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Micro- and macro-block factorizations for regularized
saddle point systems

Joseph M.L. Maubach and Wil H.A. Schilders

April 2, 2012

Abstract

We present unique and existing micro-block and induced macro-block Crout-based fac-
torizations for matrices from regularized saddle-point problems with semi-positive definite
regularization block. For the classical case of saddle-point problems weshow that the in-
duced macro-block factorizations mostly reduces to the factorization presented in [24]. The
presented factorization can be used as a direct solution algorithm for regularized saddle-point
problems as well as it can be used a basis for the construction of preconditioners.

1 Introduction

It is well-known that any symmetric matrixX, whether positive definite or not, can be factored

QTXQ = LDLT

whereD is a micro-block diagonal matrix with blocks of dimension 1 or 2, L is a unit lower
triangular matrix, andQ is a permutation matrix (see for instance [8, Section 4.4, page 115]).

There are various algorithms for the calculation of such a factorization, optimized for matri-
cesX which have a specific shape or satisfy specific properties. For instance, for an indefinite
matrixX without special structure, [3] presents the numerically stable construction of a permu-
tation matrixQ and the related matricesL andD. An even more economical pivoting strategy is
presented in [2] and a Bunch-Kaufman-Parlett factorizationimplementation is presented in [14].

This paper focuses at indefinite linear systems of the form
[
A BT

B −C

] [
x1

x2

]

=

[
b1

b2

]

,

where the coefficient matrix is calledX and has a 2 by 2 block Karush-Kuhn-Tucker (KKT)
structure with a potentially non-zero (2,2) block. ForC = 0, in equality-constraint quadratic
optimization [20, page 40, Section 18.1], the coefficient matrix X is called the KKT matrix.
MatricesX with block C = 0 can also be found in mixed finite elements, Darcy’s flow equa-
tions [1], problems of incompressible flow and elasticity [21], and many other application. The
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case ofC 6= 0 and positive semi-definite arises in regularization and interior point methods in
optimization, in electronic circuit simulation [23], and related applications.

The structure ofX has been exploited for the construction of preconditionersin many different
ways [11, 12, 24, 9, 4, 15]. This paper closely follows the approach by [24] where it is assumed
thatX has additional structure, i.e., thatB = [B1,B2] is of maximal row rank and has upper tri-
angular blockB1, which can be achieved through transformations ofX. However, whereas [24,
Lemma 4.1] focuses on the construction of a Crout-type macro-block preconditioner̂X = L̂D̂L̂T

(see also [7, Theorem 4.2]) based on the requirement thatdiag(QTX̂Q) = diag(QTXQ) for a
specific permutation matrixQ (see [24, page 387]) we introduce a potentially non-zeroC block
and actually calculate an explicit formula for the macro-block factorizationX = LDLT based
on the 2 by 2 and 1 by 1 micro-block Schilders’ factorization in [18, 5, 6, 17, 24]. We show that
for C = 0 and upper triangular matrixdiag(B1) = I our macro-block factorization is identical
to the one in [24]. For non-zeroC we show that our macro-block factorization is unique and
exists.

Many other important categories of preconditioning methods exist. For instance [11] assumes
that one can factorizeC = LDLT, substitutesx3 = −DLTx2, obtains the equivalent system





A 0 BT

0 D−1 LT

B L 0





[
x1

x2

]

=

[
b1

b2

]

and considers preconditioners of the same block form, but with A replaced by a symmetric
preconditionerG. (see also [18, 16, 22]). We mention this approach because also our approach
requires the factorization of the positive semi-definite matrix C, if it is non-diagonal.

The remainder of this paper introduces the factorization, its uniqueness, and existence as follows.
Theorem 1 presents the micro-block factorization for indefinite problems, based on the micro-
block structure presented in [24, Lemma 3.1]. Then, after presenting results on uniqueness,
Theorem 2 provides an explicit formula for the factors of theinduced macro-block factoriza-
tion. Thereafter, Corollary 1 and Corollary 2 focus on the small difference and mostly similari-
ties between macro-block factorization [24, Lemma 4.1] andour macro-block factorization (for
C = 0). We show that forC = 0 anddiag(B1) = I both macro-block factorizations are iden-
tical. Then Theorem 3 shows that the micro-block factorization (and hence related macro-block
variant) exists forC > 0, and that it is based on the existence of a symmetric positivedefinite
Schur complementA +BTC−1B. Next, in Theorem 4 we prove the existence of our factoriza-
tion forC = 0, in a manner which differs from the proof in [24, Lemma 4.1]: We exploit the fact
that our Crout-based macro-block factorization is unique under some conditions which makes it
possible to assume even more structure ofX (in particular thatB1 = I andB2 = 0), without
loss of generality. We finish the existence proofs with Theorem 5, which shows the existence
of our factorization forC = (0, . . . , 0, cd+1, . . . , cm) wherecd+1, . . . , cm are positive. Finally
Theorem 6 shows how to proceed for the general case whereC is symmetric positive definite but
not diagonal.
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2 The micro-block factorization

For use in the existence proofs later on, Definition 1 below formulates all shape-related condi-
tions onX and its blocks, as well as for the permutationp and permutation matrixQ which
induce the micro-block factorization. The existence proofs assume additional conditions, for in-
stance thatA is positive definite (on the kernel ofB), thatC is positive semi-definite, and that
B is of maximal row rank.

Definition 1. Let n,m be natural positive numbers, letIn be then by n identity matrix, and let
0nm be then by m zero matrix. For the sake of convenience assume thatm ≤ n. Let A be a
symmetricn by n matrix, let

B =
[
B1 B2

]

be anm by n matrix whereB1 is an upper triangularm by m matrix andB2 anm by n − m

matrix. Let
C = diag(c11, . . . , cmm), cii ∈ R, 1 ≤ i ≤ m

be anm bym diagonal matrix. LetX be partitioned into blocks which have shapes as follows:

X =

[
A BT

B −C

]

=

















implicitly has a 3 by 3 macro-block structure. As in [24, page386] we will use a permutation
p : {1, . . . , n} 7→ {1, . . . , n} and without loss of generality assume thatp is the identity map.
With the use of this permutation we define the permutation matrix

Q = [ep(1), en+1, ep(2), en+2, . . . , ep(m), en+m, ep(m+1), . . . , ep(n)] (1)

and defineY := QTXQ to be then by n micro-block matrix, just as in [24].

Note that by Definition 1X is symmetric which is necessary for the existence of a factorization
of the formX = L ◦diag−1(L) ◦LT which we construct in Theorem 1 whereL is a micro-block
lower-triangular matrix anddiag(L) is its micro-block diagonal.

For the sake of illustration of how the micro-block factorization functions, consider an example
which shows the micro-block partitioning ofX.

