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CHAPTER 1
INTRODUCTION

The thermodynamic properties of an infinite three-dimensional ensemble

of interacting magnetic moments have not yet been solved exactly. There~
fore, a growing number of both theoretical and experimental investigations
have been devoted to ensembles of spins which interact mainly in one or
two dimensions. In this thesis we will confine ourselves to pseudo one-
dimensional magnetic systems, i.e. systems which can be described by a
purely one-dimensgional model system over a wide range of temperatures,

and our main interest will be devoted to their magnetic heat capacity.
Even for linear chain model systems, exact solutions for the heat capacity
are available only in a very few cases, but suitable approximation pro-
cedures may often provide a satisfactory déscriptidn. A survey of some
relevant results will be presented in Chapter II,

In order to analyse the experlmental data, it is necessary to separate
the magnetic contribution (ﬂH) and the lattice contribution (€;) to the
total specific heat. For the compounds of interest a fairly accurdte B
description of the lattice heat capacity is required, since one~dimen-
sional magnetic correlations are still important at higher temperatures,
where CL >> CM' Unfortunately, the usual three-dimensional Debye model
fails to give a correct description of the lattice heat capacity, because
the majority of substances which display one-dimensional magnetic
characteristics are also rather anisotropic from a 1at£ice dynamiéal point

of view. An exact calculation of €, 1s impossible, since it would require

a detailed knowledge of all interaiomic force constants. Therefore,
various attempts have been made to modify the conventional Debye theory
in such a way, that it would give an appropriate description of the lattice
heat capacity of rather anisotropic media. The reported results, however, ‘
drastically oversimplify the actual dynamical behaviour or rely to a large
extent on the characteristic proper;ies of a certain compound. In Cha?ter
III we shall present a model which, starting from continuum elasticity
theory, offers a suitable description of the lattice heat capacity of
both layered and chainlike compounds.

As already mentioned above, several approximation procedures have

been used in the calculation of the magnetic heat capacity of most one-



dimensional model systems. It would therefore be worthwhile to confront
- the predicted behaviour with some experimental results on magnetically
one~dimensional systems. In practice, such systems may consist of chains
of strongly coupled magnetic ions, which are separated from each other
by intermediate non-magnetic alkaii ions, HZO groups or organic com—
plexes. One should bear in mind, however, that in any real system
small interactions between the chains will be present,.giving rise to
deviations from the "unmperturbed" one—dimensional behaviour, especially
at low temperatures, where they may produce three-dimensional ordering.
Although this ordered region — in principle — obscures the low temperature
behaviour of the one-dimensional model system, it generally offers
additional information about the character and the magnitude of the
magnetic interactions, which is often'neceséary to judge the appli-
cability of a certain theoretical model system.

After a description of the calorimeter, which is given in Chapter IV,
we shall present the results of an investigation on the series of isomor-
phic compoundsf(CH3)4NX013, with X = Cd, Mn, Ni. The analysis of the
heat capacity of these substances, which is outlined in Chapter V, served
several purposes. First, by examining the diamagnetic cadmium isomorph
the model describing the lattice heat capacity, presented in Chapter III,
could be tested directly. Secondly, the manganese compound (TMMC) is an
almost ideal approximation of an § = 5/2 antiferromagnetic Heisenberg
linear chain system, and therefore the results on this isoﬁorph'are
a good check on the corresponding theoretical prediction for the magnetic
heat capacity. Finally, from the analysis of the heat capacity the intra-
chain interaction in both magnetic isomorphs has been determined.

Chapter VI will be devoted to the series of isomorphic manganese
ccmpoundé CsMnC13.2H20, aRanClB;ZHzo and CaMnBrB.ZHZO. These substances
can all be considered as pseudo one-dimensional S = 5/2 antiferromagnetic
Heisenberg systems, and — in principle - offer a possibility to study
the influence of both the intermediate alkali ion as well as the halide
ions on the various magnetic interactions. Apart from an analysis of
of the heat capacity in the paramagnetic region, from which the intra-
chain interaction was determined, the influence of the - relatively
small - interchain interactions on the magnetic behaviour in the ordered
state will be studied. For this purpose we performed a spin-wave analysis

of the magnetic properties of CsMnCls.Zﬁzo. Next we shall consider the



compounds CsCoClS.Zﬂzo and RbFeCls.ZHZO, which are isomorphic with the
series presented above. The magnetic interactions in these two substances
are very anisotropic, and a direct relation with a particular magnetic
model system is not obvious. In Chapter VII the experimental data on
both isomorphs will be presented. For each compound we shall propose a
model which explains the main features of the observed magnetic behav-
iour. In Chapter VIII the magnetic heat capacity of these compounds near
the three-dimensional ordering temperature will be compared with that

of the three mangaunese isomorphs.



CHAPTER II
SPECIFIC HEAT OF SOME LOW-DIMENSIONAL MAGNETIC MODEL SYSTEMS
2.1, Imtroduction

The thermodynamic properties of pseudo low-dimensional magnetic systems
have received considerable interest both theoretically and experimentally.
.Because a detailed analysis is generally precluded by the complexity of
the system, the dominant characteristics of the magnetic behaviour are
often confronted with the properties of a simplified model system., Such

a model system may consist of isolated layers or chains of equivalent
magnetic ions, involving nearest neighbour exchange interactions only.

These interactions are represented by the hamiltonian

H=-2 1 8. %.. 3., : 3))
<ij> i

where the indices <ij> refer to pairs of neighbouring sites, A further

simplification of the model is introduced by assuming that the principal

axes of all exchange tensors coincide and by restricting the number of

independent elements Ji?a. This results in the following classification

of the type of interaction:

{ = = zz =
Ising (Jij Ji§3 0, Jij Jij),
XY (Jij Jiﬁy 50 i 0), or

R XX _ L V¥ _ g 22 _
Heisenberg (Jij Jij Jij Jij)'

Despite these simplifications, an exact calculation of the specific heat
has been possible in a very few cases only. Well-known examples are the
Ising linear chain for arbitrary spin-value [1], the S = 1/2 linear chain
with XY interéction [2], and the § = 1/2 rectangular array with Ising
interactions [3].

