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Chapter 1. Scope of the text. 

1.1 Introduction. 

Centrolling the production in an industrial organisation is very 

complex. There are two different reasons for this complexity. On the 

one hand, complexity is due to the variety in range and in level of 

detail of the actlvities that play a role in such a control (think of 

manufacturing process development, capacity planning, coordinating the 

flow of material through the production process, releasing of 

workorders, and scheduling). On the other hand, the production process 

itself may be complex (many products, many stages, complex 

interrelationships between resources, and uncertainty in the 

availability of resources). 

To deal with the first cause for complexity, one creates different, but 

coordinated levels of control. At each of these levels a specific part 

of the control of the production process is accounted for (see Anthony 

[3]). To deal with the second cause for complexity, one groups 

manufacturing steps into so--called Production Units (see Bertrand 

[8]). Each Production Unit is responsible fora specific part of the 

production prooess. Of course, these Production Units have to be 

coordinated to ensure that the products are manufactured timely and 

efficiently, This activity will be referred to as Material Coordination 

(see Bertrand [8]). 

In Chapter 2, we will discues this decomposition approach in more 

detail. Material Coordination will be part of such a decamposition 

approach to Production Control. On the level of Material Coordination, 

different Production Units are disoerned in the process and there is a 

flow of material over these Production Units. It is the taskof 
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Material Coordination to coordinate the actlvities of the different 

Production Units in order to realise a given delivery performance 

target, like minimizing the number of stock-outs. Material 

Coordination, thus, does not influence the demand or influence the 

resource availability, but has to reach certain performance targets for 

a given demand and with a given resource-availability. In the next 

Chapter, we will go further into Material Coordination, and discuss its 

relationship toother parts of Production Control. 

To have an idea of the place that Material Coordination takes within a 

framewerk for Production Control, one can think of existing Material 

Coordination Systems, like Material Requirements Planning, the Reorder 

Point System or the Base Stock System. 

1.2 Topic of the text. 

The way Material Coordination can deal with uncertainty, is important. 

The following types of uncertainty can be distinguished: 

- uncertainty in the availability of raw materials 

- uncertainty in the behaviour of the resources 

- uncertainty in the actual delivery pattern that will be required 

uncertainty in the registration of inventories and work-in­

process. 

Since, for Material Coordination, it is not possible to influence the 

required delivery pattern or the availability of resources, other 

methods must be used to proteet against these uncertainties. 

Some of these uncertainties may be due to inadequate information 

processing capabilities. If the information processing system can be 

improved without muoh effort, it will be sensible to do so. However, in 

general, it will be impossible (or muoh too expensive) to remove all 

the uncertainty. In order to be able to oope with the remaining 

uncertainty, it is necessary to create stocks (note that also in case 

there is no uncertainty, stocks may be created, for example due to 



For the design of a good Material Coordination System, it is important 

to have insight into how to use these stocks efficiently. This insight 

will also enable us to make a trade-off between investments to reduce 

uncertainties (e.g. information processing systems) and investments to 

cope with uncertainties (e.g. inventories, work-in-process, or flexible 

resources) • 

Whybark and Williams [54) have shown that the control of buffer stocks 

should be adjusted to the sourees of uncertainty. Therefore, let us 

first consicter these sourees of uncertainty. There are fundamentally 

two different types of uncertainty: there is uncertainty due to the 

behaviour of individual products (e.g. uncertain demand, inventory 

registration or yield of the production process) and there is 

uncertainty due to the behaviour of resources (e.g. worker-availability 

or machine break-down). 

Consequently, two fundamentally different approaches to using buffer 

stocks can be distinguished, namely a product-oriented approach and a 

capacity-oriented approach. 

In the product-oriented approach, the buffer stocks arebasedon the 

behaviour of individual products. The delivery pattern is translated to 

a production pattern by Material Coordination, using standard 

throughput-times for orders. The production patterne for the products 

are coordinated over a short horizon. A well-known example of the 

product-oriented approach is Material Requirements Planning. In this 

approach, a certain inventory is created for each product to proteet it 

against uncertainties. This can be done by bedging the demand (i.e. 

systematically over-estimating the demand), by using a safety lead-time 

or by using a fixed safety stock for each product. Note that the stocks 

created in the product-oriented approach, also have to proteet Material 

Coordination against uncertainty due to the behaviour of resources. 

In the capacity-oriented approach, the accumulation of buffer stocks is 

basedon a oomparieon of demand and availability of capacity, 

which means that the inventory of different products is no longer 

viewed in the first place as a buffer against uncertainties in the 

behaviour of that product. Instead, in this approach, the inventories 

are viewed as a form of stored capaci ty. In case the demand for 

capacity dur1ng periods in the future is larger than the available 

capacity, this stored capacity will be used to solve the problem. In 

the capacity-oriented approach we aggregate over the individual 

inventories of the products to find a measure for the amount of stored 
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capacity in the inventories. Thus, an aggregate production pattarn is 

generated. This production pattarn is disaggregated over a shorter 

horizon. Note that the stocks created in the capacity-oriented approach 

also have to proteet Material Coordination against uncertainties that 

are due to the behaviour of individual products. 

These two approaches differ fundamentally, but bath yield a feasible 

Material Coordination System. The question ia which approach ahould be 

uaed in what type of situation. The objective of this text is to 

provide the reader with insight into which characteristics of the 

situation are important for making this deelsion and thus to provide a 

tool for deciding in a given situation, which of the two approaches is 

best. 

1.3 The approach. 

As we have seen in the previous Sections, the aim of this text is to 

suggest when to use a product-oriented approach and when to use a 

capacity-oriented approach to designing a Material Coordination System. 

The problem is studled in this text via the systematic analysis of 

simple, but relevant modela. In this research, we have restricted 

ourselves to roodels of the single-phaae type, which means that there is 

a single capacity bottle-necK in the production process and there are 

many products. The reason for uaing these roodels is that they are the 

best starting point to oompare the capacity-oriented and the product­

oriented approaches. We will not go into multi-phase s1tuat1ons, since 

more research is needed for these situations. However, in situations 

with only one bottle-neck, these results will help the reader to choose 

an adequate approach to design a Material Coordination System. 

We start by discussing a fairly simple single-phase multi-product 

planning problem. Then, we will introduce more and more aspects that 

can play a role. For each model, we will formulate both the capacity­

oriented and the product-oriented approach and oompare their 
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performance. This performance evaluation is mainly done by simulation 

experiments. 

1.4 Review of the text. 

In Chapter 2, we will describe the place that Material Coordination has 

within a general framewerk for Production Control. We will also show 

why we have ohosen to investigate the single-phase multi-product 

problem. Related literature to this Chapter is Anthony [3] and 

Galbraith [23]. 

In Chapter 3, we will consicter a simple single-phase multi-product 

planning problem with identical products and stochastic demand. A 

review of single-phase roodels has been presented by Elmaghraby [19]. 

However, mostly deterministic roodels have been considered in the 

literature. An exception to this is the workof Graves [24], Williams 

[55] and Zipkin [61]. 

For the single-phase model in Chapter 3, we will oompare the 

performance of capacity-oriented and product-oriented strategies, when 

confronted with uncertainty with respect to availability of the 

resource and with respect to demand. 

In Chapter 4, we consicter a model in which demand is partly known 

beforehand. Thus, a forecast for demand of each product is available. 

Difficulties arise since different foracasts for future demand make the 

products not-identical in the short-term. The question whether to use a 

capacity-oriented approach or a product-oriented approach is 

intertwined with how the foracast is used. 

In Chapter 5, we will describe a model with non-identical products. In 

this model, there are obvious slow-movers and obvious fast-movers, and 

the difference between them is no langer only caused by short-term 

forecasts, but there are big differences between them in the long-run 

as well. This introduces new problems, since the capacity-oriented 

approach has to be restricted to fastmovers. 
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To show more clearly how the results obtained, can be used, we will 

include a simple example of a plastic products factory in Chapter 6. 

For this factory, we will describe a framewerk for Production Control 

and we will show how a Material Coordination System for this situation 

can be designed, basedon the results of this text. 
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Chapter 2. Material Coordination. 

2.1 Production Control. 

When centrolling an industrial organisation, all kinds of activities 

have to be considered. For example the following actlvities should be 

part of control: 

budgeting decisions, scheduling decisions, release of actual 

workorders, selection of suppliers, marketing, financlal planning, 

decisions on werkforce levels. 

In order to create some order in this range of activities, one has to 

distinguish several separate control processes. Each of these control 

processes is directed at a specific part of the control of the 

organisation, whereas it must be possible to coordinate the separate 

processes in order to gain control over the whole organisation. Common 

processes that can be distinguished are (see Burbidge [15]): 

Sales Control 

Production Control 

• Purchase Control 

• Financlal Control 

Quality Control 

In this text, we will consider Production Control. One way to define 

Production Control is (see e.g. Greene [25) and Bertrand and Wortmann 

[9]): 

"The Production Control tunetion is defined as the set of actlvities in 

a production organisation that are directed. at the control of volumes 
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and types of products produced at specific places as a function of 

time" 

According to Eertrand and Wortmann [9] this means that Production 

Control includes long-range planning, product-development, 

manufacturing process development, customer service control, factory 

lay-out planning, transportation and physical distribution, manpower 

planning, material supplies control and materials handling, capacity 

planning, scheduling, loading, dispatching and expediting, and 

inventory control. 

At a high level of the organisation, Production Control is integrated 

with the other control processes. For example long-range planning for 

Production Control has to be combined with 

-long-range sales planning in order to ensure that the production 

actlvities comply with the marketing activities, 

-long-range purchase planning in order to ensure that the timely 

supply of raw materlala is possible. 

-long-range quality planning in order to ensure that the quality 

remains within certain limits. 

-long-range financlal planning in order to ensure that the capita! 

necessary for realizing the plan, is acquired at the right time. 

The reasen to distinguish these different control processas is that 

they are relatively independent. It is possible to reduce the 

interference between these control processas to simple relationships 

(e.g. by a budgetary system}. Slack is required to reduce this 

interterenee (compare Galbraith [23]}. The main benefit of investing in 

this slack is that eaoh separate control prooess beoomes easily 

understandable, which in general leads to a better control of the 

organisation. 

We will restriet ourselves to Production Control. We will not discuss 

the question of how to create slack efficiently in order to make 

Production Control independent from the other control prooesses, but we 

will just assume that the interterenee has been reduced insome way. 

The reasen why we will not go into this any further~ is not that we 

believe that the problem of creating slack between the control 
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processas is relatively simple or unimportant. On the contrary, there 

is still a lot of work to be done in this field and the importance is 

obvious. However, to keep the research that was needed for preparing 

this text, manageable, we have restricted ourselves to Production 

Control (even to a specific part of Production Control, but we will 

return to that in the next Sections). We believe that, befare 

discussing efficient ways to invest in slaak between different control 

processes, it is necessary to have a good insight into the performance 

of each individual control process. 

2.2 Reduction of control complexity. 

Production Control, as described in the previous Section, is still very 

complex. 

The first causa for this complexity beoomes clear when we consicter the 

list of actlvities that are part of it (mentioned in the previous 

Section). There is a big difference in the range and the level of 

detail between the activities. Yet, there are clear relationships 

between different activities, that make coordination necessary. The 

usual way to attack this problem is to create different "levels of 

control", each withits own details and range of decisions. Each level 

is then considered to be relatively independent, as the interference 

between different levels is reduced to a simple one, e.g. by generating 

goals and restrictions. This requires fnvestment in slack at each level 

in order to be able to separate it from other levels. We will discues 

the idea of levels of control more deeply in Subsectien 2.2.2. 

A completely different cause for the complexity of Production Control 

may be that there are many products in various etages of progreee, 

complex interrelationships between resource restrictions and much 

uncertainty with respect to the availability of these resources. In 

order to reduce the complexity of the production procees, "Production 

Uni te" are created. These Production Units are oompara ti vely 

independent and only simple methods for coordinating them will be 

permi tted. Of course, again, this requires an investment in slaak 
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within the Production Units. We will return to this subject in the next 

Subsec ti on. 

Before discussing bath of the methods to reduce the complexity of 

Production Control (namely the creation of levels of control and 

Production Units), we must mention that they are interrelated. When 

detailed production plans for the near future (at a lower level of 

control) are being considered, it is necessary to have some insight 

into the way that a given Production Unit functions, whereas it is 

sufficient to have a rough concept of the Production Unit if a long­

term plan for Production Control has to be determined. 

2.2.1 Production Units. 

To simplify Production Control, several manufacturing steps and 

resources are grouped into so-called Production Units. 

The aim of creating these Production Units is to reduce the complexity 

of Production Control. Therefore, the following conditions have to be 

taken into account: 

On the one hand, the control of each of the Production Units has to be 

relatively simple. This requires a stable environment and stable 

operational norms for the Production Units. If this stability is not 

implied in the process the Production Units are imbedded in, it will be 

required to invest in slack between the Production Units in order to 

guarantuee this stability. 

On the other hand, the coordination over Production Units has to be 

simple too. For this coordination the Production Units are considered 

as black boxes with simple production characteristics. The model of the 

production process, in which the Production Units are treated as black 

boxes is referred to as the aggregate process. This aggregate process 

then must be easy to control. 

Notice that the analysis of the aggregate process only aims at setting 

objectives for the Production Units in order to ensure coordination 
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(like setting due dates for work~orders), but it does not solve all the 

problems for the Production Units in detail. It is left to the 

Production Units to solve these detailed problems (scheduling, loading, 

etc.). In order to be able to leave the salution of these detailed 

problems to the Procuetion Units, when analyzing the aggregate process, 

it is necessary to invest insome slack and flexibility within the 

Production Units. 

As an example of the creation of Production Units, we will describe the 

model that was considered by Bitran and von Ellenriader [12]. Note that 

this model will only be used as a point of reference for discussing 

different aspects of Production Control. Therefore the reader does not 

need a thorough onderstanding of the model in order to read the rest of 

this text. 

In Bitran and von Ellenrieder [12], a firm was considered that 

manutaotured castings and nipples for use in the construction industry. 

The number of different products that were produced and sold, was about 

1200. 

In Figure 2.1, the production process has been shown as a diagram. 

In the first stage of the production process, the oores are prepared in 

two parallel stages. These cores are stored and used for assembling the 

casts, which are prepared by "moulds preparation" and are sent to the 

third stage, the melting of one of three ferrous alloys. The molten 

material is prepared in three batterles of electrio furnaces. In this 

way, for each battery of furnaces_a reserve supply is provided. 

From these supplies, the items are passed through a furnace for 

annealing and grain allignment (heat treatment). In the gauging stage 

of the process the finishing operations take place that create the last 

significant intermediate stock of products. Sometimes, items are 

dispatched to the customers directly from this stock and sametimes they 

are submitted to some additional process. 

As will be clear, this is a complex process and i t would be difficul t 

to control it without structuring the production process first. 

Therefore Bitran and von Ellenrieder aggregated over some manufacturing 

steps and thus constructed the "aggregate process" as in Figure 2.2. 
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raw materials 
inventory 

co re 
preparation 

co re 
inventory 

moulds 
preparation 

melting 

cast parts 
inventory 

heat 
treatment 

treated cast 
parts inventoiJ 

gauging 

inventory 

zinc plating 

dispatching 
tooling 

assembling 

Figure 2.1. Flowchart of the production process for the castings and nipples 

manufacturing. 
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The reason for making this particular division into Production Units, 

was that heat treatment was one of the most complicated stages in the 

production process (from a planning point of view), because of the 

large variety of types and sizes that have to be dealt with. 

Foundry 
Heat 

Treatment 

Figure 2.2. Aggregate process for the castings and nipples 

manufacturing (see Figure 2.1). 

Factory 

Notice that the introduetion of Production Units decreases the decision 

freedom. This effect has to be compensated by the fact that, due to a 

reduction of the complextity, the control can be improved (see Bertrand 

[8]). 

2.2.2 Levels of Control. 

We group the decisions into decision levels. The most important reason 

for doing so, is that consequences of decisions are so different that a 

monolithic approach is impossible. Of course, if this were not the 

case, a hierarchical approach might still be preferable because of its 

relative simplicity: we want a simple structure for taking planning 

decisions in order to make an easy coordination possible with the other 

control processes in the organisation (think of budgets, objectives and 

production levels). 

This grouping of the decisions leads to a so-called hierarchy of 

planning decisions. Roughly, one can distinguish three levels in such a 

hierarchy (see Figure 2.3). This distinction presentsus with a natura! 
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framewerk for planning and control in practical situations (see e.g. 

Anthony [3], Bitran and Hax [13], Jönsson [31], Manz [38]), although a 

too rigid classification into exactly three levels will certainly not 

always be right. We will discuas each of the levels in some detail. The 

discuesion of each level starts with the definition given by Anthony 

[~1, who (to our knowledge) was the first to formulate such a framework 

i~ a systematic way. 

Strategie Planning 

Tactical Planning 

Operational 

tontrol 

Figure 2.3. A planning hierarchy. 

Strategie planning is "the process of deelding on objectives of the 

organisation, on changes in the objectives, on the resources used to 

attain these objectives, and on the policies that are to govern the 

acquisition, use and disposition of these resources". 

For example, a typical decision that should be taken on this level is 

whether toenter the market with a completely new type of product. This 

requires large investments in the design of new production facilities 

or even building new plants. Such decisions obviously interfere with 

other control processes in the organisation, likeSales Control, which 

has to estimate the possibilities of the new market, and Financlal 

Control, in order to acquire the capital that is needed. 

The different control processes are balanced in outline on this level. 

This requires a high degree of aggregation. Another reason for using a 

high degree of aggregation on this level, is the following: since the 

decisions on this level have long-lasting effects on the organisation, 

it is necessary to have a long planning horizon (about two to five 

years). The information that is available on this term is orten only 
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qualitative or characterized by a great deal of uncertainty. To be able 

to take realistic decisions on this level, it is necessary to consider 

aggregate quantities. 

The outoornes of the decisions on this level orten have a large and 

long-lasting effect on the behaviour of the organisation and therefore 

require the attention of top management. 

Tactical planning (or management control) is "the process by which 

managers assure that resources are obtained and used effectively and 

efficiently in the accomplishment of the organisatien's objectives". 

Before discussing this level, we should first mention that this level 

is known under two different narnes in the planning and control 

literature, namely management control and tactical planning. 

Originally, Anthony [3] used the term management control, but later, 

others preferred the term tactical planning (see e.g. Ackoff [1] and 

Hax and Meal [28]). We believe that the latter term is more common in 

recent literature and, therefore, we will use it in this text too. 

On the tactical level, one must use certain prescribed facilities to 

attain the objectives that have already been set by the strategie 

level. Looking at the example inSection 2.2.1, typtcal actlvities that 

fall under this heading include the replacement of electrio furnaces, 

the deelsion to start using a fourth alloy that only differs slightly 

from the existing ones, the make or buy deelslons for cast parts, the 

trade-off between customer service rate and inventory levels and 

setting work force levels in each Production Unit. 

Often the planning period for this level is about one year and this 

reduces much of the uncertainty of the strategie level, where the 

planning period is much longer. Consequently, the tactical level aan 

react more efficiently to later developments. Therefore the strategie 

level must retain some slack for the tactical level in order for this 

level to be able to react to uncertainty of the environment. The 

tactical level must, in turn, formulate guidelines for operational 

control. 

An important point is the interterenee with Sales Control on this 

level. As we have seen, both control processas have already been 

coordinated on the strategie level. On the tactical level, coordination 

for a shorter pertod is considered. We have already mentioned the 
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trade-off between customer service rate and inventory levels, but this 

ia not a matter for Production Control only. Sales Control and 

Financlal Control should take part in this particular decision, because 

(usually) there are conflicting interesta between different control 

proceases at this point. Production Control requires a stable 

production situation and does not like to be disturbed by an 

unpredictable, fluctuating demand. Sales Control, however, wants to 

provide a goed customer service rate and therefore requires more 

flexibility of Production Control in the short term, no matter what 

investments in slack (inventories, excess of capacities) are needed 

therefore. Financlal Control wants to keep the required capital (that 

has been tied up in e.g. inventories) within certain limits. These 

conflicting interesta have led, in many organisations, to the 

tormulation of lateral relations (see Galbraith [23]). Bartrand and 

Wijngaard [10] distinguish structural and operational coordination 

within this context. Structural coordination implies aggregate 

agreements with respect to delivery performance and sales patterns. 

Operational coordination takes the actual status of production, sales 

and finance into account. 

Notice that the structural coordination falls under the heading of 

tactical planning, since it ensures that the resources are used 

effectively and efficiently without actually being concerned with 

specific tasks. The operational coordination falls rather under the 

heading of operational control, which we discuss below. 

The degree to which coordination has to be structural or operational, 

depends on the particular production situation. The outcome of this 

coordination, will be referred to as the Master Production Schedule. 

This Master Production Schedule should be a (normative) statement of 

production, sales and finance. 

Operational control is "the process of assuring that specific tasks are 

carried out effectively and efficiently". 

On the operational control level the daily actions have to be 

coordinated. The aim is no longer to set budgets for inventory but to 

actually control the inventories, no longer do we set the werkforce 

levels but actual hiring and firing takes place, as the situation 

requires. 

- 16 



In the example of Sectien 2.2.1, this level is responsible for the cast 

parts stock being sufficiently high to ensure that heat treatment can 

do its work, also scheduling of jobs in the foundry is a task of 

operational control, as is daily allocation of werkmen to the machines. 

On this level it also has to be ensured that the flow of material over 

the Production Units is coordinated to guarantee a certain performance 

rate to the customers. 

As we see this level of planning has a short planning period (say a few 

weeks) and it must come up with detailed proposals for action. 

The interference on this level withother control processes is rather 

limited, the coordination has taken place on a higher level and now the 

commitments on the higher levels have to be realised. 

2.3 Introduetion of Material Coordination. 

In this text, we focus on the part of Production Control that consists 

of coordinating the flow of material over the Production Units. This 

task will be referred to by the term "Material Coordination", a term 

that is proposed by Bertrand [8]. 

Material Coordination 

roductio 

Unit 

Figure 2.4. Material Coordination. 

On this level of control the availability of resources as well as the 

"demand" can (generally) no longer be influenced. This demand may be 
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the outcome of some balancing between control processes as formulated 

in aHaster Production Schedule and therefore it need not be the 

"customer demand". However, si nee Material Coordination has no control 

over the Master Production Schedule, we will refer to the Master 

Production Schedule as the demand for Material Coordination. 

The task of Material Coordination is to coordinate the activities of 

the Production Units in order to realise the commitments that have been 

made on the tactical level with respect to customer service rate, 

inventory budgets and werkforce levels. So, Material Coordination is 

not involved in the trade-off between different performance criteria, 

but has to take necessary actions to reach the given performance 

targets. Typical tasks that belong to Material Coordination are setting 

due dates for orders, ensuring material being available and centrolling 

the inventories. 

Because of the nature of Material Coordination, it is seen as a part of 

the operational control level. 

In the next Section, we will illustrate the concept of Material 

Coordination by describing some well-known examples of Material 

Coordination. 

2.4 Some well-known examples of Material Coordination. 

In this Section, we want to elucidate the concept of Material 

Coordination by describing some well-known examples of Material 

Coordination. The examples that we restriet ourselves to in this 

Section, are: 

- the Reorder Point System 

- the Base Stock System 

- Material Requirements Planning 
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2.4.1 The Reorder Point System. 

For an extensive study of this approach the reader is referred to 

Hadley and Whitin [27]. We will use their notations in this Section. 

Let us first consicter a single Production Unit. 

In the Reorder Point approach a replenishment order for a product is 

released if the inventory paaition of that product is below a 

predetermined, critica! level (with the inventory paaition we mean the 

inventory on hand minus back-orders plus outstanding replenishment 

orders). This critical level is determined on the basis of the 

distributton of the demand over the production leadtime and on the 

performance criterium that is used (e.g. minirotzing inventory holding 

coats and stock-out coats over time). Depending on whether the 

inventory is reviewed periodically or continuously, thia level (reorder 

point) is denoted by "T", respect! vely "r". 

Juat as important as the question when to produce, is the queation how 

much to produce. Therefore, tagether with a critical level a production 

quantity is determined on the basis of the mean and the lumpineas of 

the demand so as to optimize some performance criterium, like the 

expected number of stock-outs. In the Reorder Point approach one 

usually produces a fixed batch "Q", or one replenishes the inventory to 

a fixed level "R". 

Combination of bath leads to the familiar Reorder Point strategies: 

<R,r>, <Q,r>, <R,T> and <Q,T>. 

Now consider a production process with several Production Units and aee 

how to use the Reorder Point approach then. 

The philosophy of the Reorder Point approach is as follows: The Master 

Production Schedule (which in case of a Reorder Point System usually 

conforma to customer demand) is satisfied from stock-point n (see 

Figure 2.5). For each product critica! levels are set as above. If the 

inventory for a product drops below this level, then an order is 

released to Production Unit n for replenishment. After such an order is 
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PU : Production Unit 

=::> = Goodsflow 

__ ...,= Information flow 

Figure 2.5. Reorder Point System. 

released, Production Unit n recei ves i ts "raw mater i als" from stock­

point n-1 and manufactures these to end-items for stock-point n. This 

leadstoa reduction of the inventories at stock-point n-1. In the 

Reorder Point approach, this reduction is observed as independent 

demand for stock-point n-1. Basedon the characteristics of this demand 

again critica! levels are set for the inventories at stock-point n-1. 

For the control of the inventory at stock-point n-1, Production Unit 

n-1 receives raw materials from stock-point n-2, which leads to an 

"independent" demand at stock-point n-2, etc. 

The Reorder Point System has some disadvantages, namely: 

1. The production leadtime of a Production Unit is assumed to be 

independent of the release of replenishment orders. However, the 

actual production leadtime will depend on the Work-In-Process in 

the Production Units. Thus different products interfere with 

each other. Since this Work-In-Process fluctuates widely due to 

the lumpiness of the demand (and the effects this has on the 

release of production orders) it will usually be difficult to 

give a good estimate for the leadtime. 

2. Each Production Unit buffers demand until the inventory position 

drops below the reorder point before passing the demand to the 

preceding Production Unit. This leads to a delay of information 

about demand (see e.g. Forrester [21] and van Aken [2]). Even if 

there are only gradual changes in the demand process, the delay 
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of information may have large consequences. For example, if 

demand increases, then Production Unit n will, after some time, 

adapt its reorder levels. Production Unit n-1 notlees this 

change in the demand process only after a longer time period. 

Thus it reacts much later on a change in the demand process. 

This, however, also means that the Production Unit does not only 

have to keep pace with the new demand process, but it will be 

necessary to over-react in the short term. This over-reacting is 

necessary, since for some time the production has been 

systematically less than the demand. 

3. Increasing variability of demand. Another aspect of buffering 

demand, is that demand appears to be more lumpy if one goes 

further back in the production process. 

The disadvantages 2 and 3 are a oonsequenoe of the faot that the 

decrease of the inventories in each stock-point is seen as independent 

demand, while there are obvious dependencies, between demand in 

different stock-points. Van Dierdonck and Bruggeman [17] describe this 

as a lack of vertical integration, i.e. integration between the control 

of subsequent manuracturing stages. 

The first disadvantage is due to lack of 11 horizontal" integration (see 

van Dierdonck and Bruggeman [17]), i.e. integration between different 

products at the same manufacturing stage. 

An obvious advantage of the Reorder Point System is its simplicity, 

which makes it easy to implement, Only a straightforward flow of 

information is necessary, which means that there is noneed for a large 

investment in information processing systems. Therefore, this approach 

is often used, especially for "oheap" produots. 
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2.4.2 The Base Stock System. 

In the Base Stock System, the idea of dependent demand is used to make 

a better coordination between Production Units possible, which leads to 

vertical integration (see Figure 2.6). 

For an extensive study of the Base Stock System, the reader is referred 

to Kimball [34], Magee [37], and Timmer et al. [51]. 

The information about demand is not only used to control the 

inventories in stock-point n, but it is exploded to all stages in the 

production process so that each Production Unit can react on it. 

At each stock-point certain inventory levels (base stocks) are 

determined for each product. As in the case of the Reorder Point 

System, a replenishment order is released to the preceding Production 

Unit if the inventory position of a given product drops below its 

level. The big difference with a Reorder Point System is the way demand 

is experienced in the stock-points. In the Base Stock System, one keeps 

track of the demand for end-items and explodes this into demand for 

components. Consequently, there is no delay in information about 

demand, which leads to smaller investments in safety-stocks. 

-~ 
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Figure 2.6. Base Stock System. 
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When translating the demand for stock-point n to demand for stock-point 

n-k, all inventories in between these stock-points have to be taken 

into account too. Therefore, the so-called "echelon inventory" is 

introduced to base the production deelsion on (compare e.g. Clark and 
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Scarf [16]). This echelon inventory is the inventory for a given 

product at the stage where it is produced, and downwards in the 

production process as i t is "assembled" into other products. 

Notice that if the production process is divergent, there is a 

possibility that a component is manufactured into a wrong product (that 

means that it is manufactured into a product for which no demand has 

occured, whereas it should have been manufactured into another product 

for which a stock-out occurs). If one wants to implement a Base Stock 

System in such a situation, the definition of base stocks has to be 

adapted. However, in case the production process is convergent, the 

echelon inventory can be used straight forwardly. 

For the Base Stock System, vertical integration is provided for. 