Example 1. Let n = 7, m = 4, and as in paper [24], assume that permutationp : {1, . . . , n} 7→

3



{1, . . . , n} is the identity map. Then (row and column indices printed in the border of the matrix)

X =

1 m m+ 1 n n+ 1 n+m

1


































a11 a12 a13 a14 a15 a16 a17 b11 0 0 0


































a21 a22 a23 a24 a25 a26 a27 b12 b22 0 0
a31 a32 a33 a34 a35 a36 a37 b13 b23 b33 0

m a41 a42 a43 a44 a45 a46 a47 b14 b24 b34 b44
m+ 1 a51 a52 a53 a54 a55 a56 a57 b51 b52 b53 b54

a61 a62 a63 a64 a65 a66 a67 b61 b62 b63 b64
n a71 a72 a73 a74 a75 a76 a77 b71 b72 b73 b74

n+ 1 b11 b12 b13 b14 b15 b16 b17 −c11 0 0 0
0 b22 b23 b24 b25 b26 b27 0 −c22 0 0
0 0 b33 b34 b35 b36 b37 0 0 −c33 0

n+m 0 0 0 b44 b45 b46 b47 0 0 0 −c44

.

The permutationQ is a product of two permutations: First, the rowsm + 1, . . . , n of X are
swapped with some bottom rows (columns to the right-most columns):

1 m m+ 1 2m− 1 2m 2m+ 1 n+m

1


































a11 a12 a13 a14 b11 0 0 0 a15 a16 a17


































a21 a22 a23 a24 b12 b22 0 0 a25 a26 a27
a31 a32 a33 a34 b13 b23 b33 0 a35 a36 a37

m a41 a42 a43 a44 b14 b24 b34 b44 a45 a46 a47
m+ 1 b11 b12 b13 b14 −c11 0 0 0 b15 b16 b17

0 b22 b23 b24 0 −c22 0 0 b25 b26 b27
0 0 b33 b34 0 0 −c33 0 b35 b36 b37

2m 0 0 0 b44 0 0 0 −c44 b45 b46 b47
2m+ 1 a51 a52 a53 a54 b15 b25 b35 b45 a55 a56 a57

a61 a62 a63 a64 b16 b26 b36 b46 a65 a66 a67
n+m a71 a72 a73 a74 b17 b27 b37 b47 a75 a76 a77

and next, its first2m rows and columns are permuted with(1m+1 2m+2 . . . m m+m 2m+
1 . . . n) to obtain

Y = QTXQ =

1 2 3 2m− 1 2m 2m+ 1 n+m

1


































a11 b11 a12 0 a13 0 a14 0 a15 a16 a17


































2 b11 −c11 b12 0 b13 0 b14 0 b15 b16 b17
3 a21 b12 a22 b22 a23 0 a24 0 a25 a26 a27
4 0 0 b22 −c22 b23 0 b24 0 b25 b26 b27

a31 b13 a32 b23 a33 b33 a34 0 a35 a36 a37
0 0 0 0 b33 −c33 b34 0 b35 b36 b37

2m− 1 a41 b14 a42 b24 a43 b34 a44 b44 a45 a46 a47
2m 0 0 0 0 0 0 b44 −c44 b45 b46 b47

2m+ 1 a51 b15 a52 b25 a53 b35 a54 b45 a55 a56 a57
a61 b16 a62 b26 a63 b36 a64 b46 a65 a66 a67

n+m a71 b17 a72 b27 a73 b37 a74 b47 a75 a76 a77

. (2)

The resulting matrix (above) is (micro-block row and columnindices printed in the border of the
matrix)

Y =

1 2 m m+ 1 n

1


































a11 b11 a12 0 a13 0 a14 0 a15 a16 a17


































b11 −c11 b12 0 b13 0 b41 0 b15 b16 b17
a21 b12 a22 b22 a23 0 a24 0 a25 a26 a27
0 0 b22 −c22 b23 0 b24 0 b25 b26 b27

a31 b13 a32 b23 a33 b33 a34 0 a35 a36 a37
0 0 0 0 b33 −c33 b34 0 b35 b36 b37

m a41 b14 a42 b24 a43 b34 a44 b44 a45 a46 a47
0 0 0 0 0 0 b44 −c44 b45 b46 b47

m+ 1 a51 b15 a52 b25 a53 b35 a54 b45 a55 a56 a57
a61 b16 a62 b26 a63 b36 a64 b46 a65 a66 a67

n a71 b17 a72 b27 a73 b37 a74 b47 a75 a76 a77

. (3)
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By construction the micro-blocks of the matrixY have index rangesi, j = 1, . . . , n. As an
example, matrix (2) has the micro-block entries in (3).

The micro-block partitioning shown in the example above stems from [24, pages 386, 387] and
is at the core of the following micro-block factorization:

Theorem 1. LetX and its blocksA, B, andC be as defined in Definition 1. Let matrixY =
QTXQ be micro-block indexed with indicesi, j = 1, . . . , n as defined in Definition 1. Then by
construction of the permutation matrixQ one finds that

Yij =

[
ap(i),p(j) bj,p(i)
bi,p(j) −ci,j

]

(4)

for all 1 ≤ i ≤ m and1 ≤ j ≤ i. BecauseB1 is upper triangular andC is a diagonal matrix,
more specifically

Yii =

[
ap(i),p(i) bi,p(i)
bi,p(i) −cp(i),i

]

, Yij =

[
ap(i),p(j) bj,p(i)

0 0

]

, (5)

for all 1 ≤ i ≤ m and1 ≤ j < i.

Let then byn matrixPTEP be defined by its entriesep(i),p(j) as follows: First, define

ep(i),p(1) = 0, 1 ≤ i ≤ n, (6)

and next, by column-recursion define for all1 ≤ j ≤ i ≤ m

ep(i),p(j) =

j−1
∑

k=1

e
(k)
p(i),p(j) (7)

with

e
(k)
p(i),p(j) =

[
ap(i),p(k) − ep(i),p(k)

bk,p(i)

]T [
ap(k),p(k) − ep(k),p(k) bk,p(k)

bk,p(k) −cp(k),k

]−1 [
ap(j),p(k) − ep(j),p(k)

bk,p(j)

]

,

(8)
(similarly for the other1 ≤ j ≤ i ≤ n) under the assumption that the recursion does not break
down. Observe thatE will be a lower triangular matrix. For1 ≤ i < j ≤ m defineep(i),p(j) = 0.
Observe that the inverse of the matrix in(7) exists forckk = 0 if bk,p(k) 6= 0.

Let
lp(i),p(j) = ap(i),p(j) − ep(i),p(j)

and note that due to(7)

lp(i),p(j) = ap(i),p(j) −

j−1
∑

k=1

[
lp(i),p(k)
bk,p(i)

]T [
lp(k),p(k) bk,p(k)
bk,p(k) −ckk

]−1 [
lp(j),p(k)
bk,p(j)

]

, (9)
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Then the column-recursion(7) does not break down if and only if there exists a micro-block lower
triangular matrixL of the form(3) such that

L ◦ diag−1(L) ◦ LT = Y. (10)

The micro-blocks ofL are

Lij = Yij −

[
ep(i),p(j) 0

0 0

]

, 1 ≤ i ≤ m, 1 ≤ j ≤ i;

Lij = Yij −
[
ep(i),p(j) 0

]
, m+ 1 ≤ i ≤ n, 1 ≤ j ≤ m;

Lij = Yij −
[
ep(i),p(j)

]
, m+ 1 ≤ i, j ≤ n.

