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“Design is more the art of preserving changeability than it is the art of
achieving perfection.”’ [1, pg.16]
— Sandi Metz, American computer scientist

Ladies and Gentlemen,

A recent study revealed that one in five Americans older than twelve suffer from
hearing loss to a degree that impacts their day-to-day communication [2]. In
another study hearing loss is found to speed up dementia and cognitive decline in
older people [3]. I could cite a large list of similarly alarming literature, but, in
short, hearing loss is a major problem that impacts people’s lives and causes
significant costs to be incurred by society. 

I am a researcher at GN ReSound, which is one of the world’s leading hearing aid
manufacturers. Both at ReSound and at the university, my work is mostly focused
on improving sound processing algorithms for hearing aids. You may be
wondering: what is an algorithm? An algorithm is a recipe, i.e., a precise
description of how a difficult task can be accomplished by executing a sequence of
simpler tasks. For a hearing aid, the difficult task is to change an audio signal into
another audio signal that allows a hearing impaired listener to maintain or restore

Introduction

Figure 1 

A modern behind-the-ear hearing aid (source: http://gnresound.com)
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normal interactions with other people. The list of simpler tasks, the algorithm,
would be something like recording a few audio samples, taking the square root,
multiplying by ten and sending the result to the hearing aid speaker. Then
repeating this procedure forever or until the battery dies. In reality, the math of a
hearing aid algorithm is a bit more complex, of course. Sound processing
algorithms are important for hearing aid manufacturers because patients buy
hearing aids for no other reason than to listen to a different sound, not because
they like to make a fashion statement with a neat hearing aid design. 

How satisfied are users of hearing aids? The graph in Figure 2 is from a large study
in 2010 on the hearing aids market [4]. The horizontal bars represent patient
satisfaction rates with various aspects of sound processing in hearing aids.
Categories include issues such as performance of the hearing aid in windy
conditions or clarity of the sound. The dark blue color reflects the percentage of
people that are happy, red indicates dissatisfaction and light blue relates to a
neutral opinion. Let’s keep this simple: from this graph I read that about 20% of
hearing aids patients are not happy with the sound processing performance of
their devices. 20% of end users are not satisfied! It turns out that a decade ago
the dissatisfaction rate was also around 20%. 

This is a remarkable figure because over the past decade, we, the engineers and
scientists in the hearing aids industry, have collectively spent about 1000 man-
years on improving the sound processing in hearing aids. This is an under-
estimation, but it is enough to make my point: despite a very extensive collective 
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Percentages of patient satisfaction with sound processing in hearing aids (source: [4])
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engineering effort in the hearing aids industry, one in five patients remains not
satisfied. The performance of sound processing in hearing aids seems to have
plateaued. 

It could be that especially the hearing aids industry attracts bad engineers and
scientists, but I think there is a more plausible explanation. When an engineer
designs a hearing aid, he does not know yet who the patient will be, what the
hearing loss portrait of that patient will be like or in which acoustic environments
the patient will spend his time. To complicate matters, this type of knowledge
changes over time. Every time a patient puts in his hearing aid, the physical
placement of the device will be a bit different from the last time, leading to an
altered acoustical situation in and around the ear. Similarly, gradual build-up of
ear wax in the ear will affect the signal processing demands on the hearing aid. In
other words, when the engineer designs the sound processing properties of a
hearing aid, he has to deal with many unknowns about the actual circumstances in
which the hearing aid will be used, which means that the engineer does not know
which problem he must solve beforehand. 

Apparently, all these uncertainties about the problem to be solved led to an
unsatisfying experience for one in five patients. It won’t help to ask the engineer
to work harder or to try his extra very best this time, since these future in situ
conditions are simply unknown. Instead, we must provide the patient tools to
solve problems on the spot when they occur. The property that allows a system to
change in response to changing circumstances is called adaptability.

The challenge to build a system that works both today and can still be changed in
the future is somewhat of a contradiction. On the one hand, designing a system
that works today means we must make hard decisions. We must decide which low-
pass filters, resistors and transistors to use and how to connect them in order to
make a system that works. On the other hand, the device must be able to adapt to
new circumstances and consequently our design cannot be fully committed yet.
Apparently, good design involves the art of postponing decisions until later, when
more information is available since you will never know less than you do right
now. 

