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Micro- and macro-block factorizations for regularized
saddle point systems

Joseph M.L. Maubach and Wil H.A. Schilders
April 2, 2012

Abstract

We present unique and existing micro-block and induced macro-bloak-®esed fac-
torizations for matrices from regularized saddle-point problems with sesiiiym definite
regularization block. For the classical case of saddle-point problenshes that the in-
duced macro-block factorizations mostly reduces to the factorizationrpgess [24]. The
presented factorization can be used as a direct solution algorithm tdaregd saddle-point
problems as well as it can be used a basis for the construction of précoack.

1 Introduction

It is well-known that any symmetric matriX, whether positive definite or not, can be factored
Q'XQ =LDL"

whereD is a micro-block diagonal matrix with blocks of dimension 1) L is a unit lower

triangular matrix, and is a permutation matrix (see for instance [8, Section 4.4edl5]).
There are various algorithms for the calculation of suchctof@zation, optimized for matri-

cesX which have a specific shape or satisfy specific propertiesinstance, for an indefinite

matrix X without special structure, [3] presents the numericaliyk construction of a permu-

tation matrixQ and the related matricdsandD. An even more economical pivoting strategy is

presented in [2] and a Bunch-Kaufman-Parlett factorizatigplementation is presented in [14].
This paper focuses at indefinite linear systems of the form

A BT X1l b1

B -C X9 N b2 ’
where the coefficient matrix is called and has a 2 by 2 block Karush-Kuhn-Tucker (KKT)
structure with a potentially non-zero (2,2) block. FGr= 0, in equality-constraint quadratic
optimization [20, page 40, Section 18.1], the coefficientrmaX is called the KKT matrix.

MatricesX with block C = 0 can also be found in mixed finite elements, Darcy’s flow equa-
tions [1], problems of incompressible flow and elasticit§]j2zand many other application. The
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case ofC # 0 and positive semi-definite arises in regularization andriat point methods in
optimization, in electronic circuit simulation [23], anelated applications.

The structure oX has been exploited for the construction of preconditionmersany different
ways [11, 12, 24, 9, 4, 15]. This paper closely follows therapph by [24] where it is assumed
thatX has additional structure, i.e., tHBt= [B;, B] is of maximal row rank and has upper tri-
angular blockB,, which can be achieved through transformationXoHowever, whereas [24,
Lemma 4.1] focuses on the construction of a Crout-type mhtyok preconditioneX = £DLT
(see also [7, Theorem 4.2]) based on the requirementlthgtQ™X Q) = diag(Q*XQ) for a
specific permutation matri&) (see [24, page 387]) we introduce a potentially non-Zértaock
and actually calculate an explicit formula for the macroel factorizationX = £DL" based
on the 2 by 2 and 1 by 1 micro-block Schilders’ factorizatinl8, 5, 6, 17, 24]. We show that
for C = 0 and upper triangular matritiag(B,) = I our macro-block factorization is identical
to the one in [24]. For non-zer@ we show that our macro-block factorization is unique and
exists.

Many other important categories of preconditioning methexlist. For instance [11] assumes
that one can factoriz€ = LDL", substitutesc; = —DL"x,, obtains the equivalent system

A 0 BT

o 5]
B L ol|x [P

and considers preconditioners of the same block form, bttt Wi replaced by a symmetric

preconditioneiG. (see also [18, 16, 22]). We mention this approach becasseoal approach
requires the factorization of the positive semi-definiten®aC, if it is non-diagonal.

The remainder of this paper introduces the factorizatisryniqueness, and existence as follows.
Theorem 1 presents the micro-block factorization for indediproblems, based on the micro-
block structure presented in [24, Lemma 3.1]. Then, aftes@nting results on uniqueness,
Theorem 2 provides an explicit formula for the factors of théuced macro-block factoriza-
tion. Thereafter, Corollary 1 and Corollary 2 focus on the $ifflerence and mostly similari-
ties between macro-block factorization [24, Lemma 4.1] amdmacro-block factorization (for
C = 0). We show that folC = 0 anddiag(B;) = I both macro-block factorizations are iden-
tical. Then Theorem 3 shows that the micro-block factoriratand hence related macro-block
variant) exists foilC > 0, and that it is based on the existence of a symmetric posig¥mite
Schur complemenA + BTC~!B. Next, in Theorem 4 we prove the existence of our factoriza-
tion for C = 0, in a manner which differs from the proof in [24, Lemma 4.1]e Bkploit the fact
that our Crout-based macro-block factorization is uniquegeursome conditions which makes it
possible to assume even more structur&Xafin particular thatB; = I andB, = 0), without
loss of generality. We finish the existence proofs with Tkeo5, which shows the existence
of our factorization forC = (0,...,0,cgq41,.-.,¢n) Wherecg, 1, ..., c,, are positive. Finally
Theorem 6 shows how to proceed for the general case vihe&asymmetric positive definite but
not diagonal.



2 The micro-block factorization

For use in the existence proofs later on, Definition 1 belomnfdates all shape-related condi-
tions onX and its blocks, as well as for the permutatipnd permutation matrix) which
induce the micro-block factorization. The existence psadsume additional conditions, for in-
stance that is positive definite (on the kernel @), thatC is positive semi-definite, and that
B is of maximal row rank.

Definition 1. Let n, m be natural positive numbers, [Et be then by n identity matrix, and let
0., be then by m zero matrix. For the sake of convenience assumerthat n. Let A be a
symmetricn by n matrix, let

B - [Bl B2:|

be anm by n matrix whereB; is an upper triangulam by m matrix andB, anm by n — m
matrix. Let
C:diag(clla"'acmm)7 ciieRa 1§Z§m

be anm by m diagonal matrix. LeiX be partitioned into blocks which have shapes as follows:

IIh

T
X:{AB}::D:

I~

implicitly has a 3 by 3 macro-block structure. As in [24, p&#6] we will use a permutation
p: {1,...,n} — {1,...,n} and without loss of generality assume that the identity map.
With the use of this permutation we define the permutatiorrimat

Q = [ep(l), €n11, ep(Q), (ST PR ,ep(m), €nim, ep(m+1), Ce ,ep(n)] (1)

and defineY := QTXQ to be then by n micro-block matrix, just as in [24].

Note that by Definition IX is symmetric which is necessary for the existence of a faaziton
of the formX = L odiag™'(L) o LT which we construct in Theorem 1 whekds a micro-block
lower-triangular matrix andiag(L) is its micro-block diagonal.

