physical applications of the theory are presented. 

The multiplier rule as stated insection 1.4. is originally due to 

Lusternik [12] (see also Maurin [13) and Curtain & Pritchard [14, 

section 12.4] ). For functional constraints, Vainberg [7, sections 

9.4 , 9.5] is a lllOSt familiar reference. For constraints described by 

certain differential ~quations,KlÖtzler [ 15] proves the lllllltiplier 

rule and treats the theory of second variation. 
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1.2. AN EXISTENCE RESULT. 

To assure that problem f makes sense, we demand that the manifold lfll 

is non-void, which means that y
0 

must be in the range of the 

operator T: y E~(T). 
0 

THEOREM 1.2.1. Suppose that the manifoLd 1Jtis weakLy sequentiaLLy 

aLoaed. Let f: V+ RL be weakLy LoweP aemi-aontinuous • and aoePcive 

on711. i.e. 

(2.1) f(u ) + oo 
n 

if u €1'11, !Iu 11 + oo, 
n n 

Then f is bounded ft'om beLow on 1Jt and f attains its infimum. i.e. 

probLem f has a aoLution. 

PROOF: This result is an easy consequence of theorem 0.5.4. and a 

slightly modified version of remark 0.5.5. 

REMARK 1.2.2. IfJI!is known to be a bounded subset, condition (2.1) 

is void. 

In the following lemma a condition for the operator T is given 

that assures that ?J2 is weakly sequentially closed. The formulation 

bas been chosen to be directly applicable for a specific problem to 

bedealt with insection 1.7. 

0 

LEMMA 1.2.3. Let T : V+ Y with Y aontinuousLy erribedded in a pefiexive 

·B-apaae z. Suppoae T satiafies 

(2.2) if u ~ Û in V, then T(u ) ~ T(Û) inz. 
n n 

Ther~: the manifoLd 17/ia weakLy aequentiaUy aLoaed. 

PROOF. Let {u }c7/lbe a sequence in1'11, and u_.. Û in V. We have 
n n 

to show Û E 71/. As u E ?1!, we have T(u ) = y Vu and hence T(u )+ y 
n n o n o 

in y. · By the continuous embedd ing of y into Z: T( u ) + y in Z. n o 
Furthermore because of (2.2) we also have T(u ) ~.T(Û) in z. Thus 

n 
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T(~) = y , which shows that ~ E2V. 
0 

An immediate consequenc~ of the foregoing lemma is: 

COROLLARY 1.2.4. If T: V -*Y is weakly continuous, mis weakly 

sequentially closed.· · 

PROOF: Take Z =Yin lemma 1.2.3. 

1.3. REGULAR POINTS OF THE MANIFOLD 

At this place we shall study the structure of the manifold 

(3.1) ?1'1= {uEV I T(u) =y} 
0 

in the neighbourhood of some point ~ E~. 

For the following we shall assume that T: V "* Y is continupusly 

differentiable at ~ and write 

(3.2) T(~+h) - T(Û) T'(Û).h + w(Û;h), 

where 

(3.3) 

c 

c 

DEFINITION 1.3.1. A point~ Elfis said to be an isolated point of the 

manifold '111 if there exists a neighbourhood r!(Û)of Ûin V such that 

(3 .4) 

LEMMA 1.3.2. If T' (~): V-* Y is boundedly invePtible, then ~ is an 

isolated point of manifold. 

PROOF: Suppose ~ + h E11/. Then by (3.2) we have 

T'(Û).h + w(~;h) 0. 
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~ -) 
Applying T'(u) to this equation, it is seen that h must satisfy 

the inequal ity 

With (3.3) it fellows that there exists some positive number ö 

such that h = 0 is the only element which satisfies this inequality 

together with llh 11 < 6. Hence the set 

Q(~) := {Û + h I h EV .llhll < 6} 

is a neighbourhood of~ which satisfies (3.4). This proves the 

lemma. 

Alocal investigation.of the manifold in a neighbourhood of a 

non-isolated point u means to characterize the set 

{h € V I ~ + h Elll, llhll small}. 

0 

This amounts to a study of all small norm solutions of the non-linear 

operator equation 

(3 .5) T(~ + h) - T(ii) 0 • 

To make any progress in this direction, and in view of the foregoing 

lemma, we suppose that the null space of the operator T'(ii)is 

non-trivial: 

Clearly ,..ris a vector subspace of V. Hence there exists a pz>ojeation 

opez>atoz> P defined on V with.R(P) =~. (We reeall that P is a projection 

operator if P is linearand P2 = P). Moreover, denoting the null space 

of P by W, V is the algebz>aia diz>eat Bum of~and W: 

V = vf+ W, 

which means that with e~ery element h € V there correspond unique 
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elements v( Ph) and w(• (I - P)~ such that 

(3.6) h=v+w, v€J', w€W. 

Of course the mapping:,;. x W 3(v,w)-+ h € V is continuous. lf the 

inverse of this map.ping is also continuous (which is equivalent to 

saying that the projection operatorPis continuous), the 

decomposition of V is called a topoZogiaaZ direct sum, and written as 

(3.7) V .. ;- 0 W. 

For the analysis to follow it will be necessary to have this 

stronger concept of topological direct sum. 

As T 1 (~) € B(V,Y), the null space~is a aZosed subspace of V. 

Closedness of~being a necessary condition for the resul~ (3.7) 

is in general (reflexive) B-spaces not sufficient (c.f. Dieudonné 

[8, section 5.4]). However, in many important situations there 

is such a topological direct sum. 

HYPOTHESIS 1.3.3. At least one of the following statements is true: 

(a) V is HUbert space; 

(b) dim • .,i < co; 

(c) codim • .Î'(=dim. V/..i.~ < oo, 

LEMMA 1.3.4. If hypothesis 1.3.3.is satisfied3 the aZosed subspaae 

.Î'is a topoZogiaaZ dir>eat 8UlT1ITiand 3 i.e. ther>e exists a (aZosed) 

subspaae W suah that (3.7) hoZds. 

PROOF: If statement (a) of hypothesis 1.3.3. holds, the contentsof 

the lemma is the well-known pr>ojeation-theor>em for HiZbertspaaea (see 

e.g. Rudin [1, theorem 12.4], Dieudonné [8, section 6.3]). In the 

other cases the lemma follows essentially from Rudin [l, lemma 4.21].c· 

To proceed our local investigation of the manifold in a 

neighbourhood of u we substitute the decomposition (3.6) into (3.5). 

Then, using (3.2) and the fact that T'(\i).v • 0 if v E.i-. there 

results the operator equation 
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(3.8) T'(Û).w + oo(u;v + w) 0 V E.i, w E w. 

For given element v E~with I lvll small, this equation mayor may 

not have small nerm solution w E W. 

DEFINITION 1.3.5. (Analytiaal). 

Suppose Hypothesis 1.3.3. is satisfied. A point ii E1/tis said to be 

a Pegular~point of the manifold 1Jt if there exists a neighbourhood 

N ~ {v E~l I~~ 1<€ } such that for every vEN the equation 
0 

T(Û + V + w) - T(~) 0 

has a unique solution w E W, which depends on v and shall be denoted 

by w = ~(v), and such that the mapping ~: N + W is continuous and 

satisfies 

(3.9) ll~<v>ll ~ o<llvll> if llvll +0, 

This analytica! definition can be given a clear geometrical 

interpretation. Therefore the following notions turn out to be useful. 

DEFINITION 1.3.6. The tangent spaae of 1'11at Û is defined as the 

null space of the operator T' (Û) E B(V,Y): 

J-- = {vEv I T'(~).v=O} 

The tangent plane of mat u is defined to be the set 

.... 
u +vl" ~ {~+ V E V I V E..i}. 

Intuitively speaking, the idea of a tangent plane at u will be 

that with every point u E 111 in a sufficiently small neighbourhood of 

~ there corresponds a point ~ + v in the tangent plane such that 

the distance from i:i to u +v differs only through higher order terms 
~· 

from the distance between u and u. In fact it is easily seen that 

definition 1.3.3. is such that the tangent plane as defined in 1.3.6. 

satisfies these intuitive requirements if ~ is a regular point of~. 

More precisely speaking, defintition 1.3.5. is equivalent to 
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DEFINITION 1.3.7. (Geometriaal), 

Suppose Hypothesis 1.3.3. is satisfied, A point~ e'-"is said to be 

a regular point of'lllif there exists a homeomorphism (i.e. a 

continuous one-to-one map which bas a continuous inverse) from a 

neighbourhood ~ + N of ~ in the tangent plane onto a neighbourhood 

of ~ in the manifold 111, say 

u+ N 3 ~+v- ~+V+ .P(v) e711, 

which satisfies 

IIHv) 11 = o<llvll> if llvll + 0. 

The following lemma gives a sufficient condition for a point u 

to be a regular point of?ll. 

LEMMA 1 .3.8. Let T be aontinuously differentiable at ii E V" UJith 

..I"(T'(ii)) I {O}. Suppose T'(~) maps V onto all ofY, i.e. suppose 

(3. 1 0) R<r'(u)) = Y. 

Then3 hypothesis I. 3. 3. is satisfied3 ;; is a regular point of 'hl.. 

PROOF. Define the operator F :"rx W + Y by 

(3.11) F(v ,w) := T(~ + v + w) - T(~) v e.i', w e w. 

Then the proof consists of an application of the irrrpliait funation 

theorem (c.f. Dieudonné [8, sectien 10.2]). To verify the conditions 

of this theerem we note that: (i) F(O,O) = 0 ; (ii) F is continuously 

differentiable with respect to both variables in a neighbourhood 

of (0,0) because T is assumed to be continuously differentiable in 

a neighbourhood of u; (iii) If DW F(v ,w ) denotes the derivative 
0 0 

of F with respect to wE Wat the point (v ,w ), then 
~ 0 0 

DW F(O,O) = T'(u) € B(W,Y). Now if condition (3.10) is satisfied, 

T'(~)is a one-to-one mapping from WontoY and hence bas a continuous 

inverse. We shall denote this "pseudo-inverse" by 
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(3. 12) - -1 [T'(u)J : Y + W. ps 

The conditions of the theorem being fulfilled, the implicit function 

theorem states that there exist neighbourhoods N == {v E.Î'I llvll<e: } 
0 

and M "' {w E W I I Iw 11 <ö } such that 
0 

(i) for each fixed v E N, the equation 

(3.13) F(v,w) = 0 

has a unique solution w E M; 

(ii) this solution can be given as w = ~(v), where ~is continuously 

differentiable on N and ~(0) = 0. Finally, to obtain the required 

est imate for ~ (v), we note that $(v) satisfies F(v ,Hv)) = 0, which 

is by (3.11) and (3.2) equivalent to 

T' (Û) .Hv) + w(û; v+Hv)) 0. 

With the aid of the pseudo-inverse (3.12), which is a bounded operator, 

this leads to the following estimate 

(3 .14) IIHv>ll < II[T'(~)J-I 11·11 w(û; v + ~(v))ll· ps 

From the continuity of $~ and from ~(0) 

(3.3) that 

0 it then follows from 

llw(û; v + ~rv>>ll = o<llvll> for llvll + 0. 

Hence ~ satisfies the requirement (3,9), and the proof is complete. c 

For the theory of second varfation insection 1.5, we shall need 

the following lemma. Therefore we note that if T is twice -continuously differentiable at u, the remainder w(û;h) defined in (3.2), 

can be specialized to 

(3.15) 
1 A • A 

w(u;h) = 2 T"(u).h.h + v(u;h), 
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where 

(3. I 6) for llhll -+- O. 

LEMMA I .3.9. With the scune aondition.s as in lemna I .3.8~ but with 

T Wiae aontinuously differ>entiable at ~~ the opemtor> cp: N -+- W 

satisfies the stronger> estimate 

(3.17) for llvll -+ O. 

PROOF: Us.i.ng JJcp(v)JJ == o(JJvJJ), it follows from (3.15) and (3.16) 

that 

Together with (3.14) this leads to (3.17). 

1.4. MULTIPLIER RULE (Theory of fir>st variation). 

c 

With the results of the foregoing section is possible to study the 

behaviour of a given functional f on the manifold 111 in a neighbourhood 

of a regular point ~. Therefore we assume that f: V-+ Rl is 

continuously differentiable at ~ and write 

(4.1) f(Û+h)- f(~) = < f'(ii),h > + o<llhll> for llhll-+- 0, hE V. 

As ;i is assumed to be a regular point of 11/, it follows from definition 

1.3.5. that the mapping u(•,v) : (-e ,e ) -+~: 
0 0 

defines for every v EJ a continuous curve on ?llthrough ~. (.Moreover, 

this mapping is continuously differentiable at e = O). 

Considering f on such a curve gives with (3.9) and (4.1): 

(4.3) f(u(e;v)) - f(ii) = e < f'(~).v > + o(e) for e-+ 0. 
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Erom definition 1.1.1. it follows that if u is a constrained local 

minimum point of f with respect to ~. the sign of the expression 

(4 .4) f(u(e: ;v)) - f(u) 

must certainly he independent of the sign of €. In that case it 

follows from (4.3) that we must have 

A 

(4 .5) <f'(u),v> 0 for every v €~. 

REMARK 1.4.1. Of course this same condition must hold if u is a 

constrained local maximum point of f with respect to~(defined 

in an obvious way). On the other hand, any regular point ;i' € ?'lt 
which satisfies (4.5) is called a oonstrained stationary point of 

f with respect to?h. Thus, as usual, a necessary condition for a 

regular point u to be a constrained extremum (maximum or minimum) 

point is that u is a constrained stationary point. 

It is possible to write condition (4.5) as an operator equation 

for u in which the operator T'(~) appears explicitly. 

weneed the results as described in subsection 0.2.1. 

To that end 

With the definition of annihilator as in 0.(2.5), condition (4.5) 

may be written as 

(4.6) 

If 1/. (T 1 (~)) is closed in Y, it follows with 0.(2.9) and 0.(2.10) 

that (4.6) is equivalent to 

* * which means that there exists some element À € Y such that 

- - * * f'(u) ~ T1 (u) • À • 

* • • ~ I - * Note that this element À 1s un1que up tosome element from-\T (u) ), 

i.e. up to an arbitrary element from ~(T'(~)) (as follows from 
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0.(2.8)). In analogy with the simplest case, V= RZ.n,n > 1 and 

* Y = RZ, À will be called a Lagrange muZ.tipZ.ier. 

Tbe results obtained so far can be formulated in the following 

THEOREM I .4.2. (Multiplier t>UZ.eJ. 

Let f: V -+ RZ and T: V -+ Y be eontinuouaZ.y differentiabZ.e at ~ € '111. 
Suppose that (i) J"'(T' (~)) .; { 0} 

(ii) ~ia a regul.ar point of?fl, and Jl(T'(i:i)) is al.oaed 

in Y. Then, if ;; is a eonstrained Z.oeaZ. minimum point of f with 

respect to11'1, there e:ciata a Lagrange-rrrul.tipUer À* e y*, auch 

that ;; satiafiea the equation 

- - * * f'(u) • T'(u) .À 

Moreover, À* ia unique up to an arbitrary eZ.ement from J'(T' (;;) *) 

.l ~l(T' (i!)). 

fur practical applications, the following theorem may be more 

appropriate. 

THEOREM 1.4.3. Let f: V-+ RZ. and T: V-+ Y be eontinuouaZ.y differentiabZ.e 

at ;; e?ll. 
Suppose that (i) Hypothesis 1.3.3. ia aatiafied. 

( ii)J(T' (Û)) "f { 0}; 

( iii)_R (T' (ii)) = Y. 

Then, if ~ ia a conatrained Z.oeaZ. minimum point of f with reapeet to 
* * -?11, there e:ciata a unique Lagrange muz.tipUer À E Y such that u 

aatiafiea 

(4.7) - """' * * f'(u) = T'(u) .À • 

-PROOF: Conditions (i), (ii) and (iii) imply that u is a regular 

point of11J (lemma 1.3.8), and that.Jil(T'(i:i)) is closedas Y itself 

is closed, Hence condition (ii) of theorem 1.4.2. is satisfied. Tbe 

.uniqueness of the Lagrange multiplier follows at once from the 

observation 

- * J'(T' (u) ) lt(T'(i!)) = ly • {0} • 
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l.S. EXTREMALITY PROPERTY. (Theory of seaond variation), 

In this section we shall extend the theory of the foregoing section 

to include secönd order effects. Therefore we assume f and T to be 

twice continuously differentiable at ~ and write 

(5.1) f(~+h)- f(~) = <f'(~),h> + ~ <f"(~).h,h> + o<llhll
2

) 

for 11 h 11 -+ 0. 

and 

(5~2) T(~+h)- T(~) = T'(~).h + ~ T"(~).h.h + v(~;h) 

where 

(5.3) 
2 

llv(u;h)ll =o<llhll) for 11 h 11 -+ 0. 

As in the foregoing section we consider f on curves on ?nthrough ~: 

U(E,V) = u + EV + <P{EV) ' V 

and note that because of lemma 1.3.9., the mapping cp:.,i--+ W satisfies 

(5.4) IIHEv) 11 = O(E
2

) for E-+ 0, llvll = I, v Ej. 

More particularly, it follows from (3.8) and (3.I~that cj>(Ev) 

satisfies 

(5.5) 
I 2 

T' (u) .cp + 2 E T"(u) .v.v + cr(u;Ev,cj>) 0, 

where 

cr(u;Ev,cj>) = ~ T"(u) .cp.cp + ET"(û) .v.cj> + v(û;Ev+cj>) 

and thus-

(5.6) 2 
llcr(u;Ev,cj>) 11 = o(E ) for E -+ 0 • 

Ilith these results we find 
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(5. 7) 
~ A ~ 12 ~ 2 

f(u(e:;v)) - f(u) "' e<f' (u) ,v> + <f' (u) .4!> + r <f"(u) .v,v> + o(-e ) • 

~ 

Ifu is a constrained stationary point of f with respect to 111 which 

satisfies equation (4.7), (5.7) may be written as 

A * * f ~ * * f(u(e;v)) - f(u) = e<T'(u) ·À ,v> + <T (u) ·À ,41> + 

I 2 ' A 2 + 2 e <f'(u).v,v> + o(e) , 

Note that 

A * * * A <T'(u) .À ,v> =<À , T'(u),v> = 0 
~ 

as v EJ", 

and from (5.5) tagether with (5.6) it follows that 

1 A * * * 1 A I 2 * 11 A + o·(~ 2), <T (u) .À ,4!> =<À , T (u).4!> =- 2 e <À ,T (u).v.v> ~ 

Hence 

A I 2 ~ * "(A . ( 2 (5.8) f(u(e;v))-f(u) = r [<f"(u).v,v>- <À ,T u).v.v>] + o e ). 

The expression in square brackets will be called the ,seaond va:Piation 

and denoted by 

(5.9) A * rt - · * 11(~ s(u,À ;v) := <f (u).v,v> - <À ,T u).v.v> • 

If ~ is a constrained local minimum point of f with respect to~, it 

follows from (5.8) that the second variation will be non-negative 

for every v €t/Y, so that we have obtained the following theorem. 

THEOREM I • 5. I (ExtremaU ty pl'Operty) 

Suppose f: V+ RZ. and T: V+ Y are t!Vice aontinuousZ.y differentiabZ.e 

at ii , and suppose that conditions (i), (ii) and (iii) of theorem 

1.4.3.are satisfied. Then, if ~ is a construined Z.ocaZ. minirrrwrt point 

of f UJith respect to'Jfl, UJith 
* second variation s(Û,À ;v): 

negative on J- i.e. 

(5.10) s(G,À*;v) > 0 
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The foregoing theoremmay be looked at as a neaessary 

condition for a constrained stationary point ~ to be a constrained 

local minimum point. It is possible to give also a suffiaient 

aondition. 

THEOREM I • 5. 2. Let f: V-+ RZ and T: V -+ Y be t?..rlae aontinuousZy 

differentiabZe at ~. and Zet ~ be a aonstrained stationary point for 

whiah aonditions (i), (ii)and (iii) of theorem 1.4.3. are satisfied. 

Suppose the seaond variation satisfies for some constant c > 0: 

(5.11) ~ * 2 s(u,À ;v) .::_ c.llvll fo:p aU v E"r. 

Then ~ is a aonstrained ZoaaZ minimum point. Moreover, there exists a 

neighbourhood M(~)ciJI/of ~ in ?11 suah that 

( 5 .12) f(u) - f(~) .::_ ~ .c.llu-ûll 2 for every u € M(û)c1J/. 

PROOF: The set 

is a subset of 'JT/ and a neighbourhood of û for every s: > 0 sufficiently 
0 

small. We shall show that for s:
0 

properly chosen, every element 

u E M satisfies the inequality (5.12). Therefore we note that from 
€ 

(5.4) Ît follows that 

2 
€ + 

Hence there exists some s: 1>0 such that 

for every u E M 
€1 

for s: -+ 0. 

From (5.8) together with (5.11) it follows that 

~ I 2 2 
f(u(s:,v)) - f(u) .::_ 2 s: .c + o(s: ), for every s: -+ 0 • 

Hence there exists some s:
2 

> 0 such that 
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- I 2 f(u) - f(u) ~ 4 .E .c for every u € M 
E2 

- I 2 I I I - 2 f(u) - f(u) ~ 4·E .c ~ 4'2•c•l u-uil 

This proves the theorem. 

1.6. SPECIALIZATION TO FUNCTIONAL CONSTRAINTS. 

for every u € M 
EO 

In this sectien we speciali~e the results of the foregoing sections 

D 

to the case that Y is a finite dimensional Euclidean space, say Y=Rln, 

and thus T: V~ Rln. If elementsof Rln are denoted by row vectors, 

the operator T can be described as 

where 

t. V~ Rl 
~ 

i I, 2, ••• , n 

are functionals. The dual space y* =(Rln)* is the n-dimensional 

Euelidean space of column vectors, and the duality map between Rln 

and (Rln)* is the usual matrix multiplication. 

To investigate the conditions (i) and (ii) of theerem 1.4.3. 

we note that 

f A f A 1 A 

T'(u}.v = ( <t 1 (u),v>, <t
2 

(u,v>, ••• , <t
0 

{u},v> ). 

LEMMA 1.6.1. If V is infinite dimensional, oz> if dim V~ 2, the~ 

foz> evez>y ~ € ?7!, 
and hypothesis I .3.3.is satisfied. 

PROOF: If dim V is infinite,~is irifinite dimensional, with 

codimension n. If dim V = m, then (if T' (;}) =i O) dimj= m-1, and 

thus dim.i ~ I if m > 2. 
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DEFINITION 1.6.2. A finitesetof elements {t.}._1 2 
from 

*'' , .. 1 1- , , ••• , n 
V is called linearly independent, if fora. € Rl, i=l, •• ,n. 

1. n 
l: 

i=l 
a.t. = 0 

1 1. - a. = 0 1. 

LEMMA I • 6. 3 • Por Û E ?!/ we have 

for i=l, .. ,n. 

./l(T' (Û) = Rl n - { t.' (Û)} . 
1 

is a linearly independent 
1 1= , ••• , n 

* set of V • 

PROOF: Suppose.fl(T' (Û) Rl n. Then there exist elements v i E V, 

i=t, •• ,n, such tbat 

T'(~).v. = (<t.'(û),v.>, ... ,<t '(Û),v.>) = ~1. , 
1. 1. 1. n 1 

where e. is the i-tb unit vector of Rln. Then 
-]. 

so that 

=a, 1. ,i 

a. = 0 1. for i= I , ... , n. 

1 , •• , n, 

Now supposeJf(T'(Û)) f Rln. This means that there exists some 

* n * * column vector ~ E (Rl ) , ~ + 0, such that 

<T' (Û) .v , * (l > 0 Vv E V • 

* If a. denote the components 
1. * 

* * of a, this implies that l:a. t.' (Û)= 0. 
- 1. 1. 

As ~ f 0, this means that 
t ....... • .. 

the set {t. (u)}._
1 

1.s nat l1nearly 
1 1- , ••• ,n 

independent, which completes the proof. o 

With the foregoing results, theorema 1.4.3. and 1.5.1. are 

easily specialized to the case Y = Rln. Because of its importance 

for the next chapter, we shall formulate the theorema for the special 

case n • I, for which T = t: V~ Rl. Therefore note that ie fellows 

from lemma I .6.1. thatJ"f {0}, provided dim V~ 2, and from 
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lemma 1.6.3. that 

,9l(t'(Û)) = Rl- t'(Û) # 0. 

(If V = Rl, then either t' (~) = 0 or Û is an isolated point of the 

"manifold"). 

THEOREM 1.6.4. Let f: V+ Rl and t : V+ Rl be two given funationals 

on a refiexive B-spaae V. Let for p E Rl 

~:= {u E V I t(u) = p} # ~. 

Then we have 

(i) EXISTENCE: If fis w.l.s.a. on V, andaoeraiveon V 

and t is w.a. on V, 

then f is bounded from beww on ?'/'land attains its infimum on 711 
(Henae, problem .f: inf{f(u)l u E?/l} has a solution). 

(ii) MULTIPLIER RULE:Let f and t be aontinuously differentiable at û €~ 
Suppose t'(Û) # 0 and dim V~ 2.Then, if Û is a aonstrained loaal 

minimum point of f with respeat to 1nthere exists a unique Lagrange

multiplier À € Rl suah that ~ satisfies 

(6.1) 1'(û) - À.t
1 (Û) . 

(iii) EXTREMALITY PROPERTY:If f and t arè twiae aontinuoUJ3ly 
A 

differentiable at u, then in the same situation as in (ii) above. the 

seaond variation 

(6.2) s(Û,À;v> • <S(Û,À).v,v>with S(Û,À) f"(Û) - Àt"(Û) 

is non-negati ve onJ : 

(6.3) s(Û,À;v) > 0 for all v E V whiah satisfy <t'(Û)~v> = 0 • 

(iv) SUFFICIENCY: If f and t are twiae continuously differentiable at 

Û , and if Û. is a constrained station.ary point for which n' (Û) # 0 
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and for whiah 

A 

(6.4) for all v EJ' = {v I <t' (ii) ,v> = 0} 

for some aonstant c > 0 ,then ~ ia a aonstrained Zoaal minimum point 

and there eriata a neighbou:rhood M(;;)c 'lil of~ in '117auah that 

(6.5) f(u)- f(ii) > i·c·ilu-iill
2 for every u E M(;;)c 11t 

1.7. THE ELASTIC LINE. 

Consider an inextensible string of total length t which has constant 

mass density. Suppose the string has finite bending stiffness, the 

energy density of which is proportional to the inverse square of the 

radius of curvature. The endpoints and the tangents to the string 

at these points are taken to be fixed. The effect of gravity forces 

is.neglected. 

The prinaiple of least energy is assumed to hold, which means 

that the actual configuration which is preferred by the string is 

that configuration for which the total bending energy is as small as 

possible when compared with all other configurationsthat satisfy the 

boundary conditions and the total length and constant mass density 

conditions. 

For simplicity we consider only the case for which the boundary 

conditions are such that the string is known to lie in a plane. Then, 

taking a Cartesian coordinate system OXY with the origin at one 

endpoint and the other endpoint at the x-axis, a typical material 

point of the string can he described by a two component vector r = (x,y), 

and the complete configuration may be. described as 

(7. I) !,(S) (x(s) ,y{s)) • 

where s is the ara Zength, running from 0 (the endpoint in the 

origin 0 say) to t: 0 ~ s ~ t. In using this particular parameter s 

to characterize the string, it must be remembered that the tangent 

vector is a unit vector: 
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(7. 2) .r -s 

where r .r = x 2 + y 2
• The conditions at the endp~lints may be -s-s s s 

described as 

.!,(0) = O, .!,(9.) = (L,O) With ltl < 9. 
(7.3) 

r (O) = (cos a, sin a), r (9.) = (cos 13, sin 13) 
s -s 

Fora contiguration described by (7.1) for which x(s) and y(s) are 

sufficiently smooth functions of s, the radius of curvature R satisfies 

-2 
R = r .r -ss -ss 

so that the total bending energy is up to some multiplicative 

constant 

9. 

(7 .4) I I -r 2 -ss 
0 

ds 
s 

The principle of least energy then states that the actual contiguration 

is described by that two component vector (7.1) wbich satisfies (7.2) 

and (7.3) and for which tbe functional (7.4) is minimal when compared 

to all other configurations described by (7.1) wbich satisfy (7.2) 
and (7.3). To obtain a sound mathematica! description of the 

principle it is ne~essary to specify the function space in wbich 

the minimum is sought. Therefore we choose 

2 
, y E H ( 0,9.)) , 

2 
where H (0,9.) is the second Sobolev space of functions defined on the 

interval (0,9.), and H
2 is supplied with the norm 

9. 

11.!:.112 : = 11 x 112 + 11 y 112 ,. I [ r • r + r • r + !. •!. ] ds 
H2 H2 H2 -ss -ss -s -s 

0 

(c.f. subsection 0.1.4.). Then the functional (7.4) isneatlydefined 

on H2 
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i 

(7 .5) f(!) :=} J !.ss·!.ss ds , f !!_2 
-+ Rl 

0 

and the operator T defined by 

(7 .6) T(!) :=!.g·.E.g-1 

is easily seen (using the embedding result H
2
c c1 from subsection 

) . f 2 • I 0.2.3. to be a mapp~ng rom! ~nto H : 

(7. 7) 

Then the principle of least energy leads one to consider the 

following abstract constrained extremum problem 

(7.8) inf {f(!) 

(7 .9) := (T(;:) ; r(o); r(i); r (O); r (i)) 
- - -s -s 

and 

(7.10) a= (0 (0,0) (L,O) (cos a, sin a); (cos a. sin 13)). 

Formulated in this way, the problem bas been brought into a form 

to which the abstract theory of sections 1.2- 1.5 may be applied. 

Note that in this formulation the boundary conditions are considered 

as constraints. Al though a fully satisfactory treatment is possib le 

in this way, the boundary conditions can be dealt with in another 

way. This is done by choosing some function r E H
2 whicb satisfies 

-o -
(7.2) and (7.3). Such a function is likely to exist if the boundary 

conditions are compatible with the constraints, i.e. if 

(7. 11) IL I <i, . a and 13 arbitrary real numbers, 

or L i, (l = 13 = 0 

(7. 12) 

or L - R., a = 13 = 1r. 
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Note that these conditions guarantee that the manifold 

?!/ := {r E H
2 I ,'!.(!_) = 

where ~is given by (7.10), is non-void. In the special case for 

which (7 .12) holds, 'ltt consists of only one element, viz 

IJl/= {r 
-o ( s' 0)} or ?n .. {r 

-o 
(-s,O)} . 

Having chosen such a function !o• we note that every function r E H2 

which satisfies the boundary conditions, can be written as 

(7. 1 3) 

where 

r = r + h 
-o 

with h E H
2 

-o 

H2 = {h E H
2 I h(O) = h(R.) = h (0) .. h (R.) .. 0} 

-o - - - -s -s -

Defining a functional f(r ;.) and an operator T(r ;.) by 
-o -o 

(7 .14) f(r ; h) := f(r + h) 
-o - -o -

(7. 15) T(r ;h) := T(r + h) 
-o- -o -

2 f(r;.):H +Rl 
-o -o 

the principle of least energy amounts to an investigation of the 

constrained extremum problem 

(7.16) inf {f(r ;h) I T(r ;h) = 0 , hE H2 } • -o- -o- - 0 

By construction, the two constrained extremum problems (7 .8) and (7 .16) 

are equivalent. 

EXISTENCE. To prove the existence of a solution of the constrained 

extremum problem, we apply theorem 1 .• 2 .I • to the problem (7 .8). 

Therefore we have to verify the conditions of the theorem. 
2 (i) The functional f given by (7.5) is w.l.s.c. on H • This is an 

easy consequence of remark 0.2.6.(ii). 