(11)

Furthermore, if the micro-block factorization exists, then it induces the macro-block factorization

X = LXD
−1
X LT

X (12)

where

LX = QLQT =

[
l0(A− E) BT

diag(B) −C

]

=:

[

L̂ BT

diag(B) −C

]

(13)

DX = Qdiag(L)QT =

[
diag(A− E) diagT(B)

diag(B) −C

]

=:

[

D̂ diagT(B)
diag(B) −C

]

(14)

wherel0( . ) denotes the lower triangular part inclusive the diagonal,D̂ = diag(L̂),

diag(B) :=
[
diag(B1) 0m,n−m

]

anddiagT(B) := (diag(B))T.

Proof. Below we use the notation of [24] except that we writeL instead of̃L and denoteQTXQ

by Y. Furthermore, hereL stands for the micro-block lower triangular part, which includes the
diagonal, which needs no special treatment.

Without loss of generality, assume that thereY is a4× 4 micro-block matrix. First, assume that

L ◦ diag−T(L) ◦ LT =







L11

L21 L22

L31 L32 L33

L41 L42 L43 L44






◦







I2 L−T
11 LT

21 L−T
11 LT

31 L−T
11 LT

41

I2 L−T
22 LT

32 L−T
22 LT

42

I2 L−T
33 LT

43

I2







(15)

whereLT
ij := (Lij)

T, L−T
ij := (Lij)

−T, etc. Observe that the micro-blocksLij can be calculated
column for column: LetLk denote thek-th column ofL. Then

L1 ◦ I2 = Y1 =⇒ L1 = Y1. (16)
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Next,
L1 ◦ L

−T
11 LT

21 + L2 ◦ I2 = Y2 =⇒ L2 = Y2 − L1 ◦ L
−T
11 LT

21.

This leads to the column-recursion (initialized withL = Y)

Lj = Yj −

j−1
∑

k=1

LkL
−T
kk LT

jk (17)

for all 1 ≤ j ≤ n which shows that columnj of L only depends on (entries of) the columns
k = 1, . . . , j − 1. The existence proofs later on exploit thatL can be determined column-wise.

The proof below is by induction with respect to the column indexj, i.e., we will show that if (11)
holds for columns1 ≤ j then it also holds for columnj + 1. For the sake of argument, without
loss of generality, assume that1 ≤ j ≤ i ≤ m. Then the induction hypothesis is: There exist
scalarsep(i),p(j) such that

Lij = Yij −

[
ep(i),p(j) 0

0 0

]

︸ ︷︷ ︸

Ep(i),p(j)

, 1 ≤ j, j ≤ i ≤ n. (18)

Let vij be theep(i),p(j)-modified first column of(Lij)
T, i.e.,

vij :=

[
ap(i),p(j) − ep(i),p(j)

bj,p(i)

]

, 1 ≤ j ≤ m, j ≤ i ≤ n (19)

(for all 1 ≤ j ≤ m andm + 1 ≤ i ≤ n the first column is the only column and for all
m+ 1 ≤ j ≤ i ≤ n it follows thatvij = ap(i),p(j) − ep(i),p(j) is a scalar).

First note that the assumption holds for the first column ofL sinceL1 = Y1 due to (16). Now
assume that the hypothesis holds for1 ≤ j. The column-recursion (17) shows that

Lj+1 = Yj+1 −

j
∑

k=1

LkL
−T
kk LT

jk

leads ton − j independent (j + 1 ≤ i ≤ n) entry-recurions (Li1,j+1 does not depend on entry
Li2,j+1)

Li,j+1 = Yi,j+1 −

j
∑

k=1

LikL
−T
kk LT

jk.

Sincek = 1, . . . , j, by hypothesis it follows that

Li,j+1 =
(18)

Yi,j+1 −
∑j

k=1 (Yik + Eik) (Ykk + Ekk)
−T (Yjk + Ejk)

T

= Yi,j+1 −
∑j

k=1

[
vT
ik

0

]

(Ykk + Ekk)
−T [

vjk 0
]

= Yi,j+1 −
∑j

k=1

[
vT
ik (Ykk + Ekk)

−1
vjk 0

0 0

]
(20)
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sinceLikL
−T
kk LT

jk is the product of resp. a2 × 1, 1 × 1 and1 × 2 block matrix, and because
Ykk +Ekk is symmetric even ifA is not. This shows that the hypothesis holds for columnj + 1
and that by construction

ep(i),p(j) =

j−1
∑

k=1

vT
ik (Ykk + Ekk)

−1
vjk.

Observe that (7) in combination withYii = YT
ii implies thatLii = LT

ii, i.e.,

diag−T(L) = diag−1(L), (21)

which leads to the desired result (10) which is both a Doolittle and Crout factorization.

Finally, (11) in combination with (5) show that only theA-block related[Yij ]11 entries ofYij

are updated. Based on this, relations (13) and (14) follow from the definition ofL, i.e., from the
definition of the permutation (1). Letl0(A) denote the lower triangular part ofA. Observe that
l0(A− E) = l0(A)− E becauseE is lower triangular.

The head of the recursion (7) does not break down if the inverses of all
[
ap(k),p(k) − ep(k),p(k) bk,p(k)

bk,p(k) −ckk

]

exist. ForC = 0 this trivially holds since then the related determinants are non-zero if in addition
bk,p(k) 6= 0.

We need to show the existence of the factorization (10) and toshow its uniqueness, which we
start with.

Lemma 1. Let A be a symmetric square non-singular matrix. Then there exists at most one
unique lower triangular (micro-)block matrix̂L such that

A = L̂ ◦ diag−1(L̂) ◦ L̂T (22)

or equivalently there exists at most one unique lower triangular (micro-)block matrixL with
identity blocks on the diagonal and at most one non-singulardiagonal (micro-)block matrixD
such that

A = L ◦D ◦ LT. (23)

In addition, (micro-)block wise

diag(L1) = D, D = DT. (24)

This holds not only for the micro-block partition induced by(1) but for all block-partitions ofA.
If A is a square positive definite matrix then scalar-factorizations(22)and (23)exist.
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Proof. AssumeA is a square matrix. The to be proven result is well-known for block-matrices
where all blocks are1 by 1 scalars. Below we demonstrate that the proof for the scalar case can
be followed unaltered. For a block matrixL let diag(L) denote its (block-) diagonal. Then one
can show

1. If L is (block-) lower triangular with identity blocks (or scalars) on its diagonal thenL is
non-singular, i.e., (block-)L−1 exists, andL−1 is lower triangular with identity blocks on
its diagonal.

2. If L1 andL2 are block lower triangular then diagonal-block-wise

diag(L1L2) = diag(L1)diag(L2) (25)

which implies thatdiag(L−1) = diag(L)−1.