For the sake of illustration of how the micro-block factatibn functions, consider an example
which shows the micro-block partitioning of.

Example 1. Letn = 7, m = 4, and as in paper [24], assume that permutatiofil, ..., n} —



{1,...,n}istheidentity map. Then (row and column indices printedhltorder of the matrix)

1 m | m+1 n n+1 n+m
1 ail a2 a1z a4 ais aig  air | b1 0 0 0
a21 a2 a23 a4 | ass azs a7 | bi2 b2 0 0
az1 azz as3 asq ass aze aszr | bis bas b33 0
m a41 Q42 Q43 Q44 | Q45 ase  aq7 | big boy b34 bayg
x— m+1 as1 as2 as3 as4 | Gss  asé  as7 | bsi bs2 bs3 bs4
a1 a2 Ge3  a64 aes ass a7 | be1 be2 be3 bea
n a7l ar2  ar3  arg | ars are  arr | bn br2 b73 b7
n+1 bi1 b1z b1z big b1s big  bi7 | —c11 0 0 0
0 b2z b2z bag bas bas  bar 0 —C22 0 0
0 0 b3z b3s b3s bszs  bar 0 0 —c33 0
n+m 0 0 0 bay bys bas ba7 0 0 0 —C44

The permutatior is a product of two permutations
swapped with some bottom rows (columns to the right-mostroak):

. First, the rows+ 1,...,n of X are

1 m m+1 2m — 1 2m 2m + 1 n-+m
1 a1l a2 a3 a4 b11 0 0 0 ais aie air
a1 a2 @23 a4 b12 bao 0 0 azs aze az7
az1 az2 asz  asq b13 ba3 b33 0 ass ase asz
m a41 Q42 Q43 Q44 b14 boy b34 bag a4s a46 asr
m+1 b1 b1z b1z bia | —cn1 0 0 0 bis bie bi7
0  bog b2z b2y 0 —co2 0 0 bas bag bar
0 0 b3z b3s 0 0 —c33 0 b3s b3 bs7
2m 0 0 0 b44 0 0 0 —C44 b45 b46 b47
2m+1 as1 as2 as3  as4 bis bas bss bas ass ase as7
a1 as2 ae3z aes | bie bag b3 bae ags age a7
n+m ar1  arz  ars  arg b17 bar b7 ba7 ars are arr

and next, its firsm rows and columns are permuted withm +12m+2 ...

1 ... n)to obtain

mm-+m2m+

1 2 3 2m — 1 2m 2m + 1 n+m

1 ai1 bin aiz 0 a3 0 aiq 0 ais aie a7

2 bi1  —ci1 bi2 0 b13 0 b14 0 bis bie b17

3 a1 bz a2 bz as23 0 az4 0 ass asze a7

4 0 0 boa  —co2  bos 0 by 0 bas bae ba7

T azgy b1z az2  baz  azz  bss as4 0 ass ase a7
Y=Q'XQ= 0 0 0 0 b3z —ca3 b3a 0 bss bsg  bar @

2m —1 as1 bia as2  baa  asz  bas a44 baa a4s aqe a4t

2m 0 0 0 0 0 0 baa —C44 bas bae bar

2m +1 as1 b5 as2  bas  asz  bss as4 bas ass ase6 as7

as1  bie as2 bas ae3  bss a4 bae ags age ag7

n+m a7y bz ar2 bar  ars bar ary ba7 ars ae a7

The resulting matrix (above) is (micro-block row and coluimgices printed in the border of the

matrix)
1 2 m m+41 n
1 a1 bin | a1z 0 ais 0 a4 0 ais aie | a1t
bi1  —ci11 | b1z 0 b1z 0 ba1 0 bis bis | bir
a1 biz | a2 bz | a2s 0 a4 0 azs aze | a7
0 0 boa  —co2 | bo3 0 bay 0 bas bog | bar
v - azg1  biz | as2 bz |azz b3z | ass 0 ass ase | asr 3)

0 0 0 0 bz  —c33 | b3 0 bss bss | bar
m ag1 big | as2  bag | asz  b3s | asa by ass as6 | aq7
0 0 0 0 0 0 bga —cCa4 bys bag | bar
m+1 as1 bis | as2  bas | as3  b3s | asa  bus ass asé | ast
agt  big | as2  baeg | ags  b3s | aea  bas aes as6 | aer

n Na7s1 bz |ar2 by | ars b3y | aza  bar ars are | arr 7



By construction the micro-blocks of the matr have index rangesj = 1,...,n. As an
example, matrix (2) has the micro-block entries in (3).

The micro-block partitioning shown in the example abovenstédrom [24, pages 386, 387] and
is at the core of the following micro-block factorization:

Theorem 1. Let X and its blocksA, B, and C be as defined in Definition 1. Let mati& =
Q'XQ be micro-block indexed with indicésj = 1, ..., n as defined in Definition 1. Then by
construction of the permutation matr§y one finds that

PP S
Y, = | P00 M)(Z)] (4)
! { bipiy — —Cij
forall 1 <i<mandl < j < i. BecausdB; is upper triangular andC is a diagonal matrix,

more specifically

v, = |@ow@ Vi) |y [WeG) Dis) 5)
B RO R O] I 0 0}

forall 1 <i<mandl <j<i.
Let then by n matrix PYEP be defined by its entries,; ;) as follows: First, define
epip) =0,  1<i<m, (6)

and next, by column-recursion define foralK j <i < m

-1

.

N L)
€p(i).p(G) = 2 Cp(i)p(j) (7)
k=1
with
T —1
S0 [aem — ep(i),p(k)} {ap(m,p(k) = €p()p(k)  Dkp(i) } {%(jm(k) = €0(3).p(k)

P020) Dr i) Dr p(r) —Cp(k).k bk () ’

(8)

(similarly for the otherl < j < i < n) under the assumption that the recursion does not break
down. Observe thdt will be a lower triangular matrix. Forl <1 < j < m defineey; ;) = 0.
Observe that the inverse of the matrix(if) exists forcy, = 0 if by k) # 0.

