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Introduction 

This chapter is an introduction to the past and present practice of anesthesiologists and 

describes the present state of physiologic monitoring of patients. This introduction gives 

a description of the objectives of this thesis, and outlines the succeeding chapters. 

1.1. Anesthesia 

anesthesia { an'is- the'zha) 2. Artificially induced unconsciousness or local or general 
insensibility of pain. (Am. Heritage Dictionary 1981) 

As the dictionary description indicates, anesthesia is induced to abolish or minimize 

pain. Before the invention of anesthetic drugs like ether and chloroform it was not 

uncommon to give a patient a good bottle of rum to make him drunk and thus sedate 

him somewhat. In the year 1798 Sir Humphry Davy discovered the anesthetic 

properties of nitrous oxide, which was used in 1844 by Dr. Horace Wells to extract a 

tooth from a patient. Ether was first used in 1842 by Dr. Crawford Long in Georgia, and 

in 1846 by Dr. Morton of Boston (Davidson 1965; Poore 1872; Raftery 1968; Green 

1979). In a short time the news of the powerful potential of ether spread to Europe. 

Since the first reported anesthetic, anesthesia has rapidly evolved with introductions of 

new drugs and new equipment for administering drugs, gases, and anesthetic vapors. 

Although the goal of the early anesthetics was just to abolish pain, anesthetic and 

adjuvant drugs also provide for anxiolysis, amnesia (loss of memory), 

unconsciousness, and muscle relaxation (aiding both anesthetist and surgeon). 

From an anesthetic perspective, a modern surgical procedure can be divided into three 

major parts: 

• Pre-anesthetic period 

• Anesthetic period 

• Post-anesthetic period 

This thesis will focus on those patients that require anesthesia for a scheduled surgical 

procedure, excluding emergency and trauma patients (5-1 0% of patients have 

anesthesia not for an operation, but for diagnostic or non-surgical therapeutic 

procedures). The pre-anesthetic period starts after the patient has been scheduled for 



the spinal cord); and local anesthesia where only part of the body, local to the surgery, 

is anesthetized. 

The ASA classification as defined by the American Society of Anesthesiologists is used 

to indicate the patient's physical status. Table 1.2. lists five possible classes. 

Table 1.2: Definition of ASA classification (ASA 1963; Julian 1984) 
Class Description 

no organic, physiologic, biochemical, or psychiatric disturbance. 
II mild to moderate systemic disturbance that may or may not be related to the 

reason for surgery. 
m severe systemic disturbance that may or may not be related to the reason for 

surgery. Such diseases include heart disease that limits activity, poorly 
controlled essential hypertension, diabetes mellitus with vascular 
complications, chronic pulmonary disease that limits activity, angina pectoris, 
history of prior myocardial infarction. 

IV severe systemic disturbance that is life-threatening with or without surgery. 
Examples include congestive heart failure, persistent angina pectoris, 
advanced pulmonary, renal, or hepatic dysfunction. 

v moribund patient who has little chance of survival but is submitted to surgery 
as a last resort (resuscitative effort). Examples include uncontrolled 
hemorrhage as from a ruptured abdominal aneurysm, cerebral trauma, 
pulmonary embolus. 

The preoperative evaluation includes two outside information sources: 1) the patient's 

chart for review of previous operations, possible complications, and diagnostic tests and 

2) recent laboratory data. Traditionally preoperative information is gathered with paper 

forms completed by anesthesiologists. Because handwritten forms are hard to read, 

and often incomplete, computerized versions have been studied and reported as early 

as 1969 {Chodotf and Helrich, 1969; Chodotf and Ginaris 1973). Chodotf and Ginaris 

describe a Clinical Decision Support System tor the gathering and storing of patient data 

and for clinical decision making based on the preoperative data. A computerized 

preoperative evaluation has been designed and used at Shands Hospital at the 

University of Florida ( Gibby et al. 1991 a; personal communications Dr. GL Gibby 1992; 

Gibby et al. 1992). 

1. 1.2. The anesthetic period 

Several types of anesthetic procedures have been described in the previous paragraph. 

We will describe the general anesthetic procedure in more detail. 

On the day of the surgery (or the day before), the patient will typically receive pre

medication if prescribed by the anesthesiologist to relieve anxiety. When the patient 

arrives in the operating room physiologic monitors are connected and some baseline 
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readings are obtained. Anesthesia is induced by administrating intravenous drugs, 

volatile anesthetics (halothane, enflurane, isoflurane or others), and anesthetic gases 

(nitrous oxide) mixed with oxygen. Often an endotracheal tube (ET tube) is inserted into 

the patient's trachea to assure an adequate airway that can be used for spontaneous or 

mechanical ventilation. When muscle relaxant drugs are given, the respiratory muscles 

are relaxed and it becomes necessary to mechanically ventilate the patient. The 

anesthesiologist can use a combination of inhalation agents and intravenous drugs to 

titrate the level of anesthesia. An anesthesia machine with a breathing circuit 

connected to a mask or to the ET-tube is used when the patient's lungs are 

mechanically ventilated. 

The anesthesia machine with breathing circuit 

The major tasks of an anesthesia machine are: the delivery of oxygen to the patient's 

lungs via the breathing circuit, to deliver volatile anesthetics and anesthetic gases, to 
ow pressure 

C breathing system 

, uni-directional 

ventilator & scavenging 
D E 

"" "' • "' ,. oo I 

patient 

Figure 1. 1: The five major components of the anesthesia machine with breathing circuit: 
A) The high pressure section provides gases a central gas supply or, alternatively, from 

bottled gases. 
B) The low pressure section mixes the gases, meters and controls the gases and volatile 

anesthetics. 
c) The breathing circuit is the pathway for gas to move from the ventilator and low pressure 

circuit to the patient, and for exhaled gas to be removed from the system. The circle 
breathing system is the most common anesthesia breathing system in the U.S., but 
others like the Bain circuit are also used. 

D) The ventilator moves gas into the patient's lungs at controlled intervals, with controlled 
amounts. 

E) The scavenging system ensures that anesthetic gases are not vented into the operating 
room. 
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remove C02, and to scavenge waste gases. Five major parts can be identified in the 

anesthesia machine with breathing circuit, see Figure 1.1. 

First the gas enters from a high pressure central gas supply or (as a backup) from tanks 

(A). Typically these gases are 0 2, N20, and air. The pressure-reducing valves of the 

individual gases can be adjusted, creating a lower pressure (B). The gases are then 

blended together and enter a vaporizer where an anesthetic agent is added. This gas 

combination (called the "fresh gas") enters the breathing circuit (shown in Figure 1.1 as 

the circle breathing circuit). 

The ventilator compresses gas in a bellows (D), forcing gas through the breathing circuit 

(C) into the patient's lungs. A set of unidirectional valves in the circle breathing circuit 

causes the gas to flow in only one direction (in Figure 1.1. in counter clockwise 

direction). After the ventilator stops compressing, the patient exhales passively. The 

exhaled gas will fill up the ventilator bellows (D), and subsequently excessive gas will be 

scavenged by the scavenging system (E). During controlled inspiration, gas from the 

ventilator passes through a C02 absorber before entering the patient, so that the patient 

always breathes COTfree gas. An adjustable pressure limiting (APL or pop off) valve is 

installed in the breathing circuit to prevent the pressure in the circuit (and thus in the 

lungs) to exceed a pre"set limit. When this valve opens, the gas flows to the 

scavenging system. 

Monitoring 

Monitoring of the patient and the anesthesia equipment is done during the anesthetic 

period. Physical signs (assessment of skin color and temperature, the pupil size and 

reactivity to light, the nail beds, capillary filling and color, and the arterial pulse strength 

and heart rhythm) can be observed, or monitoring devices can be used. Monitoring 

devices are instruments that measures a particular entity (flow rate, pressure, voltage, 

etc.) and that display this entity or a derived patient variable. For example, the ECG is a 

measurement of voltage, but the heart rate can be derived from it. Monitoring devices 

can be subdivided into instruments using invasive and non-invasive methods. Non

invasive methods have the advantage of being non-intrusive to the patient (thus safer). 

and are usually easily applied. They can be less precise than invasive methods, 

because the sensor is typically some distance away from the signal source (e.g. EGG 

sensors are at a distance from the heart, a better measurement could be obtained by 

placing the sensors on the heart, which is not practical). Instruments using non-invasive 

methods include blood pressure measurement with a cuff, Doppler blood flow 

measurements, EGG, body temperature measurement, heart and lung sounds analysis 
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with a stethoscope, neurophysiologic monitors, respiratory monitors, and blood oxygen 

saturation monitoring with pulse-oximetry_ Invasive monitoring methods include Foley 

catheter for urine output measurements, arterial blood pressure catheters, central 

venous and pulmonary artery catheters (Swan-Ganz catheter), and intracranial pressure 

transducers. 

Monitoring is discussed in more detail in paragraph 1_2_ 

1. 1.3. The postoperative period 

After the operation is completed and the patient is awake and breathing spontaneously, 

the patient is moved to the post anesthetic care unit (PACU), where he is monitored tor 

any adverse effects of the anesthetic and surgery. When the patient's vital signs are 

stabilized the patient is moved to the ward_ There the anesthesiologist will perform a 

postoperative visit within 48 hours upon completion of the procedure, to make sure 

there are no adverse effects of the anesthetic. A postoperative note is made indicating 

the patient's physical status, and any complications that may have occurred post

operatively. Some patients go home on the day of surgery. If there are no anesthesia 

related problems the patient is released from the care of the anesthesiologist 

1.2. Current status of Alarms in Monitoring of Patients 

The anesthesiologist's task of abolishing pain, and providing sufficient oxygen to the 

patient, is facilitated by physiologic monitoring of patients. Three main objectives of 

monitoring of patients can be defined: monitoring the correct function of the anesthesia 

equipment, the titration of drug effects, and monitoring the safety of the patient. 

Monitoring the effects of drugs and vital functions is required to assure the detection of 

adverse situations and to minimize the risk to the patient Because of increasingly 

complex operations, and the availability of more powerful anesthetic drugs the 

anesthesiologist must assess the physiologic state of the patient in increasing detail. 

1.2. 1. Literature 

Hug identifies three levels of physiologic monitoring of patients during anesthesia and 

surgery (Hug 1981 ); 
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1. Routine Monitoring - applicable to all patients regardless of their physiologic status. 

2. Specialized monitoring for a particular pathologic problem (e.g. serum glucose 

determinations in the diabetic patient) or for the use of a specialized technique. (e.g. 

controlled hypotension). 

3. Extensive monitoring of all major systems in the critically ill patient and in those 

undergoing extensive surgery potentially affecting all organ and tissue functions 

(e.g. cardiac surgery with cardiopulmonary bypass). 

Standards for routine monitoring have been defined that are currently considered 

appropriate and accepted as minimal standards for all patients undergoing surgery 

(Eichhorn 1989). 

Monitoring standards 

Standards for monitoring have evolved in the last five to ten years. They have usually 

been drafted to increase patient safety in one institution, but they have become a 

national standard. In the United States the minimal monitoring guidelines were originally 

drafted by the Harvard Medical School (Eichhorn et al. 1986), were adapted by the 

American Society of Anesthesiologists in 1986, and last amended in 1990 (see Table 

1.3). 

Table 1.3: ASA monitoring standard (ASA 1993). 

monitor interval 
Oxygenation 

Inspired gas oxygen concentration 
Blood oxygenation 

Ventilation 
Breathing system disconnect 
End tidal CO? (recommended) 

Circulation 
Electrocardiogram 
Blood pressure 
Heart rate 

Body temperature 

continuous 

continuous 

continuous 
every 5 minutes 
every 5 minutes 
continuous 

Studies have measured the impact of monitoring standards on the number of critical 

incidents and overall patient safety. Eichhorn analyzed 1,001,000 ASA status I and II 

patients for anesthesia related intraoperative accidents at the hospitals of the Harvard 

Department of Anesthesia before the monitoring standards were in effect. They report 

11 major intraoperative accidents, 8 of which (73%) could have been prevented by 
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applying the standards presented in Table 1.3. Unrecognized hypoventilation was the 

most common accident (Eichhorn 1989). This study suggests (although not statistically 

significant) that the Harvard Monitoring Standard increases patient safety, but since 

accidents are so rare, a study with millions of cases is needed, and that is currently not 

feasible. Tinker et al. report on an ongoing Closed Claims Study of the ASA 

Professional Liability Committee (Tinker et al. 1989). Anesthesiologists reviewed 1,097 

incident cases. The reviewers report that 31.5% of the incidents could have been 

prevented by the use of one or more additional monitoring devices. The monitors 

deemed most useful in the cases of preventable injuries or deaths were pulse oximetry 

(40%) and capnography (2%). 

In an editorial in the British Journal of Anaesthesia the editors summarize the activities 

towards increased patient safety by comparing monitoring standards. There is 

indication that the number of critical incidents is decreasing, but it is not clear that this is 

caused by the implementation of monitoring standards (Editorial. British Journal of 

Anaesthesia, March 1990; Witcher et al. 1988). It is expected that with the advent of 

new monitors (e.g. an Anesthetic Depth Monitor (Ciuitmans 1990}) and more elaborate 

studies about the usefulness of particular monitors, monitoring standards will change. 

Besides the definition of monitoring standards and the formation of patient safety 

organizations, other factors like ergonomics and alarms play a role in patient safety. We 

will elaborate on alarms in the following section. 

Alarms 

To maintain vigilance is of critical importance in anesthesia monitoring of patients. 

Vigilance is negatively affected by the sometimes repetitive and monotonous nature of 

the task of anesthetizing a patient (especially in the maintenance phase of the 

anesthetic procedure). Damage to the patient is possible if problems are not anticipated 

and recognized early. Alarm systems have been developed to aid the anesthesiologist 

in the task of maintenance of vigilance. But there are drawbacks to the use of these 

systems. They are subject to artifacts and transients, and can produce many false 

positives that distract the anesthesiologist from more important clinical information 

(Berry and Katz 1989). Kestin et al. describe the frequency of auditory alarms in a 

group of 50 patients and found that only 3% of the alarms represented a risk to the 

patient, and that 75% of the alarms did not originate from a change in physiologic 

variables (Kestin, Miller, and Lockhart 1988; Schaaf and Block 1989). Another study 

reports that from 1455 alarms recorded from 26 patients in the intensive care unit, only 

9 



1.1% were relevant and required action by the nursing staff (O'Carrol 1986). A large 

number of alarms (58%) were due to artifacts and minor malfunctions. 

Setting a too narrow range between upper and lower limits can also produce frequent 

false positives, while a wide range setting may produce undesired false negatives. 

A multitude of physiologic variables are routinely measured and the anesthesiologist 

has trouble keeping track of all the values. With so many measured variables the 

selection of patient specific alarms becomes a problem and is therefore frequently 

omitted. 

Current solutions 

Beneken and van der Aa analyzed the need for smart alarms in increasingly complex 

monitoring systems (Beneken and van der Aa 1989). They argue that simple limit 

based alarms are not well suited for this task, and that a knowledge based expert 

system (smart alarm system) would be more appropriate. The authors present five 

approaches to establish alarm limits: 1) organize consensus meetings of experienced 

anesthesiologists, 2) use a priori knowledge and models, 3) introduce a learning period 

when the conditions change, 4) make use of statistical data from categories of patients, 

and 5) use information derived from combining different signals. 

Other authors describe the delivery of anesthesia as an engineering closed loop control 

system that needs monitoring of its three components: the anesthesia machine, the 

patient, and the controller (the anesthesiologist) (Schreiber and Schreiber 1989). They 

describe a critical incident as the following sequence: 1) adverse condition begins, 2) 

alarm generated, 3) alarm identified, 4) problem identified, 5) problem corrected, and 6) 

return to the safe state. The time required to complete this sequence depends in part 

on the alarm threshold of the alarm system (how soon does it sound the alarm), how 

easily the alarm can be identified (clear indication of alarm condition, complexity of the 

alarm system), the specificity of the alarm (is there an explanatory alarm text}, and the 

problem itself (how long does it take to treat the problem, and for the actions to take 

effect). Alarm systems should therefore facilitate the rapid enunciation of the alarm and 

the identification of the problem. 

Studies have been performed to improve alarm systems by decreasing the false alarm 

rate, and by making an intelligent assessment of an alarm. 

Makivirta et al. evaluated the quality of limit alarms when variations in the monitored 

data were filtered by median filtering (Makivirta et al. 1991 ). Although false alarms 

decreased with this technique (compared to unfiltered data false alarms decreased 80% 

for 1 min. delay, and 93% for 2.5 min. delay) some correct alarms were missed (19% for 
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1 min. delay, and 53°/o for 2.5 min. delay). A combination of wide limits for unfiltered 

data and tight limits for filtered data was used to ensure that no correct alarms were 

missed. The number of false alarms in this dual system decreased by 63%. The 

authors suggest that with this method priority alarms systems can be built based on 

alarm, alert, and advisory categories. 

Intelligent solutions to this problem have been proposed. Van der Aa (1990) described 

an expert system based system that monitors the integrity of the circle breathing system. 

This system was able to correctly detect anesthesia machine malfunctions like 

disconnects, leaks, stuck valves etc. in 96% of the incidents. With the inclusion of 

physiologic patient oriented problems like main stem intubation, hypoxic mixture, low 0 2 

delivery etc. the system was able to respond with a correct intelligent message in 88% 

of the incidents. The author recognizes that in order for alarm systems to work in the 

operating room, research on how alarm limits are set is required. (van der Aa 1990, p. 

137). Another intelligent alarm system has been presented by Orr and Westenskow 

{1990). Their system, based on a neural net, was able to generate specific alarms in 

95% of 746 events during controlled ventilation, and had a low false positive alarm rate 

of 1. 7 false alarms per hour during clinical trials. 

1.2.2. Overview of commercially available systems 

Many integrated monitoring systems are now commercially available (see Table 1.4.) 

The problem of configuring the systems and setting them up with proper alarm limits has 

been addressed in some of these systems. At the 1992 Annual Meeting of the 

American Society of Anesthesiologists in New Orleans, different vendors of integrated 

systems were interviewed by the author with the intent to document how alarm 

technology was implemented in their systems. The techniques used in these systems 

are not always documented in the literature. Interviewing sales people does not always 

result in an in depth understanding of their systems, because detailed information is not 

always available to them. Sometimes the way alarm technology is implemented is 

proprietary information (e.g. when an alarm is based on several measurements that are 

averaged, information on how this averaging is done is often not available). Additional 

information comes from brochures available from the vendors of the systems and from 

personal observations. Table 1.4. shows vendors with the type of systems they sell. 
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Table 1.4: Vendors and integrated monitoring systems. See Appendix B for abbreviations. 
Vendor 
Ohmeda 

Spacelabs 

Marquette 
Datascope 
Drager 
HP Merlin 

System type 
CD anesthesia machine 

Integrated monitoring system 

TramScope 12 
Integrated monitor 
anesthesia machine 
Integrated monitoring system 

System features 
Anesthesia machine with integrated 
monitoring of flows and gases (dis
connect), CO?, anesthetic agent, 5 0 0::>. 
Monitors for ECG, BP, CO:;>, anesthetic 
agent, S0 02, PA. 
Monitors for ECG, NIBP, S0 0::>, PA, CO? 
NIBP, S0 0::>, CO?, Agent. 
NIBP, PA, S0 0,, co,, Agent 
NIBP, PA, S00 2 , C02 , ECG 

All alarm system implementations rely on fixed limit alarms. When a previously set limit 

is exceeded an alarm will sound, or will be visible on the display. All monitoring systems 

provide for a setup mode of alarm limits by pressing keys and following menu driven 

instructions on the screen. The Spacelabs system defaults to fixed amount (20%) 

above and below baseline data, while systems from the other vendors default to factory 

set values. The Datascope system has an auto-set button that sets all the alarm limits 

to +1- 20% of the current values. The Drager system has a similar feature, but in 

addition settings allow for a wide or narrow range setting. It is not clear how these 

settings are achieved. The Ohmeda CD provides three types of alarms: 1) advisory a 

monitor is on standby, 2) alerts - alert zones can be set to 2-4-6% of the current 

baseline, and 3) alarms -fixed alarm limits that have no default setting. 

Currently .!lQ system has the capability of adjusting for different types of patients. Some 

systems provide alert zones as a percentage around a baseline, but no methods are 

available for establishing a true baseline. In some systems a set of alarm limits can be 

saved and retrieved for later use, but the selection of which set of limits to choose is up 

to the anesthesiologist. 

1.3. Project Objective 

1.3.1. Problem definition 

Alarms are designed to warn or alert the anesthesiologist of an untoward event. These 

systems do not work if the alarm limits are not set. Intraoperative alarm limits are often 

not set by the anesthesiologists because many monitors are used and the setting of 

limits is a time consuming task. Many times they are left at the factory defaults or at the 

values of the previous case. 
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Anesthesiologists frequently have a mental picture of what ranges are acceptable for a 

specific patient. Intelligent monitoring systems (van der Aa 1990; Westenskow 1992), 

Quality Assurance (QA) systems, automatic record keepers, and others also need to 

know these ranges of the patient variables. These systems usually compare patient 

variables to a 'normal' value or an acceptable range of values, but the definition of these 

values is primitive at best. In this study we will examine what the clinical operating 

ranges (COR) are for individual patients. 

1.3.2. Problem solution 

Alarm limits are individualized per patient based on the information obtained from the 

patient, primarily the preoperative evaluation (preop), and the anesthesiologist's 

experience. We will first analyze what data is currently used intraoperatively and what 

the clinical operating range (COR) of a patient looks like. 

The concept of COR was defined as the range that is clinically acceptable to the 

anesthesiologist, with the purpose of deriving alarm limits. The COR limit is not the 

same as the alarm limit because transgressions of COR limits are expected to be 

frequent. A transgression of a COR limit can be thought of as a transgression from a 

green zone into a yellow zone. When an alarm limit is crossed, this is a transgression 

from a yellow zone into a red zone (the traffic light paradigm). 

Most hospitals are moving to integrated networked computer systems that interconnect 

clinics, labs, and operating rooms, which makes electronic patient information available 

in the operating room, and provides a physical platform for an alarm system based on 

patient information. Current monitoring and alarm systems do not use any a-priori 

patient information. Monitoring equipment is not configured differently for different types 

of patients or different types of operations. This dissertation will link preoperative 

information with knowledge from anesthesiologists to select patient specific alarm limits. 

By automatically selecting alarm limits, the time consuming task of setting alarm limits is 

eliminated. 

1.4. Description of the chapters 

This chapter has given an introduction to anesthesia, and how alarm technology is 

currently used in the operating room. Chapter two will describe the flow of patient data 

in the operating room. It describes what is recorded and how, and discusses methods 

for automatic recording. These methods can be used to document the variability and 
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ranges of physiologic signals, which is related to how alarm limits should be set. 

Results of a review study of the use of intraoperative alarms concludes chapter two. 

Chapter three discusses different suggestions of implementing a system for the 

automatic setting of alarm limits. The selected method is presented in depth in chapter 

four, and includes selection of input data, data analysis, and clustering of patients into 

groups. Methods for the collection of the anesthesiologist's knowledge on alarm limit 

setting, and the design and implementation of a database for the storage and retrieval of 

all this information are presented in chapter five. Chapter six discusses hypotheses that 

need evaluation for validation of the system, and presents results of the evaluations. 