(ii) Although f is not coercive on all of ~2 • it is nat too difficult 

to show that f is coercive on the manifold m. 
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(iii) ?!lis weakly closed. This is proved with the aid of lemma 1.2.3., 

and the proof uses extensively the embedding theorem 0.2.9. for 

1 ~. 2 ,.,. I dh Sobo ev spaces. Suppose r ~ r ~n H • Then r ~ L ~n H , an ence 
~ ~'""11-- ~'""11- -~ 2 

r (0) ~ r(O), t' (9.) ~ r(t) and r (0) ~ r (0), r (t) ~ r (9.) in Rt , 
'""11 - '""11 - '""11 -s -n -s . s s 

which shows that the boundary operators are continuous with respect 

to weak convergence, Remains to investigate the operator T as given 

by (7 .6). We shall show that T(!.n) ~T(Ê.> in 1 2• To that end we note 

(using l I ll for the 1 2-norm of both scalarand vector-functions) 

IJT(r)- T(~)ll = ll(r + r ).(r -i' >IJ 
-n - -n -s -n -s s s 

. < 11 r + r 11·11 r - r 11 ~ 0 for n ~ ... , 
--n -s -n -s 

s s 

because llr 
-n s 

+ ~ 11 is uniformly bounded and I Ir - r 11 ~ 0 as 
-n -s 

s 

~ 1 ~ 1 
r ~ r in H • Hence T(r ) ~ T(r) in 12 and as H is continuously 
'""11 '""11 -

embedded in 1 2 we may apply lemma 1.2.3. to conclude that11'lis 
~ • 2 

weakly closed, (In fact it can be shown that if En ~ !. ~n !!. , then 
~ I 

T(r) + T(r) in H forsome subsequence). 
'""11 -

The conditions of theorem 1.2.1. being satisfied it follows that if 

11/<f ~, probrem (7.8) has at teast one sotution Ê. E !!_2• Consequently, 

problem (7.16) has at least one solution, and if wetaker = r (the 
-o -

existence of "some" element r satisfying (7 .2) and (7 .3) now being . -o 
proved when ?1/ f. ~), this solution is h "' 0 

REGULARITY of elements from 11! • For the vectorfunctions from the 

manifold 1fl we have !. E !!_2c: f.1 
( each component of !. is a C 1-function) 

and hence r E C0 and r E 12 . Moreover, because of condition (7.2) 
-s - -ss 

we haver .r E Coo as I E C .... By differentiating (7.2) with respect 
-s-s 

to s it is found that 

(7. 17) r .r 
-s -ss 0 Vs€(0,9.), 

· which :result implies thát discontinuities in the components of r -ss 
(if any) cancel in expressioni like,r .r • We shall use this 

-s -ss 
property in the following. 
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MULTIPLIER RULE. To obtain the equation satisfied by the minûmwu 

point i, it is somewhat simpler to use the formulation (7.16) with 

r = r. Therefore we have first of all to study the null space and 
-o 
range of the operator 

(7 .18) 
,.. 2 

T'(r;O):H 
- -o 

• T'<~;o).h. T'(r).h = r .h • -- ---s-s 

We shall show that if i<s) ~ (!s,Q) 

(7.19) 

In other words, if fis not an isoZated point of~(and ~is isolated 

only if (7. 12) holds) then i is a reguZar point of the manifoZd ?1'1. 
To prove (7 .19), note that ~ €.;. if ~ satisfies 

Therefore we take 

h r 0 -s -s 

s 

~(s) I ~(t;)df; 
0 

with h 
-s b r -ss 

wherein b € n2 n n1 is chosen in such a way that h € H1 !. Then 
0 -s 0 

h € n2 if b satisfies 
0 

(7. 20) 

i 

r b r ds = 0 • 
J -ss 
0 

Provided r I Q there exists a function b + 0 which fulfills the -ss 
requirements. This proves~ 1 {0}. Now, if n € n1 is arbitrary, we 

0 

look for a salution h of 

Such a salution exists, provided r ~ O, which can be seen by 
-ss 

taking 

s 

~(s) = I hs(f;)df; , with h = nr + b r , -s -s -ss 
0 

and where b € n2 n nl is chosen such that h € n1 and 
0 -s 0 
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9. 9. 

I b r ds -I n r ds • -ss -s 
0 0 

Th is R. A I ifr ; (;!:s,o). shows (T'(r;O))=H 
-- 0 

The conditions of theorem 1.4.3. being verified (hypothesis 

1.3.3. is clearly satisfied), we get the governing equation for r 
as follows. Take the L

2
-inner product ( , ) as duality map. Then 

I * -1 2 * -2 (H ) = H , (H ) = H (c.f. subsection 0.1.4.) and we have 
0 -o 

<T'(i;Q).~,o> = (r .h ,o) ~ (-(or) ,h) -s-s -ss- Vh€H2 -I , VoER • 
--o 

(Hence the adjoint operator T'(i;Q) : H-l~ H-2 is defined by 

A * T'(::,;Q) .o = - (or ) -ss ) . 

Then the multiplier rule states that there exists a unique element 

OEH-I such that t satisfies 

(7. 21) 
A 

r -ssss, (o r ) . 
-s s 

-2 Although this is essentially an equation for elements from! , it 

can be shown that r € c~ and cr € c~ . 
[Note that for the particular situation that (7.12) holds, the only 

vectorfunction which satisfies the constraint (7.2) and the boundary 
A 

conditions, viz r = (±s,O), does satisfy an equation of the form 

(7.21). However, then a is not unique: every arbitr~ry constant will 

do] , 

EXTREMALITY PROPERTY. From section 1.5 the following result immediately 

follows: 

(h ,h ) - (cr,h .h ) -ss -ss -s-s 
9. 

I(h .b - crh •h )ds> 0 -ss -ss -s -s -
0 

for all h€H2 with h = o. 
- 0 -s 
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The foregoing results can be sunmarized to give the following 

THEOREM 1.7.1. If the boundary aonditions (7.3) satisfY (7.11) there 

exists an infiniteZy smooth aoZution i of the prinaipZe of least 

energy. Thia aoZution aatiafiea the equations 

r m (a r ) 
-ssss -s s 

r .r = I 
-s-s 

for aome unique Lagrangemultiplier a € c"". Moreover, the non-negativity 

reauZt (7.22) hoZds. 

REMARKS 1.7.2. 

(i) Concerning the uniquenesa of the salution of problem (7.8) (or 

(7.16)), we note that at leastforsome choises of the boundary 

conditions there will be at least two solutions : e.g. if ILI < JL, and 

r (O) = r {JL) = (1,0), (x,-y) is a solution of (7.~) if (x,y) is a 
----5 -s 
sol ut ion. 

(ii) An alternative description of the foregoing system is possible 

by writing r = (cos a, sin a) where now a € H
1 is a scalarfunction 

----5 

of s E[O,JL]. Then the constraint (7.2) is satisfied for arbitrary 

a € H
1

, and the principle of least energy leads to the following 

constrained extremum problem 

JL JL 

(7.23) inf {t f as
2 

ds!aEH
1

;a(O) = a;a(JL) 

0 

B;f ~osa ds = L; 
0 f sin a ds = 0}. 

0 

This formulation is equivalent to (7.8) in the sense that if a is 

a solution of (7.23), the solution of (7.8) is given by 

s 

.Ê_(s) f (cos a(~;)' sin a(~;)}:I~;. 
0 

Note that insteadof the constraint (7.2), problem (7.23) has two 

functional constraints (apart from the boundary conditions), and 

the theory as described insection 1.6., may be applied. A somewhat 

modified version of (7.23) will be more extensively studied in the 

next chapter. 
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(iii) The system considered above may be envisaged as a description 

of the time-independent states of an elastic line which is able 

to move in a plane. With the foregoing results it is an easy matter to 

find the governing dYnamioal equations from Hamiltons principle. For 

shortness we shall only outline the metbod. (See a lso chapter 3.) 

Consider vectorfunctions ~ = ~(s,t) of s E [O,t] and the time t, 

t € [t
1
,t

2
] say, from the B-space V: 

The kinetic energy density is given by -
2

1 p r .r , and the aation 
-t -t 

funational is defined as the difference of the total kinetic energy 

and potential energy 

(7.24) A(~ 
1 1 ds [ -
2 

p r • r - -
2 

B r • r ] • -t -t -ss -ss 

(Here Bis some material constant and pis the constant mass density). 

Then Hamiltons p:l'inaiple states that the aotual description of the 

dynamica! system is such that it is a stationary point of the 

actionfunctional A with respect to the set of elements from V which 

satisfy the eenstraint (7.2) together with specified boundary 

conditions at s = 0, s =i for all t € [t
1
,t

2
] and at t = t

1
, t = t

2 
for all s E [O,t]. As8uming the existence of a salution r of this 

constrained variational 'problem, the theory of sections 1.3., 1.4. 

may be applied to result into: 

(7. 25) 

There exists a unique funation o(s,t) suah that the governing 

equations for i_(s,t) are given by 

p ~t (o r ) - B r 
-s s -ssss 

. r 1 • -s 
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CHAPTER 2: DUAL AND INVERSE V ARIATIONAL PRINCIPLES. 

2.1. INTRODUCTION. 

As an bnportant result of the foregoing chapter, we have obtained 

insection 1.4 the multiplier rule for constrained extremum problems 

of the form 

(1.1) f> : inf f(u) , 
T(u)•y

0 

where f: V+ Rl and T: V+ Y. 

Actually, the equation that must be satisfied by every solution 

of problem f, i.e. equation 1.(4.7), is wellknownand is used 

extensively in many applications from mathematica! physics. In most 

cases this equation will probably have been found with the aid of 

the following 

RECIPE 2.1.1. Let ~ be a solution of problem f. Then there ~ists 
--- * * some e Zement À E Y sueh that the functional t, defined by 

* * (1. 2) t: V x Y + Rl * t (u,y ) f(u) - <y ,T(u) - y
0

> 

~ * * has (u,À ) E VxY as stationary point. 

~ * Indeed, the stationary point (u,À ) of the unconstrained 

functional t satisfies (c .• f. section 0.5.1.) 

(1.3) - * A A * * t'u(u,À) • f'(u) - T'(u) ,).. 0 

(I .4) 

65 



where i' and i' * denote the partial derivatives of i with respect 
u* y 

to u and y respectively, and eq. (1.3) is precisely eq.i 1.(4.7), 

whereas (1.4) expresses the fact that ~ satisfies the constraint. 

Hence, provided the conditions of theorem 1.4.3. are satisfied, there 

is complete agreement between the multiplier rule and the recipe 2.1.1. 

In this chapter we shall investigate the role played by the 
* multiplier À and its dependenee on the actual minimal point ~ 

somewhat more extensively. In particular we shall be 

interested in the relation between problems of the kind (1.1) and 

the unconstrained minimization problems 

* * for y E V fixed. 

inf i(u,y*) 
uEV 

Although the results to be obtained in the following sections 

2.2. and 2.3. can be generalized to answer several of these questions, 

we shall from now on restriet ourselves to extremum ;problett~Swith 
'<i' ' ·- --· • • .• • functl.onal_coi1straints (i.e. Y= Y = RZ:,a~ T=t:V+RZ: a fun,ctiona.l). 

This restrietion will not only simplify the presentation and the 

interpretation of the results, but seems to be also a most interesting 

case for many present-day problems.fromnon-linear analysis. 

Let f and t be two functionals on the reflexive Banach space V, 

and define the functional i (somewhat different from (1.2)) by 

(1.5) i: V x Rl + Rl , i(u,Jl) := f(u) - JJt(u). 

Then, according to the multiplier rule (section 1.6.), if u is a 

salution of 

(1.6) inf f(u) , 
t(u)=p 

and t'(~) ~. 0, ü is a stationary point of the functional i(.,p), 

i.e. ü satisfies 

(I • 7) f' (;i) Jl t' (;;). 
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where Ü is the unique multiplier corresponding to the minimal 

point u • 

To inves tigate when Ü is ani ac tual minimal po int of l!. ( ·, jj) and 

to study the r~la tion between p and the "corresponding" multiplier \l, 

we shall consider pin (1.6) as a parameter. Hence, for given 

functionals f and t, we shall study the family of constrained 

extremum problems 

(1.8) f: p 
inf f(u) 

t(u)=p 
p E Rl. 

In the same way, regarding ll as a parameter, we shall investigate 

the family of unconstrained extremum problems 

inf R.(u, ]..t) 
u €V 

inf [f(u) - pt(u)] 
u €V 

, u ERL 

Insection 2.3. it shall bè shown that (1.9) is closely related 

to a dual formulation of problems P , which implies (among other 
p 

things} that for specific values of p the solution of f is also 

a solution of '(1( for some Jl E R 
ll 

p 

If u is a solution of f> , f is ~inimal at Û with respect to 
p 

the manifold {ult(u) = p}. It is interesting to invèstigate when ~ 

is also an extremal point of the functional t on the manifold 

{ulf(u) = f(~)}. This will be the subject of section 2.4., where 

we compare the solution sets of f with the solution sets of problems 
p 

I and(f : r r 

sup t(u) , qr 
f(u)=r 

inf t(u) , rE Jl(f). 
f(u)=r 

As we have seen insection 1.5 (and in subsection 0.5.1.), from 

the fact that an element Û is a solution of an extremum principle, 

it follows that the second variation has some positivity properties. 

The (sign of the) second variation plays an important role in several 

applications. We shall try to describe this briefly for a specific 

situation. 
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One is sometimes interested in the complete set of stationary points 

of the functional 1(.,~), i.e. in the solution set of the operator 

equation (I. 7). The study of this solution set and its dependenee 

on ~(e.g. the number of solutions and their properties) is the 

subject of what is commonly called bifuraation theopY. The reason 

for this interest is often that an equation of the form (1.7) is 

the equation for the stationary states (i.e. time-independent 

solutions)of an evolution equation. For instance, for evolution 

equations of the form 

(which are parabolic equations in general) or 

w = f'(w) - ~t'(w) tt 

(conservative wave equations), time independent solutions·ii satisfy 

(1-; 7). The stability (in the sense of Lyapunov) of a particular 

stationary state u for such an evolution equation is often 

directly related to extremality properties of ii for the functional 

t(.,p). As follows already from theorem 0.5.3. the second variation 

of the functional t(.,p) at u 

for v E V 

can play a fundamental role in such a stability analysis. This is 

even more true if a "principle of linearized stability" is known 

to hold, in which case merely from the positivity of the second 

variation (i.e. s(ii,p;v) > 0 for all v E V, v f O) stability of u 

for the evolution equation can be deduced. As the only reason was 

to make plausible the importance of the second variation, we shall 

not pursue this subject any further bere.[ For an introduetion to 

general evolution equation and the theory of Lyapunov stability see 

Zubov [16]. For applications of this theory to parabolic equations, 

and to see the role played by the second variation of (Lyapunov-) 

functionals see the contributions of Diekmann (Chapter 1.) and 

Koornwinder (Chapter 5.) in Diekmann & Tem:ne [ 17]. See also Gelfand 

& Fomin [18, chapter 5] for an elementary introduetion into the 
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relation between the theory of second variatien and the conjugate. 

point theory for the linearized operator equation]. 

In the next section we shall deal with some local investigations 

of a more or less heuristic character, which are mainly meant to 

illuminate the lines of the following sections. Insection 2.5. we 

shall apply and demonstrate the derived abstract results to two 

specific problems from mathematica! physics. 

2.2. BEURISTIC CONSIDERATIONS. 

Let us start to consider problem J?_ as the pPimaZ pPobZem to be 
p 

studied, where p €R(t), such that the manifold ~- :={uEVIt(u) = p} 
p 

is non-vo id. As announced, we cons ider a, family of pePtuPbed pPob Zems 

~. defined in (1.8), where for the first instance, the parameter p 
p 

may be thought to lie in a small .neighbourhood !/_ of p . For the first p 
part of this section we assume the following hypothesis to hold. 

HYPOTHESIS 2 .I. I. There exists a neighbourhood :1 _ c RZ of p such 
p 

that: 

(i) for every p E J- there 
p 

exists at least one solution of problem..P_; 
p 

(ii) there exists a solution braneh {U(p) 

p E jf _} such that the mapping p + U(p) 
p 

IU(p) is solution of §> , 
p 

is continuously differèntiable. 

The derivative of this mapping at p will be denoted by U'(p) and will 

be identifièd withits effect at I (thus the mapping U'(p):RZ +V, 

a+ U'(p).a = a.U'(p) and the element U'(p).l E V are identified 

as usual). 

(iii) t'(U(p)) 1 0 for p E 1- . 
(iv) f E c2(V,Rl) and tE c2(v,iz). 

With respect to this hypothesis we remark that condition (i) is 

satisfied if ':J_ c ~(t) and if f and t satisfy conditions of theorem 
p 

1.6.4. (i). Condition (ii~) will be satisfied if t'(U(p) 1 0 and if 

t' is continuous in a neighbourhood of U(p), provided jf_ is taken 
p 

sufficiently small. Condition (ii) is satisfied in many applications 

for almost every p E~(t). 
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Let us define a functinn h on t/_ by 
p 

(2.1) h : !f_ +u ' p 
h(p) = inf f(u) • 

t(u)=p 

As hypothesis 2.2.1. is assumed to hold, h is continuously 

differentiable on ~- • Differentiating the expressions 
p 

h(p) = f(U(p)) and t(U(p)) • p, 

with respect to p gives 

(2.2) h I (p) <f'(U(p)), U'(p)> 

and 

(2.3) <t' (U(p)), U' (p)> 

p .€ ,_ 
p 

By the multiplier rule there exists a number v € RZ such tqat 

(2.4) f'(U(p)) = V t'(U(p)) , 

where u depends on U(p). Substituting (2.4) into (2.2) and hsing (2.3) 

we find 

h' (p) = u (U(p)) • 

From this result we obtain the following 

PROPOSITION 2. 2. 2. I f hypothesis 2. 2. l. is satis fied, every so Zution 

of f has the same unique muLtipZier u, whiah may therefore be 
p ' 

oonsidered as a funation of p., and whiah is reZated to the funation 

h(p) by 

(2.5) h'(p) = u(p) • 

As f and t are assumed to be twice continuously .differentiable, 

it follows from (2.4) that u is a c1-function, and we get by 

differentiating (2.4) with respect to p: 
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{f"(U(p)) - p t"(U(p))},U'(p) = p'(p).t'(U(p)) 

and with (2.3) we find for the second variation 

(2.6) s(U(p), p(p) ;U' (p)) := <{ f" (U(p)) - pt"(U(p))} .u' (p), u• (p)>= p' (p). 

As U(p) is a solution of 9' we have as extremality property (c.f. 
p 

section 1.6.) 

(2. 7) s(U(p),p(p);v) ~ 0 for every v€V with <t'(U(p)),v> 0. 

From these results we immediately obtain the following 

PROPOSITION 2.2.3. Assume that hypothesis 2.2.1. is satisfied and 

~Pite ~ = p(p) and ~ = U(p). Then ~e have: 

(i) if p'(p) > 0 then 

s(~.~;v) > 0 foP aZl v E V, 

~hiah means that Ü satisfies the neaessar.y aonditions to be a 

minimal point of the funational 9.(• .~) = f - pt; 
(ii) if p'{p) < 0 then ~ is nota minimal point of the funational 

~(·,~).In faat. ~is a saddle point of~(·,;) in the foll~ng 
sense: ~(·,;) is minimal at Ü ~th Pespeat to all auwes through u 

on the manifoZd 11/_. ~( • , ~) is maximal at ~ ~i th Pespeat to the 
- p -

auPVe u(e) =u+ e U'(p), E E Rl. 

In the -rest of this section we shall formulate in a canonical 

way an alternative variational formulation for the minimum value 

h(p) of probl'~ JP_ • This alternative principle will be shown to 
p 

hold if some local requirements (i.e. for p in some neighbour~ood 

of p) for h(p) are fulfilled. However, this alternative turns out to 

be a useful device only if also some global requirements (i.e. for 

all p E Rl) are satisfied by the function h(p). 

The local requirement (which is only necessary ·to facilitate 

the beuristic analysis) is that h is a smooth curve in a neighbourhood 
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of p with 

(2.9) h"(p) .; o. 

Then h is either convex or concave in a neighbourhood of p • 

HYPOTHESIS 2.2.4. Suppose h is defined for all p insome neighbourhood 

'J_ of p, hE c2(!/ -) and str-i<JtZy <Jonve:x: on ~ -, i.e. h"(p) > 0 
p H p . p 

for all p EJ-. 
p 

With this hypothesis it is possible to define the Legendr-e 

tpansfo~ of the function h. If we denote this Legendre transferm 
* by h, we have 

* (2.10) h(v) : = V•P - h(p) fer v E :1- , 
V 

where in the right hand side p has to expressed as a function of v 
according to 

(2.11) V hl (p) 
' 

and where v a h I (p) and 
i-'1: 

(2. 12) IJ_ = { h' (p) I p E !/_} . 
V p 

* ** The Legendre transferm of h, te be denoted by h, is analogously 

given by 

** * (2 .13) h(q) = v.q - h(v) 

where 

* (2 .14} q = h 1 
( v) • 

** Moreover, h and h coincide on ~-p 

(2.15) 
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Now an important observation to reach our goal is to note that 

* h, as given by (2.10), (2.11) and (2.12) can also bedescribed 

as 

(2.16) 

** and h as 

(2 .17) 

* h(\.1) SU~ (\.l.q - h(q)) 
qE 3-p 

for \.IE~
\.1 

**h(p) = su~ [\.l•P - *h(\.1)] for PE <Y-
\.IE ~ p 

Substituting (2.16) into (2.17) and using (2.15) we find 

(2 .18) ** h(p) = h(p) = sup inf [h(q) + J.l(p-q)] for p E 1- , 
\.1 E~jj q E~'P p 

valid for arbitrary function h satisfying hypothesis 2.2.4. 

Specializing to p = p and inserting the variational formulation for 

h(p), i.e. 

(2 .19) 

there resul ts 

(2.20) 

or equivalently 

(2.21) 

where 

(2.22) 

h(p) 

h(p) 

inf f(u) , 
t(u)=p 

sup inf inf [f(u)-\.lq + \.lP 
\.1 E tf_ qE ~- t(u)=q 

\.1 p 

inf [f(u)-\.lt(u)+J.lp] , 
u€!1 

n = {uEV I t(u) = q, q E :/-} • 
p 

It is clear that we hàve obtained in this way an alternative 

variational characterization for the value h(p) differing from (2.19), 

which we shall call the formaZ duaZ problem 

(2.23) *J_ 
p 

sup 
\.1 E(f\.1 

inf [f(u)-J.l(t(u)-p)] 
u€!1 
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By construction, the supremum is attained for 

(2. 24) -
ll = ll h I (p)' 

and if problem 9- has ü as a solution, it follows from (2. 23) 
p 

that ü satisfies 

(2.25) t(ii) p 

and that Ü is a solution of 

(2.26) inf [f(u) - Pt(u)] 
uErl 

(c.f. also theorem 2.3.5.). 

Hence, if hypothesis 2.2.4. is satisfied, (2.23) gives a 

variational characterization for ü, which is the multiplier 
I 

corresponding to ü because of (2.24), and an alternative v~riational 

principle for ü, viz (2.26). Moreover, as ü is an interior point of 

rl, ü satisfies (c.f. theorem 0.5.2.): 

(2.27) f' (Ü) = iit' (ii) 

and 

(2.28) s(Ü,Ü;v) > 0 for all v EV. 
I 

Note that (2.27) agrees with the multiplier rule for Ü as a salution 

of .P P , and (2.28) agrees with property 2.2.3. (i)(as ll' (p) = h"(p) > O). 

Let us now consider a concave function h. 

HYPOTHESIS 2.2.5. Suppose h is defined for all p in some neighbourhood 

!/- of p , h E c2( !/-) and h is strictly concave on ,_, i.e. h"(p)<O p p p 
for all p E~-. 

p 

* Then the Legendre transform h is again given by (2.10), (2.11) 

on ~ , but insteadof (2.16) one bas the characterization 
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* (2.29) h(ll) inf [llq - h(q)]. 
q€ fJ-p 

** This results in an expression for h(p): 

** -h(p) inf 
)1€ t/.

)1 

sup inf [f(u) -)lt(u) + llP ] , 
q€ :/- t(u)=q 

p 

which givesrise to the following formal dual problem 

(2.30) inf sup inf [f(u) - ll(t(u) - p)] • 
J.l€ ~- q Ef- t (u)=q 

)l p 

The infimum being attained at 11 = ii, the remaining maxi-mini principle 

SUP. 

qE 'i/
p 

inf [f(u) - (Tt(u)] 
t(u)=q 

expressesthe saddle point property of Ü as a stationary point of the 

functional ll.{·,~)=f- iit, in agreement with property 2.2.3.,(ii). 

Concerning the relevanee of the foregoing results, one may say 

that if it were known a priori that hypothesis 2.2.4 (or 2.2.5) is 

satisfied, the dual formulation (2.23) (2.30 respectively) gives. 

another characterization for the value h(p), a variational 

characterization and interpretation for ; and, in case h is convex, 

a different variational 'Principle for the constrained minimal sol~tion 

of JP_ . However, if the starting point is an investigation of 
p 

problem §>p , it will be unknown whether hypothesis 2.2.4. or 2.2.5 

is satisfied. Moreover, even if it were known that one of these 

hypothesis is fulfilled, and if 1- and ~- are known (such that Q 
P ll *o 

as defined by (2.22) is known in principle), problems .Y- and *f-
p p 

are still constrained extremum problems which, in general, will be 

as difficult as the original problem JP_ • 
p 

Nevertheless, the foregoing treatment may illuminate somewhat 

the manipulations in the next section: naively speaking, one gets rid 

of the constrai~ts in the formulation * JP_ by defining as dual . p 
formulation 

!/_* 
p 

sup 
Jl€RZ 

inf [f(u) - J.l(t(u) - p)] 
uEV 
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By doing so a much simpler dual problem results, but the relation 

with the original problem §J_ is no longer warranted in advance and 
p 

has to be studied in detail. This will be done in the next section, 

but using the notion of polaP function as defined in section 0.6 it 
* * ** ** will be clear (by camparing h (~) with h(~) and h (p) with h(p)) 

that if hypothesis 2.2.4. is satisfied, the dual formulation f'_* 
*f ** ** . p and -are the same provided h (p) = h(p), which in this case 

p 
requires h to be subdifferentiable at p. Hereafter it shall be shown 

that without any requirement as 

bility of h at p, together with 

in hypothesis 2.2.4., subdifferentia

the existence of a solution of fJ_ , . p &J_* suffices to guarantee that T-
P 

is a meaningful dual formulation for 
f-

p 

2.3. DUALITY PRINCIPLE. 

In this section we shall consider the family of· problems 

(3 .I) f. : p 

for all pERZ by setting 

inf f(u) 
t(u)=p 

(3.2) inf f 
p 

= 00 ifpf..J(t), 

and we define 

if p E Jl (t) 

(3.3) h RZ • Rl, h(p) 
else 

LEMMA 2.3.1. An equivalent formulation of problem f_ is . p 

(3.4) f.: p 
inf sup [f(u) - ~(t(u) - p)] 
u ~ 

1JJher>e her>e and in the foll01JJing inf denotes inf and sup 
u u€V ~ 

PROOF: Immedia te from [ f(:) if 

sup [f(u) - ~(t(u)-p)] 
~ if 
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Now we define - guided by the observations from the foregoing 

sectien - a variational problem 9*. 
p 

DEFINITION 2.3;2.The dual problem 

defined as 

0* 
T of the primal problem P._ is 

p p 

(3.5) f. * : p 
sup inf [f(u) - ~(t(u) - p)]. 
~ u 

The supremum of prohlem 

said to be a solution of 

f' * will be denoted by sup f *, 
E..* * p 

and ~ is 

(3.6) sup f-* 
p 

y_ if sup P- is finite and 
p p 

inf [f(u) - ~(t(u) - p)]. 
u 

The following lemma relates the polar and bipolar function of 

h to the functional f - ~t and to the dual problem respectively, 

LEMMA 2.3.3. * h (~) 

** h (p) 

PROOF: By defintion 

- inf [f{u) - ~t(u)] 

u * sup f'_ 
p 

* h (~) = sup [~p - h(p)] sup sup [ -f(u) + ~p ] 
p t(u)=p p 

= sup sup [-f(u) + ~t(u)] 
p t(u)=p 

sup [- f(u) + ~t(u)] , 
u 

the last equality because of the fact that {uEV I t(u)=p, PERl} = V. 

With this result we immediately obtain 

** * h (p) = sup[ p-h (~)] = sup inf[f(u)-~(t(u)-p)] 

~ ~ u 

LEMMA 2.3.4. D* . t:l 
sup .Jp 2_ mf Tp 

sup .P *. 
p c 

PROOF: As h(p) = inf P and h** (p) = sup P *, the lemma states that 
** p p 

h (p) 2_ h(p), which is property 0.6.6., (b). Without reference to 

this result, it is clear from the following steps: 
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inf[ f (u) -)J ( t( u)-p) ].::_ f(u)-ll(t(u)-p) VuEV VllERl 
u 

sup inf[f(u) - ll(t(u)-p)].::_ sup[f(u)-ll(t(u)-p)] Vu EV 
jJ u jJ 

sup f'*< inf sup [f(u)-\l(t(u)-p)] inf f. p - p u jJ 

The following theorem shows that, under the stated conditions, 

problem J'_* is a variational characterization for the multiplier~ 
p - 0 

corresponding to the solution u of I- . 
p 

THEOREM 2.3.5. Suppoae f_ has a aoZution, aay 
- p 

u, suppoae f_ * haa 
p 

a aolution ll and suppoae 

(3.7) inf J'
p 

= sup f>_ * . 
p 

Then ~ ia a aolution of the unconstroined extremum problem 

(3.8) inf [f(u)- ~t(u)]; 
u 

aonsequently, if f,t E c 2
(v,Rl), then;;: aatiafiea 

{3.9) f'(~) = jJ t'(~) 

(3.10) s(u .~;v) = <(f"(;:i)-p t"(u)).v,v> ?_ 0 for all v EV. 

PROOF: By definition of Ü : 

sup f_ * 
p 

and by definition of ;:; 

inf[f(u) - p(t(u) - p)], 
u 

inf f: = f(ü) = f(Ü) - ~(t(u) - p) p (because 

t(ü) = ji). 

From this it follows with (3.7) that u is a solution of (3.8), and 

0 

the remaining part of the theorem follows from theorem 0.5.2.. 0 
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REMARK 2.3. 6. A consequence of tbis tbeorem is that if problem f_ * 
----- p 
admitsmore tban one solution, tben t'(u) = 0 for every salution 

of f'_ and bence f' (Ü) = 0: every salution of f_ is tben a stationary 
p p -

point of tbe unconstrained functional f. Furtbermore, if ~ is tbe 

unique sol ut ion of f_ *, every sol ut ion of f_ bas tbis same value 
p p 

i:i as multiplier. 

Because of tbe nice correspondence between solutions of jP_ 
* p 

and tbose of p_ as expressed by tbeorem 2.3.5., wedefine 
p 

DEFINITION 2.3.7. Problem f is said to be duaZ stable if 
p 

(i) '1. bas a salution p 

* (ii) f. bas a sol ut ion p 

iii) sup f* = inf pp p 

Witb tbe next lemma it will be possible to give an equivalent 

definition of dual-stability. 

LEMMA 2.3.8.The soZution set of probZem f> * aoincides with the 
** p 

subdiffe:r>entiaZ of b at p, i.e. 

[) * **' ~ is a soZution of J" - ~ Eab (p). 
p 

PROOF: By definition 

** ** *** ~E<lb (p) - b (p) + b (~) = ~p 

*** * using property 0.6.6. (c), i.e. b = b , and lemma 2.3.3. we find 

- sup fJ* = inf[f(u)-~(t(u)-p)] 
p u 

·- ~ is a salution of f *. p 

-
0 
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PROPOSITION 2.3.9. Problem f is dual-stable if and only if 
p 

(i) J'P has a solution, 

(ii) h is subdifferentiable at p (ah(p) + 0). 

PROOF: Suppose P is dual stable. Then sup f_ * = inf f, i.e. 
** p p p 

h (p) = h(p), and from property 0.6.6. (g) it follows that 
** 0* ah(p) =ah (p). As ~ bas a solution, according to lemma 2.3.8. 

** p ah (p) + 0 , and thus ah(p) + 0 which means that h is subdifferentia-

bie at p. On the other hand, suppose ah(p) ~ 0. From property 0.6.6. 

** ** (e) it then follows that h(p) = h (p), and consequently ah(p) =ah w). 
D* D n . 

Hence sup J = inf ~ and ah (p) + ~ which implies with lemma 
pf* p 

2.3.8. that p has a solution. This completes the proof. 0 

The aim is now to find a stability-criterion, i.e. conditions for the 

functionals f and t such that problem ~ is dual-stable. In the 
following we shall seek for a stability criterion which gives, for 

fixed functionals f and t, the set of values p for which ,~ is stable, 

i.e. we shall characterize the dual-stable p-interval. 