Consequently, the disadvantages 2 and 3, mentioned for the Reorder 

Point System, are circumvented. In the Base Stock System, there is 

still lack of horizontal integration (see disadvantage 1 of the Reorder 

Point System). 

Note that the Base Stock System requires more information processing 

than the Reorder Point System. 

2.4.3 Material Requirements Planning. 

In a Material Requirements Planning system the Manufacturing Bill Of 

Material plays a central role. The Manufacturing Bill of Material 

describes the product structures from the Material Coordination point 

of view. Starting from the final products in the Master Production 

Schedule it is possible to determine what components have to be 

manufactured in which quantities to assemble the final products. Of 

course, it is not only required to know how much to produce, but also 

when to produce. Therefore standard leadtimes are introduced that 

indicate how long it takes to manufacture the components into the next 

subassembly. 

This leads to the following first step in a Material Requirements 

Planning system: The Master Production Schedule for the final products 
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is exploded via the Manufacturing Bill of Material to find a time­

phased gross requirement for the components. Any possible independent 

demand for a component is forecasted and added to this gross 

requirement. The next step in a Material Requirements Planning system 

is the so-called "netting procedure". In this netting procedure the 

gross requirements are converted to net requirements at each production 

phase on the basis of inventory on hand, the orders that already have 

been issued and (sometimes) the safety stock. Orlicky [44] gives the 

following example to illustrate this netting procedure: 

Gross requirements 

On hand 

On order 

Safety stock 

Net requirements 

25 

50 

75 
-20 

120 

55 

65 

After determining the net requirements for each component it is 

possible to determine "planned orders". Usually some lot-sizing 

technique is used for this final step in the Material Requirements 

Planning system. 

Of course, we have only given a very rough description of Material 

Requirements Planning. For a study of Material Requirements Planning, 

the reader is referred to Orlicky [44]. What we have aimed at, in this 

Subsection, is to sketch the general idea behind Material Requirements 

Planning, which is very straightforward. In the APICS News of february 

1973, L.J. Burlinger stated that the logic of Material Requirements 

Planning is inescapable. This seems true, but in order to be able to 

use this kind of system some important conditions should be met. The 

most important ones, in our view, are: 

- 24 -



-The Master Production Schedule consiste of a deterministic 

requirement for final products and may not be seen as a stochastic 

variable. 

-The resource restrictions may not be tight: It is not clear in the 

Material Requirements Planning approach how to react if it provee 

that the released orders cannot be realised. 

-It must be possible to keep the production leadtimes constant. 

Usually these production leadtimes will depend on the Work-In­

Process in the Production Units. 

-The situation has to be so that safety stocks are only necessary 

for the Master Production Schedule products. The netting procedure 

that we have mentioned treats a deplenishment of the component 

safety stock in the same way as a stock-out for the component. 

Consequently, if demand can be forecasted perfectly over the whole 

production leadtime and if there are no (severe) capacity-restrictions, 

Material Requirements Planning can be used best. In situations with a 

stable demand, there will be no advantage of using the Material 

Requirements approach instead of the Base Stock System. Therefore, 

Material Requirements Planning is often used in situations with a 

highly variable demand. Notice that in situations, where the conditions 

for applying Material Requirements Planning are met, it in fact 

corresponds to a very powerrul information processing system. 

In other situations Material Requirements Planning is orten used too. 

lts performance then relies on the ability to make a realistic Master 

Production Schedule, and on the possibility to react on exception 

messages (rescheduling). 

Notice that for all Material Coordination Systems described in this 

Section, production runs are started on the basis of information about 

individual products. In situations with a tight capacity restrietion 

(or more generally in situations where horizontal integration plays an 

important role), this approach may give poor results (we will return to 

this in the next Section). 
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2.5 The role of stocks. 

In the previous Section, we have described some well-known examples of 

Material Coordination. How well a given Material Coordination System 

works, depends not only on the characteristics of the Material 

Coordination System, but also on the characteristics of the 

environment (like how stochastic is demand, how uncertain is the 

availability of the resources, etc.). 

Galbraith [23] has put forward that "the ability of an organisation to 

successfully coordinate the activities by goal setting, hierarchy and 

rules depends on the combination of the frequency of exceptions and the 

capacity of the hierarchy to handle them". Consequently, for Material 

Coordination, a trade-off has to be made between investments that are 

necessary to reduce the uncertainty and investments to be able to cope 

with existing uncertainty. In order to reduce uncertainty, investments 

are required in information processing systems or in lateral relations. 

In order to be able to cope with existing uncertainty, Material 

Coordination is provided with flexible resources or Material 

Coordination creates safety stocks. 

In this text, we want to gain insight into efficient ways to create 

safety stocks on the level of Material Coordination in order to be able 

to cope with uncertainty. The results of this text may then be used in 

making this more general trade-off. 

When we want to investigate efficient ways to create safety stocks, it 

is interesting to consicter the way that such stocks are created in the 

Material Requirements Planning approach. Material Requirements Planning 

supports three fundamentally different ways to create safety stocks 

(compare Whybark and Williams [54]): 

1. safety stock per product: a production runfora product is 

started as soon as the inventory drops below the safety stock. 

2. safety leadtime per product: a larger leadtime than necessary is 

used in the planning. 

3. hedging the demand: demand is systematically over-estimated. 
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Whybark and Williams (54] have ooropared the first two methode. Their 

main conclusion is that the way to buffer against uncertainty should 

depend on the nature of uncertainty. If each period the demand 

fluctuates around the forecast, then it is best to use a safety stock 

per product, but if the main souree of uncertainty is that customers 

often put their large orders {lumpy demand) in another period than 

expected, then a safety leadtime performa better. 

The lessen that is to be learnt from their research, is that one must 

first know what type of uncertainty one is confronted with before 

starting to create buffers against it. 

Looking at the possible sourees of uncertainty at the level of Material 

Coordination, one can distinguish two types of uncertainty: 

On the one hand, there are uncertainties that are a consequence of the 

behaviour of individual products, e.g. uncertain demand, inventory 

regietratien or yield factor. A common way for Material Coordination to 

buffer against this type of uncertainty, is to create a safety stock 

for each individual product, which has to absorb the stochastic 

behaviour of that product. 

On the other hand, there are uncertainties due to differences between 

demand and availability of resources (for example due to worker 

availability or machine breakdowns). The safety stock that is created 

to absorb these uncertainties is largely exchangeable between products: 

If, forsome reason, it proves that a Production Unit cannot produce 

more than c in a specific period and it is necessary to produce y1 for 

product 1 and y2 for product 2 with y1+y2 > c, then an inventory of 

(y1+y2)-c solves the capacity problem, no matter how distributed over 

the products (as long as the inventories do not exceed yj). 

Notlee that the discrepancy between the availability of capacity (c) 

and the demand for capacity (y1+y2) may be due to the behaviour of the 

capacity or to the behaviour of the aggregate demand of the products. 

This shows that the two types of uncertainty, that we have mentioned, 

are interrelated. Consequently, the stocks to buffer against these 

uncertainties should not be determined independently of each other. 

However, both aspects of uncertainty require a different approach to 

creating safety stocks: The product-aspect of uncertainty requires 

decomposition over the individual products so as to isolate the 
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behaviour of each product, whereas the capacity-aspect requires 

aggregation over the products in order to be able to consicter the 

behaviour of the total demand put on the resources. As a consequence, 

the stock that is meant to buffer against the capacity-aspect of 

uncertainty is largely exchangeable between products, whereas for the 

product-aspect this exchangeability is limited. 

Connected with these two aspectsof uncertainty, there are two extreme 

approaches to the design of a Material Coordination System, namely a 

product-oriented approach and a capacity-oriented approach. Roughly 

these approaches can be described as follows: 

-product-oriented approach. The required delivery patterns have to 

be translated by Material Coordination to production patterns. In 

a product-oriented approach the first step is to determine the 

requested production patterns by straightforward offsetting, not 

taking capacity restrictions into account but using standard 

throughput-times. The second step in the product-oriented approach 

is to coordinate the different production patterns. In this step 

the capacity restrictions are taken into account. Typically the 

horizon in the second step is smaller than in the first step. 

Uncertainties in required delivery patterns and capacity 

availibility and the interference between products because of 

restricted capactties can be attacked by safety stocks and safety 

leadtimes in the first step, so per product. 

Material Requirements Planning is an example of the product­

oriented approach. 

-capacity-oriented approach. Material Coordination first makes a 

production level plan, possibly combined with a capacity 

adjustment plan. This requires aggregation of delivery patterns 

and inventories to capacities. Then, in a second planning step, 

the production level plan for the first period is distributed over 

the different products, only using short-term detailed 

information. This disaggregation can be based, for instance, on 

the run-out times of the individual products. With the run-out 

time of a product, we mean the expected time until a stock-out 

occurs for that product. 
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Uncertainties in the capacity availability and the total required 

deliveries can betaken into account in the first planning step. 

Imbalances between the individual products, resulting from this 

procedure, may also be estimated in an aggregate way. It is 

possible to determine how much extra (aggregate) inventory is 

necessary because of these imbalances. 

Such capacity-oriented approaches have been proposed by van Beek 

[6], Magee [37] and Meal [40]. They stress the capacity adjustment 

in the first step and aasurne in the second step that the capacity 

usage and the capacity availability are equal. 

Both approaches are feasible. It is not clear however when to use what 

approach. It may be so that both approaches work well in certain 

situations, while in other situations only a mixture of both approaches 

is satisfying, An interesting mixture of both approaches for the single 

capacity case has been proposed by Graves [24]. 

2.6 The single-phase multi-product planning problem. 

In the previous Section, we have mentioned two extreme approaches to 

Material Coordination. We want to investigate their weak and their 

streng points in this text. Thus we hope to provide the reader with a 

tool to decide which approach to use when designing a Material 

Coordination System in a practical situation. 

For this investigation we have used the simplest model in which there 

is a distinction between both approaches, namely the single-phase 

multi-product planning model (with one clear capacity bottle-neck). The 

reasen to consider this model is not because it is such a good model 

for many realistic situations (although it may be so for certain 

situations), but because it is the most straightforwardstarting point 

for the analysis of the weak and strong points of both approaches. 
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The single-phase multi-product planning problem has a long history in 

the theoretic research. However this research has been dominated by 

roodels with a deterministic demand. 

Elmaghraby [19] presente a good overview of the work in this field. 

However, when one is interestad in the question how to buffer 

effectively against uncertainties, the results from that research are 

not very helpful since it proves to be difficult to extend them to 

stochastic situations (see e.g. Graves [24]). 

More recently, the research in this field has also incorporated 

stochastic elements in the model. Consicter for example the work of 

Federgruen and Zipkin [20], Graves [24] and Williams [55]. There is a 

lot of similarity between the research described in this text and their 

work. Our interpretation however differs from theirs because we have a 

different notion of the single phase. We view this phase as a 

controlled Production Unit, consisting of more machines and workers, 

whereas in the mentioned research this phase is meant to repreaent a 

single machine. This leads to somewhat different characteristics for 

the behaviour of the capacity in the roedels. This means that their 

results cannot simply be applied if analyzing the control of a 

Production Unit. Yet, some results can be used and we will refer to 

these in the next Chapters. 

In the single-phase models, that we will consicter in this text, the 

batch-sizes have been fixed. The reaeon for this is that the 

possibility to use the capacity efficiently, usually, interferes 

heavily with the choice of the run sizes. Therefore, at the level of 

Tactical Planning, at least restrictions have to be imposed on the 

batch~sizes, in order to be able to deelde whether the availability of 

the resources has to be adjusted. On the level of Material 

Coordination, that falls under the heading of Operational Control, the 

availability of the resources is given. Material Coordination has to 

provide for the timing of production orders. It would have been 

possible to work with restrictions for the batch-sizes on the level of 

Material Coordination, without actually fixing the run-sizes. However, 

in order to simplify the analysis, we will aseurne that the batch-sizes 

are fixed on the Tactical Level (we will return to this in Chapter 5). 
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Notlee that in situations with incidental, large demands (think of 

project-situations) it will not be sensible to introduce such a 

decomposition between the level where the batoh-sizes are determined 

and the level where the timing of production orders is provided for. 

Therefore, we will restriet ourselves to situations with a relatively 

smooth demand. In the situations that we will consider, the demand 

fellows a stochastic process, that may be partly known beforehand. For 

such situations, de Bodt and van Wassenhave [14] have shown that 

forecast errors have a large impact on the oost effectiveness of lot­

sizing techniques when used in a rolling schedule approach. Therefore, 

there will be little sense in leaving the deelsion on the batoh-sizes 

to Material Coordination in suoh situations. 

Onoe the batoh-sizes have been fixed, the total set-up times and set-up 

costs oan no longer be influenced. Therefore, these set-up oosts and 

times roay be ignored at the level of Material Coordination (the set-up 

times are then viewed as part of the processing timefora batch). 

In this text, we will oompare produot-oriented and oapaoity-oriented 

approaches to Material Coordination. Before starting to investigate the 

produot-oriented and the capaoity-oriented approaches, there is one 

advantage of the capacity-oriented approach, that we want tomention 

already, since it is conneoted to the levels of control that are 

described in this Chapter1 

The capaoity-oriented approach makes the relationship to higher levels 

of control easier. It is possible to combine capacity adjustment 

decisions with production level decisions. In case of a product­

oriented approach one neects a separate (aggregate) model to make the 

capacity adjustment deelsion and it is not always easy to couple this 

level of deelsion making properly to the (detailed) product-oriented 

approach for Material Coordination. 
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Chapter 3. Identical products; purely stochastic demand. 

3.1 Introduction. 

In the previous Chapter, we have described the level of Material 

Coordination within a general framework for Production Control. Also, 

we discussed the uncertainties of the environment to which Material 

Coordination is exposed, and we described the need for effective ways 

to buffer against these uncertainties. This led us to choose the 

single-phase multi-product model for this research. 

In the single-phase multi-product model, we can distinguish two 

basically different approaches to the design of a Material Coordination 

System, namely the product-oriented approach and the capacity-oriented 

approach. Since these two approaches, of which we want to investigate 

the weak and strong points, differ fundamentally in the way they buffer 

against uncerta1nties on the level of Material Coordination, we will 

study a stochastic single-phase model. Consequently, a situation with a 

stochastic arrival process for demand and a stochastic availability 

process tor the resource will be considered. To facilitate the analysis 

in this Chapter, we will assume that tor all products the demand 

processas are the same. Also the production characteristics tor all 

products are the same (we speak of "identical" products). 

In the purely stochastic case, demand follows a given stochastic 

process. In subaequent Chapters, we will extend the analysis to 

situations where demand is partly known beforehand, and also to 

situations with "non-identical" products. 

Although the reason to introduce the single-phase model is to oompare 

the product-oriented approach with the capac1ty-or1ented approach, we 

will first formulate the problem of finding the overall optimal 
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strategy as a Markov deelsion problem. Solving this Markov deelsion 

problem fot" some special cases, we have a point of refet"ence to measure 

how the performance of strategies deter'iorates when we restriet 

our"selves to simple approximating strategies. At hand of this Markov 

deelsion pr'oblem, we can illustt"ate the difficulties that at"e inherent 

in using the over'all optimal stt"ategy. Thus, we can discuss the reasoos 

for seat"ching simpler strategies. We will then describe approaches that 

at"e more generally used in optimization theory to evereome these 

difficulties, and show the relationship with the capacity-oriented and 

pr'oduct-oriented strategies that we want to oompare in this text. 

If one is going torestriet oneselves to approximating strategies, it 

is necessary to investigate what opportunities ther'e are for doing so 

in general. Wismer' [56] says on this subject in the preface of 

"Optimization methods for large scale systems ••• with applications": 

"We have confined our attention to those developments which are 

applicable to large-scale systems. As a rule such developments are 

characterized by (1) decomposition of the large system into 

smaller subsystems which are later composed or coordinated to 

r'econstruct the original system, or by (2) aggregation of the 

variables in the lat"ge system thereby reducing its dimensionality. 

The ultimate gain from these methods is not only to obtain a 

computer solution in a reasonable time (or at all) but also to aid 

in the conceptualization and understanding of lat"ge-scale 

interactions •11 

We will show, in Sectien 3.4, that a sensible form of aggregation in 

the model actually conforma to restricting the class of strategies in 

the Markov deelsion problem to capacity-oriented strategies. 

Analogously a sensible form of decomposition in the model conforma to 

restricting the class of possible strategies to product-oriented 

strategies (see Section 3.5). This brings us back to our main theme, 

namely the oomparisen of the capacity-oriented and the product-oriented 

approaches. 

For further information on aggregation in production planning, the 

reader is referred to Axsäter and Jönsson [4], Ritzman and Krajewski 

[45], Wijngaard [58] and Zipkin [62]. A more general discussion of the 

concept of aggregation is found in Liesegang [35]. 
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As will be shown, in Sections 3.4 and 3.5, within each class of 

strategies (capacity-oriented and product-oriented strategies) an 

optimal strategy can be found. However, this strategy may not be 

attractive for practical use. Therefore, we will also develop simple 

beuristics within eacb class. With the determination of these 

heuristics, we will find an approximation of the actual costs too. 

In Section 3.6, we will concentrata on a more specific single-phase 

multi-product planning model. For this specific model, we will oompare 

tbe strategies and beuristics by means of simulation (Sections 3.7 and 

3.8). 

InSection 3.9, we will discues tbe sensitivity of the results for the 

oholee of tbe specific model (of Section 3.6). 

3.2 General formulation of the model. 

In this Chapter, we will consider a production system in which N 

products are made for stock by a single Production Unit (see Figure 

3.1). 

À/N S 

C(x), q 

À/N S 

Figure 3.1. A single Production Unit. 
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The demand for different producta ia not correlated. For each product 

the demand followa a atochaatic process. The interarrival time between 

successive "demand instants", fora given product, is negative­

exponentially distributed with mean N/À. If a demand occurs, the demand 

size follows a discrete stochastic distribution. The stochastic demand 

size will be denoted by S (S ~ 0). The demand fora given product, say 

j, is satisfied from the stock-point of that product. If thia stock is 

too small, the remaining part of the demand is backordered. 

The inventory level of product j at timet is denoted by Ij(t), which 

may be negative to indicate a backlog. To be more precise, we will 

define l.(t) to be left-continuous. This means that if at timet a 
J 

demand or a production opportunity arrivee, this is accounted for in 

the inventory of productjin the open interval (t,~), as is shown in 

Figure 3.2. All variables, that we will introduce in this text, for 

which a choice between left-continuous or right-continuous has to be 

made, will be assumed to be left-continuous. 

0 • I 
I 
I • I 

q ó 
6 • 

Figure 3.2. Example of the inventory pattern of a product. At times t 1 

and t
3

, a demand arrives, whereas at time t 2 a batch of 

size q (which has been started at time t 2-t) arrivee. 

Note that the inventory level corresponds to the physical inventory 

only when Ij(t) ~ o. 

To the inventory of a product j, a certain oost is assigned. Therefore, 

we will define a oost rate p(i). If the inventory level at timet tor 
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product j equala i. (i.e. Ij(t)•i.), then the total coat increasea at 
J . J 

timet with rate: 

In our model, we will only consicter coat rates p(i), that are 

non-negative and convex. We will also require that p(i) goes to 

infinity as i goes toplus or to minus infinity. 

(3.1) 

In order to control the inventory levels, production runs can be 

started at specific instants of time, which will be referred to as 

"production opportunities". Production opportunities arrive at 

independent interarrival times with a non-lattice distributton function 

C(t). For convenianee with notations, we assume that C(O)=O. 

At any production opportunity, for at most one product, a production 

run of size q (which is ohosen integer and supposed to be fixed 

beforehand) can be started. It may be decided for which product this 

run is started. The production system is controllable, if we impose the 

following restrietion on q, which ensures that the utilization rate of 

the Production Unit is less than one: 

q 
A•ES < --~~------

0! t dC(t) 

where ES denotes the expected value of the stochastic demand s. 

(3.2) 

If a production run is started for product j at a given production 

opportunity, then the batch q will arrive at the stock-point for that 

product after a production throughput-time ~. This implies that there 

may be more production orders in process at the same time. 

Consequently, the results of this Chapter can apply to situations with 

more production facilities in the Production Unit, or to situations 

with more Production Units in series, as long as there is only one 

bottle-neck (see Figure 3.3). 
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I 
I 
I 
I bottle-neck 
L ___ _ _ _______ P!,9@c...tiQ!I 

Figure 3.3. A Production Unit with a single bottle-neck. 

The performance objective of this model is to minimize the average oost 

that is incurred, over time. However, from a mathematical point of 

view, this average oost needs not be well-definect if we apply an 

arbitrary strategy. Therefore, we define the oost of a strategy ~. as 

in (3.3): 

lim supT E [ -T1 
0JTlP(I.(t))dt ] 

. -+<» ~ J 
( 3. 3) 

With E (X), we mean the expectation of X when applying strategy ~. 
1f 

3.3 Overall optimal strategy. 

Suppose a production opportunity arrivee at time s. Due to the 

throughput-time of an order, only the inventory levels over the 

interval (s+~,=) can be influenced by the production decision. 

Therefore, we will introduce the inventory position of product j at any 

timet, denoted by Iposj(t), as the inventory lj(t) plus the amount for 
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which a production run has been started before t which will arrive at 

the stock-point before t+1. 

We introduce the "shifted oost rate" as follows: The shifted oost rate 

for product j at time t is the expected oost rate at time t+1, if the 

inventory position at time t, for that product, is given. If we denote 

this shifted oost rate by L(ipj), if the inventory position of product 

j equals ipj, then we can write this as in (3.4): 

where the formula bebind the vertical bar denotes a condition on the 

expectation. 

Note that L (i p. ) does not depend on t or on j or on 1!. . J 

If wedefine G(s)(x) as the probability that the demand tor a given 

product in the interval [t,t+s) equals x, then we can write (3.4) as 

(just sum over all possible realisations of demand in the interval 

[t,t+1)): 

L(ip) • I ~0 p(ip-x)•G(i)(x) 
x• (3.5) 

Notlee that since p(i) is convex in i, L(ip) is convex in ip. 

We will now show that we may replace the oost rate p(i} in (3.3) by the 

shifted oost rate, if the expected coats over the first 1 units of time 

are finite. Notlee that we cannot influenoe these coats by the 

production decisions, so that this assumption seems reasonable. Using 

that the expectation of the conditional expectation is the 

unconditional eXPectation (E{E(XjY))•EX), we find 

f 0JTIJ~1 E1l[Ep(IJ(t+.t))IIpos/t)]dt • E'lf[~ 0 liJ~1 L(Iposj(t))ctt] 
(3. 6) 
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Therefore, we can formulate the production planning problem entirely in 

termsof the inventory positions. For notational convenience, we will 

define Ipos(t) as the vector of inventory positions (and the 

realisations !E(t) analogously), via (3.7). 

Ipos(t) := (Ipos
1
(t), Ipos

2
(t), (3. 7) 

Notice that at a given production opportunity, the time until the next 

demand instant is negative-exponentially distributed, and the demand­

size has a fixed distribution. Consequently, the demand process is 

regenerated at any production opportunity. Since the interarrival times 

between successive production opportunities have a fixed distribution 

as well, also this process is regenerated at a production opportunity. 

Consequently, the distribution of demand for any product j between 

successive production opportunities remains constant over time. For any 

vector x= (x1 , x
2

, •••, xN), with non-negative integer entries, let 

r(!) denote the probability that the realisation of demand for product 

j between successive production opportunities equals x. (j = 1, 2, ••• , 
J 

N). It is easy to see that r(!) is given by (3.8). 

r(~) llj ~ l { J"' G ( t ) (x . ) dC ( t ) j 
t=O J 

(3.8) 

Since the demand process and the capacity-availability process are both 

regenerated at the production opportunities, we wil! restriet ourselves 

to strategies in which the production deelsion depends solely on the 

realisation of the vector of inventory positions upon arrival of a 

production opportunity. Such strategies can be written as a tunetion 

n(!P), where ~(!E)=r meana that a production run for productris 

started if upon arrival of a production opportunity the realisation of 

the vector of inventory positions is as given (r=O indicates the 

deelsion not tostart a production run). 

If we define ~as the vector of inventory positions upon arrival of 

the m-th production opportunity, then { Iposm' m = 1, 2, ••• } is a 

Markov Chain with countable state-space for any given strategy ~. 
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The transition probabilities in this Markov Chain depend on the 

strategy w and on the parameters of the demand process between 

successive production opportunities (determined by (3.8)). It is 

therefore straightforward todetermine the probability r (i,k) of a w--

transition from ! to ~· 

Suppose that the processstarts withall inventory positions equal to 

zero and that immediately a production opportunity is available. Then 

we can define H(m)(k) as the probability that we are in state k upon 
w - -

arrival of the m-th production opportunity. We assume that 

H (k) := lim H(m)(k) exists and that LkH (k) • 1. This means that the 
1f - m+"" 1f - w -

Markov Chain will tend to a steady-state. 

These "steady-state" probabilities then satisfy the following 

equilibrium relations: 

for all k (3.9) 

To solve this set of equilibrium relations, one may use successive 

approximation (after truncating the state-spacetoa finite one). 

However, the size of the state-space will be large, which will present 

numerical problems, especially in case of many products. This is mainly 

due to the fact that the state-space is N-dimensional. 

Now suppose that the system has reached its equilibrium. Consider an 

arbitrary point in time. The time that has elapsed since the previous 

production opportunity has distribution tunetion R(t) as in (3.10) (see 

Ross [46], notice that it is required that C(x) is not lattice). 

R(t) 
0

Jt ( 1-c (x )}dx 

0
/" ( 1-C(x) )dx 

(3. 1 0) 

This enables us to determine the probability that at an arbitrary point 

in time (if the system is in equilibrium) the vector of inventory 

positions is given by ~· Denote this probability by Hw(~) and let 
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rt(i,k) denote the probability that we are in state~. given that the 
l!--

elapsed time since the previous production opportunity equals t and 

that the state upon arrival of that production opportunity was! 

(notice that rt(i,k) can be determined analogously tor (i,k)). Then 
l!-- l!--

H (k) satisfies (3.11). 
ll -

H (k)"' J"' I. rt(i,k)•H (i) dR(t) 
11 - t=O ~ 11 - - 11 -

for all k (3.11) 

Via (3.11), we can determine H 11 (~_) if we know H/~) (again after 

truncating the state-space). 

Under weak regularity conditions, the average expected costs in the 

long run are equal to the expected costs in the steady-state situation, 

i.e. (3.12) holds. 

(3.12) 

In theory, now, it is possible to determine the overall optimal 

strategy by minimizing expression (3.12) over 11. Usually, however, this 

approach is not attractive for practical use. The main reasen for this 

inattractivity is the complexity of the encountered numerical problems. 

As we have seen, the statespace is N-dimensional. Consequently, only 

for limited values of N, the optimal strategy can be found. Besides 

these numerical problems, it may be so that the optimal strategy is 

complicated, which makes it difficult to react on unexpected events. In 

order to avoid these problems, we will restriet ourselves beferehand to 

strategies that are easy to find and easy to understand. 

When searching for simple, approximating strategies, two techniques 

will be used, namely aggregation and decomposition. As we will see in 

the next Sections, this brings us back again to the camparisen of 

oapacity-oriented and produot-oriented strategies for this single-phase 

model. 
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3.4 Aggregation; Capaoity-oriented strategies. 

The main souree of the numerical difficulties, encountered when using 

the strategy that is discuseed in the previous Section, is the 

dimensionality of the state-spaoe. Therefore, we will oonsider 

approaches to reduce this dimensionality. The two most important 

techniques for doing so are aggregation and decomposition. In this 

Section, we will describe the aggregation approach. The decomposition 

approach is discuseed in Section 3.5. 

Since all products are identical, a natural way of defining an 

aggregate inventory position at time t, is via 

\' N Ipos{t) :• l.j_1rposj(t) (3.13) 

The deelsion whether or not to produce, will now be based only on the 

aggregate inventory position upon arrival of a production opportunity. 

Since L(ip) is convex, it seems reasonable torestriet oneselves to 

strategies of the following type: 

Start a production run if and only if the aggregate inventory 

position at the production opportunity is less than or equal toa 

prescribed level e <e is ohosen integer). 

Remark. Under some weak regularity conditions, it can be proven that 

for N•1 the optimal strategy is of the above form (see 

Wijngaard [59]). 

If, at a given production opportunity, it is decided tostart a 

production run, then we have to assign this run to a product. 

Obviously, for such a disaggregation stepweneed detailed information 

oh the distributton of the aggregate inv~ntory position over the 

,, . lndividual pr()(j~~:~ Jk>~~~~rf ~\lEI·t~ ~The convexness pf L(ip), this . . 

~;. ~· ,p~~z::t;;~~,:~r·~-~;~~b:;.;~.~~:r~~:~ . 
this situation with idÈmtical products). 
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Notice that the strategies that are found using aggregation, oorreepond 

to the ones which we have introduced (in Chapter 2) as capacity­

oriented strategies: The production decision ignores the status of 

individu?l products, but it is based on the aggregate inventory 

position that reflects how much capacity is stored in the system as a 

whole. 