This thesis is completed with conclusions and recommendations in chapter seven. 
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Many data are being measured in the Operating Room (O.R.). These data are recorded 

for clinical, operational, and legal reasons (Gravenstein 1989; Ream 1989; Jackson 

1989; Gibbs 1989; Peters 1989; Linnarsson and Hallen 1987). Clinical reasons include 

1) the display of trends, 2) to remember the anesthetic management during the case 

(e.g. how much of which drug was given), 3) to share intra-operative information 

between colleagues, or from the O.R. to the recovery room, intensive care unit, or 

postsurgical ward, 4) peer review to ensure quality of care, and 5) for review of previous 

anesthetics. Operational reasons include 1) generation of billing information for patient 

billing, 2) generation of operational statistics, and 3) generation of statistics on resident 

training. Legal reasons are 1) documentation of the quality of care, and 2) 

documentation for legal defense. In an educational institution like a teaching hospital, 

there are also scientific reasons to record intraoperative data for studies of 

intraoperative incidents, effects of drugs, variability of physiologic patient variables, etc. 

Intraoperative data are recorded on an anesthesia record. 

To determine if we can define alarm limits based on a detailed log of what happens 

intraoperatively, combined with preoperative information about a patient, we proposed to 

record intraoperative real-time data. A data collection tool was designed and built, 

based on a method we developed to record data transparently from any physiologic 

monitor. This is described in paragraph 2.2. 

To determine what the clinical operating ranges of physiologic patient parameters are, 

we studied 50 patients intraoperatively. This study is presented in paragraph 2.3. 

2.1. The anesthesia record 

The data currently recorded onto the intraoperative record come from different sources, 

and are in different formats. The different data items of a typical anesthetic record, their 

format, and source are listed in Table 2.1. It is obvious that there are many 

departments involved, as well as different data formats used. Table 2.2. lists the basic 

data formats on which the intraoperative record is based. With this list of basic formats 

a whole anesthetic record can be constructed. 

15 



Table 2. 1: Anesthetic record. 
Data 
Demographic data 
Case data 
Diagnosis/Procedure 
Preop Information (brief) 
Pre-medication 
Induction drugs 
Maintenance drugs 
Monitors 
Physiologic data 
Events 

Format 
Text 
Text 
Text 
Text I Numerical 
Drug Entry 
Drug Entry 

Source 
Patient Information System 
O.R. scheduling 
Surgery Department 
Anesthesia Department 
Anesthesiologist 
Anesthesiologist 
Anesthesiologist 
Anesthesiologist 

Notes on Anesth. Management 
Recovery Room Report 

Drug Entry 
Check List 
Numerical 
Time-Text 
Time-Text 
Numerical 

Monitors I Anesthesiologist 
Anesthesiologist 
Anesthesiologist 
Recovery Room Personnel 

Table 2.2: Data formats of an intraoperative record. 
Data format 
Text 
Numerical 
Drug Entry 

Check List 
Time-Text 

Description 
Regular text; phrases, words, abbreviation. 
Measured number, integer or real 
[Drugname] [time]<[Amount] [Unit] [route]> 

Drugname Name of drug or gas 
Time Time the drug was administered 
Amount Amount of drug (optional) 
Unit Unit of the drug (cc/mg ... ) (optional) 
Route Way drug was administered (optional) 

List of items that can be checked off 
[Time] [Text] 

Time time mark in real time (hh:mm:ss) or offset time 
Text see above 

To collect these data most hospitals use a one or two page paper form. Record 

keepers that record many of these data items automatically are now commercially 

available. These two methods of recording intraoperative data are explained in the next 

paragraphs. 

2. 1. 1. Manual recording 

Paper forms for recording intraoperative information have been around since at least 

1894, when Cushing and Cod man started to keep an anesthetic chart for their patients, 

which was adopted by others in subsequent years (Beecher 1940). Devices to record 

intraoperative pulse traces of heart rate exist since 1860 (Schneider and Redford 1979). 

Cod man used a piece of paper to record heart rate and respiratory rate every 5 minutes 

on what was called an "ether chart". That methodology is basically still in use today. 

The manually created anesthetic records of today contain much more information than 
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its predecessors, but they are still written with pen and paper. Many problems 

associated with this method of record-keeping can be identified. The main problems are 

legibility, incorrectness, and incompleteness of the anesthetic record (Meijler 1987, p. 

133; Feldman and Good 1993). Incorrectness and incompleteness are caused by the 

inadequate time the clinician has for record-keeping after he takes care of the patient's 

needs. Because of lack of time, and a place to write on (table, desk, etc.), often no 

record entries are made during a critical time period like induction or emergence of 

anesthesia, or when a problem arises, and the record has to be recreated from memory 

at a later time. It is during these critical periods that record keeping is needed the most 

(Whitcher 1987). Incorrectness can also be caused by a conscious or unconscious bias 

towards recording a less controversial value in the record (Feldman and Good 1993). 

Incorrectness of systolic blood pressure measurements has been documented in a 

study by Cook et al. (Cook et al. 1989). They showed that in 33 instances of 50 patients 

the automatically recorded systolic blood pressure was higher than 11 0 mm Hg, while in 

none of the manual records a pressure higher than 11 0 mm Hg was recorded. In a 

study of 48 manually recorded anesthesia records at Shands hospital, we observed 27 

incidents1 with a systolic blood pressure of 160 mm Hg or higher. For 14 incidents a 

systolic blood pressure of more than 5% lower was put on the record than recorded by 

an independent observer. The observer used the same monitor data as the clinician. 

The largest recorded discrepancy was a measured value of 213 mm Hg, while the 

record showed 155 mm Hg; this high pressure, which occurred during intubation, was 

corrected by deepening the anesthesia. Of the 13 incidents, where the data were 

correctly recorded, the highest systolic blood pressure on the record was 229 mm Hg, 

showing that high values do get recorded properly in other cases. 

A typical anesthetic record of the Shands hospital at the University of Florida illustrates 

illegibility (Figure 2.1 ). Illegibility is caused by poor handwriting and the limited space for 

comments and events. There is no space for the recovery room report, and therefore it 

is written wherever space is available, usually in the graphical part of the record (as 

indicated). 

1 incident is defined here as a period when the physiologic value exceeds a preset upper limit. 
That period ends when the value returns to a value below that limit, or when the limit is reset. 
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Figure 2. 1: Handwritten anesthetic record. 
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To address the problems of incompleteness, incorrectness, and illegibility, automatic 

record-keepers have been designed. 

2. 1.2. Automatic recording 

The ideal automatic anesthesia record-keeper would provide the anesthesiologist with 

automatic recording of all physiologic and other parameters from any monitoring device, 

and present this information in a clear, obvious way, in printed form and/or on a display. 

In addition it should be extremely easy to add annotated notes and drug entries to the 

record (Ream 1989), and the data should be available forever in an easy to retrieve way 

(Block 1989; King and Smith 1991; Frazier 1987). 

This ideal automatic anesthesia record keeper is hard to build. Although the automatic 

data capture from the monitors can be implemented, despite hardware and software 

differences between monitors (see par. 2.2.), the user interface between the 

anesthesiologist and the automatic record-keeper is the most difficult part. The ease 

with which any anesthesiologist handles a pen and paper is hard to duplicate in an 

automatic (computerized) device. Nevertheless several automatic record-keepers are 
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currently commercially available, and some inventive methods are used to approach the 

ideal record-keeper. Table 2.3. lists the record-keepers that are currently commercially 

available on the U.S. market with a short description of their user interface. 

Table 2.3: Currently available automatic record-keepers. 
name manufacturer user interface 
Arkive Diatek, San Diego CA touch screen input, configurable event and drug 

entries. 
Co-Writer NA Drager, Telford PA 
Compu-record PPG, Lexena 

Lifelog Modular Instruments, 
Malvern PA 

OR Data Manager NA Drager, Telford PA 

2.2. Measuring real time data 

handwriting input (with a pen) on a plotter. 
touch screen and keyboard input, capable of 
networking. 
touch screen, keyboard, and mouse input. 
Artifacts can be tagged and modified. 
keyboard input with function keys. 

One component that all automatic anesthesia record-keepers have in common is the 

ability to read data from intraoperative monitoring devices. There is a wide variety of 

data formats and hardware implementations, which makes it difficult to make a device 

that can read from all of the monitors. Some standards have been proposed, but none 

have been implemented on a large scale in intraoperative monitors yet (Phillips, 

Gordon, and Cousins 1982; Clemmer and Gardner 1992). One of these standards is 

the definition of the Medical Information Bus (MIB) by the IEEE Engineering in Medicine 

and Biology Society (Figler and Stead 1990; Nolan-Avila, Paganelli, and Norden-Paul 

1988; Gardner et al. 1992). The MIB standard was defined with the following objectives 

(adapted from Figler and Stead 1990): 

• Interface medical devices with host computers in a compatible, vendor-independent 
fashion. 

• Provide a network that is appropriate for the acute patient care setting. 

• Ensure high reliability for accuracy of transmission and delivery of data and for 
availability and fault tolerance of the network. 

• Accommodate frequent reconfiguration and changes in equipment location. 

• Provide a simple, non-technical user interface. 

• Provide support for a wide range of network topologies. 

• Remain cost effective. 

Intraoperative monitoring has long been a "stand alone" business, meaning that one 

manufacturer provides one monitor that measures one or more physiologic parameters. 
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Monitors were never designed to be an integral part of a data communications network. 

Redesign of monitors currently on the market, and implementation of complicated 

networking hardware into new monitors is costly. Therefore manufacturers of 

monitoring equipment watch the development of new standards closely, but only 

implement them when they become a golden standard. 

Currently intraoperative monitors use serial RS-232 communications, analog signals, or 

proprietary data buses to communicate with the outside world. 

To be able to record intraoperative patient data, we developed a method that can be 

used to collect data from many different monitors, that is cost-efficient, and easy to use. 

Based on this method an easy to configure intraoperative data collection tool was built 

to record serial RS-232 data in the operating room. Paragraph 2.2.2. describes this 

tool. An analysis of the different types of data is presented in the next paragraph. 

2.2. 1. Definition of data types 

In daily life, and also in computers, we make a distinction between different types of 

data. The sentence "This patient has a blood pressure of 120 over 80 mmHg" can be 

classified as a string, and the numbers 120 and 80 can be classified as integers. In 

computers data types are very important, because they define which operations can be 

applied to a data set. The standard C computer language defines some basic data 

types, listed in Table 2.4. 

Table 2.4: C language basic data types (Kernighan and 
Ritchie 1988, p. 36). 

Name Description 
char 
int 
short 
long 
float 
double 

one character 
integer number 
short integer number 
long integer number 
real number 
double precision real number 

Other data types can be derived from the basic types e.g. a string can be defined as an 

array of char (char str [ 80 l). 

Intraoperative data formats can also be defined in the basic data types listed in Table 

2.4. New data types can be defined as combinations of the basic data types. Table 2.5 

lists the basic data formats of Table 2.2. in their computerized form. 
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Table 2.5: Computerized basic data formats of 
intraoperative data. 

Data format Computer basic data type 
Text 
Numerical 
Drug Entry 
CheckList 
Time-Text 

array of char 
int, long, float or double 
Text+long+Numerical+ Text 
Text+int 
long+ Text 

Once data are organized in this way it becomes easier to define structures to store 

these data and to define operations to manipulate them. As an addition to the data 

format a meaning can be given to the data. For example data can be of the numerical 

data format and the meaning defines that it is a systolic blood pressure. An 

implementation of this concept was made and is outlined in the next paragraph. 

2.2.2. A real time data collection tool 

With the increase in complexity of equipment, and the increase in computer use, the 

need to exchange data has also increased. Computers communicate with other 

computers to exchange data which are stored or collected in one place and need to be 

viewed in another. The user of this information should not have to go to the location 

where the data originated, nor have to arrange for the data to be moved manually via 

courier or mail. An example of this increased communication is the world-wide internet 

computer network that enables users to send electronic mail, move data files all over 

the world, and use remotely located information services. Other examples include the 

availability of laboratory data throughout a hospital, or the access of a library system 

throughout a university. For communications to work, standards that both sides of the 

communication agreed upon have to be defined. If the analogy of the telephone is 

used, this definition ranges from the level of which voltages are sent over the wires, to 

the high level as which language is spoken by the user through the receiver. 

In the definition of network communication standards often the Open Systems 

Interconnection (OSI) reference model of the International Organization for 

Standardization (ISO) is used (ISO 1977). This model specifies a frame work of seven 

layers for connecting computer devices. Each layer is responsible for a specific task, 

and for exchanging data between adjacent levels. This enables developers of 

computerized communication devices to implement their systems in a hardware 

independent way, and define their systems layer by layer. The layers are listed in 

Figure 2.2. 
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Figure 2.2: OS/ layers. 

This layer is responsible for the physical link. It defines the transmission of bits over the 

link and provides functionality to establish, maintain and deactivate the link. This layer 

deals with voltages, currents, timing etc. 

Data Link Layer 

This layer provides reliable transfer of data over the physical link. Synchronization, error 

control and flow control (e.g. XON/XOFF) of the physical link is handled in this layer. 

Network 

This layer is responsible tor methods of connecting, maintaining a connection, and 

disconnecting in a hardware independent way. 

Transport Layer 

This layer provides for the reliable transport of data between two end points. It provides 

for error detection, and error correction of the data. This may involve the retransmission 

of data in case of an error. 

Session Layer 

This layer manages a connection session, by providing for different types of 

connections. The lower layers make sure that the connections are error-free regardless 

of connection type. 
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Presentation Layer 

Presents the application program with a standardized way of data representation. Data 

management like compression, conversion, etc. can be handled here. 

Application Layer. 

Implementation of standard protocols for data exchange. The user program merely has 

to call functions in the application layer to have the data transferred. 

The OSI model is attractive for applications that transfer data between devices and 

where dissimilarities exists in the way communication is handled. Similarities between 

the devices only need to be implemented once in this layered approach. 

Intraoperative monitoring is such an environment. Similarities and dissimilarities 

between the data communication parts of intraoperative monitors are shown in Table 

2.6. 

Table 2.6: Data collection similarities and dissimilarities of intraoperative monitors. 

Similarities 
Common low level hardware (RS-232, analog 
signals) 

Dissimilarities 
Non-standard data streams from the monitors 
(every vendor defines its own) 

Common data format (time related physiologic Non-standard control and setup data 
data) communication between the monitors 

Common data items measured (e.g. blood 
pressures, heart rates, etc.) 

Different hardware communication settings per 
monitor 

The dissimilarities between the monitors can be accounted for in one or more layers in 

the 081 model. When the differences can be easily modified or configured, all these 

layers can be implemented in one computer program, enabling uniform data capture 

from intra-operative monitors. We have made an implementation of a system that can 

read from intraoperative monitors using the serial RS-232 hardware protocol. The 

differences between the monitors are stored in a monitor definition file. This file 

contains the configuration settings that are used for several layers. The next sections 

describe how the different layers of this system are implemented. 

Physical Layer 

Many intraoperative monitors are provided with standard RS-232 (EIA Standard RS-

232-C 1981) serial ports. This hardware communication protocol is well defined, and if 
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both devices (the monitor and the PC) adhere to this standard, the physical layer is 

taken care of. 

Data Link Layer 

The data link layer needs to provide the physical layer with the appropriate parameters, 

and provide some simple error detection and connection maintenance. Several 

computer operating systems provide this functionality, and only the passing and 

determination of the communication parameters is needed. Some examples of serial 

communication functions built into Microsoft Windows are shown: 

Table2.7: MS Windows communication functions. 

function Description 
CloseComm Closes a communications device 
FlushComm Flushes a transmission or receiving queue 
GetCommError Retrieves the communications-device status 
OpenComm Opens a communications device 
ReadComm Reads from a communications device 
WriteComm Writes to a communications device 

Using these functions a serial port can be opened (OpenComm), data can be read from 

and written to the serial port (Readcomm and Writecomm), and a serial port can be 

closed (CloseComm). 

The parameters that are needed to setup the serial RS-232 port are listed in Table 2.8. 

Table 2.8: Parameters of RS-232 protocol. 

parameter description 
baud rate transmitting and receiving speed of the 

data bits 
parity 
stop bit 

connection 
number of data bits per byte of data 
simple error checking scheme 
number of trailing bits after a byte 

These parameters are fixed per monitor, and are stored in the monitor definition file. 

After these parameters are set, basic communication tasks can be performed on the 

interface with standard operating system functions that read and write to/from 

communication ports. Raw data communication has been established. 
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Network Layer 

The network layer maintains the connection and communication with the monitors, by 

passing additional parameters specific for the monitor to the data link layer, and by 

assuring that data is being moved until the connection is closed down. 

Table 2.9: Additional communication parameters. 
parameter description 
name Name of the monitor 
EOTchar End of Transmission Character 
Request Request strings to prompt the monitor for data 

The request strings are used to request the monitors for data if the monitor doesn't 

provide data in printer mod82. These request strings are sent out whenever the 

application program wants to receive data. The EOTchar is the End-Of-Transmission 

character that indicates the end of a message or data packet from the monitor to the 

computer. When this character is received the data is passed on to higher levels for 

processing. The name of the monitor can be used to simplify setup. 

The network layer and the data link layer are very similar in passing parameters to the 

communication interface. We merged these two layers so that they can both read from 

the same monitor definition file. This file stores the parameters needed to connect and 

stay connected to a monitor. These data are stored as shown in Figure 2.3. 

Transport Layer 

[Monitorl] 
Name=Critikon Dinamap NIBP 
baud=600,N,8,1 
EOTchar=OD 

Requestl=B*C 

Figure 2.3: Monitor communication data in 
monitor data definition fife. 

The transport layer provides reliable communication between the monitor and the 

computer. The data sent out by the monitor usually does not provide for any checking 

of reliability of the data communication. The reliability checking has to be implemented 

with the available data. Usually data strings have some identification information in 

them that labels the signal values (e.g. the string "BP=090"). We will call this 

21n printer mode a monitor automatically sends out data from the moment it is turned on. 
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identification information a search key. Search keys can be specified as ASCII (plain 

text) characters, or as binary characters (some monitors use a binary identification). If 

the data from a monitor do not contain any search keys given for the monitor, the data 

are discarded. The search keys are also used to extract data from the monitor data 

stream and are explained in detail in the discussion of the presentation layer. 

Session Layer 

A session in this implementation is defined as one application program connected to 

one or more monitors. The program needs to know which monitors are connected to 

which port. On a standard PC four serial ports (COM1-COM4) can be used 

simultaneously. The setup file tor the application program includes the port name, and 

the name of the monitor connected to it. 

[Samples] 
Data=500 
Request=500 

[Ports] 
Portl=coml 
Devicel=Monitorl 

Port2=com3 
Device2=Monitor3 

Figure 2.4: Setup file of the 
application program. 

The example setup file shown in Listing 2.4 shows the setup of two monitors. Additional 

data as the sample rate (Data) and the data request rate (Request) are also shown. 

The sample rate can be adjusted to meet monitoring needs (Gravenstein et al. 1989). 

Presentation layer 

The session layer offers the presentation layer a reliable stream of data. It is the task of 

the presentation layer to extract the data and represent it in a uniform way, independent 

of how the data arrived, so that an application program can use it. 

Data sent out by the monitors can be integer or real numbers, strings, etc. For every 

data type several representations can occur in the data stream from the monitors. 

Numerical integer data (e.g. the numbers 3 and 122) can be send as 003122 (ASCII 

fixed length integer) or 3,122 (ASCII variable length integer). Figure 2.5. shows the 

different ways data are represented in a data stream. 
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ASCII BINARY 

N 
VARIABLE LENGTH FIXED LENGTH 

An implementation for extracting ASCII, 

fixed length, integer data from the data 

stream was made. Extractions for other 

data representations can be designed in a 

similar fashion. ASCII, fixed length integer 

data is most frequently available on the 

serial ports of physiologic monitors. 

integer float string 

Figure 2.5: Data representations. 

ASCII fixed length integer data 

Because the data, sent on the serial connection of a monitor, are usually intended for a 

printed log, the data appear in fixed positions in the data packet. A typical data packet 

might be: HR=088; BP=l20.J3 In this example the heart rate data start at the 4th 

position in the packet and is three characters long. In addition a program can look in the 

packet to search for HR to make sure it received a correct packet and a name can be 

added to identify the signal. This leads to the following data needed per signal on each 

monitor: 

Table 2.10: Signal identification parameters. 
Item description 
Key Search Key for data reliability 
Start Start position of the data item 
Length Number of bytes of the data item 
Name Name of the signal 

In the monitor definition file these parameters are stored as follows: 

Keyl=72 82 61 
Signall=4 3 
nl=Heart rate 

(HR=) 
(position length) 

Figure 2.6: Signal data in monitor definition file. 

3The .J character denotes the carriage return (CR) character. 
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The search key is stored in hexadecimal format, because some monitors {e.g. 

Datascope monitors) require binary search keys. The position of the beginning of the 

data item is relative to the beginning of the search key. If no search key is indicated 

(specify o o o o o o) no validation is done, and the position is relative to the beginning of 

the packet. 

After extracting the data from the data stream they have to be stored in a uniform 

manner. For each data item an identification (or meaning), the time of measurement, 

the format type of the data, and the value of the data item have to be stored. One 

approach is outlined in Tables 2 .11. and 2.12. 

Table 2. 11: Data needed per signal. 

section size in bytes 
id 1 byte 
time 4 bytes 
type 1 byte 
data depends on type 

Table 2.12: Defined signal identifiers. 

id description 
o Systolic Blood Pressure 
1 Diastolic Blood Pressure 
2 Heart Rate 
3 lntra-op event 
4 Drug administration 
5 P,.tCO;:> 
6 SnO? 
7 Insp. 0;:> 
8 Mean Arterial Pressure 

type 
INT 
INT 
INT 
STRING 
STRING 
FLOAT 
INT 
FLOAT 
INT 

The four bytes that store the time contain the number of seconds since 1/1/70 00:00:00, 

a standard way of handling time in a computer (on Unix and DOS systems). Currently 

there are three format types of the data: 

Table 2.13: Data format types. 

id id define description 
0 INT signed integer: 2 bytes 
1 FLOAT floating point: 4 bytes 
2 STRING string: first byte indicates the length, string data follows 

Application layer 

The application layer consists of user defined programs that use the underlying layers, 

and that manage and further process the data. The most simple program would be one 

that initiates monitor communications, reads the data, stores or displays the data, and 

closes monitor communications. We defined and implemented these basic functions as 

follows: 

IO_Init () 
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Opens all the communication ports and associates monitor data with them. 

IO_CloseDown() 

Terminates the communications that were initiated with the IO_Init call. 

IO_GetData(struct DATASTRUCT *alldata) 

Reads all the data from the ports for processing in the application. The data are 

returned in the structure DATASTRUCT (Table 2.14). 

void IO_RequestData() 

Sends request strings to the connected monitors to query for new data. 

The data structure used in the IO_GetData is defined as follows: 

Table 2.14: Data structure to store signal data. 

DATASTRUCT 
name type (size) description 
id byte (1) identification of data 
time long (4) time the measurement was taken 
type byte (1) type of the data 
data pointer pointer to the data 

Listing 2.1 shows the framework of a data collection program based on the functions of 

the application layer. 
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finclude uosimon .. h"; 

void main(} 

struct DATASTRUCT alldata[MAXITEMS]; 

IO_Init( ); 

while ( ! the_ end} 

if (time_to_query) 
IO_Request( ); 

if (time_to_read) 

IO_GetData(alldata}; 
ProccessData(alldata); 

IO_CloseDown( ) ; 

Listing 2. 1: Minimal data collection program. 