DEFINITION· 2.3.10 The dual-stable p-interval is defined as 

IJ := {p € Rlj J> is dual-stable}. 
p p 

It turns out to be possible to characterize this interval U 
p 

completely from some knowledge of the family of extremum problems ~ • 
IJ 

DEFINITION 2.3.11. For the class of unconstrained extremum problems 

~IJ inf [f(u) - IJt(u)) , 1J€Rl 

we define the intervals 

and 

where 
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K : .. { uev I u is a solution of ~ } • 
~ ~ 

LEMMA 2.3.12. 7_ is a simply connected interval of Rl, o:nd 
-- * ~ 
-inf ~ = h (J.!) is a finite, convex function on this interval. 

~ 

PROOF: In fact this lemma is nothing else than property 0.6.6. (a). 

To give a direct proof, we shall show that the function k(u): = inf 't 
).! 

satisfies for arbitrary À,v€Rl 

for all À, 0 < À < I , 

from which the two statements follow. Therefore: 

k(Àp + (1-À)v) = inf [f(u) - (ÀJ.! + (1-À)v). t(u)] 
u 

inf {À[f{u) - pt(u)] + (1-À) [f{u) - vt(u)]} 
u 

> inf À• [f{u) - pt(u)] + inf (1-À) [f{u) - vt(u)] 
u u 

for every 0 <À<). 

The following lemma char.acterizes the interval 

important class of functionals. 

... 
H for an 
:.1~ 

LEMMA 2.3.13. Let f: V+ Rl be w.l.s.c.and coercive on V, and let 

-;;;: Rl be w.c. Then we have 1 ::: t/ . Moreover, 
).! ~ ~ 

(i) if t is bounded from above o:nd from below on V, then 1 = Rl 
A + ).! 

(ii) if t is bounded from above, then 1 ~ Rl = {u€Rll u > 0} 
A~ - -

(iii) if t is bounded from below, then 4 ~ Rl = {~ERll u < 0} 
~ 

PROOF: Note that f-ut is a w.l.s.c. functional on V for every ).!€Rl 

(remark0.2.6.(i)). Hence if f-ut is bounded from below on V then 

f-Jit attains its infimum: see (proof of) theorem 0.5.3. and remark 

0.5.4. Moreover, it follows that 

... 
1 = IJ ~ { u€Rll f-ut is coercive on V}. u u 

With this result, together with the coercivity of f on V, the three 

0 
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statements follow. [J 

... 
THEOREM 2.3.14. Let ii EÎ. Then f_ is du.al stable for p E{t(u)luEK-}. 

ll p ll 

PROOF: For pE{t(u)luEK.} we shall show that pEah(p) and that JP_ bas 
ll p 

a solution. The result then follows from proposition 2.3.9. Let 

p: t(Ü), with ÜEK_. Then (using lemma 2.3.3. in the first equality) 
ll 

* - - - - - -- h (u) = inf[f(u) - ut(u)] = f(u) - ut(u) : f(u) - up 
u 

As p t(Ü), we have by definition of h(p): h(p) ~ f(~). 

These results together imply that 

* -h (u) \lP- f(~) <\lP- h(p). 

* -On the other hand, by definition of h (u): 

sup [vP - h(p)] .::_ \lP - h(p). 
p 

From these results it fellows that h(p) f(Ü), which means that u 

is a solution of JP_' and that h*(v) + h(p) = vp, which means that 
- - p 
uEah(p) (c.f. definition 0.6.2). This completes the proof. o 

=;;;.;...c..c;;:;;__ 
2.3.15. (dual-stability ariterion) 

The dual-stability interval is aompletely aharaaterized by 

"' Ij_ = {t(u)l uEK, ll E ~ }. 
p ll ll 

" PROOF. The inclusion 1 c: {t(u)l uEK ,\l E!J} is an inmediate 
p ll ll 

consequence of definition 2.3.7. and theorem 2.3.5. The reversed 

inclusion is the contents of theorem 2.3.14. This completes the 

proof. 

The foregoing results show that there is a one-to-o~e 

correspondence between the salutionsof the constrained extremum 

problems {f} E!/ and the solutions of the unconstrained extremum 
p p p 

problems {~ } E IJ" • Th is means that: (i) if ÜEK- , then Ü is a 
ll ll ll ll 
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solution of JP_ and Ü is a solution of J'_* where p = t(~) and 
- P a Pk -

(ii) if u is a solution of J , where p E v , and if ll is a solution 
o* - .... - P P 

of .T , then ll E !I and u E K- • p jl jl 

2.4. INVERSE EXTREMUM PRINCIPLES. 

A 

We start this section with some local investigations. Suppose UEV 

satisfies for some ÀERl 

(4 .I) f'(Û) = Àt'(ii) 

Then, if t'(û) ~ 0, û is a regular point of the manifold 

t': = {uEvl t(u) = t(û~} • 

and û is a constrained stationary po,int of f with respect to 7:. 
Moreover, if À~ 0 then f'(û) ~ 0, and û is a regular point of the 

manifold 

"== {uEV I f(u) = f(û)} 

and is a constrained stationary point of t with respect tof. From 

these observàtions the fbllowing result is easily obtained. 

PROPOSITION 2.4. I. If f' (û) ~ 0 and t' (û)" 0 then 

û is a aortstrained stationa;rry point of f with respeat to t' 

if and only if 

û is a aortstrained stationary point of t with respeat to :F 

Note that if û satisfies (4.1) and f'(û) 1 0, t'(û) ~ 0, then 

the tangent spaces at û to r and to ~ coincide: 

(4 .2) {vEV l<t'(û),v> = O}=..#"{t'(û)) =il"'(f'(û)) = {vEVI <f'(û) 1 v> = O}. 

From this key observation it follows that some extremality properties 

of f on the manifold (at û may be transferred to extremality prope~ 
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ties of t on the manifold Y:. at û: 

PROPOSITION 2.4.2. Let f€C
2

(V,Rl), tEC
2

(V,Rl). Suppose Û Et satisfies 

(4.1) ~ith f'(û) ~ 0 and t'(û) ~ 0 Suppose there exists a 

neighbourhood Mt (û) c; t: of û in 't and a constant c > 0 such that 

(4.3) f(u) - f(û) ~ c.!!u-ûll
2 

for every u E Mt(û) c; t' 

(hence û is a constrained minimum of f ~ith respect. to r ) .. 
Then there exists a neighbourhood Mf(û) c; Fof û in 1= and a constant 

d > 0 such that 

(i) if À > O: 

(4.4) t(û) -t(u) ~ d.llu-ûll
2 

for every u EMf(û) c; F 
(hence û is a constrained maximum of t ~ith respect to F ) 
(ii)if 1.<0: 

(4.5) t(u) - t(û) ~ d. llu-ûll
2 for every u E Mf(û) 

(hence û is a constrained minimum of t ~ith respect to ~). 

PROOF: Consider points in a neighbourhood of û at 

u(E:,v) = û + E:V + ,P(E:v) , llvll • 1, v E..l'{t'(jj)) • 

. From le11111a 1.3.7. we have 

for E: -+ 0 

and hence 

Equation 1.(5.8), specialized toT • t: V-+ Rl giveB 

f(u(E:,v)) - f(û) =i E:
2

< {f"(û) -H"(û)}.v,v> + o(E:
2

) for e:-+ 0. 

From these result, together with (4.3) it follows that for le:l 

sufficiently small: 

<{f"(û) - H"(û)}.v,v> ~ 2c e:
2 

VvEJft'(û)), llvll 1. 
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From this wededuce with (4.2): 

->.<{ t"(û) - À-l .f"(û)} .v,v >i! 2cllvll 2 VvE'.I(f' (û)}. 

The results then follow from theorem 1.6.4.(iv). 0 

With local investigations as described above it is not possible 

, to relate global extrema of f with respect to t' to global extrema 

of t with respect to ~ • To study this relationship we shall consider 

three classes of constrained extremum problems. 

DEFINITION 2.4.3. 

(4 .6) f inf f(u) h(p) := inf f p EJl(t). p t(u)=p p 

(4. 7) fr sup t(u) s(r):= sup / r E~(f). 
f(u)=r r 

(4.8) qr: inf t(u) q(r) := inf ~ , r EJè(f). 
f(u)=r r 

Specifically we shall investigate for which values of p the 

solutions of f can also be obtained from ! or c:?, for some rE.fl(f). 
p r r 

PROPOSITION 2.4.4. (i) For every p Efl(t) for whiah f has a 
' p 

salution we have s(h(p)) ~ p •. 

(ii) If f has a solution., and if s(h(p)) = pJ;hen the solution sets 
p 

of fp and :fh(p) aoinaide. 

PROOF: Let Ü be a salution of f_, then f(Ü) = h(p) and t(ii) p. 
p 

Th en 

s(h(p)) = sup t(u) > t(~) = p, 
f(u)=h(p) 

which proves (i). Moreover, if s(h(p)) = p, then Ü is clearly a 

salution of ~h(p)' On the other hand, if û is a salution of :fh(p)' 

then 

s(h(p)) = t(û) and h(p) = f(û). 

85 



Hence if s(h(p)) m p, then û is a salution of J'. This proves (ii).c 
p 

THEOREM 2.4.5. Suppoae p E.f(t) ia auah that f haa a aolution and 
p 

that 

(4. 9} 

Then 

h(~) > h(p) for> ever>y ~ > p, ~ E.{h>. 

s(h(p)) = p. 

PROOF: The proof goes by contradiction. Suppose s(h(p)) ~ p + a 

for some a > 0. (because of lemma 2.4.4.(i) weneed not to 

investigate the possibility a < 0). Then 

sup t(u) = p +a, 
f(u)=h(p) 

which means that there exists an element û E V and 7; E Rl with 

p < 7; < p +a sucht that t(û) = ~ and f(û) m h(p). From this it 

follows that 

h(~) := inf f(u) < f(û) = h(p). 
t(u)=~ -

As~ > p this contradiets the assumption (4.9). Hence s{h(p)) = p. c 

The following corollaries follow immediately from the 

foregoing theorem. 

COROLLARY 2.4.6. Suppoae p E Rl ia auah that f' haa a solution 
0 p 

for> ever>y p > p , p E Je(t), and suah that h is monotoniaally 
0 

incr>easin(J for> p > p , p E i'{t). Then s(h(p)) = p for> ever>y 
0 

p E ~ ( t) ~ p > p • In other> oorua: in that case the function 
0 

s(r) on {h{p) I p > p = p ER{t)} is the inver>se of the jUnation 
0 

h(p) on {p I p > p , p E ~(t)}. 
0 

COROLLARY 2.4. 7. Suppose f has a aolution and auppoae ll E ah(p) '/: t1 
p 

with ll > O.Then s(h(p)) = p. 

In the same way as the foregoing results relate the problems 

J to f , it is possible to relate the problems .1"'1 to f' . We ~r p ~r p 
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merely state the results. 

TIIEOREM 2.4.8. (i) For every p e.R(t) for whiah .f has a soZutian . p 
we have q(h(p)) ::_ p. 

(ii) If ~ has a soZution and if q(h(p)) = p then the soZution sets 
p 

of ?P and Qh(p) aoimide. 
( iii) Suppose p € fl ( t) is suah that f has a so Zution and that 

p 

h(r;) > h(p) for every r;< p, r; € f{(t). 

T~en q(h(p)) = p. 

(iv) If p € Rz is suoh that .f' has a soZution for every 
0 p . . 

p < p , p € R (t) and suah that h is monotoniaaUy decreasing for 
0 

p < p , then q(h(p)) • p for evexy p < p • p € ~(t): q(r) on 
0 0 

{h(p) I p < p
0

, p € f(t)} is the inverse of the fumtion h(p) on 

{PIP< Po' p €~(t)}. 
(v) If f has a soZution and if 1-1 È a h(p) + ~ with 1-1 < 0 then 

p 
q(h(p)) = p. 

REMARK 2.4. 9. Bec:ause of the results described iri. c:orollary 2.4 .6. 

and theorem 2.4.8. (iv), we want to c:all the problems :l and <1;> · r r 
inverse extrema! problems c:orresponding to f . 

p 

REMARK 2.4.10. In the applic:ations of the next sec:tion f and t 

satisfy the c:onditions of theorem 1.6.4.(i). Then the existenc:e of 

a salution of f for every p € R ( t) is warran.ted in advanc:e, but 
p 

1 and ~ need not to have solutions as we shall see below. 
r r 

Nevertheless, if it is known that e.g. ~ has solutions for every 
r 

r > r , properties of the func:tion · q(r) c:an be used to obtain 
0 

information about the func:tion h(p) on {q(r) I r > r } • Therefore 
0 

it is only nec:essary to replac:e the role of f and t in theorem 2.4.8. 

It is illustrative to c:onsider the variational princ:iples j' . r 
and ~ also from another point of view. To that end we c:onsider 

r 
the sets 

B :={u E·v I f(u) < r}, 
r 
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and we campare problems '!, and q with the extremum problems 
r r 

sup t(u) , 
f(u).s_r 

inf t(u) . 
f(u).s_r 

The idea is that the manifold {ui f(u) = r}c V is the boundary of the 

set B , which implies that if t is known to have a maximum or minimum 
r 

at B which does not lie in the interior then this extremal element 
r 

must lie on the boundary and hence be a solution of-! orq . To make r r 
any progress in this direction we assume th~t 

f is w.l.s.c. and coercive on V, 

t is w .c . on V. 

Then f is bounded from below on V and attains its infimum (c.f. 

theorem 0.5.4. andremark 0.5.5.). Therefore it is no· restrietion 

to assume that f satisfies 

f(O) o, f(u) > 0 Vu € V (f'(O) 0. .R(f) 

Moreover, we have the following 

LEMMA 2.4.11. The set B, for r > O,is bounded and weakZ.y 
----- r 

+ RZ. ) • 

sequentiaZ.Z.y eZ.osed. ConsequentZ.y, t is bounded from beZ.ow and above 

and attains its maximum and minimwn at every Br• r > 0, say at the 

points M and m respeetiveZ.y. 
r r 

PROOF: The boundedness of Br follows from the coercivity of f. 

Moreover, if u ~ û in V with {u } c B , then f(u ) < r Vn. As f is 
n n r n -

w.l.s.c. we have f(û) < lim inf f(u ) < r. Hence a € Br which shows 
- n 

that B is weakly sequentially closed. The rest of the lemma follows 
r 

from theorem 0.5.6. [J 

Of course it is possible that bath the maximal and ~he minimal 
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value of t are attained at interior points of B Then we have 
r 

t 1 (M ) .. 0 = t 1 (m ) , and problems ~ and "1 need not to have a r r r r 
solution. Hence if it is known that t bas only one stationarypoint on v, 
then at least one of these two extremal points must lie on the 

boundary of Br: 

COROLLARY 2.4.12 Suppose t(O) = 0 and t 1 (u) = 0 if and only if 

·u .. 0. Then, if t takes positive values at eve:roy neighboUPhood of 

u= 0 we have 

sup t(u) 
f<r 

.. sup t(u) • t(M ) 
f•r r 

and f(M ) 
r 

r, 

i.e. M 
r 

lies at the bounda:r.y of Ë and M is a salution of 1 for r r r 
every r > 0. Moreover, if for some r > 0, t takes also negative 

0 

values at the bounda:r.y of B , then 
r 

inf t(u) inf t(u) 
f=r 

0 

t(m ) 
r 

and f(m ) 
r 

r, 

i.e. m lies at the bounda:r.y of B and m is a salution of Qr for r r r 
eve:roy r > r • 

0 

2.5. APPLICATIONS. 

In this section we shall show how the abstract results of the 

foregoing sections can be applied to two specific pro.blems. For each 

of these problems, the unconstrained extremum ~roblems ~ have been 
. . ]J 

extensively studied in literature and we advantageously use the 

obtained resul ts for the investigation of the problems J>.. • 
p 

Euler-buakling. 

The first system to be considered deals with the stationary states 

of an elastic line and serves as a model for the buckling of a thin, 

inextensible rod. In fact this problem was studied insection 1.7., 

but bere we describe the configuration with e(s), which is the angle 

between the tangent to the elastic line and the positive x-axis 
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(c.f. remark 1.7.2. (ii). For simplicity we take as boundary 

conditiQns 

fl(O) fl(R.) 0, 

which means that, taking E_(O) = Q, the other endpoint ofthe line 

is no langer restricted to lie on the x-axis. Looking for 

configurationswhich have least bending energy for given distance 

in x-direction of the endpoints, may he formulated as follows 

R. 

f(fl) = .!.. f 
2 J 

fl 2 ds s 

f'.: 
0 

a€H1 (0,R.). (5.1) inf f(S) with for p t(fl)cp R. 0 

t(S) J (I-cos fl)ds 

0 

It may be noted in advance that f and t satisfy hypothesis 2.4.4. 

Moreover 

(5.2) Jl(t) = [o, p ) 
0 

and 

(5.3) t' (8) sin a 

with p 
0 

o - a 

2R., 

0 - p 0 

From this it follows that f has a solution for every p € fl.(t), p 
and for p € (O,p ) this salution satisfies for some unique ~ € Rl: 

0 

(5 .4) f'(S) ~ t'(fl) - 6 + ~ sin fl "' 0. ss 

I * -1 [Note that although (5.4) is formally an equation in (H ) = H , 
0 

every solution of (5.4) is actually a e,""-function]. The multiplier 

~ bas a physical interpretation in this case: it is proportional 

to the horizontal component of the compressive load. necessary to 

maintain the rod in the required position. The unconstrained 

extremum problems !A:;~ are : 

90 



t 

(5.5) 
,.,, r 1 2 
J'llJ : inf J ds [ 2 a s - lJ (I-cos a ) ] ' 

0 

and from lemma 2.3.13 it follows with (5.2) that 

It is easily seen that 

(5.6) for lJ < 0 inf tk lJ = 0 K 
lJ 

{0}. 

"" J = Rl. 
lJ 

For lJ > 0 the extremum problems ~ are well known in literature. 
lJ 

Considered as a non-linear eigenvalue problem, lJ > 0 and fixed, the 

solutions of (5.4) were investigated: this problem serves as an 

example in almest every introduetion to bifurcation theory. Moreover, 

the solutionscan be explicitely, expressed in terms of Jacobi elliptic 

functions(see e.g. Stakgold [19], Reiss [20] and van der Varst [21]). 

From the available information we emphasize the following results. 

PROPOSITION 2.5.1. 

(5.7) (i) foP 0 ~ lJ ~ JJ 1 , inf ~ = 0 and K = {0}, whePe 
lJ lJ 

2 
JJ

1 
= ~ /i2 is the fiPet eigenvalue of the lineaPized 

(around e = O) eig~nvalue problem eoPP@ponding to (5.4), 

i.e. e + JJB = o, a(O) = B(t) = 0; ss 

(5.8) (ii) foP JJ > JJ
1 

, inf llJ < 0 and K = { + e }, 
lJ - lJ 

where elJ is a solut~on of (5.4) uniquely detemrined 

(apaPt from sign) by .the faat that it hae no zePo's in the 

intePVal (.O,Ji-). The solutions {8 } fo!"'/71 the soealled 
lJ JJ>JJ1 

first bifUPeation branch (~rst buekling mod?s) and on 

thie branch t and f are monotone inereaeing funetions 

of JJ, t PUnning from 0 to p and f from 0 to "'· 
0 

With these results we may apply the theory as developed in 

section 2.3. and 2.4.: 

COROLLARY 2.5.2. The dual stable interval of (5.1) is given by 
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(5.9) 

the fiPst bifuPeation bPaneh may also be ~etePized with 

p € (0, p ) , and the solutions of J', p > 0 aPe in a one-to-one 
0 p 

aoppespondenee with the solutions of ~ , j.l ~ 0. MoPeoveP, these 
j.l 

solutions aan also be ehaPaatePized by 

(5. 10) -;(r sup t(e) r > 0 
f(6)=r 

, 

and s(r) :== sup -f on (O,oo) is the invePse of the funetion h(p) on r 
[O,p ): 

0 

(5 .11) s(h(p}) = p foP P€ (O 'po) 

REMARKS 2.5.4. (i) See figures 2.5.1., 2.5.2. and 2.5.3. 

(ii) In agreement with (5.6) and (5.7) we have 

(5.12) oh(O) 

whereas for p € (0 , p ) • 
0 

ah(p) = { h'(p)} = {j.i(p)} 

(Hi) From the corollary, especially from (5.10), it follows that the 

solutions on the first bifurcation branch have also the p~operty that 

for given bending energy the distance in x-direction of the endpoints 

is as large as possible. 

(iv) The problems e have no solution for r > 0: the infimum of the 
r - 1 

functional t on the set B = {e € H I f(6) ~ r} is attained for r o 
every r > 0 at the interior point e = 0: 

q(r) = inf t(e) 
f(6)=r 

inf t(6) = t(O) = 0 
f(6)~r 

(the second equality follows from property 0.2.8. as f(6) is a norm 
1 1 equivalent to the H -norm on H

0 
). 
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bifurcation diagram 

Graphof the function h(p); 
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the extrema! elements of f . 
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Qualitative pictures of the function e for 
three different values of ll and corres~onding 
graphs of the huckled rod (with r(O) • 0). 
The values of ll correspond to values of-p with 

p 

······ 

(a) 

(a) O<p<R., (b) t<p<2R. • p , (c) p close to p (p<p ) 
0 0 0 • 
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As a last example '~e consider the constrained extremum problems 

(5. 13) inf f(u) with 
t(u)=p 

R, 

f( ) 1 f 2 dx 
u = 2 Jux 

t(u) 

0 

R, 

J f(u)dx 

0 

' 

I 
on H (O,R-) 

0 

3 df(u) 
Here r is a C -function on RZ. with f(O) = 0 for which y(u) := ~ 

satisfies 

(i) y(O) = 0, y'(O) 

(ii) lim y(u) < 
0 lul.- u -

(iii) y"(u) .u < 0 for every u # 0. 

To simplify matters we shall consider as a specific example 

R, 

f 1 2 1 4 J dx [ 2 u - 4 u ] • (5. 14) y(u) 3 
u-u ' t(u) 

0 

For these tunetionals f and t hypothesis 2.4.4. is satisfied. The 

functional t is bounded from above but not from below 

(5.15) /l( t) = ( -ao,p ) 
0 

1 
where p

0 
= 4 Jl,. 

For every p € f (t), problem f has at least one solution, and as 
p 

(5. 16) t' (u) = 0 on H1 - u = 0 
0 

... p- 0 

(note that u = 0 is an isolated, but not the only, point of the 

manifold {u I t (u) = 0 }). it follows that for p r/: 0 every solution 

satisfies for some unique multiplier p € RZ. 

(5. 17) f'(u) =P t'(u) 

The class of unconstrained extremum problems ~ is now given by 
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(5.18) inf 1 2 1 2 1 4 [2 u x - ll(2 u - 4 u ) ] • 
u 

0 

It is not difficult to show that 

(5 .19) inf ~ if ll < o. 

From this result, together with lemma 2.3.13 it follows that 

;o. 

(5.20) IJ = [O,p ). 
ll 0 

The non-linear eigenvalue problem (5. 17) was studied for ll > 0 by 

Chafee & Infante [ 22] and Henry [ 23], who were interested in the 

stability of these solutions for'the evolution equation 

(5.21) 3 
lJ(W- W ). 

(See also Ambrosetti & Rabinowitz [24] who give variational 

characterizations for every solution of (5. 17). 

From these references it follows that problem (5~18) has for ll ~ 0 

the same qualitative properties as described in proposition 2.5.1. 

The extremal solutions, to be denoted by U 
ll 

satisfy Iu I = max Iu (x) I+ I for ll + ~. 
l.l ~ o<x<.t ll 

instead of e • now 
ll 

Apart from this 

aspect, the qualitative behaviour of the first bifurcation branch is 

as in figqre 2.5.1.[For the specific example under consideration, 

i.e. for t given by (5.14), the solutions of (5.17) may again be 

expressed in termsof elliptic functions. In fact, problems (5.4) 

and (5.17) are known to be related by a non-linear transformation]. 

Consequently, the same results as desribed in corollary 2.5.3. are 

valid for problems .f> given in (5.13) with p > 0. Moreover it has 
p -

been proved in the given references that the solutions U on the 
IJ 

first bifurcation branch are stable stationary solutions of (5.21). 

For p < 0 matters are somewhat more complicated. We know in 

advance that f has at least two solutions :!: U for every p < 0, and 
p p 
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that such a solution U satisfies (5.17) fora unique multiplier ~(p). 
p 

Let us start with some technica! results which are not difficult to 

prove. 

LEMMA 2.5.4. (i) If u EH~ satiafies t(u) = p < 0, then lul."
2 

> 2. 

(ii)If u ia a soZution of (5.17) for which t(u) = p < 0, then 

necesaariZy ~ < 0. In particuZar 

(5.22) p < 0 ~ ~(p) < o. 

(iii) Every soZution u of (5.17) satisfies 

(5.23) < {f"(u)- ~t"(u)}.u,u > 

ConsequentZy, every soZution of (5.17)with ~ < 0 is not a'minimaZ 
I 

point of the functionaZ f-~t on H • 
0 

In particuZar, the soZutions + U . of f with p < Oarè sadàZe points . - p p 
of the functionaZ f-~t on H

1
• 

0 

(iv) For the jUnction h(p) we have 

(5.24) h(p) -+ oo for p -+ - oo 

and 

(5.25) ~(p) + 0 for p -+ -"" • 

REMARKS 2.5.6. (i) From proparty (i) above it fellows that the 

salutionsof (5.17) with ~ < 0 does not bifurcate from the zero 

salution u = 0. 

(ii) From (iii) above it can be shown that every salution of (5.17) 

with ~ < 0 is an unstable stationary salution of the evolution 

equation (5.21). 

Up to now nothing has been said about the continuity of the 

function h(p) for p < 0. This is most easily investigated via the 

problems ~ • By considering the functional t on the closed balls 
- r I 
B = {u I f(u) < r } c H it can be shown that for the problems r - o 
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inf t(u) 
f=r 

there exists some r > 0 such that 
0 

(i) ti has no-solution if 0 < r < r 
r o 

attained at the interior point u 0. 

the infimum of t on B is 
r 

(ii)~r has a solution if r > t
0

, and the function q(r) := inf ~r 

for r > r is monotonically decreasing from 0 to - oo and is continuous. 
0 

From this last result it follows with theorem 2.4.8 (iii) and remark 

2.4.10 that 

h(q(r)) = r for r > r
0

, 

from which we deduce that h(p) is a continuous function of p E (~,0) 

and is monotonically decreasing (in agreement with (5.25); see 

figure 2.5.4.). Moreover, the solutions of f for p < 0 are in a 
' p 

one-to-one correspondence with the solutions of (( , r > r • r o 

REMARK 2.5.7. It has notbeen found possible to specify the precise 

values of r and of p(O-) lim P(p). However it can be shown that 
0 pto 

these numbers satisfy the following estimates 

-2 
1[• 

where lJ 
1 

= 
12 

• 

fig. 2.5.4. 

Graph of the function h(p), ~p<pö 
The two branehes correspond to ex
tr~l element~ of 

(a) 

(ö) 

1
ï:ntF •. . p 

sup-!. ' r 
inf~, 

{ inf~, infQ ·r 

0 < P < po 

0 < r < "" 

ll] < ll < "" 

-«><p<O 

r
0 

< r < "" 
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RART II: VARiATIONAL DYNAMICAL SYSTEMS 

CHAPTER 3: CLASSICAL MECHANICS OF CONTINUDUS SYSTEMS 

3.1. INTRODUCTION. 

This chapter starts with a summary of some notions which will be 

used frequently in the rest of this thesis. In section 3.2. we define 

Lagrangian and Ham.iltonian systems. The variational character of these 

definitions allows one to perform the "Legendre-transformation" in a 

more systematic way than is usually done. Moreover, this transforma

tion t~en leads in a natural way to a so called modified action prin

ciple. This variational principle will greatly simplify the presenta-:: 

tions of .the results of section 3.5. In sections 3.3 and 3.4 we reeall 

some terminology and results connected with canonical transformations 

and invariant integrals. 

In section 3.5 we deal shortly with the problem how one can find 

variational principles descrihing the evolution of a continuum in the 

Eulerian setting. This has been a long standing difficulty until Lin 

[25) proposed a correct variational principle. However, this variatio

nal principle (as most others) was derived in an ad hoc way and, 

despite a lot of literature on this subject, it remained somewhat 

~sterious. We shall derive a variational principle for general evolu

tionary continua from first principles. This principle is then clearly 

understood and all known variational principles for fluid mechanica 

can be derived from it. We shall specialize this result to describe 

the motion of irrotational flow of a layer of incompressible fluid un

der the influence of gravity, The final result is a Ham.iltonian system 

descrihing the surface waves. This description shall be the basis of 

the presentation in chapter 6. 
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3.2. LAGRANGIAN AND HAMILTONIAN SYSTEMS. 

Let us start to reeall some notions from Classical Mechanica for 

a system with a finite number (say n) of degrees of freedom. If Q de

notes the configuration space of the dynamical system, then q(t) € Q 

represents one and only one state of the system~~and q is called (a 

set of) generalized coordinates. In the simplest case Q = Rtn. The 

evolution of the system can be described as a trajectory in Q, i.e. 

a mapping from an interval of Rt into Q : t * q(t). If the system 

under consideration is a Lagrangian system, the Lagrangian t is a 

function on the tangent bundle of Q, i.e. t: (q,v) * t(q,v) € Rt, 

where q € Q and v is an element from the tangent space to Q at q. 

If Q • Rtn, the tangent space to Q is independent of the point q € Q 

and may be identified with Rtn. If we denote this tangent space by V 

(the elements of which can be called generalized velocities), t is 

a function defined on Q x V. In many classical texts a tYpical ele

ment of V is denoted by q, and one writes indifferently t,(q,q) for 

the value of t at the arbitrary point qEQ, <i. € V and also for the 

value at t € Rt of the function t(q(t), _otq(t)) associated toa smooth 

trajectory t ~ q(t). To prevent this ambiguity we have introduced the 

velocity space V. 

Many Lagrangian systems from Classical Mechanica ca~ also be des

cribed with a Hamiltonian h which is then a function on the cotangent 

* * bundel of Q, i.e. h: Q x V ~ Rt. A typical element from V is usually 

denoted by p (the momentum variable): h(q,p) € Rt. If Q • Rtn, then 

v* can again be identified with Rtn. When both the Lagrangian and the 

Hamiltonian formulation are valid for a specific system, these formu

lations are related by a Legendre transformation. But the possibility 

to apply this transformation depends on convexity properties of t·(or 

h), which properties have to be investigated in each case. Therefore, 

in the following we shall independently define the notion of a La

grangian system and that of a Hamiltonian system and investigate 

thereafter the possible relationship. 

For continuous systems the configuration manifold Q !is infinitely 

dimensional and is some function space consisting of functions q de

fined on some region n c Rtm in ~imensional Euclidian space (m ~ 
in the following except insection 3.5 where m • 3). The state of 

the system at time t will be denoted by q(t) € Q and its value at 
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x EG by q(x,t), We have used the term configuration manifold because 

even in the simplest examples Q is often not a linear space: it may be 

a set of functions satisfying the same prescribed value at the boun

dary an of n. Then we suppose that 

(2.1) 

where q is some function defined on 0 satisfying the boundary condi

tions and Q is a linear space of functions with compact support in n. 
0 ~ 

The velocity space V is also soma function space of functions v de-

fined on n. Concerning this velocity space we make the following re

mark. Let q : t + q(t) define a path on the configuration manifold. 

This mapping is differentiable (in the sense of Frechet, c.f. section 

0.3) at t if there exists an element atq(t) E Q such that 

llq(t+s)- q(t)- s•otq(t)l lq = o(s) fors+ o 

(the derivative of q at t, i.e. the continuous linear mapping 

q'(t) : Rl + Q bas been identified with the element 

atq(t) E Q : q'(t)•s = s•otq(t)). When consiclering only such paths, 

the velocity space might be identified with Q
0
.However, for many con

tinuous systems the trajectories are not differentiable in this sense 

(q'(t) is nota bounded mapping into Q, i.e. otq(t) ~ Q). Nevertheless, 

in general Q is continuously embedded in a space V such that an ele

ment atq(t) E V can be defined for which 

ljq(t+s)- q(t)- s•atq(t)l lv • o(s) fors+ o. 