Let
Ip(i).p(G) = Op(i).p(i) — Epli).p()
and note that due t¢7)

e b ! l
(k pk, k k,p(k j),p(k
1

- bk i Dkp(ky  —Cr D1 p(j)
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Then the column-recursidii) does not break down if and only if there exists a micro-bloakelo
triangular matrix L of the form(3) such that

Lodiag (L) o LT =Y. (10)

The micro-blocks oL are

Lj = Yy - {ep“gp“) 8} cl<i<m, 1<j<i
L = Yi— [ 0], m+1<i<n, 1<j<m; (11)
Li; = Yii— [epw)p0)] » m+1<1,j5<n.

Furthermore, if the micro-block factorization exists, mhtinduces the macro-block factorization
X = LxDx'L% (12)
where L(A_E) BT . .
Lx = QLQ" = [Oc%iag(_B)) —C} - ldiag(B) —BC]

diag(A —E) diag"B)] [ D  diag"(B
dgiag(B) §C }_' {diag(B) §C )} (14)

wherely( . ) denotes the lower triangular part inclusive the diagoral = diag(ﬁ),

(13)

Dx = Qdiag(L)Q" = {

diag(B) := [diag(B1) Opn-m)
anddiag” (B) := (diag(B))".

Proof. Below we use the notation of [24] except that we wiitenstead of. and denot®*XQ
by Y. Furthermore, her& stands for the micro-block lower triangular part, whichlutes the
diagonal, which needs no special treatment.

Without loss of generality, assume that thafes a4 x 4 micro-block matrix. First, assume that

L, L LifLy LyLy Ly Li
Ly L 1 L, L, L, L
Lodiag  "(L)o LT = |2t 22 o 2 22 U3z 22 U2 15
g (L) L31 Laz Lss I, Ly LE (15)
Ly Ly Lys L I,

whereL], := (L;)", L;;" := (L)~ ", etc. Observe that the micro-blocks; can be calculated
column for column: Lel,, denote thé-th column ofL. Then

Liocb,=Y, — L; =Y. (16)



Next,
LioL 'Ly, +Lyol, =Y, = Ly=Y,—L; oL 'L3,.
This leads to the column-recursion (initialized wlth= Y)
7j—1
Ly =Y; - > LL;'Lj (17)
k=1

forall 1 < j < n which shows that colump of L only depends on (entries of) the columns
k=1,...,7 — 1. The existence proofs later on exploit thatan be determined column-wise.

The proof below is by induction with respect to the columrexg, i.e., we will show that if (11)
holds for columnd < j then it also holds for colump + 1. For the sake of argument, without
loss of generality, assume that< ;7 < ¢ < m. Then the induction hypothesis is: There exist
scalarsey, ;) »(;) such that

Ly = Y — {ep(iz),p(j) 8} 1<j, j<i<n. (18)
————

Ep@).p0)

Letv;; be thee,;) ,(;-modified first column of L;;)", i.e.,

vij = {“P@’Wg - ep““’(”} . 1<j<m, j<i<n (19)
3:p(%)

(foralll < 5 < mandm + 1 < ¢ < n the first column is the only column and for all

m+1<j < < nitfollows thatv;; = a,u) ;) — €pi)p(y) IS @ Scalar).

First note that the assumption holds for the first columi. @incel; = Y, due to (16). Now
assume that the hypothesis holds for j. The column-recursion (17) shows that

Lii =Y — ZLkL TLY,

leads ton — j independentj+ 1 < i < n) entry-recurionsk;, ;41 does not depend on entry
Li27j+1)

Lijo =Y — ZLML TLY.

Sincek = 1,..., 4, by hypothesis it follows that

Lijn g Yin— S (Y +Ei) (Vi + Ew) ™ (Y + Eji)
- [vE _
= Y-, { 6k] (Y + Ep) ! [ij' 0] (20)
- Y., . 7 V;l,; (Ykk + Ekk)_l ij 0
- 1,7+1 k=1 0 0



sinceLikkaTLka is the product of resp. 2 x 1, 1 x 1 and1 x 2 block matrix, and because
Y. + Eg IS symmetric even ifA is not. This shows that the hypothesis holds for colymnl
and that by construction

j—1

-1
Ep(i)p(j) = Z Vi (Yir + Ep) ™ Vi
k=1

Observe that (7) in combination witfi;; = Y implies thatL;, = L}

i 1€,
diag™ (L) = diag '(L), (21)
which leads to the desired result (10) which is both a Ddeldahd Crout factorization.

Finally, (11) in combination with (5) show that only tie-block relatedY;;],; entries ofY;
are updated. Based on this, relations (13) and (14) follomfitee definition ofL, i.e., from the
definition of the permutation (1). L&§(A) denote the lower triangular part &f. Observe that
lo(A — E) =1y(A) — E becausd is lower triangular.

The head of the recursion (7) does not break down if the iegeo$ all

Up(k) p(k) — Ep(k)p(k)  Dk,p(k)
b p(k) —Ciik;

exist. ForC = 0 this trivially holds since then the related determinangsraan-zero if in addition
bk,p(k) 7§ 0. O

We need to show the existence of the factorization (10) arghéov its uniqueness, which we
start with.

Lemma 1. Let A be a symmetric square non-singular matrix. Then there x@simost one
unique lower triangular (micro-)block matrik such that

A =Lodiag (L) o LT (22)

or equivalently there exists at most one unique lower tridag(micro-)block matrixLL with
identity blocks on the diagonal and at most one non-singdiagonal (micro-)block matribxD
such that

A=LoDoL". (23)

In addition, (micro-)block wise
diag(L;) = D, D =D". (24)

This holds not only for the micro-block partition induced(thy but for all block-partitions ofA.
If A is a square positive definite matrix then scalar-factoiimas (22) and (23) exist.
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Proof. AssumeA is a square matrix. The to be proven result is well-known fock-matrices
where all blocks aré by 1 scalars. Below we demonstrate that the proof for the scata can
be followed unaltered. For a block matidixlet diag(L) denote its (block-) diagonal. Then one
can show

1. If L is (block-) lower triangular with identity blocks (or sceda on its diagonal theh is
non-singular, i.e., (block-l.~! exists, and.~! is lower triangular with identity blocks on
its diagonal.

2. If Ly andL, are block lower triangular then diagonal-block-wise
diag(L;Ly) = diag(L;)diag (L) (25)
which implies thatliag(L™') = diag(L) ™.