An implementation of the techniques presented in this paragraph was used to record 

intraoperative data (van Oostrom et al. 1992). The implementation was made in 

Microsoft Windows as a multiple document interface (MDI). The MDI monitoring 

program consists of one main window with a menubar, and multiple smaller windows on 

top of that, representing the connected monitors. The monitoring program displays the 

data coming from the intraoperative monitors in tabular form and the data are also 

written to file. The display of the program is shown in figure 2.7. 
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This system is able to read the data listed in Table 2.15, which accounts for many of the 

intraoperative monitoring devices at Shands Hospital. Other monitors can be added by 

entering their communication data in a monitor definition file. 

Table 2.15: Monitors compatible with the intraoperative data 
recorder with available data. 

Monitor name Measured variable(s) 
Datascope heart rate 

respiratory rate 
inspiredO? 
end tidal pCO? 
non invasive systolic blood pressure 
non invasive diastolic blood pressure 
SnO? 

Nellcor S0 02 heart rate 
Sn02 

Critikon Dinamap heart rate 
non invasive systolic blood pressure 
non invasive diastolic blood pressure 
80 0::> 

Ohmeda Sn02 heart rate 
Sn02 

HP Snoopy end tidal pC02 
Ohmeda 5250 end tidal pco2 

2.3. Current practice of alarm settings 
This paragraph is a reprint of the paper "Acceptable Ranges for Vital Signs during 
General Anesthesia" to be published in the Journal of Clinical Monitoring 1993. 
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Acceptable Ranges for Vital Signs during General Anesthesia 
J.H. van Oostrom, C. Gravenstein, 
and J.S. Gravenstein, M.D. 

32 



van Oostrom JH, Gravenstein C, Gravenstein JS. Acceptable Ranges for Vital Signs during General Anesthesia. 
J Clin Monit 1993;in press 

ABSTRACT 
Objective: Define the ranges tor normal vital signs during general anesthesia 
Methods: We studied 50 patients undergoing general anesthesia. We asked residents to state desirable 
ranges tor each patient's systolic and diastolic blood pressure (BP), heart rate (HR), Sp02 and PETC02 
during induction, intubation, maintenance, and emergence from anesthesia. We called these ranges the 
clinical operating range (COR) and observed the frequency, duration and magnitude of transgressions of 
these CORs. We also recorded whether the transgressions were treated, tolerated, or whether the COR 
values were changed. 
Results: Upper COR values in the maintenance phase for systolic BP were 38% ± 20% above the 
preoperative values and 30% ± 20% above the values recorded just before induction of anesthesia. Lower 
COR values in the maintenance phase for systolic BP were 27% ± 9% below preoperative, and 31% ± 11% 
below pre-induction values. For HR, upper and lower COR values in the maintenance phase were 53% ± 
44% above and 38% ± 17% below preinduction values, respectively. Transgressions of COR values for BP 
and HR were common, treatment frequent, and redefinition of COR values rare. 
Conclusion: Clinicians recognize ranges for vital signs during uneventful anesthesia. These CORs may 
differ from one stage of anesthesia to the next. Transgressions of these ranges are common. Not all 
transgressions are treated. 

KEY WORDS. Equipment: alarms. Monitoring. 

Neither in daily life nor during anesthesia are vital signs immutably stable. Instead they 
rise and fall: under circadian influences, in response to activities, and during anesthesia 
as a consequence of drugs, mechanical ventilation, body position, and surgical 
perturbations. Anesthesiologists expect to see such changes; for instance, in a healthy 
patient being anesthetized with nitrous oxide and isoflurane in oxygen, we expect a rise 
in arterial blood pressure (BP) and heart rate (HR) during intubation of the trachea and a 
reduction of these values during maintenance of anesthesia. Anesthesiologists 
anticipate not only the direction of changes, but also their magnitude. Thus, when we 
give anesthesia, we work with (often unstated) ranges of acceptable values for a given 
patient and for given phases of a specific anesthetic. In this study we call these ranges 
the clinical operating range (COR) for a given, monitored physiologic variable. In 
contra-distinction we define alarm limits as thresholds where an imminent danger is 
recognized and a response is required. 

When a patient's vital signs fall outside the COR during anesthesia, the anesthesi
ologist can intervene by deepening or lightening anesthesia, giving fluids, or administer
ing drugs. Or, the clinician can elect to tolerate, for a limited time, values that lie outside 
the established COR. For example, if the incision is expected to reverse an unaccept
able hypotension, a temporary transgression of the COR for BP might be deemed per
missible. 

Clinical operating range values are not the same as alarm limits. We expect frequent 
crossings of COR values during uneventful anesthesia, but no transgression of alarms 
limits. For a population of 50 patients, we set out to collect COR values, their ranges, 
and the frequency of transgression of these values during routine anesthetic care. 

METHODS 

Over a span of four weeks, we studied 50 patients (23 men and 27 women) undergoing 
short, elective procedures under general anesthesia. The patients' ages ranged from 
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13 to 85 years. The study was approved by the institutional Review Board for Human 
Experimentation; informed consent was not required, as the study was limited to 
observations of routine events. Seventeen residents in their 4th to 24th month of 
clinical anesthesia training anesthetized 50 patients under staff supervision. We 
informed the resident of the study and explained that transgressions of these COR 
values were expected. In response to a transgression, the resident could (1) take action 
to bring the signal back into the desired range; (2) change the COR value; or (3) ignore 
the transgression. After the resident had obtained baseline data for Sp02, systolic and 
diastolic BP, and HR, he or she announced to the investigator a set of physiological 
limits (COR) for systolic and diastolic BP, HR, Sp02, and PETC02 within which he or she 
wished to keep the patient for each phase--induction, intubation, maintenance, and 
emergence--of anesthesia. 

One patient had halothane anesthesia by mask; all others were intubated. One of 
the intubated patients received propofol and narcotic, while the rest received isoflurane 
as the major anesthetic. The induction phase began with the first medication in the 
operating room. The intubation phase began when the face mask was removed and the 
laryngoscope inserted and ended when the patient had been positioned for surgery. 
The maintenance phase ended when the inhalant anesthetic was turned off or the last 
suture was set, and the emergence phase was completed when the patient was 
extubated or left the operating room. 

One observer (CG) recorded all data. Preoperative values for BP were copied from 
the pre-anesthesia evaluation form; pre-induction baseline data were read from the 
monitors in the operating room. The observer watched the monitors and recorded all 
transgressions of COR limits. End-tidal PC02 was measured with a mass spectrometer 
(Perkin Elmer, Pomona, CA) or infrared analyzer (AccuCap, Datascope, Paramus NJ, or 
Ohmeda 5250, Ohmeda, Boulder, CO), and Sp02 was measured with a Biox 3700 
(Ohmeda, Boulder, CO) or N100 (Nellcor, Haywood, CA) pulse oximeter. Values for BP 
were obtained with an oscillometric BP sphygmomanometer (Ohmeda 2120, Ohmeda, 
Englewood, CA; Dinamap, Critikon, Tampa, FL; or Datascope, Paramus, NJ), and those 
for HR from either the ECG (Datascope, Paramus, NJ) or the pulse oximeter. We 
recorded all transgressions, their values, and their duration on an IBM-compatible 
personal computer that used Windows 3.0. For each transgression, the time, the name 
of the signal, the COR limit (upper or lower) transgressed, the current value of the 
signal, and the reaction to the transgression were noted. If the resident did not react to 
an exceeded limit after about a minute's delay, the observer asked about the given 
value and whether the resident wished to ignore it, treat it. or change the limit. 

We collected all preoperative evaluation forms, all anesthesia records and, where 
available, the printout of the automated BP monitors. 

Standard deviations and averages of the COR limits were calculated. Statistical 
tests included the Whitney-Mann test for duration and magnitude of the treated and 
untreated transgressions, and the Wilcoxon signed rank test for pairs for the pre
induction and pre-operative systolic BP. 
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RESUlTS 

Fig 1. Part of the anesthesia record of one of the patients. The clinical 

operating ranges (CORs) for systolic blood pressure (solid line) and heart rate 

(dotted line) are indicated. In this case, the COR values for induction and 

intubation were identical. One episode of tachycardia was treated with esmolol, 

another one remained untreated. One episode of hypertension was treated by 

We counted 305 transgressions in the 50 cases that we recorded. An excerpt from a 
typical anesthesia record shows the wide variation in the signals that cause these 
transgressions (Figure 1 ). The COR limits for heart rate and systolic BP were the ones 
most often involved (Figures 2 and 3). 
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Fig 2. Summary of all collected clinical operating range (COR) values 

and their standard deviations. The COR values tor Sp02 and for end

tidal PC02 changed only minimally over the 4 phases of anesthesia. 

Abbreviations: BPsys systolic blood pressure (mmHg); BPdia = 
diastolic blood pressure (mmHg); HR =heart rate (beats/min); Sp02 = 

oxygen saturation as measured by pulse oximetry(%); P£:rC02 = 

end-tidal PC02 (mmHg). For all the signals, the order of the phases is 

as indicated for BPsys. 
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Fig 3. The graph shows all transgressions of clinical operating ranges 
and indicates the clinician's response to each transgression. Each 

bar represents, from left to right, the induction, intubation, 
maintenance, and emergence phases for each variable. 

Eleven patients accounted for 50% of the transgressions. With one patient, COR limits 
were transgressed 23 times, while, with 5 other patients, COR limits were never 
reached. 

The 17 residents who participated in this study all set similar COR limits for Sp02 

and PErC02, and they maintained these limits throughout the 4 phases of the operation. 
There was much greater variation, however, in the limits the residents set for HR and 
systolic and diastolic BP. Generally, though, the range of acceptable values was more 
narrow for the maintenance phase than for the other phases (Figure 2). 
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Fig 4. The graph shows the duration of all transgressions of the upper 
clinical operating range limit established for systolic blocd pressure, 
with an indication of whether or not the transgression was treated. 

The duration of transgressions of COR limits for BP and HR was skewed (Figures 4 
and 5). Generally, the transgressions that lasted the longest were smallest in magni
tude, and the briefest transgressions were largest in magnitude. Of all transgressions, 
76% lasted less than 1 0 minutes and were within 20% of the designated COR limit, 12% 
lasted less than 10 minutes and were larger than 20% of the COR limit, and 9% lasted 
more than 1 0 minutes and were larger than 20% of the COR limit {Figure 6). There was 
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no statistically significant difference between treated and untreated transgressions with 
respect to the duration or magnitude of the transgressions. 
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Fig 5. The graph shows the duration of all transgressions of the upper 

clinical operating range limit established for heart rate, with an 

indication of whether or not the transgression was treated. 
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Fig B. The duration and magnitude of all transgressions of clinical 
operating range (COR) limits for systolic blood pressure. The 

magnitude of each transgression is plotted as the percentage of 

difference from the nearest COR limit. 
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Fig 7. For each patient, values for systolic blood pressure obtained 

preoperatively (BP preoperative) and just before Induction of 

anesthesia (BP pre-induction) are shown in relation to the upper and 

lower clinical operating range limits established by the resident. The 
patients were ranked according to their preoperative blood pressure. 

37 



180 

180 

140 

"' ~ 120 

!100 

i 80 

1:: 80 .. 
" :1: 

40 

20 

oL-------------------------------~ 

Fig 8. For each patient, the value for heart rate obtained just before 

induction of anesthesia (HR pre-induction) is shown in relation to the 

upper and lower limit of the clinical operating range established by the 

resident. The patients were ranked according to their pre-induction 

heart rate. In one patient, no lower limit was set. 

Preoperative values for systolic and diastolic BP (but not HR) for each patient were 
recorded 1 to 2 days before anesthesia. The Wilcoxon signed rank test for pairs 
showed that preoperative systolic BP was significantly lower (p = 0.0026) than pre
induction systolic BP, a finding that confirms previous studies [1 ]. On average, the 
upper maintenance phase COR values for systolic BP chosen by the residents were 
38% ± 20% greater than the preoperative values and 30% ± 20% greater than the 
values recorded just before induction of anesthesia. The lower maintenance phase 
COR values for systolic BP were 27% ± 9"/o less than values recorded preoperatively 
and 31% ± 11% less than values recorded before induction of anesthesia (Figure 7). 
Compared to values obtained before induction, the upper maintenance phase COR 
values for HR were an average of 53%± 44% greater and lower maintenance phase 
COR values were an average of 38% ± 17% less (Figure 8). The COR values for BP 
and HR showed no statistically significant correlation with pre-operative or pre
anesthesia control values. 

A statistical significant difference (two-tailed Wilcoxon signed-rank test for pairs) was 
found between the COR limits of the maintenance phase and the COR limits of the other 
phases for BP and HR. 

DISCUSSION 

That vital signs vary considerably during uncomplicated anesthesia is well recognized 
and described [1-3]. Clinicians are aware of this variability, and our residents and 
attending anesthesiologists were willing to predict ranges for vital signs to be expected 
for individual patients, for the phases of specific, uncomplicated anesthetic regimens. 
We have called these ranges "clinical operating ranges." To use a common analogy, 
COR values may be likened to a green zone where we hope the patient's vital signs will 
remain; the range lying just outside this green zone might be pictured as a yellow zone 
where the clinician begins to consider interventions. Outside the yellow zone lies the 
red zone of imminent danger. We suggest that alarms should be sounded when the 
patient's vital sign cross from the yellow into the red zone. The utility of and the 
problems surrounding alarm limits and alarm technology have been discussed 
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repeatedly [4]. A major problem is false alarms, which lead many clinicians to disable 
alarms in frustration. False alarms occur either because of artifacts or because the 
limits were set inappropriately. 

Transgression of COR values might occur when some unexpected events, such as 
a hemorrhage, causes the arterial pressure to fall. Recognition of the problem would 
trigger a response and correction long before the patient's vital signs would drift into the 
red danger zone. The boundaries of CORs may also be crossed when artifacts are 
recognized, as was the case in 16 of 172 transgression that were not treated. At other 
times, transgressions of COR values are not treated because the clinician expects the 
variable to return to the COR spontaneously, as with the reversal of hypotension by the 
surgical incision. We have recorded 7 such instances out of 172 untreated transgres
sions. Finally, the COR values themselves may be changed when the clinician decides 
that the chosen limits are too narrow. This occurrence is of considerable interest as it 
indicates that the clinician is guided by several signals rather than focusing on the value 
of only one. For instance, in one case the patient's arterial BP fell, but all other indi
cations suggested that the patient was adequately perfused (heart rate, skin color, skin 
moisture, pupil size, urine output). Readjustment of COR values occurred a total of 16 
times in 13 patients (7 for HR, 5 tor systolic BP, 3 for diastolic BP, and 1 for SP02). This 
sample is too small, however, to allow us to draw conclusions about the variables that 
influenced the decision to readjust the COR values of these signals. 

In this study we asked clinicians to define CORs for their patients. Consequently, 
the CORs presented here are subjective and are based on a small sample. Another, 
better way to obtain COR values would be to collect vital signs from many 
uncomplicated anesthetics with a proven uncomplicated outcome. Such measurements 
would provide the data tor the generation of objective COR values through statistical 
analysis. Lacking such statistics, clinicians call on their experience to define the CORs. 
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2.4 Summary 

In this chapter we have presented the data flow in the operating room to get a better 

understanding what data is available and how it is used. We presented a system that 

can record intra-operative data from different monitors. This system was used to collect 

data from monitors to record the variability of the intra-operative data. It proved to be 

difficult to relate the real-time data with intra-operative events, because they need to be 

entered by an anesthesiologist. To observe intraoperative events and to document the 

use of intraoperative limits, a study was done with 50 operative cases where 

event/action data were recorded by an observer. The results of this study give a basic 

idea of how intra-operative limits are used and manipulated, and provided an 

assessment of the clinical operating ranges for specific patients. The study shows that 

anesthesiologists can decide on acceptable ranges for vital signs, based on information 

about the patient, and that these ranges are not changed frequently during the 

operation. We can conclude from this study that limits differ between the maintenance 

phase and the other three phases, and are set similarly for intubation, induction and 

emergence phases. This dissertation will focus on the maintenance phase of 

anesthesia because it is the phase where patient variables are fairly stable and the 

setting of alarm limits is not affected by artifacts or events that are occurring (insertion of 

the endotracheal tube for example). 

The next chapter will present different approaches on how available patient information 

can be combined with this knowledge to automatically set alarm limits. 
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to Automatic Alarm Limit Setting 

3.1. Introduction 

Anesthesiologists use limits for physiologic patient variables that are based on their 

clinical knowledge and experience, information about the patient, and case related data 

(see What kind of knowledge is involved later in this chapter). Information about the 

patient is collected on preoperative assessment forms or with the help of computer 

programs like the Preoperative Assessment Program. 

To set alarm limits, anesthesiologists decide which values are desired or acceptable for 

physiologic patient variables, and which ones are not. Anesthesiologists have gained 

knowledge and experience about how physiologic patient variables fluctuate during their 

clinical practice, from literature, and from presentation and discussion of other cases. 

preopera 1ve 
evaluation 

anesthesiologist 
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information 

1201 CJ 
CJ 
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Figure 3. 1: Schematic of the alarm limit setting process. 
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A system that can set alarm limits automatically should have the same information 

available as the anesthesiologist. It also must have access to the same knowledge the 

anesthesiologist has. In computer science, the field of Artificial Intelligence (AI) is 

devoted to store, retrieve, and manage knowledge and data to make computers solve 

problems in an intelligent manner. A system (man or machine) that shows intelligent 

behavior is assumed to have a structure called a knowledge base (Winston 1984). This 

is the structure that is used to store the knowledge. A separate mechanism is 

implemented to manipulate and retrieve knowledge, this is called the inference engine 

(Reichgelt 1991 ). 

Before an AI solution is attempted for a problem, there are some criteria that require 

evaluation. These criteria are (Winston 1984): 

1. Is the task clearly defined? 

2. Is there an implemented procedure performing the defined task? 

3. Is there a set of identifiable regularities or constraints from which the implemented 

procedure gets its power? 

1. Definition of the task 

The task is defined as the automatic setting of intraoperative alarm limits for patients 

undergoing surgery, based on information about the patient and the case. 

2. Implemented procedure 

The procedure implemented for this task is 1) gather all the information available about 

the patient and the intended surgery, 2) decide on which ranges of physiologic values 

are acceptable for this patient based on this information, and based on general 

knowledge, and 3) decide which alarm limits to set. 

3. Regularities and constraints 

Several constraints can be identified: 1) an upper limit always has a higher numerical 

value than a lower limit, 2) an upper systolic blood pressure limit always has a higher 

numerical value than an upper diastolic blood pressure limit, 3) a lower systolic blood 

pressure limit always has a higher numerical value than a lower diastolic blood pressure 

limit, and 4) the highest value for a Sp02 limit is 100%. There are also some physical 

constraints like a blood pressure limit of 0/0 can never occur (Block 1989), and similarly 
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a lower heart rate limit of 0 is evidently wrong (except during special cases like cardio

pulmonary bypass). 

Some regularities of this problem are 1) if the same patient comes in for the same 

operation, and the patient has the same physical state as the previous visit, and the 

limits used for that visit were satisfactory (not many false positive alarms. no missed 

alarms}, then those limits can be used for the current operation, and 2) patients with a 

similar physical state, the same type of problems, and undergoing the same type of 

operation, will require similar alarm limit settings. 

These answers suggest that an AI solution is feasible. The main question that now 

remains is which implementation to choose and how the knowledge should be gathered, 

stored, managed and retrieved. 

Some basic questions can be formulated to assist in the task of knowledge engineering 

(Winston 1984): 

• What kind of knowledge is involved? 

• How should knowledge be represented? 

• How much knowledge is required? 

• What exactly is the knowledge needed? 

This chapter will address the first two questions, and the next chapter will answer the 

last two. 

What kind of knowledge is involved? 

The analysis of the type of knowledge that is involved for an AI solution to a problem 

can be made independently of the representation of the knowledge. To find out what 

types of knowledge are involved in the setting of intra-operative alarm limits, a 

questionnaire was designed and distributed during one of the research meetings, held 

monthly at the department of Anesthesiology at the University of Florida for residents 

and faculty. Eighteen residents and two faculty members returned the questionnaire. 

One of the questions was "Where do you get the information that you use to define your 

alarm limits?". Ten answers included the preoperative evaluation, six included the 

patient record, and one the vital signs. Six of the questioned did not answer or did not 

know the answer to this question. The three most important parts of the preoperative 

evaluation could be indicated on the questionnaire. The importance for each answer 

was rated as 3 for the most important, 2 for medium importance and 1 for the least 
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important. The results of the answers of the 20 residents and faculty were added up 

and are presented in Figure 3.2. 

l:.~am Ano1lh 

Figure :3.2: Importance of preoperative data items. 

The preoperative evaluation form includes the following measurements in the physical 

exam: weight, heigl1t, non-invasive systolic and diastolic blood pressure, heart rate and 

body temperature. The Review of Systems (ROS) includes the following physiologic 

systems: central nervous system, cardiovascular system, respiratory system, 

gastrointestinal system, genito-urinary, endocrine system, hematological system, and 

skeletal system. In addition the ROS includes notes about allergies, infectious diseases, 

and miscellaneous notes. 

Other knowledge that is used to set alarm limits is knowledge obtained by the 

anesthesiologist over years of studying and experience. Three methods of knowledge 

representation and knowledge acquisition are outlined in the following paragraphs. 

3_2, Expert system approach 

Expert systems typically maintain their knowledge in rule bases. A rule base is defined 

as a collection of rules. A rule is a description of a fact or other small piece of 

knowledge (e.g. 0 <patient age< 120). Knowledge in a rule base is built up by first 

defining basic rules, and then expand those with more complex ones. Expert system 

rules are sometimes called if-then rules because they usually have an if part and a then 

part 
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if {[not)) <conditionl> {.and./or [not]} <condition2> {a.nd/o;L" rnot] J . -. 

<cond.i t. ionn> 

<actionrtP. 

A rule base can contain many rules. To find a solution to a problem, evaluation of the 

rules that are needed to solve this problem is necessary. An example is shown in 

Figure 3.3. The rules no boot hard disk and no boot floppy depend on other, more baslc 

rules. By dividing the rule base this way, the knowledge contained in the rules becomes 

more manageable. 

1: no boot hard dlsk ru1A: 
if machine doesn't boot and. m,~ch.i ne h.,.~ h.'lrd disk 

and. h.>.rd disk works 

then reiostull DOS oo Lbe bard dis!;, 

2: no boot LJ oppy rti l e: 
if machine doesn't boot and not mach.ine h,'l.~ h.>rd d.isk 

then use a boot_!l~ 

3: machinA doesn't boot rule: 

if <1Sk th~· usc.~ 

then this rule: i:; true 

4: machine has hard disk rule: 
if c.~ll doB HasHardDisk function or ask the u~;~'J:' 

then thls rqle js trJle 

5: hard disk works rulo: 
if call dos AccessHardDisk function O;L" dSk Ule tJSe.t' 

then Lhis rule ~~Me 

Figure 3.3: Expert system rule base example. Rules are in italics. and 
actions are underlined. 