Then, if otq(t) E V\Q this is a generalization of differentiability 

which must be allowed to make any progress. 

LA.GRANGIAN SYSTEMS. 

DEFINITION 3.2.1. A.. Lagmngian system (l,Q, V) is a dynamical system 

with aonfiguration manifotd Q, veloaity spaae V, with Q continuously 

embedded in V, and Lagmngian l E c1(Q x V,Rl) such that the evolution 

of the system can be described with the following aation prinaiple: 

if q E C0 (I,Q) with 3tq E C0 (I,V) represents an actual evolution of 

the system over the time-interval I= [t
0
,t 1] c Rl, then q is a 

stationary point of the aation funational 
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(2.2) A(q) =I dt l(q(t), atq(t)) 

I 

on the set 

From the action principle we can find the equations of motion 

for the dynamical system along familiar lines, Therefore we suppose 

that the contiguration manifold Q can be written as in (2.1). The 

functional derivatives of Z with respect to q and v at the point (q, 

v) € Q x V are denoted by ~ (q,v) and ~; (q,v) respectively, and we 

have 

l(q+E;;,v+w)-l(q,v) =I dx[~~(q,v)·i;;~(q,v)•w}+o(lll::ll+llwll>. 
for i; € Q , w € V, lll::ll"+ 0, llwll + O. 

Here gz(q:v) must be interpreted as an element from Q* (the dual 

space ~f Q with the L2 -innerproduct as duality map),
0

and ~(q,v) € v* 
0 . ov 

The derivative of the action functional A at q with respect to 

an element ~ from the space of admissible variations 

is easily seen to be 

A'(<i)·E;; =I dt I dx[~(êJ.(t),atq(t))~(t) + ~~(q(t),atq(t))Clé(t)], 
h • h b I ' Q f ' 1 ' ' ' h f w ~c may e wr~tten a ter part~a ~ntegrat~on w~t respect to t o 

the last term (using ~(t0) = l;;(t
1
) = 0 which causes the integrated 

term to vanish) 

A'(q)·~· I dt I dx{[~~(q(t),Cltq(t))-at~êi(t),atq(t~}·~(t)}. 
From the requiiemen~ that A'(q)·~ = 0 for every ~ from the set of ad

missible variations (2,4} we deduce from the action principle: 

PROPOSITION 3.2.2, If q(t) represents an actual evolution of a 

Lagrangian system (l~Q,V)~ then q satisfies the following Euler

Lagrange equation: 

(2.5) 
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HAMILTONIAN SYSTEMS. 

DEFINITION 3.2.3. A Hamiltonian system (h,Q,P) is a dynamical system 

with configuration manifold Q, momenturn space P, with Q continuously 
*' _embedded in P , and Hami Uonian_ h € C 1 (Q x P ,Rl) suè:h that the evolu-

tion of the system can be described with the following aanonical ac-
* tion principle: if q € C0 (I,Q) with otq € C0 (I,P ) represents an actu-

al evolution of the system over the time-interval I= {t
0
,t 1] c Rl, 

then to q there corresponds an element p € C0 (I,P) such that (q,p) is 

a stationary point of the aanoniaal action funational 

(2.6) 

on the set 

CA(q,p) = J dt [<p,3tq> - h(q,p)] 

I 

o o I · o * '-- .. l {(q,p) € C (I,Q)xC (I,P) otq € C (I,P );q(t
6 

q(t
0
),q(t

1
)=q(t

1
) • 

Denoting the functional derivatives of h with respect to q and p 

at the point (q,p) by ~(q,p) (€ Q*) and ~(q,p) (€ P*) respectively, uq o op 
we obtain along familiar lines: 

PROPOSITION 3.2.4 If (q(t),p(t)) represents an aatual evolution of a 

Hamiltonian system (h,Q,P), then (q,p) satisfy the set of Hamilton 

equations 

(2.7) 
oh . oh 

atq(t) =op (q(t),p(t)) , atp(t) .. - oq (q(t),p(t)). 

Justas the stationary points of (2.2), i.e. the solutions 

q(t) of (2.5}, define trajectories t * q(t) in the configuration 

manifold Q, the stationary points of (2.6), i.e. the solutions q(t), 

p(t) of (2.7), define a mapping in the phase space Q x P: t~ (q(t), 

p(t)}. Such a mapping completely charaeterizes the evolution of the 

system and is called a Hamilton flow for the Hamiltonian h or shortly 

HamiUon fiO/JJ h. The variables (q,p) € Q x P are said to he a pair of 

canonicaily conjugate variables and p is the momentum variable. 
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RELATION BETWEEN LAGRANGIAN AND HAMILTONIAN SYSTEMS. 

We shall now show Lh<.t a large class of Lagrangian systems are 

Hamiltonian systems (over the same configuration manifold Q) and con

versely. This is done by constructing for given l the Hamiltonian h 

(and for given h the Lagrangian l) via a generalized Legendre-trans

formation and showing that the action principle goes over in the ca

nonical action principle (and conversely). The generalized Legandre 

transfarm shall be described with the aid of polar functionals as 

introduced in section 0.6. 

Starting with a Lagrangian system (l,Q,V) define the functional 

l : V+ Rl, l (v) : = l(q,v) 
q q 

Vq € Q, V € v. 

HYPOTHESIS 3.2.5, For each q € Q the functional l defined on the 
q 

reflexive B-space V is stëictly convex, i.e. 

l (Àv+(h\)w)<À•l (v)+(l-À)•l (w) \>'À € (0,1), Vv,w € V, v.;: w, 
q q q * 

and the functional derivative maps V onto V : 
ól * 

.R <ov9
) = v · 

Assuming this hypothesis to hold, the polar- and bipolar functional 

of l : 
q 

l~(p) : = sup [~p.V>- l (v)] 
q V € V q 

** z
9 

(v) : = sup *[<PoV>- l*(p)] 
p € V q 

* for p € V , 

for v E: V, 

can be shown to have the following properties (c.f. section 0.6) 

(i) for arbitrary p E v* the functional v~ <p,v>- l (v) bas exactly 
q 

one stationary point which is the salution of 
êlq 

p=öv (v). 
* Therefore. l* is defined on all of V and we may write 

4. 

(2.8) z
9
*(p) = stat [<p,v>- l (v)], 

V € V q 

* Moreover, l* : V + Rl is again a strictly convex functional and 
I * q l* E C (V ,Rl). 

q * 
(ii) for arbit-rEH'Y v E V the functional p >+ <p,v> - 1

9
(p) has exactly 

one stationary point which is the salution of 

.. êlq ( ) 
V ,. Öp p • 
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' 
Therefore we have 

(2. 9) l**(v) =stat* [<p,v>- l*(p)], 
q p E V q 

.Moreover, l** agrees with Z on V: 
q q 

(2. I 0) Z** Z on V q q 

From these observations it fellows that if we define 

* * (2. 11) h Q x V + Rl, h(q,p) : = l*(p) q E Q, p E V 
q 

we have according to (2.8), (2.9) and (2.10) the relations 

(2.12) 

(2. 13) 

h(q,p) stat [<p,v> - l(q,v)], 
VEV 

l(q,v) =stat* [<p,v>- h(q,p)]. 
p E V 

Substituting the characterization (2.13) into the action functional 

(2,2) we obtain a variational principle for the functional 

CA(q,p) =I dt [<p,àtq>- h(q,p)], 

which leads to the canoni~a{ action principle for the Hamiltonian 
* system (h,Q,V ), Hence 

THEOREM 3.2.6. the Lagrangian system (l,Q,V) satisfies hypothesis 
* * 3.2.5, it is a HamiZtonian system (h,Q,V ) ~here h : Q x V + Rl 

is defined by (2.11). 

ConsequentZy, the EuZer-Lagrange equation (2.5) and HamiZton equations 

(2.7) are equivalent. 

Starting with a Hamiltonian system (h,Q,P) define the functional 

hq : P + Rl hq(p) : h(q,p) q E Q, pEP. 

HYPOTHESIS 3.2.7. For each q E Q the functional h defined on the 
q 

reflexive B-space P is strictly convex and has 
óh * 

Je(ópq) = p 

, ·' ., . 
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I * In the same way as above we have that h* € C (Q x P ,RZ) is 
q 

strictly convex and that h** = h on P. Hence, defining 
q q 

* (2.14) Z Q x P + Rl * l(q,v) : = h*(v) q € Q, v € P 
q 

we have once again the relations (2.12) and (2.13). Substituting the 

characterization (2.12) into the canonical action functional (2.6) 

we obtain · a ' variational principle for the functional 

(2. 15) MA(q,v,p) = J dt [<p,()tq- v> + l(q,v)]. 

I 

This functional will be called the modified aation fUnationaZ; taking 

stationary points of this functional on the set 
o · . 9 * o o- * {(q,v,p)fc (I,Q)xC (l,P )xC (I,P)jatq€C (I,P );q(t

0
)=q(t

0
),q(t1)=q(t1)} 

will be called the modified aation prinaipZe, and the stationary 

points are easily seen to satisfy the equations 

(2. 16) 

êZ 
p = ov (q,v) 

The modified action principle is clearly equivalent to the constrained 

variational principle 

(2.17) stat 
q,v 

J dt l(q,v) 

I 

subject to the constraint ()tq = v, 

(c.f. chapter I and recipe 2.1.1) and the variable pin (2,15), which 

equals the momentum canonically conjugate to q for stationary points, 

plays the role of a Lagrange multiplier. On the other hand, elimina

ting v explicitely in the variational principle (2.17) gives precisely 

the action principle for the action functional (2.2). Hence the modi

fied action principle is equivalent to the action principle and we 

have obtained 

THEOREM 3.2.8, Suppose the HamiZtonian eyetem (h,Q,P) satiefies hypo

thesis 3.2.7. Then it ie a Lagrangian system (l,Q,P*) ~he~ Z:QxP*+RZ 
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:is defined by (2.13). Consequently, the Eulep-LagPange equation 

(2.5) and Hamilton equations (2.7) aPe equivalent. 

3.3. CANONICAL TRANSFORMATIONS. 

In this section we reeall some results from the theory of canoni

cal transformations. In chapter 5 we shall consider an important class 

of transformations on phase space which are not canonical. 

Let Q x P be the phase space of some Hamiltonian system .• We 

shall investigate differentiable transformations 

(3. l) Q x P l (q,p) + (q,p) E Q x P. 

A transformation of this kind will be called PegulaP if locally it is 

a one-to-one mapping (with the implicit function theorem this means 

that the first derivative of the mapping (3.1) must be boundedlyin

vertible at every point). 

DEFINITION 3.3.1. A regular transformation (3.1) is said to be a 

(time-independent) canonical tPansformation if there exists a functio

nal f E C I(Q x Q, Rl) such that 

(3. 2) 

for arbitrary flow (q(t),p(t)) in phase space Q x P. The functional 

f is called the genePating functional of the canoilical_transformai:ion, 

. I -
REMARK 3.3.2. It is easily seen that ·. if fer f E C (Q x Q,Rl) the 
transformation given by 

(3. 3) <5f -p- êq (q,q), p 
of -- rq (q,q) 

defines a regular transformat~n. it is a canonical transformation 
which has, f as generating functional. 

This explains.the name generating functional. 

If (h,Q,P) is a Hamiltonian system, define the functional 

h Q x P + Rl under the transformation (3.1) by 
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(3.4) 

Then, if (3.2) is satisfied, He have 

CA(q,p) = CA(q,p) + f(q(t
1
),q(t

1
))- f(q(t

0
),q(t

0
)), 

where tl 

cA(q,p) J dt [<p,atq> - h(q,p)] 

t 
to 

I 

J 
t 

0 

As in the canonical action principle variations of the canonical ac-

tion functional have to be considered on the set of coordinate func

tions satisfying the same values at the end points of the conside~ed 

time interval, we immediately obtain 

PROPOSITION 3.3.3. Under a aananiaal transformation (3.1) any Hamil

tonian system (h,Q,P) transforma into a Hamiltonian system (h,Q,P) 

where h is given by (3.4). Consequently, the alass of Hamilton's 

equations is invariant under a aananiaal transformation. 

REMARK 3.3.4. As was shown in the foregoing section, if h satisfies 

some convexity conditions then (h,Q,P) is a Lagrangian sys.tem 

* {t,Q,P ). Under a canonical transformation (h,Q,P) transf~rms into a 

Hamiltonian system (h,Q,P). However, in general there is no evidence 

at all that h satisfies the convexity condition. Therefore, (h,Q;P) 
- -* needs not to be a Lagrangian system over Q x P • As an example, let 

the generating functional be given by 

f(q,q) = <q,q>. 

This functional defines the simple canonical transformation 

q : = p • p -q (Q = p • p = Q). 

Then the convexity of h(q,•) P+ Rl for fixed q E Q depends on the 

convexity of h(•,p) : Q + Rl for fixed pEP. 

3.4 CONSERVED DENSITIES AND INVARIANT INTEGRALS. 

In thls section we consider Hamil tonian systems (h,Q,P) where 

Q and P consist of functions definëd over some region n c Rln. 
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Before stating the actual definition and results of this section, we 

have to make some precautions because several expressions that follow 

will not be defined on (arbitrary flows in) QxP. These difficulties 

stem from the fact that for an arbitrary trajectory in QxP, say 

I 3 t * (q(t),p(t)) € QxP, the expression (otq(t~otp(t)) needs not to · 

be an element of QxP (compare with the remarks made insection 3.2) • 

. Therefore we define ~ 

DEFINITON 3.4.1. A trajectory I 3 t* (q(t),p(t)) € QxP is called a 

smooth ~jeato~ in QxP if (otq(t),otp(t)) € QxP for every tE I. 

As a consequence of this definition, for arbitrary functional 

q € c1(QxP,Rl), the expression 

is well defined only for smooth trajectories. 

In general, solutions of Hamiltons equations 
Öh 

atq • öp (q,p) E P* 
Öh . 

atp a - Öq (q,p} € Q* 
does not define a smooth trajectory in QxP (as Q c P* and thus P c Q*, 

but generally Q ~ P*), Therefore we say that the evolution of the sys

tem is smooth if it is described by a smooth salution of Hamiltons e

quations, i.e. by a solution which defines a smooth trajectory in QxP. 

In many practical situations for which there exist smooth evolutions, 

this mav be explained aa follo~s • For given hamiltonian h de

fine the subset Q x P c Q x P by 

löh öh (4.2) Q x P :• {(q,p) E Q x P öq(q,p) € P, öp (q,p) € Q}. 

Then it is easily seen that·if there exists a solution of Hamiltons 

equations which is a trajectory in fl:xP, this is a smooth trajectory in 

QxP. This result may also be stated in the following way. 

PROPOSITION 3.4.2. Any smooth evolution (q,p) € C0 (I,Q:xP) of a Hamil

tonian syetem (h,Q,P) is a stationa~ ·point of thè aananiaal aation 
functional CA(q,p) on the set 

(4.3) {(q,p) € C0 (I,Q x P)lotq E C0 (I,P*);q(t
0
)•q(t

0
),q(t 1)•q(t1)}, 

A similar difficulty is encountered if one wants to define the 

Paiseon b~aaket as 
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!Sf ~ ISf i& (4.4) {f,g}(q,p):= <0q(q,p), àP(q,p)>- ~(q,p), oq(q,p)>. 

For arbitrary functionals f,g € c1(Q x P,Rl), the right hand side will 

not be defined on all of Q x P. To circumvent this difficulty one 

may consider this expression only on a subset of Q x P. Therefore, for 

given subset~ x~ c Q x P (for instanee implicitely defined by (4.2)), 

put 

(4.5} ~(~x ~}:={f € Cn(Q x P,Rl}[(~,~)[ c P x Q}. 
q p ~ x p 

Then, {,} is neatly defined on elementsof this class of functionals: 

the Poisson bracket 

(4.6) 

is an antisymmetric, bilinear mapping. 

Moreover, it is well known that the Poissonbracket satisfies Jacobi's 

?'elation: 

(4.7) {{f,g},k} + {{k,f},g} + {{g,k},f} = 0 Vf,g,k E f 2 (Q x P}. 

After these precautions we come to the main ideas of this section. 

DEFINITION 3.4.3. An operator E defined on phase space Q x P is said 

to be a aonse?'Ved density for tne Hamilton flow h if a corresponding 

n-component flux veatot> !_ can oe found such that 

(4.8} at E(q,pl + div !_(q,pl = o 

for every smooth solution of Hamilton's equations. An expression like 

(4.8) is called a ZodáZ aonse?'Vation zaw. Upon integrating (4.81 over 

the domain n (assuming the integrale to existl there results a gZobaZ 
conservation law: 

(4.9} at J E(q,pi_ dx + J div !_ dx "' 0 

n n 
or 

(4.101_ at J E(q,pl dx + J F•n dx = 0 

n an 
where an denotes the óoundary of the domain n and n the outward poin-

ting unit normal at an. In particular, if Q = Rln and F + 0 for 

110 



lxl + M for every (q,p) E Q x P, we arrive at an invariant integral: 
. 1 

a functional e E c (Q x P ,Rl.) is called an invariant funational. for 

the Hamilton flow h if 

(4. 11) at e(q,p) = 0 

for every smooth solution of Hamilton's equations. 

For arbitrary functional gE c1
(q x P,Rl.) we have (4.1), which 

for smooth solutions of Hamiltons equations results into 

(4. 12) atg(q,p) = <~(q,p), ~(q,p)>- <~ (q,p), ~(q,p)> 
= {g,h} (q,p). 

where we have used the definition of Poisson bracket (4.4). Consequent

ly 
. 1 

PROPOSITION 3.4.4. A funational. g € C (QxP,Rl.) is an invariant fuatio-

nal. for the Hamil.ton fl.ow h if and onl.y ·if 

(4. I 3) {g,fi} = 0 on Q x P 

Moreover~ g is an invariant funational. for the Hamil.ton fl.ow h if and 

onl.y if h is an invariant funational. for the Hamil.ton fl.ow g. 

With these results, it follows with Jacobi's relation (4.7) that 

if f and g are invariant integrals for aHamilton flow h, then the 

same is true for theirPoisson bracket {f,g}. 

EXAMPLES 3.4.5, 

(i) Fora Hamiltonian system (h,Q,P), the functional hitself is an 

invariant integral. It is usually called the energy as in many systems 

from classical mechanica it can be interpreted as such. 

(ii) Suppose Q = Rl. and suppose that h does not depend explicitely on 

x € Rl.. Then h is t!'ansl.a.tional._invariant, which means that for all 

E € Rl. 

(4. 14) 

where the shift operator TE is defined by TEu(xl : = u(x + e:). Taking 

the limit for E + 0 in (4, 14) formally gives 

(4.15) oh oh 
<oq (q,p), 3xq> +<op (q,p}, axp> = 0 

(No te that this eXl)ression is atzain only defined on a subset of 0 x P) 
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With this result it is not difficult to verify that the momenturn 

functional 

(4.16) m(q,p) : - <p,axq> 

is an invariant functional for any translationally invariant Hamilton 

flow h. 

3.5. VARIATIONAL PRINCIPLES FOR FLUID DYNAMICS. 

To demonstrate the foregoing theory we shall summarize in this 

section some results from a forthcoming paper [26]. The aim of that 

paper is to clarify and unify known variational principles (var.pr.'s) 

for continuous systems (in particular from fluid dynamics) described 

in the Eulerian setting. The main tools to that end are (i) the fact 

that in the Lagrangian setting a Lagrangian for such syst'ms is usuar

ly relatively easy to find by a direct generalization of the theory 

for systems consisting of a finite number of degrees of freedom and 

(ii) the fact that the transition from the Lagrangian setting to'an 

Eulerian description can be performed in the variational formulation. 

This last observation was already present in the work of Broer & 

Kobussen [27] (c.f. also Kobussen [28)) who described theitransition 

as a canonical transformation. However, starting with a Lagrangian, 

it is somewhat easier to describe this transition as a transformation 

of the coordinate functions. Especially when the modified action 

functional is used the necessary work to be done is minimal and the 

resulting expression are very transparent. Starting with a Lagrangian 

for arbitrary conservative continua in the Lagrangian setÇing, the 

modified action principle in the Eulerian description then turns out 

to be the basic variational principle. This var.pr. is in fact closely 

related to a var.pr. proposed by Lin [25] (See also Serrin [29] Who 

announced this result). Restricting to specific systems or inserting 

certain a-priori potential representations for the Euleri~n velocity 

(such as Clebsch representation) leads to the var.pr.'s known in li

terature. Moreover, by investigating the canonical transformation 

more closely it becomes possible to describe free surface problems 

too. Because of its relevanee for chapter 6 we shall show bere bow 

this procedure may lead to a var.pr. for surface waves over a layer 
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of incompressible fluid. 

In the LagPangian setting the evolution of a continuous system 

is described with the time t and the initial position of the conti

nuurn as independent variables. To describe the position of the system 

in space, we use a fixed Cartesian coordinate system with base vee

tors c., i= 1,2,3, which coincide with the reciprocal (dual) base 
-1 • 

1 _ veetors ~ , and consider veetors with respect to these bases 
i i i x= x c. x.c x =x. i= 1,2,3 
-1 1- 1 

(Here and in the following the summation convention is used.) 

If the continuumoccupies a region J: at t = 0, the position of the 

continuurn at subsequent times can be described with a time-dependent 

operator (the evolution operator) 

(5. I) X(t) : L-+ Q(t), 

where Q(t) is the region of space occupied by the continuurn at time t. 

If §_is a typical element from 2. the effect X(t) denotes the po

sition at timet of the element which was originally at position§_ 

(the "particle" characterized by 0 and is usually written as 
i -

,!(§_, t) = x (§_, t)~i. 

By definition X(O) = Id(identity map), thus ,!(§_,0) =' §_ and Q(O) = J:. 
If the initial density is p

0
(§_), assurned to be positive, a di

rect generalization of a system consisting of a finite number of 

particles leads one to consider the expression 

(5.2) l(xi,vi) = f d3~ I 

as the Lagrangian of a wide class of continuous systems. Here V de-

notes the potential energy functional which needs not to be specified 

at this moment. Taking the action principle as described in section 

3.2. to be valid for such continuous systems described in the Lagran

gian setting, the equations of motion can be found from the action 

functional 

(5. 3) 

I 

where ä t"" -~ _!:' ~ dtl.,. fixed 
- i and atx are the components of the "particle"-
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velocity. Instead of working with this formulation, we prefer to use 

the modifiëd action functional. which shall be written as '(for conve

nience we write the multiplier as -p
0

Ài}: 

(5.4} MA(xi,vi.Ài} = [ dt [I d3E;po(.QÀi(vi- ati}+,l.(i,vi}]. 

With this formulation we have completely described the system in the 

Lagrangian setting. 

In the EuZeria:n setting the evolution of the systems is descri

bed with the time t and the position of the continuurn at time t as 

independent variables. 

AsBUming the existence of the inverse of the mapping X(t} · 

(5.5} 

we write & = &<~,t} for the element with position ~a~ time t which 

had initial position &· With this mapping it is posible to define with 

every field variable in the Lagrangian setting a field vaiiable in 

the Eulerian setting and conversely. Denoting such corresponding vs.

riables with the same symbol gives no difficulties provided·we dis

tinguish clearly between differentiation with respect to C:omponents 

of ~ and with respect to components of E;. Therefore we denote the 
a componentsof & byE; • a= 1,2,3 and write 

f 0 • = l!..-. and f, = !t_ 
l axl a al;a 

In particular, the Jacobian matrices of the transformation X(t} and 
-1 i a 

its inverse X (t) have elements which are denoted by x 'a and E; 'i 

respectively and as these matrices are each others inverse' we have 

(5.6} i b = ... b 
x •a•l; 'i ua 

i a i 
x. •E;,. = ö. 

a J J 

·b i where ö and ö. are Kronecker symbols. The mass-density p(x,t), im-a J . -
plicitely defined by p(x\t)d 3x = p (~)d 3 i;, can be written with the 

- 0 ,z. 

determinant of a Jacobian matrix as 

(5. 7) [i;~.]. 
l 
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ln the Eulerian setting the time derivative is denoted by 

at: at= :tl • Differentiating the identity xi(i(~,t),t) 
x fixed 

with respect to t gives 

(5.8) ~ i i ~ ~a = 0 "t x + x,a "t"' 

[Defining baseveetors e as the tangent veetors to the parameter-. -a 
curves: e =x! c., (5.8) may be written as -a a -1 

(5.9) a x = -a ~~e • 
t- t -a 

a This expression shows that -at~ are the components with respect to 

e of the Eulerian velooity v(x,t): 
-a --

(5.10) 

To describe the evolution of the continuurn in the Eulerian setting, 

we transfarm the modified action principle (5.4) into an equivalent 

var.pr. in the Eulerian description. Therefore we note that the 

Lagrangian as given by (5.2) can be considered as a functional in 

the Eulerian setting: 

(S .11) Z(xi,vi)=fd 3~tp0vivi-V(xi~· J d 3x!pvivi-V(~a)=:z(~a.vi)~ 
!l(t1 

where V(~a) denotes the transformed potential energy functional. 

Moreover, using (5.6) and (5.8) we also have 

(5. 12) 

t.J'riting À = À. x~a (À are the i components of the vector À = À.c - ].-

i 
x 

a J a 
with respect to the baseveetors ea, 

(dual) to the system e , thus e ~eb 
where e8 is the base reciprocal 

ó:).-the modified action func--a -a-
tional is seen to be equivalent to 
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(5. 13) a i a a i d 3x pÀ (3 t + v t,.) + Ï(t ,v )] 
a t 1 

where 

(5.14) r 
i 

dx iPviv - V(ta). 

Sl'(t) • 
In this var.pr. the variables ta,v

1 
and Àa are cons~dered as indepen-

dent variables, and it is of the form of a modified action principle 

in the Eulerian setting. With respect to this fundamental var.pr. 

some remarks can be ~~de. 

REMARES3.5.1. 

(i) The action functional corresponding to (5.13) reads 

(5. 15) Ä(ta) = I dt Ï(ta, -
I 

This result is of course also obtained if the original actlion func

tional (5.3) is expressed in the Eulerian setting with the, aid of 

(5.8). 

(ii) By its nature, the modified action principle (5.13) expresses 

the fact that when looking for stationary points of 

(5. 16) I 
- a i dt Ht ,v ), 

I 
i the variables v have to satisfy the constraints 

(5. 17) a i a at + v t •. = o, 
t .l. 

or equivalently 

i Hence these constraints explicitely express the fact that v has to 

be considered as the componentsof the Eulerian velocity in (5.16). 

This interpretation completely clarifies the constraints as proposed 

by Lin. 

(iii) if we write 

(5. 18) 
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the above derived results show that 

(5. 19) 

From this it follows 

transformation (xi,pi) 

with the theory of section 3.3. that the 

+ (;a,p) is a canonicaZ t~sfo~ation 
a 

(with vanishing generating functional). This transformation bas been 

described in a somewhat different way by Broer & Kobussen [27]. 

Resuming the foregoing results we can say that (5.13), (5.14) 

describe in the Eulerian setting the evolution of a continuous system 

for which the action principle is assumed to hold in the Lagrangian 

setting. By specifying the potential energy functional V(;) the sys

tem is completely defined. In fluid dynamics, for ideal fluids, V 

depends only through the mass density p on the variables ;a : V V(p) 

In the original paper~~ it is shown how several known var.pr.'s for 

fluid dynamics can be derived from (5.13), (5.14). At this place we 

shall restriet to one specific model wbicb will be studied in chap

ter 6. Therefore, let us first write down the equations obtained 
i from (5.13), (S.14) by varying the variables À and v: 

a 

(5.20) 

(5. 21) 

ÖÀ 
a 

" t"a it"a 0 ot" + V "''i • 

v. +À;! ... 0 
l. a l. 

As bas already been remarked, equations (5.20) define vi to be the 

Cartesian componentsof the Eulerian velocity, and (5.21) expresses 

the multipliers À in the variables vi. 
a 

In the following we shall only be interested in a subclass of 

all possible flows, viz. the class of irrotationaZ fZ01iJs. For irro-

tational flow rot v = 0 and thus for some potential ~ 

(5.22) 

To obtain a var.pr. for such flows we specialize (5.13), (5.14) by 

inserting the representation (5.22) tagether with (anticipating on 

(5.21)): 
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(5. 23) 

i and consider the variable ~ instead of the variables v and À as a 
fieldvariables. Then we find 

that 

(= ~ J dt 
Q(t) 

(where we have used the fact that the domain L is independent of t). 

this term gives an uninteresting contribution at the endpoints of the 

considered t-interval and may be omitted. With these observations it 

is found that the .resulting expressions for (5.24) does not depend 

explicitely on the variables ~a: they merely appear via the variable 

p which may therefore be considered as the field variable instead of 

the variables~a. This leadsus to the var.pr. 

(5.25) IrFZ(p.~) • J dt J d3x {-pat~- !ptV~) 2 }- V(p)]. 
Q(t) 

which var.pr. (for fixed domain Q(t)) was already studied by Bateman 

[30] (c.f. also Bateman [31]). Of course, the var.pr. (5.25) can also be ' 

found directly from the cano.n:i,cal action .. functional corr.esponding to 

(5.13) by substituting the repres~tation (5,23) 

The var.pr. (5.25) gives the correct set of equations descrihing 

the flow in the interior of the domain i&(t). In many important situ

ations. i&(t) is not (completely) prescribed a-pPiori. If only part of 

the boundary an(t) of Q(t) is fixed, say 

anJt) = aio for all t. 
a generalized fPDID of the action principle in the Lagrangian setting 

may be formulated which does not restriet the variations ö~(i0 t) at 

the "free boundary" an(t) - ai • AB a consequence of this generaliza-
o 

tion a complete description of the system. including,equations ,fhich 

describe the evolution of the free boundary, is obtained if also va

riations of the free boundary are considered. 
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To demonstrate this idea let us describe irrotational flow of a 

layer of fluid over a horizontal bottom (y = O) under the influence of 

gravity (pointing in the negative y-direction) and ignoring surface 

tension. Considering two-dimensional flow for simplicity, the free 

surface may bedescribed by y • I+ n(x,t), where n(x,t) denotes the 

height of the fluid at place x, ~ < x < oo, and time t, measured 

from the equilibrium contiguration y = 1. In the equilibrium conti-

gijration p = p say, and this situation is taken as the zero level 
' 0 ' 

of the potenti~l en1~x,~en the potential energy functional is 

V(p) = J dx J dy {p e(p) - p e(p ) + pg(y-1)}, 
0 0, 

wherein e(p) i: the spgcific potential energy density of the fluid. 

The var.pr. (5.25) becomes 

"" l+n(x,t) 

(5. 26) IrFZ.(p,tp,n) = J dt J dx, J dy {-p(ltq>- pe(p) + 
-oo 0 

wherein variations of n account for variations of the free boundary. 

The var.pr. (5.26) was found by Luke [32] and it gives the correct 

set of equations: 

öp 

Ö!f 

öy 

a q> + g(y-1) + I(Vq>) 2 + ~ (pe(p)) 
t dp 

atp + div(pVq>) = o 
a y + n ·w - ~ = o 

t x:-x y 
~ .. 0 

y 
p(ltq> + pe(p) - poe(po) + pq(y-1) + 

+ lp(Vq>) 2 = 0 

0 for 0 < y < I + n (x, t) 

for 0 < y < I + n(x,t) 

, at y = I + n (x, t) 

at y = 0 

at y = I + n(x,t), 

These equations are immediately recognized as Bernoulli's equation in 

the ïnterior, the continuity equation, the kinematica! relation for 

the free surface, the condition that no fluid flows through the bot

tom and Bernoulli's equation at the free surface respectively, 

To obtain the system which shall be considered in chapter 6 we 

ftirther specialize to ineomp~essibZ.e~ i~~otationaZ. ftow with constant 

density p = p
0

• Then the corresponding variational principle is found 

from (5.26): 
oo , l+n(x,t) 

(5.27) IncirFZ.(n,<P) • J dt J dx(-p
0

) J dy[aelf>+g(y-0:*"tW<P) 2
]. 

