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GENERAL INTRODUCTION.

In this thesis we deal with some toﬁics from the theory which

is classically called the calculus of variations. The motivation

is the fact that a large class of problems from mathematical physics
can be given a variational formulation. »

To place some of the following in a more generall context let us state
some standard terminology first. Let 7 be a given set of functions
(M is a subset of a metric linear space V) and let £ be a functional
defined onZ%. ' )

A variational prineiple, denoted by

n stat
em £

is the problem of determining all those functionsu € 2 for which
the functional f has a stationary value on M (i.e. for which there
exists some neighbourkhood of u inMsuch that for every u € Min
this neighbourhood the difference £(u) - f(a) is of smaller order
that the distance from u to 1-1). Such points u are solutions of )
and called stationary points of £ onZ7.,

An extremum principle, say the minimum principle

2 ;gfm £(u) ,

asks for the elements @ € M (called minimal points of £ on/?) for

which f takes its smallest value on/ i.e. £(u) > £(f) for all

u €. To say that a specific problem is described by a variational
(extremal) principle means that the solutions of the problem are in

a one-to-one correspondence with the solutioms of (1) ((2) fespectively).
One of the basic problems im the classical theory of calculus of
variations is to determine the equation satisfied by the solutions

of (1). Assuming the existence of a sufficiently smooth solution,

a local investigation (theory of first ’v?ariation) leads to this



so~called Euler (Euler-Lagrange) equation (or set of equations).

In general this is a (partial) differential equation, together with
a set of boundary conditions.

Problems which are described by a variational principle are
advantegeous above others for several reasons, of which we mention:
(i) the notion of generalized solution of the Euler equation is
defined in a natural way by bringing the solutions of (1) into

a one-to-one correspondence with the generalized solution set of the

Euler equation: (ii) a transformation of the Euler equation is

usually easier perfo%med via a transformation of the functional,
and (iii) Noether's theorem provides us in a simpleway, with every
continuous group of transformations for which the functional f and
the set ZZ are invariant, with an identity between the Euler expres~
sion and a quantity which is a divergence (these identities reduce
for stationary points to the "local conservation laws" ofidynamical
systems). '

If it is known that a specific stationary point is a (local)
extremum, some additional extremality properties can be derived
(theory. of second variation). A local analysis which gives the
results stated above assumes the existence of a statioﬁary‘point. As
this is no minor point one looks for methods to prove the lexistence
of stationary points for specific cases. There seems to be no unified
way to get such results unless some additional information is known
{(or can be obtained) about the global character of the statiomary
points. In the simplest case when the problem is described by an
extremm principle as (2), the proof of the existence of at least
one stationary point may run along the following variatiomal limes.
Firstly one shows that the functional f is bounded from below on?Z.
Then one proves that the infimm of f on?2is actually attained

at some point @ € M. The existence of such a minimal point @ being
proved, a local analysis in the neighbourhood of § (if @ is not
isolated) shows that § is a stationary point of f on M (he%ee dis
a solution of (1)), and, being a global minimal point of f onM,

fi is also a local extremal point for which some extremality properties
hold. '

As is well known, apart from an existence statement, an extremum

principle (2) may also allow the actual comstruction of a minimal



clement as the limit of a minimizing sequence.

With this short general description we have indicated some

important aspects of problems which éan be given a variational
formulation and emphasized the difference between a local variational
principle as (1) and a global extremum principle as (2) with respect
to the potential possibility to prove the existence of solutions.

8o far we have not specified the set M. The theory of first and
second variation is completely standard if M is the whole linear

space V or if M is an affine set of the form
3) m ={u=u0+v|v€V°},

wherein u is a fixed element.from V (usually meant to satisfy
specified boundary conditions) and Vo is a linear subspace of V (the
"set of admissible variations"). In these cases the variational
(extremam) principles are said to be unconstrained.

Matters are much more complicated if the set® is defined as the

set of elements which satisfy a given operator equation, e.g.
m={u €V¥T(u) = yo} s

wherein T is a (nonlinear) mapping defined on V and Yo is some
element from the range of T.
In part I (chapters 1 and 2) we deal with these socalled constrained

variational principles.

In chapter 1| we state conditions on £ and T which assure that problem
(2) has a solution and treat the local theory of first and second
variation. The theory of first variation leads to the multiplier
rule, a result which in its presenmt generality is due to Lusternik.

As a recipe to find this governing equation as the equation for the
stationary points of a related unconstrained variational principle,

this result is well known and often applied in mathematical physics.
Nevertheless, it seems not to be possible to give a convenient
reference to a thorough imvestigation of this local theory [ See
however the recent monograph of M.5. Berger, Nonlinearity and
Functional Analysis, Academic Press 1977, where, in section 3.1 F,

this local theory is dealt with in a Hilbert space context J..



For the special case that the mapping T is a functional t on V, the
multiplier rule states that the stationmary points of the constrained

extremum principle

(4) inf

t(u)=p f(uy pERL (WEWV)

are also Statiomary ' points of the unconstrained variational principle

) SEE IE@ - ut]

for some multiplier y € RI. The actual equation for these stationary
points can be envisagedAas a (nonlinear) eigenvalue problem, with
the multiplier u playing the rSle of eigenvalue. For this reason
these variational principles are important for bifurcatioﬁ theory.

In chapter 2 we show that in a number of interesting caseé, solutions
of (4) can be given several alternative formulations. Using some
ideas and notions which stem from the theory of convex analysis,

we shall show that with problem (4) there can be associated a dual
variatibnal principle which is closely related to unconstrained

extremm principles

(6) inf _

€V [£(u) - ue(u)] , v € RZ
and with which a variational formulation for the multiplier u of (4)
can be given. Furthermore, we investigate when the solutions of (4)
are in a one-to-one correspondence with solutions of one of the

"inverse" extremum principles

N sup inf
fuy=r T gg=r T -

An important class of problems which can be formulated by (4) are
problems for which a "principle of least energy" holds, with f denoting
the energy and t being some constraint. For many specific systems

the multiplier v and the alternative formulations can be given a
clear physical interpretation. Despite this fact, a precise

investigation of these alternative global characterizations for



solutions of (4) as given here seems to be new.

In part IT of this thesis (chapters 3-6) we deal with several classes
of dynamiéal systems whose equations canbe derived from a variational
principle as (1) wherein M is essentially as in (3), From a physical
point of view these problems are chéracterized by the fact that one
special coordinate (viz. the time) plays a distinguished réle.
Mathematically speaking these problems have the property that no
extremum principle of the form (2) is available as the functionals
are usually unbounded from below and above on., Therefore it is

not possible to prove the existence of solutions éf (1) along the
vatiational lines indicated above. [ However, for a restricted class
of solutions, such as stationary or steady-state solutions, it may
be possible to transform the wariational principle to an extremum
principle of the form (2) and then prove the existence].

Two main types of variational dynamical systems are Lagrangian and
Hamiltonian system, the equatiomsof which can be described as the
stationary points of anaction functional defined on configuration
space and a canonical action functional on phase space respectively.
These systems and some ideas from Classical Mechanics are described
in chapter 3. Using the notion of polar functional we show that
under some conditionsa Lagrangian system is also a Hamiltonian
system and conversely. This result is usually obtained by applying

a Legendre transformation to the respective Euler equations
(equationsof motion), but using the variational formulation of a
Legendre transformation (which is the idea of a polar functional)

we derive this result from the variational principles. In this way
one is immediately 1led to the notion of a modified action functional.
The corresponding modified action principle is trivially equivalent
to the action principle, but its specific form made it possible to
recognize some well known variational principles from the theory

of fluid dynamics to be of this form, and this led to a construttive
way to derive from first principles all variational principles in
this field which were previously found in an ad hoc way (see section
3.5 for a short descriptién).

In chapter & we consider socalled first order Hamiltomian systemé,
and investigate the relation with the classical notion of Hamiltonian

system. The canonical transformation theory for classical Hamiltonian

5



systems ceases to be valid for these first order Hamiltonian systems.
In fact, we show that merely the requirement that a {non-linpear)
transformation maps one class of first order Hamiltonian systems into
another class of first order Hamiltonian systems almost inevitable
leads to the well known Miura transférmation, a transformation mapping
the (class of higher order) Korteweg~de Vries equation(s) into the
(class of higher order)modified KdV equation(s).

In chapter 5 we deal with some problems of a more physical character.
For one-dimensional dynamical systems (i.e. with one spacé variable),
one often speaks about (unidirectional) wave propagation. For
translational invariant classical Hamiltonian systems there is no
preferred direction of propagation in the sense that if there is a
solution which may be called unidirectionally propagative, then there
exists also a corresponding solution running in the opposite direction.
This symmetry is not present in translational invariant first order
Hamiltonian systems, and these systems are often calledunidirectionally
propagative (e.g. KdV- and BBM-equation). However, because this notion
is not explicitly defined in literature, it is difficult to understand
the meaning of such statements. Therefore we pose a definition of
unidirectional  propagativity. This definition has sdme thsical
evidence and leads to the acceptable result that for firsé order
lineqr Hamiltonian systems the energy velocity (defined as the
velocity of the centre of gravity of the energy demsity) is a
weighted average of the group velocity. Surprisingly enough, for a
restricted class of nonlinear first order Hamiltonian systems the
group velocity of the linearized equations plays an equally important
r8le in the exact expression for the energy velocity. With this result
we are able to formulate in a precise way in which sense the BBM
equation is unidirectionally propagative. Furthermore, in chapter 5
we describe how some classical Hamiltonian systems may approximately
be separated into two (unidirectiomally propagative) first order
Hamiltonian systems, and investigate exact separation for :linear
systems.

In the final chapter 6 we consider the classical problem of surface
waves on a two—dimensional inviscid layer of fluid over a horizontal
bottom under influence of gravity. Leaning heavily on the Hamiltonian

character of this system, we describe several approximations of the
Boussinesq type, comment on their peculiarities and describe for some



of them the approximate separation into two first order Hamiltonian
systems.

To conclude this general introduction we have to mention the
intrdducfionary chapter 0. This chapter is included to introduce
the notation and to facilitate the reading for those who are not
acquainted with those standard results from ("non-linear") functional

analysis which will be uged in the rest of this thesis.






CHAPTER 0: SOME TOPICS FROM FUNCTIONAL ANALYSIS.
0.1. BAMACH SPACES AND DUALITY.
0.1.,1. INTRODUCTION,

Here and in the rest of this éhapter, V and W will stand for Banach
spaces (B-spaces) over the scalar field of reql numbers. The norm will
be denoted by || || or, if thereisa chance of misunderstanding by

I IIV and || ftw respectively. '

Convergence (in norm) of a sequence {u% < V to some element
§ € V will be denoted by uw 4, thus u 8@ in V means f!un—ﬁ|lv +~ 0
for n » oo,

A mapping from V into W is said to be bounded if it maps boun—
ded sets of V into bounded sets of W. The linear space (over the real
numbers) consisting -of all bounded, Zinear mappings from V into W
will be denoted by B(V,W). '

DUAL SPACE. Of particular importance is thespace which consists of

all bounded linear functionals defined on V, i.e. B(V,R1), which will
*

be denoted by V . Supplied with the norm

*
[12]]: =  su [%¢u)| for L€V, ue€EV,
u f<l .
it is a B-space (c.f. section 0.2.1.), and is called the normed dual
* *
of V. A typical element of V is often written as u , and its effect

* L %
on some u € V, u (u), as <u ,u>. Thus we have for instance

* ' * * *
(1.1 |ju|] = sup |<u,w>| foru €V, u€vV,
[fulT<1



from which it follows that

* *
YVuEVVu EV.

(1.2) §<u*

The expression <u*,u> is (by definition) linear in u € V for fixed
u* € V* but it is also linear in u* € V* for fized u € V. This
clarifies the notatiom <u*,u> for u (u) and the adverb "dual” in the
term dual space.

The dual space V has the following fundamental

PROPERTIES 0.1.1. (i) V aeparates pointe on V, i,e, if ul,u2 €V

—— *

with u, # u,, there exiats u € V such that <u sup> # <u sup> e
(ii) For every u€Vv, u#o, thereemmsts u* ¢ V

such tha ol lul} = 1.

PROOF: These properties are weak formulations of the Hahh-Banach
theorem. See e.g. Rudin [1, theorems 3.3, 3.4, 3.5]. i o

In many practical situations, e.g. when V is some fuﬁction space,

one looks for a representation of V .

*
DEFINITION 0.1.2. A representation of V is a space V, with elements
u, say, together w1th a bilinear mapping [,] ¢ V, x V » Rl such that
the elements of V are in a one~to-ome correspondence with the func~.

tionals
(1.3) [u,, 1:V>RL , u, €V,.

*
In practice, this isomorphism between V and the functionals defined
*
by (1.3) is used to identify V, and V . However it must be emphasized

that in this case the duality map <,> has got a definite meaning!

*
A very simple representation of V can be given if V is a Hilbert

space.
THEOREM 0.1.3, (Ricsz representation thecrem)

Let H be a Hilbert space with irmerproduct (). Then H* ean be identi-
fied with H if for the duality map the immerproduct ie taken. Thus, '

10



if % iév any bounded linear furctional on H, there exists a unique
* *
element u € H guch that 2{(u) = (u ,u) Vu € H.

PROOF, See e.g. Brown & Page [i2, p.348] or Ljusternik & Sobolew
{3, p.133]. ) ’ B -

0.1.2, WEAK CONVERGENCE.

The norm on a B-space V induceé a topology om V, called the original
or norm topology. With this topology, wuch notions as (norm—) closed
and (norm~) compact sets can be defined. However, in many important
situations, viz. when V is infinite dimensional, this ;)riginal topolo~-
gy is too strong in many respects and one wants to deal with a coarser
topology. The coarsest topologjr such that all the functionals

* * *
<u , >3 V+RL ,u €V

are continuous (i.e. the topology on V induced by V*) is called the
weak topology. This weak topology is of extreme importance, and with
it such notions as weak-closure andweak-compactnessof a subset of V
can be defined. However, because of the limited needs in the rest of
this thesis (in fact, mainly dealing with convergence of sequences of
elements from V) it is possible to describe the desired results in a
somewhat simpler way.

" DEFINITION 0.1.4. A sequence {un} =V is said to converge weakly to
some element § € V if

* * L
<u ,un>+fu sU> asn+o° , VYg €V,
This weak convergence is w?iftgn as u ~ iin V.
The following results are easy consequences of the foregoing
PROPERTIES 0,1.5. (i) If un + U-In Y, then un ~4dn V.

(ii) If u + G in ¥, then {un} <V ig uniformly bounded in V, i.e.
there existe a number w'> 0 auch that | [unH <m Vva.

11



(iii) Weak limits ave unique, i.¢. if u - 4 and u > § in v,

then § = ¥.

DEFINITION 0.1.6. Let M be a subset of V.

(i) M is weakly sequentially closed if for every weakly convergent: -
sequence in M the weak limit belongs to M;

(ii) M is weakly sequentially compact if every sequence in M contains
a subsequence which converges weakly to some element from M.

As will become clear in section 0.5., B-spaces for which the
closed unit ball is weakly sequentially compact are of special impor~
tance, B-~spaces with this propety are reflexive B-spaces, as shall be
shown in the next subsection.

0.1.3. REFLEXIVE B-SPACES,
As we have seen in subsection 0.1.1., the expression
* * * -
<g ,» , u €V ,uEV

* *
is for fixed u € V (by definition) a bounded linear functional on

V. With the estimate (1.2) it followsthat the mapping
* x %
V 3uwm<yg,w>»€R , uev
: : : P *
is for every u € V a bounded linear functional on V, i.e.
*

(1.4} <+, u> E(V) for every u € V,

* % % * . ‘
where (V') = V  is the dual space of V and is called the secaond
dual of V. Functionals of the form (1.4) with u ranging over V de-

. *k . . *ok

fine a subspace of V . If this subspace is the whole of V , V is

called reflexive:

DEFINITION 0.1.7. The B-space V is called reflexive if the canonical
* ** * :
mapping Kk 3 V+ V  defined by

12



* * * *
<k{u),u > = <u ,u> Yau €V

*ok
maps V ontc all of V .

The following theorem can serve as an alternative definition and
emphasizes the desired property. '

THROREM 0.1.8. A B-space V is reflexive if and only if its closed
unit ball is weakly sequentially compact.

PROOF: From Rudin [1, theorem 3.1.2.] it follows that a convex and
{norm-) closed set in an arbitrary B-space is closed in the weak to-
pology. From Dunford & Schwartz [4, theorem 6.1] it follows that in
an arbitrary B-space a set which is closed in the weak topology, is
weakly sequentially compact if and only if it is compact in the weak
topology. Hence, in an arbitrary B-space, the closed unit ball is
weakly sequentially compact if and ojﬁly‘ if it is compact in the weak
topology. The theorem then follows from Dunford & Schwartz [4, theo-
rem 4.7]. o

As a useful consequence of this concept we state
COROLLARY 0.1.9 In a reflexive B-space V every bounded sequence
' {u} v, with I[unH € m ¥n, has a weakly comvergent subsequence,

say u , ~ 8 € V and moveover ||8][ < m.

EXAMPLE 0.1.10. It is an immediate consequence of Riesz representation

theorem 0.1.3. that every Hilbert space is a reflexive B-space.

The following lemma plays a fundamental r8le in many applica-

tions,

: *
‘DEPINITION 0.1.11. A subset Z of V 1is said to be a complete set of
linear functionals if

* * %
f[uev,vz €2 <z ,u»=0l=u=0

. *
‘LEMMA 0.1.12. Let V be a reflexive B-space. Suppose Z is a complete
LK Sk, *
set in V . Then Z is adense subget of V .

13



* *
PROOF Suppose Z is not.dense in V . Then there exz.ata some
v € V . v # 0, and a neighbourhood Q(v )« V of v such that
Q(v yn Z = ¢. According to the separation theorem of Halin=-Banach
*oke ok
(cf. Rudin [1, theorem 3.5]) there exists u € V  such that
aok % Kk * *
u (vo)~= 1 andu (z)=20 vz € Z -
) ) LI j
As V is a reflexive B-space, withu € V  there corresponds an
element u € V such that
kk ok * * *
u (v) =<v,u> Vy €V
(cf. definition 0.1.7.). In particular,
*k ok * * *
u (z2)=<z ,u>=0 Vz €2,
*
As Z is a complete set, this implies that u = 0, which contradicts

T * * R
the result u (vo)«vo,u> = 1, Hence Z must be dense in V , o

The foregoing lemma makes it possible in many important situations
to construct a representation of the dual space for a given reflexive
B-space. ‘

COROLLARY 0.1.13. Let V be a reflexive B-gpace, and let H be a Hil~-
bert spézce, with (,)H ag irmerproduct. Suppose V is com&i%zuausly
embedded in H (Z.e. V « H and there exists a congtant ¢ > .0 suech that
[ vl |H < co||v| lV for all v € V; c.f. subsection 0.2.3). Let H, be
the completion of H with respect to the norm || || *:

allg* s =sup 1@l pen
vEV |v v
v#0

& . i ':* » *
Then H, i& a representation of V with (,), ae duality map.
* .k *
PROOF: Let Z : = {(h,*),; : V> R |h € H}. Then'Z <V as follows

from
[ (hywdy| < [1B]]e

< e |h|[H'||v||v Vv €V, Vh € H.

*
Moreover, Z is a complete set: if (h,v) =0 Vh € He v =0,
From lemma 0.1.12 it follows that Z is dense in V » and the comple-

ting operation gives a representation for V . : o



0.1.4. FUNCTIONSPACES.

We shall now briefly describe some function spaces which will be used

in the sequel, Let {} be an open domain of RI™. We consider real valued

functions defined on . For simplicity we shall restrict to the case

n = | because that is all we shall need, but the following defini-

tion and results can be generalized to arbitrary Q < rz® provided the
boundary 3 of Q is sufficiently smooth.

m
C -spaces, 0 <m<

@) :

(7))

o=
co(9>

m -
: CO(RZ).

the space of functions defined and m-times continuously dif-
ferentiable in Q3

(if Q is bounded): subspace of C(Q) cbnsistiﬁg of functions
all of whose derivatives of o®der < m can be extended as

continuous functions to ﬁ.mﬁquiped with the norm

‘ k
Hull _ += § sup _ [0 ul
c® k=l x €8 ¥

it is a B-space (if m < =)

(if f is bounded): subspace of Cm(ﬁ) consisting of functions
with compact support in . -

With the {]‘[Icm*norm this is also a B-space;

Subspace of C"(Rl) of functions which have compact support.

L -spaces, 1 < p < »

L <8
P

L2(9) .

+ space of measurable functions u for which the p~th power of
|u| is integrable over Q. Equipped with the norm
[lull, =1 Ilufpdx}]/p
P @

it is a B-space. In particular:
is a Hilbert-space with inmerproduct

(u,v) = I wix) v(x) dx.
o ,

It is well known that with the Lz-innerproduct as duality map, the

dual space of Lp is the space Lq for appropriate q:

1
'q_=19 1<‘Psq<°°'

Consequently, Lp*spaces, 1 < p < ®, are reflexive B~spaces.



Sobolev-spaces Hm, 0<m<>
Hm(ﬂ) : space of functions u ln 2 such that 3 £ € Lz(R) for every

k, 0 < k < m, where a denotes the dlstrlbutlonal derlvatlve.

Equipped with the 1nnerproduct

m
k k
(uv) _: =} (3. u, 3 v
" k=g X x

it is a Hilbert-space, and the corresponding norm will be de~
noted by || || o

H?(Q) : closure is H™Q) of {u € C™(Q)|' u has compact support in Q}.
With (,)Hm this is also a Hilbertspace.

REMARKS 0.1.14 (i) Note that H (Q) = H ) = L ).

(ii) If Q = Rl, we have H (RZ) H (RZ) and C (RZ) is a dense subset

for every m > 0 (see Treves [5, prbposltlon 13 113,

(iii) It is to be noted that the Sobolev spaces can also be obtained

by a closure operation: H (o )(9) ig the closure of C( >(Q) under the

norm || || o (c.f. Treves [5, proposition 24.11).
B

(iv) As H( )(ﬂ) is a Hilbert space, it is a reflexive B-sgace and the
dual space (H(o)(ﬁ)) can be identified with H( ) itself if for the
duality map the inmerproduct (,) is taken. However, in many appli-
cations if is necessary to conslger Sobolev spaces of -different order,
which would cause to take different duality maps in each case. This
inconvenience can be circumvented by taking a fixed bilinear form,
usually the Lz-innerproduét (,), as duality map. As H(:)(Q), m > 0,

is clearly continuously embedded . in L (Q), a representation of
(H(O)(Q)) with (,) as duality map may be comstructed as described

in corollaxy 0.1.13:

*
Writing BT = (H:(ﬁ)) R H ™ is the completion of L, with respect to

] :
e 1YL
H Ilu*ll = sup I(u*’u)l
H"m u € Hm __u'.Hm
u#0

It can be proved that H (Q) is a space of distributions(Treves [5,

proposition 24.2]): .

H-m(ﬂ) s m > 11 space of distributions in Q which can be written as
finite sums of derivatives of order < m of functions belong-
ing to LZ(Q).



0.2. OPERATORS ON BANACH SPACES
0.2.1. LINEAR OPERATORS.

The linear space consisting of all bounded, linear operators L from

V into W (V and W are B~space) has already been denoted by B(V,W).

THEOREM 0.2.1. B(V,W) Z&¢ a B-space tf equipped with the operator norm:

(2.1) Hill = sup -L!Fg—lrlrg = sup | | Lul IW’ L € B(V,W).
u#$o0 v lully =
u€v

PROOF: See Rudin [1; theorem &4.1] ' o

For given L € B(V,W) the 'expresaion

* « % *
<w L,Iv> , vEV, w €W
. . * . . * *
is defined for every W EW, vEV and is, for fixed w~ € W a boun~
ded, linear functional on V. This leads one to define the adjoint of
Lt
* k. x * % *
(2.2) LsW +»V,<Lw,vw:=<w, Lvw,

* x % *

It is easily seen that L € B(W ,V ), that L is uniquely defined by
(2.2) and

*

(2.3) Hell = He'

.

., X * * *

If V is a reflexive B-space, and L : V>V , thenL : V-~V . In
. - > * * - *

that case, L is said to be selfadjointif L =1L , i.e. if

(2.4) . <y,Lu> = <Lv,uw> VaEV YWEYV

For L : V > W, the null-gpace
A (L) = {u € V|Lu = 0}
and the range
R ={wewuev, Lu=w}
are linear subspaces of V and W respectively.

Because we shall need these results in the next chapter, we shall des-
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cribé here some relations between the null space and range of L and
those of its adjoint L . Therefore we recall that if N is an arbitra-~

ry subspace of V, the amnihilator Nl of N is defined as
* * ok *
(2.5) N ={v EV <v,»=0 WEVIaV.

[Note that if ¥ is a Hilbert space.H, and Y* is identified with H,

<,> is the innerproduct of H and Nt is the orthogonal complement of N,
This specific situation may be a guide for the following manipulations].
If R is an arbitrary subspace of V*, the annihilator'LR of R is de-

fined as

(2.6) J'R

*
r={veEvV|ev ,vwv =0 WH*¥ERIcV.
It is easily seen that in general

.IRJ.
Rec ("R)7,
and it can be proved (c.f. Rudin [1, theorem 4.7]) that
L.L . *
(2.7) R = (R) if R is a closed subgpace of V .
With these definitions, note that
1§Q(L>={vsv§<v =0 v 692(1. )}
={v€V]<L~w ,v>=ow ew}
= {v € V|Iv = 0}

=LY,

Hence, in general

*
(2.8) Rah) -,
and with (2.7) it follows that

* . . .
2.9 R =¢I2L)l if 5Q(L*) ig closed in v,
Finally we shall need the following result:

. . E . %
(2.10) R(L) is closed in W« R(L") is closed in V.

(c.f. Rudin [1; theorem 4.141).

18



0.2.2. CONTINUITY OF OPERATORS.

Now let T be an arbitrary (not necessarily linear) operator from V
into W, As we have introduced two concepts of convergence (viz. weak
convergence and convergence in norm) there are several notions of

continuity, of which we shall need the following ones:

DEFINITION 0.2.2.

(i) T is continuous at Ui € V if for every sequence {u} eV for which
u + { in V, it follows that T(un) + T(8) in W.

(ii) T is etrongly continuous at G € V if for every sequence {un} v
for which u -~ i in Vv it follows that T(un) + T(8) in W.

(iii) T is weakly continuous at @ € V if for every sequence {“n} oV

~ o

for which u, -~ % in V it follows that T(un) -~ T(E) in W.

REMARK 0.2.3. As is well known, for linear operators the concepts of
boundedness and continuity are equivalent. For non-linear operators
this is no longer true, Furthermore for linear operators continuity

implies weak continuity.

For functionals f£: V> R, the definitions of strong continuity
and weak continuity coincide as in Rl the concepts of convergence
(in norm) and weak convergence coincide. According to custom we de—
fine

DEFINITION 0.2.4., The functional f£: V-~ R is called weakly conti-

nuous (w.c) at G € V if for every sequence {un} < V with w >4 in Vv
it follows that f(un) -+ £(@) (in R1).

In many applications functionals are met which are not w.c. but

which have one of the following properties.
DEFINITIOR 0.2.5. £: V> Rl is called weakly lower semi-continuous
(w.l.8.¢) at G € V if for every sequence {un} < V with u > tinV

the following = inequality holds

2.1 » £(0) < lim inf f(un);



weakly upper semi-continuity at § is defined likewise with (2.11) re-

placed by
£(0) > lim sup f(un}.

REMARKS 0.2.6 (i) If f is w.c, at § € V, then f is both w.l.s.c, and
w.u.s8.¢. at § and conversely,
(ii) It is well known that the norm in a Hilbert space H is w.l.s.c.,
but is not w.c. (if H is infinite dimensional). More generally, if
L:vV~+ V* is a linear, selfadjoint operator on a reflexive B-space V
which satisfies

‘ <Lu,u> > 0 VYu €V,

the functional f(u) : = <Lu,u> is w.l.s.c. at all of V.
As a last concept we state
DEFINITION 0.2.7. F: V + Rl is called coerciveon V if
f(u) + o if ||u]|] + {uniformly)

i.e. WVM>03R>0 vu€V [||u]| >R= f(u) > Ml

The following peculiar properties show that a w.c. functional

can not be coercive:

PROPERTY 0.2.8.If t: V +Rl 18 w.c. then for avbitrary R > 03

inf t(u) = ipf t(u)
[lul| =R Hull <®
sup t(u) = sup t(u}
ol =& Hull <®
PROOF: See Vaimberg [ 9, theorem 8.3] o

0.2.3 EMBEDDINGTHEOREMS FOR FUNCTION SPACES.
In subsection 0.1.4 we have introduced some function spaces. At this

place we shall describe how some of these spaces are related to each

other. These properties can best be described with the aid of embed-
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ding operators. If V & W, the embedding operator from V into W (the
natural injection) is the identity operator

Id: v+ W
which maps each element from V onto the same element considered as an
element from W. If V and W are normed spaces, continuity properties
of this embedding operator are of particular importance. E.g. if the
embedding operatof is continuous it is a bounded mapping, which means

that there exists a constant ¢ > 0 such that
lally < ellully vaev.

EMBEDDING THEOREM 0.2.9 Let 9 be a bounded or unbounded interval of
RI. (1) H( y () ia contmuously embedded in H( ) if kx < m:

thus Td: H /D) (@) > H( )(m for k < mand ||ul|gy < Hu”Hm

Yua € H (m) Q). If Q 18 bounded, the embec?dmg operator ita strongly
contimious if k € mi if uy > u in B\ @), then u > u in n(k) ©@.
(ii) H( )(9), m> 1, i8 corzmnuousiy embedded in C“?(Q) thus

W: 8D )(Q)"*C‘%")(Q) m> 1, and HuHGm_lf_c HuHH 2

Vueﬂ(o (@) for some constant ¢ > 0 depending only on m and §.

If Q ie bounded the embedding operator ie strongly continuous:

if u tu in H( )(sz) then u *u in C(o)(ﬂ)

PROOF: See Sobolaw [6, §8 - §11]; see also Treves [ 5; section 24] n

0.3. DIFFERENTTATION OF OPERATORS,
0.3.1 FRECHET-DERIVATIVE.

Let T : V> ¥ be an arbitrary operator. The following notion of
Frechet derivative is a direct generalization of the special case
where V = RZ" and W = Rz™.

" DEFINITION 0.3.1. The operator T is said to be differentigble at
g€V if there exist a bounded, linear operator (depending on &
in general), denoted by T'(d), from V into W such that

(3.13 [T + 1) - T® - 7' @-h|} = o(|[n]]) for ||n|] ~ 0
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T'(8) is called the (Frechet~) derivative of T at G:
(3.2) T'(W) : v>-W , T'({) € B(V,W).

If T is differentiable at every point of some set Ac V, T is said to
be differentiable on A, and the mapping

A3Ju~> T'(0) € B(V,W)
is called the derivative of T on A:

(3.3) T' : A~ B(V,W).

1If this mapping iscontinuous, T is said to be continuously differen-
tigble on A, and we write T € CI(A;W). T is said to be continuously
differentiable at § € V if there exists some neighbourhood Q() < V
of G such that T € Cl(ﬂ(ﬁ) sW) .

REMARKS 0.3.2, (i) The operator T'({i), if it exists, is uniquely de-
termined by (3.1) (c.f. Brown & Page [2, chapter 7]).

(ii) As,B(V,W) itzelf is a B-space (c.f. Theorem 0.2.1) it makes sense
to refer to continuity properties of the derivative T'.

(iii) It is easily seen that if T is differentiable at 4, then T is
continuous at . .

(iv) Example: if T : RZ™ + RI™, let us write T(x) = (&, (x), 000t (x)),
where x = (xl,...,xn) € RI™ and t; RI® + RZ, i = 1,..,m. Then

T is (Frechet~) differentiable at X if t, is differentiable at % for

i=1,...,m, and T"(X) is the n x m Jacobian matrix with elements

[-a—x—;- )}, i =1,.0,m3k = 1,..,m, which has to be envisaged as a
bounded, linear mapping from RI® into Rim. The derivative T' sends

x € RI® onto the Jacobian matrix evaluated at x.

For the explicit construction of the derivative of a given

operator one may advantageously use the following lemma,

LEMMA 0.3.3 Suppose there exigsts a bounded linear operator, which we
shall again denote by T'(0), such that

(3.4)  lim 1 [T(8 +eh) - T(®] =T'E) b, VhEV,
gt}
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where the limit ig taken for real ¢ and convergence in the norm of W
ig meant. (This mapping T'(3) e known ag the Gateauwxr derivative of
T at G.) Furthermore, if T' exists in some neighbourhood of G and is
continuous at G, then T is (Frechet) dszérentzable at 4 and T' (@)

is infact the (Frechet-) derivative of T at G. (In other words: a
eontinuous Gateaux derivative ie a Frechet derivative.)

PROOF: See Vainberg [7, theorem 2.1]. ‘ a

Finally we note that the chain~rule’ for differentiable.operators
holds:

THEOREM 0.3.4. Let T : V+Wand S : W+ 2, where Z i8 another B-
space. Suppose T is differentiable at G € V and S is differentiable

at & = T(8) € W. Then the composite mappzng SoT : V-2 i differenti-
able at 8 and we have

(3.5) (SoT) ' (8) = S'(T@)) * T' (D).
PROOF: See Brown & Page [2, p.276]. o

0.3.2. HIGHER ORDER DERIVATIVES; TAYLOR EXPANSION.

As B(V,W) itself is a B-space (equipped with the operator norm)
one may investigate the differentiability of the operator T' as gi- .
ven by (3.3). Let us suppose for simplicity that T' is defined on all
of V: :
T': V > B(V,H).
Then T' is differentiable at @i, with derivative which shall be demo-
ted by ?"(G), if

(3.6) ™@E) ¢ V> BV,W
such that
ClfTr@Eny - @) - @ ek|| = o(|[k][) for |]k]|| ~ 0, k€ V.

By definition of operator norm this is equivalent to
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HhTTP= ;N @ b = 1@ b - 1@ ken] | = o] k],

thus )
||T* (@+k)*h - T'(B)*k - T"(@)+keh|| = ||b]]|-oC|]x]|])

Ffrom these observations it follows that T"({) may also be

considered as a bilinear wapping from V x V into W

3.7 () : Vx VW, VxV 3 (hk)+~ T'(H)hek € W
which is symmetric

(3.8) T"(G)*hek = T"({)*k*h Vh €V, vk € V.

Of course, T"(§) is called the second derivative of T at §, and

one has the usual formula -

(3.9) ||T(E*h) - T(8) - T'(8)+h = $T"(@ -heh|| = o(||b[|®)
for ||n|| + 0. '

Proceding along the same lines one may'define higher order=-
derivatives: the m~th order derivative of T at 4, denoted by T(m) (B)
is a m~linear operator:

(@) g 12
T @) ¢+ 1 VW,

{m) . . . img ) .

If T exists and is continuous ofi some subset A < V, we write
T € ¢®(a;W)
For differentiable operators, Talylor expansion is possible:

THEOREM 0.3.5 Lot Ac V and T € ¢ (A;V). Let & € A and h € V such
that G+teh € A for every 0 < t < 1. Then ve have: ‘

i

n
(3.10)  T(E+h) - T@) =Y o T™ (@)enohe...on + R,
fu [RE——

=l T
m-times
where the remainder R € W satisfies
G | IR] | < TZT:-TY! 0 <8\;P< . HT(nﬂ)(ﬁn.h)H*[ In] !ni-l.

PROOF: See Dieudonné [8, sec. 8.14]; see siso Vainbérg [7;sec.4.6]. O
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0.3.3 DIFFERENTIATION OF FUNCTIONALS.

As a special case, the definitions and statements of the foregeing
subsections hold equally well if W = RL, i.,e. if we are dealing with
functionals on V. If f : V - RL is differentiable at i € V, the
derivative of f at G is written as £'(3) and as £'(3) € B(V,RL) = V

we may write
(3.12)  £(a+h) - £(8) = <€'(®),b> + o(||n||) , ||n]] + 0.

If f is differentiable on a set A c V, the derivative of f on A
£' s A~ V*
is often called the gradient of the functional and written as
“£'(u) = grad £{u).
In a special context also the name functional derivative is used. In
this respect we want to make the following remark about a point which

may cause some confusion.

REMARK 0.3.6. As was noted before, for a given B~space V there may be
— *

several representations of V , Connected with this is the observation
that for a given functional f the actual form of £'(u) depends on the

representation chosen. By way of example consider
£:H @ >R, £Qu) = [ G2 + fu?) dx.
9
Then £ is differentiable at every u € H; and we have

1
<E'(u),v> = [ (ux°vx + usv) dx, u,v € H
*
If we take (Hé) = Hl with the innerproduct of H] as duality map we
1

£ Ho -+ Hi , f£'(u) = u,

have

) : * -
But if we take the Lp-innerproduct as duality map, (H;) =g

(c.f. subsection 0.1.4) and then

. oyl -1 ¥ =
£' s Ho + H s E'(u) L + u,

This very simple example expresses the necessity to specify the

duality map in these situations.

In most applications from mathematical physics dealing with

function spaces, it is custom to take the Lp~inmerproduct as duality
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map., Because in that case one often speaks about functional deriva-

tive, we shall restrict that name to this situation.

