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1
Introduction

“The only objective way to measure a perceptual quantity is
subjective”

Light is one of the main prerequisites of life. Sunlight sustains life, as the basic
source of energy, that through photosynthesis goes into the food-chain. The omnipres-
ence of electromagnetic radiation and its interaction with objects in the environment
means that lifeforms that can detect these interactions have an evolutionary advantage.
Thus light enabled the emergence of life’s most advanced sense, vision.

Humans have extended the limited time that natural light is available by finding ways
to produce it. The spark of the first man made fire liberated them from the dependence
on nature’s whim and marked the start of the modern society [68]. The development of
artificial lighting, similar to the general development in sciences [61], followed a path
of quick revolutions, bringing new ideas and technologies, followed by longer periods
of steady evolution of the ideas and technologies [13]. The first revolution coincides
with the first use of artificial lighting, self made fire, which was followed by a long
period of development of combustion-based light sources. The second revolution was
brought by the use of electricity in light generation, led by the venerable light bulb.
As the technological understanding of electricity and the means of its transformation
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into light improved, so did the efficiency, the lifetime and the overall power of the light
sources.

The lighting revolution we are, arguably, experiencing today is mainly supported by
the new technology of high power light emitting diodes (LEDs) [50]. Even though
LEDs have been in use since the early times of semiconductors, they were mainly
used as indicators due to the low power of the emitted light. A series of recent devel-
opments have changed this fact. It is expected that LEDs will match the effectiveness
of traditional light sources at comparable light levels and competitive prices by 2025
[77, 85, 31], while at the same time extending the lifetime of the light sources 3 to
10 fold. Organic LEDs (OLEDs) and polymer LEDs (PLEDs) complete the family of
solid state lighting (SSL) sources.

The driving force behind the switch to solid state general lighting is the promise of bet-
ter efficiency, longer lifetime, and environmentally friendly materials [31]. However,
different application areas are adapting solid state light sources with different speed.
The traditionally agile TV market has almost completely switched to LED back light-
ing within a very limited time span. Automotive lighting is another area where LEDs
have seen fast growth, together with road signaling. However, general lighting, the
largest part of the lighting market, has seen relatively slow adaptation of solid state
light sources. While there are technological challenges behind the slow adaptation,
there are also a number of important societal and economic reasons.

Most of the LED light sources on the market are developed as stand in replacements
for older technologies, called retrofits. This direct correspondence comes with expec-
tations on the price and quality of the new light sources. The initial price of solid state
lighting on the market is between one and two orders of magnitude higher than tradi-
tional light sources. Even though the lifetime and energy efficiency savings outweigh
the initial price difference, the initial cost is still a large hurdle for a more widespread
market acceptance. The entrance of a large number of new companies, coming from
the semiconductor business, to the lighting domain is driving the decrease of prices,
but also introduces new problems. In some cases there is a large gap between the
claimed and actual performance of solid state lighting on total light output, energy con-
sumption, lifetime, and the quality of the produced light. The large variation between
seemingly equivalent light sources, modules, and luminaires confuses customers and
negative examples help the spread of the belief that solid state lighting is of inferior
quality to the traditional light sources. To increase consumer confidence and facilitate
quality control, a number of industry and government bodies have introduced quality
testing programs. As one of the first, the US Department of Energy in 2006 started
the CALiPER program [105]. More recently, the European Commission published
a charter for LED Quality requirements [30] as a voluntary set of criteria limited to
residential light sources.

Beyond the traditional advantages and retrofit applications discussed above, solid state
lighting sources offer a number of new and unique differentiating features.
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The first differentiator is the spectrum of the produced light. LEDs with a wide range
of peak wavelengths having a relatively narrow spectral distribution can be produced
by changing the semiconductor material and the dopants in the production process.
This enables direct creation of highly saturated chromatic light without the need of
filters, thus resulting in a much higher efficiency. By combining LEDs with different
peak wavelengths and mixing the produced light or adding a fluorescent material, solid
state lighting systems can produce a wide range of spectra. Even more, as the relative
power of the individual spectral components can be changed, the resulting spectrum
can be adapted, resulting in full color control.

The easy control of the intensity of the individual LEDs is an interesting side effect of
the second advantage of LEDs, their fast response time. Most traditional light sources
have a very limited range of intensity control, especially at shorter time intervals. In-
candescent and halogen light sources are based on thermal processes, which are slow
and usually result in reaction times on a seconds timescale. Furthermore, the spectrum
of the produced light changes with the intensity of the light. Other traditional sources,
including fluorescent, compact fluorescent and high intensity discharge sources, are
even more limited and need times in the order of minutes to come to the nominal op-
erating parameters or to be reactivated after being switched off. On the contrary, the
response time of LEDs can be as low as 2ns, due to the direct connection between the
driving current and the amount of emitted light. This very fast switching enables the
use of temporal modulation for intensity control, resulting in pulse width modulation
(PWM [95]) and related control schemes.

The third unique advantage of LEDs is the large amount of light that can be produced
from a small area. With the relatively low operational temperature and lack of radiative
heat, a large number of individually controllable light sources can be tightly packed.
As a consequence of the law of etendue conservation [16], smaller source area makes
the design of optics that shape the light distribution to a required one much easier and
cheaper. Even more, instead of only being part of a centralized source of light, i.e. the
traditional luminaire, the light sources can be embedded into surfaces and objects in
the environment whose primary purpose is not light production. The emergence of this
so-called embedded lighting widens the definition of a luminaire, but also questions its
existence as an entity separate from the rest of the environment. As artificial lighting
freed humanity from the whim of nature, solid state lighting frees artificial lighting
from the confines of the luminaire and truly integrates it back into the environment.

The combination of these advantages has brought the possibility to create spatially,
spectrally and temporally complex light effects, with the sources of light embedded in
the environment. The core of the revolution, arguably, is not in the basic technology,
but in the control and interaction paradigm shifts it enables. With the newly found
freedom the users can switch their focus from the confines of the technology to the
expression of their needs, regardless of the technology. Identifying those needs, creat-
ing an effective language to communicate them to the system, and translating them to
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control signals that will fulfill them is the core of the revolution. Ensuring this will en-
able to go beyond retrofit applications and enable use of the full potential of solid state
lighting. The change of the name on the basic enabling technology level to solid state
lighting is not enough to encompass this change of focus; a new concept is needed.
We will call this concept Ambient intelligent lighting (AIL), which will be explained
after a short introduction to lighting systems.

1.1 Lighting Systems

A lighting system consists of a set of light sources, a set of sensors, a set of user
control devices and the interconnections between them. A simple example of a lighting
system is a light switch with on-off functionality that is, via a power line, connected
to an incandescent light source. Though simple, this example typifies most of the
residential lighting systems in use today.

The history of the sources and their use has been discussed often, but other parts of the
lighting system usually get comparatively lower attention. The interconnections used
between the light sources and the user controls are very dependent on the application
[95]. For most application areas, and especially in residential and industrial light-
ing systems, there has been relatively little progress from the basic form, the power
line. On the other extreme are the stage lighting systems, like the ones in theaters and
concerts, that typically have the most advanced controls and are the source of most
innovations. One of these innovations was the introduction of digital communication
channels, separate from the power line. This also mandates the move of the light
source intensity control, from the site of the user control to the vicinity of the light
source. In the case of some traditional light sources as well as solid state light sources,
this only requires to extend the functionality of the already present driving electronics.

After a series of proprietary protocols, a widely used standard interconnect and com-
munication protocol, DMX (Digital Multiplex, also called DMX512 [29]), emerged.
Even though designed for stage lighting, DMX has been successfully used in other
application areas, like architectural, retail and in rare cases residential lighting. An-
other standard digital interconnect, the DALI (Digital Addressable Lighting Interface
[26]), emerged from office lighting applications, but has also been used in other appli-
cation areas. Fueled by their popularity and wide availability, TCP or UDP over IP are
increasingly being used as lighting interconnection, either by providing a direct inter-
face on a luminaire level, or providing a bridge towards a local DALI or DMX based
network. Following the same application path as the wired protocols, starting from
entertainment and office lighting, a number of wireless interconnection protocols have
been recently brought to the market. Most of the wireless protocols are proprietary,
but a few candidates for a widely accepted standards, like Zigbee [33] and 6lowpan
[47] are taking hold.
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Similar to the interconnect, the user controls of lighting systems are most advanced
in stage lighting systems. A variety of DMX controllers are available on the market,
enabling the control of all the lamps and all the color channels in those lamps, as
well as a multitude of other devices that use DMX controls. Similarly, a number of
standalone user controls for DALI systems are available. In addition, a number of PC
based solutions are available. By grouping light sources, defining scripted transitions
and synchronizing the light output to an audio signal or output from a sensor, complex
light effects can be created. In modern office applications the controls usually depend
on the output of sensors, like the ones detecting occupancy or measuring daylight
intensity. Most contemporary retail and residential lighting systems have simple on/off
controls that are connected to a number of lights in a room or in an area. A smaller
number of these systems use dimming controls, enabling the creation of a wider range
of light intensities. A very limited number of residential systems use digital light
controls, usually as a part of a wider home automation system.

One common factor in all the above mentioned control devices is their technological
focus. In all cases, a clear link between the individual light sources in the environment
and the lighting controls is maintained. Both the integration of the sources of light
into the environment and their extended capabilities make these traditional lighting
controls unsuitable for solid state lighting systems. Fortunately, parallel to the techno-
logical developments in lighting systems, there have been a number of revolutionary
developments in the interaction with those technologies.

1.2 Ambient Intelligence in Lighting Systems

Artificial lighting, as one of the most fundamental technologies, has disappeared into
the background of our lives, so much integrated that we simply take it for granted and
forget how life was without it. Its basic use, extending the hours of the day in which
we can function normally, has been supplemented by a number of related, but unique
uses. Among them is the ability to transmit information, the most valuable good of the
21st century. The developments in imaging and video systems enable instantaneous
communication of large quantities of data through our most natural communication
means, vision.

Still, the way we interact with lighting at its basic use has been technology centered
and explicit. The main interaction paradigms are traditionally based on the particular-
ities of the technology, and not the needs of the users. In the development of human
computer communication, Weiser [113] predicted that the combination of ongoing
miniaturization in the semiconductor industry and device inter-connectivity would not
only lead to better, faster computers but also to a new way of interacting with com-
puters that could make computing as effortless and ubiquitous as writing or flipping a
wall switch. Ironically, controlling the lighting using a wall switch is a good example
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of a traditional interaction paradigm that is based on the technology and not on the
user needs. In this Ubiquitous Computing future, people would interact with many
computers, in a wide variety of different shapes and sizes, each suited for a particular
task, at the same time. Ambient intelligence [1, 71] builds further on this Ubiquitous
Computing vision and accentuates the sensitivity and reactiveness of the environment
to the presence of people. The goal of Ambient Intelligent environments is to support
people in their everyday life activities through technology and media. By positioning
the user and his needs in the center of attention and technology in a supporting role,
Ambient Intelligence essentially adopts a user-centric design philosophy on Ubiqui-
tous Computing [106]. This user-centric approach is central to the development of the
ideas in Ambient Intelligent Lighting (AIL) and this thesis.

The largest differentiator of AIL is the position that the user takes in the system. Tradi-
tional systems require the user to have an extensive understanding of the system to be
able to interact with it. The interaction is based on the language of the system, which
in the area of lighting, usually amounted to flipping a switch. This requires knowl-
edge not only of the capabilities of the system, but also of the connections inside the
system. This traditional interaction paradigm is called control driven. The increased
complexity of solid state systems, together with the limited ability of humans to ef-
fectively traverse a multidimensional space, make this type of interaction hard and
cumbersome.

Contrary to this, AIL systems have a model of the user and the context, and this can
bring the interaction at a level that is closer to the concepts of the user. This enables the
users to imagine their target experience of the lighting in the environment and commu-
nicate it to the system using a language that is natural to them. In this case, instead of
controlling the switch, the user describes the desired effect the lighting system should
have on the environment, which is then translated into controls for the system by a
set of intelligent, context aware algorithms. This interaction paradigm is called effect
driven. The advantages to this approach are stressed even more in the case of embed-
ded lighting, where a control driven design would be awkward and forced after loosing
the conceptual connection between the wall switch and the luminaire it controls. Fur-
thermore, in an ideal case, the details of any change in the hardware or connections
in the system should concern only the system. The user should only be aware of
the change of the capabilities of the system. For example, after an upgrade, the user
should only notice an improvement in the execution of the desired effect, providing
transparent extensibility and scalability.

The set of intelligent context aware algorithms, embedded in distributed devices, pro-
viding a personalized and adaptive control of everyday devices is one of the central
ideas of Ambient Intelligence. In the context of lighting systems, its application en-
ables, through effect driven control, easier use of the advanced capabilities of the mod-
ern light sources. The idea itself, however, is much broader and is applicable to any
system capable of interactions with a user.
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1.3 Light as a new digital medium

Ambient intelligent lighting is a broad emerging research area. To limit the set of
challenges to tackle in this thesis, a few topics with the highest potential impact were
selected. To be able to select these challenges, it is useful to look past the functional use
of artificial lighting. The ease of inter-connectivity and control of large digital systems
enables the creation of very complex lighting effects, changing at a high rate. This, in
turn, enriches the possibilities of use of lighting as a communication device, capable
of transferring information, as well as emotion. As a result, lighting is emerging as a
new digital communication and artistic medium.

Imaging has recently also transformed into a digital medium. The digitization of the
whole imaging pipeline has not only introduced a new level of flexibility, but also
contributed to price decrease. This contributed to an explosion of available digital
images and videos, democratizing digital imaging. Similar to the imaging case, to use
the full potential of digital lighting, a few basic challenges have to be overcome. These
can be classified into :

1. Creation or capture 2. Storage and transmission 3. Reproduction

4. Measuring and controlling quality

Due to the fact that AIL is a broad and emerging area, the two basic challenges of new
content creation and quality control are selected for further exploration in this thesis.

1.3.1 Content creation

The ease with which new content can be created or captured is the basis of any medium.
In imaging, the transition from film to digital sensors enabled a more affordable and
easier capture of reality from a wider array of users, exponentially growing the amount
of produced content. At the same time, the use of digital image creation and rendering
software added the possibility of creating new worlds and expressions.

The capture and creation of new content in the world of digital lighting, however, has
seen relatively little progress. The distribution of light in the environment can be cap-
tured by measuring the radiant power incident on all the points in the environment, the
so-called light field [76]. The capture of the light field, however, requires specialized
hardware with an extended spatial, temporal, and intensity range. Even more, the cap-
tured light field is hard to reproduce on a different lighting system. Both these reasons
have resulted in a very limited use of light field capture, mainly concentrated in the
computer graphics domain.
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A similar problem arises in the creation of a lighting effect. The easy interconnection
between light sources (Dali, DMX), brought to life hardware and software that assists
the creation of fully dynamic light scenes, but the created scenes are still linked to a
specific hardware and hardware arrangement and cannot be generalized.

To trace the core of the problem better we can use a model similar to the Image Quality
Circle Model of Engeldrum [28]. The Image Quality Circle is a process for managing
the image quality of imaging products. It consists of four elements: Technology Vari-
ables, Physical Image Parameters, Customer Perceptions, and the Customer Image
Quality Rating. The Technology Variables are the almost endless list of parameters
or variables, hardware, firmware and software, that an imaging technologist trades-off
to produce a known level of image quality. The Physical Image Parameters are the
quantitative functions and parameters that are ascribed to images; generally, measured
quantities that physically characterize an image or imaging system (image physics).
Customer Perceptions are the components, or perceived attributes of images. Often
the names of these perceptions have the suffix “ness”, such as darkness, sharpness,
colorfulness, etc. A shorthand notation that is used in the Image Quality Circle is
“nesses.” Customer Image Quality Rating is the overall quality measure. This number
is determined by having customers, or customer surrogates, scale sample images and
express an image quality judgment.

A similar model to the Image Quality Circle can be used to describe levels of ab-
straction a light effect can be defined at. This Ambient Intelligent Lighting model
differentiates the following levels :

• Hardware level: all the hardware device properties and device settings.

• Effect level: the effect that the hardware produces on the environment. This level
represents the physically measurable quantities.

• Perceived effect level: the perceived properties of the environment.

• Perceived atmosphere: the overall perceived atmosphere of the environment.

Moving from the hardware level to the perceived atmosphere level, the description of
the lighting effect is transformed from a technology based one to a user based one.
Unfortunately, as discussed above, most contemporary lighting systems are controlled
using descriptions on the hardware level. This is the source of both the generalization
and reproduction problems as well as the complexity challenges introduced with solid
state lighting when compared to traditional lighting systems.

To be able to define the light effect in one of the more abstract levels, a suitable lan-
guage, as well as a link between the primitives in the language and the physical level
are needed. The exploration of this new language is the topic of the first part of this
thesis. The studies are presented in an increasing order of complexity of the created
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light effects, from the selection of colors, through their spatial distribution in the envi-
ronment, towards a full spatio-temporal distribution.

There are a limited number of examples of existing systems that use a higher level
of abstraction. The amBX system [5] uses a extensible virtual representation of the
environment based on a simplified compass spatial model. The devices in the system
can be pre-assigned to different positions on the compass (N, W, SE, etc...) as well
as to user defined locations. In the reproduction phase, a script that depends on time
and external triggers can control the effect using the compass abstraction, providing a
definition on the effect level of the AIL model.

Recently, a new and exciting way of describing the overall impression of an environ-
ment has been developed by Vogels [108]. In the so-called Atmosphere Perception
model, the overall perception of an environment is defined through the affective eval-
uation of the environment. Vogels developed a method to measure the affective eval-
uation of a room, also called atmosphere. Factor analysis on a large space of possible
descriptors revealed that atmosphere can be described by four dimensions: coziness
(defined by words like cozy, pleasant, and intimate), liveliness (lively, exciting, inspir-
ing), tenseness (tense, terrifying) and detachment (formal, business-like). The effect
of several light characteristics of white light (light level, color temperature and spatial
distribution) on atmosphere perception was studied and an effect on each of the four
atmosphere dimensions was found.

Other systems use translation of information from a different medium to a light effect.
Kater [52] gives an overview of systems that use features computed from audio to
produce a light effect that follows music. Other systems use digital images or digital
video as the input medium. The Philips Ambilight TV [82] computes features from
the video stream that are then used to create lighting effects that enrich the experience
of watching the video as well as lower eye strain [14, 91].

1.3.2 Light quality

Another important aspect that is essential both to the acceptance of the retrofit LED
solutions as well as AIL systems is the perceived quality of the produced light ef-
fects. Light quality can also be defined on different levels. On the hardware level,
parameters that influence light quality are the spectral content, the spatial distribution
of intensity and chromaticity and the temporal modulations of the light output. On a
higher abstraction level, these influence:

• The appearance of the light emitting surfaces;

• The appearance of space;

• The appearance of objects, plants, animals, and humans in the environment;
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• The biological and chemical processes of objects, plants, animals, and humans;

This amounts to a large number of parameters of light quality, with relative importance
that depends on the application. Boyce [9, 10] gives an overview of general parameters
and their specific importance in different applications. To select the aspects of light
quality that are the topic of the thesis, we turn to the peculiarities of solid state lighting
and AIL.

As mentioned before, the temporal response of LEDs to changes in driving current is
much faster than the response of classical light sources. This fact has two interest-
ing consequences. First, LEDs are more susceptible to temporal artifacts like flicker
and visibility of digital steps. Second, the study of temporal light changes, and espe-
cially chromatic light changes, has been very limited due to the inability of traditional
sources to produce them. Both these consequences nominated temporal quality of light
as the most interesting aspect of light quality to study in this thesis.

Contrary to spatial models of human vision, existing temporal models are designed to
predict visibility of one specific temporal artifact, flicker, and are mainly luminance
based, with very limited experiments on chromatic flicker. Improving and extending
the models of temporal human color vision can be used to control the temporal quality
of the produced light effects, from simple transitions to the effects produced by an
Ambilight TV. The second part of the thesis explores the quality of the produced dy-
namic light effects through modeling the perception of smoothness, flicker visibility,
and temporal path preference of dynamic light.

1.4 Organization of the thesis

Chapter 2 provides a short introduction of digital color and gives an overview of the
definitions needed in the rest of the thesis. The rest of the chapters consist of original
work that has been previously published and can be read separately.

The work in the thesis comprises of two main parts. The first Part (Chapters 3, 4,
and 5) covers the creation of complex light effects using abstractions that simplify the
process. The solutions are presented in an increasing complexity progression, from
the selection of a set of colors using keywords in Chapter 3, through the creation of
complex spatial distributions of light using a simple interaction paradigm in Chapter
4, to the creation and rendering of a full nondeterministic spatio-temporal distribution
based on examples from nature in Chapter 5.

The second Part, through the exploration of the temporal properties of the human vi-
sual system, ensures the creation of dynamic light effects that are perceived as pleasant
and devoid of digital artifacts. Chapter 6 explores the sensitivity of the human visual
system to unsmooth light transitions and gives a contribution towards building a model
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of their visibility and building a boundary on the speed of smooth transitions based on
the hardware capabilities. Chapter 7 deals with the preferred temporal path between
two colors in a color space. Chapter 8 studies the difference between the temporal
sensitivity of central and peripheral vision.

Chapter 9 provides an overall conclusion and gives a vision of an ambient intelligent
lighting system that uses the results of the other chapters.





2
Digital Color

“For the rays, to speak properly, are not colored. In them there is
nothing else than a certain power and disposition to stir up a
sensation of this or that color.”

Isaac Newton

Throughout this thesis, a few concepts and definitions are used repeatedly. This chap-
ter serves as a central place for the definition of these concepts. The basics of human
vision, color perception and mathematical models of color are presented. Building on
the basics, digital color and image models are introduced and concepts used in the
rest of the thesis are defined. This short introduction to digital color and imaging is by
no means meant to be extensive and serves more as a starting point and a glossary of
concepts needed to follow the rest of the thesis. The content of the chapter is based on
[22, 32, 80, 94, 114]

2.1 Color and human vision

Color is easy to define intuitively. During the earliest years of life, humans expe-
rience colors and are taught the spoken language representations that correspond to
those experiences. In most communication between humans, both spoken and written,
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this intuitive definition is sufficient as the need for high precision and discrimination
is seldom present. Similarly, in classical reproductions of colors and images of the
environment, like paintings, a human matches the reproduction to the reproduced en-
vironment or the memory of it.

Mass production, with its need for automated quality control, and recently the de-
velopment of digital imaging have introduced more stringent requirements on the re-
production of colors. To be able to faithfully capture, store and then reproduce the
visual representation of an environment with high precision the intuitive definition is
not sufficient. Instead, a mathematical representation, a model, of color is needed.

When talking about properties of objects or light, it is common to say that they posses
color. However, strictly speaking, because color is a subjective psychophysical phe-
nomenon, there is no color without an observer. The attribution of color to objects/light
is a particular instance of what psychologists refer to as a stimulus error, wherein a
sensation experienced by an observer is identified with the stimulus causing that sen-
sation. In our everyday activities, the usage of color as a property of objects and light
is widely accepted and does not cause ambiguity. In technical applications, on the
other hand, this might lead to significant conceptual errors.

The perception of color is a result of interaction between a physical stimulus, receptors
in the human eye that sense that stimulus and the brain which is responsible for com-
municating and interpreting the signals sensed by the eye. This clearly involves several
physical, neural and cognitive phenomena, which must be understood to comprehend
color vision completely.

2.1.1 Light and color, physical basis

The physical stimulus for color is electromagnetic radiation with wavelengths between
λmin = 360nm and λmax = 730nm, which is commonly referred to as light or visible
light. The wavelength range of visible light is commonly referred as visible spectrum.
Light, when it falls onto the inner back part of the eye, stimulates the visual receptors,
ultimately causing the phenomenon of vision and perception of color.

Light, as electromagnetic radiation has its defining properties. Newton demonstrated
that sunlight can, with the help of a prism, be decomposed into a spectrum of
monochromatic components which cannot be decomposed further. Accordingly, light
can be characterized by the amounts of energy in the constituent wavelengths, com-
monly referred to as spectral power distribution (SPD) of the light. Other properties,
like the direction of polarization, are not differentiated by the human visual system.
Thus, the SPD of the light falling onto the retina is the only property that influences
the perceived color for a constant, isolated stimulus. The light that falls onto the eye
may come from different sources. When viewing light sources or self-luminous ob-
jects, the light directly originates from the object being viewed. More commonly, the
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object being viewed is illuminated by an external light source. In this case, the SPD
of the light entering the eye can be estimated from the product of the SPD of the light
source and the spectral reflectance/transmittance of the object. Though this only holds
for ideally flat surfaces, it is reasonably accurate if the object does not change geome-
try and the measurements are done under similar conditions. Absolute spectral power
distribution for emitted or reflected light is typically specified in radiometric units (e.g.
Watts per steradian per square meter) but the absolute SPD is rarely used in practice.
Usually the SPD is represented on a relative scale with arbitrary units.

2.1.2 Human visual system

The sensory part of the human visual system consists of two different types of recep-
tors, rods and cones. Rods are very sensitive to light and are primarily used for vision
under low light conditions. This type of vision is called scotopic vision. In scotopic
vision, only shades of gray can be perceived, and no chromaticity can be distinguished.
An example of scotopic vision condition is starlight. Under typical light levels the rods
get saturated and don’t have a large contribution to vision. Instead, the less sensitive
cones are active. The term photopic vision is used to describe this domain. Vision on
intensity levels between scotopic and photopic is referred to as mesopic vision, and
under these conditions both the rods and the cones are active. In the remainder of this
thesis, photopic light levels and photopic vision models are used. A third type of pho-
tosensitive receptors, the photosensitive ganglion cells, have been discovered around
the turn of the century [36, 44]. These receptors don’t contribute to conscious vision
beyond playing a role in the regulation of the sustained pupil size [41], but instead play
a main role in the regulation of the circadian rhythm.

Observers with normal vision have three different types of cones which are responsi-
ble for color vision. These cones have photosensitive pigments with different spectral
absorption characteristics. They are commonly called S, M and L cones, which is ab-
breviated from short, medium and long wavelength sensitive cones. Assuming that the
human visual system can be represented by a vector space, an assumption supported
by Grassmann’s law, the response of the cones can be modeled by a system defined
by the spectral sensitivities of the cones. Because in this case the system has a base
that consists of three vectors, the resulting space of all the colors which can be repre-
sented by the model is tridimensional. In such a model, every perceivable color can
be represented as a linear combination of the cone sensitivities. The resulting weight
vector in the linear combination is known as a tristimulus vector, and the phenomenon
is known as trichromacy. Some authors discuss the possibility of the perceivable color
space having more than three dimensions [34].