There is a discipline called adaptive signal processing that deals specifically with
these issues. In practice, adaptive signal processing is a very successful field: all
working hearing aids, mobile phones, TV sets, car radios and medical 
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measurement equipment critically depend on adaptive filters inside. At the same
time, adaptive signal processing today has failed to provide answers to the
problems that I mentioned above. Apparently something is still missing.

My research is about that missing part. Since only a patient himself knows what
he hears, the challenge is to build tools that help a patient redesign the signal
processing system in case he is not satisfied. In order to get an idea of what we
are up against, have a look at Figure 3 which is a block diagram of a commercial
hearing aid algorithm [5]. Most blocks in this graph hide sub-algorithms that are at
least as complex as this top-level diagram. Now suppose that I am at a cocktail
party and I can’t understand my conversation partner. I would like to make a small
change to this circuit and test a few variants, but how? If I pull a wire, this circuit
will probably crash and no output gets generated. Which wire should I pull
anyway? Or should I add a wire somewhere? In other words, how do I bring about
variation as a means for experimentation in this system? Even if I succeed in
improving the quality for my current situation, will that change still be an
improvement later, after the party is over? In practice, the way to update systems
like this one is to give it to an expert signal processing engineer and let him tinker
with it. Then take it back after a few months and hope that it works better. But
that is not what I am interested in here. If this system doesn’t work to my full
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Block diagram of the AYRE-SA3291 hearing aid algorithm (source: [5])
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satisfaction in the field, I’m willing to invest a maximum of one minute to make it
sound better. And it should sound better because if it doesn’t, I will be less willing
to spend that minute the next time. This signal processing circuit is not fit for that
purpose.

After this long introduction let me come to the focus of my research plans. I am
interested in fast and easy re-design of real-world signal processing systems by
end users. There are three very challenging aspects about this goal. Whereas a
normal design update by a signal processing expert in his laboratory environment
may take a few months, my aim is to execute an incremental design update (1) by
a (non-expert) user, (2) in normal operational conditions and (3) within a minute.
In my search for answers to these problems I am mainly inspired by research from
others on how the brain processes information. In this lecture I will discuss some
aspects of brain computation that, in my opinion, should influence future
engineering practice. However, before we turn to the brain, I will discuss an
important engineering lesson for the design of systems with large uncertainties. 

Figure 4 

The cocktail party problem relates to separating target sounds from interfering sounds
(source: [6])
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“Good judgment comes from experience, and experience comes from bad
judgment.”
—Attributed to Mullah Nasrudin, a sufi wise man in the 13th century

In 1959, the British industrialist Henry Kremer announced a prize of £50,000 
(in today’s money worth about 1 million euros) for the first successful human-
powered flight around a figure-of-eight course with the two turning points placed
half a mile apart. A second prize of £100,000 was created for the first human-
powered flight across the English Channel.

Many years and 50 failed attempts passed. In 1977, the British aviation engineer
Paul MacCready took on the challenge and noticed a common pattern when he
studied the records of past attempts. Previous engineering teams had often
invested more than a year to carefully design a prototype plane based on
elaborate theories and conjecture. Then, a few seconds after take-off of the
maiden flight, a year’s work would crash on the ground and obliterate the massive
effort. 

Design for redesign - the flight 
of the Gossamer Condor

Figure 5 

The Gossamer Albatross, the first human-powered airplane that crossed the English
Channel (source: [7])
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MacCready came to a crucial insight. Past efforts had been focused on solving the
wrong problem. The essential problem was not how to design a human-powered
airplane. Instead, the essential problem was that they did not understand the
problem [7]. Rather than attempting to design an optimal aircraft, MacCready
reformulated the problem as the quest to design an airplane that could be re-built
in hours, not months. His team started building planes from cheap and light
aluminum tubing, mylar, wires and scotch tape. In MacCready’s approach, design
was to be interpreted as an experiment to learn more about the problem. The first
flight failed right away. But the team learned from the crash and delivered a
second prototype just a few hours later. This process of fast iterative redesign
continued for about half a year until 23 August 1977, when Bryan Allen of
MacCready’s team pedaled the Gossamer Condor for the 223rd time and cleared
the finish line 7 minutes and 27 seconds after take-off. Two years later, Allen flew
a further evolution of the Gossamer (‘the Albatross’) across the English Channel to
claim the second Kremer prize, cf. Figure 5. 

