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Chapter 1. Scope of the text.

1.1 Introduction.

Controlling the production in an industrial organisation is very
complex, There are two different reasons for this complexity. On the
one hand, complexity is due to the variety in range and in level of
detail of the activities that play a role in such a control (think of
manuf acturing process development, capacity planning, coordinating the
flow of material through the production process, releasing of
workorders, and scheduling). On the other hand, the production process
itself may be complex (many products, many stages, complex
interrelationships between resources, and uncertainty in the
availability of resources).

To deal with the first cause for complexity, one creates different, but
coordinated levels of control. AL each of these levels a specific part
of the control of the production process is accounted for (see Anthony
[31). To deal with the second cause for complexity, one groups
manufacturing steps into so-called Production Units (see Bertrand

{8]1). Each Production Unit is responsible for a specific part of the
production process. Of course, these Production Units have to be
coordinated to ensure that the products are manufactured timely and
efficiently. This activity will be referred to as Material Coordination
(see Bertrand [81).

In Chapter 2, we will discuss this decomposition approach in more
detail. Material Coordination will be part of such a decomposition
approach to Production Control., On the level of Material Coordination,
different Production Units are discerned in the process and there is a
flow of material over these Production Units, It is the task of



Material Coordination to coordinate the activities of the different
Production Units in order to realise a given delivery performance
target, like minimizing the number of stock-outs. Material
Coordination, thus, does not influence the demand or influence the
resource availability, but has to reach certain performance targets for
a given demand and with a given resource-availability., In the next
Chapter, we will go further into Material Coordination, and discuss its
relationship to other parts of Production Control.

To have an idea of the place that Material Coordination takes within a
framework for Production Control, one can think of existing Material
Coordination Systems, like Material Requirements Planning, the Reorder

Point System or the Base Stock System.

1.2 Topic of the text.

The way Material Coordination can deal with uncertainty, is important.

The following types of uncertainty can be distinguished:

- uncertainty in the availability of raw materials

- uncertainty in the behaviour of the resources

- uncertainty in the actual delivery pattern that will be required
- uncertainty in the registration of inventories and work-in-

process.

Since, for Material Coordination, it is not possible to influence the
required delivery pattern or the availability of resources, other
methods must be used to protect against these uncertainties.

Some of these uncertainties may be due to inadequate information
processing capabilities. If the information processing system can be
improved without much effort, it will be sensible to do so. However, in
general, it will be impossible (or much too expensive) to remove all
the uncertainty. In order to be able to cope with the remaining
uncertainty, it is necessary to create stocks (note that also in case

there is no uncertainty, stocks may be created, for example due to



For the design of a good Material Coordination System, it is ihportant
to have insight into how to use these stocks efficiently. This insight
will also enable us to make a trade-off between investments to reduce
uncertainties (e.g. information processing systems) and investments to
cope with uncertainties (e.g. inventories, work-in-process, or flexible
resources).

Wnybark and Williams [54] have shown that the control of buffer stocks
should be adjusted to the sources of uncertainty. Therefore, let us
first consider these sources of uncertainty. There are fundamentally
two different types of uncertainty: there is uncertainty due to the
behaviour of individual products (e.g. uncertain demand, inventory
registration or yield of the production process) and there is
unicertainty due to the behaviour of resources {e.g. worker—availability
or machine break-down).

Consequently, two fundamentally different approaches to using buffer
stocks can be distinguished, namely a product—-oriented approach and a
capacity-oriented approach.

In the product-oriented approach, the buffer stocks are based on the
behaviour of individual products. The delivery pattern is translated to
a production pattern by Material Coordination, using standard
throughput~times for orders. The production patterns for the products
are coordinated over a short horizon. A well-known example of the
product-oriented approach is Material Requirements Planning. In this
approach, a certain inventory is created for each product to protect it
against uncertainties., This can be done by hedging the demand (i.e.
systematically over-estimating the demand), by using a safety lead-time
or by using a fixed safety stock for each product. Note that the stocks
created in the product-oriented approach, also have to protect Material
Coordination against uncertainty due to the behaviour of resources.

In the capacity-oriented approach, the accumulation of buffer stocks is
based on a comparison of demand and availability of capacity,

which means that the inventory of different products is no longer
viewed in the first place as a buffer against uncertainties in the
behaviour of that product. Instead, in this approach, the inventories
are viewed as a form of stored capacity. In case the demand for
capacity during periods in the future is larger than the available
capacity, this stored capacity will be used to solve the problem. In
the capacity-oriented approach we aggregate over the individual
inventories of the products to find a measure for the amount of stored
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capacity in the inventories. Thus, an aggregate production pattern is
generated. This production pattern is disaggregated over a shorter
horizon., Note that the stocks created in the capacity-oriented approach
also have to protect Material Coordination against uncertainties that

are due to the behaviour of individual products.

These two approaches differ fundamentally, but both yield a feasible
Material Coordination System. The question is which approach should be
used in what type of situation. The objective of this text is to
provide the reader with insight into which characteristics of the
situation are important for making this decision and thus to provide a
tool for deciding in a given situation, which of the two approaches is
best.

1.3 The approach.

As we have seen in the previous Sections, the aim of this text is to
suggest when to use a product-oriented approach and when to use a

capacity-oriented approach to designing a Material Coordination System.

The problem is studied in this text via the systematic analysis of
simple, but relevant models. In this research, we have restricted
ourselves to models of the single-phase type, which means that there is
a single capacity bottle~neck in the production process and there are
many products. The reason for using these models is that they are the
best starting point to compare the capacity-oriented and the product-
oriented approaches., We will not go into multi-phase situations, since
more research is needed for these situations. However, in situations
with only one bottle~neck, these results will help the reader to choose
an adequate approach to design a Material Coordination System.

We start by discussing a fairly simple single-phase multi-product
planning problem. Then, we will introduce more and more aspects that
can play a role. For each model, we will formulate both the capacity-
oriented and the product-oriented approach and compare their



performance. This performance evaluation is mainly done by simulation
experiments,

1.4 Review of the text.

In Chapter 2, we will describe the place that Material Coordination has
within a general framework for Production Control. We will also show
why we have chosen to investigate the single~phase multi-product
problem. Related literature to this Chapter is Anthony [3] and
Galbraith [23].

In Chapter 3, we will consider a simple single-phase multi-product
planning problem with identical products and stochastic demand. A
review of single-phase models has been presented by Elmaghraby‘[19].
However, mostly deterministic models have been considered in the
literature. An exception to this is the work of Graves [24], Williams
[551 and Zipkin [611].

For the single-phase model in Chapter 3, we will compare the
performance of capacity-oriented and product-oriented strategies, when
confronted with uncertainty with respect to availability of the

resource and with respect to demand.

In Chapter U, we consider a model in which demand is partly known
beforehand. Thus, a forecast for demand of each product is available.
Difficulties arise since different forecasts for future demand make ﬁhe
products not-identical in the short-term. The question whether to use a
capacity-oriented approach or a product-oriented approach is

intertwined with how the forecast is used.

In Chapter 5, we will describe a model with non-identical products. In
this model, there are obvious slow-movers and obvious fast-movers, and
the difference between them is no longer only caused by short-term
forecasts, but there are big differences between them in the long-run
as well, This introduces new problems, since the capacity-oriented
approach has to be restricted to fastmovers.

..5_



To show more clearly how the results obtained, can be used, we will
include a simple example of a plastic products factory in Chapter 6.
For this factory, we will describe a framework for Production Contrél
and we will show how a Material Coordination System for this situation
can be designed, based on the results of this text.



Chapter 2. Material Coordination.

2.1 Production Control.

When controlling an industrial organisation, all kinds of activities
have to be considered. For example the following activities should be
part of control: .

budgeting decisions, scheduling decisions, release of actual
workorders, selection of suppliers, marketing, financial planning,
decisions on workforce levels.

In order to create some ordervin this range of activities, one has to
distinguish several separate control processes. Each of these control
processes is directed at a specific part of the control of the
organisation, whereas it must be possible to coordinate the separate
processes in order to gain control over the whole organisation. Common
processes that can be distinguished are (see Burbidge [15]):

. Sales Control

. Production Control
; Purchase Control

. Financial Control
. Quality Control

In this text, we will consider Production Control. One way to define
Production Control is (see e.g. Greene [25] and Bertrand and Wortmann
[91): o

"The Preoduction Control function is defined as the set of activities in
a production organisation that are directed at the control of volumes



and types of products produced at specific places as a function of
time®

According to Bertrand and Wortmann [9] this means that Production
Control includes long-range planning, product-development,

manuf acturing process development, customer service control, factory
lay-out planning, transportation and physical distribution, manpower
planning, material supplies control and materials handling, capacity
planning, scheduling, loading, dispatching and expediting, and

inventory control.

At a high level of the organisation, Production Control is integrated
with the other control processes. For example long-range planning for
Production Control has to be combined with

-long-range sales planning in order to ensure that the production
‘activities comply with the marketing activities.

-long-range purchase planning in order to ensure that the timely
supply of raw materials is possible,

-long-range quality planning in order to ensure that the quality
remains within certain limits.

~long-range financial planning in order to ensure that the capital

necessary for realizing the plan, is acquired at the right time.

The reason to distinguish these different control processeé is that
they are relatively independent. It is possible to reduce the
interference between these control processes to simple relationships
(e.g. by a budgetary system}. Slack is required to reduce this
interference (compare Galbraith [231). The main benefit of investing in
this slack is that each separate control process becomes easily
understandable, which in general leads to a better control of the

organisation.

We will restrict ourselves to Production Control. We will not discuss
the question of how to create slack efficiently in order to make
Production Control independent from the other control processes, but we
will just assume that the interference has been reduced in some way.
The reason why we will not go into this any further; is not that weV
believe that the problem of creating slack between the control

- 8§ -



processes is relatively simple or unimportant. On the contrary; there
is still a lot of work to be done in this fieid and the importance is
obvious. However, to keep the research that was needed for preparing
this teit, manageable, we have restricted ourselves to Production
Control (even to a speecific part of Production Control, but we will
return to that in the next Sections). We believe that, before
discussing efficient ways to invest in slack between different control
processes, it is necessary to have a good insight into the performance

of each individual control process.

2.2 Reduction of control complexity.

Production Control, as described in the previous Section, is still very
complex.

The first cause for this complexity becomes clear when we consider the
list of activities that are part of it (mentioned in the previous
Section). There is a big difference in the range and the level of
detail between the activities. Yet, there are clear relationships
between different aetivities,Athat make coordination necessary. The
usual way to attack this problem is to create different "levels of
control®, each with its own details and range of decisions. Each level
is then considered to be relatively independent, as the interference
between different levels is reduced to a simple one, e.g. by generating
goals and restrictions. This requires investment in slack at each level
in order to be able to‘separate it from other levels. We will discuss
the idea of levels of control more deeply in Supsection 2.2.2.

A completely different cause for the complexity of Produetién'Control
may be that there are many products in various stages of progress,
complex interrelationships between resource restrictions and much
uncertainty with respect to the availability of these resources. In
order to reduce the complexity of the production process, “Prodﬁction
Units" are created. These Production Units are comparatively
independent and oniy simple methods for coordinating them will be
permitted. Of course, again; this requires an investment in slack



within the Production Units. We will return to this subject in the next

Subsection.

Before discussing both of the methods to reduce the complexity of
Production Control (namely the creation of levels of control and
Production Units), we must mention that they are interrelated. When
detailed production plans for the near future {(at a lower level of
control) are being considered, it is necessary £Lo have some insight
into the way that a given Production Unit functions, whereas it is
sufficient to have a rough concept of the Production Unit if a long-

term plan for Production Control has to be determined.

2.2.1 Production Units.

To simplify Production Control, several manufacturing steps and
resources are grouped into so-called Production Units.

The aim of creating these Production Units is to reduce the complexity
of Production Control. Therefore, the following conditions have to be

taken into account:

On the one hand, the control of each of the Production Unité has to be
relatively simple. This requires a stable enviromment and stable
operational normsvfor the Production Units, If this stability is not
implied in the process the Production Unibé are imbedded in, it will be
required to invest in slack between the Production Units in order to
guarantuee this stability.

On the other hand, the coordination over Production Units has to be
simple too. For this coordination the Production Units are considered
as black boxes with simple production characteristics. The model of the
production process, in which the Production Units are treated as black
boxes is referred to as the aggregate process. This aggregate process
then must be easy to control.

Notice that the analysis of the aggregate process only aims at setting
objectives for the Production Units in order to ensure coordination

- 10 ~



(1ike setting due dates for work-orders), but it does not solve all the
problems for the Production Units in detail. It is left to the
Production Units to solve these detailed problems (scheduling, loading,
etc.). In order to be able to leave the solution of these detailed
probléms to the Production Units, when analyzing the aggregate process,
it is necessary to invest in some slack and flexibility within the
Production Units.

As an example of the creation of Production Units, we will describe the
model that was considered by Bitran and von Ellenrieder [12]. Note that
this model will only be used as a point of reference for discussing
different aspects of Production Control., Therefore the reader does not
need a thorough understanding of the model in order to read the rest of
this text.

In Bitran and von Ellenrieder [12], a firm was considered that
manufactured castings and nipples for use in the construction industry.
The number of different products that were produced and sold, was about
1200.

In Figure 2.1, the production process has been shown as a diagram.

In the first stage of the production process, the cores are prepared in
tWwo parallel stages. These cores are stored and used for assembling the
casts, which are prepared by "moulds preparation" and are sent to the
third stage, the mélting of one of three ferrous alloys. The molten
material is prepared in three batteries of electric furnaces. In this
way, for each battery of furnaces a reserve supply is provided.

From these supplies, the items are passed through a furnace for
annealing and grain allignment (heat treatment). In the gauging stage
of the process the finishing operations take place that create the last
significant intermediate stock of products. Sometimes, items are
dispatched to the customers directly from this stock and sometimes they
are submitted to some additional process.

As will be clear, this is a complex process and it would be difficult
to contrel it without structuring the production process first.
Therefore Bitran and von Ellenrieder aggregated over some manufacturing

steps and thus constructed the "aggregate procesas™ as in Figure 2.2,

- 11 -



raw materials
inventory

core
preparation

core
inventory

moulds
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melting

cast parts
inventory

heat
treatment

treated cast
parts inventorsy

gauging

inventory

<H <

zinc plating

i E dispatching

tooling

assembling

Figure 2.1. Flowchart of the production process for the castings and nipples

manufacturing.
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The reason for making this particular division into Production Units,
was that heat treatment was one of the most complicated stages in the
production process (from a planning point of view), because of the

large variety of types and sizes that have to be dealt with.

cast

Heat

Foundry parts Factory

Treatment

Figure 2.2. Aggregate process for the castings and nipples

manufacturing (see Figure 2.1).

Notice that the introduction of Production Units decreases the decision
freedom. This effect has to be compensated by the fact that, due to a
reduction of the complextity, the control can be improved (see Bertrand
[81).

2.2.2 Levels of Control.

We group the decisions into decision levels. The most important reason
for doing so, is that consequences of decisions are so different that a
monolithic approach is impossible. Of course, if this were not the
case, a hierarchical approach might still be preferable because of its
relative simplicity: we want a simple structure for taking planning
decisions in order to make an easy coordination possible with the other
control processes in the organisation (think of budgets, objectives and
production levels).

This grouping of the decisions leads to a so-called hierarchy of
planning decisions. Roughly, one can distinguish three levels in such a

hierarchy (see Figure 2.3). This distinction presents us with a natural
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framework for planning and control in practical situations (see e.g.
Anthony [3],~Bitran and Hax [13], Jodnsson [31], Manz [38]), although a
too rigid classification into exactly three levels will certainly not
always be right. We will discuss each of the levels in some detail. The
discussion of each level starts with the definition given by Anthony
{27, who (to our knowledge) was the first to formulate such a framework

in a systematic way,.

Strategic Planning

Tactical Planning

Operational

Control

Figure 2,3. A planning hierarchy.

Strategic planning is "the process of deciding on objectives of the

organisation, on changes in the objectives, on the resources used to
attain these objectives, and on the policies that are to govern the
acquisition, use and disposition of these resources",

For example, a typical decision that should be taken on this level is
whether to enter the market with a completely new fype of product. This
requires large investments in the design of new production facilities
or even bullding new plants. Such decisions obviously interfere with
other control processes in the organisation, like Sales Control, which
has to estimate the possibilities of the new market, and Financial
Control, in order to acquire the capital that is needed.

The different control processes are balanced in outline on this level.
This requires a high degree of aggregation. Another reason for using a
high degree of aggregation on this level, is the following: since the
decisions on this level have long-lasting effects on the organisation,
it is necessary to have a long planning horizon (about two to five
years). The information that is available on this term is often only

..1&_



qualitative or characterized by a great deal of uncertainty. To be able
to take realistic decisions on this level, i{ is necessary to consider
aggregate guantities.

The outcomes of the decisions on this level often have a large and
long-lasting effect on the behaviour of the organisation and therefore
require the attention of top management.

Tactical planning {or management control) is "the process by which

managers assure that resources are obtained and used effectively and
efficiently in the accomplishment of the organisation's objectives"™.
Before discussing this level, we should first mention that this level
is known under two different names in the planning and control
literature, namely management control and tactical planning.
Originally, Anthony [3] used the term management control, but later,
others preferred the term tactical planning (see e.g. Ackoff [1] and
Hax and Meal [28]). We believe that the latter term is more common in

recent literature énd, therefore, we will use 1t in this text too.

On the tactical level, one must use certain prescribed facilities to
attain the objectives that have already been set by the strategic
level, Looking at the example in Section 2.2.1, typical activities that
fall under this heading include the replacemént of electric furnaces,
the decision to start using a fourth alloy that only differs slightly
from the existing ones, the make or buy decisions for cast parts, the
trade-off between customer service rate and inventory levels and
setting work force levels in each Production Unit.

Often the planning period for this level is about one year and this
reduces much of the uncertainty of the strategic level, where the
planning period is much longer. Consequently, the tactical level can
react more efficiently to latef developments. Therefore the strategic
level must retain some slack for the tactical level in order for this
level to be able to react to uncertainty of the environment. The
tactical level must, in turn, formulate guidelines for operational

control.

An important point is the interference with Sales Control on this
level. As we have seen, both control processes have already been
coovdinated on the strategic level. On the tactical level, coordination
for a shorter period is considered. We have already mentioned the

-15-



trade-of f between customer service rate and inventory levels, but this
is not a matter for Production Control only. Sales Control and
Financial Control should take part in this particular decision, because
{(usually) there are conflicting interests between different control
processes at this point. Production Control requires a stable
production situation and does not like to be disturbed by an
unpredictable, fluctuating demand. Sales Control, however, wants to
provide a good customer service rate and therefore requires more
flexibility of Production Control in the short term, no matter what
investments in slack (inventories, excess of capacities) are needed
therefore. Financlial Control wants to keep the required capital (that
has been tied up in e.g. inventories) within certain limits. These
conflicting intereats'have led, in many organisations, to the
formulation of lateral relations (see Galbraith [23]). Bertrand and
Wijngaard [10] distinguish structural and operational coordination
within this context. Structural coordination implies aggregate
agreements with resbect to delivery performance and sales patterns.
Operational coordination takes the actual status of production, sales
and finance into account.

Notice that the structural coordination falls under the heading of
tactical planning, since it ensures that the resources are used
effectively and efficiently without actually being concerned with
specific tasks. The coperational coordination falls rather under the
heading of operational control, which we discuss below. .

The degree to which coordination has to be structural or operational,
depends on the particular production situation. The outcome of this
coordination, will be referred to as the Master Production Schedule.
This Master Production Schedule should be a (normative) statement of
production, sales and finance.

Operational control is “the process of assuring that specific tasks are

carried out effectively and efficiently".

On the operational control level the daily actions have to be
coordinated. The aim is no longer to set budgets for inventory but to
actually control the inventories, nc longer do we set the workforce
levels but actual hiring and firing takes place, as the situation

requires.

- 16 -



In the example of Section 2.2.1, this level is responsible for the cast
parts stock being sufficiently high to ensure that heat treatment can
do its work, also scheduling of jobs in the foundry is a task of
operational control, as is daily allocation of workmen to the machines.
On this level it also has to be ensured that the flow of material over
the Production Units is coordinated to guarantee a certain performance
rate to the customers.

As we see this level of planning has a short planning period (say a few
weeks) and it must come up with detailed proposals for action.

The interference on this level with other control processes is rather
limited, the coordination has taken place on a higher level and now the

commitments on the higher levels have to be realised,

2.3 Introduction of Material Coordination.

In this text, we focus on the part of Production Control that consists
of coordinating the flow of material over the Production Units. This
task will be referred to by the term "Material Coordination", a term

that is proposed by Bertrand [8].

Material Coordination

Production roduction—--- - - roduction

Unit Unit Unit

Figure 2.4, Material Coordination.

On this level of control the availability of resources as well as the

"demand" can (generally) no longer be influenced. This demand may be
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the outcome of some balancing between control processes as formulated
in a Master Production Schedule and therefore it need not be the
"customer demand". However, since Material Coordination has no control
over the Master Pfoduction Schedule, we will refer to the Master

Production Schedule as the demand for Material Coordination.

The task of Material Coordination is to coordinate the activities of
the Production Units in order to realise the commitments that have been
made on the tactical level with respect to customer service rate,
inventory budgets and workforce levels. So, Material Coordination is
not involved in the trade-off between different performance criteria,
but has to take necessary actions to reach the given performance
targets. Typical tasks that belong to Material Coordination are setting
due dates for orders, ensuring material being available and controlling
the inventories.

Because of the nature of Material Coordination, it is seen as a part of
the operational control level.

In the next Section, we will illustrate the concept of Material
Coordination by describing some well-known examples of Material

Coordination.

2.4 Some well-known examples of Material Coordination.

In this Section, we want to elucidate the concept of Material
Coordination by describing some well-known examples of Material
Coordination. The examples that we restrict ourselves to in this

Section, are:
- the Reorder Point System

- the Base Stock System

- Material Requirements Planning
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2.4.1 The Reorder Point System.

For an extensive study of this approach the reader is referred to
Hadley and Whitin [27]. We will use their notations in this Section.

Let us first consider a single Production Unit.

In the Reorder Point approach a replenishment order for a product is
released if the inventory position of that product is below a
predetermined, critical level (with the inventory position we mean the
inventory on hand minus back-orders plus outstanding replenishment
orders)., This critical level is determined on the basis of the
distribution of the demand over the production leadtime and on the
performance criterium that is used (e.g. minimizing inventory holding
costs and stock-out costs over time).ADépending on whether the
inventory is reviewed periodically or continuously, this level (reorder
point) is denoted by "T", respectively "r".

Just as important as the question when to produce, is the question how
much to produce. Therefore, together with a critical level a production
quantity is determined on the basis of the mean and the lumpiness of
the demand so as to optimize some performance criterium, like the
expected number of stock-outs. In the Reorder Point approach one
usually produces a fixed batch "Q", or one replenishes the inventory to
a fixed level "R",

Combination of both leads to the familiar Reorder Point strategies:
<R,r>, €Q,r>, <R,T> and <Q,T>.

Now consider a production process with several Production Units and see

how to use the Reorder Point approach then.

The philosophy of the Reorder Point approach is as follows: The Master
Production Schedule (which in case of a Reorder Point System usually
conforms £o customer demand) is satisfied from stock-point n (see
Figure 2.5). For each product critical levels are set as above. If the
inventory fér a product drops below this level, then an order is

released to Production Unit n for replenishment. After such an order is
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PU = Production Unit
= Goodsflow

--+= Information flow

Figure 2.5. Reorder Point System.

released, Production Unit n receives its Yraw materials® from stock-
point n-1 and manufactures these to end-items for stock-point n. This
leads to a reduction of the inventories at stock-point n-1. In ihe
Reorder Point approach, this reduction is observed as independent
demand for stock-point n-1. Based on the characteristiecs of this demand
again critical levels are set for the inventories at stock-point n-1.,
For the control of the inventory at Stock~point n-1, Production Unit'
n-1 receives raw materials from stock-point n-2, which leads to an

"independent” demand at stock-point n-2, ete.
The Reorder Point System has some disadvantages, namely:

1. The production leadtime of a Production Unit is assumed to be
independent of the release of replenishment orders. However, the
actual production leadtime will depend on the WOrk4In~Process in
the Production Units. Thus different products interfere with
each other. Since this Work-In-Process fluctuates widely due to
the lumpinéss of the demand (and the effects this has on the
release of production orders) it will usually be difficult to
give a good estimate for the leadtime.

2. Bach Production Unit buffers demand until the inventory position
drops below the reorder point before passing the demand to the
preceding Production Unit. This leads to a delay of information

about demand (see e.g. Forrester [21] and van Aken [2]). Even if
there are only gradual changes in the demand process, the delay
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of information may have large consequences, For example, if
demand increases, then Production Unit n will, after some time,
adapt its reorder levels. Production Unit n-1 notices this
change in the demand process only after a longer time period.
Thus it reacts much later on a change in the demand process.
This, however, also means that the Production Unit does not only
have to keep pace with the new demand process, but it will be
necessary to over-react in the short term. This over-reacting is
necessary, since for some time the produciion has been

systematically less than the demand.

3. Increasing variability of demand. Another aspect of buffering
demand, is that demand appears to be more lumpy if one goes
further back in the production process.

The disadvantages 2 and 3 are a consequence of the fact that the
decrease of the inventories in each stock-point 1ls seen as independent
demand, while there are obvious dependencies, between demand in
different stock-points. Van Dierdonck and Bruggeman [17] describe this
as a lack of vertical integration, i.e. integration between the control
of subsequent manufacturing stages. o

The first disadvantage is due to lack of "horizontal" integration (see
van Dierdonck and Bruggeman [17]), i.e. integration between different
products at the same manufacturing sﬁage.

An obvious advantage of the Reorder Point System is its simplicity,
which makes it easy to implement. Only a straightforward flow of
information is necessary, which means that there is no need for a large
investment in information processing systems. Therefore, this approach

is often used, especially for "cheap" products.
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2.4.2 The Base Stock System.

In the Base Stock System, the idea of dependent demand is used to make
a better coordination between Production Units possible, which leads to

vertical integration (see Figure 2.6).

For an extensive study of the Base Stock System, the reader is referred
to Kimball [34], Magee [37], and Timmer et al. [51].

The information about demand is not only used to control the
inventories in stock-point n, but it is exploded to all stages in the
production process so that each Production Unit can react on it.

At each stock-point certain inventory levels (base stocks) are .
determined for each product. As in the case of the Reorder Point
System, a replenishment order is released to the preceding Production
Unit if the inventory position of a given product drops below its
level. The big difference with a Reorder Point System is the way demand
is experienced in the stock-points. In the Base Stock System, one keeps
track of the demand for end-items and explodes this into demand for
components, Consequently, there is no delay in information about

demand, which leads to smaller investments in safety-stocks.

Figure 2.6. Base Stock System.

When translating the demand for stack-point n to demand for stock-point
n-k, all inventories in between these stock-points have to be taken
into account too. Therefore, the so-called "echelon inventory" is

introduced to baee the production decision on (compare e.g; Clark and
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Scarf [16]). This echelon inventory is the inventory for a given
product.at ihe stage where it is produced, and downwards in the
production process as it is "assembled" into other products.

Notice that if the production process is divergent, there is a
possibility that a component is manufactured into a wrong product (that
means that it is manufactured intc a product for which no demand has
occured, whereas it should have been manufactured into another product
for which a stock-out occurs). If one wants To implement a Base Stock
System in such a situation, the definition of base stocks has to be
adapted. However, in case the production process is convergent, the

echelon inventory can be used straight forwardly.

For the Base Stock System, vertical integration is provided for.
Consequently, the disadvantages 2 and 3, mentioned for the Reorder
Point System, are circumvented. In the Base Stock System, there is
still lack of horizontal integration (see disadvantage 1 of the Reorder
Point System).