For many one-dimensional model systems, however, suitable extrapolation
procédures may provide a satisfactory description. At high and inter—
mediate temperatures the heat capacity can be calculated frqm high temper—
ature series expansions [4], which may be extended with a Padé approxi-

mant method. This method will be considered in more detail in the follow-



ing section. Secondly, the heat capacity of the infinite ensemble may be
obtained from extrapolation of the exact results for finite chains with
increasing numbers of spins. For S N 5/2 a combination of the results

from both procedures has been found [5] to give a rather accurate estimate
over a largeatemperature interval. For Heisenberg exchange, the low-
temperature region may be approximated phenomenologically by expressing
the heat capacity in a suitable polynomial series of the reduced temper—
ature kT/J. The coefficients are found by matching the series to some
suitably chosen boundary conditions, as will be pointed out in the follow-

ing section.

2.2, Linear chains with Heisenberg exchange for 5 < 5/2

A very general method for the calculation of high temperature .series for
the specific heat of infinite ensembles of interacting spins has been
presented by Rushbrooke and Wood [4]. If the ensemble is described by a
hamiltonian #, the partition function Z of the system is given by

72 = Trace [exp(-H/KT)] : (2)

for any matrix representation of H.
Since the magnetic heat capacity of the system can be written as

¢= 2 m? L an o), | f ®

it may be calculated rather straightforwardlyAby‘expanding In Z in

inverse pdwers of the reduced temperature. The result is

c/a-—s(s«n)s ZcB, . B = J/kT. %)
i=0 "t )
For general spin, the coeffzclents ¢ have been calculated up till
n = 6, For small values of §, addltlonal 1nformatxon may be obtained
from an exact calculation of the eigenvalues of the hamiltonian for
finite chains [6], which yields the constants c; up till o = 20, 12, 10,
8, 8 for § = 1/2 to 5/2, respectively [5].



The series given by equation- (4), however, appears to be rather poorly
‘convergent. An improved description has been found to.be possible by ex-
tending the radius of convergence of the series with a Padé approximant
-method [6]. Application of this method is based upon the assumption that
the radius of convergence of the series (4) is .determined by two complex
conjugated poles Bo and B; of the order y situated in the complex B plane.
To correct for this singularity the original series is transformed
into '

m .
Irg
c/r = 5 s(se)%g? AT (5)
(6-8,)Y(8-8%)

The latter series is found to provide an accurate estimate for the
heat capacity at temperatures down to kT v 0.4JS(S+1) for S = 5/2.

An alternative method for the calculation of the heat capacity of an
infinite chain is based upon extrapolation of the results for finite
chains with increasing numbers of spinsv[7]. A suitable procedure has
been found to extrapolate the specific heat per site CN(T)/N as a funct-
ion of 1/N [5, 8, 9]. This method has been shown to give an exact re-
sult in the limit B8 - 0 [5]. At lower temperatures, however, the uncer-
tainty in the extrapolation gradually increases, due to the fact that
at these temperatures the heat capacity is dominated by the low énergy
part of the eigenvalue spectrum, which is rather sensitive to the number
of spins N, especially for antiferromagnetic coupling. Secondly, the
dimension of the eigenvalue problem rapidly increases with increasing
S, and therefore the number of chains that can be solved numerically is
rather limited. Fortunately, this is partly compensated by the fact that
CN/N varies more smoothly for larger values of S [5]. For antiferromag-
netic chains the extrapolation procedure yielded reliable results at
temperatures down to kT/|J|S(S+1) ~ 0.4-0.8. For ferromagnetic coupling,
this temperature range extends down to kT/JS(S+1) ~ 0,2-0.5. The inferred
heat capacity appeared to agree very well with the prediction from high
temperature series expansions outlined above, the difference being less
than 1 % for kT v |J|S(S+1).

The low'temperatﬁre heat capacity may be i7ferred from classical spin-
1/2

wave theory [10, 11] to be proportional to T for ferromagnetic and



proporti&nal to T for antiferromagnetic interaction. The predictéd
constants of proportionality, however, are found to be somewhat too

high [7, 12], and the discrepancy seems to increase for decreasing values
of S. Therefore, the spin-wave prediction is only used to select a suit-
able power series of the reduced. temperature kT/J, by which the heat
capacity in .the low temperature region is approximated. For the ferro~

magnetic problem, the expression
n .
c(T) = ai&'ru)"** : (6)
i=0
is chosen, while the antiferromagnetic case is described by
o i+l
C(T) = L bi(kaJ) . 7
i=Q

The constants a; or bi may be obtained by matching the series to some

suitably chosen boundary conditions. If we require, for instamce, that

C/Nk

I i i |

o
0 07 04 06 08 0 2z 14 16 18 20
kT[Is(s+11] ™

i i i

FIG. 2.1. Specific heat of infinite ferromagnetic Heisenberg linear
chains as a funetion of the reduced temperature for several
valueé of the spin quantum number. The dot on each curve tndi-
cates the temperature where the low-temperature polynomial is
fitted to the estimate obtained from direct extrapolation of
the heat capacity of finite chains. (after [5]).
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FIG. 2.2. Specific heat of infinite antiferromagnetic Heisenberg linear
chaine as a funetion of the reduced temperatuve for several
values of the spin quantum number. The dots ave explained in
the caption of Figure 2.1. (after [5]).

the series correctly predicts the heat capacity C(T*) and the derivative
with respect to temperature (30;3:)T* at an intermediate "take—over" »
temperature T*, and that the total magnetic entropy increase amounts to

R 1n(23+1), equation (6) or (7) is determined uniquely for n = 2,

It is evident, that the low-temperature behaviour obtained from this
procedure will be a phenomenological description only. A truncation of
the series after n = 2 migﬁt be physically meaningful if a rapid con~
vergence is observed, but this has been found to occur only for large
values of §. The error of the description in the low—temperature region
may be estimated somewhat indirectly by considering the variations of the
predicted heat capacity arising from variations of the “take-over" temper-
ature T*, This yields an error of & 4 Z for § = 5/2 and somewhat larger
errors for decreasing S. 7

To check the actual accuracy, however, it would be very useful to
confront the theoretical prediction with some experimental results for

kT < |J|. We will return to this subject in Chapter V in more detail.