0 
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By partial integrationl+n(x,t) l+n(x,t) 

I dy at~ = at I dy ~ - ~·atn. 
where 0 0 

(5. 28) ~(x, t) : = ~(x,y • I+ n{x, t), t) 

denotes the value of the velocity potential ~ at the free surface. 

Then, omitting an uninteresting term, (5.27) becomes 

oo t+·n(x, t) 

(5.29) IncirFZ(n.~)=Idt I dx[p0~·atn- p
0

{ign2 + J dy!(V~)~}]. 
0 

It may now be observed that, for stationary points of (5.29), ~sa

tisfies ~ • 0 in the interior, such that ~ as a solution of 

(5.30) 

~ = 0 for 0 < y < l+n(x,t) 

~ = ~ at y • l+n(x,t) 

~ • 0 at y = 0, 
y 

is uniquely determined by ~(x,t) and n.(x,t). Then the kinetic energy 

term in (5.29) may be envisaged as an implicitely defined function 

of ~ and y: 

l+:n(x,t) 

(5.31) _k(~,n) (x,t) : = J dy H'il~) 2 , ~is the solu,tion of (5.30) 

0 

Then (5.29) may be written as 

It may be observed that (5.32) is in facta canonical action functio

nal for the system, with n and p0~ as a pair of canonically conjugate 

variables and Hamiltonian 
00 

(5 .33) h(n,lJI) = I dx p0{ign2+~(1J!,n)}. 

In fact this result has been found by Broer [33] (c.f. also Broer et 

al [34]). At the same time Benjamin [35] used the expression (5.33) 

and the variables 1jJ and n to derive the basic equations, without ex-
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plicitely referring to the Hamiltonian character of the system. 

Both Broer and Benjamin found these results without using Luke's 

var.pr. (5.26) as a starting point. More recently, Miles [36] derived 

(5.32) from Luke's var.pr. in the same way as described above (c,f. 

also Milder [37]). As was shown by some of these authors, this var.pr. 

can be used advantageously to find satisfactory approximations for 

the awkward exact equations corresponding to (5,32), (5.31) by looking 

for suitable approximate expressions for the Hamiltonian h as given 

by (5.33). This will he more fully investigated in chapter 6. 
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CHAP'IER 4: FIRST ORDER HAMILTONIAN SYSTEMS. 

4.1. INTRODUCTION. 

A Hamiltonian system as described in the foregoing chapter 

(which we shall sometimes call a classiaal Hamiltonian system to dis

tinguish from first order Hamiltonian systems to be introduced below) 

is defined by two first order (in time)'equations for the two canoni

cally conjugate variables (Hamilton 1s equations). If desired it is 

sametimes possible to extract from these equations one equation of 

second order in time for one of the variables. However, in many appli

cations equations are met which are of first order in time for one 

scalar variable, which equation describesa conservative system. By 

way of e.xample we mention two equations which will play an important 

rSle in the rest of this thesis: the Korteweg-de Vries equation 

(c.f. [38], abbriviated KdV equation) 

(I , I) 

and an equation proposed by Benjamin. Bona & Mahony (BBM equation, 

c.f. [39]) 

(1.2) 

Both equations were derived as approximate descriptions for the evo

lution of unidirectionally propagating surface waves on a layer of 

fluid under the influence of gravity, where u denotes the height of 

the waves measured from an equilibrium (c,f. chapter 6). These aqua

tions describe a conservative system in the sense that there exist 

functionals of u which are independent of time as u evolves according 
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to such an equation. More generally, every equation of the form 

(1. 3) 

in which A is some antisymmetrie operator and h is some functional, 

bas this property. Moreover, it turns out that such equations are 

closely related to a set of Hamilton equations for classical Hamilto

nian systems: the flow in u-space described by (1.3) bas the same 

structure as the flow in phase space of a classical Hamiltonian sys

tem. We shall not completely investigate this relationship but re

strict to some formal observations in this direction. 

Therefore let us start with the canonical action principle for a 

classical Hamiltonian system (h,Q,P) 

( 1.4) CA(q,p) = f dt [<p,atq> - h(q,p)J. 

I 

Observing that 

<p,atq> = ! <p,atq> - ! <q,atp> + !at < p,q>, 

and writing the two variables q and p as one two component vector (q) 
p 

with the usual RL 2-structure, (1.4) may be written as 

(1.5) cA(q,p) =I dt [~<<!>· ats<!>> - h(q,p)J 

I 
2 2 0 -1 where S : Rl + Rl is given by S = ( 1 0) and where we have omitted 

a term which reduces to a contribution at the endpoints of the time 

interval. The structure of the variational principle (1.5) in (q,p) 

space is the same as that of a variational principle in u space of 

the form 

(1.6) A(u) = I dt [!<u,Bötu> - h(u)] 

I 

wherein B is some antisymmetrie operator and h a functional. Statio

nary points of (1.6) satisfy 

(I. 7) 

which is precisely (1.3) with B • A-1• 
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[The related structure of (1.5) and (1.6) is of course also reflected 

in the equations for the stationary points: Hamilton's equations cor-

responding to (1.4) may be written as 

' ( ~ (q,p)) 
(t.s) sa <q> = 

t p 6h 
ifti (q,p) 

which has to be compared with (1.7)], 

Another way to arrive at an equation of the form (1.3) is to 

consider the canonical action principle (1.4) not on all of the 

phase space, but to restriet the canonical actión functional to mani

folds at which q and p are linearly related. For instance, if we write 

p m u & q m lBu 

where B is some antisymmetrie operator, (1.4) transformsinto a func

tional of the form (1.6). This metbod and the underlying idea will be 

investigated in detail in the next chapter. 

It is a lso possible to start wi'th an equation of the form (I. 3) 

and then construct a set of canonically conjugate variables such 

that (1.3) is equivalenttoa classical Hamiltonian system. For 

instance, if A • -a , equation (1.3) reads 
x 

(1.9) u = 
t 

-a oh (u) :x:ru 

If we restriet to 2rr,-periodic solutions of (1.9) with zero mean 

value, u may be written as a Fourier series 

(1.10) 'u(x,t) 
00 

l ~~ (an(t)•ln•sin nx + bn(t)•ln•cos nx), 
n=1 

and it is not difficult to verify that (1.9) transforma into 

(I. 11) 

where the function h(a.,b.) is defined under the transformation (1.10) 
1 1 

by 

h(ai,bi) • h(u) • 
Hence, for the considered class of solutions, (1.9) is equivalent to 
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a discrete classica! Hamiltonian system with an infinite number of degrees 
of freedom: an and'bn are canonically conjugate position and momentum 

variables and h is the Hamiltonian. This idea is due to Gardner [40]. 

Broer [41] considered the same problem, without restricting to peria

die solutions: a~ arbitrary L2-funct~on u(x,t) can be written as 

u(x,t)= ~~~ I Û(k,t)eikxdk= ~~~I [û+(k,t)coskx+û_(k,t)sinkx]dk, 

A ,..-co ·O where u+ and u_ are the even and odd parts of the Fouriertransform 

û of u: 

û+(k,t)-~[û(k,t)+û(-k,t)], û_(k,t)-~[û(k,t) - û(-k,t)]. 

I1 we restriet ourselves to solutic::lns of (1.9) for wliich 

I u(x,t)dx • Û(O,t) = 0 for all t > 0 

~.f. Rèmark 4.2.2) we may define functions q(x,t) an~ p(x,t) by 

(I. 12) 

00 

q(x,t) • An: J ~ • û_(k,t) sin kx dk:; 

oco 

p(x,t) = ~~~ I~ • û+(k,t)· cos kx dk. 
0 

Defining h(q,p) • h(u) under the transformation (1.12), equation 

(1.9) can be shown to be equivalent to 

oil 
'\q = Tp (q,p) 

öh 
(\P -rq (q,p)' 

i.e. a. classica! Hamiltonian system with q and p as canonically con

jugate variables and h as Hamiltonian. 

So far about the formal relations between classica! Hamiltonian 

systems and systems of the form (1.3). In the next section we shall 

define these first order evolution equations as .first order Hamilto

nian systems and briefly introduce the standard terminology and 

results for these equations. In section 4.3. we shall deal with a well 

known non-linear transformation, viz. Miura's transformation. It is 

shown how this transformation turns up as the simplest non-linear 

transformation which transforma a class of first order Hamiltonian 

systems into another class of such systems. Moreover, the construc

tion of these classes will generate the infinite sequence of invariant 

functionals (of polynomial type) for the KdV equation (1.1). 
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4.2. DEFINITIONS AND GENERAL RESULTS. 

We consider scalar functions defined on the whole real axis 

which are sufficiently smooth to allow the necessary differentiations 

and which tend to zero, together with the derivatives, sufficiently 

rapidly as lxl + oo, This space will be denoted by u. 
A first order evolution equation on U is an equiation of the 

form 

(2. I) 

where K is some (non-linear) operator on U. With the usual nomencla

ture a partienlar soL,uti-on of (2, I) is repreaented by a trajectory 

t + u(t) EU, and (2.1) defines a flow in U. We shall be interested 

in a restricted class of evolution equations, ~iz. those for which 

there exists a functional h such that 
K(u) ....;() Óh (u). 

-·x óu 

DEFINITION 4.2.1. If h is a functional defined on U which satisfies 

(2.2) 

the evolution equation 

(2.3) 

h(O) = óh {0) = 0 
óu 

au =" óh() 
t -ox óu u 

is called a fi~et oPde~ Hami~tonian system, and the functional h is 

called the Hami~tonian. 

REMARKS 4.2.2. 

(i) If the functional h satisfies (2.2) then the functional h defined 

on U by 

(2.4) h(u) = h(u) + a J udx + s. 
R~ 

where a and S are arbitrary constants, gives rise to the same evolu

tion equation: 
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(2 .5) 6h a u .. -a - (u) - a u t x 6u t 
-a 6h (u) 

x Ou 

Therefore, requirement (2.2) may be envisaged as a normalization con

dition to assure that with every evolution equation of the form 

a u = -a H(u) 
t x 

wherein H is a potential operator (c.f. section 0.4), there corres-

ponds a unique Hamiltonian h. 

(ii) If equation (2.3) is a local equation, c.f. re!llHrk 4.2.5. and 

definition 5.6.1., we have for functions u € U: 

~~ (u) + 0 for !xl + "'· 

In that case, integrating (2.3) over the whole real axis there 

results 

(2.6) at I u(x,t) _dX - o. 
Rl 

In order to describe the variational principle for (2.3), we de

fine the inverse of the operator a on u by 
x 

x 

(2.7) -1 I ax u(x) : .. u(~)d ~. 

-* The adjoint of this operator will be denoted by a 
x 

(2.8) Vu,v € U. 

Note that 

"" -* =I u(~)~ I (2.9) a u(x) u(~)~ x 
x Rl 

Consequently 

- a 

-* -* -* _, I a a .. a a -I and a u= -ax u-x x x x x 
Rl 

-I 
u(x). x 

udx = 0. 

PROPOSITION 4.2.3. Let Û € c 1(I,U) be an actual evolution of the first 
order Hamiltonian system described by (2.3) over the time interval 

I= [t
0
,t

1
]. Then û is a stationary point of the functionat 

(2. I O) 

over the set 
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(2. 11) 

PROOF. Consider an arbitrary variation v € c1(I,U), satisfying 

v(t
0

) = v(t
1
) = 0. Then 

A'(u)· V= J dt [l<v,a- 1a u>+ l<u,a- 1a v> + <ööh (u),v>] x t x t u 
I 

= J dt [!<v,a (a- 1-a-*)u> + <
0
°h (u),v> + la <u,a- 1v>]. 

t x x u t x 

·With v(t
0

) • v(tÎ) = 0 this results in the following equation for .the 

stationary points of A: 

(2. 12) 

Applying the operator a to this expression, equation (2.3) is 
x 

obtained. 

The following definition is not,completely standard. 

[J 

DEFINITON 4.2.4. A functional e € cl(u,Rt) is said to be an invariant 

integPat for (2.3) if 

(2. 13) at e(u) = 0 

for every solution of (2.3). Any operator E on U for which 

e(u) = r E(u) dx 

is an invariant integral, will §~ called a aonserved density for 

(2.3). 

REMARK 4.2.5. From this definition it follows that if E is a conserved 

density then there exists a ftux denaity T such that 

(2. 14) a E(u) + a T(u) = 0 
t x 

& T(u) + 0 for lxl + oo 

for every solution of (2,3), The expression (2.14) is ef the form of 

a loaal aonaervation taw. However, only if T is a local operator 
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(c.f. definition 5.6.1.) webobtain the usual result that for arbitra

ry interval (a,b) c Rl, at J E(u) dx depends only on the value of u 

and its derivatives with re~pect to x, at the points x • a and x • b. 

In general, we have for solutions of (2.3) 

a E(u) = E'(u)•a u=- E'(u)•a ~h (u)= -a [a-1 E'(u)•a ~h (u)], 
t t X uU X X X uU 

from which it follows that E is a conserved density for (2,3), with 

flux density T(u) = a-1 E'(u)•a ~h (u), if and only if 
x x uu 

J dx E' (u)•ax ~~ (u) = 0 

for arbitrary u E u.RtCompare this with (2,15) and proposition 4.2.6. 

below.) 

For a functional g E cl(U,Rl) we have for solutions of (2,3) 

(2.15) 

Therefore wedefine the Poissonbracket {,} : cJ(U,Rl) x cl(u,RZ);~ 

~ C0 (U,Rl) by 

(2. 16) {f,g} (u) 
Of QO' 

=<~(u), -a ~(u)>. 
uU X uU 

(c.f. Broer [41]). It is easily seen that {,} is a bilinear and anti

symmetrie mappinR, and it can be shown that it satisfies the 

Jacobi reZation : 

(2. 17) {{f,g},k} + {{k,f},g} + {{g,k},f} - o. 

From (2.15) and (2.16) we obtain 

PROPOSITION 4.2.6. A functionaZ g E cl(U,Rl) is an invariant integraZ 

for (2.3) if and onZy if 

(2,18) {g,h} = 0 

EXAMPLES 4, 2 • 7 • 

(i) As {h,h} = 0, the Hamiltonian h itself is an invariant integral 
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for (2;3). In many cases this functional can be interpreted as the 

total enepgy of the system under consideration. 

(ii) If h is tPane~tion invariant, then l<u,u> is an invariant inte

gral for (2.3), the momenturn fUnctional. This follows simply from 

a !<u,u> = <u, a u> .. <u,-a ~h (u)> - <u ' ~h (u)>- o. 
t t X uu · X uU 

(iii) As bas already been observed, remark 4.2.2, (ii), if (2.3) is 

a local equation then J udx is an invariant integral. We shall some• 

times call this linearR~unctional the mass-functional. 

The KdV equation (1.1) is an important example of a first order 

Hamiltonian system: 

(2.19) a u- -a Öh (u) with h(u) - J dx [!u2-lu2 + ~61 3
). 

t x öu x 
Rl 

The BBM equation (1.2) is not of the form (2.3), but it can be brought 

to this form by a simple linear transformation. More generally, we 

shall consider equations of the form 

(2.20) 

wherein D is some selfadjoint operator on U commuting with a and a • 
t x 

An equation of this type may be obtained from a variational principle: 

stationary points of 

(2. 21) Ä(v) = J dt [!<v,at Da:
1
v> + k(v)] 

I 

on the set (2.11) satisfy equation (2.20). 

PROPOSITION 4.2,8. 

(i) Let L be a PBgulap opePatOP on U, oommuting UJith ax (and at), 

UndeP the tPanafoPmation v : = L- 1u, equation (2.3) tpansfoPms into 

(2,20) Mith 

(2.22) 

(2.23) 

* D = L L 

k(v) = h(Lv). 
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(ii) If D adm:it the !'epztesentat.ion (2. 22) fo!' some !'egula:P opemto!' L, 

the tmnsfoi'IT!ation u : = Lv tMnSfoms equation (2.20) into (2.3) 

vrlth h(u) : = k(L -Ju). 

PROOF. This proposition is an easy consequence of the fact that if k 

and h satisfy (2.23) then (c.f. Lemma 0.3.8.) 
L*• oh (L v) =ok (v). OU . ov 

With this result the statements can be obtained either by manipulating 

with the equations, such as 

L*·[a u+ a ~ (u)] = L*Latv + a ~k (v), 
t xou xuv 

or by using the variationalcharacterizations (2.10) and (2.21): 

A(L v) = A(v). o 

The BBM equation (1.2) is of the form (2,20) 

(2.24) 

As follows from proposition 4.2.8. it can be brought to the form (2.3) 

by the linear transformation u : = nlv, where nl is the selfadjoint, 

positive definite square root of the operator D. Another·possibility 

is to takeDas in (2.22) with L =I- a (c.f. Broer [50]). However, 
x 

in many situations it is simpler to deäl directly with the form (2.20) 

than with the transformed equation (c. f. section 5. 6). 

4. 3 NON LINEAR TRANSFORMATHJNS BETWEEN FIRST. ORDER HAMILTONIAN SYSTEHS. 

In this section we shall study transformations which map first 

order Hamiltonian systems into other first order Hamiltonian systems. 

Reasoning along classical lines, it will follow that we are almost 

inevitable be led to the wellknown Miura-transformation and to the two 

classes of equations which are of "KdV-type" and of "modified KdV-type': 

Although the results of our investigation are known in literature, 

the way in which they are derived seems to be not completely standard. 

The starting point is a first order Hamiltonian system on a func

tion space V 

(3. I) 
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where g is some translation invariant functional. Now consider a (non

linear) transformation j which maps V into some other function space, 

U say: 

(3.2) i V~ U , u • i(v). 

A natural question to consider is to find the evolution equation sa

tisfied by u if v evolves according to (3.1). We shall be interested 

in a somewhat differentquestion: for which transformation i is the 

evolution of u described by a first order Hamiltonian system1 [In 

section 3.3 we saw that for classical Hamiltonian systems a specific 

class of transformations an phase space, viz. canonical transforma

tions, map every classical Hamiltonian system into another classical 

Hamiltonian system]. From proposition 4.2.8. it follows that every 

linear transformation 

* * u • L v with LL • L L I 

maps every first order Hamiltonian system into another one. However, 

for non linear transformations it may not be expêcted that every equa

tion of the form (3.1) is mapped into another first order Hamiltonian 

system. Therefore, a more precise formulation of the question under 

consideration is: 

Find a non-linear transformation i and the class of functionals 

g for Which there exists a functional h such that if 

atvm-a ~ (v) then a u. -a ~(u) for u= i(v). 
X uV . t X OU 

[Note that we do not require the transformation i to be invertible]. 

(3.3) 

If the evolution of u is described by 

Öh -a ~ (u) xou 

then, inserting u • i(v), we find 

(3.4) R(v) •a V + a Öh (Î(v)) 
t xTu" o, 

where we have introduced the linear operator R(v) which is defined as 

the derivative of the operator i: 
R(v) : = g•(v) : v ~u. 

Comparing (3.1) with (3.4) we see that in order that 
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(3.5) 

it is necessary that 

(3.6) Öh . * a ;;- (~(v)) = R(v)oa (v). 
X uU X V 

Now note that with a given functional f : U + RZ and given transfor

mation (3.2) there is associated in a natural way a functional 

f : V ~ RZ defined by 

for v E V. 

(The converse i.s in general not true if ~ is not invertible). Then we 

have 

* 
of (v) 
óv 

* Öf = R (v)~ Öu (~(v)). 

in which R (v) is the adJoint of the operator R(v). Therefore it is 

(3.6) to functionals g : V + RZ which natural to restriet the study of 

can be obtained from functionals defined on U. Hence, if it is assumed 

that 

g(v) = Ç(v) = Ç(~(v)), 

then (3.6) may be written as 

(3. 7) a öh (u) 
x óu 

* . öÇ· 
R(v)•3 •R (v)• ;;- (u) for u= ~(v). 

x uu 

Resuming these considerations we may say: if a transformation ~ and 

functionals h and Ç on U can be found such· that (3. 7) holds, then we 

have 

(3.8) atu + a ~h (u) = R(v)o [a V+ a ~t (v)] for u= ~(v), 
X uU t X uV 

In other words: if (3.7) is satisfied, the transformation ~ maps every 

solution v of 

(3.9) a a öi; (v) = o tv+ x öv 

onto a solution u of (3.3) 

r 

Concerning the transformation ~ to be found, we can formulate 
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two a-priori requirements: (i) if I udx is 

i~~ariant 

an invariant integral for 

r (3.3), then j ~(v)dx must be an 

( "") h Rl 1.1. t e operator 

(3.10) * R(v) • a oR (v) 
x 

integral for (3.9); 

as it enters in (3. 7) must be expressible in terms of u = ~(v). 

[As I u2dx is an invariant integral for every equation of the form 

(3.3~l(when h is translation invariant), I ~ 2 (v)dx must also be an 

invariant integral for (3.9). However, th~~ fact is not used in the 

construction of appropriate operators ~ but will be a consequence of 

the construction below]. 

The only a-priori known common invariant integrals for a class of 

equations (3.9) are J vdx and' J v 2 dx. Therefore, in order to satisfy 

requirement (i), it ~k temptin~l(although other choices cannot be ex

cluded by this reasoning) to take for ~: 

(3. 11) ~(v) av2 + bv + a N(v) 
x 

where a and b are constants and N a (possibly non-linear) operator. 

For simplicity let us first consider the more simple transformation 

(3. 12) ~(v) v2 +a N(v), 
x 

where N has to be determined to satisfy requirement (ii) above. 

For ~ given by (3.12) we have 

* R(v) = 2v +a ·N'(v) and R (v) 
x 

such that thl'! operator (3.10) becomes 

* 2v- N'(v) .a , 
x 

* * * R(v).a •R (v) •tf> = 2v•a [R (v)•tf>l + ':! [N' (v).a R (v).tp] 
x * x x x 

a [2v•R (v)otp + N'(v)oa R*otp]- (R*(v)otp)•2v. 
x x x 

Observing that the last term may be written as 

* * -2v • (2v•tp- N' (v) •tf> ) = -2(v2 ) •tp + 2v •N' (v) •<I> 
x x * x x * x 

a [2v •N' (v) •tp] - 2[v2 + V ·N' (v) • ] •tp x x x x 
we obtain 
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43.13) * * * * R(v).() ·R (v)•tp=îi [2v•R (v}•{p+N'(v)~() R (v)•q)+2v •N'(v) • tal-x * x- x ,, x ' 
- 2[v 2+v •N' (v) ] •!.P, x x 

valid for arbitrary function '-P• From (3.7) it follows that for 
o1i: tP =au (u), the right hand side of (3,13) bas to be expressible as a 

derivative with respect to x. Remembering that for every translation 

in variant function Ç: ~r. (u)•u = () ~(u) for some ~. we simply re-
- uu * X X 

quire thet u= v2 + v •N'(v) . Camparing this with (3.12) it follows 
x 

that N(v) = c.v for arbitrary constant c. Taking c = 1 for simplicity 

gives as transformation 

(3.14) 

and with this transformation (3.13) can be expressed in termsof u: 

(3. 15} 

In this way we have found that the transformation (3.14) satisfies 

the requirements (i} and (ii) above. 

REMARK 4.3.1. It may be thought that the requirements for ,the trans

formation admit a much more general transformation then (3.14). In 

fact, it is easily shown that 

(3. 16) -(v) : • av2 + bv + cv 
x 

is a transformation which satisfies requirements (i) and (ii) above 

for arbitrary constants a, band c (and for which the constructionto 

be outlined below can he ada-pted) ,However. ifwe restriet ourselves topoly

nomial expressions for $(v), i.e. S is a polynomial in v and derivati

ves of v with respect to x, then (3.16) is the most general one. This 

can be seen from the following simple reasoning: if n is the degree 
* of$, then R(v).() •R (v) is of degree 2•(n-1), Assuming T(u) to be a x 

polynomial of degree m in u, T(~(v)) is of degree n·m in v. Hence we 

must have 2•(n-1) = n•m, which bas as nontrivial solution ~nly n = 2 

and m = I. This corresponds precisely to (3.16) (and (3.15!)). 
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Remains to investigate for which tunetionals t U + Rl there 

exist tunetionals h : U + Rl such that 

(3 0 17) -I öt öh 
3x •T(u)• ~(u) • öu (u). 

With some trial and error it was found that the following pairs of 

functionals satisfy (3.17): 

(3. 18) t
0

(u) • i r udx h (u) 
0 

J u2dx 

(3 0 19) I; I (u) l J u2dx h
1 

(u) • l I dx [2u 3 + u!J 

~:; 2 (u) • h1 (u) h2(u) "' i X XX 
I dx [Su~ + 10uu2 + u2 ] 

ç3(u) = h2 (u) h3 (u) = l r dx[l4u5+70q2u2+J4uu2 +u2 ], 
• x xxxxx 

Hence we see that for I < n < 3 

(3.20) 

or, for 0 ~ n ~ 3 

(3.21) 

It turns out that this process. can be continued, as follows from 

LEMMA 4. 3. 2. For arbi trary n _:: I the operator 

(3.22) 

is a potential operator. 

PROOF. In principle, the lemma can be proved with the theory of sec

tion 0.4 by showing that the derivative of the operator (3.22) is a 

symmetrie operator. However, the proof is rather difficult and lengthy 

and gives no deeper insight in the underlying problem. Therefore we 

prefer to refer to Flaschka & Newell [42, p. 41l], whose results im-
• + • • ply the forego1ng lemma: the operator ~ def1ned by the1r formula 
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-I 
(3.92) equals !o T(-q) and then the lemma follows from their formu-

x . 
la (3.96). a. 

Resuming the foregoing results we obtain 

THEOREM 4.3.3. Define a sequenae of functionals h : U+ Rl by 
n 

h_ 1(u) :=!Ju dx 
.'.3.23) oh Rl 

hn(u) : hn(O) 

Then ~e have for 

n -1 
= o, -"- (u) = Ho 

uU X 

n+l 
T(u)) • I for n ~ 0 

(3.24) • h 
1

(v) = h 
1

(S(v)) n- n- n > 0 

that 

(3.25) 
og oh 

R(v).a ~ (v) • a ~ (u) for u•S(v) = v 2 +v • x ov x ou-- x 

Consequent ly 

(3.26) 

In this way we have obtained two infinite sequences of first or

der Hamiltonian systems over the spaces U and V which are related in 

the sense of (3.26). Because of (3.25) it is also possible to take 

linear combinations of such Hamiltonians: 

if 

then 

g(v) = r a g (v) 
n n 

n 
and h(u) = r a h (u) 

n n n 

R(v)• [otv+ox ~ (v)] • otu + ox ~~ (u), 

For n = I, (3.26) amounts to 

(3.27) R(v)• [otv + ox (2v3 
- v~)] • o u+ ~ (3u2 -u • ). 

..,.... t X XX 

As the right hand side equated to zero is related via a simple trans-. 

formation to the standard form of the KdV equation (1.1) and the ex

pression in square brackets corresponds to the so-called "modified 

KdV equation", (3.27)_' is exactly the result as was discovered by 
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Miura [43]. 

The next lemma shows that each functional h (g ) is an invariant 
m m 

integral for every Hamilton flow h in U space (for every Hamilton 
n 

flow 8u in V space respectively.) 

~ 4.3.4. 

(3.28) 

(3.29) '{gz,gz} = 0 for all l.,j > 0 

PROOF. The result (3.29) follows .from (3.28): with (3.24) and (3.25) 

it follows that 

{hj-l ,h1_} (u). 
To prove (3.28).we use the definition (3,23) of h (u): 

{hz,h.}(u)= <!ht(u),a ~hj(u)> = l <(a- 1 T(u))~+i.J:a'.(a- 1 r(u))j+!t> 
' l uu x uu x x x 

* ' -1 -1 
ebse~ing that T (u) = -T(u) and <3 ~.~ =-<~,a ~.provided x x I ·~dx =oor I ~x- o.~e,obtain 

{

1<(a:1T(u))j+m+t" ,a x. (a:1T(u))j+m+t., > .• 0 if:l.•j+2m 

{hz,hj} (u) = 
1< (a -IT(u) )j+m+! 1, T(u)• (a -tT(u) )~+m+! 1>=0 if l=j+2m+ 1. 

x x 

This proves the lemma. 

The next lemma relates subsequent functionals h : 
n 

LEMMA 4.3.5. FoP n 2:_ 0 we have 

(3.30) I 
óh~+l 
~ (u)dx = 2•(2n + 3)hn(u), 

D 
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PROOF: Let m(u): = I éi::+l (u)dx = I (a:1T(u))n+! u dx. 

~ith lemma 4.3.2. it follows that 

éim I -I n+ I • -1 n+ 1 • <éiu (u),v> = [(ax T(u)) •u] •v dx=<v,[(ax T(u)) • u] • 1>. 

With [a-1T'(u)• I]• ~ = 4~ for arbitrary ~ € U, we obtain 
x o n I. 1 I . 

< "m (u),v> = <v, t (a- T(u') 3 •(a- T'(u)• l)•(a- T(u)n-·1 •u> + 
uU • O X X X 

3'"-1 n+l 
+ <v,(a T(u)) •I> 

x 
-1 n = (4•(n+l}+2)• <v,(a T(u)) •u> 

Öh x 

= 2•(2n+3) <v, ö n (u)>. 
Öh u 

öm · n Hence !ü = 2•(2n+3) öu , and then the result follows from 

m(O) = hn(O) = 0 c 

We shall end this section with some remarks. 

REMARK 4. 3. 6. Consewed fl,uz property. 

For the equation 

(3.31) 
óh. 

n a u= -a ~(u) 
t X OU 

Ö'h 
n the density u is a conserved density (it is easily seen that öu is 

a locf.i operator). From lemma 4.3.4. and 4.3.5. it follows that its 

flux :s:U is also a conserved density for (3.31). Then' it is easily 

verified that the functional 

(3.32) 

is an invariant integral for (3.31). (c.f. remark 5,4.2. (iv) for an 

interpretation). Taking the Poissonbracket with a functional 1 there 

results 

(3.33) {c .~}(u) = Jf ~~ (u)dx- 2(2n+l)·t~{h 1 ,~} (u). 
n uu n- · 

In particular, with (3.28) and (3.30): 

(3.34) I 
Öh 

{C-,h} (u)= ~ (u)dx = 2•(2m+l)h 1 (u). n- m ou m-
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As 

(3.35} 
6·~ 6!1. 

{h ,1}(u) = -<u,a y- (u)> = <T- (u),u > (=0 if 1 is transla-
o :X OU OU :X 

tion invariant) 

it follows from (3.33) for n=1: 

(3.36) {c1,1} (u)= I~! (u) d:x for every translation invariant func

tional R.. 

Property (3.34) means that the operator {C ,•}, n > 1, maps each 
n -

functional h from the infinite sequence onto its preceding one 
m 

hm- 1• Using Jacobi's re lation 

{h ,{c,.,t}} + U.{h ,c }} + {c tÜ,h }} o 
m n · m n .!l m 

it follows from (3.34) that 

(3.37) 

This result seems to be interesting only for m = n ~ 1: then it fol

lows with (3.35) that for every translation invariant functional 1: 

(3.38) 

This means that if !1. is translation invariant and an invariant inte

gral for the KdV equation (equation (3.31) with n = 1), then the same 

is true for I * (u) dx. 

REMARK 4.3.7. Relation hlith inverse scattering theopY. 

Although the transformation (3.14) and the result (3.27) discovered 

by Miura is interesting in its own right, it would not have had so 

much attention if it didn't form thebasis of a remarkable theory de

veloped by Gardner &Green & Kruskal & Miura [44]. They showed how 

it is possible to solve the initial value problem for the KdV equation 

by linear operations only. Although this is not the place to give a 

detailed account of this "inverse scattering theory", we shall indi

cate the most important ideas to show why the result (3.26) is essen

tial for this method to be applicable. We start with the more general 

transformation 
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(3.39) • v2 + v + À 
x 

where À E RZ. Then R(v) = ~À(v) is independent of À and the same se

quence of functionals h : U + RZ is obtained as before and 
m 

(3.40) 

It is well known that when we define a new variabie ~ by 

V : = OX log ~' 
the transformation (3.39) becomes a linear mapping between ~ and u: 

(3.41) 

or 

(3.42) ~ +(À-u)~ = 0. 
XX 

Then the right hand side of (3.40) may he expressed in ~: 
Öh m 

otu + ox Öu (u) 
Óh 

:ft n-1 = R(v)•[otv + o R (v)·~ (~À(v))] 
X OU Óh ·~ 

I n-1 XX = R(v)·a ;i," [a ~ + (2~ -~a ) ~ (u= ---;r + x '!' t x x uU '!' 