Due to overlap of the sensitivities of the three types of cones in the retina, a difference
signal between them carries more information. This fact supports a theory of color
vision, called opponent color theory, which states that the color signals from the cones
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are transformed into three opponent color channels, a red-green, a yellow-blue and a
dark-light achromatic channel. For further reading, Coren, Ward, and Enns [22] give a
gentle introduction to vision and perception of color, while Wyszecky and Styles [114]
give a broad overview of color science.

Because the space of all possible SPDs is more dimensional than the space of perceiv-
able colors the mapping between them is not injective, i.e., light with different SPD
can cause the same color sensation. SPDs that are different but cause the same color
sensation are called metamers. Usage of metamers is central in digital color imaging.
To reproduce a certain color sensation, we only need to reproduce some metamer of
the light that originally caused the sensation. This is the basis of color science and of
digital color imaging.

2.1.3 Basic color terminology

On the road to building a model for the perception of color, the basic quantities need
to be named and their connection to the physical properties of the light changing these
quantities established.

The terminology used in the field of color and light is broad and not always clearly
defined. In literature, authors seem to have their personal preferred set of terms, each
coming with their own definition. This is further complicated by the fact that in dif-
ferent applications, different aspects of color perception are dominant. This section
gives a short overview of some basic color terms and their use, mainly following the
definitions of International Commission on Illumination - CIE [19, 32].

The simplest color stimulus, named unrelated color, is an abstract stimulus consisting
of a constant uniform color surface in isolation. An approximation of an unrelated
color is a single light source uniformly illuminating a part of a dark environment.
The basic perceptual quantities that can describe the experience of such a stimulus are
defined as:

Hue: Attribute of a visual sensation according to which an area appears be similar
to one of the perceived colors: red, yellow, green and blue, or to a combination of two
of them.

Colorfulness: Attribute of a visual sensation according to which the perceived color
of an area appears to be more or less chromatic.

Brightness: Attribute of a visual sensation according to which an area appears to
emit more or less light.

As noted before, these attributes define the subjective experience of a stimulus that can
be described by its SPD. A number of quantities, correlated with these attributes can
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be derived from the SPD of the light. A basic quantity related to brightness is intensity
defined as :

Intensity: A measure over some interval of the electromagnetic spectrum of the flow
of power that is radiated from, or incident on, a surface. It is also called optical power
and is expressed in Watts per steradian per square meter.

Equal intensity light of different wavelength results in different levels of perceived
brightness. A quantity that takes this difference in sensitivity to different wavelengths
into account is luminance defined as :

Luminance: Radiant power weighted by a spectral sensitivity function that is char-
acteristic of vision. The magnitude of luminance is proportional to physical power but
the spectral composition of luminance is related to the brightness sensitivity of human
vision. Absolute luminance should be expressed in candelas per meter squared, but in
practice it is often normalized to 1 or 100 units with respect to a specified or implied
reference.

Most color stimuli appear in contrast with other color stimuli next to them, or further
in the visual surround. Furthermore, the composition of the visual field changes over
time. Due to these dependencies, the human visual system constantly adapts to these
changes in order to be able to estimate the reflectance or transmittance of an object,
independently of its illumination condition. This results in a large influence of context,
defined by both the spatial distribution of colors and the history of changes, on the
perceived color. This complex stimulus, dependent on spatial and temporal context, is
called related color.

As most colors in nature result from reflections, the most important part of the envi-
ronmental context is the color of the light source, or the color of a diffuse white surface
that reflects all incoming light, called a white point. Classical light sources, including
daylight and black body radiators, have a limited range of spectral power distributions.
To ensure an easier and more accurate exchange of color information, a standard set
of these light source SPDs, or standard illuminants, were defined by the CIE. Exam-
ples of such illuminants are the CIE Illuminant E where white is defined as a uniform
SPD across the visual light range of wavelengths. The A illuminant approximates an
incandescent light source, while the D series, out of which D65 is most often used,
represents different phases of daylight.

The definition of a white point changes in the case of light sources with a variable
spectrum, among which we could count displays. More details are discussed later,
after the introduction of device dependent color spaces.

A number of additional quantities can be defined for related colors :
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Lightness: The brightness of an area judged relative to the brightness of a similarly
illuminated area that appears to be white or highly transmitting.

Lightness =
Brightness

Brightness(White)

Lightness can only be defined for related colors and should not be confused with rela-
tive luminance as described above.

Chroma: Colorfulness of an area judged as a proportion of the brightness of a simi-
larly illuminated area that appears white or highly transmitting.

Chroma =
Colorfulness

Brightness(White)

Saturation: Colorfulness of an area judged in the proportion to its brightness.

Saturation =
Colorfulness
Brightness

=
Chroma

Lightness

2.2 Digital color representation, color spaces

To be able to represent color in digital form, a mathematical representation of the stim-
uli is needed. The earliest such systems use example patches of color to classify the
perceptual space of colors. For easier navigation, these systems are ordered according
to some of the perceptual attributes discussed above, hue, chroma and lightness for
example. Such a system is called a color order system. Kuehni [59] gives a historical
account of the evolution of color order systems. An example of such a color system
still in use is the Munsell Color Order System [75]. Even though using color order sys-
tems a subset of colors can be represented in a digital form, any operations between
representations are nonsensical as they assume no mathematical structure past partial
linear or cyclic ordering.

A next step in modeling color is to associate a color sensation to a point in a vector
space. In such a vector space, called a color space, each color is represented by a point
with coordinates on a set of base vectors, called primaries, color channels or color
axes. Unlike in color order systems, operations between color representations, like for
example differences, are meaningful in a color space. The base vectors of the color
space can be defined based on properties of a color rendering device, resulting in a
device dependent color space, or based on the properties of human vision, resulting in
a device independent color space.
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2.2.1 Device independent color spaces

One of the earliest color spaces was the CIE XYZ color space, also known as CIE 1931
color space, defined by the International Commission on Illumination (Commission
Internationale de L’clairage, CIE) in 1931. Many color spaces have been defined since
for different applications, but the CIE XYZ color space has a special place, because
it serves as the basis from which many others are defined. It was developed from a
series of experiments done in the late 1920’s by W. David Wright and John Guild .
Their experimental results were combined into the specification of the CIE RGB color
space, from which the CIE XYZ color space was derived. The axes in the CIE XYZ
color space represent three virtual stimuli with SPDs that are not physically possible,
but are selected such that any visible color can be represented as a positive linear
combination of these stimuli. The value on the Y axis is the luminance of the stimulus,
but the other two axes have no direct perceptual correlates. To make the chromaticity
information easier to depict, CIE XYZ is usually transfered to CIE xyY, another CIE
color space with a luminance component Y and two chromaticity components x and y.
The chromaticity coordinates x and y represent the projection of the vectors X and Y
to the X+Y+Z = 1 plane respectively. The two dimensional graphical representation
of the xy plane is called a chromaticity diagram. The chromaticity diagrams of the
CIE xyY and the CIE Luv (discussed below) color spaces are the most often found
representation of color. Figure 2.1 depicts the CIE 1931 chromaticity diagram.

CIE XYZ was designed as a standard way of representing and communicating abso-
lute color, but the question of difference between colors was still open. MacAdam,
based a series of experiments that tested the precision of color matching under differ-
ent conditions, proposed the so-called macadam ellipses. The ellipses represent the
set of colors around a center color that are indistinguishable from that center color.
Based on the work of MacAdam, the CIE 1960 UCS color space was developed in
1960, designed such that an equal distance in the color space corresponds to an equal
perceived difference in color, which implies that the space was designed to be percep-
tually uniform. CIE 1960 UCS was later succeeded by the CIE L∗a∗b∗ and CIE Luv
color spaces, also designed to be perceptually uniform. A cylindrical representation of
CIE L∗a∗b∗, namely CIE LCha∗b∗ , is often used as the axes are perceptual correlates
of lightness, chroma and hue. Although CIE Luv and CIE L∗a∗b∗ are a distinct im-
provement over the CIE 1931 system, they are not completely perceptually uniform,
do not provide correlates to all the perceptual qualities defined above or account for
all the effects of the surround on color appearance. To overcome the later issues, color
spaces were succeeded by color appearance models.

CIE L∗a∗b∗ is the simplest example of a color appearance model, as it takes into
account the chromaticity of the illuminant and has correlates for lightness, chroma
and hue. These properties are the minimum needed for a color space to predict the
appearance of related colors. CIECAM02 is the most recent in the series of color ap-
pearance models designed to encompass the effects and perceptual correlates missing
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Figure 2.1: The CIE xyY chromaticity diagram

in CIE L∗a∗b∗. It provides forward and inverse transforms from the CIE XYZ color
space to the color appearance attributes taking into account the effects of the surround-
ing. This enables the reproduction of related colors in an environment that is different
from the one where colors were recorded in. Fairchild [32] provides an overview and
recommendations for the use of different color appearance models.

2.2.2 Color matching objectives

The dependence of the appearance of a color on the context makes the appropriate
reproduction of a color dependent on the application and the environment in which it is
reproduced. For example, a suitable reproduction for a single isolated light source used
in illumination is to render the same unrelated color. In contrast, the appearance of a
single pixel on a computer monitor, also a light source, depends on the surrounding
pixels and the illumination in the environment and clearly needs to be treated as a
related color.

Spectral Color Reproduction represents the reproduction of the same reflectance or
emittance spectrum of an object or an image. Historically important, this type of
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reproduction has been superseded by the metameric match based reproductions. In
recent years, however, with the emergence of multi-ink printing and multi-primary
lighting, the spectral capture and reproduction is regaining popularity.

Colorimetric Color Reproduction is defined as the metameric match between the
original and the reproduction. This is done by matching the relative CIE XYZ values
of the original and the reproduction, if taken under illuminants with the same relative
spectral power distribution and equal surround. It should be noted that a colorimetric
match only entails relative luminance matching, meaning that the luminance relations
in an image are kept, but not the absolute luminance.

Exact Color Reproduction is defined as an absolute metameric match between the
original and the reproduction. All CIE XYZ values under exact color matching are
equal.

Equivalent Color Reproduction enables matching of the original and the reproduc-
tion under different illuminant chromaticities and intensities. An exact color reproduc-
tion under this condition would produce clearly incorrect results. To account for this,
the notions of a color appearance model and chromatic adaptation were introduced.
Thus, the equivalent match provides the same appearance of colors in the reproduction
as in the original, independent of the illumination and surround conditions.

Corresponding Color Reproduction relaxes the requirements of the equivalent repro-
duction on the brightness / lightness matching. As it is not always possible to reproduce
the same brightness / colorfulness of the original in the reproduction due to technology
limitations, the corresponding reproduction only requires lightness / chroma matching.

Preferred Color Reproduction is the final and most subjective reproduction type.
The correct reproduction of the original is not always the most preferred one. Artists
may change parameters of the reproduction to produce a certain artistic effect. Most
often, though, the preferred reproduction is made on a target medium and it is further
transfered using equivalent or corresponding color reproduction.

In the rest of the thesis, the Corresponding Color Reproduction using CIE L∗a∗b∗
lightness and chroma matches is used.

2.2.3 Device dependent color spaces

CIE xyY, CIE Luv and CIE L∗a∗b∗ spaces are models of human color perception and
as such are device independent. In color capture and reproduction devices, on the other
hand, different kind of color spaces, called device dependent color spaces, are used. A
device dependent color space is connected to the way a device captures or reproduces
color and it is limited to the colors the device can capture or reproduce.
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Based on the phenomenon of trichromacy, most color capture and reproduction devices
use three different types of sensors or variable light sources, with different wavelength
sensitivity or SPD. The coordinates of the maximum input of the sensors or the max-
imum output of the variable light sources in CIE XYZ are called color primaries of
the device and the device color space. The most often used color space for emissive
reproduction and digital capture devices has three primaries denoted by R, G, and B.
The device dependent space is denoted by RGB1. Any color that can be represented
in the device color space is a linear combination of the primaries with constants in the
range [0,1]. Knowing the primaries, the color represented in a device dependent color
space can be transfered to CIE XYZ and vice versa. For a variable light source, the
whitepoint is defined to be the chromaticity, described by the (x,y) point in a CIE xyY
color space, which corresponds to the point in the device dependent color space having
coordinates (1,1,1) and it is a function of the ratio of power between the primaries.
Sharma [94], Poynton [80], and Lindbloom [63] give an overview of the methods of
calibration, modeling and transfer of color from one color space to another.

Gamma

Most traditional reproduction devices, like CRT monitors, have a nonlinear light in-
tensity response to the variations in the control parameters, for example the driving
current. Usually the nonlinearity can be approximated by a power curve. The power
in the correction formula is called the gamma of the device and the power transform
gamma correction [80]. For legacy reasons and coding efficiency, PC monitors use
a standard gamma of 2.2. The components of the nonlinear device dependent color
space are denoted by R′, G′ and B′.

To ease the exchange of image information over the internet, a standard device de-
pended color space, the sRGB color space [96] was introduced. The standard defines
the chromaticities of the primaries and the nonlinear transfer curve.

2.3 Digital content

Digital representations of color, color sequences, images and videos are used in the
subsequent chapters of the thesis repeatedly. This section introduces their definitions
in the context of this thesis and the notation used.

The simplest building block for digital color content is a single color in a given color
space.

1Different device dependent color spaces such as CMYK exist for devices that are based on reflected
light, such as printers, but for this work only color spaces of emissive devices will be used.



2.3 Digital content 23

A digital color c ∈ C is the digital representation in the color space C of a physical
stimulus, that in a given context gives rise to a visual perceptual response. A color
vector is represented with its coordinates on the set of primaries ci, i ∈ {1, . . . ,n} of
the color space C.

Colors can be grouped in a simple unordered set or arranged according to different
index sets. A one dimensional index set produces a color collection, while a two
dimensional one an image.

A color collection c = {ci} is a function c : I ⊂N→ C, where C is a color space. We
call the color c(i) = ci an element of the collection. By |c|= |{ci}| we denote the size
of the collection, i.e. the number of elements.

A digital color image, or image, i is a function i : P ⊂ N2→ C, where C is a color
space and P⊂ N2 is the position space. We denote the space of images I.

We are often not interested in the whole image, but only a part of it that has a particular
property or the distribution of colors.

An image region, i|R is a restriction of the function i : P⊂ N2→ C, to R⊂ P.

A color histogram, or an image histogram hC,m is a function h : C→ R, where C is
a d dimensional color space and m ∈ Nd is a discretization parameter. The histogram
is a discretized representation of the distribution of colors P in a set of colors C.

In Chapter 5 and in the second part of the thesis (Chapters 6, 7, and 8) dynamically
changing light effects are generated. The basis for their digital representation is the
digital representation of time from which temporal sequences of colors and images
can be defined.

A digital timestamp or timestamp, t is a quantized representation of time used in
digital media. It is an integer multiplier of a well defined base time tbase. We denote
the space of timestamps TS = tbase ·Z

A color sequence c = {ct} is a function c : TS→ C, from a space of timestamps TS
to a color space C. By |c|= |{ct}| we denote the size of the sequence, i.e. the number
of elements.

A digital video, or video v = {vt} is a function v : TS→ I, from a space of timestamps
TS to the space of images I. By |v| = |{vt}| we denote the number of frames in the
video.

An video region, v|R is a restriction of the function v, mapping every frame vt to its
restriction vt |R, R⊂ N2.
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Part I

Light effect creation
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3
Selecting and rendering color

“I want meadows red in tone and trees painted in blue. Nature
has no imagination.”

Charles Baudelaire

Colors are the basic building blocks of an effect-driven lighting atmosphere design.
In this chapter, the creation of a color palette based on words is explored. Images
acquired through a web search, and subsequently processed, are used as an interme-
diary step between terms and colors and as a mean to bridge the semantic gap. Two
algorithms for extracting representative colors from the acquired images are presented
and are evaluated using color names and terms in English and Finnish. A measure of
suitability of a word for color extraction is proposed. A prototype system based on
this method is presented. The words are extracted from song lyrics synchronized to the
audio signal of the song. Rendering the extracted colors and a selection of images that
best represent the palette of colors together with the audio results in a full multimedia
experience. This chapter is based on [88]

3.1 Introduction

Colors are the basic building blocks of atmosphere creation using lighting. A user
of a lighting system might for example want to create a candle light atmosphere, but
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may not know the exact system settings to create it. A natural way to select these
settings is to describe the atmosphere using other media in which the user can better
express herself. This chapter introduces the idea of using human written language as
the natural expression medium. In the example, the term “candle light” is the natural
representation of the idea the user has. As the number of light sources becomes larger,
the sources themselves become smaller and capable of producing a wide set of colors,
the challenge presented to the user increases. Specially in the home environment,
easy and natural controls are required in order to ensure the realization of the user’s
desires and expectations based on an effective use of the system capabilities. A set
of algorithms is presented that enables unsupervised atmosphere creation based on
terms. To illustrate the algorithms in a system, the application of generating lighting
atmosphere based on music was selected as an example.

Light and music

Light has been used in conjunction with other media to enrich the overall experience.
For example, it has been used in conjunction with music in disco and concert light-
ing. Recently, in the Philips Ambilight television concept, light effects were used to
to enhance the experience of watching video. In the examples, the effect is most pro-
nounced when the light effects are directly connected and time synchronized to the
other medium.

The features that are traditionally used in atmosphere creation for music are low or
mid-level, for example volume, pitch, energy in specific frequency bands, harmonic
progression, etc. Using such features provides a good temporal correlation between
the light effects and the music, but often fails to establish a semantic connection. Kater
in [52] presented a method to enrich music with automatically computed light effects.
In his work, the CIE LCha∗b∗ [20, 114] Lightness, Chroma and hue of the light was
computed based on the volume, the complexity of the sound and the pitch of the audio
played. The results from the user study in [52] indicated that the users found the
changes in Lightness and Chroma well connected to the music. However, the hue of
the lights, when automatically produced, was seen as arbitrary. The users preferred to
change the hue manually to account for semantics in the music. It is not unusual to
expect a semantic connection between color names and the music through the lyrics.
For example, when the Police sing Roxanne put on the red light one would also expect
red light effects. When Wham’s joyful Club Tropicana is played, different colors are
appropriate than when R.E.M.’s Everybody Hurts is played.

Color representation

From the above, it is clear that there is a potential in using words or multi-word expres-
sions from lyrics as a cue in the production of light effects. However, the computation
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of a color or a set of colors that correspond to a word or term is often not trivial. This
is the case in even the simplest examples, when the word directly refers to a name of
a color. One of the main difficulties is the difference in the way humans and machines
represent and communicate color.

In every day activities colors are usually represented by their name. The color names,
learned by example, are also used to communicate color between people. Contrary to
that, machines use a digital representation of the light spectrum that produces the sen-
sation of color. For a successful digitization of color and light, a connection between
the two representations is needed. The first step towards this goal, i.e. a consistent
machine representation of color, has been well addressed over the last decades by the
CIE [20, 114] and led to a general digital definition of color in the form of color spaces
like CIE XYZ and its derivatives.

The next step is the establishment of the actual connection between the machine repre-
sentation of color and the terms humans use for the colors. The existence and definition
of basic color categories (for example: black, red, green) and their most representative
examples has been a matter of a lively discussion. The most popular view in recent
years has been the one derived from the research of Berlin and Kay [7]. Using color
terms from 20 languages and a review from 78 other languages, they discovered that
the basic color vocabulary carries remarkable regularity among unrelated languages,
giving the basis for an innate color categorization system. They identified 11 basic
color categories (black, white, red, green, yellow, blue, brown, pink, orange, purple,
and gray) and established color regions that correspond to those categories as well as
the most representative examples for the categories. Even though there is a regularity
among the languages studied, the variance between languages in the choice for both
the boundaries and the most representative examples is also high. This led to a devel-
opment of color categorization using fuzzy sets. Among others, Kay and McDaniel
[53] built a model based on fuzzy set theory which included four basic colors (red,
green, yellow and blue.). The same set of colors was used by Kuehni [60] to build a
model in CIE LCha∗b∗ connecting hue ranges to the selected colors categories. The
last model is used in this work as part of the evaluation.

The World Wide Web

The Web nowadays is a place where people share thoughts, stories, experiences by
texts and audio-visual content. This leads to billions of freely accessible images. The
accompanying texts and tags provide annotations that are used by search engines. Very
precise queries nowadays can produce images of the exact object in mind. Earlier
work by Shamma et al. [93] shows that the enrichment of music by Googled images
is possible and can be an attractive feature.
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Main contributions

In this work we add the step of automatic selection of colors that are associated with
the lyrics. We do so by selecting words or terms within the lyrics and by sending these
as queries to an image search engine. The images retrieved are then used to compute
a set of the most representative colors (i.e. the colors that are perceived to be the most
present) among the images. We use the retrieved images and computed colors in a
prototype system that renders them synchronized to the music.

The main contributions of this work are:

• An algorithm to extract the terms from lyrics which are the best candidates to
retrieve relevant images that lead to computation of meaningful colors.

• Two alternative algorithms to extract the most representative colors in a set of
images.

• A method to correct for the bias in the color distribution over images in large
image repositories.

• A measure of suitability of a term for representative color extraction.

• A demonstrator which uses our results to add synchronized images and colored
lights to music.

This chapter is organized as follows. In the following section the closely related work
is discussed. Section 3.3 gives an high level overview of the overall method and the
demonstrator. Section 3.4 handles the selection of the terms within the lyrics and
the creation of a set of images per term. In Section 3.5 two alternative methods to
identify a representative color for a set of images are presented. Section 3.6 handles
the experimental results, and conclusions are given in Section 3.7.

3.2 Related Work

As most interesting for this work, we discuss related work on the connection between
colors and language, extraction of representative colors from images, analysis of music
and lyrics, and linking music to other media. To the best of our knowledge, there is no
previous work that deals with the same subject in its entirety.

Most work relating colors to language is done using color names or memory colors and
using human observers. Bartleson [6] used 50 observers to define 10 memory colors in
the Munsell Color System. Moroney [74] used crowd sourcing to build a link between
color names and RGB values. Recently, in a series of papers Lindner [65, 64] proposed
a framework similar to the one proposed in this work. In the proposed framework, a set
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of images labeled with a specific keyword are retrieved from the Flickr online image
sharing community. Subsequently, the image set is used to build a color histogram
of colors present in the images and the mode of the color distribution is computed as
the color associated with the keyword. Additionally, the significance of the result is
computed using a z test. The work presented in this chapter differs from the framework
in a few points. First, the algorithms presented in this chapter compute a set of colors
instead of a single color and the relative contribution of all neighboring color bins
are taken into account, diminishing the effect of noise. Second, the testing of the
performance in the framework of Lindner is done using color names and memory
colors while we use color names and arbitrary words. Finally, instead of only using
a histogram based method that can produce quantization errors, a second algorithm
based on mean shift is proposed in this chapter.

Representative color extraction is used extensively in content based image retrieval
as one of the features used in the similarity computation between images. The terms
representative , salient [18] and dominant [70] colors are used in prior work. Usually
the representative colors are computed with a coarse quantization of a color space and
computing representatives for the bins produced in the quantization. MPEG-7 Visual
[70] defines dominant color as one of the low level visual descriptors for use in image
and video indexing and retrieval. As part of the MPEG-7 experimentation platform
[115] a Generalized Lloyd Algorithm, an adaptive k-means variant, in the CIE Luv
space is used for extraction of the dominant color descriptor. Even though the notion
of representative or dominant color is used, a clear definition is not given in literature.

In Kater [52] the Lightness, Chroma and hue of the lights are computed using the
volume, complexity of the sound and pitch of the audio signal. The selection of the
hue was studied and two different approaches were proposed. The user study however
showed that most users picked their own hue and the automatic hue selection was seen
as arbitrary.

Shamma et al. [93] present MusicStory, where they introduce the concept of automatic
music slide show creation using lyrics. Our work differs from MusicStory in a number
of aspects. We scan the lyrics for terms rather than single words. In MusicStory the
beats are used to display images, i.e. contrary to our approach no synchronization of
lyrics with images and music is applied. Next to the images, we extract and render
colors synchronized to the audio and the images. As part of the demonstrator we use
lyrics synchronization, a currently well-addressed topic. LyricAlly [112] is a system
where music and lyrics are aligned. However, the song structure of verse-chorus-verse-
chorus-bridge-outro is pre-assumed. This simplifies the task of categorizing both the
audio and the lyrics. We present a more generalized lyrics synchronization method,
where we discover both the structure of the audio and the lyrics before aligning the
two. The same approach can be further developed, as shown by Iskander et al. in [49],
where a synchronization on the syllable level is achieved using a dynamic program-
ming table of the lyrics and the texts recognized by a speech recognizer. Chen et al.
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[17] use vocal/non-vocal detection to segment music. The vocals within the audio are
processed by a speech recognizer. Forced alignment is then applied on the output to
match the lyrics. Although the algorithm is only evaluated on six (Chinese) songs, the
method is promising.

In earlier work on the retrieval of images relevant to music [84], album covers are
retrieved given an artist and album title. We do not focus specifically on album covers,
although album covers typically appear among the images when the title is one of the
identified terms (e.g. Yellow Submarine).

3.3 Overview of the method and demonstrator

One of the possible ways of translating terms to colors is to have a predefined database
of terms and their corresponding sets of colors. This approach, however, limits the
amount of terms that can be used and the possibility to use the method for a wide
set of languages. To overcome these shortcomings of the fixed database method, we
use images as an intermediate step between terms and colors. The advantage of using
images is that we have an easy interface to a large, albeit noisy, database of images
connected to terms.

One disadvantage of this approach is the large time latency, mainly due to the amount
of time needed to retrieve the set of images for a given term. To overcome this, a hybrid
approach is used in the demonstrator. A database of terms and corresponding colors is
used, but the database is build from the terms extracted from the songs. Furthermore,
the experience is enhanced by the addition of a set of images corresponding to the term
and shown at the same time.

Using this approach, the system consists of two computational parts. First, an off-
line part, having a long computation time, producing a database of terms and their
corresponding images and colors. Second, an on-line part, that renders the colors and
images at the appropriate time, synchronous to the audio. The on-line part of the
demonstrator consists of a music player that enables user interaction with the set of
songs in the library, an atmosphere creation agent and a set of lighting and imaging
devices. An overview of the system is given in Figure 3.1, and overviews of the two
parts are given in Algorithm 3.1 and Algorithm 3.2.

The off-line part of the system is executed on the set of songs S in the collection and
stores the output in a database for subsequent use in the on-line part. The off-line part
needs to be executed for all new songs in the collection.

The unsynchronized lyrics LU(s) of a song s are retrieved using the World Wide Web.
In this work, we do not elaborate on the retrieval of the lyrics, but we refer to earlier
work on automatic lyrics extraction from the web [58, 39].
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Figure 3.1: Overview of the system parts

To synchronize the lyrics and audio, first a method of synchronization on the stanza
level is used [40]. The audio is segmented into stanzas, where segments with similar
harmonic progression are assigned with the same label. The lyrics are scanned for
similar fragments (i.e. the choruses) and fragments with a similar textual structure (i.e.
the verses). We produce a labeling of the lyrics stanzas based on these similarities.
Now, we have independently computed two sequences of labels, one for the audio
and one for the lyrics. By expressing the length of the lyrics stanzas in syllables, we
can compute a most likely mapping between the two given the durations of the audio
segments.