The overall behaviour of the heat capacityﬁhas been célcﬁiated as a
function of the reduced temperature kT/|J|S(S+1) for S g 5/2. In Fiéure
2.1 and 2.2 the results are plotted for ferromagnetic and antiferro-
magnetic exchange interaction, respectively. The curve marked "™ o " ig

the result from an exact calculation for § = « given by Fisher [13].

2,3, 8 = 1 linear chain with Heisenberg exchange and single—-ion
anisotropy

For a large number of Nt (8§ = 1) compounds, the single~ion anisotropy

appears to be more or less axial in character. Since, on the other hand,
the exchange interaction is found to be largely isotropic, it seems not

unrealistic to represent the magnetic properties of a linear chain of

e . s
equivalent Ni  ions by the hamiltonian

B T T T ¥ I
2.0 40 J=0
4>0
< 4
K=,
E
2
= o
£ :
2 =
g Al > \ -
¢ 0
1 b -l
1 { ‘ i » i 1
0 i 2 3 4 5 6

k1/J

FIG. 2.3. Estimated specific heat of an 8 = 1 infinite linear chain with
Heisenberg exchange and uniaxial single—ion anisotropy. The
curves are plotted only for temperatures at which the estimated
ervor is less than 4 % and are characterized by the ratio D/|J|
{after [56]).
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specific heat (J/mol K}

I : : I
0 . 1 2 3 4 ) 6

kTt J

FIG. 2.4. Estimated specific heat of an S = 1 infinite linear chain with

Hetgenberyg exchange and uniawial single~ion anisotropy. The
comment of Figure 2.3 applies.

N-1 5> N 2 1
H= - 2Ji§1 ;8,4 - Diil (s;, - 3 S(s+D]. (8)

In principle, the heat capacity for N + « may be obtained by direct
extrapolation of the numerical results for finite N.

The presence of axial symmetry offers the possibility to reduce the
matrix representing the hamiltonian (8) into blocks that can be dia~-
gonalized separately, because the z component of the total spin is still
a good quantum number. The problem could be handled numerically up till
N = 7 [14], Extrapolated results are shown in Figure 2.3, 2.4, 2.5 and
2,6 for all sign combinations of A (=D) and J. The curves are drawn in
the temperature .region where the estimated uncertainty is less than 4 Z.
As mentioned before, the error rapidly decreases with increasing temp-

- erature, and amounts to v 0.5 % at kr/]I| v 2.

10



In fitting experimental data, the procedure outlined above has the’
disadvantage that for each value of D/J the complete eigenvalue-problem
has to be solved, which is extremely laborious. A representation of the
heat capaéity with a high temperature series expansion is therefore
preferred. A suitable starting point has been found [5] to express the
‘heat capacity C(J,D) as:

C(I,D) = €(3,0) + €(0,) + % &, sIgtH /3T (iag:
1,3
c(o,0) = 2820%2ePB/(1+2¢PB)2 o
C{J,0) = 96 L c;JiBij3iiz (B=1/KT).
iz2 *

The constants aij have been calculated up till i+j = 8 [15]. For any

combination of D and J, it is possible to construct a power series, whose

40 J<

specific' heat {J/mol K)

I ! ! L
0 1 2 3 4 5 6
KT /131

FIG. 2.5. Estimated specific heat of an 5 = 1 infinite linear chain with
Heisenberg exchange and wniaxial eingle-ion anisotropy. The
eomment of Figure 2.3 applies.

bl
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FIG. 2.6. Estimated specific heat of a8 =1 infinite linear chain with
Heteenberg exchange and uniaxial single—~ion anisotropy. The
aomment of Figure 2.3 applies.

coefficients are obtained by summation of the corresponding powers in
Aequation (9). The radius of convergence of the series may be extended
with a Padé approximant method, generally resulting in a fair descript-
ion at temperatures down to kT/]J| ~ 2,
The low temperature heat capacity has not been examined in detail.
Firstly, the presence of single ion anisotropy complicates the deter-
* mipnation of the qualitative behaviour at T = 0, In contrast to a

behaviour proportional to T]/2

or T, exponential terms may be present,
as ig obvious from the heat capacity in the limit J/D = 0, which can be
solved exactly. Furthermore, at this moment the available experimental
results [16, 17] do not show any need for a phenomenological description
of the low-temperature behaviour as given in the preceeding section,
since in this temperature region they digplay considerable deviations

from pure linear chain characteristics [18].



2.4, S = 1/2 linear chains with Ising or XY exchange
2.4.1. Iging exchange

An elegant way to solve the one—dimensional Ising problem is the use of
the transfer matrix method [19], which will be briefly outlined below.
We consider the Ising hamiltonian ‘
H=-2J g 5.%.2
i=1 i Tivl (10)

For 8§ = 1/2, m, can be either + 1/2 or - 1/2. Because the interaction
involves only the z component of the spins, all functions characterized
by ]ml, Moy vesnnneny m> are eigenfunctions of the hamiltonian (10). We
have chosen the cyclie boundary condition SN+IE 1° for reasons that will
become clear below.
will give rise to

The interaction. between a pair of spins S and Sl*l

an energy U(mi, ) = - 2 J if both spins are parallel and to an energy

i+l
+ %'J if they are antiparallel. If we define a transfer function f by

f(m ,B. .) = exp[ U(m 5 +})/kT], an

i+1

the partition function can be written as

+4 +§
ZN(T) = by x 1... E f(mI,m )f(mz,m ) IR f{mN,m ). {12)
m] c—% mzs— 3 mN—-

Next we define a transfer matrix T, given by

»3
i

'f(+i/2,+1/2) £(+1/2,-1/2) (13)
£(=1/2,+1/2) £(-1/2,-1/2) .

in terms of which the partition function ZN(T) can be expressed as

2,(T) = Trace(TV), ‘ (14)
since the off-diagonal elements of TN contain all combinations of spins
for which SN+! # S]. Those combinations vanish under cyclic boundary

conditions, Now the trace of the Nth power of the transfer matrix is
equal to K+N + X_N, where X+ and A_ are the eigenvalues of T, determined