Now assume that there are two block factorizations of thenf(#3) (with lower triangulaiL,
L, with ones on the diagonal and non-singular diagddalD5):

LlDlL’lI‘ == LQDQL’2T<:>
L,'L,D, = D,LJL;Y =
diag(L;'LiD;) = diag(D,LIL; ") <=

(25)
LetD = D; = D,. Now consider
L,'LD = DL;L; "

where the left hand side matrix is a lower triangular and tgbtrhand side matrix an upper
triangular block matrix, i.e., they must be both identicatheir diagonal, which i, i.e.,

L,'LiD=D DL;L;" =D = L;'Li =LLiL; " =1
which also shows thdt; = L. Finally, the equivalence of (22) and (23) follows from

A=LDL' = (LD)D ' (LD)" = (LD) diag(LD)~! (LD)" .

That (24) holds for micro-block factorizations due to theapl form of the update was shown
in (21). However, it must hold for all symmetric matricAssince

L, odiag '(L;)oLi;" = A = AT = L, odiag "(Ly) o L, ".
Multiplication with L on the left, etc. leads to the desired result. The scalaofizetion result

for symmetric positive definite matrices is well-known. ]

Now we start to focus on the existence. We will show that theroablock factorization exists
for postiveC and forC = 0.



3 The macro-block factorization

This section examines the similarities and differencek ¥attorization [24, Lemma 4.1]. With
a preconditioner derived from micro-block (10) factorieatin mind, assuming thdt; andL,
are strictly lower triangular, [24, Lemma 4.1] proves the thacro-block factorization

A BT BT 0 L] [D, o I][B; B, 0
{B 0} - |B! I,,,+L, M| |0 D, 0| |0 I,,+LT 0| = cDLT
0 0 I||1 o of LT MT I
(26)

exists (in paper [24], thedtes of B and B' are reversed). Below Theorem 2 calculates the
macro-block factorization (12) induced by micro-block ttatzation (10). Next, Corollary 1
shows that the induced macro-block factorization has mialoeks with identically shaped non-
zero blocks (triangular, diagonal, rectangular) and nyad#éntical properties (for instance, both
macro blockl, 3 are strictly lower diagonal). Finally, Corollary 2 provestiour induced macro-
block factorization is identical to that presented in (F&necessary conditionsiag(B) = I,,
andC = 0. In fact, if [24] had assumed thdtag(B;) = I,, — which would not have restricted
its presented factorization’s applicability — then the noalslock factorizations would have been
identical. This paper induced macro-block factorizatitsodnolds ifdiag(B;) # I,,..

Please note that for our micro-block induced macro-blockdi@zation below in Theorem 2,
similar to (26), we also label the blocks, L, andM. However, except for special cases, these
blocks differ from the like-wise named blocks(26).

Theorem 2. Let X and its blocksA, B, andC be as defined in Definition 1, i.€), is symmetric,
B is upper triangular,C is diagonal. LetLx, Dx be defined as irf12). If the micro-block
recursion 7 does not break down then there exists the maokbhctorization

L, 0 B'J[FC o0 FdB,][L, o BT]'
X=LxDy'L¥ = |M L, BI 0 D' o0 M L, BY
dB; 0 -C||FdB; 0 -FD;| |dB, 0 -C

(27)
Definelx = LXD;(1 andDx = Dx. Furthermore there exists the macro-block factorization
BTFdB, + L,FC 0 —BTFD, +L,FdB,
X = LxDx£L% with £Lx |BIFdB, + MFC L,D,' —-BIFD,+MFdB,|. (28)
0 0 I

Due to Lemma 1 the related micro-block factorizations argue.

Proof. Let Lx, Dx be defined as in (12), (13), and (14). By construction, if treairsion does
not break down (i.e., if the micro-block factorization dgjsthen there exist diagonal by m
matrix D; and diagonah — m by n — m matrix D, as well as av — m by m matrix M, m by
m lower triangular matrid.; andn — m by n — m lower triangular matriXL, such that, see (13)

10



and (14)

-1

L, 0 BT D, 0 dB, FC 0 FdB,
Lx=|M L, BIf| Dy! = | 0 D, 0 =/ 0 D' o0 (29)
dB, 0 -C dB, 0 -C FdB, 0 —FD,

where
F = (dB,* +CD;)!

exists iff dB,? + CD, has diagonal elements different from zero (we usedFhista diagonal
matrix which commutes with the diagonal matricd3,, C andD). The formula forCx follows
from direct calculation, using that diagonal matrices carten

Finally, note that with permutations

0 0o I, 0 0 I,
H=|0 I,,, 0|, K=|I, 0 O (30)
I, 0 O o I,,, O

(which impliesH = H') one obtains similar to [24, Theorem 4.2]:

dB;, —C 0
KCxHK'= [ Ly BT o0]. (31)
M B] L,

The entries of matricek;, L, and M depend onA, B andC of X. For instance, later on,
Corollary 3 provides them fo€ = 0. In generalLL;, L, andM in (27) and (28) differ from
those in factorization (26). O

Corollary 1. Assume that the micro-block induced macro-block facttionaX = LxDx L%
in (28) exists. Then the matrig€x has the macro-block form

ANEEN

N W (32)

N

which satisfies (F1):

1. [£x],, is a lower triangular matrix with ones on its diagonal;
and also (F2):

1. [Lx],, is strictly lower triangular, i.e., it has zeros on the diagdn

2. [Lx],, is a lower triangular matrix with ones on its diagonal;

11



and in addition (F3):
1. [Lx]i9: [Lx]51, [£x]5, are zero, i.e.[Lx];, has zeros on its diaogonal;
2. [Lx], is the identity matrix.

Reversely, if a macro-blocRx matrix of the form(32) satisfies (F1) — (F3) the@TLxQ is a
micro-block lower triangular matrix with identity diagonaliono-blocks.

Proof. ConsiderLx of the factorization in (28):

BTFdB, + LLFC 0 -BTFD, +L,FdB,
Lx = |BITFdB,+MFC L,D,! —BIFD, +MFdB,
(28) 0 0 I

Note thatD; is the diagonal ol,; andD, the diagonal ofl.,. For ann by n square matrixA
let diag(A) denote its diagonal matrix. BlodiCx],, is lower triangular becaud8{ andL; are
(andF, D; anddB; are diagonal) and it has a zero diagonal because its diagoa#ix) is

dlag([ﬁx]lg) (_ —dlag(B1>FD1 + dlag(Ll)FdBl —dBlFDl + DleBl = Om

Furthermore, sinc®, = diag(Ly) one finds that
diag([Lx]s2) = diag(Ly)D; ! = D,D; ! =1,
is a lower triangular matrix with ones on the diagonal andlsiry
diag([£x]11) = dB,FdB, + D,FC = (dB,> + CD,)F =1,
is a lower triangular matrix with ones on the diagonal. O

Corollary 2. Let £ be as defined in factorizatigf26), assume thadiag(L;3) = diag(L;) = 0.
Let Lx be as defined in factorizatiof28). If C = 0 anddiag(£,;) = diag(B;) = I,, then
,C - Ex.