Where other teams had failed for more than 17 years, MacCready’s fast iteration
approach turned out to be the key to solving poorly understood engineering
problems. While on the surface this story has little to do with hearing aid design,
the underlying challenge to cope with a poorly understood problem is the same
for both tasks. In addition to the psychological demand for end users to minimize
personal investment in redesign, this story illuminates the engineering need to
focus on fast redesign of hearing aid sound processing algorithms, instead of a
research focus on the optimal algorithm per se. 
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“Nothing in biology makes sense except in the light of evolution.” [8]
—Theodosius Dobzhansky (1900-1975), Ukrainian/American biologist

Engineers who design artificial systems study the brain for inspiration. Since the
brain is the most crucial instrument in our drive to survive, it must work today and
yet be fully prepared to adapt to unforeseen new circumstances. In the next
sections I will discuss a few salient properties that enable the brain to execute fast
redesign iterations so as to cope with a world where the problems keep changing
in unpredictable ways.

Probability Theory

“The 50-50-90 rule: Anytime you have a 50-50 chance of getting something
right, there’s a 90% probability you’ll get it wrong.”
—Andy Rooney (1919-2011), American radio and television writer

If the brain is a system that processes information, then there must be some
computing rules that the brain adheres to. There is strong scientific support for
the claim that brains compute with the rules of probability theory. This is the same
probability theory that we all learned to love and hate in high school. 

We can use probability theory to predict the future, based on observations from
the past. For instance, if I observe 100 coin tosses and 96 out of 100 throws came
up tails, then I predict that the 101st observation will come up tails with higher
probability than for heads. Intuitively, this happens by extrapolating past
observations. Technically, in order to predict the future we need to build a model
to summarize regularities that were present in past observations and use that
model to predict the future. We humans need to have some capacity to predict the
future, because we want to avoid being surprised by the physical world around us.
For instance, we must be able to make predictions on what’s edible or hostile to
us. More generally, any major surprise in the physical world could possibly kill us. 

Information processing and 
the brain
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So, a key task of the brain is to build a model for the world in which we live and
use that model to make predictions about that world. 

Probability theory can be used to make optimal predictions about future (data)
observations by

The expression Pr(.) here is a mathematical notation for a probability mass
function, but we will not bother with explaining the details of the formula, other
than to point out that something as complex as predicting the future can be
captured by a single-line equation. The left-hand side states that I want to predict
the future from past data. The data refers to observations from the outside world
that enter the brain through sensory organs like the eyes or ears. The right-hand
side states how predictions of data relate to a model and past observations. The
model can be implemented by a brain or by a computer program. The right-most
factor, Pr( model | data ), captures what the model has learned from past data. By
another rather simple manipulation with probability theory we can express how
models learn from data: 

In probability theory this equation is known as Bayes rule. Bayes rule describes
how we learn about the world. It doesn’t matter if the observations relate to
music, video or even financial stock rates: Bayes rule applies and tells us how to
optimally update our knowledge about a phenomenon based on new observations
about that phenomenon. Bayes rule is basically a prediction-correction method.
The model gets updated on the basis of differences between actual and
(synthesized) predicted observations. 

Pr( future | data )   = Σ  Pr( future | model )   x   Pr( model | data )
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Mooney faces are an interesting visual demonstration of the predictive nature of
the brain, cf. Figure 6. Since we have seen many faces before, our expectations for
seeing faces are large and consequently we easily recognize image A as a face. In
image B, the same face is depicted upside-down, but we don’t perceive this face
as easily. This is because our brain does not expect to encounter upside-down
faces often in natural circumstances.

If a human brain were capable of executing Bayes rule, then my concept of what a
tree looks like would get updated every time when I see a tree. The more trees 
I see, the better I understand what a tree looks like. It seems that it would be very
useful for my brain to be able to process sensory information by Bayes rule,
because it would enable me to learn a model about the world just by looking at
the world. Apparently, using the same rules from probability theory I can then use
that model to make predictions about the world, which are so crucial for me to
stay alive. 