13
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FIG. 2.’7. Specific heat of infinite § = 1/2 linear chains as a function
of the reduced temperature for Ising, XY and Heisenberg inter—
action. The fervomagnetic and antifervomagnetic case ave — if
different - indicated by ¥ and AF, respectively.

by
eJ/kT -1 ’ e»J/2kT
= 0, (15)
o~ J/2KT /T _
This yields the solution
A, = 2cosh(J/2kT), A_ = 2sinh(J/2kT), {16)

and the partition function is given by

2, (1) = M [cosh™ (3/2kT) + sinh®(3/2KT)]. an



In the thermodynsmic limit, the Gibbs potential per spin can be
obtained from

G(T) = -kT lim-ﬁ}- In 2, (1) =
Noveo ,

T 1lim % 1n {2Mcosh™(J/2kT) [1 + tank® (3/2kT)]}=

N-»eo

kT 1n{2cosh(J/2kT)}, (18)

since the last term vanishes for N - .,
The heat capacity is related to the Gibbs potential by
2

C--—'.ra——g-, (19)
oT

and a straightforward calculation yields a molar heat capacity
2 2
C/R = (J/2kT)” [l=tanh”(J/2kT)] . (20)

Inspection of this equation shows that the specific heat does not
depend on the sign of J, as might already have been conjectured from the
symmetry of the eigenvalue—spectrum. The result is plotted in Figure 2.7

as a function of the reduced temperature kT/]J|.

2.4.2. XY exchange

The S = 1/2 chain with XY exchange has been treated by Katsura [2]. The
thermodynamic properties of the infinite ensemble are evaluated analytic-
ally with the aid of creation and annihilation operators. Since we are
not primarily interested in details of the calculation, which is straight-
forward but rather complicated, only the result will be presented here,

If the system is described by the hamiltonian

N
s - Xg X Yo ¥
H zJi}i1 (8,78, 41 * 878,51 ; (21

. the molar heat capacity is given by



m
o/R = & (a/2m)? e ds @2)
g cosh™[(I/kT)cos w]

An analytic evaluation of the integral in this equation is not possible,
but since the integrand varies rather smoothly, the heat capacity may be
approximated numerically with a very high degree of accuracy. Like the
Ising-problem, the specific heat is independent of the sign of the exchange
interaction. The result is plotted in Figure 2.7 as a function of the ‘
reduced temperature kT/IJ[. For comparison, the heat capacity of the

Heisenberg S = 1/2 linear chain is plotted in the same figure.

2.5, 8 = 1/2 rectangular lattice with Ising exchange

The specific heat of an infinite rectangular array of spins with two
interaction strengths, i.e. an interaction J between neighbouring sites
in the x direction and an interaction J' between neighbouring sites in
the y direction, has been calculated rigorously by Onsager [3]. The

molar heat capacity is expressed in Onsager's notation as

C/R = & {~iK(k)Z(ia,k) [E'/sinh(20')]?
~iK(k)Z[iK(k')-ia,k] [H/sinh(2H)]>

+ 2[K(k)~E(k)][sn{ia,k}/i sinh(2H"')] HH']}, (23)

where H and H' denote J/2kT and J'/2kT, respectively. K and E are ellip—

tic integrals of the first and second kind, defined by the set of equat—
ions

am u
w=Fam k) = (-K%sin’e) g,

K@) = F(/2,k), k' = (1-k%)1/2, (24)
( am u 2

Eam u,l) = f  (1-kZsin’e) /2

dg, E(k) = E(w/2,k).

16



The variables a and k are functiona of H and H', and will be treated
below.

For an actual calculation, it is necessary to express the Jacobian
elliptic functions appearing in equation (23) as combinations of ellip--
tic integrals of the first and second kind with real arguments, for which
accurate numerical procedures are available [20]. This has been achieved
as follows.

The function Z[iR(k')-ia,k] can be written as

zZ{iK(k')-ia,k] = ~dn(ia,k)es(ia,k) - in/2R(k) - Z(ia,k), (25)

while Z(ia,k) may be transformed to a Z function with real argument as
follows:

Z(ia,k) = dn(ia,k)sc(ia,k) -~ iZ{a,k')
’ (26)

~im F(a,k)/[2K(Kk)K(k")].

For a further evaluation of equation (23) we have to distinguish the

region above and below the critical temperature Tc, given by
sinh(J/ch) sinh(J'/ch) =1, , 27)

With the expressions for the various Jacobian functioms given in [3]

we arrive for T > T, at
/R =,§{ [K(k) cosh(J ' /KT) /cosh (I/KT) - K(k)Z(a,k')
- TP (@, /RN kD) [25iab (3 /11))?
+ [K{k)cosh{JI'/kT)cosh(I/kT) - K(k)cosh(JI'/kT)/cosh(J/kT) (;8)
+ K(k)Z(a,k') + Iz‘-r(a,k)'?x(k') - Jlarnay? {zsinhf(s,{ktr}]z

+ LROO-E00 1 (/) (kD) / [sinh (I/kT) sinh (3 /D) ]},

with a = arctank[llsinh(J/kT)] and k = sinh(J/kT)sinh(J'/kT).
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FIG. 2.8. Specific heat of a S = 1/2 rectangular array with Ising inter-
' actions as aq function of the reduced temperature. The curves
are identified by the ratio |J'/J|.

For T £ T, we obtain
C/R = -3-{ [K(k)coth(J/kT)tanh(J'/kT) ~ K(k)Z{a,k')
- ZF(a,k) /R ()] (3" /kT)?/ [28500 (3" /K1) ]2
+ [R(k)coth(J'/kT)coth(I/KT) - K(k)coth(J/kT)tanh(J'/kT)  (29)
+ ROZ(a,k") + JF(a,k)/R(K') = 5107k %/ [28inh (3/kn)1?
+ FRO-E) 1 (I/kT) (3" /KD },

with a = arctan [sinh(J'/kT)] and k = 1/[sinh(J/kT)sinh(J'/kT)]. With
the aid of the equation

Z(a,k) = E(a,k) - F(a,k)E(k)/R(k) (30)
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the Z function may finally be expressed a§ a combination of complete
and incomplete elliptic integrals of the first and second kind.