Now assume that there are two block factorizations of the form (23) (with lower triangularL1,
L2 with ones on the diagonal and non-singular diagonalD1, D2):

L1D1L
T
1 = L2D2L

T
2 ⇐⇒

L−1
2 L1D1 = D2L

T
2L

−T
1 =⇒

diag(L−1
2 L1D1) = diag(D2L

T
2L

−T
1 ) ⇐⇒

(25)

diag(D1) = diag(D2).

LetD = D1 = D2. Now consider

L−1
2 L1D = DLT

2L
−T
1

where the left hand side matrix is a lower triangular and the right hand side matrix an upper
triangular block matrix, i.e., they must be both identical to their diagonal, which isD, i.e.,

L−1
2 L1D = D,DLT

2L
−T
1 = D =⇒ L−1

2 L1 = I,LT
2L

−T
1 = I

which also shows thatL1 = L2. Finally, the equivalence of (22) and (23) follows from

A = LDLT = (LD)D−1 (LD)T =
(25)

(LD) diag(LD)−1 (LD)T .

That (24) holds for micro-block factorizations due to the special form of the update was shown
in (21). However, it must hold for all symmetric matricesA since

L1 ◦ diag
−1(L1) ◦ L1

T = A = AT = L1 ◦ diag
−T(L1) ◦ L1

T.

Multiplication withL−1
1 on the left, etc. leads to the desired result. The scalar factorization result

for symmetric positive definite matricesA is well-known.

Now we start to focus on the existence. We will show that the micro-block factorization exists
for postiveC and forC = 0.

9



3 The macro-block factorization

This section examines the similarities and differences with factorization [24, Lemma 4.1]. With
a preconditioner derived from micro-block (10) factorization in mind, assuming thatL1 andL2

are strictly lower triangular, [24, Lemma 4.1] proves that the macro-block factorization

[
A BT

B 0

]

=





BT
1 0 L1

BT
2 In−m + L2 M

0 0 I









D1 0 I

0 D2 0

I 0 0









B1 B2 0

0 In−m + LT
2 0

LT
1 MT I



 =: LDLT

(26)
exists (in paper [24], the rôles ofB andBT are reversed). Below Theorem 2 calculates the
macro-block factorization (12) induced by micro-block factorization (10). Next, Corollary 1
shows that the induced macro-block factorization has macroblocks with identically shaped non-
zero blocks (triangular, diagonal, rectangular) and mostly identical properties (for instance, both
macro block1, 3 are strictly lower diagonal). Finally, Corollary 2 proves that our induced macro-
block factorization is identical to that presented in (26) if (necessary conditions)diag(B) = Im
andC = 0. In fact, if [24] had assumed thatdiag(B1) = Im – which would not have restricted
its presented factorization’s applicability – then the macro-block factorizations would have been
identical. This paper induced macro-block factorization also holds ifdiag(B1) 6= Im.

Please note that for our micro-block induced macro-block factorization below in Theorem 2,
similar to (26), we also label the blocksL1, L2 andM. However, except for special cases, these
blocks differ from the like-wise named blocksin (26).

Theorem 2. LetX and its blocksA, B, andC be as defined in Definition 1, i.e.,A is symmetric,
B is upper triangular,C is diagonal. LetLX, DX be defined as in(12). If the micro-block
recursion 7 does not break down then there exists the macro-block factorization

X = LXD
−1
X LT

X =





L1 0 BT
1

M L2 BT
2

dB1 0 −C









FC 0 FdB1

0 D−1
2 0

FdB1 0 −FD1









L1 0 BT
1

M L2 BT
2

dB1 0 −C





T

.

(27)
DefineLX = LXD

−1
X andDX = DX. Furthermore there exists the macro-block factorization

X = LXDXL
T
X with LX





BT
1FdB1 + L1FC 0 −BT

1FD1 + L1FdB1

BT
2FdB1 +MFC L2D

−1
2 −BT

2FD1 +MFdB1

0 0 I



 . (28)

Due to Lemma 1 the related micro-block factorizations are unique.

Proof. Let LX, DX be defined as in (12), (13), and (14). By construction, if the recursion does
not break down (i.e., if the micro-block factorization exists) then there exist diagonalm by m

matrixD1 and diagonaln −m by n −m matrixD2 as well as an −m by m matrixM, m by
m lower triangular matrixL1 andn−m by n−m lower triangular matrixL2 such that, see (13)

10



and (14)

LX =





L1 0 BT
1

M L2 BT
2

dB1 0 −C



 ,D−1
X =





D1 0 dB1

0 D2 0

dB1 0 −C





−1

=





FC 0 FdB1

0 D−1
2 0

FdB1 0 −FD1



 (29)

where
F = (dB1

2 +CD1)
−1

exists iff dB1
2 + CD1 has diagonal elements different from zero (we used thatF is a diagonal

matrix which commutes with the diagonal matricesdB1, C andD). The formula forLX follows
from direct calculation, using that diagonal matrices commute.

Finally, note that with permutations

H =





0 0 Im
0 In−m 0

Im 0 0



 , K =





0 0 Im
Im 0 0

0 In−m 0



 (30)

(which impliesH = HT) one obtains similar to [24, Theorem 4.2]:

KLXHKT =





dB1 −C 0

L1 BT
1 0

M BT
2 L2



 . (31)

The entries of matricesL1, L2 andM depend onA, B andC of X. For instance, later on,
Corollary 3 provides them forC = 0. In general,L1, L2 andM in (27) and (28) differ from
those in factorization (26).

Corollary 1. Assume that the micro-block induced macro-block factorization X = LXDXL
T
X

in (28)exists. Then the matrixLX has the macro-block form
















(32)

which satisfies (F1):

1. [LX]11 is a lower triangular matrix with ones on its diagonal;

and also (F2):

1. [LX]13 is strictly lower triangular, i.e., it has zeros on the diagonal;

2. [LX]22 is a lower triangular matrix with ones on its diagonal;

11



and in addition (F3):

1. [LX]12, [LX]31, [LX]32 are zero, i.e.,[LX]31 has zeros on its diaogonal;

2. [LX]33 is the identity matrix.

Reversely, if a macro-blockLX matrix of the form(32) satisfies (F1) – (F3) thenQTLXQ is a
micro-block lower triangular matrix with identity diagonal micro-blocks.

Proof. ConsiderLX of the factorization in (28):

LX =
(28)





BT
1FdB1 + L1FC 0 −BT

1FD1 + L1FdB1

BT
2FdB1 +MFC L2D

−1
2 −BT

2FD1 +MFdB1

0 0 Im



 .

Note thatD1 is the diagonal ofL1 andD2 the diagonal ofL2. For ann by n square matrixA
let diag(A) denote its diagonal matrix. Block[LX]13 is lower triangular becauseBT

1 andL1 are
(andF, D1 anddB1 are diagonal) and it has a zero diagonal because its diagonal(matrix) is

diag([LX]13) =
(25)

−diag(B1)FD1 + diag(L1)FdB1 = −dB1FD1 +D1FdB1 = 0m.

Furthermore, sinceD2 = diag(L2) one finds that

diag([LX]22) = diag(L2)D
−1
2 = D2D

−1
2 = Im

is a lower triangular matrix with ones on the diagonal and similarly

diag([LX]11) = dB1FdB1 +D1FC = (dB1
2 +CD1)F = Im

is a lower triangular matrix with ones on the diagonal.