Note that the Base Stock System requires more information proceasing

than the Reorder Point System.

2.4.3 Material Requirements Planning,

In a Material Requirements Planning system the Manufacturing Bill Of
Material plays a central role., The Manufacturing Bill of Material
describes the product structuées from the Material Coordination point
of view. Starting from the final products in the Mastér Production
Schedulé it is possible to determine what components have to be
manufactured in which qﬁantities to assemble the final products. Of
course, it is not only required to know how much to produce, bui also
when to produce. Therefore standard leadtimes are introduced that
indicate how loﬁg it takes to manufacture the components into the next
subassembly.

This leads to the following first step in a Material Requirements
Planning system: The Master Production Schedule for the final products
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is exploded via the Manufacturing Bill of Material to find a time~
phased gross requirement for the components. Any possible independent
demand for a component is forecasted and added to this gross
requirement. The next step in a Material Requirements Planning system
is the so-called "netting procedure". In this netting procedure the
gross requirements are converted to het requirements at each production
phase on the basis of inventory on hand, the orders that already have
been issued and (sometimes) the safety stock. Orlicky [44] gives the
following example to illustrate this netiing procedure:

Gross requirements 120
On hand 25
On order 50
75
Safety stock -20

55

Net requirements ' 5

After determining the net requirements for each component it is
poasible to determine "planned orders", Usually some lot-sizing
technique is used for this final step in the Material Requirements

Planning system.

Of course, we have only given a very rough description of Material
Requirements Planning. For a study of Material Requirements Planning,
the reader is referreé to Orlicky [44]. What we have aimed at, in this
Subsection, is to sketch the general idea behind Material Requirements
Planning, which is very straightforward. In the APICS News of february
1973, L.J. Burlinger stated that the 1ogic of Material Requirements
Planning is inescapable. This seems true, but in order to be able to
use this kind of system'some important conditions should be met. The

most important ones, in our view, are:
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-The Master Production Schedule consists of a deterministic
requirement for final products and may not be seen as a stochastic
variable.

~The resource restrictions may not be tight: It is not clear in the
Material Requirements Planning approach how to react if it proves
that the released orders cannof{ be realised.

~1t must be possible to keep the production 1eadtimes constant.
Usually these production leadtimes will depend on the Work-In-
Process in the Production Units.

~The situation has to be so0 that safety stocks are only necessary
for the Master Production Schedule products. The netting procedure
that we have mentioned treats a deplenishmeht of the component

safety stock in the same way as a stock-out for the component.

Consequently, if demand can be forecasted perfectly over the whole
production leadtime and if there are no (severe) capacity-restrictions,
Material Requirements Planning can be used best, In situations with a
stable demand, there will be no advantage of using the Material
Requirements approach instead of the Base Stock System. Therefore,
Material Requirements Planning is often used in situations with a
highly variable demand. Notice that in situations, where the conditions
for applying Material Requirements Planning are met, it in fact
corresponds to a very powerful information processing system.

In other situations Material Requirements Planning is often ﬁsed too.
Its performance then relies on the ability to make a realistic Master
Production Schedule, and on the possibility to react on exception
messages (rescheduling).

Notice that for all Material Coordination Systems described in this
Section, production runs are started on the basis of information about
individual products. In situations with a tight capacity restriction
(or more generally in situations where horizontal integration plays an
important role), this approach may give poor results (we will return to
this in the next Section).

-25..



2.5 The role of stocks.

In the previous Section, we have described some well-known examples of
Material Coordination. How well a given Material Coordination System
works, depends not oniy on the characteristics of the Material
Coordination System, but also on the characteristics of the
environment (like how stochastic is demand, how uncertain is the

availability of the resources, etc.).

Galbraith [23] has put forward that "the ability of an organisation to
successfully coordinate the activities by goal setting, hierarchy and
rules depends on the combination of the frequency of exceptions and the
capacity of the hierarchy to handle them". Consequently, for Material
Coordination, a trade-off has to be made between investments that are
necessary to reduce the uncertainty and investments to be able to cope
with existing uncertainty. In order to reduce uncertainty, investments
are required in information processing systems or in lateral relations.
In order to be able to cope with existing uncertainty, Material
Coérdination is provided with flexible resources or Material
Coordination creates safety stocks,

In this text, we want to gain insight into efficient ways to create
safety stocks on the level of Material Coordination in order to be able
to cope with uncertainty. The results of this text may then be used in

making this more generalttrade-off.

When we want to investigate efficient ways to create safety stocks, it

is interesting to consider the way that such stocks are created in the

Material Requirements Planning approach. Material Requirements Planning
supports three fundamentally different ways to create safety stocks

(compare Whybark and Williams [54]):

1. safety stock per product: a production run for a product is

started as soon as the inventory drops below the safety stock.

2. safety leadtime per product: a larger leadtime than necessary is
used in the planning.

3. hedging the demand: demand is systematically over-estimated.
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Whybark and Williams [54] have compared the first two methods. Their
main conclusion is that the way to buffer against uncertainty'should
depend on the nature of uncertainty, If each period the demand
fluctuates around the forecast, theﬁ it is best to use a safety stock
per product, but if the main source of uncertainty is that customers
often put their large orders (lumpy demand) in another period than
expected, then a safety leadtime performs better.

The lesson that is to be learnt from their research, is that one must
first know what type of uncertainty one is confronted with before
starting to create buffers against it.

Looking at the possible sources of unéertainty at the level of Material
Coordination, one can distinguish two types of uncertainty:

On the one hand, there are uncertainties that are a consequence of the
behaviour of individual products, e.g. uncertain demand, inventory
registration or yield factor. A common way for Material Coordination to
buffer against this type of ﬁncertainty, is to create a safety stock
for each individual product, which has to absord the stochastic
behaviour of that product.

On the other hand, there are uncertainties due to differences between
demand‘and availability of resources (for example due to worker
availability or machine breakdowns). The safety stock that is created
to absorb these uncertainties is laégely exchangeable between products:
If, for some reason, it proves that a Production Unit cannot produce

more than ¢ in a specific period and it is necessary to produce ¥y for
product 1 and y2 for product 2 with y1+y2 > ¢, then an inventory 6f
(y1+y2)-c solves the capacity problem, no matter how distributed over
thé products {as long as the inventories do not exceed yj).

Notice that the discrepancy between the availability of capacity (¢)
and the demand for capacity (y1+y2) may be due to the behaviour of the

capacity or to the behaviour of the aggregate demand of the products.
This shows that the two types bf uncertainty, that we have mentioned;
are interrelated. Consequently, the stocks to buffer against these
uncertainties should not be determined independently of each other,
However, both aspects of uncertainty require a different approach to
creating safety stocks: The product-aspect of uncertainty requires
decomposition over the individual products so as to isolate the
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behaviour of each product, whereas the capacity-aspect requires
aggregation over the products in order to be able to consider the
behaviour of the total demand put on the resources. As a consequence,
the stock that is meant to buffer against the capaéity—aspeot of
uncertainty is largely exchangeable between products, whereas for the

product-aspect this exchangeability is limited.

Connected with these two aspects of uncertainty, there are two extreme
approaches to the design of a Material Coordination System, namely a
product-oriented approach and a capacity-oriented approach. Roughly

these approaches can be described as follows:

-product-oriented approach. The required delivery patterns have to
be translated by Material Coordination to production patterns. In
a product-oriented approach the first step is to determine thé
requested production patterns by straightforward offsetting, not
taking capacity restrictions into account but using standard
throughput~times. The second step in the product-oriented approach
is to coordinate4the different production patterns. In this step
the capacity restrictions are taken into account. Typically the
horizon in the second step is smaller than in thé first step.
Uncertainties in required delivery patterns and capacity '
availibility and the interference between products because of
restricted capacities can be attacked by safety stocks and safety
leadtimes in the first step, so per product.

Material Requirements Planning is an example of the product-
oriented approach.

-gapacity-oriented approach. Material Coordination first makes a
production level plan, poséibly combined with a capacity
adjustment plan. This requires aggregation of delivery patterns
and inventories to capacities. Then, in a second planning step,
the production level plan for‘the first period is distributed over
the different products, only using short-term detailed
information, This disaggregation can be based, for instance, on
the run—out'times of the individual products. With the run-out
time of a product, we mean the expected time until a stock-out
occurs for that product.
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Uncertainties in the capacity availability and the total required
deliveries can be taken into account in the first planning step.
Imbalances between the individual products, resulting from thisv
procedure, may also be estimated in an aggregate way. It is
possible to determine how much extra (aggregate) inventory is
necessary because of these imbalances.

Such capacity-oriented approaches have been proposed by van Beek
[6], Magee [37] and Meal [40]. They stress the capacity adjustment
in the first step and assume in the second step that the capacity
usage and the capacity availability are equal.

Both approaches are feasible, It i3 not clear however when to use what
approach. It may be sc that both approaches work well in certain
situatiohs, while in other situations only a mixture of both approaches
is satisfying., An interesting mixture of both approaches for the single
capacity case has been proposed by Graves [24].

2.6 The single-phase multi-product planning problem.

In the previous Section, we have mentioned two extreme approaches to
Material Coordination. We want to investigate their weak and their
strong points in this text. Thus we hope to provide the reader with a
tool to decide which approach to use when desighing a Material
Coordination System in a practical situation.

For this investigation we have used the simplest model in which there
is a distinction between both approaches, namely the single-phase
multi-product planning model (with one c¢lear capacity bottle-neck). The
reason to consider this model is not because it is such a good model
for many realistic situations (although it may be so for certain
situations}, but because it is the most straightforward starting point
for the analysis of the weak and strong peoints of both approaches.
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The single-phase multi-product planning problem has a long history in
the theoretic research. However this research has been dominated by
models with a deterministic demand. .
Elmaghraby [19] presents a good overview of the work in this field.
However, when one is interested in the question how to buffer
effectively against uncertainties, the results from that research are
not very helpful since it proves to be difficult to extend them to
stochastic situations (see e.g. Graves [24]).

More recently, the research in this field has also incorporated
stochastic elements in the model. Consider for example the work of
Federgruen and Zipkin [20], Graves [24] and Williams [55]. There is a
lot of similarity between the research described in this text and their
work. Our interpretation however differs from theirs because we have a
different notion of the single phase. We view this phase as a
controlied Production Unit, consisting of more machines and workers,
whereas in the mentioned research this phase 18 meant to represent a
single machine. This leads to somewhat different characteristics for
the behaviour of the capacity in the models, This means that their
results cannot simply be applied if analyzing the control of a
Production Unit. Yet, some results can be used and we will refer to

these in the next Chapters.

In the single*phase models, that we will consider in this text, the
bateh-sizes have been fixed. The reason for this is that the
possibility to use the capacity efficiently, usually, interferes
heavily with the choice of the run sizes. Therefore, at the level of
Tactical Planning, at least restrictions have to be imposed on the
batch-sizes, in order to be able to decide whether the availability of
the resources has to be adjusted. On the level of Material
Coordination, that falls under the heading of Operational Control, the
availability of the resources is given. Material Coordination has to
provide for the timing of production orders. It would have been
possible to work with restrictions for the batch-sizes on the level of
Material Coordination, without actually fixing the run-sizes. However,
in order to simplify the analysis, we will assume that the batch—sizes
are fixed on the Tactical Level {(we will return to this in Chapter 5).
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Notice that in situations with incidental, large demands (think of
project-situations) it will not be sensible to introduce such a
decomposition between the level where the batch-sizes are determined
and the level where the timing of production orders is provided for.
Therefore, we will restrict ourselves to situations with a relatively
smooth demand. In the situations that we will consider, the demand
follows a stochastic process, that may be partly known beforehand. For
such situations, de Bodt and van Wassenhove [14] have shown that
forecast errors have a large lmpact on the cost effectiveness of lot~
sizing techniques when used in a rolling schedule approach. Therefore,
there will be little sense in leaving the decision on the batch-sizes
to Material Coordination in such situations.

Once the batch-sizes have been fixed, the total set-up times and set-up
costs can no longer be influenced. Therefore, these set-up costs and
times may be ignored at the level of Material Coordination (the set-up
times are then viewed as part of the processing time for a batch).

In this text, we will compare product-oriented and capacity-oriented
approaches to Material Coordination. Before starting to investigate the
product-oriented and the capacity-oriented approaches, there is one
advantage of the capacity-oriented approach, that we want to mention
already, since it is connected to the levels of control that are
deseribed in this Chapter:

The capacity-oriented approach makes the relationship to higher levels
of control easier. It is possible to combine capacity adjustment
decisions with production level decisions. In case of a product-
oriented approach one needs a separate (aggregate) model to make the
capacity adjustment decision and it is not always easy to couple this
level of decision making properly to the (detailed) product-oriented
approach for Material Coordination.
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Chapter 3. Identical products; purely stochastic demand.

3.1 Introduction.

In the previous Chapter, we have described the level of Material
Coordination within a general framework for Production Control, Also,
we discussed the uncertainties of the enviromment to which Matérial
Coordination is exposed, and we described the need for effective ways
to buffer against these uncertainties. This led us to choose the
single-phase multi-product model for this research,

In the single-phase multi-product model, we can distinguish two
basically different approaches to the design of a Material Coordination
System, namely the product-oriented approach and the capacity-oriented
approach, Since these two approaches, of which we want to investigate
the weak and strong points, differ fundamentally in the way they buffer
against uncertainties on the level of Material Coordination, we will
study a stochastic single-phase model. Consequently, a situation with a
stochastic arrival process for demand and a stochastic availability
process for the resource will be considered. To facilitate the analysis
in this Chapter, we will assume that for all products the demand
processes are the same. Also the production characteristics for all
products are the same (we speak of "identical" products).

In the purely stochastic case, demand follows a given stochastic
process. In subsequent Chapters, we will extend the analysis to
situatiéns where demand is partly known beforehand, and also to

situations with "non-identical products.

Although the reason to introduce the single-phase model is to compare
the product-oriented approach with the capacity~oriented approach, we
will first formulate the problem of finding the overall optimal
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strategy as a Markov decision problem. Solving this Markov decision
problem for some special cases, we have a point of reference to measure
how the performance of strategies deteriorates when we restrict
ourselves to simple approximating strategies. At hand of this Markov
decision problem, we can illustrate the difficulties that are inherent
in using the overall optimal strategy. Thus, we can discuss the reasons
for searching simpler strategies. We will then describe approaches that
are more generally used in optimization theory to overcome these
difficulties, and show the relationship with the capacity-oriented and

product-oriented strategies that we want to compare in this text.

If one is going to restrict oneselves to approximating strategies, it
is necessary to investigate what opportunities there are for doing so
in general. Wismer [56] says on this subject in the preface of

"Optimization metheds for large scale systems ... with applications™:

"We have confined our attention to those developments which are
applicable to large-scale systems. As a rule such developments are
characterized by (1) decomposition of the large system into
smaller subsystems which are later composed or coordinated to
reconstruct the original system, or by (2) aggregation of the
variables in the large system thereby reducing its dimensionality.
The ultimate gain from these methods is not only to obtain a
computer solution in a reasonable time {or at all) but also to aid
in the conceptualization and understanding of large—scale

interactions.”

We will show, in Section 3.4, that a sensible form of aggregation in
the model actually conforms to restricting the class of strategies in
the Markov decision problem to capacity-oriented strategies.
Analogously a sensible form of decomposition in the model conforms to
restricting the class of possible strategies to product-oriented
strategies (see Section 3.5). This brings us back to our main theme,
namely the comparison of the capacity-oriented and the product-oriented
approaches.

For further information on aggregation in production planning, the
reader is referred to Axsiter and Jonsson [4], Ritzman and Krajewski
[457, Wijngaard [58] and Zipkin [62]. A more general discussion of the
concept of aggregation is found in Liesegang [35].
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As will be shown, in Sections 3.4 and 3.5, within each class of
strategies (capacity-oriented and product-oriented strategies) an
optimal strategy can be found., However, this strategy may not be
attractive for practical use. Therefore, we will also develop simple
heuristics within each class. With the determination of these
heuristics, we will find an approximation of the actual costs too.

In Section 3.6, we will concentrate on a more specific single-phase
multi~product planning model. For this specific model, we will compare
the strategies and heuristics by means of simulation (Sections 3.7 and
3.8).

In Section 3.9, we will discuss the sensitivity of the results for the
choice of the specific model (of Section 3.6).

3.2 General formulation of the model.

In this Chapter, we will consider a production system in which N
products are made for stock by a single Production Unit (see Figure
3.1).

c(x), q

Figure 3.1. A single Production Unit.
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The demand for different products is not correlated. For each product
the demand follows a stochastic process. The interabrival time between
successive "demand instants®, for a givén product, is negative-
exponentially distributed with mean N/i. If a demand occurs, the demand
size follows a discrete stochastic distbibution. The stochastic demand
size will be denoted by 8 (S 2 0). The demand for a given product, say
j, is satisfied from the stock-point of that product. If this stock is

too small, the remaining part of the demand is backoﬁdered.

J
may be negative to indicate a backlog. To be more precise, we will
define Ij(t) to be left-continuous. This means that if at time t a

The inventory level of product j at time t is denoted by I,(t), which

demand or a production opportunity arrives, this is accounted for in
the inventory of product j in the open interval (t,»), as is shown in
Figure 3.2. All variables, that we will introduce in this text, for
which a chéice between left-continuous or right-continuous has to be

made, will be assumed to be left-continuous.

Q

?
S

|

t t, -2 t, ty

Figure 3.2. Example of the inventory pattern of a product. At times t1
and t3, a demand arrives, whereas at time t2 a batch of
size q (which has been started at time t2-£) arrives,

Note that the inventory level corresponds to the physical inventory
only when Ij(t) 2z 0.

To the inventory of a product j, a certain cost is assigned. Therefore,

we will define a cost rate p{i). If the inventory level at time t for
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product j equals ij (i.e. Ij(t)uij), then the total cost increases at

time t with rate:

232, p(i;) (3.1

In our model, we will only consider cost rates p(i), that are
non-negative and convex. We will also require that p{(i) goes to
infinity as i goes to plus or to minus infinity.

In order to control the inventory levels, production runs can be
started at specific instants of time, which will be referred to as
"production opportunities", Production opportunities arrive at
independent interarrival times with a non-lattice distribution function
C{t). For convenience with notations, we assume that C(0)=0,

At any production opportunity, for at most one product, a pﬁoductian
run of size q (which is chosen integer and supposed to be fixed
beforehand) can be started. It may be decided for which product this
run is started. The producﬁion system is controllable, if we impose the
following restﬁiction on q, which ensures that the utilization rate of
the Production Unit is less than one:

9
X+ES <

® (3.2)
of b dclt) :

where ES denotes the egxpected value of the stochastic demand S.

If a production run is started for product j at a given production
opportunity, then the batch g will arrive at the stock—point for that
product after a production throughput-time L. This implies that there
may be more production orders in process at éhe same time.
Consequently, the results of this Chapter can apply to situations with
more production facilities in the Production Unit, or to situations
with more Production Units in series, as long as there is only one
bottle~neck (see Figure 3.3).
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Figure 3.3. A Production Unit with a single bottle-neck.

The performance objective of this model is to minimize the average cost
that is incurred, over time. However, from a mathematical point of
view, this average cost needs not be well-defined if we apply an

arbitrary strategy. Therefore, we define the cost of a strategy =, as
in (3.3): ’

Lim supy By [ 4 o Ip(1,(6))dt ] (3.3)

With Eﬂ(X), we mean the expectation of X when applying strategy =.

3.3 Overall optimal strategy.

Suppose a production opportunity arrives at time s. Due to the
throughput-time of an order, only the inventory levels over the
interval (s+&,%} can be influenced by the production decision.
Therefore, we will introduce the inventory position of prnducé J at any
time t, denoted by Iposj(t), as the inventory Ij(t) plus the amount for
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which a production run has been started before t which will arrive at
the stock-point before t+i.

We introduce the "shifted cost rate" as follows: The shifted cost rate
for product j at time t is the expected cost rate at time t+&, if the

inventory position at time t, for that product, is given. If we denote
this shifted cost rate by L(ipj), if the inventory position of product

J equals 1pj, then we can write this as in (3.4):

(t+2)) | Ipos (t)=ip, 1 (3.8)

J J

L(ipj) := E[ p(I
where the formula behind the vertical bar denotes a condition on the
expectation,

Note that L(ipj) does not depend on t or on j or on 7.

If we define Gts)(x) as the probability that the demand for a given
product in the interval [t,t+s) equals x, then we can write (3.4) as
(just sum over all possible realisations of demand in the interval
[£,648)):

L(ip) = £, 20 p(px)-6t* (x) (3.5)

Notice that since p(i) is convex in i, L(ip) is convex in ip.

¥We will now show that we may replace the cost rate p{i) in (3.3) by the
shifted cost rate, if the expected costs over the first L units of time
are finite. Notice that we cannot influence these costs by the
production decisions, so that this assumption seems reasonable. Using
that the expectation of the conditional expecbation'is the
unconditional expectation (E(E(X|Y))=EX), we find

1 T¢ N 1 T¢N
E“{,f of zjﬂp(xj(ug)mt] = 5o EjﬂE“p(Ij(t*rﬂ.)}dt =

-

1

To (t))at ]

(3.6)

Tg N Ty N
T ol LjoqE,lER(I (e+0))[Ipos (t)lat = E [7 o/ LjoqL(Ipos,

-39-



Therefore, we can formulate the production planning problem entirely in
terms of the inventory positions. For notational convenience, we will
define Ipos(t) as the vector of inventory positions (and the
realisations ip(t) analogously), via (3.7).

Ipos(t) := (Ipos1(t), Iposz(t), sen, IposN(t)) (3.7)

Notice that at a given production opportunity, the time until the next
demand instant 1Is negative-exponentially distributed, and the demand-
size has a fixed distribution. Consequently, the demand process is
regenerated at any production opportunity. Since the interarrival times
between successive production copportunities have a fixed distribution
as well, also this process is regenerated at a production opportunity.
Consequently, the distribution of demand for any product j between
successive production opportunities remains constant over time. For any

vector x = (xl, X LR xN), with non-negative integer entries, let

2!
r(x) denote the probability that the realisation of demand for product
Jj between successive production opportunities equals xj (G =1, 2, vves

N). It is easy to see that r{x) is given byk(3.8).

r(x) = Hj§1{ f G("‘)(xj)ac(t)} (3.8)

t=0

Since the demand process and the capacity-availability process are both
regenerated at the production opportunities, we will restrict ourselves
to strategies in which the production decision depends solely on the
realisation of the vector of inventory positions upon arrival of a
production opportunity. Such strategies can be written as a function
ﬂ(ig), where n(gg)sr means that a production run for product r is
started if upon arrival of a production opportunity the realisation of
the vector of inventory positions is as given (r=0 indicates the

decision not to start a production run).

If we define Ipos as the vector of inventory positions upon arrival of
the m~th production opportunity, then | Igosm, m=1, 2, ...} is a

Markov Chain with countable state-space for any given strategy w.
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The transition probabilities in this Markov Chain depend on the
strategy v and on the parameters of the demand process between
successive production opportunities (determined by (3.8)). It is
therefore straightforward to determine the probability r“igtg) of a

transition from i to k.

Suppose that the process starts with all inventory positions equal to
zero and that immediately a production opportunity is available. Then

-

we can define Hiy)(g) as the probability that we are in state k upon
arrival of the m—th production opportunity. We assume that

- I o (m) o .
H“(g) : llmm#wﬂu (k) exists and that Egﬁﬂ(g) 1. This means that the

Markov Chain will tend to a steady-state.
These "steady-state" probabilities then satisfy the following

equilibrium relations:
H (k) = Zi r (i,k)<H (1) for all k (3.9

To solve this set of equilibrium relations, one may use successive
approximation (after truncating the state-space to a finite one).
However, the size of the state-space will be large, which will present
numerical problems, especially in case of many products. This is mainly
due to the fact that the state-space is N-dimensional.

Now suppose that the system has reached its equilibrium. Consider an
arbitrary point in time. The time that has elapsed since the previous
production opportunity has distribution function R(t) as in (3.10) (see
Ross [46], notice that it is required that C(x) is not lattice).

o/ F-c)ax
R(t) =

~ (3.10)
o/ T(-cx)ax

This enables us to determine the probability that at an arbitrary point

in time (if the system is in equilibrium) the vector of inventory

positions is given by k. Denote this probability by H“(g) and let
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rﬁ(g,g) denote the probability that we are in state k, given that the

elapsed time since the previous production opportunity equais t and
that the state upon arpival of that production opportunity was i

(notice that ri(;,&) can be determined analogously to r {i,k)). Then

H (k) satisfies (3.11).

H (k) = J I, rD(ik)+H (1) dR(t) for all k (3.11)
g=0) L

-

Via (3.11), we can determine H“(g) if we know Hﬂ(&) (again after

truncating the state-space).

Under weak regularity conditions, the average expected costs in the
long run are equal to the expected costs in the steady-state situation,
i.e. (3.12) holds.

lim, E T of ZJ yL{Ipos, (£))dt I= z [z L{ipj)]on“(w (3.12)

In theory, now, it is possible to determine the overall optimal
strategy by minimizing expression (3.12) over w. Usually, however, this
approach is not attractive for practical use., The main reason for this
inattractivity is the complexity of the encountered numerical problems.
As we have seen, the state space is N-dimensional, Consequently, oniy
for limited values of N, the optimal strategy can be found. Besides
these numerical problems, it may be so that the optimal stfategy is
complicated, which makes it difficult to react on unexpected events. In
order to avoid these problems, we will restrict ourselves beforehand to
strategies that are easy to find and easy to understand.

When searching for simple, approximating strategies, two techniques
will be used, namely aggregation and decomposition., As we will see in
the next Sections, this brings us back again to the comparison of

capacity-oriented and product-oriented strategies for this single-phase
model.,
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3.4 Agggggation; Capacity-oriented strategies.

The main source of the numerical difficulties, encountered when using
the strategy that is discussed in the previous Section, is the
dimensionality of the state-space. Therefore, we will consider
approaches to reduce this dimensiénality. The two most important
techniques for doing so are aggregation énd decomposition. In this
Section, we will describe the aggregation approach. The décomposition
approach is discussed in Section 3.5. '

Since all products are identical, a natural way of defining an
aggregate inventory position at time t, is via

Ipos(t) := Ipos, {t) (3.13)

zj 1 J

The decision whether or not to produce, will now be based only on the
aggregate inventory position upon arrival of a production opportunity.
Since L{ip) is convex, it seems reasonable to restrict oneselves to
strategies of the following type:

Start a production run if and only if the aggregate inventory
position at the production opportunity is less than or equal to a

prescribed level B (8 is chosen integer).

Remark. Under some weak regularity conditions, it can be proven that
for N=1 the optimal strategy is of the above form (see
Wijngaard [591).

If, at a given production opportunity, it is decided to start a
production run, then we have to assign this run to a product,

Obviously, for such a disaggregation step we need detailed ihformation

on the distribution of the aggregate inventory position over the
indlvidual productsv ‘ ¥ '

the convexness of L(ip), this

d netion run to tr

prod th the lowest inventory position (
this situation with 1dentical products) T
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Notice that the strategies that are found using aggregation, correspond
to the ones which we have introduced (in Chapter 2) as capacity-
oriented strategies: The production decision ignores the status of
individual products, but it is based on the aggregate inventory
position that reflects how much capacity is stored in the system as a

whole,

In order to be able to rewrite (3.12), we define a(ip) := 2j§1ipj. ir

we use index B instead of w (this is possible since capacity-briented
strategies are entirely determined by the choice of R), we can write

the average, expected costs for any capacity-orientéed strategy B as:
3o 15N Liap ) 1oH (1p) =
ip~j=1 J Rr==

I

N (a)

I, gs(k>-H§a3<k) ' (3.14)

where Hs(igla(33)=k) is the conditional probability that the vector of
inventory positions equals ip given that the aggregate inventory
position is k, and Héa)(k) is the probability that the aggregate

inventory position equals k (when applying the capacity-oriented
strategy 8). Notice that gsik) is the conditional expectation of the

cost rate, given that the aggregate inventory position equals k.
To evaluate (3.14), it is required to determine the steady-state
probabilities Héa)(k). This can be done by introducing the steady-state

probabilities ﬁéa}(k), that denote the probability that the realisation

of the aggregate inventory position, upon arrival of a production
opportunity, equals k.