Given the stanza synchronization, we now can approximately synchronize the terms
with the audio. For a given stanza, its length is now expressed both in seconds and in
the number of syllables. These parameters are used to estimate the moment the terms
identified are being sung in the music. We assume that the syllables sung in the lyrics
are of equal length in seconds. Hence, suppose a stanza has a length of l seconds and
contains n syllables. Then the term starting at syllable m is assumed to be sung at l·m

n
seconds after the start of the stanza.

The rest of the off-line processing functions represent the core of this work and are
elaborated on in subsequent sections.

Even though the off-line processing is represented as a centralized process, this is not
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Algorithm 3.1 Overview of the off-line part of the system
Input

set of songs S , digital audio A(s), unsynchronized lyrics LU(s), s ∈ S

Output
set of terms T , ∀s ∈ S, term timestamps T S(s),
synchronized terms T (s) = {(ts, t)|ts ∈ T S(s), t ∈ T},
term representative colors C(t), term representative images R(t)

for all s ∈ S do

(T S,L) = synchronize song(A(s),LU(s))

(T (s),T S(s)) = select terms(T S,L)

T = T ∪T (s)

for all t ∈ T (s) do
I = retrieve image set(t)
C(t) = extract representative colors(I)
P(t) = select images(I,C(t))

a requirement. In an ambient intelligent environment, with a large number of devices,
processing agents can run on any of the devices with the appropriate capabilities and
carry out subtasks. Due to the independent nature of the for all statements, the subtasks
can be delegated at those points and computed in parallel.

The on-line part of the demonstrator consists of a music player that enables user inter-
action with the set of songs in the library, an atmosphere creation agent and a set of
lighting and imaging devices. With the music player, users can play and control the
position in a song, can create, edit and schedule play-lists. The music player has an
interface to the atmosphere creation agent to which the current song and the position in
the song can be communicated. Furthermore, the music player can communicate any
special events like the beginning, pause or the end of a song. Using this information
and the precomputed output of the off-line part, the atmosphere creation agent renders
the light and the images at the appropriate time instances. The lights and images are
rendered on the connected devices through a predefined interface.

The atmosphere creation agent serves as the point of synchronization between the
music player and the output devices. It is aware of the number of, capabilities of,
and the relationships between the devices. The set neutral colors(), set neutral info(),
set song info(s), render colors(C(t)), and render images(R(t)) methods serve as cen-
tral dispatching points for the corresponding methods of the devices.
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Algorithm 3.2 Overview of the atmosphere creation agent
Input

S, A(s), T S(s), T (s), C(t), R(t)

Output
light and images, synchronized with the music

On start song(s ∈ S) do

set neutral colors()

set song info(s)

On stop song(s ∈ S) do

set neutral colors()

set neutral info()

On timestamp reached(ts∗,s ∈ S) do

if ts∗ ∈ T S(s) do
t = T (s)(ts∗)
render colors(C(t))
render images(R(t))

3.4 Using lyrics to create sets of images

We are interested in the words in the lyrics that are the best candidates to generate
relevant images. As objects depicted in images can in general be described by noun
phrases (e.g. little red corvette, crazy little thing called love, brown eyed girl) and
proper nouns (e.g. Eindhoven, Prince Charles, Johnnie Walker), we focus on these
groups of words within the lyrics. We use these noun phrases and proper nouns to
query large image repositories (flickr.com, images.google.com). The sizes of
these image repositories enable querying these precise terms. One benefit of querying
noun phrases instead of single words is that it leads to disambiguation. For example
the term wiley, windy Moors (taken from Wuthering Heights by Kate Bush) reflects
the moors in Yorkshire rather than the medieval Muslims in Iberia.

We identify terms within a text using a part of speech (PoS) tagger [11]. In this case we

flickr.com
images.google.com


36

used QTag by Oliver Mason, since this package is provided with training data in En-
glish (www.english.bham.ac.uk/staff/omason/software/qtag.html). Since
PoS taggers are typically trained on newspaper corpora, we first transform lyrics into
somewhat more prosaic English. We consider each lyrics line as a sentence, so we
capitalize the first letter and add punctuation marks where necessary. Then, we rewrite
common slang and abbreviations. Hence, abbreviations like gonna and kinda are
rewritten to going to and kind of. Words ending with in’ are rewritten to -ing, thus
kiddin’ becomes kidding.

We tag the adapted lyrics using QTag. The tags are used to identify noun phrases and
proper nouns. We select the longest sequences of nouns possibly preceded by adjec-
tives. We send each term within the lyrics as a query to an image search engine. In our
experiments we used both Flickr and Google Images, where we selected the option to
only download full-color images. For each term we retrieve up to max images images
and store them in the order as they are presented by the search engine. Hence, we
make use of the ranking provided by the search engines [12]. However, if the number
of images found using a multi-word term does not surpass a threshold min images,
we broaden the query by removing the first word. For example, little red corvette can
be broadened by querying first red corvette and consequently corvette. We remove
duplicates by comparing the URLs of the images.

This phase resolves in a annotated lyrics file, where each term is annotated with a list
of at most max images images. Figure 3.2 depicts an example query from one of the
image search engines.

Figure 3.2: Example Query for the term ”Red Corvette”

www.english.bham.ac.uk/staff/omason/software/qtag.html
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3.5 Using the images to compute a set of representative col-
ors

After the set I of images for each term t has been identified, we use the color informa-
tion from the set to compute a set C(t) of representative colors for t. For each color
c ∈ C(t), we also compute a measure of relevance r(c, t) of that color for the term t.

Two algorithms for representative color extraction are described, one using a histogram
in Section 3.5.2 and one using mean shift in Section 3.5.4. As noted before in [51] the
color distribution in images that can be found with image search engines is highly bi-
ased towards non-chromatic, or less saturated, colors. The bias is strongest towards
white and black. We present a method to estimate and correct for the bias in Sec-
tion 3.5.3.

3.5.1 Computing representative colors

The definition of a representative color is highly dependent on the context in which the
extraction is done. The importance of an exact definition is diminished in our work
because we extract a set of representative colors rather than one representative color.
In this work, we define a color to be in the set of representative colors if it is a local
maximum in the density, i.e. the local mode, of the distribution of colors found in an
image or set of images and has a corrected frequency above a certain threshold. The
frequency of appearance is corrected for the color bias as described in Section 3.5.3
Both methods, described in Sections 3.5.2 and 3.5.4 are mode finding methods.

The extraction is done in two stages. First, for each of the images in I(t), the represen-
tative colors are extracted. This can be the set of colors which have a count larger than
a threshold (Section 3.5.2) or the set of local maxima with a small granularity (Sec-
tion 3.5.4). In the case of extracting local maxima, we keep only the maxima that have
a large enough contribution for the region they represent. This first step is done for
two reasons: (1) to take into account only the presence of a color, and not the relative
contribution, something that in our experience would bias the distribution in the color
set for all images even more and (2) to account for the colors that are present only as
noise.

In the second step the overall set distribution P(t) is computed for all images in I(t),
using the color sets built previously. The distribution is then corrected to account for
the bias in the distribution of colors. After the correction, the set of representative
colors is extracted by finding the local maxima of the distribution with a given gran-
ularity. The exact details depend on the algorithm that is selected. Beside extraction
of the set, we also compute a relative contribution measure for every color in the set
and filter the colors that have a significantly lower contribution than the one with the
highest contribution in the set.
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3.5.2 Histogram-based method

The basic object this method uses is the color distribution P(t) over all the images
in the set I(t) for a term t. The color histogram hC,m(t) over all images in the set
described in a color space C and with m bins per color channel is an estimate of that
distribution. We assume C, t, and m to be fixed in the rest of the section and denote
the color histogram by h and the image set with I. As described in the overall method
overview, in order to filter out the colors that appear in the image only as noise and to
reduce the bias we do the extraction in two steps.

First, we quantize the representation of every image i ∈ I in the color space C. This
is done with uniform quantization on every color channel and with the same number
m of bins per channel. Next we build a joint histogram hi(x,y,z), for 1 ≤ x,y,z ≤ m
being color channels in a three dimensional color space. Next, the histogram is filtered
to remove the bins with a relative frequency lower than a computed threshold t1. To
compute the threshold t1 we use the fact that an image that has only noise will have
a uniform distribution over the bins in the histogram. The outliers from the uniform
distribution will have bin counts larger than twice the mean bin count. Taken this into
account we compute t1 for an image i as t1 =

2·|i|
m3 . Thus we get a set of colors which

are mainly present in the image in the nonzero count bins in the histogram hi(x,y,z).

Given all the image histograms hi(x,y,z), we compute the histogram h over the whole
set of images as

h =
|I(t)|

∑
i=1

sgn(hi(x,y,z)), (3.1)

for 1≤ x,y,z≤ m. The extended sign function sgn(u), defined as

sgn(u) =


−1 u < 0
0 u = 0
1 u > 0

(3.2)

is used to calculate the number of appearances of the colors, rather than the area which
the colors cover in the images.

Next the set of locally representative colors is identified by searching for colors that
are local maxima in a square neighborhood N ns with size ns around them. The neigh-
borhood is defined on the histogram bins. A color c∗ = (x∗,y∗,z∗) is added to the set
C if

h(c∗) = max
c′∈N ns(c∗)

h(c′). (3.3)

For all colors c∗ in the set C, their relative contribution r(c∗) is computed, taking into
account neighboring colors they represent. The computation of r(c∗) for a represen-
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tative color c∗ is done by summing the relative frequencies of all colors c that have a
path of steepest ascent on the relative frequencies to c∗. A given color c is on the path
of steepest ascent to c∗ if c∗ is the local maximum in the neighborhood N ns(c). The
set of representative colors C is then ordered according to those contributions r(c∗).
To filter the noise in the set all representative colors which have a relative contribution
smaller than a threshold t2 are removed from the set. The threshold can be a fixed
number, for example all the colors with a relative contribution of less than 5% can
be removed. The threshold can also be computed from the properties of the set, for
example all colors with a contribution less than the mean contribution over all colors
in the set can be removed.Algorithm 3.3 depicts the histogram method.

The size of the neighborhood ns and the number of bins m are parameters that can be
varied to produce the desired size and granularity of the resulting set of colors. Using
a larger number of bins also has an impact on the estimate of the distribution. A small
value for the number of bins m will give a rougher estimate of the distribution in the
images, but at the same time will allow for better noise removal and for a smaller
impact of the variance of the appearance in color over the images. The desired number
of colors in the resulting set depends on the application.

The choice of a color space is also a variable in the method. The results presented in the
evaluation are computed using sRGB (we assume the sRGB color space for all images)
without gamma correction. A test with CIE L∗a∗b∗ showed only a slight improvement,
with the biggest hurdle being the harder quantization of the CIE L∗a∗b∗ space, due to
its complex shape. Other studies in related subjects like skin color detection noted
a small impact of the selection of the color space on the result. For an overview of
related work with the same conclusion we refer to [107]. A much larger impact on
the results comes from the observed bias in the distribution of colors over a large set
of unrelated terms. Due to the importance, we give a more detailed discussion of this
topic in the following Subsection.

3.5.3 Color bias correction

The method described above assumes that the distribution of colors over a very large
randomly selected image set would be uniform. However, during our experiments with
a large set of terms we observed that the distribution of colors is highly non uniform.
This fact is also shown in previous work [51] where a non-uniformity correction is
used for improvement of a skin color detection algorithm.

When assuming a uniform distributing of colors, the most prevalent colors over all
terms were black and white. Moreover there was a general color bias towards de-
saturated colors. Hence, the colors that would be perceived to be the representative
were not identified as such. Figure 3.3 shows a view on the marginal distribution of
the colors estimated as representative using a large image database on the ab plane of
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Algorithm 3.3 (histogram) method : C = extract representative colors(I,m,ns)
Input

set of images I, number of bins m, neighborhood size ns

Output
set of representative colors for the set of images C

h({1, . . . ,m},{1, . . . ,m},{1, . . . ,m}) = 0

for all i ∈ I do

hi({1, . . . ,m},{1, . . . ,m},{1, . . . ,m}) = 0

for all (x,y) ∈ {1, . . . ,width(i)}×{1, . . . ,height(i)} do

hi(b i(x,y)
256/mc) = hi(b i(x,y)

256/mc)+1

t1 =
2|i|
m3

for all c ∈ {1, . . . ,m}3 do
if hi(c)> t1 do

h(c) = h(c)+1

for all c ∈ {1, . . . ,m}3 do

c∗ = c
while h(c)< max

c′∈N ns(c).
h(c′) do

c = argmax
c′∈N ns(c)

h(c′)

h(c) = h(c)+h(c∗)

t2 = 0.05 max
c∈{1,...,m}3

h(c)

for all c ∈ {1, . . . ,m}3 do

if (h(c) = max
c′∈N ns(c).

h(c′)) and (h(c)> t2) do

C = C∪{ (c+0.5)
m/256 }

CIE L∗a∗b∗. Figure 3.4 shows the marginal distribution of the same color distribution
on the L axis of CIE L∗a∗b∗. The bias towards desaturated colors and skin tones (reds
and yellows) is clearly visible in Figure 3.3 and confirms the findings in [51]. The
model used in [51] is not directly usable in our method because we count only the
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appearance of a color in an image, while Jones et al. take into account the area that the
color covers in the images.

−150
−100

−50
0

50
100

150 −150
−100

−50
0

50
100

150

−12
−10
−8
−6
−4
−2

ba

Lo
g 

re
la

tiv
e 

fre
qu

en
cy

Figure 3.3: Histogram of the estimated
color distribution for a random image
set in the ab plane.
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Figure 3.4: Histogram of the estimated
color distribution for a random image
set on the L axis.

To correct for the non-uniformity, the frequency in the set histogram h(c) is corrected
depending on the properties of the color c. The simplest correction takes into account
the saturation of the color and gives a weight which is proportional to the saturation,
thus correcting for the bias towards the desaturated colors in the overall distribution.
However, a function of this type is only applicable when we are interested in fully
chromatic colors, as it tends to over express the saturation of the resulting colors.
Another problem with this approach lies in the fact that different, even fully chromatic
colors, are represented at a different saturation level in the set of images. Red and
yellow, for example, are represented at near to full saturation, while specially green
tends to be present at lower saturation levels. A simple correction would thus result in
under representation of green colors in the resulting representative color set.

To take into consideration the full non-uniformity in the distribution, we need to build
an estimate for the distribution of representative colors for an ideal random set of
images. To estimate this distribution, we used the union of the color histograms of a
collection of terms, part of which are the terms given in Table 3.3.

Having computed the histograms for all the terms in a set t ∈ T , we estimate the
distribution ĥ as

ĥ(c) =
1
|T |

|T |

∑
t=1

ht(c), (3.4)

where all the histograms ht(c) are first normalized to a sum of unity.
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Color bias corrected histogram method

After the estimate ĥ(c) is computed, the histograms for the terms are normalized using
ĥ as

h′t(c) =
ht(c)

ĥ(c)+ const
, (3.5)

where ht(c) is the non-modified term histogram, and const is a parameter introduced to
control the influence of the bins with a small probability of appearance. The value of
const is typically in the order of the average probability of appearance for all the bins
in the distribution ĥ(c). The value of const approaches zero as the histogram becomes
more fine-grained. Hence we conclude that the need for an additional term can be
explained by the quantization errors due to the use of a histogram.

3.5.4 Mean shift

The histogram method has limitations in the precision with which the representative
colors can be extracted. The precision can be improved by using smaller bin sizes, but
smaller bin sizes also render the method more sensitive to noise and to small changes
in color appearance due to natural object color variation, illumination changes or cam-
era properties. Using the histogram method in perceptually uniform color spaces is
hard due to the properties of those spaces which make the quantization a much harder
problem than in the case of RGB. To overcome these limitations of the histogram
method, we developed a method based on the mean shift algorithm.

Mean shift is a nonparametric method first introduced by Fukunaga [37] and recently
made popular again in computer vision applications by Commaniciu and Meer [21].
It is a robust mode finding and data clustering method. The extraction is done as
previously in two steps: first per image and then for the whole set of images.

Given n data points xi ∈ Rd ,1 ≤ i ≤ n, a radially symmetrical kernel K = c · k(‖x‖2)
and having g(x) = −k′(x), the mean shift for a starting point x0 is an iteration of the
form

xk+1 =
∑

n
i=1 xig

(∥∥∥xk−xi
hs

∥∥∥)
∑

n
i=1 g

(∥∥∥xk−xi
hs

∥∥∥) , (3.6)

where hs is the unit window or kernel size. The size of the kernel is used to tune
the number of segments and so, the number of resulting representative colors. The
iteration is done as long as ‖xk+1−xk‖> ε . We used an Epanechnikov kernel with a
profile k(x)

k(x) =
{

1− x x≤ 1
0 x > 1

(3.7)
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The Epanechnikov kernel was used due to the speed of convergence and the simplicity
of its derivative and thus the function g(x).

The first step is done along the same line with Comaniciu[21], to find a set of colors
which are a good low resolution representation of the image (i.e. in a color sense). The
image is transferred to CIE L∗a∗b∗ taking into account only the color information,
treating the image pixels as a set of data points in the color space. For the transfor-
mation to CIE L∗a∗b∗, sRGB is assumed for all the images and the D65 illuminant
is assumed as the viewing illuminant. The image representation is segmented and for
each segment the representative mode added to the set of representative colors for the
image.

The extracted colors for the images corresponding to a given term are added to a pool
of representative colors. A second mean shift procedure is applied to extract the final
representative color set for the term. For the extraction we again use the Epanechnikov
kernel with a size that produces a small number of segments. The size of the kernel
in the second step can be varied to produce representative color sets with different
granularity. Algorithm 3.4 depicts the mean shift method.

Algorithm 3.4 (mean shift) method : C = extract representative colors(I,hs,hs∗)
Input

set of images I, kernel size hs, image kernel size hs∗

Output
set of representative colors for the set of images C

t1 =
2|i|
m3

for all i ∈ I do

(Ci,r(c)) = mean shift cluster(i,hs∗)

for all c ∈ Ci,r(c)> t1 do
C∗ = C∗∪ c

(C∗,r(c)) = mean shift cluster(C∗,hs)

for all c ∈ C∗,r(c)> 0.05max
c∈C∗

r(c) do

C = C∪ c
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Color bias corrected mean shift

To add the correction for the color bias in the images, we extend the mean shift iteration
given in Equation 3.6 to the form

xk+1 =
∑

n
i=1 wixig

(∥∥∥xk−xi
hs

∥∥∥)
∑

n
i=1 wig

(∥∥∥xk−xi
hs

∥∥∥) , (3.8)

where wi are weights computed for all the data points xi from the estimated set dis-
tribution ĥ. The set distribution has values only for the bin centroids and in order to
compute the value for an arbitrary point we use trilinear interpolation.

3.6 Experimental Results

Having no known prior work that deals with the problem addressed, to evaluate our
method we used results from related topics. The first part of the evaluation compares
the representative colors resulting from using color names as terms to acceptable hue
ranges from [60]. The second part of the evaluation uses three sets of terms in English
and their translations to Finnish and computes color differences between the resulting
representative color sets.

Color names

To subjectively assess the performance of the method, we present the colors which
were computed as most relevant for a number of color names in English and Finnish in
Table 3.1 and Figure 3.5. The presented results use the histogram method with 16 bins
per channel and images from both Google and Flickr with a set of around 200 images
for each image search engine.

The colors with high expected chroma (blue, yellow, red, green, brown and orange)
have also a high computed chroma value. Furthermore, the hue difference between
the colors for the English and the Finnish terms is small. Visual inspection also shows
that the results are acceptable as representatives of the colors which names are used
in the method. The colors with lower expected chroma (black, white and gray) have
a chroma value in all cases smaller than the chroma values for the first group. The
difference between the colors for the color names in English and Finnish is also bigger
in this case. Note that for very low chroma values, the hue value is undefined. For
each of the colors in the low chroma group, at least one of the colors is not acceptable
as a representative for the color with the name used in the method. It has to be noted
that in each of the cases, one of the other colors in the representative set is acceptable
as a representative color.
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Lightness Chroma Hue

blue 27 59 280
sininen 38 38 282

yellow 74 63 94
keltainen 83 73 83

red 35 55 31
punainen 41 68 33

black 16 0. 315
musta 68 0. 315

white 63 17 286
valkoinen 87 6 19

green 53 28 130
vihreä 45 39 132

brown 48 25 43
ruskea 65 23 67

gray 75 11 69
harmaa 74 0. 315

orange 68 76 59
oranssi 57 69 52

Table 3.1: Most representative colors for the color names in English and Finnish. The
colors are given in the CIE LCha∗b∗ color space.

To give a more objective assessment on the performance of the method and to give
a basis for an automatic evaluation we use the results of Kuehni [60], which give
the acceptable range in CIE LCha∗b∗ hue for the colors blue, red, green and yellow.
Table 3.2 gives an overview of the selected colors with the range of hue angles that
correspond to each color. The hues for the most representative colors shown in Table
3.1 fall into the boundaries defined in Table 3.2. Furthermore, applying either the
histogram method with 8, 16 and 32 bins per channel or the mean shift algorithm
produced most representative colors with hues that fall into the boundaries given in
Table 3.2. Taking only the images which were in the set of search results of one of the
image search engines, either Google or Flickr, also produced results with hues inside
the given boundaries.
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Figure 3.5: Most representative colors for nine color names in Table 3.1 in English
(right patches) and Finnish (left patches).

Minimum h Focal h Maximum h

red 350 24 41
yellow 75 87 101
green 112 175 222
blue 223 246 287

Table 3.2: Hue angles for color regions.

Relative comparison

The accuracy with which the representative colors are extracted is also evaluated with
a relative comparison between terms in two languages. This is done on three sets of
terms, being color names, names of real objects and colorless terms. Two terms with
the same meaning are expected to be associated with the same color. We therefore
select a set of terms in English and their translations into an unrelated other language,
namely Finnish. The translation of the terms from English to Finnish was done by
a native Finnish speaker and given the simplicity of the terms, a large variation be-
tween translations is not expected. Since the terms are different, the queries in English
and Finnish result in different sets of images. However, when querying for the terms
tomato or tomaattii we expect images of the same concept. We therefore evaluate our
method by calculating the distance between the representative colors found with the
English and Finnish terms.

The distance ∆E between two colors c1 and c2 is defined as

∆E(c1,c2) =
√

(∆L)2 +(∆a)2 +(∆b)2 , (3.9)
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where ∆L, ∆a and ∆b are the differences between the L, a and b components of the
representation of c1 and c2 in the CIE L∗a∗b∗ color space. The Euclidean distance
∆Eab in CIE L∗a∗b∗ is a standard measure for color differences because of the near
perceptual uniformity of the space. All colors produced by the method are assumed
to be in the sRGB standard device dependent color space and D65 is assumed as a
standard illuminant.

The terms selected are split up into three categories. The first one contains names of
colors, where we expect small values for ∆E. The second category has terms that have
a clear association with colors, where we also expect small ∆E-values. We compare
these two categories with the last one, where we selected terms without an expected
association with a color (category 3). The results of the experiments can be found in
Tables 3.3 and 3.4. The above discussed difference is given in column ∆E. As expected
the difference between the colors produced for the set of color names is smaller than
the difference in colors obtained for the real objects and for the colorless terms. We
observed that in the case of the real objects, most terms had a connection to more than
one color, and in most of the cases, the order in which the colors were ranked in the
set was different. Thus taking into account only the first representative color in the
resulting set produced large errors.

To take into account the differences between the sets, and not only the most represen-
tative color, we used a measure of set distance between the computed sets. Given two
sets C and D with n and m colors and r(x) denoting the computed contribution of color
x, we define the set distance ∆E∗ as

∆E∗ =

n

∑
i=1

r(ci)min
j

∆E(ci,dj)+
m

∑
j=1

r(dj)min
i

∆E(ci,dj)

n

∑
i=1

r(ci)+
m

∑
j=1

r(dj)

, ci ∈ C, dj ∈ D (3.10)

or as a weighted sum of the minimum distances between the colors in the two repre-
sentative color sets, where the weights are taken to be the computed contributions of
individual colors.

As can be seen in Table 3.3, using the set distance instead of the most representative
color distance lowers the differences between colors for some of the terms consider-
ably. Terms that had only one color in the set of representative colors, on the other
hand, have the same values for both ∆E and ∆E∗. The most visible improvement is in
the low chroma colors and in the real objects group (category 2).

Using the mean shift algorithm on the same test terms produced results which followed
the same trends and had the same subjective quality of the produced representative
color sets.
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TERM FINNISH ∆E ∆E∗ Divergence

blue sininen 7.483 7.483 0.202
yellow keltainen 18.104 18.104 0.185
red punainen 15.006 15.006 0.149
black musta 31.457 13.703 0.059
white valkoinen 21.898 7.455 0.070
green vihreä 13.238 13.238 0.181
brown ruskea 19.346 19.346 0.067
gray harmaa 31.152 11.086 0.098
orange oranssi 16.100 16.100 0.171

tomato tomaatti 11.740 11.740 0.216
ocean valtameri 12.619 12.619 0.113
beer olut 68.847 23.056 0.053
glass of coke coca-cola 52.365 33.086 0.103
parking lot parkkipaikka 26.560 19.341 0.136
concrete betoni 41.490 28.541 0.111
bricks tiilet 37.345 37.345 0.139
banana banaani 34.530 23.745 0.095
cheese juusto 23.749 23.749 0.125
lemon sitruuna 7.245 7.245 0.213
strawberry mansikka 14.592 14.592 0.185
ice jää 30.729 18.273 0.075
polar bear jääkarhu 25.468 22.295 0.175
wood metsä 37.173 32.917 0.075

peace rauha 46.528 25.441 0.046
chair tuoli 16.212 16.212 0.076
w. i. c. l. i. y. 25.701 25.701 0.026
book kirja 29.056 22.624 0.057
city kaupunki 18.502 18.502 0.056
family perhe 23.749 23.749 0.053
paradise paratiisi 15.777 15.777 0.077

Table 3.3: ∆E, ∆E∗ and Divergence values for the terms used in the evaluation. The
two abbreviations in the table are w.i.c. for “wireless internet connection” and l.i.y. for
“langaton internet yhteys”.

Color distribution divergence

The presented distance measures operate on the set of representative colors and de-
pend on the algorithm and parameters selected. The presented algorithms also need a
measure of confidence on the computed results, which can also serve as a measure of
suitability of a term for color extraction. The target measure would only depend on the
set of images retrieved and not on the algorithm applied to produce the representative
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∆E ∆E∗ Divergence

category 1 19.3093 13.5023 0.1312
category 2 30.3179 22.0387 0.1296
category 3 24.3144 23.2554 0.0582

Table 3.4: Average ∆E, ∆E∗ and Divergence values for the three categories.

color set. We observed that a good candidate measure that has the required property is
the KL Divergence between the distribution of colors for a term and the general distri-
bution used for the bias correction. The KL Divergence is an information theoretical
measure for dissimilarity between distributions.