It can be shown that, under some very agreeable assumptions, Bayes rule
prescribes the optimal method for learning from observations. So there is no need
to look for a specialized learning algorithm that works particularly well for any
specific problem. The simplicity of Bayes rule is a strength. Whether I have to learn
a language or learn about how to repair my bicycle, Bayes rule is how I should
learn. If the brain computes with probability theory then there is no need to invent
new prediction or detection methods when the outside world changes. It doesn’t
matter if the observed signals are acoustic or visual in nature, the difficulty lies
mostly in how to implement Bayes rule, both in brains and computers.

Figure 6 

Mooney faces. The left image is easily perceived as a face, while the right image is not
as easily recognized as an upside-down face
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The realization of the extreme relevance of probability theory for information
processing and for science and engineering in general is still evolving. In this vein 
I would like to quote one of the leading mathematicians of our time, David
Mumford:

“For over two millennia, Aristotle’s logic has ruled over the thinking of
western intellectuals. All precise theories, all scientific models, even
models of the process of thinking itself, have in principle conformed to the
straight-jacket of logic. But from its shady beginnings devising gambling
strategies and counting corpses in medieval London, probability theory
and statistical inference now emerge as better foundations for scientific
models, especially those of the process of thinking and as essential
ingredients of theoretical mathematics, even the foundations of
mathematics itself. We propose that this sea change in our perspective will
affect virtually all of mathematics in the next century.’’ [9]
— David Mumford (1937-), American mathematician

The probabilities that we discussed relate data to models and back again. Models
and data are very much the core issues for engineered signal processing systems.
Next we take a look at how the brain deals with models from the perspective of
adaptability. 

Models and Structures

“Simplicity - the art of maximizing the amount of work not done - is
essential.’’ [10]
— The 10th principle of the Agile Manifesto

Signal processing algorithms can be intuitively visualized by block diagrams like
the one for the hearing aid example (Figure 3). A block diagram consists of a set of
blocks (nodes) and links (edges) that connect the blocks. With each link we
associate a variable in the system. In a block, mathematical relations between the
connected variables are described. Often, we may find another block diagram in a
block, so blocks can be used to hide details of the algorithm. The algorithm
structure refers to the mathematical relations between the variables that are
described by a block diagram. We also like to distinguish between variables whose
values change as time moves on (the state variables) and those (the parameters)
whose values are expected to stay fixed or change much more slowly than the rate
of change of the states. In neural terms, the structure relates to the neuronal
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network of the brain, the parameters are represented by the strength of synaptic
connections between neurons and the state relates to the electric fields in the
brain. In particular, our perception of the world is represented by the state
variables. The model structure and parameter values provide constraints on how
the states (read: our perception) will change over time. If our perceptions and
prediction of future perceptions are accurate enough, we can stay alive. 

Unfortunately, unexpected things will happen and we will need to change the
algorithm structure and parameter values so as to keep our model of the world
sufficiently accurate.

It is clear that if we change a structure at one location, we do not want that
change to have serious consequences on variables in another location of the
network. If the network were now to be adapted at the latter location, this could
have effects elsewhere again and thus lead to a snowball effect of unpredictable
changes, likely to be followed by a crash of the algorithm. Therefore, modularity is
an essential characteristic of complex yet adaptable networks. A modular network
is composed of sub-networks called modules with more dependencies within the
modules than between the modules. The relative independence of modules
prevents the snowball effect of changes from escalating. 

On the other hand, some communication between modules is necessary to
generate behavior that transcends the functional complexity of individual
modules. In order to avoid the snowball effect, modules should preferably depend
on other modules that are more stable than themselves. Let’s assume the
opposite, namely that module A depends on module B and the natural rate of

prediction error

R1 R2 R3

predictionFigure 7 

An example flow graph of hierarchical modularity across three cortical regions 
(source: [11])
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change for B is faster than for A. In that case, A will have to adapt each time that B
changes, which is more often than A’s natural rate of change. The idea that the
snowball-of-changes effect can be avoided by constraining communication
between modules to flow from more to less stable structures leads to hierarchical
networks. 