Hence: if ~ evolves according to an equation of the form 

(3.43) 

À)] 

for arbitrary constant C(À), then under the transformation (3.41), u 

evolves according to 

(3.44) 
öh 

0 u + a ~ (u) • o. 
t x ou 

If we tried to use the transformation (3.41) to solve the initial 

value problem for (3,44) we could reason as follows. Let u be the 
0 

initial value for (3.44). Then take a bounded function ~ such that 
0 

u
0 

and ~0 satisfy (3.41) (From scattering theory it is known that 

such a ~0 can only he found if À belongs to the spectrum of the scat

tering problem (3.42) with u as potential. Note that, in this reaso-o 
ning, À is taken fixed), Then, let ~ evolve according to an equation 

of the form (3.43). If ~(t) has been found, u(t) is immediately found 
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from (3.41), and the solution of (3.44) with u as initial·,value would 
0 

have been found. Of course, this metbod is unsuccessful because the 

evolution of ~ is described by a non-linear equation and is usually 

as difficult t~ solve as the original problem (3.44). For instance, 

for na 1, (3,44) is the KdV equation and (3,43) reads 

(3.45) 

The much more successful metbod of G.G.K.M. prevents (when it is 

applicable) the necessity to determine explicitely the solution of 

equations like (3.45), at the cost of taken an infinite (continuum) 

number of transformations (À becomes a parameter ranging over the 

spectrum of the initial value scattering problem). 

If u is the initial value for (3.44), consider the scattering problem 
0 . 

(3.42) with u • u and determine a suitable set of scattering data 
0 

(viz. the spectrum, the reflectioncoefficient for the generalized ei-

genfunctions and normalization coefficients for the eigenfunctions cor

responding to the discrete part of the spectrum). From the inverse 

scattering theory it is known that for such a set of data, the.process 

can be inverted: once these data are known, the potential of the pro

blem can be determined. Therefore, if from the evolution equation for 

u, evolution equations for these scattering data can be found for which 

the initial value problem can be solved, it is possible to determine 

the value of these data for every t > 0, and then, with the inverse 

scattering theory, the value of the potential u(t), Now, the main ob

servation is that the equations for the scattering data are simple or

dinary differential equations whicb can easily b~ solved, if the equati-

Qnsfor the eiganfunctions are local equat~ons: in that case the evoluti

on equations for the scattering data can be obt~ined merely from the 

knowledge of the asymptotic behaviour {e.g, for ~) of the eigenfunc

~ions. Moreover, us!ng the fact that u~ for lxl~. this asymptotic be

haviour is described by a linear equation. For instance,(3.45) can be 
writt.ell as 

(3.46) a ~ + (3u - À) 1/J - 1/J · = C(À)·~· · 
t X XXX 

This short description may indicate why precisely equations (3.44), 

which led to the local equations (3.43) for ~. can be solved with the 

inverse scattering theory. For more details we refer to the literature, 

e.g. Whitham [45] and in particular Flaschka & Newell, [42, section 3] 
and G.G.K.M. [44]. 
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CHAPTER 5: WAVE PROPAGATION IN ONE-DIMENSIONAL HAMILTONIAN SYSTEMS 

5.1. INTRODUCTION. 

Let us start with a Hamiltonian system (h,Q,P) where Q and P are 

function · spaces consisting of functions defined on the whole real 

line Rl (one space variable x E Rl). Hamil ton' s equations are 

(1.1) óh 
.. óp (q,p) , 

For a large class of Hamiltoniansh these equationscan often be 

interpreted as a set of "wave equations". Although it is very 

difficult to give a precise definition of this notion, an equation 

will be called a wave equation if its solutions (or a subset of 

solutions)can be interpreted as waves, i.e. if these solutions 

describe some propagating phenomenon. Standard phrases in conneetion 

with wave equations are: normal mode solutions (for linear equations), 

propagation along characteristic curves in x,t plane (for non-linear, 

non-dispersive equations) and steady state solutions (periodic or 

solitary wave solutions for non-linear, dispersive equations), 

Before analyzing this point any further, we want to rewrite 

equations(l,l) in another form. Therefore we assume that we are 

dealing with a potential system~ which means that h does not depend 

on the variable q itself.bu~ only on expressionsof axq. In that 

case, q can he interpreted as a potential for the underlying system, 

and the system can be more simply described with the variables 

u • -a q and p. (Note that the transformation (q,p) + (u = -a q,p) 
x x 
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is not a canonical transformation). If we rewrite the Hamiltonian 

h(q,p) in terms of u and p, and denote this transformed Hamiltonian 

by h(u,p), Hamilton's equations (1.1) may be rewritten as 

(I • 2) 
óh -a -
6 

(u,p) 
x u 

• óh óh where we have used the relat1on -6 (q,p) = a -
6 

(u = -a q,p). 
q x u x 

"Unlike the variabie q in a potential system, the variables u and p 

are required to vanish (together with their derivatives) as lxl ~ ~. 
Tbe equations (1.2) shall be written in a more convenient way as 

(1.3) 

Here ;(u,p) is the momentum functional 

(1.4) ;(u,p) = <u,p> , 

and for arbitrary differentiable functional f(u,p), grad f(u,p) 

denotes the two-component functional derivative of f with respect 

to u and p : 

= 
( 

~ó!f (u,p)) grad f(u,p) 
6p (u,p) 

With the respect to th"e formulation (1.3) we shall make several 

remarks. 

REMARKS 5
•

1
•

1
• (i) Of course the foregoing can also be rephrased in 

a variational form: Introducing u= -q and h(u,p), the canonical 
" x 

action principle for (1.1) is equivalent to 

(I. 5) CA (u,p) : = - Jdt [< p,at a -1 u > + h1(u,p)], x 
I 

Stationary points of this functional satisfy 

a -1 + óh -* óh 
at u 0 a a P - i5ü o. x óp x t 
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Applying 0 tothese equations, we obtain (1.2). 
x 

(ii) As we have seen in section 3.4 , the 

functional hentering in (1.3) is an invariant integral (the energy) 

and ; is an invariant integral if h is translation invariant. 

(iii) The first order Hamiltonian systems as described 

insection 4.2 can also be written in the form (1.3) : for instance, 

the equation 

(I. 6) " " óe , "t D u = - a x óu 

* where D D may be written as 

(1. 7) 

where now 

(1.8) 

ot grad n(u) = -o grad e(u) 
x 

n(u) = .!. < u, Du > 
2 

and grad f(u) = ~! by definition. The functional e, the energy, is 

again an invariant integral for solutions of (1.7), and the momenturn 

functional nis an invariant integral if e is translation invariant. 

(iv) Steady state soZutions of (1.3) are functions 

u and p which depend on x and t only through the variable x-ct where 

c is the constant propagation velocity. The equation for these 

solutions is 

(1.9) grad h(u,p) - c grad m (u,p) o. 

This equation may be envisaged as the equation for the stationary 

points of the constrained variational problems 

-h (u,p) • Stat. subject to m (u,p) constant 

or m (u,p) = Stat. subject to h (u,p) constant, 

where c is a multiplier. This formulation may be particularly useful 
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when an extremum variational formulation is valid. In that case it 

follows e.g. that h is an extremum on the class of functions for 

which ; has a prescribed value and. because of remark (ii) above. 

this property then holds for all times. Such a property may 

have important consequences concerning the stability of steady states 

as has been remarked by Benjamin [35] (cf. also Benjamin [46] and 

Bona [47] where this property is Used to prove stability of the 

solitary wave solutions of the KdV and BBM equation). 

(v) The most important aspect of equation (1,3) for 

the rest of this chapter is that equation (1.3) is invariant for 

a time-independent linear transformation of the variables u and p. 

To be more precise. consider a transformation (u.p) + (a.a) of the 

form 

(I. 10) 

i 
where A • B, C and D are pseudo differential operators with I constant 

coefficients. The transformation is regular if AD+BC is invertible 

and under a regular transformation equation (1.3) is equivalent to 

(1.11) 

where 

(1.12) h(a,a) .. h(u,p) ;(a,B) = ;(u,p) under (1.10), 

and where now "grad" denotes the two component functional derivative 

with respecttoa and 8. The equivalence of the equations (1.3) and 

(1. 11) follows immediately from the fact that the operators A, B, c 
and D commute with o and o • and from transformation properties 

x t 
of an arbitrary functional f : if f(a,8) • f(u,p) 

then 

Of course, these results can also be obtained from the variational 

formulation (1.5): under a regular transformation (1.10), stationary 
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points of 

CA(a, 13) : CA(u = Aa-BI3, p • Ca+DI3) 

are in a one-t·o-one correspondence with those of CA( u, p), and 

satisfy equation (1.11). 

Returning to the wave character of systems described by equation 

(1.3), it is often found that such an equation admitssolutions which 

can be interpreted as being composed of waves running to the right 

and of waves running to the left (i.e. in the direction of the 

positive and negative x-axis respectively), For instance, if from the 

set (1.3) a single equation, of second order in time, for u can 

be extracted (which is then actually the Euler equations for the 

variabie q) which does not contain terms with atu, the equation is 

invariant for time inversion from which,the absence of any preferred 

direction of propagation follows (if u(x,t) is a solution which can 

be interpreted as propagating to the right, u(x,-t) is a solution 

propagating to the left). 

For such wave equations with solutions running in both directions 

it is tempting to write the solutions as superpositions of two 

unidirectional waves running in opposite directions and to find 

the equations descrihing each of these unidirectionally propagating 

waves. To that end we pérform a linear transformation of tbe form 

(1.10) and take the transformation such that tbe transformed 

momentum functional i(a,l3) does not contain a product term with 

a and B· For instance, for m as given by (1.4) we performa 

transformation 

u D(a-13) 

(1. 13) 

p = a+l3 

* where D D and invertible, and find that 

(1.14) 

Under this transformation, h(a,l3) can be written as 

149 



(1.15) 

where a and b are functionals depending only on a and 8 respectively 

and where the interaction functional i(a,(3) consists of all those 

terms which contain both the a and the a variable: 

i(a,O) = 0 i(0,(3) 

With (1.14) and (1.15) the equations (1.11) may be written as 

(oa oi ) 2<1 Da = -;, - (a) + - (a (3) 
t x oa oa • 

(1.16) 

2a DB = a (ob oi ) 
t x 88 (8) + oB (a,(3) • 

For a large class of Zinear equations it shall be shown in the 

next section that it is possible to find a transformation such that 

i(a,S) = 0. In that case the two equations (1.16) are uncoupled and 

the solutions of the original equation (1.3) can be written as a super 

position of solutions of 

(I. 17) 
oa 2<1 Da .. -<1 -(a) 

t x oa 

(I. 18) 2ot DB= 

Each of these equations is a first order Hamiltonian system such that, 

if the a and 8 equation describe waves travelling to the right and 

to the left respectively, we have obtained an exaat separation of 

the original Hamiltonian system (1.3) into two unidirectionally 

propagative first order Hamiltonian systems. 

For non Zinear equations it is generally not possible to find 

a linear (!) transformation such that i(a,(3) vanishes identically. 

Then i(a,(3) can be interpreted as an intePaation funationaZ which 

couples the two uncoupled equations (1.17), (1.18) as in (1.16), 

As they stand,equations (1.17) and (1.18) are two first order 

Hamiltonian systems, the a- and the (3- "mode" respectively • 

Fora restricted set of solutions of (1.16) it may be possible that 
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the interaction between the a- and a- mode can be."neglected", 

such that, within some approximation, these solutions of the 

original Hamiltonian system can be written as a linear combination 

of solutions of two uncoupled first order Hamiltonian systems. 

For instance, consider the salution (a,a) of (1.16) corresponding to 

initial data (a , a ) with a = 0. It is likely that this salution 
0 0 0 

is, at least for sufficiently small times, in some sense "close" 

to the salution of (1.17) with initial value·a and aao. Moreover, 
0 

it may be argued that the correspondence will be as good as possible 

if the interaction termsin (1,16) are as "small" as possible. This 

will be the case if the linear transformation is chosen to achieve 

an exact separation of the linearized equations (1,16). A rigarous 

formulation and justification of these beuristic observations 

seems to be impossible in this generality • For a specific system 

of Chapter 6 we shall be able to say somewhat more about this 

point. Another result which can be obtàined from (1.16) is that if 

h is an even functional of one of its variables, it is possible to 

define one first order Hamiltonian system which describes a subset of 

solutions of the or~~al system exactly. This first order system 

is then not translation invariant. This shall be examined for 

general systems insection 5.3 and fora specific system insection6.3 
Up to now we have repeatedly used expressions such as "unidirectional 

propagation" without specifying the meaning of this notion. It is well 

known that for linear systems such a notion is closely related to the 

concept of group velocity, but especially for non-linear equations, 

this point seems to have had not so much attention in literature. In 

an attempt to illuminate this subject somewhat, we give in section 

5.4 a (physically acceptable) definition of unidirectional 

propagativity in conservative evolution equations. This definition 

and its consequences are then investigated for linear Hamiltonian 

systems in section 5.5, and for non-linear first order Hamiltonian 

systems in sections 5.6 and 5.7. 

5.2. EXACT SEPARATION OF LINEAR SYSTEMS 

In this section we consider linear equations of the form (1.3): 

(2.1) '\ grad ;;;(u,p) -3 grad h(u,p). 
x 
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More specifically we assume that the functionals mandhare givenby 

(2. 2) ;;;(u,p) = <u,p> 

(2. 3) h(u,p) I I 
+ <u,Qp> "' 2 <u,Uu> + 2 <p,Np> . 

These functionals are considered on the set l) xb, where in 

(2.4) 

" with k some arbitrary but fixed positive number and f denoting 
0 

the Fouriertransform of the function f. The operators U, N and Q are 

assumed to be translation invariant pseudo differential operators 

from 4 into ~ (this implies that the operators are bounded on À), 

* * with U and N symmetrie on ..0: U = U and N "' N • Moreover ,we shall 

assume that 

(2.5) u and N are boundedly invertible on h 

The equations (2.1) can be written explicitely as 

(2.6) 
* .. -a [Np + Q u] 

x 
-a [Uu + Qp] , 

x 

and it is easily seen that a solution (u,p) belongs to 4 x~ for 

every t if the initial data belongs to ~x~ 

To look for a separation of these equations, we performa regular 

transformation of the form (1.10) and require that mixed terms 

(containing both the a and the 8 variable) entering in the transformed 

functionals m and h vanish. This gives conditions for the operators 

A, B, C and D. If these conditions can be fulfilled we have obtained 

an exact separation of the system (2.1). Reasoning along these 

lines, the following theorem is a straightforward result. In the 

formulation of it we use the decomposition of the opera~or Q in its 

symmetrie and anti-symmetrie part: 

Q 
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THEOREM 5.2.1. The Zinear syatem desePibed by (2.1), (2,2). (2.3) 

can be e~actZy separated if the opePatoP 

(2. 7) 

ia :poaitive ikfinite. In that case !.Je may ikfine an operatop S by 

S = S + S • tJhepe the syrrmetPic part Ss ia defined to be the s a 
(bounded) positive definite square Poot of (2.6): 

(2.8) 

andtJhePe the anti-ayrrmetPic part ia given by 

(2.9) 
-1 s = -Q .u . 

a a 

Then the operatoP s is bounded and has bounded invepae 

(2. 10) s- 1 = s*<ss*)- 1 = s*<s 2 - s 2)-1 * -I s a =SUN • 

and the tpanafoPmation 

{2.11) 

ia PegulaP and tJeZZ-defined by 

(2. 12) 
{

p .. a + a 
u = sa-s*a 

-1 * 
{

2a = Ss {S p+u) 
-I 

28 = S {Sp-u) • s 

and tranafoPms the functionaZs ; and h into 

i{a,E!) = <S a,a> - <S E!,E!> . s s 

h{a,B) = <{US 2 + S Q }a,a> +<{US 2 - S Q }B,B>, 
s s s s s s 
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such that the transfo~ed equations aPe given by 

-a (US + Q )a 
x s s 

(2. 13) 

a (US - Q )B • 
x s s 

We shall end this section on linear systems with some remarks. 

REMARK 5.2.2. For simplicity of exposition, assume that Q 0. 

Then S = 0 and 
a s 2 

s 

and the transformation (2,12) becomes 

(2.14) 

Using the identity 

= a + S 

s -s 
a S 

{

2a 

2S 

-I 
p + s u 

-1 
p- s u 

(2. 15) I -1 1 -1 
u= 2 S(p + S u) - 2 S(p-S u), 

we are able to camment on condition (2.5). Indeed, if condition 

(2.5) is dropped,. it is easy to construct examples for which S-I 

is a bounded operator on À; but S is not bounded on l:J • 

[A well known example is the linear equation for an elastic bar, 

which bas N =I and U= -a 2
• Then, using the symbols of these 

x 
operators, we have 

N.û- 1 =..!. > -1- on À 
k2- k 2 • 

0 

from which it follows that s2 
is positive definite, and thus s-2 

is bounded, but s2 
is not bounded. Consequently, a and S are 

elements of À : 
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but there is no need for Sa and S !l to be elements of .<1 • al though 

the difference Sa-S6belongs to~. according to (2.15)], 

Although a further investigation of this matter might indicate that 

such a separation can be given a mathematically sound base, from 

a physical point of view a more satisfactory result is obtained if 

condition (2.5) is fulfilled. 

REMARK 5.2.3. In some sense, the character of a linear equation is 

completely reflected in its dispersion relation. The dispersion 

relation for the set of equations (2.6) can be expressed with the 

symbols of the pseudo differential operators as 

(2.16) 
A 2 2 A A A 2 

(w -k Q ) = k , (N, U+Q ) , . s a 

and we see that a neaeesary condition f9r an exact separation to be 

possible is that this dispersion relation admitstwo real-valued 

(for k E Rl) salutionbranches w (k), which is true provided 
"' ..... "' 2 N•U+Q > 0 (compare this with the requirement for the operator 

a -
(2.7)), Then 

A A A A 2 l A ~ A 
w = k.Q + k,(N,U+Q ) = k.(U.~ +Q) 
~ s a s s 

is the dispersion relation for the a-mode of (2,13) and 

w_- k.Q - k,(N.Û+Q )~ .. -k.(Û.s -Q > 
s a s s 

is the dispersion relations fortheB-mode of (2.13). 

5.3. REDUCTION FROM A CLASSICALTO A FIRST ORDER HAMILTONIAN SYSTEM 

.THROUGH SYMMETRY. 

In this section we consider a set of Hamilton's equations in the 

variables u • -a q and p, such that (c.f. (1.4)) 
x 

a u = -a öh (u,p) 
t x~ 

(3. 1) 
öii a p .. -a .._ (u,p) 

t X OU 
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We shall show that if h satisfies some assumptions, the solutions 

(u,p) of (3,1) corresponding to a restricted class of initial data 

can be obtained from one first order Hamiltonian system (without 

any approximation). For the surface waves to be studied in chapter 6 

the assumptions are satisfied and the restricted class of initial 

data bas a clear physical meaning. 

To derive the results, it is somewhat simpler first to perform 

a linear transformation such as (1.13): 

(3.2) u ""D (cdl) p "" ll+B 

where D is any selfadjoint , invertible operator (cf. remark 5.3.5, 

where the results are derived without such a transformation). 

Then, with h(a,8) ""h(u,p), the equations for Cl and Bare (cf. (1.16) 

(3. 3) 

(3.4) 

oh 
-() T («,B) 

x ull 

For the following it is convenient to introduce the operator J 

which is the inversion of the real axis with respect to the origin: 

(3.5) Ju(x) u(-x) , 

for arbitrary function u Rl + Rl. Note that J satisfies 

<u,Jv> <Ju, v> 

Vu,v, 

<u, v> s <Ju, Jv> 

such that 

(3.6) * 2 J = J and J Id. 

Moreover, if A and D are pseudo differential operators with constant 

coefficients, then 
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(3.7) 

(3.8) 

* JD • DJ if D • D 

* JA = -AJ if A == -A 

HYPOTHESIS 5.3.1. The functional h satisfies 

(3.9) 
va,e . 

(3. JO) h(Ja, Jl3) = h(a,l3) 

Differentiating the identity (3.9) with respect to a(or 6), 

there results: 

(3.11) 

Differentiating (3.10) with respecttoa and B there results 

* (using J = J) 

ó'il J Öh(J<j) J1jJ) &î(<P ,tj!) öa • 
(3 .12) V<j),tj! 

Öh ö'il 
öl3 (<j),tj!) = J cSI3(J<j),J1jJ) • 

Now, applying the opera~or J to the equations (3.3), (3.4) we find 

with (3.7), (3.8): 

and with (3.11) and (3.12) this may be written as 

öh öh za D Ja = a ~(Ja,JB) = a ~a<JB,Ja) 
t X ua X Uf.> 

From this result we immediately obtain 
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PROPOSITION:5.3.2. Ifh satisfiee hypothesis 5.3.1., then we have:if 

(a,B) ie a eolution of (3.3), (3.4)then (JS,Ja) is a eolution of (3.3), 

(3.4). 

Stating explicitely that the initial value problem for (3.3), 

(3,4) is assumed to have a unique solution, we can prove the following 

THEOREM 5.3.3. If hypothesis 5.3.1. ie eatiefied~ the unique salution 

(a,S) of (3.3), (3.4) aarreeponding to any initial data (a ,8 ) for 
. 0 0 

which 

(3.13) 

satiefiee 

(3. 14) 

a = JB 
0 0 

a(t) = JS(t) vt 

Moreover, we have Y(t) = a(t) ~ JS(t), where y ie the eolution of the 

initial value problem 

(3.15) d DY ~ -a ~(Y) 
t x ÖY 

y(O) = a 
0 

wherein the (non-tranelation invariant) funational g ie defined by 

(3.16) 
I~ 

g(Y) : = 4 h(y,Jy) , 

PROOF. If (n,B) is the solution of (3.3), (3.4) with (a(O), 8(0))~ 

(a ,B ), then according to proposition 5.3.2.,(JB,Ja)is also a 
0 0 

solution with (JS(O), Ja(O))~ (JB , Ja ). Now, if a and B satisfy 
0 0 0 0 

(3.13), then (JB, Ja)= (a ,B ). Hence, in that case (a(t),S(t)) 
0 0 0 0 . 

and (JS(t), Ja(t)) are both solutions of (3.3), (3.4), corresponding 

to the same initial value. Then a(t) = JS(t) (and S(t) = Ja(t)) by 

the uniqueness assumption, For such a solution '4e may insert 

S(t) = Ja(t) in (3.3) and find that a has to satisfy the equation 
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This is preeisely equation (3.15) as follows from differentiating 

the funetional g given by (3.16): 

ö öh öh 4 ~(y) • öa(y, Jy} + J öa<Y. Jy). 

whieh ean be written using (3.11) and (3.12) as 

§.& öh Öh öh 4 öY(y) öa(y,Jy} + J öu(Jy,y) = 2öa(y,Jy) 

This proves the theorem. 0 

These results are now easily reformulated in terms of the 

original equation (3.1). 

THEOREM 5.3.4. Suppose h(u,p) satisfies 

(3. 17) h(u.p) = h(-u.p) 

Vu.p • 

(3.18) h(Ju,Jp) • h(u,p) 

and assume that the initia l va lue p:roblem foP ( 3. I ) has a unique 

solution. Then the solutions (u,p) of (3.1) whiah aol'I'espond to intitial 

data (u ,p )foP whiah 
0 0 

satisfy 

Ju(t) • -u(t) 

(3.19) Vt ~ Q, 

Jp(t) = p(t) 
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MoNover~ for arbitrazy, aelfadjoint pseudo differentiaZ operator D, 

these solutions can be represented as 

(3.20) u = D(y-Jy) p .. y +Jy, 

~here Y is the salution of 

(3.21) 

mth 

(3.22) 

=-a ~(y) 
x oy 

I -
g(y) = 4h(u = D(y-Jy), p =y+Jy), 

REMARK 5.3.5. Once it is observed that there exist solutions 

with the proparty (3.19), it is possible to define a function y as 

in (3.20). Then the equation for y can be obtained with .the 

variational principle (1.5) for (3.1), Inserting (3.20), with 

D = ld for simplicity, there results a functional A(y) : = ëÄ(u,p): 

(3.23) A(Y) [<y + Jr,a a - 1(y-Jr)> + 4g(r)l • 
t x 

Using the relations 

-* (where a 
x 

Ja -1 
x 

-* a J 
x 

-1 is the adjoint of a • given by 4.(2.9)), (3.23) may 
x 

be simplified to 

(3.24) I 1 -1 
A(y) = -4 dt [ 2 <r, atax r> + g(r)l • 

where we have omitted some uninteresting terms at the endpoints 

of the time interval. Stationary points of (3.24) satisfy the 

evolution equation (3.21), 
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5.4. DEFINITION OF ONE-WAY PROPAGATIVITY 

Consider a first-order Hamiltonian system described by 

(4.1) 

It is our aim to investigate bere what sense can be given to such 

statements as "equation (4.1) describes unidirectionally propagating 

waves". We shall give a definition of unidirectional propagativity. 

the idea of which is quite simplé: intuitively it is clear that. 

when speaking about propagation, we mean propagation of some 

"property" of the system (such as wave-form, energy etc.). Let E(u) 

stand for such a property, depending on the considered solution u. 

Then it must be assured that, when considering E(u) at a fixed 

place x as a function of time, changes in the value of E(u) are only 

caused by propagation and not by any dissipative effects. Therefore. 

it is argued that especially aonsePVed densities are able to 

"measure" propagation. With this observation in mind, the following 

definitions are proposed. 

DEFINITION 5.4.1. Let E(u) be any conserved density for (4.1) and 

e(u) the corresponding invariant functional: e(u) • J E(u)dx. The 

aentre of gravity of E(u), denoted by XE(u) (t) is Rl defined by 

(4.2) J (x-XE)· E(u)dx = 0 • 

Rl 

Hence. XE is a time-dependent functional of u, which can be defined 

for solutions u for which e(u) p 0. The velocity of E(u), denoted 

by VE(u)(t) is defined to be the velocity of the centre of gravity 

(4.3) 

[If T(u) is the flux density corresponding to E(u), i.e. if E and T 
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satisfy 

(4.4) a E(u) + a T(u) = 0 
t x 

for solutions of (4. I), VE can be expressed as 

(4.5) V (u)= fTlu~dx ], 
E e u 

We say tbat E is propagating to tbe rigbt (to tbe left) fora 

salution u at time t if VE(u)(t) > 0 (VE(u)(t) < 0 respectively), 

Equation (4.1) is said to be unidiPeationatly pPOpagative (in the 

strict sense) ~ith peepeet to the conserved density E if VE(u)(t) 

can be defined for every salution (i.e. e(u) ~ 0 for every u) and 

bas tbe same sign for evecy salution and all time, 

Witb respect to this definition some remarks have to be made, 

REMARKS 5.4.2. (i) Although tbe centre-of-gravity velocity of a 

conserved density bas some pbysical significance, it is by no means 

tbe only possible metbod to describe propagation pbenomena. An 

important practical reason to deal witb tbe above described notion 

is implicitely given in the next sections: the possibility to apply 

tbis definition and to formulate, witb relatively ease, general 

conditions on D and hunder wbich equations of tbe form (4.1) are 

unidirectionally propagative witb respect to some conserved density. 

Furtbermore, an obvious requirement tbat must be imposed on any 

sensible definition of propagation is tbat, if tbe equation under 

consideration admits a salution whicb travels undisturbed in sbape 

witb constant velocity c, say u(x,t) =~(x-ct), the propagation 

velocity to be defined must equal c for tbis special solution, for 

all time. Because of tbe relation a E(~) = -ca E(~) for 
t x 

$=$(x-ct), this requirement is satisfied by tbe centre-of-gravity 

velocity of every conserved density. 

{ii) As a consequence of the proposed definition, witb every 

conserved density tbere is associated a velocity for every solution. 

Suppose E1 and E2 are two different conserved densities (possibly 

with the same invariant functional!t Then, if v1 and v2 denote the 
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corresponding velocities, the velocity v12 of the conserved density 

E12 • E1 + E2 is easily found to be 

vl.el + v2.e2 

for every solution u. 

Furthermore, in general there is no evidence at all that if equation 

(4.1) is unidirectionally propagative with respect to E
1

, the same 

is true with respect to E2• However, for linear equations with 

constant coefficients it will be shown in section 5.5 that if the 

equation is unidirectionally propagative with respect to some 

definite, quadratic conserved density, the same is true for all 

quadratic conserved densities. [Moreover, this unidirectional 

propagativity is shown to be true if and only if the group velocity 

of the linear equation is definite. (This result gives also some 

confidence in the proposed definition)], For non-linear equations 

no such strong relationship between the propagativity of different 

conserved densities has been found. 

(iii) Closely related with the foregoing remark is the following 

observation. If E is a conserved density. and T the corresponding 
* flux density, then E , defined by 

* E (u) = E(u) + 3 F(u) • . x 

where F(u) is any expression in u satisfying F ~ 0 for lxl ~ ro on 

the considered class of solutions, is also a conserved density with 

the same invariant functional 

e(u) = I E(u)dx = I E* (u)dx. 

* * The flux density T corresponding to E is given by 

* T (u) = T(u) - 3t F(u) , 

* * and if X, X denote the eentres of gravity of E and E respectively, 
* with corresponding veloeities V and V we have 
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* -1 r X(u) -X (u) = e(u) 'JF(u)dx 

and 
* -1 r -1 J * V(u) - V (u) = e(u) .atJF(u)dx = e(u) • [T(u)-T (u)]dx • 

From this it follows that adding a term d F to the density, the x 
corresponding velocity will change in general: only if the total 

flux is not altered, the velocity remains the same. This may seem 

a serious shortcoming of the applicability of the proposed'definition. 

However, relying on the physics of the problem at hand, the 

physically most relevant densities can often be distinguished 

from less relevant ones. For instance, among all the densities 

which give the functional that can be interpreted as the total 

energy of the system, we take the positive definite dens~ty (if 
I 

possible) as the energy density, whose centre-of-gravity ~elocity 

is then interpreted as "the energy-velocity". 

(iv) Conserved f2ux property. 

In general the velocity functional is not an invariant functional. 

However, if the conserved density E(u) has a conserved flux, i.e. 

if the total flux Jr(u)dx itself is an invariant functio~al: 

(4.6) 

then VE as given by (4.5) is an invariant functional. In that case, 

it fellows from (4.3) that the centre-of-gravity is a linear 

function of t: 

(4.7) X(u}(t) = t.V(u) + X
0

(u) , 

where X
0 

is an invariant functional (the position of the centre 

of gravity at t = 0). Inserting (4. 7) into (4.2} gives 

J[x E(u}- t T(u)]dx = X
0

(u).JE(u)dx. 

This givesrise to the following invariant functional which contains 

the x and t-variable explicitely: 
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(4.8) atJ[xE(u) - t T(u)]dx = 0 • 

(v) Instead of considering all the solutions of a given equation, 

one is often only interested in a subset S, say, of the complete 

solution set. Typically, this situation is encountered if it is 

a-priori known that only solutions from this subset S describe the 

behaviour of a physical phenomenon in a required approximation. 

In that case, the above described definition of unidirectional 

propagativity of an equation is too strict, and one would like to 

define this notion only with respect to solutions which lie in S 

by requiring VE(u) to be of the same sign for all solutions from S. 

In section 5.7 we shall demonstrate this idea for the BBM equation, 

which equation is known to be a good description of "fairly long, 

fairly low" water waves. There it will be shown that the energy 

density is propagating in the same direction for any solution which 

can be qualified as a "fairly long, fairly low" wave, which 

property is lacking if the complete solution set is considered. 

(vi) Finally, we note that the proposed defini ti on makes a lso sen se in 

those cases where one is dealing with more general systems than 

those described by (4.1): the only requirement is that there exists 

a local conservation law, in which case the velocity of the centre 

of gravity of the conse~ved density is again given by(4.5). An 

example will be given in the next section. 

5.5. PROPAGATION IN LINEAR SYSTEMS. 

Linear first order Hamiltonian systems are described by an equation 

of the form 

(5.1) a u - -a Lu, -t x 

· where L is some selfadjoint operator. The Hamiltonian for such 

equations is the quadratic functional 

(5.2) 
I h(u) = 2 <u, Lu>. 
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In the following we shall restriet to the simplest class of operators 

viz. the class of pseudo-differential operators with constant 

coefficients. (When we speak about a "pseudo-differential,operator" 

in the following we shall mean a pseudo-differential operator with 

constant coefficients). 