DEFINITION 0.3.7. Let V be a function space and V* the dual space of
V with respect to the L;-innerproduct. If £ : V » Rl is differentiable
at G, the derivative of £ at @, f£'(d) comsidered as an element from
V' is called the funetional derivative, so that we have

(3.13) £(avh) - £(8) = [ £'(u)+h dx + o(||h|]) for ||n|| + 0.
Q

[This functional derivative is often written as §§~but, unfortunately,
the same symbol is usually used to denote the functional derivative
at the point u € V., (This inadequate notation can be considered to be
a straight forward generalization of the imperfect notation %% for

ordinary functions £ : RI » RZ.)]

To complete the specialization to functionals, we note that if £

-~

is twice differentiable at U then
(3.14) £(B+h)~-£(0) = <£'(TQ),h>+}<E"(W) *h,h>+o(||h||2) for.||n|| + 0
and
- *
£7@) v v
may also be considered as a bilinear functional on V x V
£"(@) : Vx V- R

which is symmetric

(3.15) <f"(@)+h,k> = <£"({@)*k,h> Vh €V VkEV,

The following result shall be needed in the sequel
LEMMA 0.3.8. Let L be a linear, bounded operator from V into W, with
’ > * * * i ’ -~ ~
adjoint L.+ W » V and let £ : W~ Rl be differentiable at % = 1i

Then the mapping fol t V » Rl is differentiable at G € V and

(3.16) (£oL)"(8) = £'(LA)*L = L E'(LE) € V.
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PROOF: As L is a linear and bounded mapping, it is differentiable at
every u € V and L'(u)*h = Lh for all h € V., Then the result follows
from the chain rule (theorem 0.3.4) and some manipulations with duali-
ty maps: if we use subscripts to distinguish between the duality maps
of V and W we have:

<(foL)'(B), >y = <E'(LA)-L'(A),h>y, = <£'(L8)*L,h>y

*
= <f'(1L4), L h>W = <], f'(Lﬁ),h>V,
valid for arbitrary h € V. Hénce the result (3.16). o

0.4. POTENTIAL OPERATORS.

In classical mechanics when dealing with systems which have a
finite number of degreesof freedom, one is sometimes interested in the
question whether a given force-field F : RI™ + RI™ is a "conservative"
field, i.e. whether there exist a funetion f : RI® -+ RZ, usually
called the potential, such that

4.1) £'(x) = F(x) Vx € RI®,

(If F is represented as (Fl,..., F ), i ! RI® + RZ, (4.1) is equi-
valent to

%—f;; () = F (), i = 1,...,m0).
b

In & more general setting this question is even more important and
amounts to - the question whether for a given operator ¥ : V + ¥ there
exists a functional £ : V + R such that

£'(u) = F(u) Yu € V.
This qaestion will be answered in the following, and it is shown that
thenecessary and sufficient condition for the finite dimensional case,

V1iZ. 9F 35
r i,j = 1,.‘.,)?1,

o4
generalizes to the more general setting.

»

;"l,.

~ *
DEFINITION 0.4.1. An operator F : V+ V is called a potential opera~
tor (or gradient operator) on (the set A <) V if there exists a diffe~
rentiable functional f : V -+ RI such that
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(4.2) F(i) = £'(u) Vu € (Ac) V.
This functional f is called the potential of F on (A <) V.

THEOREM 0.4.2. Let ¥ : V =+ V* be- continuously differentiable an all
of V, with derivative F': V = B(V,V*). Then, in order that F be a po~
tential operator it ig necessary and sufficient that the bilinear
Funetional

<F'(u)*: 4.> ¢+ ¥V x V>Rl ¢ (h,k) = <F'(u) ¢h,k>

ig eymmetric for every uw € V 4.e. that
(4.3) <F'(u)"h,k> = <F'(u)+k,h> Vh €V Vk €V,

Moreover, if (4.3) is satisfied, the potential f of ¥ on V ig uniquely
determined up to an arbitrary constant, and ie given by

! E
4.5 f(u) = f(uo) + I ds <F(u° + s(u—uo)), u-u£> Yu € V,

0
where u €V ig arbitrary. (If g 18 chosen to be the zero—element,
(4.4) eimplifies to

1 .
(4.5) E(u) = £(0) + J ds <F(su),u> Yu € V).
3 :

PROOF: See Vainberg [9, §5]. o

COROLLARY 0.4.3, If T : V ~» v ig a bounded and linear operator, it
ig a potential operator if and only if T ie selfadjoint, i.e. if

T = ‘1’*, and in that case its potential up to an arbitrary constant is
given by

(4.6) , f{u) = § <Tu,w.

PROOF: The requirement that T be selfadjoint, i.e. equation (2.4), is.
equivalent to the requirement (4.3). Then the potential can be found
from (4.5) or verified by differentiation of (4.%6). o
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REMARK‘O.Q.A. When dealing with operator equations of the form
4.7) T(u) = 0, u€v

one is often interested in the question whether this equation can be
derived from a variational principle. Formulated in a fairly general
way, this amounts to the question whether there exists a functional,
say £ : V> RLl, such that the stationary points of f, i.e. the solu-
tion of £f'() =0
(c.f. subsection 0._5.1), are in some sense related to the solutions
of (4.?’}. The foregoing definition :and théorem answer this question
only in a wery restricted sense, The limited applicability of these  re-
sults is easily demonstrated: if £ : W=+ Rl is a functional and
Lt V~+ W a linear operator, the operator L*of ‘oL 1 V- V* is a poten-
tial one (with potential fol, c.f. lewma 0.3.8), whereas f'olL ¢ V > W*
is not a potential operator (unless L = & I for some constant c).
Nevertheless, the solution:sets of the equations

L'E'(lw) = 0 and £'(Lu) = 0
are the same if L is a one~to-one mapping.

We shall now describe a simple class of potential operators which

will frequently be used in the following.

NEMYTSKY OPERATORS 0.4.5. Let v ¢ RZ » Rl be a continuous function

and let V be a function space of functions u defined on § « RZ. Then

the function y(u(x)) is defined on Q and the mapping
G ¢ u-~ Gu) wvhere GI(x) @ = Y(u((x})] VxEQ
is an operator on V into some function space W, consisting of functions
defined on Q. Operators of this kind are called Nemyteky operators,
and it can be proved that if y satisfies an estimate of the form

(4.8) ly(zil < a+b 2[5,

where a and b are positive constants and r = p/q with p,q € [1,2),
then G maps all of Lp(m into Lq(m and is continuous and bounded (and
conversely, if G maps all of Lp(ﬂ) into Lq(ﬁ) for some p,q € [1,=),
then G is necessarily continuous and bounded and Y satisfies an esti-
_ mate of the form (4.8); see Vainberg [9; §191). ‘
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For simplycity we shall consider the case where V = H](Q) aiid where

Y satisfies

(4.9) y € c}(RZ) and v(0) = 0 if @ is unbounded.

Then, as the embedding operator Id : HICQ) > CO(Q) is continuous

(c.f. theorem 0.2.9), G is a mapping from Hl(ﬂ) into itself:s
(4.10) ¢ :ul@ »ul@.

e s . . . 1
Moreover, it is easily seen that G is a potential operator on H (R)

with potential g (chosen to satisfy g(g) = 0)

u(x)
4.11) gfu) = J dx J ¥(z) dz, u € Hl(Q},
Q o

for which we have
|
(4.12)  <g'(w),v> = j dx Glu)(x) » v(x) vuen'@ ,wen®.
Q
Hence G is the functional derivative of g (the Ly~inmerproduct as
duality map) and the range of G is a subspace of (H‘(Q))*, viz.
HI(Q) itself,

0.5. FUNCTIONALS ON BANACH SPACES
0.5.1. EXTREME POINTS.

Let f be a real valued functional defined on all of a B-space V. We
shall be interested in the range of the functional £, i.e. in the set
{£(u)|u € V} = RI.

DEFINITION 0.5.1. A point G € V is called a local extremum of £ if
there exists a neighbourhood §(8) of § in V such that
f(u) < £(8) for all u € Q(H) : £ is maximal at §
or f£(u) > £(0) for all u € Q(8) : £ is minimal at G.
If for this neighbourhood Q(T) the whole space V ean be taken, § is
called a global extremum.
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If f is differentiable at @, then U is called a stationary point (or

a eritical point) of £ if £'(3) = 0.

The next theorem summarizes the results of the theory of first

and second variation for functionals on B-spaces.

THEOREM 0.5.2. Consider £ on some subset Q c V, and let G be an
interior point of Q. Suppose £ ie minimal at 4.
Then, if £ is differentiable at G, U is a etationavy point of f:

(5.1) £'(08) = 0,

and if £ 18 twice differentiable at G,£"(1) : Vx V + RL. <g a non-
negative operator in the sense that

(5.2) <E"(8) +h,h> > 0 Vh € V.

PROOF: Let h € V be arbitrary and consider

@(t) + = £(4 + th).
As Ur is an interior point of {2, ¢ is defined in some neighboorhood
of t = 0, Moreover, ¢ is (twice) differentiable at t = 0 if £ is

(twice) differentiable at U, and we have 4
2
L () = <e'@,b>, $L (0) = <E"@h,b>.
As f is minimal at U, @ must be minimal at t = 0, and thus
A,y d%p
ey =0, T >o0.

Then (5.1) and (5.2) follow because h € V is arbitrary. o

The inequality (5.2) may be envisaged as a necessary condition
for a stationary point U to be minimal., It is also possible to give

a sufficient condition.

THEOREM 0.5.3. Let f be twice continuously differentiable at the sta-
tionary point G, and suppose that there exists some constant c > 0
such that

<£"(%) *h,h> > c||h||? ¥h € V,
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Then U is a minimal point of £, and moreover there exists a neigh-
bourhood QU(T) of U such that
£(u) = £(8) > fcl|u-t]|? Yu € Q(8).

PROOF: Writing u = G+h the statements immediately follow from

£Qu)-£(8) = <£'(8),h>+4<£"(8) *h,h>+6(} |n[|?) for ||n|]| > 0
= } <€"(@)=h,h> + o(||n]|?)
> el [n[[? + o(|[n[[*)
> fe||u=t||? for ||u=g||=||h|| sufficiently small m.

0.5.2. EXISTENCE OF EXTREME POINTS

If V is a finite dimensional space, Weierstrasz' theorem states that
a continuous function on a bounded and closed subset, e.gt the closed
unit ball, is bounded from above and from below and attains its
maximum and minimum on that set. But if V is aninfinite dimensional
space, a closed and bounded set needs not to be compact and
Weierstrasz' theorem ceases to be valid. However, we know that in a
reflexive B-space the closed unit ball is weakly (sequentially) com-—
pact (c.f. theorem 0.1.8). By requiring a functional to ke continu-
ous with respect to weak convergence, Weierstrasz' theorem may be

generalized as shall be shown.

THEOREM 0.5.4. Let V be a reflexive B-space and 2 = V a bounded

and weakly sequentially closed subset., Let £ : V> Rl be w.l.8.c. on
Q. Then f is bounded from below on Q and attains itsinfinum at some
point G € Q.

PROOF: The proof is standard and will be given as an illustration of
some concepts introduced earlier.

Suppose first that f is not bounded from below on Q. Then there

exists a sequence {un} < £ such that f(un) +=0 for n > ©, As Q is
bounded, this sequence is bounded and has a weakly convergent subse-
quence (corollary 0.1.9), say u iin V. As Q is weakfy sequential-
ly closed, G € Q. For this subsequence we also have f(un,) -+ —» for

n' > o, But as f is w.l.s.c., £(8) < lim inf f(un,) = —»o, which is im-

possible. Hence f is bounded from below on Q.
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How, iet o: = inf {f(u)|u € Q}. Then o > =2, and there exists a mini-
mizing sequence {un} e Q for which f(un) + o for n ~ «, Again this
sequence is bounded and has a weakly convergent subsequence, say

ue 4 with G € Q. As f(un,) + o for n' + e, and as f is w.l.sic.,
we have £(i) < lim inf f (un,) = 0, By definition we alsoc have

£(8) > o. Consequently f(i) = o, which means that f attains its in-

fimum at G. This completes the proof. a

REMARK 0.5.5. From the proof it is easily seen that theorem 0.5.3. re~
mains valid if the requirement { is bounded is replaced by the require—
ment that f is coercive on V, i.e.

f(u) o for ||u|l| »+ =, u €V,

THEOREM 0.5.6. (Gemeralized Weierstrasz' theovem).

Let V be a reflexive B-space and Q a bownded and weakly sequentially
closed subset of V. Let t : V + Rl be w.c. Then t ie bounded from
above and from below on § and attaine its infinuum and its supremum
at points of f.

PROOF: If g is a functional which is w.u.s.c., it follows from theo-
rem 0.5.3., applied to f = -g, that g is bounded from above on { and
attains its supremum at some point of Q. With this observation the
theorem easily follows: as t is w.c. it is both w.l.s.c. and w.u.s.c.
(c.f. remark 0.2.6.). a

0.6. POLAR FUNCTIONS AND SUBDIFFERENTIABILITY.

In this section we shall briefly describe some notions from the theo~
ry of Convex : Analysis which will be used in chapters 2 and 3. We
consider the simplest case first (functions defined on R1); an ex~
tension to functionals on a reflexive B-gpace is then an easy genera-

lization.

Let h be a function defined on RI
h : Rl » RZ.
— Here Rl is the extended real line, i.e. RIL = R U{~o} U{x},

(Allowing functions taking infinite values turns out to be useful in
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what follows. For instance, if g is a function defined on some inter-
val I < Rl, we have

inf inf
xe1 8=, gpy h(®

(x) forxel
hix) =
L forx{l Y.

if we agree to set

DEFINITION 0.6.1, The polar function (or conjugate functiom, or sup-
- * .
porting function) of h is a function b : RZ #.Rl defined by

{6.1) h*(u)f= sup [up - n(p)] , u € RZ.
p € RL

If for some U € R, h*(u)is finite this number has a élear inter~
pretation: it is the smallest value of o such that the linear function
with slope U, i.e. up = o, is dominated by h(p):

h(p) > up - a ¥p € RL.

i

- XK - R
DEFINITION 0.6.2. 1If the linear fumction up - h (u) is exact at some
p €RI, i.e. if ’

(6.2) B -h M =hp,

we shall say that h is subdifferentiable at p and |l is called a
subgradient of h at p. The set of all subgradients at p is called the
subdifferential of h at p, and this set is written as dh(p). We write
L € 9h(p) if 1 is a subgradient of h at p, and 3h(p) = # if h is not
subdifferentiable at p (i.e. if there exists no linear functiom which

is exact at p and dominated by the function h).

REMARK 0.6.3, It must be noted that subdifferentiability of h at p
has nothing to do with the smoothness of the function in a neighbour-
hood of 5 but depends crucially on the global behaviour of h. This in

sharp contrast to the more familiar concepts of differentiation.

*ok
DEFINITION 0.6.4. The bipolar function h of h is defined as the po~ .
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*
lar function of h :

*ok -— kK *
h :tRL+RI,h (p) =sup fup~-nh (WI.
u € RL -
The polar function is defined {as a functiom into RI) for arbi-

trary functions h, but this notion is especially useful when h is a

convex function.

DEFINITION 0.6.5. The function h : RI + Rl is convex if h satisfies
h(Ap+(1-1)q) < A*h(p)+(1-A)°h(q)  for all A,0<A<l,

for all values of p and q for which both h{p) and h{(qg) are finite.
The following properties are direct consequences of the foregoing

definition.

PROPERTIES 0.6.6. Let h : RL ~ RL be an arbitrary function.
(a) The polar function h*: Rl +~ Rl 18 a convex function.
@) b (p) < h(p) for all p € RL.
(c) The polar funetion of h** equals'h*: h*** -n"
(d) 1 € 9n(p) if and only if (i) h(p) is finite
) ) (“i*‘_‘f“"‘-’) +h(p) < h(q) Vq € RL.
{e) 1f 3h(p) # 8, then h(p) = h (p).
(£) if by = ") then 3n(P) = " (H).
(2) if 9h(p) # @, and if h is differentiable at p then 3h(p)={h'(P)}.

PROOF: See Rockafellar [10, part III, V]. a

REMARK 0.6.7. There is a close analogy between the Legendre transform
of a smooth, convex function h € C*(Rl) and the polar funmction h*:

if 13 = {h'(p)|p € R1}, then the restriction of h* to I is the
Legendre transform of h, and h** = h on all of Rl (See Rockafellar
[10pection 26];c.f. also section 2.2).

The foregoing definitions and properties are easily generalized
for functionals defined on a reflexive B-space. '
*
Let V be a reflexive B-space, V' its dual and <,> the duality map.

Let £ : V> Rl be a functional, possibly taking infinite values.

DEFIRITION 0.6.8, The polar-fimetional of £ is a functional
* * —
£ ¢V - Rl defined by
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* ok * ‘ * *
f (u)=s8up [<u.ouw - £W], u €V,
u€v

o - - *
The bipolar—functional £ :Vv~+>RI 1s the polar functional of £ 3

f (u) =syp ¢ [<u SU¥ - f (u Y1, wev.
u* e v*

The functlonal f is sald te be subdifferentigble at u € V with sub-
gradient u € V if
% - * -
<u ,u> ~ £ (u) = £(u).
—k -
The definition of gubdifferential and the notation u € 3f(u) are de-

fined as in definition 0.6.2

With the obvious changes, the properties listed in 0.6.6. can be
shown to hold in this case too. (c.f. Bkeland & . Temam [11, Ch.l,
section 4,5]; see also Vainberg [7; section 8.4]) As we shall not need
these results in the rest of this thesis, we shall not pursue this

subject any further here.
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PART 1: CONSTRAINED EXTREMUM PRINCIPLES.

CHAPTER 1: EXISTENCE AND LOCAL ANALYSIS.
1.1. INTRODUCTION.

In this chapter we shall deal with the follgWing problem. }
Let V and Y be two reflexive B-spaces, and let £ : V + RZ be a real
valued functional defined on all of V. Furthermore, let T : V + Y
be gﬂ'operafor (generally non linear), and v, € Y. We shall be
‘coneerned with the range of the functiomal f on the set of points
u € Vv for which T(u) = YO. Hore particularly we shall study the
existence and look for possible characterizations of solutions
(c.f. definition 1.1.1. below) of what shall be called

Problem f’

(1.1) P ias {(fw) lu€v, T(u)=y_}

Minimization problems of this kind are called constrained extremum
problems, in contradistinction to unconstrained minimization problems
for a functional f when f in considered:on all of the space V. We
shall use the name manifold for the set of points

(1.2) Come=luev | T = vy}

DEFINITION 1.1.1. An element u €MWis said to be a constrained global
minimum point of £ with respect to 777 if

(1.3) £(u) < £(u)  for all u €77
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An element 1t € 72 is said to be a constrained local minimum point
of f with respect to/7Z if there exists a neighbourhood Q(u) of u in
V such that N

(1.4) £(0) < £(u) for all u 27N Q(d)

Furthermore, u € /% is said to be a golution of problem.j?if and only
if 4 is a constrained global minimum point of £ on?, and then the

infimum of f onM is attained at u and we write
(1.5) £(a) = inf P. o

In section 1.2 we shall state conditions for the functional
f and the operator T which assure that problem.? has at least one
solution. Comparing the value of f at a solution u of projlemujgwith
lead in

first order to an equation for u (the multiplier rule, section 1.4)

the value of f at neighbouring points of u on the manifol

and in second order to a statement about the non-negativity of a
certain operator (section 1.5). A local investigation of this kind

is an adapted version of the theory of first and secoﬁd variation

for unconstrained minimization problems (c.f. theorem 0.5.2).
However, in order that such a local investigation is possible it is
necessary that the manifold 7is sufficiently "regular" in a
neighbourhood of the point 4. This will be studied in more detail

in section 1.3. Because these results are obtained by an investigation
which is essentially local in character, they also hold for points
which are local, but not global minimum points.

Because of its importance for the rest of this thesis, the foregoing
results are specialized in section 1.6 to the case where Y = RI, i.e.
where the operator T is a functional t ¢ V > RZ. In section 1.7 some
physical applications of the theory are presented.

The multiplier rule as stated in section 1.4. is originally due to
Lusternik [12] (see also Maurin [13] and Curtain & Pritchard {14,
section 12.4]1 ). For‘functional constraints, Vainberg [7, sections
9.4 , 9.5] is a most familiar reference. For constraints described by
certain differential equations,Klotzler [15] proves the multiplier

rule and treats the theory of second variation,
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1.2, AN EXISTENCE RESULT.

To assure that problem ?makes sense, we demand that the manifold 27
is non-void, which means that Y, must be in the range of the
operator T: Y, €ﬁ(T).

THEOREM 1.2.1. Suppose that the manifold Mis veakly sequentially
closed. Let f£: V+ Rl be weakly lower semi—continuous , and aoercive
onM, i.e.

(2.1 fQu) >« ifu e, HunH > w,

Then £ Zs bounded from below on Mand £ attains its infimm, i.e.

problem I has a solution.

PROOF: This result i1s an easy consequence of theorem 0.5.4. and a

slightly modified version of remark 0.5.5. ' o

REMARK 1.2.2. Lf Z is known to be a bounded subset, condition (2.1)

is void.

In the following lemma a condition for the operator T is given
that assures that 772 is weakly sequentially closed. The formulation
has been chosen to be directly applicable for a specific problem to

be dealt with in section 1.7.

LEMMA 1.2.3. Let T : V> Y with Y continuously embedded in q reflexive

B-gpace Z. Suppose T satisfies
(2.2) if u > u in V, then T(u ) = T(u) in Z.
Then the manifold Mis weakly sequentially closed.

PROOF. Let {un}c?ff be a sequence in”%, and u-=s ¢ in V. We have

to show u €M As u €M, we have T(un) =y, vn and hence T(un)-> Y,

in ¥y, By the continuous embedding of y into Z: T(un) > Y, in 2.

Furthermore because of (2.2) we also have T(un) - T(u) in Z. Thus
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T(1) = Yo which shows that u GM.
An immediate consequence of the foregoing lemma is:

COROLLARY 1.2.4, If T: V =Y is weakly continuous, M is weakly

sequentially closed.’

PROOF: Take Z = Y in lemma 1.2.3.

1.3. REGULAR POINTS OF THE MANIFOLD

At this place we shall study the structure of the manifold
3.1 M= {w€v | 1) = y )

in the neighbourhood of some point u €.

For the following we shall assume that T: V * Y is continuously

differentiable at u and write

(3.2) T(a+h) - T(3) = T'(Q).h + w(ush),
where
(3.3) Ho@sh)|| = o(|[b]]) for |[n]] + 0 in v.

DEFINITION 1.3.1. A point u 67’[1'.3 said to be an tsolated point of the

manifold 2 if there exists a neighbourhood Q(0)of Qin V such that

(3.4) Q@) NnM = {a}.

LEMMA 1.3.2. If T'(Q): V > Y is boundedly imvertible, theh u is an

igolated point of manifold.
PROOF : Suppose 4 +h €. Then by (3.2) we have

T'(3).h + w(azh) = 0.
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Applying T'(G)_l to this equation, it is seen that h must satisfy
the inequality

a1

Hall < [z @7 [ Hocushy | ].

With (3.3) it follows that there exists some positive number §
such that h = 0 is the only element which satisfies this inequality

together with ||h|| < &. Hence the set
o) := {G+h | hev,||n|| <6}

is a neighbourhood of u which satisfies (3.4). This proves the

lemma .

A local investigation of the manifold in a neighbourhood of a

non-isolated point U means to characterize the set
thev | a+ne ||nl] smaill.

This amounts to a study of all small norm solutions of the non~linear

operator equation
(3.5) T(3 + h) - T(Q) = 0,

To make any progress in this di.rectiorn, and in view of the foregoing
lemma, we suppose that the null space of the operator T'(G)is

non~trivial:
Hi=AT' (G # {0).

Clearly,#"is a vector subspace of V. Hence there exists a projection
operator P defined on V with R(P) =j’. (We recall that P is a projection
operator if P is linear and P2 = P), Moreover, denoting the null space

of P by W, V is the algebraic direct sum of #and W:
V= j"' W,
which means that with every element h € V there correspond unique
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elements v( = Ph) and w(= (I - P)}) such that
(3.6) h=v+w, vE&F, we€EN.

Of course the mapping:.,;‘ X W 3{v,w) » h € V is continuous. If the
inverse of this map.p‘ing is also continuous (which is equivalent to
saying that the projection operator P is continuous),A the

decomposition of V is called a topological direct sum, and written as

3.7) V=0 ORL

For the analysis to follow it will be nécessary to have this
stronger concept of topological direct sum.

As T'(4) € B(V,Y), the null spacedFis a closed subspace of V.
Closedness of # being a necessary condition for the resulni 3.7
is in general (reflexive) B-spaces not sufficient (c.f. Dieudonné
[8, section 5.4]). However, in many important situations there

is such a topological direct sum.

HYPOTHESIS 1.3.3. At least one of the following stateﬁents is true:
(a) V is Hilbert space;

(®)  dim. f < =

(¢) codim. S(=dim. V/y?) < o,

LEMMA 1.3.4. If hypothesis 1.3.3.is gatisfied, the clogsed subspace
j s a topological direct swmmand , 1.e. there exists a (closed)
subspace W such that (3.7) holds.

PROOF: If statement (a) of hypothesis 1.3,3. holds, the contents of
the lemma is the well-known projection-theorem for Hilbertspacee (see
e.g. Rudin [1, theorem 12.4], Dieudonné [8, section 6.3]). In the

other cases the lemma follows essentially from Rudin [1, lemma 4.21}.p:

To proceed our local investigation of the manifold in a
neighbourhood of U we substitute the decomposition (3.6) into (3.5).
Then, using (3.2) and the fact that T'(a).v = 0 if v 603", there

results the operator equation
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(3.8) k T .w +wlugzv +w) =0 , v Eai',w €W

For given element v €4fwith ||v|| small, this equation may or may

not have small norm solution w € W.

DEFINITION 1.3.5. (dnalytical).

Suppose Hypothesis 1.3.3. is satisfied. A point 4 €M is said to be
a regular point of the manifold M if there exists a neighbourhood
N = {v Go;l | v I<eo} such that for every v € N the equation

TE +v+w) =T =0

has a unique solution w € W, which depends on v and shall be denoted
by w = ¢(v), and such that the mapping ¢: N - W is continuous and

satisfies
(3.9) Hend |l = ollvl]y  if |[|v]] » 0.

This analytical definition can be given a clear geometrical

interpretation. Therefore the following notions turn out to be useful.

DEFINITION 1.3.6. The tangent space of Mlat U is defined as the
null space of the operator T'(d) € B(V,Y):

A = WEV T (@ =0}.
The tangent plane of Mat u is defined to be the set
0+ = {ut v EV] v €4,

Intuitively speaking, the idea of a tangent plane at 0 will be
that with every point u €Xin a sufficiently small neighbourhood of
U there corresponds a point a + v in the tangent plane such that
the distance from 4 to 4 +v differs only through higher order terms
from the distance betweeﬁ 4 and u. In fact it is easily seen that
definition 1.3.3. is such that the tangent plane as defined in 1.3.6.
satisfies these intuitive requirements if u is a regular point of 7.

More precisely speaking, defintition 1.3.5. is equivalent to
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DEFINITION 1.3.7. (Geometrical),

Suppose Hypothesis 1,3.3. is satisfied, A point u €M is said to be
a regular point of ” if there exists a homeomorphism (i.e. a
continuous one-to-one map which has a continuous inverse) from a
neighbourhood 4+ Nof uin the tangent plane onto a neighbourhood

of u in the manifold 7%, say
G+ND a+ver a+v + o(v) €,
which satisfies

Hen [ =odllvly  if |[v]] + 0.
The following lemma gives a sufficient condition for a point u

to be a regular point of ¥,

LEMMA 1.3.8. Let T be continuously differentiable at u € v, with
A(T' (3)) # {0}. Suppose T'(u) maps Vv onto all of Y, i.e. suppose

(3.10) R(1'(v)) = Y.

Then, if hypothesis 1.3.3. is satisfied, u is a regular point of .
PROOF. Define the operator FA i W > Y by

(3.11) F(v,w) 1= T(U+v + w) = T(Q) , v € , w € W.

Then the proof consists of an application of the implicit funection
theorem (c.f. Dieudonnd [8, section 10.2]). To verify the conditions
of this theorem we note that: (i) F(0,0) = 0 ; (ii) F is continuously
differentiable with respect to both variables in a neighbourhood

of (0,0) because T is assumed to be continucusly differentiable in

a neighbourhood of :1; (iii) I1f DW F(vo,wo) denotes the derivative

of F with respect to w € ¥ at the point (vo,wo), then

D, F(0,0) = T'(u) € B(W,Y). Now if condition (3.10) is satisfied,
T'(G) is a one-to-one mapping from W onto Y and hence has a continuous

inverse. We shall denote this "pseudo-inverse" by
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(3.12) [T*(G)};; LY > W

The conditions of the theorem being fulfilled, the implicit function
theorem states that there exist neighbourhoods N = {v €. Ilv[[<ao}
and M = {w € W | ||wl|<so} such that

(i) for each fixed v € N, the equation
(3.13) F(v,w) = 0

has a unique solutionw € M;

(ii) this solution can be given as w = ¢(v), where ¢ is continuously
differentiable on N and ¢(0) = 0. Finally, to obtain the required
estimate for ¢(v), we note that ¢{v) satisfies F(v,9(v)) = 0, which
is by (3.11) and (3.2) equivalent to

T'@).¢(v) + w(@; v+e(v)) = 0.

With the aid of the pseudo-inverse (3.12), which is a bounded operator,

this leads to the following estimate

a6 e || < T @1 1111 s@s v + o)

From the continuity of ¢, and from ¢(0) = 0 it then follows from
(3.3) that

lla@@; v + v || = o(||v|])  for []v]] +o0.
Hence ¢ satisfies the requirement (3,9), and the proof is'complete. o

For the theory of second variation in section 1.5, we shall need
the following lemma. Therefore we note that if T is twice
continuously differentiable at G, the remainder w(Gish) defined in (3.2),

can be specialized to

T"(3).h.h + v(uzh),

[SE

(3.15) w(uzh) =
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where
(3.16) [lv@m ] =o(l|n]|®  for ||n]] + o.
LEMMA 1.3.9. With the same conditions as in lemma 1.3.8, but with

T twice continuously differentiable at G, the operator ¢: N+ W

satisfies the stronger estimate

(3.17) eIl =ocllvl1®  for lIvl| > o.
PROOF: Using ||e(v)|| = o(||v]]), it follows from (3.15) and (3.16)
that

lo@sv + 60| <5 1@ .vavl] + odllv] .

Together with (3.14) this leads to (3.17). ' a

1.4. MULTIPLIER RULE (Theory of first variation).

With the results of the foregoing section is possible to study the
behaviour of a given functional f on the manifold 27 in a neighbourhood
of a regular point 4. Therefore we assume that f: V- R7 is

continuously differentiable at uandwrite
(4.1) £(8+h) - £(u) = < £'(a),h > + o(||n|]) for ||n]| + 0, hE V.

As u is assumed to be a regular point of M, it follows from definition

1.3.5. that the mapping u(e,v) : (-ao,eo) >
(4.2.) u(e,v) t=u + ev + $(v) for v &;’,HVH =1, ~e_<e<e
defines for every v €« a continuous curve on ?”through S (Moreover,

this mapping is contimuously differentiable ate= Q).

Considering f on such a curve gives with (3.9) and (4.1):

(4.3) fuezv)) - £@) =€ < £'(u).v > + o(e) fore- 0.
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From definition 1.1.1. it follows that if u is a constrained local

minimum point of f with respect to %%, the sign of the ex?ression
(6.4) © f(uesv)) - £(u)

must certainly be independent of the sign of ¢. In that case it

follows from (4.3) that we must have
(4.5) <f'(u),v> = 0 for every v EF.

RIMARK 1.4.1. Of course this same condition must hold if u is a
constrained local maximum point of f with respect to 27 {(defined
in an obvious way). On the other hand, any regular point uEMm
which satisfies (4.5) is called a comstrained stationary point of
f with respect to 7. Thus, as usual, a pecessary condition for a
regular point U to be a constrained extremum (maximum or minimum)

point is that 4 is a constrained stationary point.

It is possible to write conditiop (4.5) as an operator equation
for u in which the operator T'(u) appears explicitly. Torthét end
we need the results as described in subsectiom 0.2.1.

With the definition of ammnihilator as in 0.(2.5), condition (4.5)

may be written as
(4.6) £1(3) €T @) .

If R (T'(1)) is closed in Y, it follows with 0.(2.9) and 0.(2.10)
that (4.6) is equivalent to

- ~ %

£'(u) € R(T' (W) ),

. R ) * .k
which means that there exists some element X € Y- such that
- Ak ok
£'(u) = T'(a) . A,
* ~ *

Note that this element X 1is unique up to some element froms{T'(u) ),

i.e. up to an arbitrary element from %ﬂKT'(G)) (as follows from
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0.(2.8)). In analogy with the 51mplest case, V= A ,0 > 1 and
Y = R, }\ will be called a Lagrange multiplier.

The results obtained so far can be formulated in the following

THEOREM 1.4.2., (Multiplier rulel.
Let £: V>R and T: V + Y be contimuously differentiable at u €.
Suppose that (i) M#(T'(u)) # {0}

(ii) & 8 a regular point of M, and R (T'(0)) is closed
in Y. Then, if o is a constrained local minimum point of £ with
respect to, there exists a Lagrange-multiplier A* € Y*, such
that u satisfies the equation k

-~ ~ Xk %
£'@) = 1@ & .

* ' » N -~ %
Moreover, » 1i& unique up to an arbitrary element from ST () ) =

LR @)

Tor practical applications, the following theorem mdy be more

appropriate.

THEOREM 1.4.3. Let £: V> Rl and T: V- Y be contiruously differentiable
at u 7.
Suppose that (i) Hypothesis 1.3.3. {8 satisfied.

(11)(T (W) # (0};

(1iDR(T' (@) = Y.
Then, if 4 18 a constrained local minimum point of £ with respect to
M, there exists a unique Lagrange multiplier . € Y such that 4
satisfies

~ -~ % *
(4.7) £f'qu) = T'(u) .\ .

PROOF: Conditions (i), (ii) and (iii) imply that u is a regular
point of 2 (lemma 1.3.8), and that R(T'(4)) is closed as Y itself
is closed, Hence condition (ii) of theorem 1.4.2. is satisfied. The
~uniqueness of the Lagrange multiplier follows at once from the

i

observation
@Y = RE@ -1, .
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1.5. EXTREMALITY PROPERTY. (Theory of second variation).

In this section we shall extend the theory of the foregoing section
to include second order effects. Therefore we assume f and T to be

twice continuously differentiable at u and write

(5.1) £(@+h) - £(@) = <€' (@, 0> + 3 <€"@ .hb> + o] [0] D)

for ||n|| + 0.

and

(5.2) T(3+h) - T(3) = T'(3).h + % T"(3) .h.h + v(3;h)
where

(5.3)  ||vsn)|] = oC||n[[® for ||n[| » o.

As in the foregoing section we consider £ on curves on %7 through u:

u(e,v) = U+ oev+ ¢ev) , v Eyi} ||v|| =1, |e|<eo,

and note that because of lemma 1.3.9., the mapping ¢:u;'+ W satisfies

(5.4) Ho(ew || = 0¢e®) for e >0, ||v]] = 1, v &

More particularly, it follows from (3.8) and (3.15) that ¢(ev)

satisfies
' 1 2 "y
(5.5) T'(u).¢ + 7€ T (u).v.v + og(ujev,¢) = 0,
where :
o(usev,8) = 5 T"(0) bt + ET"(8).v.0 + v(@sev+4)
and thus -
(5.6) ||oCusev,d) || = o(e?) for e o0 .

With these results we find
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(5.7) £(u(e;v)) - £(0) = e<f'(Q),v> + <E'(1),0> + %sz<f"(ﬁ).v,v> + o(az).

If U is a constrained stationary point of £ with respect: to 2 vhich

satisfies equation (4.7), (5.7) may be written as

£(ulesv)) - £Q) = e<T' (@) v + <0 (@® %, 00 +

2

+ - g7 <) RPR R o(ez) .

(MBS

Note that
A Kk * - -
<T'(u) A ,v> = <x , T'(W).v> = 0 as v €4,

and from (5.5) together with (5.6) it follows that

< @5 = aF, T @) = - %- 2 X TE) vavs + o(el).

Hence
bed 12 "o * " ) 2
(5.8) f(u(esv))-f(u) = € [<£¥C).v,v> = <2 ,T"(u) .v.v>] N o(e™).

The expression in square brackets will be called the gecond variation
and denoted by

-~ % ~ * -
(5.9)  su,x 3v) = <f"@)ev,v> = <x LT .vevs

1f u is a constrained local minimum point of f with respect tof?, it
follows from (5.8) that the second variation will be non-negative

for every v ed;’, so that we have obtained the following theorem.

THEOREM 1.5.1 (Extremality property)

Suppose £: V> RL and T: Vo Y are twice contimiously differentiable
at u , and suppose that conditions (i), (ii) and (iii) of theorem
1.4.3.are satisfied. Then, if © is a constrained local minimum point
of £ with respect toM, with A* as the corresponding multiplier, the
second variation s(ﬁ,x*;v): = <£"(Q).v,v> ~ <A*,3.‘"(ﬁ).v.v> 18 non~
rnegative on J"é.e.. "

(5.10)  s(@,2%5v) > 0 for all v €d=d"(T(8)).
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The foregoing theorem may be looked at as a necessary
condition for a constrained stationary point u to be a constrained
local minimum point. It is possible to give also a suffietient

condition.

THEOREM 1.5.2. Let £: V>RL and T: V + Y be twice continuously
differentiable at 4, and let u be a constrained stationary point for
which conditions (i), (iidand (iii) of theorem 1.4.3. ave satisfied.
Suppose the second vartation satisfies for some constant ¢ > O

}VH‘? for all v €

-~ %
(5.11) s{u,X 3v) > c.