Technically, probability theory supports hierarchical modularity almost effortlessly.
Bayes rule decomposes into a hierarchy of four modules by 

In the final result of the computation, Pr( model | data ), the model depends
directly on fast fluctuations in the observed data. However, after the hierarchical
decomposition, at each level, variables only depend on other variables that are
more stable than themselves. We now have an answer to our question on how to
implement Bayes rule. Through hierarchical modularity the snowball effect of
changes is avoided. 

In order to appreciate the advantages of hierarchical modularity (‘modules-within-
modules’) I quote Herbert Simon who illustrated the concept by the watchmakers
parable as follows: 

“There once were two watchmakers, named Hora and Tempus, who made
very fine watches. The phones in their workshops rang frequently and new
customers were constantly calling them. However, Hora prospered while
Tempus became poorer and poorer. In the end, Tempus lost his shop. What
was the reason behind this?
The watches consisted of about 1000 parts each. The watches that Tempus
made were designed such that, when he had to put down a partly
assembled watch, it immediately fell into pieces and had to be
reassembled from the basic elements. Hora had designed his watches so
that he could put together sub-assemblies of about ten components each,
and each sub-assembly could be put down without falling apart. Ten of
these subassemblies could be put together to make a larger sub-assembly,
and ten of the larger sub-assemblies constituted the whole watch.’’ [12]
—Herbert Simon (1916-2001), American scientist and cognitive psychologist

Pr( model  | data )      Pr( data | model  ) x Pr( model  ) =
       Pr( data | states, parameters, structure )                             (now)
    x Pr( states  | parameters, structure )            (short-term memory)
    x Pr( parameters  | structure )                                            (mid-term) 
    x Pr( structure )                                                                     (long-term)
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We can think of many reasons why modularity is the most prominent feature of
adaptable systems. But how would the brain know that? Is there an evolutionary
drive for brains to develop modular structures? If we accept that the brain is
mostly an engine for probabilistic reasoning, then it would help if probability
theory would prefer modular over densely coupled structures (all else being
equal). This is indeed the case. The factor Pr( data ) in Bayes rule, known as the
evidence, can be used to evaluate how well a model summarizes a set of
observations. It can be mathematically shown that the (logarithm of the) evidence
decomposes into a sum of two terms, namely accuracy plus model simplicity: 

The first term, ‘accuracy’, measures how well the model predicts past
observations. If we need to predict future observations, it makes sense that we
prefer models that performed best on past data, so we want models with high
accuracy. A system that scores high in terms of accuracy works well today.
However, the second term, ‘simplicity’, favors models that are simple and
adaptable. Indeed, it can be shown that modular structures score higher simplicity
values than densely coupled systems. As we discussed, modular systems are more
adaptable than coupled systems. Therefore, probability theory prefers structures
that balance excellent performance today (high accuracy) against adaptability for
tomorrow (high simplicity). If you do appreciate mathematics a bit, then it’s quite a
thrill to realize how this extremely practical conclusion follows in just a few simple
manipulations with probability theory. We also conclude that if brains followed
probability theory, then it should come as no surprise that brains are both
excellent performers today and yet remain very adaptable. After all, both
properties are highly prioritized by straight probability theory. The brain has no
choice but to optimize both for today and an unknown future. 

Driven by Data

“No organism can afford to be conscious of matters with which it could
deal at unconscious levels.” [13]
—Gregory Bateson (1904-1980), English anthropologist 

We discussed how probabilities and models relate to information processing in the
brain. The third term in the equations for learning and prediction is called the data
or observations. Data is observed through sight, hearing, taste, smell and touch,

log( evidence ) = accuracy  + simplicity

= 'works today' + 'works tomorrow'
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collectively known as our senses. Observations inform us about the current state
of the world around us. We use probability theory to summarize observations in
models and use these models to predict how the world evolves. 

One of the most interesting aspects of our brain is how much we seem to learn
from just a few teaching events. After a mother has shown her two-year old
daughter a few times what a tree looks like, the girl is able to identify new trees
that she has not seen before and also to discriminate trees from other plants in
general. Considering the various shapes, sizes and colors that apply to trees, it
would be impossible for a child to learn to reliably recognize trees from just a few
remarks by her mother. Instead, a child learns what trees look like through
building models straight from incoming visual data. There is no teacher involved
here. The interaction with her mother just added a label (‘tree’) to the concept of a
tree that had already been acquired through modeling the world in an
unconscious fashion. In the machine learning field, learning without a teacher is
called ‘unsupervised learning’. 