Define, analogous to Section 3.3, raB(i,k) as the probability of a

transition of the aggregate inventory position to k upon the arrival of
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a production opportunity, given that upon arrival of the previous
production opportunity the aggregate inventory position was i. Notice
that this probability only depends on the choice of B and on the
parameters of the aggregate demand process between successive

production opportunities., Instead of (3.9), we now find:
ﬁéa)(k) - 1 raﬁ(i,k)-~éa)(i) for all k (3.15)

Notice that these equilibrium equations are one~dimensional. Therefore
it is much simpler to solve these equations (again after truncating the
state-space) than to solve (3.9).

Now consider an arbitrary point in time given that the system is in
equilibrium. Define ra;{i,k) as the probability that the aggregate

inventory position equals k at this point in time, given that the
elapsed time since the previous pfoduetion opportunity is t and that
the aggregate inventory position upon arrival of that production
opportunity equalled i. Then, analogous to (3.11), we find the

following expression for Héa)(k):

Héa)(k} - J I rag(i,k)-ﬁéa)(i)dn(t) for all k (3.16)

=0

The above shows how Héa)(k) can be calculated.

To find the optimal capacity-oriented strategy, that minimizes (3.14),
we also have to determine ga(k). The determination of ga(k) requires

the calculation of the conditional probabilities Hs(igla(ig)nk).

Unfortunately, however, this makes the problem again as complex as the
determination of the overall opbimal strategy, since it will lead to an
N-dimensional state space. The optimal capacity-oriented strategy is
only interesting therefore as a point of reference, but is not useful
in practice. For practical use, it is necessary t¢ consider strategies
that are based on simple approximations of gs(k}. The simplest

approximation can be found by assuming that it is possible to keep the

..[,}5..



inventory positions of all products equal, Of course this will not
always be possible, but the objective of éhe production allocation is
to keep the inventory positions equal. This assumption, which is
independent of the choice of B, leads Ato the following approximation of

gs(k), that we denote as g(k):
glk) := NeL(k/N) {3.17)

The strategy that is found when minimizing (3.18) over 8 will be

referred to as the simple capacity-oriented héﬁristic.
800 K (k) (3.18)

The actual cost of using this heuristic is not given by (3.18), but is
determined by {(3.14). The actual cost, which will be denoted by SCH,
will usually be difficult to determine.

The convexity of L{ip) implies that glk) & ga(k) applies for all values

of K. Therefore the minimum of (3.18) over § is a minimum for the
average expected costs, not only for the capacity-oriented strategies,
but also for the overall optimal strategy. This "capacity lower bound"
will be denoted by CL. '

If we define OC as the cost that corresponds to the overall optimal
strategy, and we let OCC be the cost of the optimal capacity-oriented
strategy, then the following inequalities will hold:

CL $ 0C £ 0CC % SCH (3.19)

This means that the simple capacity-oriented heuristic is (almost)
optimal if for a given situation CL=8CH. Therefore, if CL=SCH, there is
no reason to search for more advanced cépacity-oriented heuristics that
take into account that keeping the inventory positions equal will not
be possible.

In Section 3.7, we will return to the capacity-oriented approach for a

more specific model, Using the results presented there, we will also
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discuss the situations for which it may be useful to derive more
advanced heuristics, which are based on an approximation of gs(k)

taking into account the fact that keeping all inventory positions equal
will not be possible,

3.5 Decomposition; product-oriented strategies.

In this Section, we will use the technique of decomposition to reduce
the complexity of the production planning problem. Consequently,
instead of considering cne model with an N-dimensional state-space, we
will consider N models with one~dimensional state spaces (one for each
product); We have introduced strategies that are based on this approach
in Chapter 2 as product-oriented strategies.

In each one-dimensional model it will be optimal, since L(ip) is
convex, to start a production run if the inventory position upon
arrival of the production opportunity, is less than or eqal to &
predetermined, critical level, say B (see Wijngaard [59]).

Once it is decided for each product whether a production éun is
required for that product, a run will be started at the production
opportunity if and only if there is at least one product for which such
a run is required. Consequently, since the demand process for all
products is the séme (and therefore also the critical level 8, which is
chosen integer), the decision to use a production opportunity to start
a production run depends only on the product with minimal inventory
position, Therefore, we define product-oriented strategies as
strategiés in which the decision to start a production run can be
characterized by: ‘

Start a production run if and only if the minimal inventory
position at the production opportunity is less than or equal to a
prescribed level 8.

Since it is possible that there are several products for which a
production run is required, we have to choose a rule to assign the run

to one of the products; For reasons, that have been explained in
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Section 3.4, it is optimal to assign the run always to the product with
minimal inventory position (in case there are several products with

minimal inventory position, we will choose one of them randomly).

Define Héd)(k) as the marginal probability (if the system is in

equilibrium) that the realisation of the inventory position of a given
product equals k, under application of the product-oriented strategy
characterized by B. Then we can write the average cost of (3.12) as in
(3.20) h

N~[2kL<k)-Héd)<k)} (3.20)

The optimal product-oriented strategy is the strategy that minimizes
(3.20). The corresponding cost will be referred to as OPC. To find OPC,

(d)
B

unfortunately again is an N-dimensional problem: The possible delay due

we have to determine the steady-state probabilities H {(k), which

to other, more urgent products, alsc demanding a production run at a
given production opportunity, has to be taken into account.

Therefore it is necessary to search for simple product-oriented

strategies that are based on an approximation of Héd)(k) which can be

determined easier.

The most straightforward approximation we find if assuming that the
delay due to other products is always equal to zero. This conforms to
the situation where at a given production opportuniﬁy, we may start
more than one production run. Consequently, there is no interference
between the products on the éapacity. Therefore, it is optimal to
decompose over the products., If we dénote the steady-state probability

upon arrival of a production opportunity, under this assumption, by

Héd}(k), then we can derive analogous relations for Héd)(k) as for

Héa)(k) in the previous Section,

The optimal strategy that is found under this assumption, that means
the strategy minimizing (3.21), will be referred to as the simple
product-oriented heuristic,
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~(d) :
N~[Zkb(k)- 6 (k)] (3.21)

It is easy to see that the theoretic cost (3.21) that corresponds to
the product-oriented heuristic, gives a lowet; bound for the cost of the
overall optimal strategy.

This "product lower bound" will be denoted by PL. The real cost of this
heuristic is denoted by SPH (and can be determined by (3.20)).

Thus for the product-oriented approach, we find: ' '

PL £ O0C s OPC £ SPH (3.22)

Again, as in the case of the capacity-oriented approach, we see that if
PL=SPH there is no reason to search for more advanced heuristics, since
the simple product-oriented heuristic is (almost) optimal. In
situations where there is a large gap between SPH and OPC'it may be
useful to construct more advanced heuristics by taking the interference
on the capacity into account. This can be done by introducing a delay
in the start of orders of a éertain product that is not equal to zero.
Williams [55] has suggested a queueing type of analysis to estimate the
delay that is due to other products. An analogous approach has been
proposed by Graves [24]. ‘

Though one may expect this queueing type approach to give better
results in case SPH-OPC is large, it will usually not yield the optimal
product-oriented strategy. The reason for this is that subsequent
delays are not independenﬁ of each other and not independent of the
inventory position of the product.

In Section 3.8, we will return to‘the product-oriented strategies and
we will alaoAdiseuss the question of when it may be useful to construct

more advanced heuristics.

3.6 Cholce of a specific model.

In the previous Section, we have described the optimal strategy, the
capaeity4oriented strategies and the product-oriented strategies for

- 49 -



the general model. In this Section, we want to compare these different
strategies with eéch other, Therefore we will derive numerical results
for these strategies for a‘specific model within this general class of
models. These numerical results will be used to draw certain

coneluéions. As to how far it is possible to extend the conclusions to

other situations is investigated in Section 3.9.

The model that we choose to analyse numerically has the following

characteristics:
~the demand size equals one at each demand instant (S=1)

-inventory holding costs and stock-out costs are linear:

p(i)=ai++bi~, where i+=max(0,i) and i =max(0,-1)

~the interarrival time between successive production opportunities
is negative-exponentially distributed with mean 1/u. Consequently,
the utilization rate of the capacity equals p := A/7(u-q).

In Section 3.7, we will first derivé numerical results for the overall
optimal strategy when there are only two products (N=2). These results
are meant to provide us with a yardstick to measure the'performance of
the capacity-oriented strategies and the product-oriented strategies.
These strategies are considered in Section 3.8, also for situations '
with N > 2, V

3.7 Overall optimal strategy; numerical results,

In this Section, we will present some numerical results for the overall
optimal strategy in the model that has been chosen in the previous
Section. To obtain these results, we have made use of the analysis in
Section‘3.3, that is given for a general class of models., It should be
noticed that the assumption that the interarrival time bétween
successive production opportunities is negative-exponentially

distributed, makes the analysis a lot simpler. Due to this assumption,
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namely, it holds that the distribution function, at an arbitrary
steady-state moament in time, for the amount of time that has elapsed
since the previous production opportunity, has the same negative-
exponential distribution:

c{t) = R(t) (3.23)

This means in the first place that H“(lg) = Hw(iﬁ)’ 80 that we only

have to determine the steady-state probabilities upon arrival of a
production opportunity. It also means that we can simplify the
equilibrium equations (3.9), by no longer considering the process upon
arrival of production opportunities, but on so-called "change
instants™. By a change instant we mean a point in time in which either
a production opportunity or a demand arrives, Note that, since we may
decide not to produce at a given production 6pportunity, it is not
necessary for the state of the system to change at a change instant,
but it is only possible then.

Since both demand instants and production opportunities are generated
by a Poisson process (with parameter X, respectively u), the process
that generates the change instants is also a Poisson process {(with
parameter A+u).

A given change'instant corresponds to a production opportunity with

U A
probability 333 and to a demand instant with probability E:ﬁ .

Introduce the following definitions:

={0,t.o'0’1,0,4..0) for Y"1,2,.-.,N

r-th entry
=0 ' (3.24)

é(b

and

-

- it w(k) = r
x r - (3-25)
{“(E)} otherwise :
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Define H“(g} as the probability that the vector of inventory positions

is given by K. Then it is easy to see that the following equilibrium
equations (that are analogous to (3.15)) hold:

- A s N Aoy N ~gee )
H (k) = A+y N =t plkrel) + Aty 2r=0Hn(5 a-e,) X{“(E—q.gr)}(?)

(3.26)

To solve these equilibrium equations numerically, by means of
successive approximation, we must restrict the range of inventory
positions that are allowed. Therefore we intrcduce the "bounded model",
in which we have values Iléwer and Iupper withs

-if a demand instant arrives in the bounded model for a product
with inventory position equal to Ilower, then this instant is

ignored.

~if, at a production opportunity, it is decided to start a
production run that could result in an inventory position higher
than Iupper, then the inventory position of the corresponding
product is set equal to Iupper.

The introduction of Iupper has no influence on the optimal strategy or
the corresponding cost, as long as the chosen vailue of Iupper is
sufficiently large. To check the sensitivity of the results for the
choice of Ilower, Qe give the resuits for two different choices for the
value of Ilower,

Note that we only give results for the case of two pr‘oduéts (N=2), The
reason for this is that the size of the state space grows exponenfially
in N. This analysis for two products will be used to have a point of
refeéence when we consider capacity-oriented and product-oriented
strategies. Therefore, we will explain in detail why we have chosen
these valués for the parameters in the next Section, when we compare

capacity-oriented and product-oriented approaches,

It is interesting to remark that the optimal strategy for the second
situation (A=0.5) is a product-oriented strategy (with B=-1), while the
optimal strategy for the third situation (A=1.8) is a capacity-oriented
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strategy (with 8=18). These results are not surprising, because the
utilization rate {g = E%;) is very low in the second situation and very

high in the third situation. We will return to this in the next
Section.

Table 3.1. Results for the overall optimal strategy with N=2 and
e=0.01, for negative-exponentially distributed interarrival
times between production opportunities.

a b A u g & Iupper | Ilower up Ilower up

1 31.67T1 2 0 0,84 15 -80  11.67 -100 11.67
i 3 0,51 2 0 0.25 7 -20 1.87 -40 1,87
1 3 1,81 2 0 0.9 25 -80 19.77 -100 19.77
1 11,671 2 0 0.84 7 -0 5.92 -65 5,92
1101.671 2 0 0,84 25 =30 19.98 ~-80 20,00
1 38.35110 0 0.84 50 -80  H1.47 -100 41,91
1 31.671 2 5 0.84 25 -60  12.73 -80 12,73
1 31.671 210 0.8% 25 -60 13.76 -80 13.76

Explanation of Table 3.1: In the model, that is described in
Section 3.6, the inventory positions are bounded from above by
Iupper and from below by Ilower (we have given the results for two
different choices of Ilower), We have solved (3.26) by means of
successive approximation (seé van der Wal [53]); Successive
approximation gives an upper bound and a lower bound for the cost
of the overall optimal strategy; As soon as the difference between

_53_



these two bounds was less than £=0.01, we stopped the iterations.
In the Table we have given the value of the upper bound (up).

3.8 Product-oriented strategies and capacity-oriented strategies;

numerical results.

For the model, described in Section 3.6, we will examine the numerical
results that are obtained for the capacity-oriented strategies and the
product-oriented strategies.

Note that for the capacity-oriented strategies it is necessary to
calculate the steady-state probabilities H;a)(k), in order to evaluate

the cost for a given capacity-oriented strategy (via (3.14)). As was
shown in Section 3.4, the calculation of these steady-state
probabilities is relatively easy. Only one-dimensional equilibrium
relations have to be solved. In this, more specific, case, where the
interarrival time between production opportunities is negative-

exponentially distributed, it proves to be possible to find a closed

form expression for Héa)(k). To see this, consider the possible

transitions for the aggregate inventory position on the change
instants, as depicted in Figure 3.4. Notice that (3.23) holds in this
case, so that we can normalize on the change instants.

Figure 3.4. Possible transitions for the aggregate inventory position.
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The transition equations in this (queueing type) model are given by

4 (a)
K>B*q: Haa (k)=0
<  g+qzk>8 A-Héa}(k)nu-ﬂéa)(k-q}+h~Héa)(k+1)
8 2k : (k+u)~H§a)(k)=u-Héa}(k-q)+h-ﬁéa)(k*1) (3.27)
S

de will first postulate the solubion of this system of equations as in
(3.28) and then we will show that this solution is correct.

.
K>B+q : Héa)(k)ao
< mazos : BP0 2pE,
L~e 2k : Héa)(k)-oozk_s (3.28)

where ¢>0 and z>1, while z satisfies £(z)=0, with f{y) defined by:

fly) := qu*? - (A+u)yq +qu (3.29)

It will be clear that if such a 2z exists, then the choice of (3.28)
will satisfy the system of equations in (3.27) for k § B-1 (on the left
hand side). For k 2 B+1 it is also easy to check that (3.27) is
satisfied (start with checking k = B+q). The only equation which we
have to check is the one with k = B, Consequently, we have to verify

(Z denotes that we have to check whether the equality holds):
2 - - -
N R R S M (3.30)
which, since ¢>0 and z>1 conforms to

1~zq
1~z

()28 Z ot oz
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or equivalently

4
(A*u)zq - (A+u)zq+? = U - uz + uz - uzq*? (3.31)

which can be written as

(+wzd - 223 2 ¥ {3.32)

That this equation holdsg, follows from f(z) = 0 (see (3.29)).

Notice that, since ¢ > 0, all Héa)(k)'s are nonnegative. Thus we only

have to choose the normalizing constant such that Zkﬁéa)(k)al.

Therefore, we choose ¢ as in (3.33).

ORI IR W

k=8 1~1
5=0 k=g % |

[Z (3.33)

k=B+q A

Finally, we have to check whether there exists a z > 1 such that
£(z) = 0. This follows from the continuity of f{y) combined with:

¥ if y is very large then f{y)>0
¥ £(1)=0

( f(y)) = x-pg < O (since the utilization rate is less than

one).

Since each z>1 with £(2)=0 leads to a solution of the system of
equations (3.27), and we know that the steady-state probabilities are
unique, it féllows that z is unique, This implies that e.g. the method
of Newton-Raphson to determine the root z>1 of f{z)=0 coﬁvérges very
fast (see e.g. van der Griend [26]). A

Notice that Héf%(k) = Héa)(k+1) for all k, so that we have to determine

the steady-state probabilities for only one g to find them all. This
leads to a simple method for finding the simple capacity-oriented
heuristic.
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Since analogous results can be obtained for H

-~

éd)(k), except that i is

replaced by A/N, we can also find the simple product-oriented heuristic

easily.

This leads us not only to the twe simple heuristics, but alsc to their

corresponding theoretic cost CL and PL.

As far as the actual costs of these strategies are concerned, the

solution of an N-dimensional problem is required. Since this leads to

Table 3.2. Results for the simple heuristics for negative-exponentially

distributed interarrival times between production

opportunities (u=1).

capacity- product~
a b A N g & [ CL PL oriented oriented

heuristic heuristic

B SCH 8 SPH
1 1.67 0.84] 11.42] u.58 9111.75/11.82 0j17.58/17.28
1 0.5 0.25 1.50] 1.74 0 2.37/72.37 |-1] 1.86/1.87
1 1.8 2 2 0.9 | 19.63| 5.08 18119.95/20.09 1129.82/30.81
1 31.67 5 2 0.84 11.42] 5.24 9|12.84/12.92 | -1119.90/19.70
1 31.6720 2 0 0.84) 11.42111.94 9121.78/21.89 | -1121.43721.31
1T 11.67 2 2 0.84]1 s5.71| 2.28 5.83/5.85 |[~1| 7.24/7.16
110 1.67 0.84] 19.75| 7.82| 18|20.20/19.39 | 2(35.32/36.88
1T 38.35 210 0 0.84] 41.35/16.56( 35|41.86/42.29 | 2 160.28/59.88
1 1.67 2 2 5 0.84] 11.95] 7.08] 18]12.77/12.61 5117.45/16.98
1 1,67 2 210 0.84] 12.47 8.79] 27{13.88/13.93 |10 16.81/16.80
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Explanation of Table 3,2: Using (3.28) the steady-state
probabibilities Héa)(k) can be determined for any given capa. ty-

oriented strategy B. Next, we have determined an approximation of
the cost of using the capacity-oriented strategy 8 by applying
(3.18). By minimizing this over 8, we find an optimal choice fuir g,
with corresponding cost. This approximate cost is denoted v Ci,
and the optimal value of B is given in the Table. In order to
determine the actual cost when applying this capacity-oriented
heuristic B, we have simulated the process. The results of two
different simulation runs are given in the Table (under SCH).

For the simple product-~oriented heuristic an analogous approach has
been used,

For an explanation of the meaning of the parameters, consider the
introduction of the model in Section 3.6,

The results for what we will call the reference case are given in
the first line (utilization rate is about 0.84). In the subsequent
lines, we give results for cases that differ from the reference
case with respect to only one parameter. The only exception is the
case where we change gq. Since we want to investigate the
sensitivity for a more lumpy production process without changing
the utilization rate, we have changed X in this situation as well,
We have fixed u=1 in Table 3,2, since the results only depend on
the ratio of A and u (just réscale the time axis).

numerical difficulties in situations with more than two products (and
we want to consider such situations too), we have used simulation
instead to find these actual costs SCH and SPK.

We have determined CL,PL,SCH and SPH for a limited number of
situations, The results are given in Table 3.2.

If we look at the results of Table 3.2, then we see that the simple
capacity-oriented heuristic is bette& than the simple product-oriented
heuristic, except in the case with a very low utilization rate (A=0.5)
and the case with many products (N=20). This may be expected, since in
case of a limited, stochastically available capacity, the queueing
phenomenon will lead to large delay times, In such a case, the
capacity-oriented heuristic, that explicitly takes into account the
effects of a finite capacity, performs best. Consequently, it may be
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expected that if the utilization rate is low, or if the capacity-
avallability is less stochastic, then the simple product-oriented
heuristic performs better. We will return to this hypothesis in Section
3.9, where we consider several other capacity-availability processes.

That the simple product-oriented heuristic gives better results for
N=20, seems reasonable since, while the-aggregate inventory position
tends to be a worse measure for the state of the system, it becomes
more harmless to model the products individually in case of many
products. This second effect can be explained as follows: the delay due
to other products depends (mainly) on the utilization rate, which stays
constant if we increase the number of products. The average demand per
product decreases. Therefore the demand per product during the period
it queues for allocation of the capacity decreases.

When £ increases the simple product-oriented heuristic gets better. To
understand this, it has to be realised that a change in £ will have
similar effects as a change in L(ip) (see equation (3.5)). In Figure

-5

L{ip) 20
15
10
§= 2=10
5
0o - 5 10 15 20

G J—

Figure 3.5. Comparison of L{ip) for =0 and %=10; a=1, b=3.
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3.5, we compare L(ip) for £=10 with £=0. In the case of £=10, the
minimum of L(ip) is higher and the slopes are less steep. Consequently,
the influence of a delayed production due to other products is smaller
in the case of 4=10 than in the case of =0,

From Table 3.2, we also see that max(CL,PL) = CL, except in the cases
where A = 0.5 and N = 20. These are alsc the only cases where

SPH < SCH. This suggests an operational criterion for choosing between
the simple capacity-oriented heuristic and the simple product-oriented
heuristic. This criterion may be explained as follows (see Figure 3.6):
since both lower bounds, PL and CL, are less than the cost of the
overall optimal strategy (OC), it is obvious that the maximum of both
is nearest to OC. If one lower bound is nearest to the actual cost, it
may be argued that the assumptions that have led to this lower bound
are most realistic and therefore the corresponding heuristic will
perform best.

'S} S & % O
PL ¢L oC SCH ‘ SPH cost

Figure 3.6. Relation between the costs.

At this point, the criterion may seem somewhat speculative, but we will
verify it in Section 3.9. For the present, we will use this criterion

in order to choose a heuristic.

From Table 3.2 it alsoc follows that only in the cases with N=5, N=20,
=5 or 2=10, the difference between the highest lower bound and its
corresponding heuristic is significant. Note that the cost of the
overall optimal strategy always lies between max{PL,CL) and
min(SPH,SCH) (see Figure 3.6). Consequently, in all other cases, the
heuristic, corresponding to the highest lower bound, is almost optimal.
For the cases i=5 and =10, we have determined the cost of the overall
optimal strategy {see Table 3.1). It proves that in these cases, the

- 60 -



optimal cost is almost equal to the cost of the simple capacity-
oriented heuristic {OC = SCH). Therefore, the best of the two simple
heuristics can only be improved substantially in case of many products.
In these cases numerical problems make it impossible to find the
optimal strategy. We would like to know whether it is easy to find more
advanced heuristics that are better than these simple heuristics in
case of many products. )

In order to find more advanced heuristics, it is possible to
approximate the size of the delay in the availability of the capacity
for a single product in the product-oriented approach, or it is
possible to estimate the imbalance between the products in the
capacity-oriented approach. The first approach leads to a more advanced
product-oriented heuristic and the second to a more advanced capacity-
coriented heuristic. These more advanced heuristics, however, will not
perform better than the optimal product-oriented strategy, respectively
the optimal capacity-oriented strategy. Therefore, we have determined
the optimal capacity-oriented and product-oriented strategies by means
of simulation so that we have an idea of how much we can improve on the
simple heuristics in case of many products. The results for these
strategies are given in Table 3.3.

Table 3.3. Results for the optimal capacity-oriented and product-
oriented strategies for negative-exponentially distributed
interarrival times between production opportunities.

optimal optimal

a b A N g ¢ p capacity- product—
oriented oriented

strategy strategy

B oce 8 OPC

1 31.6T 5 2 0 0.84] 10 |12.83/12.67 1 [12.77/12.54

13 1.67 20 2 0 0.84] 12 [20.66/20.69 | -1 {21.43/21.31




Explanation Table 3.3: By means of simulation, we have determined
the optimal capacity-oriented and the optimal produet4oriented
strategies in case of many products. The costs that are found for

two different simulation runs are given in this Table.

As follows from this Table, there is little improvement when using the
optimal capacity-oriented or the optimal product-oriented strategy
instead of the heuristic that has been chosen via the criterion.
Therefore, in the situations considered here, there is no need to use
more advanced heuristics than the simple ones. In situations where N is
large and at the same time p is large, it may be sensible to consider
more advanced heuristics {we will return to these more advanced
heuristics in Chapter 4),

Note that the optimal capacity-oriented strategy and the optimal

product-oriented strategy give about the same performance (0OCC=0PC). We
will return to the implications of this in Chapter 4,

3.9 Sensgitivity Analysis.

In Sections 3.2 to 3.5, we have discussed a general single-phase multi-
product problem and we have put forward some strategies and heuristics.
These strategies and heuristics have been evaluated in the previous
Section. This evaluation, however, was based on the analysis of a

specific model {see Section 3.6). We obtained the following results:
1. Thé best of the two simple heuristics is close to optimal.

2. It is best to choose the simple capacity-~oriented heuristic if
the corresponding lower bound is highest (CL>PL) and the simple
product-oriented heuristic otherwise.

In this Section, we want to investigate whether these results can be
extended to the general model (of Section 3.2) or whether they result
from the choice of the specific model (of Section 3.6). This concludes
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our analysis of the single-phase model with identical products under a
purely stochastic demand. In subsequent Chapters, we will investigate
models where demand is pértly known beforehand and models with non-
identical products.

Since choosing the specific model consisted of three parts (see Section
3.6), the sensitivity analysis, in this Section, will consist of three
parts as well:

-gensitivity for the cost rate p(i)

-sensitivity for the process that generates production
opportunities.

-gensitivity for the distribution of the demand-size (8)

3.9.1 Sensitivity for the cost rate p(i).

For any given, convex cost rate p(i), with p{i)-»> for i+t», the same
approach can be used in order to find the heuristics and their
corresponding lower bounds. A3 has been illustrated at hand of Figure
3.5, the performance of the strategy depends on the height of the
minimum for p(i) (or equivalently L{ip) in case £>0) and on the
steepness of the slopes near the minimum.

Therefore the sensitivity for p(i) has been checked sufficiently by
comparing the reference case in Section 3.8 with the cases when b=1,
b=10, £=5 or #=10. Consequently, one may expect to find a strategy that
is almost ¢optimal in situations with other cost rates as well, if one
chooses the simple heuristic that is indicated by the criterion.

3.9.2 Sensitivity for the process that generates production
oppertunities.

To get an insight into the sensitivity of the results for the process

by which capacity becomes available, we have derived heuristics for
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other distribution functiona of the interarrival time between

successive production opportunities. As we have mentioned in Section

3.8, we can rescale the first moment of the interarrival time to one.