The process of evaluation of the rules and finding the rules that are needed is the task 

of the inference engine. The goal of the example of Figure 3.3. is lo evaluate why a 

machine does not boot. The inference engine should first evaluate the no boot hard 

disk rule and then evaluate the rules that it includes. The most efficient inference 

engine only evaluates the rules that are needed. The most simple inference engine 

evaluates all rules, which includes the rule that defines the goal of the evaluation. Two 

types of knowledge can be separated in a rule base: permanent knowledge and 

temporary knowledge. Permanent knowledge is stored in the rules and is fixed. 

Temporary knowledge reflects the current state of the system. Table 3.1. shows the 

different types of knowledge stored in the example rule base. 
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Table 3. 1: Permanent and temporary knowledge in the example rule base. 
permanent knowledge temporary knowledge 
the machine doesn't boot from the hard the user says something is true 
disk if it 1) doesn't boot, 2) has a hard (ask the user) 
disk and 3) the hard disk works (rule 1) 

the machine doesn't boot from the 
floppy disk if it 1 ) doesn't boot and 2) 
doesn't have a hard disk (rule 2) 

the machine doesn't boot if the user 
tells me so (rule 3) 

the machine has a hard disk if DOS or 
the user tells me it does (rule 4) 

the hard disk works if DOS can access 
it or the user says it works (rule 5) 

DOS says there is a hard disk 
(call dos HasHardDisk) 

DOS can access the hard disk 
(call dos AccessHardDisk) 

Rules are based upon knowledge of experts, who have knowledge of the specific 

domain that the expert system will work in. This knowledge is usually obtained by 

interviewing the experts, but some other methods have been tried successfully such as 

heuristic methods (Winston 1984) or analysis of simulated data (van Oostrom 1989, p. 

20). 

Several expert systems have been developed for medicine (Rennels and Miller 1988; 

Holman and Cookson 1987). Examples include an intelligent alarm system that gives 

descriptive messages about the status of the anesthesia circle breathing system based 

on an expert system rule base of about 200 rules (van der Aa 1990; van Oostrom 1989), 

MYCIN, a medical consultation system, ATTENDING a system that critiques an 

anesthesiologist's preoperative plan for anesthetic management (Miller 1983, 1984), 

and Resac a system providing decision support for control of depth of anesthesia 

(Greenhaw SG et al. 1992). 

There are some disadvantages associated with using expert systems. Before 

knowledge can be stored in a rule base the knowledge has to have a structured form. 

Domain experts have to be able to identify rules and procedures they use. This is not 

always possible, especially if their knowledge is partially based on their experience. 

Retrieving this knowledge is no small task, and once the knowledge has been collected 

it is fixed. Rule bases are usually large and hard to maintain, which is problematic if 

procedures or opinions change. In our case of the setting of alarm limits, the knowledge 
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is based on current practice and experience. An expert system implementation for 

alarm limit setting would only be useful for knowledge that is known to be static (e.g. an 

upper limit has a higher numerical value than a lower limit). For the other knowledge, 

the expert system is not the best approach. 

3.3. Neural net approach 

Artificial Neural Network Systems (ANNs) are mathematical models of theorized mind 

and brain activity. The main idea behind ANNs is that if the brain can be modeled 

mathematically and if these mathematics can be implemented in a computer, that this is 

a good approach for solving problems or capturing knowledge. 

The brain is thought to be a network of neurons and connections between neurons. An 

artificial neural system is built the same way. The neurons in an artificial neuron net are 

called Processing Elements (PE). A PE takes inputs from the outside world, or from 

another PE, and can be represented as a vector A (a1, ... , a0 ). Each element of A 

represents the activity level of the input. Weights are applied to the inputs and form a 

vector Wi = (w1i, ... , w1i) for the jth PE. By applying these weights it is determined which 

inputs have more effect than others. The values of the weights are optimized in a 

learning process of the training of the neural net (see the next section). The output of 

the PE is calculated with the following formula (Simpson 1990): 

The function f() is a threshold function which determines how the PE propagates it's 

inputs (in real neurons this function determines when a neuron fires). These threshold 

functions are usually linear, ramp, step or other functions. An example of this is a 

neuron with a step threshold function, that only fires if the voltage at the input exceeds 

1 mV. Voltages of <1 mV have no effect on this neuron. 

Networks of PEs are built to form an artificial neural network system. Different 

topologies can be built, but one frequently used one is shown in Figure 3.4. 
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Figure 3.4: Three-layer feedforward ANN. 

Learning 

In this example there are 5 input nodes 

(a1 ... a5), 8 hidden layer nodes (b1 ... b8), and 

3 output nodes (c1 ... c3). The lines between 

the nodes represent the weight factors; 

Matrix W between a and b, and matrix V 

between band c. v11 is the weight factor 

between a1 and b1 and w83 is the weight 

factor between b8 and c3. 

Just like a human brain an ANN needs to be trained with knowledge. This is called the 

learning process. The memory of this artificial brain are the weight matrices V and W. 

When the network is stimulated with an input vector, the output vector is calculated by 

applying the weights. The output vector represents the reaction to the stimulus (input). 

When the network is first created the weights have an initial state. This could be 

randomly assigned or assigned to be zero. The reactions to stimuli at this point will also 

be random or zero. The ANN in this state is useless unless it learns which action goes 

with which input. This learning process is performed by adjusting the weights such that 

for a selection of inputs, the output predictions by the ANN matches the actual output. 

By feeding the network many inputs together with the correct outputs, the weights can 

be adjusted (Simpson 1990). Once the ANN is trained it can be used. 

Implementations of neural network systems in medicine include an intelligent alarm 

system for the detection of faults in the anesthesia breathing circuit (Farrel et al. 1992), 

EEG analysis to determine a patient's sedation level (Veselis et al. 1991 ), and OP2, a 

patient outcome prediction system for anesthesia (Jackson 1992). 

An artificial neural network implementation of a problem is appropriate when knowledge 

cannot easily be deducted from the experts, but when input and output data are 

available for a specific problem. ANNs could be used to implement an automatic limit 
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setting system, if a large number of input and output vectors were available. The input 

vectors are constructed from data of preoperative evaluations, of which many are 

available. Output vectors would be alarm limits that match the inputs. These output 

data are difficult to get, because they have to be assigned by an anesthesiologist. 

When these data are available, a ANN based system could be constructed. Another 

disadvantage is that neural networks are completely empirical, and that a huge network 

is required to solve a complex problem like ours. Neural nets can represent the 

grouping that is present in the inputs (see next chapter), but it is better to derive them 

under more control. Patients have traditionally been put into groups (healthy, old, sick, 

etc.), and a grouping technique matches the thinking process of the anesthesiologist 

more closely. The next paragraph explains pattern recognition and clustering 

techniques with the purpose of selecting different groups of patients. 

3.4. Patient clustering approach 

Clustering is the grouping of similar objects. The objects can be anything: characters, 

planets, cars, foods, patients, etc. Clustering, grouping or classification is something we 

do on a daily basis, to bring structure to the world around us. 

In clustering techniques two states can be identified: 1) the state where we have n 

objects and we want to divide them into groups (group creation}, and 2} the state where 

we have m groups and we want to assign an object to a group (object mapping). 

Two types of measurements are needed for group creation and object mapping: 

1 } measurements that characterize the objects 
These are the features that characterize the object. The features have to be chosen so they 
fit the purpose of the grouping. 

2) measurement of similarity between two objects 
This can be a measurement of distance if the objects can be described with a vector of 
features. Decision functions are used to assign objects to groups. 

In the case of a mathematical or computer-readable description these measurements 

are numerical values. If we were to separate different foods with the goal of defining 

different food groups, we might measure fat contents and energy contents. Example 

data of measurements on the objects (foods in this case) are listed in Table A.1 in 

appendix A. 
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Figure 3.5: Graph of fat contents versus energy. 

A graph of the two features (fat contents and energy) of the foods is shown in Figure 

3.5. Numerical mathematical techniques are available to do this clustering 

automatically. When the k-means clustering technique is applied to food data, the 

groups are formed as indicated in Figure 3.5 (for a detailed description of the k-means 

algorithm, and for more details on this example see the next chapter). 

Once groups have been defined new objects can be assigned to a group. This mapping 

is done by assigning the object to the group that most closely matches the object. A 

decision function using a type of similarity measurement is used to decide which group 

is 'closest' to the object. 

Clustering analysis has been used in medicine to analyze heart sounds of patients with 

a porcine bioprostetic heart valve to create two patient groups: patients with a normal 

valve, and patients with a degenerated valve (Durand et al. 1990). Another study used 

clustering techniques to create 16 classes, identifying depth of anesthesia (Thomson et 

al. 1991 ). Clustering was also used to form 6 groups of undergraduates with different 

eating patterns (Kristeller et al. 1989). 

This method can be used to automatically assign intraoperative alarm limits if we divide 

patients into different groups and assign a set of alarm limits to each group. 
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3.5Summary 

Three different methods of knowledge representation have been suggested in this 

chapter. The expert system approach has as a disadvantage that rules for setting alarm 

limits are not easily obtained, and that it doesn't adjust for changes in the practice of 

setting alarm limits. If the knowledge and rules can be derived via other methods, and 

for fixed knowledge (physical limits on physiologic parameters for example), an expert 

system can be used. 

The neural net approach could be feasible if a large number of outputs (alarm limits) 

were available, although this approach does not account easily for the grouping that is 

present amongst patients. This method does not easily adapt to changes in the practice 

of setting alarm limits since the neural net has to be re-trained. 

For the automatic setting of alarm limits it seems appropriate to use a clustering method 

to measure similarity between patients, and to put patients that are 'similar enough' (in 

terms of available data of the patient) in the same patient group. The patient clustering 

approach accounts for patient grouping, and assigns alarm limits, indicated by experts, 

to each group. 

Changes in the practice of setting the limits can be made by modifying the assigned 

limits for each patient group. These modifications can be made on a continuous basis, 

as explained in the next chapter. Modification to the patient grouping can be made 

when needed. 

The next chapter explains selection of a clustering algorithm and selection of the input 

parameters. 
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4.1. Introduction 

The previous chapter presented three techniques for the design of a system for 

automatic intra-operative alarm limit settings: 1) using an expert system, 2) using neural 

nets, and 3) using clustering techniques on patient data. This chapter will describe the 

patient clustering approach in detail. 

We propose the following approach to derive alarm limits for individual patients: 

1 ) select features/parameters relevant for setting alarm limits 

2) collect those selected data from the (computerized) preoperative evaluation for the 

particular patient 

3) scale and normalize these data 

4) select a matching pre-defined patient group 

5) look up the limits assigned to the selected group 

6) present the limits for the particular patient 

Steps 1) through 4) are necessary clustering. Techniques for selecting data (needed for 

steps 1 and 2), for scaling and normalizing (step 3), and for clustering data (step 4) are 

presented in paragraph 4.2. For the lookup of assigned group limits (step 5) a database 

of limits assigned by experts based on previous cases, or based on other methods is 

required. The collection of the data for this database is described in paragraph 5.2. 

Paragraph 5.4. describes the complete system with the implementation of the different 

databases (containing patient data, preop data, group data, and limit data), the definition 

of the flow of data, and the presentation of the alarm limits. That paragraph also 

explains how to account for changes in the practice of setting alarm limits, or for 

differences between different institutions. 
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4.2. Grouping Patients 

Our objective is to divide patients into different groups that require different intra

operative alarm limits. Clustering techniques to achieve this goal are examined in this 

paragraph. 

4.2. 1. An introduction to clustering techniques 

Cluster analysis is the study of methods for grouping or classifying objects. These 

objects are described by a set (or vector) of measurements or by relationships between 

an object and other objects. The set of measurements is sometimes called the feature 

vector, because it is a vector of features that describes an object. Which features to 

measure depends on 1) what can physically be measured, 2) what is the goal of the 

grouping, and 3) how correlated are the measured features. 
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As an example we use data on different foods from Appendix A. Some of the 

possible physical measurements of foods are shown in Table A.1. The goal of 

the clustering of the foods is to create food groups that can be used for advice on 

diets. We must look closely at inter-dependency of the features to decide which 

ones to eliminate. For example, there is a relation between the protein contents 

and phosphor contents of foods. Figure 4.1 shows the results of a simple linear 

regression between protein and phosphor. We could decide to delete one of 

these two features because they are related and, therefore, one of them does not 

add to the independent information of the data set. 

Y=9.4x + 29.9 R=0.95 

250 

200 
'iii s 150 .. 
~ 100 
0 - 50 

5 10 15 20 

protein (g] 

Figure 4. 1: Protein contents versus phosphor contents for twelve foods. 



A measurement of a quantity is made on a scale in order to relate it to another 

measurements of the same quantity. Before different measurement quantities can be 

compared, data representation and scale needs to be examined. 

Data representation 

Three basic data types can be distinguished: binary, discrete, and continuous. A 

measure of the binary type can have only two values (yes/no, 1/0), a discrete measure 

can have a finite, usually small, number of possible values, and a continuous measure 

can have any number in the real (IR) space. 

A measurement scale defines how different measures relate to each other. How we 

should interpret the measures, depends on the type of scale. Four different scales are 

defined (Anderberg 1973, see Table 4.1 ). The nominal scale is the weakest scale 

because it only distinguishes between measures, and the ratio scale is the strongest 

scale (Jain and Dubes 1988). A stronger scale defines more about a measure than a 

weak scale {see "Meaningful statement" column in Table 4.1 ). 

Table 4. 1: Definitions of different data scales. Parameter xis measured for two objects (A and B) 
I" d resu tmo m measures x, an X h. 

Name Description Meaningful Example Type 
statement 

Nominal This scale only Xa=Xb,Xa*Xb color measurement as Qualitative 
distinguishes between red, blue, yellow, etc. 
measures. 

Ordinal This scale specifies Xa=Xb, Xa*Xb, smallest, small, big, Qualitative 
the order between the Xa<Xh,Xa>Xh biggest. 
measures. 

Interval On this scale the Xa=Xb, Xa*Xb, Temperature Quantitative 
separation between Xa<Xh, XR>Xh, measurement in °F. 
the measures have a xR-xh is defined. 
meaning. 

Ratio On this scale the Xa=Xb, Xa*Xb, Temperature Quantitative 
numbers have an XR<Xh, Xa>Xh, measurement in °K. 
absolute meaning. xa-xh is defined. 
(there is an absolute X= Xt/XRY 
zero) 

A measure on a nominal scale can only be identified as equal or not equal to another 

measure. An ordinal scale measurement adds ordering to the nominal scale, and a 

statement can be made specifying that one measure is bigger or smaller than another 

measure. For the interval scale the difference of two measures is defined (e.g. a 

measure of 60°F is 1 oo different from a measure of 70°F). An absolute zero is required 
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for a ratio scale. For example the Fahrenheit measurement does not have a meaningful 

absolute zero, and the statement 40°F is twice as high as 20°F is not valid. It is true if 

they were measures on the temperature scale in Kelvin (40°K is twice as high as 20°K). 

Numerical data analysis techniques require that data measurements are on quantitative 

scales of the same type. Data conversion may be necessary when essential data are 

only available on qualitative scales. 

Qualitative scales have to be converted to quantitative scales because clustering 

analysis only uses quantitative measurements of proximity. When most data are 

measured on the interval scale, other measures need conversion to that scale. No 

conversion is necessary to represent a ratio scale variable on an interval scale, when 

the absolute zero is ignored. To represent a nominal scaled value on an interval scale, 

first a representation on the ordinal scale is required. This means that the measures 

have to be put in an order (ranking). For example, a measurement of color, where we 

can only decide if two colors are equal or not equal, we can define an order by using the 

ordering of colors in the spectrum by wavelength. We can assign numbers that 

represent that ordering on the ordinal scale. In the spectrum scale of colors the color 

violet (value 1) < yellow (value 2) <red (value 3). To represent a variable on the 

ordinal scale on an interval scale the difference between two measures has to be 

meaningful. In the color example this means that we need to use a meaningful measure 

of color (wavelength). On the interval scale violet=420 nm, yellow=570 nm, and red = 

670 nm. 

Using numerical matrix algebra, we can represent m features measured on n objects in 

a n x m matrix X, where x;j is the jth feature of the ith object. A measurement of 

proximity or proximity index (distance) d(i,k) between the ith and kth object can be 

calculated in different ways. A common measurement is the Euclidean distance: 

d(i,k) =[i(xy -x~q)2]t/2 
;=l 

(4.1) 

where xii is the jth feature for the ith object stored in matrix X (Jain and Dubas 1988). 

After the input data are converted to the same scale and a proximity index has been 

defined, it is imperative that the data are normalized to ensure that certain features do 

not numerically 'overpower' other features. A measurement in centimeters for example 

can easily overpower another measurement in meters. Normalization can be done in 
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several ways. One could scale each parameter such that all values are in the {-1, 1} 

range. This can be done with formula 4.2 (Gill1981 ). 

(4.2) 

where xiJ is the new scaled variable 
x•ij is the original variable 
a; IS the measured lower bound on x*; 
b; is the measured upper bound on x*; 

The disadvantage of this scaling method is that outlier data points caused by noise or 

other reasons cause a feature to be normalized to a very narrow range. A better 

technique makes use of the standard deviation and mean of the measured features: 
* 

xu 
x;1 -m1 (4.3a) 

sJ 
n 

where m1 =(1/n)~>~ (4.3b) 
i=l 
n 

and i 
J (1/ n) 2,<x; -mY (4.3c) 

i:=l 

mi is the mean value and si is the standard deviation of the jth feature. Normalization 

with this method converts the data to have zero mean and unit standard deviation. A 

disadvantage of this method is that it may disguise a grouping that was apparent in the 

original data (Jain and Dubes 1988). 

We decided to use the normalization of equation 4.3 and used Principal Component 

Analysis to analyze if grouping is still present after normalization. 

Prindpa/ComponentAna~s~ 

When data are organized in a n x m matrix of n objects and m features, and the features 

were selected based on availability and on selection by experts, principal component 

analysis (PCA) can be used to derive alternative axes, starting with the principal axis, 

and continuing with less important axes. PCA can be used to reduce the number of 

axes of the data set, and thereby reducing the number of features. In addition, when the 

data are converted to 2-dimensional space, an indication of the grouping of the data can 

be obtained with a graphic representation. An example is shown in Figure 4.2, where 

:::~n:~:=h~v~n[g~~l~:,:::::::::: inro B [=~:~~ -~:~~] 
3 4 1.05 -0.05 
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a 
Figure 4.2: Example of PCA. 

b 

When the data are plotted on the new axes found by PCA, all the points have almost no 

y component. The y axis could in this case be eliminated, reducing these data to a one 

dimensional data set. PCA seeks the axes that the cloud of points are closest to, while 

maximizing the variance. This is done by minimizing the sum of distances bi in Figure 

4.3. Because a2=b2+c2, and a is constant in this process, minimizing the sum of 

distances bi is the same as maximizing the sum of ci or maximizing the spread of the 

points (variance). 

When a set of n objects with m features is represented by a n x m matrix X, the objects 

can be regarded as row vectors in Rf71 and the features as column vectors in R'7. 
If the new axis is defined as vector u of unit length, then Xu gives the projection of the 

objects in X on the new axis. Maximizing the squared sum of ci is equal to maximizing 

the squared projections of points on the new axes: 

(Xu)T(Xu}~ 

(uTXT)(xu}~ 

uT(xTx)u~ 

u Tsu where s = XTX 

(4.4) 

Finding the maximum, while keeping in mind that u T u= 1 is equal to finding where the 

derivative of 

(4.5) 

is equal to zero: 
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Rgure 4.3: Projection on new axis. SF distance of point i from 
the origin, bi: distance of point i from the new axis, ci: 
distance of the projection of the point i from the origin. 
Adapted from Murtagh and Heck 1987. 
2Su - 2A.u 0 <=> 
So =Au 

(4.6) 

The solution to this equation is that vector u is the eigenvector associated with 

eigenvalue A. of matrix S (Murtagh and Heck 1987). 

When the calculated eigenvalues are labeled so that 

At~ A2 ;::: ... ;:::Am;::: 0 

(increasing importance) and the corresponding eigenvectors u1, u2, ... , um are labeled 

accordingly, a transformation matrix H can be defined as follows: 

The objects in matrix X can now be projected on the new axes with 

yi HX; fori=1,-··,n 

where xi is the object on the original axes, and Yi is the object on the projected axes. 

The object matrix X can be transformed with Y = XHT to form the transformed object 

matrix Y. This projection is called eigenvector transformation. 

This projection has created a set of new features that are uncorrelated, which can be 

seen by calculating t[h~ 1c:v2
ar·i·a.n~elmatrix of matrix Y: 

(1/ n)YTY 

0 Am 
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Eigenvector transformation can be used to reduce the number of axes (which is equal to 

the number of features). The eigenvectors (principal components) are in the order of 

importance because they were ordered by eigenvalue. When we only use the first d 

axes (d<m), by transforming with the first d eigenvectors the variance that is retained in 
d 

the new space can be calculated with~)-;. To decide how many axes to retain, d 
i::::J 

should be chosen so that: rm = t')..;~~')..i ~0.95 (4.7) 

which assures that 95% of the variance is retained in the new space (Jain and Dubes 

1988). 
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When we apply principal component analysis on the data on the contents of 

foods, and reduce the number of axes to two, a two-dimensional representation 

can be made (Figure 4.4). A separation into groups can be recognized from this 

graph, even though only 66% of the variance is retained (see Table 4.2). This 

two dimensional representation is not ideal if a large number of objects needs to 

be plotted. If several points have the same x- and y-coordinate they would show 

as only one point, which does not show the grouping of this data well. When we 

divide the two dimensional data space into squares, and count how many data 

points are contained in each square, we can create a three dimensional graph as 

shown in Figure 4.5. This graph shows the groups as peaks. A contour plot of 

the same data is shown in Figure 4.6. The contour plot shows cross sections of 

Figure 4.5, made at different levels of the z-axis. This figure clearly shows that 

grouping is present in the data. 
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Figure 4.4: Two-dimensional projection of food data 
Figure 4.5: Surface plot of food data after 

application of a 10x10 grid. 

0 

Figure 4.6: Contour plot of the food data 

Table 4.2: Eigenvalues of the food example 

Axis 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Eigenvalue 

5.42743 
3.08837 
1.78346 
1.12069 
0.89865 
0.33747 
0.15782 
0.11619 
0.05455 
0.01426 
0.00109 
0.00003 
0.00000 

%variance 
retained 

42 
66 
79 
88 
95 
97 
99 
99 
100 
100 
100 
100 
100 
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When we use the criterion that 95% of the variance should be retained when we 

want to reduce the number of axes, eight axes can be deleted, making the food 

example a 5-dimensional data set instead of a 13-dimensional set. 

Principal component analysis provides a good way to reduce the number of axes 

in this example. 

In addition to the principal component analysis, a correlation matrix can indicate 

measurements that are related. Based on the correlation table some features may be 

eliminated. This can be done instead of or in addition to principal component analysis. 