Proof. Assume that is a matrix of macro-block form (32)

NI
B

which satisfiesliag(L,3) = diag(L;) = 0, diag(£s1) = 0 anddiag(Ly;) = diag(B;) = 1,
diag(L33) = I. Then its permuted for@TLQ (1) is a lower-triangular micro-block matrix, (2)
with identity matrices as its diagonal micro-blocks. THoglLemma 1,Lx = L. [

Note that properties (F2) and (F3) are explicitly resp. igify assumed for the proof of [24,
Lemma 4.1]. Property (F1) is not necessarly met.

12



4 Existence and uniqueness of the factorizations

Now we show that the micro-block factorization exists fororder,C > 0, C = 0 andC =
0,...,0,¢441,---,¢,) Wherecg, 1, . . ., ¢, are positive. First the cage > 0.

Theorem 3. Let X and its blocksA, B, andC be as defined in Definition 1. In addition, assume
that A is positive definiteC > 0 and thatB is of maximal row rank. Then recursid@) applied
to X does not break down and factorizati¢lD) exists if the factorization

A+B"C'B=Todiag {(L)oL"
exist.

Thus, if A is symmetric positive definite ard is diagonal positive definite then the factoriza-
tion (10) exists.

Proof. Assume thaC is positive diagonal. The Schur-complem&nbf X
S=A+B'C'B

is positive definite (also for non-constant diagonal pesitefiniteC and forB not of maximal
row rank). Observe that for diagon@land upper triangulaB, since; < i,

n min(z,5,m) min(j,m)
Sij = [A + BTC_lB]ij = aij + Z bknC;;klbkg = ai]’ + Z bmclz;jbk:] = Z bkiclzklbkj-

k=1 k=1 k=1

(33)

Since the Schur complement is positive definite, due to Lerhiiere exists a lower triangular
matrix L such that B R

S=Lodiag '(L)oL .
The recursion for the Schur complement and the micro-blactofization (10)

Y = Lodiag '(L) o L”

is similar: Due to (33), (4), and (17) for all< 5 < i < m (note that nownin(j, m) = j)

J
Sij = Q4 -+ Z bsz]:klbk] Yij — |:a’11;( )7(17()3) ivlé( ):|
= S (34)
7 T = T T
lij = sij — Z Li (Le) ™ Lij = Yij— ZLikka Ljp-
k=1 k=1

Observe that the sum in the Schur complement enjrigas one more entrly = j than the sum
in the recursion fof,;; andL;;. Let then by n matrix (lij)gszl be defined as in (9).

13



Without loss of generality, assume thatis the identity map. The induction hypothesis is:
Column-wise for columnsg < j < n:

Ij = 1j+bj'bjj'0j_j1, 1§ ]§m7

= 1, m+1< 57<n

(35)

et

<.

forall j <i <n.

The hypothesis holds for column 1: The first columr,cdnd ofl; are identical:

-1 -1
lit = si1 = a;1 +by;- ¢y -bin=ain —0+01;-b11-cy =1l

forall 1 <i < n(sincee;; = 0). Next, we assume that the hypothesis holds for a certaumnuol
and then show it holds for the next.

Define b
Aij = bﬂ . ﬂ,
Cjj
then relation (35) implies )
lij = lij — Al]
The micro-block diagonal blocks in (34) are
Ik Or
L = et
e [bkk _Ckk}
LY — 1 [—Ckk —bkk] _ 1 |:Ck:k _ bk }
Kk —likcrr — U2, | —brk lrk cinlin [Oee — (ke — D) |

Now in relation (35) focus at the term (8), which is

k _
el = [LikkaTLng]n'

¥

By direct calculation one finds:

1 c b L — A
®) T Ay b {kk _ Okk } Pk sz}
6@] ckklkk rl ik kl} bkk _<l_kk: — Akk:) bk:j

= ! [l — Dit, b { Cik(Ljte = Agi) + bikbrs ]

Crlik bir(Ljk — Aji) — (les — Ag) b

= i (Zikckkzzjk - Ajkjikzckk — Aikzjkckk + Aigcrelji + Zikzbkkbkj
Kk Uik _ _
—Aikbribrj + Linbeebri — Ajebriber — lerbribe; + Akkbkibk]’)

Of the last expression terms 2, 3, 4, and 8 cancel resp. terie5and 10. This leaves

— —_ —_ —_ _71_ _
eij = p Z (likckkljk — lkkbkzbk]) = lzklkk ljk - bkzckklbk] (36)
kkbkk

14



Hence, one finds

j—1

_ § : (k)

lij = aij— eij
k=1
j—1

= a; — Z <Zikzl;]g1 Uik — bicyy, bkj)

k=1

Jj—1 Jj—1

2 : —1 T 713
= aij+ bkickkbkj — E lzklkkl]k

k=1 k=1

J j-1

— bricib Ticlog Lix — bjicib

= G+ kiCri Okj — ikbgk Lk — 0jiCjj 0jj
_ k=1 ) k=1

= lij = bjicj; bjj

whence

lij + bjicj_jlbjj = lij
as was to be shown. The cases where< j < n can be similarly analyzed: For instance,
considerl;; for column; = m + 1 and rowsi such thatj < i < n. Fori > m all micro-blocks

L;; are rectangular instead of square

laij  bji]
but the result follows in an similar manner because theedlapdate termsgf) in (8) are iden-
tical, i.e., base on (36) farwith 7 <i <n

min(j—1,m)

_ § ' (k)
k=1
min(j—1,m)

— ay— > (i e — buicgibiy)

k=1
min(j—1,m) j—1
-1 -1
= ay+ > by — Y Lyl
k=1 k=1
m j—1
-1 -1
= i+ Y bucby — > Ll L
k=1 k=1

lij‘

For the columng > m + 1 the updates are simple scalar products. By the result abavéng
from columnj = m + 1, one finds by induction

et = Ly L Ly = Ll U

for all K > m. Thus, the result holds forall< j7 < i < m.
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In block form (35) reads

T Ll Om,n—m T diag<B1)C_1 Om,n—m
b [M S
= Ip(A) — E + [BTC!diag(By), 0,1

which implies that B
E = [h(A) + [BTC 'diag(B1),0,,, ) — L

and therefore also that the micro-block factorization (&gists: If the Schur-complement is
uniquely factorized int® = LgDgLd whereLg is lower triangular with ones on its diagonal,
then

L Om n—m —17:
[1\/} Lg ] =Lg — [BTC 1dlag(Bl),Onm,m].