Table 3.4. Results for the simple heuristics with distribution function

Cz(x) for the interarrival time between production

opportunities. For an explanation see Table 3.3.

capacity~ product~-
a b A N q & p CL PL oriented oriented

heuristic heuristic

8 SCH 3 SPH
1 3 1.67 2 0.841 7.72 3.43 6] 7.97/8.17 0[10.94/11.10
13 0,5 2 0 0.25] 1.15 1.50 -1 2.2372.23 -11 1.59/1.5%9
1 3 1.8 2 0.9 [12.73 3.71 11 {13.09/714.11 0}21.28/22.02
1 3 1.67 5 0.84 T.72 4,34 61 9.30/9.49 -1113.40/13.29
1 31,6720 2 0 0.84 7.72 |11.39 6 119.84/20.01) -1 [17.24/17.26
11 1.67 0.84| 3.88 1.74 2] 8.1678.17 -1] 4.83/4.88
110 1.67 2 0 0.84]13.34 5.81 12113.70/13.68 1125.14/26.12
1 38,35 210 0 0.8423.13 |12.10 18 |24, 14/24,94 0133.68/34.56
1 31.67 2 2 5 0.84] 8,52 6.36 15 9.77/9.80C 5111.54/711.43
1 31,67 2 210 0.84 9.27 8.32 25 111.08/11.15] 10]12.05/12.04

In Table 3.4, respectively 3.5, we present the results for heuristics
for other distribution functions of the interarrival time between

production instants, namely
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cylx) = 1-6 2% (1+2x) (3.34)

and

~1.577T4x -0.4226%

C3(x) =1 - 0,7887e - 0.2113e (3.3%)

It is easy to check that both distributions have the same mean as the
distribution that is used in Section 3.8 (namely mean one), whereas the
variance for CZ{X) is 0.5 and the variance for Cg(x) is 2.

Table 3.5. Results for the simple heuristics with distribution function
C3(x) for the interarrival time between production

opportunities. For an explanation see Table 3.3.

capacity~ product—
a b A N g & p CL PL oriented oriented
heuristic heuristie
B SCH B SPH

1 31.67 2 2 ¢ 0,84 119,34} 7,35 | 17]20.16/20.44 28.25/30.21
1 3 05 2 2 0 0.25| 2.04] 2.33 0f 2.93/2.93 | -1 2.56/2.,59
1 3 1.8 2 2 0 0.9 ]29.46| 8.24 | 29135.40/35.23] 21| 52.11/52.97

i

1 31.67 5 2 0 0.84 [19.34) 7.52 | 17{20.91/21.19] ~1] 34.13/35.47
1 31.67 20 2 0 0.84 119.34113.25 | 17{27.77/28.13] ~1] 31.71/33.26

1 11,67 2 2 0 0.84 7 9.62| 3.57 71 9.83710.27] -1 12.02/12,.44
1.67 2 2 0 0.84 |33.38|13.33 | 31{34.42/36.52] 4| 64.05/66.84

_
<

1 38.35 210 0 0.84 {82.0630.53 | 71183.95/85.94] 6{116.87/120.83

o

1 3 1.67
1 3 1.67

2 5 0.84 119.67] 9.09 | 25120.47/21.77] 61 27.63/29.16
2 10 0.84 119.97{10.52 | 34120.72/23.00} 11| 25.92/28.11

[
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As can be seen, the criterion to use the simple heuristic for which the
corresponding lower bound is maximal, again chooses the best heuristic
in each situation. This suggests that the criterion is insensitive for
the underlying capacity process.

In situations where the highest lower bound is close to the performance
of the heuristic that is indicated by the criterion, this heuristic is
almost optimal (compare Section 3.8). Consequently, in Table 3.4, only
for situations with large values of & and N, the simple heurisﬁics may
be improved. These are the same situations as in the original model
(see Table 3.2). In Table 3.5, only in situations with large values of
N and in the situation with A=1.8, the simple heuristic may be

improved.

We also want to mention the influence that changing the second moment
of the distribution of the interarrival times has on the choice between
the capacity-oriented and the product-oriented approach. If we compare
the results of Table 3.2, 3.4 and 3.5, we see that a higher variance
makes it more attractive te‘use a cépacity-oriented approach. This
seems reasonable, since the capacity-oriented approach takes the
oapécity-restriction explicitly into account.

3.9.3 Sensitivity for the distribution of the demand-size (3).

For the specific model in Section 3.6, we have assumed that S=1. To
check whether the assertions for the specific model depend on this
assumption, in this Section, we will consider a compound Poisson
process. The only difference from the model of Section 3.6, iIs that S
will bevstochastic now, More explicitly, we have chosen the following
distribution for S (notice that ES=1):

0 with probability 2/3
3 with probability 1/3
The results for this model are given in Table 3.6.

As we see, the simple capacity-oriented heuristic performs best when
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CL > PL, Otherwise, the product-oriented heuristic performs best.

Therefore the criterion seems insensitive to the distribution of S.

Also the performance of the best heuristic is, in most situations,

close to its corresponding lower bound, which again indicates

insensitivity.

Table 3.6. Results for the simple heuristics if the demand follows a

compound Poisson process. For an explanation see Table 3.3.

capacity- product-
a b A N g & p cL PL oriented oriented

heuristic heuristic

B SCH B SPH
1 31.67 2 0.84 (21.72] 8.03 10123.00/21.76 1129.17/30.28
1t 3 0.5 2 2 0.25 | 2,50} 2.62] -1| 3.56/3.%4 | ~1] 2.88/2.86
1 3 1.8 0.9 36.45| 8.88 19136.46/37.32 1160.29/58.25
1 31.67 5 0.84 |21.72] 8.34 10]25.48/24.231 ~1135.25/35.97
1 3 1.67 20 0.84 |21.72]114.68 10134,85/36.07] ~1135.63/36.65
1 1 1.67 2 0.84% [10.34] 3.7 4110.57710.87] -1|12.66/712.74]
110 1.67 2 2 0 0.84 {40.99]13.99 20140.66/43.47 4170.93/68.49
1 38,3 210 0 0.84 [49,87](20.07 36151.06/50.75 4166.97/67.68
1 31,67 2 2 5 0.84 [22.29}112.29 20123.73/25.00 7127.54/29.39
1 31.67 2 210 0.84 |23.57]15.55 29126.39/27.06| 11{32.39/32.68
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3.10 Discussion of Chapter 2 and preview of the next Chapters.

In this Chapter, we have compared the capacity-oriented and the
product-oriented approaches for a single-phase model with identical
products in which demand is purely stochastic.

It has proven that simple heuristics, that are based on the capacity-
oriented approach or on the product-oriented approach perform well in
most situations. These simple heuristics can be determined by analyzing
one-dimensional models. This analysis leads also to approximations of
the costs of these heuristics. Using these approximations, a criterion
nas been found to choose between the capacity-oriented and the product-
oriented approaches. According to this eriterion, the heuristic is
chosen for which the approximation of the cost is maximal.

The heuristic that is indicated by this criterion performed well in the
situations that have been investigated in this Chapter. As might be
expected, the capacity-oriented approach performed best in case of a
tight capacity-restriction, whereas the product-oriented approach
became better as the number of products increased. It has also proven
that the variance of the availability of the capacity played a role for
the choice between the capacity-oriented and the product-oriented
approaches. In case of a high variance, the capacity-oriented approach
is more attractive.

We have finished this Chapter with a sensitivity analysis for the
parameters of the general model with identical products and a purely
stochastic demand.

In Chapter 4, we will consider a model where demand is partly known
beforehand, whereas the stochastic processes that underlie demand are
still the same for all products. In such a model, the products abe no
longer identical in the short-run. This leads to some difficulties for
the capacity-oriented and the product-oriented approaches., Intertwined
with the choice of the approach is the question of how the information
that is available about demand is used in the planning. In Chapter 4,
we will study some different ways to deal with this information.

In Chapter 5, we will consider a situation where the stochastic
processes that underlie demand are different for the products. In such
a situation, it will prove that the capacity~oriented approach has to
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be restricted to so-called fast-movers, whereas the slow-movers are
controlled via a product4oriented approach,

We will finish this text by designing a Material Coordination System
for a simple example of a plastic products factory, using the results
of this text. In the plastic products factory, there will be only one
capacity bottle-neck, wnich makes the relation with the research,
presented in this text, more easy.
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Chapter 4. Identical products; partly known demand.

4.1 Introduction of the model,

In this Chapter, we will consider a model in which demand is partly
known beforehand. The model, that we consider, is similar to the model
of the previous Chapter (see Figure 3.1). Again there are N products
competing for the allocation of the samé resource. Each product has the
same demand-characteristics. In the model of thisVChapter, however, the
realisation of a part of the demand of each product is knbwn some time
in advance. Since these realisations may differ, it is necessary to
treat the products in the short-run as though they were not identical.
Since it is more natural to introduce forecasts for the demand in a »
periodic review model, we have chosen to analyze such a model in this
Chapter.

For the purpose of investigating the effect of different forecasts for
the demand of different products on the results of the previous
Chapter, it is not so important how these forecasts are generated. It
is only important that (due to different forecasts) the products éannot
be treated as identical in the short-run., Therefore, we have chosen the
demand of product j in period t, say Dj(t), to consist of two parts as

denoted in (4,1).

D,{t) = U, () + Kj(t) (4.1)

A J

The realisation of Uj(t) is supposed to be known at the end of period
t, whereas the realisation of Kj(t) is known already at the end of

period t~T. We assume that Uj(t) has a discrete distribution, which is
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independent of j and t. The probability that Uj(t) equals x will be
denoted by n(x}, for x =0, 1, 2, ... Analogously, we have a discrete
distribution {K(X)}XZO for the Kj(t)'s. We assume that there are no

correlations between demand realisations for different products,

between different periods or between Uj(t)'s and Kj(t)'s.

Analogous to Chapter 3, we define the N-vectors U(t) and K(t) as
follows (compare (3.7)):

U(e) 1= (U, (8), Uy(t), +uny Uy(E))

K(E) = (K, (£), K,(8), .ovy Ky(E))

At the start of each period, we have the opportunity to start a
production run for at most one product. Production is in batches of
size q. A batch, that is started at the start of period t, occupies the
capacity only during period t, and will arrive at the stock-point (of
the corresponding product) in period t+% (for an interpretation of this
flowtime % see Figure 3.3) V

demand
D(s) = K(s) + U(s)

T ,

o
period s
production decision

(K(s), K(s*+1), ..., R(s+T-1)
are known)

i(s)

is measured

arrival at

inventories of

batch started

in period s-%

Figure 4.1. Schematic notation of the sequence of events in period s.
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In Figure 4.1, we have given a scheme of events, occurring in an
arbitrary period s, which may help to understand the model.

In this Chapter, the costs are reviewed periodically instead of
continuously as in the previous Chapter:
Let Ij(t) denote the inventory level of product j at the end of periocd

t. With a given realisation of 1,{(t), say i, a cost p(i) is incurred.

3
This p{i) has again the same characteristics as in Chapter 3.

To simplify the analysis, we will assume that the cost that corresponds
to Ij(t) is incurred in period t+1.

The reason to consider this model is that we want to compare the
capacity-oriented and the product-oriented approaches in a situation
where the products are not identical in the short-run. However, the
choice of the approach may depend on the way the infofmation about
future demand is used. Therefore, we will discuss several methods to
deal with this information. For each of these methods, we will describe
the capacity-oriented and the product-oriented approaches. To avoid
that the topic of comparing the capacity-oriented and thevproduet-
oriented approaches gets lost, due to the separate discussion of
different ways to deal with the information that is available about

future demand, we will overview the results in Section 4.6.4.

In Sections 4.2 to 4.5, we will describe approaches that lead to
feasible strategies for this periodic review model. To avoid
complications with notations, we will describe the>approaches at hand
of the situation with £=0, which means that if a production run is
started at the start of period t, the batch will arrive at the stock-
point during the same period. As we have seen in Chapter 3, it is
straightforward to extend thé description to situations with 2>0, by
minimizing the "shifted cost®, which is the expected cost & periods
later. In this situation, where demand is partly known beforehand, this
will iead to expectations that are conditioned on the realisations of
the kj's, but the same approach still worksf We will return to this in

Section 4.4,
In Section 4.6, we will give numerical results for a gspecific periodic

review model‘and we will draw some conclusions.
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4,2 Purely stochastic approach.

At the start of period t, the realisations k{(t), k(t+1), ..., k(t+T-1)
are known. It is possible, to use this information about the future
behaviour of demand when making the production decision in period t. In
the purely stochastic approach, however, this information is ignored.
This will lead to a relatively simple approach, especially if we
restrict ourselves to so-called capacity-oriented and product-oriented
strategies (as we did for an analogous continuous review model - see
Chapter 3). In separate Sections, we will describe both types of

strategies for this periocdic review model.

4.2.1 Capacity-oriented strategies.

In order to be able to define the capacity-oriented strategies, in this

periodic review model, we introduce the aggregate inventory at the end
N .

LI

J=173

that is stored in the systenm.

of period t, I(t) := § (t), as a measure for the amount of capaclty

For capacity-oriented strategies, the decision whether or not to start
a production run at the start of period t, depends only on the
realisation of the aggregate inventory at the end of the preceding
period (i{t-1)). A production run will be started if and only if the
aggregate inventory is less than or equal to a certain critical level,
say R. The production run will then be assigned to the product with
minimal inventory (if there are several products with minimal inventory

we will choose one of them randomly).

As we have seen in Chapter 3, it is difficult to find an optimal
capacity-oriented strategy, since it requires insight in the
distribution of the aggregate inventory over the individual products.
Consequently, the problem of determining this optimum becomes N-
dimensional. To avoid this, we will use an approximation of the
distribution of the aggregate inventory over the individual products.
In Chapter 3, we have used the approximation that is based on the
assumption that it is always possible to keep the inventories of
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individual products equal. Since this approximation performed well, we
will use it here again. However, other approximations would be possible
(as a matter of fact, we will suggest another approximation in Section
4.6.3).

With the approximation that the inventories can be kept equal, we can

N
o 1y/M0

Using this approximation, we will determine an optimal strategy (the

replace the cost Ej§1p(1j) by Nep(}

simple capacity-oriented heuristic). Therefore, notice that

{I(t), t=1, 2, ...} is a Markov Chain with countable state space, under
application of any capacity-oriented strategy B. The transition
probabilities in this Markov Chain depend on the choice of B8 and on the
distribution of the aggregate demand over one period. Consequently, it
is possible to calculate the transition probabilities ras(k,h) that the

aggregate inventory goes from k at the start of one period to h at the

start of the next.

We will introduce ‘the functions tB(k) and cB(k) as the expected time,

respectively the expected (approximate) cost until the aggregate
inventory equals B8, under application of the capacity-oriented strategy
with critical level B, if the aggregate inventory equals k at the end
of a given period. We assume that these variables exist and that they
are finite for all k. Then it is easy to see that the following
relations hold (by definition tB(B) and cB(B) are set equal to zero):

tglk) = 1+ ZhraB(k,h}'tB(h) for k«g

tB(B) =0 (4.2)
and

cg(k) = Nep(k/N) + Ehrasik,h)-cg(n)  for k=8

CB(B) =0 (4.3)

After truncating the state-space, we can determine the solution of

these one-~dimensional relations, for example by means of successive
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approximation. It is easy to see that tB(k) = t3+1(k+1), 30 that we

have to solve (4.2) only for one choice of 8, to find the solution for
all choices of B.

If the approximate, expected cost per period is finite, under
application of the capacity-oriented strategy denoted by B8, this
average cost can be denoted as in (4.4), Notice that (U4.4) represents
the quotient of the total expected cost and the expected time between

successive visits to B.

N+p(8/N) + Ehraﬁ(ﬁ,h)'cs(h) (4.4)

1 + thas(s,h)'ts(h)

Since only the numerator of (4.4) depends on 8§, we only have to solve
(4.3) for several choices of 8 to find an optimal choice under the
approximate cost. The strategy that we find if minimizing this
approximate, average cost per period, will be referred to as the simple
capacity-oriented heuristic. We will denote this heuristic by the
choice of B that it corresponds to, say Bc¢. As we have seen in Chapter
3, the approximate, average cost per period for the simple capacity-
oriented heuristic, is a lower bound for the actual cost of any
strategy. Therefore, we will denote the approximate cost that
corresponds to this heuristic by CL (Capacity Lower bound). The actual
cost of using this heuristic will be higher. We will denote this cost
by SCH (Simple Capacity-oriented Heuristic).

We will return to numerical results for both the simple capacity~

oriented heuristic and the optimal capacity-oriented strategy in
Section 4,6,

4.2.2 Product-oriented strategies.

Product~oriented strategies in the purely stochastic approach are found
by decomposing over the products. Since in the purely stochastic
approach, the products are identical, a production run will be started
if and only if the minimal inventory has dropped below a certain
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eritical level, say B. As for the capacity-oriented strategies, a
production run will be assigned to the product with minimal inventory.

To find the optimal product-oriented strategy, we have to take into
account the possible delay in the availability of the capacity due to
other products. For reasons, that have been explained in Chapter 3, we
search for simﬁle approximations of this delay. The simplest
approximation, we find by assuming that the préduets never interfere
with each other on the capacity, so that there is no delay in the
availability of the capacity. In Section 4.6.3, we will also discuss
another approximation, but seeing the resulté of this simplest
approximation in the continuous review model (see Chapter 3}, it seems
reasonable to use it here as well. The resulting strategy will be
referred to as the simple product4oriented heuristic., The critical
level that this simple product-oriented heuristic conforms to, will be
denoted by 8p. As we have discussed in Chapter 3, the cost that we find
in the model under the assumption that the products never interfere on
the capacity, will be a lower bound for the actual cost of any
strategy. Therefore, we will denote this approximate cost by PL
{Product Lower bound)., The actual cost of using the simple product-
oriented heuristic will be higher. We will denote this actual cost by
SPH (Simple Product-oriented Heuristic).

Notice that in order to find the simple product-oriented heuristic, the
same approach as for the simple capacity-oriented heuristic can be
used, except that we now consider the Markov Chain

{Ij(t), t=1, 2, <.},

In Section 4.6, we will return to numerical results for both the
optimal product-oriented strategy and the simple product-oriented
heuristic,

4.3 Introduction of rolling schedules.

Now we will consider the strategies that we find if we use the
information that is available about future demand. Consequently, the
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production decision at the start of period t, will be based on the
following realisations: i(t-1), k(t}, k(t+1), ..., k(t+T-1),

The strategies that we eonsider, can be written as a funoiién
w(ilt~1), k{t), k(t+1), ..., k{+T-1)), where m(i(t-1), k(t), k(t+1),
eees K(E+T-1))=r corbeaponds to the'decision to start a production'run
for produetvr, if 1 £ r £ N, or to the decision not to start a

production run if r=0,

Notice that {(I(t-1), K(t), K(t+1), ..., K(t+T-1)], t=1, 2, ...} is a
Markov Chain with countable state space under application of any
strategy w. The transition probabilities in this Markov Chain can be
determined, straightforwardly, since the distribution of U(t) and
K(t+T) is given. This makes it, theoretically, possible to determine an
optimal strategy. However, even for small values of T and N, the
numerical problems, inherent to determining an optimal strategy, make
this approach impossible, Even after aggregation or decomposition over
the products, the state of the system is deseribed by a (T+1)-
dimensional vector. For larger values of T this will present us with
severe numerical problems. Indeed, one usually applies a completely
different approach in sucﬁ a situation. This is the so-called rolling
schedule approach. In such an approach, a production plan is formed by
solving a multi~périod problem and implementing only the production
decision for the first period (see Baker [5]). The next period, the
variables are updated and the procedure is re#eated.

The standard way to determine the production plan (éach period anew) in
a rolling schedule approach, is by minimizing the total costs over a
finite planning period (see Baker [5], MeClain and Thomas [39], Morton
[41], Nuttle and Wijngaard [43] and Zabel [60]).

Notice that in the rolling schedule approach, the tuple (i(t-1), k(t),
k{t+1), ..., k(£+T-1)) is given and the schedule is constituted as
though no new realisations of the K's will become available. This makes
it more simple than analysing the Markov Chain that we have mentioned
above.

Let Thor denote the horizon over which we want to minimize the costs,
when determining a production schedule. Remark that the planning

horizon need not be equal to the horizon over which demand is partly
known (i.e. Thor = T). In case T > Thor, more realisations of the K-

part of demand are avéilable than will be used in determining the
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production plan (if %£=0). In case T<Thor, no realisations are available
for K-part of demand in ihe last periods of the planning period. In our
examples; we will restrict ourselves to the situation where Thoé = T,
s0 that the length of the planning period and the horizon over which
demand is partly known, are in balance, The reason for restricting
ourselves to this situation, is that it is our aim to consider the
influence a partly known demand has on the choice between capacity-
oriented and product-oriented strategies. Therefore, we are not so much
interested in varying T and Thor independently. However, when
describing different strategies, we will not réquire that Thor = T, so
that it is clear how to use this approach in situations with Thor = T.

Notice what happens if we apply such a rolling schedule approach, in
case we would not account for any costs after the planning period. The
planning will then be based on the idea that there is no sense in
keeping inventory after Thor, because p(0) = 0. Consequently, the
solution will force us to start selling our safety—stock as we approach
the horizon of the schedule. In case the capacity is infinite and Thor
is large, this effect may be of minor importance, but as the capacity
becomes more tight, the depletion of (capacity) safety~stock may have
long~lasting effects. To avoid this problem, one might increase the
planning period, so ﬁhat there is hardly any influence on the first
period decisions. However, extending the planning period will increase
the complexity of the problem that has to be solved each period anew.
Therefore, instead of extending the planning pericd, we prefer to usé a
short planning period but we add an extra component to the cost in the
final period (see Baker [5]). This "final cost function® has to denote
the preference for ending wiﬁh enough safety~-stock for the future
(after the horizon).

If no final cost function is used, even in case the oapacity
restriction is not tight, it may be decided not to produce a batch
because the inventory holding costs are too high in the short-term,
while in fact such a batch could have been required, However, in case
of an excess of capaclity, a deficit of stock will ohly have short-term
effects, Even with a short planning horizon, the decision not to start
such a broduction run at the end of the planning period, has little
effect on the first period decisions (which will be implemented). The
effects of postponing the start of a production run are more severe in
case of a tight capacity restriction. Therefore, we will only use a
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final cost function in combination with a capacity-oriented approach.
This final cost function should denote the preference for ending witﬁ
enough capacity buffered in the inventories at the end of the horizon.
Therefore, the final cost function has to depend only on the aggregaté
inventory at the end of the planning period. To keep the analysis
simple, we will base the final cost functich on a purely stochastic
approach. We define the final cost function as (for the definition of
the variébles, see the previous Section):

pplk) = ch(k) - CL-t_ (k) (utS)

Be

where k is the aggregate inventory at the end of the planning pericd.
Notice that via definition (4.5), the final cost function denotes the
total deviation from the approximate, average cost per period until the
aggregate inventory reaches B¢, under application of the simple
capacity-oriented heuristic, Thus the final cost function is a relative
measure for the capacity problems that may be expected if the aggregate
inventory at thé end of the planning period is given.

We will return to numerical results, using this final cost function, in
Section 4.6, '

Now, let us return to the problem of finding a production plan over the
horizon Thor. There are two, fundamentally different, approaches to
determine a production plan, namely:

-the Stochastic Dynamic Programming approach
~the Deterministic Dynamic Programming approach.

The difference between the two approaches is that in the Stochastic
Dynamic Programming approach, one accounts for the stochastic behaviour
of the demand, whereas in the Deterministic¢ Dynamic Programming
approach, it is assumed that the demand can 'be forecasted accurately.
We will describe both approaches separately in Sections 4.4 and 4.5.'



4.4 The Stochastic Dynamic Programming approach.

As we have mentioned in Section 4.1, the cost incurred in period ©
depends on the realisation of the inventories at the end of period t-1.
Consequently, we can plcture the costs that we must minimize if we N
construct a production plan for the planning period as in Figure 4.2,

ij(ij(t~1)) ij(ij(t}) ij(ij(t—-wrhor-)) pf(}:jij(tfl‘mﬂ)

—

’ Y TI —_— e e wh * [
] ] 1 \

t L+l t-1+Thor

Figure 4.2. The total costs over the planning period.

For the Stochastic Dynamic Programming approach, the stochastic
behaviour of demand is taken into account. If we want to take the
stochastic behaviour of demand into accouht, the determination of a
production plan over the planning period still requires that we
consider a large state space, Therefore, we will restrict ourselves to
product-oriented and eapaeitir-oriented strategies for the Stochastic
Dynamic Programming approach.

4.4.1 Product-oriented strategies.

As We have seen, product-oriented strategies require decomposition over
the products. Consequently, the decision whether or not to start a
production rﬁn for a given product j, is determined on the status of
that individual product.

Therefore, in a product;oriented approach, first for each individual
product a production plan is determined over the whole horizon. As
usual in a rolling schedule approach, only the first periocd deéisions
are implemented; However, it is not allowed to start more than one

production run per period. Consequently, we need a rule that determines
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which product will be produced if there are several products that
require such a run,

First, we will describe how a production plan per product is determined
in such a product-oriented approach and next we will discuss the form
of the "composition rule", on which we decide how to combine the
production plans in the first period, Note that we have mentioned in
Section 4,3, that no final cost function will be used in combination

with a product-oriented approach.

We will restrict ourselves now to a specific product j and given
realisations kj(t}, kj(t+1), eres kj{t+T-1).

Suppose that the inventory of product j (as projected in executing the
Deterministic Dynamic Programming plan) equals i at the start of period

t+s (i.e, Ij(t+s-1) = i}. Define the total expected costs from period

t+s until the end of the planning period (see Figure 4.2), under
application of a strategy that minimizes the total cost over this

period, as vz(i).

S 3

J J

probability of a transition of the inventory for product j from i at

Introduce the transition probabilities rd.(i,h,0) and rd (i,h,1) as the

the end of period t+s-1 to h at the end of peried t+s, if we do not
produce product j, respectively if we do produce product j (s = 0, 1,
..+, Thor~1). These transition probabilities can be determined
straightforwardly, since the realisations kj(t), kj(t*1), sees

kj(t+T—1) are given.

Using these transition probabilities it is easy o see that the
vi(i)'s satisfy the following recurrence relations:

/—

S

vo (i) = p(i) +

b p

min [§, rd®(i,h,0) v (), I rd?(i,h,n-v:'” (]

J P
for 8=0,1,...,Thor-1

viBOr iy 2 o (4.6)
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Since the above recurrence relations are one~dimensional, they can be
solved {after truncating the state-space) without much computational

effort e.g. by backward recursion.

In Section 4,1, we have announced that we would discuss the strategies
in this Chapfer for the situation where %=0, because the extension to
situations with >0 is simple. At hand of the product-oriented

strategies in the Stochastic Dynamic Programming approach, we want to

demonstrate this extension, Therefore, we introduce the "conditional
shifted costs" Lp(ip, | k(s), k;(s+1), ..., k,(T)) as the expected
cost in period s+ if the inventory position of product j equals ipj at

the start of period s, conditioned on the realisations of future demand
that are available., Note that it is straightforward to calculate these
shifted costs since the distributions of the Uj's and Kj's are known,

By using these conditional shifted costs in (4.6) instead of p(i), we
find a production plan for £>0.

Above, we have shown how we can determine a production plan for sach
product. Now, we will discuss how to compose the production plans for
differeﬁt products in the first period. To find an optimal allocation
of the production run in the first period, we should consider the
coordination of the products over the whole horizon. However, this
leads to a problem that is again as complex as the original problem
without decomposing over the products., To avoid the numerical problems
that are inherent to such an approach; we will only consider simple
coordination rules. Such a simple rule is the "Myopic rule". This
Myopic rule has the following form: '

Myopic rule: Consider only the first period in which the allocation of
the production run influences the cost. Assign the Eun to the product
for which the expected inveniory is minimal then. In case =0, this
means that the production run is assigned to theAproduet for which

ij(t—T)—kJ(t) is minimal (if >0, more realisations of the kj’s and

information about production runs that already have been started, will
be required). Notice that if T=0, so kj(t) has not realised yet, we

find the same allocation rule as in the purely stochastic approach.
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To check how well this rule performs, we have also considered a more
sophisticated composition rule. This rule is the "Value Function rule"
and can be described as follows:

Value Function rule: In constructing the production plan, we have

determined the Value Function v;(i), that denotes the expected costs

from period t+s on. Using this, we can express the cost that is
incurred if we do not produce a given product j now, by:

0 _ ol _ 0, /,_ ol
zh rdj{ij(t 1) ,h,0) vp(h) Zh rd; (1j(t 1),h,1) vp(h) (4.7

Therefore, the Value Function rule assigns a production run to the
product for which (4.7) is maximal. An analogous approach has been
proposed by van Beek [6] and Wijngaard [57].