Corollary 2. LetL be as defined in factorization(26), assume thatdiag(L13) = diag(L1) = 0.
Let LX be as defined in factorization(28). If C = 0 and diag(L11) = diag(B1) = Im then
L = LX.

Proof. Assume thatL is a matrix of macro-block form (32)

L =

















which satisfiesdiag(L13) = diag(L1) = 0, diag(L31) = 0 anddiag(L11) = diag(B1) = I,
diag(L33) = I. Then its permuted formQTL̂Q (1) is a lower-triangular micro-block matrix, (2)
with identity matrices as its diagonal micro-blocks. Thus,by Lemma 1,LX = L.

Note that properties (F2) and (F3) are explicitly resp. implicitly assumed for the proof of [24,
Lemma 4.1]. Property (F1) is not necessarly met.
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4 Existence and uniqueness of the factorizations

Now we show that the micro-block factorization exists for, in order,C > 0, C = 0 andC =
(0, . . . , 0, cd+1, . . . , cn) wherecd+1, . . . , cn are positive. First the caseC > 0.

Theorem 3. LetX and its blocksA, B, andC be as defined in Definition 1. In addition, assume
thatA is positive definite,C > 0 and thatB is of maximal row rank. Then recursion(7) applied
to X does not break down and factorization(10)exists if the factorization

A+BTC−1B = L ◦ diag−1(L) ◦ L
T

exist.

Thus, ifA is symmetric positive definite andC is diagonal positive definite then the factoriza-
tion (10)exists.

Proof. Assume thatC is positive diagonal. The Schur-complementS of X

S = A+BTC−1B

is positive definite (also for non-constant diagonal positive definiteC and forB not of maximal
row rank). Observe that for diagonalC and upper triangularB, sincej ≤ i,

sij := [A+BTC−1B]ij = aij +
n∑

k=1

bkic
−1
kk bkj = aij +

min(i,j,m)
∑

k=1

bkic
−1
kk bkj =

min(j,m)
∑

k=1

bkic
−1
kk bkj.

(33)
Since the Schur complement is positive definite, due to Lemma1 there exists a lower triangular
matrixL such that

S = L ◦ diag−1(L) ◦ L
T
.

The recursion for the Schur complement and the micro-block factorization (10)

Y = L ◦ diag−1(L) ◦ LT

is similar: Due to (33), (4), and (17) for all1 ≤ j ≤ i ≤ m (note that nowmin(j,m) = j)

sij = aij +

j
∑

k=1

bkic
−1
kk bkj

lij = sij −

j−1
∑

k=1

lik(lkk)
−1ljk

Yij =

[
ap(i),p(j) bj,p(i)
bi,p(j) −cij

]

Lij = Yij −

j−1
∑

k=1

LikL
−T
kk LT

jk.

(34)

Observe that the sum in the Schur complement entrysij has one more entryk = j than the sum
in the recursion forlij andLij. Let then by n matrix (lij)ni,j=1 be defined as in (9).
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Without loss of generality, assume thatp is the identity map. The induction hypothesis is:
Column-wise for columns1 ≤ j ≤ n:

lj = lj + bj · bjj · c
−1
jj , 1 ≤ j ≤ m,

lj = lj, m+ 1 ≤ j ≤ n
(35)

for all j ≤ i ≤ n.

The hypothesis holds for column 1: The first column ofl1 and ofl1 are identical:

li1 = si1 = ai1 + b1i · c
−1
11 · b11 = ai1 − 0 + b1i · b11 · c

−1
11 = li1

for all 1 ≤ i ≤ n (sinceei1 = 0). Next, we assume that the hypothesis holds for a certain column
and then show it holds for the next.

Define

∆ij := bji ·
bjj

cjj
,

then relation (35) implies
lij = lij −∆ij.

The micro-block diagonal blocks in (34) are

Lkk =

[
lkk bkk
bkk −ckk

]

=⇒

L−1
kk =

1

−lkkckk − b2kk

[
−ckk −bkk
−bkk lkk

]

=
1

ckklkk

[
ckk bkk
bkk −(lkk −∆kk)

]

.

Now in relation (35) focus at the term (8), which is

e
(k)
ij := [LikL

−T
kk LT

jk]11.

By direct calculation one finds:

e
(k)
ij =

1

ckklkk

[
lik −∆ik bki

]
[
ckk bkk
bkk −(lkk −∆kk)

] [
ljk −∆jk

bkj

]

=
1

ckklkk

[
lik −∆ik bki

]
[

ckk(ljk −∆jk) + bkkbkj
bkk(ljk −∆jk)− (lkk −∆kk)bkj

]

=
1

ckklkk

(
likckkljk −∆jklikckk −∆ikljkckk +∆ikckk∆jk + likbkkbkj

−∆ikbkkbkj + ljkbkkbki −∆jkbkibkk − lkkbkibkj +∆kkbkibkj
)

Of the last expression terms 2, 3, 4, and 8 cancel resp. term 5,7, 6, and 10. This leaves

e
(k)
ij =

1

ckklkk

(
likckkljk − lkkbkibkj

)
= likl

−1

kk ljk − bkic
−1
kk bkj. (36)
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Hence, one finds

lij = aij −

j−1
∑

k=1

e
(k)
ij

= aij −

j−1
∑

k=1

(

likl
−1

kk ljk − bkic
−1
kk bkj

)

= aij +

j−1
∑

k=1

bkic
−1
kk bkj −

j−1
∑

k=1

likl
−1

kk ljk

= aij +

j
∑

k=1

bkic
−1
kk bkj −

j−1
∑

k=1

likl
−1

kk ljk − bjic
−1
jj bjj

= lij − bjic
−1
jj bjj

whence
lij + bjic

−1
jj bjj = lij

as was to be shown. The cases wherem ≤ j ≤ n can be similarly analyzed: For instance,
considerlij for columnj = m + 1 and rowsi such thatj ≤ i ≤ n. For i > m all micro-blocks
Lij are rectangular instead of square

[
aij bji

]

but the result follows in an similar manner because the related update termse(k)ij in (8) are iden-
tical, i.e., base on (36) fori with j ≤ i ≤ n

Lij = aij −

min(j−1,m)
∑

k=1

e
(k)
ij

= aij −

min(j−1,m)
∑

k=1

(
likl

−1
kk ljk − bkic

−1
kk bkj

)

= aij +

min(j−1,m)
∑

k=1

bkic
−1
kk bkj −

j−1
∑

k=1

likl
−1
kk ljk

= aij +
m∑

k=1

bkic
−1
kk bkj −

j−1
∑

k=1

likl
−1
kk ljk

= lij .