Then U is a constrained local minimum point. Moreover, there exists a
neighbourhood M)cWMof u in Msuch that ’

(5.12) £(u) ~ £() > = .c.||u-a| 22 for every u € M(i)x= 2.

1
8
PROOF: The set

M= {u(e,v) |ule,v) = G+ev+d(ev), v €4, ||vl| =1, |€|<€é}
(¢} .

is a subset of 7 and a neighbourhood of § for every €, > 0 sufficiently
small. We shall show that for g, properly chosen, every element
u € Ma satisfies the inequality (5.12). Therefore we note that from
(5.4) $t follows that
~12 4 2 3 :

[uCe,v) = u||® = ||ev+d(ev)||7= € + 0(e”) for ¢ » O.

Hence there exists some al>0 such that
Hu-\;H2< 282 for ever'quMe .
1

From (5.8) together with (5.11) it follows that

f(ule,v)) - £(a) i-;- Ez.c + 0(22), for every € > 0 .

Hence there exists some €, > 0 such that
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f(u) - f(ﬁ) > .ez.c for every u € Me .

2

] -

Taking €, i min(el,ez) it follows that

f(u) - E(a) > le?es —‘-.~]—.c.| |u-u] |2 for every u € M_ .
— 4. — 472 €
This proves the theorem. o

1.6. SPECIALTIZATION TO FUNCTIONAL CONSTRAINTS.

In this section we specialize the results of the foregoing sections

. . . . . n
to the case that Y is a finite dimensional Fuclidean space, say Y=R7 ,
and thus T: V » Rln. 1f elements of Rln are denoted by row vectors,

the operator T can be described as
T(u) = (¢, (W), t,(w),..., tn(u)),

where
'ti : Vo RZ s 1 = 1, 24...,n

are functionals. The dual space Y* w(Rzn)* is the n~-dimensional
Fuclidean space of column vectors, and the duality map between Rln
and (Rln)* is the usual matrix xizultiplication.

To investigate the conditions (i) and (ii) of theorem 1.4.3.

we note that
T' (). = ( <t,'(u),v, <t2'(£,v>, cees <tn'(§),v—> ).
LEMMA 1.6.1. If V is infinite dimensional, or if dim V> 2,then

o =T (W) # {0} for every u €7,
and hypothesig 1.3.3.18 satisfied,

PROOF: If dim V is infinite,‘;‘ is infinite dimensional, with

codimension n. If dim V = m, then (if T'(01) # 0) dim = m1, and

thus dime# > 1 if m > 2. : o
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DEFINITION 1.6.2. A finite set of elements {3?, } 1,2 from
= sreassll

-~
V¥ is called Zznearly zndependent if for a; € RZ, i=l,..,n.
n
L ajz. = ai=0 for i = 1,..,n.
i=1

LEMMA 1.6.3. For o € W we have

Rt (n) = R = {t ()}, 18 a linearly independent

i=l,...,n

*
set of V .

PROOF ¢ Supposeﬁ(‘l"(ﬁ) = RI™. Then there exist elements \ [

i=1,..,m, such that
-~ ) v -~ . L BPEad
T'(u).vi = (<t (@,v>, o<t (w),ve> ) =
where & is the i~th unit vector of Rln. Then

b3 <aktk'(a),vi> = 7 a, <tk' (G),vf— =a, ;i = 1,..,1,
k k

so that

La t'(@=0 = a =0 fori=1,...,n.
k
Now supposeﬂ('r‘(a)) # R1”. This means that there exists some
* * *
column vector g € (R?,n) » a # 0, such that

~ *
<'().v, g> =0 VvEV,

* * oo
1f oy denote the components of g , this implies that Zoz ﬁi'(u)w 0.
As a # 0, this means that the set {t; (u)} i=1 n is not linearly

gooey

independent, which completes the proof. o

With the foregoing results, theorems 1.4.3. and 1.5.1. are
easily specialized to the case Y = R1". Because of its importance
for the next chapter, we shall formulate the theorems for the special
case n = 1, for which T = t: V + RI. Therefore note that it follows
from lemma 1.6.1. l:mf:wi'::;tE {0}, provided dim V > 2, and from
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lemma 1.6.3. that
K(t'(Q)) = RL > t'(1) # 0.

(If V = RL, then either t'(a) = 0 or u is an isolated point of the

"manifold").

THEOREM 1.6.4. Let £: V> RL and t : V> RL be two given functionals
on a reflexive B-space V. Let for p € RL

M= {ueV| t(u =p} #0.

Then we have
(i) EXISTENCE: If £ Z¢ w.l.g.c. on V, andcoerciveon V l

and t is w.e. on V, :
then £ 18 bounded from below on Mand attains its infimum on N
(Hence, problem £ inf{f(u)| u €M} has a solution).
(ii) MULTIPLIER RULE:Let f and t be continuously differentiable at u €77
Suppose t'(u) # 0 and dim V > 2.Then, if G is a constrained local

minimm point of f with vespect to M there exists a unique Lagrange-
multiplier » € RL such that u satisfies

(6.1) £ @) =A@ .

(iii) EXTREMALITY. PROPERTY:If f and t are twice eontimuously
differentiable at u, then in the same situation as in (ii) above. the
second variation

(6.2) s(0,A3v> = <S{4,\).v,v>with S(G,2) = £"(0) - A" (Q)

18 non-negative ond

(6.3) s(u,A3v) > 0 for all v € V which satisfy <t'(3),v> = 0 .

(iv) SUFFICIENCY: If f and t are twice continuoucly differentiable at

., and if 4 ig a constrained stationary point for which ﬁ'(a) 0
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and for which
(6.4) s(u,Av) > <:.[[v]]2 for all v €4 = {v |<t'(d),v> = 0}

for some constant ¢ > 0,then U is a constrained local minimum point
and there exists a neighbourhood M(G)C Mof u in M such that

6.5) f(u) - £(0) i%.c.[ |u-u] ]2 for every u € M(u)c Y

1.7. THE ELASTIC LINE.

Consider an inextensible string of total length £ which has constant
mass density. Suppoée the string has finite bending stiffness, the
energy density of which is proportional to the inverse square of the
radius of curvature. The endpoints and the tangents to the string
at these points are taken to be fixed. The effect of gravity forces
is .neglected. ‘

The prineiple of least energy is assumed to hold, which means
that the actual configuration which is preferred by the string is
that configuration for which the total bending energy is as small as
possible when compared with all otherkconfigurationsthat satisfy the
boundary conditions and the total length and constant mass density
conditions.

For simplicity we consider only the case for which the boundary
conditions are such that the string is known to lie in a plane. Then,
taking a Cartesian coordinate system 0XY with the origin at one
endpoint and the other endpoint at the x~axis, a typical material
point of the string canbedescribed by a two component vector r = (x,y),

and the complete configuration may be described as

(7.1) r(s) = (x(s),y(s)) .

where s is the are length, rumning from 0 (the endpoint in the
origin 0 say) to 2: 0 < s < %, In using this particular parameter s

to characterize the string, it must be remembered that the tangent

vector is a unit vector:
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.r =1

(7.2) -

2 £ .
where r .r = x 2 +y ©, The conditions at the endppints may be
—g =g s s

described as

x(0) =0, r(s) = (L,0) with [L] <2
(7.3)

rs(o) = {coso Sin a), zs(z) = (cos B, sin B) .

For a configuration described by (7.1) for which x{s) and y(s) are

sufficiently smooth functions of s, the radius of curvature R satisfies

R—Z

]

T .r
=85 —ss

so that the total bending energy is up to some multiplicative

constant
L
1
(7.4) J 7 Lo Xes ds .
o

The principle of least energy then states that the actual configuration
is described by that two component vector (7.1) which safisfies (7.2)
and (7.3) and for which the functional (7.4) is minimal when compared
to all other configurations described by (7.1) which satisfy (7.2)

and (7.3). To obtain a sound mathematical description of the

principle it is necessary to specify the function space in which

the minimum is sought. Therefore we choose

B := {x = y)| x € B2(0,8) , y € H (0,00} ,

2 . . .
where H (0,2) is the second Sobolev space of functions defined on the

interval (0,%), and g? is supplied with the norm
£

2 2 2
e, s= 112, 112, = [ e ey + z1as

[o]

(c.f. subsection 0.1.4.). Then the functiomal (7.4) isneatly defined

on g? H
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(7.5) £(r) :=—2—J LSS ds , £ :§2+RZ s

(7.6) ) = r,.

. . . . 1 .
is easily seen (using the embedding result Hzc ¢ from subsection

0.2.3.) to be a mapping from g? into H]:
(7.7) T:H - H .

Then the principle of least energy leads one to consider the
following abstract constrained extremum problem

(7.8) inf {£(r) | T(x) =a , rery,

where T : §_2 - H1 x (R1 2)“P is defined by

(7.9 I(») = (T(®) ;5 x(0); ()5 £ (0);5 £ (1))
and
(7.10) 2 = (0 5 (0,0) ; (L,0) ; (cos o, sin a); (cos B, sin B)).

Formulated in this way, the problem has been brought into a form

to which the abstract theory of sections 1.2 ~ 1.5 may be applied.
Note that in this formulation the boundary conditions are considered
as constraints. Although a fully satisfactory treatment is possible
in this way, the boundary conditions can be dealt with in another
way. This is done by choosing some function r € E?‘ vwhich satisfies
(7.2) and (7.3). Such a function is likely to exist if the boundary

conditions are compatible with the constraints, i.e. if
(7.11) IL|<2%, . « and 8 arbitrary real numbers,

or

[l
#
=

-
>4
0
w
1
[

(7.12)
or L =-%, a=8= 7.



Note that these conditions guarantee that the manifold
M= irew | ) =23},

where a is given by (7.10), is non~void. In the special case for

which (7.12) holds,ﬁ?‘consists of only one element, viz

M=1{r = (s,0)} or M= {r = (-s,0)}
e o

Having chosen such a function r» we mote that every function r € g?
which satisfies the boundary conditions, can be written as
(7.13) r=r +h with h € Hz
‘ = s =7 =T =0
where
2 _ 2 _ _ _ -
BY ={h €H | h(0) =h(2) = h (0) =h (1) = 0}

Defining a functional f(zo;.) and an operator T(Eo;') by

(7.14) £(r s b) = £(x +h) , £(r ;) : H' +RI
(7.15) T(rsh) = T(r, +h)  T(z;.) : B2 ’ n o,

the principle of least energy amounts to an investigation of the

constrained extremum problem
(7.16) inf (£(z_sh) | T(z,sh) =0, he®}.

By construction, the two constrained extremum problems (7.8) and (7.16)

are equivalent.

EXISTENCE. To prove the existence of a solution of the constrained
extremum problem, we apply theorem iu2.1. to the problem (7.8).
Therefore we have to verify the conditions of the theorem.

(i) The functional f given by (7.5) is w.l.s.c. on Ez. This is an
easy consequence of remark 0.2.6.(ii).

(ii) Although f is not coercive on gll of‘ﬁ?, it is not too difficult

to show that f is coercive on the manifold 77.
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(iii) Wis weakly- ¢losed, This is proved with the aid of lemma !.2.3.,
and the proof uses extensively the embedding theorem 0.2.9. for
Sobolev spaces. Suppose r - g in Ez. Then > 2 in EI , and hence

1,0 > £, £,0) + E0) and x, (0) 2 £(0), £, 1)+ () in re?,

which shows that the boundary operators are continuous with respect
to weak convergence, Remains to investigate the operator T as given

by (7.6). We shall show that T(En) »T(i} in L.. To that end we note

2
(using || || for the L -morm of both scalar and vector-functions)
Ty - @] = I, * Es).(gns -2
'iHEnS +§-SHHEnS “ESH + 0 for n » =,

-n

because ||r + r || is uniformly bounded and ||r_ - T Il » 0 as
s — —'ns —s

r - i in _E_i_l. _Hence T(.En) > T(i) in L2 and as H1 is continuously
embedded in L2 we may apply lemma 1.2.3. to conclude that 2 is

weakly closed. (In fact it can be shown that if r - _1::_ in Ez, then
T(En) > T(g) in HI for some subsequence).

The conditions of theorem 1.2.1. being satisfied it follows that if
M+ b, problem (7.8) has at least one solution _?_ € 52. Consequently,
problem (7.16) has at least one solution, and if we take I, = f_ (the
existence of "some" element I satisfying (7.2) and (7.3) now being

proved vhen 27 # @), this solution is h=0.

REGULARITY of elements from# . For the vectorfunctions from the

manifold /7 we have r € !I_ZC §_] (each component of ¥ is a C]-function)
and hence I, € g° and o € LZ' Moreover, because of condition (7.2)
we have T X €c aslec. By differentiating (7.2) with respect.

to s it is found that

ror =0 vs€(0,1),

(7.17) r €M
“which result implies that discontinuities in the components of L

(if any) cancel in expressions 1ikef_1:_s.gss. We shall use this

property in the following.
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MULTIPLIER RULE. To obtain the equation satisfied by the minimum
point f_ , it is somewhat simpler to use the formulation (7.1%) with
r = _;_ Therefore we have first of all to study the null space and

ESN
range of the operator

1

(7.18) T'(E00:E »H, T(@0)h = (@b = E b
We shall show that if f_(s) # (+s,0)
(7.19) F=H @ GO £ 0r , R @) =W

In other words, if T is not an ieolated point of Z(and T is isolated
only if (7.12) holds) then i is a regular point of the manifold M.
To prove (7.19), note that h € if h satisfies

h .r =0 , h€n: . |
-8 = -8 : -
Therefore we take
5
h(s) = J _}is(g)dg with hs = b £
o
wherein b € H2 n H(l) is chosen in such a way that P—s € Hcl’ l. Then
h € Hg if b satisfies '
A
(7.20) 1 br ds=0.
;o ~ss
o

Provided Yoo # 0 there exists a function b # 0 which fulfills the
requirements. This provesyf # {0}. Now, if n € H}, is arbitrary, we
look for a solution h of

= 2

—n,he_ﬂ.

h .r
-5 =g

Such a solution exists, provided -1::,5 # 0, which can be seen by

taking
s
E(S) = I hs(g)dﬁ » with ES = T]ES + b I‘SS »
o

and where b € H2 n H,cl, is chosen such that Es € H(l) and
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£ £

Jbr ds=—[nr ds .
—S$ -8

o o

This shows R(T'(F:00=H if T # (45,0).
The conditions of theorem 1.4.3, being verified (hypothesis
1.3.3. is clearly satisfied), we get the governing equation for _1'.*;

as follows. Take the L, ~inner product ( , ) as duality map. Then

1 . * ~1 2 ¥ o=2 . .
(Ho ) =H , (_Ij0 ) =H (c.f. subsection 0.1.4.) and we have
o 2
tem, =
<E'(x30),0> = (r b ) = (r oW VheH

- : 2 -1
<T,(_r_;9_) -h,0'> A (ES'ESQO') = (‘.(GES)S’E) Vh__ego » VO'GH .

~ ¥ ,
(Hence the adjoint operator T'(r3;0) : H =~ H ~ is defined by

-1 y.

-~ Uk v
T'(x;0) .0 = - (vas)s Yo€H

Then the multiplier rule states that there exists a unique element

OEH-1 such that f_ satisfies k

.21 T = £) .

7.21) Losss. = (95

Although this is essentially an equation for elements from 2-2’ it

can be shown that _f_ €c” and 0 €¢” . ;

[Note that for the particular situation that (7.12) holds, the only

vectorfunction which satisfies the constraint (7.2) and the boundary

conditions, viz _i = (+s5,0), does satisfy an equation of the form

(7.21). However, then o is not unique: every arbitrary constant will

dol . '

EXTREMALITY PROPERTY. From section 1.5 the following result immediately

" follows:

s(® 90';!1_) b (ESS’ESS) - (G,ES"hﬂ)
L

J(h .h —oh :h )ds>0 for all hEH2 withh .r =0.
—s8 —8§ —8 ~g° -0 —s =8

(o]
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The foregoingresults can be summarized to give the following

THEOREM 1.7.1. If the boundary conditions (7.3) satisfy (7.11) there
exists an infinitely smooth solution T of the principle of least

energy. This solution satisfies the equations

T = (g x)
-8 8 S8 -3 S

=1

r .r
~g =8
for some unique Lagrangemultiplier ¢ € C . Moreover, the non-negativity
result (7.22) holds.

REMARKS 1.7.2.

(i) Concerning the uniqueness of the solution of problem (7.8) (or
(7.16)), we note that at least for some choises of the boundary
conditions there will be at least two solutions : e.g. if |L| < &, and
£, (0) = (®) = (1,0), (X,-7) is a solution of (7.8) if (X,y) is a
solution.

(ii) An alternative description of the foregoing system is possible
by writing .= (cos 8, sin 8) where now 6 € Hl is a scalarfunction
of 8 €{0,2]. Then the constraint (7.2) is satisfied for arbitrary

9 € H], and the principle of least energy leads to the foliowing

constrained extremum problem

2 2
(7.23) inf {%—I 6.2 asloen';0(0) = az02) = E;J 056 ds = L;
[ [s]

»

This formulation is equivalent to (7.8) in the sense that if 6§ is
a solution of (7.23), the solution of (7.8) is given by

s

I(s) = {(aas 9(£), sin 0(£MME.

o
Note that instead of the constraint (7.2), problem (7.23) has two
functional constraints (apart from the boundary conditions), and
the theory as described in section 1.6., may be applied. A somewhat
modified version of (7.23) will be more extensively studied in the
next chapter,
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(iii) The system considered above may be envisaged as a description
of the time-independent states of an elastic line which is able

to move in a plane. With the foregoing results it is an easy matter to
find the governing dynamical equations from Hamiltoms principle. For
shortness we shall only outline the method. (See also chapter 3.)
Consider vectorfunctions r = r(s,t) of s € [0,2] and the time t,

t € [tl’tZ] say, from the B-space V:

V= (z] £(s,.) €B' (£ ,t,) Vs€(0,), £(-,)ER(0,2) VEE(E L)),

1
PR
Functional is defined as the difference of the total kinetic energy

The kinetic energy density is given by s and the action

and potential energy

: t, 2.
- 1 -1
(7.24) A(r) := J de I dsf FPL L, 3 Br-ss°£ss]'
t o

1
(Here B is some material constant and p is the constant mass density).

Then Hamiltons principle states that the actual description of the
dynamical system is such that it is a statiomary point of the
actionfunctional A with respect to the set of elements from V which
satisfy the comstraint (7.2) together with specified boundary
conditions at s = 0, 8 = £ for all t € [tl’tZ] and at t = tl, t = t2
for all s € [0,¢0]. Assuming the existence of a solution i of this
constrained variational ‘problem, the theory of sections 1.3., 1.4.
may be applied to result into:

There exists a wnique function o(s,t) such that the governing

equations for I(s,t) are given by

r = o - .
P (¢ ‘ES)S BESSSS

(7.25)
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CHAPTER 2: DUAL AND INVERSE VARIATIONAL PRINCIPLES.
2.1. INTRODUCTION.

As an important result of the foregoing chapter, we have obtained
in section 1.4 the multiplier rule for constrained extremum problems

of the form

(1.1 P . inf £(u) ,
' T(w)=y,

where £: V+ Rl and '1‘ v > Y.

Actually, the equation that must be satisfied by every solution
of problem ?, i.e. equation 1.(4.7), is well known and is used
extensively in m.iny applications from mathematical physics. In most
casés this equaﬁion will probably have been found with the aid of

the following

RECIPE 2.1.1. Let u be a solution of problem P Then there exists
— * *
some element A € Y sueh that the funetional L, defined by

: * * *
(1.2) L:VxY =+RL , 2Qu,y) = £(u) - <y ,T(u) - yo>
P * R .
has (u,A ) € VXY as stationary point.

-~ % ,
Indeed, the stationmary point {(u,2 ) of the unconstrained

functional £ satisfies (c..f.‘ section 0.5.1.)
~ % R Ak X
(1.3) JL'u(u,)\ Yy =£'() ~T'(@) .» =0
(1.4) 2 (@,07) = T@) ~y_ =0
. y* (U =T -y, =0,
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where l'u :&d 2' % denote the partial derivatives of £ wit@ respect
to u and y respectively, and eq. (1.3) is precisely eq.| 1.(4.7),
whereas (1.4) expresses the fact that U satisfies the constraint.
Hence, provided the conditions of theorem 1.4.3. are satisfied, there

is complete agreement between the multiplier rule and the recipe 2.1.1.

In this chapter we shall investigate the role played by the
multiplier A* and its dependence on the actual minimal point 1
somewhat more extensively. In particular we shall be
interested in the relation between problems of the kind (1.1) and

the unconstrained minimization problems

inf  2(u,y)
u€v

for y* € V* fixed.

Although the results tobe obtained in the following sections
2.2, and 2.3. can be generalized to answer several of these questions,
we shall from now on restrict ourselves to extremum pioblemSVith.
functional constraints (i.e. Y=,f*='RZ,épé T=t:V > R a functional).
This restriction will not only simplify the presentation and the
interpretation of the results, but seems to be also a most interesting

case for many present-day problems fromnon—-linear analysis.

Let f and t be two functionals on the reflexive Banach space V,

and define the functional & (somewhat different from (1.2)) by
{1.5) £: Vx RL »~RL, 2Qu,p) = £Qu) ~ pt(u).

Then, according to the multiplier rule (section 1.6.), if u is a

solution of

(1.6) f;s : inf  £(u) ,
t{u)=p

and t'(u) # 0, T is a stationary point of the functional 2(.,7),

i.e. U satisfies
(1.7 £7(u) = 1 t'(w),
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vhere u is the unique multiplier corresponding to the minimal
point u . . , ;

To investigate when u isan;actual minimal point of £(°,7) and
to study the relation between B and the "corresponding’ multiplier ‘ﬁ,
we shall consider 5 in (1.6) as a parameter. Hence, for given
functionals £ and t, we shall study the fomily of constrained

extremm problems

(1.8) ¢ : inf £(u) , p€RL
P t(u)=p ,
In the same way, regarding u as a parameter, we shall investigate

the family of unconstrained extremum probl ems

(1.9) ﬁ(u : inevf Wu,p) = igvf [£(u) - pt(u)] s HERL.
u u

In section 2.,3. it shall be shown that (1.9) is closely related
to a dual formulation of problems ¥ , which dmplies (among other
things) that for specific values of p the solution of ]; is also

a solution of %u for some u € R .

If 4 is a solution of @ , £ is minimal at @ with respect to
the manifold {u|t(u) = p}. It is interesting to investigate when u
is also an extremal poiht of the functional t on the manifold
{ulf(u) = £(0)}. This will be the subject of section 2.4., where

we compare the solution sets of fp with the solution sets of problems

o, ad@,:

H sup t(u) , s inf - t(u) rE.Q(f).
I £(u)=r % £(u)=r i

As we have seen in section 1.5 (and in subsection 0.5.1.), from
the fact that an element 8 is a solution of an extremum principle,
it follows that the second variation has some positivity properties.
The (sign of the) second variation plays an important r8le in several
applications.We shall try to describe this briefly for a specific

situation. .
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One is sometimes interested in the complete set of stationary points
of the functional 2(.,u), i.e. in the solution set of the operator
equation (1.7). The study of this solution set and its dependence
on p(e.g. the number of solutions and their properties) is the
subject of what is commbnly called bifurcation theory. The reason
for this interest is often that an equation of the form (1.7) is

the equation for the stationary states (i.e. time~independent
solutions)of an evolution equation. For instance, for evolution
equations of the form

v, =f'(w) - uet(w)

{(which are parabolic equations in general) or
- £ -t
LA £ (w) - ut"(w)

(conservative wave equations), time independent solutions-u satisfy
(1.7). The stability (in the sense of Lyapunov) of a particular
stationary state u for such an evolution equation is often
directly related to extremality properties of u for the functional
2(.,6). As follows already from theorem 0.5.3. the second variation

of the functiomal 2(.,6) at u :
Ts(u,piv) = <{£"(u) - u t"(W)}.v,v> for v € V

can play a fundamental rSle in such a stability analysis. This is
even more true if a "principle of linearized stability"™ is known

to hold, in which case merely from the positivity of the second
variation (i.e. s(E,;;v) > 0 for all v €V, v # 0) stability of u
for the evolution equation can be deduced. As the only reason was
to make plausible the importance of the second variationm, we shall
not pursue this subject any further here.[ For an introduction to
general evolution equation and the theory of Lyapunov‘stability see
Zubov [16]. For applications of this theory to parabolic equations,
and to see the r8le played by the second variation of (Lyapunov-)
functionals see the contributions of Diekmann (Chapter 1.) and
Koornwinder (Chapter 5.) in Diekmann & Temme [17]. See alsoc Gelfand
& Fomin [18, chapter 5] for an elementary introduction into the
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relation between the theory of second variation and the conjugate.

point theory for the linearized operator equation].

In the next section we shall deal with some local investigations -
of a more or less heuristic character, which are mainly meant to
illuminate the lines of the following sections. In section 2.5. we
shall apply and demonstrate the derived abstract results to two

specific problems from mathematical physics.

2,2, HEURISTIC CONSIDERATIONS.

Let us start to consider problem .9’13 as the primal problem to be

studied, where § €£(t), such that the manifold ’”ZI_J :={uev|t(u) =

is non-void. As announced, we consider a family of perturbed problems
%, defined in (1.8), where for the first instance, the parameter p

may be thought to lie in a small .neighbourhood .75 of P . For the first

part of this section we assume the following hypothesis to hold.

HYPOTHESIS 2.1.1. There exists a neighbourhood .'7_c Rl of P such
that:

(i) for every p 6.7_ there exists at least one solution of problemj)_.,
(ii) there exists a solutlon branch {U(p) |U(p) is solution of 9 F
P € \75} such that the mapping p -+ U(p) is continuously differentiable.
The derivative of this mapping at p will be denoted by U'(p) and will
be identified with its effect at 1 (thus the mapping U'(p):Rl » V,

a > U'(p)a = a.U'(p) and the element U'(p).l € V are identified

as usual).

(iii) t"(U(p)) # 0 forp €J - .

(iv) £ € c2(V,R1) and t € CE(V,RD) .

With respect to this hypothesis we remark that condition (i) is
satisfied if 7.1.)_C .Q(t) and if f and t satisfy conditions of theorem
1.6.4. (i). Condition (iii) will be satisfied if t'(U(p) # 0 add if
t' is continuous in a neighbourhood of U(E), provided 7_ is taken
sufficiently small. Condition (ii) is satisfied in many prlications

for almost every 5 Eﬂ(t).
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Let us define a function h on 75 by

2.1) h: J->RL, h(p) = inf £(u) .
P t(u)=p

As hypothesis 2.2.1. is assumed to hold, h is continuously

differentiable on 51_) . Differentiating the expressions
h(p) = £U(R)  and W) = b, P €V

with respect to p gives

(2.2} h'(p) = <€'(U(p)), U'(p)>
and
(2.3) 1= <" (U(p), U (p)> . |

By the multiplier rule there exists a number y € RI such that
(2.4) £1(Ulp)) = u t£"(U(p)) ,

where u depends on U(p). Substituting (2.4) into (2.2) and using (2.3)

we find
h'(p) = u (U(p)) .
From this result we obtain the following

PROPOSITION 2.2.2. If hypothesis 2.2.1. 1is satisfied, every solution
of ?p has the same unique multiplier u, which may therefore be
considered as a function of p, and which is related to the function

h(p) by
(2.5) h'(p) = u(p) .

As f and t are assumed to be twice continuously differentiable,
it follows from {(2.4) that u is a Cl-function, and we get by

differentiating (2.4) with respect to p:
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{£"@Wp)) - v "W(EN1. T () = u'(p).t"(U(p))
and with (2.3) we find for the second variation
(2.6)  s{U(P),u(p)su'(p)) := <{£7(U(P)) = ut" (W) }.U (p), 0" (p)>= u'(p).

As U(p) is a solution of 5; we have as extremality property (c.f.

gsection 1.6.)
(2.7 s(U(p),u{p);v) > 0 for every v€V with <t'(U{p)),v> = O.
From these results we immediately obtain the following

PROPOSITION 2.2.3. Assume that hypothesis 2,2.1., 18 satisfied and
write p = w(p) and a = U(p). Then we have:

(1) if u'(p) > 0 then
s(ﬁ,ﬁ;v) > 0 forall vev,

whieh means that u satisfies the necessary conditions to be a
minimal point of the functional #(e,u) = £ - ut;

(i) Zf v'(P) <0 then u is not a minimal point of the functional
2(-,n). In fact, u is a saddle point of %(-,n) in the following
sense: 1(s,u) i8 minimal at u with respect to all curves through u
on the manifold Zﬂﬁ,x(-,ﬁ) is maximal at u with respect to the
curve ufe) =u + ¢ U'(p), ¢ € RL,

In the rest of this section we shall formuiate in a canonical
way an alternative variational formulation for the minimum value
h(p) of problem 5’5 . This alternative principle will be shown to
hold if some local requirements (i.e. for p in some neighbourhcod
of 5) for h{p) are fulfilled. However, this alternative turns out to
be a useful device only if also some global requirements (i.e. for
all p € RL) are satisfied by the function h(p).

The local requirement (which is only necessary to facilitate

the heuristic analysis) is that h is a smooth curve in a neighbourhood
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of E with

(2.9) W' (p) # 0.

Then h is either convex or concave in a neighbourhood of -1; .
HYPOTHESIS 2.2.4., Suppose h is defined for all p in some neighbourhood
75 of p, hE€ (12(55) and strictly egnvex on 75, i.e. W(p) > 0

for all p 675 .

With this hypothesis it is possible to define the Legendre
transform of the function h. If we denote this Legendre transform

3
by h, we have
*
(2.10) h(u) : = p.p - h(p) for u 6'71”: s

where in the right hand side p has to expressed as a function of 1

according to
(2.11) w= h'(p),
and where 3 = h'(p) and

ke }

(2.12) 41; = (8 | p € #5} .

* ok
The Legendre transform of h, to be denoted by h, is analogously

given by
*ok *
(2.13) h(q) = u.q - h(p) for q € .’75
where
* .
(2.14) g = h'(y) .

*k
Moreover, h and h coincide on dﬁ :

sk
(2.15) h(p) = h(p) for p € '75 .
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Now an important observation to reach our goal is to note that
*
h, as given by (2.10), (2.11) and (2.12) can also be described

as

(2.16) *h(w)

sup [u.q - h(qQ)] for uef_LT
qe 5

*k
and h as

(2.17) h(p) = sup [u.p - h(w)] for pe g5

HE m

Substituting (2.16) into (2.17) and using (2.15) we find

(2.18)  h(p) = "h(p) = sup  inf [h(q) + u(p-a)] for p € ¥_ ,
velds aedy 4

valid for arbitrary function h satisfying hypothesis 2.2.4.

Specializing to p = 5 and inserting the variational formulation for

h(p), i.e.

inf_ f(ﬁ) ’
t(u)=p

(2.19) h(p)

there results

(2.20) h(p)

‘sup  inf, inf [f(u)-uq + up ]
u 655 q€ 55 t(u)=q

or equivalently

(2.21) h(p) =  sup inf  [£(u)-ut(u)+upl ,
ved.  uen
H
where
(2.22) Q= {uev | t(u) =q, q€ .’75} .

It is clear that we have obtained in this way an alternative
variational characterization for the value h(p) differing from (2.19),

which we shall call the formal dual problem

(2.23) Wi sup inf [E(w)-u(t(u)-P)]
P pE€EJ-  uen
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By comstruction, the supremm is attained for
(2.24) ¥o= u = h'(p), ’

and if problem .PE has U as a solution, it follows from (2.23)

that u satisfies
(2.25) t(u) = p
and that u is a solution of

(2.26) inf [£(u) - fit(w)]
u€f
(c.f. also theorem 2.3.5.).

Hence, if hypothesis 2.2.4. is satisfied, (2.23) gives a
variational characterization for ., which is the multiplie%:
corresponding to U because of (2.24), and an alternative variational
principle for @, viz (2.26). Moreover, as 4 is an interior peint of

2, U satisfies (c.f. theorem 0.5.2.):

(2.27) £'(u) = ut'(w)

and

(2.28) s(u,u3v) > 0 for all v € V,
{

Note that (2.27) agrees with the multiplier rule for u as a solution
of 'Pﬁ , and (2.28) agrees with property 2.2.3. (i)(as u'(p) = h"(p) >0).

Let us now consider a conmcave function h.
HYPOTHESIS 2.2.5. Suppose h is defined for all p in some neighbourhood
05 of P, h € cz(yﬁ) and h is strictly concave on 55, ig.e. " (p)<0

for all »p €ff-f) .

%
Then the Legendre tramsform h is again given by (2.10), (2.11)

on ﬁﬂ » but instead of (2.16) one has the characterization
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) *
(2.29) h{u) = inf [uq - n(q)l.

€ .
=Y

*k
This results in an expression for h(p):

**h(S) = inf sup inf [£(u) -ut(u) + up 1,
uE .’71-; q€ \75 t{u)=q

which givesrise to the following formal dual problem

(2.30) *?— : inf  sup inf [£() - ue@) -pl .
Poowed a el cwmq A

The infimum being attained at y = {I, the remaining maxi-mini principle

su inf T£(u) ~ Te(u)]
€ - t(u)=
€ V5 )=q _
expresses the saddle point property of u as a stationary point of the

functional L(u)=£f - t, in agreement with property 2.2.3.,(ii).

Concerning the relevance of the foregoing results, one may say
that if it were knowm a‘priori that hypothesis 2.2.4 (or 2.2:5) is
satisfied, the dual formulation (2.23) (2.30 respectively) gives
another characterization for the value h(f)), a variational .
characterization and interpretation for u and, in case h is comvex,

a different variational principle for the constrained minimal solution
of $- . However, if the starting point is an investigation of
problem .‘75 » it will be unknown whether hypothesis 2.2.4. or 2.2.5
is satisfied. Moreover, even if it were known that one of these
hypothesis is fulfilled, and if 7_ and 7— are known (such that @
as defined by (2.22) is known in prlnclple), problems ..P- and *?-
are still constrained extremum problems which, in general, w111 be

as difficult as the original problem PI_J .

Nevertheless, the foregoing treatment may illuminate somewhat
the manipulations in the next section: naively speaking, one gets rid
of the constraints in the formulation *fl-) by defining as dual

formulation

?_* :  sup inf [£(u) - u(t(w) - p)] .
P HWERL  u€V
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By doing so a much simpler dual problem results, but the relation
with the original problem .f% is no longer warranted in advance and
has to be studied in detail. This will be done in the next section,
but using the notion of polar function as defined in section G 6 it
will be clear (by comparing h*(u) with *h(u) and h**(p) with h(p))
that if hypothesis 2.2.4., is satisfied, the dual formulaticn jD

h(p), which in this case

and *jp— are the same provided h**(ﬁ)
requireg h to be subdifferentiable at p. Hereafter it shall be shown
that without any requirement as in hypothesis 2.2.4., subdifferentia-
bility of h at p, together w1th the existence of a solution of P

suffices to guarantee that f’ is a meaningful dual formulation for

£ .

1%

2.3. DUALITY PRINCIPLE.

In this section we shall consider the family of problems
(3.1) $ :  inf  £(u)
P t(uy=p

for all peRl by setting
(3.2) inf f’p =« if p¢ K(v),

and we define

inf j’p if peR(r)

(3.3) h :RIL > RI, hip) =
Cd else

LEMMA 2.3.1. An equivalent formulation of problem »f; 18

(3.4) fp : inf sup [£(u) - u(t(u) - p)]
u u

where here and in the following inf denotes inf and sup denotes sup
u u€ev u u€RL.

PROOF: Immediate from £(u) if t(u) = p

sup [£(u) - u(t(u)=-p)] =
U o if t(w) #p o
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Now we define - guided by the observations from the foregoing

section - a variational problem ‘?p*

%k
DEFINITION 2.3:2.The dual problem .Pp of the primal problem ?p is

defined as

(3.5) Pp* : sup inf [£(u) - u(t(w) - p)].
u u

*
The supremum of prohlem ? will be denoted by sup f and y is

*
said to be a solution of 5 if sup }’- is finite and

(3.6) sup ?5* = inf [£(u) - §(t() - P)].
u

The following lemma relates the polar and. bipolar function of

h to the functional £ - ut and to the dual problem respectively,

- inf [£(u) - pt(uw)]

u %
supf;

LEMMA 2.3.3. )
*k .
h (p)

]

PROOF: By defintion

h*(u) = sup [up - h(p)] = sup sup [ ~£(u) + up ]
P . p t(w=p

sup  sup [-£(u) + yt(w)] = sup [- £(u) + yt(w)] ,
p t(w=p u

the last equality because of the fact that {u€v |t(u)=p, PERL} = V.,

With this result we immediately obtain

h**(p) = sup[ p~h"(u)] = sup inf[£(uw)=u(t(u)-p)] = sup f’p*. 5
u u u

LEMMA 2.3.4. sup j;*i_inf ?p

PROOF As h(p) = inf ﬁ and h (p) sup p , the lemma states that
h (P) < h(p), which is property 0.6.6., (b) Without reference to

this result, it is clear from the following steps:
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inf[£(u)-u(t(u)-p)ls £(u)-u{t{u)-p) YueV VuERL

u
sup inflf(u) - p(t(u)-p)l< suplf(u)-p(t(u)-p)] Wu €V
u u M

sup !;* < inf sup [f(u)=-p(c(u)=-p)] = inf .PP

u H

The following theorem shows that, under the stated conditiouns,
* -
problem PE is a variational characterization for the multiplier u

corresponding to the solution u of fﬁ .