In order to be able to rewrite (3.12), wedefine a(!E) := Lj~ 1 ipj. If 

we use index S instead of n (this is possible since capacity-oriented 

strategies are entirely determined by the choice of S), we can write 

the average, expected costs for any capacity-oriented strategy S as: 

L· u:.N,L(ip.)]·Ho(ip) = 
.!.E. J= J " -

,. [, N . ] I (a) Lk t. · . th ( 1 ) k t. . 1 L( 1 p . ) • H 0 (in a (i p) =k) • H" ( k ) = .!.E. w1 a .!..E. = J= J .., = - .., 

(3.14) 

where H
6

(iplaC!E)=k) is the conditional probability that the vector of 

inventory positions equals ip given that the aggregate inventory 

position is k, and H~a)(k) is the probability that the aggregate 

inventory position equals k (when applying the capacity-oriented 

strategy 6). Notice that g
6

{k) is the conditional expectation of the 

oost rate, given that the aggregate inventory position equals k. 

To evaluate (3.14), it is required todetermine the steady-state 

probabilities H~a)(k). This can be done by introducing the steady-state 

probabilities H~a)(k), that denote the probability that the realisation 

of the aggregate inventory position, upon arrival of a production 

opportunity, equals k. 

Define, analogous to Section 3~3, ra
6
(i,k) as the probability of a 

transition of the aggregate inventory position to k upon the arrival of 
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a production opportunity, given that upon arrival of the previous 

production opportunity the aggregate inventory paaition was i. Notice 

that this probability only depende on the choice of 6 and on the 

parameters of the aggregate demand process between successive 

production opportunities. Insteadof (3.9), we now find: 

for all k (3.15) 

Notice that these equilibrium equations are one-dimensional. Therefore 

it is much simpler to solve these equations {again after truncating the 

state-space) than to solve (3.9). 

Now consicter an arbitrary point in time given that the system is in 

equilibrium. Define ra~(i,k) as the probability that the aggregate 

inventory paaition equals k at this point in time, given that the 

elapsed time since the previous production opportunity is t and that 

the aggregate inventory paaition upon arrival of that production 

opportunity equalled i. Then, analogous to (3.11), we find the 

following expression for H~a)(k): 

(3.16) 

The above shows how H~a)(k) can be calculated. 

To find the optimal capacity-oriented strategy, that minimizes (3.1q), 

we also have todetermine gB(k). The determination of gB(k) requires 

the calculation of the conditional probabilities Ha<!ela(ip)•k). 

Unfortunately, however, this makes the problem again as complex as the 

determination of the overall optimal strategy, since it will lead to an 

N-dimensional state space. The optimal capacity-oriented strategy is 

only interesting therefore as a point of reference, but is not useful 

in practice. For practical use, it is necessary to consider strategies 

that are basedon simple approximations of g
6
(k). The simplest 

approximation can be found by assuming that it is possible to keep the 
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inventory positions of all produots equal. Of course this will not 

always be possible, but the objective of the production allocation is 

to keep the inventory positions equal. This assumption, whioh is 

independent of the ohoioe of B, leads to the following approximation of 

g
6
(k), that we denote as g(k): 

g(k) := N•L(k/N) (3.17) 

The strategy that is found when minimizing (3.18) over 8 will be 

referred to as the simple capacity-oriented heuristic. 

(3.18) 

The aotual oost of using tbis beuristic is not given by (3.18), but is 

determined by {3.14). Tbe aotual oost, which will be denoted by SCH, 

will usually be diffioult to determine. 

The convexity of L(ip) implies that g(k) ~ g
8

(k) applies for all values 

of k. Tberefore the minimum of (3.18) over a is a minimum for the 

average expeoted oosts, not only for the capacity-oriented strategies, 

but also for the overall optima! strategy. This "capaci ty lower bound" 

will be denoted by CL. 

If we define oe as the oost that oorresponds to the overall optima! 

strategy, and we let OCC be the oost of the optimal capacity-oriented 

strategy, then the following inequalities will hold: 

CL ~ OC ~ OCC ~ SCH (3.19) 

This means tbat the simple oapacity-oriented beuristic is (almost) 

optimal if for a given situation CL~SCH. Therefore, if CL•SCH, tbere is 

no reasen to search for more actvaneed capaoity-oriented beuristics that 

take into account that keeping the inventory positions equal will not 

be pos si bl e • 

In Sectien 3.7, we will return to the capacity-oriented approachfora 

more speoifio model. Using the results presented there, we will also 
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discuss the situations tor which it.may be usetul to derive more 

actvaneed heuristics, which are based on an approximation of g
6

(k} 

taking into account the tact that keeping all inventory positions equal 

will not be possible. 

3.5 Decomposition; product-oriented strategies. 

In this Section, we will use the technique of decomposition to reduce 

the complexity of the production planning problem. Consequently, 

insteadof consictering one model with an N-dimensional state-space, we 

will consicter N roodels with one-dimensional state spaces (one for each 

product). We have introduced strategies that are based on this approach 

in Chapter 2 as product-oriented strategies. 

In each one-dimensional model it will be optimal, since L(ip) is 

convex, tostart a production run if the inventory position upon 

arrival of the production opportunity, is less than or equal toa 

predetermined, critica! level, say B (see Wijngaard [59]). 

Once it is decided for each product whether a production run is 

required for that product, a run will be started at the production 

opportunity if and only if there is at least one product for which such 

a run is required. Consequently, since the demand process for all 

products is the same (and therefore also the critical level B, which is 

ohosen integer), the deelsion to use a production opportunity tostart 

a production run depende only on the product with minimal inventory 

position. Therefore, wedefine product-oriented strategies as 

strategies in whioh the deelsion to start a production run can be 

charaoterized by: 

Start a production run if and only if the minimal inventory 

position at the production opportunity is leas than or equal to a 

prescribed level B. 

Since it is possible that there are saveral products for which a 

production run is required, we have to ohoose a rule to assign the run 

to one of the products. For reasons, that have been explained in 

- 47 -



Section 3.4, it is optima! to assign the run always to the product with 

minimal inventory position (in case there are several products with 

minimal inventory position, we will choose one of them randomly). 

Define H~d)(k) as the marginal probability (if the system is in 

equilibrium) that the realisation of the inventory position of a given 

product equals k, under application of the product-oriented strategy 

characterized by B. Then we can write the average oost of (3.12) as in 

(3. 20) 

(3.20) 

The optima! product-oriented strategy is the strategy that minimizes 

(3,20), The corresponding oost will be referred to as OPC. To find OPC, 

we have todetermine the steady-state probabilities H~d)(k), which 

unfortunately again is an N-dimensional problem: The possible delay due 

to other, more urgent products, also demanding a production run at a 

given production opportunity, has to betaken into account. 

Therefore it is necessary to search for simple product-oriented 

strategies that arebasedon an approximation of H~d)(k) which can be 

determined easier. 

The most straightforward approximation we find if assuming that the 

delay due to other products is always equal to zero. This conforma to 

the situation where at a given production opportunity, we may start 

more than one production run. Consequently, there is no interference 

between the products on the capacity. Therefore, it is optimal to 

decompose over the products. If we denote the steady-state probability 

upon arrival of a production opportunity, under this assumption, by 

H~d)(k), then we can derive analogous relations for ~~d)(k) as for 

H~a)(k) in the previous Section~ 

The optima! strategy that is found under this assumption, that means 

the strategy minimizing (3.21), will be referred to as the simple 

product-oriented heuristic. 
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{3.21) 

It is easy to see that the theoretic coat (3.21) that corresponds to 

the product-oriented heuristic, gives a lower bound for the oost of the 

overall optimal strategy. 

This "product lower bound" will be denoted by PL. The real coat of this 

heuristic is denoted by SPH (and can be determined by (3.20)). 

Thus for the product-oriented approach, we find: 

PL :il OC :il OPC :il SPH (3.22) 

Again, as in the case of the capacity-oriented approach, we see that if 

PL•SPH there is no reaeon to search for more actvaneed heuristics, since 

the simple product-oriented heuristic is (almost} optimal. In 

situations where there is a large gap between SPH and OPC it may be 

useful to construct more actvaneed heuristics by taking the interterenee 

on the capacity into account. This aan be done by introducing a delay 

in the start of orders of a certain product that is not equal to zero. 

Williams [55] has suggested a queueing type of analysis to estimate the 

delay that is due to other products. An analogous approach has been 

proposed by Graves [24]. 

Though one may expect this queueing type approach to give better 

results in case SPH-OPC is large, it will usually not yield the optima! 

product-oriented strategy. The reason for this is that subsequent 

delays are not independent of each other and not independent of the 

inventory position of the product. 

In Sectien 3.8, we will return to the product-oriented strategies and 

we will also discuss the question of when it may be useful to construct 

more actvaneed heuristics. 

3.6 Choice of a specific model. 

In the previous Section, we have described the optimal strategy, the 

capacity-oriented strategies and the product-oriented strategies for 

- 49 -



the general model. In this Section, we want to oompare these different 

strategies with each other. Therefore we will derive numerical results 

for these strategies for a specific model within this general class of 

models. These numerical results will be used to draw certain 

conclusions. As to how far it is possible to extend the conclusions to 

other situations is investigated in Section 3.9. 

The model that we choose to analyse numerically has the following 

characteristics: 

-the demand size equals one at each demand instant (8•1) 

-inventory holding coats and stock-out costs are linear: 

+ - + -p(i)=ai +bi , where i =max(O,i) and i •max(0,-1) 

-the interarrival time between successive production opportunities 

is negative-exponentially distributed with mean 1/~. Consequently, 

the utilization rate of the capacity equals p := À/(~·q). 

InSection 3.7, we wil! first derive numerical results for the overall 

optima! strategy when there are only two products (N=2). These results 

are meant to provide us with a yardstick to measure the performance of 

the oapaoity-oriented strategies and the product-oriented strategies. 

These strategies are considered in Section 3.8, also for situations 

with N > 2. 

3.7 Overall optimal strategy; numerical results. 

In this Section, we will present some numerical results for the overall 

optimal strategy in the model that has been ohosen in the previous 

Section. To obtain these results, we have made use of the analysis in 

Section 3.3, that is given fora general class of models. It should be 

notleed that the assumption that the interarrival time between 

successive production opportunities is negative-exponentially 

distributed, makes the analysis a lot simpler. Due to this assumption, 

- 50 -



namely, it holds that the distributton function, at an arbitrary 

steady-state mament in time, for the amount of time that has elapsed 

since the previous production opportunity, has the same negative­

exponential distribution: 

C (t) "' R( t) (3. 23) 

This means in the first place that H~(!E) = H~(!E), so that we only 

have todetermine the steady-state probabilities upon arrival of a 

production opportunity. lt also means that we can simplify the 

equilibrium equations (3.9), by no longer consictering the process upon 

arrival of production opportunities, but on so-called "change 

instants". By a change instant we mean a point in time in which either 

a production opportunity or a demand arrives. Note that, since we may 

deelde not to produce at a given production opportunity, it is not 

necessary for the state of the system to change at a change instant, 

but it is only possible then. 

Since both demand instants and production opportuni ties are generated 

by a Poisson process (with parameter À, respectively ~), the process 

that generatas the change instants is also a Poisson process (with 

parameter À+).l). 

A given change instant corresponds toa production opportunity with 

).l À 

probability À+~ and toa demand instant with probability Ä+).l • 

Introduce the following definitions: 

(0, ••• ,0,1,0, ••• 0) for r•1, 2, ••• ,N 

T 
r-th entry 

"' 0 (3.24) 

and 

if ~<~) = r 
(3.25) 

otherwise 
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Define H {I<) as the probability that the vector· of inventory positions 
1!-

is given by ~· Then it is easy to see that the following equilibrium 

equations {that are analogous to (3.15)) hold: 

H (k) 
1T -

-"-·lL N H (k+e) + ~.\ N H (k- •e )• (r) À+~ N r•1 11- -r A+~ Lr=O 11- q -r X{1T(k-q•e )} 
- -r 

(3.26) 

To solve these equilibrium equations numerically, by means of 

successive approximation, we must restriet the range of inventory 

positions that are allowed. Therefore we introduce the "bounded model", 

in which we have values Ilower and Iupper with: 

-if a demand instant arrives in the bounded model for a product 

with inventory position equal to Ilower, then this instant is 

ignored. 

-if, at a production opportunity, it is decided tostart a 

production run that could result in an inventory position higher 

than Iupper, then the inventory position of the oorreeponding 

product is set equal to Iupper. 

The introduetion of Iupper has no influence on the optimal strategy or 

the corresponding oost, as long as the ohosen value of Iupper is 

sufficiently large. To check the sensitivity of the results for the 

choice of Ilower, we give the results for two different choices for the 

value of Ilower. 

Note that we only give results for the case of two products (N•2). The 

reason for this is that the size of the state space grows exponentially 

in N. This analysis for two products will be used to have a point of 

reference when we consicter capacity-oriented and product-oriented 

strategies. Therefore, we will explain in detail why we have ohosen 

these values for the parameters in the next Section, when we oompare 

capacity-oriented and product-oriented approaches. 

It is interesting to remark that the optima! strategy for the second 

situation (À=0.5) is a product-oriented strategy (with B·-1), while the 

optimal strategy for the third situation (À=1.8) is a capacity-oriented 
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strategy (with 6~18). These resulta are not surprising, because the 

utilization rate {p =--À--) is very low in the second situation and very 
Q•JJ 

high in the third situation. We will return to this in the next 

Section. 

Table 3.1. Results for the overall optimal strategy with N=2 and 

e=0.01, for negative-exponentially distributed interarrival 

times between production opportunities. 

a 

1 

1 

1 

1 

1 

1 

1 

1 

b À IJ q 1 p Iupper Ilower up Ilower up 

3 1.67 1 2 0 0,84 15 -80 11.67 -100 11.67 

3 0.5 1 2 0 0.25 7 -20 1. 87 -40 1. ö7 

3 1.8 1 2 0 0.9 25 -80 19.77 -100 19.77 

1 1 .67 1 2 0 0.84 7 -40 5. 92 -65 5.92 

10 1.67 1 2 0 0.84 25 -30 19.98 -80 20.00 

3 8.35 1 10 0 0.84 50 -80 41.47 -100 41.91 

3 1.67 1 2 5 0.84 25 -60 12.73 -80 12.73 

3 1 .67 1 2 10 0.84 25 -60 13.76 -80 13.76 

Explanation of Table 3.1: In the model, that is described in 

Section 3.6, the inventory positions are bounded from above by 

Iupper and frcm below by Ilower (we have given the results for two 

different choices of Ilower). We have solved (3.26) by means of 

successive approximation (see van der Wal [53]). Successive 

approximation givea an upper bound and a lower bound for the oost 

of the overall optimal strategy. As soon as the difference between 
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these two bounds was less than E~O.Ol, we stopped the iterations. 

In the Table we have given the value of the upper bound (up). 

3.8 Product-oriented strategies and capacity-oriented strategies; 

numerical results. 

For the model, described in Section 3.6, we will examina the numerical 

results that are obtained for the capacity-oriented strategies and the 

product-oriented strategies. 

Note that for the capacity-oriented strategies it is necessary to 

calculate the steady-state probabilities H~a)(k), in order to evaluate 

the cost fora given capacity-oriented strategy (via (3.14)). As was 

shown in Section 3.4, the calculation of these steady-state 

probabilities is relatively easy. Only one-dimensional equilibrium 

relations have to be solved. In this, more specific, case, where the 

interarrival time between production opportunities is negative­

exponentially distributed, it proves to be possible to find a closed 

form expression for H~a)(k). To see this, consicter the possible 

transitions for the aggregate inventory position on the change 

instants, as depicted in Figure 3.4. Notice that (3.23} holds in this 

case, so that we can normalize on the change instants. 

Figure 3.4. Possible transitions for the aggregate inventory position. 
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The transition equations in this (queueing type) model are given by 

k>B+q: 

(3.27) 

We will first postulate the salution of this system of equations as in 

(3.28} and then we will show that this solution is correct. 

k>S+q 

s ~k (3.28) 

where c>O and z>1, while z satisfies f(z)•O, with f(y) defined by: 

(3.29) 

It will be clear that if such a z exists, then the choice of (3.28) 

will satisfy the system of equations in (3.27) tor k ~ s-1 (on the left 

hand side). For k ~ 8+1 it is also easy to check that (3.27) is 

satisfied (start with checking k = S+q). The only equation which we 

have to check is the one with k = a. Consequently, we have to verify 

(Z denotes that we have to check whether the equality holds): 

? -q q-1 -s c•(A+p) ~ C•pZ + C•pL Z s=O 

whioh, since o>O and z>1 conforma to 
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or equi val ently 

q q+l ? q+l (À+p)z - (À+p)z , ,;, )l - )lZ + )JZ - jJZ . (3. 31) 

which can be written as 

? 
• )l (3.32) 

That this equation holds, follows from f(z) = 0 (see (3.29)). 

Notlee that, since c > o, all H~a)(k)'s are nonnegative. Thus we only 

have to choose the normalizing constant such that l:kH~a){k)=l~ 

Therefore, we choose c as in (3.33). 

[ ' B ll\B+q-k -s ,-~ k-B]-1 
c = l.. -~.. z + l.. z k•B+q 1 S•O k•B (3.33) 

Finally, we have to check whether there exists a z > 1 such that 

f(z) = 0. This fellows from the continuity of f(y) combined with: 

* if y is very large then f(y)>O 

* f( 1) -o 

* (--
15

6f(y)) 
1 

• 1-llq < 0 {since the utilization rateis leas than 
y y= 

one). 

Since each z>l with f{z)=O leads to a solution of the system of 

equations (3.27), and we know that the steady-state probabilities are 

unique, it follows that z is unique. This implies that e.g. the method 

of Newton-Raphson to determine the root z>l of f{z)=O converges very 

rast (see e.g. van der Griend [26]). 

Notice that H~:~(k) = H~a)(k+l) for all k, so that we have todetermine 

the steady-state probabilities for only one B to find them all. This 

leads to a simple method for finding the simple capacity-oriented 

heuristic. 
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Since analogous results can be obtained for H~d)(k), except that A is 

replaced by AlN, we can also find the simple product-oriented heuristic 

easily. 

This leads us not only to the two simple heuristics, but also to their 

oorrasponding theoretic oost CL and PL. 

As far as the actual costs of these str~tegies are concerned, the 

solution of an N-dimensional problem is required. Since this leads to 

Table 3.2. Results for the simple heuristics for negative-exponentially 

distributed interarrival times between production 

opportunities (~s1). 

capacity- product-

a b A N q 1 p CL PL oriented oriented 

heuristic heuristic 

B SCH B SPH 

1 3 1.67 2 2 0 0.84 11.42 4.58 9 11.75/11.82 0 17.58/17. 2B 

1 3 0.5 2 2 0 0.25 1.50 1. 74 0 2.37/2.37 -1 1.86/1.87 

1 3 1.8 2 2 0 0.9 19.63 5. 08 18 19.95/20.09 1 29.82/30.81 

1 3 1.67 5 2 0 0.84 11.42 5.24 9 1 2. 84/1 2. 92 -1 19.90/19. 7C 

1 3 1.67 20 2 0 0.84 11.42 11.94 9 21.78/21.89 -1 21.43121.31 

1 1 1.67 2 2 0 0.84 5. 71 2.28 4 5.83/5.85 -1 7.24/7.16 

1 10 1. 67 2 2 0 0.84 19.75 7.82 18 20.20/19.39 2 35.32/36.88 

1 3 8.35 2 10 0 0.84 41.35 16.56 35 41.86/42.29 2 60.28/59.88 

1 3 1 .67 2 2 5 0.84 11.95 7.08 18 12.77/12.61 5 17.45/16.98 

1 3 1.67 2 2 10 0.84 12.47 8.79 27 13.88/13.93 10 16.81/16.80 
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Explanation of Table 3.2: Using (3.28) the steady-state 

probabibilities H~a)(k) can be determined for any given capa':ty­

oriented strategy 6. Next, we have determined an approximation uf 

the coat of using the capacity-oriented strategy 6 by applying 

(3.18). By miniruizing this over 6, we find an optimal choice foi· c, 
with oorreeponding oost. This approximate oost is denoteè ;~1 C1,, 

and the optima! value of a ia given in the Table. In order to 

determine the actual oost when applying this capacity-oriented 

heuristic 6, we have aimulated the process. The results of two 

different simulation runs are gi ven in the Table (under SCH). 

For the simple product-oriented heuristic an analogous approach has 

been used. 

For an explanation of the meaning of the parameters, consicter the 

introduetion of the model inSection 3.6. 
The results for what we will call the reference case are given in 

the first line (utilization rate is about 0.84). In the subsequent 

linea, we give results for cases that differ from the reference 

case with respect to only one parameter. The only exception is the 

case where we change q. Since we want to investigate the 

sensitivity for a more lumpy production process without changing 

the utilization rate, we have changed À in this situation as well. 

We have fixed ~,1 in Table 3.2, since the resulta only depend on 

the ratio of À and ~ (just rescale the time axis). 

numerical difficulties in situations with more than two products (and 

we want to consicter such situations too), we have used simulation 

instead to find these actual coats SCH and SPB 

We have determined CL,PL,SCH and SPH for a limited number of 

situations. The results are given in Table 3.2. 

If we look at the results of Table 3.2, then we see that the simple 

capacity-oriented heuristic ia better than the simple product-oriented 

heuristic, except in the case with a very low utilization rate (À,0.5) 

and the case with many products (N=20). This may be expected, since in 

case of a limited, stochastically available capacity, the queueing 

phenomenon will lead to large delay times. In such a case, the 

capacity-oriented heuristic, that explicitly takes into account the 

effects of a finite capacity, performa best. Consequently, it may be 
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-5 

expected that if the utilization rate is low, or if the capacity­

availability is leas stochastic, then the simple product-oriented 

beuristic performa better. We will return to this hypothesis in Section 

3.9, where we consicter several other capacity-availability processes. 

That the simple product-oriented beuristic gives better results for 

N•20, seems reasanabie since, while the" aggregate inventory position 

tends to be a worse measure for the state of the system, it beoomes 

more harmless to model the products individually in case of many 

products. This second effect can be explained as follows: the delay due 

to other products depends (mainly) on the utilization rate, which stays 

constant if we increase the number of products. The average demand per 

product decreases. Therefore the demand per product during the period 

it queues for allocation of the capacity decreases. 

When t increases the simple product-oriented beuristic gets better. To 

understand this, it has to be realised that a change in t will have 

similar effects as a change in L(ip) (see equation (3.5)). In Figure 

l 
L( ip) 20 

0 5 10 15 20 
ip-

Figure 3.5. Comparison of L(ip) for 1=0 and 1=10; a=1, b=3. 

- 59 -



3.5, we oompare L(ip) for t=10 with ~-o. In the case of 1=10, the 

minimum of L(ip) is higher and the slopes are less steep. Consequently, 

the influence of a delayed production due to other products is smaller 

in the case of 1=10 than in the case of 1=0. 

From Table 3.2, we also see that max(CL,PL) = CL, except in the cases 

where À = 0.5 and N = 20. These are also the only cases where 

SPH < SCH. This suggests an operational criterion for choosing between 

the simple capacity-oriented beuristic and the simple product-oriented 

heuristic. This criterion may be explained as follows (see ~igure 3.6): 

since both lower bounds, PL and CL, are less than the cost of the 

overall optima! strategy (OC), it is obvious that the maximum of both 

is nearest to oe. If one lower bound is nearest to the actual oost, it 

may be argued that the assumptions that have led to this lower bound 

are most realistic and therefore the oorrasponding beuristic will 

perform best. 

PL CL oe SCH SPH cost 

Figure 3.6. Relation between the costs. 

At this point, the criterion may seem somewhat speculative, but we will 

verify it in Section 3.9. For the present, we will use this criterion 

in order to ohoose a heuristic. 

From Table 3.2 it also follows that only in the cases with N=5, N=20, 

1=5 or 1=10, the differenoe between the highest lower bound and its 

oorresponding heuristic is significant. Note that the cost of the 

overall optima! strategy always lies between max(PL,CL} and 

min(SPH,SCH) (see Figure 3.6). Consequently, in all other cases, the 

heuristio, oorreeponding to the highest lower bound, is almost optima!. 

For the cases 1=5 and 1=10, we have determined the oost of the overall 

optima! strategy (see Table 3.1). It proves that in these cases, the 
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optima! cost is almost equal to the cost of the simple capacity­

oriented heuristic (OC ~ SCH). Therefore, the best of the two simple 

heuristics can only be improved substantially in case of many products. 

In these cases numerical problems make it impossible to find the 

optima! strategy. We would like to know whether it is easy to find more 

advanced heuristics that are better than these simple heuristics in 

case of many products. 

In order to find more advanced heuristics, it is possible to 

approximate the size of the delay in the availability of the capacity 

for a single product in the product-oriented approach, or it is 

possible to estimate the imbalance between the products in the 

capacity-oriented approach. The first approach leads to a more actvaneed 

product-oriented heuristic and the second to a more actvaneed capacity­

oriented heuristic. These more actvaneed heuristics, however, will not 

perform better than the optimal product-oriented strategy, respectively 

the optimal capacity-oriented strategy. Therefore, we have determined 

the optimal capacity-oriented and product-oriented strategies by means 

of simulation so that we have an idea of how much we can imprave on the 

simple heuristics in case of many products. The results for these 

strategies are given in Table 3.3. 

Table 3.3. Results for the optimal capacity-oriented and product­

oriented strategies for negative-exponentially distributed 

interarrival times between production opportunities. 

op ti mal optima! 

a b À N q R, p capacity- product-

oriented oriented 

strategy stràtegy 

ll occ ll OPC 

1 3 1 .67 5 2 0 0.84 10 12.83/12.67 1 12.77112.54 

1 3 1.67 20 2 0 0.84 12 20.66/20.69 -1 21.43/21.31 
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Explanation Table 3.3: By means of simulation, we have determined 

the optimal capacity-oriented and the optimal product~oriented 

strategies in case of many products. The coats that are found for 

two different simulation runs are given in this Table. 

As follows from this Table, there is little impravement when using the 

optimal capacity-oriented or the optimal product-oriented strategy 

instead of the heuristic that has been ohosen via the criterion. 

Therefore, in the situations considered here, there is no need to use 

more actvaneed heuristics than the simple ones. In situations where N is 

large and at the same time p is large, it may be sensible to consid~r 

more actvaneed heuristics (we will return to these more actvaneed 

heuristics in Chapter 4). 

Note that the optimal capacity-oriented strategy and the optimal 

product-oriented strategy give about the sameperformance (OCC:OPC). We 

will return to the implications of this in Chapter 4. 

3.9 Sensitivity Analysis. 

In Sections 3.2 to 3.5, we have discuseed a general single-phase multi­

product problem and we have put forward some strategies and heuristics. 

These strategies and heuristics have been evaluated in the previous 

Section. This evaluation, however, was based on the analysis of a 

specific model (see Section 3.6). We obtained the following results: 

1. The best of the two simple heuristics is close to optimal. 

2. It is best to choose the simple capacity-oriented heuristic if 

the oorrasponding lower bound is highest (CL>PL) and the simple 

product-oriented heuristic otherwise. 

In this Section, we want to investigate whether these results can be 

extended to the general model (of Section 3.2) or whether they result 

from the choice of the specific model (of Section 3.6). This concludes 
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our analys1s of the single-phasemodel with identical products under a 

pu~ely stochastic demand. In subsequent Chapters, we will investigate 

roodels where demand is partly known beferehand and models with non­

identicaJ products. 

Since choosing the specific model consisted of three parts (see Section 

3.6), the sensitivity analysis, in this-Section, will consist of three 

parts as well: 

-sensitivity for the oost rate p(i) 

-sensitivity for the process that generatea production 

opportuni ties. 

-sensitivity for the distribution of the demand-size (S) 

3.9.1 Sensitivity for the coat rate p(i). 

For any given, convex oost rate p(i), with p(i)~~ for 1~±00 , the same 

approach can be used in order to find the heuristics and their 

corresponding lower bounds. As has been illustrated at hand of Figure 

3.5, the performance of the strategy depende on the height of the 

minimum for p(i) (or equivalently L(ip) in case i>O) and on the 

steepness of the slopee near the minimum. 

Therefore the sensitivity for p(i) has been checked sufficiently by 

oomparing the reference case inSection 3.8 with the cases when b=1, 

b=10, i=5 or i=10. Consequently, one may expect to find a strategy that 

is almost optimal in situations with other oost rates as well, if one 

chooses the simple beuristic that is indicated by the criterion. 

3.9.2 Sensitivity for the process that generatea production 

opportuni ties. 

To get an insight into the sensitivity of the results for the process 

by which capacity beoomes available, we have derived beuristics for 
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other distribution functions of the interarrival time between 

successive production opportunities. As we have mentioned in Section 

3.8, we can rescale the first moment of the interarrival time to one. 