For the columnsj > m+ 1 the updates are simple scalar products. By the result above, starting
from columnj = m+ 1, one finds by induction

e
(k)
ij = LikL

−1
kkLjk = likl

−1
kk ljk

for all k > m. Thus, the result holds for all1 ≤ j ≤ i ≤ m.
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In block form (35) reads

L =

[
L1 0m,n−m

M L2

]

+
[
BT 0n,n−m

]
[
diag(B1)C

−1 0m,n−m

0n−m,m In−m

]

= l0(A)− E+ [BTC−1diag(B1),0n,n−m]

which implies that
E = l0(A) + [BTC−1diag(B1),0n,n−m]− L

and therefore also that the micro-block factorization (10)exists: If the Schur-complement is
uniquely factorized intoS = LSDSL

T
S whereLS is lower triangular with ones on its diagonal,

then [
L1 0m,n−m

M L2

]

= LS − [BTC−1diag(B1),0n,n−m].

Lemma [24, Lemma 4.1] demonstrates the existence of a macro-block factorization (26), but
not that it is unique. In fact, it is not unique: Fordiag(B1) 6= I micro-block factorization (10)
induces a macro-block factorization (28) which differs from (26) – though all blocks have a
non-zero structure similar to that of (26). To show that micro-block factorization (10) leads to a
factorization of the form of [24, Lemma 4.1] (each of the3× 3 macro-blocks has the same zero,
diagonal, lower triangular or rectangular shape), we proceed as follows.

Theorem 4. LetX and its blocksA, B, andC be as defined in Definition 1. In addition, assume
that A is positive definite,C = 0 and thatB is of maximal row rank. Then the micro-block
factorization(10)exists forX.

Proof. First, for a transformedV−1XV−T =: X̂ = LX̂DX̂L
T
X̂

, we calculate the macro-block
factorization related to our micro-block one. Then we show that the macro-block and hence
the micro-block factorization exists. Thereafter, we back-transform and obtain existence and
uniqueness for our micro-block factorization ofX itself, with macro block “lower triangular
matrix” VLX and diagonal macro-blockDX. DefineV as follows, note that it has ones on its
main diagonal.

LB =

[
BT

1 dB1
−1 0

BT
2 dB1

−1 In−m

]

=⇒ L−1
B =

[
dB1B

−T
1 0

−BT
2B

−T
1 In−m

]

, V =

[
LB 0n,m

0m,n Im

]

.

The matrixLB is implicitly used in the proof of [24, Lemma 4.1], except forthe scaling factor
dB1

−1. We add this factor to ensure that our macro-block factorization is uniquely related to a
micro-block one. Define

X̂ = V−1XV−T =





Â11 Â12 B̂T
1

Â21 Â22 B̂T
2

B̂1 B̂2 −C



 (37)
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where by construction

Â =

[
Â11 Â12

Â21 Â22

]

=

[
dB1B

−T
1 A11B

−1
1 dB1 dB1B

−T
1 (−A11B

−1
1 B2 +A12)

(−BT
2B

−T
1 A11 +A21)B

−1
1 dB1 BT

2B
−T
1 A11B

−1
1 B2 +A22 −A21B

−1
1 B2 −BT

2B
−T
1 A12

]

B̂1 = dB1

B̂2 = 0m,n−m.
(38)

Note that (37) holds based on
[
dB1B

−T
1 0

−BT
2B

−T
1 In−m

] [
BT

1

BT
2

]

=

[
dB1

0m,n−m

]

.

Note thatC = 0m and B̂1 = dB1 imply thatF = dB1
−2. Thus the potential micro-block

factorization (if the recursion does not break down) (27) produces macro-block factorization

X̂ = LX̂D
−1

X̂
LT

X̂
=





L1 0 dB1

M L2 0

dB1 0 0





︸ ︷︷ ︸

L
X̂

◦





0 0 dB1
−1

0 D−1
2 0

dB1
−1 0 −dB1

−1D1dB1
−1





︸ ︷︷ ︸

D
−1

X̂

︸ ︷︷ ︸

L
X̂

◦ LT
X̂

=





Im 0 (L1 −D1)dB1
−1

0 L2D
−1
2 MdB1

−1

0 0 Im



 ◦ LT
X̂

=





L1 + LT
1 −D1 MT dB1

M L2D
−1
2 LT

2 0

dB1 0 0



 .

(39)

By construction (see (38))̂A11 andÂ22 are symmetric positive definite whencelower(L1)+D1+
lower(L1)

T uniquely partitionsÂ11 andL2D2L
T
2 = L2diag(L2)

−1LT
2 is a unique factorization

of, as in [24, Lemma 4.1]

L2D2L
T
2 = Â22 =

[
−BT

2B
T
1 In−m

]
[
A11 A12

A21 A22

]
[
−BT

2B
T
1 In−m

]T

which latter matrix is symmetric positive definite. This shows that all of the blocksL1, L2,
andM exist, i.e., that the macro-blockLX̂D

−1

X̂
LT

X̂
factorization forX̂ exists and its factors are

uniquely determined.

Now consider the permuted, micro-block, form

QTX̂Q =
(
QTLX̂Q

)
(QTDX̂Q)−1

(
QTLX̂Q

)T
.

17



By constructionQTDX̂Q is a diagonal micro-block matrix, which is the diagonal of the lower
triangular micro-block matrixQTLX̂Q. Thus, the factorization (10) exists for̂X, and equiva-
lently, the recursion does not break down. (Note: The recursion breaks down if and only if the
micro-block factorization does not exist).

Next, sinceV is non-singular we know that the macro-block factorization

X = VX̂VT = (VLX̂)DX̂ (VLX̂)
T (40)

exists where

LX := VLX̂ =





BT
1 dB1

−1 0 0

BT
2 dB1

−1 In−m 0

0 0 Im



 ◦





Im 0 (L1 −D1)dB1
−1

0 L2D
−1
2 MdB1

−1

0 0 Im





=





BT
1 dB1

−1 0 BT
1 dB1

−1(L1 −D1)dB1
−1

BT
2 dB1

−1 L2D
−1
2 BT

2 dB1
−1(L1 −D1)dB1

−1 +MdB1
−1

0 0 Im



 .

(41)

To be shown is that this macro-block factorization represents the micro-block induced macro-
block factorization 10 ofX. To this end it suffices that (after permutation) its micro-diagonal
blocks are identity matrices. The entries which will form these micro-diagonal blocks stem from
blocks [LX]11, [LX]22, [LX]33 (should have ones on their diagonal and be of lower triangular
form) and blocks[LX]13, [LX]31 (should have zeros on their diagonal and be of lower triangular
form). Inspection shows that this holds, for instance, since all factors are lower triangular

diag([LX]13) = diag(BT
1 dB1

−1)diag(L1 −D1)diag(dB1
−1) = 0,

and so forth. This shows that (40) is the macro-block equivalent of the micro-block factoriza-
tion (10), which therefore exists.

As indicated, even for the caseC = 0 the matrixL1 in factorization 28 differs fromL1 in
factorization (26). Corollary (3) shows that fordiag(B1) = Im the difference is small.