The heat capacity, inferred from équation (28) and (29) is plotted
in Figure 2.8 as a function of the reduced temperature kT/|J| for various
values of J'/J. As may be seen from this figure, the chainlike behaviour
at intermediate temperatures is obscured by the ordering already for
|J'/J| ~v 0.02. It is evident, ﬁhat the Ising~like anisotropy has a very
dramatic effect in the two-dimensional case, since the pure 2-d Heisen-

berg and XY models have been reported to display no long-range order [21].
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CHAPTER III
LATTICE HEAT CAPACITY OF PSEUDO LOW-DIMENSIONAL COMPOUNDS I1]
3.1. Introductﬁon

The analysis of the thermodynamic prope;ties of a substance generally
requires a separation of the lattice heat capacity from the other contri-
butions. Although in principle the lattice specific heat of pseudo low-
dimensional systems with a simple erystallographic structure may be calecu-
lated rather straightforwardly, the majority of the low-dimensional com-—
pounds have rather complex chemical structures, which precludes a rigorous
calculation of the frequency distribution of the lattice vibrations.

Fortunately, the lattice heat capacity appears to be rather insensi-

- tive to the detailed structure of the vibrational spectrum, and approxi-
mate spectrum calculations may provide a very satisfactory description
in many cases. This is demonstrated by the fact that the overall lattice
heat capacity of a large number of compounds with a small anisotropy
(e.g. cubic) can be successfully described by a linear superposition of
suitably normalized three-dimensional Debye functions [2].

General and simple expressions for the lattice heat capacity of lay-
ered and chainlike structures have been proposed by Tarasov [3]. Although
his theory, in which the heat capacity is expressed as a linear combi~
nation of Debye functions of suitable dimensionality, contains a number
of rather drastic simplifications, it correctly predicts some qualitative
features of the overall heat capacity. However, in general the accuracy
is not sufficient to enable a reliable separation of the magnetic and
the lattice contribution to the heat capacity [4, 5]. In fact, his de~
scription is somewhat oversimplified, especially concerning the "in plane"
and “out of plane" or, alternatively, the "in chain" and "out of chain"
modes of vibration, which are not treated separately, although they give
rise to rather different restoring forces.

In several cases the experimental data within a limited temperature
region can be represented by a linear superposition of suitably normal-
ized one-, two— and three~dimensional Debye functions. In this kind of
procedure, however, the Debye functions are merely used as mathematical

basis functions, the normalization factors and O-values being inferred
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from a least-squares fit to the experimental data. Apart from the fact,
" that such a procedure lacks a physical background, an accurate descrip-
tion over a large temperature interval requires a rather large number
- of adjustable parameters. On the other hand, the experimental data om
several pseudo low-dimensional systems [5, 6, 7] indicate that at lower
temperatures the lattice heat capacity should be represented by higher
order terms than just T3. This behaviour cannot be described by a linear
superposition of Debye functions, unless one admits rather unphyéical
values of the parameters.

Detailed calculations on the vibrational spectrum and thermal prop-
erties of strongly anisotropic compounds have been performed only in a
few special cases, mostly dealing with layered structures, particularly
graphite [8]. Most of the results, however, cannct be applied to other
substances, since they strongly depend on the characteristic lattice
structure and the ratio of the atomic force constants. In this chapter
we will present a vather general description of the lattice heat capacity
of both layered and chainlike compounds, involving only a minimum of
adjustable parameters. The theory will be based upon an elastic approach,
in which only the most dominant dispersion effects will be taken into
account. ‘

For a large variety of layered or chainlike compounds, the elastic
anisotropy within the layers or perpendicular to the chains appears
to be small compared to the anisotropy in a plane perpendicular to the
layers or parallel to the chains. We assume that a fair integral descrip-
tion of the most essential features of the long wavelength behaviour of
such compounds can be obtained by approximating them by a system with
purely uniaxial elastic anisotropy, such as a hexagonal 6/mmm structure.
To a certain extent, such an assumption is supported by the results
reported by Hofmann et al. [2]. They described the lattice heat capacity
CL of a number of binary compounds by a model involving two three-
dimensional Debye functions

c =% [D,(9,) + 20,(0,)]. : (I
For a completely isotropic continuum, Oz‘and @t would be associated with
the longitudinal and transverse modes of vibration, respectively. Even for

cubic structures, however, a certain amount of anisotropy is present
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‘between - for instamce - the {100} and the {111} direction, wﬁich i§'
not taken into account explicitly by equation (1). .Nevertheless, this
expression appeared to give a very good description of various sets of
experimental data on this type of compounds [2] over a wide range of
temperatures. 4

The organizaiion of this chapter is as follows. The dynamical behaviour
of media with uniaxial elastic anisotropy will be considered in section
3.2, while in section 3.3 the frequency distribution function for the
different modes of vibration will be calculated. In section 3.4 the
heat capacity of layered structures will be considered, while section
3.5 will be devoted to the heat capacity of chainlike structures. The

discussion given in section 3.6 will conclude this chapter.

3.2. Lattice dynamics in untaxial eompounds
3.2.1. Introduction

One of the best—known nearly two—dimensional compounds is graphite. It
has a hexagonal structure with space group P63fmmc, built up from honey-
comb net planes of carbon atoms, which are spaced at a distance of

~v 3.40 & . The distance between two carbon atoms within a layer amounts
to v 1,42 &, The rather unusual temperature dependence of the specific
heat of this compound was explained by Komatsu [9, 10, 11] by considering
it as a system of loosely coupled layers. His basic idea was that, since
the covalent binding forces within the honey-comb net planes are very
strong compared to the interlayer interactions, dispersion effects in a
direction perpendicular to the layers might aiready be important for a
wide range of frequencies, in which waves propagating within the layers
still could be treated in the elastic or small-k approximation. In the
calculation of the heat capacity, dispersion effects due to the discrete
nature of the layers would therefore be negligible, and the substance
might be treated as a system consisting of thin elastie plates spaced

at a distance d. He described the restoring forces due to the intra-

layer interactions by the elastic constants ¢ypr © and 66

12

(= %{c11~c12)), and apart from these a bending modulus K. The restoring
forces due to the interaction between the layers were represented by a

compressional constant Caq and a shearing constant Cuse For relatively
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small values of s the foilowing dispersion relations were obtained:

2 2 .2, %4 .2
pu " =y (ko + ky> + ;E— s1n‘(k2d) s (2a)

2 2 a4 . 2
pwy” = g (kx + ky) + ;5_ sin®(k,d) , {2b)
Py’ = e,y G+ kD) -2 sin®(k d) + K (&2 + 57, (2¢)
d -4 X y :

where z denotes the direction perpendicular to the layers, and
> 27

k= 7r'ek’ a wave vector in the direction of the unit propagation
vector ek. Because in graphite purely two~dimensional layers are present,
which have strong covalent internal forces and hence a large resistance
against bending,’tbe fourth power term in equation (2¢) may give rise

to dispersion effects already for acoustic frequencies. For most layered
structures, however, Komatsu's theory may not be used wi;hout some
serious modifications, since the majority of these compounds do not
display such an extreme crystallographic anisotropy as graphite. In fact,
the constant Cqq may be of the same order of magnitude as the constants
e and L On the other hand, the "layers" in the compounds of
interest are often built up from rather complicated clusters of atoms
and hence the influence of K will be relatively small at acoustic wave~
lengths.

In compounds with a large number of atoms per unit cell (r), the
acoustic modes of vibration only account for a rather small fraction of
the total number of degrees of freedom. It has been suggested to des-
cribe only the acoustic mode spectrum by a Debye-like approximation and
te describe the optical mode spectrum by 3r-3 suitably normalized
delta~functions located at some "average" optical mode frequencies.
However, apart from the fact that a large number of unknown parameters
would be introduced, experimental evidence indicates that the optical
mode spectrum often appears to be rather "smeared out" [12]. Moreover,
the assignment of the different branches of the dispersion relation
of the lattice vibrations to "optical" and "acoustical"” modes is
unimportant for the calculation of the heat capacity. Therefore we shall
approximate the 3r branches of the dispersion relation within the first
Brillouin zone by three "pseudo—elastic" branches, which are located

within a modified Brilloutn zone (MBZ).
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The general problem will be treated as follows. Firstly, we will de-
scribe the system by continuum elasticity theory, following a procedure
somewhat analoguous to the treatment of Bowman and Krumhansl [13]. Next,
the most dominating dispersion effects will be included by some. suitably
chosen MBZ bpundaries. The dispersion at long wavelengths due to the
intrinsic stiffness of layers or chains will be briefly considered in
section 3.2.4. For sake of clarity, the calculation below will be
performed assuming a layered structure, The majority of the results,
however, may be applied to chainlike compounds‘also,‘which will be poin-

ted out in section 3.4.

3.2.8. Small k-approximation

The equations of motion of elastic waves in a continuum with hexagonal

anisotropy are given by

o 3_29. = ¢ ﬁ + e _833 + (c, . *c )?EY_ + ¢ gi"i + {e, *e )azw {3a) -
b4
Bt? 113X2 668y2 12 766’ 3x3dy &&322 13 “447 3%z .
2 2 2 2 2
v 3%y 3% 37u 3°v 3w
D= g, e+, —= * (C, e, s * c,,—x + {c,*c,, )=, (3b)
3t2 668x2 1;3y2 12 7667 3xdy 44322 13 T4473y3z’
2 2 2 2 2 2
3w _ 3w 3w 3w 3%u v
o R E v I VA e e VIR CTEALTRAS = g e O (3e)
at 3z ax Iy

- . .
where x = (%x,y,2z), and u, v and w are the displacements in the x, y and
z direction, respectively. Consider waves propagating in an infinite

medium:

(“) =(§) L LEE - w) )
A C .

Substitution in equation (3) yields the eigenvalue problem

g <

2 2 2_ 2

°llkx + c“ky + c&&k: o (cu*c“)kxky (cw#'«':‘.l')kxkz [4

(e ,40g 0 )k K T R T N A |n| =o0.
12768 %y 66 x 1y 4z 13 4y 2

{ey5te, Yok (e, atep 0k K e 0+ 1)+ ek - ? | & )
ep3tea ik, 13%4a7% %y walg * k) * eggky
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As a consequence of the hexagonal symmetry it is possible to separate

out a solution corresponding to
2 _ 2 2 2
puy” = cggliy + kg) * ek, (6)

This mode of vibration has a displacement in the xy plane "transverse"

> s . .
with respect to k. The remaining eigenvalue-problem is

2 2 2 2 { 2 '
c”(kx + ky) + c“kz - oW (c +c44) k ky £
=0, (7)
42 2 2 2
(c13+(:4&) kz x ky éé(k *k ) * c33kz B A

1
£ 1is located in the xy plane at a direction perpendicular to the eigen-

vector that corresponds to equation (6). If the off-diagonal elements

I 41:1/2
kalp 2w
" "in plane” transverse
ke/p 2w
c3"
// 311-1/2 \C “—112

Ceg 12

“out of plane”

“in plane” longitudinal

FIG. 3.1. Constant frequency contours in the 4 space, which result
A from the diagonal-approximation of the eigenvalue problem
desoribing the equations of motion of elastic waves in a
hexagonal layered structure. The meaning of the different
vibrational modes 18 explained in the text.
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in equation (7) are completely ignored, we obtain the approximate solu-

tions

2 2 .2 2 '
pay s = ek ko) + ook, (8a)

¥
2 2 2 2
pw3 = c&&(kx + ky);+ 333kz’ (8b)

The mode of vibration denoted by w, has a displacement in the #y plane

"longitudinal" with respect to in—;lane component of E, while the mode
denoted by wq has a displacement perpendicular to the xy plane. The
constant frequency contours of the solutions (6) and (8) are ellipsoids
in the k space, which have rotational symmetry around the kz axis, For
a large number of layered compounds the constant ¢,y appears to be rela-
tively small, and hence the curves presented in Figure 3.1 may be fairly
representative. ‘