Table 3.4. Results for the simple heuristics with distribution tunetion 

c2(x) for the interarrival time between production 

opportunities. For an explanation see Table 3.3. 

capacity- product-

a b À N q .11. p CL PL oriented oriented 

heuristic heuristic 

B SCH B SPH 

1 3 1.67 2 2 0 0.84 7. 72 3.43 6 7.97/8.17 0 10.94/11.1C 

1 3 0.5 2 2 0 0.25 1.15 1.50 -1 2.23/2.23 -1 1 .59/1 • 59 

1 3 1.8 2 2 0 0.9 12.73 3.71 11 1 3 • 09 I 14 • 11 0 21.28/22.0< 

1 3 1.67 5 2 0 0.84 7.72 4.34 6 9.30/9.49 -1 13.40/13.29 

1 3 1.67 20 2 0 0.84 7.72 11.39 6 19.84/20.01 -1 17.24/17.26 

1 1 1.67 2 2 0 0.84 3.88 1.74 2 4.1 6/4. 17 -1 4.83/4.88 

1 10 1.67 2 2 0 0.84 13.34 5.81 12 13.70/13.68 1 25.14/26.12 

1 3 8.35 2 10 0 0.84 23.13 12.10 18 24.14/24.94 0 33.68/34.56 

1 3 1.67 2 2 5 0.84 8.52 6.36 15 9.77/9.80 5 11.54/11.4 

1 3 1.67 2 2 10 0.84 9.27 8.32 24 11.04/11.15 10 12.05/12.0~ 

In Table 3.4, respectively 3.5, we present the results for heuristics 

for other distribution functions of the interarrival time between 

production instants, namely 
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-2x c2(x) = 1-e (1+2x) (3.34} 

and 

C3(x) = 1 - 0.7887e-1.5774x- 0.2113e-0.4226x (3. 35) 

It is easy to check that both distributtons have the same mean as the 

distribution that is used in Section 3.8 (namely mean one), whereas the 

varianee for c2(x} is 0.5 and the varianee for c
3

(x) is 2. 

Table 3.5. Results for the simple heuristics with distribution function 

c
3

(x) for the interarrival time between production 

opportunities. For an explanation see Table 3.3. 

capacity- product-

a b À N q l p CL PL oriented oriented 

heuristic heuristic 

s SCH s SPH 

1 3 1.67 2 2 0 0,84 19.34 7.35 17 20.16/20.44 1 28.25/30.21 

1 3 0.5 2 2 0 0.25 2.04 2.33 0 2.93/2.93 -1 2.56/2.59 

1 3 1.8 2 2 0 0.9 29.46 8.24 29 35.40/35.23 2 52.11/52.97 

1 3 1 .67 5 2 0 0.84 19.34 7.52 17 20.91/21.19 -1 34.13/35.47 
1 3 1.67 20 2 0 0.84 19.34 13.25 17 27.77128. 13 -1 31.71/33.26 

1 1 1.67 2 2 0 0.84 9.62 3.57 7 9.83/10.27 -1 12.02/12.44 
1 10 1.67 2 2 0 0.84 33.38 13.33 31 34.42/36.52 4 64.05/66.84 

1 3 8.35 2 10 0 0.84 82.06 30.53 71 83.95/85.94 6 116.871120.81 

1 3 1.67 2 2 5 0.84 19.67 9.09 25 20.47/21.77 6 27.63/29.16 
1 3 1 .67 2 2 10 0.84 19.97 10.52 34 20.72/23.00 11 25.92/28. 11 

- 65 -



As can be seen, the criterion to use the simple heuristic for which the 

corresponding lower bound is maxima!, again chooses the best heuristic 

in each situation. This suggests that the criterion is insensitive for 

the underlying capacity process. 

In situations where the highest lower bound is close to the performance 

of the heuristic that is indicated by the criterion, this beuristic is 

almost optima! (compare Section 3.8). Consequently, in Table 3.4, only 

for situations with large values of i and N, the simple heuristics may 

be improved. These are the same situations as in the original model 

(see Table 3.2). In Table 3.5, only in situations with large values of 

N and in the situation with À~1.8, the simple beuristic may be 

improved. 

We also want to méntion the influence that changing the second moment 

of the distribution of the interarrival times has on the choice between 

the capacity-oriented and the product-oriented approach. If we oompare 

the results of Table 3.2, 3.4 and 3.5, we see that a higher varianee 

makes it more attractive to use a capacity-oriented approach. This 

seems reasonable, since the capacity-oriented approach takes the 

capacity-restriction explicitly into account. 

3.9.3 Sensitivity for the distributton of the demand-size (S). 

For the specific modelinSection 3.6, we have assumed that s~1. To 

check whether the assertions for the specific model depend on this 

assumption, in this Section, we will consicter a compound Polssen 

process. The only difference from the model of Section 3.6, is that S 

will be stochastic now. More explicitly, we have ohosen the following 

distributton forS (notice that ES•1): 

s. {: 

with probability 2/3 

with probability 1/3 

The results for this model are given in Table 3.6. 

As we see, the simple capacity-oriented heuristic performs best when 
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CL > PL. Otherwise, the product-oriented heuristic performa best. 

Therefore the criterion seems insensitive to the distributton of S. 

Also the performance of the best heuristic is, in most situations, 

close to its corresponding lower bound, Which again indicates 

insensitivity. 

Table 3.6. Results for the simple heuristics if the demand fellows a 

compound Poisson process. For an explanation see Table 3.3. 

capacity- product-

a b À N q l!. p CL PL oriented oriented 

heuristic heuristic 

B SCH B SPH 

1 3 1.67 2 2 0 0.84 21.72 8.03 10 23.00/21.76 1 29 .17/30.28 

1 3 0.5 2 2 0 0.25 2.50 2.62 -1 3.5613.54 -1 2.8812.86 

1 3 1.8 2 2 0 0.9 36.45 8.88 19 36.46/37.32 1 60.29/58.25 

1 3 1.67 5 2 0 0.84 21.72 8.34 10 25.48/24.23 -1 35.25/35.97 

1 3 1 .67 20 2 0 0.84 21.72 14.68 10 34.85136.07 -1 35.63/36.65 

1 1 1.67 2 2 0 0.84 10.34 3. 71 Ij 10.57/10.87 -1 12.66/12.74 

1 10 1.67 2 2 0 0.84 40.99 13.99 20 40.66/43.47 4 70.93/68.49 

1 3 8.35 2 10 0 0.84 49.87 20.07 36 51.06/50.75 4 66.97/67.68 

1 3 1.67 2 2 5 0.84 22.29 12.29 20 23.73/25.00 7 27.54/29.39 

1 3 1 .67 2 2 10 0.84 23.57 15.55 29 26.39/27.06 11 32.39/32.68 
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3.10 Discussion of Chapter 3 and preview of the next Chapters. 

In this Chapter, we have compared the capacity-oriented and the 

product-oriented approaches fora single-phasemodel with identical 

products in which demand is purely stochastic. 

It has proven that simple heuristics, that are based on the capacity­

oriented approach or on the product-oriented approach perfarm well in 

most situations. These simple beuristics can be determined by analyzing 

one-dimensional models. This analysis leads also to approximations of 

the costs of these heuristics. Using these approximations, a criterion 

has been found to choose between the capacity-oriented and the product­

oriented approaches. According to this criterion, the beuristic is 

ohosen for which the approximation of the oost is maximal. 

The beuristic that is indicated by this criterion performed well in the 

situations that have been investigated in this Chapter. As might be 

expected, the capacity-oriented approach performed best in case of a 

tight capacity-restriction, whereas the product-oriented approach 

became better as the numbel' of products increased. It has also proven 

that the varianee of the availability of the capacity played a role for 

the choice between the capacity-oriented and the product-oriented 

approaches. In case of a high variance, the capacity-oriented approach 

is more attractive. 

We have finished this Chapter with a sensitivity analysis for the 

parameters of the general model with identical prOducts and a purely 

stochastic demand. 

In Chap ter 4, we wi 11 cons i der a· mode 1 where demand is partly know~ 

beforehand, whereas the stochastic processes that underlie demand are 

still the same for all products. In such a model, the products are no 

longer identical in the short-run. This leads to some difficulties for 

the capacity-oriented and the proouct-oriented approaches. Intertwined 

with the choice of the approach is the question of how the information 

that is available about demand is used in the planning. In Chapter 4, 

we will study some different ways to deal with this information. 

In Chapter 5, we will consicter a situation where the stochastic 

processas that underlie demand are different for the products. In such 

a situation, it will prove that the capacity-oriented approach has to 
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be restricted to so-called fast~movers, whereas the slow-movers are 

controlled via a product-oriented approach. 

We will finish this text by designing a Material Coordination System 

for a simple example of a plastic products factory, using the results 

of this text. In the plastic products factory, there will be only one 

capacity bottle-neck, which makes the relation with the research, 

presented in this text, more easy. 
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Chapter 4. Identical products; partly known demand. 

4.1 Introduetion of the model. 

In this Chapter, we will consicter a model in which demand is partly 

known beforehand. The model, that we consider, is similar to the model 

of the previous Chapter (see Figure 3.1). Again there areN products 

competing for the allocation of the same resource. Each product has the 

same demand-characteristics. In the model of this Chapter, however, the 

realisation of a part of the demand of each product is known some time 

in advance. Since these realisations may differ, it is necessary to 

treat the products intheshort-run as though they were not identical. 

Since it is more natural to introduce foracasts for the demand in a 

perioctic review model, we have ohosen to analyze such a model in this 

Chapter. 

For the purpose of investigating the effect of different foracasts for 

the demand of different products on the results of tha previous 

Chapter, it is not so important how these foracasts are generated. It 

is only important that (due to different forecasts) tha products cannot 

be treated as identical in the short-run. Tharefore, we have ohosen the 

demand of productjin pariod t, say D.(t), to consist of two partsas 
J 

denoted in (4.1). 

(4.1) 

Tha realisation of U.(t) is supposed to be known at the end of period 
J 

t, whereas the realisation of Kj(t) is known alraady at the end of 

period t-T. We assume that Uj(t) has a discrete distribution, which is 
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independent of j anà t. The probability that U.(t) equals x will be 
J 

àenoted by n(x), for x= 0, 1, 2, ••• Analogously, we have a discrete 

distribution {K(x)}x:o for the Kj(t)'s. We assume that there are no 

correlations between demand realisations for different products, 

between different periods or between U.(t)'s and K.(t)'s. 
J J 

Analogous to Chapter 3, we define the N-vectors ~(t) and ~(t) as 

follows (compare (3.7)): 

_!!(t) := (U1(t), U2(t), ••• , UN(t)) 

~(t} := (K1 (t), K2(t), ... , KN(t)) 

At the start of each period, we have the opportunity to start a 

production run for at most one product. Production is in batches of 

size q. A batch, that is started at the start of period t, occupies the 

capacity only during period t, and will arrive at the stock-point (of 

the corresponding product) in period t+t (for an interpretation of this 

flowtime t see Figure 3.3) 

demand 

Q_(s) = ~(s) + !!(s) 

period s 
production decision 

(!(s), !(s+1), ••• , !(s+T-1) 

are known) 

inventories of 

batch started 

in period s-9-

is measured 

Figure 4.1. Schematic notatien of the sequence of events in pertod s. 
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In Figure 4.1, we have given a scheme of events, occurring in an 

arbitrary period s, which may help to onderstand the model. 

In this Chapter, the costs are reviewed periodically insteadof 

continuously as in the previous Chapter: 

Let I.(t) denote the inventory level of product j at the end of period 
J --

t. With a given realisation of lj(t), say i, a oost p(i) is incurred. 

This p(i) has again the same characteristics as in Chapter 3. 
To simplify the analysis, we will assume that the oost that corresponds 

to I.(t) is incurred in period t+l. 
J 

The reason to consider this model is that we want to oompare the 

capacity-oriented and the product-oriented approaches in a situation 

where the products are not identical in the short-run. However, the 

choice of the approach may depend on the way the information about 

future demand is used. Therefore, we will discuss saveral methods to 

deal with this information. For each of these methode, we will describe 

the capacity-oriented and the product-oriented approaches. To avoid 

that the topic of oomparing the capacity-oriented and the product­

oriented approaches gets lost, due to the separate discussion of 

different ways to deal with the information that is available about 

future demand, we will overview the results inSection 4.6.4. 

In Sections 4.2 to 4.5, we will describe approaches that lead to 

feasible strategies for this periodic review model. To avoid 

complications with notations, we will describe the approaches at hand 

of the situation with ~-0, which means that if a production run is 

started at the start of period t, the batch will arrive at the stock­

point during the same period. As we have seen in Chapter 3, it is 

straightforward to extend the description to situations with ~>O, by 

minimizing the 11 shifted cost11 , which is the expected oost l!. periods 

later. In this situation, where demand is partly known beforehand, this 

will lead to expectations that are condi tioned on the realisations of 

the kj's, but the sameapproach still works. We will return to this in 

Section 4.4. 

InSection 4.6, we will give numerical results for a specific periadie 

review model and we will draw some conclusions. 
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4.2 Purely stochastic approach. 

At the start of period t, the realisations ~(t), ~(t+1), ••• , ~(t+T-1) 

are known. It is possible, to use this information about the future 

behaviour of demand when making the production deelsion in period t. In 

the purely stochastic approach, however, this information is ignored. 

This will lead to a relatively simple approach, especially if we 

restriet ourselves to so-called capacity-oriented and product-oriented 

strategies (as we did for an analogous continuous review model - see 

Chapter 3). In separate Sections, we will describe both types of 

strategies for this perioctic review model. 

4.2.1 Capacity-oriented strategies. 

In order to be able to define the capacity-oriented strategies, in this 

perioctic review model, we introduce the aggregate inventory at the end 

\ N . 
of period t, I(t) := Lj•llj(t), as a measure for the amount of capacity 

that is stored in the system. 

For capacity-oriented strategies, the deelsion whether or not to start 

a production run at the start of period t, depends only on the 

realisation of the aggregate inventory at the end of the preceding 

period (i(t-1)). A production run wil! be started if and only if the 

aggregate inventory is less than or equal toa certain critica! level, 

say a. The production run will then be assigned to the product with 

minimal inventory (if there are several products with minimal inventory 

we will choose one of them randomly). 

As we have seen in Chapter 3, it is difficult to find an optima! 

capacity-oriented strategy, since it requires insight in the 

distribution of the aggregate inventory over the individual products. 

Consequently, the problem of determining this optimum beoomes N­

dimensional. To avoid this, we will use an approximation of the 

distribution of the aggregate inventory over the individual products. 

In Chapter 3, we have used the approximation that is based on the 

assumption that it is always possible to keep the inventories of 
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individual products equal. Since this approximation performed well, we 

will use it bere again. However, other approximations would be possible 

(as a matter of fact, we will suggest another approximation in Beetion 

4.6.3). 

With the approximation that the inventories can be kept equal, we can 

replace the oost Ij~1 p(ij) by N•p(Lj~lij/N). 

Using this approximation, we will determine an optima! strategy (the 

simple capacity-oriented heuristic). Therefore, notice that 

{I(t), t=1, 2, ••• } is a Markov Chain with countable state space, under 

application of any capacity-oriented strategy e. The transition 

probabilities in this Markov Chain depend on the choioe of 6 and on the 

distribution of the aggregate demand over one period. Consequently, it 

is possible to caloulate the transition probabilities rae(k,h) that the 

aggregate inventory goes from k at the start of one period to h at the 

start of the next. 

We will introduce the functions t
6

(k) and c6(k) as the expected time, 

respectively the expected (approximate) oost until the aggregate 

inventory equals B, under application of the oapacity-oriented strategy 

with critica! level 6, if the aggregate inventory equals k at the end 

of a given period. We aseurne that these variables exist and that they 

are finite for all k. Then it is easy to see that the following 

relations hold (by definition t
6
(s) and c

6
(S) are set equal to zero): 

f·(k) 1 + Ihra
6
(k,h)·t6(h) for k"'B 

t 6<s> 0 (4 .2) 

and 

f'(k) ~ N•p(k/N} + Ihra
6
(k,h}·c

6
(h) for k .. B 

es (IS) = 0 (4 .3) 

After truncating the state-space, we can determine the solution of 

these one-dimensional relations, for example by means of successive 
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approximation. It is easy to see that t
6

(k) 3 ta+l (k+l ), so that we 

have to solve (4.2) only for one choice of a, to find the salution for 

all choices of a. 

lf the approximate, expected coat per period is finite, under 

application of the capacity-oriented strategy denoted by a, this 

average oost can be denoted as in (4.4). Notice that (4.4) represents 

the quotient of the total expected coat and the expected time between 

successive visits to a. 

N•p(B/N) + Ihra
8
ca,h)·c6(h) 

+ Ihra6(S,h)·ta{h) 

( 4.4) 

Since only the numerator of (4.4) depends on a, we only have to solve 

(4.3) for several choices of a to find an optimal choice under the 

approximate oost. The strategy that we find if minimizing this 

approximate, average oost per period, will be referred to as the simple 

capacity-oriented heuristic. We will denote this heuristic by the 

choice of a that i t corresponds to, say Sc. As we have se en in Chapter 

3, the approximate, average cost per period for the simple capacity­

oriented heuristic, is a lower bound for the actual coat of any 

strategy. Therefore, we will denote the approximate coat that 

corresponds to this heuristic by CL (capacity Lower bound). The actual 

coat of using this heuristic will be higher. We will denote this coat 

by SCH (Simple Capacity-oriented Heuristic). 

We will return to numerical results for both the simple capacity­

oriented heuristic and the optimal capacity-oriented strategy in 

Section 4 .6. 

4.2.2 Product-oriented strategies. 

Product-oriented strategies in the purely stochastic approach are found 

by decomposing over the products. Since in the purely stochastic 

approach, the products are identical, a production run will be started 

if and only if the minimal inventory has dropped below a certain 
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oritical level, say a. As for the capacity-oriented strategies, a 

production run will be assigned to the product with minimal inventory. 

To find the optimal product-oriented strategy, we have to take into 

account the possible ctelay in the availability of the capacity due to 

ether proctucts. For reasons, that have been explainect in Chapter 3, we 

search for simple approximations of this delay. The simplest 

approximation, we find by assuming that the products never interfere 

with each ether on the capacity, so that there is no delay in the 

availability of the capacity. In Sectien 4.6.3, we will also discuss 

another approximation, but seeing the results of this simplest 

approximation in the continuous review model (see Chapter 3), it seems 

reasonable to use it here as well. The resulting strategy will be 

referred to as the simple product-oriented heuristic. The critical 

level that this simple product-oriented beuristic conforma to, will be 

denoted by ap. As we have discussed in Chapter 3, the cost that we find 

in the model under the assumption that the products never interfere on 

the capaci ty, will be a lower bound for the actual cost of any 

strategy. Therefore, we will denote this approximate cost by PL 

(Product Lower bound). The actual oost of using the simple product­

oriented beuristic will be higher. We will denote this actual oost by 

SPH (Simple Product-oriented Heuristic). 

Nottee that in order to find the simple product-oriented heuristic, the 

same approach as for the simple capacity-oriented beuristic can be 

used, except that we now consicter the Markov Chain 

{Ij(t), t=1, 2, ... }. 

In Sectien 4.6, we will return to numerical results for both the 

optimal product-oriented strategy and the simple product-oriented 

heuristic. 

4.3 Introduetion of rolling schedules. 

Now we will consicter the strategies that we find if we use the 

information that is available about future demand. Consequently, the 
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production deelsion at the start of period t, will be basedon the 

following realisations: !(t-1), ~(t), ~(t+1), •.• , ~(t+T-1). 

The strategies that we consider, can be written as a tunetion 

~(!(t-1), ~(t), ~(t+1), ••• , ~(t+T-1)), where ~<!<t-1), ~(t), ~(t+1), 

••• , ~(t+T-1))=r corresponds to the deelsion tostart a production run 

for product r, if 1 ~ r ~ N, or to the decision not to start a 

production run if r=O. 

Notice that f(!Ct-1), !(t), !(t+1), ••• , !(t+T-1)), t=1, 2, ••• }is a 

Markov Chain with countable statespace under application of any 

strategy ~. The transition probabilities in this Markov Chain can be 

determined, straightforwardly, since the distribution of ~(t) and 

!(t+T) is given. This makes it, theoretically, possible to determine an 

optimal strategy. However, even for small values of T and N, the 

numerical problems, inherent to determining an optimal strategy, make 

this approach impossible. Even after aggregation or decomposition over 

the products, the state of the system is described by a (T+1)­

dimensional vector. For larger values of T this will present us with 

severe numerical problems. Indeed, one usually applies a completely 

different approach in such a situation. This is the so-called rolling 

schedule approach. In such an approach, a production plan is formed by 

solving a multi-period problem and implamenting only the production 

decision for the first period (see Baker [5]), The next period, the 

variables are updated and the procedure is repeated. 

The standard way to determine the production plan (each period anew) in 

a rolling schedule approach, is by minimizing the total costs over a 

finite planning period (see Baker [5], McClain and Thomas [39], Morton 

[41], Nuttle and Wijngaard [43] and Zabel [60]). 

Notlee that in the rolling schedule approach, the tuple (!(t-1), ~(t), 

~(t+1), ••• , ~(t+T-1)) is given and the schedule is constituted as 

thougn no new realisations of the K's will beoome available. This makes 

it more simple than analysing the Markov Chain that we have mentioned 

above. 

Let Thor denote the horizon over which we want to minimize the costs, 

when determining a production schedule. Remark that the planning 

horizon need not be equal to the horizon over which demand is partly 

known (i.e. Thor • T). IncaseT >Thor, more realisations of the K­

part of demand are available than will be used in determining the 
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production plan (if t-o). In case T<Thor, no realisations are available 

for K-part of demand in the last periods of the planning period. In our 

examples, we will restriet ourselves to the situation where Thor = T, 

so that the length of the planning period and the horizon over which 

demand is partly known, are in balance. The reasen for restricting 

ourselves to this situation, is that it is our aim to consicter the 

influence a partly known demand has on the choice between capacity­

oriented and product-oriented strategies. Therefore, we are not so much 

interestad in varying T and Thor independently. However, when 

describing different strategies, we will not require that Thor = T, so 

that it is clear how to use this approach in situations with Thor • T. 

Notice what happens if we apply such a rolling schedule approach, in 

case we would not account for any costs after the planning period. The 

planning will then be based on the idea that there is no sense in 

keeping inventory after Thor, because p(O) • 0. Consequently, the 

solution will force us to start selling our safety-stock as we approach 

the horizon of the schedule. In case the capacity is infinite and Thor 

is large, this effect may be of minor importance, but as the capacity 

beoomes more tight, the depletion of (capacity) safety-stock may have 

long-lasting effects. To avoid this problem, one might increase the 

planning period, so that there is hardly any influence on the first 

pertod decisions. However, extending the planning pertod will increase 

the complexity of the problem that has to be solved each period anew. 

Therefore, instead of extending the planning period, we prefer to use a 

short planning period but we add an extra component to the oost in the 

final period (see Baker [5]). This 11final oost function" bas to denote 

the preferenee for ending with enough safety-stock for the future 

(aftar the horizon). 

If no final oost function is used, even in case the capacity 

restrietion is not tight, it may be decided net to produce a batch 

because the inventory holding costs are toe high in the short-term, 

while in fact such a batch could have been required. However, in case 

of an excess of capacity, a deficit of stock will only have short-term 

effects. Even with a short planning horizon, the deelsion net to start 

such a production run at the end of the planning period, has little 

effect on the first period decisions (whioh will be implemented). The 

effects of postponing the start of a production run are more severe in 

case of a tight capacity restriction. Therefore, we will only use a 
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final cost tunetion in combination with a capacity-oriented approach. 

This final cost function should denote the preferenee for ending with 

enough capacity buffered in the inventories at the end of the horizon. 

Therefore, the final cost function has to depend only on the aggregate 

inventory at the end of the planning period. To keep the analysis 

simple, we will base the final cost function on a purely stochastic 

approach. Wedefine the final cost function as (for the definition of 

the variables, see the previous Section): 

(4.5) 

where k is the aggregate inventory at the end of the planning period. 

Notlee that via definition (4.5), the final cost function denotes the 

total deviation from the approximate, average oost per period until the 

aggregate inventory reaches Sc, under application of the simple 

capacity-oriented heuristic. Thus the final cost function is a relative 

measure for the capacity problems that may be expected if the aggregate 

lnventory at the end of the planning period is given. 

We will return to numerical results, using this final cost function, in 

Sectien 4. 6. 

Now, let us return to the problem of finding a production plan over the 

horizon Thor. There are two, fundamentally different, approaches to 

determine a production plan, namely: 

-the Stochastic Dynamic Programming approach 

-the Deterministic Dynamic Programming approach. 

The difference between the two approaches is that in the Stochastic 

Dynamic Programming approach, one accounts for the stochastic behaviour 

of the demand, whereas in the Deterministic Dynamic Programming 

approach, it is assumed that the demand can ·be forecasted accurately. 

We will describe both approaches separately in Sectiens 4.4 and 4.5. 
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4. 4 The Stoohasti o Dynamia Programming approach. 

As we have mentioned inSection 4.1, the oost incurred in period t 

depends on the realisation of the inventories at the end of period t-1. 

Consequently, we can pioture the costs that we must minimize if we 

construct a production plan for the planning period as in Figure 4.2. 

LjP<t j <t-n > 

t 

t t+1 

L-P(i.(t-1+Thor)) 
J J 

t (...__ ___ _ 
t-1 +Thor 

Figure 4.2. The total costs over the planning period. 

For the Stochastic Dynamic Programming approach, the stochastic 

behaviour of demand is taken into account. If we want to take the 

stochastic behaviour of demand into account, the determination of a 

production plan over the planning period still requires that we 

consicter a large state space. Therefore, we will restriet ourselves to 

product-oriented and oapacity-oriented strategies for the Stochastic 

Dynamia Programming approach. 

4.4.1 Product-oriented strategies. 

As we have seen, product-oriented strategies require decomposition over 

the products. Consequently, the deelsion whether or not tostart a 

production runfora given product j, is determined on the status of 

that individual product. 

Therefore, in a product-oriented approach, first for each individual 

product a production plan is determined over the whole horizon. As 

usual in a rolling schedule approach, only the first period decisions 

are implemented. However, it is not allowed tostart more than one 

production run per period. Consequently, weneed a rule that determines 
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which product will be produced if there are several products that 

require such a run. 

First, we will describe how a production plan per product is determined 

in such a product-oriented approach and next we will discuss the form 

of the "composi ti on rule", on which we deelde how to combine the 

production plans in the first period. Note that we have mentioned in 

Sectien 4.3, that no final oost function will be used in combination 

with a product-oriented approach. 

We will restriet ourselves now to a specific product j and given 

realisations k.(t), k.(t+1), ••• , k.(t+T-1). 
J J . J 

Suppose that the inventory of product j (as projected in executing the 

Deterministic Dynamic Programming plan) equals 1 at the start of period 

t+s {i.e. Ij(t+s-1) • i). Define the total expected costs from period 

t+s until the end of the planning period (see Figure 4.2), under 

application of a strategy that minimizes the total cost over this 

period, as v~(i). 

Introduce the transition probabilities rd~(i,h,O) and rd~(i,h,1) as the 

probability of a transition of the inventory for product j from i at 

the end of period t+s-1 to h at the end of period t+s, if we do not 

produce product j, respectively if we do produce product j (s • 0, 1, 

••• , Thor-1). These transition probabilities can be determined 

straightforwardly, si nee the realisations kj (t), kj (t+l), ... , 

k.(t+T-1) are given. 
J 

Using these transition probabilities it is easy to see that the 

vs(i)'s satisfy the following recurrence relations: p 

VThor(i) "'0 
p 

for s•0,1, ••• ,Thor-1 

- 82 -

(4.6) 



Since the above recurrence relations are one-dimensional, they can be 

solved (after truncating the state-space) without much computational 

effort e.g. by backward recursion. 

InSection 4.1, we have announced that we would discuss the strategies 

in this Chapter for the situation where ~~o, because the extension to 

situations with ~>0 is simple. At hand of the product-oriented 

strategies in the Stochastic Dynamic Programming approach, we want to 

demonstrata this extension. Therefore, we introduce the "conditional 

shifted costs" LTs(ipj I k.(s), k.{s+1), •••• k.(T)) as the expected 
J J J 

cost in period s+~ if the inventory position of product j equals ipj at 

the start of period s, conditioned on the realisations of future demand 

that are available. Note that it is straightforward to calculate these 

shifted costs since the distributions of the Uj's and Kj's are known. 

By using these conditional shifted costs in (4.6) insteadof p(i), we 

find a production plan for 1>0. 

Above, we have shown how we can determine a production plan for each 

product. Now, we will discuss how to oompose the production plans for 

different products in the first period. To find an optimal allocation 

of the production run in the first period, we should consicter the 

coordination of the products over the whole horizon. However, this 

leads to a problem that is again as complex as the original problem 

without decomposing over the products. To avoid the numerical problems 

that are inherent to such an approach, we will only consicter simple 

coordination rul es. Such a simple rule is the "Myopie rule". This 

Myopie rule has the following form: 

Myopie rule: Consicter only the first period in wbich the allocation of 

the production run influences the cost. Assign the run to the product 

for which the expected inventory is minimal then. In case 1•0, this 

means that the production run is assigned to the product for which 

ij(t-1)-kj(t) is minimal (if 1>0, more realisations of the kj's and 

information about production runs that already have been started, will 

be required). Notlee that if T•O, so k.(t) has not realised yet, we 
. J 

find the same allocation rule as in the purely stochastic approach. 
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To check how well this rule performs, we have also oonsidered a more 

sophisticated oomposition rule. This rule is the "Value Funotion rule" 

and can be described as follows: 

Value Function rule: In construoting the production plan, we have 

determined the Value Function v;(i), that denotes the expected coats 

from period t+s on. Using this, we oan express the oost that is 

incurred if we do not produce a gi ven product j now, by: 

\ 0 1 \' 0. 1 Lh rd.(i.(t-1),h,O)•v (h)- Lh rdj(l.(t-1),h,1)•vp(h) 
J J p J . . 

(4. 7) 

Therefore, the Value Function rule assigns a production run to the 

product for which (4.7) is maximal. An analogous approach has been 

proposed by van Beek [6] and Wijngaard [57]. 