- Cpx
THEOREM 2.3.5. Suppose f’ 5 has a solution, say u, suppose ﬁﬁ has
a solution n and suppose

*
(3.7) inf f-’- = gup P— .
P P
Then u 28 a solution of the unconstrained extremum problem

(3.8) inf [£(u) - ut(w)];
. u

consequently, tf f,t ECz(V,RZ), then u satisfies
(3.9) £1(0) =1t
(3.10) s(u ,u3v) = <(£*(0)-p t"(u).v,v> > 0 for qll v € V.
PROOF: By definition of wo

£r o " P

sup Jo o = inflf(u) - u(t(w) - ml,
u

“and by definition of s

inf f% = £(4) = £(@) - u(t(@ - P) (because
t(@) = B).

From this it follows with (3.7) that u is a solution of (3.8), and

the remaining part of the theorem follows from theorem 0.5.2..
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REMARK 2.3.6, A cyonsequence of this theorem is that if problem F_*
admitsmore than one solution, then t'(u) = 0 for every solution ’
of £ and hence £'(u) = O: every solution of P_ is then a stationary
pomtpof the unconstrained functional f. Furthermore, if u is the
unique solution of P. » every solution of P— has this same value

1 as mul tiplier.

Because of the nice correspondence between solutions of .?1-)

3
and those of Pﬁ as expressed by theorem 2.3.5., we define
DEFINITION 2.3.7. Problem Pp is said to be dual stable if

(i) ?p has a solution

*

(ii) f; has a solution

iii) sup P = inf P_.
4 P

With the next lemma it will be possible to give an equivaient
definition of dual-stability.

*
LEMMA 2.3.8.The soZutwn set of problem ﬁp coineides with the
subdifferential of h at p, .2,

L . * >k
u 28 a solution of j; e« p€3h (p).
PROOF: By definition
% *ok *okk
u€dh (ple=h (p) +h () = wp
Aok

* .
Using property 0.6.6. (c), i.e. h ~ =h , and lemma 2.3.3. we find

*k : *
u€sh (p) e sup Pp = inf[ £ ()=u(t{u)-p)] «=
- u

» - *
"¢= U is a solution of ‘?p . n
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PROPOSITION 2.3.9. Problem f’ is dual-stable if and only if
(i) .59 has a solution,
(ii) h 18 subdifferentiable at p  (3n(p) # @&).

PROOF Suppose P is dual stable. Then sup f = inf _?, i.e.

h (p) = h(p), and from property 0.6.6. (g) it follows thzt

oh(p) = 2)h (p). As ,P has a solution, according to lemma 2.3.8,
ah**(P) #¢ , and thuspeh(p) # § which means that h is subdifferentia-
ble at p. On the other hand, suppose 3h(p) # @. From property 0.6.6.
(e) it then follows that h(p) = h**(p), and comsequently dh(p) = 311**(1)).
Hence sup f = inf P and Bh (p) # ¢ which implies with lemma
2.3.8. that .? has a sclutmn. This completes the proof. o

The aim is now to find a stability—eriterion, i.e.conditicins for the

functionals f and t such that problem .fp is dual-stable. In the

following we shall seek for a stability criterion which gives, for
fixed functionals f and t, the set of values p for which % is stable,
i.e. we shall characterize the dual—stable p-interval.

DEFINITION 2.3.10 The dual-stable p~interval is defined as
ﬁp := {p € RZ| f)p is dual-stable}.

It turns out to be possible to characterize this interval Jp

completely from some knowledge of the family of extremum problems d(u.
DEFINITION 2.3.11. For the class of unconstrained extremum problems

.'xu : inf [£(u) - wt(u)] , u€RL

we define the intervals

4, = {per? | infﬂ'(p>—oo}
and

4, : ~wed |k 40,
where

80



‘Ku : = {ueV | u is a solution of ﬁ’u}.

LEMMA 2.3. 12 7 i8 a simply commected interval of RL, and
~inf .ﬁ’ h (u) i5 a finite, convex function on this tnterval.

PROOF: In fact this lemma is nothing else than property 0.6.6. (a).
To give a direct proof, we shall show that the function k{(y): = inf 7(“
satisfies for arbitrary A,veRZ

kG + (1=0)0) > k) + (-0k(G) for all' 1, 0 < X < 1,
from which the two statements follow. Therefore:

k(ip + (I=x)) = inf [£(u) =~ (g + (1-3)v). t(u)]
u

inf (A[£(u) ~ pt(u)] + (1=)) [é(u) - ve(w) 1}
a 3

|v

inf . [£(u) = pe@)] + inf (1=3) [£(u) - ve(w)]
1 u

Ak(y) + (1) .k(v) , for every 0 < i < 1. o
. Fod
The following lemma characterizes the interval du for an

important class of functionals.

LEMMA 2.3.13. Let £: V» RL be w, l.s c.and coercive on V, and let
t:V + RL be w.c. Then we have 0 ﬁu . Moreover,

(i) £f t e bounded from above and fram below on V, then 9"
(ii) 2f t Zs bounded from above, then ﬂu YA {uerZ| u > 0}
(iid) if t is bounded from below, then J.‘fu > RL = {veRZ| y < O}

PROOF: Note that f-ut is a w.l.s.c. functional on V for every p€R7
(remark 0.2.6.(i)). Hence if f-yt is bounded from below on V then
f-ut attains its infimum: see (proof of) theorem 0.5.3. and remark
0.5.4. Moreover, it follows that

~ .
{ = 711 » {u€RZ| f-ut is coercive omn V},

With this result, together with the coercivity of f on V, the three

81



statements follow. ful
" R
THEOREM 2.3.14. Let [ Eﬂ;. Then f% 18 dual stable for p E{t(u)quKa}.

PROOF: For EQ{t(u)!ueKﬁ} we shall show that J€8h(;) and that fz;has
a solution. The result then follows from proposition 2.3.9. Let

p = t(u), with GGKﬁ. Then (using lemma 2.3.3. in the first equality)

- b () = inflf(e) - Bt(w)] = £@) - Be@) = £63) - 1P .
(44 .

As 5 = t(u), we have by definition of h(;): h(E) ghf(a).
These results together imply that

G = up - £3) < wp - h(p).
On the other hand, by definition of h*(;):

E - J— -
b (u) = sup [up -~ h(p)I1> uwp - h(p).
P
From these results it follows that h(E) = f(a), which means that u
K - - J—
is a solution of .f% s and that h (u) + h(p) = up, which means that
;€3h(§) {c.f. definition 0.6.2), This completes the proof. =

THEOREM 2.3.15. (dual-stability criterion)
The dual-sgtability interval 7is completely characterized by

A
‘.‘};) = {t(u)A! uek , € ffu}.

. A
PROOF. The inclusion 7pc {t(w)] ek ,ued} is an imediate
consequence of definition 2.3.7. and theorem 2.3.5. The reversed
inclusion is the contents of theorem 2.3.14. This completés the

proof. a

The foregoing results show that there is a ome~to-one
correspondence between the solutionsof the constrained extremum

problems {f;}peﬂ' and the solutions of the unconstrained extremum
P

problems (¥} _ 2 . This means that: (i) if u€Rk. , then u is a
quﬂu ju .
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solutlon of f.. and U is a solution of P- where p = t(u) and
(ii) if u is a solutmn of f’ where p€0’ , and if ¥ is a solution
of f' , thenued and u € K. .

2.4, INVERSE EXTREMUM PRINCIPLES.

We start this section with some local investigations. Suppose ueV

satisfies for some }ER]
4.1 £1(0) = At ()
Then, if t'(d3) # 0, & is a regular point of the manifold

U: = {uev| t(u) = (@} ,

\

and @ is a constrained statiomary point of f with respect to z.
Moreover, if A # 0 then £'(8) # 0, and § is a regular point of the

manifold
Fi= {uev | £(u) = £(@)}

and is a constrained stationary point of t with respect to ¥. From

these observations the following result is easily obtained.

PROPOSITION 2.4.1. If £'(G) # 0 and t' (D)4 O then
" {4 78 a constrained stattonary point of f with respect to T
tf and only if
§i is a constratned stationavry point of t with respect toF

Note that if {i satisfies (4.1) and £'(8) # 0, t'(G) # 0, then

the tangent spaces at @ to ¢ and to ¥ coincide:
(4.2)  {VEV |<t'(@),v> = OF=o(t' (B)) =o(£'(8)) = (vEV| <£'(),v> = 0L

From this key observation it follows that some extremality properties

of £ on the manifold 7 at § niay be transferred to extremality proper—
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ties of t on the manifold % at Q:

PROPOSITION 2.4.2. Let fECZ(V,RE), tECZ(V,RZ). Suppose 1 € T satisfies
(4.1) with £'(8) # 0 and t"(8) # 0 Suppose there exists a
neighbourhood ¥ (8) © T of & in T and a constant. ¢ > 0 such that

(4.3) f(u) - £{4) > c.Hu-GI |2 for every u € Mt(ﬁ) c?

(hence § ie a constrained minimum of £ with respect to z). A

Then there exists a neitghbourhood Mf(ﬁ) C:;of gin ¥ and a constant
d > 0 such that )
(i) 2f 2 > 0:

(4.4) t(d@) ~t(u) > d.
(hence G is a constrained maximum of t with respect to ¥ )

(ii) Zf X1 < 0O: ‘

(4.5) tu) - t(@) > d. ||u-a]|? for every u € G

u-t||% for every u €M (8) c¥

(hence G is a constrained minimum of t with respect to F ).

PROOF: Consider points in a neighbourhood of § at :

ELTL" (D).

”~

ule,v) =4 + ev + ¢$(ev) , HVH =1,

<

From lemma 1.3.7. we have
2

[eten) || = 0(e®) fore=~ 0
and hence

Hu-ﬁHz =|lev + ¢(€V)Hz=€2 + 0(53) for e > 0 .
Equation 1.(5.8), specialized to T = t: V = Rl gives

-~ 1 2 on non 2
flu(e,v)) - £f@) = FE< {£"(G) ~at" (@) }.ov,v> + 0o(e”) for e » 0.

From these result, together with (4.3) it follows that for !e|

sufficiently small:

<LEE) - M@ v, ve > 2c 2 YVEME' (@), ||v]] = 1.
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From this we deduce with (4.2):
a<{e"(@) - A LEm@)) v,y v 2 2¢| ;vl‘lz wEME' ().
The results then follow from theorem 1.6.4.(iv). o
With local investigations as described above it is mot possible
- to relate global extrema of f with respect to T to global extrema
of t with respect to ¥ .1 study this relationship we shall consider

three classes of constrained extremum problems.

DEFINITION 2.4.3.

“.6) § : inf £ . hep) :=inf £ , p ().
P t{u)=p ) P

4.7) fr : f(i‘;zr t(u) _s(r):= sup fr , rveﬁ(f).

4.8) @, f(il)-i t(w) a(r):= inf@_ , r €R(D).

Specifically we shall investigate for which values of p the

solutions of Pp can also be obtained from jr or Qr for some reﬂ(f).

PROPOSITION 2.4.4. (i) For every pefR(r) for which fp has a
solution we have s(h(p)) > p.. :

(ii) IfF F has a solution, and if s(h(p)) = pghen the solution sets
of fp and :rh(p) coineide.

PROOF: Let U be a solution of f;, then £(1) = h(p) and t(u) = p.
Then

s(h(p)) = sup t(u) > t(u) = p,
£(u)=h(p)

“which proves (i). Moreover, 'if s(h(p)) = p, then U is clearly a
solution of {h(p)' On the other hand, if § is a solution of :rh(p)’
then

s(h(p)) = t(d) and h(p) = £(0).
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Hence if s(h(p)) = p, then & is a solution of f; This proves (ii).p

THEOREM 2.4.5. Suppose p €R(t) is such that '?P has a solution and
that

(4.9) h(z) > hip) for every ¢ > p,» z ERE).
Then

s{h(p)) = p.

PROOF: The proof goes by comtradiction. Suppose s(h(p)) = p + «
for some o > 0. (because of lemma 2.4.4.(1i) we need not to

investigate the possibility a < 0). Then

sup  t(u) = p +a,
£(u)=h(p)
which means that there exists an element @ € V and £ € RZ with
P<Z <p+a sucht that t(8) = £ and £(8) = h(p). From this it
follows that

h(g) := inf £(u) < £(8) = h(p).
t{u)=g

As ¢ > p this contradicts the assumption (4.9). Hence s(h(p)) = p. O

The following corollaries follow immediately from the

foregoing theorem.

COROLLARY 2.4.6. Suppose p, € Rl is such that f’ has a solution
for every p > P P € .ﬂ(t), and such that h is monotonically
inereasing for p > P> P Ef(t). Thern s(h(p)) = p for every

pefR (v), p> P In other words: in that case the function

s(x) on {n(p) | p > P, = P eR(t)} ie the inverse of the function
hp)on{p | p>p,pe R(I.

COROLLARY 2.4.7. Suppose fp has a solution and suppose p € 3h(p) # B
with u > 0.Then s(h(p)) = p.

In the same way as the foregoing results relate the problems
-g’r to ?p’ it is possible to relate the problems Qr to fp' We
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merely state the results.

. THEOREM 2.4.8. (i) For every p eﬁ(t) for which fp has a solution
we have q(h{p)} < p.

(ii) 17 93 has a solution and if q(h{p)) = p then the solution sets
of ? and Qh(p) coineide.

(iii) Suppose pPE .f(t) 18 such that f has a solm&wn and that

h(z) > h(p) ' fozf every < s r € R(v).

Then q(h(p)) =

(iv) If P, € Rg ig such that f has a solution for every

P< PP € R(t) and such tkat h is monotonically decreasmg for
P < P, then a(h(p)) = p for every p < P> P e Rt): q(x) on
{an(p) | p< P, P € Q(t)} ig8 the 1nvez°se of the function h{p) on
{p[p<P,p€ﬁ(t)} :

) If fp has a solution and if y € 3 h(p) # Bwith u < O then
q(h(p)) = p.

REMARK 2.4.9. Because of the results described in corollary 2.4.6.
and theorem 2.4.8. (iv), we want to call the probls ;f and Q

inverse extremal problems corresponding to .P

REMARK 2.4.10. In the applications of the next section f and t
satisfy the conditions of theorem 1.6.4.(1). Then the existence of
a solution of 5? for every p € R (t) is warranted in advance, but
‘a’r and Qr need hot to have solutions as we shall see below.
Nevertheless, if it 78 known that e.g. Qr has solutions for every
T>r, properties of the function  q(r) can be used to obtain
information about the function h(p) on {q(r) | ¢ > r ke Therefore

it is only necessary to replace the rSle of f and t in theorem 2.4.8.

It is illustrative to consider the variational prinmciples :‘fr
and Qr also from another point of view. To that end we consider

the sets

B, := {u €v | £(u) < T},
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and we compare problems 'fr and Qr with the extremum problems

i : sup t{u) ,
£(u)sr

ér : inf t{u)
f(w=<r

The idea is that the manifold {ul f(u) = r}cV is the boundary of the
set B, which implies that if t is known to have a maximum or minimum
at B rwhich does not lie in the interior then this extremal element

mustrlie on the boundary and hence be a solution of -:fr orQr. To make

any progress in this direction we assume that

f is w,l.s.c. and coercive on V,
t is w.c. on V,

Then f is bounded from below on V and attains its infimum (c.f.
theorem 0.5.4. and remark 0.5.5.). Therefore it is no restriction

to assume that f satisfies
+
£(0) =0, f£(u) >0 VYu€V  (£'(0) =0, R(f) =RL).
Moreover, we have the following

LEMMA 2.4.11. The set Er, for t > 0,78 bounded and weakly
sequentially closed. Consequently, t s bounded from below and above
and attains its maxtmum and minimum at every —ér’ r > 0, say at the

points M and W respeatively.

PROOF: The boundedness of ﬁr follows from the coercivity of f.

Moreover, if u > 4 in V with {un} c Br’ then f(un) < T Vn. As f is
w.l.s.c. we have £(i) < lim inf f(un) % r. Hence § € B which shows
that Br is weakly sequentially closed. The rest of the lemma follows

from theorem 0.5.6. o

Of course it is possible that both the maximal and the minimal
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value of t are attained at interior points of §r . Then we have

t'(Mr) =0 = t'(mr), and problems cgr and :fr need not to have a
solution. Hence if it is known that t has only one statiomarypoint om V,
then at least one of these two extremal points must lieon the

boundary of Br:

COROLLARY 2.4.12 Suppose t(0) = 0 and t'(u) = 0 if and only <if
u = 0. Then, If t takes positive values at every neighbourhood of

u =0 we have

sup t{u) = sup t(u) = t(Mr) and f(Mr) = T,

f<r f=r
Z.e. Mr lies at the boundary of 1—31_ and ﬁr ig a solution of :fr for
every r > 0. Moreover, if for some r > 0, t takes also negative

values at the boundary of Br » then
Q

inf t(u) = t(m) and £(m ) = r,
T T
f<r f=r

i.e. m lies at the boundary of Er ana?mr 18 a solution of qr for
every T >t .

2.5. APPLICATIONS.

In this section we shall show how the abstract results of the
foregoing sections can be applied to two specific problems., For each
‘of these problems, the unconstrained extremum problems % have been
extensively studied in literature and we advantageously uuse the

obtained results for the investigation of the problems f)p

Euler-~buckling.

The first system to be considered deals with the statiomary states
of an elastic line and serves as a model for the buckling of a thin,
inextensible rod. In fact this problem was studied in section 1.7.,
but here we describe the configuration with 8(s), which is the angle

between the tangent to the elastic line and the positive x-axis
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{c.f. remark 1.7.2., (ii). For simplicity we take as boundary

conditians

1

8(0y = 68{8) = 0O,

which means that, taking r(0) = 0, the other endpoint of the line
is no longer restricted to lie on the x-axis. Looking for
configurationswhich have least bending energy for given distance

in x~direction of the endpoints, may be formulated as follows

£
£(o) = + J[ 0% as
° 1
(5.1) §: inf £(8) with for o€m. (0,L).
P t(e)=p 3 °
£(6) = }(l-cos 8)ds
o]

It may be noted in advance that f and t satisfy hypothesis 2.4.4.

Moreover

(5.2) Re) = lo, b))  withp_ = 22,

and

(5.3) t'(8) =sin @ =0 = 6=0 e p=0

From this it follows that f; has a solution for every p € Je(t),
and for p € (O,po) this solution satisfies for some unique u € Rl:

(5.4) £(6) = ut'(8) == 8+ ysin 0= 0.

[Note that although (5.4) is formally an equation in (HL)* = H_l,
every solution of (5.4) is actually a Cé-function], The multiplier
W has a physical interpretation in this case: it is proportional
to the horizontal component of the compressive load necessary to

maintain the rod in the required position. The unconstrained

extremum problems ﬁtu are @
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. £
(5.5) ’ X, : in ers [ 56,
O

2. u(l-cos 6)1,

. A
and from lema 2.3.13 it follows with (5.2) that J = RI.

It is easily seen that
(5.6) foru<O : inf fl(uno ,Kué{O}.

For p > 0 the extremum problems xu are well known in literature.
Considered as a non-linear eigenvalue problem, u > O and fixed, the
solutions of (5.4) were investigated: this problem serves as an
example in almost every introduction to bifurcation theory. Moreover,
the solutiomscan be explicitely expressed in terms of Jacobi elliptic
functioqs(éee e.g. Stakgold [19], Reiss [20] and van der Varst {[21]).

From the available information we emphasize the following results.

PROPOSITION 2.5.1.
(5.7 () for 0 <w < , inf d(u =0and K ={0}, where

po="7 2 1 the first eigenvalue of the linearized
{around 8.= 0) etgenvalue problem corresponding to (5.4),
Z.e. b, *ue =0, 8(0) = 6(2) = 03

(5.8) (ii) for w > , inf ttu < 0 @d R ={ %0},

where 0y 1s a eoluﬁ}an of (5.4) uniquely determined .
(apart from sign) by the fact that it has no zero's in the
interval (0,8). The solutions {eu}u>u1 form the soealled
first bifurcation branch (first buckling modes) and on
this branch t and f are monotone increasing functions
of v, t moming from 0 to P, and £ from 0 to =,

With these results we may apply the theory as developed in

section 2.3. and 2.4.:

COROLLARY 2.5.2. The dual stable imterval of (5.1) <8 given by
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(5.9) , 0p = [o,p,)3

the first bifurcation branch may also be pavameterized with

p € (O,po), and the soiutions of j;, p > 0 are in a one-to-one
correspondence with the solutions of ﬂhﬂ u > 0.  Moreover, these
solutions can also be characterized by

(5.10) 4 : sup  £(8) r>0
£(8)=r ’

and s(r) := sup {; on [0,2) 18 the inverse of the function h(p) on
IO:PO):

(5.11) s(h(p)) = p for pe€ [0,p)

REMARKS 2.5.4. (i) See figures 2.5.1., 2.5.2. and 2.5.3.
(ii) In agreement with (5.6) and (5.7) we have

{5.12) 3h(0) = (-, Ul)s

whereas 8h(p) = { h'(p)} = {u(p)} for p € (0,p_)-

(iii) From the corollary, especially from (5.10), it follows that the
solutions on the first bifurcation branch have also the property that
for given bending energy the distance in x-direction of the endpoints
is as large as possible.

{iv) The problems 42 have no solution for r > 0: the infimum of the
functional t on the set Er = {8 € HL ] £(6) < rl is attained for

every r > 0 at the interior point 8 = 0:

q(x) = inf t(8) = inf t(8) = t(0) =0
£(8)=r £(8)<x

(the second equality follows from property 0.2.8. as £(8) is a nomm

equivalent to the Hl—norm on HL ).
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The first branch in a . Graph of the function h(p);
bifurcation diagram indicated are several varia-
fﬂmm&p_ tional characterizations for

the extremal elements of f

fig. 2.5.3.

Qualitative pictures of the function © for

three different values of U and corresponding

graphs of the buckled rod (with r(0) = 0).

The values of | correspond to values of p with

(a) 0<p<h, (b) %<p<28 = p_, (c) p close to p_ (p<p ).
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As a last example we consider the constrained extremum problems

£
f E(w) =-.li }.uxz dx
o
. . . 1
(5.13) § : inf  f(u)  with . on H_(0,2)
t{u)=p [
t{u) =,| T(u)dx
o
Here T is a C3-fum:tion on R7 with I'{(0) = 0 for which y(u) := d£§u>
satisfies
(i) v(0) =0, v =1

(i1) lim  yv(u)
u|® u

< 0

(111}  y"(W).u < 0 for every u # 0.

To simplify matters we shall consider as a specific example

2 R
(5.14) y{u) = u-u3, t(u) = J[ dx [ -%-uzw -;T ué}.
o

For these functionals f and t hypothesis 2.4.4. is satisfied. The

functional t is bounded from above but not from below

L.

-

(5.15) Ry = (—eo,po) where P, =
For every p € g(t), problem ?p has at least one solutiom, and as
(5.16) €' =0 onH o= u=0 = p=0

(note that u = 0 is an isolated, but not the only, point of the
manifold {u|t(u) = 0], it follows that for p # 0 every solution
satisfies for some unique multiplier p € RZ

(5.17) £ (u) =u t"(u) s Tw L= u(u-u?’).

’

The class of unconstrained extremum problems % is now given by
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. 1 2 1 2 1 4
(5.18) H ¢ inf Idx [E-ux u(i'u 7 u )1,
i u o
It is not difficult to show that
(5.19) inf § = - if u < 0.

From this result, together with lemma 2.3.13 it follows that
Pl
(5.200 4, = lo,p)-

The non-linear eigenvalue problem (5.17) was studied for y > O by
Chafee & Infante [22] and Henry [23], who were interested in the

stability of these solutions for the evolution equation

(5.21) SRR
(See also Ambrosetti & Rabinowitz [24] who give variatiomal
characterizations for every solution of (5.17).

From these references it follows that problem (5.18) has for u > O
the same qualitative properties as described in proposition 2.5.1.
The extremal solutions, to be demoted by U " instead of © e now

satisfy lUulm = max IU (x)] + 1 for u + =, Apart from thls
0<x<g u

aspect, the qualitative behaviour of the first bifurcation branch is
as in figure 2.5.1.[For the specific example under consideration,
i.e. for t given by (5.14), the solutions of (5.17) may again be
expressed in terms of elliptic functions. In fact, problems (5.4)
and (5.17) are known to be related by a non-linear transformation].
Consequently, the same results as desribed in corollary 2.5.3. are
valid for problems j’ given in (5.13) with p > O. Moreover it has
been proved in the gizen references that the solutions Uu on the

first bifurcation branch are stable stationary solutions of (5.21).

For p < O matters are somewhat more compllcated We know in

advance that j? has at least two solutions + UP for every p < 0, and
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that such a solution U satisfies (5.17) for a unique multiplier n{p).
Let us start with some technical results which are not difficult to

prove.

LEMMA 2.5.4. (i) If v € Hé satisfies t(u) = p < 0, then fu!wz > 2.

(ii1)If u 78 a solution of (5.17) for which t(u) = p < 0, then

necessarily w < 0. In particular
(5.22) p<0 = u(p) <0.

(iii) Every solution u of (5.17) satisfies

4

(5.23) < {£"(0) = ut"(@W}.u,u > = 2 u dx

o B T

Consequently, every solution of (5.17ywith y < 0 Zs not @ minimal
point of the functional f-ut on H;. 2 '

In particular, the solutions + UP “of j; with p < Oare saddle points
of the functional f-ut on Hl.

(iv) For the function h(p) we have

(5.24) hip) » = for p+ -
and
(5.25) u{p) + 0 for p » -,

REMARKS 2.5.6. (i) From property (i) above it follows that the
solutions of (5.17) with p < 0 does mot bifurcate from the zero
solution u = Q.

(ii) From (iii) above it can be shown that every solution of (5.17)
with u < 0 is an unstable stationary solution of the evolution

equation (5.21).

Up to now nothing has been said about the continuity of the
function h(p) for p < 0. This is most easily investigated via the
problems Qr. By considering the functional t on the closed balls

ﬁr =fu|fw<rlic H; it can be shown that for the problems
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' Q@ : inf t(w
f£=r

there exists some r, ? 0 such that
(i) Qr has no-solution if 0 < r < LI the infimum of t on Br is
attained at the interior point u = 0.
(ii) Qr has a solution if r > fo, and the function q(r) := inf Qr
for r > r is monotonically decreasing from 0 to -~ and is continuous.
From this last result it follows with theorem 2.4.8 (iii) and remark
2.4.10 that

hiq{r))y = r for r > T

from which we deduce that h(p) is a continuous function of p € (~=,0)
and is monotonically decreasing (in agreement with (5.25) ; see
figure 2.5.4.). Moreover, the solutions of j’p for p < 0 are in a

one~-to-one correspondence with the solutions of Qr, r>r..

REMARK 2.5.7. It has not been found possible to specify the precise

values of T and of u(O-) = 1lim u(p). However it can be shown that
pto

these numbers satisfy the following estimates

2

f£< ro < w
N 2
=e<u®@) <-u, , where y = ;2..
A .
h(p} . fig. 2.5.4,
: Graph of the function h{p), ~=<p<p,
| The two branehes correspond to ex~
: tremal elements of
® : ,ﬁ,‘praU<P<po
: () {supdf , 0 <r<e
! R e
(a l, inf Ku, M, <p<w
i
%o : {inf 'Pp’ -0 < p <0
! (5) .
‘ me‘r ro<r<oo
i
1 ]
1 -
Y P, P
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BART II: VARTATIONAL DYNAMICAL SYSTEMS

CHAPTER 3: CLASSICAL MECHANICS OF CONTINUOUS SYSTEMS

3.1. INTRODUCTION.

This chapter starts with a summary of some notions which will be
used frequently in the rest of this thesis. In section 3.2. we define
Lagrangian and Hamiltonian systems. The variational character of these
definitions allows one to perform the "Legendre-transformation” in a.
more systematic way than is usually done. Moreover, this transforma-
tion then leads in a natural way to a so called modified action prin—
ciple. This variation&l'principle will greatly simplify . the presenta-
tions of the results of section 3.5. In sections 3.3 and 3.4 we recall
some terminology and results connected with canonical transformations
and invariant integrals.

In section 3.5 we deal shortly with the problem how one can find
variational principles describing the evolution of a continuum in the
Eulerian setting. This has been a long standing difficulty until Lin
{25] proposed a correct variational principle. However, this variatio=-
nal principle (és most others) was derived in an ad hoc way and,
despite a lot of literature on this subject, it remained somewhat
) mvsterioﬁs. We shall derive a variational principle for general evolu-
tionary continua from first principles. This principle is then clearly
understood and all known variational principles for fluid mechanics
can be derived from it. We shall specialize this result to describe
the motion of irrotational flow of a layer of incompressible fluid un-
der the influence of gravity. The final result is a Hamiltonian system
describing the surface waves. This description shall be the basis of

the presentation in chapter 6.
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3.2. LAGRANGIAN AND HAMILTONIAN SYSTEMS.

Let us start to recall some notions from Classical Mechanics for
a system with a finite number (say n) of degrees of freedom. If Q de-
notes the configuration space of the dynamical system, them q(t) € Q
represents one and only one state of the system and q is called (a
set of) gemeralized coordinates. In the simplest case Q = RI™. The
evolution of the system can be described as a trajectory in Q, i.e.

a mapping from an interval of RI into Q ¢ t = g{t). If the system
under consideration is a Lagrangian system, the Lagrangian I is a
function on the tangent bundle of Q, i.e. 71: (q,v) » 1(q,v) € RI,
where ¢ € Q and v is an element from the tangent space to Q at q.

If Q = Rln, the tangent space to Q is independent of the point q € Q
and may be identified with RI®. If we denote this tangent space by V
(the elements of which can be called generalized velocities), 1 is

a function defined on Q x V. In many classical texts a typical ele~
ment of V is denoted by 4, and one writes indifferently qu,d) for
the value of 7 at the arbitrary point q€Q, § € V. and also for the
value at t € Rl of the function Z{q(t),,th(t)) associated to a smooth
trajectory t » q(t). To prevent this ambiguity we have introduced the
velocity space V.

Many Lagrangian systems from Classical Mechanics can also be des~
cribed with a Hamlltonlan h which is then a function on the cotangent
bundel of Q, i.e. h: Q¢ x V + RL, A typical element from V is usually
denoted by p (the momentum variable): h{q,p) € Rl. If @ = rRL® , then
V can again be identified with RZ". When both the Lagrangian and the
Hamiltonian formulation are valid for a specific system, these formu-
lations are related by a Legendre transformation. But the possibility
to apply this transformation depends on convexity properties of 1 (or
h), which properties have to be investigated in each case. Therefore,
in the following we shall independently define the notion of a La~
grangian system and that of a Hamiltonian system and investigate
thereafter the possible relationship. ‘

For continuous systems the configuration manifold Q lis infinitely
dimensional and is some function space consisting of functions ¢ de-
fined on some region < R™ in mdimensional Euclidian space (m - 1
in the following except in section 3.5 where m = 3). The state of
the system at time t will be denoted by q(t) € Q and its value at
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x € @ by q(x,t). We have used the term configuration manifold because
even in the simplest examples Q is often not a linear space: it may be
a set of functions satisfying the same prescribed value at the boun~
dary 30 of Q. ;hen we suppose that
(2.1 Q=q+Q,
where q is some function defined on { satisfying the boundary condi-
tions and Qa is a linear space of functions with compact support in Q.
The velocity space V is also some function space of functions v de—
fined on Q. Concerning this velocity space we make the following re-
mark, Let q : t - q(t) define a path on the configuration manifold.
This mapping is differentiable (in the sense of Frechet, c.f. section
0.3) at t if there exists an element th(f) € @ such that
[la(t+e) - qE) = e tq(t)]]Q o(e) for e+ o

(the derivative of q at t, i.e. the corntinuous linear mapping

q '(t) : RL ~ Q has been identified with the element

3tq(§) €Q: q' (D) = E-th(z)). When considering only such paths,

the velocity space might be identified with Q- However, for many con-
tinuous systems the trajectories are not differentisble in this sense
(q'(t) is not a bounded mapping into Q, i.e. th(z) ¢ Q). Nevertheless,
in general Q is continuously embedded in a space V such that an ele-
ment th(z) € V can be defined for which

||aCt+e) - q(E) - z-atq(E){ lv = o(e) for € -+ o.

Then, if atq(t) € V\Q this is a generalization of differentiability
which must be allowed to make any progress.

LAGRANGIAN SYSTEMS.

DEFINITION 3.2.1. A Lagrangian system (1,Q,V) is a dynamical system
with configuration manifold Q, veloczty gpace V, with Q continuously
embedded in V, and Lagrangian 1 € C (Q x V,RZ) such that the evolution
of the system can be described with the following action primciple:

if § € CO(I,Q) with ata € CO(I,V) represents an actual evolution of
the system over the time-interval I = [to,tll <RI, then § is a

stationary point of the action functioral
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(2.2) a@ = | ae 2ate), 3.a(e)
I

on the set

2.3 {q €c%(1,0]3,q9 € C°(1,M3a(t,) = 4t ), alt,) = (e

From the action principle we can find the equations of motion
for the dynamical system along familiar lines, Therefore we suppose
that the configuration manifold Q can be writtem as in (2.1). The
functional derivatives of’Z>with respect to ¢ and v at the point (§,
¥) € Q x V are denoted by %é-(ﬁ,ﬁ) and %— (4,¥) respectively, and we
have

1(G+E, 940)-1(q,9) = J dx[sz(q,v) E*—g—--(“,\‘:)'w]m([ el ]+ 1wl ),

mraeq,wemlMH G,Hﬂl*m

Here g—(q,v) must be interpreted as an element from Q (the dual

space of Q with the Lz innerproduct as duality map), and 3~(q,v) € V .
The derlvatlve of the action functiomal A at § with respect to

an element £ from the space of admissible variations
(2.4) {£ € €°(1,Q) 3,8 € c°(1,V) 5 E(t ) = £(t)) = 0}

is easily seen to be
n 87 . a o 87 ,n ~
'.= v |
AT(G) € J dt J &x[gE(QCt).atQ(t))Eft) * 6v(Q(t).3tQ(t))3t£(E)],
which may be %rittgn after partial integration with respect to t of
the last term (using £(to) = E(tl) = 0 which causes the integrated
term to vanish)
SLeacey. 5 0695 SLea () 5. 3CEN]-
p@ee | ae | axtidkao,s,30-0, 3Ka0 0 36N-£©)-
From the requi%emen% that A'(§)+E = 0 for every £ from the set of ad-

migsible variations (2.4) we deduce from the action principle:

PROPOSITION 3.2.2., If §(t) represents an actual evolution of a

~

Lagrangian asystem (1,Q,V), then g eatisfies the following Euler—

Lagrange equation:

@5 agham,3am) - $Ka(0),3a() = 0,
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HAMILTONIAN SYSTEMS.

DEFINITION 3.2.3. A Hamiltonilan system (h,Q,P) is a dynamical system
with configuration manifold Q, momentum space P, with Q continuously
embedded in P*, and Hamiltonian. h € €1¢Q x P,R1) such that the evolu—
tion of the system can be described with the following canonical ac-
tion prineiple: if § € CO(I,Q) with St& € C°(I,P*) represents an actu-
al evolution of the system over the time-interval I = [to,tl] < RZ,
then to § there corresponds an element § € CO(I,P) such that (§,P) is
a stationary point of the canonical aetion fumetional

(2.6) Ca(q,p) = I dt [<p,d,9> - h(q,p)]
I
on the set

{(a,p) € C°(1,Qx¢°(1,P)[2,q € CO(L,P ) 5a (e Mt ), ale ) =GCe )1

Denoting the functional derivatives of h with respect to q and p
* *
at the point (§,B) by g%(ﬁ,ﬁ) (€ QO) and g%(ﬁ,ﬁ) (E P ) respectively,

we obtain along familiar lines:

PROPOSITION 3.2.4 IF (§(t),B(t)) represents an actual evolution of a
Hamiltonian eystem (h,Q,P), then (§,P) satisfy the set of Hamilton
equations

@) 3,8 = $& @®),p(0) , 3p() = - $o (a(0),p(D)).

Just as the stationary points of (2.2), i.e. the solutions
q{t) of (2.5), define trajectories t » q(t) in the configuration
manifold Q, the stationary points of (2.6), i.e. the solutions q(t),
V p(t) of (2.7}, define a mapping in the phase space Q x P ¢ t v (q(t),
p(t))}. Such a mapping compietely characterizes the evolution of the
system and is called a Hamilton flow for the Hamiltoniam h or shortly
Hamilton flow h., The variables (q,p) € Q x P are said to be a pair of

canonically conjugate variables and p is the momentum variable,
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RELATION BETWEEN LAGRANGIAN AND HAMILTONIAN SYSTEMS.

We shall now show Lhat a large class of Lagrangian systems are
Hamiltonian systems (over the same configuration manifold Q) and con-
versely. This is done by constructing for given I the Hamiltonian h
(and for given h the Lagrangian I) via a generalized Legendre-trans-
formation and showing that the action principle goes over in the ca-
nonical action principle (and conversely). The generalized Legendre
transform shall be described with the aid of polar functionals as
introduced in section 0.6.

Starting with a Lagrangian system (Z,Q,V) define the functional

Zq : V- RZ, Zq(v) i = 1{q,v) Vg€ Q, veEV.