Figure 3.6 depicts the values for the KL Divergence for the terms in the three categories
selected in the experiments. Both Table 3.3 and Table 3.4 also show the divergence
for separate terms and the average divergence per category. As expected, the average
divergence of the color names and real objects is close and an independent sample
t-test found the difference not significant at α = 0.05 level, while both categories have
a significantly higher divergence value than the one in the colorless terms category.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Term

D
iv

er
ge

nc
e

 

 
Category 2
Category 1
Category 3

Figure 3.6: Divergence between the
learned set distribution and the term
distributions.
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Figure 3.7: Divergence for images sets
from different search engines.

Search engine influence

The results presented so far take images from both image search engines. It is interest-
ing to look at possible differences between the engines, specially because they use two
different kinds of indexing. We expect that Flickr, which has manual tagging would
overall perform better. To present the differences we use the KL divergence. The ex-
pectation that Flickr would provide better results can be translated to an expectation
of a higher divergence for the distribution of colors computed from the set of images
acquired from Flickr.
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The color distributions computed from the images acquired from Flickr had a mean
divergence of 0.1769 with a variance of 0.1172. The Google based ones had a mean
of 0.1315 and a variance of 0.0604. A paired t-test on the divergence values showed a
significant effect at α = 0.05.

On closer inspection of the data, we observed that the large variance in the Flickr
data was due to a small number of terms (10 from the 60) which had a much higher
divergence value than the others. The terms with this property were all in Finnish
and the number of images acquired less than 50. On the other hand, all the Google
image sets had 200 images, which was the limit used in the experiments. After the
deviating terms were filtered, the divergence distribution for the Google data had a
mean of 0.1286 with a variance of 0.0521. The new mean divergence for the Flickr
data set was 0.1325 with a variance of 0.0753. While the Google mean divergence
changed 2.2%, the Flickr one changed 25%. A repeated paired t-test for equality of
means showed no significant effect of the search engine at α = 0.05. The above results
show that contrary to our prior belief, for the set of terms we used we did not find a
significant effect of the search engine on the suitability of the produced image sets for
representative color extraction. The number of images in the set, however, showed a
significant effect. Figure 3.7 shows the divergence values for the color distributions
computed from the images acquired from Google and Flickr search engines .

3.7 Conclusions

In this chapter, an unsupervised method to enrich textual applications with relevant
images and colors is presented. We show that meaningful colors for a term can be
computed using large image repositories and image processing. The most important
problem in the representative color extraction identified was the one of correcting for
the color bias present in the images. We show how the bias can be corrected and
representative colors extracted using a histogram based approach or mean shift.

The method was evaluated using hue angle boundaries for high chroma colors and
differences between sets of representative colors computed for terms in English and
Finnish. By comparing the value of the KL Divergence for the three sets of terms
selected, we show that it can be used as a measure of suitability of a term for color
extraction.

A prototype system based on this method is presented where the method is applied
to song lyrics. In order to identify terms within the text that may be associated with
images and colors, we select noun phrases using a Part of Speech tagger. Large image
repositories are queried with these terms and results gathered in a set of images per
term. The images that are best ranked by the search engine are displayed on a screen,
while the extracted representative colors are rendered on controllable lighting devices
in the living room.



4
Specification and rendering of spatial

distributions of light

“We did not need a special word for interactivity in the same way
that we do not (yet) need a special word for people with only one
head.”

Douglas Adams

After the selection of a palette of colors for the desired lighting atmosphere, their
distribution in the environment has to be defined. With a large number on indepen-
dent light sources, their individual control becomes unfeasible. To overcome this, this
chapter introduces the “virtual spot” concept that enables the creation of the spatial
distribution based on a small number of atomic effects that user can understand. Us-
ing this abstraction together with codes embedded in the produced light, an interactive
spatial light design algorithm is presented. Two prototypes of the proposed algorithm
were built and tested for feasibility and user satisfaction.

This chapter is based on [87]
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4.1 Introduction

Advances in solid state lighting (SSL) have enabled its use as a viable alternative to
traditional light sources [85, 77]. The multitude of color tunable light sources that
comprise a modern SSL system allows for finer control and more freedom in setting
and adaptation of the color, and of spatial and temporal properties of the lighting sys-
tem. This results in new possibilities for atmosphere creation and lighting effects.

The large freedom in settings, typical of such lighting systems, makes traditional con-
trols ill-suited, even for professionals. The process of manipulating the parameters of
each light source individually would be overwhelming to the user. The reason for this
lies in the nature of traditional controls which are based on the cause-effect paradigm.
For example, the user flips a wall switch to control the status of a light source (the
cause), in order to create an illumination distribution in the room (the effect). This
control paradigm will fall short when applied to extensive SSL systems, because of
the large amount of parameters and consequently the substantial number of possible
effects.

Various solutions for the control of light effects have been developed. Usually these
solutions rely on a two step approach. The first step consists of the description of the
complete target light effect. For example, the description can be given by means of a
drawing that shows the distribution of the light colors over a scene. Alternatively, the
method presented in Chapter 3 can be extended to include spatial information next to
the extracted color information, resulting in a spatio-color map of an image or a term.
The second step consists of the mapping of the target scene onto the real space. The
mapping problem can be solved once the footprints of the available light sources are
known.

The mapping is traditionally solved using computer simulations [25]. Often these sim-
ulators are based on either ray tracing or radiosity methods. In general, the accuracy
of these simulators is only acceptable when the space, including furniture, can be ac-
curately modeled. This can be very cumbersome for the light designer. Moreover,
experiencing the designed light scene on a computer screen is very different from be-
ing in the actual scene.

Another approach is based on recording the various light source footprints with a cam-
era [83]. In this approach all light sources have to be switched on and off sequentially.
This time-consuming approach has the following shortcomings. First, the resulting
light effect depends on the camera view point, hence, an accurate analysis on the best
camera location is required. Furthermore, a new calibration is required every time
something changes in the space, e.g. when the interior of the space is changed or when
the location or orientation of luminaires are varied. Last, and most noteworthy, this
approach does not allow direct interaction, since the creative step and the mapping
step are decoupled.
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Interactivity in the context of lighting design enables fast prototyping and iterations,
both considered an essential part of an effective creative process [3]. Furthermore, it
would be advantageous for the user to design the light effect directly in the space and
not on paper. To this end, we present a novel solution that uses a radically different
paradigm for lighting control. Our solution allows the user to control the effect directly
on the spot where it should be and without worrying about the contribution required by
every single light source. The system is based on the use of coded light [66, 67, 116]
, where each lamp embeds invisible light source identifiers in its light output. In that
way, by using a photo sensor, it is possible to discern the illumination contributions
from all the light sources. A lighting system based on this technology allows users to
create a light effect, in real time, by just choosing the desired effect (e.g. color, inten-
sity, distribution) for the target location. The translation from desired effect to light
source parameters is performed by an algorithm that uses the chromaticity properties
and the intensity settings of all sources, as measured by the photo sensor.

This chapter is organized as follows. Section 4.2 gives a general overview of the
system used in the rest of the chapter. Then, in Section 4.3, we present the coded light
technology and we explain how it is used to estimate the contributions of the individual
light sources at a given location. Subsequently, Section 4.4 describes the algorithms
that allow light effect rendering using these estimates. A system setup that we used
for testing of the presented concept and application development is then presented in
Section 4.5. Finally, conclusions are drawn in Section 4.6.

4.2 System overview

Figure 4.1 schematically depicts a lighting system enabling the proposed lighting de-
sign method. The system consists of a large number (N) of SSL sources installed in
the ceiling, all embedding a unique identifier in their light output. The system addi-
tionally consists of a remote control (RC) and a system controller (SC). The RC is
operated by the user and it is able, using an optical sensor, to receive the coded light
identifiers in the light. The user input and the received identifiers are sent to the SC,
which controls the SSL light sources accordingly. During the interaction, the user can
store the information associated with a location, which we will call a target or a target
location.

4.3 Coded Light

The introduction explained that for the interactive control of a complex SSL lighting
system it is of importance to estimate the localized illumination contribution of each
light source. In the system proposed here, this estimation is achieved using a tech-
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Figure 4.1: System overview. The system comprises SSL sources emitting coded light,
a remote control for user control, and a system controller that sends control commands
to the SSL sources.

nology called coded light, as earlier presented in [66, 67, 116]. Using this technology
every light source can be identified in the system using a unique identifier embedded
in the light. This identifier should be invisible to the human eye, but can be detected
using the optical sensor device in the remote control.

4.3.1 Application requirements on light identifiers

To be able to use coded light in general lighting applications that enable immediate
response on interaction, a few application requirements have to be fulfilled. The most
important ones are:

1. Independent identifiers and illumination: The main function of the light emitting
diodes (LEDs) in the lighting system is providing illumination, thus the embed-
ding of identifiers should not affect the short-term average light output of the
light sources. Also, the identifier embedding techniques should preferably be
compatible with the typically applied pulse-width modulation (PWM) dimming
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of LED light output to achieve efficient driving of the light sources.

2. Imperceivable: The modulation of the LED light, to embed the identifiers,
should not create visible flickering, otherwise it would disturb the users of the
lighting system. The invisibility can be achieved by minimizing the energy in
low frequency components (approximately below 100Hz) in the light source
identifiers.

3. Number of LEDs: The system must be able to measure the contribution from
each locally relevant light source individually and simultaneously. It should be
able to operate in an environment with several hundreds of LEDs.

4. Short response time: The modulation method should allow fast light source
identification and illumination estimation. This guarantees that the user expe-
riences an immediate reaction after pressing a control button. Hence, a sensor
should be able to identify and measure all relevant light sources within several
tenths of a second.

4.3.2 Coded Light techniques

Different techniques meeting these requirements were previously presented in [66, 67,
116]. These techniques are compatible with PWM dimming of SSL light sources,
and do not impact the illumination function. The proposed coded light techniques
are based on coded division multiple access (CDMA) [66, 67] and frequency division
multiple access (FDMA) [116].

The CDMA method is illustrated in Figure 4.2 with the solid line. Basically the bits
of the light source identifier are embedded by slightly varying the length of the PWM
pulse, a longer pulse identifying a 1 and a shorter pulse a 0. Figure 4.2 shows the
resulting light output of the nth LED embedding the identifier code c = [1 0 0 1].
The dashed line identifies the light output for the normal PWM modulated signal, i.e.
without embedding an identifier. The average duty cycle of the light is dn = 50% for
both signals in this example. From this we can conclude that the average illumination
level is not changed due to the embedding of the identifier. The length of one PWM
interval is T seconds, and the length of the code equals M bits. The whole code
is acquired in MT seconds. To meet requirement 4, MT should be around 0.1s to
guarantee perceived instantaneous feedback [78]. The peak illumination level of the
LED is denoted by an, while the actual illumination level equals andn due to the PWM
dimming. In the case of FDMA, every LED is assigned a unique repetition frequency
fn = 1/Tn of the PWM pulses. For both the CDMA and FDMA approach the light
modulation will be invisible when f is above the critical flicker frequency of the human
visual system. Although the critical flicker frequency depends on many factors of
among which the light level, the size of the flickering stimulus and the position of the
stimulus in the visual field, 100Hz can be taken as a safe lower limit [114] . It has to
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be noted that this limit only insures that the system does not produce directly visible
flicker and does not take into account interactions with moving objects.

Figure 4.2: Embedding of the identifier code c = [1 0 0 1] in the 50% PWM dimmed
light output of the nth LED light source.

The aggregated illumination contribution of all N LED sources at one of the R target
locations denoted as i can be written as

Ii =
N

∑
n=1

andnηn,i (4.1)

where ηn,i denotes the attenuation value for the light propagation from the nth light
source to the ith target location.

In the remote control at a location i, the peak illumination contribution for each light
source n b̂n,i = anηn,i is estimated individually. To this end the remote control is
equipped with an optical sensor, e.g. a photo detector, which converts the optical sig-
nal into an electrical signal. Then by applying digital signal processing to the received
coded light signal, the estimate b̂n,i for all N LEDs is computed. These estimates are
then consequently used as input to the interactive light design algorithm.

4.4 Interactive Light Design

The estimate of the individual illumination contributions {b̂n,i | 1 ≤ i ≤ R, 1 ≤ n ≤
N} can be used to control the amount of light that the system produces at a point in
space to satisfy a user requirement on the light level at that point. This is achieved by
controlling the duty cycles {dn | n≤ N} of the LEDs.

We present the user-system interaction and the algorithms used in an order of increas-
ingly complex user requirements. First, we show how a user can control the light
intensity in a single point in space; second, we show how the chromaticity of the light
at the point in space can be controlled; and finally we show an algorithm that controls
the LEDs to satisfy multiple user requirements. In the rest of the section, we assume
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that all LEDs have the same peak illumination level, i.e. an = a. Under this assump-
tion, the estimates of the light intensity contribution of a single LED n to a location i,
b̂n,i, is inversely proportional to the distance between the LED and the location.

4.4.1 Single intensity requirement

The first problem that we solve using the estimates given above is the computation of
the duty cycles required for the generation of specific light intensity in a point. In the
case the required intensity at the target point is the maximum light intensity at that
point, the solution to this problem is unique and trivial. However, if only a part of
the total available illumination power is needed, the problem is under-constrained, as
many combinations of LED duty cycle values can produce the desired light intensity.

To add a natural constraint to the distribution of the light we add a new parameter γ

to the system that controls the distribution of the light intensity for the points around
the target point. Using the estimates of the light intensity at the target point, {b̂n | 1≤
n≤ N} , the required light intensity u and the spatial distribution parameter γ , the duty
cycle for LED n is computed as

dn = u
(b̂n)

γ−1

N
∑

m=1
(b̂m)γ

(4.2)

It is easy to see, by substituting the computed duty cycles from Equation 4.2 into
Equation 4.1, that when the required intensity is smaller than the maximum achievable
intensity at that point, the aggregated illumination contribution I, will be equal to the
required one u.

The parameter γ takes values from 1 up to ∞, producing a spot of light around the
target point with a variable spatial extent. For γ = 1, the system produces a uniform
distribution, corresponding to the maximum spot size, i.e. all LEDs with a non-zero
illumination contribution at the target position are assigned the same duty cycle. When
γ → ∞, only the LED with the highest contribution (the optically closest LED) has a
non-zero duty cycle, while all the others have a zero duty cycle. This results in the
smallest spot size that can be produced by the system. Figure 4.3 shows the relative
duty cycle of the LEDs as a function of the relative individual illumination contribution
for different values of γ . In the figure, the relative individual illumination contribution
is computed by dividing the individual illumination contribution by the maximal one,
i.e. b̂n/max{b̂m | 1≤ m≤ N}. Similarly, the duty cycle is normalized by the maximal
one to compute the relative duty cycle, i.e. dn/max{dm | 1≤ m≤ N}.

Due to the simplicity of the algorithm the latency of the system mainly depends on the
communication latency. Additionally, because of the short message length needed to
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Figure 4.3: Relative duty cycles for LEDs as a function of the relative individual illu-
mination contribution for different values of γ .

transfer the information needed in the algorithm, the parameters of the coded light can
be tuned to enable a low latency interaction with the system that fulfills requirement 4.

4.4.2 Color requirements

In the case of a system consisting of LEDs having different chromaticities, their mixing
can produce different colors at different positions. The different parts of the system,
consisting of the sets of LEDs with the same chromaticities are referred to as the
primary systems. As most additive color controllable systems consist of three primary
systems with red, green and blue chromaticities, we will assume a system with three
primaries in the rest of the section. We denote the chromaticities of the three primaries
in the 1931 CIE xyY color space by (x,y)r, (x,y)g, and (x,y)b, and their luminances
at the target point as Yr, Yg, Yb. Given the CIE xyY coordinates, the 1931 CIE XYZ
coordinates of the light incident at the target point from the red, green and blue system
can be trivially computed and are denoted by (X,Y,Z)r, (X,Y,Z)g, and (X,Y,Z)b.

Due to the additive nature of light and the trichromacy of human color vision, the
problem can be subdivided in two parts. The first one is finding the combination of the
intensity of the primaries that will produce the desired chromaticities and the second
one is computing the duty cycles that produce the desired intensity per primary system.

Given the required chromaticity (x,y) and the required luminance Y for the target
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point, or (X,Y,Z) in CIE XYZ color space, the required luminances for the primary
systems ur, ug, and ub are computed using a standard [114] transformation

 ur

ug

ub

=

 Xr Xg Xb
Yr Yg Yb
Zr Zg Zb

−1 X
Y
Z

 (4.3)

In the second step, using the required luminances for the primary systems ur, ug, and ub
and Equation 4.1, the duty cycles for the LEDs in each primary system are computed
separately using Equation 4.2. The computation of the duty cycles for a single color
requirement is given in Algorithm 4.1.

In the case of a number of primaries larger than three, only the first part of the al-
gorithm has to be changed. In this case there is no unique combination of primary
luminances that produce the required chromaticity at the required luminance. Hence,
additional constraints or optimization criteria have to be used. One example criterion
is the minimization of the power used to produce the required settings. Another is the
maximization of the color rendering quality provided by the illumination system.

Algorithm 4.1 Method : {dc,n} = compute color requirement({b̂c,n}, (x,y), Y, γ)
Input

estimates of the light intensity from LED n and primary c, {b̂c,n} = {b̂c,n | 1≤
n ≤ N, c ∈ {r,g,b}}, target chromaticity (x,y), target luminance Y, spatial pa-
rameter γ .

Output
duty cycles {dc,n} = {dc,n| 1 ≤ n ≤ N, c ∈ {r,g,b}}, producing the target
luminance and chromaticity

[X Y Z]′ = xyY to XY Z([x y Y]′)

[ur ug ub ]
′ =

 Xr Xg Xb
Yr Yb Yb
Zr Zg Zb

−1

[X Y Z]′

for all c ∈ {r,g,b} do

for all n ∈ {1, . . . ,N} do

dc,n = u (b̂c,n)
γ−1

N
∑

m=1
(b̂c,m)γ

Figure 4.4 shows an example user interface that can be used to select the desired chro-
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maticity, luminance and spatial distribution at the target point in space, determined by
the position of the remote control. The desired chromaticity is selected on the chro-
maticity diagram. The luminance and spatial distribution are selected using up-down
dials.

The system can be in active mode, where the target position follows the position of the
remote, or in a passive mode, where the last active position of the remote is taken as
the target position. Using the button ”Freeze” the user can change between the active
and passive mode. The user interface can for instance be run on a PDA or smartphone
that has the remote control sensor integrated.

Figure 4.4: An example remote control user interface to select the chromaticity, lumi-
nance and spatial distribution at a target point.

4.4.3 Multiple requirements

In a practical system, the chromaticity, luminance and spatial distribution at several
target locations are specified. Not all of these requirements can be satisfied simulta-
neously, so the system has to weigh the different requirements to come to a rendering
of the scene. As a simple example, we can consider a three requirement case: two
red spots at opposite sides of a room and a uniform white requirement over the whole
room.

Given R target locations and a user requirement at the locations for a three primary
system, the duty cycles dn,i that satisfy the individual requirements can be computed.
A simple possible solution for the multiple requirement problem would be to add the
individual requirement solutions for every LED, resulting in a high chance of requiring
more intensity than is possible from an LED. Depending on the way this is handled,
different artifacts can occur. In our example, if the solutions are simply added, the
spots will disappear, as the white requirement dictates all the channels of all the LEDs
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to be on. If, however, the solution is normalized in a way that insures the maximum
duty cycle is feasible, the result will be desaturated spots in a dim uniform field. Alter-
natively, the single solutions can be averaged, but this introduces even more problems
as the zero duty cycles outside of the spot are also averaged.

A better solution would provide control between local and global accuracy. Similar
to the spatial parameter in the single requirement case, a local priority parameter ρi is
introduced. It takes values from 0 up to ∞ and controls the spatial weighting of the
individual duty cycles dn,i as function of the distance between LED n and position i.
The values of the weights for different distances and different importance parameter
values ρi are similar to the ones shown in Figure 4.3. When ρi → ∞, the value of
the duty cycle of the nth LED, dn, approaches the value of dn,r , where r is the target
point closest to the LED. So, for large values of ρi, requirements have mainly a local
influence. When ρi = 0, dn,i will have the same influence independent of the distance
between LED n and position i, i.e. the local and the global influence of the requirement
is the same.

If we treat the solutions for the single requirements as points in N dimensional space
and compute a weight for each point based on the local priority parameter ρi, we can
define a sum of squares of weighted distances from any point in the space to the set
of requirement solutions. A solution that minimizes this distance can be computed
using least squares. For a suitable choice of a family of weighting functions (power
functions), a closed form solution to the least square can be found. Equating the partial
derivatives of the sum of squares to zero results in the solution given by

dn =
R

∑
i=1

dn,i
(b̂n,i)

ρi

N
∑

m=1
(b̂m,i)ρi

(4.4)

The computation of the duty cycles for multiple requirements is given in Algorithm
4.2.

Figure 4.5 shows an example user interface for the selection of multiple requirements.
Additional to the controls for the single requirement selection, given in Figure 4.4,
the multiple requirements user interface includes a list of saved requirements and a
control over the local importance parameter. Additionally, two buttons that control the
addition and the removal of requirements from the list are added.

The list initially has one entry, denoted by the label “1”. The user initiates the inter-
active design by pressing the “Freeze” button, which initiates the active mode. After
selecting the color and distribution parameters, the user can save the requirement using
the “Save” button. This adds a new entry in the requirement list, and selects the new
requirement as the active one.

Previously saved requirements can be changed by clicking on their label in the require-
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Algorithm 4.2 Method : {dc,n} = compute multiple requirements({b̂c,n,i}, {(x,y)i},
{Yi}, {γi})
Input

estimates of the light intensity from LED n and primary c to position i, {b̂c,n,i} =
{b̂c,n,i | n ≤ N, i ≤ R, c ∈ {r,g,b}},
target chromaticities {(x,y)i} = {(x,y)i | i ≤ R}, target luminances {Yi} =
{Yi | i ≤ R}, spatial parameters {γi} = {γi | i ≤ R}, local priority parame-
ters {ρi} = {ρi| i ≤ R}.

Output
duty cycles {dc,n} = {dc,n| n ≤ N, c ∈ {r,g,b}}, producing luminance and
chromaticity that is a weighted average of the requirements

for all i∗ ∈ [1 . . .R] do

{dc,n,i∗} = compute color requirement({b̂c,n,i∗}, (x,y)i∗ , Yi∗ , γi∗)

for all c ∈ {r,g,b} do

dn,c∗ =
R
∑

i=1
dc∗,n,i

(b̂c∗ ,n,i)
ρi

N
∑

m=1
(b̂c∗ ,m,i)

ρi

ments list, which activates the selected requirement. When activated, the previously
saved requirements are in passive mode and have the position at which they were saved
as a target position. Pressing the “Freeze” button enters active mode, where the target
position for the selected requirement follows the position of the remote. The user can
remove requirements by selecting one from the list and pressing the “Delete” button.

The example user interface shows one possible interaction with the system, which
allows the control of chromaticity, luminance and spatial distribution for a number of
points in space. This allows the user the same freedom of design as having a number
of light spots with a variable color and beam angle. The advantage of the presented
system is that the design is done without any mechanical movement or reconfiguration
of the system. Hence, the requirements from a user point of view can be seen as a set
of virtual lights, giving the definition of the desired effect. The system consequently
translates these requirements into a set of controls for the light sources present in the
environment. The user is never exposed to the complexity of the system, the number
of light sources and their capabilities.
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Figure 4.5: An example remote control user interface to select multiple requirements.

4.5 Prototypes and Usability Study

Physical setup

A prototype setup to test the feasibility of interactive light effect control based on
coded light was realized. The system consisted of eight LED-based light sources in-
stalled in the ceiling, a RC and a SC. Each light source had three primaries, i.e., red,
green and blue, which were independently controllable and assigned a unique iden-
tification code. Hence, 24 unique identifiers were embedded in the light, for which
the CDMA technique was applied. The RC was implemented in a standalone unit
equipped with a sensor that was able to estimate the illumination contributions corre-
sponding to the different LEDs. The SC was implemented in a laptop. The interfaces
between the RC and the SC, as well as between the SC and the SSL sources, were im-
plemented as wired serial links. For simplicity of implementation, the user interface
was not implemented in the remote control but in the laptop.

The algorithms for interactive light effect control described in Section 4.4 were im-
plemented in the laptop in a combined LabView-Matlab software environment. The
performed tests proved the robustness of these algorithms in effectively rendering up
to eight light effects in eight distinct locations. Figure 4.6 captures an example of one
of the tests. In the left diagram of Figure 4.6, the light effect editing is shown. During
this phase, the remote control is placed on the target location and the desired color
is selected via the user interface. In the right diagram of Figure 4.6, the result of the
editing and the following rendering is shown.
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Figure 4.6: Interactive light effect control application as tested in the experimental
setup. In the left diagram, the target location and color are selected. The right diagram
shows the resulting light effect.

Simulated setup

Due to the limited hardware availability, a physical setup with a larger number of
LEDs was not feasible. To test the usability of the interaction paradigm, a simulated
environment was created. A single camera scene of an office space was created based
on a 3d model with 63 equal light sources positioned on a grid covering the ceiling of
the room. The UI from section 4.4.3 and the computed light effect were presented on
a computer monitor. The position of the remote control in the scene could be selected
using a computer mouse resulting in a real time change of the computed light effect.

Ten participants, experienced in lighting design and UI design, took part in a usability
study using the simulated setup. After a short introduction to the study, they were
given a set of three simple lighting design tasks :

• Create a spot light on the table.

• Create a warm spot light on the table and a cold uniform light in the rest of the
room.

• Create the Italian flag on the wall of the room.

The interaction paradigm and the algorithm was not explained at the start of the ex-
periment. After the participants fulfilled the first task, they were given a description
of the interaction paradigm and the used interface. Nine out of the ten participants
fulfilled the first task without any knowledge of the interaction paradigm or help from
the experimenter.
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After the participants fulfilled all three tasks, the USE usability questionnaire of Lund
[4] was administered. It consists of 30 questions measured on a 7 point scale. The
questions are divided in four groups: usefulness, ease of use, ease of learning, and
overall satisfaction. The average score was 5.6. The highest scoring category was ease
of learning with a score of 5.975. Similar scores had the categories overall satisfaction
(5.728) and ease of use (5.63). The lowest scoring category was usefulness with a score
of 5.1.