If the off-diagonal elements in equation (7) are taken into account,
a rigorous calculation of the eigenvalues and eigenvectors shows that
the two solutions given by equation (8) are coupled. First, each mode
of vibration does no longer correspond to one particular direction of
polarization and, secondly, both w versus k relations are somewhat modi-
fied. The effect of this modification is shown in Figure 3.2 for some
representative values of the elastic constants. The drawn curves denote
the constant frequency contours in the diagonal-approximation, while
the dots represent the results obtained from a numerical calculation of
the eigenvalues. The effect of the coupliﬁg igs rather pronounced in the
region where the two drawn curves intersect, which corresponds to a cone

in the k space given by
2 2 2
G + ky) /&, = (eqqme )/ ey e ) )]

It can be seen from Figure 3.2, however, that the correction is much
smaller for most of the k space. Of course, the direction of polarization
is very sensitive to the direction of the k vector, but this has no
consequence for the calculation of the heat capacity, and we feel that
the diagonal approximation (8) provides a fair overall description of

the dynamical behaviour of the model.
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o numerical catculation
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W C33/Cyy =0.50
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C“I Cy = 0.04

3 - diagonal - approximation

ka/(pCyp) 2w

- 2 3 A
ke/(pCyp) 200

FIG. 3.2. An example of the effect of the introduction of the non-
diagonal elements in the eigenvalue-problem describing
the elastic waves in a hexagonal medium,

3.2.3. Dispersion effects

As can be seen from Figure 3.1 relatively small k vectors are associated
with the "in plane" modes propagating in the xy plane. In the neighbour-
hood of the z direction, where the ¥ vector is relatively large, the
elastic continuum approximation may very likely be incorrect, since the
contours will reach the MBZ boundary already for moderate values of w,
which may give rise to rsﬁher drastic dispersion effects. In order to de~
scribe these effects we assert that for this mode of wibration, waves pro-
pagating in the layers may be considered as purely elastic, while dispersion
effects near the z direction may be taken into account by a MBZ boundary
parallel‘tﬁ the xy plane located at kz'” + 7/2d. One should note, that

this assumption is omnly correct if 4l is relatively small, and hence
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the validity range of the present theory is limited to subst#nceé which

have a fair amount of elastic anisotropy. We will return to this subject
in section 3.4. - "Pruncation" at the MBZ boundary will occur if k in the
equations (6) and (8a) is modified to d sln(k d), while k and ky remain

unchanged. This modification yields the set of equations

2 2.2 Cu4 2

pw, " = c“(kx + ky) + E§~v51n (kzd), (10a)
2 2 2 44 2

pw,” = c66(kx + ky) + ;——-szn (k d) (10b)

Obviously these equations correspond exactly to the set of equations
(Za} and (2b}, which have been derived from a "thin plate" model.

For the "out of plane" mode of vibration, however, the situation is
quite different. The constant freqiency contour, given by equation (8b),
appears to be more or less disc-shaped, and hence dispersion effects
will be important near the xy plané rather than along the z axis. Within
the restrictions pointed out above, these effects may be described by a
cylinder—-shaped MBZ boundary located parallel to the z axis at a radius.
WiZdl, which transforms equation {8b) to
_ Ca4 2,1/2 2
pu,” = =5 sin [(k + k ) ] * Cqy kz. (11)

¢

This equation now appears to be quite different from the corresponding
equation (2¢), which has been derived from a "thin plate" model. This

point will be clarified in the next section.

3.2.4. Bending stiffness

Komatsu's treatment of the bond bending problem of a mono-atomic layer
was based upon the assumption that the layer might be considered as a
thin elastic plate. The validity of this assumption may be suitably
. examined by the atomistic model shown in Figure 3.3, which represents

a cross-section perpendicular to the layers. The different atoms - de-
noted by n,m - are arranged in a rectangular array, the spacing between
adjacent atoms along the x'and z axis being equal to a and d, respec—
tively. The array is assumed to resist variations of both the bond
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lengths and bond angles. Only nearest neighbour interactions will be
considered. In Figure 3.4 the possible elementary deformations are
indjcated, together with the corresponding increase in potential
energy.
If both the kinetic energy T and the potential energy V are ex—
pressed in LI, and LA which denote the atomic displacements along
L] H

the x and z axis, respectively, the equations of motion may be found
by applying Hamilton's principle

t

2

8 J (T-v) dt = 0. (12)
B

The result is

2

3 Ya,m Ca o 4C®
2 — — - we——— - "
M 8t2 * 2 (zun,m un,m+3 un,m~1) * d2 (2un,m un+l,m un-l,m)
ad 1
+ (2 —
. gé C£ * ad CG)(wh+1,m~1+wn*1,m+3fwn+£,m+l~wn~l,m—1)
. a2 (13a)
Ez C2 (4un,m_un+l,m*l’un-l,m~1-un+l,m—l—un—l,m+1) :
C
+ -—‘1)- - - =
. d2 (6un,m 4un+l,m Aun-l,m+un+2,m+un—2,m) 0,
2
3 Yn,m _ “a - 4Cq
M ot o — -
el 42 et ,m a1, %A (2 ¥, w41 Va,me1)
ad |
* (24 Cl *ad Ce)(un+l,m-l+“n-l,m+l un+1,m+1-un-l,m~l)
2 (13b)
o+

A CZ (4wn,m-wn+l,mﬁl-wn—i,m‘l_wn+l,m—l-wn-l,m+l)

=

C
+ — Rd -
;% (éwn,m 4wn,m%-i &wh,m-1+wn,m+2*wn,m~2) =0,

where M denotes the atomic mass. For long wavelengths the relative differ—
ences between the atomic displacements may be replaced by the correspond-

ing derivatives to x and z, and we obtain
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M3—3=
3t

4 2

c, + '22?3 Cz)a 3 e+ 4_3__&_4 i
' 2 2
2a"d” 2 3 u
4 2,2 2
2d 4a”d
(c + S C )—— + (AC + )
14 z 22 2, 3x32
2,2 2 4
2a”d w 290w
+ (l»Ce + 7 Cz)axz + C¢a (= 4) (14b)