We have compared the two composition rules, numerically, for a specific
situation, namely:

1) The known part of the demand (Kj(t)) has a Poisson distribution

with parameter u.

2) The unknown part of the demand (Uj(t)) has a Poisson

distribution with parameter i.

3) The cost function is chosen as p(i) := aiteot”,

Notice that the utilization rate of the capacity is given by
p = Ne{A+u}/q. '

Simulation results for both allocation rules are given in Table 4.1, As
the results indicate there are only small differences between the‘iéo
allocation rules. The only exception is the last situation, but there
the utilization rate is very high, so that it is unlikely that one will
use a product~oriented approach at all (we will return to this in
Section 4.6), Therefore, we will use the Myopic rule in combination
with product~oriented strategies.
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Table 4,1. Comparison of the Myopic rule and the Value Function rule to

allocate a production run for the product-oriented strategy

in the Stochastic Dynamic Programming approach (Thor=T).

g % N a b i u Thor ¢ Myopic Value Function
12 2 1 32.5 2.5 0.83 11.86/711.99 11.89/12.01
12 1 32.5 2.5 3 0.83 11.93/12.04 11.93/711.81
12 0 2 1 32.5 2.5 5 0.83 11.95/711.95 12.01.11.86
12 2 1 0 2 0.83 10.75/10.71 10.58/10.66
12 1 2 0.83 12.20/12.26 12.30/12.28
20 0 2 1 32.5 2.5 2 0.5 15.86/15,96 15.88/15,87
12 0 5 1 1 1 0.83 | 27.60/27.36| 27.40/27.35
12 010 1+ 30.5 0.5 0.83 48.74/48,99 48.86/48.89
12 0 2 1 1 2.5 2.5 0.83 T UT/T.47 7.49/7.40
12 1102.5 2.5 0.83 18.66/18.66 18.62/18. 44
12 5 1 32.5 2.5 2 0.83 | 16.88/16.85 16.94/16.83
12 10 1 32.5 2.5 0.83 | 21.35/21.38 21.15/21.20
12 0 1 30,5 0.5 2 0.17 9.05/9.05 9.11/9.12
12 1 32.75 2.75 2 0.92 17.07/16.75 16.837/17.08
12 1 32.9 2.9 2 0.97 41,98/41.98 37.25/34.69

Explanation of Table U4.1: We have used (%.6) to find a production
plan for each product and next we have used one of the two
composition rules to allocate the run to the products., Notice that

if the planning horizon T=Thor=1, then we cannot applé the product-

oriented approach, since v‘(k) equals zero then. Therefore, we have
only considered situations with Thorz2.

- 8 -



To investigate the sensitivity of the results for the specific
simulation run, we have simulated two different production runs.
The results of both runs are given in this Table, namely as:
{(results first run)/{(results second run).

4.4.2 Capacity-oriented strategies.

As we have seen in the previous Chapter, a capacity-oriented strategy
requires aggregation over the producis. Consequently, the decision
whether or not to start a production r&n depends on the realisation of
the aggregate inventory. Before we discuss a method to constitute an
aggregate production plén that indicates whether or not to start a
production run, first we will discuss a rule that indicates to which
product a production run in the first period should be assigned. As in
the case of product-oriented strategies, it is difficult to find an
optimal rule to allocate the production run in the first period, since
this requires some insight in the distribution of the aggregate
inventory over the individual»produéts. For reasons of symmetry, we
will use the same Myopic rule as we dié for the product-oriented
strategies. Note that using a Value Function rule in this situation
would be more difficult, since the production plan has only been

determined in aggregate terms.

The aggregate production plan will be based on the aggregate
realisations: 1i(t-1), k(t), k(t+1}, ..., k(£+T-1)

With an aggregate inventory, we have to connect a certain cost. As we
have discussed for the purely stochastic approach, a reasonable
approximation, which we will use, seems to be to connect the cost

N+p{i/N) to an aggregate inventory i.

Under this approximation, we can determine analogous recurrence
relations to (4.6) for an aggregate cost function. Sinee this approach
follows straightforwardly from the approach in 4,4,1, we will not

discuss it here,.



In Section 4.6, we will consider numerical results for both the
capacity-oriented and the product-oriented strategies for a specifie

periodic review model.

4.5 The Deterministic Dynamic Programming approach.

In the Stochastic Dynamic Programming approach, we account for the
stochasticity of the demand. The defermination of a production plan can
be simplified considerably by assuming that the demand can be
forecasted accurately. Such an approach has for example been used by
Billington, McClain and Thomas [11], Bitran and Hax [13], Gabbay [22],
and Hax and Meal [28]. Because of its simplicity, this approach is
often used in practical situations, compare e.g. the Material
Requirements Planning approach {(see Orlicky [441).

Under some conditions, it can be proven that such an approximation
yields an optimal strategy (certainty equivalence - see Holt et al.
[30]). However, then it is required that the cost function is quadﬁatic
and tﬁat the transitions of the inventory are linear (this is disturbed
in case the production level is restricted from below by zero or from
above by a finite capacity). Consequently, in case the cost function is
not quadratic or in case the capacity restriction plays a role, this
approach may not be optimal, Still, the approach is often used, because
it is relatively simple to determine a production plan using this

approach,

For given realisations of k(t), k(t+1), ..., k(t+T~1), we must
determine forecasts for the demand from period £t to t+Thor-1, which
will be assumed to be perfect if determining a production plan over the
planning period.

For £ £ s £ t+T~1, it seems reasonable to add the expectation of Uj(s},

say EUj(s)=u, to the known part of demand. To make sure that the

forecasts for future demand are integer, we have to round u off. Since
always rounding off downwards or always rounding off upwards would give
forecasts that systematically deviate, we must sometimes round off
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upwards and sometimes downwards instead. Therefore, we introduce the

J
the entier of u (i.e. the largest integer that is less than or equal to

following mechanism to determine forecasts 6§ .{(s), where [u] stands for

uls

fal +1 + kj(s) with probability u-[ul

Gj(s) i = for tssst+T-1

ful + kj(s) with probability 1~(u~[ul}

(4.8)

Analogously, Wwe determine forecasts after t+T-1, by rounding of
EUj(s)+EKj(s). Notice that this plays a role if Thor > T.

What makes the Deterministic Dynamic Programming approach relatively
simple, is that the inventory of product j at the end of period t+s,
can only be in a limited number of states (see van Beek [6]). Since we
cannot start more than s+i production runs, these possible states are:

tis tEs tis
i, - s§.(ry, i,~ §.{r)+q,, viey L.~ §.({r)+(a+1)+q
I pag J Jpog 3 , SN I

The approach that has been described for the Stochastic Dynamic
Programming approach can be used here, but now it is much simpler since
the transition probabilities are either 0 or 1 and the state space is
much smaller. This enables us not only to derive capacity~oriented and
product~oriented strategies, but also to determine an optimal
production plan (over the planning period), for situations where the

number of products is not too large.

In Section 4.6, we will consider numerical results for the
Deterministic Dynamic Programming approach, We will compare the
influence of using the final cost function on the performance of the
optimal strategy. We will also consider capacity-oriented and product-
oriented strategies for this Deterministic Dynamic Programming
approcach.
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4,6 Numerical results and conclusions.

In this Section, we will compare the different approaches that have
been described in the previous Sections. To be able to derive numerical
results for the proposed strategies, we'have chosen more specific
distributions for the two components of the demand. These are the same
choices as have been used for the comparison of the composition rules
in Section 4.4:

For the unknown part, Uj(t), we have chosen a Poisson distribution with

parameter i. For the known part, Kj(t), we have chosen also a Poisson

distribution but this one has parameter p (consequently, the
utilization rate of the capacity is p := N-(A+uw)/q).

The cost that is incurred for a product if the realisation of the
inventory at the end of a period equals i, is chosen to be

p{i) := a1*+bi—. Finally, we have restricted ourselves to the situation
with T = Thor, ‘

Most of the results in this Section are determined by means of
simulation., For each parametersetting, we generated two different
simulation runs. In the Tables, the costs for the strategies, that we
congider, are given for both simulation runs.

4,6.1 Purely stochastic approach.

For the simple capacity-oriented heuristic and for the simple product-
oriented heuristic, that are derived in case demand is purely
stochastic, we give simulation results in Table 4.2. In the purely
stochastic approach, the demand in each period is'Péisson distributed
with parameter v := J+yu.
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Table 4.2, Simple capacity-oriented and product-oriented heuristics in

the purely stochastic approach, with v=)+u,

q & N a b v p capacity-oriented product~oriented
heuristic heuristic

CL SCH Bc PL SPH 8p
12 0 2 1 3 5 0.83 6.8312.66/12.70 8 10.64112.38/712.27( 2
20 0 2 1 3 5 0.5 8.82118.87/18.93 5 16.08(16.59/16.61 1
12 0 1 2 0.83 6.83130.60/30.64 24,22128.20/28.17 |2
12 010 1 1 0.83 6.83160.81/60.82 46,79)48.38/7u8.49 |-2
12 2 1 1 0.83 ¥y, 21 7.54/7.52 F.17] 7.59/7.55 1
12 © 110 2 0.83 11.00)20.482/20.481 12 14.39119.46/19.13 | 4
12 2 1 0.83 11.37(17.88/717.92] 61 16.68/17.86/717.86 (28
1210 2 1 2 0.83 14.52121.92/22.13 1112 21.04121.76/22.15 [54
12 13 1 6ar 4,85111.68/11.77) =2 9.36] 9.32/9.28 (-2
12 1 35.50,92 9.76[14.23/14.361 12 10.74116.77716. 74
12 2 1 35.80.97 20.45 22.01!23;8u 23 10.89({36.24/40.14

Explanation of Table 4.2: Using the relations that have been

derived in Section 4.3, we can determine an approximation for the

cost of using the capacity-oriented strategy (or the product-

oriented strategy) that corresponds to any choice of 8. By varying

f, we have determined an optimal choice for B, which is given in

the Table for both the capacity-oriented and the product-oriented

approach. The corresponding approximate cost (CL for the capacity-

orientedvheuristic and PL for the product-oriented heuristic) is a

lower bound for the cost of any strategy. The actual cost of using

the proposed heuristics have been determined by means of

—90-



simulation. This cost is denoted by SCH for the capacity-oriented

heuristic énd SPH for the product-oriented heuristic.

We see that the criterion to choose the heuristic which gives the
highest lower bound (see Chapter 3), works well for this periodic
review model too. An exception is the case with v=5.5. The reason for
this seems to be that the approximation of the cost; 6n which the lower
bound is based, is not so good in this periodic review case as in the
continuous review case, at least for the capacity-oriented heuristic.
This can be understood if one realises that the assumption underlyiné
the approximation in the capacity-oriented approach is that it is
possible to keep all inventories equal. If a production run is started,
we indeed allocate the run to the products so as to ensure this,
However, the longer ago such a production run has been started,'the
more the inventories tend to diverge. In this periodic review model,
the cost is incurred for the inventoﬁies at the end of each period,
whereas the production decision is taken at the start of a period.
Consequently, the imbalance between the inventories has a higher .
influence on the cost in the periodic review model than in the
continuous review model.

That means that the difference between the highest lower bound and the
cost of the best heuristic is larger in this periodic review model.
This suggests that it may be sensible to introduce more advanced
heuristics than the simple heuristics that are considered in Table 4.2,
in this periodic review model. To check whether this is true, we have
determined the optimal capaeiﬁy—oriented and the optimal product-
oriented strategies with corresponding costs by means of simulation.
The results of these strategies are given in Table 4.3. .

In order to make the comparisoﬁ with Table 4.2 more éaéy, we have given
the simulated costs for the best heuristic in Table 4.3 again (the P or
C denotes whether this best heuristic is the Product-oriented heuristic
or the Capacity-oriented heuristic).

Considering Table 4.3, there are two striking points:

Firstly, the performance of the optimal capacity-oriented and the
optimal product-oriented strategy is about the same for almost all

situations (an exception is the situation with v=1, where the

_91—



Table 4.3, Optimal capacity-oriented and product-oriented strategies in

the purely stochastic approach, with v=A+u.

optimal optimal best
qg & N a b v p capacity-orient.|product-orient. simple

strategy strategy heuristic

simul. cost B |aimul, cost] B | simul. cost

12 0 2 1 3 5 0.83] 12.09/12.00] 12 {11.94/11.92] 3 |12.38/12.27
20 0 2 1 3 5 0.5 17.82/17.76] 10 |16.29/16.33} 0 |16.59/16.61
12 0 5 1 3 2 0.83] 26.14/26.17] 20 [25.63/25.72] 0 |28.20/28.17 P
12 010 1 3 1 0.83] 48.93/48.92] 37 |u48.38/48.49]-2 148.38/u8.49 P
12 2 1 1 2 0.83 T.54/7.52 5 T.42/7.38 T1.54/7.52
12- € 110 2 0.83 16.79/16.50 18 {16.86/16.81 19.46/19.13
12 5 1 2 0.83| 17.34/17.43] 63 {17.32/17.53]29 |17.86/17.86 P
1210 2 1 0.83| 22.04/21. 43116 |21.32/21.69|56 |21.76/22.15 P
12 T3 1t 0.17} 10.59/10.591 2 9.32/9.28 |-2 9.32/9.28
12 2 1 35.50.92] 13.41/13.56| 15 |13,49/13.84} 5 |14,23/14.36 C
12 1 35.80.97] 22,01/23.84| 23 |22.35/22.32{ 9 [22.01/23.84 C

utilization rate equals 0.17). This suggests that in most situations it

is not so important whichvbf the two approaches is used, as long as one

chooses a good strategy within the approach., How easy it is to find a

simple strategy that performs good within aAgiven class depends on the

situation.

It seems sensible to use the criterion that chooses the

simple heﬁristic that gives the highest lower bound.

Secondly, in some cases there is a substantial différence between the
best simple heuristic and the optimal strategy within the class of

product-oriented and capacity~oriented strategies. Since it is possible

to improve on the simple heuristics.
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more advanced capacity-oriented heuristic.

When determining the simple capacity-oriented heuristic, we have
assumed that it would be possible to keep all the inventories equal.
This assumption leads to a simple approximation of the cost for a given
aggregate inventory (see Section 4,3), The cost rate on a given
aggregate inventory is then approximaﬁed by Nep(i/N) (which corresponds
to the actual cost rate if all inventories equal i/N). In a more
advanced capacity-oriented approach, we account for tﬁe fact that it
will not be possible to keep the inventories equal. Instead, we now
assume that the individual inventories, given a reélisat.ion i for the
aggregate inventory, fluctuate uniformly around the mean i/N. Since the
batch-size g plays a role in this imbalance between the invehtories, we
have chosen the following approximation of the cost rate on a given
aggregate inventory i:

y=1i/N + q/2 1

gi) := Zy_i/N - w2 p(y)'ﬁ (4.9)

Of course, other approximations for the actual cost would be possible.
For example, one could use an approximation that depends on the
strategy that is used. However, the analysis may then become more
complex, To keep the approach simple, we have used the approximation of
the imbalance as in (4.9).

Since g(i) depends only on the aggregate inventory, the relations of
Section 4.3 can be used again to find the more advanced capacity-
oriented heuristic, except that we have to replace the cost function

N-p{i/N} by g(i), but this will not make the analysis more difficult.
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Table 4.3, More advanced capacity-oriented heuristic in the purely

stochastic approach, with v=i+uy (for an explanation see
Table 4.2 except that (4.9) is now used as cost function),

more advanced simple optimal

q 2 N b v 9 capacity-oriented cap,~or, cap.-or.

heuristic heurist, strategy

appr| simul [ SCH simul

12 0 2 3 5 0.83111.16/12.09/12.00] 12 [12.66/12,70 { 12.0%9/12.00
20 0 2 3 5 0.5 17.11}17.82/17.76] 10 |18.87/18.93 | 17.83/17.89
12 0 3 2 0.83]23.80]26.17/26.29 21 | 30.60/30.64 26.14/26.1%
12 010 ' 3 1 0.83 | 46.43]48.93748.92] 37 | 60.81/60.82 | 48.93/48.92

12 0 2 2 0.83 7.181 7.548/7.52 51 7.54/7.52 7.5477.52
12 10 2 0.83]115.15{16.88/16.56] 17 | 20,42/20.48 | 16.79/16.50,
12 2 3 0,83 | 16.46|17.81/17.34] 64 [17.88/17.92 ] 17.34/17.43
1210 2 3 2 0.83]20.43122.04/21.431116 |21.92/22.13 ] 22.04/21.43
12 3 1 0.17 | 10.02{10.59/10.59] 2 | 11.68/11,77 | 10.59/10.59
12 3 5.5 0.92 [ 13.09]14.08/13.59] 16 | 14.23/14.36 | 13.41/13.5H
12 3 5.8 0.97 | 22.62|23.44/23.10] 26 | 22.01/23,84 | 22.01/23.84

In Table 4.4, we give numerical results for this more advanced

capacity-oriented heuristic. For the more advanced heuristiec, we have

not only given the simulated costs, but also the approximate cost that

follows from the analysis of the theoretical model, using approximation

(4.9) of the cost rate on the aggregate inventory. Note that (contrary

to CL) the theoretic cost not necessarily has to be a lower bound.

To be able to set the results of the more advanced heuwristic in a wider

context, we have also given the results for the simulation runs of the
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simple capacity-oriented and the optimal capacity~oriented strategy in
Table 4.4

43 we see, the more advanced heuristic is much better than the simple

capacity-oriented heuristic in case of high stock-out costs (b=10}, For

the case of a strict capacity, the more advanced heuristic gets worse.

more advanced product-oriented heuristic,

The simple product-oriented heuristic has been derived under the
assumption that the products never interfere on the capacity. In
reality, the products compete for allocation of capacity. This may lead
to a delay in the availability of the capacity for an individual
product. To find a more advanced product-oriented heuristic, we
estimated the size of this delay. This delay-time is then treated as a
deterministic leadtime that will be added to the actual leadtime, 4, to
find the so~called adjusted leadtime. Such an approach has been
proposed by Graves [24] and Williams [55].

If we want to estimate the size of the deiay, we have to realise that
subsequent delays for the same product are not independent and that
there is a correlation between the delays for the different producis.
However, the reason for introducing this more advanced product-orienﬁed
heuristic is only to see whether it is possible to improve the simple
product-oriented heuristic in a simple way. Therefore, in order to keep
the model, that we have to analyze, tractable, we neglect these
correlations. Instead, we assume that there is a constant probability «
that a produét triggers a production run in an arbitrary period,
whereas with probability 1-a no production run is triggered for that
product. To ensure that the utilization rate of the capacity is

correct, we have Lo choose a = v/q.

To estimate the size of the delay, under this approximation, we
introduce a Markov Chain with state space {r : r20}, where state r=0
corresponds to the capacity being idle and state r (r>0) corresponds to
the situation with r unfinished orders (for all products together).
That means that there is one order in process and r-1 orders are A
queueing for the capacity. ‘
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Transitions between the states in this Markov Chain take place at the
end of each period. If r>0 then one order will be finished in a period.

So, if no new orders are generated in the period, a transition occurs

to state r-~1. This happens with probability (1-u)N. With probability

Py = [l]ak(T-a)N—k exactly k new orders are generated in a period (for

0 £ k § N), which conforms to a transition from state r to state r+k-1.
Notice that the probability of a transition from state 0 to any state j
is the same as the probability of a transition from state 1 to this
state j.

Define ﬁr as the probability to be in state r (in the steady-state).

Then the following transition equations can be derived for L

_
1o = Polmg*my)
1= Py lmgr) * pgm,
Ty = Pp(Wp*m) + Py, + Ty

<
Ty = Pulmgtmy) F Py Ty F et PyTy DTy,
o= N p.T for r z N+ (4.10)
r k=0"K r+i-k . "

A

Starting from the upper equation and going down, we can expres all np's
in terms of Tor Since the utilization rate of the capacity is less than
one, we can find a solution of (4.10), in this way, by choosing Ty such

that the probabilities sum up to one.
Using Little's formula {see e.g. Stidham [49]1), we find the following
expression for the average waiting time for an order, say w:

PR (4.11)
No T=0 “r M

*
By using the adjusted leadtime & := &+w, we have found the more
advanced product-oriented heuristic.
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Table 4,%. More advanced product-oriented heuristic in the purely

stochastic approach, with v=i+u {(for an explanation see
Table 4.2, except that an adjusted leadtime has been used).

more advanced simple optimal
q % N b v p product-oriented prod.-or. prod.-or.
heuristic heurist. strategy
appr simul 8 SCH simul
12 0 2 3 5 0.83]13.52{16.59/16.45 8 12.38/12.27] 11.94/11,92
20 0 2 3 5 0.5 17.14[16.44/16,44 1116.59716.61| 16.29/16.33
12 0 5 2 0.83 |29.49(32.83/32.63 3| 28.20/28.17| 25.63/25.72
12 010 1 0.83 |53.01|52.06/52.14 0] 48.38/48,49 | 48.38/48.49
12 1 2 0.83] 8.51]11.29/11.20, 5| 7.59/7.55% 7.42/7.38
12 10 2 0.83 18.96]22,22/22.09| 11| 19.46/19.13] 16.86/16.81
12 5 2 0.83 119.51/20.57/20,29| 34| 17.86/17.86] 17.32/17.53
1210 2 0.83 | 24,01}24,.39/23.78] 60| 21.76/22.15| 21.32/21.69
12 0 2 3 1 0.17 9,89 9.32/9.28 | -2 | 9.32/9.28 9.32/9.28
12 3 5.5 0,92 |16.02|31.81/31.89] 18| 16.77/16.T4| 13,49/13.84
12 3 5.8 0.97 |21.71|79.75/79. 49| 47 | 36.24/40.14] 22.35/22.32

Results for this more advanced heuristic are given in Table 4,5, If

these results are compared to the results for the simple product~

oriented heuristic and the optimal product-oriented strategy, it proves

that this more advanced heuristic performs poor. It is even worse than

the simple product-oriented heuristic., There may be two reasons for

this bad performance:
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- gorrelation between triggers for subsequent orders plays an
important role

- other moments than only the first moment of the delay play an
important role,

If we want to incorporate these correlations in the model or if we want
to determine higher moments of the delay, the approach becomes more
difficult., This supports the conjecture that one should use a capacity-
oriented approach if one wants to account for the interference of the

products on the capacity.

4.6.2 Stochastic Dynamic Programming approach.

In this subsection, we will compare the capacity-oriented and the
product-oriented strategies that are describved in Section #4.4. In Table
4.6, we give numerical results for these strategies.

These results lead to the following observations:

-if the part of demand that is known beforehand increases (that
means the ratic u/{i+u) increases) both the capacity-oriented
strategy and the product-oriented strategy improve, but there

seems to be hardly any influence on their relative performance.

-if the utilization rate of the capacity (p=N+(A+n)/q) is high, the
capacity-oriented strategy (in the Stochastic Dynamic Programming
approach) performs best, whereas the product-oriented strategy
performs best if this rate is low. This relation has also been
found in Chapter 3, and seems intuitive.

~the performance of both strategies does hardly improve as the
planning horizon increases. Therefore T=2 secems a reasonable
choice.

~If the number of products increases, the performance of the
capacity-oriented strategy gets worse rapidly. The reason for this
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is that the capacity-oriented strategy is based on the assumption

that the inventories for all products can be kept equal. As the

number of products increases, this assumption becomes more

unrealistic, It is possible to account for the imbalance between

the products in the cost of a given aggregate inventory and

thereby improve the capacity-oriented strategy (see Section

4,6.1).

Table 4.6. Capacity-oriented and product-oriented strategies in the

Stochastic Dynamic¢ Programming approach.

qg & N a b A u Thor o capacity-oriented product-oriented
12 0 2 1 32.5 2.5 2 0.83 12.08/12.17 11.86/11.99
12 0 2 1 32.5 2.5 1 0.83 12.31/12.63 |  =====---
12 0 2 1 32,5 2.5 3 0.83 11.98/12.00 11.93/12.04
12 0 2 1 32.5 2.5 5 0.83 11.93/711.90 11.95/11.95
12 0 2 1 3 0 2 0.83 11.28/711.1 10.75/710.T1
12 2 1 5 0 2 0.83 12.51/12.86 12.20/12.26
20 0 2 1 32.5 2.5 2 0.5 18.36/18.47 15.86/15.96
12 1 3 1 1 0.83 30.38/30.21 27.60/27.36
12 010 1 3 0.5 0.5 0.83 60.70/60.54 48,74/48.99
12 1 1 2.5 2.5 2 0.83 T.11/7.12 T UT/77.47
12 1102.5 2.5 0.83 22.00/21. M1 18.66/18.66
12 2 1 32,5 2.5 2 0.83 17.00/17.23 16.88/16.85
1210 2 1 32.5 2.5 0.83 21,53/21.34 21.35/21.38
12 1 30.5 0.5 0.17 11.42/711.46 9.05/9.05
12 1 32.75 2.752 0.92 13.85/14.09 17.07/16.75
12 1 32.9 2.9 2 0.97 23.20/20.93 41,98/41,98
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Explanation of Table 4,6: Based on the known part of the demand and
considering the schochasticity of demand, we can determine a
production plan each period anew. In this Table we have given the
simulation results that we find if we apply such an approach to
find capacity-oriented and product-oriented strategies. For both
types of strategies, we have used the Myopic rule to allocate a

production run to the products (see Section 4.4),

4.6.3 Deterministic Dynamic Programming approach.

If we assume the forecast for future demand to be accurate, we find the

Deterministic Dynamic Programming approach (see Section 4.5). Under the

assumption that the forecast is accurate, we can determine an optimal

production plan over the planning period, each period again. Doing so,
we find the results of Table 4,7. Notice that we give results both if

the final cost function is used and in case it is not used.

On the results of Table 4.7, we base the following conclusions:

~Only if the capacity restriction is tight or the stock-out costs
are high, the use of a final cost function yields better results.
Notice that for large N, the results become even worse, The reasdn
for this may be that the cost function is based on the’assumption
that the simple capacity~oriented heuristic will be used after the
planning horizon. However, especlally as N increases, it proves
that this capacity-oriented heuristic is not so good (using the
more advanced capacity-oriented heuristic might yield a better

cost funetion in this situation).
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Table 4.7. Optimal strategy in the Deterministic Dynamic Programming

approach (for an explanation see Table 4,6, except that the

stochasticity of demand is no longer considered).

q & N a b A u Thor o -without final with final
cost function cost function

12 1 32,5 2.5 0.83 11.58/711.79 11.37/11.68
12 2 3 32.5 2.5 0.83 10.90/11.31 10.90/11. 11
12 2 1 32.5 2.5 0.83 11.03/10.95 11.00/10.96
12 0 1 3 0 2 0.83 10.58/10.66 10.37/10.51
12 21 3 5 0.83 12.33/12.32 12.13/712.35
20 0 2 1 32.5 2.5 2 0.5 15.85/15,84 15.94715,84
i2 0 5 1 3 1 1 2 0.83 25.32/25.23 26.34/25.99
12 2 1 12,5 2.5 2 0.83 7.27/7.26 7.07/7.20

12 2 110 2.5 2.5 0.83 20.31/20.36 19.37/19.11
12 5 2 1 32.5 ‘ 2 0.83 17.79/17.60 17.74/717.43
1210 2 1 3 2.5 2.5 0.83 23.56/23. 21 23.85/23.13
12 1 30.5 0.5 2 0.17 9,29/9.30 9.66/9.59

12 1 327 2.752 0.92 15.37/15.73 13.61/714.51
12 1 32,9 2.9 2 0.97 32.50/33.55 23.86/21. 21

-As the part of demand that is known beforehand increases (and thus
the forecast is improved), the performance of the strategies gets
better.