The high usability score was backed up by the comments from the subsequent inter-
view. The interaction paradigm, its intuitive nature and ease of use were mentioned
as a positive point by nine out of the ten participants. Most negative comments were
concerning the UI. Issues with the labels used and the color picker were mentioned.
Two proposals for improvement of the basic interaction paradigm were to add more
types of light effect primitives and to add distinction between functional and decorative
lighting.

4.6 Conclusions

In this chapter, an interactive lighting design and control approach based on coded light
for large LED-based lighting systems was introduced. The coded light technology en-
ables the online estimation of the illumination contribution of individual LED sources
at a given point in space, using invisible light source identifiers. Algorithms were
presented to allow light rendering for single and multiple intensity and chromaticity
requirements at target positions with such a system. The algorithms were implemented
in two test systems. Both the feasibility and the usability of the proposed system and
algorithms were demonstrated using the test systems.





5
Creation and rendering of spatio-temporal

distributions of color

“We are glorious accidents of an unpredictable process with no
drive to complexity, not the expected results of evolutionary
principles that yearn to produce a creature capable of
understanding the mode of its own necessary construction.”

Stephen Jay Gould

The previous two chapters demonstrated the selection of a color palette and an inter-
active method to define the spatial distribution of those colors. The produced light
effect is however static. Contrary to this, most natural light effects are dynamic. Some,
like the change of chromaticity of the sunlight and skylight, are dynamic at very long
time intervals, and some, like the lightning strikes, at very short. Even more, most
natural light effects are unpredictable from the point of view of a naive observer. In
this chapter, a model that can be used for the creation of stochastic dynamic light ef-
fects is presented. A method to learn such a model from a video of an example natural
light effect is presented. The learning method was tested in a large scale user exper-
iment. Finally, possible extensions to spatio-temporal models and interactive systems
are discussed. This chapter is based on [86].

67
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5.1 Introduction

Recent advances in lighting introduced a revolution in the capabilities of lighting sys-
tems and elevate light to a status of a new medium. The main drivers of the advance,
solid state light sources, enable lighting environments with a high spatial resolution,
with fully controllable color and a wide range of dynamic capabilities.

One of the characteristics of modern lighting systems, which is a large differentiator,
are the dynamic capabilities of the light sources used. The normal operating mode of
most general use traditional light sources, disco lights being one of the few exceptions,
is static and they only have an on/off functionality or a limited dimming range. This is
contrary to lighting conditions in nature, which are inherently dynamic, from the slow
change of the intensity and the color temperature of daylight during one day, to the
fast flashes of lightning in a thunderstorm. Furthermore, most of the light effects we
experience in nature are unpredictable on a certain timescale.

The new capabilities also introduce new challenges as the number of controllable pa-
rameters is much higher than for traditional lighting systems. As a result, the standard
control paradigms used in traditional lighting systems become ineffective and a novel
representation of the problem is needed to tackle the complexities.

One of the ways to simplify the control of modern lighting systems is to use a different
medium, for example text, images, or video, as a representation of the desired am-
biance and to use translation algorithms to translate the ambiance to the available light
sources. This enables the users to control the lighting system by simple examples. Due
to the fact that the user directly selects the final effect, while a set of algorithms com-
pute the control values of the light sources to realize the effect, this control paradigm
is an example of the so called effect driven control.

In this chapter, we propose a new method for generation of light effects which are
locally unpredictable and non repeating, but resemble a natural light effect. The gen-
eration is done by simulating the execution of a stochastic process. The use of a simple
stochastic process, a first order Markov chain, simplifies the creation of the stochas-
tic models without a significant sacrifice on the expressive power. Furthermore, we
present an unsupervised learning algorithm that produces a model based on a video of
a natural light effect. To measure the recognizability and desirability of the produced
light effects, a large scale user test was carried out, the results of which are presented.
In the end, a generalization of the method to a spatio-temporal one is presented.

5.1.1 Stochastic models for media generation

A model of a discrete time stochastic (random) process X , X = {X1,X2, ...,XN}, is a
set of rules that characterize the joint probability distribution between all its random
variables. The simplest model is the one where the random variables X1,X2, ...,XN
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are independent and identically-distributed (i.i.d.). For many natural processes, how-
ever, the assumptions, specially the assumption of independence of the random vari-
ables, are unrealistic. An often used generalization from the i.i.d. processes assumes
that the distribution of a random variable XN depends only on a subset of variables
{XN−k, ...,XN−1}. Stochastic processes with this property fall in the class of Markov
processes[38].

The probabilistic behavior of a Markov process is determined only by the dependencies
between a subset of successive random variables. In the case of a first order Markov
process the behavior is determined by the dependencies of immediate successors -
between X1 and X2 , between X2 and X3 , etc. Despite their apparent simplicity and
restrictions, Markov chains are rich in behavior, amenable to analysis, and adaptable to
many applications, from weather to baseball prediction. They are centrally important
to applied and theoretical probability. In the context of this work, we concentrate only
on Markov models with discrete times and a finite number of states, or finite state
space Markov chains.

Notably, one of the uses of Markov chains close to the one presented in this paper is
for generation of media. The application that motivated the development of Markov
models, text generation based on rules, has been used in a wide array of artificial intel-
ligence applications. The rules in the model are in the form of conditional probabilities
on the succession of words, learned from a large corpus of example content. Testing
the performance of text processing algorithms often uses text content generated using
Markov chain Monte Carlo [38]. An interesting and humorous example of the limited
recognizability of text produced by a random process related to Markov chains is the
random scientific paper generator [98], which produced a “scientific paper” that was
accepted on a conference with a questionable review process. Markov chains have
been used for modeling music [35] and for automatic generation of music [46].

In Markov chain applications, it is useful to think of the index t in Xt as a time index.
Xt represents the state of the Markov chain model at “time” t. Formally, a Markov
chain is a sequence X = {Xt}t≥1 = {X1,X2, ...} of random variables taking values in a
discrete set E , and a matrix of conditional probabilities P = {pi j}, called the transition
probability matrix. The elements of E are called states. The elements of the transition
probability matrix pi j give the probability that the process will be in a state j at “time”
t +1, given that it was in state i at time t, pi j = P{Xt+1 = j | Xt = i}.

5.2 Light effect generation using stochastic models

A dynamic light effect is a sequence of colors at a set of discrete times. To use a finite
state Markov chain as a model of a process, the process has to be represented as a
time varying sequence of a finite number of unique states. In the case of light effect
creation, there is a simple natural representation, mapping the states to single colors.
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As an example, the set of states representing a night sky with lightning would have
two colors, a dark blue one and a warm white one. The transition probability matrix
this example is also simple. The dark blue color state would have a high probability
of not changing state and a very small probability of changing state to the warm white
state, while the warm white state would have a very small probability of not changing
the state and a large probability of transition to the dark blue state. Figure 5.1 depicts
the Markov model for this example. In more complex examples the states can be prob-
ability distributions instead of single colors. In the above example of a stormy night,
the warm white state can be substituted with a three dimensional Gaussian distribution
in a color space centered around a warm white color.

Dark blue Warm white

0.99

0.01

0.001

0.999

Figure 5.1: A simple light effect Markov Chain

To build more complex stochastic models manually would be impractical and another
way of building the model is needed. In the next section an algorithm that creates a
model based on a video of a natural light effect is given.

5.2.1 Learning

Given a video v of a target light effect, the following method for learning of a stochastic
model of the light effect is proposed. The learning of the model constitutes of three
main steps.

The first step is to extract representative colors from each video frame. This is done by
computing a central tendency estimator, for example the sample mean or the sample
color median, of the collection of colors present in the video frame or a region in the
frame. The first step transforms the video into a discrete time sequence of colors {mt}
representing the video frames vt .

The second step is the clustering of the representative colors from all the frames in
the video {mt} into a small number of classes, whose centroids {ci} represent the
states in the stochastic model. The clustering is done by using the blurring mean shift
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Algorithm 5.1 Method : ({ci},P) = learn model(v,hs)
Input

example video v, kernel size hs

Output
color collection {ci} of states, state transition probability matrix P = pi j

for all t ∈ {1, . . . , |v|} do

mt = extract color(vt)

({ci},{nt}) = mean shift cluster({mt},hs)

for all i ∈ {1, . . . , |{ci}|}, j ∈ {1, . . . , |{ci}|} do

P∗(i, j) = 0

for all t ∈ {1, . . . , |v|−1} do

P∗(n(t),n(t +1)) = P∗(n(t),n(t +1))+1

for all i ∈ {1, . . . , |{ci}|}, j ∈ {1, . . . , |{ci}|} do

pi j =
p∗i j

∑
|{ci}|
k=1 p∗ik

algorithm [37, 21] on the representative colors in a nearly perceptually uniform color
space (CIE L∗a∗b∗). The blurring mean shift is a density based algorithm that takes
into account the local structure of the distribution in the clustering. The advantage
of the mean shift algorithm over standard clustering algorithms like k-means is that
the algorithm accepts the size of the kernel hs as an input parameter, instead of the
number of final clusters. The size of the kernel hs can be set using a meaningful
criterion such as the minimum distance between two cluster centroids that are not
merged during the clustering. Furthermore, the mean shift algorithm is deterministic.
After the clustering, the colors in the time sequence {mt} are substituted with their
respective class representative index {nt} producing a quantized time sequence. In
case of complex states, the probability distribution of every state can be estimated
from the colors that were clustered together to form the state.

As a third step, using the time sequence of class representatives, the state transition
probabilities pi j are estimated using the frequency of transitions between consecutive
states in the source material. Assuming the time sequence is generated from a Markov
chain, the frequency of state transitions between consecutive states is a maximum like-
lihood estimator of the transitions probabilities.
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Algorithm 5.1 depicts the learning method. The means shift cluster() method takes as
input a collection of colors {mt} and the size of the kernel hs and produces as output a
collection of the cluster representative colors {ci} and the cluster index array {nt} for
each of the input colors.

5.2.2 Simulation

Algorithm 5.2 Online simulation method
Input

color collection {ci} of states, state transition probability matrix P

Output
stochastic light effect

On initialize model do

state = random(1, . . . , |{ci}|)
output color(c(state))

On next step do

r =random([0,1))

k = 0

sum = P(state,0)

while sum < r do
k = k+1
sum = sum+P(state,k)

state = k

output color(c(state))

Given a Markov chain with a set of states {ci} and the transition probability matrix
P, a light effect can be generated by simulating the Markov process. The starting
state of the system can be a user set state, a random state or the most probable state
of the Markov chain. At regular time intervals, a new state of the system, and thus
a new color of the luminaire is computed by sampling from the distribution given by
the transition probability matrix. As the new state only depends on the current state
of the system, the sampling of the distribution is carried out by generating a uniform
U([0,1)) random number and based on that number a search through the cumulative
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distribution of the transition probabilities for the given current state. Algorithm 5.2
depicts the simulation method.

The implementation of this operation is straightforward and computationally cheap,
making it ideal for implementation on embedded platforms. The suitability for em-
bedded use is boosted by the small memory requirement of the generated model, that
is quadratic to the number of states. The algorithm above uses a linear search, but
for larger number of states, a binary search can be easily implemented by storing the
cumulative sum of the transition probabilities instead of the probabilities themselves.
Additionally, if a central control is used to control multiple light sources, only one
copy of the model is needed for all of the light sources.

5.3 User study

To validate recognition and the desirability of the produced light effects, a user study
was conducted during an exhibition. The study was designed with an application of
home scene setting in mind, which influenced the setup and the method used.

5.3.1 Setup

Two luminaires were used, each having three independent RGB LED light sources
and showing the same light effect. Both luminaires used the same model, but the
states were not synchronized. The participant could only observe the light reflected
from a white surface and couldn’t see the light sources or the encasing luminaires.

Stimuli

Four stimuli were used, three automatically created using the proposed method and
one hand crafted.

The first stimulus, fire, was created from a video of a beach fire. The second stimulus,
underwater, was created from a low resolution representation of an underwater image.
The transition probabilities of the model were computed using the spatial neighbor
probabilities, resulting in an effect equivalent to the one produced from a video of
a camera randomly moving over the scene with a constant speed. Even though the
spatial information from the input image was used in the building of the model, the
resulting model did not include spatial information. The third stimulus, fireworks,
was a manually built impression of multicolored fireworks with periods of faster and
slower dynamics. The fourth stimulus, clouds, was created from a time lapse video of
a cloudy sky.
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Two of the stimuli, fire and fireworks had fast dynamics, contrary to the other two,
which had long term, smooth dynamics. The stimulus fire had predominantly warm
colors, the stimuli underwater and clouds had cold colors and the stimulus fireworks
didn’t use a specific selection of colors.

Method

The desirability of the produced light effects was measured using a seven point Likert
scale [62]. For each of the stimuli, the participants answered the question ”I would like
to have this light effect in my living room“ on a scale from ”Not at all“ (-3) to ”Very
much“ (3). Additionally, for each stimulus four recognition questions were asked:
”This effect looks like a fire“, ”This effect looks like an underwater scene“, ”This
effect looks like fireworks“, and ”This effect looks like a cloudy sky“. The possible
answers ranged from ”Not at all“ (-3) to ”Very much“ (3).

The authors are aware of the possible bias on recognition produced by naming the
effects that were presented, but considering the application of home scene setting,
where the user already knows the target effect she picks, this was not considered a
problem in the context of this study. Furthermore, including all four effects in the
questionnaire for each stimulus enabled a computation of a confusion matrix, as given
in section 5.3.2. Using another method as for example free association, would have
resulted in a considerably longer testing time and would require subjective evaluation
of the results.

The order of presentation of the stimuli was balanced over the participants. Additional
to the questions, participants could provide comments.

Participants

The study was conducted with 202 participants, 155 of which male, with a minimum
age of 24, a maximum age of 59 and a median age of 35.5. 64 of the participants had
experience working with atmosphere providing light sources.

5.3.2 Results

Results on suitability of the produced light effects for use in a living room environment
showed that the most desired stimulus was clouds, with a median result of 1, followed
by underwater with a median result of 1, and fire with a median result of 0. The
stimulus fireworks, which was scored as highly unsuitable for the context and had a
median score of −3. As the stimulus fireworks was very dynamic, this result was
not surprising. A number of participants however noted that they could imagine a
limited use of such an effect albeit in a different context. It was unclear, both from
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the answers to the questions and the additional comments given, what the reason for
the difference in desirability of the other three stimuli was. Some people mentioned
the color temperature as one of the reasons they scored a certain light effect high or
low, while others indicated the dynamics as the primary reason. As there was no slow
warm stimulus, a conclusion on the relative importance of these factors could not be
given.

Figure 5.2: Histogram of the maximum score over the four stimuli on the question ”I
would like to have this light effect in my living room“ on a scale from ”Not at all“ (-3)
to ”Very much“ (3)

To judge the overall desirability of the produced light effects, the maximum score of
each participant over the four stimuli was computed. Figure 5.2 shows a histogram of
these resulting scores. As can be seen from the histogram, the overall desirability was
scored high, with a median score of 1. This shows, together with the comments, that
people think that dynamic light effects can be suitable for use in their living room, but
only if the effects are very localized like the fire, or very slow and subtle as the clouds
and underwater stimuli.

Figure 5.3 shows the median result on the answers from the recognition questions.
The images in the row header depict the stimulus that was presented to the participant,
whereas the images in the column header represent the effect mentioned in the ques-
tion. The general recognition of all the effects was high, with most of them having
a median score of 2 for the matching stimulus. The most easily recognizable effect
was the fireworks, while the most confused one was the underwater. An interesting
effect can be seen in the confusion of the underwater and the clouds stimuli. When
presented with the underwater stimulus, participants scored equally high for both un-
derwater and clouds, but when presented with the clouds stimulus, the score for clouds
was significantly higher than the score for underwater. It was also observed that the
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Figure 5.3: The median response of the participants to the question ”This effect looks
like ...“ for all stimuli.

effect persisted over different orderings of the stimuli. This additionally shows that
different light effects have a different range in which they can be recognized and for
some of them that range can be very large.

5.4 Extensions

Two proposals for extension of the base effect were mentioned most often by the par-
ticipants in the study. The first one was the addition of audio effects synchronized
with the light effect. The second one was to extend the effect to a larger number of
dependent, synchronized light sources. The first proposal needs a definition of states
in a parametric space of a new medium, audio, and as such can be a topic of a wider
research effort. The second proposal, however, can be implemented by a simple ex-
tension of the proposed method. Moreover, we present a extension that enables the
creation of interactive effects.

5.4.1 Multiple dependent light sources

In the single light source case a single color was extracted from each frame resulting
in a very low resolution, zero dimensional, representation of the video. The main idea
of the extension is to increase the spatial resolution of the color representation and to
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make the transition probability distribution depend not only on a ”previous“ state of
a single light source, but also on the state of its neighbors. Depending on the shape
of the neighborhood, the model can be used to simulate a dependent effect on a one
dimensional arrangement (a line) or a two dimensional arrangement (a plane) of light
sources. As the training material is two dimensional, extension beyond two dimensions
require assuming additional symmetries. In the rest of the section, a two dimensional
arrangement is discussed.

To add spatial information to the model, the source material is subdivided into d non-
overlapping regions {Rs}s∈1,...,d and representative colors {mt |Rs} = {mt,s} extracted
from each of the regions. The clustering of the colors is done in the same way as in the
independent light source case using the mean shift algorithm on the color collection
{mt,s}, producing the collection of representative colors {ci} for the states in the state
space E and the index array {nt,s}.

The dependence on the state of the neighbors in a neighborhood N can be built into
compound states c′ ∈ E |N |+1, where |N | denotes the number of neighbors inN . In this
case the transition matrix P is of size |E||N |+1×|E| is equivalently to a tensor P of size
|E|× . . .×|E|︸ ︷︷ ︸

|N |+1

×|E|. The size of the transitions tensor increases exponentially with the

number of neighbors, which results in both considerably larger storage requirements
as well as need for longer training material. An additional problem that the spatial
extension introduces is the special treatment of the ”edge“ and ”corner“ light sources.
As the number of neighbors for these light sources is in general different from the
number of neighbors for the light sources in the ”middle“, a different model has to be
learned and simulated.

As an example for the learning and simulation of a model for a set of dependent light
sources, we take a planar arrangement of light sources with a neighborhood consisting
of the four direct neighbors in the positive and negative direction of two arbitrary
axes. The learning algorithm for a ”middle“ point in a two dimensional dependent
arrangement is given in Algorithm 5.3. For presentation simplicity we will denote
the neighborhood by N = {1,x+,x−,y+,y−}. For every position s, the function
1(s) maps the position to itself, the function x+ to its ”right“ neighbor, x− to its
left, and y+ and y− to its lower and upper neighbor. By P(nt,N (s),nt+1,s) we denote
the element (nt,1(s),nt,x+(s),nt,x−(s),nt,y+(s),nt,y−(s),nt+1,s) of the tensor. Due to the
possible sparsity of the resulting transitions tensor specially for larger neighborhoods,
there is a possibility of a reachable compound state not having any positive transition
probability. Depending on the severity, a number of strategies might be employed, the
simplest of which is to leave the state at the position with a terminal compound state
unchanged, a strategy that is easy to implement in the learning phase.

For the simulation of the model, every light source has to be given a position s and
its neighbors N (s) defined. In a distributed system, the state of a light source has to



78

Algorithm 5.3 Method : ({ci},P) = learn model(v,hs,d,N )

Input
example video v, kernel size hs, number of segments per dimension d, neigh-
borhood N

Output
color collection {ci} of states, state transition probability tensor P

for all t ∈ {1, . . . , |v|}, s ∈ {1, . . . ,d} do

{mt,s}= extract color({vt,s})

({ci},{nt,s}) = mean shift cluster({mt,s},hs)

P∗ = 0

for all t ∈ {1, . . . , |v|−1}, s ∈ {1, . . . ,d} do

P∗(nt,N (s),nt+1,s) = P∗(nt,N (s),nt+1,s)+1

for all i ∈ {1, . . . , |{ci}|}, j ∈ {1, . . . , |{ci}|}|N |+1 do

P(j, i) = P∗(j,i)
∑
|{ci}|
k=1 P∗(j,k)

be communicated to its neighbors on a state change. Given these, the simulation is
equivalent to the independent light source case.

5.4.2 Interaction

An additional advantage of a stochastic model over a fixed low resolution representa-
tion of a video is the possibility of interaction. The user can at any time instance force
a light source at a position s into a specific state. The model will continue to evolve
using the same probability distributions. As an example, using a model built from a
video of clouds moving in the sky, the user can have a few interactive possibilities.
One of them, arguably desired by most Dutch people, is to force all the light sources
to a ”clear sky“ state. Using a spatial selection tool, individual light sources can be
forced into one of the ”cloudy“ states, effectively painting moving clouds.
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5.4.3 Temporal artifacts

The light effects produced by the stochastic model change at discrete time instances
from one digital color to another. If these changes are not fast enough or too large,
the effect can be perceived as unsmooth or flickering. Even though this might be
desirable for some effects, for most effects this is not the case. In the user study, a
considerable number of people stated that they disliked one of the effects due to the
abrupt, unsmooth transitions. The question of perceived smoothness and perceived
flicker for a general transition through a color space is a complex one and studied
more in depth in Chapter 6.

5.5 Conclusions

A method of dynamic light effect generation using stochastic models was presented.
Similar to dynamic lighting scenes in nature, the resulting light effects are unpre-
dictable, yet recognizable. Next, a method to learn the stochastic models from a
video source of a natural scene was shown. The method extracts the representative
colors from the video and subsequently learns the typical transitions between the col-
ors. After the model has been learned, the rendering of the effects has low memory
and processing requirements, making it suitable for implementation even on embed-
ded platforms. The recognition of the produced light effects was tested using a large
user base and four models. The results show the suitability of the method for dynamic
atmosphere creation, but also an appreciation of the produced light effects.

Possible extensions of the light effect to multiple dependent light sources and inter-
activity are proposed. Due to the richness of possibilities stochastic models use, this
chapter is only able to explore the simplest of models and will hopefully lead to a more
widespread use of unpredictability in the creation of light effects.
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Part II

Temporal quality of light
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6
Smoothness and flicker perception of

temporal color transitions

“All models are wrong, but some are useful.”
George E. P. Box

The first part of this thesis consisted of studies concerning one of the basic challenges
in modern lighting systems, the creation of light effects. This chapter marks the be-
ginning of the second part, which studies the means of measuring and controlling the
quality of the produced light effects. As the overall quality depends on many factors,
making the topic too broad for the scope of a single thesis, a subset of the issues was
selected. Two of the largest differentiating features of solid state lighting systems are
their dynamic capability and digital control. To further leverage these capabilities, the
subset of light quality selected was the study of the perceived quality of temporal light
effects and the visibility of digital artifacts.

As the final evaluation of the quality of the produced light and the visibility of artifacts
is done by a human observer, a detailed knowledge of the human visual system and its
sensitivity is needed. Unfortunately, no models exist that are specifically built to pre-
dict the response of the human visual system to dynamic light patterns beyond the ones
for achromatic flicker. Furthermore, this chapter demonstrates the unsuitability of the
existing models built to characterize spatial effects for the prediction of temporal ones.
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Taken all this into account, this part of the thesis does not concentrate on algorithms,
but mostly uses psychophysical methods to explore and model the effects of interest.

This chapter is based on [89, 90]

6.1 Introduction

Advances in lighting, especially in Solid State Lighting, enable new uses of light.
Having improved spatial and temporal resolution, more saturated primaries and lower
power consumption, LED based lighting systems can be used to design more complex
and attractive lighting atmospheres. One of the largest differentiators of such light-
ing systems are their dynamic capabilities. However, the produced dynamic lighting
atmospheres need certain properties to be attractive to the users.

Perceived smoothness is one of those desirable properties. Aside from a limited set of
applications, such as disco lights, concerts, or attention attractors, abrupt changes in
environment lighting are hardly perceived as pleasant. Other properties of produced
lighting atmospheres that might have an influence on the attractiveness such as the hue
composition or the spatial distribution, moreover, are more subjective.

The work presented in this chapter studies temporal properties of human color vision
relevant to dynamic lighting applications, namely thresholds for smoothness percep-
tion of linear transitions and flicker visibility. To understand the possible source of
problems connected to smoothness perception, we discuss the design of modern light-
ing systems and applications first.

Modern lighting applications use a digital control of the light source, with a limited
number of intensity levels. Contrary to the analogue systems which have a continuous
change in color, in digital systems the smallest distance between two colors, both in
color and time, is limited by the resolution of the system. Similar to spatial color per-
ception, an inappropriate minimum distance between colors can introduce perceived
discontinuities.

Existing dynamic lighting systems use the device color space (usually RGB) of the
lights to control temporal changes. To produce smooth light transitions, low pass fil-
ters are applied on the individual color channels. Under some conditions, especially for
light effects computed from another medium (such as a highly dynamic video signal
for the Philips AmbiLightTM), this leads to seemingly transitions between chromatic
colors that are perceived as too slow. In the case of content dependent dynamic light-
ing, notably for video, this introduces a mismatch between the color of the lighting and
the representative color of the video frames during the transition. A video transition
from a red sunset to a blue underwater scene is followed by a light transition being
purple for a noticeable amount of time. This behavior is deemed undesirable by most
users.
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The above mentioned problem is present in all dynamic lighting systems that control
temporal changes in a device color space. The core of the problem is that the properties
of the human visual system are not taken into account in device color spaces. Previ-
ous work on the temporal properties of the human visual system shows differences in
the way intensity and chromaticity changes are perceived. Namely, the human visual
system processes intensity changes faster than chromaticity changes [22, 8]. More-
over, the changes in chromaticity are smoothed by the human visual system more than
the changes in intensity [97, 99]. Using a device color space to control the temporal
changes does not allow the use of such results.

To compute the maximal distances between colors that still produce a smooth spatial
pattern, the notions of visibility threshold and just noticeable difference [69] were
introduced. The continuation of the work on spatial just noticeable differences led to
the development of, among others, the CIE Luv, CIE L∗a∗b∗, and CIECAM02 color
spaces [32], which show a relatively good correspondence between the perceived and
the predicted differences between colors and smoothness of spatial transitions.

Unfortunately, no spaces that predict the perceived smoothness of temporal patterns
exist. The fact that the perception of temporal transitions depends on the frequency
at which the changes are made, further complicates the representation and smooth-
ness prediction in the temporal case. To gain better understanding of the way the
human visual system processes temporal patterns in the context of dynamic lighting
applications, we designed two exploratory experiments and an additional confirmatory
experiment, of which we present the results in this chapter.

Previous work on temporal properties of the human visual system closest to the topic
of interest of this chapter comes from the area of flicker sensitivity. In [23, 24], De
Lange describes flicker sensitivity at different frequencies and for different average
luminance levels and types of stimuli. The results of De Lange are supported by results
of Kelly [54, 55], in which he additionally studies the effect of the surround average
luminance and spatial context on flicker perception.