We have ooropared the two composition rules, numerioally, for a specific 

sltuation, namely: 

1) The known part of the demand (Kj(t)) has a Poisson distributton 

wi th parameter il· 

2) The unknown part of the demand (U.(t)) has a Poisson 
J 

distributton with parameter À. 

3) The oost tunetion is ohosen as p(i) + -
: = ai +bi • 

Notlee that the utilization rate of the capacity is given by 

P := N•(À+).t)/q. 

Simulation resul ts for both allocation rul es are gi ven in Table 4.1. As 

the results indicate there are only small differences between the two 

allocation rules. The only exception is the last situation, but there 

the utilization rate is very high, so th~t it is unlikely that one will 

use a product-oriented approach at all (we will return to this in 

Section 4.6). Therefore, we will use the Myopie rule in combination 

with product-oriented strategies. 
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Table 4.1. Comparison of the Myopie rule and the Value Function rule to 

allocate a production run for the product-oriented strategy 

in the Stochastic Dynamic Programming approach (Thor•T). 

q i N a b À j.l Thor p Myopie Value Function 

12 0 2 1 3 2.5 2.5 2 0.83 11 • 86/11 • 99 11 • 89/1 2. 01 

12 0 2 1 3 2.5 2.5 3 0.83 11.93/12.04 11 • 93/11 • 81 

12 0 2 1 3 2.5 2.5 5 0.83 11.95/11.95 12.01.11.86 

12 0 2 1 3 0 5 2 o. 83 10.75/1 o. 71 10.58/10.66 

12 0 2 1 3 5 0 2 0.83 12.20/12.26 12.30/12.28 

20 0 2 1 3 2.5 2.5 2 0.5 15.86/15.96 1 5. 88/1 5. 87 

12 0 5 1 3 1 1 2 0.83 27.60/27.36 27.40/27.35 

12 0 10 1 3 0.5 0.5 2 0.83 48.74/48.99 48.86/48.89 

12 0 2 1 1 2.5 2.5 2 0.83 7.4717.47 7.49/7.40 

12 0 2 1 10 2.5 2.5 2 0.83 18.66/18.66 18.62/18.44 

12 5 2 1 3 2.5 2.5 2 0.83 16.88/1 6. 85 16.94/16.83 

12 10 2 1 3 2.5 2.5 2 0.83 21.35/21.38 21.15/21.20 

12 

12 

12 

0 2 1 3 0.5 0.5 2 0.17 9.05/9.05 9. 11 /9. 12 

0 2 1 3 2.75 2.75 2 0.92 1 7. 07/16. 75 16.83117.08 

0 2 1 3 2.9 2.9 2 0.97 41 • 98/41 • 98 37.25/34.69 

Explanation of Table 4.1: We have used (4.6) to find a production 

plan for each product and next we have used one of the two 

composition rules to allocate the run to the products. Notlee that 

if the planning horizon T•Thor•1, then we cannot apply the product-

oriented approach, since v1(k) equals zero then. Therefore, we have 

only considered situations with Thori::2. 
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To investigate the sensitivity of the results for the specific 

simulation run, we have simulated two different production runs. 

The results of both runs are given in this Table, namely as: 

(results first run)/(results second run). 

4.4.2 Capacity-oriented strategies. 

As we have seen in the previous Chapter, a capacity-oriented strategy 

requires aggregation over the products. Consequently, the decision 

whether or not to start a production run depende on the realisation of 

the aggregate inventory. Before we discuss a method to constitute an 

aggregate production plan that indicates whether or not to start a 

production run, first we will discuss a rule that indicates to which 

product a production run in the first period should be assigned. As in 

the case of product-oriented strategies, it is difficult to findan 

optimal rule to allocate the production run in the first period, since 

this requires some insight in the distributton of the aggregate 

inventory over the individual products. For reasons of symmetry, we 

will use the same Myopie rule as we did for the product-oriented 

strategies. Note that using a Value Function rule in this situation 

would be more difficult, since the production plan has only been 

determined in aggregate terms. 

The aggregate production plan will be based on the aggregate 

realisations: i(t-1}, k(t}, k(t+1), ••• , k(t+T-1) 

With an aggregate inventory, we have to conneet a certain cost. As we 

have discuseed for the purely stochastic approach, a reasonable 

approximation, which we will use, seems to be to conneet the coat 

N•p(i/N) to an aggregate inventory i. 

Under this approximation, we oan determine analogous reourrenoe 

relations to (4.6) for an aggregate oost function. Since this approach 

follows straightforwardly from the approach in 4.4.1, we will not 

discuss it here. 
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In Section 4.6, we will consicter numerical results for both the 

capacity-oriented and the product-oriented strategies for a specific 

perioctic review model. 

4.5 The Deterministic Dynamic Programming approach. 

In the Stochastic Dynamic Programming approach, we account for the 

stochasticity of the demand. The determination of a production plan can 

be simplified considerably by assuming that the demand can be 

forecasted accurately. Such an approach has for example been used by 

Billington, McClain and Thomas [11], Bitran and Hax [13], Gabbay [22], 

and Hax and Meal [28]. Because of its simplicity, this approach is 

often used in practical situations, compare e.g. the Material 

Requirements Planning approach (see Orlicky [44]}, 

Under some conditions, it can be proven that such an approximation 

yields an optimal strategy (certainty equivalence- see Holt et al. 

[30]). However, then it is required that the coat function is quadratic 

and that the transitions of the inventory are linear (this is disturbed 

in case the production level is restricted from below by zero or from 

above by a finite capacity). Consequently, in case the coat function is 

not quadratic or in case the capecity restrietion plays a role, this 

approach may not be optimal. Still, the approach is often used, because 

it is relatively simple to determine a production plan using this 

approach. 

For given realisations of ~(t}, ~(t+1), ... , ~(t+T-1}, we must 

determine foracasts for the demand from period t to t+Thor-1, which 

will be assumed to be perfect if determining a production plan over the 

planning period. 

Fort~ s ~ t+T-1, it seems reasonable to add the expectation of U.(s), 
J 

say EUj(s)=u, to the known part of demand. To makesure that the 

foracasts for future demand are integer, we have to round u off. Since 

always rounding off downwarcts or always rounding off upwards would give 

foracasts that systematically deviate, we must somatimes round off 
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upwarda and sanatimes downwards i nstead. Therefore, we introduce the 

following mechanism todetermine foracasts öj(s), where [u] stands for 

the entier of u (i.e. the largast integer that is less than or equal to 

u): 

:= {~u] +1 
with probability u-[u] 

with probability 1-(u-[u]) 
for t~s~t+T-1 

[u] 

Analogously, we determine forecasts after t+T-1, by rounding of 

EU.(s)+EK.(s). Notice that this plays a role if Thor> T. 
J J 

(4.8) 

What makes the Oeterministic Dynamic Programming approach relatively 

simple, is that the inventory of product j at the end of period t+s, 

can only be in a limited number of states (see van Beek [6]), Since we 

cannot start more than s+1 production runs, these possible statea are: 

t+s t+s t+s 
i.- L ó.(r), ij- I öj(r)+q" ... , i.- L ö.(r)+(s+1)•q 

J · r"'t J r=t . J r•t J · 

The approach that has been dascribed for the Stochastic Dynamic 

Programming approach can be used here, but now it is much simpler since 

the transition probabilities are either 0 or 1 and the state space is 

much smaller. This enables us not only to derive capacity-oriented and 

product-oriented strategies, but also to determine an optimal 

production plan (over the planning period), for situations where the 

number of products is not too large. 

In Section 4.6, we will consider numerical results for the 

Deterministic Dynamic Programming approach. We will campare the 

influence of using the final oost function on the performance of the 

optimal strategy. We will also consider capacity-oriented and product­

oriented strategies for this Deterministic Dynamic Programming 

approach. 
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4.6 Numerical results and conclusions. 

In this Section, we will campare the different approaches that have 

been described in the previous Sections. To be able to derive numerical 

results for the proposed strategies, we have ohosen more specific 

distributions for the two components of the demand. These are the same 

ahoices as have been used for the comparison of the composition rules 

in Section 4.4: 

For the unknown part, U.(t), we have ohosen a Poisson distribution with 
J 

parameter À. For the known part, K.(t), we have ohosen also a Poisson 
J 

distribution but this one has parameter ~ (consequently, the 

utilization rate of the capacity is p := N•(Ä+v)/q). 

The coat that is incurred for a product if the realisation of the 

inventory at the end of a period equals i, is ohosen to be 

p(i) := ai++bi • Finally, we have restricted ourselves to the situation 

with T • Thor. 

Most of the results in this Section are determined by means of 

simulation. For each parametersetting, we generated two different 

simulation runs. In the Tables, the costs for the strategies, that we 

consider, are given for both simulation runs. 

4.6.1 Purely stochastic approach. 

For the simple capacity-oriented heuristic and for the simple product­

oriented heuristic, that are derived in case demand is purely 

stochastic, we give simulation results in Tabla 4.2. In the purely 

stochastic approach, the demand in each period is Poisson distributed 

with parameter v :• A+v. 
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Table 4.2. Simple capacity-oriented and product-oriented heuristics in 

the purely stochastic approach, with v•A+~. 

q i. N a b V p capacity-oriented product-oriented 

heuristic heuristic 

CL SCH se PL SPH 

12 0 2 1 3 5 0.83 6.83 12.66/12.70 8 10.64 12.38/12.27 

20 0 2 1 3 5 0.5 8.82 18.87/18.93 5 16.08 16.59/16.61 

llP 

2 

1 

12 0 5 1 3 2 0.83 6.83 30.60/30.64 8 24.22 28.20/28.17 -2 

12 0 10 1 3 1 0.83 6.83 60.81/60.82 8 46.79 48.38/l!8.49 -2 

12 0 2 1 1 2 0.83 4. 21 7.5417.52 5 7.17 7.5917.55 -1 

12 0 2 1 10 2 0.83 11.00 20.42/20.li8 12 1li. 39 19.li6/19.13 

12 5 2 1 3 2 0.83 11.37 17.88/17.92 61 16.68 17.86117.86 

12 1 0 2 1 3 2 0.83 14.52 21.92/22.13 112 21 .oli 21.76/22.15 

12 

12 

12 

0 2 1 3 1 0.17 li.8li 11 .68/11.77 -2 9.36 9.32/9.28 

0 2 1 3 5.5 0.92 9. '76 1li. 23/14.36 12 10.74 16.77116. 7li 

0 2 1 3 5.8 0.97 20.45 22.01/23.84 23 10.89 36.24/40.14 

Explanation of Table 4.2: Using the relations that have been 

derived in Sectien 4.3, we can determine an approximation for the 

cast of using the capacity-oriented strategy (or the product­

oriented strategy) that corresponds to any choice of a. By varying 

1!, we have determined an optimal choice for 1!, which is given in 

the Table for both the capacity-oriented and the product-oriented 

approach. The oorreeponding approximate oost (CL for the capacity­

oriented heuristic and PL for the product-oriented heuristic} is a 

lower bound for the coat of any strategy. The actual cast of using 

the proposed heuristics have been determined by means of 
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simulation. This oost is denoted by SCH for the capacity-oriented 

heuristic and SPH for the product-oriented heuristic. 

We see that the criterion to choose the heuristic which gives the 

highest lower bound (see Chapter 3), works well for this periadie 

review model too. An exception is the case with v=5.5. The reasen for 

this seems to be that the approximation of the oost, on which the lower 

bound is based, is not so good in this periadie review case as in the 

continuous review case, at least for the capacity-oriented heuristic. 

This can be understood if one realises that the assumption underlying 

the approximation in the capacity-oriented approach is that it is 

possible to keep all inventories equal. If a production run is started, 

we indeed allocate the run to the products so as to ensure this. 

However, the langer ago such a production run has been started, the 

more the inventories tend to diverge. In this periadie review model, 

the oost is incurred for the inventories at the end of each period, 

whereas the production decision is taken at the start of a period. 

Consequently, the imbalance between the inventories has a higher 

influence on the oost in the periadie review model than in the 

continuous review model. 

That means that the difference between the highest lower bound and the 

oost of the best heuristic is larger in this periadie review model. 

This suggests that it may be sensible to introduce more advanced 

heuristics than the simple heuristics that are considered in Table 4.2, 

in this periadie review model. To check whether this is true, we have 

determined the optimal capacity-oriented and the optimal product­

oriented strategies with oorreapanding casts by means of simulation. 

The results of these strategies are given in Table 4.3. 

In order to make the oomparisen with Table 4.2 more easy, we have given 

the simulated casts for the best heuristic in Table 4.3 again (the P or 

C denotes whether this best heuristic is the Product-oriented heuristic 

or the Capacity-oriented heuristic). 

Consictering Table 4.3, there are two striking points: 

Firstly, the performance of the optimal capacity-oriented and the 

optimal product-oriented strategy is about the same for almast all 

situations (an exception is the situation with vs1, where the 

- 91 -



Table 4.3. Optimal capacity-oriented and product-oriented strategies in 

the purely stochastic approach, with v=A+~. 

optimal op ti mal best 

q ~ N a b V p capaci ty-ori ent. produot-ori ent. simple 

strategy strategy heuristic 

simul. oost 6 simul. oost 6 simul. oost 

12 0 2 1 3 5 0.83 12.09/12.00 12 11 • 94/11 • 92 3 1 2. 38/12.27 p 

20 0 2 1 3 5 0.5 17.82/17.76 10 16.29/16.33 0 16.59/16.61 p 

12 0 5 1 3 2 0.83 26.14/26.17 20 25.63/25.72 0 28.20/28.17 p 

12 0 10 1 3 1 0.83 48.93/48.92 37 48.38/48.49 -2 1.!8.38/48.49 p 

12 0 2 1 1 2 0.83 7.5417.52 5 7.42/7.38 0 7.5417.52 

12 0 2 1 10 2 0.83 16.79/16.50 18 16.86/16.81 6 19.46/19.13 

12 5 2 1 3 2 0.83 17. 34/1 7. 43 63 17.32/17.53 29 17.86/17.86 

12 10 2 1 3 2 0.83 22.04/21.43 116 21.32/21.69 56 21.76/22.15 

12 0 2 1 3 1 0.17 10.59/1 o. 59 2 9. 32/9.28 -2 9. 3219.28 

12 0 2 1 3 5.5 0.92 13.111 /13.56 15 13.49/13.84 5 14.23/14.36 

12 0 2 1 3 5.8 0.97 22.01/23.81.! 23 22.35/22.32 9 22. 01/23. 81.! 

utilization rate equals 0.17). This suggests that in most situations it 

is not so important which of the two approaches is uaed, as long as one 

chooses a good strategy within the approach. How easy it is to find a 

simple strategy that performa good within a given class depende on the 

situation. It seems sensible to uae the criterion that chooses the 

simple heuristic that gives the highest lower bound. 

p 

p 

p 

p 

p 

c 
c 

Secondly, insome cases there is a substantial difference between the 

best simple heuristic and the optimal strategy within the class of 

product-oriented and capacity-oriented strategies. Since it is possible 

to improve on the simple heuristics. 
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more actvaneed capacity-oriented heuristic. 

When determining the simple capacity-oriented heuristic, we have 

assumed that it would be possible to keep all the inventories equal. 

This assumption leads to a simple approximation of the oostfora given 

aggregate inventory (see Section 4.3). The oostrateon a given 

aggregate inventory is then approximated by N•p(i/N) (which corresponds 

to the actual oost rate if all inventories equal 1/N). In a more 

actvaneed capacity-oriented approach, we account for the fact that it 

will not be possible to keep the inventories equal. Instead, we now 

assume that the individual inventories, given a realisation i for the 

aggregate inventory, fluctuate uniformly around the mean 1/N. Since the 

batch-size q plays a role in this imbalance between the inventories, we 

have ohosen the following approximation of the oost rateon a given 

aggregate inventory i: 

y~i/N + q/2 1 
g(i) :• Ly•i/N- q/2 p(y}•q+ï (4.9) 

Of course, other approximations for the actual oost would be possible. 

For example, one could use an approximation that depende on the 

strategy that is used. However, the analysis may then beoome more 

complex. To keep the approach simple, we have used the approximation of 

the imbalance as in (4.9}. 

Since g(i) depends only on the aggregate inventory, the relations of 

Section 4.3 can be used again to find the more actvaneed capacity­

oriented heuristic, except that we have to replace the oost function 

N•p(i/N} by g(i), but this will notmake the analysis more difficult. 
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Table 4.4. More actvaneed capaoity-oriented heuristio in the purely 

stoohastio approach, with v•À+p (for an explanation see 

Table 4.2 exoept that (4.9) is now used as oost function). 

more advanoed simple optima! 

q R. N a b V p capacity-oriented cap.-or. cap.-or. 

heuristio heurist. strategy 

appr si mul 8 SCH si mul 

12 0 2 1 3 5 0.83 11.16 12.09/12.00 12 12.66/12.70 12.09/12.0C 

20 0 2 1 3 5 0.5 17.11 17. 82/1 7. 76 10 18.87/18.93 17.83/17. 8~ 

12 0 5 1 3 2 0.83 23.80 26.17/26.29 21 30.60/30.64 26.14/26.17 

12 0 10 1 3 1 0.83 46.43 48.93/48.92 37 60. 81/60. 82 48.93/48.92 

12 0 2 1 1 2 0.83 7.14 7.5417.52 5 7. 5417.52 7.5417.52 

12 0 2 1 10 2 0.83 15. 15 16.88/16.56 17 20.42/20.48 16.79/16.50 

12 5 2 1 3 2 0.83 16.46 1 7. 81/17.34 64 17.88/17.92 17.34/17.4 

12 10 2 1 3 2 0.83 20.43 22.04/21.43 116 21 • 92/22. 13 22.0ll/21.4 

12 0 2 1 3 1 0.17 10.02 10.59/10.59 2 11 .68/11.77 10.59/10.55 

12 0 2 1 3 5.5 0.92 13.09 1 4. 08/1 3. 59 16 1 4. 23/1 4. ~6 13.41/13.56 

12 0 2 1 3 5.8 0.97 22.62 23.44/23.10 26 22.01/23.84 22.01 /23.811 

In Tabla 11.4, we give numerical results for this more actvaneed 

capacity-oriented heuristic. For the more actvaneed heuristio, we have 

not only given the simulated costs, but also the approximate oost that 

follows from the analysis of the theoretica! model, using approximation 

(4.9) of the oost rateon the aggregate inventory. Note that (oontrary 

to CL) the theoretic oost not necessarily has to be a lower bound. 

To be able to set the results of the more actvaneed heuristic in a wider 

context, we have also gi ven the resul ts for the simulation runs of the 
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simple capacity-oriented and the optima! capacity-oriented strategy in 

Table 4.4 

As we see, the more advanced heuristic is much better than the simple 

capacity-oriented beuristic in case of high stock-out coats (b=10). For 

the case of a strict capacity, tbe more advanced beuristic gets worse. 

more advanced product-oriented heuristic. 

Tbe simple product-oriented beuristic has been derived under the 

assumption that the products never interfere on the capecity. In 

reality, the products compete for allocation of capacity. This may lead 

to a delay in the availability of the capecity for an individual 

product. To find a more advanced product-oriented heuristic, we 

estimated the size of this delay. Tbis delay-time is then treated as a 

deterministic leadtime that will be added to the actual leadtime, ~. to 

find the so-called adjusted leadtime. Such an approach has been 

proposed by Graves [24] and Williams [55]. 

If we want to estimate the size of the delay, we have to realise that 

subsequent delays for the same product are not independent and that 

there is a correlation between the delays for the different products. 

However, the reason for introducing this more actvaneed product-oriented 

beuristic is only to see wbetber it is possible to improve tbe simple 

product-oriented beuristic in a simple way. Tberefore, in order to keep 

the model, tbat we have to analyze, tractable, we neglect these 

oorrelations. Instead, we aasurne that there is a constant probability a 

that a product triggers a production run in an arbitrary period, 

whereas with probability 1-a no production run is triggered for that 

product. To ensure that the utilization rate of the capecity is 

correct, we have to choose a = v/q. 

To estimate the size of the delay, under this approximation, we 

introduce a Markov Chain with statespace {r : r~O}, where state r•O 

corresponds to the capecity being idle and state r (r>O) corresponds to 

the situation with r unfinished orders (for all products together). 

That means that there is one order in process and r-1 orders are 

queueing for the capacity; 

- 95 -



Transitions between the statea in this Markov Chain take place at the 

end of each period. If r>O then one order will be finished in a period. 

So, if no new orders are generated in the period, a transition occurs 

to state r-1. This happens with probability (1-a)N. With probability 

pk := (~)ak(1-a)N-k exactly k new orders are generated in a period (for 

0 ~ k ~ N), which conformatoa transition from stater to state r+k-1. 

No ti ce that the probabili ty of a transition from state 0 to any state j 

is the same as the probability of a transition from state 1 to this 

state j. 

Define wr as the probability to be instater (in the steady-state). 

Then the following transition equations can be deri ved for nr. 

1To = Po<1To+1T1 > 

1T, = P, (1fo+1T,> + Po1T2 

1T2 • P2<1To+1T, > + P11T2 + Po1T3 

for r 0: N+1 {4.10) 

Starting from the upper equation and going down, we can expres all 1Tr's 

in terros of 1T0 . Since the utilization rate of the capecity is less .than 

one, we can find a salution of (4.10), in this way, by choosing 1TO such 

that the probabilities sum up to one. 

Using Little's formula {see e.g. Stidham [49]), we find the following 

expression for the average waiting time for an order, say w: 

w - • 1: "' r1T - , Na r•O r { 4.11) 

* By using the adjusted leadtime ~ := ~+w, we have found the more 

actvaneed product-oriented heuristic. 
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Table 4.5. More advanced product-oriented heuristic in the purely 

stochastic approach, with v=À+v (for an explanation see 

Table 4.2, except that an adjusted leadtime has been used). 

more advanced simple optima! 

q J!, N a b V p product-oriented prod.-or. prod.-or. 

heuristic heurist. strategy 

appr si mul a SCH si mul 

12 0 2 1 3 5 0.83 13.52 16.59/16.45 8 1 2. 38/12.27 11.94/11.92 

20 0 2 1 3 5 0.5 17.14 16.44/16.44 1 16.59/16.61 16.29/16.3' 

12 0 5 1 3 2 0.83 29.49 32.83/32.63 3 28.20/28.17 25.63/25. 7"t. 

12 0 10 1 3 1 0.83 53.01 52.06/52.14 0 48.38/48.49 48. 38/48.4~ 

12 0 2 1 1 2 0.83 8.51 11.29/11.20 5 7.5917.55 7.4217.38 

12 0 2 1 10 2 0.83 18.96 22.22/22.09 11 19.46/19.13 16.86/16.81 

12 5 2 1 3 2 0.83 19.51 20.57/20.29 34 17.86/17.86 17 .32/17-S'l 

12 10 2 1 3 2 0.83 24.01 24.39/23.78 60 21.76/22.15 21. 32/21.6~ 

12 0 2 1 3 1 0.17 9.89 9. 32/9.28 -2 9. 32/9.28 9. 32/9.28 

12 0 2 1 3 5.5 0.92 16.02 31.81/31.89 18 16.77/1 6. 74 13.49/13.811 

12 0 2 1 3 5. 8 o. 97 21.71 79.75179.49 47 36.24/40.14 22.35/22.32 

Results for this more advanced heuristic are given in Table 4.5. If 

these results are oempared to the results for the simple product­

oriented heuristic and the optima! product-oriented strategy, it proves 

that this more advanced heuristic performa poor. It is even worse than 

the simple product-oriented heuristic. There may be two reasans for 

this bad performance: 
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- correlation between triggers for subsequent orders plays an 

important role 

- other moments than only the first moment of the delay play an 

important role. 

If we want to incorporate these correlations in the model or if we want 

to determine higher moments of the delay, the approach beoomes more 

difficult. This supports the conjecture that one should use a capacity­

oriented approach if one wants to account for the interterenee of the 

products on the capacity. 

4.6.2 Stochastic Dynamic Programming approach. 

In this subsection, we will oompare the capacity-oriented and the 

product-oriented strategies that are described in Sectien 4.4. In Table 

4.6, we give numerical results for these strategies. 

These results lead to the following observations: 

-if the part of demand that is known beferehand increases (that 

means the ratio ~/(À+~) increases) both the capacity-oriented 

strategy and the product-oriented strategy improve, but there 

seems to be hardly any influence on their relativa performance. 

-if the utilization rate of the capacity (p•N•O+~)/q) is high,
1 

the 

capacity-oriented strategy (in the Stochastic Dynamic Programming 

approach) performa best, whereas the product-oriented strategy 

performa best if this rate is low. This relation has also been 

found in Chapter 3, and seems intuitive. 

-the performance of both strategies does hardly improve as the 

planning horizon increases. Therefore T•2 seems a reasonable 

choice. 

-If the number of products increases, the performance of the 

capacity-oriented strategy gets worse rapidly. The reaeon for this 
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is that the capacity-oriented strategy is basedon the assumption 

that the inventories for all products can be kept equal. As the 

number of products increases, this assumption becomes more 

unrealistic. It is possible to account for the imbalance between 

the products in the cost of a given aggregate inventory and 

thereby improve the capacity-oriented strategy (see Section 

4. 6. 1). 

Table 4.6. Capacity-oriented and product-oriented strategies in the 

Stochastic Dynamic Programming approach. 

q ~ N a b À jJ Thor p capacity-oriented product-ori ented 

12 0 2 1 3 2.5 2.5 2 0.83 12.08/12.17 11 • 86/11 • 99 

12 0 2 1 3 2.5 2.5 1 0.83 12.31/12.63 --------
12 0 2 1 3 2.5 2.5 3 0.83 11.98/12.00 11.93/12.04 

12 0 2 1 3 2.5 2.5 5 0.83 11.93/11.90 11.95/11.95 

12 0 2 1 3 0 5 2 0.83 11.28/11.41 1 o. 75/1 0. 71 

12 0 2 1 3 5 0 2 0.83 12.51/12.86 12.20/12.26 

20 0 2 1 3 2.5 2.5 2 0.5 18.36/18.47 1 5. 86 /1 5. 96 

12 0 5 1 3 1 1 2 0.83 30.38/30.21 27.60/27.36 

12 0 10 1 3 0.5 0.5 2 0.83 60.70/60.54 48.74/48.99 

12 0 2 1 1 2.5 2.5 2 0.83 7.11/7.12 7.47/7.47 

12 0 2 1 10 2.5 2.5 2 0.83 22.00/21.41 18.66/18.66 

12 5 2 1 3 2.5 2.5 2 0.83 17.00/17.23 1 6.88/16.85 

12 10 2 1 3 2.5 2.5 2 0.83 21.53/21.34 21.35/21.38 

12 0 2 1 3 0.5 0.5 2 0.17 11 • 42/11 • 46 9. 05/9.05 

12 0 2 1 3 2.75 2.75 2 0.92 13.85/14.09 17.07/16.75 

12 0 2 1 3 2.9 2.9 2 0.97 23.20/20.93 41 • 98 I 41 • 98 
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Explanation of Table 4.6: Baaed on the known part of the demand and 

consictering the schochasticity of demand, we can determine a 

production plan each period anew. In this Table we have given the 

simulation results that we find if we apply such an approach to 

find capacity-oriented and product-oriented strategies. For both 

types of strategies, we have used the Myopie rule to allocate a 

production run to the products (see Section 4.4). 

4.6.3 Deterministic Dynamic Programming approach. 

If we aasurne the foracast for future demand to be accurate, we find the 

Deterministic Dynamic Programming approach (see Section 4.5). Under the 

assumption that the forecast is accurate, we can determine an optimal 

production plan over the planning period, each period again. Doing so, 

we find the results of Table 4.7. Notlee that we give results both if 

the final oost function is used and in case it is not used. 

On the results of Table 4.7, we base the following conclusions: 

-Only if the capacity restrietion is tight or the stock-out costs 

are high, the use of a final oost function yields better results. 

Notice that for large N, the results beoome even worse. The reason 

for this may be that the oost tunetion is based on the assumption 

that the simple capacity-oriented beuristic will be used after the 

planning horizon. However, especially as N increases, it proves 

that this capacity-oriented beuristic is not so good (using the 

more actvaneed capacity-oriented heuristic might yield a better 

cost tunetion in this situation). 
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rable 4.7. Optimal strategy in the Deterministic Dynamic Programming 

approach (for an explanation see Table 4.6, except that the 

stochasticity of demand is no longer considered). 

q i N a b À ll Thor p -without final wi th final 

cost function cost function 

12 0 2 1 3 2.5 2.5 2 0.83 11. 58/11.79 11. 37111 • 68 

12 0 2 'i 3 2.5 2.5 3 0.83 10.90/11.31 1 0. 90/11 • 11 

12 0 2 1 3 2.5 2.5 5 0.83 11.03/10.95 11.00/1 o. 96 

12 0 2 1 3 0 5 2 0.83 10.58/10.66 10.37/10.51 

12 0 2 1 3 5 0 2 0.83 12.33/12.32 12.13/12.35 

20 0 2 1 3 2.5 2.5 2 0.5 15.85/15.84 15.94/15.84 

12 0 5 1 3 1 1 2 0.83 25.32/25.23 26.34/25.99 

12 0 2 1 1 2.5 2.5 2 0.83 7. 2717.26 7.0717.20 

12 0 2 1 10 2.5 2.5 2 0.83 20.31/20.36 19.37/19.11 

12 5 2 1 3 2.5 2.5 2 0.83 17.79/17.60 17.74/17.43 

12 10 2 1 3 2.5 2.5 2 0.83 23.56/23.21 23.85/23.13 

12 

12 

12 

0 2 1 3 0.5 0.5 2 0.17 9. 29/9.30 9.66/9.59 

0 2 1 3 2.75 2.75 2 0.92 15.37/15.73 13.61/14.51 

0 2 1 3 2.9 2.9 2 0.97 32.50/33.55 23.46/21.21 

-As the part of demand that is known befarehand increases (and thus 

the forecast is improved), the performance of the strategies gets 

better. 