-in case we use Deterministic Dynamic Programming, the performance
of the strategy seems more sensitive for the choice of the
planning horizon than in the Stochastic Dynamic Programming
approach. Therefore we have considered the same approach (without

- 101 ~



final cost function) again in Table 4.4, but now with planning

horizon T=3,

Table 4.8. Optimal strategy in the Deterministic Dynamic
Programming approach with planning horizon T=3 (for an

explanation see Table 4.7).

qg % N a b A u Thor o without final
cost function
12 0 2 1 3 0 5 3 0.83 10.00/9.92
12 0 2 1 3 5 0 3 0.83 11.59/711.7M
20 0 2 1 3 2.5 2.5 3 0.83 15.76/15.83
12 0 5 1 3 1 1 3 0.5 25.00/24.96
12 0 2 1 1 2.5 2.5 3 0.83 6.95/7.02
12 0 2 110 2.5 2.5 3 0.83 16.58/16.55
12 5 2 1 32.5 2.5 3 0.83 16.82/16.37
1210 2 1t 3 2.5 2.5 3 0.83 23.14/22.39
12 0 2 1 30.5 0.5 3 0.17 9.18/9.28
12 0 2 1t 32.75 2.753 0.92 113.22/13.85
12 0 2 1 32.9 2.9 3 0.97 28.88/28.11

Comparing the results of Table 4.7 and 4.8 makes clear that
increasing the planning horizon is especially useful if the stock-
out costs are high or if the capacity restriction is tight. These
are also the cases in which application of a final cost function

is sensible.
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If the number of products increases, the determination of an optimal

production plan will become more difficult., Besides, the optimal

production plan assumes that the forecast is accurate. It is not clear

whether this "optimal™ production plan will be better than plans that

Table 4.9. Capacity-oriented and product-oriented strategies in the

Deterministic Dynamic Programming approach (for an

explanation see Table 4,7).

g &£ N a b 2 w Thor o capacity-oriented | product-oriented
12 0 2 1 32.5 2.5 2 0.83 12.25/12.49 11.85/11.61
12 0 2 1 32.5 2.5 1 0.83 12.43/12.66 | e
12 0 2 1 3 2.5 2.5 3 0.83 12.24/12. 44 11.63/711.61
12 0 2 1 3 2.5 2.5 5 0.83 12.46/12,28 11.55/711.52
12 0 2 1 2 0.83 11.28/711.11 10.75/710.71
12 1 5 ¢ 0.83 11.96/13.27 12.39/12.36
20 0 2 1 32.5 2.5 2 0.5 18.33/18.52 15.81/15.93
12 5 1 3 1 1 0.83 30.60/30,57 25.32/25.33
12 010 1 3 0.5 0.5 2 0.83 61.33/61.79 54,51/54, 44
12 1 1 2.5 2.5 2 0.83 7-13/7.20 T7.26/7.31
12 110 2.5 2.5 2 0.83 25.71/725.92 20.35/20.60
12 5 2 1 32,5 2.5 2 0.83 19.21/18.80 17.74717.86
12 10 1 32.5 2.5 2 0.83 25.53/24.68 23.19/23.36
12 1 3 0.5 0.5 2 0.17 11.18/711. 1 9.32/9.21
12 1 32.75 2.7 2 0.92 14,76/15. 11 15.97/15.52
12 1 32.9 2.9 2 0.97 23.35/21.15 36.73/39.16

- 103 -




are based on simpler approaches, if this assumption does not hold. Note
that even if the assumption holds, the optimal production plan only
optimizes the costs over a finite planning period. Therefore, we will
also consider capacity-oriented and product-oriented strategies in this

. Deterministic Dynamic Programming approach.

In Table 4.9, we present numerical results for these strategies. In
case of a capacity-oriented strategy the final cost function of Section
4.3 is used.

These results lead to the following conclusions:

~the capacity-oriented strategy is better than the product-oriented
strategy if the capacity restriction is tight, whereas the

product-oriented strategy is better otherwise.

~instead of searching an optimal strategy in the Deterministic
Dynamic Programming approach, one can just as well use a capacity-
oriented strategy in case of a tight capacity restriction and a

product-oriented strategy otherwise (compare Tables U.7 and 4.9).

4.6,4 Overview of the numerical results.

In Sections 4,2 to 4.5, we have mentioned several different approaches
to the single-phase multi-product planning problem under periodic
review, where demand is partly known in advance. So far, we have given
numerical results for each approach separately. In this subsection, we
want to compare the approaches. Therefore, we give the relative
performance of the described aﬁrategies and heuristics in Table 4.10.
These results are in percentages as compared to the best of them. For
example if the best result is found for the purely stochastic approach,
then there is a zero in the corresponding column. If the Deterministic
Dynamic Programming approach gives a cost that is 1.2 times as high,
then we have a 20 in the column that corresponds to the Deterministic

Dynamic Programming approach.
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Table 4,10, Comparison of the results for the different approaches (the
numbers of the columns denote the approaches as is
described in subsection 4.6.4).

g & N a b A p Thor o < 2 3 4 erit
12 0 2 1 32.5 2.5 2 0.83 5.5 P 2.1 P 0 0.4 P

2 0 2 1 32.5 2.5 3 0.83 11.0 P 7.9 P 0 4,6 P P
(12 0 2 1 3 2.5 2.5 5 0.83 12.1 P] 8.5 ¢C 0. 5.0 P P
12 02 1 3 0O 5 2 0.83 16.1 P 1.0 P 0 1.0 P

12 0 2 1t 3 5 0 2 0.83 0.8 P 0 P 0.8 t.2 P P
20 0 2 1 3 2.5 2.5 2 0.5 4.8 P 0.4 P 0 0.2 P P
12 05 1 3 1 1 2 0.83 1.5 P 8.7 P 0 0

12 010 1 3 0.5 0.5 2 0.83 0 P 0.9 P - 12.5 P P
12 ¢ 2 1 1 2.5 2.5 2 0.83 5.8 C 0 C 2.1 0.7 C

12 0 2 110 2.5 2.5 2 0.83 3.4 P 0 P 9.0 9.7 P

12 5 2 1 32.5 2.5 2 0.83 5.8 C 0 P 4.9 5.5 P
1210 2 1t 3 2.5 2.5 2 0.83 2.8 P o P 9.5 8.9 P P
12 0 2 1 30.5 0.5 2 0.17 3.6 P 0O P 2.7 2.4 P

12 0 2 1 32.7% 2.75 2 0.92 2.3 C 0 C {11.3 6.9 C

12 0 2 1 32.% 2.9 2 0.97 3.9 ¢C 0 C [49.7 0.8 C
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The strategies and heuristics that we have compared in Table 4,10, ar.
the following:

1. The best of the simple capacity-oriented heuristiic and the

product-oriented heuristic in the purely stochastic aporoac™.

2. The best of the capacity-oriented strategy and the product-
oriented strategy in the Stochastic Dynamic Programming
approach.

3. The optimal strategy for the Deterministic Dynamic Programming
approach {(without final cost function).

4, The best of the capacity-oriented strategy and the product-
oriented strategy in the Deterministic Dynamic Programming

approach.

The C or P in Table 4,10 indicates whether the best strategy (or
heuristic) is found for the capacity-oriented or for the product-
oriented approach.

To find an optimal strategy in the Deterministic Dynamic Programming
approach, we did not use an extra cost function on the final inventory
positions, since we have seen that such a cost function is not useful
in most situations (see subsection 4,6,.2)., However, since we combine
capacity-oriented strategies always with a final cost function, this
may result in a better performance of the capacity-oriented heuristic
in the Deterministic Dynamic Programming approach for some situations
in Table 4.10. '

If we overview Table 4.10, we can derive the following conclusions:

~The Stochastic Dynamic Programming approach often yields a good
strategy. However, the computational effort in case we account for
the distribution of demand around the forecast is high, whereas
one can find strategies that are almost as good (or sometimes
better) if we either assume the forecast to be perfect (and thus
find the Deterministic Dynamic Programming approach) or neglect
the forecast (and thus find the purely stochastic approach).
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~In most situations, the choice between a capacity-oriented and a
product-oriented approach is independent of the way the
information about future demand is used. In situations where there
are differences, it can be checked, at hand of previous Tables,
that there are only minor differences between the performance of
the capacity~oriented and the product-oriented strategies. This
allows us Lo apply the criterion of the purely stochastic approach
{namely to use the heuristic for which the lower bound is the
highest) to determine whether it is best to use a capacity-
oriented strategy or a product-oriented strategy.

With these conclusions, we finish the discussion of the single-phase
model where demand is partly known in advance. We have compared the
capacity-oriented and the product-oriented strategies for different
approaches to deal with the information that is available about future
demand. It has proven that the criterion for choosing between the two
types of strategies is insensitive for the way the information about
future demand is treated.

Notice that we have also seen in Section 4.6.1 that the optimal
capacity-oriented strategy and the optimal product-oriented strategy
are almost just as good in many situations (an exception was the
situation with a low utilization rate where the product-oriented
strategy performed better). This suggests that there is a large overlap
between situations where a‘capacityvoriented approach leads to good
results and situations where a product-oriented approach leads to good
results., The difficulty, however, is to find a good strategy within a
given abproach. We have derived a c¢criterion to choose between the so~
called simple heuristics (see Section 4,6.1)., This criterion could be
applied not only for the purely stochastic approach, but also for other
approaches to deal with the information that is available about future
demand. This enables us to choose between the capacity-oriented and the
product-oriented approach, if we restrict ourselves to simple
heuristics within each approach.

We also investigated whether it was easy to find a more advanced
heuristic whithin each class that performed better than the simple
heuristic, For the capacity-oriented approach, this has proven to be
easy. A more advanced product-oriented heuristic, in which the delay in
the leadtime for a product due to the interference with other products
on the capacity was modelled as a stationary effect, proved to perform
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poor. This suggests that it may be difricult to determine a good
product-oriented approach in situations where the capacity restriction
is tight (notice that the criterion indicates whether the capacity
restriction is so tight that one might better use the capacity-oriented
approach). The capacity-oriented approach, however may be used in a
wider range of situations, if one uses the more advanced capacity-

oriented heuristic instead of the simple capacity-oriented heuristic.

In the following Chapters, we will use these results, when considering

a model in which the products are no longer identical in the long-run.
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Chapter 5. Non-identical products.

5.1 Introduction.

In the previous Chapters, we have considered a single-phase multi-
product planning problem with identical products. In this Chapter, we
want to discuss how the results of capacity-oriehted and product-
oriented strategies can be applied in case of non-identical products.
Let us first define what we mean by non-~identical products.

The products are characterized by:

~the demand process

~the inventory holding cost and the stock-out cost

-the production rate (i.e. the amount that can be produced per unit
of time).

We will consider products with different demand processes in this
Chapter. We will assume, however, that the inventory holding cost, the
stock-out cost and the production rate are the same for all products.
Though this assumption may seem restrictive, it can be argued that it
covers many situations. Graves [24] used the following reasoning to
show that the assumption is realistic: "Consider the inventory holding
and backorder costs; these costs are frequently taken to be
proportional to the value of a product. In a single machine environment
the value of a product consists of the cost of the input plus the value
added during the processing. Given that all products require the same
or similar inputs, it is reasonable to suppose that the machine
processes the inputs at a relatively steady dollar rate, independent of
the product. Furthermore, if the rate of value added by the machine

were not nearly constant across products, it could be argued that the
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machine capacity is not being used efficiently. Hence, the products
should have similar value, and hence similar inventory holding and
backorder costs per unit of production."

Consequently, after rescaling the production rates of the products to a
common value, it seems reasonable to assume that the products have
identical cost parameters. The reasoning of Graves is based on a
situation with linear inventory holding and stock~out costs and we will
consider a more general cost function (p(i)) on the inventories.
However, this more general cost function may still be assumed to be the
same for all products, after rescaling the products to a common

production rate.

The approach in case of non-identical products is discussed using the
example of a single-phase model with purely stochastic demand. This
model is described in Section 5.2. In section 5.7, we will aléo make
some remarks on how to treat the case where demand is partly known
beforehand.

The approach 1s based on the results of previous Chapters which
indicate that: '

-the simple product-oriented heuristic is good in case of a weak
capacity-restriction.

~the simple capacity-oriented heuristic is good in case of a strict
capacity and only few products.

For the product-oriented approach, decomposition over the products is
required. Therefore, the product-oriented heuristic may be expected to
perform well for non-identical products too if the capacity restriction
is weak.

If the capacity restriction plays an important role, we will divide the
products into two groups namely a group of fast-movers and a group of
slow-movers. As we will discuss, the slow-movers have priority on the
capacity so that the capacity restriction for slow-movers is only weak.
Since there will be only few fast-movers, each of these groups fulfills
the requirements for applying a simple heuristic. We will discuss this
distinction into different groups in Section 5.3. The form of the
simple heuristics for this model with non-identical products, is
discussed in Sections 5.4 and 5.5. In Section 5.6, we will illustrate
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the approach at hand of an example. In the Sections 5.7 and 5.8, we
will discuss whether it is possible to extend the approach to more
general situations and we will make some remarks on the quality of the

approach.

5.2 Description of the model.

There are N products that all require the same limited resource
(compare the model of Chapter 3, see Figure 3.1).
The demand for product j follows a Poisson process with parameter Aj,

with Ay > Ay .y, for all § =1, 2, oo, N-1. Let A =] . There is

N
3=11y

no correlation between the demand for different products.

Let Ij(t) denote the inventory of product j at time t. We consider the
same cost rate as in Chapter 3, namely p(ij) is the cost rate for

product j if the realisation of the inventory for that product equals
ij.
The purpose of control is to minimize the (expected) cost per unit of
time. Unlike the situation of previous Chapters, we no longer assume
that there is a stochastic process that generates production
opportunities. In this Chapter, we will model the capacity as a service
mechanism with service~time depending on the batch-size. The reason for
using a service mechanism now, is that the batch-sizes for different
products may be different.

A production run of size q will occupy the capacity for a negative-
exponentially distributed time, with mean q-(1/u), after which the
capacity is free again s0 that a new production run can be started.

In order to simplify the production situation, we assume that there are
only two different batch-sizes, namely Qe and a {(with 9 > qs). The

larger batch-size is used for products with a high average demand. We
will return to this in the next Section.
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Once a production run has been finished, the batch arrives at the
stock~points after a production flowtime %. From the time that the run
is finished, the batch will be added to the inventory poszsition, denoted

by Iposj (see Figure 5.1). Note that it would have been possible to
finish
production run;
start added to batch arrives
production inventory at the
run position inventory
! ! |
service-time £
{mean q/u)

Figure 5.1, Throughput-time of a production order of size q.

define the inventory position such that the batch is already added as
soon as the run has been started, but since we cannot produce before
the batch is finished these definitions are equivalent.

As in Chapter 3, we will define the shifted cost rate L(ipj) 1=

E[p(lj(t+£))llposj(t)=ipj] as the expected cost rate at time t+f, if
the inventory position of product j equals ipj at time t (in order to
calculate L(ipj). consider (3.5)). The control of the inventory

positions will now be directed at minimizing the shifted cost over time
(in Chapter 3, we have discussed that this is equivalent to minimizing
the cost rate p(ij) over time for the inventories).
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5;3 Fast-mover/slow—-mover approach.

If we assume that the products rarely interact on the capacity, the
determination of a good heuristic is simple. In that case there is no
need to buffer against uncertainties with respect to the availability
of capacity for individual products. Consequently, it is almost optimal
to assume that the capacity is always available for each individual
product. This heuristic, we have called the simple product-oriented
heuristic. To determine the heuristic we decompose with respect to the
products, which gives us N one-dimensional problems that have to be
solved. This solution is straightforward and yields a heuristic that
may be expected to perform well (see the discussion of the slow-movers
in Section 5.4).

Next consider the situation in which the capacity restriction plays an
important role. The most straightforward way to buffer against
uncertainties in the availability of the capacity is by introducing the
aggregate inventory position as a measure for the amount of capacity
that is stored in the system, The difficulty in this situation, where
we have large differences between the products, is that a given
inventory position is not equally effective as a capacity buffer in the
short~run for each product:

In the long-run increasing the inventory by a quantity x,. for any
product, corresponds to decreasing the requirement for capacity with an
amount (x/u). In the short-rum, however, there are obvious differences
between the products: If there is hardly any demand for a given
product, creating a large inventory for that product is completely
inefficient in the short-run. Although in the long-run we may be sure
that the inventory will be used, in the short-run it is Just a waste.
In general, it can be said that a given inventory podsition is more
effective in the short-run if there is a high demand for the product
(in the short-run).

Therefore we distinguish between so-called fast-movers and slow-movers.
It is generally so that there are relatively few fast-movers, while
each individual fast-mover has a big claim on the capacity. The
slow-movers have only a minor claim on the capacity, but there are many
slow-movers.
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We introduce a value N_ such that the products 1 to N_ are the fast-

f f
movers and the rest are the slow-movers.

In Section 5.8, we will return to the choice of Ne.
A puffer against uncertainties, with respect to the availability of the
capacity, will now be built up only in the inventories for fast-movers.
For the slow-movers, such a buffer will not be built up. Therefore, it
seems reasonable, if a slow-mover and a fast-mover compete for the
allocation of capacity, to give the slow-mover priority, because a
safety-stock has been built up for the fast-movers to protect against
these capacity shortages.

Batch-sizes may interfere with the performance of this priority rule:
In casgse the batch-size for slow-movers is very small (preferably lot-
for-lot), this priority rule seems reasonable (compare the well-knoun
Shortest Processing Time rule). However in case the batch-size for
slow-movers is large, the following problem occurs. Each time we

produce a slow=-mover, part of the batch is used to reset the inventory

o)
o)
¢
&
— e
Q
Q
o)
o)

Optimal

Level

Figure 5.2. Batch production (g=6).

of the slow-mover to its Yoptimal" level, while the rest of the batch
is used to reduce the number of set-ups for slow-movers in the long-
run (see Figure 5.2). This last part of the batch will increase the
costs in the short-run. During the production of this last part of the
bateh it will be far from optimal to let the fast-mover queue for the
capacity. Therefore, the priority rule is most efficient if the batch-
size for slow-movers is small. However, when choosing small batch-sizes
for slow-movers, the capacity may be used inefficient due to change-

over times between products, Obviously a trade-off has to be made:
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choosing high batch-sizes for slow-movers may lead to less change-
overs, but it also results in a more irregular availability of the
capacity for the other products. This trade-off has to be made on the
same level where the availability of the resources can be adjusted (we
will return to this in Section 5.8). We assume that the fast-movers are

produced in batches of size qf, whereas the slow-movers are produced in
batches of size qs. In Section 5.7, we will discuss the situation where

the batch-sizes need not be constant among fast-movers and slow-movers.

We have now discussed what happens if a slow-mover and a fast-mover
apply simultaneously for allocation of capacity. What we have not
discussed, yet, is what happens if a slow-mover applies at the time the
capacity has already been allocated to a fast-mover. In this case of
negative-exponentially distributed processing times it would be optimal
to interrupt the production of the fast-mover at such an event. Yet, it
seems more realistic not to interrupt the production run for a product
(non-preemptive situation), since usually the reason for using batches
in the first place is that there are change-over costs and times. On
the same level where batch-sizes are fixed, a decision has to be taken
about preemption or non-preemption. We assume that the slow-movers have

a non-preemptive priority on the capacity.

Once we have determined the priority rule, the determination of a good
héuristic, using the results of the previous Chapters, is
straightforward. There are many slow-movers, but, since they have
priority on the capacity, the capacity restriction is weak when we
consider the slow-movers only. As we have seen, in this situation, the
simple product-oriented heuristic, that decomposes with respect to the
products, is almost optimal. We will return to this heuristic for
slow-movers in Section 5.4,

For the fast-movers, we are left with a much tighter capacity
restriction. However, we have chosen the number of fast-movers to be
small. For a situation with identical products, we have seen that the
simple capacity-oriented heuristic, in which the decision whether or
not to produce depends on the aggregate inventory position as a measure
for the amount of stored capacity, performs well under these
conditions. In Section 5.5, we will return to this heuristic.
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5.4 Slow-movers.

As mentioned previously, the slow-movers have priority on the capacity.
Therefore, the capacity restriection for slow~movers is only weak. For
situations with identical products, we have seen in the previous
Chapters that the simple product-oriented heuristic performs well under
such circumstances. The performance of this heuristic can be estimated
by solving one-dimensional optimization problems. In case of non-
identical products, a product-oriented strategy is a strategy in which
a production run for a slow-mover j is triggered if and only if the
realisation of the inventory position for that slow-mover is less than
or equal to a certain predetermined level Bj.
If more than one slow-mover triggers a production run, then we need a
rule to choose between them. In the previous Chapters, we have seen
that a reasonable rule is to allocate the production run to the
products in such a way that the first costs, that are influenced by
this allocation will be minimized. In Chapter U4, we have compared this
allocation rule (the so-called Myopic rule) to a more advanced rule
(the Value Function rule) in a szituation where the products are non~
identical in the short-run. The results indicated that there is little
improvement when using a more advanced allocation rule., Since the
Myopic rule is the simplest, we will apply this rule here as well. In
the Myopic rule, the production run is allocated to the slow-mover j
for which expression (5.1) is minimal (ipj denotes the realisation of

the inventory position for product j).
idso[p(ipj+qs~d)"p{ipj-d)]-Pj(d) (5.1)

where Pj(d) is the probability that the demand for product j over the

production time plus the production flowtime equals d. Note that this
demand consists of two parts. Firstly, there is the demand during the
production time. Since the production time is negative-exponentially
distributed, the demand during the production time is geometrically
N
AJ + u/QS

distributed (with parameter ). The second part consists of
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demand during the production flowtime £. This second part has a Poisson

distribution with parameter R-Aj. Combining these two, we get the

following expression for the demand of product j during the throughput-

time:

d-k
/ A, K (LA, -2A.
kSO X : q? 2y ) Ed-i;' e (5.2)
T Wag Ay wag !

Pj(d) =]

To find the simple product-oriented heuristic, the interaction with

éd;(ip) as the steady-state

probability that, if we apply a product-oriented heuristic with

other products is neglected. Define H

critical level B for product j and under the above assumption (no
interaction), the inventory position of product j equals ip. The cost
of product j (if we apply this heuristic under the above assumption) is

given by (5.3).

L (d)

zipL(ip)-HB’J(ip) (5.3)

where L(ip) is defined as the shifted cost rate (see Section 5.2).

Figure 5.3. Possible transitions of the inventory position for a slow-

mover Jj.

To determine H(d;(ip), consider the possible transitions between

?
inventory positions for a given slow-mover j, as depicted in Figure

5.3, under the assumption that there is no interference.
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These possible transitions appear to be the same as the possible
transitions in Section 3.8 (Figure 3.4). Therefore the same approach
can be used here in order to find the simple product-oriented
heuristic.

Note that, as before, it is possible to determine a more-advanced
product-oriented heuristic by estimating the delay in the availability
of the capacity due to other products (using some queueing analysis).
Such an approach has been worked out in Section 4.6,

5.5 Fast-movers.

The capacity-aspect of the system will be considered in the control of
fast-movers. Consequently, the decision whether or not to produce has
to depend on the total inventory position, aggregated to stored
capacity. Since the "production rate® {the amount of a product that can
be produced per unit of time) is the same for all fast-movers, the best
measure for the amount of stored capacity is found by taking the sum of
the individual inventory positions. Therefore, we define the aggregate
e o
=1 posj(t). Capacity

oriented strategies are strategies in which a production run is

inventory position at time t as Ipos(t) = }

triggered if and only if the realisation of the aggregate inventory
position is less than or equal to a certain predetermined level 8.

If a production run is started, then (as for the slow-movers) this run
will be allocated to the products using the Myopic rule (5.1).

In order to be able to make a reasonable choice of 8, we will consider

the following three points:

1. the cost rate as a function of the aggregate inventory position
2. the demand process for fast-movers
3. the disturbance of the capacity-availability for fast-movers due

to slow-movers.,
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5.5.1 The cost rate as a function of the aggregate inventory position,.

The actual costs that correspond to a given aggregate inventory
position depend on the distribution of the aggregate over the
individual products. Therefore the conditional steady-state
probabilities {(given the aggregate) have to be calculated in order to
find the exact cost rate of the aggregate inventory position. In
Chapter 3, we discussed the problem of finding such a conditional

distribution, and we have seen that, as long as Nf is not too large, a
good approximation of this aggregate cost rate is given by
glip) := Nf’L(ip/Nf). This means simply assuming that all inventory

positions can be kept equal.

Note that in Chapter 4, we considered a more advanced approximation of
the conditional costs too. The approximation that is used for the
aggregate cost rate is unimportant with respect to the size of the
resulting problem (as long as the cost rate depends only on the

aggregate inventory position). Since the approximation é(ip) is the
most straightforward and has proven to give good results if Nf is not

too large, we prefer this approximation. The capacity-oriented strategy
that we find with this approximation is referred to as the simple

capacity~oriented heuristic,

5.5.2 The demand process for fast-movers.

The demand process for fast-movers is the superposition of Nf

independent Poisson processes. Therefore, again, it is a Poisson
N

f

process with parameter T, := 23=1lj.
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5.5.3 The disturbance of the cagacitx*availabilitx for fast-movers due

to slow-movers.

In order to investigate the disturbance of the capacity~availability
for fast-movers due to slow-movers, let us first consider a single
slow~mover.

As soon as qs times a demand for this slow-mover occurs, it will

trigger a production run (consider the strategies chosen for the slow-
movers). Since the demand for slow-mover J follows a Poisson process

with parameter kj, the interarrival time between successive
"triggermoments® for this slow-mover is Erlang~distributed with qs

phases and parameter Aj.
The process of triggermoments for all slow-movers is the superposition

of N-Nf individual trigger processes. 3ince the number of slow-movers

(N-Nf) is large, this process will be approximated well by a Poisson

process {for an extensive study on the superposition of non-identical
processes, the reader is referred to Knintchine [33]). The parameter in
this process is:

A
=y N d
TS * }.saNf*.-l qs (5-14)

A possible approach would be just to estimate thevexpected delay of
production runs for a fast-mover, due to the disturbance of the
capacity, and to use an adjusted leadtime. However, there will be much
variation around the average size of the delay. This is due to the
queueing of production orders, not only during the time another slow~
mover is processed but also during the time a fast—-mover is processed.
Because of this effect, it may not be suitable to introduce an adjusted
leadtime (compare Section 4.6). Therefore, we have used another

approach for choosing B in this situation.

The state of the "fast-mover system"™ at a given point in time can be
described by the following tuple:
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{ip,n,r) (5.5)

where ip 1s the realisation of the aggregate Inventory position, ns is

the number of unfinished production orders for slow-movers {including
the one that presently occupies the capacity) and r denotes the present
status of the capacity as follows:

0 means the capacity is free
r=951 means the capacity is occupied by a fast-mover
2 means the capacity is occupied by a slow-mover

It will be ¢lear that if we know the steady-state probability of each

state (ip,ns,r), related to any given strategy, B, and hence we know

the marginal distribution of ip, it is possible to détermine the
approximaté, average cost for any choice of B (by using the approximate
cost function on the aggregate in}entory pesition‘as discussed in
Section 5.5.1). Therefore vwe can determine the simple capacity-oriented

heuristic by minimizing these average costs over B.