Table 4 3· Correlation offood data 
prot. fat sacc Ca p Fe sod. K vitA vitB vitC H20 E 

~ 
1 0.31 ·0.06 -0.43 0.95 0.92 0.73 0.49 ·0.3 0.89 -0.37 -0.34 0.44 

1 ~ ~-0.02 ~.32 -0.3 

sacc -0.45 0.16 -0.8 

Ca 1 ·0.25 -0.58 -0.02 ·0.46 0.03 -0.39 ·0.16 0.34 
p 1 0.84 0.7 0.36 -0.35 0.88 ·0.49 ·0.44 

Fe 1 0.64 0.64 -0.17 0.8 -0.23 -0.23 

sod. 1 0.54 0.16 0.71 ·0.38 ~09 0.14 

K 1 0.18 0.61 0.32 31 ·0.22 

vitA 

R 
1 ·0.27 -0.09 0.28 ·0.3 

vitB 1 -0.21 ·0.18 0.32 

vitC 1 0.4 -0.46 

H20 1 -0;9 

E 1 

Clustering methods 

Clustering is the classification of objects into groups. Properties of objects are defined 

as the measurement of m features represented in a feature vector, or points in a m
dimensional space. A definition of proximity or proximity index between objects is 

required to perform cluster analysis. Cluster analysis techniques can be divided into 

hierarchical clustering and partitional clustering. Hierarchical clustering methods divide 

the objects in a nested sequence of groups, partitional clustering methods divide the 

objects into single partitions (see Figure 4.7). Hierarchical clustering is impractical with 

more than a few hundred objects. 
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Figure 4. ?:Two different types of clustering. 

Hierarchical clustering methods try to find an hierarchy in the grouping. This is indicated 

by the tree in Figure 4.7. At level a in the tree no clustering has been done, and at level 

e two main groups were found. Hierarchical clustering is used if it is believed that the 

data being analyzed has a hierarchical structure, for example when grouping different 

animals (mammal-+carnivore-+tiger). Partitional clustering is done when all the objects 

have to be separated into different groups. The number of resulting groups may or may 

not be specified a-priori. Some clustering techniques adjust the number of groups 

dynamically, while others require an analysis of the data before the clustering is done. 

We will describe partitional clustering methods in more detail because it is the most 

common, and the most appropriate for our problem. 

The basic procedure applied in partitional clustering is simply the selection of a criterion, 

the evaluation of that criterion for all possible divisions in K groups, and the selection of 

the division that optimizes the criterion. One example of a criterion is minimization of 

the sum of squared Euclidean distances between the objects and their cluster centers 

(minimizing E): 

(4.8) 
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where K is the number of clusters, Sj is the set of objects belonging to the jth cluster and 

m is the sample mean vector of set Sj. 

Clustering algorithms are devoted to efficiently optimize the criterion and find the best 

clustering. We will present some of the clustering algorithms that could be used to solve 

our problem. For all the algorithms we assume we have a data set of n m-dimensional 

vectors {x1,x2 ,···,x.} (Tou and Gonzalez, 1974; Durand et al. 1990; Jain and Dubes 

1988; Hartigan 1975). 

Simple Cluster-Seeking Algorithm 

This method groups together all the objects that are an arbitrary distance T from the 

cluster center. The following steps have to be taken: 

1) Assign object x1 to be cluster center z1. 

2) For each object xi calculate the distance to the cluster center(s). 

3a) If all the distances between xi and the cluster centers are > T, create a new 

cluster with xi as the cluster center. 

3b) If there is one or more distance < T, assign xi to the cluster with the smallest 

distance. 

4} Continue with 2), until all the objects have been assigned. 

In step 1) any of the objects can be assigned to z1. 

Advantages: quick simple calculations. 

Disadvantage: very difficult to establish a meaningful value forT in a multi-dimensional 

space. The clustering depends highly on the initial condition and the 

order of the objects. There is no measure of error to judge the quality of 

the clustering; it is a one-pass algorithm. 

Maximin Distance Algorithm 

This algorithm first identifies how many clusters there are in steps 1) through 4). 

1) Assign x1 to be z1. 

2} Find the object that is furthest from x1, and assign it to be z2. 

3) For all the remaining objects, calculate their distances from the clusters centers, 

and save the minimum of these distances. 

4) Select the object with the largest minimum distance that was saved in step 3), 

and assign it to be a new cluster center if this distance is at least a fraction (e.g. 

>V2) of the minimum of the distances between the current cluster centers. If this 

is not the case, the algorithm exits. 
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After the cluster centers are found, each object is assigned to the closest center. 

Advantage: Better than simple cluster seeking because it seeks appropriate cluster 

centers before assigning objects to them. 

Disadvantage: Very dependent on initial condition, and the order of the objects. There is 

no measure of error to judge the quality of the clustering. 

K-means algorithm 

The K-means algorithm is based on the minimization of the sum of squared distances 

from all points to their cluster center (Equation 4.8). The number of clusters K is 

assigned before the clustering is done. 

1) Choose an initial clustering by assigning objects to one of the cluster centers 

{zpz2, ... ,zK }. 

2) Calculate the cluster centers by calculating the sample mean vector of each 

cluster. 

3) Re-assign all the objects to the closest (newly calculated) cluster centers. 

4) If the new assignment of the objects was identical to the previous one, terminate 

the algorithm, otherwise continue with 2). 

Advantage: Cluster centers are 'real' centers as opposed to one object from the 

cluster set, as in the previous two algorithms. 

Disadvantage: The value for K has to be provided a-priori. A local minimum of the error 

may be found depending on the selection of the initial clustering. 

4.2.2. Selection of a clustering method 

For the clustering of patient groups a partitional clustering method was chosen, because 

we were not interested in the hierarchy of the groups, and only a separation between 

the patient groups was required. In addition, we have a large number of patients to be 

clustered (>5000), which is impractical with a hierarchical clustering technique. 

The partitional clustering technique of choice was the K-means method, because this 

technique uses multiple passes to find an optimal clustering, which minimizes the 

impact of the initial assignment of clusters. When initial cluster centers are assigned 

randomly and multiple passes through the K-means algorithm are made, a global 

minimum of the optimization criterion is very probable. The number of groups, which 
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needs to be assigned a-priori in the K-means algorithm, was selected with an analysis 

which is described in the next paragraph. 

4.2.3. Applying the K-means clustering technique 

The K-means algorithm requires that the number of groups K is determined a-priori. It is 

important to select a valid number for K: suppose the data under investigation can be 

readily separated into 2 groups, but it may not be possible to separate that data into 3 

groups (see Figure 4.8). 

Figure 4.8: Data separation in 2 groups (solid line), 
and in 3 groups (dotted line). 

K should be selected so that the clustering error (sum of squared distances from all 

points to their cluster center) is minimized when K is varied. It is expected that the error 

will decrease when K increases, and reach zero when K equals the number of objects. 

To determine a meaningful K the K-means algorithm could run starting at K=1 and 

incrementing K by 1 until K=10. The error is plotted versus the number of groups in 

Figure 4.9. The difference between the error for K=k+ 1 and K=k was calculated and is 

plotted as a bar in Figure 4.9. This difference is the improvement of the error when the 

number of groups is increased by 1. A good selection for K is when there is a minimum 

in the error (Hartigan 1975). 
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For the example data a minimum can be found for K=8, but the selection of K=4 

is appropriate because the improvement of higher values of K is minimaL 
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Figure 4.9: Analysis of the error vs. the number of groups for the 
food example data. 

To perform K-means clustering, data normalization, and statistics, a computer program 

was written in C++. The C++ computer language was chosen, because of its ability to 

expand on the standard data type by defining classes. New classes for vector and 

matrix were defined. Once these classes were defined they can be used as any other 

data type, and operations like addition, multiplication, etc. can be performed (see Listing 

4.1). 

main() 
{ 

matrix a(lO,lO); //a lOxlO matrix 
vector x(lO); //a 10 element vector 
vector b (10); 

ReadMatrixFile("data a", 10, 10, a); -
ReadMatrixFile("data_x", 10, 1, x); 
b = a*x; 
b.print(); 

Listing 4.1: Example of the use of the vector and matrix classes 

Based on these new classes the program KFRONT was written, which can read in data 

arrays, manipulate them, and perform K-means clustering. The following commands 

are supported in KFRONT: 
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Table 4.4: Available commands in KFRONT. 

command description 
alias 
analyze 
close 
cis 
carr 
exit 
help 
kmeans 
norm 
open <filename> <roW> <COl> 
quit 
save [ZICIMIS] filename 
set [KIW] number(s) 
show [ZIW] 
stat 
sys <Command> 
unnorm 
weight w1 ,w2,w3, .... 

show the aliases 
analyze the data set for optimal K-means 
unload the file opened by the open command 
Clears the screen 
displays correlation matrix 
exit the program (prompt for save) 
displays the help screen 
kmeans clustering 
normalizes (MEAN=O, SD=1) the data set 
loads a comma delimited file 
exit the program (no work saved) 
save data 
sets parameters 
shows a vector 
mean and SD of loaded array 
execute a system command 
reverse of norm on Z and S 
Applies the weight vector 

The names of the vectors and matrices are: Z the cluster center matrix, W the weight 

vector, S the set of matrices with the data separated in groups after running K-means. 

The input screen of KFRONT is shown in Figure 4.1 0. The program was compiled for 

MS-DOS computers and for HP-9000 machines running HP UNIX (hp-ux). 
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Figure 4.10: Resu/1 screen of the KFRONT program applied to the food 
data. The top bar indicates status information (filename, data 
set size, etc), and underneath it are the results of the clustering 
(group assignment per object, the error, and the cluster 
centers). 



Although the program was originally designed on a DOS machine and compiled with the 

Borland C++ 3.1 compiler, it was ported to the UNIX environment (HP9000) and 

compiled with GNU's g++ compiler, because the UNIX platform has better memory 

management, and allows for memory blocks of virtually any size. 

The K-means clustering of close to 6000 objects with 8 features takes approximately 14 

minutes on the HP9000 with one single user. The DOS version is not able to use that 

many objects because of memory constraints. 

When we perform kmeans clustering on the food data the groups of Table 4.5 

result. We used the 5-dimensional PCA projection as found in the previous 

paragraph as input data for the clustering. The groups that were found are the 

expected four food groups indicated by the descriptions. 

Table 4.5: Results of clustering of food 
data 

Group 1 fruits/vegetables 
apples oranges 
lettuce cauliflower 
carrot 

Group 2 
milk 

Group 3 
bread 

Group 4 
chicken 
ork 

dairy 
yogurt 

grains 
rice 

meats 
beef 

4.2.4 Applying clustering techniques to patient data 

The methods outlined in the previous paragraphs will be applied to data from 

outpatients of Shands Hospital at the University of Florida that were scheduled for a 

surgical procedure. In order to separate our patients into separate groups, we have to 

go through the following steps (Kristeller et al. 1989): 

1. Selection of the measured features. 

2. Scaling and type conversion of the measured features. 
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3. Analysis of the principal components. 

4. Selection of the number of groups. 

5. Apply clustering techniques. 

Selection of the measured features. 

The data available to us are the data from the preoperative evaluation of the patient. 

Figure 3.2 in the previous chapter identifies the most important sections of the preop: 

the physical exam and the review of systems. All the data of the physical exam were 

used in the initial data set. The most important patient problems from the review of 

systems, in view of setting alarm limits, were selected by an expert anesthesiologist 

(personal communications J.S. Gravenstein, 1992) and from the literature 

(Balasaraswathi and EI-Etr 1976; Charlson et al. 1990; Velanovich, 1991; Fleisher and 

Barash 1992), and are listed in Table 4.6. 

Table 4.6: Important problems from the review of systems. The indicators are the words that are 
searched for in the preoperative evaluation to determine if a patient has the disease. 

Problem Description Indicators 

Stroke 

Shock 

Coronary Artery 
Disease 

Hyperthyroidism 

Myocardial 
Infarction (MI) 
Heart Block 

Aneurysm 
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(Taber's Cyclopedic Medical Dictionary 1989) 

Sudden loss of consciousness followed by paralysis 
caused by hemorrhage into brain, formation of an 
embolus or thrombus that occludes an artery, or 
rupture of an extracerebral blood vessel causing 
subarachnoid hemorrhage. 
A clinical syndrome in which the peripheral blood 
flow is inadequate to return sufficient blood to the 
heart for normal function, particularly transport of 
oxygen to all organs or tissues. 
Decreased flow of blood to the heart muscle to the 
extent that either basal needs of oxygen are unmet 
or the oxygen supply is insufficient when an 
increased demand for oxygen is made, as in work. 
A condition caused by excessive secretion of 
thyroid hormone, which increases the basal 
metabolic rate, causing an increased demand of 
substrate to support this metabolic activity. 
Condition caused by occlusion of one or more of 
the coronary arteries. 
Condition in which the conductile tissue of the 
heart, the sinoatrial and atrioventricular nodes, 
bundle of His, Purkinje fibers, fails to conduct 
impulses normally from the atrium to ventricles, or 
within the ventricles 

Localized abnormal dilatation of a blood vessel, 
usually an artery, due to congenital defect or 
weakness of the wall of the vessel. 

Stroke, cerebro
vascular accident 
(CVA). 

Shock 

Angina, Exercise 
intolerance and chest 
pain 

Hyperthyroid 

Ml 

A-v Heart Block (1st, 
2nd or 3rd degree), 
Left Bundle Branch 
Block (LBBB), Right 
Bundle Branch Block 
(RBBB) 
Aneurysm 



Scaling and type conversion of the measured features. 

Table 4.71ists the features, their range and scale that were used as an initial data set. 

Table 4. 7: Features describing a patient (for a 
description of the scale types see Table 4.1}. 

Feature Range Scale 
Age 0-120 ratio 
Sex M/F nominal 
Weight 0-250 kg ratio 
Height 0-250 em ratio 
Systolic BP 0-250 mmHg ratio 
Diastolic BP 0-250 mmHg ratio 
Heart Rate 0-250 bpm ratio 
ASA class I,II,III,IV,V ordinal 
Procedure Code 0-9999 nominal 
Stroke 0/1 ordinal 
Shock 0/1 ordinal 
Coron Art Disease 0/1 ordinal 
Ml 0/1 ordinal 
Hyperthyroid 0/1 ordinal 
Heart Block 0/1 ordinal 
Aneurysm 0/1 ordinal 

To analyze these data a homogeneity of scale types is required. We selected the 

interval scale, because conversions to this scale from other scales is feasible. Some 

information is lost when a conversion is done from the ratio to the interval scale (no 

absolute zero is necessary for the interval scale). The next section describes the scale 

conversions necessary on the data of table 4.7. 

Scale conversions 

For the conversion of sex on the nominal scale to the ordinal scale, it is necessary to 

decide if a male patient has a larger influence on setting alarm limit than a female 

patient, or if the opposite is true. We are not able to determine this, and since the sex of 

a patient is not one of the most important factors in setting alarm limits, this feature was 

omitted. ASA physical status is on a ordinal scale because a higher ASA status implies 

a larger influence on how alarm limits are set. With the help of an expert 

anesthesiologist we came up with a scaling of the ASA parameter to the interval scale 

as shown in Figure 4.11 (personal communications J.S. Gravenstein, 1993). We call this 

parameter ASA index (ASAi). 
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Figure 4. 11: Assignment of ASA importance index 
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No scaling is necessary for the age, weight, height, systolic and diastolic blood 

pressure, and heart rate, because they are already measured on the interval or ratio 

scale. 

The 7 problems (Table 4.6) on the ordinal scale (yes/no), require conversion to an 

interval scale. To achieve this we determined the risk range for each problem. If a 

problem would cause a high value of the related parameter the risk range was called 

high and given the value 1. Conversely, a low parameter value yielded a low risk range. 

Table 4.81ists the problems, related parameter, and risk range (personal 

communications J.S. Gravenstein, 1992). 

Table 4.8: Effects of problems. 
Problem Related parameter 
Stroke Blood Pressure 
Shock Blood Pressure 
Coron Art Disease Heart Rate 
Hyperthyroid Heart Rate 
Heart Block Heart Rate 
Aneurysm Blood Pressure 

Risk range 
high 
low 
high 
high 
low 
high 

Ml was eliminated from the data set because it is an indication for coronary artery 

disease, and therefore not an independent parameter. 

To convert the problem list to an interval scale, the problems with the same related 

parameter (e.g. blood pressure) were grouped together and the values were added. 

This method assigns an equal weight to each problem. 

For the conversion of the procedure code (Table 4.7) to the interval scale the basic 

relative value of the procedure as proposed by the American Society of 
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Anesthesiologists was used. Basic relative values are proposed by the ASAto assist 

anesthesiologists in the development of their fee schedule, and are related to the 

complexity of the anesthetic service (ASA 1992). The basic relative value ranges from 3 

(e.g. anesthesia for surgery on the knee) to 30 (anesthesia for liver transplant). 

After the initial data set is scaled to the interval scale, the list of features in Table 4.9 

results and is used in subsequent calculations. 

Table 4.9: List of features used in the analysis. 

feature Unit 
Age 
Weight 
Height 
Systolic Blood Pressure 
Diastolic Blood Pressure 
Heart Rate 
ASA physical status index 
Relative value of Procedure code 
BP problem index 
HR problem index 

Analysis of the principal components. 

years 
Lb. 
em 
mmHg 
mmHg 
beats per min. 

Symbol 
age 
wt 
ht 
BPsys 
BPdia 
HR 
ASAi 
rei. val. 
BPi 
HRi 

We used principal component analysis to get an appreciation of the spread and shape 

of the groups, and to decide if PCA can be used to reduce the dimensionality of our 

data. 

When data are reduced to two dimensions they can be plotted to get an appreciation of 

the spread of the data and the shape of the groups. The two principal axis are 

combinations of several features. 

PCA was done on the scaled, normalized data and the two principal components are 

plotted in Figure 4.12. The same data are plotted as three dimensional graph after 

dividing the two dimensional space of Figure 4.12 into 50x50 squares and counting how 

many points are in each square. A contour plot at different levels of the z-axis of Figure 

4.13 is presented in Figure 4.14. Grouping can be seen in this figure as is indicated by 

the dotted ellipses. 
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Figure 4. 12: Two-dimensional projection (with PCA) of part of the 
patient data 

Figure 4. 13: Three-dimensional plot of the patient data after a 
PCA projection on two axis. 

Figure 4. 14: Contour plot of the patient data. The contours were 
made at the 10, 20, 30, and 40 level of the z-axis of the 
previous graph. 



Table 4.10 lists the eigenvalues of the data with the percentage of variance retained. 

Figures 4.12 through 4.14 are made from the two-dimensional projection in which only 

47% of the variance is retained (see Table 4.10), and they should be interpreted with 

this in mind. The two-dimensional projection gives an indication of the spread of the 

data, and shows some places with a higher density of points (grouping). 

Table 4.10: Results of PCA 
Axis Eigenvalue % variance retained 

1 3.28 33 
2 1.39 47 
3 1.09 58 
4 1.01 68 
5 0.89 77 
6 0.69 84 
7 0.63 90 
8 0.42 94 
9 0.32 97 
10 0.27 100 

When we use the criterion of equation 4.7 that 95% percent of the variance should be 

retained, we can reduce the data set to a a-dimensional data set. 

In addition to PCA, the correlation matrix of the data can be used to analyze which 

features are most correlated. If one feature is highly correlated with another, one should 

be eliminated because it does not aid in the separation of groups. 

rel. val. BPi HRi 

0.09 -0.13 0.27 
0.07 -0.02 0.12 
0.05 -0.02 0.09 
0.06 -0.09 0.17 
0.05 -0.04 0.11 
0.00 0.03 -0.06 

ASAi 0.18 -Q.11 0.27 
rei. val. 1.00 -0.02 0.04 
BPi 1.00 -0.12 
HRi 1.00 

The correlation matrix in Table 4.11 represents the correlation between two parameters. 

This value ranges from 0 (no correlation) to 1 (complete correlation). The two highest 

values are 0.69 between height and weight, and 0.64 between systolic and diastolic 
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blood pressures. These relationships are expected. We decided to eliminate the height 

measurement and the diastolic blood pressure measurement to obtain a less correlated 

data set. To support the decision of eliminating these two features, the PCA was run 

again on the 8 feature data set (Table 4.12). No further axis can be eliminated if 95% of 

the variance should be retained, We decided to use the unconverted data as opposed 

to the data converted with PCA, because analysis show that similar grouping is found 

with either data set The parameters in the unconverted data set have a physiologic 

meaning, and is easier interpreted by physicians. 

Table 4. 12.' Results of PCA after elimination of two 
features, 

Axis 

2 

3 
4 

5 
6 
7 
8 

Eigenvalue 
2.48 
1.21 
1.01 
0.90 
0.82 
0.66 
0.56 
OA7 

% variance retained 
31 
46 
58 
69 
79 
87 
94 
100 

In order to determine the number of groups K, the clustering error was plotted versus 

the number of groups and the difference between the error for K=k+ 1 and K=k was 

calculated and is plotted as a bar in Figure 4.15. After analysis of the error for K 

between 1 and 20, we selected K"'8, because the clustering error is minimized and the 

amount of improvement is the greatest for K .. 8, 
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Figure 4. 15: Analysi,<; of the error vs. the number of groups. 
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4.2.4. Discussion of clustering results 

Data of 5916 patients were collected from the preoperative evaluation system of the 

Department of Anesthesiology at the University of Florida. After conversion of ASA 

physical status to ASA index, and conversion of the problems to HR related, and BP 

related problems, the data had the following mean and standard deviation; 

mean 
SD 

rel.val. BPi 
5.78 -0.02 
2.15 0.17 

HRi 
0.1 1 
0.33 

K-means clustering of these data, after normalization, resulted in the groups of Table 

4.14. The value for K was 8, and normalization of zero mean, and unit standard 

deviation were performed. The patients of each group can be described as shown in 

Table 4.15. 

T. bl a e 4,14: Cl I ft K 8 r d- tat ustermg resu ts or = , norma JZfJ mpu a a. 

age weight BPsys HR ASAi rei. vaL BPi HRi 

1 36.27 162.54 121.87 77.93 63.05 5.44 0.00 0.00 
2 6.36 48.98 109.56 102.70 50.63 5.30 0.00 om 
3 27.42 153.16 124.58 74.79 35.00 5.06 0.00 0.00 
4 62.18 176.09 151.27 76.93 64.07 5.48 0.00 -0.01 
5 43.80 , 64.91 133.30 78.64 63.02 12.02 0.00 0.06 
6 64.12 158.63 145.31 76.46 74.56 6.28 ·1 .00 0.43 
7 60.03 174.36 142.39 77.01 70.26 5.74 0.00 1.03 
8 43.50 147.94 131.35 79.91 72.53 6.74 1.00 0.18 

Table 4, 15; Description of cluster groups. 
1 averaoe aqe ASA I or II patient 
2 very young, healthy patient 
3 young, healthy, ASA I patient 
4 older healthy patient with high BP 
5 averaqe aqe, difficult procedure, potential problems with HR 
6 older, sick, ASA II or Ill patient with multiple problems 
7 older, sick ASA II or Ill patient with problems with HR but not BP 
8 average age, sick ASA II or Ill patient with multiple problems 

In order to validate the clustering, a distance table between the cluster centers can be 

calculated: 
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Table 4.16: Normalized cluster center distance table. 
Cluster Z1 z2 Z3 Z4 zs zs Z7 zs 
Centers n=1635 n=750 n=1068 n=1421 n=325 n=134 n=549 n=34 

Z1 0.00 2.96 1.87 1.77 3.13 6.37 3.46 6.09 
Z2 0.00 2.92 4.19 4.52 7.40 5.09 6.84 
Z3 0.00 2.72 3.80 6.88 4.20 6.56 
Z4 0.00 3.26 6.17 3.21 6.19 
zs 0.00 6.75 4.26 6.50 
Zfi 0.00 6.26 12.01 
Z7 0.00 6.60 
z 0.00 

From the distance table (Table 4.16) it can be seen that cluster center z8 is relatively 

removed from the other cluster centers. Because of the low n (34), one could consider 

grouping these patients into another group (probably group 1, the closest), but because 

this group is relatively far removed from the other groups, it is a separate entity. Groups 

1, 3, and 4 are relatively close together, but because of the large number of patients in 

each group they are accepted as separate groups (Tou and Gonzalez, 197 4 ). 