-in case we use Deterministic Dynamic Programming, the performance 

of the strategy seems more sensitive for the choice of the 

planning horizon than in the Stochastic Dynamic Programming 

approach. Therefore we have considered the same approach (without 
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final cost function) again in Table 4.4, but now with planning 

horizon T=3. 

Table 4. 8. Optimal strategy in the Deterministic Dynamic 

Programming approach with planning horizon T=3 (for an 

explanation see Table 4. 7). 

q i N a b À J.l Thor p without f inal 

cost function 

12 0 2 1 3 0 5 3 0.83 10.00/9.92 

12 0 2 1 3 5 0 3 0.83 11.59/11.71 

20 0 2 1 3 2.5 2.5 3 0.83 15.76/15.83 

12 0 5 1 3 1 1 3 0.5 25.00/24.96 

12 0 2 1 1 2.5 2.5 3 0.83 6. 9517.02 

12 0 2 1 10 2.5 2.5 3 0.83 16.58/16.55 

12 5 2 1 3 2.5 2.5 3 0.83 16.82/16.37 

12 10 2 1 3 2.5 2.5 3 0.83 23.14/22.39 

12 0 2 1 3 0.5 0.5 3 0.17 9.18/9.28 

12 0 2 1 3 2.75 2.75 3 0.92 13.22/13.85 

12 0 2 1 3 2.9 2.9 3 0.97 28.88/28.11 

Gomparing the results of Table 4.7 and 4.8 makes clear that 

increasing the planning horizon is especially useful if the stock­

out costs are high or if the capacity restrietion is tight. These 

are also the cases in which application of a final cost function 

is sensible. 

- 102 -



If the number of products increases, the determination of an optimal 

production plan will become more difficult. Besides, the optimal 

production plan assumes that the foracast is accurate. It is not clear 

whether this "optimal" production plan will be better than plans that 

Table 4.9. Capacity-oriented and product-oriented strategies in the 

Deterministic Dynamic Programming approach {for an 

explanation see Table 4. 7). 

q i N a b À 11 Thor p capacity-oriented produot-ori ented 

12 0 2 1 3 2.5 2.5 2 0.83 12.25/12.49 11.85/11.61 

12 0 2 1 3 2.5 2.5 1 0.83 12.43/12.66 --------
12 0 2 1 3 2.5 2.5 3 0.83 12.24/12.44 11.63/11.61 

12 0 2 1 3 2.5 2.5 5 0.83 12.46/12.28 11.55/11.52 

12 0 2 1 3 0 5 2 0.83 11.28/11.41 1 o. 75/10.71 

12 0 2 1 3 5 0 2 0.83 11.96/13.27 12.39/12.36 

20 0 2 1 3 2.5 2.5 2 0.5 18.33/18.52 15.81/15.93 

12 0 5 1 3 1 1 2 0.83 30.60/30.57 25.32/25.33 

12 0 10 1 3 0.5 0.5 2 0.83 61.33/61.79 54.51/54.44 

12 0 2 1 1 2.5 2.5 2 0.83 7-1317.20 7.2617.31 

12 0 2 1 10 2.5 2.5 2 0.83 25.71/25.92 20.35/20.60 

12 5 2 1 3 2.5 2.5 2 0.83 19.21/18.80 17.74/17.86 

12 10 2 1 3 2.5 2.5 2 0.83 25.53/24.68 23.19/23.36 

12 0 2 1 3 0.5 0.5 2 0.17 11.18/11.11 9. 32/9.21 

12 0 2 1 3 2.75 2.75 2 0.92 14.76/15.11 15.97/15.52 

12 0 2 1 3 2.9 2.9 2 0.97 23.35/21.15 36.73/39.16 
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are basedon simpler approaches, if this assumption does not hold. Note 

that even if the assumption holds, the optimal production plan only 

optimizes the costs over a finite planning period. Therefore, we will 

also consicter capacity-oriented and product-oriented strategies in this 

Deterministic Dynamic Programming approach. 

In Table 4.9, we present numerical results for these strategies. In 

case of a capacity-oriented strategy the final oost function of Section 

4.3 is used. 

These results lead to the following conclusions: 

-the capacity-oriented strategy is better than the product-oriented 

strategy if the capacity restrietion is tight, whereas the 

product-oriented strategy is better otherwise. 

-instead of searohing an optimal strategy in the Deterministic 

Dynamic Programming approach, one can just as well use a capacity­

oriented strategy in case of a tight oapaoity restrietion and a 

produot-oriented strategy otherwise (compare Tables 4.7 and 4.9). 

4.6.4 Overview of the numerical results. 

In Sections 4.2 to 4.5, we have mentioned several different approaches 

to the single-phase multi-product planning problem under periadie 

review, where demand is partly known in advance. So far, we have given 

numerical results for eaoh approach separately. In this subsection, we 

want to oompare the approaches. Therefore, we give the relative 

performance of the described strategies and heuristics in Table 4.10. 

These results are in percentages as ooropared to the best of them. For 

example if the best result is found for the purely stochastic approach, 

then there is a zero in the corresponding column. If the Deterministic 

Dynamic Programming approach gives a oost that is 1.2 times as high, 

then we have a 20 in the column that corresponds to the Deterministic 

Dynamic Programming approach. 
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Table 4,10, Camparisen of the results for the different approaches (the 

numbers of the columns denote the approaches as is 

described in subsectien 4.6.4). 

q Jl. N a b À ).l Thor p 1 2 3 4 

12 0 2 1 3 2.5 2.5 2 0.83 5.5 p 2.1 p 0 0.4 p 

12 0 2 1 3 2.5 2.5 3 0.83 11.0 p 7.9 p 0 4.6 p 

12 0 2 1 3 2.5 2.5 5 0.83 12. 1 p 8.5 c 0 5.0 p 

12 0 2 1 3 0 5 2 0.83 16.1 p 1.0 p 0 1.0 p 

12 0 2 1 3 5 0 2 0.83 0.8 p 0 p 0.8 1.2 p 

20 0 2 1 3 2.5 2.5 2 0.5 4.8 p 0.4 p 0 0.2 p 

12 0 5 1 3 1 1 2 0.83 11.5 p 8.7 p 0 0 p 

12 0 10 1 3 0.5 0.5 2 0.83 0 p 0.9 p --- 12.5 p 

12 0 2 1 1 2.5 2.5 2 0.83 5.8 c 0 c 2.1 o. 7 c 
12 0 2 1 10 2.5 2.5 2 0.83 3.11 p 0 p 9.0 9. 7 p 

12 5 2 1 3 2.5 2.5 2 0.83 5.8 c 0 p 4.9 5.5 p 

12 10 2 1 3 2.5 2.5 2 0.83 2.8 p 0 p 9.5 8.9 p 

12 0 2 1 3 0.5 0.5 2 0.17 3.6 p 0 p 2.7 2.4 p 

12 0 2 1 3 2.75 2.75 2 0.92 2.3 c 0 c 11.3 6.9 c 
12 0 2 1 3 2.9 2.9 2 0.97 3.9 c 0 c 49.7 0.8 c 
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The strategies and heuristics that we have compared in rable 4.10, ar· .. 

the following: 

1. The best of the simple capacity-oriented heurisï.;ic and the 

product-oriented heuristic in the purely stochaatic aporoa,~"l. 

2. The best of the capacity-oriented strategy and the product­

oriented strategy in the Stochastio Dynamic Programming 

approach. 

3. The optimal strategy for the Deterministio Dynamic Programming 

approach (without final cost function). 

4. The best of the capacity-oriented strategy and tne product­

oriented strategy in the Deterministic Dynamic Programming 

approach. 

The C or Pin Table 4.10 indicates whether the best strategy (or 

heuristic) is found for the capacity-oriented or for the product­

oriented approach. 

To find an optimal strategy in the Deterministic Dynamic Programming 

approach, we did not use an extra cost function on the final inventory 

positions, since we have seen that such a oost function is not useful 

in most situations (see subsectien 4.6.2). However, since we combine 

capacity-oriented strategies always with a final oost function, this 

may result in a better performance of the capacity-oriented heuristic 

in the Deterministic Dynamic Programming approach for some situations 

in Table 4.1 0. 

If we overview Table 4.10, we can derive the following conclusions: 

-The Stochastic Dynamic Programming approach often yields a good 

strategy. However, the computational effort in oase we account for 

the distribution of demand around the foracast is high, whereas 

one can find strategies that are almost as good (or sametimes 

better) if we either aseurne the forecast to be perfect (and thua 

find the Deterministic Dynamic Programming approach) or neglect 

the forecast (and thus find the purely atochastic approach). 
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-In most situations, the choice between a capacity-oriented and a 

product-oriented approach is independent of the way the 

information about future demand is used. In situations where there 

are differences, it can be checked, at hand of previous Tables, 

that there are only minor differences between the performance of 

the capacity-oriented and the product-oriented strategies. This 

allows us to apply the criterion of the purely stochastic approach 

(namely to use the beuristic for which the lower bound is the 

highest) to determine whether it is best to use a capacity­

oriented strategy or a product-oriented strategy. 

With these conclusions, we finish the discussion of the single-phase 

model where demand is partly known in advance. We have compared the 

capacity-oriented and the product-oriented strategies for different 

approaches to deal with the information that is available about future 

demand. It has proven that the criterion for choosing between the two 

types of strategiesis insensitive for the way the information about 

future demand is treated. 

Notice that we have also seen in Sectien 4.6.1 that the optimal 

capacity-oriented strategy and the optimal product-oriented strategy 

are almost just as good in many situations (an exception was the 

situation with a low utilization rate where the product-oriented 

strategy performed better). This suggests that there is a large overlap 

between situations where a capacity-oriented approach leads to good 

results and situations where a product-oriented approach leads to good 

results. The difficulty, however, is to find a good strategy within a 

given approach. We have derived a criterion to choose between the so­

called simple beuristics (see Sectien 4.6.1). This criterion could be 

applied not only for the purely stochastic approach, but also for other 

approaches to deal with the information that is available about future 

demand. This enables us to choose between the capacity-oriented and the 

product-oriented approach, if we restriet ourselves to simple 

beuristics within each approach. 

We also investigated whether it was easy to find a more actvaneed 

beuristic whithin each class that performed better than the simple 

heuristic. For the capacity-oriented approach, this has proven to be 

easy. A more actvaneed product-oriented heuristic, in which the delay in 

the leadtime for a product due to the interterenee with other products 

on the capacity was modelled as a stationary effect, proved to perferm 
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poor. This suggests that it may be difficult to determine a good 

product-oriented approach in situations where the capacity restrietion 

is tight (notice that the criterion indicates whether the capacity 

restrietion is so tight that one might better use the capacity-oriented 

approach). The capacity-oriented approach, however may be used in a 

wider range of situations, if one uses the more actvaneed capacity­

oriented beuristic insteadof the simple capacity-oriented heuristic. 

In the following Chapters, we wil! use these results, when consictering 

a model in which the products are no longer identical in the long-run. 
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Chapter 5. Non-identical products. 

5.1 Introduction. 

In the previous Chapters, we have considered a single-phase multi­

product planning problem with identical products. In this Chapter, we 

want to discuss how the results of capacity-oriented and product­

oriented strategies can be applied in case of non-identical products. 

Let us first define what we mean by non-identical products. 

The products are characterized by: 

-the demand process 

-the inventory holding cost and the stock-out cost 

-the production rate (i.e. the amount that can be produced per unit 

of time). 

We will consicter products with different demand processes in this 

Chapter. We will assume, however, that the inventory holding cost, the 

stock-out cost and the production rate are the same for all products. 

Though this assumption may seem restrictive, it can be argued that it 

covers many situations. Graves [24] used the following reasoning to 

show that the assumption is realistic: "Consider the inventory holding 

and backorder costs; these costs are frequently taken to be 

proportional to the value of a product. In a single machine environment 

the value of a product consists of the cost of the input plus the value 

added during the processing. Given that all products require the same 

or similar inputs, it is reasonable to suppose that the machine 

processes the inputs at a relatively steady dollar rate, independent of 

the product. Furthermore, if the rate of value added by the machine 

were not nearly constant across products, it could be argued that the 
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machine capacity is not being used efficiently. Hence, the products 

should have simtlar value, and hence simtlar inventory holding and 

backorder coats per unit of production." 

Consequently, aft er rescaling the production rates of the products 

common value, it seems reasonable to aasurne that the products have 

identical oost parameters. The reasoning of Graves is based on a 

situation with linear inventory holding and stock-out coats and we 

consider a more general oost tunetion (p(i)) on the inventories. 

to a 

will 

However, this more general cost function may still be assumed to be the 

same for all products, after rescaling the products to a oommen 

production rate. 

The approach in case of non-identical products is discuseed using the 

example of a single-phasemodel with purely stochastic demand. This 

model is described inSection 5.2. In sectien 5.7, we will also make 

some ramarks on how to treat the case where demand is partly known 

beforehand. 

The approach is based on the results of previous Chapters which 

indicate that: 

-the simple product-oriented heuristic is good in case of a weak 

capacity-restriction. 

-the simple capacity-oriented beuristic is good in case of a strict 

capacity and only few products. 

For the product-oriented approach, decomposition over the products is 

required. Therefore, the product-oriented beuristic may be expected to 

perform well for non-identical products too if the capacity restrietion 

is weak. 

If the capacity restrietion plays an important role, we will divide the 

products into two groups namely a group of tast-movers and a group of 

slow-movers. As we will discuss, the slow-mevers have priority on the 

capacity so that the capacity restrietion for slow-mevers is only weak. 

Since there will be only few fast-movers, each of these groups fulfills 

the requirements for applying a simple heuristic. We will discues this 

distinction into different groups in Sectien 5.3. The form of the 

simple heuristics for this model with non-identical products, is 

discuseed in Sectiens 5.4 and 5.5. In Sectien 5.6, we will illustrate 
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the approach at hand of an example. In the Sectiens 5.7 and 5.8, we 

will discuss whether it is possible to extend the approach to more 

general situations and we will make some ramarks on the quality of the 

approach. 

5.2 Description of the model. 

There are N products that all require the same limited resource 

(compare the model of Chapter 3, see Figure 3.1). 

The demand for product j follows a Poisson process with parameter Àj' 

with Àj > Àj+l' for all j = 1, 2, ••• , N-1. Let À:= lj~lÀj' There is 

no correlation between the demand for different products. 

Let I.(t) denote the inventory of product j at time t. We consicter the 
J 

samecast rate as in Chapter 3, namely p(i.) is the oost rate for 
J 

product j if the realisation of the inventory for that product equals 

ij' 

The purpose of control is to minimize the (expected) oost per unit of 

time. Unlike the situation of previous Chapters, we no longer assume 

that there is a stochastic prooess that generatea production 

opportunities. In this Chapter, we will model the capacity as a service 

mechanism with service-time depending on the batch-size. The reason for 

using a service mechanism now, is that the batch-sizes for different 

produots may be different. 

A production run of size q will occupy the capacity for a negative­

exponentially distributed time, with mean q•(l/~), after which the 

capacity is free again so that a new production run can be started. 

In order to simplify the production situation, we assume that there are 

only two different batch-sizes, namely qf and qs (with qf > qs). The 

larger batch-size is used for products with a high average demand. We 

will return to this in the next Section. 
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Once a production run has been finished, the batch arrivee at the 

stock-points after a production flowtime t. From the time that the run 

is finished, the batch will be added to the inventory posltion, denoted 

by Iposj (see Figure 5.1). Note that it would have been possible to 

finish 

production run; 

start added to batch arrivee 

production inventory at the 

run pos i ti on inventory 

1 1 
service-time 

(mean q/ll) 

Figure 5.1. Throughput-time of a production order of size q. 

define the inventory position such that the batch is already added as 

soon as the run has been started, but since we cannot produce before 

the batch is r·inished these definitions are equivalent. 

As in Chapter 3, we will define the shifted coat rate L(ipj) :• 

E[p(I.(t+t})IIpos.(t)•ip.] as the expected oost rate at time t+l, if 
J J J 

the inventory position of product j equals ipj at time t (in order to 

calculate L(ip.), consicter (3.5)), The control of the inventory 
J 

positions will now be directed at miniruizing the shifted coat over time 

(in Chapter 3, we have discuseed that this is equivalent to minimizing 

the coat rate p(i.) over time for the inventories). 
J 
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5.3 Fast-mover/slow-mover approach. 

If we aasurne that the products rarely interact on the capacity, the 

determination of a good heuristic is simple. In that case there is no 

need to buffer against uncertainties with respect to the availability 

of capacity for individual products. Consequently, it is almost optima! 

to aasurne that the capacity is always available for each individual 

product. This heuristic, we have called the simple product-oriented 

heuristic. To determine the heuristic we decompose with respect to the 

products, which gives us N one-dimensional problems that have to be 

solved. This salution is straightforward and yields a heuristic that 

may be expected to perferm well (see the discussion of the slow-movers 

in Section 5.4). 

Next consicter the situation in which the capacity restrietion plays an 

important role. The most straightforward way to buffer against 

uncertainties in the availability of the capacity is by introducing the 

aggregate inventory position as a measure for the amount of capacity 

that is stored in the system. The difficulty in this situation, where 

we have large differences between the products, is that a given 

inventory position is not equally effective as a capacity buffer in the 

short-run for each product: 

In the long-run increasing the inventory by a quant! ty x, for any 

product, corresponds to decreasing the requirement for capacity with an 

amount (x/~). In the short-run, however, there are obvious differences 

between the products: If there is hardly any demand for a given 

product, creating a large inventory for that product is completely 

inefficient in the short-run. Although in the long-run we may be sure 

that the inventory will be used, in the short-run it is just a waste. 

In genera!, it can be said that a given inventory position is more 

effective in the short-run if there is a high demand for the product 

(in the short-run). 

Therefore we distinguish between so-called tast-movers and slow-movers. 

It is generally so that there are relatively few fast-movers, while 

each individual fast-mover has a big claim on the capacity. The 

slow-movers have only a minor claim on the capacity, but there are many 

slow-movers. 
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We introduce a value Nf such that the products 1 to Nf are the rast­

movers and the rest are the slow-movers. 

In Sectien 5.8, we will return to the choice of Nf. 

A buffer against uncertainties, with respect to the availability of the 

capacity, will now be built up only in the inventories for fast-movers. 

For the slow-movers, such a buffer will not be built up. Therefore, it 

seems reasonable, if a slow-mever and a fast-mover compete for the 

allocation of capacity, to give the slow-mover priority, because a 

safety-stock has been built up for the fast-movers to proteet against 

these capacity shortages. 

Batch-sizes may interfere with the performance of this priority rule: 

In case the batch-size for slow-mevers is very small (preferably lot­

for-lot), this priority rule seems reasonable (compare the well-Known 

Shortest Processing Time rule). However in case the batch-size for 

slow-movers is large, the following problem occurs. Each time we 

produce a slow-mover, part of the batch is used to reset the inventory 

Optima! 

Level 

Figure 5.2. Batch production (q=6). 

of the slow-mover to its "optima!" level, while the rest of the batch 

is used to reduce the number of set-ups for slow-movers in the long­

run (see Figure 5.2). This last part of the batch will increase the 

coats in the short-run. During the production of this last part of the 

batch it will be far from optimal to let the rast-mover queue for the 

capacity. Therefore, the priority rule is most efficient if the batch­

size for slow-movers is small. However, when choosing small batch-sizes 

for slow-movers, the capacity may be used inefficient due to change­

over times between products. Obviously a trade-off has to be made: 
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choosing high batch-sizes for slow-movers may lead to less change­

overs, but it also results in a more irregular availability of the 

capacity for the other products. This trade-off has to be made on the 

same level where the availability of the resources can be adjusted (we 

will return to this inSection 5.8). We assume that the fast-movers are 

produced in batches of size qf, whereas the slow-movers are produced in 

batches of size qs. InSection 5.7, we will discuss the situation where 

the batch-sizes need not be constant among rast-movers and slow-movers. 

We have now discussed what happens if a slow-mover and a fast-mover 

apply simultaneously for allocation of capacity. What we have not 

discussed, yet, is what happens if a slow~mover applies at the time the 

capacity has already been allocated to a fast-mover. In this case of 

negative-exponentially distributed processing times it would be optima! 

to interrupt the production of the fast-mover at such an event. Yet, it 

seems more realistic not to interrupt the production run for a product 

(non-preemptive situation), since usually the reason for using batches 

in the first place is that there are change-over costs and times. On 

the same level where batch-sizes are fixed, a decision has to be taken 

about preeroption or non-preemption. We assume that the slow-movers have 

a non-preemptive priority on the capacity. 

Once we have determined the priority rule, the determination of a good 

heuristic, using the results of the previous Chapters, is 

straightforward. There are many slow-movers, but, since they have 

priority on the capacity, the capacity restrietion is weak when we 

consicter the slow-movers only. As we have seen, in this situation, the 

simple product-oriented heuristic, that decomposes with respect to the 

products, is almost optimal. We will return to this heuristic for 

slow-movers in Section 5.4. 

For the fast-movers, we are left with a much tighter capacity 

restriction. However, we have chosen the number of fast-movers to be 

smal!. For a situation with identical products, we have seen that the 

simple capacity-oriented heuristic, in which the decision whether or 

not to produce depends on the aggregate inventory position as a measure 

for the amount of stored capacity, performs well under these 

conditions. In Section 5.5, we will return to this heuristic. 
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5.4 Slow-movers. 

As mentioned previously, the slow-movers have priority on the capacity. 

Therefore, the capacity restrietion for slow-~overs is only weak. For 

situations with identical products, we have seen in the previous 

Chapters that the simple product-oriented heuristic performa well under 

such circumstances. The performance of this heuristic can be estimated 

by solving one-dimensional optimization problems. In case of non­

identical products, a product-oriented strategy is a strategy in which 

a production run for a slow-mover j is triggered if and only if the 

realisation of the inventory position for that slow-mover is leas than 

or equal toa certain predetermined level ~j' 

lf more than one slow-mover triggers a production run, then we need a 

rule to choose between them. In the previous Chapters, we have seen 

that a reasonable rule is to allocate the production run to the 

products in auch a way that the first coats, that are influenced by 

thia allocation will be minimized. In Chapter 4, we have compared this 

allocation rule (the so-called Myopie rule) toa more advanced rule 

(the Value Function rule) in a aituation where the producta are non~ 

identical in the short-run. The resulta indicated that there is little 

impravement when using a more advanced allocation rule. Since the 

Myopie rule is the simplest, we will apply this rule here as well. In 

the Myopie rule, the production run is allocated to the slow-mover j 

for which expression (5.1) is minimal (ipj denotes the realisation of 

the inventory position for product j), 

(5. 1 ) 

where Pj(d) ia the probability that the demand for product j over the 

production time plus the production flowtime equals d. Note that this 

demand consiste of two parts. Firstly, there is the demand during the 

production time. Since the production time is negative-exponentially 

distributed, the demand during the production time is geometrically 

À ' 
distributed (with parameter À + 1 ). The second part consistsof 

j J.l qs 
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demand during the production flowtime i. This second part has a Poisson 

distribution with parameter i•À .• Combining these two, we get the 
J 

following expression for the demand of product j during the throughput­

time: 

p 0 ( d) 
J 

e 
-u. 

J (5.2) 

To find the simple product-oriented heuristic, the interaction with 
A(d) 

other products is neglected. Define H0 .(ip) as the steady-state ..,,J 

probability that, if we apply a product-oriented heuristic with 

critica! level 8 for product j and under the above assumption (no 

interaction), the inventory position of product j equals ip. The cost 

of product j ( if we apply this heuristic under the above assumption) is 

given by (5.3). 

A ( d) o I 1 L(ip)•Ho .(lp) 
p ..,,J (5 .3) 

where L(ip) is defined as the shifted cost rate (see Section 5.2). 

Figure 5.3. Possible transitions of the inventory position for a slow­

mover j. 

Todetermine H~d~(ip), consicter the possible transitions between .,,J 

inventory positions for a given slow-mover j, as depicted in Figure 

5.3, under the assumption that there is no interference. 
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These possible transitlans appear to be the same as the possible 

transitlens in Section 3.8 (Figure 3.4). Therefare the same approach 

can be used here in order to find the simple praduct-oriented 

heuristic. 

Note that, as before, it is possible to determine a more-advaneed 

product-oriented heuristic by estimating the delay in the availability 

of the capacity duetoother products (using some queueing analysis). 

Such an approach has been warked out in Sectien 4.6. 

5.5 Fast-movers. 

The capacity-aspect of the system will be considered in the control of 

fast-movers. Consequently, the deelsion whether or not to produce has 

to depend on the total inventory position, aggregated to stared 

capacity. Since the "production rate" (the amaunt of a product that can 

be produced per unit of time) is the same far all fast-movers, the best 

measure for the amount of stared capacity is found by taking the sum of 

the individual inventory positions. Therefare, we define the aggregate 

N 
inventory position at time tas Ipas(t) := Lj=~ Ipasj(t). capacity-

oriented strategies are strategies in Which a production run is 

triggered if and only if the realisation of the aggregate inventory 

position is less than or equal to a certain predetermined level a. 

If a production run is started, then (as for the slow-movers) this run 

will be allocated to the products using the MYopie rule (5.1). 

In order to be able to make a reasonable choice of a, we will consider 

the following three points: 

1. the cost rate as a function of the aggregate inventory position 

2. the demand process for rast-movers 

3. the disturbance of the capacity-availability for rast-movers due 

to slow-movers. 
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5.5.1 The oost rate as a tunetion of the aggregate inventory position. 

The actual costs that correspond to a given aggregate inventory 

position depend on the distribution of the aggregate over the 

individual products. Therefore the conditional steady-state 

probabilities (given the aggregate) have to be calculated in order to 

find the exact oost rate of the aggregate inventory position. In 

Chapter 3, we discussed the problem of finding such a conditional 

distribution, and we have seen that, as long as Nf is not too large, a 

good approximation of this aggregate oost rate is given by 

g(ip) := Nr•L(ip/Nf). This means simply assuming that all inventory 

positions can be kept equal. 

Note that in Chapter 4, we considered a more actvaneed approximation of 

the conditional costs too. The approximation that is used for the 

aggregate oost rate is unimportant with respect to the size of the 

resulting problem (as long as the oost rate depends only on the 

aggregate inventory position}. Since the approximation g(ip) is the 

most straightforward and has proven to give good results if Nf is not 

too large, we preter this approximation. The capacity-oriented strategy 

that we find with this approximation is referred to as the simple 

capacity-oriented heuristic. 

5.5.2 The demand process for fast-movers. 

The demand process for tast-movers is the superposition of Nf 

independent Po1sson processes. Therefore, again, it is a Poisson 

Nf 
process with parameter Tf :• Lj=lÀj. 
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5.5.3 The disturbance of the capacity-availability for fast-movers due 

to slow-movers. 

In order to investigate the disturbance of the capacity-availability 

for rast-movers due to slow-movers, let us first consider a single 

slow-mover. 

As soon as qs times a demand for this slow-mover occurs, it will 

trigger a production run (consider the strategies ohosen for the slow­

movers). Since the demand for slow-mover j follows a Poisson process 

with parameter À., the interarrival time between successive 
J 

"triggermoments" for this slow-mover is Erlang-distributed with q5 

phases and parameter Àj. 

The process of triggermoments for all slow-movers is the superposition 

of N-Nf individual trigger processes. Since the number of slow-movers 

(N-Nf) is large, this process will be approximated well by a Poisson 

process (for an extensive study on the superposition of non-identical 

processes, the reader is referred to Khintchine [33]). The parameter in 

th is proces a is: 

'·='· N 2.J_ s . L.j=N +1 q 
f s 

(5. 4) 

A possible approach would be just to estimate the expected delay of 

production runs for a fast-mover, due to the disturbance of the 

capacity, and to use an adjusted leadtime. However, there will be much 

varlation around the average size of the delay. This is due to the 

queueing of production orders, not only during the time another slow­

mover is proceseed but also during the time a rast-mover is processed. 

Because of this effect, it may not be suitable to introduce an adjusted 

leadtime (compare Section 4.6). Therefore, we have used another 

approach for choosing 8 in this situation. 

The state of the "fast-mover system" at a given point in time can be 

described by the following tuple: 
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(ip,n ,r) s . (5.5) 

where ip is the realisation of the aggregate inventory position, ns is 

the number of unfinished production orders for slow-movers (including 

the one that presently occupiea the capacity) and r denotea the present 

status of the capacity as follows: 

means the capacity is free 

meana the capacity is occupied by a fast-mover 

means the capacity is occupied by a slow-mover 

It will be clear that if we lmow the· steady-state probab ili ty of each 

state (ip,n ,r), related to any given atrategy, ~. and hence we know s 

the marginal distribution of ip, it is possible to determine the 

approximate, average oost for any oholee of ~ (by using the approximate 

coat function on the aggregate inventory poaition as discusaed in 

Sectien 5.5.1). Therefore we can determine the simple capacity-oriented 

heuristic by minimizing these average coats over ~. 