]

Lemma [24, Lemma 4.1] demonstrates the existence of a nmooh- factorization (26), but
not that it is unique. In fact, it is not unique: Farag(B;) # I micro-block factorization (10)
induces a macro-block factorization (28) which differsnirg26) — though all blocks have a
non-zero structure similar to that of (26). To show that mibfock factorization (10) leads to a
factorization of the form of [24, Lemma 4.1] (each of the 3 macro-blocks has the same zero,
diagonal, lower triangular or rectangular shape), we prdaes follows.

Theorem 4. Let X and its blocksA, B, andC be as defined in Definition 1. In addition, assume
that A is positive definiteC = 0 and thatB is of maximal row rank. Then the micro-block
factorization(10) exists forX.

Proof. First, for a transforme@ !XV~ =: X = L4 D4 L], we calculate the macro-block
factorization related to our micro-block one. Then we shbhat the macro-block and hence
the micro-block factorization exists. Thereafter, we baeksform and obtain existence and
uniqueness for our micro-block factorization Xf itself, with macro block “lower triangular
matrix” V Lx and diagonal macro-blocRx. DefineV as follows, note that it has ones on its
main diagonal.

_[BTdB,™' 0 4 [dBB{" 0 [Ls Oum
Ls = [B;FdBl‘l L. — Lg = -BIB;" I,_.|’ V= Opn Ln |-

The matrixLg is implicitly used in the proof of [24, Lemma 4.1], except the scaling factor
dB;!. We add this factor to ensure that our macro-block factticnas uniquely related to a
micro-block one. Define

A Au Au B
X - V_IXV_T - _AAQl 1%22 Bg (37)
B, B, -C
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where by construction

A An Am]
A = A N
[Am Az

B dB,B;TA ;B[ 'dB, dB,B; " (—A1B'By + A}y)
- [(—BEBI‘TAH + Ay)B'dB; BIBiTA;iB'B; + Ay — Ay BBy — BIB1 TA 4,
B, = dB;
By = Opnom.

(38)
Note that (37) holds based on

dB;B;" 0 ] [Bf] [ dB,
—BEBIT In—m B; B Om,nfm '

Note thatC = 0,, andB; = dB; imply thatF = dB; 2. Thus the potential micro-block
factorization (if the recursion does not break down) (2 9doices macro-block factorization

L, 0 dB, 0 0 dB; ™!
X=LgDJLY = |M L, 0 |o| 0 D' 0 oLY
dB; 0 0 dB;”' 0 —dB, 'DdB;!
\ Ly D, .
Cx
T, 0 (L —D,)dB,"" (39)
= |0 L,D;! MdB, ! oLy
0 0 L,
L, +LT-D;, M" dB
— M L,D;'L] 0
| dB; 0 0

By construction (see (38}, aqugz are symmetric positive definite whenlesver(L;)+D; +
lower(L;)T uniquely partitionsA; andL,D,L] = Lodiag(L,)~'LJ is a unique factorization
of, asin [24, Lemma 4.1]

A Ay A
L,D,L} = Ay = [-BIBT 1, { A; A;j [-BIBT L,..]"

which latter matrix is symmetric positive definite. This slsothat all of the blockd.;, Lo,

andM exist, i.e., that the macro-blodeD;L)T( factorization forX exists and its factors are
uniquely determined.

Now consider the permuted, micro-block, form
Q'XQ = (Q'LxQ) (Q"DxQ)™ (Q'LxQ) .

17



By constructionQ" D4 Q is a diagonal micro-block matrix, which is the diagonal of tower

triangular micro-block matrixQ*L4 Q. Thus, the factorization (10) exists f&¢, and equiva-
lently, the recursion does not break down. (Note: The recarsreaks down if and only if the
micro-block factorization does not exist).

Next, sinceV is non-singular we know that the macro-block factorization
X = VXVT = (VL) Dy (VL) (40)

exists where

BTdB,™" 0 0 I, 0 (Li—D))dB;,*
Lx:=VLg = |[BfdB,™" I,,, 0|o|0 L,D;* MdB,; !
0 0 I, 0 0 I,
BTdB,”! 0 BTdB, (L, — D;)dB; " (41)
= |BJdB,! L,D;' BJdB, (L, —D;)dB; ' + MdB;!
0 0 L,

To be shown is that this macro-block factorization repréesére micro-block induced macro-
block factorization 10 oiX. To this end it suffices that (after permutation) its micragwbnal
blocks are identity matrices. The entries which will fornegle micro-diagonal blocks stem from
blocks [£x];;, [£x]y9, [£x]35 (should have ones on their diagonal and be of lower triamgula
form) and block§Lx],,, [£x]3, (should have zeros on their diagonal and be of lower trisargul
form). Inspection shows that this holds, for instance, esiait factors are lower triangular

diag([Lx],5) = diag(BTdB; ')diag(L; — D,)diag(dB, ") = 0,

and so forth. This shows that (40) is the macro-block eqaiMabf the micro-block factoriza-
tion (10), which therefore exists. O

As indicated, even for the cagé = 0 the matrixL; in factorization 28 differs fronL; in
factorization (26). Corollary (3) shows that férag(B;) = I, the difference is small.

Corollary 3. Letdiag(B;) = I,, andC = 0. Observe thaL, = [o(B; "A;;B;") of our micro-
block factorization(39) has diagonalD, > 0, whereasL;, = Bllower(B;"A;;B; ) of [24]
factorization 26 has diagond. However, the , 3-blocks are identical:
. _ T, _ _RT -T -1 _
Lxhs (1) dragimnyr, Bt L1 = D) = Brlower(BAuB) | a1 £
according to [24, Lemma 4.1] (in [24] thedtes of B and B" are reversed). Furthermore, our
micro-block factorization directly applied & leads toLx defined in(28). That means that for

that case
[L4)is = —BIDi+L; = Bflower(B;"A;ByY).