Using different methods, several authors report differences between sensitivity to lu-
minance and chrominance flicker. In [99], the response of the visual system is modeled
as a finite impulse response filter and differences in the properties of luminance and
chrominance flicker are demonstrated. Kelly [57] uses spatio-temporal properties to
show a difference between luminance and chrominance flicker effects. In all the above
studies, the number of color pairs used as the two settings in the chromaticity flickering
stimulus was limited.

This work differs from previous work in a number of points. First, in one of the
experiments presented we use discrete linear transitions, in line with the application
requirements discussed above, while in prior work either flicker or a fixed number of
rectangular pulses are used. Second, the chromaticity changes are further subdivided
in chroma and hue changes. And third, the thresholds are computed not only for a
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number of luminance levels, but also for different levels of chroma and hue, to be able
to model the distribution of smoothness thresholds over the color space, similar to the
spatial McAdam ellipses.

To be able to compare the temporal sensitivity results to results from spatial visibility
thresholds, the presented experiments use the CIE L∗a∗b∗ color space and the ∆Eab
metric. The geometric middle point, in CIE L∗a∗b∗, between the starting and ending
color is called a base color point in the rest of the chapter.

Based on previous studies on temporal properties of human vision described before,
we form and test the validity of two main hypotheses:

• There is a difference in sensitivity for lightness and chromaticity changes. The
thresholds for lightness are lower.

• There is an effect of the base color point on the visibility thresholds for lightness,
chroma and hue changes.

6.2 Smoothness thresholds for linear color transitions

The first experiment was designed to measure the sensitivity for discontinuities in lin-
ear temporal color transitions. The transitions are built in the CIE LCha∗b∗ color space
and the threshold are expressed in ∆Eab, the Euclidean distance in the CIE L∗a∗b∗
color space.

Given the results of previous research on related topics discussed above, we investigate
the effect of frequency of the changes, base color point and direction of change on the
visibility threshold tested. For possible directions of change, directions parallel to the
axes of the CIE LCha∗b∗ color space were taken. The smoothness visibility threshold
was measured using a tuning procedure.

6.2.1 Method

Equipment

As a light source, a LED lamp was used, with three RGB LEDs at the bottom and three
RGB LEDs on the top of a light guide. The light guide was used as a mixing chamber
and was painted with a diffuse white paint on one side to insure outcoupling of the light
in the desired direction. The LEDs were driven using pulse width modulation (PWM)
with a driving frequency of 500Hz and 11 bit levels. The driver accepted RGB values
in the device space of the LEDs. The target stimuli were defined in CIE LCha∗b∗ and
transformed via CIE XYZ to the RGB device space of the light units using a computer
program running on a PC connected to the light units.
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For easier generalization, the D65 white point, not the white point of the system, was
used in the transformations. Care was taken that the produced colors were inside the
device gamut of the light source.

In order to validate that the light sources produced the expected colors and temporal
patterns, three experiments were carried out. First, we tested the independence of the L,
C and h axis using a colorimeter. Second, the linearity of each channel separately and
all the channels together was tested using a colorimeter. Third, the temporal responses
of the lights were tested using a high speed camera. The results of these experiments
didn’t show significant differences between the model used and the physical properties
of the light produced by the hardware.

Stimuli

The stimuli were discrete linear temporal transitions around a base (middle) color
point LChbase in a direction d ∈ {L,C,h} and frequency of change f . The transitions
were characterized with a total length A and a step size S applied every 1

f seconds.
The stimuli consisted of A

S −2 number of steps with size S and additional 2p number
of steps with step sizes S

2i , 1 ≤ i ≤ p. For the experiment, a value of p = 6 was used.
Example stimuli for a change in direction d are depicted in Figure 6.1.

Single transitions were repeated in alternating directions along the axes of the color
space to make the user task easier. To diminish the perceived effects of the edges of
the repeated transitions, the length of the transition was at least one order of magni-
tude larger than the step size and smoothing of the edges of the repeating pattern was
applied, as described above.

The linear transitions were varied in frequency, base color and direction of change.
During each tuning, the step size S was changed based on the user input. This means
that the frequency and total length of the transition were kept constant, but the speed
and the time of a transition changed. A pilot experiment showed that for frequen-
cies larger than 30Hz, the speed was too high to detect discontinuities for changes in
chroma and hue. Therefore the frequencies used in the experiment were 5, 10 and
20Hz for all base colors and 30 and 40Hz for a subset of the base color points, as
shown in Table 6.1.

Two criteria were taken into consideration in the choice of the base chromatic colors.
First all the three primary hues were included. Second, the available amplitude of
change at those base points had to be large enough. Using primaries and a secondary
color at a moderate chroma level fulfilled both criteria. Beside the chromatic colors,
three achromatic color points at different luminance levels were included.

For possible directions of change, directions parallel to the axis of the CIE LCha∗b∗

color space, lightness, chroma and hue, were selected. The stimuli with achromatic
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Figure 6.1: Base stimuli for different frequencies.

Name L c h x y Y Frequency (Hz)
Magenta 60 60 350 0.397 0.254 0.281 5 10 20
Red 60 60 45 0.506 0.370 0.281 5 10 20 30
Green 60 60 150 0.274 0.484 0.281 5 10 20
Blue 70 60 290 0.224 0.201 0.408 5 10 20
High L 75 0 0 0.313 0.329 0.483 5 10 20 30 40
Middle L 50 0 0 0.313 0.329 0.184 5 10 20 40
Low L 30 0 0 0.313 0.329 0.062 5 10 20 30 40

Table 6.1: Base color points in (CIE LCha∗b∗) and (CIE xyY) used in the experiment,
with corresponding frequencies.

base color points were only varied along the lightness axis. The length A of all transi-
tions in direction L was 50∆E, for direction C - 120∆E, and for direction h - 100∆h,
where ∆h is the angular difference in degrees between the extremes of the transitions.

The total amount of stimuli was 53. The stimuli were presented in two parts, a training
set of stimuli given in the same order for every participant and a testing set of stimuli
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which was randomized. The randomization was done to average over possible learning
effects, tiredness and flicker adaptation [92].

Participants

Nine females and thirteen male subjects participated in the experiment. Their ages
ranged from 22 to 35 years. All participants had normal color vision, tested with the
Ishihara’s test of color deficiency. Three of the subjects had experience with viewing
dynamic color patterns.

Procedure

The above described LED lighting system was used as a light source in the experiment.
The light coming from the LED shone on a wall and the participant was only able
to see the reflected light. The light source itself was covered by black paper so the
participants were not able to look directly into the light source. The participants were
seated on a distance of 3 meters from the wall at which the maximum luminance of
the reflected light from a D65 stimulus was 35cd/m2.

Before the start of the session the participants received instructions. Participants were
instructed to look at a fixation point in the middle of the light spot reflected on the wall
and to judge whether the discontinuity of the color transition was visible or not. By
selecting a button on a control keyboard they could

1. Increase the step size,

2. Decrease the step size, and

3. End the trial and go to the next.

Participants were asked to select the step size at which the discontinuity was just not
visible, i.e. the transition was perceived as smooth. Preceding the experiment a train-
ing session was implemented to get used to the stimuli and the test.

Each trial started with the largest step size which was ∆Eab = 15 for hue and chroma
changes and varied between ∆Eab = 2 and ∆Eab = 7 for lightness changes depending
on frequency. The largest step size was selected as a largest step possible to keep a
desired ratio between the total length and the step size or a step size that produces a
clearly visible step. The step size could be increased or decreased by ∆Eab = 0.1 for
lightness and ∆Eab = 0.5 for chroma and ∆h = 0.5 for hue. After each hue tuning the
selected step sizes for hue changes in ∆h were transferred to ∆Eab.

After five participants, the data showed that the starting step for all the conditions with
lightness changes at frequencies of 20 Hz and 30 Hz was too low. After these five



90

participants the starting thresholds were increased for these 2 conditions resulting in
the values described above.

During the experiment the participants could chose their own break when they got
tired. Because the tunings where randomized the effect of this break is averaged over
all the tunings.

6.2.2 Results

The step size, given in ∆Eab, for which the participant perceived the transition as just
smooth is defined as the threshold. For lightness changes at 20 and 30Hz, the first 5
participants had a lower threshold than the other participants due to the lower starting
step size. Although this effect was not significant, the data for these conditions and
participants was excluded from the analysis.

For each condition the distribution of the results over the participants was tested for
normality. For some conditions the data was skewed. As for all of these the results
were close or at the maximum step size in the experiment, some participants perceived
the transition with the starting step size as smooth and the actual threshold is larger
than the starting step size. The results were skewed for lightness changes for 40Hz,
and chroma and hue changes at 20 and 30Hz for all participants. The skewed results
were excluded from the analysis.

The mean thresholds and 95% confidence intervals are given in Figure 6.2. The dashed
line in the figure represents the maximum step size given to the participants in the
experiment. Figure 6.2 includes the conditions for which the date was skewed for
illustration. Note that for those conditions for which the distribution is skewed, the
confidence intervals are not reliable.

For a overview of all effects, the results were fitted to a linear mixed model and ana-
lyzed with an ANOVA (Analysis of Variance [73]) with base color point, direction of
change, and frequency as fixed factors and participant as random factor. To ensure a
complete design, only the base colors and frequencies that that appear for all directions
were taken in the model. All main effects for both the fixed and the random factor
and all interactions between the fixed factors were used in the model. Additionally,
the two-way interaction effects between the random factor and the fixed factors were
included. A significant main effect of direction was found (F(2,680) = 1078, p <
0.001, r = 0.87), as well as for frequency (F(2,680) = 188, p < 0.001, r = 0.60),
base color point (F(3,680) = 31, p < 0.001, r = 0.34) and participant (F(20,680) =
12, p < 0.001, r = 0.51). A significant interaction effect between frequency and base
color point (F(6,680) = 7, p < 0.001, r = 0.24) was found, as well as between fre-
quency and direction (F(4,680) = 26, p < 0.001, r = 0.37), base color point and
direction (F(6,680) = 21, p < 0.001, r = 0.40) and a three-way interaction between
frequency, base color point and direction (F(12,680)= 4, p< 0.001, r = 0.27). None
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Figure 6.2: Thresholds for smoothness perception of linear temporal transitions at
different frequencies, different base color points and directions of change.

of the interaction effects with participant were significant.

The large effect size of direction and the interaction effects of direction with both fre-
quency and base color point suggests that splitting up the data for different directions
of change is interesting. A number of smaller models using a subset of the factors
that showed significant interactions were fitted. The most important effects from the
overall model and the subdivided models are further discussed below.

Lower thresholds for lightness changes compared to chroma and hue changes
The results from the analysis of the overall model demonstrated that the effect of di-
rection of change was significant. A post hoc test revealed that the thresholds for
lightness changes were significantly lower than the thresholds for changes of Hue and
Chroma. This result validated, in the context of this experiment, the first hypothesis.
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The result is also in accordance with previous results on flicker sensitivity that show
a difference between luminance and chrominance flicker sensitivity [99]. It has to be
noted, however, that previous studies use modulation thresholds to describe the sen-
sitivity, while we use absolute step size thresholds. Furthermore, taking into account
that the color space and distance metric used in the experiment are near to uniform for
spatial differences in color, this result shows that the sensitivity to temporal changes in
lightness is higher than the sensitivity sensitivity to changes in chroma and hue.

Independence of smoothness thresholds for lightness change on the chromatic-
ity of the base color A model with base color point (for both the chromatic and
the achromatic points) and frequency as fixed factors and participant as random fac-
tor for the subset of the data in the lightness direction showed that there is a sig-
nificant effect of frequency (F(2,365) = 135, p < 0.001, r = 0.65) and participant
(F(20,365) = 18, p < 0.001, r = 0.70), and an interaction effect of frequency and
base color point (F(12,365) = 2, p < 0.007, r = 0.27). Due to the significant inter-
action effect, smaller models per frequency were built. A post hoc analysis showed
there was no significant difference of the thresholds for lightness changes for the chro-
matic color points (“Magenta”, “Red”, “Green”, “Blue”) at any frequency. Significant
main effect of base color were found for 5Hz (F(6,120) = 9, p < 0.001, r = 0.56)
and 20Hz (F(6,90) = 2, p < 0.014, r = .39). A post hoc test revealed that the effect
was caused by the condition “LowL” for both frequencies. For 10Hz there was no
main effect of base color point. This shows independence of the thresholds to changes
in chromaticity and dependence on lightness. The independence of the thresholds for
lightness changes on chromaticity of the base color is in contradiction to the second
hypothesis.

Dependence of thresholds for chroma and hue changes on the chromaticity
of the base color Contrary to lightness changes, both thresholds for chroma
and hue changes had a significant dependence (F(3,220) = 40, p < 0.001, r =
0.59, F(3,220) = 18, p < 0.001, r = 0.44) on the base color point. For chroma
changes, a post hoc test revealed that thresholds for “Green” were higher compared to
all other base colors. For hue changes, a post hoc test revealed that both “Green” and
“Red” had higher thresholds compared to “Magenta” and “Blue” that had the lowest
threshold. This proves the second hypothesis for changes in chroma and hue.

Difference in behavior of chroma and hue changes A surprising effect can be
observed in the behavior of the thresholds for the base color point “Red”, hinted
by the significant interaction effect between base color point and direction. While
for Chroma changes, the thresholds for “Red” are not significantly different from the
thresholds for “Magenta” and “Blue”, the Hue changes for the same condition are sig-
nificantly different from the thresholds for “Magenta” and “Blue” and are in the same
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group as thresholds for “Green”. This shows that possibly different mechanisms are
used in the processing of hue and chroma. One of the possible causes of this effect is
a difference in speed of chromatic adaptation under changing hue or chroma.

Effect of frequency The behavior of the smoothness thresholds of lightness changes
for different frequencies is in accordance with the behavior of the visibility thresholds
for luminance flicker that can be found in literature, for example [23]. For easier com-
parison, the absolute thresholds are given as contrast sensitivity, or inverse contrast,
computed using Michelson’s formula, and are depicted in Figure 6.3. The thresholds
for chroma and hue changes were only tested at three frequencies, which makes a
direct comparison with results from chromatic flicker sensitivity hard.

Figure 6.3: Thresholds for smoothness perception at different frequencies and different
base color points for lightness changes given in contrast sensitivity.

6.3 Speed of smooth transitions

Another way to represent the behavior of the smoothness thresholds for different fre-
quencies is by using the speed of the transitions that are just smooth, i.e. the speed of
linear transitions with a step size equal to the threshold step size. We define the speed
of the transition (v) in terms of the threshold step size (s) and the frequency of change
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( f ) as v = f × s. Figure 6.4 depicts the speed of just smooth transitions for a set of
frequencies for different directions of change (lightness, chroma and hue), averaged
over the base points and participants. The speed is calculated based on the results for
the step thresholds of the experiment described above.
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Figure 6.4: Dependence of the speed of just smooth transitions on frequency and a
linear fit of the data. Speed is given on a logarithmic scale.

Surprisingly, the results for the natural logarithm of the averaged speed thresholds
show a clear linear relationship to the frequency. Furthermore, the fitted lines for the
different directions of change all show a similar slope (0.135, 0.125 and 0.128 for
lightness, chroma and hue respectively) and differ only in their intercept values. The
different intercept values account for the absolute difference in the speed threshold
between luminance chromaticity changes.

As interesting as this result is, it is based on a fit of 4 (for lightness) and 3 (for chroma
and hue) averaged points, which makes the evaluation of the goodness of the fit hard.
To validate the above relationship, an additional experiment was carried out. The
additional experiment was a repeated measurement with three participants, denoted by
IV, RC and DS. As there were no interaction effects of participant to any other factor
in the previous experiment, we expect the same trends in the data for a large set of
participants in the first experiment and the limited set of participants in the validation
experiment. The absolute value of the speed is, however, expected to be different in the
validation set because the participants were all experienced with observing temporal
color changes.

The same experimental setup as in the previous experiment was used. The stimuli for
the validation experiment were selected based on the stimuli given in Table 6.1 and
by adding additional frequencies. An overview of the base points and frequencies of
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the stimuli used in the validation experiment is given in Table 6.2. All base points and
frequencies were tested in three directions of change, except for frequencies and base
points marked with a (∗), which were used only for lightness changes.

Name L c h Frequency (Hz)
Red 60 60 45 2.5 5 10 15 20 25 30 40∗

Green 60 60 150 2.5 5 10 15 20 25 30 40∗

Blue 70 60 290 2.5 5 10 15 20 25 30 40∗

High L∗ 75 0 0 2.5 5 10 15 20 25 30 40
Middle L∗ 50 0 0 2.5 5 10 15 20 25 30 40
Low L∗ 30 0 0 2.5 5 10 15 20 25 30 40

Table 6.2: Base color points in (CIE LCha∗b∗) used in the validation experiment, with
corresponding frequencies.

0 5 10 15 20 25 30 35 40
10

0

10
1

10
2

10
3

10
4

Frequency

S
p

e
e

d
 (

D
E

a
b
/s

e
c
)

Lightness

Chroma

Hue

Figure 6.5: Dependence of the speed of just smooth transitions on frequency and a
linear fit of the data in the original (dashed lines) and in the validation (solid lines)
experiment. Speed is given on a logarithmic scale.

Figure 6.5 depicts the results of the validation experiment compared to the original
experiment. The solid lines represent the data from the validation experiment.

The results are in accordance with the results from the original experiment with re-
sulting fit slopes of 0.135 for lightness, 0.141 for chroma and 0.145 for hue changes.
Additionally, the higher number of frequency points allows to better estimate the good-
ness of the fit. The R2 of the fit was 0.973 for lightness, 0.978 for chroma and 0.944
for hue changes. As expected, the absolute value speed threshold for lightness was
lower in the validation experiment due to trained observers.

The above results show that for the range of 2.5Hz to 30Hz (or 40Hz for lightness),
the speed threshold of a transition in a direction parallel to the axes of CIE LCha∗b∗
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can be determined using a simple exponential law of the form

v = a0eslope, (6.1)

simplifying significantly the modeling of the sensitivity to discontinuities of linear
temporal transitions.

6.4 Flicker visibility thresholds

One of the limitations of the first experiment was that the amplitude of the change was
limited and hence for large step sizes the transition speed became too large to find the
smoothness threshold. This resulted in unreliable data for higher frequencies. The
amplitude limitation has a smaller impact in the case of flicker where the light alter-
nates between two values. Testing the flicker sensitivity in the same setup can show a
possible connection between the smoothness thresholds for linear transitions and the
visibility thresholds of flicker. A possible connection between the smoothness and
flicker thresholds can be a step towards building a model for smoothness perception
of temporal color changes based on a more easily obtainable model of flicker visibil-
ity. Even thought chromatic flicker has been studied earlier, the color points around
which it has been modeled is very limited. To be able to directly compare the results
of smoothness and flicker visibility, a second experiment was designed. The same hy-
potheses as in experiment one were used in this experiment. Additionally, the same
effects as in the first experiment were expected.

6.4.1 Method

The same setup as in the first experiment was used.

To be able to compare the results with the results from the first experiment, similar
stimuli were used. An overview of these stimuli is given in Table 6.3. Standard square
shaped flicker stimuli were used in the experiment, alternating between LChbase− S

2
and LChbase +

S
2 every 1

f seconds. As before LChbase denotes the base (middle) point,
S the step size, in this case equal to the amplitude of the flicker, and f the frequency.

Participants

Nine females and thirteen male subjects participated in the experiment. Their ages
ranged from 22 to 40 years. All participants had normal color vision, tested with the
Ishihara’s test of color deficiency. Three of the subjects had experience with viewing
dynamic color patterns.
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Name L c h x y Y Frequency (Hz)
Magenta 60 60 350 0.397 0.254 0.281 10 20 40 60
Red 60 60 45 0.506 0.370 0.281 10 20 40 60
Green 60 60 150 0.274 0.484 0.281 10 20 40 60
High L 75 0 0 0.313 0.329 0.483 5 10 20 40 100
Middle L 50 0 0 0.313 0.329 0.184 5 10 20 40 100

Table 6.3: Base color points in (CIE LCha∗b∗) and (CIE xyY) used in the experiment,
with corresponding frequencies.

Procedure

The same experimental procedure as in the first experiment was used.

6.4.2 Results

The results from the second experiment are the visibility thresholds on the flicker am-
plitude for which no flicker was visible (just not visible flicker boundaries).

The resulting mean thresholds and 95% confidence intervals from the experiment are
given in Figure 6.6.

The results were analyzed using an ANOVA with base color point, direction of change
and frequency as fixed factors and participant as random factor. A similar set of models
as in the first experiment was used. A number of significant effects, also visible in the
Figure 6.6, were found. The independence of the thresholds for lightness changes on
the chromaticity of the base color could not be checked due to the limited set of base
colors used in the experiment.

Lower thresholds for lightness changes compared to chroma and hue changes
As in the results from the first experiment, the visibility threshold for lightness flicker
was significantly lower (F(1,506) = 9, p = 0.003, r = 0.13) than for chroma and hue
flicker at the same frequency.

Dependence of thresholds for chroma and hue changes on the chromaticity of the
base color A significant dependence on chromaticity of the base color point on the
visibility thresholds for hue (F(2,242) = 36.859, p < 0.001, r = 0.48) and chroma
(F(2,242)= 18, p< 0.001, r = 0.36) flicker was found, in accordance with the results
from the first experiment.

Difference in behavior of chroma and hue changes The same behavior for the
base color “Red” as in the first experiment can be observed in the results for flicker
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Figure 6.6: Visibility thresholds for flicker at different frequencies, different base color
points and directions of change.

visibility.

Effect of frequency The behavior of the flicker thresholds of lightness, chroma and
hue changes for different frequencies is in accordance with the behavior of the visibil-
ity thresholds for flicker that can be found in literature [99]. The contrast sensitivities
computed from the flicker visibility thresholds, are depicted in Figure 6.7. It has to be
noted, however, that the flicker frequency as given in literature is usually computed as
the number of full cycles per second. In the results presented here, the frequency used
is the frequency of change, thus twice the number of cycles per second. An interesting
observation connected to the definition of frequency is that the peak in the sensitivity
for linear transitions is around 10Hz, while for flicker sensitivity it peaks at 20Hz,
corresponding to a frequency of 10 cycles per second.
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Figure 6.7: Thresholds for flicker visibility at different frequencies and different base
color points for lightness changes given in contrast sensitivity.

Dependence of the type of change A significant difference was found between the
smoothness and flicker visibility thresholds at all conditions in the intersecting set of
the two experiments presented. In all cases the flicker thresholds were lower, showing
a higher sensitivity to discontinuities in flicker. However, since all the effects found
for smoothness perception found in the first experiment show the same tendencies as
the thresholds for flicker in the second experiment, this suggests that it is possible use
the results from flicker sensitivity to predict the differences for smoothness threshold
under different conditions.

6.5 Speed of transition for flicker

Analogous to the definition of speed for the linear transitions, we can define the amount
of change in one second as the speed of flicker and determine its dependence on the
frequency. We define the speed (v) in terms of the step size (s) and the frequency ( f )
as v = f ×s. Figure 6.8 depicts the speed thresholds of just perceivable flicker for a set
of frequencies for different directions of change (lightness, chroma and hue), averaged
over the base points and participants, where the speed was determined from the flicker
thresholds of the second experiment.

The results show an exponential relationship as in the results for the speed of linear
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Figure 6.8: Dependence of the speed thresholds of just not perceivable flicker on fre-
quency and a linear fit of the data. The speed is given on a logarithmic scale.

transitions. In the case of flicker, the computed slopes are 0.078 for lightness, 0.093
for chroma and 0.098 for hue.

An additional validation experiment for flicker was carried out using the same setup as
the validation experiment for the speed of linear transitions. The same base points and
frequencies were used also to allow for better comparison.
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Figure 6.9: Dependence of the speed thresholds of just not perceivable flicker on fre-
quency and a linear fit of the data for the original (dashed lines) and the validation
(solid lines) experiment. The speed is given on a logarithmic scale.
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Figure 6.9 depicts the results of the validation experiment. The same trends as in
the results for linear transitions can be observed. The resulting slopes were 0.07 for
lightness changes, 0.097 for chroma changes and 0.103 for hue changes, with R2 of
0.971, 0.993 and 0.996.

For comparison, Figure 6.10 depicts the results of both linear transitions and flicker
with their respective linear fits. The results depicted are taken from the validation
experiments. The linear transition results are depicted using solid lines.
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Figure 6.10: Dependence of the speed of just smooth transitions on frequency and a
linear fit of the data in the validation experiment. Speed is given on a logarithmic scale.

6.6 Temporal control

Based on the above results, a simple algorithm for the perceptually inspired control
of light effects can be devised. Knowing the maximum speed in different directions
of change that produces smooth and flicker free transitions, the system can limit the
maximum allowed change in color, depending on the system parameters.

The results can also be used as input for the design of the hardware and the system.
For example, to design a light system that can produce smooth linear color transitions
at a speed of 50 ∆E/s for lightness levels above 2 cd/m2, the frequency of change has
to be at least 20 Hz and the smallest step 0.06 cd/m2 or smaller (a precision of 1024
levels for a 35 cd/m2 system)

An additional problem arises when the system is coupled to another medium, like
in the example AmbiLight application. In this case, the extraction algorithm might
dictate a transition to a color that will result in an unsmooth transition. Knowing the
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differences in sensitivity to luminance and chrominance changes, its easy to imagine a
special case in which only the luminance part of the change is above the smoothness
limit. The way the algorithm than limits the step is ambiguous and more studies to
find the best means are needed. A way in which this can be answered is by finding
the optimal temporal path for the transition between two colors. This problem is the
object of study of the next chapter.

6.7 Conclusions

Results from two experiments that support previous results from flicker sensitivity
research and demonstrate new effects relevant to production and control of dynamic
lighting were presented. Using a spatially nearly uniform color space, CIE LCha∗b∗ ,
we show that the sensitivity for changes in the lightness direction is higher than in
the chroma and hue directions. Independence on the chromaticity of the base color
point for lightness changes is demonstrated. Temporal chroma and hue changes show
dependence on the base color point. The size of the above effects justify the use of
a model of perceived smoothness for control of dynamic lighting over the traditional
control in a device dependent color space.

Even though a difference in the absolute thresholds and different dependence on fre-
quency is shown for smoothness thresholds for linear transitions and flicker visibility
thresholds, the same base color and direction of change effects were demonstrated.
The correlation of the results for different types of dynamic transitions enables build-
ing a model for perceived smoothness based on flicker visibility thresholds.

The results of the experiments can be used to determine system requirements and de-
vise temporal control algorithms which take into account the properties of the human
visual system. The results for the dependence of the speed on frequency give a straight-
forward algorithm to determine the speed of a transition between two points given the
frequency of the lighting system.



7
Discrimination and preference of temporal

color transitions

“A straight line may be the shortest distance between two points,
but it is by no means the most interesting.”