We will now describe a theoretica! analysis, based on the above state 

description, that leads to the simple capacity-oriented heuristic. This 

analysis is rather technical. For readers Who are not interested in the 

specific derivation, it suffices to say that the analysis is the 

matrix-analogon of the analysis in Sectien 3.8. 

5.5.4 Theoretica! Analysis. 

To simplify the analysis, we will bound the number óf unfinished 

production orders for slow-movers that require allocation of the 

capacity at any moment, say ns ~ m. If there are m unfinished 

production orders for slow-movers in the system, the arrival of new 

customers will not result in a transitiontoa new state. Notice, that 

since the slow-movers have priority on the capacity, we may expect that 

this approximation is reasonable, for sufficiently large values of m. 
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If the system is in equilibrium, not all combinations of ip, n
8 

and r 

are possible: 

-as long as ip > B (and ip ~ S+qf), the capacity cannot be occupied 

by fast-movers. Consequently, we have only the statea (ip,O,O) and 

(ip,n ,2) for all 1 ~ n ~ m. Notice that if a production order s s 

for a slow-mover arrives, while the capacity is available, this 

order will occupy the capacity immediately. Therefore, statea 

(ip,ns,O) are reached with probability zero for ns > 0. 

-if ip ~ B, it is impossible to find the capacity available, 

because immediately a production run for a fast-mover is started, 

Therefore r=O is not possible. 

Hence, the states of the system for fast-movers, are as shown in Figure 

5.4. 

B+qf,O,O 

B+qf,1,2 

B+qf,m-1 ,2 

a+qf,m,2 

6+1,0,0 8,0,1 a-1 ,0, 1 

a+1,1,2 a,1,2 a-1,1,2 

B+1,m-1,2 B,m-1,2 S-1,m-1,2 

S+1 ,m,2 B,m,2 S-1 ,m,2 

s,1,1 a-1,1,1 

B,m-1,1 a-l,m-1,1 

a,m,1 S-1,m,1 

Figure 5.4. The possible statea for the rast-mover system in 

equilibrium. 
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If we want to calculate the steady-state probabilities, the first 

problem that we meet is that the times between transitions depend on 

the state of the system. Lippman [36] has shown that this problem can 

be evereome easily in this situation with exponentlal distributions, by 

introducing transitions that do not result in a change of state. 

Therefore, in any state we can assume that transitions are due to: 

(= 
Nf 

1. arrival of demand for a fast-mover; ra te 'r ïj=1Àj) 

2. finishing of a fast-mover job; ra te IJf := IJ/qf 

3. finishing of a slow-mover job; ra te IJs := IJ/qs 

4. arrival of a slow-maver job; rate 's (= Ij~N +1Àj) 
f 

where, for example, the finishing of a fast-mover job, if no such job 

has been started in the given state, corresponds to a transition from 

the state into itself. 

Note that, since the times between transitions are independent of the 

state of the system, it suffices to calculate the steady-state 

probabilities of the state of the system, at times just after a 

transition, Which means that we must consicter the embedded Markov 

chain. Th en a given transition corresponds with probability 

- Par := 1: /(1: +IJ +IJ+< ) f f f s s to the arrival of a fast-mover 

- Prf := IJ I( 1: +IJ +IJ +, ) f f f s s to the finishing of a rast-mover job 

- Pas := 1: /(1: +IJ +IJ+, ) 
s f f s s to the arrival of a slow-maver job 

- Prs := IJ I( 1: +IJ +)l +< ) s f f s s to the finishing of a slow-mover job. 

Define the vector of states Ivk (for k ~ 0) as follows (compare Figure 

5.4, where we have shifted the bottorn states to the left in order to 

ensure that the lengthof all veetors is the same, namely 2m+1): 
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Ivk :• 

f3+qf-k,O,O 

B+qf-k,1,2 

S+qf-k,m-1 ,2 

S+qf -k, m, 2 

S-k,1,1 for 0 :;; k :;; qf-1 ~:-

f!+qf-k,0,1 

l!+qf-k,1 ,2 

S+qf-k,m-1 ,2 

f!+qf-k,m,2 

l!-k,1,1 for k ~ qf 

s-k,m-1,1 

s-k. m, 1 

1!-k, m-1 , 1 

1!-k,m,l (5 .6) 

To make the description of the matrix of transition probabilities 

easier, we introduce the (2m+1) x(2m+.1) matrices : 

• B corresponding with a transition from ~ to ~ if 0 :;; k :;; qf-1 

• A1 oorrasponding with a transition from Ivk to ~ if k ~ qf 

• A0 corresponding with a transition from Ivk to Ivk+l if k ~ 0 

• Aqf+l oorrasponding with a transition from ~ to Ivk if k ~ qf 
- -qf 

It can be checked that this conforma to the following definitions: 
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0 m 2 m 

Prs+pff Pas 0 

Prs Pff Pas 

Prs Prr Pas 

Prr Pas m-1 

Prs Prr+pas m 

B:= 

2 

m-1 

m 

(5.7) 

(5 .8) 
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0 m 2 m 

Prs o 0 

Prs Prr Pas 

Prs Prr Pas 

Prr Pas m-1 

Prs Prr+pas m 

2 

m-1 

m 

(5.9) 

0 m 2 m 

(5.10) 
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T T T T Define the vector of states Iv via Iv := [ Iv1 , Iv2, ••• ], where Iv is 

the transpose of Iv. Then, we can write the matrix of transition 

probabilities for Iv, denoted by P, as follows: 

0 2 

P:= B Ao 

A 
qf+1 A1 Ao 

A 
qf+l A1 Ao 

(5. 11) 

Let !k denote the vector of steady-state probabilities that corresponds 

to Ivk and define the vector n via: 

T T T T 
n :• [ !o• !1' !2' J (5.12) 

The vector of steady-state probabilities satisfies the following set of 

equations: 

where e"' := (1,1,··· (5.13) 

This set beoomes more obvious if we rewrite nT = nT•P as: 
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T 
'Ir -..::.0 

+ 

+ 

'lrT •B 
-0 

+ 

+ 

+ 

·l •A 
-qf qf+l 

'll"T •A 
~+qf qf+l 

'll"T •A 
-k+qf qf+l 

for l~~f-1 

(5.14) 

Neuts [42] proved that the solution of (5.14) for k ~ qf is of the 

"geometrie type", under certain recurrence conditions, which are 

satisfied as long as the utilization rate of the capacity is leas than 

one {see e.g. Neuts [42]), and under some irreducibility conditions, 

corresponding to À > 0 and t
8 

> o. This means that for k ~ qf-1 we get 

(5.15). 

{5. 15) 

where the (2m+l)x(2m+1) non-negative, irreducible matrix Ris the 

minimal solution in the set of non-negative matrices of speetral radius 

leas than one that satisfy equation (5.16) (fora definition of the 

terms related to the use of matrices, the reader is referred to 

Seneta [ 48]). 

{5. 16) 

Neuts [42] showed also that there is an easy way to compute this matrix 

R {up to any given degree of accuracy): The sequence of the 

(2m+1)x(2m+1) matrices {X(u)} wo , as defined in (5.17), is monotonely us 

increas1ng and converges to R (in [42], Neuts also discussed some other 

methods for finding R). 
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(5.17) 

Applying this result of Neuts, it follows from (5.15) that 

k-q +1 
!k = ~ 1R f satisfies the relationships for k ~ qf-1 in (5.14). 

-qf-

If we apply the equations for k=O, 1, ••• , qf-2, we can also express 

subsequently !o• !,• ••• , !q _2 in termsof ~ 1 • This gives us: 
f -qf-

(5.18) 

The problem that remains, is todetermine ~ 
1 

so that (5.13) is 
-qf-

satisfied. Let us look at each type of equations in (5.13) separately: 

a) ! ~ 0. 

Note that the speetral radius of B is less than one, and that B is 

-1 irreducible. Therefore (I-B) exists and is strictly positive (see 

Seneta [48]). Using (5.18), now we can see that! ~ 0 if !q _1 ~ 0. We 
f 

will return to the possibility of finding such a !q _
1

, in the next 
f 

paragraph. 

T 
~ 

These equations are depicted more clearly in (5.14). By choosing the 

!k's as in (5.18), all the equations in (5.14) will hold for all values 

of k * qf-1. The only equation that needs to be checked, is: 
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T 
.!q -1 

f 

Which is equivalent to: 

+ + 

q -1 q -s-1 
T = r? o: f Rs+1A (I-B)-1•{A (I-B)-1} f ) 

.:!!qf -1 -qf -1 s•O qf + 1 o 

Consequently, weneed to show that the (2m+1)x(2m+1) matrix 

(5. 19) 

qf -1 s+1 -1 -1 qf -s-1 
H := L 0 R A 1<1-B) •{A0 (I-B) } bas a left eigenvector 

s• qf+ 

with eigenvalue one, and that this eigenvector is nonnegative. If this 

is true, we have found n 
1 

up to a multiplicative constant. Tben, we 
-qf-

can find this multiplicative constant in the next paragraph. 

Notice that H is non-negative and irreducible (since the matrices R, 

A +1 and A0 are non-negative and (I-B)-1 is strictly positive). 
qf 

Therefore, in order to show that the matrix H has a non-negative left 

eigenvector with eigenvalue one, say ~· with ~ ~ Q, it suffices to show 

that H has a non-negative right eigenvector with eigenvalue one (see 

Theorema 1.5 and 1.6 in Seneta [48]). 

T Define the (2m+1) vector~:= (1,1, ••• ,1) , then we will show that A0~ 

{which is strictly positive) is a right eigenvector of H with 

eigenvalue one. Consequently, we have to show that 

{5.20) 

Therefore, we first remark that by definition (see (5.7) and (5.9)) it 

holds that 

(B+A )•e = e 
0 - -

which can be written as 

-1 
(I-B) A •e = e 

0- -

(5 .21) 

(5.22) 
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Consequently, (5.20) can be written as 

which is equivalent to 

(5. 23) 

By (5.16), this is equivalent to 

(5.24) 

Notice that by definition we also have 

( A0 + A1 + A ) • e = e 
qf+1 - -

(5. 25) 

If we substitute this in (5.24), we find 

-1 (I-R) •(A -R•A )•e = A e 0 0 - 0- (5. 26) 

Notice that (5.26) is equivalent to A0~ = A~, which concludes our 

proof. 

T 
c) .!. ~ .. wi th ~.. : = ( 1 , 1 , ••• 

Applying (5.18), this can be rewritten as 
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Under b), we have already determined ~ 1 up to a multiplioative 
-qf-

constant, say a (i.e. !q _1 • a·~). We now def!ne a using (5.28) 
f 

(5.28) 

It will be clear that a oan be defined by (5.28), beoause the right­

hand side of {5.28) is positive and finite: the expression is positive 

-1 ~ k-qf+1 
beoause of the faot that ~ ~ 0, ~- Q and (I-R) • Ik=q _1R is 

f 

striotly positive, whereas all other matrices are non-negative. The 

expression is finite 

~ k-qf+1 
Lk=q _,R 

f 

-1 beoause of the existence of (I-R) • 

So far, we have proved that it is possible to choose ~ 
1 

such that 
-qf-

the ~k•s defined by (5.18) are indeed the steady-state probabilities. 

If ~q _
1 

is given, these probabilities are easy to caloulate beoause R 
f 

oan be found easily. The vector ~ 
1 

equals a•u, where a follows 
-qf- -

directly from (5.28) and u is the left eigenvector of a given matrix H. 

This eigenvector can be found by straightforward numerical methods 

within a limited oomputational time (see Stoer and Bulirsch [50]). 

This enables us to calculate the marginal steady-state probabilities of 

a given realisation of the aggregate inventory position for fast­

movers, when applying a oapacity-oriented strategy B. Denote the 

probability of a realisation of the aggregate inventory position that 

equals ip as P8(1p). Note that the nature of the process allows the 

probabilities, when applying the oapaoity-oriented strategy B-1, to be 

found via (5.29). 

for all values of ip and B (5.29) 
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This enables us to find an optimum ohotee of 6. 

5.6 An example. 

This fast-mover/slow-mover approach is illustrated with a specific 

example having the following characteristics: 

- the demand for product j follows a Poisson process with parameter 

0.9/j 
À ~ • 

j L1001/r 
r=1 

- there are 100 products (N = 100). Consequently, the total demand 

follows a Poisson process with parameter À = 0.9. 

- The production rate v equals one, which corresponds to a 

utilization rate of 0.9. 

- the products numbered 1, 2 and 3 are considered to be rast-movers 

and the others are slow-movers. Note that I. 3
1À. = 0.3534. 

J• J 

- the rast-movers are produced in batches of size 2 (qf = 2) and 

the slow-movers are produced lot-for~lot (q
8 

= 1). 

- if a production run is finished, it arr!ves immediately at the 

stock-points (t = 0). 

+ - the coat rate is ohosen as p(i) := i + 3• 

The simple product-oriented heuristic, that is used for the slow­

movers, indicates that a production run for a slow-mover should be 

triggered as soon as the inventory is leas than or equal to -1 (6. -1 
J 

for all j ~ 4). 
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Then, the expected cost of product j, assuming no interterenee between 

p 
products, beoomes 3·~ , where pj = Àj/~ is the ratio of time that 

j 

the capaci ty is occupied by slow-mover j. 

The approximate expected total cost for slow-movers then beoomes liLI· 

The simple capacity-oriented heuristic indicates that a production run 

for a fast-mover should be triggered when the realisation of the 

aggregate inventory position is less than or equal to B = 10. The 

approximate expected coat for rast-movers with this heuristic 

(determined for m•16) proves to be: 14.14. 

We have also simulated the process under the same strategy. Thus, we 

obtained simulated coats for both the group of rast-movers and the 

group of slow-movers when applying the proposed heuristic, Two 

simulation runs gave the following results: 

simulated cast slow-movers: 

simulated coat fast-movers: 

r1rst run 

5.93 

14.85 

second run 

5.94 

15.59 

Looking at the results, it may be concluded that the actual oost for 

rast-movers can be approximated reasonably well. A better approximation 

ror the actual coat of the fast-movers can be found by using a more 

advanced approximation of the aggregate coat rate than in Sectien 

5.5.1. This has been investigated fora perioctic review model in 

Chapter 4, where good results were obtained. 

The performance of the slow-movers has been approximated badly. To 

estimate this performance, two assumptions have been made: 

- different slow-movers never interfere with each other on the 

capac ity 

- a slow-mover never interferes on the capacity with a fast-mover. 

Note that since the priority for slow-movers is non-preemptive, also 

the second assumption needs not hold. 
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The simplicity of the process for slow-movers (due to the fact that 

they are produced lot-for-lot) allows to find a simple approximation of 

the cost that is based only on the second assumption. That means that 

this new approximation explicitly takes the interference between 

slow-movers into account. The new approximation is based on the fact 

that the number of unfinished orders for slow-movers can be described 

as an M/M/1 queue: interarrival-times between unfinished orders are 

negative-exponentially distributed with parameter ~~ 0 4° À. (=0.5466) and 
J= J 

the serv1ce-time is negative-exponentially distributed with parameter 

~=1. Consequently, the expected total cost for slow-movers can be 

,100 
L.j=4 À/~ 

100 = 3.62. 
- ~j=4 À/~ 

approximated by 3• 
1 

Although this approximation is better, it still is far from the actual 

cost. The reason for this is that the interference between slow-movers 

and fast-movers plays an important role. A rough approximation of this 

delay due to the slow-movers can be found as follows: 

The utilization rate for fast-movers is about 0.3534. An arriving order 

for a slow-mover has therefore a probability 0.3534 to find a rast­

mover job in process. The expected delay due to fast-movers may be 

approximated by 0.3534·qr/~ = 0.7068. During this delay, the inventory 

for the slow-mover is -1 , so that the increase in the total costs due 

to the delay can be approximated by 3•0.7068 = 2.12. This would lead to 

an estimated cost for slow-movers of 5.74, Which is near to the actual 

cost for slow-movers. 

The above approximations are only meant to show how the assumptions 

that underlie the simple product-oriented approach play a role. If one 

wants to determine a more general heuristic, one may use the results of 

Williams [xx], who showed how one may take into account the 

interference between the products in order to find a more actvaneed 

product-oriented heuristic. 
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5.7 Applicability of the fast-mover/slow-mover approach. 

In this Section, we want to discuss whether it is possible to use the 

proposed fast-mover/slow-mover approach in situations where: 

- demand is partly known beferehand 

- the classification of products as fas~mover or slow-mover is 

dynamic 

- different batch-sizes are used among the rast-movers and among 

the slow-movers. 

Firstly, we want tolook at the problems that arise if demand is partly 

known in advance. These problems stem from the fact that whether a 

given inventory position is effective as a capacity buffer in the 

short-run depends on the forecast for future demand (compare Chapter 

4). However as long as there are some products that always are rast­

mover (other situations are discussed below), we can still apply the 

same fast-mover/slow-mover approach: We distinguish some fast-movers in 

Which we will put our capacity buffer. The other products will be given 

priority on the capacity. Product-oriented strategies as discussed in 

Chapter 4, can be used to control the slow-movers. To find a capacity­

oriented strategy, one may use a critical level rule as discussed in 

Sectien 5.5, if demanct for rast-movers is (almost) purely stochastic, 

or one may use a rolling schedule approach with a finite planning 

horizon as in Chapter 4 in case a good forecast for demand is 

available. In a rolling schedule approach, it is possible to consicter 

the exact capacity usage of the slow-mevers in the short-run (a plan 

for slow-mevers has alreacty been founct) and next prepare a production 

plan for the rast-movers basect on an "optimization" over the finite 

horizon. 

Now consicter a situation where the classification of proctucts as rast­

mover or as slow-mover is ctynamic. This may for example be due to 

seasonality of ctemand or to obsolescence of a fast-mover. 

The problem, if a new classification is made, is that a given inventory 

that is built up beoomes ineffective to cope with capacity problems in 

the short-run. Consequently, such a new classification will only have 

minor effects if the stocks are low. Sometimes, however, a rast-mover 

- 136 -



may beoome obsolete, for which inventory has been stored in order to be 

able to cope with capacity problems. In case there is no slow-mover for 

which demand increases at the same time, this will lead to a decrease 

in the demand for capacity, so that the fact that the inventory beoomes 

ineffective as a buffer has little effect. 

A common situation, however, is where the demand for a slow-mover 

increases at the same time that the demand for a fast-mover decreases 

(for example if the original fast-mover is replaced by a new product 

time --+ 

Figure 5.5. The distribution of the inventory-of the pseudo product 

between the old fast-~over and the new fast-mover. 

with slightly different characteristics). If the replacement of the 

fast-mover by the slow-mover is gradually, or if the replacement can be 

predicted well in advance, it is sensible to shift the inventory that 

is available for the original fast-mover to the new fast-mover. With 

the fast-mover/slow-mover approach, this can be done by introducing a 

"pseudo product". The pseudo product is an aggregate of the original 

fast-mover and the new fast-mover. The demand on the capacity due to 

this pseudo product will (hardly) be affected by the obsolescence of 

the original fast-mover. Only the distribution of the aggregate 

inventory of the pseudo product among the original and the new rast­

mover has to change as the obsolescense of the fast-mover approaches 

(see Figure 5.5). 

Finally, we want to discuss a situation where different batch-sizes, 

that are still assumed fixed at the level of Material Coordination, 

are used among the fast-movers and among the slow-movers. 
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It will be clear that when decomposing the products, it is not 

important whether all products have the same batch-size, or not. 

Therefore, choosing different batch-sizes for the slow-movers will have 

no effect on the approach. Consequently, we only have to consicter the 

effect of using different batch-sizes for the fast-movers. Since the 

production rate for each fast-mover is the same, a given inventory 

position will repreaent the same amount of stored capacity, 

independently of the fast-mover. Therefore, the capacity-oriented 

approach should depend on the aggregate inventory position defined as 

the sum of all individual inventory positions. A difficulty appears 

now: if we decide to start a production run for the group of fast­

movers, the transition of the aggregate inventory position will depend 

on the choice of a product within the group of fast-movers. If the 

batch-sizes of the fast-movers do not differ much, it seems reasonable 

to use the expected batch-size as a common batch-size, when deelding 

whether or not to start a production run for fast-movers. If the 

differences between the batch-sizes increase, this approach can be 

improved by assuming that, after the deelsion to start a production run 

for. fast-movers, there is a given probability of a certain realisation 

of the batch-size. It can be proved that the same approach introduced 

by Neuts [42], and used inSection 5.5, can be applied if the batch­

size is stochastic. Notice that also in this case the deelsion to start 

a production run is decomposed from the deelsion of the run-size (we 

will return to this in Chapter 6), 

Nottee that in case Material Coordination has the flexibility to choose 

run-sizes, depending on the actual status of the system, the approach 

presented here, cannot be applied straightforwardly any more. Again a 

capacity-oriented approach and a product-oriented approach can be 

distinguished. The actual run-size will depend on the availability of 

the capacity in the capacity-oriented approach and on the status of 

individual products in the product-oriented approach. 

5.8 Optimality of the fast-mover/slow-mover approach. 

When considering the fast-mover/slow-mover approach, the question comes 

to mind how good this approach is ooropared to other possible 

approaches. The answer to this question is not easy to give. Within the 
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class of situations where the batch-sizes are as given and the priority 

rule is such as proposed in the previous Sections, it may be expected 

that the fast-mover/slow-mover approach performa well. This, at least, 

is indicated by the results of the previous Chapters, that show that a 

simple product-oriented beuristic performa well if the capacity 

restrietion is weak and that a simple capacity-oriented beuristic 

performa well in case this restrietion is tight (as long as the number 

of products is not large). Although these results are obtained for 

situations with identical products, we may expect them to hold for non­

identical products as well, especially since they have proven to hold 

for a situation where the products are not identical in the short-run 

(see Chapter l!). 

The question, however, is whether it is sensible to choose the batch­

sizes and the priority rule as in the previous Sections. This deelsion 

has to be taken on the level where the availability and the requirement 

for the resource are balanced (the level of Tactical Planning in the 

frameworkof Chapter 2). Notice that also the classification of 

products as rast-mover or slow-mover (the choice of Nf) plays a role in 

balancing these two. 

It is interestins to oompare the research of Williams [55] at this 

point. Williams considered a model in which he distinguished products 

that are made-to-stook and products that are made-to-order. The 

products that are made-to-order have a non-preemptive priority on the 

capaoity (Williams also considered other priority rules, but this rule 

performed best). His research is concerned with the following 

points: 

1. Which products should bemade-to-stook and which products should 

oe made-to-order. 

2. What demand should be accepted for products that are made-ta­

order. 

3. How should one choose the batch-sizes for produots that are 

made-to-stook. 

1!. What is the effect on the safety stocks for make-to-stook 

products due to make-to-order products. 

The products that are mad&""to-stock can be canpared with our rast­

movers and the products that are made-to-order with our slow-mevers 

(with batch-size equal to one). 
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For several choices with respect to the first three points, Williams 

has evaluated the performance of, what we call, Material Coordination. 

His approach was product-oriented. He tried to estimate the delay in 

the availability of the capacity for individual products that is due to 

the interference between products on the capacity. The analysis, 

presented in this Chapter, makes it possible to use a capacity-oriented 

approach when evaluating a given set of choices with respect to the 

first three points. 
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Chapter 6. A simple example. 

6.1 Introduction. 

In this Chapter, we want to consicter an example of how to use the 

results of this study in practical situations. Therefore, we will look 

at an existing situation that contains aspects other than the ones in 

the roodels of the previous Chapters. For example, in this Chapter, a 

role will be played by change-over times, interference between 

production plan and maintenance plan, advertising, choice of batch-size 

and availability of raw materials. In the example, there is one obvious 

bottle-neck in the production process. 

We will not discuss how the results of this text can be applied in 

situations with more than one bottle-neck in the production process, 

since this requires further research. Yet, the results of this study 

indicate that it may be advantageous to introduce the capacity-aspect 

of inventories in such situations as well. 

In Section 6.2, we will describe the situation that we want to consicter 

in detail. The proposed structure for Production Control in this 

situation will then be sketched in Sectien 6.3. In Sectien 6.4, we will 

discuss a specific part, namely Material Coordination and go into its 

interface with other levels of control. We will finish this study with 

some conclusions in Section 6.5. 
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6.2 The situation. 

The production situation, considered in this Chapter, is the 

manufacturing of plastic utensils. Diagrammatically, we have described 

the production processin Figure 6.1. 

auppliers raw mixing 

mater i als 

0 interface with environment 

operatien 

controlled stock point 

goedsflow 

moulding assembling 

packing 

printing 

Figure 6.1. Manufacturing phases in the plastic products factory. 

finished cust< 

products 

To make the description of the situation clear, we will discuss the 

characteristics of the demand, the production process and the supply of 

raw materials in distinct subsections. 

6.2.1 Demand. 

The set of products, with about 800 items, is divided into 200 

families. The items may differ in colouring, printing or assembling. 
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For example, a specific form of basket (completely determined by the 

mould that is used) will be referred to as a family, whereas red 

baskets, green baskets or baskets with different handles will be viewed 

as different items within that family. 

The customers are mainly large warehouses. There are about 1500 of such 

warehouses that each generate a relatively small part of the demand. 

The demand is, therefore, relatively smooth but difficult to forecast 

in detail. Consequently, the demand per item can be treated as almost 

purely stochastic. 

For some families, there is a seasonality in the demand. These families 

have about 20 % of the total annual sales. However, this percentage 

changes throughout the year: 30 % in the first half year and 4 % in the 

second half (see Figure 6.2). 

total 

demand 

Figure 6.2. The seasonality of demand. 
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The demand may be influenced by starting advertising campaigns. The 

preparation time for such a campaign is about a month. On the other 

hand, demand will also be influenced by advertising campaigns of 

competitors. Note that these advertising campaigns influence the 

quality of the forecast for demand. 

Finally, we want to mention the risk of obsolescence. The mean life 

cycle of a family is about 10 years. For items the life cycle is much 

shorter, namely about 1 year. Usually, however, when an item that is 

part of a given family ends its life-cycle it is replaced by another 

item that is part of the same family: think for example of changing, 

slightly, the colour of a basket. 

6.2.2 Production process. 

In the production process, the moulding stage has a central place. The 

mould that is chosen, determines which family will be produced. Before 

this moulding stage, the plastic pellets are mixed and the pigment is 

added. This mixing is a straightforward process. The only difficulty 

with mixing is that, when one wants to change the colour, it only 

gradually shifts from one colour to another. Thus a lot of scrap is 

produced. This leads to change-over costs and change-over times if one 

wants to manufacture another item within the same family. We will 

return to this when discussing the moulding stage of the process. 

Mixing is relatively easy and can be done by the same operator that 

controls the moulding-machine. 

We might add that the process that is sketched in Figure 6.1 is an 

extreme. Not all finished items have to go through the whole traject. 

On the other extreme, there are items that only require moulding, 

without mixing, and packing. 

All items, however, go through the moulding stage. The role the 

assembling/packing/printing stage takes in the process is similar to 

the role of the mixing stage. There is a large excess of capacity at 

this stage. The reason for holding this excess of capacity is that the 

products that are manufactured in the moulding stage are difficult to 

keep clean and they are voluminous. Therefore, a large amount of work­

in-process on the production floor is undesirable. Instead, the 
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products that leave the moulding stage are immediately processed to 

finished products. 

The bottle-neck in the production process is the moulding stage: 

There are 9 capacity groups of moulding-machines that can be used. Each 

group consists of several moulding-machines. The moulding-machines 

within the same capacity group have about the same production 

characteristics. The moulding-machines within different capacity groups 

differ in the weight which they can handle. "Heavy" moulding-machines 

are used most efficiently when handling large items, whereas "light" 

moulding-machines can only handle small items. Change-overs between 

families for the light moulding-machines take about half an hour, 

whereas for the heavy moulding-machines it may take 6 hours. 

The change-overs for items within the same family take about 10 minutes 

for the light moulding-machines and 40 minutes for the heavy moulding­

machines. 

The manufacturing time for a single item ranges from 8 seconds on the 

light moulding-machines to 30 seconds on the heavy moulding-machines. 

Production is in batches. 

Sometimes, a batch is rejected. This occurs randomly to 2 % of the 

batches. Other sourees for uncertainty are worker-absentheism 

(15 %) or breakdowns of the moulding-machines (4 %). 

Maintenance on a moulding-machine requires 5 % of the production time. 

If a mould is braken, it may take upto 15 weeks befare it is repaired. 

6.2.3 Supply of raw materials. 

The main raw materials are plastic pellets. There are not many 

different types of plastic pellets (about 20). These pellets repreaent 

about 70 % of the total value of the raw materials. Other raw materials 

are pigments, labels, and boxes (600 different items). 

The average supply time for the plastic pellets is about a half to one 

week. For other raw materials, like the metal handles for baskets, the 

supply time may be 12 weeks. 
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The total value of the raw materials in finished items is about 30 %. 
Therefore, a simple way of control for raw materials seems appropriate. 

6.3 Production Control. 

In Chapter 2, we have mentioned that there are two different reasons 

for the complexity of Production Control. On the one hand the 

production process itself may be complex and on the other hand the 

activities, that should be part of Production Control, have different 

ranges and levels of detail. Consequently, we have used the concept 

"Production Unit" and we have defined various "Levels of Control" in 

Sectien 2.2.1, respectively 2.2.2. 