13 (E.) uniqueness
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This is obviously the case fi; = BT lo(B;"A,B; ') andD, = diag(B; " A,,;B; ) for which
diag(L,) = diag(B,)diag(lo(B; "A11B;!)) = diag(B; TA;;By') = D;.
There is a similar relationship betwedn in (28) andL; in (26).

Theorem 5. Let X and its blocksA, B, andC be as defined in Definition 1. In addition, assume
that A is positive definite and tha = diag(0,0, ..., cs—1.4-1,- - -, Cmm) CONtains firstd zeros
and nextn — d positive real numbers. Assume tlatis of maximal row rank. Then the micro-
block factorization(10) exists forX.

Proof. LetLg, V andX be as defined in (4). We show that the micro-block factoraéxists
for Y = QTXQ which implies that the macro-block factorization exists 3 and hence by
Theorem 4, using the argumentation from (40) onwards, aisXf

Without loss of generality, assume thais the identity map. Led be a positive natural number
and assume that the firgtdiagonal entries o€ are zero. Focus oh; in (9), which depends
on the update term,(.]'?) in (8). By direct calculation one finds (sinée < min(i, 7) implies
bki = bkj = 0)

(k)

6i]

= [LikLI;kTL;'Fk]n
e o) [ b ] [l
" bek  —Crk 0

ekt brk | Lk
= — [l 0 !
Crrlir + b3, [ g } Dik _lkk] l 0 } (42)
likzckkljk

2
Crklir + b7y
7j—1

Likcrrljx
lii = a; — _ kTRETR
J J ; Ckklkk + bik‘
Therefore, by constructialy, = a;; exists (here we use thBtis upper triangular and of maximal
row rank) for alll < j <d-+1,1 <4 <n. This shows that, consistent with Theorem 4, that the
firstd + 1 columns of matrix/;;);';—, are the first + 1 columns ofA.

Now we have to examine what happens if the micro-block colmemursion continues with

columnd + 2 and onward — note that only the square pRKTLAB notation)Y(d+ 1:n,d+1:
n) is involved. For the sake of argument, without loss of gelitgraonsider the case = 1,

n =7, m = 4, and the matrixY in (2) with the first micro-block row and column deleted (afte
the determination of the firgt+ 1 columns of(/;;)',_, in (42)):

[ a2z b2z ao3 0 a24 0 azs a6 a7

boa  —co2  bas 0 b2y 0 bas  bag  bar

azgz  baz azz  bsz  asa 0 ags ase a3t

. 0 0 b3z —c3z  baa 0 bss  bsg bs7
Y_g:=| as2  baa a4z bzs  asa  bas | ass ass a7 . (43)

0 0 0 0 big  —caq | bys  bag  by7
as2  bas  as3  bzs  asa  bas | ass ase as7y
ag2 b2 ae3 bss asa ba | aes ase aer

L a7 bar  ars bzt  ara  bar | ars are  arr
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This matrix turns out to be related to

[ a2z a23 a24 azs agze a7 | b2 0 0

az2 asz as4 aszs asze asy | bos b33 0

a42 43 @44 Q45 Q46 a47 | bas b3 bas
A . as2 as3 as4 ass ase as7 | bas b3s bas A BT
X g=Q 4Y_4QT,=| as2 as3 ass ass ase asr | boe bse bae = {B & }

arz  ar3 ar4  ars  ars  ary | bay b37 ba7

boa b2z b2a  bas  bag  bar | —ca2 0 0

0 bsz bza b3zs bzs bsr 0 —c33 0

L O 0  baa bas  bag  bar 0 0 —cq4 |

which is identical to matrixX with columns and rowd, n + 1 deleted. The blocks oK _,
satisfy: A is positive definite B has full row rank and is upper triangular, aGd> 0. Hence,
by Theorem 3 the micro-block factorization &f_, in (43) exists. Let the lower triangular
coefficients related t& _, defined in (9) be denoted Wifb_d). Thensince;; = 0forl < j <d,

J <1 < n it straightforwardly follows that; ;. ; = lz(j’d) foralld+1<j<nandj <i<n.
Hence the micro-block factorization of exists.

Finally, as in Theorem 4 one can show that the micro bloclofaztion forX exists as well. [J

For the case thaB is not upper triangular (but is of maximal row rank) and t@at not a (non-
negative) diagonal matrix it is possible to ensure thespgmtees at the additional costs of two
to be calculated factorizations, as is indicated in [24]e @pproach for non-upper triangulBr
is taken from [24, above Lemma 4.1]. Theorem 6 extends it dordiagonal (square) # 0.

Theorem 6. Let X and its blocksA, B, andC be as defined in Definition 1. In addition, assume
that A is positive definiteC is positive definite but not necessarily diagonal, and Bat of
maximal row rank, but not necessarily upper triangular. fihere exists an orthogonal matrix
Vg, and a non-singular matri®/ ¢ with positive diagonal, a micro-block related permutation
matrix Q, and a micro-factorizable matriX := Ly o diag™'(Lg) o L such that

T
X:[A B

B —C} = VcVEQLg odiag ' (Lg) o L QTVE V(.

Proof. First, sinceC is symmetric positive definite there exists a unique fazadion C =
LcDcLE whereLc is lower triangular with positive diagonal entries @fd = I. LetC = Lc.
Next, from a QR decomposition & L' one can derive that there existsiahy n permutation
matrix IT and an orthogonah by m matrix Q such that

B

BT,C_T — |:
C B;F

] L' =1B"Q

whereB is upper triangular and of maximal row rank, i.e., satisfresdonditions in Definition 1.
Finally, let A = ITAIIT, observe tha€ := ZDcZT = D¢, define

I, O Im o . [A BT
els 2] welt 8 - %)
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and note that the latter matrix can be micro-block factatidae to Theorem 3. Without loss of
generality, assume thak" defines the permutatign {1,...,n} — {1,...,n} and define

Q == [ela €n+1,€2,€p42, ..., €, €npms €41, - - - aen]- (44)
Then
Q"VeV'XV'VEQ = QT A B! Q = Q"XQ = Ly o diag (L) o L}
BVc c VBWR = B _C = = L odiag X X
yields the desired result. O

The case of non-diagonal symmetric positive semi-definigrimnC can be treated similarly,
based on the following result from [13], [10], and [19]: L&etr by n matrix A be symmetric
positive semi-definite and of rank< n.