Doctor Who

From the results in the previous chapter, the speed of a transition that appears smooth
can be computed. To get to this desired speed, however, often new points between
the points already in the transition have to be introduced. Thus, the question of the
perceptually most preferred path between two points in a color space arises. In this
chapter, the answer to this question is given in two steps. First, the difference between
temporal transitions connecting two points that are perceived as distinct is explored.
With this knowledge, in the second part of the chapter, the most preferred transition
among a set of distinct possibilities is found. This chapter is based on [109, 110].

7.1 Introduction

Many lighting applications generate colored light that varies over time. For instance,
the color of the light surrounding an AmbiLight TV changes in accordance with the

103
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color of the content shown on the display to enhance the experience of watching TV.
However, when the light follows the content from frame to frame, the resulting step-
like pattern will be perceived as jerky or flickering. In order to produce slowly chang-
ing, smooth light effects, frame skipping and temporal sub-sampling can be used. As
the color is specified only at certain moments in time, intermediate colors have to be
calculated such that the light effect is perceived as consistent with the video.

Dynamic light can also be used for atmosphere creation. By changing the color of
the illumination of environments, such as shops or theaters, various ambiances can be
created. When the illumination has to change gradually from one color to another,
a suitable color transition has to be defined. Currently, there is not much scientific
knowledge on the discrimination and preference of temporal light effects. Since color
spans a three dimensional space, there are innumerable ways to generate a transition
between two colors. In applications where the light source is driven by an RGB signal,
temporal light effects are usually generated by a linear interpolation in RGB space.
However, since RGB is a device dependent color space, the actual color transition will
depend on the physical characteristics of the light source. A second drawback is that
RGB is not an appropriate space to describe color perception. Therefore, it is better to
define color transitions in a device independent and perceptually uniform color space,
such as CIE L∗a∗b∗.

The choice of an appropriate perceptual color space does not necessarily lead to color
transitions that are appreciated by human observers, as there are still many algorithms
that seem to be reasonable. Therefore, this chapter aims at determining guidelines for
the design of temporal transitions between two colors. In order to study what color
transitions are preferred, one should know what color transitions can be distinguished.
It makes no sense to ask people which of two temporal light effects they prefer, if
they cannot see the difference. Therefore, two experiments are performed. The first
experiment investigates when two different temporal transitions between two fixed
colors are perceived as distinct. The results are used in the second experiment to
develop six algorithms to create temporal color transitions. Participants evaluate these
algorithms for two different applications: AmbiLight TV and atmosphere creation.

Although temporal properties of the human visual system have been subject of many
psychophysical studies, only few studies bear reference to our research. First, studies
on temporal contrast sensitivity have shown that the detection threshold for temporal
sinusoidal fluctuations in luminance decreases with frequency up to about 10Hz and
then increases with frequency [23, 24]. Thresholds for temporal chromatic variations
are constant for frequencies up to about 4Hz and then increase with frequency [99].
If the mechanisms underlying the perception of gradually changing light patterns are
similar to those of the perception of alternating light patterns, one would expect that
the ability to discriminate between two temporal color transitions depends on duration
for luminance variations but not for chromatic variations (at least for durations larger
than 1/4s).
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Second, studies on color discrimination have shown that the visual system is more sen-
sitive to simultaneous spatial color variations compared to variations presented with a
temporal delay. For example, the discrimination threshold for simultaneously viewed,
closely juxtaposed colored patches is about two times smaller than the threshold for
successively presented colors with a temporal delay of 200−550ms [103]. Therefore,
discrimination thresholds for temporal color transitions are expected to be larger than
those for simultaneously viewed color pairs, which are usually around ∆Eab = 1 [32].

Finally, Montag [72] showed that the color with the appearance halfway between two
other colors in CIE LCha∗b∗ color space that have equal chroma and a hue difference of
about 50◦ did not have the same chroma as the color pair. The selected color was closer
to the geometric midpoint in CIE L∗a∗b∗ of the color pair. Hence, a linear transition
between two colors in a perceptual color space might be a promising algorithm for
color transitions.

7.2 Discrimination of temporal color transitions

This experiment aimed at determining how large the difference between two temporal
color transitions should be before people can perceive the difference. Since the final
aim was to obtain guidelines for the light effects of AmbiLight TV and atmosphere
creation, it was decided to use a set-up that could be applied for both applications. A
linear transition in CIE L∗a∗b∗ was used as a reference stimulus and the just noticeable
difference from the reference found using a tuning procedure.

7.2.1 Method

Set-up

A 42′′ Wide Screen Plasma TV was positioned at a distance of 23cm in front of a
white wall in a room of 4 by 6m. Eight RGBLED-units were mounted at the back of
the TV such that the LEDs were not directly visible but only the light reflected from
the wall. The maximum luminance on the wall was 100cd/m2. A couch was placed
at a distance of 4.5m from the screen. The display and LEDs were controlled by a
computer system. The chromaticity coordinates of the TV primaries were close to the
EBU [80] primaries. The driving values for the LEDs and display were calculated
such that the white point corresponded to CIE D65 and all colors were located within
the gamut of the display. This was possible because the color gamuts of all LED-units
were larger than that of the display. The refresh rate was 60Hz for the TV and 50Hz
for the LEDs.
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Stimuli

To determine the discrimination ability of temporal color transitions four color pairs
defining the start and end color of the transition were used: “blue-green”, “green-
magenta”, “magenta-green”, and “magenta-yellow”. The order of start and end color
were reversed in the second and third color pair, to measure the effect of chromatic
adaptation. The chromaticity and luminance of the colors were based on four images
that were used in the second experiment (see Section 7.3.1 and Figure 7.3) and are
presented in Table 7.1.

Y x y L a b
Blue 0.14 0.189 0.126 45 43 -74
Green 0.23 0.320 0.575 55 -50 55
Magenta 0.14 0.418 0.242 44 57 -9
Yellow 0.31 0.473 0.481 63 4 75

Table 7.1: Luminance and chromaticity of the four colors expressed in 1931 CIE xyY
and CIE L∗a∗b∗.

For each color pair several color transitions were generated using MatLab software.
The reference transition was a linear interpolation between the start and end color in
CIE L∗a∗b∗. The test transitions were arcs defined in one of two planes:

1. the plane through start and end color parallel to the lightness axis, called the
lightness-plane and

2. the plane through start and end color perpendicular to the first plane, called the
chromaticity-plane (see Figure 7.1)

The arcs were defined by three points: the start color, the end color and a color in the
corresponding plane at a distance d from the color halfway the start and end color.
Colors of the test transitions located in the lightness-plane had equal hue and chroma
compared to those of the reference transition. However, the lightness of the colors was
larger (“L+”) or smaller (“L−”). Colors of test transitions located in the chromaticity-
plane had the same lightness compared to those of the reference transition. However,
the colors varied in hue and chroma. The arc could bend towards the center of the
gamut (“Cin”) or towards the boundaries of the gamut (“Cout”). Figure 7.1 shows ex-
amples of the directions “Cin” and “Cout” for each color pair. The CIE L∗a∗b∗ values
of a color transition were transformed into RGB values for each LED-unit separately.

Each color transition was composed of three parts: first the start color was shown for
2s, then the transition (0.5s or 4s ) and finally the end color was shown for 2s. The
two durations of the color transitions are realistic speeds of fast and slow transition for
both AmbiLight TV and atmosphere creation.
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Figure 7.1: (a) Examples of the reference transition (black line) and the test transitions
with direction “L+” (red arc), “L−” (green arc), “Cin” (magenta arc) and “Cout” (blue
arc). (b) Projection of the reference transition and test transitions “Cin” and “Cout” on
the a∗b∗-plane for each color pair.

Participants

Ten male and nine female participated in the experiment. Their age ranged between
20 and 46 years, with an average of 29 years. All participants had normal color vision,
as measured with the Ishihara test of color deficiency [48].

Procedure

Participants were seated at the couch in front of the display. During the experiment the
ambient illumination and the display were turned off. Two temporal color transitions
were shown on the LEDs immediately after each other: first the reference and then a
test transition. Both transitions had the same start and end color and the same duration.
After the second transition, all LEDs emitted white light, in order to avoid continuous
change of adaptation state.

Participants had to judge whether the two transitions were equal or not. By selecting a
button on the screen of a notebook, participants could:

1. repeat the trial

2. increase the difference between the transitions

3. decrease the difference between the transitions

4. record the value and go to the next trial
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Participants were instructed to find the point at which the difference between the two
color transitions was just detectable. The test transition that was initially shown was
clearly different from the reference one and had a difference of d = 25∆Eab. The step
size of the tuning procedure was initially 1∆Eab and decreased to 0.5∆Eab for test
transition smaller than d = 2∆Eab.

The experiment consisted of 32 conditions: 2 durations, 4 color pairs and 4 directions
of the test transitions. Participants started with 6 practice trials to get used to the task
before the 32 trials were presented. The experiment took about one and a half hour per
participant.

7.2.2 Results

The maximum color difference d (in ∆Eab) between the reference transition and the test
transition that could just be distinguished is defined as the discrimination threshold.
Figure 7.2 presents the thresholds as a function of the direction of the test transition
(a) per color pair and (b) per duration.

An ANOVA was performed with color pair (“blue-green”, “green-magenta”,
“magenta-green”, and “magenta-yellow”), direction (“L+”, “L−”, “Cin”, and “Cout”)
and duration (“0.5s” and “4s”) as fixed factors and participant as random factor.
A model consisting of all main effects and all second order interactions of the
fixed factors was fitted. The analysis revealed a significant main effect of color
pair (F(3,527) = 5.18, p < 0.01, r2 = 0.029), direction (F(3,527) = 45.55, p <
0.01, r2 = 0.206) and duration (F(1,527) = 6.93, p < 0.01, r2 = 0.013) and a sig-
nificant interaction effect between color pair and direction (F(9,527) = 5.01, p <
0.01, r2 = 0.079) and between duration and direction (F(3,527) = 23.80, p <
0.01, r2 = 0.119). The interaction between color pair and duration was not signif-
icant (F(9,527) = 0.539, p = 0.66).

The effect of color pair was caused by the “blue-green” transition, for which the
threshold was on average slightly lower compared to the other color pairs. However,
this was mainly due to the interaction between color pair and direction. The difference
between color pairs was only significant for the direction “Cin” (see Figure 7.2).

The effect of direction was caused by a significant difference between transitions in
the lightness-plane and transitions in the chromaticity-plane. Thresholds were on av-
erage lower for “L+” and “L−” compared to “Cin” and “Cout”. However, the difference
between directions depended on duration. At “0.5s” the difference between the two
groups of transitions was large, but decreased for the slower transition.

Discrimination thresholds were on average smaller for color transitions of “0.5s” com-
pared to “4s”. However, as mentioned above, the effect of duration depended on
the direction of the transition. Thresholds increased with duration for the transitions
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in the lightness-plane, and slightly decreased with duration for the transitions in the
chromaticity-plane.

Figure 7.2: Discrimination threshold (in ∆Eab) for the direction of the test transition
(a) per color pair (averaged over the 2 durations) and (b) per duration of the transition
(averaged over the 4 color pairs. The error bars correspond to the 95% confidence
intervals.

7.3 Preference of temporal color transitions

This experiment aimed at finding the best way to make a temporal transition between
two fixed colors. Since there are innumerable ways to create a transition between two
colors in a 3 dimensional color space, it is hardly possible to find the most optimal
solution. In addition, there might be a large range of transitions that are assessed as
“very appealing”. Therefore, it was decided to compare only a few possible solutions.
Additionally, to test the possible influence of the context in which the transition is
shown, the transitions were shown both with and without content on the TV.

7.3.1 Method

Stimuli

Two of the four color pairs of the first experiment were used: “blue-green” and
“magenta-yellow”. For each color pair, six color transitions in different directions
were created: a linear transition in CIE L∗a∗b∗ (“Lab”), a linear transition in RGB
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(“rgb”), and the four transitions from the first experiment with a color difference ∆Eab
of about 3 times the average threshold value.

The experiment consisted of three context conditions:

1. the light transitions were shown while the display was turned off and there was
“no content”

2. the light transitions were shown together with two images having “meaningful
content”

3. the light transitions were shown together with two images with a “single color”

The first condition corresponds to an atmosphere creation application using only light
sources, while the second and the third correspond to an AmbiLight TV application.
In the conditions where images were also shown, two images with a duration of 4s
were shown immediately after each other (see Figure 7.3). During the first 2s, the
LEDs emitted the start color, then the color transition was shown for 4s, and finally
the end color was shown for 2s. Hence, the transition started 2s before the second
image was shown. The two images that were shown had either meaningful content
or were uniformly colored. The average chromaticity of the start and end images was
always the same as those of the start and end colors of the LEDs.

Figure 7.3: The image stimuli used in the second experiment.

Participants

Fifteen male and fifteen female participated in the experiment. Their age ranged be-
tween 21 and 46 years, with an average of 27 years. All participants had normal color
vision, as measured with the Ishihara test.
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Procedure

Participants were seated at the couch in front of the display. During the experiment
the ambient illumination was turned off. Two color transitions with the same start and
end color were shown on the LEDs immediately after each other. After the second
transition, all LEDs emitted white light. Participants were asked to indicate which of
the two transitions they preferred most. They had the possibility to repeat the trial.

All participants were exposed to the first two context conditions, but only half of the
participants performed the third condition. For each condition and each color pair,
all possible combinations of the six different transitions were presented. This resulted
in 30 trials per condition, which were presented in a random order. Half of the par-
ticipants started with condition “no content” and half of them started with condition
“meaningful content”. Condition “single color” was always presented last for the peo-
ple involved. Participants started with four practice trials before the first condition was
presented. The experiment took about half an hour per condition per participant.

7.3.2 Results

The preference responses were analyzed using Thurstone’s law of Comparative Judg-
ment case V [101]. This analysis calculates a preference score (z-score) for each eval-
uated algorithm. The 95% confidence intervals on the difference between preference
scores were calculated with the generalized linear model (GLM) procedure described
in [81].

Figure 7.4 presents the obtained preference score of the six algorithms per color pair,
taking into account the data of all participants and the three conditions. The differ-
ence in preference scores between two algorithms can be interpreted in terms of the
percentage of participants that preferred one algorithm above the other, which can be
calculated with the cumulative normalized probability function. To facilitate the inter-
pretation, the least preferred algorithm was given a value of zero. The horizontal lines
divide the algorithms into groups for which the preference scores are not significantly
different (p < 0.05). The GLM analysis revealed a significant effect of color pair
(p < 0.001). There was no significant difference between the conditions “no content”,
“meaningful content”, and “single color” (p = 0.24).

Figure 7.4 shows that the order of the algorithms was very similar for the two color
pairs: “Cin” was the least preferred algorithm, whereas the algorithms “L−”, “Lab”
and “RGB” were preferred by most of the participants. However, the difference be-
tween the least and most preferred algorithms was larger for “blue-green” compared
to “magenta-yellow”. When “Cin” was removed from the data, the effect of color pair
disappeared. Apparently, this algorithm was differently evaluated for the two color
pairs. This is consistent with the first experiment, where the discrimination threshold
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was found to depend on color pair only for “Cin”.

Figure 7.4: Preference scores of the six algorithms for a temporal color transition
between (a) “blue-green” and (b) “magenta-yellow”. According to Thurstone’s model,
the percentage of participants that prefer one algorithm above the other is 50%, 69%
or 84% for a difference in preference score of 0, 0.5 and 1, respectively.

7.4 Discussion

The ability to discriminate between two temporal color transition was found to be
similar for all color pairs, except for the direction “Cin”, where thresholds were lower
for the “blue-green” transition. This result might be related to the observation that two
colors in different linguistic color categories are more easily distinguished than those
in the same category [104]. Indeed, the intermediate color for the blue-green transition
with direction “Cin” has a magenta hue and does not fall into the same color category
as blue or green in contrast to the direction “Cout”, for which the intermediate color
has a cyan hue. A second explanation might be that cyan is located between green and
blue on the color circle, whereas magenta is located on the opposite site. Therefore,
the transition via magenta might be perceived as unnatural and, hence, more salient.
Since there was no difference between the color pairs “green-magenta” and “magenta-
green”, it can be concluded that chromatic adaptation of the eye did not play a role in
the ability to discriminate between temporal color transitions.

Discrimination thresholds were found to increase with duration for lightness variations
and to be rather constant for chromatic variations. This result confirms the expectation
stated in the introduction, which was based on research on temporal contrast sensitivity
[100] and supports the results from Chapter 6. In addition, thresholds for temporal
variations in lightness were lower compared to temporal variations in chromaticity.
This again supports the intrinsic difference between chromatic and lightness variations
as described in Chapter6. Additionally, the perceived size of the light spot on the wall



7.5 Conclusions 113

increased with increasing lightness, as is the case for many light sources, which could
have made transitions in the lightness-plane even more visible.

Discrimination thresholds ranged between 2.5 and 10.5∆Eab. Hence, in the most criti-
cal situation, thresholds were comparable to those for spatially separated color patches,
which are usually around 1∆Eab [32]. However, when the duration increased or the
direction of the transition changed, thresholds for temporal color differences were con-
siderably larger compared to spatial color differences. This is consistent with literature
on the perception of temporal color differences [103].

The most preferred way to make a temporal transition between two colors was found
to be independent on the application, i.e. whether the light effects had to enhance the
experience of watching TV or whether they were used for atmosphere creation. A
linear transition in CIE L∗a∗b∗ was evaluated as one of the best algorithms, which is
in agreement with the results of Montag [72]. Interestingly enough, this algorithm was
evaluated to be as appealing as a linear transition in RGB. For “magenta-yellow” the
maximum color difference between these algorithms was 6∆Eab and, hence, hardly
visible. However, for “blue-green” the difference of 20∆Eab was clearly visible.

The results of this study suggest that it is possible to design a general algorithm for
temporal color transitions that are appreciated by human observers, independent of
color pair and application. However, additional research is needed including more
color pairs to confirm this statement.

7.5 Conclusions

This chapter investigates what is perceptually the most optimal way to create a tem-
poral color transition between two colors. The first experiment measured the ability
to distinguish between two temporal color transitions. The reference transition was a
linear interpolation between two colors in CIE L∗a∗b∗, the test transitions were arcs
defined in different planes going through the linear transition. Discrimination thresh-
olds ranged between 2.5 and 10.5∆Eab, dependent on the color pair, direction and du-
ration of the transition. In the second experiment, several perceptually different color
transitions were evaluated. The most preferred transitions were a linear transition in
CIE L∗a∗b∗ and a linear transition in RGB. This suggests that appealing temporal
color transitions can be created without complicated calculations.





8
Flicker perception in the periphery under

mental load

“Maybe your mind is playing tricks
You sense, and suddenly eyes fix
On dancing shadows from behind”

Iron Maiden, Fear of the Dark

Light is seldom the focus of attention in everyday life and usually supports the main
activity. This is also largely the case in the application examples in the previous chap-
ters. The previous two chapters studied the temporal sensitivity of the human visual
system using complex stimuli that were always presented in the center of the visual
field. Due to the supporting nature of lighting, it is also important to study the influ-
ence of the position of temporal transitions in the visual field. The first experiment
in this chapter studies the visibility of flicker at different eccentricities at a number of
base points and in a number of directions in a color space. To ensure that the modu-
lated light remains in peripheral vision, a visual task in central vision was introduced.
The second experiment was designed to test the effect of the task on the visibility of the
peripheral temporal effects. This chapter is based on [79].
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8.1 Introduction

In recent years LEDs have become more frequently used due to several advantages of
such systems over conventional lighting systems. The dynamic capabilities of LEDs
allow their use in many applications, which range from common indicators and road
signs to personalized atmosphere creation. The main challenge in the design and con-
trol of dynamic lighting systems is the perceived attractiveness of the temporal light
changes they produce. LED lamps are typically controlled in a way that produces
chromaticity and brightness changes in discrete steps at discrete time intervals. When
the size of these steps is too large the light change is perceived as jerky, stepped, or
unsmooth. Flicker, which is defined as the rapid alternation between two colors or
brightness levels, is one example of such effects, and from the perspective of per-
ceived attractiveness, it is an especially annoying one. Under some conditions, for
example for very high frequencies (above 80 Hz), flicker is not perceived. Instead,
a temporal fusion, which means a steady, continuous light is perceived [111]. Previ-
ous studies demonstrated that flicker perception is influenced not only by frequency,
but by numerous other factors, which include luminance [43], chromaticity irrespec-
tive of brightness[56], size of the stimulus [45] and finally the retinal position of the
stimulus[102].

In order to be able to define a distance between a pair of color stimuli defined within
a color space, at which alternating light produces smooth and not flickering light, the
notion of visibility threshold was introduced [69]. In Chapter 6 it is defined as the
largest amplitude for the particular stimuli that produces smooth and not flickering
light changes. Spatial just noticeable differences are described by, among others, the
CIE Luv and CIE L∗a∗b∗ color spaces, which demonstrate relatively uniform color
differences predictions for spatial vision. However color spaces in the temporal do-
main are not defined yet.

Recent studies, also part of this thesis, have shown and roughly defined the flicker sen-
sitivity in the central vision; i.e. when fixated directly on the light source. However,
LED based lighting systems can also be extended to the peripheral vision, which com-
prises the region beyond the very center of the eyes’ fixation to the limit of about a 100◦

to each side. It is known that, due to the structure of the human eye, the perception
of motion and color changes at the periphery. For example, Abramov et al.[2] showed
that the photopic luminosity function (the average visual sensitivity of the human eye
to light of different wavelengths), as defined by heterochromatic flicker photometry,
is not the same in the periphery of the retina as it is in the fovea. For that reason one
particular alternating color pattern that appears to be smooth in central vision may be
perceived as flickering in the periphery, and vice versa. Thus, the results from Chapter
6 cannot be assumed in the periphery and a new study is required. The hypotheses
formulated in the current research are largely based on the findings in Chapter 6.

It is commonly known that the density of cones in the human retina decreases when
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moving away from the center of the retina, and therefore color perception is impaired
significantly as well. On the other hand, Hansen et al.[42] found that humans are
able to perceive some colors at large eccentricities (more than 50◦) and cone opponent
channels, however sparse, are still present at these angles. Therefore, it is hypothe-
sized that there is an effect of the eccentricity on the lightness, chroma and hue flicker
visibility thresholds. Even though chroma and hue flicker visibility should be dimin-
ished, it is expected that chromatic flicker is still perceivable at large eccentricities. In
Chapter 6 it was demonstrated that lightness changes are more visible than changes in
chroma and hue, when the color changes are expressed in the CIE L∗a∗b∗color space.
The experiments in this study are designed to check if this fact is valid for peripheral
vision as well. In line with previous findings it is also hypothesized that there exists a
frequency for which the visibility threshold has a minimum value.

Lighting is sometimes the main object of direct attention but most frequently it facil-
itates other activities, which are the main tasks. Carmel et al. [15] demonstrated that
including a task and increasing the mental load impairs flicker perception. It happens
due to the temporal resolution of conscious perception being determined by the atten-
tion availability. Similarly, it is hypothesized that there is an effect of mental load on
the flicker sensitivity. Flicker visibility thresholds are expected to be smaller without
mental load task [15].

In order to gain a better understanding of the way in which the human visual sys-
tem processes temporal patterns in the peripheral vision as a consequence of dynamic
lighting, two experiments were conducted, the results of which are presented in this
chapter.

8.2 Flicker sensitivity thresholds at different eccentricities

The first experiment was designed to measure human sensitivity to chromatic flicker
at different visual angles. Flicker stimuli were created by choosing pairs of color in
CIE LCha∗b∗ color space and alternating between them. These pairs were selected
along each of the L, C, and h axes, and thresholds were expressed in ∆Eab, the Eu-
clidean distance in the CIE L∗a∗b∗ color space.

Given the results of previous research on related topics discussed above, the effect of
eccentricity, frequency of the change, base-color point and direction of change on the
visibility threshold was investigated.
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8.2.1 Method

Equipment

As a light source, a LED luminaire was used, with three RGB LEDs at the top and
three RGB LEDs at the bottom of a cylindrical diffuser. Another, flat, diffuser was
mounted 20cm in front of the lamp to reduce sharp edges that may be detected during
saccadic eye movements. The light source was 23cm wide, or 5.3◦ of visual angle at
a distance of 2.5m. Maximum luminance of the LED luminaire was 400cd/m2. The
detailed profile of the light source used is presented in Figure 8.1

Figure 8.1: False color image showing the luminance distribution along the cross sec-
tions

The LEDs were driven using pulse width modulation (PWM) with a driving frequency
of 500Hz and 11 bit levels. The driver accepted RGB values in the device color space
of the LEDs. The target stimuli were defined in CIE LCha∗b∗ and transformed via
CIE XYZ to the RGB device color space using a computer program running on a PC
connected to the light units.

In the transformation, the CIE D65 white point was used, being the white point of the
display used for the mental task. Care was taken that the requested colors were within
the device gamut of the light source.

Stimuli

The stimuli were square-wave discrete modulations (flicker), alternating between
CIE LChbase− S

2 and CIE LChbase +
S
2 every 1

f seconds. CIE LChbase denotes the
base point in the CIE LCha∗b∗color space and S is the amplitude of the flicker in one
of the directions d ∈ L,C,h, and f is the frequency. Example stimulus for a flicker
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change in direction d is depicted in Figure 8.2. Each stimulus consisted of 4 s with
amplitude S, followed by between 2 and 4 s with amplitude 0. In this way participants
had a reference to a non-flickering stimulus, but could not predict the exact time the
modulated light conditions started.

Figure 8.2: Example stimulus used in the experiment

The stimuli were varied in eccentricity (“35◦”, “60◦” and “90◦” ), frequency (“5”, “10”,
“20”, “40” and “60Hz”), base-color point (“Red”, “Green” and “Blue”), and direction
of change (“Lightness”, “Chroma” and “hue”). In the choice of the eccentricities var-
ious criteria were considered. 35◦ was chosen because it corresponds to the retinal
region of highest flicker sensitivity [102]. 90◦ was chosen as it matches the most dis-
tant retinal region, at which human vision still functions. Finally, 60◦ was chosen as a
middle value between 35◦ and 90◦. Base-color points had the following CIE LCha∗b∗

values: “red” (60,60,45), “green” (60,60,150), and “blue” (60,60,290). The three
base-color points were chosen because these are the desaturated primaries for which
the change within CIE LCha∗b∗ allows for large amplitudes along each of the axes.
For each direction of change different amplitudes of flicker were included in the ex-
periment. A series of pilot tests were conducted to adjust the amplitudes, in order to
cover a range around the expected visibility threshold. As such, lightness flicker was
implemented at amplitudes of 1,2,4,6,10, and 60∆Eab, Chroma flicker at amplitudes
of 10, 20, 40, 60, and 80∆Eab, and hue flicker at amplitudes of 24, 40, 60, and 80∆Eab.