We will now describe a theoretical analysis, based on the above state
description, that leads to the simple capacity-oriented heuristic. This
analysis is rather technical. For readers who are not interested in the
specific derivation, it suffices to say that the analysis is the
matrix-analogon of the analysis in Section 3.8,

5.5.4 Theoretical Analysis.

To simplify the analysis, we will bound the number of unfinished
production orders for slow-movers that require allocation of the
capacity at any moment, say ng £ m. If there are m unfinished

production orders for slow-movers in the system, the arrival of new
customers will not result in a transition to a new state. Notice, that
since the slow-movers have priority on the capacity, we may expect that
this approximation is reasonable, for sufficiently large values of m.
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If the system is in equilibrium, not all combinations of ip, ns and r

are possible:

-as long as ip > B (and ip § B+qf), the capacity cannot be occupied

by fast-movers. Consequently, we have only the states (ip,0,0) and
(ip,ns,Z) for all 1 s nS S m. Notice that if a production order

for a slow-mover arrives, while the capacity is available, this
order will occupy the capacity immediately. Therefore, states
(ip,nS,O) are reached with probability zero for ns > 0,

-if ip & 8, it is impossible to find the capacity available,
because immediately a production run for a fast-mover is started.
Therefore r=0 is not possible.

Hence, the states of the system for fast-movers, are as shown in Figure
5.4,

8+va0:0 «or §+1,0,0 8,0,1 f~1,0,1 ¢
B*qf,h? L B+1,1,2 By1,2 g~1,1,2 L

-« * . -
. - . -

B*Qf,M‘1,2 LI g+t ,m~1,2 B,m-1,2 B~1,m-1,2 [
6*%:’“:2 R g+1,m,2 8,m,2 g-1,m,2 ..
B,1,1 g-1,1,1 o

. »

» *

B,m-1,t  8-1,m~1,1% » o oe

8\,!&,1 8~1,m,1 oo

Figure 5.4, The possible states for the fast-mover systém in
equilibrium.
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If we want to calculate the steady-state probabilities, the first
problem that we meet is that the times between transitions depend on
the state of the system. Lippman [36] has shown that this problem can
be overcome easily in this situation with exponential distributions, by
introducing transitions that do not result in a change of state.

Therefore, in any state we can assume that transitions are due to:

N
1. arrival of demand for a fast-mover; rate Te (= Zj£1xj)
2. finishing of a fast-mover job; rate P u/qf .
3. finishing of a slow-mover job; rate Hy t= u/qS

: . _ N
4, arrival of a slow-mover job; rate Ty (= zj=Nf+1Aj)

where, for example, the finishing of a fast-mover job, if no such job
has been started in the given state, corresponds to a transition from

the state into itself.

Note that, since the times between transitions are independent of the
state of the system, it suffices to calculate the steady-state
probabilities of the state of the system, at times just after a
transition, which means that we must consider the embedded Markov

chain. Then a given transition corresponds with probability

i= Tf/(1f+uf+us+18) to the arrival of a fast-mover
= uf/(tf+uf+us+ts) to the finishing of a fast-mover job
- p__ := ts/(1f+uf+us+rs) to the arrival of a slow-mover job

< Ppg 3T us/(tf+uf*us+rs) to the finishing of a slow-mover job.
Define the vector of states l!k (for k 2 0) as follows (compare Figure

5.4, where we have shifted the bottom states to the left in order to

ensure that the length of all vectors is the same, namely 2m+1):
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Iy

B+ap7k,0,0
Bra.k,1,2

B+qp-k,m-1,2
B*Qf‘k 2 10,2
8-k, 1,1

B~k,m=1,1

B=k,m,1

for O

£k

B*Qr’ko0,1
8+Qf~ki 1 ’2

.

8+qf“k.m-1,2
B+ qf.”k 31,2
8-k, 1,1

8~k ,m~1,1

f~k,m,1

for k z q,

(5.6)

To make the description of the matrix of transition probabilities

easier, we introduce the (2m+1)x(2m+1) matrices :

B corresponding with a transition from Iv, to sz if 0 sk s qf-1
A1 corresponding with a transition from ;&k to ;gk if k 2 q

A0 corresponding with a transition from iy, to £!k+1 ifkz20
Aqf+1 corresponding with a transition from ;gk to llk-qf if k 2 qf

It can be checked that this conforms to the following definitions:
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pfs+pff pas
pfs pff pas

pfs pff pas

pff Pas
pfs pff*pas
pfs pas

pfs pas

Pee
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1
m=1
m
1
2
pfs pas -1
pfs+pas m
(5.7)
(5.8}



Aqf+1:

Prg 0
Pes Pre Pas
Peg Prr Pag
* Per Pas
Pes Prr'Pas
Pee Prs Pas

pff Prg pas

Per
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Define the vector of states Iv via ;XT = [ gx?, ggg, ++s 1, where ;XT is

the transpose of Iv. Then, we can write the matrix of transition
probabilities for Iv, denoted by P, as follows:

0 1 2 - . qf - - .
B A0
B AO
P:= B AO
A o1 A Ao
Aqf+1 A1 A0
(5.11)
Let Ek denote the vector of steady-state probabilities that corresponds
to Iv, and define the vector u via:

(5.12)

The vector of steady-state probabilities satisfies the following set of

equations:

(5.13)

T ore_ =1 where e = (1,1, )

This set becomes more obvious if we rewrite ET = ET-P as:
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T T

T
no= n.*B + T A
_,.0 Phad -qf‘ qf+1
T_.T ., T, T . -
{ & =X 4B * ;B + T +q, Aqf+1 for 1Sk5qf 1
T T T T
Ek = —Ek-] -Ao + lt_k A,‘ + l"}(""qf qu_ri for quf
p
(5.14)

Neuts [42] proved that the solution of (5.14) for k 2 e is of the

"geometric type", under certain recurrence conditions, which are
satisfied as long as the utilization rate of the capacity is less than
one (see e.g. Neuts [42]), and under some irreducibility conditions,

corresponding to A > 0 and Ty > 0, This means that for k 2 qf~1 we get

(5.15).
T T,
Moy T I R (5.15)

where the (2m+1)x{(2m+1) non-negativé, irreducible matrix R is the
minimal solutibn in the set of non-negative matrices of spectral radius
less than one that satisfy equation (5.16) (for a definition of the
terms related to the use of matrices, the reader is referred to

Seneta [48]).

R =R »Aq st R-A1 + Ao (5.16)

Neuts [42] showed also that there is an easy way to compute this matrix

R {up to any given degree of accuracy): The sequence of the
(2m+1 ) x(2m+1) matrices {X(u)}u:o , as defined in (5.17), is monotonely

increasing and converges to R (in [42], Neuts also discussed some other
methods for finding R).
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X(0) :=0

ap+1
f
X(w1) 2= T ey KA ¢ b (5.17)

Applying this result of Neuts, it follows from (5.15) that

kvqf+1
T

= Xy R satisfies the relationships for k 2 q.-1 in (5.14).
f

If we apply the equations for k=0, 1, ..., qf—2, we can also express

subsequently Tgs Eqs vees T in terms of = . This gives us:

qf-z qf—1
K=q.+1
T T £ . _
Io= qu_1 R if k 2 9y 1
T T k s+l eyt avlikesy _
T - 3qf-1 (I osoR Aqf”(l B) ' +{ay(1-B) %) ir 0sksq =2

(5.18)

The problem that remains, is to determine 1 -1 80 that (5.13) is
f

satisfied. Let us look at each type of equations in (5.13) separately:

v

a) m 2 0.

Note that the spectral radius of B is less than one, and that B is

irreducible. Therefore (I-B}”1 exists and is strictly positive (see

Seneta [48]). Using (5.18), now we can see that n 2 0 if Tq-1 2 0. We
f
will return to the possibility of finding such a ﬁq Ry in the next
f
paragraph.
T T

b) T P = 1w,

These equations are depicted more clearly in (5.14), By choosing the

T, 's as in (5.18), all the equations in (5.14) will hold for all values

k
of k = qf-1. The only equation that needs to be checked, is:
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T T T T

i) =7 A + b B + T, _.*A
—qf 1 —qf 20 —qf 1 2qr 1 qf+1
Which is equivalent to:
T T T s -1 -1,4p7871
n = (B B AL (I-B) (A (1-8) '] ) (5.19)

“ap7t TapT1 Ts=0 9
Consequently, we need to show that the (2m+1)x(2m+*1) matrix
AT g4t ap=sl

H:=] R™ "A (1-B) "' e (a (I-B)-1} has a left eigenvector
8=0 +1 0
9

with eigenvalue one, and that this eigenvector is nonnegative. If this

-1 up to a multiplicative constant. Then, we
f

can find this multiplicative constant in the next paragraph.

is true, we have found‘_wlq

Notice that H is non-negative and irreducible (since the matrices R,

Aq +1 and AO are non-negative and (]1-13)“1 is strictly positive).
£

Therefore, in order to show that the matrix H has a non-negative left
eigenvector with eigenvalue one, say u, with u = 0, it suffices to show
that H has a non-negative right eigenvector with eigenvalue one (see
Theorems 1.5 and 1.6 in Seneta [48]).

Define the (2m+1) vector g := (1,1,...,1)T, then we will show that A

oS
{(which is strictly positive) is a right eigenvector of H with
eigenvalue one. Consequently, we have to show that
He(Aje) = Age (5.20)

Therefore, we first remark that by definition (see (5.7) and (5.9)) it
holds that

(Brhg)-e = ¢ (5.21)
which can be written as

(1-8) " e = e (5.22)
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Consequently,i(S.ZO) can be written as

q.~1
f s+l _
log R _Aqf+1 e=Ae

which is equivalent to

-1 ™1
(I-R) _-(R-Aqf+1-R Aqf+1)-§ = Age

By (5.16), this is equivalent to
(I-R)_1-(R-Aqf+1+R-A1+A0-R)-g = A

Notice that by definition we also have
(Ay + Ay + Aqf”)-g =e

If we substitute this in (5.24), we find

-1
(I-R) " (A, "ReA ) e = A

02
Notice that (5.26) is equivalent to Aje = A
proof.
c) ETgm =1 with e := (1,1,... )T

Applying (5.18), this can be rewritten as

q.~2
T v f k s+l
qu-1(lk=0 Lo-oR a,
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AL (=B g (1-8) T ETS4g

(5.23)

(5.24)

(5.25)

(5.26)

our

k-qf+1

(5.27)



Under b}, we have already determined Eq up to a multiplicative

-1

f
constant, say o (i.e. LA a*u). We now define o using (5.28)
f
q.m2 K=q.+1
-1 Tes36 % k841 R eyl ks, p @ f
o = u Ly IoooR Aqu(I B)  -{ay(1-B) "'} +2k=qf_1a
(5.28)

It will be clear that o can be defined by (5.28), because the right-

hand side of (5.28) is positive and finite: the expression is positive
" k-qf*1

because of the fact that u 2 0, u = 0 and (1-p)7" - Zk=q R is
f

strictly positive, whereas all other matrices are non-negative. The

expression is finite because of the existence of (I-R)-1 =

®

Lo _.R
k-qf 1

k-qf+1

So far, we have proved that it is possible to choose gq such that

f—l

the m 's defined by (5.18) are indeed the steady-state probabilities.

If Eq -1 is given, these probabilities are easy to calculate because R
f

can be found easily. The vector = equals a-u, where o follows

directly from (5.28) and u is the left eigenvector of a given matrix H.

This eigenvector can be found by straightforward numerical methods
within a limited computational time {see Stoer and Bulirsch [501).

This enables us to calculate the marginal steady-state probabilities of
a given realisation of the aggregate inventory position for fast-
movers, when applying a capacity—-oriented strategy B. Denote the
probability of a realisation of the aggregate inventory position that
equals ip as PB(ip). Note that the nature of the process allows the

probabilities, when applying the capacity-oriented strategy 8-1, to be
found via (5.29).

PB_1(ip) = PB(ip+1) for all values of ip and 8 (5.29)
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This enables us to find an optimum choice of 8.

5.6 An example,

This fast-mover/slow-mover approach is 1llustrated with a specific
example having the following characteristics:

- the demand for product j follows a Poisson process with parameter

0.9/3
A, = —mm—

Ly

- there are 100 products (N = 100). Consequently, the total demand
follows a Poisson process with parameter A = 0.9.

- The production rate u equals one, which corresponds to a
utilization rate of 0.9.

- the products numbered 1, 2 and 3 are considered to be fast-movers

and the others are slow-movers. Note that zj§1kj = 0.3534,

- the fast-movers are produced in batches of size 2 (qf = 2) and

the slow-movers are produced lot-for=-lot (qs = 1).

- if a production run is finished, it arrives immediately at the
stock~points (£ = 0).

- the cost rate is chosen as p(i) := i+ + 3*1-..

The simple product-oriented heuristic, that is used for the slow-
movers, indicates that a production run for a slow-mover should be

triggered as soon as the inventory is less than or equal to -1 (Bj = -1

for all j 2 4).
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Then, the expected cost of product j, assuming no interference between

[4
products, becomes 3'T:% , where pj = A./p is the ratio of time that
3

J
the capacity is occupied by slow-mover j.
The approximate expected total cost for slow-movers then becomes 1.77.

The simple capacity-oriented heuristic indicates that a production run
for a fast-mover should be triggered when the realisation of the
aggregate inventory position is less than or equal to 8 = 10. The
approximate expected cost for fast-movers with this heuristic
(determined for m=16) proves to be: 14.14,

We have also simulated the process under the same strategy. Thus, we
obtained simulated costs for both the group of fast-movers and the
group of slow-movers when applying the proposed heuristic, Two
simulation runs gave the following results:

first run second run
simulated cost slow-movers: 5.93 5.54
simulated cost fast-movers: 14.85 15.59

Looking at the results, it may be concluded that the actual cost for
fast-movers can be approximated reasonably well., A better approximation
for the actual cost of the fast—-movers can be found by using a more
advanced approximation of the aggregate cost rate than in Section
5.5.1. This has been investigated for a periodic review model in
Chapter 4, where good results were obtained.

The performance of the slow-movers has been approximated badly. To

estimate this performance, two assumptions have been made:
~ different slow-movers never interfere with each ¢ther on the
capacity ‘

-~ a slow-mover never interferes on the capacity with a fast-mover.

Note that since the priority for slow-movers is non-preemptive, also
the second assumption needs not hold.
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The simplicity of the process for slow-movers (due to the fact that
they are produced lot-for-lot) allows to find a simple approximation of
the cost that is based only on the second assumption. That means that
this new approximation explicitly takes the interference between
slow-movers into account. The new approximation is based on the fact
that the number of unfinished orders for slow-movers can be described

as an M/M/1 queue: interarrival-times between unfinished orders are
negative—-exponentially distributed with parameter 2;23 Aj (=0.5466) and

the service-time is negative-exponentially distributed with parameter
p=1. Consequently, the expected total cost for slow-movers can be

719 5
- 2100 . = 3.62.
J=4 73

Although this approximation is better, it still is far from the actual

approximated by 3¢

cost. The reason for this is that the interference between slow-movers
and fast-movers plays an important role. A rough approximation of this
delay due to the slow-movers can be found as follows:

The utilization rate for fast-movers is about 0.3534. An arriving order
for a slow-mover has therefore a probability 0.3534 to find a fast-
mover job in process. The expected delay due to fast-movers may be

approximated by 0.3534-qf/u = 0.7068. During this delay, the inventory

for the slow-mover is -1, so that the increase in the total costs due
to the delay can be approximated by 3:0.7068 = 2.12. This would lead to
an estimated cost for slow-movers of 5.74, which is near to the actual

cost for slow-movers.

The above approximations are only meant to show how the assumptions
that underlie the simple product-oriented approach play a role. If one
wants to determine a more general heuristic, one may dse the résults of
Williams [xx], who showed how one may take into account the
interference between the products in order to find a more advanced

product-oriented heuristic.
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5.7 Applicability of the fast~mover/slow-mover approach.

In this Section, we want to discuss whether it is possible to use the

proposed fast-mover/slow-mover approach in situations where:

- demand is partly kunown beforehand

-~ the classification of products as fast-mover or slow-mover is
dynamic

- different batch-sizes are used among the fast-movers and among

the slow-movers.

Firstly, we want to look at the problems that arise if demand is partly
known in advance. These problems stem from the fact that whether a
given inventory position is effective as a capacity buffer in the
short-run depends on the forecast for future demand (compére Chapter
4). However as long as there are some products that always are fast-
mover (other situations are discussed below), we can still apply the
same fast-mover/slow-mover approach: We distinguish some fast-movers in
which we will put our capacity buffer. The other products will be given
priority on the capacity. Product-oriented strategies as discussed in
Chapter 4, can be used to control the slow-movers. To find a capacity~
oriented strategy, one may use a c¢ritical level rule as discussed in
Section 5.5, if demand for fast-movers is (almost) purely stochastic,
or one may use a rolling schedule approach with a finite planning
horizon as in Chapter 4 in case a good forecast for demand is
available. In a rolling schedule approach, it is possible to consider
the exact capacity usage of the slow-movers in the short-run (a plan
for slow-movers has already been found) and next prepare a production
plan for the fast-movers based on an "optimization" over the finite

horizon.

Now consider a situation where the classification of products as fast~
mover or as slow-mover is dynamic. This may for example be due to
seasonality of demand or to obsolescence of a fast-mover.

The problem, if a new classification is made, is that a given inventory
that is built up becomes ineffective to cope with capacity problems in
the short-run. Consequently, such a new classification will only have
minor effects if the stocks are low. Sometimes, however, a fast-mover
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may become obsolete, for which inventory has been stored in order to be
able to cope with capacity problems. In case there is no slow-mover for
which demand increases at the same time, this will lead to a decrease
in the demand for capacity, so that the fact that the inventory becomes
ineffective as a buffer has little effect.

A common situation, however, is where the demand for a slow-mover
increases at the same time that the demand for a fast-mover decreases

(for example if the original fast-mover is replaced by a new product

inventory pseudo product

inventory new fast-mover

inventory old fast-mover

time ———p

Figure 5.5. The distribution of the inventory of the pseudo product

between the o0ld fast-mover and the new fast-mover.

with slightly different characteristics). If the replacement of the
fast-mover by the slow-mover is gradually, or if the replacement can be
predicted well in advance, it is sensible to shift the inventory that
is available for the original fast-mover to the new fast-mover. With
the fast-mover/slow-mover approach, this can be done by introd&cing a
"pseudo product™. The pseudo product is an aggregate of the original
fast-mover and the new fast-mover. The demand on the capacity due to
this pseudo product will (hardly) be affected by the dbsolescence of
the original fast-mover. Only the distribution of the aggregate
inventory of the pseudo product among the original and the new fast-
mover has to change as the obsolescense of the fast-mover approaches
(see Figure 5.5).

Finally, we want to discuss a situation where different batch-sizes,

that are still assumed fixed at the level of Material Coordination,

are used among the fast-movers and among the slow-movers.

_137-



It will be clear that when decomposing the products, it is not
important whether all products have the same batch-size, or not.
Therefore, choosing different batch-sizes for the slow-movers will have
no effect on the approach. Consequently, we only have to consider the
effect of using different batch-sizes for the fast-~movers. Since the
production rate for each fast-mover is the same, a given inventory
position will represent the same amount of stored capacity,
independently of the fast-mover. Therefore, the capacity-oriented
approach should depend on the aggregate inventory position defined as
the sum of all individual inventory positions., A difficulty appears
now: if we decide to start a production run for the group of fast-
movers, the transition of the aggregate inventory position will depend
on the choice of a product within the group of fast-movers. If the
batch-sizes of the fast-movers do not differ much, it seems reasonable
to use the expected batch~size as a common batch-size, when deciding
whether or not to start a production run for fast-movers. If the
differences between the batch-sizes increase, this approach can be
improved by assuming that, after the decision to start a production run
for’fast~movers, there is a given probability of a certain realisation
of the batch-size. It can be proved that the same approach introduced
by Neuts [42], and used in Section 5.5, can be applied if the batch-
size is stochastic. Notice that also in this case the decision to start
a production run is decomposed from the decision of the run-size (we
will return to this in Chapter 6).

Notice that in case Material Coordination has the flexibility to choose
run-sizes, depending on the actual status of the system, the approach
presented here, cannot be applied straightforwardly any more. Again a
capacity~oriented approach and a product-oriented approach can be
distinguished. The actual run-size will depend on the availability of
the capacity in the capacity-oriented approach and on the status of
individual products in the product~oriented approach.

5.8 Optimality of the fast-mover/slow-mover approach.

When considering the fast-mover/slow-mover approach, the question comes
to mind how good this approach is compared to other possible
approaches, The answer to this question is not easy to give. Within the
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class of situations where the batch~sizes are as given and the priority
rule is such as proposed in the previous Sections, it may be expected
that the fast-mover/slow-mover approach performs well. This, at least,
is indicated by the results of the previous Chapters, that show that a
simple product-oriented heuristic performs well if the capacity
restriction is weak and that a simple capacity-oriented heuristic
performs well in case this restriction is tight (as long as the number
of products is not large). Although these results are obtained for
gituations with identical products, we may expect them to hold for non-
identical products as well, especially since they have proven to hold
for a situation where the products are not identical in the short-run
(see Chapter 4).

The question, however, is whether it is sensible to choose the batch-
sizes and the priority rule as in the previous Sections. This decision
has to be taken on the level where the availability and the requirement
for the resource are balanced (the level of Tactical Planning in the
framework of Chapter 2). Notice that also the classification of

products as fast-mover or slow-mover (the choice of Nf) plays a role in

balancing these two.

It is interesting to compare the research of Williams [55] at this
point, Williams considered a model in which he distinguished products
that are made-to-stock and products that are made-to-order. The
products that are made~to-order have a non-preemptive priority on the
capacity (Williams also considered other priority rules, but this rule
performed best). His research is concerned with the following

points:

1. Which products should be made-to-stock and which products should
be made-to-order.

2. What demand should be accepted for products that are made-to-
order. ) k

'3. How should one choose the batch-sizes for products that are
made-to-stock.

4, What is the effect on the safety stocks for make-to-stock

products due to make~to-order products.

The products that are made~to-stock can be compared with our fast~
movers and the products that are made-to-order with our slow-movers
{with bateh-size equal to one).
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For several choices with respect to the first three points, Williams
has evaluated the performance of, what we call, Material Coordination.
His approach was product-oriented. He tried to estimate the delay in
the availability of the capacity for individual products that is due to
the interference between products on the capacity. The analysis,
presented in this Chapter, makes it possible to use a capacity-oriented
approach when evaluating a given set of choices with respect to the
first three points.
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Chapter 6. A simple example.

6.1 Introduction.

In this Chapter, we want to consider an example of how to use the
results of this study in practical situations., Therefore, we will look
at an existing situation that contains aspects other than the ones in
the models of the previous Chapters. For example, in this Chapter, a
role will be played by change-over times, interference bgtween
production plan and maintenance plan, advertising, choice of batch-size
and availability of raw materials. In the example, there is one obvious

bottie-neck in the production process.

We will not discuss how the results of this text can be applied in
situations with more than one bottle-neck in the production process,
since this requires further research. Yet, the results of this study
indicate that it may be advantageous to introduce the capacity-aspect
of inventories in such situations as well.

In Section 6.2, we will describe the situation that we want to consider
in detail. The proposed structure for Production Control in this
situation will then be sketched in Section 6.3. In Section 6.4, we will
discuss a specific part; namely Material Coordination and go into its
interface with other levels of control. We will finish this study with

some conclusions in Section 6.5,
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6.2 The situation.

The production situation, considered in this Chapter, is the

manufacturing of plastic utensils, Diagrammatically, we have desecribed
the production process in Figure 6.1.

| / > — —
suppliers raw mixing moulding assembling finished custc
materials packing products
printing
(:::) = interface with environment
~ operation

v = controlled stock point

goodsflow

Figure 6.1. Manufacturing phases in the plastic products factory.

To make the description of the situation clear, we will discuss the

characteristics of the demand, the production process and the supply of
raw materials in distinc¢t subsections,

6.2.1 Demand.

The set of products, with about 800 items, is divided into 200

families. The items may differ in colouring, printing or assembling.
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For example, a specific form of basket (completely determined by the
mould that is used) will be referred to as a family, whereas red
baskets, green baskets or baskets with different handles will be viewed
as different items within that family,

The customers are mainly large warehouses. There are about 1500 of such
warehouses that each generate a relatively small part of the demand.
The demand is, therefore, relatively smooth but difficult to forecast
in detail. Consequently, the demand per item can be treated as almost

purely stochastic.

For some families, there is a seasonality in the demand. These families
have about 20 % of the total annual sales. However, this percentage
changes throughout the year: 30 % in the first half year and 4 % in the
second half (see Figure 6.2).

total

demand

___________________ --—-

1 year
time

Figure 6.2. The seasonality of demand.
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The demand may be influenced by starting advertising campaigns. The
preparation time for such a campaign is about a month. On the other
hand, demand will also be influenced by advertising campaigns of
competitors. Note that these advertising campaigns influence the

quality of the forecast for demand.

Finally, we want to mention the risk of obsolescence. The mean life
cycle of a family is about 10 years. For items the life cycle is much
shorter, namely about 1 year. Usually, however, when an item that is
part of a given family ends its life-cycle it is replaced by another
item that is part of the same family: think for example of changing,

slightly, the colour of a basket.

6.2.2 Production process.

In the production process, the moulding stage has a central place. The
mould that is chosen, determines which family will be produced. Before
this moulding stage, the plastic pellets are mixed and the pigﬁent is
added. This mixing is a straightforward process. The only difficulty
with mixing is that, when one wants to change the colour, it only
gradually shifts from one colour to another. Thus a lot of scrap is
produced. This leads to change-over costs and change-over times if one
wants to manufacture another item within the same family. We will
return to this when discussing the moulding stage of the process.
Mixing is relatively easy and can be done by the same operator that

controls the moulding-machine,

We might add that the process that is sketched in Figure 6.1 is an
extreme. Not all finished items have to go through the whole traject.
On the other extreme, there are items that only require moulding,
without mixing, and packing.

All items, however, go through the moulding stage. The role the
assembling/packing/printing stage takes in the process is similar to
the role of the mixing stage. There is a large excess of capacity at
this stage. The reason for holding this excess of capacity is that the
products that are manufactured in the moulding stage are difficult to
keep clean and they are voluminous. Therefore, a large amount of work-

in-process on the production floor is undesirable. Instead, the
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products that leave the moulding stage are immediately processed to

finished products.

The bottle-neck in the production process is the moulding stage:

There are 9 capacity groups of moulding-machines that can be used. Each
group consists of several moulding-machines. The moulding-machines
within the same capacity group have about the same production
characteristics., The moulding-machines within different capacity groups
differ in the weight which they can handle. "Heavy" moulding-machines
are used most efficiently when handling large items, whereas "light"
moulding-machines can only handle small items. Change-overs between
families for the light moulding-machines take about half an hour,
whereas for the heavy moulding-machines it may take 6 hours.

The change-overs for items within the same family take about 10 minutes
for the light moulding-machines and 40 minutes for the heavy moulding-

machines.

The manufacturing time for a single item ranges from 8§ seconds on the
light moulding-machines to 30 seconds on the heavy moulding—macﬁines.

Production is in batches.

Sometimes, a batch is rejected. This occurs randomly to 2 % of the
batches. Other sources for uncertainty are worker-—absentheism

(15 %) or breakdowns of the moulding-machines (4 %).

Maintenance on a moulding-machine requires 5 % of the production time.

If a mould is broken, it may take upto 15 weeks before it is repaired.

6.2.3 Supply of raw materials.

The main raw materials are plastic pellets. There are not many
different types of plastic pellets (about 20). These pellets represent
about 70 % of the total value of the raw materials. Other raw materials
are pigments, labels, and boxes (600 different items).

The average supply time for the plastic pellets is about a half to one
week., For other raw materials, like the metal handles for baskets, the

supply time may be 12 weeks,
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The total value of the raw materials in finished items is about 30 %.

Therefore, a simple way of control for raw materials seems appropriate.

6.3 Production Control,

In Chapter 2, we have mentioned that there are two different reasons
for the complexity of Production Control. On the one hand the
production process itself may be complex and on the other hand the
activities, that should be part of Production Control, have different
ranges and levels of detail. Consequently, we have used the concept
"Production Unit" and we have defined various "Levels of Control" in
Section 2.2.1, respectively 2.2.2.