HYPOTHESIS 3.2.5. For each q € Q the functional Eq defined on the
reflexive B-space V is siriectly convex, i.e.
Zq(lv+(bﬂ)w)<k°Zq(v)+(1—k)'Zq(w) YhE (0,1), Yv,wE V, v # w,
*

and the functional derivative maps V onto V :

81
RGDH -V

Assuming this hypothesis to hold, the polar- and bipolar functional

of 1 s
q » *
7(p) + =sup [ap,v- 1 (V)] forp€ VvV,
1 vEV -1
*k :
Eq (v) = sup lep,vs = I¥(p)] forvev,
pEV 1

can be shown to have the following properties (c.f. section 0.6)
(i) for arbitrary p € V* the functional v » <p,v> = 1 (v) has exactly
one stationary point which is the solution of ¢
P=ﬁ(V)-
Therefore, 1: is defined on all of V and we may write

(2.8) 2*(p) = stat [<p,v> - I () ].
1 VEV 4
*
Moreover, 1* : V -+ Rl is again a strictly convex functional and
*
e CAR AR
» v . - *
(ii) for arbitrary v € V the functional p v <p,v> - Iq(P} has exactly

one stationary point which is the solution of

sik
v @)

104



Therefore we have
(2.9) 1¥*(v) = gtat , [<p,v> - 1¥(p)].
4 pevV !
Moreover, Za* agrees with Zq on V:
2.10 I*¥* = 7 onV
( ) a q
From these observations it follows that if we define

.11 h:Qzx V* + Rl, h(q,p) : = Z;(p) q€Q, p € V*,

we have according to (2.8), (2.9) and (2.10) the relations

(2.12) h{q,p) = stat [<p,v> - Z{(q,w}],
vEV
(2.13) 1{q,v) = stat , [<p,v> - h(q,p)].

pEV

Substituting the characterization (2.13) into the action functional
(2.2) we obtain a variational principle for the functional

CA(gq,p) = j dt [<P93tq> - h(q,p}],

. .1 . e s . .
which leads to the canonical action principle for the Hamiltonian

*
system (h,Q,V ). Hence

THEOREM 3.2.6. If the Lagrangian system (1,Q,V) satisfies hypothesis
3.2.5 , 2t 18 a Hamiltonian system (h,Q,V*) where h : Q x V* + Rl

18 defined by (2.11).

Consequently, the Euler-Lagrange equation (2.5) and Hamilton equations

(2.7) are equivalent.

Starting with a Hamiltonian system (h,Q,P) define the functional
hq : P> R hq(p) : =h(q,p) ¢ €Q, p € P.

HYPOTHESIS 3.2,7. For each q € Q the functional hq defined on the

reflexive B-space P is strictly convex and has

Je(ép ) =P.
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*
In the same way as above we have that h: € CI(Q x P ,RI) is

strictly convex and that h:* = hq on P. Hence, defining
* *
2.14) 71:QxP »RL , 1(g,v) ¢ = h;(v) qE€EQ, veEP,

we have once again the relations (2.12) and (2.13). Substitutihg the
characterization (2.12) into the canonical action functional (2.6)

we obtain - a: variational principle for the functional

(2.15) MA(q,v,p) = } dt [<p,3tq - >+ 1{q,v) 1.

I
This functional will be called the modified action fumetional; taking
stationary points of this functional on the set
(@, v, P)EC° (10T CE, P )xc” (1,2)[5,9€C (T2 )5 (e )= (e, ) sa e )= (e )
will be called the modified action principle, and tﬁe'stationary

points are easily seen to satisfy the equations
81 _
atp TS'(I (q,v) = 0,

(2.16) 8.a-v=0 .

p= %% (q,v) .

The modified action principle is clearly equivalent to the constrained

variational principle

2.17) stat f dt 1{(q,v) subject to the comstraint th = v,
qv 3

(c.f. chapter 1 and recipe 2,1.1) and the variable p in (2.15), which
equals the momentum canonically conjugate to q for stationary points,
plays the rBle of a Lagrange multiplier. On the other hand, elimina-
ting v explicitely in the variational principle (2.17) gives precisely
the action principle for the action functional (2.2). Hence the modi-
fied action principle is equivalent to the action principle and we

have obtained

THEOREM 3.2.8. Suppose the Hamiltonian syetem (b,Q,P) satisfiee hypo—
*
thesis 3.2.7. Then it is a Lagrangian system (1,Q,P ) where Z:QxP*+RZ
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118 defined by - (2.13). Consequently, the Euler-Lagrange equation
(2.5) and Hamilton equatioms (2.7) are equivalent.

3.3. CANONICAL TRANSFORMATIONS.

In this section we recall some results from the theory of canoni-
cal transformations. In chépter 5 we shall consider an important class
of transformations on phase space which are not canonical.

Let Q x P be the phase space of some Hamiltonian system.. We

shall investigate differentiable transformations

(3.1 QxP 2 (q,p) ~ (4,p) €Q x P.

A transformation of this kind will be called regular if locally it is
a one~to-one mapping (with the implicit function theorem this means
that the first derivative of the mapping (3.1) must be boundedlyin-—

vertible at every point).
DEFINITION 3.3.1. A regular transformation (3.1) is said to be a

(time~independent) canonical transformation if there exists a functio-
nal £ € CI(Q x Q, RI) such that

(3.2) <p,3tq> = <p,3tq> + Btf(q,q)

for arbitrary flow (q(t),p(t)) in phase space Q x P. The functional
f is called the generating funciional of the canonical transformation.

REMARK 3.3.2, It is easily seen that .if for f € C](Q % Q,R1) the

transformation given by

(3.3) p= %f; (4,9), P = = %% (9,9)

defines a regular transformatiom, it is a canonical tramsformation
which has f as generating functional.

This explains.the nake generating functional.

If (h,Q,P) is a Hamiltonian system, define the functional
h : Q x P> Rl under the transformation (3.1) by
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(3.4) h(q,p) : = h(q(3,p),p(T,P))

Then, if (3.2) is satisfied, we have

CA(4,p) = TA(q,p) + £(q(t;),alt))) - £(alt ),alt ),

where tl
CA(q,p) = J dt [<p,d q> - h(q,p)]
t0
3
B@D - [ 4 15,0, - R@DI
t

As in the canonical action principle variations of the canonical ac-
tion functional have to be considered on the set of coordinate func-—
tions satisfying the same values at the end points of the considered

time interval, we immediately obtain

PROPOSITION 3.3.3. Under a canonical transformation (3.1) any Hamil-
tonian system (h,Q,P) transforms into a Hamiltonian system (ﬁ,a,ﬁ)
where h is given by (3.4). Consequently, the class of Hamilton's

equations is invariant under a ecanonical transformationm.

REMARK 3.3.4. As was shown in the foregoing section, if h satisfies
some convexity conditions then (h,Q,P) is a Lagrangian system
(Z,Q,P*). Under a canonical transformation (h,Q,P) transforms into a
Hamiltonian system (ﬁ,a,ﬁ). However, in general there is no evidence
at all that h satisfies the convexity condition. Thefefore, (h,Q,P)
needs not to be a Lagrangian system over 6 X F*. As an example, let
the generating functional be given by

£(4,9) = <q,9>.
This functional defines the simple canonical transformation
q¢:=p,p=-q¢ @=P,P=0q.
Then the convexity of ﬁ(&,-) : P> RL for fixed a € 6 depends on the
convexity of h(+,p) : Q + Rl for fixed p € P.

3.4 CONSERVED DENSITIES AND INVARIANT INTEGRALS.
In this section we consider Hamiltonian systems (h,Q,P) where

Q and P consist of functions definéd over some region Q « rZ",
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Before stating the actual definition and results of this section, we
have to make some precautions because several expressions that follow
will not be defined on (arbitrary flows in) QxP. These difficulties
stem from the fact that for an arbitrary trajectory in QxP, say
I3t (q(t),p(t)) € QxP, the expression (th(t%ﬁtp(t)) needs not to
be an element of QxP (compare with the remarks made in section 3.2).

Therefore we define:

DEFINITON 3.4.1. A trajectory I 3 t» (q(t),p(t)) € QxP is called a
smooth tndjectory in QxP if (atq(t),atp(t)) € QxP for every t € I,

As a consequence of this definition, for arbitrary functional
q € Cl(QxP,Rl), the expression

4.1 Bts(q(t),p(t))= <%§(q(t)',p(t)),3tq(t)> + <%§-(q(t),p(t)),3t1>(t)>

is well defined only for smooth trajectories.
In general, solutions of Hamiltons equations

2,4 = & (a,p) € P¥

3.p = - %—;- (q,p) € Q¥

does not define a smooth trajectory in QxP (as Q < P* and thus P « Q¥%,
but generally Q # P*), Therefore we say that the evolution of the sys~
tem is smooth if it is described by a smooth solution of Hamiltons e~
quations, i.e. by a solution which defines a smooth trajectory in QxP.
In many practical situations for which there exist smooth evolutions,
this may be explained as follows . For given hamiltonian h de-
fine the subset § x Pc @ x P by

(4.2) §xP :={(qp) €EQx Plg—g(q.p) € P, %—% (g.p) € Q}.

Then it is easily seen that if there exists a solution of Hamiltons
equations which is a trajectory in §xP, thisisa smooth trajectory in

QxP. This result may also be stated im the following way.

PROPOSITION 3.4.2. Any smooth evolution (§,3) € €°(I,8xP) of a Hamil-
tontan system (h,Q,P) <8 a etationary point of thé canonical action
funetional CA{(q,p) on the set

(4.3) {(q,p) € C°(L,Q x P)|3,q € C°(L,P%)3q(t )=q(c ) ,ale )=a(e )}

A similar difficulty is encountered if one wants to define the

Poisson bracket as
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(4.4) {f,g}(q,p):= (q.p) ﬁ(q.p)> - <—-(q,p) ﬁ(q.p»

For arbitrary functionals f,g € C (Q x P,R.), the right hand side will
not be defined on all of Q x P. To circumyent this difficulty one

may consider this expression only on a subset of Q x P. Therefore, for
given subset § x P =« Q x P (for instance implicitely defined by (4.2)),
put

§f &f

4.5) @ x B):={f € c"(Q x P,RL)|( ,3_)1 ; cP x Q).
) . X

Then, {,} is neatly defined on elements of this class of functiomals:

the Poisson bracket

€4.6) L Fl @) xF @ x Py ~F0@ x B

is an antisymmetric, bilinear mapping.
Moreover, it is well known that the Poissonbracket satisfies Jacobi's

relation:

(4.7 {{£,g},k} + {{k,£},g} + {{g,k},€} =0 VE,g,k € F2(d x ).

After these precautions we come to the main ideas of this section.

DEFINITION 3.4.3. An operator E defined on phase space Q x P is said
to be a congerved density for the Hamilton flow h if a correspondmg

n-component flux vector F can be found such that
(4.8 3, E(q,p) + div E(q,p] = 0

for every smooth solution of Hamilton's equations. An expression like
(4.8) is called a locdl eonservation law. Upon integrating (4.8) over
the domain @ (assuming the integrals to exist] there results a global

conservation law:

(4.9) 3, J E(q,p] dx + I div ¥ dx = 0
2 2

or

4.10Y at I E(q,p) dx + I Fen dx =0
2 50

where 3Q denotes the boundary of the 4omain Q and n the outward poin-
RZn and ¥ +~ 0 for

ting unit normal at 3Q. In particular, if
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Ix[ + w for every (q,p) € Q x P, we arrive at an invariant integral:
a functionale € Cl(Q % P,R1) is called an imvariant functional for

the Hamilton flow h if
.11) ‘ Bt e(q,p) =0

for every smooth solution of Hamilton's equationms.

For arbitrary functicnal g € CI(Q x P,RL) we have (4.1), which

for smooth solutions of Hamiltons equations results into

8 §h 8 Sh

(4.12)  3,8(a,p) = <GE(@,p), (asR)> - <5B (a,0), gg(a,p)>

= {g,h} (q,p),
where we have used the definition of Poisson bracket (4.4). Consequent-
ly
PROPOSITION 3.4.4. A functional g € Cl(QxP,RZ) i an invariant fuctio~
nal for the Hamilton flow h if and only if
Gan {g,Ai} =0 onl§x®

Moreover, g 18 an invariant functional for the Hamilton flow h if and
only 1f h 1g an invariant functional for the Hamilton flow g.
With these results, it follows with Jacobi's relation (4.7) that

if f and g are invariant integrals for a Hamilton flow h, then the

same is true for their Poisson bracket {f,g}.

EXAMPLES 3.4.5.

(i) For a Hamiltonian system (h,Q,P), the functional h itself is an
invariant integral. It is usually called the energy as in many systems
from classical mechanics it can be interpreted as such.

(ii) Suppose @ = R7 and suppose that h does not depend explicitely on
x € RL. Then b istranalational invariant ,which means that for all

£ € RY

(4.14) h(T g, T_p) = h(q,p) Vq €Q Vp€ P,

where the shift operator TE is defined by Tsu(x) : = u(x + g). Taking

the limit for € + 0 in (4. 14) formally gives

h
(4.15) <%~;{- (q,p), 39> + <§% (q,p}, ap> =0

(Note that this expression is again only defined on a subset of 0 x P)
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With this result it is not difficult to verify that the momentum

functional
(4.16) n{q,p) : = <p,3d q>

is an invariant functionmal for any translationally invariant Hamilton

flow h.
3.5, VARIATIONAL PRINCIPLES FOR FLUID DYNAMICS.

To demonstrate the foregoing theory we shall summarize in this
section some results from a forthcoming paper [26]. The aim of that
paper is to clarify and unify known variational principles (var.pr.'s)
for continuous systems (in particular from fluid dynamics) described -
in the Eulerian setting.‘The main tools to that end are (i) the fact
that in the Lagrangian setting a Lagrangian for such systéms is usval~-
1y relatively easy to find by a direct generalization of éhe theory
for systems consisting of a finite number of degrees of freedom and
(ii) the fact that the transition from the Lagrangian setting to an
Eulerian description can be performed in the variational formulation.
This last observation was already present in the work of Broer &
Kobussen [27] {(c.f. also Kobussen [28]) who described thejtransition
as a canonical transformation. However, starting with a Lagrangian,
it is somewhat easier to describe this transition as a transformation
of the coordinate functions. Especially when the modified action
functional is used the necessary work to be done is minimal and the
resulting expression are very transparent. Starting with a Lagrangian
for arbitrary conservative continua in the Lagrangian setting, the
modified action principle in the Eulerian description then turns out
to be the basic variational principle. This var.pr. is in fact closely
related to a var.pr. proposed by Lin [25] (See also Serrin [29] who
announced this result). Restricting to specific systems or inserting
certain a-priori potential representations for the Eulerian velocity
(such as Clebsch representation) leads to the var.pr.'s known in 1i-
terature. Moreover, by investigating the canonical transformation
more closely it becomes possible to describe free surface problems
too. Because of its relevance for chapter & we shall show here how

this procedure may lead to a var.pr. for surface waves over a layer
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of incompressible fluid.

In the Lagrangian setting the evolution of a continuous system
is described with the time t and the initial position of the conti-
nuum as independent variables. To describe the position of the system
in space, we use a fixed Cartesian coordinate system with base vec-
‘tors c., i= 1,2,3, which coincide with the reciprocal (dual) base

*

i . . :

. vectors ¢, and consider wectors with respect to these bases
i i i .

x=x ¢, =x,¢ , x5 = x, i=1,2,3
= —i i— i
(Here and in the following the summation convention is used.)
If the continuumoccupies a region z at t = 0, the position of the
continuum at subsequent times can be described with a time-dependent

operator (the evolution operator)
(5.1) X(t) = ]+ (e,

where Q(t) is the region of space occupied by the continuum at time t.
If £ is a typical element from Z, the effect X(t)«f denotes the po~
sition at time t of the element which was originally at position §
(the "particle" characteri§ed by £) and is usually written as
x(Et) = % (E,they.

By definition X(0) = Id(identity map), thus x(£,0) = £ and Q(0) = Z.

If the initial density is pe(g), assumed to be positive,‘a di-
rect generalization of a system comsisting of a finite number of

particles leads one to consider the expression
(5.2) 16l = [ &8 b oty - VG

as the Lagrangian of a wide class of continuous systems. Here V de~
notes the potential energy functional which needs not to be specified
at this moment. Taking the action principle as described in section
3.2. to be valid for such continuous systems described in the Lagran—
gian setting, the equations of motion can be found from the action

functional
(5.3) AGEY) = I dat z(x‘,Etxl),
I
where gt“.gc » and 5tx1 are the components of the “particle’-
£ fixed
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velocity. Instead of working with this formulation, we prefer to use
the modifiéd action functional, which shall be written as (for conve-

nience we write the multiplier as -poki):

(5.4) MAGx;,vT0h) = ] de [ ] d%p (DA (v" - B x)+2(xt,v )],
I
With this formulation we have completely described the system in the

Lagrangian setting.

In the Eulerian setting the evolution of the systems is descri-
bed with the time t and the position of the continuum at time t as
independent variables,

Assuming the existence of the inverse of the mapping X(t)
: ~1
(5.3) 1 X (t) : ) ~ §

we write £ = £(x,t) for the element with position §‘an time t which
had initial position £. With this mapping it is posible to defime with
every field variable in the Lagrangian setting a field variable in

the Eulerian setting and conversely. Denoting such corresponding va~
riables with the same symbol gives no difficulties provided we dis-
tinguish clearly between differentiation with respect to components

of x and with respect to components of E,. Therefore we denote the

components of £ by Ea, a=1,2,3 and write

£, =3—fi-xand £, =L,
9%’ BE

In partlcular, the Jacobian matrices of the ttansformatlon X({t) and
its inverse X (t) have elements which are denoted by x s and E '

respectively and as these matrices are each others inverse we have

i b b i a i
(5.6) X sa‘g si = (Sa s X ’a.g’j = 65

where 82 ané;ﬁ; are Kronecker symbols. The mass-density p(x,t), im-
plicitely defined by p(x;t)d®x = po(g)dsg, can be written with the

determinant of a Jacoblan matrix as

5.7) p(x,t) = o (§) +der [E5.].
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In the Eulerian setting the time derivative is denoted by

3, 1 3= é_, . Differentiating the identity xl(g(x,t),t) = x*
t t dt . ATt

. x fixed

with respect to t gives

= i i
(5.8) ; at X+, atg

a=0

" [Defining basevectors e, as the tangent vectors to the parameter-—

1 »
es: e = X, C. 5.8 be written
curv e, sq &0 (5.8) may as

= -3 £
(5.9) 3.x = -3 Eee .
. . a .
This expression shows that -atg are the components with respect to

e, of the Eulerian velocity V(X,t):

(5.10) vix,t) = St éﬁﬁkt)‘é = E(x,t)]'

To describe the evolution of the continuum in the Eulerian setting,
we transform the modified action principle (5.4) into an equivalent
var.pr. in the Eulerian description. Therefore we note that the
Lagrangian as given by (5.2) can be considered as a functional in

the Eulerian setting:

R T L A L T I AR GO LEICR
Q)
where ﬁ(ga) denotes the transformed potential energy functional.

Moreover, using (5.6) and (5.8) we also have

3 Ity i - 3 i i. a ‘
< : e ..,
- 3 a i,a j
= f- d°x pxj(atg +v g,i)g,a.
Qe
Writing Aa = Aj xga (Aa are the components of the vector X = Aig}
with respect to the basevectors gé, where g? is the base reciprocal
b b ‘s .
-~ (dual) to the system{ga, thus ece = Ga), the modified action func-

tional is seen to be equivalent to
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(513 WE* v - { ae | @ er,02%+ Vel + 1)
()

where
- : i -
Gan TEvh = [ ax bt - Fe?).
V a(e) a 1
Ip this var.pr. the variables ¢ ,v' and A, are congsidered as indepen-

dent variables, and it is of the form of a modified action principle
in the Eulerian setting. With respect to this fundamental var.pr.

some remarks can be made.

REMARKS3.5.1.

(i) The action functional corresponding to (5.13) reads

3

(5.15) AE = [ ae 76, -5, 0,8
I

This result is of course also obtained if the original actﬁon func—-

tional (5.3) is expressed in the Eulerian setting with the:aid of

(5.8). ;

(ii) By its nature, the modified action prinmciple (5.13)_expresses

the fact that when looking for stationary points of

(5.16) j de 7¢e,vh,
I

the variables v' have to satisfy the constraints

2. =0,

a
(5.17) atg * Vg,

or equivalently . .

o ad et .
Hence these constraints explicitely express the fact that v' has to
be considered as the components of the Eulerian velocity in (5.16).
This interpretation completely clarifies the constraints asrproposed
by Lin.

(iii) If we write

(5.18) P, 1 = =p Ai’ P, =% pka,
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the above derived results show that

(5.19) $PEp B x = [ % 3,052
)
From this it.fsllows with the theory of section 3.3. that the
transformation (xi,pi) - (ga,Ea) is a eanonieal transformation
(with vanishing generating functional). This transformation has been

" described in a somewhat different way by Broer & Kobussen [27].

Resuming the foregoing results we can say that (5.13), (5.14)
deseribe in the Eulerian setting the evolution of a continuous system
for which the action principle is assumed to hold in the Lagrangian
setting. By specifying the potential energy functional ﬁ(g) the sys—
tem is completely defined. In fluid dynamics, for ideal fluids, v
V(p)
In the original paper 26 it is shown how several known var.pr.'s for

]

depends only through the mass deﬁsity p on the variables Ea : v

fluid dynamics can be derived from (5.13), (5.14). At this place we
shall restrict to one gpecific model which will be studied in chap~
ter 6. Therefore, let us first write down the equations obtained

from (5.13), (5.14) by varying the variables Aa and v':

e

(5.20) ‘ 8\, atga + le?i =0

i

. a =
(5.21) v tv, + AES. =0

As has already been remarked, equations (5.20) define v' to be the
Cartesian componentsof the Eulerian velocity, and (5.21) expresses

the multipliers Aa in the variables v*.
In the following we shall only be interested in a subelass of
all possible flows, viz., the class of Zrrotational flowe. For irro-

tational flow rot v = 0 and thus for some potential ¢

(5.22)

f<

= Vip (i.e. v, = w,i)

To obtain a var.pr. for such flows we specialize (5.13), (5.14) by
inserting the representation (5.22) together with (anticipating on
(5.21)):
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1

(5.23) A= X, =0,

. . . . i .
and consider the variable ¢ instead of the variables v~ and Aa as

fieldvariables. Then we find

(5.24) IrFZ(a‘;‘tp)f[dt[ Jr dax{-oco,aBtEa-pw.jxj;acp»ki?iésikﬁp(th)2}—\7(9)1
I Q)

To rewrite this result into a more manageable form note that
] a ik ij

-w’jx:’la{:’kg’is = 'W»i‘p:js 1= "p(v@)z

—pw, 3.8 = pB @~ 03 @
Moreover, as

d*x03 o=|d’€p (£)+3 o= = | a’p wp (= L d*x p*9)
t [ t"” dt [) dt
Q) : ()

(where we have used the fact that the domain Z is independent of tJ,
this term gives an uninteresting contribution at the endpoints of the
considered t-interval and may be omitted. With these observations it
is found that the resulting expressions for (5.24) does not -depend
explicitely on the variables ga: they merely appear via the variable
p which may therefore be considered as the field variable instead of

the variablesga. This leads us to the var.pr.

(5.25) IrFL(p,®) = J ac [ J d’x {-pd © - {pV0)?} - Vo)1,
Q)

which var.pr. (for fixed domain Q(t)) was already studied by Bateman
[30] (c.f. also Bateman [31]). Of courge, the var.pr (5.25) can also be .
found directly from the canonical action.fundtional corresponding to
(5.13) by Bubstituting the representation (5.23)

The var.pr. (5.25) gives the correct set of equations describing
the flow in the interior of the domain Q(t). In many important situ- .
ations, Q(t) is not (completely) ﬁrescribed a-priori. If only part of
the boundary 3Q(t) of Q(t) is fixed, say

aqde) = 3] for all t,

a generalized form of the action principle in the Lagrangian setting
may be formulated which does mot restrict the variations 8x(§,t) at
the "free boundary” 30 (t) - 820. As a consequence of this generaliza-
tion a complete description of the system, including equations which
describe the evolution of the free boundary, is obtained if also va-

riations of the free boundary are considered.
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To demonstrate this idea let us describe irrotational flow of a
layer of fluid over a horizontal bottom {(y = 0) under the influence of
gravity (pointing in the negative y-direction) and ignoring surface
tension. Considering two-dimensional flow for simplicity, the free
surface may bevdescribed by y = 1+ n{x,t), where n(x,t) denotes the
height of the fluid at place %, —» < x < », and time t, measured
from the equilibrium configuration y = 1. In the equilibrium confi-

gdration p = o, says and this situation is taken as the zero level

of the potentigl en?¥%¥i g?en the potential energy functional is
2
Vi) = I dx dy {p e(p) - o elp,) + pgly-D1},

wherein e(p) s the spgcific potential energy density of the fluid.

The var.pr. (5.25) becomes

. @ Hﬂ(X.t)
(5.26) IrFZ(p,(Q,i_q) = J dt J dx - dy {-patw -~ pe(p) +
< (o}

+pe() - og(y-1) - ip ()%},

ﬁhetein variations of 7y account for variations of the free boundary.
The var.pr. (5.26) was found by Luke [32] and it gives the correct
set of equations:

8 1 3,0+ gly=1) + 4(V@)? + %5 (pe(p)) =0 for 0 < y < 1 +n(x,t)

8¢ : atp + div{pVg) = 0 for 0 <y < 1 + nix,t)
3ty + nx'g%- wy =0 , at y = 1 +n(x,t)
my = aty =0

Sy : 03,0 + pelp) — poelp) + pq(y=1) +

+ dp(Vp)? = 0 at y = 1 + n(x,t).
These equations are immediately recognized as Bernoulli's equation in
the interior, the continuity equation, the kinematical relation for
the free surface, the condition that no fluid flows through the bot-

tom and Bernoulli's equation at the free surface respectively.

To obtain the system which shall be considered in chapter 6 we
further specialize to ¢meompressible, irrotational flow with constant
density p = 0o Then the corresponding variational principle is found

from (5.26): © 1+n{x,t)
' -‘., ’

(5.27) IncIrFL(n,¢) = I dt [ dx(-p_) J dy[d pre(y-D+ive)*1.

00 o
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By partial integggtlonl+n(x’t) 14N(x, t)

dy 3.0 = 3, [ dy © - y3.n,
where e °
(5.28) Plx,t) : = o(x,y = 1+N(x,t),t)

denotes the value of the velocity potential ¢ at the free surface.

Then, omitting an uninteresting term, (5.27) becomes

° 1+nGx, t)
(5.29) IncIrFZ(n,w)-Jdt J dx[p =3 n - p_{gn*+ I dy$ (V) ?}1.
d (o]

It may now be observed that, for stationary points of (5.29), ¢ sa—

tisfies Ap = 0 in the interior, such that ¢ as a solution of

hp =0 for 0 <y < 14n(x,t)
(5.30) @ =Y aty=l+n(x,t)
=0 t =0
(py at y s

is uniquely determined by ¥(x,t) and n(x,t). Then the kinetic energy

term in (5.29) may be enVisaged as an implicitely defined function

of P and y:
1 “"ﬂ‘(x [ t)
(5.31) k(,n) (x,t) : = J dy }(Vo)2, © is the solution of (5.30)
4 .

Then (5.29) may be written as

o

(5.32) IncIrFil(n,¥) = j[ dt dei [‘oot&"c)tn - po{kgn%g(w,n)}].

i
It may be observed that (5.32) isin fact a canonical action functio-
nal for the system, with n and pow as a palr of canonically conjugate

variables and Hamiltonian

0
(5.33) h(n,¥) = de p,{ign+%(y,m}.

Xy
In fact this result has been found by Broer [33] (e.f. also Broer et
al [34]). At the same time Benjamin [35] used the expression (5.33)

and the varisbles | and n to derive the basic equations, without ex—
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plicifely referring to the Hamiltonian character of the system.

Both Broer and Benjamin found these results without using Luke's
var.pr. (5.26) as a starting point. More recently, Miles [36] derived
(5.32) from Luke's var.pr. in the same way as described above (c.f. ,
also Milder [37]1). As was shown by some of these authors, this var.pr.
can be used advantageously to find satisfactory approximations for

the awkward exact equations corresponding tov(5.32), (5.31) by looking
'for suitable approximate expressions for the Hamiltonian h as given

by (5.33). This will be more fully investigated in chapter 6.
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CHAPTER 4: FIRST ORDER HAMILTONIAN SYSTEMS.

4.1, INTRODUCTION.

A Hamiltonian system as described in the foregoing chapter
(which we shall sometimes call a elassical Hamiltonian system to dis-
tinguish from first order Hamiltonian systems to be introduced below)
is defined by two first order (in time) equations for the two canoni-
cally conjugate variables (Hamilton's equations). If desired it is
sometimes possible to extract from these equations one equation of
second order in time for one of the variables. However, in many appli-
cations equations are met which are of first order in time for one
scalar variable, which equation describesa conservative system. By
way of example we mention two equations which will play an important
rdle in the rest of this thesis: the Korteweg-de Vries equation
(c.f. [38], abbriviated KdV equation)

(1.1 %u=-%(m&ﬁmﬂ)

and an equation proposed by Benjamin, Bona & Mahony (BBM equation,
c.f. [39])

(1.2) (1—3;)atu = -3, (ut+u?).

Both equations were derived as approximate descriptions for the evo-
lution of unidirectionally propagating surface waves on a layer of

" fluid under the influence of gravity, where u denotes the height of

the waves measured from an equilibrium (c.f. chapter 6). These equa-
tions describe a conservative system in the sense that there exist

functionals of u which are independent of time as u evolves according
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to such an equation. More generally, every equation of the form
_ . 6h
(1.3) Btu = A 'S'i;‘ (u);

in which A is some antisymmetric operator and h is some functional,
has this property. Moreover, it turns out that such equations are
closely related to a set of Hamilton equations for classical Hamilto~
nian systems: the flow in u~space described by (1.3) has the same
structure as the flow in phase space of a classical Hamiltonian sys—
tem, We shall not completely investigate this relationship but re— -

strict to some formal observations in this direction.

Therefore let us start with the canonical action principle for a

clagsical Hamiltonian system ¢h,Q,P)

(1.4 CA(q,p) = {dt [<p,3,9> - h(g,p)].
Observing that
<p>3.9> = § <p,8,> - | <q,d p> + 3, < P,
and writing the two variables q and p as ome two component vector (g)

with the usual RI®*-structure, (1.4) may be written as

(1.5) . CAGgp) = f at [4<(), 3,5()> - h(q,p)]

. 1 ,
where § : RZ? » RI? is given by § = (? -é) and where we have omitted
a term which reduces to a contribution at the endpoints of the time
interval. The structure of the variational principle (1.5) in (q,p)
space is the same as that of a variational principle in u space of

the form
(1.6) Alw) = J dt [i<u,B3tu> - h{w)]
I

wherein B is some antisymmetric operator and h a functional. Statio-

nary points of (1.6) satisfy
_ 6h
(.7 Bt Bu = 50 (u),

which is precisely (1.3) with B = A-l.
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[The related structure of (1.5) and (1.6) is of course also reflected

in the equatioms for the stationary points: Hamilton's equations cor—

responding to (1.4) may be written as

Sh

. ‘8&" (qQP)

(1.8) sa =1

te &h
'3;‘ (4,p)
which has to be compared with (1.7)].
Another way to arrive at an equation of the form (1.3) is to

consider the canonical action principle (1.4) not on all of the

phase space, but to restrict the canonical actién functional to mani-

folds at which q and p are linearly related. For instance, if we write
P=u & q = }Bu

where B is some antisymmetric operator, (l.4) transformsinto a func~-

tional of the form (1.6). This method and the underlying idea will be

investigated in detail in the next chapter.

It is also possible to start with an equation of the form (1.3)
and then construct a set of canonically conjugate variables such
that (1.3) is equivalent to a classical Hamiltonian system. For
instance, if A = ~8x, equation (1.3) reads

' sh
(1‘9) ut = ax. E (u)
If we restriet to 2n~periodic solutions of (1.9) with zero mean

value, u may be written as a Fourier series

(1.10) fu(x,t) = § 7%? (an(t)°¢53sin nx + bn(t)'Jﬁ3cos nx),
n=1

and it is not difficult to verify that (1.9) transforms into

_ oh
day = 35 (a55b3)
(1.11) : " n>
= -3
atbn - aan ai’bi)’

where the function ﬁ(ai,bi) is defined under the transformation (1.10)
by
h(a;,b;) = h(u),

Hence, for the considered class of solutions, (1.9) is equivalent to
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adiscrete classical Hamiltonian system with an infinite number of degrees
offreedmm;anandbnare canonically conjugate position and momentum

variables and h is the Hamiltonian. This idea is due to Gardmer [40].
Broer [41] considered the same problem, without restricting to perio-—

dic solutions: ag arbitrary Lp~function u(x,t) can be written as

ulx, £)= 7%? J ak, t)e M ak= 7% J [4, (k, t)coskx+d_(k, t)sinkx]dk,

”~

where G+ and u_.gre the even and odd® parts of the Fouriertransform
g of u:

8, (&, )=4[G(k, )48 (-k,t) ], &_(k,t)=4[T(k,t) - G(-k,t)].
If we restrict ourselves to solutions of (1.9} for which

J u(x,t)dx = 4(0,t) = 0 for all t > 0

Ziof. Rémark 4.2.2) we may define functions q(x,t) and p(x,t) by

00

q(x,t) = 7%5 I é? * G_(k,t) sin kx~ak;

(1.12) O
p(x,t) = 7%5 J %F * 4, (k,t) cos kx dk.
o

Defining E(q,p) = h(u) under the transformation (1.12), equation

(1.9) can be shown to be equivalent to

3.9 = %—g (q,p)

h
3.p mg-a (q,p),

i.e. a classical Hamiltonian system with q and p as canonically con-

jugate variables and h as Hamiltonian.

So far about the formal relations between classical Hamiltonian
systems and systems of the form (1.3). In the next section we shall
define these first order evolution equations as first order Hamilto-
nian systems and briefly introduce the standard terminology and
results for these equations. In section 4.3. we shall deal with a well
known non-linear transformation, viz. Miura's transformation. It is
shown how this transformation turns up as the simplest nonrlinear
transformation which transforms a class of first order Hamiltonian
systems into another class of such systems., Moreover, the construc-
tion of these classes will generate the infinite sequence of invariant

functionals (of polynomial type) for the KdV equation (1.1}.
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4.2. DEFINITIONS AND GENERAL RESULTS.

We consider scalar functions defined on the whole real axis
which are sufficiently smooth to allow the necessary differentiations
and which tend to zero, together with the derivatives, sufficiently
rapidly as le + o, This space will be denoted by U.

A first order evolution equation on U is an equiation of the

form
2.1) atu = K(U)’

where K is some (non-linear) operator on U. With the usual nomencla-
ture a particular solution of (2,1) is represented by a trajectory
t > u{t) €U, and (2.1) defines a flow in U. We shall be interested
in a restricted class of evolution equations, wviz. those for which
there exists a functional h such that

K{u) = fﬁx %%-(u).

DEFINITION 4.2.1. If h is a functional defined on U which satisfies
&h
(2.2) h(Q) = g;-(ﬁ) =0
the evolution equation
' &h
(2.3) , atu BX = (u)

is called a first order Hamiltowian system, and the functional h is
called the Hamiltonian.

REMARKS 4.2.2.
(i) If the functional h satisfies {2.2) then the functional h defined
on U by

(2.4) ' ﬁm>:=hm)+aI udx + B.
RZ .
where o and B are arbitrary constants, gives rise to the same evolu-

tion equation:
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h _ _. 6h
(2.5) Btu = -3x W () == Btu = 3x by (u)

Therefore, requirement (2.2) may be envisaged as a normalization con-
dition to assure that with every evolution equation of the form

atu = —Sx H(u)
wherein H is a potential operator (c.f. section 0.4), there corres—
ponds a unique Hamiltonian h.
(ii) If equation (2.3) is a local equation, c.f. remark 4.2.5., and

definition 5.6.1., we have for functions u € U:

%% (u) >0 for lx| + =,
In that case, integrating (2.3) over the whole real axis there
results
(2.6) . Bt [ ulx,t) 4x = 0,

RZ
In order to describe the variational principle for (2.3), we de~

fine the inverse of the operator Bx on U by '

@n 9 w0t = | ul®)d £,

é“—*ﬂ%

-
The adjoint of this operator will be denoted by Bx :

- -
(2.8) » <u,8xI y> o= <Bx u,v> Yu,v € U,
Note that
o
P 3 -
2.9) oy u = [e@E - [ voE -8 .
x RI :
Consequently
et ¥ _ o _ -1
BXBX = Bx 3x =-1 and BX u = ~3x u <= I udx = 0.

RZ
PROPOSITION 4.2.3. Let G € CI(I,U) be an actual evolution of the first
order Hamiltonian eystem described by (2.3) over the time interval
I =1[t_,t 1. Then & is a stationary point of the functional

(2.10) A(u) @ = J dt [}<u,3;1atu> + h{u)]

I
over the get

128



(2.11)‘ " {u € cl(I,U)lu(to) = ﬁ(to); u(tl) = ﬁ(t‘)}.

PROOF. Consider an arbitrary variation v € Cl(I,U), satisfying
v(to) = v(tl)f= 0. Then

Alw)e v = I dt [i<v,8;18tu> + g<u,a;latv> + <g—ﬁ (u),v>]
1
£ ¢ -1— —* ﬂl- _]
[dt ¢£<v,3t(8x ax Ju> + Fa (u),v> + iat <u,3x v>].

With v(to) = v(tf} = 0 this results in the following equation for the

stationary points of A:

-1 - 5h
. FPT A )
(2.12) z(dx 9, )atu 3a (u).