THEOREM 5.5.1 Any linear density E(u) = Pu, where Pis a pseudo

differential operator~ is aonserved; the aentre of gravity and its 

veloaity aan be defined for solutions for whiah JPu dx ~ 0 and we 

have 

(5.3) 

where L denotes the symbol of the operator L.Henae all linear 
A i • 

densities are propagatinawith the same aonstant speed L(O), ~ndependent 

of the partiaular solution. 

PROOF: As P commutes with a we have 
x 

a P + a PLu = o . 
t u x 

From this it follows with (5.2) and (4.5) and Fouriertransformation 

(~ denotes the Fouriertransform of the function u) that 

PLu dx 
Pu dx 

P{O) .L{O) -~(0) 

P(O).~{O) 

These simple 'observationsprove the theorem. 

L(O) • 

Quadratic conserved densities are more interesting and have 

been studied in great detail. It is at this point that the concept 

of group-velocity enters the discussion of propagation. The 

dispersion relation for equation (5.1) is 

(5.4) w = k.Î.(k), 

and corresponding to the group velocity ~~ we define an operator G. 
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DEFINITION 5.5.2. The group velocity operator G is defined to be 

the pseudo-differential operator with symbol 

(5.5) ê(k) : .. :k w(k) - !k<k.L(k)) 

LEMMA 5.5.3 As L is se?f-adJoint~ the operator G ia selfadJoint. 
\ 

PROOF: As L(k) is an even function of k (k€ Rl), G is an even function 

of k for k € Rl. Thus G is a selfadjoint operator. 

~ 5.5.4. Any quadratic denaity E(u) = Pu.Qu where P and Q are 

pseudo-differential operator.s,ia a conaerved denaity for the 
equation (5. I). 

PROOF: Generally, E(u) = Pu.Qu is a conserved density of (5.1) if 

P and Q satisfy 

(5.6) * La P Q 
x 

in which case the flux density corresponding to E is given by 

x 

(5. 7) T(u) .. I [Pu.Q a Lu - Pa Lu.Qu] (E;)d!; • x x ......,. 

.0 

For pseudo-differential operators P and Q condition (5.6) is clearly 

satisfied. 0 

As a typical result concerning the relation between group

velocity and the propagation of conserved densities by monochromatic 

solutions of (5.1), we quote the following result 

THEOREM 5.5.5. Let E be a quadratic conaerved denaity with 

oorreeponding flu:x denaity T. Then E ia prçpagatingmth the group 

velocity in the follomng aenae: for monochromatic aolutiona 

~(x,t)= ~0 • exp i(k
0
x- w

0
t), where ~0 is a constant and w

0 
= w(k0)~ 

the follomng relation holde: 
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(5.8) G(k > • 
0 

This theorem ~s well known and can be found e.g. in 

de Graaf & Broer [48]. With the proposed definition 5.4.1. it turns 

out to be possible to relate the group-velocity to non-periodic 

solutions. 

THEOREM 5.5.6. Consider a definite aonserved quadratic density 

E(u) = Au.Au, where A is some pseudo-differential operator. Then the 

centre-of-gravity velocity of this density is an invariant funational 

and is given by 

(5.9) 
-1 

VE(u) = <Au, Au> • <Au,G Au> , 

where G is the group velocity operator. Hence VE(u) equals the 

weighted group velocity with weightfunation 1~! 2 • 

PROOF: Inserting equation (5.1) directly into definition (4.3) it 

follows that 

With Parseval's theorem and the expression (5.4) we find 

.A- -1 /'. [ /'.]" 2 <Au,Au> <Au,ak w.Au > 

and after some straightforward manipulations 

(5.10) 

With Lemma 5.5.4. it follows that VE is an invariant functional and 

the theorem is proved. 

An immediate consequence of this theorem is 
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COROLLARY 5.5.7. Equation (5.1) ia unidirectionally propagative (to 

the right) with respect to any definite, conserved quadratic density 

if and only if the group velocity ia non-negative for all wave 
numbers: 

(5.11) G(k) > 0 for all k € Rl • 

REMARK 5.5.8. For more general conserved quadratic densities of the 

form E(u) = Au.Bu, A and B pseudo-differential operators, .the 

corresponding centre-of-gravity velocity is found to be the invariant 

functional 

(5,12) -1 
VE(u) = <Au,Bu> • <Au,G Bu> , 

To conclude this section on propagation in linear systems, we 

consider a classical Hamiltonian system and relate the energy 

propagation of the complete system to the energy propagation of the 

subsystems in which it may be separated. By way of example we restriet 

to the simple set of equations· 

(5. 13) 

() u = -() L p 
t x 

() p = -() L u 
t x 

where L = A2, w~th A some positive self-adjoint operator. The 

Hamiltonian for (5.13) expressed in the non-canonical variables 

u and p 

(5.14) I 1 h(u,p) = 2 <p, Lp> + 2 <u, Lu> 

is the total energy of the system and is an invariant functional 

for (5,13) to which there corresponds alocal conservation law of 

the form (4.4). Hence the velocity of the energy propagation may 

be defined in a meaningful way. Defining the centre of gravity 

X(u,p) of the total energy density t (Au.Au + Ap.Ap) by 
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Jcx-X}(Au.Au + Ap.Ap}dx = 0, 

its velocity can be evaluated along the same lines as was done in 

the proof of theor~·5.5.6. with the aid of Fouriertransform 

techniques: 

h(u,p}. V(u,p} = <Au,xAa u> + <Ap,xAa p> 
t t 

= <Au, - xa LAp> + <Ap, - xa LAu> 
x x 

I I = 2 <A(u+p}, - xaxLA(u+p}>- 2 <A(u-p}, - xaxLA(u-p}> 

thus 

1 A A A dw A A A ) A A A dw ~ A A = 4 <A. (u+p)'cik'A. (u+p}> - 7(-A. (u-p},dk.Ä. (u-p}> 

(5.15} 
I -J . 

V(u,p} == 4 .h(u,p} .[<A(u+p},GA(u+p}>- <A(u-p),GA(u-p}>l, 

where wis a solution branch of the dispersion relation of (5.13}: 

(5. 16) w(k) • k, Î.(k) 

dw and G is the group velocity operator with symbol dk • Under the 

transformation 

(5.17) p = ct + t3 

u = ct - t3 

the equations for ct and t3 become 

(5. 18) a ct = -a La. 
t x 

aé - axLt3 • 

and for these separated equations the energy veloeities are given by 

(cf. (5.9}}: 
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(5.20) V(a) • e(a)-l • <Aa,GAa> 

(5 .21) V(B) = -e(B)-J • <AB,GAB> 

respectively, where 

a(a) •<a,La> = <Aa,AÓ.> 

is the invariant energy functional for the a-mode (5.18) and e(B) 

is the invariant energy functional for the 13-mode (5.19). Note that 

(5.22) h(u,p) = e(a) + e(l3), 

and with (5.20) and (5.21) the expression (5.15) can be written as 

(5. 23) V(u,p) = V(a). e(a) e(B) 
+ V(S). h(u,p) 

h(u,p) 

This result clearly shows how the a- and the 13-mode contribute to 

the energy propagation of the complete system. (Note that all the 

functionals entering in (5.23) are invariant functionals), 

5.6. ONE WAY PROPAGATIVE FIRST ORDER HAMILTONIAN SYSTEM. 

In this section we shall consider first order Hamiltonian systems 

as introduced insection 4.2.: 

(6.1) 
óh a u= -a - (u) 

t x óu • 

where h is a translation invariant functional. As was observed 

before, this equation admitsthree invariant integrals 

(6.2) R.(u) == Ju dx 

Rt 
mass-functional 
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(6.3) m(u) 1 • 2 <u,u> momentum-functional 

(6.4) h(u) energy functional, 

It is possible to write down the local conservation laws 

corresponding to these invariant integrale in a fairly general 

way. From these expressions the veloeities of the conserved 

densities are then found with (4.5). However, these general formulae 

are not very transparent, and for shortness we shall therefore 

restriet to two simple classes of equations. 

DEFINITION 5.6.1. Equation (6.1) is said to be aloaal equation if 

the operator ~: is alocal operator, i.e. if ~: (u)(x) depends 

on u and its derivatives with respect to x at the point x only. 

Equation (6.1) is said to be a non-Zoaal equation if ~:is nota 

local operator. 

EXAMPLE 5.6.2. The k.d.V equation 4.(1.1) 

(6.5) a u = -a (u + ! u
2 + a 2u) 

t x 2 x 

is alocal equation, but the B.B.M. equation 4.(1.2) 

(6.6) 2 a (t - a )u 
t x 

is a non-local equation. 

1 2 -a (u + - u ) x 2 

Generally speaking, local equations are rather easy to deal 

with. The veloeities of the conserved densities are usually readily 

found and sufficient conditions can be given which assure that the 

equation is unidirectionally propagative. For a simple, but 

representative, class of local equations we shall summarize some 

results. Non-local equations are usually more difficult. Although 

the expressions for the veloeities of conserved densities may be 

written down, these expressions are functionals with non-quadratic, 

non-local integrands, the positivity of which is difficult to 
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investigate. Nevertheless, for a special class of non-local equations 

we shall derive some remarkable results, especially in conneetion 

with the propagation .of the energy density. 

A cZass of ZocaZ equatione. 

We consider local equations of the form (6.1) for which the 

Hamiltonian h(u) is given by 

(6. 7) h(u) = Jdx [N(u) + S(u )) , 
x 

where N and S are smooth (C
2
-) functions of their arguments with 

derivatives n and s respectively: 

dN n(y) :• N' (y) = - (y:) dy ' 

s (z) : = S ' (z) = !! (z) 

y E RZ 

z E RZ 

(primes denote differentiations with respect to the arguments). 

We assume that 

N(O) = S(O) = n(O) s(o) = o 

N(O) = S(O) = u(O) to assure that h(O) = ~:(o) = 0 and s(o) 0 is 

no restriction. Equation(6.1) with h as in (6.7) then reads 

(6.8) a u = -a (n(u) - a s(u )) • 
t x x x 

In a straightforward way the following results can be obtained 

LEMMA 5.6.3. The centre-of-gPaVity veloeities of the conserved 

densitiee 

(6.9) u, u.u N(u) + S(u ) 
x 
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are gi ven by 

(6. 10) 

(6. I I) V(u) -I 2. <u,u> Jfdx[u.n(u) - N(u) + 2u .s(u ) - S(u )] 
x x x 

(6. 12) V(u) = h(u)- 1 .Jdx['::i12
1 2(u) + 2u .s(u ) .n' (u) + l2(él s(u )) 2] x x x x 

whiah are aalled the maas veloaity, the momenturn veloaity and the 

energy veloaity respeatively. 

It is now a simple matter to state conditions for N and S 

that assure that the momentum- and/or energy velocity are positive 

for all solutions: 

~ 5.6.4, Equation (6.8)is unidireationally propagativ~ to the 

right with ~espeat to 

(i) the momenturn density if 

y.n(y) - N(y) ~ 0 , 2z.s(t) - S(z) ~ 0 Vy,z E Rl 

(ii) the enenergy density (required to be positive) if 

N(y)~ 0& n' (y)~ 0 , S(z)~O & 2z.s(z)~O Vy,z E Rl 

(iii) both the momentum-and the energy density if 

N(y)~ 0 & y.n(y)- N(y) ~ 0 & n'(y) > 0 Vy E Rl 

S(z)~ 0 & 2z,s(z) - S(z) ~ 0 Vz E Rl. 

REMAR.KS 5.6.5. 

(i) Linearizing equation (6.8) gives 

(6. 13) 2 Cl u= -a (n'(O).u- s'(O). Cl u) , 
t x x 

which equation bas the dispersion relation 
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and group velocity 

w(k) n'(O).k + s'(O).k3 

dW 
dk(k) 

2 
n'(O) + 3 s'(O).k • 

The velocity functionals of the momenturn density u
2 

and the 

(linearized) energy density t n'(O).u
2 

+ t s'(O).ux
2 

of this linear 

equation (6.13) (as given by (5.9))are easily seen to be the 

quadratic termsin a Taylor expansion of the integrands of (6.11) 

and (6.12) respectively. 

(ii) As u and u
2 

are conserved densities for (6.8), the mass 

velocity (6.10) is an invariant functional if 

2 
n(u) = au + Su , a, B E Rl • 

In that case, u is a conserved density with conserved flux and 

according to remark 5.4.2.(iv) there exists an invariant functional 

which depends on x and t explicitely; in this case 

(6. 14) ax Jdx [xu- t n(u)] 0 • 

(iii) The KdV equation (6.5) belongs to the considered class of 

equations with 

I 2 
N(y) = 2 y S (z) 

I 2 
-2 z 

This equation is neither unidi~ectionally propagative with respect 

to the momentuur nor with respect to its energy density, as may be 

confirmed from the expressions (6.11) and (6.12), The mass velocity 

is an invariant functional, and (6.14) reads 

(6 .15) r 1 2 
~t Jdx [xu- t(u + 2 u )] 0 . 

This functional has already been met in section 4.3. in a slightly 
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different form as the functional c1(u). 

A alass of non-Zoaal equation8. 

Here we shall -examine equations of the form 

(6. 16) oe a Du; -a --(u), 
t x OU 

where the functional e is given by 

(6. 17) e(u) = JN(u)dx, 

with Na smooth (c
2
-) function of its argument, n(u) : = :N (u), 

and N(O) = n(O) = 0, and where D = A2 with A some positiveÏselfadjoint 

pseudo-differential operator. From section 4.2 it follows that via 

a simple linear transformation equation (6.16) can be brought into 

an equation of the form (6.1), but except when A-l is an ordinary 

differential operator this equation will be of non-local type. In 

these cases it is somewhat simpler to deal directly with the form 

(6.16). The three invariant functionals for (6.16), corresponding 

to (6.2), (6.3) and (6.4), are given by 

(6 .18) R.(u) = Jnu dx (mass) 

(6,19) m(u) I • 2 <u,Du:> (momentum) 

(6.20) e(u) == JN(u)dx (energy) 

The mass velocity is again given by (6,10), andremark 5.6.5. 

(ii) applies as well: if Jn(u)dx is an invariant functional, then 

(6.21) at Jdx [x Du - t n(u)] = 0 

For the following we define the (self-adjoint) operator G as the 

pseudo~differential operator with symbol G where 

(6.22) 
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[Note that if n has a linear term, say n'(O) =I, then 
A-l 

w(k) := k.D (k) ia the diapersion relation of the linearized 

equation (6.16), and G(k) the correaponding group velocity. However, 

if equation (6.16) does not admit a formal linearization, i.e. if 

n'(O) = 0, this interpretation of wand G makes no longer sense, 

but the results to be derived remain valid!]. 

THEOREM 5.6.6. The aent~e-of-gravity veloaity of the energy density 

is given by 

(6.23) 
I -1 

VE(u)(t) = 2 .e(u) .<n(u), G n(u)> • 

Consequently, equation (6.16), (6.17)is unidi~eationally propagative 

to the ~ight with respeat to the energy density (assumed to be 

positive) if and only if 

(6.24) Vk E Rl. 

PROOF: The proof of this result is analogous to the proof of theorem 

5.5.6: using Fourier-transform techniquea and writing n for the 

Fourier-transform of the expreasion n(u) we find 

I J:::: A A = 2 n(k).G(k).n(k)dk. 

Hence 

(6.25) 
I -1 A A A I -1 

VE(u) = 2 e(u) ,<n,G.n> = 2 e(u) .<n(u),G n(u)>, 

and the theorem followa. 

REMARKS 5, 6. 7. 

(i) The BBM equation (6.6) belongs to the considered class of 

equationa wi th 

(6.26) I 2 
N(u) = 2 u 

0 
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For this operator D, the function G is not positive for all k € Rl: 

(6.27) 

Hence the BBM equation is not unidirectionally propagative with 

respect to its (non-'definite) energy density (See however the 

results of the next section fora restricted set of solutions). 

(ii) More generally, if D has symbol 

(6.28) 

" then G is given by 

(6.29) 

Hence, for such operators, condition (6,24) is satisfied if and 

only if 

(6.30) a<.!.. 
-2 

The energy velocity as given by (6.23) is remarkably simple. 

However, matters are much more complicated for the veloci~y of the 

(positive) quadratic momentum density Au.Au. Using Fourier 

transform techniques in intermediate steps it is possible to derive 

the following result. 

~ 5.6.8. The aentre-of-gravity veloaity of the positive 

momenturn density aan be written with the operator G as 

(6.31) -1 r V(u)(t) a <Au,Au> • Jdx [u.n(u) - 2N(u) + n(u).DGu]. 

1 2 Note that for linear equations, N(u) a 2 u , (6.31) agrees with 

(5.9). But in the more interesting case of non-linear equations it 

seems to be impossible to derive conditions on N and D such that 

(6.31) is positive. 
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5.7. ONE WAY PROPAGATIVE LONG-LOW WAVE MODELS. 

In this section we shall once again examine equations of the form 

(7 .l) a Du = -à n(u) 
t x 

where D is a pseudo-differential operator and n(u) a smooth 
dN function of its argument. The energy density N(u), with n(u) = du(u), 

N(O) = n(O) = 0, is no longer required to be positive. In view of 

the results of the foregoing section we shall only consider the 

velocity of the centre of gravity of the energy density. This 

velocity is given by (6.23). 

(7.2) 
l -J 

V(u) = 2 .e(u) .<n(u),G n(u)> 

where G is the pseudo-differential operator with symbol given by 

(6.22). We shall suppose that 

(7.3) n' (0) l • 

such that G can be interpreted as the group velocity operator of 

the linearized problem. In the foregoing section it was shown that 

the BBM equation 

(7.4) 

is not unidirectionally propagative with respect to the energy 

density. However, the BBM equation (as many other equations of 

this type) is derived as an approximate equation for the description 

of "fairly long, fairly low" waves (c.f. chapter 6 for more details 

about this approximate chapter of the equation). Therefore it is 

reasonable to investigate the positivity of the·functional (7.2) 

on the restricted class of functions which can be described as long, 

low waves. To make this idea more concrete, let us suppose that we 
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can define two functionals € and À whose valuese(u) and À(u) are 

a measure of the height and of the "length" of the function u 

respectively. Then the class of long, low waves can be described as 

the set of functions satisfying 

(7.5) 

À(u) > À 
0 

where € and À -l are small positive numbers, Now suppose that 
0 0 

numbers e and À can be found such that VE(u) is of the same 
0 0 

sign (positive say) for every function u which satisfies (7.5). 

Then, if u is a solution of (7,1) which satisfies (7,5) at some 

instant t , VE(u)(t) will be positive at t = t and fortimes 
0 0 i 

t > t as long as u(t) satisfies condition (7.5). A prio~~it is 
0 

by no means clear that solutions corresponding to initial data 

which satisfy (7.5), satisfy this condition for all t > 0. 

Especially for non-linear equations this is a critical point. To 

demonstrate this for the long wave length condition for instance, 

consider the solution of (7.1) corresponding to an initial value 

g(x) whose Fourier transform g satisfies g(k) = 0 for lkl~k0 , 

k E Rl (i.e. g consistsof long wave components only). A Fourier 

transformation of equation (7.1) shows that if the equation is 

linear~ then ~(k,t) • 0 for lkl>k for all t > O, but if theequation 
-o -

is non-linear then û(k,t) i' 0 for almost all k E Rl,no matter 

how small t > 0: initial long wave aornponents generate shor't wave 

aomponents instantly. 

From these remarks and observations the following definition will 

be acceptable, 

DEFINITION 7.1. Equation (7.1) is said to be unidirectionally 

propagative with respect to the energy density for long waves if 

positive numbers e and À can be found such that VE(u)(t)> 0 for 
0 0 -

all t > 0 and every s.olution u whose initial value satisfies 

€(u(x, O)) < e 
. 0 

(7.6) 

180 



For the following we suppose that the symbol of the group 

velocity operator G can be estimated as 

(7. 7) k E Rl 

wherein G(O) and R- are positive numbers. For long wave models such 

an estimate is generally possible: the long wave components propagate 

with the largest, positive speed (the groupvelocity has a positive 

maximum at k = 0). With (7.7) the velocity functional (7.2) can be 

estimated as 

(7.8) 

From this it immediately follows that V(u) > 0 if 

(7.9) À(u) ~ R, • 

if the functional À is defined by 

(7. I 0) 
-1 llaxn(u) 11 

À(u) := lln(u) 11 

REMARK 5.7.2. The functional À defined by (7.10) can indeed be 

interpreted as an averaged wave length : À( u) - 2 is the weighted average 

of k
2 

with weight function 1~>1 2 • Another way to interpret À(u) 

as a measure of the "length" of the function u follows from the 

ob servation 

(7.11) 
-2 2 2 À(u ) = p .À(v) 

p 

then À(u ) + oo for p + 0. 
p 

for u (x) := v(px) 
p 

In the following we shall show that it is sometimes possible to 

find conditions of the form (7.6), i.e. conditions imposed on the 

initial data, which assure that the resulting solutions satisfy 

condition (7.9) for all t ~ 0. For simplicity we shall restriet oursel

ves toa specific equation, viz. the BBM equation (7.4). Note that this 
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equation satisfies (7.7) with 

(7. 12) G(O) 

For the sup norm I loo and the first Sobolev norm 11 I 1
1

, defined 

by 

we shall need the estimate in thè following lemma. 

(7.13) 

PROOF: This result bas already been recalled in section 0.2.3. (the 

Embedding theorem). To give an independent proof of the r~lation 
I I : 

(7.13), note that the first Sobolev space H (Rl) (=H (Rl}) can be 
0 

defined with Fouriertransform techniques as ( Û denotes the Fourier 

transform of a function u): 

I Then for u € H (Rl) 

1 r A ikx 
u(x) = 7i1f J u(k)· e dk = 

and thus 

which proves the estimate (7.13). 

( 1+k
2
)-l dk = .!.. 11 11 2 

2 u 1 ' 

0 

Concerning the existence of a .classical solution of :the initial 

value problem for the BBM equation, we quote the following result: 

THEOREM 5. 7.4. Let u € c2
(R ) n H

1 
(R ) • Then ther>e e:x:ists a unique 

0 

(alassiaal) salution u of equation (7.4) with 
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Consequently, the momenf;um and enePgy furwtional a!'e neatly defined 

and a!'e invaPiant: 

m(u) 

e(u) 

PROOF: The proof of this theorem can be found in Benjamin et al [39lc 

We are now in a position to formulate the main result. 

THEOREM 5.7.5. The BBM equation (7.4)is· unidiPeetionally pPopagative 

to the Pight with Pespeet to the enePgy density foP the elass of 

long, low ~aves, ~hieh elass is aha!'aetePized as the solutions whose 

initial value satiafy 

(7 .14) 

u(x,O) E c2
(Rl) n Hl (Rl) 

À(u(x,O)) > À 
0 

e(u(x,O)) < e 
0 

foP suffiaiently smaU positive numbePs E. and À -I. HePe, À is the 
0 0 

funational defined by (7 .I 0) and 

E( U) : = 11 U 11
1 

PROOF: In view of the estimate (7.8) andresult (7.12) we have to 

show that À and E can be found such that 
0 0 

(7.15) 

for every t 2:. 0 and every solution with initia! data satisfying (7 .14). 

Let u denote the initia! value and define o > 0 by 
0 
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As 

(7.16) 
I 2 I 2 

m(u) =- < u,(l - a )u > =-I lul I 2 x 2 I 

is an invariant functional, it follows that 

and with (7.13) that 

lul < o 
00 V t~O. 

Then we can derive the following useful estimates for the functionals 

e and À : 

(7.18) Vt>O 

and, provided c5<2, 

(7.19) f~)2Jifull1- ~)~À(u)-2 ~tl+ ~·)2· ( llull~- 1) 
~l+ts \llull 1-ÎÓ llull

2 

Ase is an invariant functional, it follows from (7.18) that 

(7.20) 

Writing À = À(u(x,O)) it follows from (7.19) that, 
0 

(
1-o )2 (llu0 11/ ~ -2 -. I <À 

I 11 11 2 - 0 
' I+ Ï c5 uo 

and, as llull
1 

is invariant, we obtain, provided o<l; 

(7.21) 
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With (7.20) and (7.21) we can majorize the right hand side of (7.19) 

and obtain 

-2 l+Ö 2 [ I+ ~0 t -2 (l+ -}sl 2 
) ] À(u) , 2. (-1 ) . (-1 ) ' I+\ ' -1 - I "/t>O 

I- r I- to 1- r -(7.22) 

This result shows that À(u)-2 can be majorized uniformely with 

respect to t in terms of initial value o and À . Moreover, it is 
0 

easily seen that the right hand side of (7.22) can be bounded above 

by -
3

1 if ö and À-I are taken sufficiently small. This shows that 
0 . 

condition (7.15) is satisfied for o(and hence 8) and À sufficiently 
0 . 0 

small. With the extra observation that e(u) is positive if ö<3, as 

follows from (7.18), this proves the theorem. [] 

REMARKS 5.7.6. (i) From a physical point of view the foregoing 

theorem is satisfactory because the requirements define the functions 

to be low waves, as follows from the estimate (7.13), and to be 

long waves in the sense of remark 5.7.2. However, it is possible 

to show that the velocity functional (7.2) is positive on a larger 

class of functions. Therefore, define the functional A by 

(7.23) m(u) 
A(u) :• e(u) • 

Then it can be shown that 

(7 .24) V(u) > 0 for every u € ~· 

where S is the set of functions for which y 

e: (u) :• 11 ull
1 

< Y 

(7. 25) 

A (u) < r (y) 

for some Y> o<y<2, where the function r (Y) is given by 

I 
I -J f 1 1- 2 yl r<n- (I+ 3 -o . 11+ 3 ~J· 
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[Note that r(O) 4 r(2) =l and =3· 5 

(7 .26) r(y} > 1 for 0 < y <yo=~'/It-fl). 
As the functionals e and A are invariant functionals for the 

BBM equation, it follows that V(u)(t) > 0 for all t ~ 0 for every 

solution whose initial value satisfies condition (7.25). Although 

the functional A bas the advantage of being an invariant functional, 

its relevanee as a measure of the "length" of a function is less 

clear. Nevertheless, for functions 

u~ (x) := ó v(~x) 
u,~ 

we hav~ 

A(u6 .~)= [llvll
2

+/liaxvll
2

] .[11vii 2 +~J dyv
3
(y)]-l, 

such that 

A(u~ ) + I for &,~ + 0 • u,u 

_", 

From this it follows that for the cl a ss of long, low waves A· P:S I, 

and hence, because ~f (7.26), this class is included in the set SY 

for y < y • This shows that the result stated above includes the 
0 

contents of theorem 5.7.5. 

(ii) It is illustrative to apply the above described metbod to more 

general equations of the form (7.1) where Dis given by (6.28). The 

essential tools used above to derive the results are (a) the 

existence theorem, (b) the estimate between I lro and the invariant 

functional m: 

(7 .27} lul~2 ~ const. m(u). 

(Smoothness of the function nis assumed; an estimate as (7.7) is 

possible for the considered class of operators D.). In fact, 

reviewing the proof of theorem 5.7.4., it may beseen that an 

estimate of the form (7.27) is essential to prove the existence of a 
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solution for all time~ With the contracting mapping principle, the 

existence of a regular solution can be proved over a limited range 

of time [O,TJ, where T depends, for given n, only on lu(t=O)I 
0 0 m 

and llu(t=O)II , where 11 11 is the norm of the Sobolev space 
a a a 

H (a>O): 

a 
a I ~ 2 2 H := {u e: 1

2 
u.(l+k ) € 1

2
}, 

As 

(7.28) 

if an estimate (7 .27) is available, T depends only on m = m(u(t=O)). 
0 ' 0 

Taking u(T ) as initial value, the process can be repeated to prove 
0 

the existence over the time interval [ T
0

, T 
1
] • Th en T 

1 
- T 

0 
depends 

only on m(u(T )), and as m(u(T )) = m, T
1 

- T = T , such that 
0 0 0 0 0 

T
1 

= 2T
0

• Repeating this process, the existence can be proved for 

all t > 0. However, as Ha is continuously embedded in C0 (Rl) only 

if a >-t. an estimate of the form (7.27) (and an existence theorem) 

is availàble only if 

(7.29) a >! 
2 

Therefore we can conclude that qualitatively the same results as 

obtained for the BBM equation above, can be obtained for equations 

of the form (7.1) with D given by (6.28), provided (7.29) is 

satisfied. (It is intriguing that this requirement conflicts the 

condition a <! for positivity of the group velocity c.f.(6.30)). -2 
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CHAPTER 6: THEORY OF SURFACE WAVES. 

6.1. INTRODUCTION. 

In this last chapter we shall demonstrate the ideas developed in 

the foregoing chapters of part II to a specific system, viz. the 

irrotational motion of a two-dimension~l inviscid layer of fluid 

over a horizontal bottorn under influence of gravity. The fluid is 

assumed to be incompressible and its constant density P , the 
0 

constant of gravity g and the undisturbed fluid height are all 

normalized to 1. 

The motion of the fluid can be described in terms of a velocity 

potential 4>: 

v = grad 4> = (4> , 4> ) 
x y 

and the elev.ation n of the free surface measured from the equilibrium 

configuration. The complete system is then described by (c.f. 

section 3.5) 

{I. 1) .pxx + <~~yy 0 0 < y < I + n(x,t) 

(1.2) <~~y = 0 y = 0 

(1.3) atn + <~>x nx - <~~y 0 

\ y 1 +n(x,t) 

(1.4) a <P + ! <<~~ 2 + <P 2) + n 0 t 2 x y 

189 



Notwithstanding its long history, there are hardly any achievements 

concerning concrete results for the free surface problemi( 1.1 )-(1.4). 

From Benjamin (35}, p. 7., we quote: "In respect of the initial value 

problem for the system (1.1)- (1.4) , virtually nothing in the way 

of a rigorous theory is available. Moreover, some degree of 

mathematica! intractability seems inevitable bere. We recognize the 

probability that the general initial-value problem cannot be 

correctly posed (well set), because we know that in practice water 

waves may break - that is the motion may become turbulent and so 

lose continuous dependenee on initial data. This aspect of the 

subject still remains largely mysterious, and reservations regarding 

it are needed to put any theoretica! work on water waves into a 

properly scientific perspective". 

From the few exact results which are available we mention the 

existence of periodic (Levi-Cevita, Krasovskii) and solitary wave 

(Friedrichs & Hyers)solutions, which solutions represent progressing 

waves. 

For these reasons it is clear that one bas studied approximations 

of (1.1) - (1.4). We shall deal with some of these appro~imations, 

and the appraisal of each of them for specific situations, in the 

next sections. But it will be clear from the onset that knowledge 

of various characteristic features of the exact problem is necessary 

to compare approximate equations with the exact equations. It is at 

this point that the Hamiltonian character of the exact equations can 

be given an important place. For this reason we shall study that 

aspect of the exact equations and some of its consequences in the 

rest ·Of this section. 

In section 3.5 it was shown that upon introducing 

( 1.5) w(x,t) := ~(x,y = 1 + n(x,t), t) • 

the exact problem can be formulated as a Hamiltonian system in the 

variables n and W• The Hamiltonian is given by 

(1. 6) I 1 2 
h(w,n) = dx 2 n (x,t) + k(w,n) 
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wherein the kinetia energy funational is implicitely given in terms 

of tjJ and n by 

(I. 7) 

I+I(x,t) 

I I 2 2 
k(tp,n) :~ dx dy 2<$x + $Y ) • 

0 

where $ is the solution of the linear potential problem 

0 0 < y < I + n(x,t) 

( 1.8) 0 y 0 

y I + n(x,t) 

From simple properties of the boundary value problem (1.8) one 

arrives at the following 

OBSERVATION 6.1.1 The exaat hamiltonian {1.6) satisfies 

(i) h(tp,n) .::._ 0 for every tjJ and every n for whiah n(x)>-1 Vx .€ Rl. 

(ii) h(t)i,n) ~ 0 ._ n = o and tp = 0 
x 

(iii) h(-tp,n) ~ h(tp,n) and h{JW,Jn) 

where J is definedby 5.(3.5). 

h(tp,n) Vtp Vn, 

(iv) h(tjl+c,n) ~ h(tp,n) Vtjl. Vn for arbitraPy aonstant c € Rl. 