The variances of a cluster about its mean can be used to get a measure for the relative 

distribution about the cluster center of the features (see Table 4.17). This shows us for 

example that ASA class is an important feature of cluster 3, because the standard 

deviation equals zero, showing that all the patients in that group have the same ASA 

classification. 

Table 4. 17: Standard deviations 
a e w BPs BPi HRi 

cluster 1 14.41 44.85 12.41 12.29 7.66 0.00 0.04 
cluster 2 6.05 27.69 15.99 17.63 16.16 0.00 0.10 
cluster 3 13.16 44.16 15.50 11.71 0.00 0.00 0.05 
cluster 4 13.60 45.03 17.09 13.18 10.16 0.00 0.10 
cluster 5 19.82 50.00 19.43 12.72 12.81 0.00 0.23 
cluster 6 15.71 39.79 23.25 11.94 11.95 0.00 0.56 
cluster 7 15.10 43.61 22.45 13.39 12.58 0.00 0.17 
clusterS 22.26 43.61 22.37 19.72 13.12 0.00 0.38 
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4.3 Summary 

In this chapter we have presented all the aspects of clustering techniques (data 

normalization, scaling, etc.). We applied those techniques to preoperative data of 5916 

patients and formed eight groups. The next chapter will describe how limit data for the 

patient groups will be collected and how all the data fits together. 
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A System for Alarm Limit Setting in Anesthesia 

5.1 Introduction 

In the previous chapter we performed a clustering analysis on preoperative patient data, 

which yielded 8 patient groups. To be able to set alarm limits for each patient, we 

assign a limit set to each patient group. Individual patients are assigned the limits of the 

group they belong to. Data collection for setting alarm limits is presented in this chapter. 

Also a description of the complete system is given, showing how all the parts (patient 

groups, limit assignment, preoperative data summary, etc.) fit together, and how data 

flows between them. 

5.2. Gathering Alarm Limits 

Once the patient groups are defined, each group needs a set of limits assigned to it. To 

answer the question of what limits to select for each patient group, some definitions are 

required. First we have to define what type of limits we call 'the alarm limit'. Figure 5.1 

shows the different levels that can be identified: 

The limit when you have reached a dangerous level 

The limit when you are approaching a dangerous level 

The limit that you are definitely going to do something 

The limit that you would be happy with 

The limit within which you would love to keep the patient 

b 

a~ 
a 
b 

c 

d 
e 

ttme-+ 

Figure 5. 1: Definition of different limits. Level b resembles the COR limit. 

"'2.ignal ,. 
'-./ 

We defined the clinical operating range (COR) earlier (paragraph 2.3) as the range that 

the parameter is expected to move within. In Figure 5.1 this would be the range b. 
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Bene ken and van der Aa (1989) define three functions of alarms: 1) to assist the 

anesthesiologist in the detection of adverse or unexpected situations occurring in the 

patient and the equipment; 2) to step in when fatigue decreases the vigilance level of 

the clinician; and 3) to assist in those situations where the comprehension capabilities of 

the clinician are stretched to the limit either by an overload of signals and extracted 

features, or by lack of clinical knowledge or experience. A more complex alarm strategy 

is needed to achieve the last function by combining several signals and features to aid 

the physician in comprehending the situation (van der Aa 1990). To achieve the first 

two functions of an alarm system it would be most appropriate to set limits at level c in 

Figure 5.1. 

Typically the tighter the limits are set, the more false alarms are generated. False 

alarms can be generated by the following causes: 

• Artifact 

• Expected variation 

• Improperly set limits 

There is very little an alarm system can do about artifacts. Artifacts are picked up by the 

sensors of the monitors and should be eliminated, if possible, before the signal is 

passed on to the alarm system 1. The alarm system can only assume that the measured 

parameters it uses as inputs are correct. Intraoperative signals encounter variations 

that are sometimes expected by the clinician (expected variation). Expected variation is 

a problem for the alarm system. Variation can be expected by the clinician based on 

knowledge about what will happen next: e.g. awaiting incision, or spontaneous 

breathing. It can also be caused by current events: e.g. blood pressure increases at the 

moment of incision. An alarm can also be classified as an undesired alarm because the 

anesthesiologist was already aware of the situation and is treating it. Solutions to the 

e"xpected variation problem include more intelligent alarm systems, that know more 

about what is going on around it (Schecke et al. 1992; Kahn et al. 1991). 

The alarms that we are selecting for the patient groups are designed to reproduce the 

limits currently used by anesthesiologists (not always used on the monitors, but a least 

in their heads) in the operating room. 

1we make a distinction here between monitors (the measuring instrument), and alarm system (the 
system that generates the alarm), although in most devices the two are combined. 
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5.2. 1. Methods for limit selection 

Several methods for the collection of limits were considered, and are listed in Table 5.1 

Table 5.1: Methods for the collection of data on limit setting. 

method 
Automatic recording in 
the O.R. 

Limit selection on the 
preoperative evaluation 
form. 

Limit selection intra
operatively 

Limit selection by expert 
anesthesiologists from 
data on patients 

description 
Physiologic data from the 
monitors are automatically 
recorded. These data are 
used to derive the limits that 
would be statistically correct 
in terms of maximizing 
favorable outcome. 

Physicians indicate on the 
preoperative evaluation which 
limits they deem appropriate 
for the patient 

Someone asks intra
operatively which limits are 
appropriate for that specific 
patient. 

Expert anesthesiologists 
derive limits they deem 
appropriate for a patient 
based on the preoperative 
evaluation, or a summary of 
it. 

advantage/disadvantage 
advantage: 

Limits are based on 
statistics to maximize 
outcome. 

disadvantage: 
Expensive to record 
in many O.R.'s. 
Impractical because 
there are many 
different monitors. If 
no precise record of 
what went on is 
available, 
interpretation is 
difficult. 

advantage: 
The physician has a 
good impression of 
the patient because 
he just completed an 
evaluation. 

disadvantage: 
The resident that 
does the preoperative 
evaluation is not 
necessarily the one 
that takes care of the 
patient in the O.R. 

advantage: 
The case is 
underway, and there 
is a good 
understanding about 
the patient. 

disadvantage: 
The anesthesiologist 
is distracted during 
the operation. 

advantage: 
Many patients can be 
quickly evaluated. 

disadvantage: 
The provided data 
may not be enough to 
make a decision. 

83 



The last two methods were implemented and the results of the data collection are 

presented in the next paragraph. 

5.3 Group limit assignment 

Data on how limits are set for different patients were collected from two sources: expert 

anesthesiologists, and anesthesia faculty and residents in the operating room. 

Anesthesia faculty of the University of Florida were given preoperative evaluations of a 

selection of patients that were operated on in Shands teaching hospital in the past 3 

years. The patients were selected from the 5916 patients of the previous chapter that 

had complete preoperative evaluations captured electronically. Initially 80 patients were 

selected randomly. To assure that there were enough data for each patient group, 

additional patients were selected randomly per group. 

Three expert anesthesiologists were presented with full evaluations (printout of the 

complete preoperative evaluation), and limited evaluations (printout showing only 

surgical procedure, age, sex, weight, height, preoperative systolic and diastolic blood 

pressure, heart rate, ASA physical status and whether the patient had any of the 

following problems: stroke, shock, coronary artery disease, hyperthyroidism, heart block, 

and aneurysm; see Table 4.7). 

The expert anesthesiologists were asked to assign limits at which they would like to be 

alerted during the maintenance phase of anesthesia. They indicated upper and lower 

limits for systolic and diastolic blood pressure, heart rate, Sp02, and end tidal C02. In 

order to test the hypothesis that the complete and limited evaluation produce the same 

limits several evaluations were presented in both complete and in limited form. The 

anesthesiologists were not informed about that fact. 

A total of 106 cases were reviewed by the expert anesthesiologists. 

In order to assign the 106 cases to one of eight groups, summary data were extracted 

from the preoperative evaluation, the ASA physical status was converted to the ASA 

index, and the problem list was converted to the blood pressure index (BPi), and the 

heart rate index (HRi), resulting in a patient vector. After normalization of this vector the 

Euclidean distances between each patient group (Table 4.14) and the patient vector 

were calculated, and the patient was assigned to the closest (minimum distance} 

cluster. 

The limits assigned by the experts were averaged by group and are presented in Table 

5.2. The description of the groups is listed again in Table 5.3 (same as Table 4.15). 
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Table 5.2: Limits assigned by anesthesiologists. Indicated as means per group with the standard 
deviation in small rint. 

BPsys BPdla HR So02 
upper lower upper I upper lower 
162.9 91.5 97.1 100.0 92.0 

15.9 10.6 7.9 1.8 0.0 1.7 

2 (13) 143.1 83.8 92.7 30.8 100.0 92.0 
17.7 9.6 8.5 6.2 15.5 1.8 0.0 2.3 

3 (15) 152.7 87.3 99.0 50.0 108.7 31.1 100.0 92.1 
14.8 9.3 8.9 6.1 15.4 4.4 1.5 2.0 0.0 1. 

4 (17) 181.8 121.5 101.5 62.0 97.6 57.1 47.8 31.6 100.0 9 
8.6 11.0 4.8 6.0 7.1 6.2 1.8 2.0 0.0 6.8 

5 (10) 162.0 104.0 97.0 60.0 94.5 54.0 43.5 32.0 100.0 93.6 
19.9 12.8 6.8 8.4 8.5 5.4 4.1 5.2 0.0 2.5 

6 (9) 175.6 121.1 94.4 58.3 90.0 55.0 46.8 32.7 100.0 93.2 
24.6 22.0 8.3 14.1 6.7 7.8 2.9 3.0 0.0 2.9 

7 (9) 164.4 102.2 98.9 47.8 93.3 48.9 47.6 30.3 100.0 91.9 
18.3 5.8 11.0 7.5 8.2 4.6 2.4 0.9 0.0 1.4 

8 (9) 157.8 100.0 108.9 44.4 105.6 47.2 48.9 30.0 100.0 92.7 
26.8 12.9 11.0 5.0 13.4 4.8 3.1 0.0 0.0 0.9 

T.b/530 fl a e . : escnpt1on o custer groups. 
1 average age, ASA I or II patient 
2 very young, healthy patient 
3 young, healthy, ASA I patient 
4 older healthy patient with high BP 
5 average age, difficult procedure, potential problems with HR 
6 older, sick, ASA II or Ill patient with multiple problems 
7 older, sick ASA II or Ill patient with problems with HR, but not BP 
8 average age, sick ASA II or Ill patient with multiple problems 

The assigned limits show some results that we expected: the blood pressure limits for 

patients with high blood pressure (group 4} are set higher than in the other groups, and 

the heart rate limit is set the highest for very young patients (group 2). Limits for end 

tidal C02 and Sp02 were set similar for all the groups. An evaluation of these results 

will be made in chapter 6. 

In order to create an independent test population, faculty and resident anesthesiologists 

were asked in the operating room during the maintenance phase of anesthesia to 

indicate the limits that they were using in their mind during that phase for the current 

case (these are typically not the limits set on the monitors). We used a pre-printed form 

to take up as little of their time as possible (see Figure 5.2}. When an electronic 
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preoperative evaluation was available for the patient, the date of the evaluation and the 

patient's medical record number were noted, as this is enough to retrieve the record 

from our preoperative evaluation system. When no electronic preoperative evaluation 

was present, the preoperative information was obtained from the handwritten 

evaluation. 

Data of 49 cases were collected this way, and were used for the performance testing of 

the system, which is presented in chapter 6. 

Please cln::le the !U!Jl.!!!and lower lim liB put which JOU wish to be 
alerted during malnt.nance phaae of this patient 

{th..,e da not hove ta be the limits JGU selected on the monltarj 

Medical Record Number; ----------
Preop 011te: 
Patient name: 
Year: 

210 200 190 180 :170 :160 lSQ 140 
90 BO 70 60 50 40 30 

Figure 5.2: Questionnaire used by the faculty and residents 

All the data that are needed for the limit setting system are now complete. The next 

paragraph will describe how to manage these data and define how they are used when 

limits are to be assigned for a patient. 
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5.4 Database system design 

5.4. 1 Introduction to databases 

A database system can be defined as a system that provides a structure for data in 

order to make information available on demand (Date 1986). Databases are typically 

used when large amounts of data need to be organized, easily and quickly retrieved, 

and made accessible to multiple users. Database system architecture can be divided 

into three general levels: 

• internal level 

This level defines the physical storage structure of the database. Definitions of 

physical storage (hard disk etc.), methods of data compression, and indexing 

methods to facilitate quick searching are part of this level. It also defines the file 

tormat(s) of the database system. 

• external/eve/ 

This level defines the way data are presented to the users. It defines the 

interactions between user and data (for example SOL (structured query 

language) or QBE (query by example) data queries). It also defines how data 

are viewed by the users (e.g. in tables, as data forms, etc.). 

• conceptual/eve/ 

This level sits between the two previous levels and provides 'translation' 

services. It translates requests from the user into commands that can be 

understood by the internal level 

If a user for example requested a record he may issue the command GET RECORD #123, 

which gets translated by the conceptual level into GET INTEGER FROM 41123; GET DATE 

FROM #123; (assuming a record consists only of an integer number and a date). The 

internal level converts this commands into instructions that the hard disk can 

understand: READ 10 BYTES START OFFSET 444555;. 

A graphical representation of these three levels is given in Figure 5.3. 
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conceptual level 

GET RECORD #123 

GET INTEGER FRO!~ #123 
GET DATE FROM #123 

READ 10 BYTES FROM 
OFFSET 444555 

Figure 5.3: Three level architecture of a database system 

There are three major data models that implement all three levels of the architecture of 

. a database system: the relational data model, the hierarchical data model, and the 

network data model (Eimasri and Navathe, 1989): 

relational data model 

In the relational data model the data in a database are represented 

as a collection of tables. Relations can be indicated by linking 

columns of different tables. 

hierarchical data model 

In the hierarchical data model the data are represented as a tree 

of records. The structure of the tree defines the links between the 

records. 

network data model 

In the network model the data are represented by a directed graph. 

The links of the graph define the links between the records. 

When selecting a database system several factors play a role: 

• which data model is most appropriate 
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• what is the hardware platform 

• what is a reasonable cost 

For our system we have several sets of data: patient demographic information, average 

preoperative summaries per patient group, and limits assigned to each group. These 

data sets do not stand alone, there are relations or links between them. 

Relationships in our data can be M:N (we may find M patients that were assigned to 

group 4, and we may find N limits assigned by experts to group 4), and because of this 

the hierarchical data model is not appropriate because M:N relationships are difficult to 

implement in a hierarchical (tree) structure. 

In the relational data model the data tables are linked by entries that have the same 

value (e.g. medical record number 12345 in Figure 5.4). In the network data model links 

have to be specified explicitly per record (Figure 5.5). It is easier to implement links 

between different data tables in a relational data model, and it is therefore currently the 

most popular data model for database systems (Eimasri and Navathe, 1989). 

12345 
12345 
33333 

921106 
930211 
930211 

relational data model 

120 
108 
115 

70 
75 
80 

network data model 

Figure 5.4: Table linking of the relational data Figure 5.5: Record linking of the network data 
model model 
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We decided on the Paradox (Borland International Inc., Scotts Valley CA) relational 

database because it works well on the MS-DOS platform, and is cheaply available at 

educational discount price. 

5.4.2 Definition of database 

The system for alarm limit setting relies on many data: demographic patient data to 

identify the patient that limits are being set for, the preoperative summary of that patient 

with the assignment to one of the patient groups, the limit data that were assigned by 

experts for each patient, and the results of the clustering algorithm that is needed for the 

assignment of a patient to a group. In addition scaling data (the means and standard 

deviations of the 5916 cases) are needed to scale the preoperative summary data 

before a group assignment is made (scaling is done by subtracting the mean, and 

dividing by the standard deviation, see paragraph 4.2.1 ). 

All the data outlined above was put in database tables. Table 5.41ists the five data 

tables that were defined. 

Table 5.4: Data tables of the database. 
data table description Table 
minimal demographic data to store data about a patient that will not change 5.5a 

once entered 
preoperative summary excerpt of the preoperative evaluation per case. 5.5b 
limit database upper and lower alarm limits for a specific case 5.5c 

assigned by expert or in the OR 
patient groups database results of the clustering of the preoperative data 5.5d 

of the patients 
scaling data the means and standard deviations of the 5916 5.5e 

cases that were used for the initial clustering 

Tables 5.5 show the fields in the database tables, where fields in italics represent 

lookup keys into other tables. The next paragraph explains how these data tables are 

used. The data types are N: numerical, D: date, and A: text. 

T, bl e5.5a: a M .. ld h" d tmma emograpltc ata 
MRN N Medical Record Number 
DOB D Date of Birth 
Sex A1 Male/Female 
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7i bl 55b p a e reooeratwe summary 
MRN N Medical Record Number 
OR Date D Date of the procedure 
Preop Date D ==flof the preoperative evaluation 
Age N of the patient 
Weight N ht 
BPsvs N Systolic Blood Pressure 
HR N Heart Rate 
ASAi N ASA index 
BPi N BP problem index 
HRi N HR problem index 
Rei. val N Relative value of procedure 
Group /D N Patient Groups assianment 

Table 5 5c· Limit database 
MRN N Medical Record Number 
OR Date N Date of the procedure 
Group ID N Patient Groups assi.anment 
BPsys upper N Upper limit of the systolic BP 
BPsys lower N Lower limit of the systolic BP 
BPdia upper N Upper limit of the diastolic BP 
BPdialower N Lower limit of the diastolic BP 
HR upper N Upper limit of the heart rate 
HR lower N Lower limit of the heart rate 
Sp02 upper 

~ Upper limit of the Sp02 (typically 100) 
Sp021ower Lower limit of the Sp02 
PetC02 upper N Upper limit of the end tidal C02 
PetC02 lower N Lower limit of the end tidal C02 

T.bl 55dP. d b a e at1ent groups ata ase 
Group ID N Patient group ass(qnment 
Age N Average group age 
Weight N Average group weight 
BPsys N Average group Systolic Blood Pressure 
HR N Average group Heart Rate 
ASAi N Average group ASA index 

I BPi N Average group BP problem index 
I HRi N Average group HR problem index 

Rei. val N Average group Relative value of the procedure 
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Table 5.5e: Sea/ina data 
mAge N Age of the patient (mean) 
sd Age N Age of the patient (standard deviation) 
m Weight N Weight (mean) 
sd Weight N Weight (standard deviation) 
m BPsys N Systolic Blood Pressure (mean) 
sd BPsys N Systolic Blood Pressure {standard deviation) 
m HR N Heart Rate (mean) 
sd HR N Heart Rate (standard deviation) 
m ASAi N ASA index (mean) 
sd ASAi N ASA index (standard deviation) 
m BPi N BP problem index (mean) 
sd BPi N BP problem index {standard deviation) 
m HRi N HR problem index (mean) 
sd HRi N HR problem index (standard deviation) 
m Rel.val N Relative value (mean) 
sd Rel.val N Relative value (standard deviation) 

5.4.3 Definition of data flow 

Upon completion of the preoperative evaluation for a particular patient our system will 

start working to find appropriate alarm limits for that patient. The following steps are 

taken: 

• A preoperative summary is created by extracting data from the preoperative 

evaluation (Table 5.5b) 

• A lookup is performed in the demographic database to see if this patient has been 

operated on before {Table 5.5a). If this is the case, the preoperative summary of the 

previous procedure is displayed, and the physician is given the option to select the 

limits of the previous case, or to continue with the next step. 

• The preoperative summary data are scaled (Table 5.5e), and the distances from the 

data in the patient groups database {Table 5.5d) are calculated. The patient is 

assigned the groups ID of the closest group. 

• A lookup of all the limits for the selected group ID is performed in the limit database 

(Table 5.5c), and the user is presented with the average of those group limits, and 

with the number of patients the average is based on. 

The physician can change the selected limit before or during the operation. At the end 

of the operation these updated limits should be fed back into the limits database, and 

these data then become a new entry for the patient group the patient was assigned to. 
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When this procedure continues over time, the calculated limits from the database can 

change. If alarm limits would be set closer over time, the limit database would also 

update to reflect this. 

Over time it may be necessary to run the K-means algorithm again to make a new 

assignment of the groups, although it is not expected that the patient population will 

change rapidly. Figure 5.6 shows the steps: 1) extraction of a preoperative summary 

from the preoperative evaluation, 2) check to see if this patient has a set (or sets) of 

limits stored in the database of previous visits, present these limits; if no previous visit 

was found, or the physician was not pleased with the limits (for example if the type of 

operation is very different from the previous one), then 3) assign the patient to the 

closest cluster, and calculate the average limits for the cluster.; 4) this average is 

presented with the number of limit sets it is based upon. When during the operation the 

anesthesiologist determines that the selected limits were not appropriate 5), they can be 

changed. The changed limits can be fed back into the database after the operation 6), 

and may gradually change the average group limits to account for changes in clinical 

preoperative 
evaluation 

2 

Limit 
readjustment 

Figure 5.6: Data flaw. 

patient group 
limit selection 

alarm limits 
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practice. 

The previous visit lookup in step 2) consists of: 21) check if demographic data on the 

patient is present, 22) find preoperative summaries with 23) matching limit sets, and 

present them to the physician. 

The patient group limit selection in set 3) consists of: 31) store the new preoperative 

summary, 32) scale the summary data for group matching, 33) find the closest matching 

patient group, and 34) look up the limits of patients with that group id, and calculate the 

average limits. 

5.5 Summary 

In this chapter the limits assignment for each group were presented. All the parts were 

put together to form the system for alarm limit setting in anesthesia. It explained how all 

the data are used, and how they are stored in the different database tables. Validation 

of the system is presented in the next chapter where we take a closer look at the 

assigned limits in relation to the patient clustering. Results of comparisons between the 

limits assigned by the system and the limits used in the O.R. for a group of patients are 

also presented. 
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s of performance 

6.1 Introduction 

Before we can analyze the performance of our system, we first have to show that the 

design goals were met. The study was designed to achieve the following goals (see 

also paragraph 1.3: project objective): 

1 . Describe the patient with a summary of the available data. 

2. Create different patient groups. 

3. Assign different limits to the different patient groups. 

4. The alarm limits set by the system based on the patient's preoperative information 

are similar to what a clinician would use intraoperatively. 

The following hypotheses will be tested to assure that these goals are met: 

A There is no difference between limits set by experts based on the full preoperative 

evaluation and based on a summary of the evaluation (goal1 ). 

B Different limits are set for different patient groups (goal 2, 3). 

C The set of patients used to test the system is representative of the total patient 

population (goal4). 

D Limits set by the system are similar to the limits used intraoperatively by the 

clinicians (goal 4). 