Applying the operator 8x to this expression, equation (2.3) is

obtained. : : o
The following definition is not ,completely standard.

DEFINITON 4.2.4. A functional e € ¢!(U,RZ) is said to be an Zmvariant
integral for (2.3) if

(2.13) 3, e(u) =0

for every solution of (2.3). Any operator E on U for which
e(u) = [ E(u) dx

is an invariant integral, will Eé called a conserved density for
(2.3).

REMARK 4.2.5. From this definition it follows that if E is a conserved
density then there exists a fluw density T such that

(2.14) . St E{u) + 3x T(u) = 0
& T(u) ~ 0 for |x| » =

for every solution of (2.3). The expression (2.14) is of the form of

a local eonservation law. However, only if T is a3 local operator
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(c.f. definition 5.6.1.) webobtain the usual result that for arbitra-

ry interval (a,b) = RZ, Bt [ E(u) dx depends only on the value of u

and its derivatives with regpect to x, at the points x = a and x = b.
In general, we have for solutions of (2.3)
8h - Sh
= t - = - ! . —— = o ¥ . —
at E(u) = E'(u) atg E'(u) ax n {u) ax[ax E'(u) Bx S wl,
from which it follows that E is a conserved density for (2.3), with

flux density T(u) = 3;1 E'(u)‘%x %% (u), if and only if

1

Sh
¥ L] W——— 1
j dx E'(u) Bx 50 (u) =0
for arbitrary u € U.R%Compare this with (2.13) and proposition 4.2.6.
below.) v

For a functional g € C}(U,R1) we have for solutions of (2.3)

T - 8 gy -3 OB
(2.15) 3t g(u) e (0, Bt u> = < (u), 3x e

|

Therefore we define the Poigsombracket {,} : C3(U,RZ) x CNU,RL).»
+ C°(U,R1) by

4 -5 S8
(2.16) {f.g} (W) =<5 ), 9, T (W>.
(c.f. Broer [41]). It is easily seen that {,} is a bilinear and anti-
symmetric mapping, and it can be shown that it satisfies the
Jacobl relation :
an {{f,g},k} + {{k,f},g} + {{g,k},f} = O,

From (2.15) and (2.16) we obtain

PROPOSITION 4.2.6. A functional g € C}(U,RL) 78 an invariant integral
- for (2.3) if and only if

(2.18) {g,h} = 0

EXAMPLES 4.2.7.
(i) as {h,h} = 0, the Hamiltonian h itself is an invariant integral
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for (2.3). In many cases this functional can be interpreted as the

total energy ofAthe system under consideration.

(ii) If h is tramslation {nwariant, then i<u,u> is an invariant inte-

gral for (2.3), the momentwn fumctional. This follows simply from
ati<u,§> = <u,3tu> = <u,-3x %% (u)> = <uy %%‘(u)>= 0.

(iii) As has already been observed, remark 4.2.2. (ii), if (2.3) is

i
a local equation then | udx is an invariant integral. We shall some~

. : s R . .
times call this linear %unctlonal the mass-fincetional.

The KAV equation (1.1) is an important example of a first order

Hamiltonian system:

= _n Sh . 21,2 1.3
(2.19) Btu Bx Ta (u) with h(u) I dx [{u iux + 2],
R

The BEM equation (1.2) is not of the form (2.3), but it can be brought
to this form by a simple linear transformation. More generally, we
shall consider equations of the form

‘ )
(2.20) ?t Dv = 3x Sv ),
wherein D is some selfadjoint operator on U commuting with Bt and Bx.
An equation of this type may be obtained from a variational principle:

stationary points of

(2.21) A(v) = J dt [£<v,3t DB;]v> + k()]
I
on the set (2.11) satisfy equation (2.20).

PROPOSITION 4.2,.8.

(i) Let L be a regular operator on U, commuting with ax {and 3t).
Under the transformation v : = L-]u, equation (2.3) transforms into
(2.20) with

(2.22) | =1L
and
(2.23) : k() : = h(v).
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(ii) If D admit the vepresentation (2.22) for some regular operator L,
the tromsformation u : = Lv tramsforme equation (2.20) into (2.3)
with h(u) : = k(L 'u), '

PROOF. This proposition is an easy consequence of the fact that if k
and h satisfy (2.23) then (c.f, Lemma 0.3.8.)
L*° QE (L v) = QE.(Q)
Su : Sv *
With this result the statements can be obtained either by manipulating
with the equations, such as
* $h % Sk
L ,[atu + 3x o Wl =1L Latv + Bx s {v),
or by using the variationalcharacterizations (2.10) and (2.21):
AL v) = A(v). , n

The BBM equation (1.2) is of the form (2.20)

(2.24) 3 _Dv=-3_ %ﬁ-wim D = 1-32 and k(v) = Jr dx [iv? +F v%1.

As follows from proposition 4.2.8, it can be brought to the form (2.3)
by the linear transformation u : = D%v, where Di is the selfadjoint,
positive definite square root of the operator D. Another possibility
is to take D as in (2.22) with L =1 -~ 3x {c.f. Broer [50]). However,
in many situwations it is simpler to deal directly with the form (2.20)

than with the transformed equation (c.f. section 5.6).
4.3 NON LINEAR TRANSFORMATIONS BETWEEN FIRST ORDER HAMILTONIAN SYSTEMS.

In this section we shall study transformations which map first
order Hamiltonian systems into other first order Hamiltonian systems.
Reasoning along classical lines, it will follow that we are almost
inevitable be led to the wellknown Miura-transformation and to the two
classes of equations which are of "KdV-type".and of "modified RdV-type"
Although the results of our investigation are known in literature,

the way in which they are derived seems to be not completely standard.

The starting point is a first order Hamiltonian system on a func~

tion space V

' . 8
3.1) d,v = =3 'a% v)
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where g is some translation invariant functional., Now consider a (non-
linear) transformation $ which maps V into some other function space,

U say:
(3.2) ’ $: VU, u=8(v).

A natural question to consider is to find the evolution equation sa-
tisfied by u if v evolves according to (3.1). We shall be interested
in a somewhat differentquestion: for which transformation ¢ is the
evolution of u described by a first order Hamiltonian. system? [In
section 3.3 we saw that for classical Hamiltonian systems a specifiec
class of transformations en phase space, viz. canonical transforma-
tions, map every classical Hamiltonian system into another classical
Hamiltonian system]. From proposition 4,2.8. it follows that every
linear transformation /
: u=Lv with LL* = L*L’= I

maps every first order Hamiltonian system into another one. However,
for non linear transformations it may not be expécted that every equa-
tion of the form (3.1) is mapped into another first order Hamiltonian
system. Therefore, a more precise formulation of the question under
consideration is:

Find a non-linear transformation £ and the class of functionals

g for which there exists a functional h such that if

8,y = =3 & (v) then 3 u = -3, g (u) for u = $(¥).

[Note that we do not require the transformation § to be invertiblel.
If the evolution of u is described by

(3.3) 3t“ = —Bx %% (w)

then, inserting u = $(v), we find
3.4) | R(v) +3v + 3_ 3 ($(v)) = 0
' t %% Su >
' where we have introduced the linear operator R(v) which is defined as
the derivative of the operator $:

. R(v) : = 8'(v) : V> U.
Comparing (3.1) with (3.4) we see that in order that
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(3.5) REW-Y + 3, 3o () = R@Y- 3w + 3, $B )]
it is necessary that

h o 8
(3.6) 3, 3o BN =R @,

Now note that with a given functional f : U -+ Rl and given transfor-
mation (3.2) there is associated in a natural way a functional
f : V- Rl defined by

£(v) : = £(#(v)) for v € V.
(The converse is in general not true if $ is not invertible). Then we
have

(V) -y (v)s -—- (S(V))
in which R (v) is the adJolnt of the operator R(v). Therefore it is
natural to restrict the study of (3.6) to functionals g : V -+ R which
can be obtained from functionals defined on U, Hence, if it is assumed
that
; gv) =C(v) = L(B(v),

then (3.6) may be written as

3.1 3 8w - ke ot & ‘ £ (w) for u= 3.

Resuming these considerations we may say: if a transformation $ and
functionalsh and £ on U can be found such that (3.7) holds, then we

- have

(3.8)  du+ o -g% (@ = RW)» [3,v + 3 ig-% )] for u = (v).

In other words: if (3.7) is satisfied, the transformation $ maps every

golution v of

8T
(3.9} atv + 8x 3 (v) =0
onto a solution u of (3.3)

. , ;
Concerning the transformation $ to be found, we can formulate
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[

two a-priori requirements: (i) if j udx is an invariant integral for

(3.3), then { 8 (v)dx must be an igéariant integral for (3.9);

(ii) the ope%gtor
(3.10) R(v) 3 ok (v)

as it enters in (3.7) must be expressible in terms of u = $(v).

[As u?dx is an invariant integral for every equation of the form
'(3.3§Z(when h is translation invariant), { #2 (v)dx must also be an

invariant integral for (3.9). However, thgé fact is not used in the
construction of appropriate operators $ but will be a consequence of
the construction below].

The only g-priori known common invariant integrals for a class of
equations (3.9) are | vdx and [ v2ax. Therefore, in order to satisfy

R

requirement (i), it 1§

Ve

temptihgz(although other choices cannot be ex-

cluded by this reasoning) to take for §:
(3.11) $(v) = av? + bv + axN(v)

where a and b are constants and N a (possibly non-linear) operator.

For simplicity let us first consider the more simple transformation
(3.12) B(v) = v + 3 N(v),

where N has to be determined to satisfy requirement (ii) above.
For 8 given by (3.12) we have
R(v) = 2v + 3_N'(v) and R (v) = 2v = N'(")"ed_,
such that the opérator (3.10) becomes
R(v)e 3 aR W) = 2v-3 [R (Vo] + 9 [N (V) ed R )<l
=3 [2v'R (v)cw + N'(v)ed R ow] - (R (Vo). 2v .
Observing that the last term may be wrltten as
—2v *(2ve@ - N (v) am ) = -2(v2) <@ + 2v oN' (v) ow
=03 [2v N (v) Yol - 2[v + v N'(V) -] <®

we obtain
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€3.13) R()-3 .R (v)-qy=3 [2v~R (v)bgpi-N'(v)-B R (v)o(oi-Zv N (v) -m'i—
- 2[v? +v 'N'CV) } -1p,

valid for arbitrary fumction . From (3.7) it follows that for

= %%-(u), the right hand side of (3.13) has to be expressible as a
derivative with respect to x. Remembering that for every translation
in variant function T: %E (u)*ux = 3x®(u) for some &, we simply re—
quire that u = v? + v N (¥) . Comparing this with (3.12) it follows
that N{v) = ¢.v for arbltrary constant ¢. Taking ¢ = 1 for simplicity

gives as transformation
(3.14) u=g) =v? + v,
and with this transformation (3.13) can be expressed in terms of u:
*®
L] 1 — 2 - " - -
(3.15) R(v)+d R (V)o@ = 3 _[4uo SXAp]V 2u @ = ?(u) ®

In this way we have found that the transformation (3.14) satisfies

the requirements (i) and (ii) above.

REMARK 4.3.1. It may be thought that the requirements for the trans-
formation admit a much more general transformation then (3.14). In

fact, it is easily shown that
(3.16) gCv) 1 = av? + bv + ev,

is a transformation which satisfies requirements (i) and (ii) above
for arbitrary constants a, b and ¢ (and for which the construction to
be outlined below can beadapted) .However. if we restrict ourselves topoly-
nomial expressions for ${(v), i.e. S is a polynomial in v and derivati-
ves of v with respect to x, then (3.16) is the most generai one. This
can be seen from the following simple reasoning: if n is the degree
of ¢, then R(v)caxoRf(v) is of degree 2+ (n~1)., Assuming T(u) to be a
polynomial of degree m in u, T($(v)) is of degree n.m in v. Hence we
must have 2+ {(n~1) = n*m, which has as nontrivial solution pnly n=2

and m = 1. This corresponds precisely to (3.16) (and (3.!$)).
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Remains to investigate for which functionals { : U - R there

exist functionals h : U - Rl such that

-1 8T Sh
3.17) ’ 3x oT(uje = (u) = = (u).

With some trial and error it was found that the following pairs of

functionals satisfy (3.17):

(3.18) Co{u) = } I udx ho(u) = } ‘ u?dx
(3.19) Cl(u) = } J u?dx hi(u) = } [ dx [2u® + u;]

Cz(n) = hI(U) hz(u) =} : dx [5u® + lOuu; " uix]

L) = h,(u) hy(u) = | deI4u5+70u2u;*!6uu;x+u;xx].
Hence we see that for 1 <n < 3

' -1 6hn*1 6hn
(3.20) ax T(u)e T (u) = To (u),
or, for 0 <n <3
(3.21) 00 T@N™h 1= X T@) e = T (
. X u . = % u o0 = _5.1-1— u).

It turns out that this process can be continued, as follows from

LEMMA 4.3.2. For arbitrary n > 1 the operator
(3.22) @, T@)® .
18 a potential operator.

PROOF. In principle, the lemma can be proved with the theory of sec-
tion 0.4 by showing that the derivative of the operator (3.22) is a

. symmetric operator. However, the proof is rather difficult and lengthy
and gives no deeper imsight in the underlying problem. Therefore we
prefer to refer to Flaschka & Newell [42, p. 411], whose results im~
ply the foregoing lemma: the operator L; defined by their formula
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(3.92) equals la;l T(-q) and then the lemma follows from their formu-—
1a (3.96). ' o.

Resuming the foregoing results we obtain
THEOREM 4.3.3, Define a sequence of functionals h: U RL by

h_l(u) : =} f u dx
R1
Shu -1 n+l
hn(n) : hu(o) = 0, g;—'(u) = gcax T(@)" ¢« 1 forn>0
Then we have for )

23.23)

(3.24) g, 1 =B _ () =h _ (#E) n>0
that
ng sh, P
(3.25) R, oo (V) =3 = gu) for uag(v)t = v2+vx. :
Consequently
Sg &h

(3.26)  R(We [ v+d_5=F (] = 3 urd = (0) for u=g(v), n > 0.

In this way we have obtained two infinite sequences of first or—.
der Hamiltonian systems over the spaces U and V which are related in
the sense of (3.26). Because of (3.25) it is also possible to take
linear combinations of such Hamiltonians:
if glv) = g a g, (v) and hiu) = g anhn(u)
then ]

Sg - Sb
R(v)e [Btv+3x T (v)] Btu + Bx 5a (u).

For n = 1, (3.26) amounts to
3 = Y 2 .
(3.27) R{v) [atv + ax,(2v v vxx)], du+ 3 (3u u )
As the right hand side equated to zero is related via a simple trans—.
formation to the standard form of the KdV equation (1.1) and the ex—

pression in square brackets corresponds to the so-called "modified
KdV equation", (3.27)' is exactly the result as was discovered by ‘
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Miura [43].

The next lemma shows that each functional hm(gm) is an invariant
integral for every Hamilton flow hn in U space (for every Hamilton

flow g, in V space respectively.)

LEMMA 4.3.4.
(3.28) {h,h;} = 0 for all 2,j > -1
(3029) {gzygl} = 0 for all Z,j ?‘_ 0

PROOF. The result (3.29) follows from (3.28): with (3.24) and (3.25)
it follows that
{Sj,gz}(v)

Sg. 6
gt (9,9 3—— W)> = <R (v>~——l——<scv>> D Fee)>

]

._‘ ng ._l 6‘1:
<—'L_6u - (S!(v)).R(V)‘oBx 5> = <—'L—6u (u) ;3 _z=—(u)>

={J]sh}(u)
To prove (3.28) ve use the deflnxtxon (3.23) of h (u)

shy
{hy b Hw)= <6 (u),8 -l(u}> = <@ ey tlr,e: I -1

rw)iths
Ohserving that T (u) = -T(u) and <8x P, > = -<¢v,3x wb,prov1ded

I‘¢dx =0 or I pdx = 0,wegobtain

<0 @)™ 0, @)™t > - 0 g 2ejeom
{h sh-}' (u) = |
= Lpcayyi+et]

1< @)™, rwe 0 ) 1>=0 if Z=j+2m+1.

This proves the lemma, =}
The next lemma relates subsequent functionals hn:
LEMMA 4.3.5. For n > 0 we have
6hn+1‘
[ =

(3’30) (u)dx = Qe (211 + B)hn(u)'
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&h
PROOF: Let m{u): = J 63+1 (u)dx = I (3 T(u)) . u dx

With lemma 4.3.2. it follows that

<§§ <u>,v> = J (o] T@)™ e dx=ev, 13 T @)™ al' e 1>,

With {8 Lpr (u) l]o @ = 4p for arbitrary @ € U, we obtaln

< g-’% (w),v> = <v, 2 o, lT(u)]°(3 @ D@ T w4
+ <y, (s L™ s
= (e (a+)*2)+ <v, (' T@)H N w>
= 2+ {2n+3) <v, EE—'(Q)>

Hence 8"" 2~(2n+3) 6 , and then the result follows fromi

m(0) = hn(O) =0

We shall end this section with some remarks.

REMARK 4.3.6. Conserved flux property.
For the equation

5hﬁ
(3.31) Btu = ~8x 5o (u)

- &h

the density u is a conserved density (it is easily seen that 3;2 is
a 1ocgl operator). From lemma 4.3.4. and 4.3.5. it follows that its ~
flux o is also a conserved density for (3.31). Then it is easily

verified that the functional
Ghn , _ )
(3.32) c (u)s = I dx[xsu-t '&T(“)] = J dle(xb°u)*°2(2n+l):t:'hneI (u)

is an invariant integral for (3.31). (c.f. remark 5.4.2. (iv) for an

interpretation). Taking the Poissonbracket with a functional 1 there

results
(.3 (60w = [ 8 @ax - 20mn-e_ 0 .

In particular, with (3.28) and (3.30):

éh
(3.34) {Cﬂ,hm} (u) = I 3;2 (w)dx = 2'(2m.+l}hm_I (u).
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As

(3.35) {ho.z}(u) = —<u,3x gé (u)> = <§§ (u),ux> (=0 if % is transla-

tion invariant)
it follows from (3.33) for n=Il:

(3.36) {Cl,l} (u) = J g% (u) dx for every translation invariant func-
tional %,
Property (3.34) means that the operator {Cn,'}. n > 1, maps each
functional hm from the infinite sequence onto its preceding one
hm—l’ Using Jacobi's relation
{hm,{c%,z}} * At dn,0 B+ {C o {o,n 1} = 0
it follows from (3.34) that )

(3.37) {h,{c ,2}} =0if {t,h |} ={n } =0

This result seems to be interesting only for m = n = 1: then it fol-

lows with (3.35) that for every translation invariant functional %:
(3.38) {n,{c,,2}} = 0 if {z,hl} =0

This means that if £ is translation invariant and an invariant inte-
gral for the KAV equation {equation (3.31) with n = 1), then the same
is true for J %% (u) dx.

REMARK 4.3.7. Relation with inverse scattering theory.

Although the transformation (3.14) and the result (3.27) discovered
by Miura is interesting in its own right, it would not have had so
much attention if it didn't form the basis of a remarkable theory de-
veloped by Gardner &Green & Kruskal & Miura [44]. They showed how

it is possible to solve the initial value problem for the KdV equation
by 2€near operations only. Although this is not the place to give a
detailed account of this "inverse scattering theory”, we shall indi-
cate the most important ideés to show why the result (3.26) is essen-
tial for this method to be applicable. We start with the more general

transformation
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2
(3.39) u = $X(v) =viHv o+ by

where A € R7Z. Then R(v) = $i(v) is indepenﬂent of A and the same se—
quence of functionals h : U~ Rl is obtained as before and

8h
n 8
(3.40) du+d = (u) =R [Bv+d = I[h_, &N

It is well known that when we define a new variable by
v = 3x log ¢,
the transformation (3.39) becomes a linear mapping between ¢ and u:

Y
(3.41) u = —35 + 2
or
(3.42) ¥ +O-u)y = 0.

Then the right hand side of (3.40) may be expressed in Y:
5h_ -
m
et g @

Sh
R [3,v + 0 R (vt & o)]
h

REI-3, 3 [B0 + @43 w2 (um 224 )

I

Hence: if { evolves according to an equation of the form

: 6hn—l wxx y ‘
(3.43) Y+ (2P 93 )eg— (u= -t A = CcOY

for arbitrary constant C{A), then under the transformation (3.41), u

evolves according to
, dhn .
(3.44) Btu + Sx g (u) = 0.

If we tried to use the transformation (3.41) to éolve the initial
value problem for (3.44) we could reason as follows. Let u, be the
initial value for (3.44). Then take a bounded function wo such that
u, and ¥, satisfy (3.41) (From scattering theory it is known that
suchra wo can only be found if A belongs to the spectrum of the scat—
tering problem (3.42) with u, as potential., Note that, in this reaso~
ning, A is taken fixed). Then, let ¥ evolve according to an equation
of the form (3.43). If P(t) has been found, u(t) is immediately found
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from (5.41), and the solution of (3.44) with u, as initial /value would
have been found. Of course, this method is unsuccessful because the
evolution of ¥ is described by a non-linear equation and is usually
as difficult to solve as the original problem (3.44). For instance,
for n = 1, (3,44) is the KAV equation and (3.43) reads '

XX
(3.45) Beb *+ (2 + 3 By -y = CY.

The much more successful method of G.G.K.M. prevents (when it is
applicable) the necessity to determine explicitely the solution of
equations like (3.45), at the cost of taken an infinite (continuum)
number of transformations (A becomes a parameter ranging over the
spectrum of the initial value scattering problem).

If uj is the initial value for (3.44), consider the scattering problem
(3.42) with u = u, and determine a suitable set of scattering data
(viz. the spectrum, the reflectioncoefficient for the generalized ei-
genfunctions and normalization coefficients for the eigenfunctions cor-
responding to the discrete part of the spectrum). From the inverse
scattering theory it is known that for such a set of data, the process
can be inverted: once these data are known, the potential of the pro-
blem can be determined. Therefore, if from the evolution equation for
u, evolution equations for these scattering data can be found for which
the initial value problem can be solved, it is possible to determine
the value of these data for every t > 0, and then, with the inverse
scattering theory, the value of the potential u(t). Now, the main ob-
gservation is that the equations for the scattering data are simple or~
dinary differential equations which can easily be solved, if the equati-
“ong for the eiganfunctions are local equatidns: in that case the evoluti-
on equations for the scattering data can be obtained merely from the
knowledge of the asymptotic behaviour l(e.g. for x*) of the eigenfunc-
tions. Moreover, using the fact that u+0 for |x|+e, this asymptotic be-
haYiaur is described by a linear equation. For instance,(3.45) can be
written as ' _ T

(3;46) ‘atw Y Gu-M) wx - Ipxx:!: = C)ey.
_This short description may indicate why precisely equations (3.44),
. which led to the local equations (3.43) for ¥, can be solved with the
inverse scattering theory., For more details we refer to the literature,

e.g. Whitham [45] and in particular Flaschka & Newell, [42, section 3]
and G.G.K.M. [44],
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CHAPTER 5: WAVE PROPAGATION IN ONE-DIMENSIONAL BAMILTONIAN SYSTEMS

5.1. INTRODUCTION.

Let us start with a Hamiltonian system (h,Q,P) where Q and P are
function"épaces consisting of functions defined on the whole real
line RI(one space variable x €RI). Hamilton's equations are

an  aa = R, =@

For a large class of Hamiltoniansh these equationgcan often be
interpreted as a set of "wave equations". Although it is very
difficult to give a precise definition of this notion, an equation
will be called a wave equation if its solutions (or a subset of
solutions) can be interpreted as waves, i.e. if these solutions
describe some propagating phenomenon., Standard phrases in connection
with wave equations are: normal mode solutions (for linear equations),
propagation along characteristic curves in x,t plane (for non-linear,
non~dispersive equations) and steady state solutions (periodic or
solitary wave gsolutioms for non-linear, dispersive equations).

Before analyzing this point aﬁy further, we want to rewrite
equations (1.1) in another form. Therefore we assume that we are
dealing with a potential system, which means that h does not depend
on the variable g itself but only on expressions of qu. In that
case, q can be interpreted as a potential for the underlying system,
and the system can be more simply described with the variables

u = —qu and p. (Note that the transformation (q,p) - (u = -qu,p)

145



is not a canonical transformation). If we rewrite the Hamiltonian
h{q,p) in terms of u and p, and denote this transformed Hamiltonian

by ﬁ(u,p), Hamilton's equations (1.1) may be rewritten as

- o -y SB
(1.2) atu = ex %p (usp) » atP ax 5u {u,p)
where we have used the relation i} (qsp) = 3 QE (u = -3 4q,p).
dq 7 x Su x?

‘Unlike the variable q in a potential system, the variables u and p
are required to vanish (together with their derivatives) as |x| + «.

The quations (!.2) shall be written in a more convenient way as
(1.3) 3, grad n(u,p) = -3 grad h(u,p).

Here a(u,p) is the momentum functional

(1.4) n(u,p) = <u,p> ,

and for arbitrary differentiable functional f£(u,p), grad f£{u,p)
denotes the two—-component functional derivative of f with respect
to u and p ¢ ‘

£ (wp)
grad f(u,p) = of .
) (u,p)

With the respect to the formulation (1.3) we shall make several

remarks.

REMARKS 5.1.1. (i) Of course the foregoing can also be rephrased in

a variational form: Introducing u = -qx and ﬁ(u,p), the canonical

action principle for (1.1) is equivalent to

(1.5) W @p) t = - far e 37w+ Bl
I

Stationary points of this functional satisfy

8h -* gh

-l 2 u 4+

3x t ép x t Su

L
<
-
o
Q9
o
i
#
<
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Applying dy to these equations, we obtain (1.2).

(ii) As we have seen in section 3.4 , the
functional h entering in (1.3) is an invariant integral (the energy)
and m is an invariant integral if h is translation invariant.

(iii) The first order Hamiltomian systems as described
in section 4.2 can also be written in the form (1.3) : for instance,
the equation

Se

(].6) atDu="’3x-6-;‘

*
where D = D may be written as

(1.7) St grad n(u) =~ —Bx grad e(u)
where now
(1.8) n(u) = -2’-.< u, Du.>

and grad £(u) = g& by definition. The functional e, the energy, is
again an invariant integral for solutions of (1.7), and the momentum
functional n is an invariant integral if e is translation invariant.

(iv) Steady state solutions of (1.3) are functions
u and p which depend on x and t only through the variable x-ct where
¢ is the constant propagation velocity. The equation for these

solutions is
(1.9) grad ﬁ(u,p) - ¢ grad n (u,p) = 0.

This equation may be envisaged as the equation for the stationary

points of the constrained variational problems

(u,p) = Stat. subject to m (u,p) = constant

=1

=2

(u,p) = Stat, subject to (u,p) = constant,

g1

or

where ¢ is a multiplier. This formulation may be particularly useful
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when an extremum variatiomal formulation is valid. In that case it
follows e.g. that h is an extremum on the class of functions for
which m has a prescribed value and, because of remark (ii) above,
this property then holds for all times. Such a property may v
have important consequences concerning the stability of steady states
as has been remarked by Benjamin [35] (cf. also Benjamin [46] and
Bona [47] where this property is used to prove stability of the
solitary wave solutions of the KdV and BBM equation).

(v) The most important aspect of equation (1.3) for
the rest of this chapter is that equation (1,3) is invariant for
a time—independent linear transformation of the variables u and p.
To be more precise, consider a transformation (u,p) + (a,B) of the

form

u A -B\ra
w2
P c /8l ,
|
where A, B, C and I are pseudo differential operators withiconstant

coefficients. The transformation is regular if AD+BC is invertible

and under a regular transformation equation (1.3) is equivalent to

(1.11) 3, grad W(a,B) = -3 grad B (a,8)
where
(1.12) R(@,8) = h(u,p) -, m(a,B8) = m(u,p) under (1.10),

and where now "grad" demotes the two component functional derivative
with respect to a and B. The equivalence of the equations (1.3) and
(1.11) follows immediately from the fact that the operatorsA, B, C
and D commute with Bx and Bt, and from transformation properties

of an arbitrary functional £ : if f(a,B) = £{u,p)

then
SF A ¢®\fof
Ta - Su .
o
8f * ¥ of
- ~-B D 2=
58 Sp

Of course, these results can also be obtained from the variational

formulation (1.5): under a regular transformation (1.10), stationary
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points of

CA{a,B) ¢ = CA(u = Ac-BB, p = Ca+DB)

are in a one~to-one correspondence with those of EK(u,p), and
satisfy equation (1.11).

Returning to the wave character of systems described by equation
(1.3), it is often found that such an equation admitssolutions which
can be interpreted as being composed of waves running to the right
and of waves running to the left (i.e. in the direction of the
positive and negative x—axis respectively), For instance, if from the
set (1.3) a single equation, of second order in time, for u can
be extracted (which is then actually the Euler equations for the
variable q) which does not contain terms with atu, the equation is
invariant for time inversion from which the absence of any preferred
direction of propagation follows (if u(x,t) is a solution which can
be interpreted as propagating to the right, u(x,-t) is a solution

propagating to the left).

For such wave equations with solutions running in both directions
it is tempting to write the solutions as superpositions of two
unidirectional waves running in opposite directions and to find
the equations describing each of these unidirectionally propagating
waves. To that end we perform a linear transformation of the form
(1.10) and take the transformation such that the transformed
momentum functional E(m,B) does not contain a product term with
a and 8. For instance, for m as given by (1.4) we perform a

transformation
u = D(-B)
(1.13)
p = of
.
_ where D = D and invertible, and find that
(1.14) m(a,B) = <a,Da> - <B,DB> .

Under this transformation, ﬁ(a,B) can be written as
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(1.15) H(a,B) = ala) + b(B) + i(a,B),

where a and b are functionals depending only on o and B respectively
and where the interaction fumctiomal i{o,8) consists of all those
terms which contain both the o and the B variable:

i€a,0) =0 , i(0,8) =0 V& A

B
With (l.l&) and (1.15) the equations (1.11) may be written as

8a

2@+ E @p)

, 25 Da = - |
(1.16)

2P (2 @+ & @p)

For a large class of Zimear equations it shall be shown in the
next section that it is possible to find a transformation such that
i(a,8) = 0. In that case the two equations (1.16) are uncoupled and
the solutions of the original equation (1.3) can be written as a super

position of solutions of

Sa

(1.17) 23tDa = -3x ga(a)
_ &b

(1.18) 23t DR= ax 3§(3)°

Each of these equations is a‘first order Hamiltonian system such that,
if the o and B equation describe waves travelling to the right and
to the left respectively, we havé obtained an exact separation of
the original Hamiltonian system (1,3) into two unidirectionally
propagative first order Hamiltonian systems.

For non linear equations it is generally not possible to find
a linear (!) transformation such that i(a,8) vanishes identically.
Then 1i(0,B) can be interpreted as an imteraction functional which
couples the two uncoupled equations (1.17), (1.18) as in (1.18).
As they stand.equations (1.17) and (1.18) are two first order
Hamiltonian systems, the a~ and the B- "'mode' respectively .

For a restricted set of solutions of (1.16) it may be possible that
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the interaction between the a— and 8- mode can be "neglected",

such that, within some approximation, these solutions of the
original Hamiltonian system can be written as a linear combination
of solutions of two uncoupled first order Hamiltonian systems.

For instance, consider the solution (a,B) of (1.16) corresponding to
initial data (ao, Bo) with BO = 0. It is likely that this solution
is, at least for sufficiently small times, in some sense "close”

to the solution of (1.17) with initial value'a0 and B=0. Moreover,
it may be argued that the correspondence will be as good as possible
if the interaction terms in (1,16) are as 'small"” as possible. This
will be the case if the linear transformation is chosen to achieve
an exact separation of the linearized equations (1,16). A rigorous
formulation and justification of these heuristic observations

seems to be impossible in this generality . For a specific system
of Chapter 6 we shall be able to say somewhat more about this

point. Another result which can be obtained from (1.16) is that if
h is an even functional of one of its variables, it is poassible to
define one first order Hamiltonian system which describes a subset of
solutions of the original system exactly. This first order system
is then »not translation invariant. This shall be examined for

general systems in section 5.3 and for a specific system insectioné6,3
Up to now we have repeatedly used expressions such as "unidirectional

propagation” without specifying the meaning of this notion. It is well
known that for linear systems such a notion is closely related to the
concept of group velocity, but especially for non-linear equations,
this point seems to have had not 3o much attention in literature. In
an attempt to illuminate this subject somewhat, we give in section
5.4 a (physically acceptable) definition of unidirectional
propagativity in conservative evolution equations. This definition
and its consequences are then investigated for linear Hamiltonian
systems in section 5.5, and for non-linear first order Hamiltonian

systems in sections 5.6 and 5.7,
5.2, EXACT SEPARATION OF LINEAR SYSTEMS
In this section we consider linear equations of the form (1.3):

2.0 3, grad m(u,p) = -3, grad h(u,p).
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More specifically we assume that the functionals m and h are given by

(2.2) m(u,p) = <u,p>

.3 fi(,p) = 3 <u,Uw> + 5 <p,Np> + <u,Qp> -

These functionals are considered on the setdx®, wherein
(2.4) A: = {f €L (RD)] B =0 for [k[ 2k},

with ko some arbitrary but fixed positive number and £ denoting
the Fouriertransform of the function f. The operators U, N and Q are
assumed to be translation invariant pseudo differential operators
from d into A (this implies that the operators are bounded ond},
with U and N symmetric ond:U = U* and N = N*. Moreover,we shall

assume that -
2.5) U and N are boundedly invertible on A .
The equations (2.1) can be written explicitely as

3.u=-3 [Np+ Q*u]
(2.6) Btp = -ax [Uu + Qp]

t X *

and it is easily seen that a solution (u,p) belongs to Axd for
every t if the initial data belongs to 3 x 3 .

To look for a separation of these equations, we perform a regular
transformation of the form (1.10) and require that mixed terms
(containing both the a and the B variable) entering in the transformed
functionals T and i vanish. This gives conditions for the operators

A, B, C and D. If these conditions can be fulfilled we have obtained
an exact separation of the system (2.1). Reasoning along these

lines, the following theorem is a straightforward result. In the
formulation of it we use the decomposition of the operator 0 in its
symmetric and anti-symmetric part:

Q=0q +Q ,0 =0q , 0 = -0

s a a
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THEOREM 5.2.1. The linear system deseribed hy (2.1), (2.2), (2.3)

ean be exactly sepavated if the operator

@.7 wl s [QaU~1]2

is.positive definite. In that case we may define an operator S by

§=8,+5, where the symmetric part S, is defined to be the
(bounded) positive definite square root of (2.6):

(2.8) s 2w+ e, v 12

and where the anti-symmetric part is givenm by
(2.9) s =-q .U
- a. -

a

Then the operator S ig bounded and has bounded inverse

(2.10) sl - s*ss™y ! = s*(ss2 - sﬂz)'l =so !,
and the transformation
2.11) AxP 3 (u,p) > (a,8) € 2 xd

e regular and well-defined by

p=d+ 8 2a
(2.12) *
~, lu=sa-s8 28

and troensforms the funetionals m and h into

-1, %
Sg I(S p+u)

-1
S, (sp~uw) ,

m(a,B) = <S 0> - <5 _B,B>

~ 2 2
hia,B) = <{Uss + Sst}a,a> + <{Uss - SSQS}B,B>,
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such that the transformed equations are given by

@
Q
0

-BX(USS + Qs)a
{2.13)

@
™
H]

ax(USS - QS)B .
We shall end this section on linear systems with some remarks.

REMARK 5.2.2. For simplicity of exposition, assume that Q = 0.
Then S = 0 and
a

and the transformation (2.12) becomes

p=0o+B 20

(2.14) ~ -1
u = Sa S8 28

13
o
+
w0
[+

13
o

i
W
-

Using the identity

1

(2.15) %S(p + sy - é— sp-s" 1w,

e
Ll

we are able to comment on condition (2.5). Indeed, if condition

(2.5) is dropped,. it is easy to construct examples for which Sm‘

is a bounded operator on;b,' but § is not bounded on?d.

[A well known example is the linear equation for an elastic bar,

wvhich has N = I and U = -3 2. Then, using the symbols of these

operators, we have *
§2

a1 l

a 1
=NGT " == > ond,
K2 Tk 2

o
s . 2z, s .. ~2
from which it follows that S is positive definite, and thus §

is bounded, but 82 is not bounded. Consequently, o and B are

elements of A :

a:=p+Slued

1

B: =p-8 ue€h
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but there is no need for Sa and SR to be elements of &, although

the difference Sa-SBbelongs to A, according to (2.15)].

Although a further investigation of this matter might indicate that
such a separation can be given a mathematically sound base, from

a physical point of view a more satisfactory result is obtained if
condition (2.5) is fulfilled.

REMARK 5.2.3. In some sense, the character of a linear equation is
completely reflected in its dispersion relation. The dispersion
relation for the set of equations (2.6) can be expressed with the

symbols of the pseudo differential operators as
(2.16) -k as)z = kz.(ﬁ.ﬁ+§az).

and we see that a necessary condition for an exact separation to be
possible is that this dispersion relation admitstwo real—valued
(for k € RZ) solutionbranches w (k), which is true provided

ﬁ-ﬁ+§az > 0 (compare this with the requirement for the operator
(2.7)), Then

o, = kD, + k@B DY =1 0.840)

is the dispersion relation for the a—mode of (2.13) and
- ~ - AN oM i e A A _I\
w_ k.Qs k. (N‘U-PQa) = ~k. (u.ss Qs)

is the dispersion relations for the B-mode of (2.13).