1. There exists at least one upper triangiRawith nonnegative diagonal elements such that

A = RTR;
2. There exists a permutation matfiksuch that matriXI* AIIl has a unique Choleski de-
composition
IMAIl=R'R
where
. Rii Ry
il

has is upper triangularby r block R;;, which has positive diagonal elements.

Since we assume that the firstliagonal elements df are zero — and not the last ones — this
result needs to be combined with an additional permutation.

5 Numerical examples

As an example consider a variant on [25, Example 5.3], andsfon the case€ > 0, C > 0,
andC = 0, for a matrixB with diag(B;) # L,,.

Example 2. The caseC > 0: Identical to the first case in [25, Example 5.3] we chogse- 1
and~,; = 2 for the matrixC below. In addition we alteB such that it is of full row rank:

2.0 00
., B=103 00|, C=
0011

oo

0 0
Y2 0
0 3

O = W =

0
0
1
5

O O =N
— s = O
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Note thatA and C are symmetric positive definite and théing(B,) # I,,. Based on these

blocks one finds

2 1 0 0] 2 0 0 2 211 0ol]o o0]o

13 10/0 3 0 2 —1/0 o]0 oo

01 4 1|0 o0 1 1T 013 3|1 00

- 00150 o0 1|, =|lo 03 —=2]|0 oo
Definition 1 |\ 55— g -1 0 0 W10 1 04 11
03 0 0|0 -2 0 o oo o1 —3]|1

001 1]0 0 -3 0 00 01 15

and calculation shows, rounded to three decimal placesirtimaacro-block form

2 0 0 0 2 0 0 2 0 0 0 2 0 0
1 2833 0 0 0 3 0 0 283 0 0 0 3 0
0 1 3864| 0 o o0 1 0 0 3864| 0 o 0 1
Lx = 0 0 1 (4910 0 0 1 |, Dx = 0 0 0 |4910] 0 0 0
a9en |15 0 0 -1 0 0 anen 15— 0 0 | -1 0 0
0 3 0 0 0 -2 0 0o 3 0 0 0 -2 0

0 o 1 0 0 0 -3 0 0 1 0 0 0 -3

As claimed,Lx contains blockBT, B] anddiag(B;) respectively at blocks (1,3), (2,3) and
(3,1) and so forth. Furthermore, the diagonal®gf andLx in blocks (1,1), (1,3), (3,1), (3,3),
and (2,2) are identical as they should be according to ThedreThe related matriXx turns
out to be

1 0 o |o| o 0 0
0167 1 0o |o0l033 o0 0
0 013 1 |0| 0 0205 0

Lx = 0 0 0318]1] 0 0 —0227
@9 0 0 0 0| 1 0 0
0 0 o |o| o 1 0
0 0 o |o| o 0 1

This matrix contains ones at its main diagonal, and zerdseatliagonals of its blocks (1,3) and
(3,1), as it should have due to Corollary 1.

Example 3. The caseC > 0: The blocksA andB are as in Example 2. We take = 0 and
v = 2 as in the second case of [25, Example 5.3]. Therefore mXirandY are identical to
those in Example 2, except for entry (5,5), respectigely 2 micro-block entry (1,1). For this
example one finds, rounded to three decimal places

2 0 0 0o |2 0o o 1 0 o |o| o 0 0
1 3 0 o |o 3 o 0o 1 0o |olo500 o0 0

0 1 387 0 |0 0 1 0 0133 1 |o| o 0200 0

Lx = 0 0 1 (49100 0 1 |, Lx=|0 0 o0317[1] 0 0 —0.228
S A R G 0 [0 0 0 @175 0 0 o 1 0 0
03 0 0 |o —2 o 0 o o |o| o 1 0

00 1 o |o o -3 0 o o |o|l o 0 1

Example 4. The caseC = 0: The blocksA andB are as in Example 2. We take = 0 and
~v» = 0 as in the third case of [25, Example 5.3]. For this last exaopk finds, rounded to three
decimal places

2 0 0[0]2 0 O 1 0 0lo0] o 0 0
1 3 0lolo 3 o0 0 1 0]/0[050 o0 0

0 1 4/0fl0 0 1 0 0 1|0 0 033 o0

Lx = 0 0 1]7(0 0 1|, Lx=|0 0 1]1] © 0 3
@ 15705 000 0 0 @175 0 oo 1 0 0
0 3 0|00 0 O 00 0/0] o 1 0

0 0 1/0[0 0 0 00 0/0] O 0 1
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In this case one finds th& andD of (26) are — calculated explicitly from the formulas for the
blocksL,, Ly, M, L, andD, in [24, Lemma 4.1]:

2 0 olo| o 0 0 0500 0 0]0]1 0 0
0 3 0/0]050 0 0 0 033 0/0/0 1 0
00 1]/0] 0 033 o0 0 0 4|0|0 0 1
— |70 o0 11| o 0 -3 — 0 0 0|7]0 0 0
@150 ojo| 1 0 0 6) 1 0 0]0]|0 0 0
00 0lo| o 1 0 0 1 olojlo o0 o
00 0lo| o 0 1 0 o 1/0|0 0 0

The main the difference with Schilders’ factorization facf of (26) (from [24, Lemma 4.1]) is
that£,; = B, andL3 = 0,, whereaséLx|,, = B, but[Lx],, # 0,, and reverselyLx],, # B,
but[Lx];, = 0,,,. For matriced3 with diag(B,) = I,, one would obtairC = Lx.

6 Conclusions

Based on the micro-block factorization introduced in [24]vaee shown that a Bunch-Kaufman-
Parlett like strategy with a priori known pivot structurendae employed for the explicit micro-
block factorization of coefficients matrices framgularizedsaddle-point problems. This micro-
block factorization induces a macro-block factorizatin= LxDx L5 such that systems with
the3 x 3 macro-block matrice€x andDx can be solved efficiently. For the saddle-point case
(C = 0) the macro-block factorization is similar to that of [24]time sense that the non-zero
blocks of £ of [24, Lemma 4.1] have the same shape as the correspondasgadsix in (28).

If in addition diag(B;) = I,, then both matrices and in fact macro-block factorizatiad2®, |
Lemma 4.1] and (28) are identical. For systems with couplegsigs an extension tofaby &
micro-block factorization withk > 2 is straightforward. In addition to using the presented exac
factorization as is, one can use it as a basis for the comistinuaf implicit-factorization and other
preconditioners.
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