Corollary 3. Letdiag(B1) = Im andC = 0. Observe thatL1 = l0(B
−T
1 A11B

−1
1 ) of our micro-

block factorization(39) has diagonalD1 > 0, whereasL1 = BT
1 lower(B

−T
1 A11B

−1
1 ) of [24]

factorization 26 has diagonal0. However, the1, 3-blocks are identical:

[LX̂]13 =
(41),diag(B1)=Im

BT
1 (L1 −D1) = BT

1 lower(B
−T
1 A11B

−1
1 ) =

L1 in (26),Lemma 4.1
L31

according to [24, Lemma 4.1] (in [24] the rôles ofB andBT are reversed). Furthermore, our
micro-block factorization directly applied toX leads toLX defined in(28). That means that for
that case

[LX̂]13 =
(41)

−BT
1D1 + L1 =

uniqueness
BT

1 lower(B
−T
1 A11B

−1
1 ).
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This is obviously the case forL1 = BT
1 l0(B

−T
1 A11B

−1
1 ) andD1 = diag(B−T

1 A11B
−1
1 ) for which

diag(L1) = diag(B1)diag(l0(B
−T
1 A11B

−1
1 )) = diag(B−T

1 A11B
−1
1 ) = D1.

There is a similar relationship betweenL2 in (28)andL2 in (26).

Theorem 5. LetX and its blocksA, B, andC be as defined in Definition 1. In addition, assume
thatA is positive definite and thatC = diag(0, 0, . . . , cd−1,d−1, . . . , cmm) contains firstd zeros
and nextm − d positive real numbers. Assume thatB is of maximal row rank. Then the micro-
block factorization(10)exists forX.

Proof. Let LB, V andX̂ be as defined in (4). We show that the micro-block factorization exists
for Ŷ = QTX̂Q which implies that the macro-block factorization exists for X̂ and hence by
Theorem 4, using the argumentation from (40) onwards, also forX.

Without loss of generality, assume thatp is the identity map. Letd be a positive natural number
and assume that the firstd diagonal entries ofC are zero. Focus onlij in (9), which depends
on the update terme(k)ij in (8). By direct calculation one finds (sincek < min(i, j) implies
bki = bkj = 0):

e
(k)
ij = [LikL

−T
kk LT

jk]11

=
[
lik 0

]
[
lkk bkk
bkk −ckk

]−1 [
ljk
0

]

=
1

ckklkk + b2kk

[
lik 0

]
[
ckk bkk
bkk −lkk

] [
ljk
0

]

=
likckkljk

ckklkk + b2kk
=⇒

lij = aij −

j−1
∑

k=1

likckkljk

ckklkk + b2kk
.

(42)

Therefore, by constructionlij = aij exists (here we use thatB is upper triangular and of maximal
row rank) for all1 ≤ j ≤ d+1, 1 ≤ i ≤ n. This shows that, consistent with Theorem 4, that the
first d+ 1 columns of matrix(lij)ni,j=1 are the firstd+ 1 columns ofÂ.

Now we have to examine what happens if the micro-block column-recursion continues with
columnd+2 and onward – note that only the square part (MATLAB notation)Ŷ(d+1 : n, d+1 :
n) is involved. For the sake of argument, without loss of generality, consider the cased = 1,
n = 7, m = 4, and the matrix̂Y in (2) with the first micro-block row and column deleted (after
the determination of the firstd+ 1 columns of(lij)ni,j=1 in (42)):

Ŷ
−d :=



























a22 b22 a23 0 a24 0 a25 a26 a27
b22 −c22 b23 0 b24 0 b25 b26 b27
a32 b23 a33 b33 a34 0 a35 a36 a37
0 0 b33 −c33 b34 0 b35 b36 b37

a42 b24 a43 b34 a44 b44 a45 a46 a47
0 0 0 0 b44 −c44 b45 b46 b47

a52 b25 a53 b35 a54 b45 a55 a56 a57
a62 b26 a63 b36 a64 b46 a65 a66 a67
a72 b27 a73 b37 a74 b47 a75 a76 a77



























. (43)
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This matrix turns out to be related to

X̂
−d = Q

−dŶ−dQ
T
−d =



























a22 a23 a24 a25 a26 a27 b22 0 0
a32 a33 a34 a35 a36 a37 b23 b33 0
a42 a43 a44 a45 a46 a47 b24 b34 b44
a52 a53 a54 a55 a56 a57 b25 b35 b45
a62 a63 a64 a65 a66 a67 b26 b36 b46
a72 a73 a74 a75 a76 a77 b27 b37 b47
b22 b23 b24 b25 b26 b27 −c22 0 0
0 b33 b34 b35 b36 b37 0 −c33 0
0 0 b44 b45 b46 b47 0 0 −c44



























=

[

Ã B̃T

B̃ C̃

]

which is identical to matrixX̂ with columns and rows1, n + 1 deleted. The blocks ofX−d

satisfy: Ã is positive definite,̃B has full row rank and is upper triangular, andC > 0. Hence,
by Theorem 3 the micro-block factorization of̂Y−d in (43) exists. Let the lower triangular
coefficients related toY−d defined in (9) be denoted withl(−d)

ij . Then sinceeij = 0 for 1 ≤ j ≤ d,

j ≤ i ≤ n it straightforwardly follows thatli,j+d = l
(−d)
ij for all d + 1 ≤ j ≤ n andj ≤ i ≤ n.

Hence the micro-block factorization of̂X exists.

Finally, as in Theorem 4 one can show that the micro block factorization forX exists as well.

For the case thatB is not upper triangular (but is of maximal row rank) and thatC is not a (non-
negative) diagonal matrix it is possible to ensure these properties at the additional costs of two
to be calculated factorizations, as is indicated in [24]. The approach for non-upper triangularB

is taken from [24, above Lemma 4.1]. Theorem 6 extends it for non-diagonal (square)C 6= 0.

Theorem 6. LetX and its blocksA, B, andC be as defined in Definition 1. In addition, assume
that A is positive definite,C is positive definite but not necessarily diagonal, and thatB is of
maximal row rank, but not necessarily upper triangular. Then, there exists an orthogonal matrix
VB, and a non-singular matrixVC with positive diagonal, a micro-block related permutation
matrixQ, and a micro-factorizable matrix̂X := LX̂ ◦ diag−1(LX̂) ◦ L

T
X̂

such that

X =

[
A BT

B −C

]

= VCV
T
BQLX̂ ◦ diag−1(LX̂) ◦ L

T
X̂
QTVBV

−1
C .

Proof. First, sinceC is symmetric positive definite there exists a unique factorizationC =
LCDCL

T
C whereLC is lower triangular with positive diagonal entries andDC = I. Let Ĉ = LC.

Next, from a QR decomposition ofBTL−T
C one can derive that there exists ann byn permutation

matrixΠ and an orthogonalm bym matrixQ such that

BTL−T
C =

[
BT

1

BT
2

]

L−T
C = ΠB̂TQ

whereB̂ is upper triangular and of maximal row rank, i.e., satisfies the conditions in Definition 1.
Finally, letÂ = ΠAΠT, observe that̂C := ẐDCẐ

T = DC, define

VC =

[
In 0

0 LC

]

, VB =

[
Π 0

0 Q

]

, X̂ =

[
Â B̂T

B̂ −Ĉ

]

,
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and note that the latter matrix can be micro-block factorized due to Theorem 3. Without loss of
generality, assume thatΠT defines the permutationp : {1, . . . , n} 7→ {1, . . . , n} and define

Q = [e1, en+1, e2, en+2, . . . , em, en+m, em+1, . . . , en]. (44)

Then

QTVBV
−1
C XV−T

C VT
BQ = QT

[
Â B̂T

B̂ −Ĉ

]

Q = QTX̂Q = LX̂ ◦ diag−1(LX̂) ◦ L
T
X̂

yields the desired result.