5.3. REDUCTION FROM A CLASSICAL TO A FIRST ORDER HAMILTONIAN SYSTEM
THROUGH SYMMETRY.

In this section we consider a set of Hamilton's equations in the

variabhles u = ~8xq and p, such that {(c.f. (1.4))

_ _. &h
atu = Bx 3;-(u,p)
(301) -
&h
3tp ax E;-(u,p) .
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We shall show that if h satisfies some assumptions, the solutions
(u,p) of {3.1)corresponding to a restricted class of initial data
can be obtained from one first order Hamiltonian system (without
any approximation). For the surface waves to be studied in chapter 6
the assumptions are satisfied and the restricted class of initial
data has a clear physical meaning.

To derive the results, it is somewhat simpler first to perform

a linear transformation such as (1.13):
(3.2) u=D(a-B) , p= a+B
where D is any selfadjoint , invertible operator (cf. remark 5.3.5,

where the results are derived without such a transformation).

Then, with Ri(a,8) = h(u,p), the equations for o and g are (cf. (1.16)

- &
(3.3) ZBtDa = Bx s (o1, B)
sh
(3.4) ZatDB ax EE (x,B) &

For the following it is convenient to introduce the operator J

which is the inversion of the real axis with respect to the origin:
(3.5) \ Ju(x) ¢ = ul(-x) ,
for arbitrary function u ¢ RZ + R7. Note that J satisfies

<uyJv> = <Ju, v>

Yu,v,

<u, v> = <Ju, Jv>

such that

* 2
(3.6) J =J and J = Id.

Moreover, if A and D are pseudo differential operators with constant

coefficients, then
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) *
(3.7) JD=DJ if D=0D

: %*
(3.8) JA =-AJ if A= -A
HYPOTHESIS 5.3.1. The functional h satisfies
(3.9) fi(a,B) = R(B,a)

Ya,B .

(3.10) B, JB) = (a,B)

Differentiating the identity (3.9) with respect to a(or B),

there results:

=1

@.11) B = Twn v

Differentiating (3.10) with respect to o and B there results

*
(using J = J)

s &
E(¢ .li!) J (SG (J¢,J‘i’)
(3.12) Voo

sh &b
@V = I 5z 38,39) .

Now, applying the operator J to the equations (3.3), (3.4) we find
with (3.7), (3.8):

8K,

2at Dia =3 J 7=(a,B)
SK
23t DJB 3x J gg(a,ﬁ) s
and with (3.11) and (3.12) this may be written as
-, & ., &
23t D Jo ax 6("(Jot,JB) = 3x 68(JB,Ja)
- sh __. &h

23t DJIB = ~3x EE-(JG,JB) = 3x ia (JS,JG).

From this result we immediately obtain
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PROPOSITION :5.3.2. If § satisfies hypothesis 5.3.1., then we have:if
(0,8) 18 a solution of (3.3), (3.4)then (JIB,J0) i8¢ a solution of (3.3),
(3.4).

Stating explicitely that the initial value problem for (3.3),

(3.4) is assumed to have a unique solution, we can prove the following

THEOREM 5.3.3. If hypothesis 5.3.1. 8 satisfied, the unique solution
(@,B) of (3.3), (3.4) corresponding to any initial data (ao,SO) for
which

(3.13) a = JSO
satisfies
(3.14) | Coa(t) = JB(t) VY, .

t

alt) = JB(t), where Y 18 the solution of the

Moreover, we have Y(t)

initial value problem

‘ -y S2
(3.15) 9y DY = =3, (M

I

v(0) = ¢
wherein the (non—translation invariant) funetional g is defined by
(3.16) g : = 7 B, .

PROOF. If (a,B) is the solution of (3.3), (3.4) with (a(0), B(0))=
(ao,Bo), then according to proposition 5.3.2.,(JB,Ju)is also a
solution with (JR(0), Ja(0))= (JBO,‘JaO). Now, if o, and Bo satisfy
(3.13), then (JBO, Jao) = {aO,BO). Hence, in that case (a{t),B(t))
and (JB(r), Ja(t)) are both solutions of (3.3), (3.4), corresponding
to the same initial value. Them a(t) = JB(t) (and B(t) = Ja(t)) by
the uniqueness assumption. For such a solution we may insert

B{t) = Ja(t) in (3.3) and find that a has to satisfy the equation
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&h
29, Dy = =3 (Y, V).

This is precisely equation (3.15) as follows from differentiating

the functional g given by (3.16):

S8y . S &
4 6Y(Y) salYs T} +J GB(Y, ),
which can be written using (3.11) and (3.12) as

&g\ _ oh Sh,. .y _ 0B
b = I+ T ) = 2, Y)

This proves the theorem. o

These results are now easily reformulated in terms of the

original equation (3.1).
THEOREM 5.3.4. Suppose h(u,p) satisfies

(3.17) h(u,p) = h(-u,p)
Vu-P s

(3.18) h(Ju,Jp) = h(u,p)

and assume that the initial value problem for (3.1) has a unique
solution. Then the solutions (u,p) of (3.1) which correspond to intitial
data {uo,po)fbr whieh

Juo = -uo . JP =p )
satisfy

Ju(t) = -u(t)

(3.19) vt > 0,
Jp(t) = p(t)
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Moreover, for arbitrary, selfadjoint pseudo differential operator D,
these solutioms can be represented as

(3.20) u = D(y=Jy) , P =Y +Jv,

where Y ig the solution of

= - LSE
3, DY 3 GY(Y)
(3.21)
Y(0) = 5 (0 'u_+p,)
with
(3.22) gly) = % h(u = D(y=Jy), p =v+Jy).

REMARK 5.3.5, Once it is observed that there exist solutions

with the property (3.19), it is possible to define a function vy as
in (3.20). Theﬁ the equation for v can be obtained with .the
variational principle (1.53) for (3.1). Inserting (3.20), with

D =1Id for simplicity, there results a functional A(Y) ¢ = CA(u,p):

(3.23) Aly) = - [dt [<y + JY,3t3x-](Y—JY)> + 4gly)] .
) I
Using the relations
-1 1 -

% -
3 J = J3 and J3 = 3 J
X X X X

P —_
(where Bx is the adjoint of Bx l, given by 4.(2.9)), (3.23) may

be simplified to
(3.24) A(y) = ~4 Jdt [ %‘<Y, 3t3x—IY> + g(nl,
where we have omitted some uninteresting terms at the endpoints

of the time interval. Statiomary points of (3.24) satisfy the

evolution equation (3.21).
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5.4, DEPINITION OF ONE-WAY PROPAGATIVITY

Consider a first—order Hamiltonian system described by

= &
(4.1) 3, Du = -3 =(u),

It is our aim to investigate here what sense can be given to such
statements as "equation (4.1) describes unidirectionally propagating
waves". We shall give a definition of unidirectional propagativity,
the idea of which is quite simple: intuitively it is clear that,
when speakiﬁg about propagation, we mean propagation of some
"property" of the system (such as wave~form, energy etc.). Let E(u)
stand for such a property, depending on the considered solution u.
Then it must be assured that, when considering E{u) at a fixed

place x as a function of time, changes in the value of E(u) are only
caused by propagation and not by any dissipative effects. Therefore,
it is argued that especially comserved densities are able to
"measure" propagation. With this observation in mind, the following

definitions are proposed,

DEFINITION 5.4.1., Let E(u) be any conserved density for (4.1) and
e(u) the corresponding invariant functional: e(u) = [ E(u)dx. The

centre of gravity of E(u), denoted by XE(u) (t) is RI defined by

(4.2) J (quE). E(wdx =0 ,
RZ .
Hence, XE is a time-dependent functional of u, which can be defined

for solutions u for which e(u) # 0. The velocity of E(u), denoted
by Vé(u)(t) is defined to be the velocity of the centre of gravity

(4.3) VE(u)(t) : = Bt XE(u)(t) .

[1f T(u) is the flux density corresponding to E(u), i.e. if E and T
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satisfy

(4.4) Bt E(u) + ax T{u) = 0

for solutions of (4.1), VE can be expressed as
_ JT(uw)ax

(4.5) Vg(u) alary o 1.

We say that E is propagating to the right (to the left) fora

solution u at time t if VE(u}(t) >0 (VE(u)(t) < 0 respectively).
Equation (4.1) is said to be unidirectionally propagative (in the
strict sense) with respect to the conserved density E if VE(ﬁ)(t)
can be defined for every solution (i.e. e(u) # 0 for every u) and

has the same sign for every solution and all time.
With respect to this definition some remarks have to be made,

REMARKS 5,4.2., (i) Although the centre—of-gravity velocity of a
conserved density has some physical significance, it is by no means
the only possible method to describe propagation phenoména. An
important practical reason to deal with the above described notion
is implicitely given in the next sections: the possibility to apply
this definition and to formulate, with relatively ease, general
conditions on D and h under which equations of the form (4.1) are
unidirectionally propagative with respect to some conserved density.
Furthermore, an obvious requirement that must be imposed on any
sensible definition of propagation is that, if the equatinn under
consideration admits a solution which travels undisturbed in shape
with constant velocity ¢, say u(x,t) = ¢{x-ct), the propagation
velocity to be defined must equal c for this special solution, for
all time. Because of the relation Bt E($) = —ch E(¢) for

¢ = d{x-ct), this requirement is satisfied by the centre-of-gravity
velocity of every conserved density.

(ii) As a consequence of the proposed definition, with every
conserved density there is associated a velocity for every solution.

Suppose E. and E2 are two different conserved densities (possibly

1

with the same invariant functional!) Then, if V} and V2 denote the
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corresponding velocities, the velocity V_, of the conserved density

12
E]2 = El + E2 iz easily found to be
v _ Vl°el + Vz.e2
12 e, te,

1
for every solution u.
Furthermore, in general there is no evidence at all that if equation
(4.1) is unidirectionally propagative with respect to El’ the same

is true with respect to E,. However, for linear equations with

constant coefficients it iill be shown in section 5.5 that if the
equation is unidirectionally propagative with respect to some
definite, quédratic conserved density, the same is true for all
quadratic conserved densities. [Moreover, this unidirectional
propagativity is shown to be true if and only if the group velocity
of the linear gquatiou is definite. (This result gives also some
confidence in the proposed definition)]. For non-linear equations
no such strong relationship between the propagativity of different
conserved densities has been found. \
(iii) Closely related with the foregoing remark is the following
observation. If E is a conserved density, and T the corresponding
flux density, then E*, defined by

*

E (w) = E) + 3 F(u) ,
where F(u) is any expression in u satisfying F - 0 for |x| » = on
the considered class of solutions, is also a conserved density with
the same invariant functional

*
e(u) = J E{u)dx = I E (u)dx ,
- * « * » »
The flux density T corresponding to E is given by
*
T () = T(uw) - 3, F(u) ,

* * .
and if X, ¥ denote the centres of gravity of E and E respectively,

*
with corresponding velocities V and V we have
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X * -1
() - X (u) = e(u) .JF(u)dx

and :
V(w) - V () = e{u)".atJF(u)dx = e(u)“,f[r(u)-T*(u)JAx'.

From this it follows that adding a term BX'F to the density, the
corresponding velocity will change in general: only if the total
flux is not altered, the velocity remains the same. This may seem
a serious shortcoming of the applicability of the proposed definitionm.
However, relying on the physics of the problem at hand, the
physically most relevant densities can often be distinguished
from less relevant ones. For instance, among all the densities
which give the functional that can be interpreted as the total
energy of the system, we take the positive definite demsity (if
possible) as the energy density, whose centre-cof-gravity %elocity
is then interpreted as "the energy-velcéity".

{iv} Conserved flux property.

In general the velocity functional is not an invariant functional.
However, if the conserved density E(u) has a conserved flux, i.e.

if the total flux [T(u)dx itself is an invariant functiodal:
(4.6) . at jT(u)dx =0,

then VE as given by (4.5) is an invariant functional. In that case,

it follows from (4.3) that the centre-of-gravity is a linear

function of t:
4.7) X(u)(t) = t.V(u) + X (u) ,

where Xo is an invariant functional (the position of the centre

of gravity at t = 0). Inserting (4.7) into (4.2) gives
J{x E{u) - t T(u)ldx = Xo(u).{E(u)dx.

This givesrise to the following invariant functional which contains

the x and t-variable explicitely:
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(4.8) BtJ{xE(u) -t T{u)ldx =0 .

(v) Instead of considering all the solutions of a given equation,
one is often only interested in a subset S, say, of the complete
solution set. Typically, this situation is encountered if it is
a-priori known that only solutions from this subset S describe the
behaviour of a physical phenomenon in a required approximation.

In that case, the above described definition of unidirectional
propagativity of an equation is too strict, and one would like to
define this notion only with respect to solutions which lie in S
by requiring VE(u) to be of the same sign for all solutions from S.
In section 5.7 we shall demonstrate this idea for the BBM equation,
which equation is known to be a good description of "fairly long,
fairly low" water waves. There it will be shown that the energy
density is propagatingin the same direction for any solution which
can be qualified as a "fairly long, fairly low" wave, which

property is lacking if the complete solution set is considered.

{vi) Finally, we note that the proposed definition makes also sensein

those cases where one is dealing with more general systems than
those described by (4.1): the only requirement is that there exists
a local conservation law, in which case the velocity of the centre
of gravity of the conserved density is again given by (4.5). An

example will be given in the next section.

5.5. PROPAGATION IN LINEAR SYSTEMS.

Linear first order Hamiltonian systems are described by an equation

of the form
{5.1) | atu = —Sx Lu,

" where L is some selfadjoint 6perator. The Hamiltonian for such

equations is the quadratic functional

(5.2) h(u) = % <u, Lu>.
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In the following we shall restrict to the simplest class of operators
viz. the class of pseudo-differential operators with constant
coefficients. (When we speak about a "pseudo-differential operator"
in the following we shall mean a pseudo-differential operator with

constant coefficients).

THEOREM 5.5.1 Any linear density E(u) = Pu, where P is a pseudo-
differential operator, is conserved; the centre of gravity and its
velocity can be defined for solutions for which JPu dx # 0 and we
have

(5.3) v ) = 1),

where L denotes the symbol of the operator L.Hence all linear
A | .
densities are propagatingwith the same constant speed L(0), independent

of the particular solution.
PROOF: As P commutes with Bx we have
9P +3 PLu=20.

tu X

From this it follows with (5.2) and (4.5) and Fouriertransformation

(0 denotes the Fouriertransform of the function u) that

[pLu dx _ $(0).f(0).u(0)

~ = L.(0)
JPu dx (0).u(0)

V(@) (£) =

These simple observationsprove the theorem. o

Quadratic conserved densities are more interesting and have
been studied in great detail. It is at this point that the concept
of group-velocity enters the discussion of propagation. The
dispersion relation for equation (5.1) is

(5.4) w = k.L(k),

and corresponding to the group velocity %E-we define an operator G.
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DEFINITION 5.5.2. The group veloeity operator G is defined to be
the pseudo-differential operator with symbol

A 4 d A
(5.5) CGK) ¢ = i wk) = EE(R.L(k}) .
LEMMA 5.5.3 4s L 1s self~adjoint, the operator G is selfadjoint.
Y

PROOF: As ﬁ(k) is an even function of k (k€ RL), G is an even function

of k for k € RZ. Thus G is a selfadjoint operator, 0

LEMMA 5.5.4. Any quadratie density E(u) = Pu.Qu where P and Q are
pvseudo-differential operators,is a conserved density for the
equation (5.1).

PROOF: Generally, E(u) = Pu,Qu is a conserved density of (5.1) if
P and Q satisfy

* _ *
(5.6) PQdL=L13 PQ,

in which case the flux density correéponding to E is given by
X
G.7) T(u) = J fPu.Q BxLu - PaxLu.Qu](g)dg .
P
For pseudo-differential operators P and Q condition (5.6) is clearly

satisfied. a

As a typical result concerning the relation between group—
velocity and the propagation of conserved densities by monochromatic

solutions of (5.1), we quote the following result

THEOREM 5.5.5. Let E be a quadratie comserved demsity with
corregponding flux density T. Then E ie propagatingwith the group
velooity in the following sense: for monochromatic solutions
d(x,t)= @0. exp 1(kox - mot), where @O 18 a constant and w, = m(ko)?
the following relation holds:
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T . &
(5.8) Ty - ok -

This theorem is well known and can be found e.g. in
de Graaf & Broer [48]. With the proposed definition 5.4.1. it turns
out to be possible to relate the group~velocity to non-periodic

solutions.

THEOREM 5.5.6. Consider a definite conserved quadratic density

E{u) = Au.Au, where A i3 some pseudo-differential operator. Then the
centre-of-gravity velocity of this densgity is an invariant functional
and i3 given by

(5.9) v (w) = <Au, aw !, <Au,G Aw ,

where G i8 the group velocity operator. Hence Ve (u) equals the
weighted group velocity with weightfunetion ]K\l
PROOF: Inserting equation (5.1) directly into definition (4.3) it
follows that

vE(u)(;) = 2.<Au,Au>—1. <Au, - xaxL Au> .
With Parseval's theorem and the expression (5.4) we find

-~ - ~ ~
VE(u)(t) = 2 <Au,ﬁ> 1. <Au,9k[w-Au]>

and after some straightforward manipulations

A A =]~ o~ -
(5.10) VE(u)(t) = <Au,Au> l.<Au, %%’.Au> = <Au,Au> 1.<Au,G Au> .,
With Lemma 5.5.4., it follows that VE is an invariant functional and
the theorem is proved. ‘ S o

An immediate consequence of this theorem is
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COROLLARY 5.5.7. Equation (5.1) is unidirectionally propagative (to
the right) with respect to any definite, conserved quadratic density
if and only if the group velocity is mon-negative for all wave
numbers : ' ‘

(5.11) &) >0 forall k€RL.

REMARK 5.5.8. For more general conserved quadratic densities of the
form E(u) = Au.Bu, A and B pseudo-differential operators, the
corresponding centre-of-gravity velocity is found to be the invariant

functional
(5.12) VE(u) - <Au,Bu>-l. <Au,G Bu> .

To conclude this section on propagation in linear systems, we
congider a classical Hamiltonian system and relate the energy
propagation of the complete system to the energy propagation of the
subsystems in which it may be separated. By way of example we restrict

to the simple set of equations

Btu = -3x Lp
(5.13)

atp = ~3x Lu

where L = A?, with A some positive self-adjoint operator. The
Hamiltonian for (5.13) expressed in the non-canonical variables

u and p

(5.14) B(u,p) = 5 <P, Lp> + 3 <u, Lu>

is the total energy of the system and is an invariant functional

for (5.13) to which there corresponds a local conservation law of
the form (4.4). Hence the velocity of the energy propagation may

be defined in a meaningful way. Defining the centre of gravity

X(u,p) of the total energy density %-(An.Au + Ap.Ap) by
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f(x—X) (Au.Ay + Ap.Ap)dx = 0 ,

its velocity can be evaluated along'the gsame lines as was done in
the proof of theorem 5.5.6. with the aid of Fouriertransform

techniques:

h(u,p). V(u,p) <Au,xABtu> + <Ap,xA3tp>

= <Au, - xaxLAp> + <Ap, - xaxLAu>

= 3 <A(up), = X _LA(+p)>= 3 <Alu-p), = X3 LA(u=p)>
= l.<§.(§+§0g933.(3+§)> - l<3.(ﬁ-§),éngi(g.§)> ,
4 ik 5 dk
thus .
(5.15)  V(u,p) = % ‘h(u,p) ! [<ACu+p),GA(u+p)> - <A(u-p),GA(u-p)>T,

where w is a solution branch of the dispersion relation of (5.13):

(5.16) w(k) = k. LK)
" and G is the group velocity operator with symbol %% . Under the
transformation
5.17) p=0a+B
u=0o-8

the equations for o and B become -

{(5.18) ata = -BxLa

BtB = BxLS .

and for these separated equations the energy velocities are given by.
(cf. (5.9)):
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(5.20) Vi) = el ! . <Ax,GAw
(5.21) | V() = -e(B)”! . <AB,GAB>
respectively, whére

d(a) =<q,la> = <A0,Ac>

is the invariant energy functional for the g-mode (5,18) and e(B)

is the invariant emergy functional for the B-mode (5.19). Note that
(5.22) h(u,p) = e(a) + e(B),

and with (5.20) and (5.21) the expression (5.15) can be written as

e(@) V(8). e(B)

(5.23) V(u,p) = V(o). T,
h(“:p) h(ll,P)

This result clearly shows how the g~ and the B-mode contribute to
the energy propagation of the complete system. (Note that all the

functionals entering in (5.23) are invariant functionals).

5.6. ONE WAY PROPAGATIVE FIRST ORDER HAMILTONIAN SYSTEM.

In this section we shall consider first order Hamiltonian systems

as introduced in section 4.2.:

&h
(6.1) - atu= ax-&;(u) s

where h is a translation invariant functional. As was observed

before, this equation admitsthree invariant integrals

(6.2) 2(u) = {u dx mass—Ffunctional
Rl
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(6.3) m{u) = %-<u,u> momentum~functional
(6.4) hu) * energy functional,

It is possible to write down the local conservation laws
corresponding to these invariant integrals in a fairly general

way. From these expressions the velocities of the conserved
densities are then found with (4.5). However, these general formulae
are not very transparent, and for shortness we shall thereforg

restrict to two simple classes of equations.

DEFINITION 5.6.1. Equation (6.1) is said to be a loeal equation if

the operator %%-is a local operator, i.e. if %% {u) (x) depends

on u and its derivatives with respect to x at the point x only.
Equation (6.1) is said to be a non—local equation if %% is not a

local operator.

EXAMPLE 5.6.2. The k.d.V equation 4,(1.1)

6.5 du =0 (u+gul+ 0 )

is a local equation, but the B.B.M. equation 4.(1.2)
2, _ 1.2

{(6.6) 3t(l 3x Ju = ax(u tzu )

is a non-local equation.

Generally speaking, local equations are rather easy to deal
with. The velocities of the conserved densities are usually readily
found and sufficient conditions can be given which assure that the
equation is unidirectionally propagative. For a simple, but
representative, class of local equations we shall summarize some
results. Non-local equations are usually more difficult. Although
the expressions for the velocities of conserved densities may be
written down, these expressions are functionalg with non-quadratic,

non-local integrands, the positivity of which is difficult to
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investigate. Nevertheless, for a special class of non-local equations
we shall derive some remarkable results, especially in connection

with the propagation of the energy density.
A class of loecal equations.

We consider local equations of the form (6.1) for which the

Hamiltonian h(u) is given by
(6.7) h(u) = de [N(w) + S(ux)] s

where N and 8§ are smooth (Cz-) functions of their arguments with

derivatives n and s respectively:

ny) =N =H @ yer

s(z) = 8'(2) = %g'(z) z € RL

(primes denote differentiations with respect to the arguments).

We assume that
N(0) = 5(0) = n(0) = s{0) =0 :

N{0) -.S(O) = 34(0) to assure that h{p) = g%(o) =0 and s8(Q) = 0 is

no restriction., Equation(6.1) with h as in (6.7) then reads
(6.8) - Btu = —3x(n(u) - ax s(ux)) .

In a straightforward way the following results can be obtained

LEMMA 5.6.3. The centre—of-gravity velocities of the comserved
densities

(6.9) u, u.u . N{u) + S(ux)
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are given by

(6.10) V(u) = [Ju dx]“].[jn<u>dx}

(6.11) V(u) = 2. <u,u>-l. rdx[u.n(u) - N(u) + 2u .8(u’) - S(u )]
} X x X

6.12) V(u)

i

h(u)-].de[%nz(u) + 2u 5@ ).n’ () + %(Bxs(ux))z]

which are called the mass velocity, the momentum velocity and the
energy velocity respectively.

It is now a simple matter to state conditions for N and S

that assure that the momentum— and/or energy velocity are positive
for all solutions:
LEMMA 5.6.4. Equation (6.8)7s unidirectionally propagative to the
right with vespeet to
(i) the momentum density if

yon(y) - N(y) >0, 2z.8(2) - $(z) >0 Vy,z € R
(ii) the enenergy density (required to be posttive) if

N(y)> 0&n'(y)> 0, S(z2)>0 & 2z.5(2)>0 Vy,z € Rl
(iii) both the momentum—and the energy density if

N(y)> 0& y.n(y) - N(3) >08&n'(y) >0 Vy€RI

5(z)> 0 & 2z.8(z) —~ 8(z) >0 Vz € RZ.

REMARKS 5.6.5.

(i) Linearizing equation (6.8) gives
(6.13) du=-3_(a"@.u-s'(0). 3% ) ,
t X X

which equation has the dispersion relation
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wk) = n'(0).k + s'(0).k°

and group velocity

db') 1] 1] 2
ai(k) =n'(0) + 3 s'(0).k",

The velocity functionals of the momentum density uz and the
(linearized) energy density —;-n'(o).u2 + % s'(O).ux2 of this linear
equation (6.13) (as given by (5.9)) are easily seen to be the
quadratic terms in a Taylor expansion of the integrands of (6.11)
and (6.12) respectively.

(ii) As u and u2 are conserved densities for (6.8), the mass

velocity (6.10) is an invariant functional if
2
n(u) =oqu +fu, oa,B €RL.

In that case, u is a conserved density with conserved flux and
according to remark 5.4.2.(iv) there exists an invariant functional

which depends on x and t explicitely; in this case
(6.14) ax de [xu = t n(uw)] =0.

(iii) The KdV equation (6.5) belongs to the considered class of

equations with

2

1 3
N(y) =5y +

v, S(z) = - + 22

1z
> .

O\

This equation is neither unidirectionally propagative with respect
to the momentum nor with respect to its energy density, as may be
confirmed from the expressions (6.11) and (6.12), The mass velocity

is an invariant functional, and (6.14) reads
( 1 2
(6.15) Bt de [xu - t(u + Fu )yl=0.

This functional has already been met in section 4.3. in a slightly
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different form as the functional Cl(u).
A class of non-local equations.
Here we shall examine equations of the form
(6.16) 3, Du-= -ax 6u(u)’
where the functional e is given by
6.17) | é(u) = JN(u)dx,

with N a smooth (CZ-) function of its argument, n(u) : = %§ (u),

and N(0) = n(0) = 0, and where D = A2 with A some positivegselfadjoint
pseudo-differential operator. From section 4.2 it follows that via

a simple linear transformation equation (6.16) can be brought into

an equation of the form (6.1), but except when Abl is an ordinary
differential operator this equation will be of non-local t?pe. In
thesecaéesit is. somewhat simpler to deal directly with the form
(6.16). The three invariant functionals for (6.16), corresponding

to (6.2), (6.3) and (6.4), are given by

{6.,18) L{u) = {Du dx (mass)
(6.19) m(u) *‘% <u, Du> (momentum)
(6.20) e(u) = }N(u)dx {energy)

The mass velocity is again given by (6.10), and remark 5.6.5.

(ii) applies as well: if Jn(u)dx ig an invariant functional, then
(6.21) 3t jdx [x Du~ t n(w] =

For the following we define the (se1f~ad301nt) operator G as the

pseudo~differential operator with symbol G where

6.22) Sx) = ak[k.'ﬁ“‘(k)] =5 ). - k.ﬁ“‘(k).akﬁ(k)] )
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[Note that if n has a linear term, say n'(0) = 1, then

wlk) := k.ﬁ-l(k) is the dispersion relation of the linearized
equation (6.16), and G(k) the corresponding group velocity. However,
if equation (6.16) does not admit a formal linearizatiom, i.e. if
n'(0) = 0, this interpretation of w and ¢ makes no longer sense,

but the results to be derived remain valid!].

THEOREM 5.6.6. The centre—of-gravity veloeity of the energy density
18 given by

ce(w) V.<n(u), G n(u)> .

(6.23) v () (e) = -;7

Consequently, equation (6.16), (6.17)ls unidivectionally propagative
to the right with respect to the energy density (assumed to be
positive) ©f and only if

(6.24) G(k) >0  Vk € RZ.

PROOF: The proof of this result is analogous to the proof of theorem
5.5.6: using Fourier-transform techniques and writing n for the
Fourier-transform of the expression n(u) we find

3thN(u)dx = jx.n(u).atu dx = {n(u).(-xBxD-] n(u))dx =

-1 F‘lm).é(k}.ﬁcwdk.

Hence

1 -1 anA 1 -1
(6.25) VE(u) =3 e(u) ,<n,G.n> = 7 e(u) ".<n(u),6 nlu)>,
and the theorem follows. o

REMARKS 5,6.7.
(i) The BBM equation (6.6) belongs to the considered class of

equations with

2 1 1
(6.26) D=1- SX . N = FU tpu.
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For this operator D, the function G is not positive for all k € RI:
N 2.~ 2
(6.27) gay = a2 kD).

Hence the BBM equation is not unidirectionally propagative with
respect to its (non-definite) energy density (See however the
results of the next section for a restricted set of solutions).

(ii) More generally, if D has symbol

(6.28) D) = (1+a%k%)°  with a €RL, 0 € RZ,

A

then G is given by

(6.29) Sy = (1+a2k3) 7! (1e (1-20) 2%y

Hence, for such operators, condition (6.24) is satisfied if and

only if

3] e

(6.30) g <

The energy velocity as given by (6.23) is remarkably simple.
However, matters are much more complicated for the velocity of the
(positive) quadratic momentum density Au.Au. Using Fourier
transform techniques in intermediate steps it is possible to derive

the following result.

LEMMA 5.6.8. The centre—of-gravity velocity of the positive
momentum density can be written with the operator G as

(6.31) V(u)(t) = <Au,Aw> ', ldx [u.n(u) - 2N(u) + n(u).DGul.

LI

2

Note that for linear equations, N(u) = 7 u”, (6.31) agrees with

1
2
(5.9). But in the more interesting case of non-linear equations it
seems to be impossible to derive conditions on N and D such that

{(6.31) is positive,
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5.7. ONE WAY PROPAGATIVE LONG-LOW WAVE MODELS.
In this section we shall once again examine equations of the form
(?-]) 3t Du = -ax n(u)

where D is a pseudo-differential operator and n{u) a smooth

function of its argument. The energy density N(u), with n(u) = %%(u),
N(0) = n(0) = 0, is no longer required to be positive. In view of

the results of the foregoing section we shall only consider the
velocity of the centre of gravity of the energy density. This

velocity is given by (6.23).
(7.2) V{u) = %-.e(u)_l.<n(u),c n(u)>

where G is the pseudo-differential operator with symbol given by
(6.22). We shall suppose that

(7.3) n'(0) =1,

such that G can be interpreted as the group velocity operator of
the linearized problem. In the foregoing section it was shown that

the BBM equation
2 | 4
(7.4) (1 Bx )Bt u Bx(u tyu )

is not unidirectionally propagative with respect to the energy
density. ﬁowever, the BBM equation (as many other equations of

this type) is derived as an approximate equation for the description
of "fairly long, fairly low" waves (c.f. chapter 6 for more details
about this épproximate chapter of the equation). Therefore it is
reasonable to investigate the positivity of the functional (7.2)

on the restricted class of functions which can be described as long,

low waves. To make this idea more concrete, let us suppose that we
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can define two functionals € and A whose valuese(u) and A{u) are
a measure of the height and of the "length" of the function u
respectively. Then the class of long, low waves can be described as

the set of functions satisfying

e(u) < €,
(7.5 ,
Alu) > AQ

where €, and Aa_l are small positive numbers. Now suppose that
numbers €y and Ao can be found such that VE(u) is of the same
sign (positive say) for every function u which satisfies (7.5).
Then, if u is a solution of (7.1) which satisfies (7.5) at some
instant ty VE(u)(t) will be positive at t = t and for gimes

t>t as long as u(t) satisfies condition (7.5), 4 prioﬁi,it is
by no means clear that solutions corresponding to initial data
which satisfy (7.5), satisfy this condition for all t > 0.
Especially for non-linear equations this is a critical point. To
demonstrate this for the long wave length condition for insatance,
consider the solution of (7.1) corresponding to an ihitial value
g(x) whose Fourier transform g satisfies g(k) = O for Ikrzge,

k € R (i.e. g consists of long wave components only). A Fourier
transformation of equation (7.1) shows that if the equation is
linear, then G(k,t) = 0 for ]kfzko for all t > 0, but if the equation
is non-linear then G(k,t) # 0 for almost all k € RZ,no matter
how small t > O: <nitial long wave components generate short wave
ecomponents tngtantly.

From these remarks and observations the following definition will

be acceptable,

DEFINITION 7.1. Equation (7.1) is said to be unidirectionally
propagative with respect to the energy density for long waves if
positive numbers €, and Xo can be found such that VE(u)(tli 0 for

all t > 0 and every solution u whose initial value satisfies

e(u(x,00)< g

(7.6) Au(x,00)> A, .
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For the following we suppose that the symbol of the group

velocity operator G can be estimated as
(7.7 e z e[ - Al xewm

wherein é(o) and % are positive numbers. For long wave models such
an estimate is generally possible: the long wave components propagate
with the largest, positive speed (the groupvelocity has a positive
maximum at k = Q). With (7.7) the velocity funectional (7.2) can be

estimated as

~ l n(u)llz 2 |‘3 n(“)|‘2
(7.8) ' V(W) 2 €0) .{1-2.»-——"—-——2—4
e {[n¢uw) ]

From this it immediately follows that V(u) > 0 if
7.9 Au) 2 ¢,

if the functional A is defined by

L el

(7-10) )\(u) = W .

REMARK 5.7.2. The functional A defined by (7.10) can indeed be
interpreted as an averaged wave length : 2‘\(u)-2 is the weighted average
of kz with weight function 15?3)12. Another way to interpret  A{u)

as a measure of the "length" of the function u follows from the

observation
(7.11) A(uu)'z =wtaw?  for w (0 = v(ux) ;
then K(un) > for u =+ Q.
In the following we shall show that it is sometimes possible to

find conditions of the form (7.6), i.e. conditions imposed on the

initial data, which assure that the resulting solutions satisfy

condition (7.9) for all t > 0, For simplicity we shall restrict oursel-
ves to a specific equation, viz. the BBM equation (7.4). Note that this
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equation satisfies (7.7) with

(7.12) Gy =1, =3,
For the sup norm | |oo and the first Sobolev norm l!‘iil, defined
by - ‘
2 2 2
lul o= sup JuG [s]lal " == [luf|® + o 17,
x €RL

we shall need the estimate in the following lemma.

LEMMA 5.7.3. For arbitrary u € H (Rl)we have u € TO(RL)and
2 1 2

(7.13) lul,” < 7 lull,

PROOF: This result has already been recalled in section 0,2.3. (the
Embedding theorem). To give an independent proof of the reélation

(7.13), note that the first Sobolev space HI(RZ) (=H01(RZ$) can be
defined with Fouriertransform techniques as ( 1 denotes the Fourier

transform of a function u):
1 - 2.4
H (RL) = {u€ L2(R1)| u. (149 % € L,(RD}.

Then for u € H](RZ) :

o

R I P 1 - i . 2.4 2.~}
u{x) = 72“—J u{k)s e dk m] u(k). (142 (1+K7) “dk
-_—Cry -l
and thus
2 1 { 2, 44 2 2.~1 1 2
lul,, i’z‘««'] 1+ . Ju(e)| “dk. J (4% dk = 5 ||u||1 .
which proves the estimate (7.13). ‘ o

Concerning the existence of a classical solution of ithe initial

value problem for the BEM equation, we quote the following result:

THEOREM 5.7.4. Let u € C2(R n HI(R ). Then there exists a unique
(classieal) solution u of equation (7.4) with
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u(x,0) = u (%)
and u(.,t), 3tu(.,t) € CZ(RZ) n H](RZ) for all £ > 0.

Consequently, the momentum and energy funotional are neatly defined

and are invariant:

o(u) = miu )

o
e(u) = e(uo) ve>0.

PROOF : The proof of this theorem can be found in Benjamin et al [39]n
We are mow in a position to formulate the main result,

THEOREM 5.7.5. The BBM equation (7.4)ie unidirectionally propagative
to the right with respect to the energy density for the clase of
long, low waves, which class Zs characterized as the solutions whose
initial value satisfy

ux,0) € CZ(RZ) n H‘(Rl)
(7.14) Mu(x,0)) > Xo
e{u(x,0)) < €

for sufficiently small positive wnumbers €, and lo—l‘ Here, * ig the
Ffunctional defined by (7.10) and

E(u) = Hu[[]‘

PROOF: In view of the estimate (7.8) and result (7.12) we have to

show that 3\0 and €, can be found such that
- 1
(7.15) IORSE

for every t > 0 and every solution with initial data satisfying (7.14).
Let u denote the initial value and define § > QO by
2

21
1,2 - 4 82,
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As
1 2 1 2
{(7.16) m(u) = 3 < u, (1 - 3 u > = E{iuiil

is an imvariant functional, it follows that

lall, =% ve>0

and with (7.13) that

luf, <8 v £>0.