These hypotheses are evaluated in the next paragraphs. 

6.2 Validation hypotheses 

For the testing of the hypotheses we distinguish between three data sets: 1) the data of 

5916 computerized preoperative evaluations that we used to create patient groups (see 

chapter 4); 2) data from expert anesthesiologists on how to set limits (1 06 cases, see 

chapter 5); and 3) operating room data from anesthesia residents and faculty of the 

limits they are using intraoperatively (49 cases). The second data set consisted of 

limited and complete preoperative evaluations (106 patients total), of which seventeen 
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Preoperative evaluations (n=5916) 

data used to separate 
patients into groups, 

c/ 
based on preoperative 
evaluation. 

/ ' 
assign a patient to'a,group 

OR data limit set=49) .. , s_xpert data limit set (n=106) 

D 

·CI ~ I 
1>. 

data used to 
data used to .,..__ assign limits 

evaluate the to the patient 
system. groups 

group limits 
limit sets from experts 

limit sets from OR 

. 

full limited 
preop preop 

A 

Ftgure 6. 1: Data sets and how they are used to test the hypotheses. 
Hypotheses tested: 

A Difference between full and limited preops? 
B Different limits for different groups? 
C Test group representative? 
D Performance of the system? 

were presented in both full and limited form for the same patient (for a definition of full 

and limited preoperative evaluations see paragraph 5.3). 

In Figure 6.1 the tests performed on the three data sets are indicated by letters A 

through D, according to the above mentioned hypotheses. The patients were assigned 

to groups based on the group separation of the K-means clustering algorithm of chapter 

4 (indicated by the dotted lines in Figure 6.1 ). To test the hypothesis that there are no 

differences between limits set by experts based on the full preoperative evaluation and 

based on a summary of the evaluation the seventeen cases that were presented in both 

forms were compared (A). The validation of the resulting group limits, by determining if 

they were different for each group, was based on the evaluation of the grouped data 
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from the 106 patients that the experts assigned limits for (B). To evaluate if the test 

group was representative of the total patient population, the data of the 49 cases of the 

test were compared with the data of the 5916 preoperative evaluations (C). 

Performance of the system was tested by comparing the limits assigned by the expert 

anesthesiologists to the limits desired by the residents and faculty in the operating room 

(D). 

6.2. 1 Patient sample is a representative sample of the population. 

In order to interpret the performance of the system, we must show that the group of 49 

patients is representative for the whole population (hypothesis C). 

To test the hypothesis, we define the 5916 patients on which we recorded preoperative 

information as the whole population. After assuring that the distributions of the two data 

sets approximate the normal distribution, a two-tailed student t-test was performed to 

compare the distinguishing features of the 49 patients (our sample), with those of the 

total population (the 5916 patients). The results are tabulated in Table 6.1. 

Table 6.1: Preoperative information of the 49 patients, and the total population. The p value is the 
probability of randomly obtaining a mean difference as large (or larger) than the one 

h ' fo h . h d"ff. h II l . observed, w en m act t ere IS no sue 1 erence in t e avera 'popu atton. 

n Aae weight BPsvs HR ASAi rei. val. BPi HRi 
49 mean 40.71 149.64 136.56 81.56 59.47 6.00 -0.022 0.067 

SD 22.26 53.05 22.68 17.96 14.19 1.78 0.15 0.25 
5916 mean 40.39 150.76 130.98 80.19 57.64 5.78 -0.02 0.11 

SD 23.11 58.51 21.81 15.92 15.59 2.15 0.17 0.33 
p 0.92 0.89 0.07 0.55 0.41 0.93 0.36 0.48 

Because we are attempting to show that there is no significant difference between the 

set of two features, we have to analyze what the power of the t-test is. 

Suppose we are testing the hypothesis H0 : P 1 =P 2 (population 1 is the same as 

population 2). The alternative hypothesis is: Ha: Pf;eP2 (the two populations are 

different). The decision when to accept H0 can be seen from Figure 6.2. 
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accept H0 

Figure 6.2: Hypothesis testing. 

reject H0 

• 
Type l error 
probability 

D Type ll error 
probability 

Two types of errors can be made when we decide to accept or reject hypothesis H0: 

rejecting H0 when it should have been accepted (Type I error, the probability is a, 

typically 0.05), and accepting H0 when it should have been rejected (Type II error, the 

probability is f), in the medical field typically 0.10 to 0.20 (Shuster JJ 1990) ). The power 

of the test is defined as the probability of correctly rejecting H0 when it should have 

been rejected. This probability is defined as 1-(3. 

From Figure 6.2 we can also see that increasing a simultaneously decreases (3. The 

sample size also has an impact on a and (3: when the sample size increases, a and l3 
both decrease. 

An estimation of the type II error can be made if we decide the amount of difference we 

consider significant (o) and estimate the population standard deviation (cr). When 

estimates for o and G are made, a lookup table or graph of the power function can be 

made to determine the power of a test for a specific number of samples (Glantz 1992). 

If we for example compare age of the total population (in our case the 5916 patients, 

with a variance of 23 years) with the age of the selected 49 patients, we may decide that 

a difference of 1 0 years is a significant difference. Lookup of the power of at-test with 

these parameters gives a power of 90%. 

We need to decide what would be a significant difference, and what is the standard 

deviation of the total population. An estimate of the standard deviation of the total 

population is the standard deviation of the 5916 patients. 

Table 6.2 shows the difference we would call significant, and the power of the t-test if we 

had a measurement of 45 samples. The significance level was selected by considering 

the range of the variables and the number of groups (8) that we selected. For example 
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weight ranges from 1 Lb. to 300 Lb., which for eight groups gives a difference of at least 

37.5 Lb. 

Table 6.2: Power of the t-test for p<0.05, n=45 

parameter 
Age 
wt 
BPsys 
HR 
ASAi 
rei. val. 
BPi 
HRi 

significance 
10 yr. 
35 Lb. 
10 mmHg 
10bpm 
35 
1 
0.08 
0.1 

power of test 
90% 
95% 
90% 
90% 
95% 
90% 
90% 
90% 

Table 6.1 shows that there are no statistical differences between the total population of 

patients and the sample that we took from this population when we consider the 

preoperative evaluation. 

6.2.2 No differences between full and limited preoperative evaluation. 

The seventeen cases that were presented to the expert anesthesiologists in both limited 

and full preoperative evaluations were compared to determine if limits are set differently 

(hypothesis A). For all the five signals (systolic and diastolic blood pressure, heart rate, 

Sp02, and EtC02) a paired two-tailed t-test was performed on the upper and lower limits 

for the pairs of measurements of full and limited preoperative evaluations. The two data 

sets approximated a normal distribution. The results of these tests were all not 

significant with a p value > 0.05 (see Table 6.3). 

Table 6.3: Results of paired two-tailed t-test for limits based on limited and full preoperative 
evaluations. 

BPsys BPdla HR EtC02 Sp02 
lower upper lower upper lower upper lower lower 

93.5 96.5 48.4 104.7 54.1 48.2 31.4 92.1 
10.7 7.0 6.3 13.7 6.7 1.7 1.5 1.5 

150.9 87.9 100.6 48.5 111.2 54.7 47.4 30.5 91.8 
17.6 14.1 9.0 6.8 19.6 6.5 2.2 2.4 2.0 
0.24 0.07 0.09 0.75 0.06 0.68 0.16 0.21 0.60 

For seventeen samples and p<0.05, the t-test we performed has a power of 80% if we 

are trying to detect a difference of more than one standard deviation. This estimate of 
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the power is a worst-case estimate because it assumes p<0.05. For some of the tests 

the power is much higher because of the large p values. However, an estimate for the 

power of 80% is acceptable (Glantz 1992; Shuster JJ; Lemeshow et al. 1990). 

Because there is no difference in the way limits are set between full and limited 

preoperative evaluations, we can conclude that the limited preoperative evaluation 

provided the anesthesiologists with enough information to set alarm limits. Our 

automatic system uses the same data as the limited preoperative evaluation, and we 

can conclude that we provide our system with a sufficient set of data. 

6.2.3 Different limits are set for different patient groups 
We must determine if the limits that were indicated by the experts (the 1 06 cases) for 

the different groups are different between the groups (hypothesis B). The automated 

assignment of patients to a group were based solely on the preoperative information 

(the limited preoperative evaluation), so it is possible that there are groups that require a 

similar limit set. If there are groups that require the same limit set, the limit data should 

be pooled in step 34 in Figure 5.6. 

To evaluate differences between the limit sets of the groups, we used analysis of 

variance (ANOVA) to determine if the limit sets are generally different and the Student

Neuman-Keuls (SNK) to test statistical differences between specific groups. The 

ANOVA test is based on the F-test statistic (Glantz 1992): 

F = variance estimated from means 
population variance estimated as averages of sample variances 

The numerator is called the between-groups variance and the denominator is called the 

within-groups variance. This statistic can be calculated with: 

F = where 
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k 

2:h-t~; 
N-k 

For group g: n
8 

is the size of the sample in , is the group mean, s
8 

is the group 

standard deviation. There are a total of N samples and kgroups. 

Since both the numerator and the denominator are estimates of the variance of the 

same population, F should approximate 1. The ANOVA test provides threshold values 

of F to decide if the means were different when we accept an error in this decision of 

smaller than 5% (p<0.05). These threshold values depend on the degrees of freedom in 

the numerator (k-1) and the degrees of freedom in the denominator (N -k). 

As an example we calculate F for the upper limit of the systolic blood pressure. There 

are 8 groups (k=8), and a total of 106 samples (N=1 06), and the means and standard 

deviations are listed in Table 5.2. The within-groups variances!;, can be calculated 

with: 

23(15.9) 2 + 12(17.7)2 + 14(14.8)2 + 16(8.6)2 +9(19.9) 2 + 8(24.6) 2 +8(18.3) 2 +8(26.8) 2 

106-8 

The between-groups variances~, can be calculated with: 

2 24(162. 9)2 + 13(143.1)2 + 15(152. 7)2 + 17(181.8)2 + 10(162)2 + 9(175.6l + 9(164.4? + 9(157.8)2 

sbet = 8-1 

((24 ·162. 9) + (13 ·143.1) + (15 ·152. 7) + (17 ·181.8)+(10·162) + (9 ·175.6) +(9 ·164. 4) + (9 ·157. 8))2 /106 
8-1 

=2063.1 

Dividing s~, by gives F: 

F 2063.1 =6.60 
312.8 

A lookup table provided for the ANOVA test determines that for N= 1 06, k=8, and 

F=6.60, the difference among the group means is statistically significant (Glantz 1992). 
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The ANOVA test also showed statistical significant differences between the group 

means for the upper and lower limits of all the other measurements, except for the lower 

limit of EtC02 and for both Sp02 limits. 

The Student-Neuman-Keuls (SNK} test is a multiple comparison test. The student t-test 

is designed to compare only two group means. If more than two groups are to be 

compared, a multiple comparison test like the Bonferroni test or the SNK test is 

required. We selected the SNK test because we are comparing 8 groups (28 

comparisons1}, which makes the Bonferroni test underestimate the difference between 

the groups because too many comparisons are done (Glantz 1992}. The SNK test uses 

the statistic q to determine statistical difference between two groups : 

where and X8 are the two means being compared, s!1, is the within-group variance 

estimated from the analysis of variance, and nA and n8 are the number of samples in 

group A and B respectively. 

The tables that follow (Tables 6.4 through 6.8} show the results of these tests. They 

indicate if the mean limit of one group differs (u for upper limit, I for lower limit) from 

another group. If there were no differences between two groups, the box is empty. For 

a description of the groups see paragraph 4.2.4. 

1To compare 8 values we need to make 7+6+5+4+3+2+1~28 comparisons 
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Table 6.5 SNK fesf rasu/fs for diastolic blood pressure 
groups 1 2 3 4 5 6 7 8 . 

1 I I I u 

2 I I I u 
3 I I I u 
4 J I 
5 .. 1. l ul 
6 I ul 
7 .. ... . .. ... . . .. 

8 

Table 6 6 SNK test results for heart rate 

groups 1 2 3 4 5 6 7 8 
1 u u I 
2 ul ul ul ul ul ul 
3 u u ul J 

4 u I I 
5 ... 
6 I 
7 I 
8 

T. bl 6 7 SNK t t Its f, ctCO a e . es resu or !;_:) 

groups 1 2 3 4 5 6 7 8 
1 u 
2 u 
3 u 
4 u 
5 u u u 
6 
7 

• 

8 
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Table 6.8 SNK test results for SpO-; 

groups , 2 3 4 5 6 7 6 
1 -2 
3 
4 

~·-·~'"··-
5 
6 
7 

8 

No significant differences were found for the lower limit of EtC02, and the lower limit of 

Sp02 (note: the upper limit for Sp02 is always 1 00'%). We can conclude that 

anesthesiologists do not set these limits based on information about the individual 

patient. One approach is to assign these limits to be the average for the 1 06 cases. 

The following definition was used to determine if a set of limits for one group was 

different from all the other sets of limits of the other groups: 

a set of limits for one group is different from the other groups if 

one or more limits of the set are statistically (SNK test) different 

from all the other groups. 

If for example all the limits for groups 1 and 5 are the same, except for the upper limit of 

systolic blood pressure, we conclude that the set of limits of group 1 is different from the 

set of limits of group 5. 

When we apply that criterion Table 6.9 results, indicating x for difference and o for 

indifference. It can be seen that no differences were found between groups 1 and 3, 

groups 1 and 7, and groups 7 and 3. 

Table 6.9 SNK test results for all the signals 

groups , 2 3 4 5 6 7 8 
1 X 0 X X X 0 X 

2 X X X X )( )( ·--3 )( X X X X 

4 )( )( )( )( 
,,,,.......,.,,,, 

5 X X __ "_..!.__ 
6 X X ... ......,..___, ............ 
7 0 

8 
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We decided to marge the limits of groups 1 and 3 and also the limits of groups 7 and 8 

because the limit sets are similar. 

After recalculating the SNK statistics for the new groups and applying the criterion of 

difference, Table 6.1 0 results, where we can see that there are statistical differences 

between all the sets of limits of the new combination of groups. 

After recalculating the averages of the limits set by the expert anesthesiologists when 

merging the groups the limits are assigned as shown in Table 6.11. 

T. bl a e 6. 11: Limits assianed bv anesthesioloaists after mer.aina .arouos 
group BPsys BPdia HR EtC02 Sn02 

(n) upper lower upper lower upper lower upper lower upper lower 

1/3 (39) 159.0 89.9 97.8 49.4 105.4 54.1 48.3 31.26 100.0 92.0 
2 (13) 143.1 83.8 92.7 50.0 133.8 65.4 47.5 30.8 100.0 92.0 
4 (17) 181.8 121.5 101.5 60.0 97.6 57.1 47.8 31.6 100.0 90.2 
5 (10) 162.0 104.0 97.0 60.0 94.5 54.0 43.5 32.0 100.0 93.6 
6 (9) 175.6 • 121.1 94.4 58.3 90.0 55.0 46.8 32.7 100.0 93.2 
7/8 (18) 161.1 101.1 103.9 46.1 99.4 48.0 48.2 30.2 100.0 93.2 

We can conclude that, upon merging, 8 different patient groups require 6 different sets 

of limits during the maintenance phase of anesthesia. 

6.2.4 Performance 

To test the performance of the system we have to compare the limits the system 

suggests (based on the expert opinions) to the limits that are used in the operating room 

(hypothesis D, see Figure 6.1 ). 

For each of the eight groups we compared the set of limits suggested for a group by the 

system to the set of limits for a particular patient belonging to that group, and indicated 

by residents and faculty in the operating room. 
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To determine how close the limits set by the system are to the limits used 

intraoperatively we determined the percentage of limits that fall within x percent above 

or below the limits used in the O.R. We varied x between 5 and 25 %. The results are 

tabulated in Table 6.122. 

Table 6. 12: Percenta e of correct limits 
BPsys BPdia Sp02 Average 

%from limit lower lower 

5% 22 89 39 
10% 40 98 56 
15% 60 98 76 
20% 84 98 85 
25% 89 98 90 

When we accept limits that are within 15% of the limits used intraoperatively the 

systems suggests 76% of the limits correctly. The system performs better for blood 

pressures than for heart rate or end tidal C02. We speculate that a reason may be that 

blood pressure limits are selected using a more standard method by physicians (there is 

more agreement on how these limits should be set), which makes it easier for our 

system to select correct limits. 

We can also compare the results of Table 6.12 with a simple limit setting system that 

has only one group (see Table 6.13). When we use the means of the limits selected by 

the experts for the 106 cases, this would represent a system better than the current 

technology because the 'factory default' alarm limit setting is based on experienced 

anesthesiologists. We also evaluated the factory default limits of the HP 1176A Merlin 

%from limit u lower lower 

5% 2 2 13 87 24 
10% 67 47 18 98 44 
15% 67 53 40 98 60 
20% 82 84 44 98 74 
25% 82 89 84 98 86 

2We did not use the upper limit of the Sp02 in the evaluation because it is always set to 100%. 
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Table 6.14: Percentage of correct limits per signal for the factory default limits of the HP Merlin. 
The module we evaluated did not allow for limits on the diastolic blood pressure. (49 
atients. 

BPsys HR EtC02 Sp02 Average 
%from limit lower lower 

5% 4 7 38 13 
10% 33 13 98 34 
15% 36 53 98 48 
20% 53 58 98 58 
25% 69 60 98 74 

Figure 6.3 shows the difference between a conventional monitoring system (HP Merlin), 

a system that uses only one patient group, and our system that uses patient groups to 

assign specific alarm limits. 

90 

80 

~ 70 

t! 60 
"' ~ 50 

- 40 ! 
~ 30 
u 20 

10 

--system with patient 
groups 

• • • • • system w~h one 
group 

---HPMerlin 

0+-~--~--~-+--~~--~--~~~ 

0 5 10 15 20 25 

averaged percent deviation from suggested limits [%) 

Figure 6.3: Closeness of suggested limits to actual limits 

Our system scores higher than the one group system, which in turn scores higher than a 

conventional system. The signal that scores low is the lower limit of the diastolic blood 

pressure. A reason for this may be that the lower limit for diastolic blood pressure is not 

set as carefully as the other blood pressure limits. The lower diastolic blood pressure 

limit does not score well in the simple system either, which may indicate that this limit is 

partially based on information available intraoperatively (the evaluation of the simple 

system consists of comparing the limits set by experts with the limits used intra

operatively). 
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An additional test was done comparing the patients from the study in paragraph 2.3 with 

limits suggested for these patients by our system. Of the 50 patients we studied, 30 had 

a complete electronic preoperative evaluation, and could be used as inputs to our 

system (Table 4.9). We tested if the COR upper limit of the maintenance phase was 

lower than the limit suggested by our system, and if the COR lower limit was higher than 

the suggested lower limit. This is expected from the definition of the COR limits (see 

also Figure 5.1, level b). Table 6.15 shows the number of limits that were within and 

that were not within the range between the suggested upper and the lower limits. 

Table 6.15: Number of COR limits within or outside the limits SU(l(lested bt:_ our St:_stem. 
BPsys BPdia HR EtC02 Sp02 

U[![!er lower U[![!er lower U[![!er lower U[![!er lower lower 

within 29 30 27 25 24 22 30 21 29 
not within 1 0 3 5 6 8 0 9 
% 96.7 100.0 90.0 83.3 80.0 73.3 100.0 70.0 96.7 

Of the 33 limits that were not within the range of suggested limits, 15 were less than 5% 

beyond the suggested limits. The other 17 (6% of the total) can be contributed to 

variability in the patient population and anesthesiologist. 

These data confirm that in general our system suggests clinically useful limits. 

6.3 Summary 

In this chapter we have evaluated the system for automatic alarm limit setting. We have 

validated the assumptions we made and analyzed the performance. The analysis of the 

limits assigned to the different groups prompted us to merge two pairs of limit sets, 

resulting in a total of six limit sets. The next chapter will put the results of the analysis of 

our system in perspective with the way alarm limits are set in the operating room, it will 

draw general conclusions and propose recommendations. 

108 



Discussion and Conclusions 

7.1 Discussion 

System design 

We described in this dissertation a system that is able to pre-select intraoperative alarm 

limits for blood pressure, heart rate, end tidal C02 and blood oxygen saturation. Our 

system assigns the patient to a pre-defined group and then presents the average of the 

limits as they were assigned by experts to each patient in that group. The patient 

groups were formed by the K-means clustering method, based on a summary of the 

preoperative evaluation. 

The preoperative summary was formed with the help of experts to contain information 

needed to select alarm limits for specific patients. We showed that we initially could 

identify eight patient groups based on this information, and were able to find clinically 

useful descriptions for these groups. 

Expert knowledge that was used for these groups consisted of the summary of the 

preoperative data, the selection of problems that have an impact on setting alarm limits, 

and the scaling of the data items. 

Patient groups were created with clustering methods, and were evaluated to determine 

if they were different based on the limits assigned to them. There was no difference in 

how limits were set for groups 1 (average age, ASA I or II patient) and 3 (young healthy 

ASA I patient). Even though numerical differences were found by the clustering 

algorithm using the preoperative data, the experts did not use different limits for these 

patient groups. For the same reason the limits of groups 7 (older sick ASA II or Ill 

patient with problems with HR but not BP) and 8 (average age, sick ASA II or Ill patient 

with multiple problems) were combined. The fact that multiple groups mapped to the 

same set of alarm limits is not a problem for our system, because the limits are still 

assigned correctly. It is an indication that we defined enough patient groups. 

The system was designed to allow for extensions and modifications. Because the limits 

assigned to a patient are updated if a clinician decides that the limits were not 

appropriate, changes in how alarm limits are set are accommodated. This also allows 
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for adapting to differences in the setting of alarm limits at different geographical 

locations, where clinical practice may be different from our test site. 

Besides making changes to the limits assigned to each patient, the design methodology 

can be used to adapt the system to institutions where the patient population is different 

from our test site and includes many patients with specific problems, or many young 

patients. Following the same design philosophy as done in this dissertation, a system 

specific for one institution can be designed. 

In paragraph 2.3 we documented the setting and use of alarm limits for 50 patients in 

the operating room. We defined four anesthetic phases (intubation, induction, 

maintenance, and emergence). From that study we concluded that limits differ between 

the maintenance phase and the other three phases, and are set similarly for intubation, 

induction and emergence phases. The limits that were used by anesthesiologists to 

design our system were specific for the maintenance phase. We showed that our 

technique (grouping patients based on the preoperative evaluation, and assigning limits 

per group) worked for the maintenance phase. The same technique can be used for the 

other phases, but some additional knowledge (e.g. intubation failed, trying to wake up 

the patient, or type of induction used) may be required. For example, during the 

beginning of the intubation phase there will be no end tidal C02 measurement because 

the endotracheal tube has not yet been inserted into the patient's trachea. An alarm 

system needs to be aware of this knowledge. 

Human factors also play a role, as we found with the study of the 50 patients: 

Anesthesiologists did not set the upper limit of the end tidal C02 to a higher level during 

emergence, although it is expected that the end tidal C02 will rise because ventilation is 

turned down to stimulate the patient's respiratory center. We discovered by talking to 

the anesthesiologists that they found the alarm of high EtC02 reassuring during the 

emergence phase because they were expecting it. 