The case of non-diagonal symmetric positive semi-definite matrix C can be treated similarly,
based on the following result from [13], [10], and [19]: Let then by n matrixA be symmetric
positive semi-definite and of rankr ≤ n.

1. There exists at least one upper triangularR with nonnegative diagonal elements such that
A = RTR;

2. There exists a permutation matrixΠ such that matrixΠTAΠ has a unique Choleski de-
composition

ΠTAΠ = RTR

where

R =

[
R11 R12

0 0

]

has is upper triangularr by r blockR11, which has positive diagonal elements.

Since we assume that the firstd diagonal elements ofC are zero – and not the last ones – this
result needs to be combined with an additional permutation.

5 Numerical examples

As an example consider a variant on [25, Example 5.3], and focus on the casesC > 0, C ≥ 0,
andC = 0, for a matrixB with diag(B1) 6= Im.

Example 2. The caseC > 0: Identical to the first case in [25, Example 5.3] we chooseγ1 = 1
andγ2 = 2 for the matrixC below. In addition we alterB such that it is of full row rank:

A =







2 1 0 0
1 3 1 0
0 1 4 1
0 0 1 5






, B =





2 0 0 0
0 3 0 0
0 0 1 1



 , C =





γ1 0 0
0 γ2 0
0 0 3



 .

21



Note thatA andC are symmetric positive definite and thatdiag(B1) 6= Im. Based on these
blocks one finds

X =
Definition 1



















2 1 0 0 2 0 0
1 3 1 0 0 3 0
0 1 4 1 0 0 1
0 0 1 5 0 0 1
2 0 0 0 −1 0 0
0 3 0 0 0 −2 0
0 0 1 1 0 0 −3



















, Y =
(10)





















2 2 1 0 0 0 0
2 −1 0 0 0 0 0
1 0 3 3 1 0 0
0 0 3 −2 0 0 0
0 0 1 0 4 1 1
0 0 0 0 1 −3 1
0 0 0 0 1 1 5





















and calculation shows, rounded to three decimal places, that in macro-block form

LX =
(13),(27)



















2 0 0 0 2 0 0
1 2.833 0 0 0 3 0
0 1 3.864 0 0 0 1
0 0 1 4.910 0 0 1
2 0 0 0 −1 0 0
0 3 0 0 0 −2 0
0 0 1 0 0 0 −3



















, DX =
(14),(27)



















2 0 0 0 2 0 0
0 2.833 0 0 0 3 0
0 0 3.864 0 0 0 1
0 0 0 4.910 0 0 0
2 0 0 0 −1 0 0
0 3 0 0 0 −2 0
0 0 1 0 0 0 −3



















.

As claimed,LX contains blocksBT
1 , BT

2 anddiag(B1) respectively at blocks (1,3), (2,3) and
(3,1) and so forth. Furthermore, the diagonals ofDX andLX in blocks (1,1), (1,3), (3,1), (3,3),
and (2,2) are identical as they should be according to Theorem 1. The related matrixLX turns
out to be

LX =
(28)



















1 0 0 0 0 0 0
0.167 1 0 0 0.333 0 0
0 0.136 1 0 0 0.205 0
0 0 0.318 1 0 0 −0.227
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















.

This matrix contains ones at its main diagonal, and zeros at the diagonals of its blocks (1,3) and
(3,1), as it should have due to Corollary 1.

Example 3. The caseC ≥ 0: The blocksA andB are as in Example 2. We takeγ1 = 0 and
γ2 = 2 as in the second case of [25, Example 5.3]. Therefore matrixX andY are identical to
those in Example 2, except for entry (5,5), respectively2 × 2 micro-block entry (1,1). For this
example one finds, rounded to three decimal places

LX =
(13),(27)



















2 0 0 0 2 0 0
1 3 0 0 0 3 0
0 1 3.867 0 0 0 1
0 0 1 4.910 0 0 1
2 0 0 0 0 0 0
0 3 0 0 0 −2 0
0 0 1 0 0 0 −3



















, LX =
(28)



















1 0 0 0 0 0 0
0 1 0 0 0.500 0 0
0 0.133 1 0 0 0.200 0
0 0 0.317 1 0 0 −0.228
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















.

Example 4. The caseC = 0: The blocksA andB are as in Example 2. We takeγ1 = 0 and
γ2 = 0 as in the third case of [25, Example 5.3]. For this last example one finds, rounded to three
decimal places

LX =
(13),(27)



















2 0 0 0 2 0 0
1 3 0 0 0 3 0
0 1 4 0 0 0 1
0 0 1 7 0 0 1
2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 1 0 0 0 0



















, LX =
(28)



















1 0 0 0 0 0 0
0 1 0 0 0.500 0 0
0 0 1 0 0 0.333 0
0 0 1 1 0 0 −3
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















.
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In this case one finds thatL andD of (26) are – calculated explicitly from the formulas for the
blocksL1, L2, M, L2 andD2 in [24, Lemma 4.1]:

L =
(26)



















2 0 0 0 0 0 0
0 3 0 0 0.500 0 0
0 0 1 0 0 0.333 0
0 0 1 1 0 0 −3
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















, D =
(26)



















0.500 0 0 0 1 0 0
0 0.333 0 0 0 1 0
0 0 4 0 0 0 1
0 0 0 7 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0



















.

The main the difference with Schilders’ factorization factorL of (26) (from [24, Lemma 4.1]) is
thatL11 = B1 andL31 = 0m wherease[LX]11 = B1 but [LX]31 6= 0m and reversely[LX]11 6= B1

but [LX]31 = 0m. For matricesB with diag(B1) = Im one would obtainL = LX.

6 Conclusions

Based on the micro-block factorization introduced in [24] wehave shown that a Bunch-Kaufman-
Parlett like strategy with a priori known pivot structure can be employed for the explicit micro-
block factorization of coefficients matrices fromregularizedsaddle-point problems. This micro-
block factorization induces a macro-block factorizationX = LXDXL

T
X such that systems with

the3 × 3 macro-block matricesLX andDX can be solved efficiently. For the saddle-point case
(C = 0) the macro-block factorization is similar to that of [24] inthe sense that the non-zero
blocks ofL of [24, Lemma 4.1] have the same shape as the corresponding ones ofLX in (28).
If in addition diag(B1) = Im then both matrices and in fact macro-block factorizations [24,
Lemma 4.1] and (28) are identical. For systems with coupled physics an extension to ak by k

micro-block factorization withk > 2 is straightforward. In addition to using the presented exact
factorization as is, one can use it as a basis for the construction of implicit-factorization and other
preconditioners.
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