In this situation, the introduction of Production Units is
straightforward. There is only one bottle-neck in the production
process, namely the moulding stage., Both mixing and finishing are
relatively simple. Therefore, we define the aggregate process (see
Chapter 2) as in Figure 6.3. In order to stress the central place that
moulding holds in the production process, mixing and finishing
(assembling/packing/printing) are modelled as production flowtimes
within Moulding.

Moulding

Figure 6.3, Central place of Moulding.

The levels of control, that we propose for this situation, are:
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-Strategic Planning
~Master Planning
~Material Coordination
~Scheduling.

In this Section, we will discuss each of these levels roughly. In

Section 6.4, we will then discuss the level of Material Coordination in

more detail.

Strategic Planning.

On the highest level of Production Control, we have pictured Strategic
Planning. At this level, decisions are to be taken that will influence
the long-term behaviour of the plastic products factory. This level
includes decisions like entering a new market, buying a new stock-
house, or changing the work-force levels drastically.

An important decision with respect to lower levels of control, is how
much influence customer orders have on the control of the production
process (see e.g. Burbidge [15] and van Hees [29]). Burbidge [15]
mentions the following three examples of systems that deal with
custonmer orders in different ways: make-to-order systems, stock
controlied systems and programme controlled systems.

In this situation with a smooth demand that cannot be forecasted very
accurately, and a relatively long life cycle for the families (ten

years), we propose to use a stock controlled system.

Master Planning .

Master Planning falls in the framework of Chapter 2 under the heading
of "Tactical Planning".

Master Planning has to balance the requirement and the availability of
resources in the production process. Therefore, Master Planning should
have a planning horizon that covers at least a whole season (plus the
time it takes to implement the decisions that are made by Master
Planning), which is one year. Over this horizon, the behaviour of
individual items presents much uncertainty (e.g. the average life cycle
of an item is about one year). Therefore, Master Planning will, in our
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view, be concerned exclusively with families (notice that the average
life cycle of a family is about ten years).

Over the planning horizon, the demand forecast for families will
contain information about the seasonality pattern. The resolution level
of this information will be about a month, In order to be able to react
on new information about the seasonal patterns, such a Master Plan

should be made, say, every three months.

In Figure 6.4, we have sketched the inputs and the outputs (which we
will discuss below) of Master Planning.

Coordination Sales Financial Quality Control

allocation families to cap. 8!
demand forecast

. accumulati
per family on seasonal stock

MASTER
batch-gizes .
capacity forecast PLANNING __adjusting resource-availabilit
c ——. »’ s »
per capacity group advertising campaigns

Figure 6.4, Inputs and Cutputs of Master Planning.

As we have mentioned, the capacity groups differ with respect to the
weight and size of products they can handle efficiently. Although some
families can be manufactured on different capacity groups efficiently,
we propose to make an allocation of the families to the capacity groups
on this level. This allocation should be kept to at lower levels, in
principle, for a whole season. Only if problems become urgent, the
flexibility to shift a family to another capacity group may be used,

At the level of Master Planning, however, the families are allocated to
the capacity groups, so that for each capacity-group, the availability
and the requirement of capacity can be balanced. Obvious

possibilities to control this relation are to start advertising
campaigns (in order to stimulate the demand) or to adjust the

availability of resources (e.g. hire extra personel). However, both
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possibilities only have a limited applicability. Advertising campaigns
have only effect in the short term, and it is much too expensive to
adjust the availability of resources often. Since the capacity, in this
example, is not so flexible that it can be varied in order to have
sufficient capacity in the high season without having too much capacity
in the low season, one has to "store" capacity in the low season,
Consequently, one accumulates stock in the low season to cope with the
capacity problems that would occur (otherwise) in the high season, The
stock that is accumulated for this purpose will be referred to as
"seasonal stock". How much seasonal stock must be accumulated depends
on the available capacity and on how efficiently this capacity will be
used, How efficiently a given capacity can be used, depends on the
batch-sizes., Consequently, the decision on the accumulation of seasonal
stock should be combined with restrictions on the batch-size per family
and on the decisions about adjustment of the capacity. It would be
possible £o leave the decision on the exact run-sizes for families to
lower levels of control (e.g. Material Coordination), and only set
restrictions on the run-sizes for the families. However, de Bodt and
van Wassenhove [14] have shown that little is gained by coupling the
run-size decision with the decision on when to start a production run,
in case demand cannot be forecasted accurately. In this situation
demand, even for families, cannot be forecasted well in detail. This
leads us to fixing the run-sizes (for families) already on the level of
Master Planning, which makes the control on lower levels more easy. To
have an idea of the type of situation, one should think of run-sizes of
about one week.

Notice that Master Planning only considers families. How the run-size
for a family is disaggregated into run-sizes for individual items is

left to lower levels of control.

After the batch~sizes per family have been fixed, Master Planning
decides how much seasonal stock must be accumulated in the low season
for each capacity-group. This decision is inftegrated with the
adjustment of the resources and the starting of advertising campaigns,
An example of the type of model that can be used to balance the '
investment in seasonal stock and the investment in extra capacity is
put forward by Hax and Meal [28], who have developed a "Seasonal
Planning Subsystem" for a specific situation with seasonal demand. An

analogous system can be developed for the plastic products factory.
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Note that these two can be balanced more easily if one has insight in
the effect of changing the capacity on the performance of control at
lower levels. Since a capacity-oriented approach on the level of
Material Coordination is based on a comparison of the availability of
capacity and the requirement for capacity, it will be more easy to
evaluate the effect of varying the availability of capacity (we will
return to this in Section 6.5),

Note that the timing of orders is left to Material Coordination. Master
Planning only generates norms with respect to seasonal stock in each
period. We assume below, that Master Planning determines what cost is
incurred if Material Coordination deviates from the norms with respect
to seasonal stock.

Finally, we want to mention that on this level of Production Control,
there is also coordination with the other control processes in the
organisation. For example, together with Quality Control a maintenance
plan for the equipment has to be constructed and Financial Control has
to agree on the level of capital that is tight up in work-in-process
and in stocks. As far as the coordination with Sales Control is
concerned, we have so-called "structural coordination" on this level
(see Chapter 2). That means that the coordination with Sales Control is

in aggregate terms {(like customer service-rate and demand patterns).

Material Coordination.

Master Planning has imposed certain norms on the seasonal stock per
capacity group. These norms can be used as a target for Material
Coordinakion. Material Coordination has to reach these targets. If
Material Coordination deviates from these targets, a certain cost is
incurred.

Besides reaching the required seasonal stocks, a task of Material
Coordination is to realise a certain customer service-rate (see Figure
6.5).

Since we have allocated the families to the capacity-groups on the
level of Master Planning, Material Coordination can consider the

different capacity-groups separately.
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Material Coordination for each capacity-group will be split into two
levels.

On the first level, only families are considered. Using short term
forecasts for demand of families and information about the seasonality

customer service~rate

forecasted
demand MATERTAL
norms seasonal ’ production orders
mm—— e
stock COORDINATTON per family/item
batch-size
e —

Figure 6.5. Inputs and outputs per capacity-group for Material
Coordination.

pattern, it is decided to start production runs for families (the run-—
size has been fixed by Master Planning).

On the second level, the production run for a family is disaggregated
into production quantities for individual items.

Since items within the same family require approximately the same raw
materials, set-up costs, processing times and storage space, Material
Coordination should emphasize the first level. Then, disaggregation may
be straightforward, e.g. by equalisation of run-out times, as proposed
by Hax and Meal [28]. Remark that they defined the run~out time of a
product as the expected time until the inventory of the product drops
below the safety stock of that product. A common way ﬁo define the run-
out times is as the time until a stock-out occurs for the product.

We will return to the first level of Material Coordination, in Section
6.3.

Material Coordination also has to ensure that the raw materials are
available. However, as we have seen, the raw materials are relatively
cheap and are used in bulk quantities (at least for the largest part,
namely the plastic pellets). Consequently, a simple method for the
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control of the stocks for raw materials seems adequate. For example, a

Reorder Point System (see Section 2.4.1) can be used in this context.

Scheduling.

Scheduling has to assign production orders, that are generated by
Material Coordination, to the moul:sing-machines within a given

capacity group. Also operators will be allocated to the moulding-
machines., We will not discuss Scheduling any further in this context.
On the level of Material Coordination, it is required to have a model
of the performance of the Production Units. For a discussion about the
performance-measurement of a Production Unit, the reader is referred to

Bertrand and Wortmann [9].

6.4 Material Coordination.

In this Section, we will consider Material Coordination in some more
detail.

In the previous Section, when describing a design for Production
Control for the plastic products factory, we have seen that Material
Coordination has to release family-orders for each of the nine

capacity groups. Since, at a higher level of control, the families have
been assigned to the capacity groups, there are nine separate planning
problems: one for each capacity group.

For each planning problem, the batch-sizes of the families and the
availability of resources have been fixed, Material Coordination has to
decide on the production levels in order Lo guarantuee the customer
service~rate and the accumulation of seasonal stocks, that have been

set by Master Planning.

In order to be able to use the results of previous Chapters, we will
discuss how demand is experienced on this level, what cost function is
used and what the service mechanism looks like for Material

Coordination.
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The demand in each planning problem (one for each capacity group) is
autonomous. This demand is difficult to forecast in detail. Only over a
short horizon a detailed forecast is made, whereas in the long term
only information is available about the seasonal pattern per family.
Consequently, it seems reasonable to consider only a short planning
period, in which the forecast for demand is updated frequently (at this
level some operational coordination with Sales Control is possible).
This may mean that one uses a rolling schedule with a short horizon, or
that one determines critical levels for the inventories. For these
critical levels, one may think of levels per product (to ensure a
certain customer service-rate) or a level on the aggregate (to ensure
that the seasonal stock is reached). This level on the aggregate should

then be determined dynamically.

As discussed already, Material Coordination must ﬁrovide a certain
customer service-rate and it must reach a certain seasonal stock.

In order to ensure a certain customer service-rate, we may introduce
inventory holding costs and stock-out costs for the inventory of
individual families (compare Tinarelli [52] and Schwarz [ﬁ7]).

The. seasonal stock is meant to be able to cope with capacity problems
in the high season. Therefore, it seems reasonable to measure the
seasonal stock, for each capacity group, in aggregate terms. In Chapter
5, Wwe have seen that such stock, that is meant to buffer against
capacity problems, should be stored in the fast-movers for each
capacity-group. The slow-movers, then, get priority on the capacity. In
this situation with a risk of obsolescence, it is sensible to build up
high stocks only for families with a low risk of obsolescence. To
measure whether enough seasonal stock has been accumulated, a cost rate
on the aggregate inventory position of the fast-movers may be used.
This cost rate follows from the analysis of seasonal stocks at the
level of Master Planning, where stock norms are set and a cost for
deviating from these norms is determined. Notice that these stock norms

have to be chosen dynamic in this case with a seasonal demand.
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Figure 6.6. Inventory pattern for family j.

Now that we have discussed the demand and the cost function for
Material Coordination, we will discuss the service mechanism. If a
production run for family j is started, we have to know th this
influences the inventory for that family. Therefore, we have sketched
an example of the inventory pattern for family j, over a period of time
in which a production run for the family is started (see Figure 6.6).
It should be realised that the production time for a batch for family j

consists of several parts:
1. set-up time for the family (=change-over between families)
2. change-over times between items within the family

3. actual manufacturing time for the batch.

If we denote the production time for family j by Tj’ then Tj will be

stochastic. This stochasticity is due to the following points:
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- the number of change-overs between items depends on how the batch
for the family will be disaggregated on a lower level of Material
Coordination.

- the maintenance and breakdowns of moulding-machines.

- the uncertainty in the manufacturing time of a single item.

- the uncertainty in the yield of the process.

- the worker-absentheism,

The finished items are added to the inventory somewhere between the

start and the end of the production run (duration: Tj). Since the

increase in inventory will be irregular, and the actual pattern depends
on the change-overs that are decided upon later, it will be difficult
to estimate the right incremental pattern. A simple approximation of
this incremental pattern is given by the dotted line in Figure 6.6.
This dotted line corresponds to the assumption that the whole batch
will enter the inventory at the end of the production run. The actual
inventory will be higher throughout the production run, which reduces
the number of actual stock-outs. This effect may be accounted for in
the cost function related to the inventories of the products. As
another extreme, one might consider the model in which the batch is
added to the inventory at the start of the production run. Other
approximations would have been possible. However, the results of
previous Chapters can be applied most straightforwardly if we assume
the batch to arrive at the inventories as a whole. Notice that the
actual costs may be expected to lie between the two mentioned extremes
{adding the batch to the inventories at the start of a production run
or at the end of a production run).

We have now described the service mechanism, the demand and the cost
rate, This enables us to apply the results of the previous Chapters in
order to propose a Material Coordination System for the plastic
products factory. As was mentioned, the different capacity groups can
be treated separately on this level of Material Coordination.
Therefore, we will discuss the Material Coordination System for only
one of the capacity groups.

In the low season, we start by distinguishing a group of fast-movers
and a group of slow-movers. This decomposition is not only based on the

expected demand patterns, but also on the risk of obsclescence for each
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family. The seascnal stock is built up for the fast-movers, whereas the
slow-movers will have priority on the capacity.

The classification of a family as either a fast-mover or as a slow-
mover does not change over the season, unless cbsolescence of a fast-

mover requires it.

In order to ensure that the raw materials are on the workfloor in time,
and that the right moulds are available, Material Coordination plans
always two production runs, which take about a week, ahead (on each
capacity-group). That means that Material Coordination sets a time for
the start of the first production run and Material Coordination decides
which family will be produced after this run is finished.

In order to ensure that seasonal stocks are accumulated, we use a cost
rate to the aggregate inventory position for the fast-movers that puts
a penalty on deviating from the seasonal stock, as has been set by

Master Planning.

To constitute a plan for each slow-mover, a simple product-oriented
approach is used, which leads to the analysis of one-dimensional
optimization models {one for each slow-mover). Via simple methods, we
then coordinate the production plans for slow-movers. Thus, we find
that the capacity that is left for the fast-movers is more tight.
Therefore, we use a capacity~oriented approach in order to constitute a
production plan for the fast-movers (or to determine eritical levels),
taking into account the remaining pattern of capacity-availability.

Consequently, we aggregate over the fast-movers.

6.5 Conclusions.

Material Coordination as described here, is relatively simple. Only
one-dimensional optimization models have to be analyzed. This will make

it easy to implement the proposed method of Material Coordination.
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The introduction of an explicit measure for the amount of capacify that
is buffered in the inventories {(the aggregate inventory position for

fast-movers) has three advantages:

Firstly, safety stocks can be accumulated more efficiently. The
difference between product-oriented uncertainty and capacity-oriented
uncertainty will be used when buffering against uncertainty. The
results of the previous Chapters indicate that this leads to efficient

buffer stocks.

Secondly, the information that Material Coordination requires with
respect to individual families only has a short-term character, whereas
over a longer horizon only aggregate information is necessary (when a
cost function is determined for the aggregate inventory for fast-
movers, that should represent the cost of capacity-problems for the
future). This information is relatively reliable, If a product-oriented
approach would also be used for fast-movers, then detailed information
would be required for fast-movers over a long period in order to avoid

capacity problems.

Finally, we want to mention the advantage of introducing an explicit
measure for the amount of buffered capacity with respect to the
coordination of Material Coordination and Master Planning. '
Master Planning has to ensure that the resources are obtained and used
effectively and efficiently, This will be more easy, since it can
explicitly be measured what effects changing the resource-availability
has on the performance of Material Coordination. This also makes
budgeting and performance-measurement for Material Coordination more
easy.

If a product-oriented approach to designing Material Coordination were
used in case the capacity restriction plays a role, a separate
aggregate model would be necessary on the level of Master Planning for
these purposes, with all inherent problems for coupling this with the

level of Material Coordination.

The above mentioned, three advantages of introducing a measure for the
amount of stored capacity at the level of Material Coordination, may be
expected not only to hold for the example that has been treated here,
but in a more general class of situations, where capacity resirictions

play an important role,
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On the capacity-aspect of inventories.

Summary.

In this study, we have considered the Material Coordination level of
Production Control. On this level different Production Units are
discerned and the flow of material over these Production Units is
coordinated (compare well-known Material Coordination Systems, like
Material Requirements Planning, the Reorder Point System or the Base
Stock System).

The performance of a given Material Coordination System depends not
only on the characteristics of the Material Coordination System, but
also on the characteristies of the environment it should work in.
Therefore, a trade-off has to be made between investments that are
necessary to reduce uncertainty and investments to be able to cope with
existing uncertainty (e.g. safety stocks or flexible resources).

In this text, we have concentrated on the way one can create safety
stocks to protect against uncertainty on the level of Material
Coordination, efficiently. The results of this text may then be used in
making this more general trade-off.

One may distinguish two fundamentally different approaches to create
such stocks, namely:

-the produet~oriented approach. In this approach, first the
delivery patterns for individual products are translated to
production patterns, using standard throughput-times for orders.
Next, the different production patterns are coordinated over a
shorter horizon, taking the capacity restrictions into account.
Uncertainty in the required delivery pattern and the availability
of capacity, can be attacked in the first step, so per product.
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-the capacity-oriented approach. In this approach, first a
production level plan is made, possibly combined with a capacity
adjustment plan. This requires aggregation of delivery patterns
and inventories to capacities. Next, over a shorter horizon, the
aggregate production plan is disaggregated to individual products.
Uncertainties in the aggregate delivery patterns and in the
availability of capacities can be accounted for in the first step,

which leads to aggregate safety stocks.

In this text, we have compared both approaches at hand of the single-
phase multi-product model (with one clear capacity bottle-neck). The
reason to consider this model is that it is the most straightfofward
starting point for the analysis of the weak and strong points of the

approaches.

After discussing a framework for Production Control in which the level
of Material Coordination can be embedded, we have compared the two
different approaches for some single-capacity models. First, we have
considered a single-phase model in which both the demand for individual
products and the availability of the capacity are purely stochastic. We
have compared the two approaches by using simulation experiments. This
has led us to an operational criterion for choosing between the two
approaches. This criterion has also been checked in a situation where
demand is partly known beforehand and the availability of the capacity
is deterministic. We have compared different ways of using'the
information that is available about future demand in this model, and it
proved that the choice between the capacity-oriented approach and the
product-oriented approach was not influenced by this. Therefore, the
criterion could be used again.

Also, we have considered a model, in which the demand rate varies
widely among the products. It has been suggested to use a capacity-
oriented approach for the fast-movers in such situations and a product-
oriented approach for the slow-movers, after giving the slow-movers
priority on the capacity.

Finally, we have discusséd a case of a plastic products factory. At
hand of this case, we have shown how the results of this study can be

used in a practical situation.
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Het capaciteitsaspect van voorraden.

Samenvatting.

In dit proefschrift beschouwen we het niveau van Materiaal Cobrdinatie
binnen produktiebeheersing. Op het niveau van Materiaal Cofrdinatie
worden diverse produktie—~eenheden onderscheiden in het
produktieproces, en moet de goederenstroom over dezeé eenheden
gecodrdineerd worden, Enkele bekende Materiaal Cofrdinatie Systemen
zijn "Material Reqﬂirementa Planning®, het “Reorder Point System™ en
het "Base Stock System".

De doelmatigheid van een gegeven Materiaal Codrdinatie Systeem hangt
niet alleen af van het systeem zelf, maar o0k van de omgeving
waarbinnen het systeem moet werken. Daarom dient een afweging gemaakt
te worden tussen investeringen die nodig zijn om te zorgen dat de
onzekerheden van de omgeving gereduceerd worden en investeringen die
nodig zijn om Materiaal Codrdinatie te beschermen tegen de gevolgen van
de bestaande onzekerheden (bv. door het creéren van
veiligheidsvoorraden of het wérken met flexibele capaciteiten).

In dit proefschrift, beschouwen we de vraag hoe men efficient '
veiligheidsvoorraden kan creéren op het niveau van Materiaal
Cobrdinatie. De resultaten van dit proefschrift kunnen zodoende
gedruikt woﬁden bij het maken van de genoemde afweging;

Men kan twee fundamenteel verschillende aanpakken oﬂdeﬁseheiden bij het

creéren van dergelijke voorraden, namelijk:

~de produkt-geori&nteerde aanpak. In deze aanpak worden eerst de
afleverpatronen voor individuele produkten vertaald naar
produktiepatronen, Hierbij wordt gebruik gemaakt van standaard
doorlooptijden voor orders. In een tweede stap worden de
verschillende produktiepatronen gecofrdineerd, waarbij de

capaciteitsrestricties in beschouwing worden genomen. De horizon
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in deze tweede stap is meestal kleiner dan in de eerste stap.
Onzekerheid, zowel met betrekking tot de vereiste afleverpatronen
als met betrekking tol de beschikbaarheid van capaciteiten, dient
te worden opgevangen in de eerste stap. Dit leidt tot
veiligheidsvoorraden per produkt.

~de capaciteit-georiénteerde aanpak. In deze aanpak wordt eerst
beslist hoe men de capaciteiten zal gebruiken. Dit wordt beslist
op grond van een vergelijking van de beschikbaarheid van de
capaciteiten en de vraag naar capaciteiten. Daartoe dienen de
afleverpatronen en de voorraden geaggregeerd te worden naar
capaciteiten. Na het opstellen van een aggregaat produktiepatroon,
wordt dit patroon over een kortere horizon gedisaggregeerd naar
individuele produkten. Onzekerheid met betrekking tot aggregaat
afleverplannen en met betrekking tot beschikbaarheid van
capaciteiten moet worden opgevangen in de eerste stap. Dit leidt
tot aggregaat veiligheidsvoorraden.

In dit proefschrift, hebben we beide aanpakken met elkaar vergeleken
aan de hand van het één-capaciteit meer-produkten model (met één
capaciteit bottle-neck}. We hebben dit model beschouwd, omdat het het
meest simpele model is waarin men onderscheid kan maken tussen de beide

verschillende aanpakken voor het credren van veiligheidsvoorraden.

Nadat we een raamwerk voor produktiebeheersing hebben beschreven,
waarbinnen het niveau van Materiaal Codrdinatie een plaats inneemt,
hebben we de beide aanpakken vergeleken voor enkele verschillende
voorbeelden van het één-capaciteit meer-produkten model. Eerst hebben
we het model beschouwd, waarin zowel de vraag naar prodﬁkten als de
beschikbaarheid van de capaciteit volledig stochastisch is. Met behulp
van simulatie hebben we de twee genoemde aanpakken vergeleken. Dit
heeft ertoe geleid om een operationeel criterium voor de keuzé tussen
beide aanpakken op te stellen. Dit criterium hebben we vervolgens
gebruikt in een model waarin de vraag, gedeeltelijk, van te voren
bekend is en waarin de beschikbaarheid van de capaciteit
deterministisch is. De resultaten tonen aan dat de keuze tussen de
capaciteit-georiénteerde en de produkt~georiénteerde aanpak niet
afhangt van de wijze waarop men gebruik maakt van de informatie die
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beschikbaar is over de toekomstige vraag. Dit maakt het mogelijk om het
criterium ook voor dit model te gebruiken,

Ook hebben we een model beschouwd, waarinvde gemiddelde vraag sterk
fluctueert over de verschillende produkten. Voor een dergeli jke
situatie hebben we voorgesteld om de snellopers te beheersen met behulp
van een capaciteit-georiénteerde aanpak en de langzaamlopers te
beheersen met behulp van een produkt-georiénteerde aanpak (terwijl de
langzaamlopers voorrang krijgen op de capaciteit).

Tenslotte, hebben we een case beschouwd van een fabriek, waarin plastic
voorwerpen geproduceerd worden. De analyse van deze case toont aan hoe
de resultaten van dit proefschrift in praktijksituaties gebruikt kunnen

worden.
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Het aanleggen van capaciteit-gerichte voorraden past niet binnen het
kader van de MRP-filosofie.

II

Beschouw het volgende probleem (zie Dantzig et al. [1]):
Een reder mag kiezen welke havens zijn vrachtschip aandoet en in

welke volgorde. Door een rels van haven i naar haven j verdient hij
a, . guldens, De reis duurt t

ij i3
Stel er zijn n havens met laij‘ ¥ en ’tijl £ 1 voor alle {i,j). Om

dagen (inclusief laden en lossen).

de winst per dag te minimaliseren, suggereert Lawler [U4] een
T ——
algoritme dat O(nalogn) tijd vergt. Gebruikmakend van een resultaat

van Karp [3] is het mogelijk een algoritme te vinden dat O(n3) tijd
vergt (zie Hordijk en Bemelmans [21).

[1] G.B. Dantzig, W. Blattner and M.R. Rao, Finding a Cycle
in a Graph with'Minimum Cost to Time Ration with
Application to a Ship Routing Problem, appeared in
"Theory of Graphs"™ by P, Rosenstiehl (ed), Dunod, Paris,
and Gordon and Breach, New York, 1976.

[2] A. Hordijk and R. Bemelmans, interne notitie,
Rijksuniversiteit te Leiden, 1980.

{3] R.M. Karp, A characterization of the minimum cycle mean
in a Digraph, Memorandum No. UCB/ERL M77/47, Electronics
Research Laboratory.

[4] E.L. Lawler, Combinatorial Optimization: Networks and
Matroids, Holt-Rinehart-Winston, New York, 1976.



III

Door bij het bespreken ven een raamwerk voor "Master Production
Scheduling" voorbij te gaan aan het verschil tussen "structurele" en
"operationele" coordinatie, worden praktische problemen

geintroduceerd.

{11 W.L. Berry, T.E. Vollmann and D.C. Whybark, Master
Production Scheduling: Principles and Practice,
APICS, 1979.

(2] J.W.M. Bertrand and J. Wijngaard, The structuring of
production control systems, rapport Technische
Hogeschool Eindhoven, BDK/ORS/84/10, 1984,

Iv

Het standaardpakket CAN-Q, waarmee men doorlooptijden in
productieprocessen kan bepalen, is slechts in zeer speciale gevallen

toepasbhaar.

[1] J. Solberg, CAN-Q User's guide, Purdue University, 1980.

Bij de beschrijving van Cox-verdelingen, wordt vaak gebruik gemaakt
van het beeld van een aantal exponentiele fasen in serie, waarbij na
iedere fase met een bepaalde kans (afhankelijk van de fase) geloot
wordt of de volgende fase nog doorlopen wordt. Indien men echter
gebruik wil maken van het feit dat de Cox-verdelingen dicht liggen
in de verzameling van verdelingen die alleen gewicht leggen op de
niet-negatieve rechte, dan moet de kans in het lotinggmeehanisme
complex gekozen worden, hetgeen de beschreven interpretatie
bemoeilijkt.

[1] D.R. Cox, A use of Complex probabilities in the theory
of Stochastic Processes, Proceedings of the Cambridge
Philosophical Society, vol 51 (1955), pp. 313-319.



Vi

Dat het verstandiger is een doorzichtige regel te gebruiken dan een
{vermeend) optimale regel door te drukken, wordt bewezen door de

problemen rond de invoering van de tweeverdienersr'ggeling.

Vil

Als de "struggle for life" een essentieel element is van iedere
evolutie, dan moeten we erg oppassen met het zoeken van contact met

buitenaardse beschavingen.

VIII

Zoals het beste orkest niet bestaat uit een samenstel van de beste
solisten, zo bestaat het beate hierarchische gestructureerde '
beheersingssyteem niet uit een samenstel van de beste

beheersingsregels op ieder niveau.

IX

Nu medewerkers aan Universiteiten en Hogescholen met de term (hoofd)
docent worden aangeduid, is het de hoogste tijd om de didactische
bekwaamheden vaﬁ deze medewerkers te ontwikkelen.

Iemand die een "practicality gap" wil vullen, wordt vaak gezien als

een Ypractical joker®.