Then we can derive the following useful estimates for the functionals

e and 3 :

(7.18) %(1 - %5)-Hqu < e(u) i%(l + 13 6).lu]|? Y £50

and, provided §<2,

- znunf_)< 2 paes \2 [ Hall] )
(7.19) (1+ls) {Hul!z 1] <A(uw) _(]_%6) (H || -1

2
Y t>0.
As e is an invariant functiomal, it follows from (7.18) that
' 1 2 1 2
(7.20) (-3 8- Jlu 1% < (a+ 5 6. {u]] Ves0.
Writing Ao = A(u(x,0)) it follows from (7.19) that,
2
IENI -
(15 ) [ 1)_<_A 2,
+-—6 IluH °
and, as ]lui%l is invariant, we obtain, provided §<1:
(7.21) Hqu <1+21 72 (H%B)z
+
" ° -8 Yt>
T2 o T £20
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With (7.20) and (7.21) we can majorize the right hand side of (7.19)

and obtain

i 1
1+ 1 1+ Lo\ 2
(722 A F < (P (—) . lmo 22 )-— 1
« - =5 - 38 i- 58 =

This result shows that 5’\(u)-2 can be majorized uniformely with
respect to t in terms of initial value § and Ao. Moreover, it is
easily seen that the right hand side of (7.22) can be bounded above
by %»if 8 and l;l are taken sufficiently small. This shows that
condition (7.15) is satisfied for §(and hence eo) and,ko sufficiently
small. With the extra observation that e(u) is positive if 8<3, as

follows from (7.18), this proves the theorem, o

REMARKS 5.7.6. (i) From a physical point of view the foregoing
theorem is satisfactory because the requirements define the functions
to be low waves, as follows from the estimate (7.13), and to be

long waves in the sense of remark 5.7.2. However, it is possible

to show that the velocity functional (7.2) is positive on a larger

class of functions. Therefore, define the functional A by

.. m(a)
(7.23) Adu) ota)
Then it can be shown that
(7.24) V(u) > 0 for every u € SY’

where SY is the get of functions for which

e = o], <
(7.25)
Au) < T'Qk)

for some Y; 0SY<2, where the function I(Y) is given by

1
1.-1 {1 TIM
ey = e g e T )
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[Note that I'(0) = % s I'(2) = %‘ and

]
(7.26) r'(y) > 1 for 0<y<yo=.;.( %“%)}-

As the functiomals ¢ and A are invariant functionals for the

BBM equation, it follows that V{(u)(t) > 0 for all t > 0 for every
golution whose initial value satisfies condition (7.25). Although
the functional A has the ad#antage of being an invariant functional,
its relevance as a measure of the "length" of a function is less

clear. Nevertheless, for functions

“5,u(X} = & v(ux)

we have

g, 9= [I11% + 2l 2] 11w« Lf Po)”
such tbat

A(u, Y+ 1 for S,u-~>0.

S,u

From this it follows'that for the class of long, low waves A'w i,
and hence, because of (7.26), this class is included in the set SY
for vy < Yy This shows that the result stated above includes the
contents of theorem 5.7.5.

(ii) It is illustrative to apply the above described method to more
general equations of the form (7.1) where D is given by (6.28). The
essential tools used above to derive the results are {(a) the
existence theorem, (b) the estimate between | fm and the invariant

functional m:
2
(7.27% [uIoa < const, m{u).
{Smoothness of the function n is assumed; an estimate as (7.7) is
possible for the considered class of operators D.). In fact,

reviewing the proof of theorem 5.7.4., it may be seen that an

estimate of the form (7.27) is essential to prove the existence of a
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solution for all time: With the contracting mapping principle, the
existence of a regular solution can be proved over a limited range
of time [0,T ], where To depends, for given n, only on iu(t=0)|oo
and f}u(t=0)f}0, where || [IU is the norm of the Sobolev space

Hg {0>0):

<

1% = {u €L, | s.auh?e L},
ull,2 = [ andy®. 1612 ax .
As

(7.28) n(o) = 3| [u]| %,

if an estimate (7.27) is available, T0 depends only on m = m(u{t=0)).

Taking u(To) as initial value, the process can be repeated to prove
1 TO depends
- T =T , such that

o o

the existence over the time interval [To, T1]. Then T
only on m(u(TO)), and as m(u(To)) =m, T}
T] = 2To. Repeating this grocess, the existence can be pgoved for
all t > 0, However, as H is contimuously embedded in C (RZ) only
if o > %3 an estimate of the form (7.27) (and an existence theorem)
is available only if

(7.29) g >

1.
2

Therefore we can conclude that qualitatively the same results as
obtained for the BBM equation above, can be obtained for equations
of the form (7.1) with D given by (6.28), provided (7.29) is
satisfied. (It is intriguing that this requirement conflicts the

condition o f-%-for positivity of the group velocity c.f.(6.30)).
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CHAPTER 6: THEORY OF SURFACE WAVES.
6.1. INTRODUCTION.

In this last chapter we shall demonstrate the ideas developed in
the foregoing chapters of part II to a specific system, viz. the
irrotational motion of a two-dimensional inviscid layer of fluid
over a horizontal bottom under influence of gravity. The fluid is
assumed to be incompressible and its constant density 00, the
constant of gravity g and the undisturbed fluid height are all
pormalized to 1.

The motion of the fluid can be described in terms of a velocity

potential ¢:
v =grad § = (¢, ¢)

and the elevation n of the free surface measured from the equilibrium
configuration. The complete system is then described by (c.f.

section 3.5)

(1.1 - ¢m+¢yy=0 0 <y <1+ n(x,t)

. =0 =0
(1.2) ¢y 7 y

(1.3) 3. n M Wiy ¢y =0
. 1 + n(x,t)

v
]

1
1.4y 38 ¢+§(¢

t X
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Notwithstanding its long history, there are hardly any achievements
concerning concrete results for the free surface problemi(1.1)-(1.4).
From Benjamin [35], p.7., we quote: "In respect of the initial value
problem for the system (1.1) - (1.4) , virtually nothing in the way
of a rigorous theory is available, Moreover, some degree of
mathematical intractability seems inevitable here. We recognize the
probability that the general initial-value problem canmnot be
correctly posed (well set), because we know that in practice water
waves may break - that is the motion may become turbulent and so
lose continuous dependence on initial data. This aspect of the
subject still remains largely mysterious, and reservations regarding
it are needed to put any theoretical work on water waves into a
properly scientific perspective".

From the few exact results which are available we mention the
existence of periodic (Levi-Cevita, Krasovskii) and solitary wave
(Friedrichs & Hyers)solutions, which solutions represent. progressing
waves .

Por these reasons it is clear that one has studied approximations
of (i,]) - {1.4). We shall deal with some of these appro%ﬂmations,
and the appraisal of each of them for specific situations, in the
next sections. But it will be clear from the onset that knbwledge
of various characteristic features of the exact problem is necessary
to compare approximate equations with the exact equations. It is at
this point that the Hamiltonian character of the exact equations can
be given an important pléce. For this reason we shall study that
aspect of the exact equations and some of its consequences in the

rest of this section.
In section 3.5 it was shown that upon introducing
(1.5) Y(x,t) 1= ¢(=x,y = 1 + n{x,t), t) ,

the exact problem can be formulated as a Hamiltonian system in the

variables n and ¢. The Hamiltonian is given by

(1.6) ‘h(y,n) = fdx -;- nz(x,t) + k(¥,n)
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wherein the kinetic energy functional is implicitely given in terms
of ¥ and n by

) 1+n(x,t)
‘ 1, 2 2
(1.7) k@,n} := (dx T dy -2-(¢x + ¢y) s
[e]

where ¢ is the solution of the linear potential problem

¢XX + ¢yy =0 0<y<1+ n{x,t)
1. = 0 = 0
(1.8) fby y

¢ = ¢ y = 1+ n(x,t) .

From simple properties of the boundary value problem (1.8) one

arrives at the following

OBSERVATION 6.1.1 The exact hamiltonian (1.6) satisfies

(1) h{y,n) > 0 for every ¥ and every n for which n{x)>~1 Vx € RL.
(ii) h(¥p,n) = 0 *= nEOand?xEO.

(iii) h(=¥,n) = h(¥,n) and h(IV,In) = h(¥,n) V¥ Vn,
where J is definedby 5.(3.5).

(iv) hy+c,n) = h(y,n) YO.¥n for arbitrary constant c € RZ.

Especially from this last property it follows that we are

dealing with a potential problem. Therefore we define a new variabl
(1.9) - u(x,t) := 8x P(x,t).
With (1.5) it follows that

u{x,t) = o, * ¢y.n;{ = V.T at y = 1 + n(x,t),

-1, .
where T = (1, n) and 1.]t] 7 is the unit tangent at the surface.

This shows that u. 1[-1 is the componént of the veloeity tangent

e

191



to the surface.Defining h(u,n) := h(y,n) we write Hamilton's

equations in the variables u and n in the same way as in section

5.1. as

(1.10) 2, grad m(u,n) = -3_ grad h(u,n)
where

(1.11) m(u,n) = <u,n>.

Thus

(1.12) 9, u = -9 %%

(1.13) Bt n=s —BX %%—.

The functional m can be related to the total horizontal momentum of

the motion M:

l+rn 1+n .
(1.14) M:= de de o = de [aX de o - nx.wl”
o o
1+n X = o
= <ny >+ [ de ¢ -0y ]
: o X = —oo,

As we shall restrict to motions which vanish for |x| » = i.e.

n-+20 for |x| »
(1.15)
o(x,y3t)> Y(+=,t) for every y€(0,1), for x> +o (i.e.
v > 0 for |x| +» «)
we find

(1.16) M = a(u,n) + P(o,t) - P(->,t) = a(ﬁ,n) + de u(x,t).

In terms of ﬂ, the observations for h may be reformulated as follows
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PROPOSITIONS 6.1.2. The Hamiltonian h can be written as

B(u,n) = 3 <nm + & (o)

and satisfies

(i) 1_<(u,n) > 0 and thus fx(u,n) > 0 for every u and every n for
which n> - 1.

(ii) h(u,n) = 0e=>n = u = 0.

(iii) h(~u,n) = B(u,n) and Wy, Jn) = h(w,n)  Vau Vi

Furthermore we shall prove the following formal (c.f. remark
6.1.4) results

LEMMA 6.1.3. For the system (1.10) we have the following invartant
integrals

(1) h(u,m

(ii) m(u,n) = <u,n>

(iii) jdx.u(x,t)

(iv) J‘dx.n(x,t).

Morecver, we have -
(v) n is a density which has conserved flux density %‘i and
- 8k
M= de -5;‘- .

PROOF: (i) holds because h does mot depend explicitely on t and (ii)
holds because h is tramslation invariant. Property (iii) follows

from

B ¥ = [at¢ * '¢y'“t ]y=1+n(x,t) ,

together with (1.3), (1.4) and the definition of u. Noticing that

(1.3) may be written as

Q.17) an = Vé.n at y=1+n
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where n = (-nX 1) is the normal to the surface, and applying
’ .

Gauss' theorem

© 14N » ot 1 X = »
= Vé. -

fdx fdy A¢ '{dx ¢ E} ys]-l-n, de ¢y] y=0 * jdy ¢x] X = =,

—r o - e °

it follows with (1.2) and (1.15) that property (iv) holds.
Property (v) follows from the fact that

_ 1+n
(1.18) I %E»dx =M = Idx I ¢x dy.
o

which is an invariant integral because of (1.16) and properties
(ii) and (1ii) just proved. Relatiom (1.18) can be obtained as

follows:

lim L {f(ure,n) - beu,m) = Idx LI
g—){} € 60

and
h(ute,n) = hlu,n) + ede de V6.9x + 0(e2),

because ¢ + e€x is the solution of (1.8) which corresponds to u + ¢

if ¢ is the solution which corresponds to u. This proves the lemma. o

REMABK 6.1.4. As no existence and regularity results are available
for the initial value problem for the system under consideration,
phrases such as: "the functional g(u,n) is an invariant integral"
have to be understood in the following semse. Let (uo, “0) be an
initial value for which g(uo,no) is defined. Then, if there exists

a solution (u(t),n(t))of the underlying problem for 0 < t f,to

for which u(0) = u s n(0) = n, and for which g(u(t) , n(t)) is

defined in a meaningful way, then g{u(t).,n(t)) = g(uo,no) for every
£, 0t <t

REMARK 6.1.5. Stability of the equilibrium solution u = n = 0.

Proposition 6.1.2. (i), (ii) imply that u = n = 0 is an absolute
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minimum of the functionmal h for the class of functions (u,n) for
which n> = 1. Loosely speaking, as h is an invariant integral, this
implieskthat the equilibrium solution u = n = 0 of (1.10) is stable.
However, because of the possible non—existence and non-regularity
of solutions, such a statement can hardly be given a sensible
meaning. Therefore, let us briefly indicate in what sense the
equilibrium solution can be called stable. In general terms,
congider a first order evolution equation u = E(u), where u may be
a vector valued state variable, and suppose E(Q) = 0, such that

u = 0 is an equilibrium solution. Then u £ 0 is said to be stable
(in the sense of Lyapunov/Movchan) with respect to (initial norm)
I ]]i and (evolution norm) || [[e if, given arbitrary small ¢ > 0,
there exists § > 0 such that for arbitrary initial value us with
llgoi!i < 8, there exists a solution u(t) for every t > 0 with

u(0) =u _, such that |[Eﬁt){{e < ¢ for every t > 0
(1.19) Ve>od630%u HL_;OHi < 51»,§;2(t)||e <e, Ve > 0.

If 8 is some set of initial data, we shall say that u = 0 is stable
in the restricted sense with respect to S and the norm || ||i and
H l]e if property (1.19) holds for every u_€ S:

(1.20) Ve>o3d>oVu €5 ]|Eol|i < § “’ttg(t)lle <e Vt> 0.

It must be remarked that in general this restricted definition is
a very severe weakening of the usual definition of stability. But
for the problem under consideration it seems to be impossible to
avoid this weakening if one wants to formulate the intuitive idea
of stability. For the water wave problem we define the following

sets of initial data

(1.21) § := {(uo,no) ‘ ﬁ(uo,no) is defined; there exists a solution
(u(t),n(t) for all t30 with (u(0),n(0)) =
(uo,no) and h(u(t),n(t)) = ‘E(uo,no) ve 30},

and for 6* >0 and 0 < 8_ < 1:
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(1.22) S, = {(u_,n) € S|n(t) € C°(RL) and - 6_ < n(t)< &, , Ve>dl.
+ o o

Now observe that

(1.23) k(u,8_) < k(u,n) i k(u,8,)  V¥(u,n) €S

and that k(u,5,) can be explicitely found to be

1

(1.24) k(u,8) = 2 < u, R6 u >,
where RB is a selfadjoint, positive pseudo-differential operator
with symbol

O
[}
-+
o
I
Fh
o
n
o
-+

tanh k&
ks

(1.25) ﬁd(k) where

o
[}
—_
|
©r
=
()]
o
]
©

|

(For 6§ = 1 this will be proved in the next section).
With (1.23) it follows that

1 2 1 - 1 2 1
(1.26) Ellnll + 7 <u,R6_u> < h(u,n) f_Ellnll + E-<u,R6+ u>,

From these results it is easily seen that we may formulate the
intuitive idea of stability of the equilibrium solution in the

following way :

For arbitrary 6,> 0, 0<8_< 1, the equilibrium solutionu = n = 0
is stable with respect to the set SG and the norms | | || and || ||
where *

2 2
(1.27) ||(u,n)||i = ||n||" + <u,Rg u>
(1.28) llwmi] 2 ||n|| R

REMARK 6.1.6. Proposition 6.1.2. (iii) shows that h satisfies
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conditions 5.(3.17), (3.18) of theorem 5.3.4. Therefore, if (uo,no)

is an initial value for which

J = Ji =
Yo T Y Mo = Mo 2

the corresponding solutionﬁu(t}, n(t))satisfies
(1.29) Ju(t) = -u(t) , Jn(t) = n(v)

as long as (i.e. for the possible restricted set of t for which)

this initial value problem has a unique solution. That such solutions
exist is physically plausible because in the underlying system

there is no preferred direction of propagation. For every solution

which satisfies (1.29) we have
juo dx = Ju(t)dx = 0
!;(u,n) = ;1(‘10:“0) = 0O,

and consequently (c.f. (1.16))for these solutionsthe total horizontal

momentum of the motion M is identically zero:
M = 0.

REMARK 6.1.7. With remark 5.4.2. (iv) it follows from property 6.1.3.
(v) that the functional

Clu,n) := J{xn -t -z-u‘l (v, m}dx = de.xn -

is an invariant integral. If Jnadx = jn(t)dx # 0, the centre of
gravity of the free surface disﬁlacement n is propagated with
constant velocity V:

V(a,m) = 8 V(e,n) = 0

Jdx n

(In particular, for the symmetric free surface displacements which

satisfy (1.29) this velocity is identically’ 2zerc).:The same result was
Ly . N .
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derived by Benjamin & Mahony [49] for more general motion of the

fluid (not necessarily irrotional, three-dimensional fluid motion).

6.2. APPROXIMATE MODELS.

In this section we shall consider some approximations for the exact
set of equationé(l.l) = (1.4). The exact model is difficult in that
it combines two important aspects: non-linearity in the equations
at the free surface and an essentially two~dimensional behaviour in
the interior of the fluid (Variatioms of the field variables in the
y-direction has a dispersive effect in the x—direction). Introducing
two dimension free parameters to measure these aspects, let € be a
measure for the height of the waves : n= 0(g) and let %-= o(u),
wherein A is a characteristic length of the wave phenomenon in
x-direction. (Note that we have taken the undisturbed height to be

normalized to 1). Stokes’ mumber is defined as

St :=

such that St = O(uz.efl) is a measure for the relative importance
of the two aspects: for infinitely long waves, for which variations
in the y~direction can be ignored (tidal waves), there is no
dispersion and S8t = 0; for infinitesimal low waves the elevation
from the horizontal surface is ignored: St = »and the equations are
linear. We shall describe these two limiting cases presently.

A more interesting model, studied already by Boussimesq
around 1870, accounts for both the non-linearity and dispersiom in
the same order of magnitude, i.e. 0(g) = O(uz) such that St = 0(1).
We shall call this model, which is meant to describe what may be
called the class of "fairly long, fairly low” waves, the Boussinesg
model. In literature, several approximate equations for this model
are known., Usually , these equations are obtained by expanding
the exact equations in terms of ¢{and u2 = 0(g)) after which higher .
order terms are struck {(c.f. e.g. Whitham [45, p. 464~466] as a
convenient reference for a typical example of this procedure). Such

a process then leads to a set of equations which approximate the
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exact equations to the desired order of e¢. In fact, several
approximations can be written down, all of which have the same
formal status of being a good approximation in the semse that they
approximgte the exact equations correctly to the desired order of ¢.
However, the distinct equatioms will have in general rather different
mathematical properties. As the underlying problem is too difficult
to admit rigorous mathematical statements about the validity of each
of these approximations, it is pot possible to prefer one approximation
above the others on these grounds. [ One would like to have a. theory
which gives a meaning to and proves such statements as: for every
solution of the exact equations from a certain subset (the class of
fairly long, fairly low waves), there exists a solution of the
approximate equations such that the "difference” of these solutions
is "small"™ ]. Therefore, the best one can do is to comstruct
approximations which have the same characteristic features as the
exact model. In that respect, Broer [33] emphasized the Hamiltonian
character of the exact model by looking for approximations which

are also Hamiltonian systems. Then one looks for approximations

of the exact Hamiltonian: the corresponding Hamilton equations then
approximate the exact set of equations and resemble these in their
Hamiltonian aspect. We shall briefly outline these ideas for the

Boussinesq model, but we first investigate the two limiting models.

Linearized theory.
In the linearized theory the exact hamiltonian h(u,n) is approximated
to

E(uvn) o= <n,n> + l-c(u,n = 0).

1
2

In that case k can be explicitely found:

@

1 o
K(y,n20) = de de s’ - 1 Jax ). b (x3=1,t)
00 o —

where ¢ is the solution of

A:t» = O<y<1
4 = y=0
¢ =9 y=1
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With Fouriertransform technique (writing x for the transformed
variable to distinguish frem the kinetic energy functiomal) it is

easily found that

~ oo cosh Ky
QS(KQ)’) = ¢(K)- cosh x 1
such that & (ky,1) = @(K).K.tanh K and ghus

y

o

k($,n=0) = %’J dKi@(K)lz.KmanhK

o0

which may be written as

1
§'<¢x’ R lpx>

k{y,n =0) =
wherein R is a pseudo-differential operator with symbol

tanh «

(2.1 R = =

(Note thath is a selfadjoint, positive operator). Hence we find
- 1 1
(2.2) h(u,n) = 5 <mn>+ 5 <«,Ru>,

and the corresponding linear equations are

Stu = "%Kn
(2.3)
= -3 R
9 t“ QK u

Note that the equilibrium solution u = n= 0 of (2.3) is stable, as

the dispersion relation is
2
(2.4) , w = k.tanh ¥k > 0 Vc€RL ,
This reflects that the approxima;e Hamiltonian (2.2) is positive

(as R is a3 positive operator).
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Tidal waves.
If the vertical fluid motion is completely ignored, we have

@

1 2
k(y,n) = 5 de (1+n). L
and thus
(2.5) h(u,n) = de {?Iz-n * -;—uz + = nuz} s

with corresponding equations

@
=
i

1 2
—Bx (n‘*‘ '2" u )
(2.6)

@
e
i

—Bx {14n)u).

This is a hyperbolic system of non-linear equations for which the
standard theory may be applied (c.f. Whitham [45, p. 456]). In
particular, most solutions of (2.6) will "'break” and to prevent

miltivaluedness, discontinuities (shocks) have to be introduced.

Boussinesq model.
For the Boussinesq model, n2 = 0(g), Broer[50] derived an approximate
Hamiltonian whose density is correct up toand including third order
of £, Although we shall essentially use approximations of this order,
we start with an approximation which is correct up to and including
fourth order, a result derived by Timmers [51] (c.f. also Broer
et al [34])

= | 1 2 1 2 1 2 5

= —U. - _ - ¥
(2.7) h{u,n) de{z u.Ru 7 N + 7 nu 5 M + 0™,
wherein R is the pseudo-differential operator given by (2.1).
In the following we shall restrict ourselves to (equivalent forms of)
the approximate Hamiltonian
2

b o i 1 1.2y
(1) h{u,n) = jdx { 7Y Ru + N oty
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The equations corresponding to this approximation are given by

@
=
]

- +
Bx (Ru + nu)

(2.8) 1 2
dpu==d et guhy .

Because of the approximate character of (I) it is allowed to take
for R any pseudo-differential operator with symbol which agrees
with (2.1) up to and including K2 for ¥« + 0. As

R(k) =1 K2 + O(KA) s

-1
3
a first choice would be to take
=I+‘— .
(a) R 3 3

However, this operator is not a positive one, and the leading order
terms in the Hamiltonian (I) are not positive (hence, the linearized
equationsof (2.8) have as dispersion relation:

2 2 2
o=k {1l -k},
and the equilibrium solution u = n = 0 is not stable).

Therefore it is better to approximate R by a positive selfadjoint

operator. In that case one may write
- (b) R=1D s

wherein D is a positive selfadjoint operator, For instance, one

could take

) 1 2.1 1.2}
(b1) Ry = (1 + 3% , D= (I 2.9
(b2) Ry =0 +geh™ , p=1-£37%.

In these cases it is often convenient to apply the transformation

(2.9) v o= D-lu N
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’such ;hat with

(2.10) o ;(v,n) = <Dv,n> 3 ﬁ(v,n) 1= ﬁ(u,n)
the equations are given by

(2.11) ’ 3, grad n(v,n) = ~3_ grad h(v,n) .

For (b1,2) the transformed Hamiltonian (1) is given by

(1b). fev,n) = de (3w gn’

+ .;- n(ov)?1.

Expressed in terms of n and v we shall give some alternative
approximate Hamiltonians which all agree with (I) in the desired
order of (i.e. differences are of order 84). After that we briefly

comment on their specific properties and differences between them.

(ID) ﬁ(v,n) = de{'% vz + %-nz + %ﬂ (Dv)2 + c.(Dv)é } , withe > %
(I1la) ﬁ(v,n) = |dx {l-vz + ln 2 + l-nvz }

2 2 2
(I1Ib) h(v,n) = Id"{'zl' v+ % n2 + 1 nvz + cv4 } , with ¢ > 1

. 2 8

( a) hev,n) = |ax {1 v? + 102 4 Lp71g 020

2 2 2
(195 figem = [ax (b2 e bo? e Lol 4 e (07 o)),

EXISTENCE AND REGULARITY.

For the equations{2.11), with h any approximation given above, it is
possible, using a contraction mapping principle, to prove the
existence of a solution (v,n) corresponding to arbitrary initial

data (vo,no) over a limited range of time. The corresponding solution
is in some sense as regular as the initial data, and the time interval
over which the solution can be proved to exist depends only on
certain norms of the initial data. However, in general this process
cannot be continued to prove the existence of the solution for all
time. This is possible only if some a-priori estimates are available.
The Hamiltonians given by (I), (II) and (III), which are invariant
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integrals as long as the solution is known to exist, are not suited
to serve as a-priori estimates However, as was shown by Bona & Smith
{52}, with D = (I ~ %‘3’{2)5 the Hamiltonian (IVa) can, for a
restricted set of initial data, be used as such an estimate. Their
results can be formulated as follows (intheir paper they used a
variable n which is related ton by n = Dn, such that N does not
represent the wave height): If vo’no € Cz(RZ) n Lz(Rl) such that

= 2 . -1
h(vo,no) 5'75 » and D Nn>- 1,

then there exists a unique solution (v,Nn) which has (vo,ﬂo) as initial

data and which satisfies for every t > 0:

BtJ v(t), StJn(t) € CZ(RZ) n LZ(RE) for every j =0, 1, 2,...

Rev(e),n(e) = Rty o) 5 D n>-1.

It can be shown that the same qualitative results hold for (IVb).
For ¢ ='%v, the equations for the steady states of this approximation
are particularly simple and some interaction problems for these

particylar solutions were studied by Valkering [53].

INVARTANT INTEGRALS AND CONSERVED FLUX PROPERTY.

The equations corresponding to the approximate Hamiltonians given
above all have the same fbur invariant integrals as given in lemma
6.1.3., of course with the approximate Hamiltonian replacing the
exact- one. However, it may be verified that only (I} leads to

equations for which n has a conserved flux.

POSITIVITY AND STABILITY RESULTS.

For the approximation (Ib) it is not possible to give positivity
statements (valid for arbitrary function u) if solutions for which
n may be negative are allowed. This functional can be supplied
with a higher order term (!) to give (II), which functional is

non-negative. Moreover, as for arbitrary constants ¢ and b we have

Rewamy = gl vl 12+ ga=n)[[nl1? + e gz ?]1%+ o= g [Tow?] |2
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if ¢ satisfies c'> -é-, a value of b can be found such that é_a <b <1,
From this it follows that v = n £ 0 is a stable equilibrium solution
with respect to the set S (c;f. (1.21)) -and norms
2 2 2 2,2
el 15 2 o= Tl 12+ 1l 12+ [ow?] 2.
*
The functional h given by (IIla) satisfies proposition 6.1.2.

Moreover, the solution v = n = 0 is stable with respect to sets §
with 0 < 8.< 1 (c.f. (1.22))and norms

6+

»

el 2= vl?+ [l

For (IIIb), h > 0 for arbitrary solutiomsand v = n = 0 is stable

with respect to S with norms

Rl

+

Hem g 2= el + 1l

For ¢Va)'we have ﬁ > 0 as long as D_ln > = 1. Because of the available
existence and regularity result, for this approximation the equilibrium

solution v = n = 0 is stable (in the uvsual sense) with norms
. 2 - 2 2
Hesmlly 7= Hell® + 1l

For (IVb) we have h > 0 for arbitrary solution if ¢ > %3 and the

same stability result as for (Iva).

REMARK 6.2.1, If it is desired to have the number of derivatives
appearing in the resulting equations to be as small as possible,

another transformation than (2.9) may be applied. Therefore, assume
R—] = T*T with T invertible,

and define a new variable

w = T-Iu.

For the operator R given in <b1) one may take
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Then

E(Ws n) = <Tw,n>,
and a suitable Hamiltonian (@kin to (IIIa)but in the new variable
w) would be:

=y (L2al2,1 2
A(w,n) = de [2 w4+ 7 N +op W 1.

The resulting equations are then found to be
1.2
BtTw Bx(n + 7 w’)

3 THn= ~3 (w + nw) .
t X

6.3. FIRST ORDER EQUATIONS.

In the foregoing section we gave several approximate Hamiltonians

for the description of surface waves. Here we shall show how we can
apply the ideas described in section 5.1. to obtain the fi}st order
equations for unidirectionally propagative waves. In the first instance
we shall formally ignore the interaction terms to obtain a complete
separation. Afterwards, some remarks about the validity of the

separation are made.

Consider the Hamiltonian (Ia) and perform the transformation

{3.1.) n=a+8f
o -8

=]
[}

Then the equations for a and B are given by (¢.f. 5.(1.11))

(3.2) 5, grad m(a,8) = -3 grad R(a,B) ,
where
3.3 m(a,8) = <a,a> - <B,8> ,
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(3.4) fila,B) = e(a) + e(B) + i(a,B),

with
S 1 1 3
(3.5) e - fex e e ma s £,
. f : 1
(3.6) ia,B) =’de [0.(I - RYB - E-as(a+g)].
Explicitely:
_ 1 32 _ 1. _1. .12
(3.7 3= B (o Fa YR Tt T T )
' ~ 1 32 1 1 _ 12
(3.8) 3f = BB B T T TP T )

Ignoring the interaction funmctional i(a,B8) there result two

uncoupled equations:

- - 1 3.2
{(3.9) 8ta = yax(a + 5 “ + 7 ° ),
- 1 3 .2
(3.10) 2,8= 3.(B+ge _+5B).

each of which is a KdV equation (apart from some scaling factors).

Another interesting set of equations is obtained from the
Hamiltonian (IIIa) if we perform a somewhat different transformation,

viz.

=g + B
(3.11) ~1 i 2

Dy =v=a-8 where D = I - — 38 7,
6 x
Then the equations for o and B are given by (3.2), where now
(3.12) m(a,B) = <Da,a> - <DB,B> ,

and h as in (3.4) with

{3.13) e(c) = jdx [a2 + %—as] .

207



(3.14) i(e,8) = Idx - -;- aB(o+B) .

The resulting equations are

L 3 2 1 12
(3.15) DBta = Bx(cx + 7o 7 aB T By

= é 2 - l - .l. 2
(3.16) DStB = ax(s + m 8 3 af P a’y,

and, ignoring the interactionfunctional:

o?)

i

(3.17) , p3a = -3 (a+

a2
8,

"

W

(3.18) DBtB BX(B +

which are BBM equations for @ and B,

For the class of solutions which is described by the Bougsinesq
model, the interaction functional has a density which is of order 63.
Therefore, in general the set of coupled equations such as (3.15),
(3.16) is not equivalent (in the desired approximation)' to the set
of uncoupled equations (3.17), (3.18). This will only be the case
for those solutions for which this interaction density is of order 84.
However it is easily seen that there are no solutions for which this

is true for gll values of time. For instance, consider initial data
. a ith g
(3.19) ¢ 0,80} wi Bo 0
(which correspond to initial data vo= in the original vairables).

Then
1(00, BO) = 0.

But, due to the terms —BX % o2 in the right hand side of (3.16) (or
1 | A
L 1 . s .
x( 3 axx + % a”) in (3.8)), the initial a-mode will generate a

B~mode (there exists no non-trivial solution with 8 = 0 for all t),
such that i(e,B) becomes non-zero for t > 0. Nevertheless,

heuristically speaking, the interaction density will be of order 54
for such a solution for a finite, but sufficiently small, interval

of time.
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It is possible t6 investigate this matter more precisely for the .
eqﬁations corresponding to the Hamiltonian (IIIa). In fact,
consulermg the interaction terms in (3.15) as source terms for the
BEM equatmn (3. 17), and using the results and ideas from BBM [39],

one can prove the following

LEMMA 6.3.1. There exist pogitive constants ¢ and d such that
(i) for arbitrary a € CZ{RZ) n HI(RZ) there exists a unique
solution (a,8) of (3.15) (3.16) over the finite time interval
[0,1] where '

T <§: > with a :el{aolll,

with a(0) =¢_, B(0) =

and étja(c), atjs(t)'e c2y n u'®1) for every j = 0,1,2,..
and all t €(0,T); |

(ii) for such a solution we have

(3.20) éup 1 i(a(b,ﬁ(t})‘ id.af.’f, for T < -;—- .

02t<T ) o

It “is also possible to express these results in a somewhat
different way. Therefore, let &,é be solutionsof (3.17) and (3.18)
and put

=i
W
Qi
+
™l
.
o |
%
el
|
™

(3.21)
Then one can study the differences

(3.22) nen=(-a)+(B-8), v-v=(s-a)=- (8- B
for solutions with the same initial vglues.

LEMMA 6.3.2. For solutions correspondmg to mttzal data (3.19), we
have n = v = o and
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(3.2 swp [|n) - 2], + [[v®) - 5(©)|]] < const.a ’r
0<t<T

for T < comst. - where a_ = Ha |], -

- a o o'l

[

Unfortunately, these rigorous results are of very little practical
importance. In fact, it would be far more interesting to derive
results concerning the relation between solutions of (3.15), (3.16)
and those of the uncoupled set of equatioms (3.17), (3.18) in the
limit for t » =, However, results in this direction seem to be

impossible to obtain in an analytical way.

To conclude we note that according to the theory of section
5.3., the Y—equation, with the aid of which "symmetrical®™ initial
value problems can be evaluated, is given for the approximate
Hamiltonian (IIla) by V E

- 3.2_1 - Legn?
(3.24) D3,y ax(y T 7 Y Jy &(Jv) ).

The behaviour of solutions of this equation for large values of t

is as difficult to investigate as for the set (3.15), (3.1?). For
several classes of initial data Yo? it is possible to derive some
approximations for the resulting solutions for small values of t.
For instance, if‘Y0 = J Yy? which represents a symmetrical elevation
U of the water level without initial velocity : v, = 0, the
resulting solution may be compared for small t with the solution of

the linear equation

3 = =3 Y.
D . Y xY
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Het bestaan van 2m-periocdieke oplossingen van de vergelijking van
DUFFINé zonder demping:
%(t) + x(t) + ax’(t) = a sint
met (i) @ = -1, a € RZ willekéurig
(ii) @ = 1, a € R? ,]a| voldoende klein,
kan bewezen worden met variatiemethoden.
Het bewijs voor 't geval (i) (zie BERGER,. §6.1B) is volkomen verschil~

lend van dat voor ‘'t geval (ii).

M.S. BERGER: Nonlinearity and Fumctional Analysis,
Academic Press, New York, 1977.

II

Als E(p) de inwendige energie per massaeenheid van een ideale vloei~-
stof als functie van de massadichtheid p voorstelt, dan is de hydro-
statische druk de Legendre getransformeerde van de functie p -+ p E(p),
als deze functie convex wordt verondersteld.

Deze eenvoudige opmerking ligt ten grondslag aan het bestaan van een
"principe van stationaire druk” waarmee de beweging van zo'n vloei-

stof beschreven kan worden.

R.L. SELIGER & G.B. WHITHAM, Variational principles in
continuum mechanis, Proc.Roy.Soc. A 305 (1968) 1-25,

111
Periodieke oppervlaktegolven op een laag water kunnen beschreven wor~
den met behulp van een "constrained extremum principle" van het soort
zoals beschreven is in hoofdstuk 2 van dit proefschrift.
Deze formulering laat een duidelijke fysische interpretatie toe en
kan gebruikt worden om de existentie van deze klasse bewegingen te

bewijzen.



v

In het recente boek van LEVINE wordt het begrip "unidirectional™ uit
de titel op geen enkele plaats gedefinieerd.
Bovendien zal de toevoeging van het woord limear op een juiste plaats

in de.titel het aantal gebruikers van het boek niet wverkleinen.

H. LEVINE, Unidirectional Wave Motions, North Holland,
Amsterdam, 1978

In [1, § 2.3.8] worden voorwaarden voor de lineaire operator A en de
niet-lineaire operator B geformuleerd waaronder de met de abstracte
evolutievergelijking
Aatu = B(u)
~overeenkpmende operator u -+ Aatu ~ B(u) een potentiaal operator is
met betrekking tot éen bepaalde klasse van functies u. VANDERBAUWHEDE
[2] heeft onlangs deze resultaten op succesvolle manier gegenerali-

seerd om een grotere klasse van functies u te kunnen behandelen.

[1) E.W.C. van GROESEN, Variational methods for nonlinear
operator equations, in: Nonlinear Analysis, vol II,
N.M. Temme (ed.) MC Syllabus 26.2, Mathematisch Cen—
trum, Amsterdam, 1976, p. 100~-191.

[2] A.L. VANDERBAUWHEDE, Potential operators and variatio-
nal principles: a generalization, preprint Rijksuniver-
siteit Gent, august 1978.



VI

De stationaire toestanden van het systeem bestaande uit een onrekbare,
flexibele stroomvoerende draad, geplaatst in een constant homogeen
magneetveld, worden bij geschikte keuze van de randvoorwaarden be—
schreven door een stelsel vergelijkingen dat aanleiding geeft tot

een karakteristiek bifurcatieprobleem. '

Een bifurcatieprobleem met twee parameters ontstaat als de draad een

eindige buigingsstijfheid heeft.

P.v.d, VAkST:*De elastische 1ijn (1977)

E.W.C. van GROESEN: Stroomvoerende draad in magneetveld:
stabiliteit van de stationaire toestanden (1973)
Afstudeerverslagen THE, vakgroep Theoretische Natuur-

kunde.

VII
De maatschappelijke waardefing voor en beloning van onderwijsgevenden
is omgekeerd evenredig met de invloed die zij hebben op de persoon—
lijkheidsvorming van hun leerlingen.

VIII
Het geven van onderwijs dient een wezenlijk onderdeel uit te (blijven)
maken van de taken die behoren bij het bezetten van een promotieplaats.

IX

Gezien de gelaatsuitdrukking van de meeste automobilisten moet 't
woordje "blij" in de kreet "Blij dat ik rij" een andere betekénis

hebben dan daaraan meestal wordt toegekend.