The experiment consisted of three sessions, each of them at different eccentricity. The
stimuli were presented in three blocks, each representing different base-color point,
randomized across the subjects. The total number of stimuli including the different
levels of amplitude S was 675 (i.e. 225 for each eccentricity).
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The mental load task was a simple game created in Adobe Flash. It was displayed on a
screen positioned 2.5m in front of the participants, who controlled it with a computer
mouse placed on a table in front of them. Participants had to move one of four balls in
such a way that it did not touch/hit the remaining three balls which moved according
to general physics laws. The ball controlled by the participant was colored middle
gray, while the other three balls were black. When the player ball touched any of the
other balls, the red ”HIT” text appeared in the left corner of the screen. This specific
mental load task was chosen because it forces the participant to fixate on the screen, but
still allows for flicker detection. Moreover, it enforces two types of eye movements:
saccadic from one ball to the other and continuous ones following a single ball.

Participants

Participants were 10 female and 20 male Philips Research employees, aged between
23 and 45 years, with a mean age of 29 years. All subjects had normal or corrected to
normal vision. They did not wear glasses (as the flickering light in the distant periphery
could be perceived reflected from the glasses). They all had normal color vision, tested
with Ishihara Test of Color Deficiency. Before the start of the experiment, participants
were asked if they, or a member of their family, suffered from epileptic attacks, mi-
graines or any other known condition for which flickering light could have negative
consequences.

Procedure

In an otherwise darkened room, the LED luminaire was placed at different eccentric
positions and it faced the participant. Subjects were seated at a distance of 2.5m from
the light source. To ensure fixed position of subjects’ eyes and the constant distant to
the light source, their chin was placed on the chin rest mounted on the table in front of
them. They were directly facing the display with the mental load task.

Before the start of the session the participants received verbal instructions. They were
instructed to fixate on the display and carry on the mental load task for the duration
of the entire session. They were asked to press the space bar on the keyboard placed
on the table in front of them every time they saw the flickering. A brief trial session
was implemented so that the participants got used to the stimuli before starting the
experiment.

8.2.2 Results

In order to obtain the visibility threshold, a psychometric curve was estimated for
every stimulus by fitting a logistic curve to the percentage of people indicating flicker
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at each amplitude. The visibility threshold was then defined as the amplitude at which
the psychometric curve reached 0.5, representing the amplitude at which 50% of the
participants detected flicker. To compute 95% confidence intervals for the thresholds,
a bootstrap procedure [27] was used. The number of resamples was 1000.

The median threshold amplitudes were analyzed using ANOVA (Analysis of Vari-
ance) with eccentricity, base-color point, direction of change and frequency as fixed
factors. Based on the distribution of the median threshold amplitudes as computed by
the bootstrap procedure, a new set of 30 threshold values for each factor combination
was created and used in the fit of the model. This was done to add the variance in-
formation into the ANOVA procedure. The model fitted consisted of all main effects
and all two way interaction effects. In several high-eccentricity, high-frequency cases,
reliable thresholds were not found. These points are absent from the plots.

A significant main effect was found for all fixed factors, namely eccentric-
ity (F(2,40) = 46.151, p < 0.001, r2 = 0.775), base-color point (F(2,40) =
116.813, p < 0.001, r2 = 0.891), frequency (F(3,40) = 118.199, p < 0.001, r2 =
0.892), and direction (F(2,40) = 456.459, p < 0.001, r2 = 0.967). A post-hoc test
on the factor direction revealed that the “lightness” visibility threshold is significantly
lower then the “chroma” and “hue” visibility thresholds. This is in line with the find-
ings in Chapter 6 for central vision.

All interaction effects with frequency were found significant, namely with eccen-
tricity (F(6,40) = 9.336, p < 0.001, r2 = 0.466) , base-color point (F(6,40) =
145.335, p < 0.001, r2 = 0.91), and direction (F(6,40) = 42.453, p < 0.001, r2 =
0.761). Additionally, a significant interaction was found between eccentricity and di-
rection (F(4,40) = 12.490, p < 0.001, r2 = 0.526). Due to the large main effect of
direction and the interaction effects, the data was subdivided and three separate models
for the three directions were fitted. The most important findings from the analysis of
the separate models are given below.

Effect of eccentricity on lightness flicker

Eccentricity was found to have a significant effect on peripheral “lightness” flicker
perception (F(2,11) = 450.473, p < 0.001, r2 = 0.968), as shown in Figure 8.3.
A post-hoc test revealed that the visibility threshold for 90◦ is significantly different
from both 35◦ and 60◦. Additionally, a significant two way interaction effect between
eccentricity and frequency was found (F(6,11) = 397.899, p < 0.001, r2 = 0.964).

Effect of eccentricity on chroma and hue flicker

Eccentricity was found to have a significant effect on “chroma” (F(2,4)= 38.899, p<
0.001) and “hue” (F(2,5) = 855.525, p < 0.001) flicker perception, as illustrated in
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Figure 8.3: Lightness flicker thresholds averaged across base-color points for the 3
eccentricities tested. For the 90◦ and 20 Hz, the upper error bar reaches 13 ∆Eab

Figures 8.4 and 8.5. Post-hoc tests revealed that all of the tested visual angles signif-
icantly differ from each other; the further into the periphery, the larger the visibility
threshold. This is in line with what is expected based on the retinal structure and the
study of Hansen et al. (2009) [42].

Independence of the thresholds for lightness flicker and dependence of the thresh-
olds for chroma and hue flicker on the chromaticity of the base-color point

No main effect of base-color point (“Red”, “Green”, and “Blue”) was found for pe-
ripheral lightness flicker. Contrary to “lightness” flicker, it was found that base-color
point has a significant effect on “hue” (F(2,5) = 3238.62, p < 0.001) and “chroma”
(F(2,4) = 1778.05, p < 0.001) peripheral flicker. For “chroma” flicker, it was found
that “Green” has higher thresholds than “Blue” and “Red”. In fact, visibility thresh-
olds for “Green” are so high for all of the eccentric angles, that they can be neglected.
In case of “hue” flicker, all of the base color points were found to significantly differ
from one another. Post-hoc test revealed that humans are most sensitive to “Blue” and
least sensitive to “Red” hue flicker.

8.3 Effect of mental load on flicker perception

One of the assumptions in the first experiment was that the introduction of an additional
task changes the sensitivity to peripheral flicker. Experiment 2 was designed to test this
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Figure 8.4: Thresholds for “Chroma” changes expressed in ∆Eab as a function of fre-
quency and base color point for different eccentricities

assumption and instead of the mental load task a fixation cross was displayed on the
screen. To limit the duration of the experiment, the results for only one visual angle
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Figure 8.5: Thresholds for hue changes expressed in ∆Eab as a function of frequency
and base color point for different eccentricities

with and without a task were compared. The 35◦ visual angle was selected because
the thresholds for 35◦ were the most accurate.
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Figure 8.6: Effect of mental task on Lightness flicker perception

8.3.1 Method

Participants

Seven female and thirteen male Philips Research employees, aged between 23 and 41
years, with a mean age of 27 years, participated in the experiment. They fulfilled the
same conditions as in the first experiment. The two sets of participants had partial
overlap.

Stimuli

A subset of the stimuli from the first experiment was used. Only the 35◦ visual an-
gle was used as well as only two directions, “lightness” and “chroma”. The same
frequencies and base-color points were used.

Procedure

The same experimental setup and procedure as in the first experiment were used.
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8.3.2 Results

Effect of mental load on lightness and chroma flicker

Two ANOVA models for the two directions were fitted separately with mental load,
frequency, and base-color point as fixed factors. All main effects and two-way interac-
tions were included in the models. It was found that mental load significantly impairs
flicker perception for both “lightness” (F(1,6) = 341.347, p < 0.001) and “chroma”
(F(1,3) = 187.640, p < 0.01). Thresholds for “lightness” flicker with mental load
were 2.09 times higher than without mental load for 5, 10, and 20Hz, and for 40Hz
this factor was 1.2. Figure 8.6 depicts the effect of the mental load on “lightness”
flicker perception. The main effect of the base-color point was found to be significant
(F(2,6) = 8.919, p < 0.05). In case of chroma flicker, the performance was impaired
under mental load mostly for “Green”. The mental load used in the current study was
relatively low. If the mental load is increased it is expected that flicker thresholds
would increase even further [15].

8.4 Conclusions

Results from two experiments were presented. They support most of the previous find-
ings on flicker visibility thresholds and demonstrate new effects relevant to the control
of dynamic, LEDs based systems. It was shown that when using CIE LCha∗b∗ color
space, which is almost uniform for spatial differences, the peripheral flicker sensitivity
is much higher when the change is in lightness compared to chroma or hue. Further-
more, chromaticity independence of lightness flicker sensitivity was shown, contrary
to the chroma and hue flicker sensitivity. Chroma and hue flicker gets impaired with
increasing eccentricity. Lightness flicker sensitivity increases for 5Hz and 10Hz fre-
quencies but decreases for higher frequencies when eccentricity increases. Finally,
mental load was verified to have an impairing effect on flicker perception in the pe-
riphery for both lightness and chroma flicker.
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Conclusions and future work

In this thesis six studies on selected topics in the area of Ambient Intelligent Lighting
(AIL) are presented.

Solid state lighting systems are revolutionizing the lighting industry. Beyond their
traditional advantages of long lifetime, high efficiency, and environmentally friendly
materials, solid state lighting systems enable the creation of spatially, spectrally and
temporally complex light effects, with the sources of light embedded in the environ-
ment. With the newly found freedom the users can switch their focus from the confines
of the technology to the expression of their needs, regardless of the technology. Identi-
fying those needs, creating an effective language to communicate them to the system,
and translating them to control signals that will fulfill them is the core differentiator of
Ambient Intelligent Lighting (AIL) systems.

To facilitate the development of AIL systems, it is useful to treat solid state lighting as
a digital medium. As with any other medium, the basic challenges can be subdivided
in: creation and capture, storage and communication, reproduction, and measuring
and controlling the quality of the content. Due to the fact that AIL is a broad and
emerging area, the two basic challenges of new content creation and quality control
were selected for further exploration in this thesis.
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9.1 Light effect creation

Creation of new content for an AIL system is the problem studied in the first part of the
thesis. The related studies are based on the insight that the traditional control driven
creation is unsuitable for solid state lighting systems due to their increased capabilities
and complexity. Instead of the traditional system centric control driven approach to
lighting design, Chapters 3, 4, and 5 present examples of user centric effect driven
light design with increasing complexity. The path to full spatio-temporal light effects
is subdivided in its basic components, the selection of colors, the control of the spatial
distribution of colors and the addition of temporal effects.

In the introduction, the AIL model is introduced as a way to select the language, or
level of abstraction, that users can facilitate to communicate their desired effect to the
system. The requirements for the solutions presented in the first part of the thesis
were that the selected interaction language should be understandable and natural to the
users but also translatable to device settings to render the desired effect. The solutions
presented should be seen only as examples of usage of the basic features/ideas in every
chapter. When developing AIL systems, any subset of these features can be used,
independent of the chapter they are presented in. An example of such a system is
sketched at the end of the section.

As a first step towards creating complex light effects in the environment, in Chapter
3 the problem of selecting a set of colors is studied. In this chapter an unsupervised
method to relate terms with relevant images and colors is presented. The results show
that meaningful colors for a term can be computed using large image repositories and
image processing. Furthermore, a measure of suitability of a term for color extraction
based on KL divergence is presented. The method is tested in two ways. First, using
color names as terms enables the comparison of the computed set of colors to hue
angle boundaries for high chroma colors based on psychophysical research. Second,
to extend the evaluation to more general terms, a comparison between the computed
set of colors based on equivalent terms in two different languages, English and Finnish,
is used.

A prototype system based on the method is presented where the method is applied
to song lyrics. In order to identify terms within the text that may be associated with
images and colors, noun phrases are selected using a Part of Speech tagger. Large
image repositories are queried with these terms and the results are gathered in a set of
images per term. The images that are best ranked by the search engine are displayed on
a screen, while the extracted representative colors are rendered on controllable lighting
devices in the living room, synchronized with the song, resulting in a full multimedia
experience.

The basic ideas in Chapter 3 are the usage of an auxiliary medium to define light
effects and the use of simple statistics on large noisy datasets. The example auxiliary
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media used in the chapter are written language and digital images. Even though they
are used together in the chapter, it is easy to imagine systems that use only one of
them. For example, a pre-made database of colors and terms can be used as a basic
implementation of the feature of selecting a set of colors based on a term. Similarly,
any set of images, for example a user provided photo album or even a single image can
be used to extract a set of representative colors. Furthermore, the feature extracted is
not limited to a set of colors. The spatial distribution of those colors, as an example,
can also be extracted from the set of images, as well as the temporal changes in case
of digital video.

Simple statistics on large noisy datasets produced by querying Internet search engines
are used as a way to capture knowledge. This, contrary to static knowledge represen-
tations, enables the system to be agnostic to the language of the user and responsive
to changes of meaning of a term over time. The language independence is not used in
the example application as the English language is required due to the Part of Speech
tagger. This can be, however, easily generalized using the measure of suitability pre-
sented. Instead of the terms that should carry the strongest links to color information,
as is the case when using noun phrases and proper nouns, terms with the highest com-
puted suitability measure can be selected.

Once the desired set of colors for a light effect is selected, the user needs to define
the spatial arrangement of these colors. In Chapter 4, an interactive lighting design
and control approach is introduced. It is based on large LED-based lighting systems
that use visible light communication. The visible light communication technology
enables the on-line estimation of individual illumination contributions, using invisible
light source identifiers. Algorithms that allow light rendering for single and multiple
target positions in such a system are presented. These algorithms enable the control of
chromaticity, luminance, and the spatial distribution.

The method was implemented in two test systems. A limited physical system was
created to demonstrate the feasibility of the proposed method. A simulation of a larger
system was used to demonstrate the usability and the improved user interaction of the
proposed method.

The technological base of the solution in this chapter is visible light communication.
The defining feature of the chapter, real time interactive light design, however, does
not depend on the availability of visible light communication hardware. An alterna-
tive way of estimating individual illumination contributions, is for example dark room
calibration. In this case, instead of moving through the space, the points of interest are
selected on a screen. Using smart-phone or tablet cameras, this alternative implemen-
tation emerges as being simpler to implement and, arguably, easier to control.

Light in nature is always dynamic at some time scale, indicating the need of introduc-
ing dynamic light in artificial light systems. In Chapter 5 a new method of dynamic
light effect generation using stochastic models is presented. Similar to dynamic light-
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ing scenes in nature, the resulting light effects are unpredictable, yet recognizable. A
method to learn the stochastic models from a video source of a natural scene is shown.
The method extracts the representative colors from the video and subsequently learns
the typical transitions between the colors. After the model has been learned, the ren-
dering of the effects has low memory and processing requirements, making it suitable
for implementation even on embedded platforms. The recognition of the produced
light effects was tested for three automatically created models and a hand crafted one
using a large user base. The results show the suitability of the method for dynamic
atmosphere creation, but also a high appreciation of the produced light effects. Fi-
nally, possible extensions of the light effect to multiple dependent light sources and to
interactivity are proposed.

The basic distinguishing feature in Chapter 5 is the introduction of stochastic behavior
in the lighting system. In the solution presented the feature is coupled to another
feature also used in Chapter 3, the translation of information from a different medium
to light. The addition of stochastic behavior to lighting systems can be used in a much
broader context. Some possibilities, like spatio-temporal effects and interaction are
discussed in the possible extensions part of the chapter. Stochastic behavior can be also
be used for static light effects. Research in the area of atmosphere perception shows
that the set of device settings that produce a desired atmosphere does not consist of a
single point, but rather is a subspace in the parameter space of device settings. This
means that by a random sampling of the solution subspace, the system can produce
the same desired atmosphere that looks different per device, adding unexpected and
organic behavior to the system.

One advantage of doing a thesis in an industrial environment is the ability to transfer
the results of research into products easier and faster. An example of this is the Philips
Naturelle Candlelights product, which directly use the results of Chapter 5. Due to its
simplicity and the fact that the separate lights are independent and self controlled, this
solution is easy to implement. The implementation of the results of the other chapters
usually needs additional hardware and software. This disadvantage is recently signifi-
cantly alleviated due to the soaring use of smart-phones and mobile applications. The
always on, fully connected and camera enabled phones and tablets bring forward the
possibility of easy control, creation and sharing of light effects. Recently introduced
Internet/light connection bridges enable direct control of light sources and open the
possibility to create all the applications envisioned in this thesis and much more.

As an example of a mobile application, we can envision the use of interactive light-
ing design based on dark room calibration. The calibration is simply done by using
the camera of the mobile phone and automatically switching on individual lights in the
system and capturing their effect on the environment. In a manner even closer to paint-
ing with light, the user can select colors from a palette made by using algorithms from
Chapter 3 and paint their spatial distribution directly on the images of the room. Us-
ing the algorithms in Chapter 5, we can go one step further and add dynamic brushes,
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learned from a video found on-line or captured with the mobile camera. Using the
envisioned system, adding a reflection of a fireplace on a wall in the room would be as
simple as touching the image of the wall on the mobile device.

Even though this thesis gives examples of abstractions that can be used to create AIL
content, the basic question of the most suitable interaction language remains open.
The specifics of lighting and the complications of working with unrelated colors in-
crease the challenge. Most of the models used in contemporary color science are built
with imaging in mind and treat illumination like a constant, taken from a limited set of
standard possibilities. Contrary to these, Color Appearance Models, equivalent Light-
ing Appearance Models should account for temporal changes in illumination and both
global and local adaptation in spatially complex illumination conditions. As the ap-
pearance of the illumination is inseparable from the illuminated environment, defining
a standard environment to test the models that can be generalized to an arbitrary en-
vironment further complicates the development of such models. These facts, together
with the limited capabilities of traditional lighting sources, result in the development of
Lighting Appearance Models still being in its infancy. The lack of basic model makes
it hard to use abstractions even at a level of perceptual effects, let alone at the overall
atmosphere level. Looking forward, defining the set of light effect primitives and the
hardware building blocks to render them is and will be one of the main challenges in
the development of AIL systems.

9.2 Temporal quality of light

The second part of the thesis concerns the perceived quality of the produced light
effects. From the multitude of light quality parameters discussed in the introduction,
the temporal light quality was selected for further exploration due to the particularities
of LEDs.

As mentioned before, the temporal response of LEDs to changes in driving current
is much faster than the response of classical light sources. This fact produces new
temporal artifacts, but also explains the lack of models to predict the visibility and
acceptability of such artifacts. The emphasis of the chapters in the second part is
on two temporal artifacts, luminance and chromatic flicker and perceived unsmooth
light transitions. At a high level the chapters answer the questions: “How fast can
a transition between two colors be?”; “What path through color space constitutes a
pleasant temporal transition?”; and “How does the sensitivity to temporal artifacts
change over visual angle and with the addition of a mental task?”

Chapter 6 explores the sensitivity of the human visual system to unsmooth light tran-
sitions. The results show the relation between the perception of unsmooth light tran-
sitions and the perception of flicker and give a contribution towards building a model
of visibility of unsmooth lighting transitions and chromatic flicker. Using a spatially
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nearly uniform color space, CIE LCha∗b∗ , the results show that the sensitivity to tem-
poral changes in the lightness direction is higher than in the chroma and hue directions.
The size of the effects justify the use of a specific model of perceived smoothness for
control of dynamic lighting instead of the use of the traditional control in a device
dependent color space.

Even though a difference in the absolute thresholds and the frequency dependence be-
tween smoothness thresholds and flicker visibility thresholds was found, the same base
color and direction of change effects were demonstrated. The correlation of the re-
sults for different types of dynamic transitions enables building a model for perceived
smoothness based on flicker visibility thresholds. The results of the experiments can be
used to determine system requirements and devise temporal control algorithms which
take into account the properties of the human visual system. The results for the de-
pendence of the speed on frequency give a straightforward algorithm to determine the
speed of a transition between two points given the frequency of the lighting system.

The results show two effects with interesting implications for future work. First, the
sensitivity to changes in lightness is shown not to depend on the chromaticity of the
base color point, simplifying the development of a future model. Second, the sensi-
tivity for hue and chroma transitions do depend on the chromaticity of the base color
point, demonstrating the need for a chromaticity dependency. The results presented in
the chapter represent a starting point in the development of a full temporal smoothness
and flicker visibility model.

To satisfy the smoothness requirements in a dynamic lighting system, new color points
between fixed endpoints have to be introduced. To study this problem, Chapter 7 deals
with the preferred temporal path between two colors in a color space. Through two
experiments, the perceptually most optimal way to create a temporal color transition
between two colors is investigated. The first experiment measures the ability to dis-
tinguish between two temporal color transitions. Discrimination thresholds ranged be-
tween 2.5 and 10.5∆Eab, and are significantly higher than the threshold for smoothness
or flicker visibility. This is expected, as the temporal separation between the middle
points in the transitions is much higher, in the order of seconds in contrast to flicker,
where the stimuli are presented in direct succession. In the second experiment, several
perceptually different color transitions were evaluated. The most preferred transitions
are a linear transition in CIE L∗a∗b∗ and a linear transition in RGB. This suggests that
appealing temporal color transitions can be created without complicated calculations.

There are a number of improvements possible for the studies presented in Chapter
7. Due to the large size of the space of possible transitions, a simple, but limited,
parametrization was selected. A second limitation to the applicability of the results is
the limited number of color pairs that constituted the beginning and ending point of
the transitions. For both of the above, a study of existing dynamic light solutions, both
natural and man made, can be used as inspiration for the search.
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Lighting is seldom the focus of attention and it typically supports other activities. To
this extent, Chapter 8 studies the difference between the temporal sensitivity of cen-
tral and peripheral vision. Results from the experiments show that when using the
CIE LCha∗b∗ color space, which is almost uniform for spatial differences, the periph-
eral flicker sensitivity is much higher when the change is in lightness compared to
chroma or hue, similar to sensitivity in central vision. Furthermore, the chromaticity
independence of lightness flicker is also shown. Chroma and hue flicker gets impaired
with increasing eccentricity. Lightness flicker sensitivity increases for 5Hz and 10Hz
frequencies but decreases for higher frequencies when eccentricity increases.

Apart from shifting the focus away from the dynamic light, adding a task to a user
introduces mental load. The final experiment of the chapter shows that this mental
load has an impairing effect on flicker perception in the periphery.

The second part of the thesis demonstrates the usefulness and limitation of the use of
spatial color spaces for predicting temporal quality of light. The approach in this thesis
was application driven and the established models are empirical. However, using the
theoretical framework of linear system analysis as used in model of luminance flicker
has a promising prospect as an approach for modeling the effects described in these
chapters.

Looking forward, there is a wealth of undescribed temporal artifacts present in LED
lighting beyond the ones studied in this thesis. The interaction between modulated
lighting and moving objects and eye movements for example is an especially interest-
ing field of study as it impacts the perceived quality of a large number of light systems.

Similar to the effect creation, the freedom that LEDs give over traditional lighting
systems can be used to optimize the light quality on any of the parameters discussed
earlier. Interestingly, for different parameters, the main driving force behind the im-
provements is different. For example, due to the embedding of the light sources in the
environment, the aesthetics of the light emitting surface become more important, but
also are very different from the standard. The ability to use a large number of light
sources distributed in the environment enables the optimization of object appearance
properties. The unifying factor for all of the above is the presence of an observer, mak-
ing perception research more important. Though important, perception is of secondary
interest for the development of improvements in the light designed to influence bio-
logical and chemical processes which are and will be mainly driven by understanding
those processes.

The wish of the author is that this collection of studies is only the first of many con-
cerning AIL systems, enabling solid state lighting, and lighting in general to fulfill its
full potential.
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Studies in Ambient Intelligent Lighting

Summary

The revolution in lighting we are arguably experiencing is led by technical develop-
ments in the area of solid state lighting technology. The improved lifetime, efficiency
and environmentally friendly raw materials make LEDs the main contender for the
light source of the future. The core of the change is, however, not in the basic technol-
ogy, but in the way users interact with it and the way the quality of the produced effect
on the environment is judged. With the new found freedom the users can switch their
focus from the confines of the technology to the expression of their needs, regardless
of the details of the lighting system. Identifying the user needs, creating an effective
language to communicate them to the system, and translating them to control signals
that fulfill them, as well as defining the means to measure the quality of the produced
result are the topic of study of a new multidisciplinary area of study, Ambient Intelli-
gent Lighting.

This thesis describes a series of studies in the field of Ambient Intelligent Lighting,
divided in two parts. The first part of the thesis demonstrates how, by adopting a
user centric design philosophy, the traditional control paradigms can be superseded by
novel, so-called effect driven controls.

Chapter 3 describes an algorithm that, using statistical methods and image processing,
generates a set of colors based on a term or set of terms. The algorithm uses Internet
image search engines (Google Images, Flickr) to acquire a set of images that repre-
sent a term and subsequently extracts representative colors from the set. Additionally,
an estimate of the quality of the extracted set of colors is computed. Based on the
algorithm, a system that automatically enriches music with lyrics based images and
lighting was built and is described.

Chapter 4 proposes a novel effect driven control algorithm, enabling users easy, natural
and system agnostic means to create a spatial light distribution. By using an emerging
technology, visible light communication, and an intuitive effect definition, a real time
interactive light design system was developed. Usability studies on a virtual prototype
of the system demonstrated the perceived ease of use and increased efficiency of an
effect driven approach.
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In chapter 5, using stochastic models, natural temporal light transitions are modeled
and reproduced. Based on an example video of a natural light effect, a Markov model
of the transitions between colors of a single light source representing the effect is
learned. The model is a compact, easy to reproduce, and as the user studies show,
recognizable representation of the original light effect.

The second part of the thesis studies the perceived quality of one of the unique ca-
pabilities of LEDs, chromatic temporal transitions. Using psychophysical methods,
existing spatial models of human color vision were found to be unsuitable for predict-
ing the visibility of temporal artifacts caused by the digital controls. The chapters in
this part demonstrate new perceptual effects and make the first steps towards building
a temporal model of human color vision.

In chapter 6 the perception of smoothness of digital light transitions is studied. The
studies presented demonstrate the dependence of the visibility of digital steps in a
temporal transition on the frequency of change, chromaticity, intensity and direction
of change of the transition. Furthermore, a clear link between the visibility of digital
steps and flicker visibility is demonstrated. Finally, a new, exponential law for the
dependence of the threshold speed of smooth transitions on the changing frequency is
hypothesized and proven in subsequent experiments.

Chapter 7 studies the discrimination and preference of different color transitions be-
tween two colors. Due to memory effects, the discrimination threshold for complete
transitions was shown to be larger than the discrimination threshold for two single
colors. Two linear transitions in different color spaces were shown to be significantly
preferred over a set of other, curved, transitions.

Chapter 8 studies chromatic and achromatic flicker visibility in the periphery. A com-
plex change of both the absolute visibility thresholds for different frequencies, as well
as the critical flicker frequency is observed. Finally, an increase in the absolute visibil-
ity thresholds caused by an addition of a mental task in central vision is demonstrated.
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