In this situation, the introduetion of Production Units is 

straightforward. There is only one bottle-neck in the production 

process, namely the moulding stage, Both mixing and finishing are 

relatively simple. Therefore, we define the aggregate process (see 

Chapter 2) as in Figure 6.3. In order to stress the central place that 

moulding holds in the production process, mixing and finishins 

(assembling/packing/printing) are modelled as production flowtimes 

within Moulding. 

\j ~ ~ulding 1~----V 

Figure 6.3. Central place of Moulding. 

The levels of control, that we propose for this situation, are: 
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-Strategie Planning 

-Master Planning 

-Material Coordination 

-Scheduling. 

In this Section, we will discues each of these levels roughly. In 

Section 6.4, we will then discuss the level of Material Coordination in 

more detail. 

Strategie Planning. 

On the highest level of Production Control, we have pictured Strategie 

Planning. At this level, decisions are to be taken that will influence 

the long-term behaviour of the plastic products factory. This level 

includes decisions like entering a new market, buying a new stock­

house, or changing the work-foroe levels drastically. 

An important deelsion with respect to lower levels of control, is how 

much influence customer orders have on the control of the production 

process (see e.g. Burbidge [15] and van Hees [29]). Burbidge [15] 

mentions the following three examples of systems that deal with 

customer orders in different ways: make-to-order systems, stock 

controlled systems and programme controlled systems. 

In this situation with a smooth demand that cannot be forecasted very 

accurately, and a relatively long life cycle for the families (ten 

years), we propose to use a stock controlled system. 

Master Planning. 

Master Planning falls in the framework of Chapter 2 under the heading 

of "Tactical Planning". 

Master Planning has to balance the requirement and the availability of 

resources in the production process. Therefore, Master Planning should 

have a planning horizon that covers at least a whole season (plus the 

time it takes to implament the decisions that are made by Master 

Planning), which is one year. Over this horizon, the behaviour of 

individual items presents much uncertainty (e.g. the average life cycle 

of anitem is about one year). Therefore, Master Planning will, in our 
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view, be concerned exclusively with families (notice that the average 

life cycle of a family is about ten years). 

Over the planning horizon, the demand foracast for families will 

contain information about the seasonality pattern. The resolution level 

of this information will be about a month. In order to be able to react 

on new information about the seasonal patterns, such a Master Plan 

should be made, say, every three months. 

In Figure 6.4, we have sketched the inputs and the outputs (which we 

will discuss below) of Master Planning. 

Coordination 

demand fore 

per family 

cast 

reeast capacity fo 

per capacity group 

Sales Financial Quality 

MASTER 

PLANNING 

Control 

allocat 

accumul 

batch-..s 

adiusti 

adverti 

ion families to cap. gl 

ation seasonal stock 

izes. 

ng resource-availabilit 

sing campaigns 

Figure 6.4. Inputs and Outputs of Master Planning. 

As we have mentioned, the capacity groups differ with respect to the 

weight and size of products they can handle efficiently. Although some 

families can be manufactured on different capacity groups efficiently, 

we propose to make an allocation of the families to the capacity groups 

on this level. This allocation should be kept to at lower levels, in 

principle, for a whole season. Only if problems beoome urgent, the 

flexibility to shift a family to another capacity group may be used. 

At the level of Master Planning, however, the families are allocated to 

the capacity groups, so that for each capacity-group, the availability 

and the requirement of capacity can be bal&~ced. Obvious 

possibilities to control this relation are to start advertising 

campaigns (in order to stimulate the demand} or to adjust the 

availability of resources (e.g. hire extra personel). However. both 
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poaaibilities only have a limited applicability. Advertising campaigns 

have only effect in the short term, and it is much too expensive to 

adjuat the availability of resources often. Since the capacity, in this 

example, ia not ao flexible that it can be varied in order to have 

aufficient capacity in the high season without having too much capacity 

in the low aeason, one haa to "store" capacity in the low season. 

Conaequently, one accumulates stock in the low season to cope with the 

capacity problema that would occur (otherwise) in the high season. The 

stock that ia accumulated for this purpose will be referred to as 

"aeaaonal stock". How much seasonal stock must be accumulated depends 

on the available capacity and on how efficiently thia capacity will be 

uaed. How efficiently a given capacity can be used, depends on the 

batch-sizea. Consequently, the deelsion on the accumulation of seasonal 

stock should be combined with restrictions on the batch-size per family 

and on the decisions about adjuatment of the capacity. It would be 

possible to leave the decision on the exact run-sizes for families to 

lower levels of control (e.g. Material Coordination), and only set 

restrictions on the run-aizes for the families. However, de Bodt and 

van Wassenhave [14] have ahown that little is gained by coupling the 

run-size decision with the decision on when to start a production run, 

in case demand cannot be forecasted accurately. In this situation 

demand, even for families, cannot be forecasted well in detail. This 

leads us to fixing the run-sizes (for families) already on the level of 

Master Planning, which makes the control on lower levels more easy. To 

have an idea of the type of situation, one should think of run-sizes of 

about one week. 

Notice that Master Planning only conaiders families. How the run-size 

for a family is disaggregated into run-sizes for individual items is 

left to lower levels of control. 

After the batch-sizes per family have been fixed, Master Planning 

decides how much seasonal stock must be accumulated in the low season 

for each capacity-group. This decision is integrated with the 

adjustment of the resources and the starting of advertising campaigns. 

An example of the type of model that can be used to balance the 

investment in seasonal stock and the investment in extra capacity is 

put forward by Hax and Meal [28], whohave developed a "Seasonal 

Planning Subsystem" for a specific situation with seasonal demand. An 

analogous system can be developed for the plastic products factory. 
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Note that these two can be balanced more easily if one has insight in 

the effect of changing the capacity on the performance of control at 

lower levels. Since a capacity-oriented approach on the level of 

Material Coordination is based on a oomparisen of the availability of 

capacity and the requirement for capacity, it will be more easy to 

evaluate the effect of varying the availability of capacity (we will 

return to this in Section 6.5). 

Note that the timing of orders is left to Material Coordination. Master 

Planning only generatea norms with respect to seasonal stock in each 

period. We assume below, that Master Planning determines what cost is 

incurred if Material Coordination deviates from the norms with respect 

to seasonal stock. 

Finally, we want tomention that on this level of Production Control, 

there is also coordination with the other control processas in the 

organisation. For example, together with Quality Control a maintenance 

plan for the equipment has to be constructed and Financlal Control has 

to agree on the level of capita! that is tight up in work-in-process 

and in stocks. As far as the coordination with Sales Control is 

concerned, we have so-called "structural coordination11 on this level 

(see Chapter 2). That means that the coordination with Sales Control is 

in aggregate terms (like customer service-rate and demand patterns). 

Material Coordination. 

Master Planning has imposed certain norms on the seasonal stock per 

capacity group. These norros can be used as a target for Material 

Coordina~ion. Material Coordination has to reach these targets. lf 

Material Coordination deviates from these targets, a certain oost is 

incurred, 

Besides reaching the required seasonal stocks, a task of Material 

Coordination is to realise a certain customer service-rate (see Figure 

6.5). 

Since we have allocated the families to the capacity-groups on the 

level of Master Planning, Material Coordination can consicter the 

different capacity-groups separately. 
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Material Coordination for each capacity-group will be split into two 

levels. 

On the first level, only families are considered. Using short term 

forecasts for demand of families and information about the seasonality 

forecasted 

demand 

norms season 

stock 

batch-si ze 

al 

customer service-rate 

MATERIAL 
product ion orders 

COORDINATION per fa mily/item 

Figure 6.5. Inputs and outputs per capacity-group for Material 

Coordination. 

pattern, it is decided tostart production runs for families (the run­

size has been fixed by Master Planning). 

On the secend level, the production run for a family is disaggregated 

into production quantities for individual items. 

Since items within the same family require approximately the same raw 

materials, set-up coats, processing times and storage space, Material 

Coordination should emphasize the first level. Then, disaggregation may 

be straightforward, e.g. by equalisation of run-out times, as proposed 

by Hax and Meal [28]. Remark that they defined the run-out time of a 

product as the expected time until the inventory of the product drops 

below the safety stock of that product. A common way to define the run­

out times is as the time until a stock-out occurs for the product. 

We will return to the first level of Material Coordination, in Section 

6.3. 

Material Coordination also has to ensure that the raw materials are 

available. However, as we have seen, the raw materials are relatively 

cheap and are used in bulk quantities (at least for the largest part, 

namely the plastic pellets). Consequently, a simple metbod for the 
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control of the stocks for raw materials seems adequate. For example, a 

Reorder Point System (see Section 2.4.1) can be used in this context. 

Scheduling. 

Scheduling has to assign production orders, that are generated by 

Material Coordination, to the moulê'tng-machines within a given 

capacity group. Also operators will be allocated to the moulding­

machines. We will not discuss Scheduling any further in this context. 

On the level of Material Coordination, it is required to have a model 

of the performance of the Production Units. For a discussion about the 

performance-measurement of a Production Unit, the reader is referred to 

Eertrand and Wortmann [9]. 

6.4. Material Coordination. 

In this Section, we will consicter Material Coordination in some more 

detail. 

In the previous Section, when describing a design for Production 

Control for the plastic products factory, we have seen that Material 

Coordination has to release family-orders for each of the nine 

capacity groups. Since, at a higher level of control, the families have 

been assigned to the capacity groups, there are nine separate planning 

problems: one for each capacity group. 

For each planning problem, the batch-sizes of the families and the 

availability of resources have been fixed. Material Coordination has to 

decide on the production levels in order to guarantuee the customer 

service-rate and the accumulation of seasonal stocks, that have been 

set by Master Planning. 

In order to be able to use the results of previous Chapters, we will 

discuss how demand is experienced on this level, what oost function is 

used and what the service mechanism looks like for Material 

Coordination. 
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The demand in each planning problem (one for each capacity group) is 

autonomous. This demand is difficult to forecast in detail. Only over a 

short horizon a detailed forecast is made, whereas in the long term 

only information is available about the seasonal pattern per family. 

Consequently, it seems reasonable to consicter only a short planning 

period, in which the forecast for demand is updated frequently (at this 

levelsome operational coordination with Sales Control is possible). 

This may mean that one uses a rolling schedule with a short horizon, or 

that one determines critica! levels for the inventories. For these 

critica! levels, one may think of levels per product (to ensure a 

certain customer service-rate) or a level on the aggregate (to ensure 

that the seasonal stock is reached). This level on the aggregate should 

then be determined dynamically. 

As discussed already, Material Coordination must provide a certain 

customer service-rate and it must reach a certain seasonal stock. 

In order to ensure a certain customer service-rate, we may introduce 

inventory holding costs and stock-out costs for the inventory of 

individual families (compare Tinarelli [52] and Schwarz [47]). 

The. seasonal stock is meant to be able to cope with capacity problems 

in the high season. Therefore, it seems reasonable to measure the 

seasonal stock, for each capacity group, in aggregate terms. In Chapter 

5, we have seen that such stock, that is meant to buffer against 

capacity problems, should be stored in the rast-movers for each 

capacity-group. The slow-movers, then, get priority on the capacity. In 

this situation with a risk of obsolescence, it is sensible to build up 

high stocks only for families with a low risk of obsolescence. To 

measure whether enough seasonal stock has been accumulated, a oost rate 

on the aggregate inventory position of the fast-movers may be used. 

This oost rate fellows from the analysis of seasonal stocks at the 

level of Master Planning, where stock norms are set and a cost for 

deviating from these norms is determined. Notice that these stock norms 

have to be ohosen dynamic in this case with a seasonal demand. 
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Figure 6.6. Inventory pattern for family j. 
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Now that we have discussed the demand and the cost function for 

Material Coordination, we will discuss the service mechanism. If a 

production run for family j is started, we have to know how this 

influences the inventory for that family. Therefore, we have sketched 

an example of the inventory pattern for family j, over a period of time 

in which a production run for the family is started (see ~igure 6.6). 

It should be realised that the production time for a batch for family j 

consists of several parts: 

1. set-up time for the family (=change-over between families) 

2. change-over times between items within the family 

3. actual manufacturing time for the batch. 

If we denote the production time for family j by T., then T. will be 
J J 

stochastic. This stochasticity is due to the following points: 
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- the number of change-overs between items depends on how the batch 

for the family will be disaggregated on a lower level of Material 

Coordination. 

- the maintenance and breakdowns of moulding-machines. 

- the uncertainty in the manufacturing time of a single item. 

- the uncertainty in the yield of the process. 

- the worker-absentheism. 

The finished items are added to the inventory somewhere between the 

startand the end of the production run (duration: Tj). Since the 

increase in inventory will be irregular, and the actual pattern depends 

on the change-overs that are decided upon later, it will be difficult 

to estimate the right incremental pattern. A simple approximation of 

this incremental pattern is given by the dotted line in Figure 6.6. 

This dotted line corresponds to the assumption that the whole batch 

will enter the inventory at the end of the production run. The actual 

inventory will be higher throughout the production run, which reduces 

the number of actual stock-outs. This effect may be accounted for in 

the oost function related to the inventories of the products. As 

another extreme, one might consicter the model in which the batch is 

added to the inventory at the start of the production run. Other 

approximations would have been possible. However, the results of 

previous Chapters can be applied most straightforwardly if we aseurne 

the batch to arrive at the inventories as a whole. Notice that the 

actual costs may be expected to lie between the two mentioned extrames 

(adding the batch to the inventories at the start of a production run 

or at the end of a production run). 

We have now described the service mechanism, the demand and the cost 

rate. This enables us to apply the results of the previous Chapters in 

order to propose a Material Coordination System for the plastic 

products factory. As was mentioned, the different capacity groups can 

be treated separately on this level of Material Coordination. 

Therefore, we will discuss the Material Coordination System for only 

one of the capacity groups. 

In the low season, we start by distinguishing a group of rast-movers 

and a group of slow-movers. This decomposition is not only based on the 

expected demand patterns, but also on the risk of obsolescence for each 

- 155 -



family. The seasonal stock is built up for the fast-movers, whereas the 

slow-mavers will have priority on the capacity. 

The classification of a family as either a fast-mover or as a slow­

maver does not change over the season, unless obsolescence of a rast­

mover requires it. 

In order to ensure that the raw materials are on the workfloor in time, 

and that the right moulds are available, Material Coordination plans 

always two production runs, which take about a week, ahead (on each 

capacity-group). That means that Material Coordination sets a time for 

the start of the first production run and Material Coordination decides 

which family will be produced aftar this run is finished. 

In order to ensure that seasonal stocks are accumulated, we use a oost 

rate to the aggregate inventory position for the rast-movers that puts 

a penalty on deviating from the seasonal stock, as has been set by 

Master Planning. 

To constitute a plan for each slow-mover, a simple product-oriented 

approach is used, which leads to the analysis of one-dimensional 

optimization models (one for each siow-mover). Via simple methods, we 

then coordinate the production plans for slow-movers. Thus, we find 

that the capacity that is left for the rast-movers is more tight. 

Therefore, we use a capacity-oriented approach in order to constitute a 

production plan for the rast-movers (or to determine critica! levels), 

taking into account the remaining pattarn of capacity-availability. 

Consequently, we aggregate over the fast-movers. 

6.5 Conclusions. 

Material Coordination as described here, is relatively simple. Only 

one-dimensional optimization models have to be analyzed. This will make 

it easy to implament the proposed method of Material Coordination. 

- 156 -



The introduetion of an explicit measure for the amount of capacity that 

is buffered in the inventories (the aggregate inventory position for 

fast-movers) has three advantages: 

Firstly, safety stocks can be accumulated more efficiently. The 

difference between product-oriented uncertainty and capacity-oriented 

uncertainty will be used when buffering against uncertainty. The 

results of the previous Chapters indicate that th1s leads to eff1cient 

buffer stocks. 

Secondly, the information that Material Coordination requires with 

respect to individual families only has a short-term character, whereas 

over a longer horizon only aggregate information is necessary (when a 

oost tunetion is determined for the aggregate inventory for fast­

movers, that should repreaent the cost of capacity-problems for the 

future). This information is relatively reliable. If a product-oriented 

approach would also be used for fast-movers, then detailed information 

would be required for fast-movers over a long period in order to avoid 

capacity problems. 

Finally, we want tomention the advantage of introducing an explicit 

measure for the amount of buffered capacity with respect to the 

coordination of Material Coordination and Master Planning. 

Master Planning has to ensure that the resources are obta1ned and used 

effectively and efficiently. This will be more easy, since it can 

explicitly be measured what effects changing the resource-availability 

has on the performance of Material Coord1nation. This also makes 

budgeting and performance-maasurement for Material Coordination more 

easy. 

If a product-oriented approach to designing Material Coordination were 

used in case the capacity restrietion plays a rele, a separate 

aggregate model would be necessary on the level of Master Planning for 

these purposes, with all inherent problems for coupling this with the 

level of Material Coordination. 

The above mentioned, three advantages of introducing a measure for the 

amount of stared capacity at the level of Material Coordination, may be 

expected not only to hold for the example that has been treated here, 

but in a more general class of situations, where capacity restrictions 

play an important role. 
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On the capaclty-aspect of lnventorles. 

Summary. 

In this study, we have consldered the Materlal Coordinatlon level of 

Production Control. On this level different Production Units are 

discerned and the flow of material over these Production Units is 

coordinated (compare well-known Materlal Coordination Systems, like 

Materlal Requirements Planning, the Reorder Point System or the Base 

Stock System). 

The performance of a given Material Coordination System depends not 

only on the characteristics of the Material Coordlnat.ion System, but 

also on the characteristics of the environment it should werk in. 

Therefore, a trade-ort has to be made between investments that are 

necessary to reduce uncertainty and investments to be able to cope with 

existing uncertainty (e.g. safety stocks or flexible resources). 

In this text, we have concentrated on the way one can create safety 

stocks to proteet against uncertainty on the level of Material 

Coordination, efficiently. The results of this text may then be used in 

making this more general trade-off. 

One may distinguish two fundamentally different approaches to create 

such stocks, namely: 

-the product-oriented approach. In this approach, first the 

delivery patterns for individual products are translated to 

production patterns, using standard throughput-times for orders. 

Next, the different production patterns are coordinated over a 

shorter horizon, taking the capacity restrietlans into account. 

Uncertainty in the required delivery pattarn and the availability 

of capacity, can be attacked in the first step, so per product. 
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-the capacity-oriented approach. In this approach, first a 

production level plan is made, possibly combined with a capacity 

adjustment plan. This requires aggregation of delivery patterns 

and inventories to capacities. Next, over a shorter horizon, the 

aggregate production plan is disaggregated to individual products. 

Uncertainties in the aggregate delivery patterns and in the 

availability of capacities can be accounted for in the first step, 

which leads to aggregate safety stocks. 

In this text, we have compared both approaches at hand of the single­

phase multi-product model (with one clear capacity bottle-neck). The 

reason to consicter this model is that it is the most straightforward 

starting point for the analysis of the weak and strong points of the 

approaches. 

After discussing a framework for Production Control in which the level 

of Material Coordination can be embedded, we have ooropared the two 

different approaches for some single-capacity models. First, we have 

considered a single-phase model in which both the demand for individual 

products and the availability of the capacity are purely stochastic. We 

have compared the two approaches by using simulation experiments. This 

has led us to an operational criterion for choosing between the two 

approaches. This criterion has also been checked in a situation where 

demand is partly known beforehand and the availability of the capacity 

is deterministic. We have ooropared different ways of using the 

information that is available about future demand in this model, and it 

proved that the choice between the capacity-oriented approach and the 

product-oriented approach was not influenced by this. Therefore, the 

criterion could be used again. 

Also, we have considered a model, in which the demand rate varies 

widely among the products. It has been suggested to use a capacity­

oriented approach for the rast-movers in such situations and a product­

oriented approach for the slow-movers, after giving the slow-movers 

priority on the capacity. 

Finally, we have discussed a case of a plastic products factory. At 

hand of this case, we have shown how the results of this study can be 

used in a practical situation. 
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Het capaciteitsaspeet van voorraden. 

Samenvatting. 

In dit proefschrift beschouwen we het niveau van Materiaal Coördinatie 

binnen produktiebeheersing. Op het niveau van Materiaal Coördinatie 

worden diverse produktie-eenheden onderscheiden in het 

produktieproces, en moet de goederenstroom over deze eenheden 

gecoördineerd worden. Enkele bekende Materiaal Coördinatie Systemen 

zijn "Material Requirements Planning", het "Reorder Point System" en 

het "Base Stock System". 

De doelmatigheid van een gegeven Materiaal Coördinatie Systeem hangt 

niet alleen af van het systeem zelf, maar ook van de omgeving 

waarbinnen het systeem moet werken. Daarom dient een afweging gemaakt 

te worden tussen investeringen die nodig zijn om te zorgen dat de 

onzekerheden van de omgeving gereduceerd worden en investeringen die 

nodig zijn om Materiaal Coördinatie te beschermen tegen de gevolgen van 

de bestaande onzekerheden (bv. door het creären van 

veiligheidevoorraden of het werken met flexibele capaciteiten). 

In dit proefschrift, beschouwen we de vraag hoe men efficient 

veiligheidsvoorraden kan creären op het niveau van Materiaal 

Coördinatie. De resultaten van dit proefschrift kunnen zodoende 

gebruikt worden bij het maken van de genoemde afweging. 

Men kan twee fundamenteel verschillende aanpakken onderscheiden bij het 

creären van dergelijke voorraden, namelijk: 

-de produkt-georiänteerde aanpak. In deze aanpak worden eerst de 

afleverpatronen voor individuele produkten vertaald naar 

produktiepatronen. Hierbij wordt gebruik gemaakt van standaard 

doorlooptijden voor orders. In een tweede stap worden de 

verschillende produktiepatronen gecoördineerd, waarbij d.e 

capaciteitsrestricties in beschouwing worden genomen. De horizon 
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in deze tweede stap is meestal kleiner dan in de eerste stap. 

Onzekerheid, zowel met betrekking tot de vereiste afleverpatronen 

als met betrekking tot de beschikbaarheid van capaciteiten, dient 

te worden opgevangen in de eerste stap. Dit leidt tot 

veiligheidsvoorraden per produkt. 

-de capaciteit-georiënteerde aanpak. In deze aanpak wordt eerst 

beslist hoe men de capaciteiten zal gebruiken. Dit wordt beslist 

op grond van een vergelijking van de beschikbaarheid van de 

capaciteiten en de vraag naar capaciteiten. Daartoe dienen de 

afleverpatronen en de voorraden geaggregeerd te worden naar 

capaciteiten. Na het opstellen van een aggregaat produktiepatroon, 

wordt dit patroon over een kortere horizon gedisaggregeerd naar 

individuele produkten. Onzekerheid met betrekking tot aggregaat 

afleverplannen en met betrekking tot beschikbaarheid van 

capaciteiten moet worden opgevangen in de eerste stap. Dit leidt 

tot aggregaat veiligheidsvoorraden. 

In dit proefschrift, hebben we beide aanpakkén met elkaar vergeleken 

aan de hand van het één-capaciteit meer-produkten model (met één 

capaciteit bottle-neck). We hebben dit model beschouwd, omdat het het 

meest simpele model is waarin men onderscheid kan maken tussen de beide 

verschillende aanpakken voor het creëren van veiligheidsvoorraden. 

Nadat we een raamwerk voor produktiebeheersing hebben beschreven, 

waarbinnen het niveau van Materiaal Coördinatie een plaats inneemt, 

hebben we de beide aanpakken vergeleken voor enkele verschillende 

voorbeelden van het één-capaciteit meer-produkten model. Eerst hebben 

we het model beschouwd, waarin zowel de vraag naar produkten als de 

beschikbaarheid van de capaciteit volledig stochastisch is. Met behulp 

van simulatie hebben we de twee genoemde aanpakken vergeleken. Dit 

heeft ertoe geleid om een operationeel criterium voor de keuze tussen 

beide aanpakken op te stellen. Dit criterium hebben we vervolgens 

gebruikt in een model waarin ae vraag, gedeeltelijk, van te voren 

bekend is en waarin de beschikbaarheid van de capaciteit 

deterministisch is. De resultaten tonen aan dat de keuze tussen de 

capaciteit-georiënteerde en de produkt-georiënteerde aanpak niet 

afhangt van de wijze waarop men gebruik maakt van de informatie die 
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beschikbaar is over de toekomstige vraag. Dit maakt het mogelijk om het 

criterium ook voor dit model te gebruiken. 

Ook hebben we een model beschouwd, waarin de gemiddelde vraag sterk 

fluctueert over de verschillende produkten. Voor een dergelijke 

situatie hebben we voorgesteld om de snellopers te beheersen met behulp 

van een capaciteit-georiënteerde aanpak en de langzaamlopers te 

beheersen met behulp van een produkt-georiënteerde aanpak (terwijl de 

langzaamlopers voorrang krijgen op de capaciteit). 

Tenslotte, hebben we een case beschouwd van een fabriek, waarin plastic 

voorwerpen geproduceerd worden. De analyse van deze case toont aan hoe 

de resultaten van dit proefschrift in praktijksituaties gebruikt kunnen 

worden. 
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I 

Het aanleggen van capaciteit-gerichte voorraden past niet binnen het 

kader van de MRP-filosofie. 

II 

Beschouw het volgende probleem (zie Dantzig et al. [1]): 

Een reder mag kiezen welke havens zijn vrachtschip aandoet en in 

welke volgorde. Door een reis van haven i naar haven j verdient hij 

a
1
j guldens. De reis duurt t 1j dagen (inclusief laden en lossen). 

Stel er zijn n havens met laijl ~wen lt1jl ~ t voor alle (i,j). Om 

de winst per dag te minimaliseren, suggereert Lawler [4] een 

algoritme dat O(n3logn) tijd vergt. Gebruikmakend van een resultaat 

van Karp [3] is het mogelijk een algoritme te vinden dat O(n3) tijd 

vergt (zie Hordijk en Bemelmans [2]). 

[1] G.B. Dantzig, W. Blattner and M.R. Rao, Finding a Cycle 

in a Graph with Minimum Cost to Time Ration with 

Application to a Ship Routing Problem, appeared in 

"Theory of Graphs" by P. Rosenstiehl (ed), Dunod, Paris, 

and Gordon and Breach, New York, 1976. 

[2] A. Hordijk and R. Bemelmans, interne notitie, 

Rijksuniversiteit te Leiden, 1980. 

[3] R.M. Karp, A characterization of the minimum cycle mean 

in a Digraph, Memorandum No. UCB/ERL M77/47, Electranies 

Research Laboratory. 

[4] E.L. Lawler, Combinatorial Optimization: Networks and 

Matroids, Holt-Rinehart-Winston, New York, 1976. 



III 

Door bij het bespreken ven een raamwerk voor "Master Production .._.. 
Scheduling" voorbij te gaan aan het verschil tussen nstructurele" en 

"operationele" coordinatie, worden praktische problemen 

geïntroduceerd. 

[1] W.L. Berry, T.E. Vollmann and D.C. Whybark, Master 

Production Scheduling: Principles and Practice, 

APICS, 1979. 

[2] J.W.M. Bertrand and J. Wijngaard, The structuring of 

production control systems, rapport Technische 

Hogeschool Eindhoven, BDK/ORS/84/10, 1984. 

IV 

Het standaardpakket CAN-Q, waarmee men doorlooptijden in 

productieprocessen kan bepalen, is slechts in zeer speciale gevallen 

toepas baar • 

[1] J. Solberg, CAN-Q User's guide, Purdue University, 1980. 

V 

Bij de beschrijving van Cox-verdelingen, wordt vaak gebruik gemaakt 

van het beeld van een aantal exponentiele fasen in serie, waarbij na 

iedere fase met een bepaalde kans (afhankelijk van de fase) geloot 

wordt of de volgende fase nog doorlopen wordt. Indien men echter 

gebruik wil maken van het feit dat de Cox-verdelingen dicht liggen 

in de verzameling van verdelingen die alleen gewicht leggen op de 

niet-negatieve rechte, dan moet de kans in het lotingsmechanisme 

complex gekozen worden, hetgeen de beschreven interpretat~e 

bemoeilij kt. 

[1] D.R. Cox, A use of Complex probabilities in the theory 

of Stochastic Processes, Proceedings of the Cambridge 

Philosophical Society, vol 51 (1955), pp. 313-319. 



VI 

Dat het verstandiger is een doorzichtige regel te gebruiken dan een 

(vermeend) optimale regel door te drukken, wordt bewezen door de 

problemen rond de invoering van de ~ling. 

VIl 

Als de "struggle for life" een essentieel element is van iedere 

evolutie, dan moeten we erg oppassen met het zoeken van contact met 

buitenaardse beschavingen. 

VIII 

Zoals het beste orkest niet bestaat uit een samenstel van de beste 

solisten, zo bestaat het beste hierarchische gestructureerde 

beheersingssyteem niet uit een samenstel van de beste 

beheersingaregels op ieder niveau. 

IX 

Nu medewerkers aan Universiteiten en Hogescholen met de term (hoofd) 

docent worden aangeduid, is het de hoogste tijd om de didactische 

bekwaamheden van deze medewerkers te ontwikkelen. 

x 

Iemand die een "practicality gap" wil vullen, wordt vaak gezien als 

een "practical joker". 