The human cortex holds about 1014 configurable synapses, which can be
considered parameters of the brain. We live about 109 seconds, so on average
there is room to train about 100,000 synapses every second. Indeed, brains
receive a massive amount of data through the senses. For instance, the retina
sends more than 10 million bits of data to the brain every second. The role of
teachers, parents, books and other sources of abstract information is mostly to
help us sort out which parts of these incoming data streams are important or
should be ignored. In other words, teachers help us to select and label data
streams that are used to train a model of the world. Crucially, in order to cope with
a world where the settings and problems keep changing, a massive amount of
unsupervised learning must always be going on. 

sight

touch

hearing/
smell

1250 MB/s
computer network

125 MB/s
USB key

12.5 MB/s
hard disk tasteFigure 8 

Data rates for the senses relative to bandwidth of computer networks (source: [14])
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In Figure 8, data visualization artist Dave McCandles, based on work by the Danish
science writer Tor Nørretranders, graphically displayed the amount of information
that the different senses pass on to the brain in comparison to the bandwidth of
computer networks [14]. Clearly, vision is the dominant sense. The white box in the
lower-right corner represents the amount of data (0.7%) that is processed
consciously in relation to the colored planes that refer to unconscious processing.
Apparently, almost all incoming data is processed unconsciously. Building models
of the world, including creating a model for what a tree looks like, is mostly an
unconscious process. 

Summary of information processing in the brain

“The principal activities of brains are making changes in themselves.” [15]
— Marvin Minsky (1927-), American cognitive scientist 

In order to adapt to unforeseen changing conditions, brains need to iterate
through new model proposals for explaining the world. In the past three sections
on information processing in the brain, we found three crucial ingredients for
adapting information processing systems to newly acquired evidence. The first
ingredient concerns probability theory as a foundational calculus. Probability
theory prescribes how to learn and predict in a world where noise obscures the
signals, where observations are scarce and where people’s preferences change.
The second principle relates to hierarchical modularity. In order to discover better
algorithms, we need to test alternatives to existing algorithms and at the same
time remain operational. We can only introduce a change to an existing algorithm
if the effect of the change does not cause other parts of the algorithm to crash. 
We must survive the change and modularity is a crucial structural element so as to
limit the impact of changes throughout the algorithm. Finally, when talking about
the data we noted that the structure of real world data is so rich and volatile that
we cannot rely on teachers, parents, scientists and engineers to design and
update the algorithm. Surviving in the real world implies a massive amount of
unsupervised learning, which is always going on in the background. In engineering
terms, continuous calibration is essential. 
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“No plan survives first contact with the enemy. What matters is how quickly
the leader is able to adapt.” [16]
— Tim Harford (1973-), British economist and journalist

Most of this lecture has been dedicated to a review of data processing in the
brain. Let us now get back to the engineering practice. We left this topic about half
an hour ago when we were stuck with a block diagram of a hearing aid algorithm. 
I was at a party and did not understand my conversation partner. I then wanted to
test some variants of the hearing aid algorithm right there when the problem
occurred, but the system looked so complicated that any ideas on how to change
the circuit were hard to come by. My feeling was that if I changed anything, the
algorithm would probably crash. 

But let us assume that I have managed the dependencies between modules in
such a way that I have enough confidence that a small change will not kill the
algorithm. Then I can introduce some small changes to the hearing aid algorithm
and with a bit of luck I can improve my listening experience at the party. The next
question is now whether the hearing aid should stick to this new configuration
after I have left the party. I gave the hearing aid some new information, namely 
I showed the hearing aid how to behave when I’m at a cocktail party. How relevant
was that information for other acoustic environments? When the party is over, and
I’m in my car driving home, the hearing aid has two possible algorithms to choose
from: the one that I came to the party with and the other algorithm that I preferred
while the party was alive. Since I don’t want to keep fiddling with my hearing aid
every time when something changes in the acoustic environment, I want the
hearing aid to decide for me. 