Proper setting of alarm limits during intubation, induction, and emergence is very 

dependent on the context of what is happening to the patient (incision, inserting 

endotracheal tube, etc.). In addition, artifacts are a bigger problem during these phases 

than during the maintenance phase, because equipment is moved around, drapes are 

put in place, etc. 
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The road to 'better' alarm systems 

In this thesis we have presented a system that can set alarm limits similar to the way 

anesthesiologists do. When a system is designed not only should we look at its 

performance according to the specification or goals, but also the overall usefulness has 

to be evaluated. The system for the automatic selection of alarm limits was designed to 

eliminate the need of clinicians to go through the time consuming task of setting alarm 

limits, to provide other automatic systems (like the Intelligent Alarm System (van der Aa 

1990)) with an acceptable range of a patient's physiologic measurements, and to 

provide a reference set of patient specific alarm limits. 

Once we are able to set alarm limits as anesthesiologists do, the question arises: "can 

we do better than that". To answer this question we first have to define what we mean 

by the word "better". One of the main goals of monitoring patients intra-operatively is to 

assure a safe condition of the patient and that neither the anesthetic nor the surgery 

cause any adverse effects. This is achieved by avoiding intraoperative incidents that 

have a negative effect on the outcome of anesthesia. 

Even though monitoring standards have been developed and are currently used, few 

scientific studies have shown evidence that this monitoring practice has a favorable 

effect on outcome (Gravenstein 1986; Eichhorn 1989). In a more recent study Moller et 

al. studied 20,802 patients to determine if pulse oximetry has a favorable effect on 

outcome (Meller et al. 1993a, 1993b). Even though this study showed differences 

between the control (no pulse oximetry) group and the test (with pulse oximetry) group, 

no statistical differences could be shown in the outcome. This result shows that 

outcome studies need an extremely large number of patients to show a statistical 

difference in outcome {Eichhorn 1993). There are other factors that need consideration 

in the evaluation whether a pulse oximetry monitor should be used or not: 

anesthesiologists feel more secure when using pulse oximetry, and an impression 

(although not statistically significant) that pulse oximetry prevents problems that could 

cause an adverse effect on outcome. 

These studies focused on the use of monitors, and did not address which values were 

acceptable for specific patients when these monitors were used. 

Measurement of outcome related to anesthetic management is not easy. First, 

postoperative morbidity and mortality is far more {by an order of magnitude) likely to be 

affected by the patient's disease and the surgical procedure than by the anesthetic 

(Velanovich, 1991 )). Secondly, no standard measure for outcome exists. Some 

attempts to standardize outcome measurements have been made. Cooper et al. 
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defined recovery room impact event (RRIE} as an unanticipated, undesirable, possibly 

anesthesia-related effect that required intervention, was pertinent to recovery room 

care, and did or could cause mortality or at least moderate morbidity {Cooper et al. 

1987}. Other outcome measures include unanticipated intensive care unit admission 

(UIA) associated with anesthesia (Cullen et al. 1992). Models for quality assurance 

have also been presented by Vitez (1990) and Edsall (1991} in an attempt to 

standardize outcome measurements. Even when a standard measure of outcome can 

be defined, it is still difficult to show statistical differences in outcome caused by 

differences in monitoring practice (Eichhorn 1993). 

Because of the difficulty of outcome measurements, it is difficult to optimize an alarm 

system for optimal outcome. 

Another criterion for better alarm limits could be an improved ratio of correct alarms 

versus false alarms. Alarms are frequently disabled in the operating room. Mostly this 

is caused by frustration of anesthesiologists with the current alarm system. False 

alarms are frequently indicated as the main problem. Anesthesiologists are not alone in 

their frustration with alarm systems. In other fields where alarms are used this same 

frustration exists, and the same tendency of disabling alarms is reported. Examples of 

these other fields include alarms in the locomotive cab of a train , where after 

investigations of some train crashes it turned out that some visual and auditory alarms 

signals were taped over (United States Congress 1987). Another example is the alarm 

system in the cockpit of an aircraft, where pilots wait with their finger over the 'alarm 

silence' button, expecting an alarm, and silencing it the moment it occurs without 

thinking why it occurred (Sorkin 1988). The same behavior has been observed in 

nuclear power plant control rooms where alarms were silenced and acknowledged 

without further concern or surveillance of the plant status (Sorkin 1988). In these 

engineering examples the 'system' is fairly well understood. Tests can be done to 

examine which values of measured parameters are extremes, and alarm limits can be 

assigned based on those tests (for example the maximum pressure limit of a boiler can 

be theoretically calculated, and tested in real life). There are not many differences 

between two engineering systems from the same series that were manufactured the 

same way. This is not the case with the patient 'system'. It is unethical to examine what 

the maximum blood pressure is that a human can sustain without injury. 

Sorkin gives two reasons why alarms are being turned off: 1) The alarm signal can be 

very aversive and can interfere with important operator duties (e.g. interfere with tower-
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cockpit communications, disturb the surgeon during an operation}, 2} The perceived 

false alarm rate is excessively high (Sorkin 1988). 

A solution to the first problem would be integration of alarms from different sources to 

maximize the content of presented information. When alarms from different monitors 

are brought together, and with a priority system, based on expert system technology, the 

alarms can be made less intrusive. By combining the signals, agreement can be made 

on the methods of conveying alarm information, and the alarm system can be managed 

from a central point. 

Solutions to the second problem have been suggested by van der Aa {1990} and others. 

Alarms can be separated in different groups: 1} alarms that are helpful and have an 

effect on intraoperative anesthetic management, 2) alarms triggered by artifact, 

generated by the monitor (electrical interference for example) or generated by the 

patient/surgeon (e.g. patient was moved, surgeon leaning on chest), and 3) alarms that 

are expected (e.g. flushing catheters, high end-tidal C02 during the emergence phase of 

anesthesia, etc.). A truly helpful alarm system should supply alarms of the first type and 

perhaps a selection of the third type to the anesthesiologist. Artifacts should be 

eliminated as early as possible in the monitoring system. Artifact rejection should start 

at the sensor, and continue during the initial signal processing and during the 

determination of the measured parameter(s). After the values of the measured 
---
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Figure 7. 1: Integration of alarms 
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parameters have been determined by the front-end monitor, they are presented to the 

alarm processing unit to decide if an alarm condition is present (see Figure 7.1 ). 

The decision to alarm or not to alarm is made based on the value of the parameter(s) 

measured by the front-end monitors, and on limits set by clinicians in a conventional 

(stand-alone) monitor. An integrated monitoring and alarm system also uses 

information from other front-end monitors to make that decision. In addition to this 

information, knowledge based (integrated) alarm systems decide to alarm based on 

knowledge specific for the anesthesia domain, and/or based on information about the 

current case, including context information like which drugs were administered, 

ventilator settings, etc. 

Other approaches include the modeling patients, events, and alarm systems as 

proposed by Beneken and Gravenstein (1987). The authors present an approach that 

determines alarm conditions based on a model of an ideal patient, knowledge about 

events, and fault models related to these events. Patient models are still being 

designed, and are more accurate than seven years ago (van Meurs et al. 1993), but 

these patient models represent a hypothetical possible patient, and not a specific 

patient. If we could model a specific patient (the patient of the case we are monitoring), 

it then would be possible to look inside the systems of that patient, and determine the 

state of the (internaltpatient-systems (cardiovascular system, respiratory system, etc.). 

It would then also be possible to make predictions of the future, because (assuming no 

changes of the current settings), the future can simply be calculated. Some of these 

predictions have been made for concentration levels of anesthetics in patients to make 

a prediction of when they would wake up, or when the anesthetic would wear off (Gibby 

et al. 1991 b). Unfortunately a complete, accurate model of specific patients does not 

exist, and a major amount of research would be necessary to create it. 

7.2 Conclusions 

Several conclusions can be drawn from the research presented in this thesis: 

A summary of the preoperative evaluation can be used to separate patients into groups 

that require different alarm limits (paragraph 6.2.3). 
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Anesthesiologists can assign alarm limits for the maintenance phase, based on the 

preoperative evaluation, and set the same limits when they are presented with a 

summary of the preoperative evaluation (paragraph 6.2.2). 

A system can be designed that assigns alarm limits based on expert opinion and 

grouping of patients that are similar to limits used intraoperatively (paragraph 6.3). 

Variability of physiologic patient data can be documented, but no statement can be 

made whether the alarm, caused by the value of a physiologic parameter, was valid or 

not without knowing the context of the case (paragraph 2.3). 

The method we presented to connect to different physiologic monitors can be used to 

create an intraoperative data collection tool. This method has great advantages over 

buying new integrated monitors, or monitors compatible with the Medical Information 

Bus (chapter 2). 

7.3 Recommendations 

Integration of alarm systems and systems with artificial intelligence (expert systems, 

neural nets, etc.) will become commonplace in the near future. It is likely that these 

systems perform better in terms of minimizing the false alarm rate. Integrated and 

knowledge based systems will have a need to know physiologically appropriate limits for 

specific patients, and this thesis has presented a method to arrive at those limits. An 

integration of our system with a knowledge-based alarm system can be made provided 

that the information needed to derive the limits (preoperative information) is available to 

the monitoring system. 

The limit database created for this study can be used as a reference of standard 

practice. After many cases are inserted into the database, the database will reflect the 

current practice of how limits are used intraoperatively. These data can then be used in 

training, case analysis, or outcome evaluations. 

With the arrival of new technologies that will connect the computers of many hospitals 

together, we will find that information on patients in different places can easily be made 

available. Outcome evaluations with large numbers of patients can be made more 
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easily because of the availability of data on more patients. The impact of limit setting on 

anesthesia outcome could be studied, when data from many places are combined. 

An expansion to the system can be made to include other phases of the operation: e.g. 

induction, intubation, and emergence. More knowledge is needed to automatically 

detect the phase of the anesthetic and important events. 
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Table A.t: Contents of foods per 100 gram. From: Binas informatieboek vwo-havo voor het onderwijs in de 6' natuurwetenschappen. Wolters-Noordhoff, 1977. 0 a. 

protein fat saccharide calcium phosphor iron sodium potassium vit.A vit.B vit.C water energy m 
ll ll ll mg mg mg ms mil mg mg !!!ll 9 kJ &1 apples 0 0 10 10 10 0.2 2 150 0 0.11 10 87 171 3 

bread 7.9 2.5 43 20 140 1.5 0 200 0 0.41 0 40 1145 "CC 
chicken 20 10 0 10 200 2 100 300 0 0.85 0 73 711 i" 
milk 3.3 3.2 4.6 120 90 0.03 50 150 0.05 0.24 1 88 251 0 
lettuce 2 0.2 2 40 30 0.5 2 250 1.5 0.2 10 94 50 I 
oranges 0.5 0 10 40 20 0.3 2 150 0.2 0.14 50 86 176 
carrot 1 0.2 6 40 30 0.5 75 300 6 0.17 5 90 125 
pork 16 24 0 10 200 2 100 350 0 0.84 0 59 1170 
beef 20 13 0 10 200 3 100 350 0 0.51 0 68 824 
cauliflower 2 0.3 3 20 30 0.5 15 400 0 0.32 80 93 96 
yogurt 3.3 3.2 4 120 90 0 50 150 0.04 0.24 0 88 242 
rice 7 0.5 78 10 100 0.4 2 100 0 0.2 0 13 1442 



Appendix B: List of Abbreviations 

Abbreviation 
AI 
ANN 
ASA 
ASAi 
ASCII 
BP 
BPdia 
BPi 
BPsys 
COR 
ECG 
EEG 
EOT 
EtC02 
HR 
HRi 
ht 
ISO 
MIB 
NIBP 
OR 
OSI 
PA 
PCA 
PE 
rei. val. 
ROS 
Sp02 
wt 

Description 
Artificial Intelligence 
Artificial Neural Network 
American Society of Anesthesiologists 
ASA physical status index 
American Standard Code for Information Interchange 
Blood Pressure 
Diastolic Blood Pressure 
Blood Pressure problem index 
Systolic Blood Pressure 
Clinical Operating Range 
Electrocardiogram 
Electroencephalogram 
End Of Transmission 
End tidal C02 partial pressure 
Heart Rate 
Heart Rate problem index 
Height 
International Organization for Standardization 
Medical Information Bus 
Non-invasive blood pressure 
Operating Room 
Open Systems Interconnection 
Invasive arterial pressure 
Principle Component Analysis 
Processing Element 
Relative Value 
Review Of Systems 
Pulse oximetry 
Weight 
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Summary 

Objective. To set intraoperative alarm limits automatically, based on information 

available about the patient and the procedure. 

Introduction. Patient monitoring during anesthesia usually includes measurements of 

heart rate, systolic and diastolic blood pressures, end tidal C02 concentration, and 

arterial blood oxygen saturation. Alarm limits (upper and lower) are set to notify 

anesthesiologists of variables that transgress these limits. Alarm limits are 

individualized per patient based on the information obtained from the patient, primarily 

the preoperative evaluation (preop), and the anesthesiologist's knowledge and 

experience. 

Because many monitors are used intraoperatively, it is a major task to program all the 

monitors with the desired limits. Many times no limits are set or they are left at the 

factory defaults or the intraoperative values of the previous case. 

Most hospitals are moving to integrated networked systems that connect clinics, labs, 

and operating rooms, which makes it possible to use electronic patient information in a 

monitoring system. Intelligent monitoring systems and other systems such as Quality 

Assurance (QA) systems and automatic record keepers also need to know what 

acceptable limits of the patient variables are. 

A system that takes information from the preoperative evaluation combined with 

anesthesiologist's knowledge, and suggests intra-operative alarm limits to the 

anesthesiologist was designed and implemented. 

Methods. A systematic appoach was taken to implement a system based on the 081 

reference model to record data from different intraoperative monitors. We documented 

how anesthesiologists use alarm limits, and how patients transgress these limits. 

Information on how to set alarm limits comes from the combination of two sources: the 

preoperative evaluation and the knowledge and experience of the anesthesiologist. 

The important data items from the preop that determine alarm limits are identified by 

experts. Because patients with the same or similar data require the same limits, patient 

groups are formed, based on the preoperative data, to facilitate the selection of 

appropriate limits. These groups are formed by using K-means clustering after 

parameter normalization, and are evaluated by experienced anesthesiologists. For 

each patient group a set of alarm limits is derived by asking an experienced 

anesthesiologist to indicate which limits would be appropriate in a case presented to 

him/her (data come from actual cases in the past). The limits assigned to each patient 
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group are the averages of the limits indicated by the experts for the patients belonging 

to that group. The patient groups are evaluated by determining if the limit sets for the 

groups were different. The limits assigned by the system are compared to alarm limits 

indicated by residents and faculty anesthesiologists intraoperatively. 

Results. The information of the preoperative evaluation deemed important for selecting 

intraoperative alarm limits is: age, weight, systolic preoperative blood pressure, 

preoperative heart rate, ASA physical status, relative value of the procedure, problem 

index for blood pressure (comprised of past problems with stroke, shock, or aneurysm), 

and problem index for heart rate (comprised of past problems with coronary artery 

disease, hyperthyroidism, or heart block). 

K-means clustering of these parameters of 5916 patients resulted initially in eight patient 

groups. For 1 06 patients (divided over the eight groups), expert anesthesiologists 

selected upper and lower alarm limits for systolic and diastolic blood pressure, heart 

rate, Sp02 and end tidal C02 for the maintenance phase of anesthesia. 

After evaluation of the differences in alarm limit settings for the different groups, six 

patient groups of limits resulted (two sets of two groups were merged because they had 

a similar set of limits). 

The limits assigned by the system, based on expert opinions, were compared to the 

limits selected intraoperatively by faculty and resident anesthesiologists. 76% of the 

limits set by our system were within 15% of the limits selected intraoperatively. 

In a seperate clinical study we defined the Clinical Operating Range (COR) of a patient's 

variables as the range that is clinically acceptable to the anesthesiologist. We showed 

that the 88 % of the COR limits were within the limits suggested by our system. 

Discussion. The limits selected by our system are close to the ones selected 

intraoperatively by anesthesiologists, but no statement can be made on how good these 

limits are in terms of maximizing favorable anesthetic outcome. The limits database 

used in this study can be used as an indication of the standard of anesthetic monitoring 

practice. 
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Samenvatting 

Doelstelling. Het automatisch instellen van alarmgrenzen voor patientbewaking tijdens 

anesthesia, gebaseerd op beschikbare informatie over de patient en de operatie. 

Probleembeschrijving. Patientbewaking tijdens anesthesia bestaat normaliter uit 

meting van hartslag, systolische- en diastolische bloeddruk, eind expiratoire C02 

concentratie, en zuurstofsaturatie van het arteriele bloed. Alarmgrenzen (boven en 

onder} worden ingesteld om de anesthesist te waarschuwen voor variabelen die 

ontoelaatbare waarden aannemen. Deze alarmgrenzen worden per patient bepaald, 

gebaseerd op over die patient beschikbare intormatie, voornamelijk de preoperatieve 

evaluatie en de kennis en ervaring van de anesthesist. 

Het is vee! werk om aile alarmgrenzen in te stellen, gezien het aantal gebruikte monitors 

in de operatiekamer. Vaak worden dan ook geen alarmgrenzen ingesteld, of worden de 

standaard fabrieksinstellingen of de grenzen van de vorige operatie gebruikt. 

De meeste ziekenhuizen hebben tegenwoordig geTntegreerde netwerksystemen die 

laboratoria, klinieken en operatiekamers met elkaar verbinden. Het wordt dan mogelijk 

om elektronische patientgegevens te gebruiken in patientbewakingsapperatuur. 

lntelligente patientbewakingsapperatuur en andere systemen zoals Kwaliteits Kontrole 

systemen en automatische "recordkeepers" moeten ook weten wat acceptabele 

alarmgrenzen voor de patientvariabelen zijn. 

Wij hebben een systeem ontworpen dat informatie van de preoperatieve evaluatie 

verwerkt en, gecombineerd met kennis over anesthesia van de anesthesist, een 

aanbeveling voor alarmgrenzen geeft. 

Methoden. Met een systematische aanpak hebben wij een systeem ontworpen, 

gebaseerd op hat OSI referentiemodel, dat data kan opnemen van verschillende 

intraoperatieve patientbewakingsapperatuur. Wij hebben gedocumenteerd hoe de 

anesthesist alarmgrenzen gebruikt, en hoe patientvariabelen deze grenzen 

overschrijden. lnformatie over hoe alarmgrenzen worden ingesteld komt uit twee 

bronnen: de preoperatieve evaluatie en de kennis en ervaring van de anesthesist. De 

belangrijkste data van de preoperatieve evaluatie zijn aangegeven door experts. Omdat 

patienten met gelijke of gelijkwaardige data dezelfde grenzen behoeven, zijn 

patientengroepen gevormd, op basis van de preoperatieve data, om de selectie van 

geschikte grenzen mogelijk te maken. 

De groepen zijn gevormd door de "K-means clustering" techniek toe te passen op 

genormaliseerde preoperatieve patientgegevens, en zijn vervolgens geevalueerd door 

ervaren anesthesisten. Een reeks alarmgrenzen is afgeleid voor elke patientengroep 

door ervaren anesthesisten te vragen welke grenzen geschikt zijn voor een bepaalde 
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patient. De alarmgrenzen voor elke groep worden gevormd door het gemiddelde te 

nemen van de door de experts aangegeven grenzen voor die groep. De 

patientengroepen zijn geevalueerd door te bepalen of de alarmgrenzen tussen de 

groepen verschillend waren. De grenzen aanbevolen door ons systeem zijn vergeleken 

met de grenzen die anesthesisten aangaven tijdens de operatie. 

Resultaten. De informatie van de preoperatieve evaluatie die belangrijk bleek voor het 

selecteren van alarmgrenzen was: leeftijd, gewicht, preoperatieve systolische 

bloeddruk, preoperatieve hartslag, ASA status, relatieve waarde van de operatie, 

probleemindex voor bloeddruk (gebaseerd op de aanwezigheid van beroerte, shock of 

aneurysma) en een probleemindex voor hartslag (gebaseerd op de aanwezigheid van 

vernauwing van de kransslagaderen, schildklieraandoening of hartblok). 

K-means groepering van deze parameters voor 5916 patienten heett in eerste instantie 

acht groepen opgeleverd. Ervaren anesthesisten hebben alarmgrenzen (boven en 

onder) aangegeven voor systolische en diastolische bloeddruk, hartslag, 

zuurstofsaturatie van het arteriele bloed, en eindexpiratoire C02 concentratie voor 1 06 

patienten, verdeeld over die acht groepen, tijdens de maintenance fase van de 

anesthesie. 

Na evaluatie van de verschillen in de alarmgrenzen voor de verschillende groepen, 

bleven zes groepen van grenzen over (twee paar groepen zijn gecombineerd omdat zij 

dezelfde grenzen behoeven). 

Wij hebben de grenzen, aangegeven door ons systeem vergeleken met grenzen 

geselecteerd door anesthesisten in de operatiekamer. 76% van de door ons systeem 

aangegeven grenzen waren binnen 15% van de grenzen in de operatiekamer. 

In een aparte study hebben we de 'Clinical Operating Range' (COR) van de 

patientvariabelen gedefinieerd als het bereik dat klinisch geaccepteerd wordt door de 

anesthesist. Wij hebben aangetoond dat 88% van de COR grenzen binnen de grenzen 

lagen die ons systeem aangaf. 

Discussie. De grenzen aangegeven door ons systeem zijn dichtbij de grenzen 

geselecteerd in de operatiekamer, maar wij kunnen geen uitspraak doen over hoe goed 

die grenzen zijn met betrekking tot het resultaat van de operatie. De database van 

alarmgrenzen, zoals gebruikt in ons onderzoek, kan gebruikt worden als een indicatie 

voor standaard patientbewaking. 
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STATEMENTS 
pertaining to the dissertation of 

J.H.M. van Oostrom: 
'A System for Automatic Alarm Limit Setting in Anesthesia'. 

Eindhoven, December 1 1993 

1. 
Although anesthesiologists often turn off the alarms on their monitors, they do 
use a mental picture of the patient and the appropriate limits this patient should 
stay within. 
This dissertation 

2. 
Integration of pertinent information available about a patient, yields the bases to 
intraoperative problem solving. 
This dissertation 

3. 
It is unfortunate that the Medical Information Bus is still not available. Therefore 
it is necessary, for the realization of integration of patient information around the 
patient, to develop a standard for existing equipment. 
This dissertation 

4. 
Mortality and morbidity rates should be used to set priorities for medical and 
health research and care. 

5. 
The international Internet network that connects most universities and many 
companies is a valuable source of information for research, not limited to the 
technical field. 

6. 
The confidentiality aspect is usually underestimated or ignored when electronic 
patient information is made available on a network. 

7. 
In some countries it is mandated by law to have your car checked each year. 
This type of preventive medicine should be an integral part of health care and 
deserves a wider acceptance. 



8. 
The classification in racial groups by governments, for example when registering 
for classes at a university, does not help in the realization of Dr. Martin Luther 
King's dream from 1963. 
["I have a dream" speech, August 28, 1963, ML King] 

9. 
The electronic distribution of some scientific journals in the near future will bring 
the risk of a different type of reading: let the computer decide which parts are 
important and skip the rest. This will not enhance the in-depth understanding of 
the literature. 

10. 
An anesthesiologist will never be replaced by equipment, although this fear 
seems to persist. 