Especially from this last property it follows that we are 

dealing with a potential problem. Therefore we define a new variabie 

(I .9) u,(x,t) :=a tp(x,t). 
x 

With (1.5) it follows that 

u(x,t) = $ + $ .n· = v.T x y x --
at y ~ I + n(x,t), 

where ~ = (1, nx) and ~·~~~-I is the unit tangent at the surface. 

This shows that u. 1~1- 1 is the component of the veloaity tangent 
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to the surface.Defining h(u,n) := h(~,n) we write Hamilton's 

equations in the variables u and n in the same way as in section 

5.1. as 

(I. I 0) 

where 

( 1.11) 

Thus 

( 1.12) 

(1.13) 

a grad m(u' n) 
t 

m(u,n) <u,n>. 

a u = -a 
t x 

êh 
êu 

-a x grad h(u, n) 

The functional m can be related to the totaZ horizontal momenturn of 

the motion M: 

1+ n 1+ n 

(1.14) M:= Jdx Jdy cj>x Jdx [ax Jdy cp - n .~] x 
0 0 

·n:y ]: 
= 00 

<n,~ > cp - n.~ x -oo. 

As we shall restriet to motions which vanish for lxl ~ oo i.e. 

(1.15-) 

we find 

(1.16) M 

~ n ~ 0 for lxl 

l cj>(x,y;t)~ ~(:oo,t) for every y€(0,1), for x~ +oo 

V ~ 0 for lxl ~ oo) 

m(u,n) + ~(oo,t) - ~(-oo,t) m(u,n) + Jdx u(x,t). 

(i.e. 

In terms of h, the observations for h may be reformulated as follows 
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PROPOS.ITIONS 6.1.2. The HamiZtonian h can be ûWitten as 

1 h(u,n) = 2 <n,n> + k (u,n) 

a:nd satisfies 

(i) k(u, n) > 0 and thua h(u, n) ~ 0 for ever>y u and ever>y n for 

which n>- 1. 

(ii) h(u,n) = o-n= u = o. 
- -(iii) h(-u,n) = h(u,n) and h(Ju, Jn) = h(u,n) Vu Vn· 

Furthermore we shall prove the following formal· (c.f. remark 

6.1.4) results 

LEMMA 6.1.3. For the system (1.10) we have the fo"UO!Ving invariant 

integrals 

(i) h(u, n) 

(ii) 

(iii) 

(iv) 

m(u,n) = <u,n> 

Jdx.u(x,t) 

Jdx.n(x,t). 

Moreover, we have 

(v) n is a denaity which haa oonael'Ved flu:c denaity ~~ and 

M = Jdx ön öu • 

PROOF: (i) holds because h does not depend explicitely on t and ( ii) 

holds because h is translation invariant. Property (iii) follows 

from 

together with (1.3), (1.4) and the definition of u. Noticing that 

(1.3) may be written as 

(I • 17) at y • 1 + n 
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where n = (-n I) is the normalto the surface, and applying 
x, 

Gauss 1 theorem 
«> 

Jdx v~.~J y=l+n- Jdx ~YJ y=O 
-«> 

it follows with (1.2) and (1.15) that property (iv) holds. 

Property (v) follows from the fact that 

(I .18) J 
oh - dx • M OU Jdx ~r~x dy. 

0 

which is an invariant integral because of (1.16) and properties 

(ii) and (iii) just proved. Relation (1.18) can be obtained as 

follows: 

and 

lim 
e:-+0 

{ h(u+e:,n) - h(u,n)} 
€ 

oh 
ou (u,n), 

2 + O(e: ), 

because ~ + e:x is the solution of (1.8) which corresponds to u+ e: 

if ~ is the solution which corresponds to u. This proves. the lemma. IJ 

REMARK 6.1.4. As no existence and regularity results are available 

for the initial value problem for the system under consideration, 

phrases such as: "the functional g(u,n) is an invariant integral" 

have to be understood in the following sense. Let (u , n ) be an 
0 0 

initial value for which g(u ,n ) is defined. Then, if there exists 
0 0 

a solution (u(t),n(t»of the underlying problem for 0 < t <.t 
- - 0 

for which u(O) = u
0

, n(O) n
0 

and for which g(u(t) , n(t» is 

defined in a meaningful way, then g(u(t).n(t)) = g(u ,n ) for every 
0 0 

REMARK 6.1.5. StabiZity of the equilibrium soZution u= n. o. 
Proposition 6.1.2. (i), (ii) imply that u= n = 0 is an absolute 

194 



minimum of the functional h for the class of functions(u,n) for 

which n>- I. Loosely speaking, as h is an invariant integral, this 

implies that the equilibrium salution u= n = 0 of (1.10) is stable. 

However, because of the possible non-existence and non-regularity 

of solutions, such a statement can hardly be given a sensible 

meaning. Therefore, let us briefly indicate in what sense the 

equilibrium solution can be called stable. In general terms, 

consider a first order evolution equation u = E(u), where !! may be 
--t -

a vector valuedstate variable, and suppose E(Q) = Q, such that 

!! : Q is an equilibrium solution. Then !! 0 is said to be stable 

(in the sense of Lyapunov/Movchan) with respect to (initial norm) 

11 I I. and (evolution norm) I I I I if, given arbitraiy smallE> 0, 
~ e 

there exists o > 0 such that for arbitrary initial value u , with . -o 
I Iu I 1. < o, there exists a salution u(t) for every t > 0 with 

-o ~ -
!!(0) = !:!_

0
, such that ll!!(t) I Ie < È for every t > 0: 

(I • 19) 'v'E>o3o>oVu 
0 

llu 11. < o•llu(t)ll < E, 'v't > 0. -o ~ - e 

If S is some set of initial data, we shall say that ~ = Q is stable 

in the PeBtPicted sense with respecttoS and the norm I I I 1. and 
~ 

11 lle if property (1.19) holds for every u
0

E S: 

(1.20) 'v'E>o3o>o'v'~0ES I 1!:
0

lli < o • ll~(t)\\e < E 'v't > o. 

It must be remarked that in general this restricted definition is 

a very severe weakening of the usual definition of stability. But 

for the problem under consideration it seems to be impossible to 

avoid this weakening if one wants to formulate the intuitive idea 

of stability. For the water wave problem we define the following 

sets of initial data 

(1.21) S := {(u
0

,n
0

) I h(u
0

,n
0

) is defined; there exists a salution 

(u(t),n(t» for all t~O with (u(O),n(O)) = 
(u .n ) and h(u(t),n(t)) = h(u .n ) 'v't ~ 0} , 

0 0 0 0 

and for o+ > 0 and 0 < o < 1: 
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(I. 22) {(u ,n ) E sln(t) € C0 (Rl) and- ö_ < n(t)< ö+ , Vt>o}. 
0 0 

Now observe that 

(I. 23) k(u,ö_) ~ k(u,n) ~ k(u,ö+) V(u,n) ES0 + 

and that k(u,ö+) can be explicitely found to be 

(I .24) 
I k(u,ö) = 2 < u, R

0 
u > , 

where R
0 

is a selfadjoint, positive pseudo-differential operator 

with symbol 

tanh k<S 

kö 
where [: 

I - ö_ if ö ö_ 

(For ö =I this will be proved in the next section). 

With (1.23) it follows that 

(I. 26) I + - <u,R u> 
2 ö_ 

From these results it is easily see~ that we may formulate the 

intuitive idea of stability of the equilibrium solution in the 

following way : 

For arbitrary ö+> 0, 0 < ö_< I, the equilibrium solution u = n :: 0 

is stabl e wi th respect to the set S ~ and the norms 11 11 . and 11 11 , 
u± 1 e 

where 

(1.27) 

(I .28) 

2 
11 (u, n) 11 i 

2 
ll<u,n)lle 

2 
:= I In 11 + <u,R u> 

0+ 

2 
:= llnll + <u,R6 

u> • 

REMARK 6.1.6. Proposition 6.1.2. (iii) shows that h satisfies 
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conditions 5.(3.17), (3.18) of theorem 5.3.4. 

is an initial value for which 

Jno = no , 

the corresponding solution(u(t), n (t)) satisfies 

(1. 29) Ju(t) -u(t) , Jn(t) n(t) 

Therefore, if (u ,n ) 
0 0 

as long as (i.e. for the possible restricted set of t for which) 

this initial value problem has a unique solution. That such solutions 

exist is physically plausible because in the underlying system 

there is no preierred direction of propagation. For every solution 

which satisfies (1.29) we have 

m(u,n) • ;(u ,n ) 0, 
0 0 

and consequently (c.f. (1.16))for these solutionsthe total horizontal 

momentum of the motion M is identically zero: 

M • 0. 

REMARK 6.1.7. With remark 5.4.2. (iv) it follows from property 6.1.3. 

(v) that the functional 

C(u, n) :• J{xn - t : (u, n)}dx = Jdx.xn - tM 

is an invariant integral. rfJn
0
dx Jn(t)dx ?< 0, the centre of 

gravity of the free surface displacement n is propagated with 

constant velocity V: 

V(u,n) 
M 

Jdx n 
a V(u,n) • 0 

t " 

(In particular, for the symmetrie free surface displacements which 

satisfy (1.29) this .velocity is.id.entically zero) ·'The same result was "' ' . 

197 



derived by Benjamin & Mahony [49) for more general motion of the 

fluid (not necessarily irrotional, three-dimensional fluid ~tion). 

6.2. APPROXIMATE MODELS. 

In this section we shall consider some approximations for the exact 

set of equations(1.1)- (1.4). The exact model is difficult in that 

it combines two important aspects:·non-linearity in the equations 

at the free surface and an essentially two-dimensional behaviour in 

the interior of the fluid (Variations of the field variables in the 

y-direction bas a dispersive effect in the x-direct ion). Introducing 

two dimension free parameters to measure these aspects, let E be a 

measure for the height of the waves : n= O(E) and let t = O(p), 

wherein À is a characteristic length of the wave phenomenon in 

x-direction. (Note that we have taken the undisturbed height to be 

normalized to 1), Stokes1 number is defined as 

St := 
I 

•2 n À 

such that St = O(p2 .E.-1) is a measure for the relative importance 

of the two aspects: for infinitely long waves, for which variations 

in the y-direction can be ignored (tidal waves), there is no 

dispersion and St = 0; for infinitesimal low waves the elevation 

from the horizontal surface is ignored: St = «>and the equations are 

linear. We shall describe these two 1 imiting cases presently. 

A more interesting model, studied already by Boussinesq 

around 1870, accounts for both the non-linearity and dispersion in 

the sameorder of magnitude, i.e. O(E) = O(p2) such that St= 0(1). 

We shall call this model, which is meant to describe what may be 

called the class of "fairly long, fairly low" waves, the BoUBsinesq 

model. In literature, several approximate equations for this model 

are known. Usually , these equations are obtained by expanding 

the exact equations in terms of E(and p2 
= O(E)) after which higher 

order terms are struck (c.f. e.g. Whitham [45, p. 464-466] as a 

convenient reference fora typical example of this procedure). Such 

a process then leads to a set of equations which approximate the 
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exact equations to the desired order of e. In fact, several 

approximations can be written down, all of which have the same 

formal status of being a good approximation in the sense that they 

approximate the exact equations correctly to the desired order of e. 

However, the distinct equations will have in general rather different 

mathematica! properties. As the underlying problem is too difficult 

to admit rigarous mathematica! statements about the validity of each 

of these approximations, it is not possible to prefer one approximation 

above the others on these grounds. [ One would like to have a theory 

which gives a meaning to and proves such statements as: for every 

solution of the exact equations from a certain subset (the class of 

fairly long, fairly low waves), there exists a salution of the 

approximate equations such that the "difference" of these solutions 

is "small" J. Therefore, the best one can do is to construct 

approximations which have the same characteristic features as the 

exact model. In that respect, Broer [33) emphasized the Hamiltonian 

character of the exact model by looking for approximations which 

are also Hamiltonian systems. Then one looks for approximations 

of the exact Hamiltonian: the corresponding Hamilton equations then 

approximate the exact set of equations and resemble these in their 

Hamiltonian aspect. We shall briefly outline these ideas for the 

Boussinesq model, but we first investigate the two limiting models. 

Linearized theory. 

In the linearized theory the exact hamiltonian h(u,n) is approximated 

to 

h(u,n) :si <n,n> + k(u,n 0). 

In that case k can be explicitely found: 

oo I 

k(~.n:O) ~ Jdx Jdy 

0 

where ~ is the salution of 

!1.(/> 0 O<y<l 

~y 0 y 0 

~ ~ y 

~(x).~ (x,ysJ,t) 
y 
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With Fouriertransform technique (writing K for the transformed 

variabie to distinguish from the kinetic energy functional) it is 

easily found that 

such that 

cosh Ky 
ljJ(K). cosh K 

~(K).K.tanh K and thus 

t J I~ 2 k(lJi.n=o) = 2 dK lJi(K) I .K.tanh K 

which may be written as 

wherein R is a pseudo-differential operator with symbol 

(2 .I) R(d • tanh K 
K 

(Note that Ris a selfadjoint. positive operator). Hence we find 

(2.2) h(u, n) 
I I 
2 <n, n> + 2 <U.Ru> • 

and the corresponding linear equations are 

(2.3) 
-a Ru 

x 

Note that the equilibrium solution u = n= 0 of (2.3) is stable. as 

the dispersion relation is 

(2.4) 2 
w K .tanh K > 0 

This reflects that the approximate Hamiltonian (2.2) is positive 

(as Ris a positive operator). 
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TidaZ waves. 

If the vertical fluid motion is completely ignored, we have 

"" 
k(~.n) = t Jdx (l+n). wx

2 
• 

and thus 

(2.5) h(u,n) f { I 2 I 2 I 2} dx . 2 n + 2 u + 2 nu , 

with corresponding equations 

(2.6) 

-a ((I +n)u). x . 

This is a hyperbolic system of non-lineàr equations for which the 

standard theory may be applied (c.f. Whitham [45, p. 456.]). In 

particular, most solutions of (2.6) will "break" and to prevent 

multivaluedness, discontinuities (shocks) have to be introduced. 

Boussinesq model. 
2 For the Boussinesq model, ll = O(e::), Broer[50] derivedanapproximate 

Hamiltonian whose density is correct up to and including third order 

of e::. Although we shall essentially use approximations of this order, 

we start with an approximation which is correct up to and including 

fourth order, a result derived by Timmers [51] (c.f. also Broer 

et al [ 34]) 

(2. 7) 

wherein R is the pseudo-differential operator given by (2.1). 

In the following we shall restriet ourselves to (equivalent forms of) 

the approximste Hamiltonian 

(I) 
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The equations corresponding to this approximation are given by 

'\ n 

(2.8) 

-a (Ru + nu) 
x 

Because of the approximate character of (I) it is allowed to take 

for R any pseudo-differential operator with symbol which agrees 

with (2.1)up to and including K
2 for K + 0. As 

I 2 4 
- - K + O(K ) 

3 

a first choice would be to take 

(a) 

However, this operator is not a positive one, and the leading order 

terms in the Hamiltonian (I) are not positive (hence, the linearized 

equationsof (2.8) have as dispersion relation: 

2 2 2 
W K (I - K ) , 

and the equilibrium solution u= n = 0 is not stable). 

Therefore it is better to approximate R by a positive selfadjoint 

operator. In that case one may write 

. (b) 

wherein D is a positive selfadjoint operator. For instance, one 

could take 

(bi) 

(b2) 

~(K) = (1 + !.K2)-1 
3 

- 1 2 -2 
R(K) • (1 + 6 K ) 

D = (I - .!. a 2 ) ~ 
3 x 

D = I - .!. a 2 
6 x 

In these cases it is often convenient to apply the transformation 

(2.9) 
-1 

V := D u • 
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such that with 

(2.10) :.(v,n) <Dv,n> h(v,n) := h(u,n) 

the equations are given by 

(2. 11) 

For (bl,2) the transformed Hamiltonian (I) is given by 

(Ib). - J ·I 2 12 1 2 h(v,n) = dx { 2 v + 2 n + 2 n(Dv) 1. 

Expressed in terms of n and v we shall give some alternative 

approximate Hamiltonians which all agree with (I) in the desired 

order of (i.e. differences are of order E: 
4). After that we briefly 

camment on their specific properties and differences between them. 

h(v,n) J . 1 2 I 2 I 2 4 I (II) dx { 2 v +2n +~ (Dv) + c.(Dv) } , with c > 
8 

.. J I 2 1 2 1 2 } (I !Ia) h(v, n) dx {2 v +~ + 2 nv 

(IIIb) 
.. J 1 2 1 2 1 2 4 >! h(v,n) dx {2 v + 2 n + 2 nv + cv } , with c 

8 

( IVa) h(v,n) J I 2 dx { 2 v 
I 2 I -1 2} 

+ 2 n + 2 D n.v 

.. I I 2 I 2 1 -1 2 ( -1 2 )2 ( IVb) h(v,n) = dx { 2 v + 2 n + 2 D n.v + c. D (v ) } • 

EXISTENCE AND REGULARITY. 

For the equations(2.11), with h any approximation given above, it is 

possible, using a contraction mapping principle, to prove the 

existence of a solution (v,n) corresponding to arbitrary initial 

data (v ,n ) over a limited range of time. The corresponding solution 
. 0 0 

is in some sense as regular as the initial ·data, and the time interval 

over which the solution can be proved to exist depends only on 

certain norms of the initial data. However, in general this process 

cannot be continued to prove the existence of the solution for all 

time. This is possible only if some a-priori estimates are available. 

The Hamiltonians given by (I), (II) and (III), which are invariant 
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integrals as long as the solution is known to exist, are not suited 

to serve as a-priori estimates.However, as was shown by Bona & Smith 

[52], with D = (I - J ll x 
2)! the Hamiltonian (IV a) can, for a 

restricted set of initia! data, be used as such an estimate. Their 

results can be formulated as follows (in their paper they used a 

variabie n which is related ton by n = DÖ, such that n does not 

represent the wave height): If v ,n e: c2(RZ) 11 t
2

(RZ) such that 
0 0 . 

h(v ,n ) 
0 0 

< 2 
-73 

then there exists a unique solution (v,n) which has (v ,n ) as initia! 
0 0 

data and which satisfies for every t > 0: 

for every j O, I, 2, .•• 

-I 
D n > - I • 

It can be shown that the same qualitative results hold for (IVb). 

For c = k , the equations for the steady states of this approximation 

are particularly simple and some interaction problems for these 

partic9lar solutions were studied by Valkering [53]. 

INVARIANT INTEGRALS AND CONSERVED FLUX PROPERTY. 

The equations corresponding to the approximate Hamiltonians given 

above all have the same four invariant integrals as given in lemma 

6.1.3., of course with the approximate Hamiltonian replacing the 

exact· one. However, it may be verified that only (I) leads to 

equations for which n has a conserved flux. 

POSITIVITY AND STABILITY RESULTS. 

For the approximation (Ib) it is not possible to give positivity 

statements (valid for arbitrary function u) if solutions for which 

n may be negative are allowed. This functional can be supplied 

with a higher order term (!) to give (II), which functional is 

non-negative. Moreover, as for arbitrary constants c and b we have 
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1 1 
if c satisfies c > B' a value of b can be found such that Sa< b < 1. 

From this it follows that v = n = 0 is a stable equilibrium solution 

with respect to the set S (c.f. (1 .21 )) and norms 

The functional h given by (lila) satisfies proposition 6.1.2. 

Moreover, the solution v = n = 0 is stable with respect to sets S_. 
<>± 

with 0 < o_ < (c.f. (1.22))and norms 

2 2 2 ll<v,n>ll· := llvll + llnll J.,e 

For (IIIb), h~ 0 for arbitrary solutionsand v = n- 0 is stab1e 

with respect to S with norms 

For O:V a) we have h ~ 0 as long as D -
1 
n > - 1 • Because of the available 

existence and regularity result, for this approximation the equilibrium 

solution v = n = 0 is stable (in the usual sense) with norms 

For (IVb) we.have h ~ 0 for arbitrary solution if c > i• and the 

same stability result as for (IVa). 

REMARK 6.2.1. If it is desired to have the number of derivatives 

appearing in the resulting equations to be as small as possible, 

another transformation than (2.9) may be applied. Therefore, assume 

R-1 = T* T with T invertible, 

and define a new variable 

-1 
w := T u. 

For the operator R given in (b
1
) one may take 

1 
T = ;r + 73 ax • 
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Th en 

<Tw,n>, 

and a suitable Hamiltonian (akin to (lila) but in the new variable 

w) would be: 

- I [! w2 1 2 1 2] fi( w, n) = dx 2 + 2 n + 2 nw • 

The resulting equations are then found to be 

a T*n= -a (w + nw) • 
t x 

6.3. FIRST ORDER EQUATIONS. 

In the foregoing section we gave several approximate Hamil~onians 

for the description of surface waves. Here we shall show hbw we can 

apply the ideas described insection 5.1. to obtain the first order 

equations for unidirectionally propagative waves. In the first instanee 

we shall formally ignore the interaction terms to obtain a complete 

separation. Afterwards, some remarks about the validity of the 

separation are made. 

(3.1.) 

Consider the Hamiltonian (Ia) and perform the transformation 

n = a + 8 

u= a - 8 

Then the equations fora and 8 are given by (c.f. 5.(1.11)) 

(3 .2) 

where 

(3.3) 
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'\ grad m(a,8) -a grad h(a,8) 

x 

;;(a,8) <a,a> - <8,8> , 



(3.4) h(a,a) "' e(a) + e(a) + i(a,a) • 

with 

(3 .5) 'e(a) 

(3 .6) i(a,a) 
( 1 
Jdx [a.(I- R)S- 2aB(a+B)]. 

Explicitely: 

(3. 7) '> ~ = -'> (N+ 1 + 3 2 1 Q 1 {) - .:J1

4
1 2)' 

"tu "x u 6b t;J - 6"xx- ze'" '"' 

(3.8) ·a <a+ -;-s6I 
X XX 

32 I 1 12 
+ 46 - f:'lxx - ? 6 - l;l ) . 

Ignoring the interaction functional i(a>B) there result two 

uncoupled equations: 

(3.9) 

(3.10) 

each of which is a KdV equation (apart from some sealing factors). 

Another interesting set of equations is obtained from the 

Hamiltonian (IIIa) if we perform a somewhat different transformation, 

viz. 

n Cl. + a 
(3 .11) -I 

D u = v = a - B 

Then the equations for a and B are given by (3.2), where now 

(3.12) <Do.,o.> - <DB,S> , 

and h as in (3.4) with 

(3. 13) 
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(3.14) i(a,S) = Jdx [- t aS(a+S~ • 

The resulting equations are 

(3 .15) 

(3 .16) 

3 2 I I 2 Do a = - o (a + - a - - aS - - S ) 
t x 4 2 4 

Do s = 
t 

3 2 I I 2 
ox(S + 4 S - 2 aS - 4 a ) , 

and, ignoring the interactionfunctional: 

(3 .17) 

(3 .18) 

Do a 
t 

Dtl S 
t 

3 2 -tl(a+-a) 
x 4 

which are BBM equations for a and S. 

For the class of solutions which is described by the Boussinesq 

model, the interaction functional bas a density which is of order e3 

Therefore, in general thesetof coupled equations such as (3.15), 

(3.16) is notequivalent ün the desired approximation) to the set 

of uncoupled equations (3.17), (3.18). This will only be the case 

for those solutions for which this interaction density is of order e
4 

However it is easily seen that there are no solutions for which this 

is true for aZZ values of time. For instance, consider initia! data 

(3. 19) 

(which correspond 

Th en 

(a ,S) with S 
0 0 0 

to initia! data v 
0 

i(a .s) = o. 
0 0 

0 

n
0 

in the original vairables). 

But, due to the terms 
" ( I I 2) . -o - a + - Çl. l.n 
X 6 XX 4 

-ax t a2 in the right hand side of (3.16) (or 

(3.8)), the initial a-mode will generate a 

&-mode (there exists no non-trivia! solution with S = 0 for all t), 

such that i(a,S) becomes non-zerofort > 0. Nevertheless, 

heuristically speaking, the interaction density will be of order e4 

for such a solution for a finite, but sufficiently small, interval 

of time. 
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It is possible to investigate this matter more precisely for the 

eq~tions corresponding to the Hamiltonian (IIIa). In fact, 

considering the interaction termsin (3.15) as souree terms for the 
.. , 

BEM equation (3.17), and using the results and ideas from BBM [39], 

one can prove the following 

LEMMA 6.3.1. There exist. positive eonstante c and d sueh that 

(i) for aPbitrary a € C
2

(Rl) n H1(Rl) there exists a unique 
0 

salution (a,B) of (3.15) (3.16) over the finite time interval 

[O,T] where , 

with a(O) 

and aU t € (0, T); 

=a 
0 

·a(o) = o, 

(ii) for sueh a salution we have 

(3.20) sup ·1 
O~t~T 

T < 
c 
a 

0 

0, I, 2, •• 

It ~s also possible to express these results in a somewhat 

different way. Therefore, let ~.6 be solutionsof (3.17) and (3.18) 

and put 

(3.21) n := a + ä, V := a - 8 

Then one can study the differences 

(3.22) n :- n (a- ~) + (6 - '13) v - v = (a - ~) - (6 - B) 

for solutions with the sàme initial values. 

LEMMA 6.3.2. For·aolutions eorresponding to initial data (3.19), we 

haven=v=~and 
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(3.23) sup [i ln(t) - n(t) lil + 1\v(t) - ;(t) 1111::. 
O::_t::_T 

foP T ::_ const • ~ where a 
0 

= 11 a 
0 

11 1 • 
0 

const.a 2T 
0 

Unfortunately, these rigorous results are of very little practical 

importance. In fact, it would be fa~ more interesting to derive 

results concerning the relation between solutions of (3.15), (3.16) 

and those of the uncoupled set of equations (3.17), (3.18) in the 

limit foP t + ro. However, results in this direction seem to be 

impossible to obtain in an analytica! way. 

To conclude we note that according to the theory of section 

5.3., the y-equation, with the aid of which "symmetrical" initial 

value problems can be evaluated, is given for the approximate 

Hamiltonian (lila) by 

(3.24) 

The behaviour of solutions of this equation for large values of t 

is as difficult to investigate as for the set (3.15), (3.16). For 
i 

several classes of initial data y , it is possible to derive some 
0 

approximations for the resulting solutions for small values of t. 

For instance, if y = J y , which represents a symmetrical elevation 
0 0 

n of the water level without initial velocity : v = 0, the 
0 . 0 

resulting solution may be compared for small t with the solution of 

the ZineaP equation 
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NAWOORD 

Van diegenen die direat hebben bijged:Pagen aan het tot stand komen van 

dit proefsahrift !ûil ik 'graag de volgencien.noemen: 

- de me~erkers van de vakgroep Theoretisahe Natuurkunde; 

- de vele studenten ~aarmee ik de afgelopen 4 jaar heb sameng~erkt: 

door hen is veel van het in deel II besali:r>even onderzoek beinvloed; 

- de leden van de ll)erkgroep Niet Lineaire Analyse" Amsterdam., 

~ege hun belangstelling voor en stimulering van het in deel I 

besahreven ~erk; 

- dr.ir. J. de Graaf en prof.dr.ir. L.A. Peletier-" v~ege het kri

tisah lezen van het manusaript van di't proefsali:r>ift; vooral de op

merkingen van eerstgeneernik over- onderdelen van hoofdstuk 1 en 3 

hebben tot aanzienlijke ver-beteringen geleid; 

- Deetje Bidlot en Marja Hooyakkers ~ge de nette verzorging van 

het type-r.Jerk; 

- de mede~evkers van de studiebif>Uothei<.en" in het óijzondev die van 

de afdeling Teannisalie Natuurk~ .. ~ege de vele plezievige 

aontaaten en hun oe'FtuZpzctalliheid. 

Al deze mensen ml 1-K. nierbij van lia:J!'te bedanken. 
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I 

Het bestaan van 2~-periodieke oplossingen van de vergelijking van 

DUFFING zonder demping: 

x(t) + x(t) + ~x3 (t) -a sint 

met (i) ~ = -1, a € Rl willekeurig 

(ii) ~ = 1, a € Rt ,lal voldoende klein, 

kan bewezen worden met variat·iemethoden. 

Het bewijs voor 't geval (i) (zie BERGER,.§6.1B) is volkomen verschil

lend van dat voor 't geval (ii). 

M.S. BERG~R: Nonlinearity and Funational Analysis~ 

Academie Press, New York, 1977. 

II 

Als E(p) de inwendige energie per massaeenheid van een ideale vloei

stof als functie van de massadichtheid p voors~elt, dan is de hydro

statische druk de Legendre getransformeerde van de functie p ~ p E(p), 

als deze functie convex wordt verondersteld. 

Deze eenvoudige opmerking ligt ten grondslag aan het bestaan van een 

"principe van stationaire druk" waarmee de beweging van zo'n vloei

stof beschreven kan worden. 

R.L. SELIGER & G,:Q. WHITHAM, Variational pl'inaiples in 

aontinuzOTE meahanis" Proc.Roy.Soc. A lQ2_ (1968) 1-25. 

lil 

Periodieke oppervlaktegolven op een laag water kunnenbeschreven wor

den met behulp van een "constrained extremum principle" van het soort 

zoals beschreven is in hoofdstuk 2 van dit proefschrift. 

Deze formulering laat·een duidelijke fysische interpretatie toe en 

kan gebruikt worden om de existentie van deze klasse bewegingen te 

bewijzen. 



IV 

In het recente boek van LEVINE .wordt het begrip "unidirectional1
' uit 

de titel op geen ènkele plaats gedefinieerd. 

Bovendien zal de toevoeging van het woord linear op een juiste plaats 

in de.titel het aantal gebruikers van het boek niet verkleinen. 

H. LEVINE, Unidireational Wave Motions, North Holland, 

Amsterdam, 1978 

V 

In [I , § 2, 3. 8] worden voorwaarden voo.r de lineaire operator A en de 

niet-lineaire operator·B geformuleerd waaronder de met de abstracte 

evolutievergelijking 

Ai\u • B(u) 

overeenkomende operator u ~ Aàtu - B(u) een potentiaal operator is 

met betrekking tot éen bepaalde klasse van functies u. VANDERBAUWHEDE 

[2] heeft onlangs deze resultaten op succesvolle manier gegenerali

seerd om een grotere klasse van functies u te kunnen behandelen. 

[I] E.w.c. van GROESEN, Variational methode for nonlinear 

operator equations, in: Nonlinear Analysis, vol II, 

N.M. Temme {ed.) MC Syllabus 26.2, Mathematisch Cen

trum, Amsterdam, 1976, p. 100-191. 

[2] A.L. VANDERBAUWHEDE, Potential operators and variatio

nal prinaiples: a genemlization, preprint Rijksuniver

siteit Gent, august 1978. 



VI 

De stationaire toestanden van het systeem bestaande uit een onrekbare, 

flexibele stroomvoerende draàd, geplaatst in een constant homogeen 

magneetveld, worden bij geschikte keuze van de randvoorwaarden be~ 

schreven door een stelsel ve~gelijkingen dat aanleiding geeft ~ot 
een karakteristiek bifurcatieprobleem. 

Een bifurcatieprobleemmet twee ps.rameters ontstaat als de draad een 

eindige buigingsstijfheid heeft. 

P.v.d, VARST: De elastiaahe lijn (1977) 

E.w.c. van GROESEN: Str>oortrl)oer>ende dr>aad in magneetveld: 

stabiliteit van de stationair>e toestanden (1973) 

Afstudeerverslagen THE, vakgroep Theoretische Natuur

kunde. 

VII 

De maatschappelijke waardering voor en beloning van onderwijsgevenden 

is omgekeerd evenredig met de invloed die zij hebben op de persoon

lijkheidsvorming van hun leerlingen. 

VIII 

Het geven van onderwijs dient een wezenlijk onderdeel uit te (blijven). 

maken van de taken die behoren bij het bezetten van een promotieplaats. 

IX 

Gezien de gelaatsuitdrukking van de meeste automobilisten moet 't 

woordje "blij" in de kreet "Blij dat ik rij" een andere betekenis 

hebben dan daaraan meestal wordt toegekend. 