In order to answer this question, the hearing aid would have to consider what
features of the cocktail party environment were so favorable for the second rather
than the first algorithm and it would have to consider if or how many of these
features remain active in the current car environment. In other words, the hearing
aid should have access to a model of the acoustic world and it should be capable
of solving what-if questions based on information that is preserved by the world

Signal processing systems that 
work today and tomorrow
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model it has built by unsupervised training on past acoustic observations. In
principle, this seems possible since a hearing aid microphone records one million
bits of acoustic data every four seconds. This continuous data stream should be
summarized by a hierarchically organized structure, which is a necessary
ingredient for the model to stay changeable, so it can adapt as new data get
recorded. We have also discussed that the model should practice Bayesian
reasoning in order to assess how much to adapt. 

Even for this basic algorithm exploration example we find that probability theory,
modularity and unsupervised learning are very relevant. I think these concepts
hold promise for a much wider range of engineering problems. For instance, in our
Signal Processing Systems group, there are ongoing engineering research projects
for such application areas as medical diagnosis, multimedia and communication
equipment, a sustainable lifestyle, biometrics and control of energy consumption
in buildings. For most of these projects, the crucial research question is this: what
happens when I take this nicely designed system outside? What happens if it’s
windy? Will it still work if I open the window or what happens if the patient moves
or sweats? The problem that I study is therefore not really a hearing aids issue per
se. For all of these problems, there is so much uncertainty about the operational
conditions that upfront design will fail quickly. We just don’t have enough 

Figure 9 

Other applications include (ambulant) monitoring: will this system work if one sensor
contact breaks down?
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information in advance to design a perfect solution for every end user in every
situation. Instead, we should design something that is adequate today and is
adaptable with respect to the future. 

Our brain, the most awesome signal processing engine in the world, has been put
to test quite thoroughly over the past few million years. Still, the engineering field
of adaptive signal processing remains poorly inspired by biological computing. 
I hope that I have been able to convey why I think that neural computing is highly
relevant for engineering and why it is my main inspiration in developing new ideas
for both hearing aids and other real-world signal processing systems.
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In closing I would like to take the opportunity to extend my sincerest appreciation
for the support that I have received from colleagues, friends and family. 

First, I am grateful to my employer GN ReSound and in particular to Andrew
Dittberner, VP Research, for his trust, friendship and ongoing professional support
in this endeavor. I am much indebted to my colleagues at ReSound, both for the
professional challenges and the team spirit. Almer van den Berg, Marco
Bloemendaal, Job Geurts, Anne Hendrikse, Ernst van de Kerkhof, Joris Kraak, Rudie
Landman, Jos Leenen, Magali Monod-Cotte, Gerard Nijsse, Peter Snoeren, Judith
Verberne, Rob de Vries, Erik van der Werf and my fellow researchers at our
Copenhagen and Chicago sites, it is a pleasure and honor to work with you. Tom
Kersten and Joris Kraak, you know that this talk is basically about good software
engineering practice. Thanks for sharing your insights; I hope I didn’t blow it. 

At TU/e, I am much indebted to Jan Bergmans, chair of the signal processing
systems group, and Ton Backx, dean of the Department of Electrical Engineering.
Jan in particular has been a driving force behind this appointment. Jan, your
coaching and leadership of the group is a true inspiration to me. I also feel lucky
to collaborate with Tjalling Tjalkens in our graduate course on adaptive
information processing. Over the past seven years I have participated in projects
with a great bunch of TU/e students. Job, Paul, Jorik, Ronnie, Anton, Serkan, Rene,
Xueru, Jianfeng, Joris, Maarten, Zijian, Timur, Mojtaba, Iris, Marija and Marno, it
has been a privilege to work with you. 

Finally, this whole thing would make no sense to me without my family. Ik heb het
geluk gehad om op te groeien in een gezin met twee fantastische zussen Karin en
Marleen en zeer toegewijde ouders, die mij tot op de dag van vandaag aan-
moedigen en onvoorwaardelijk steunen. Deze steun heeft zich voortgezet in mijn
leven samen met mijn lieve vrouw Oksana, die mij de energie geeft om de toe-
komst met vertrouwen en enthousiasme tegemoet te zien. Mijn dank aan jullie is
groter dan ik hier kan uitdrukken. 

Ik heb gezegd.
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