As may be inferred from equation (3), continuum elasticity theory yields

for the corresponding two—dimensional case

3
pg=c
at

2

It is obvious, that

3 u
11’? e ‘”%4)‘5_5‘3' " 4 (15a)
2 2
3w 3 Q 3w
33,2 (ey3%¢)55mz * %7 - (15b)
z 9x
e
n+l,m-2 n+,m-1 n+l,m n+lm+l  nd,me2
d
n,m-2 n,m-1 n, m+l n,m+2
n-1,me2 n-i,m1 ’ n- 1;m n-lm+ n-1,me2

X

FIG., 3.3. A simple atomietic model used to deseribe the various inter-
actions in an arbitrary plane perpendicular to the xy layers.
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4 4
- 2a ;.8 H o)L
C;x"(ca“'za Cz)n’ °33 (Cd‘* 7 Cg)m

3 (16)
2,2 2,2 :
2a"d"p : ) - 2a"d o]
137 by Cu A ("C v ) & -

and continuum elasticity theory gives a correct description of the long
wavelength limit of the wvibrational spectrum. It appears, however, that
the stiffness of 180° bonds, vepresented by CIib and C¢, does not enter
into the elastic constants. If the corresponding bending constants are
extremely large, the influence of the fourth order terms in equation
(14) may be important already for acoustic frequencies, although such a
drastic effect is likely to occur only for very anisotropic covalent
substances like - for instance - graphite and boron nitride. For a
description of the vibrational spectrum of these compounds, we may gen-
eralize equation (14) to three dimensions, and follow the procedure de-

scribed in section 3.2.3 to obtain the dispersion relation

,n+Ln1(:) nﬂsgz nm+
D

O
¥
@ 0 %m

3 %, nm#
in-lm “\‘
O & O @ O Z,
. . , n-1m- ) n-1,me
Jeo b aop? %clx &)

0 ,d' FIG., 3.4.
1 . .
o @- @ O " O Some contributions to the
ama 21 am32 ame m inerease of the potential
a1 energy, arising from
O O O OM,,@ O vartations of the bond
angles and bond lengths
%ca]}.@agj)zﬂba )2] A 10‘{(15(:, ad ] ' g oné ng
. in the atomistie model

+%C¢(A¢)z o%Cq;(Aq;) presented in Figure 3.3.
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€33 . 2 v2.2 22
sin (kzd) +C a,(kx + ky) . (n

2
pms acél’(k +k)+d @

The prime at C¢ is added to avoid confusiom with the purely two-
dimensional case. Equation (17) appears to be completely analoguous to
equation (2c), which has been derived from a thin-plate model, if we put
KZ - C;az. Equation (14a) will transform to eguation (10a), because for

a layered structure the effect of Cw is negligible.

3.3. Caleulation of the heat capactty

In the diagonal—approximation, the three modes of vibration are decoupled
completely, and each mode will account for ome third of the total number
of degrees of freedom. In the calculation of the molar heat capacity,
this number is assumed to amount to 3rNAV’ where NAV is Avogadro's

number and r is the number of vibrating units in a formula unit. The
total specific heat may be obtained by a summation of the three properly
normalized contributions arising from the different modes of vibration.

The dispersion relations (10) and (11) are of two different types,

given by
W - az(ki + ki) * (de)zsinz(kzd) with -m/2d € k_< /24, (18a)
W - (del)zsln [(k ‘K )‘/2 ] N 52k§

with 0 < (k +k )“‘2 < m/2d,. (18b)

In these equations az, 82, Yz, and 62 are combinations of the various
elastic constants ckllp. Since the sample size is normally very large
compared to atomic dimensions, the distribution of the normal mode
frequencies will be independent of the shape of the sample [14, 15].
Therefore we define an uniform density of states in the [4 space, denoted
by Pyr The different contributions to the heat capacity may then be eval-

uated rather straightforwardly. Let us congidei equation tlsa) first.

33



By differentiating the number of vibrations with w' < w with respect

to w, the frequency distribution function g{w) can be found as

(19a)

Cgw) = Pl %—; ®» arcsin (w/wc) for w € w,,
o

2 .
gw) = o, E.Tzr_ w for w 2 w, - {19p)

o d

In these expressions w, is written for B/d, the frequency at which
"truncation” at the MBZ boundary occurs. The frequency distribution
function is plotted in Figure 3.5, where W denotes the "ecut-off”
frequency at which the normalization condition

Y

P J glw) dw = N, 20)
0

is satisfied, Substitution of equation (19) in equation (20) yields

glw

~ wxarcsin (w/we)

c Wm

FIG. 3.5, The frequenoy distribution funetion glw) arising from a mode
of vibration, for which dispergion effecte near the z axie are
dominant.
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wz 2 2 :
Py ;55 (mm - mc/Z) = rNAV’ _ @n

from which it follows that

SrNAV

glw) = — aresin (m!wc) for w £ w, s (22a)
ﬂ(2wm - wc) :

ArNAV
glw) = —g 0 for w > w, - (22b)
2w W -
m [
As can be seen from these equations, the frequency distribution function
g(w) is determined completely by the magnitude of'wc and Wos which will
be considered as independent parameters in the calculation of the heat
capacity.
In general, the molar heat capacity C(T) may be inferred from a
normalized frequency distribution function g(w) with the formula

[y
m

hw/kT
. g(w) (w/k1)? o ,
¢ = ky J (TR )2 du, (23)

0

where kB is Boltzmann's constant. If equation (22) is inserted in this

expression, we obtain a contribution Fl(@m,ec,T) to the heat capacity,

given by
F (6,0,.T) = 3-(2-‘;%;2—) x »
{2‘*3"72 J c' (2’3::2 arcsin(xT/6) dx + 202 D,(9_/T) - 267 Dz(@cf'l‘)} :
-
In this expression the usual substitutions
x = ho/kT , Oc = hmcfk » and 6 = Bmmfk (25)

have been made, while DZCOIT) denotes the two-dimensional Debye function,
defined in the Appendix. ;
Before we proceed with the evaluation of equation (i18b), we would like

to make some remarks about the interpretation of the numerical values
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of W, and W, - While W, has been defined as B/d (cf. equation 19), there
is no direct relation between Wy and the constant a. Although it is not
basically important for the calculation of the heat capacity, the value
of w may - toa certain extent - be associated with the magnitude of

o, which can be seen as follows. If we assume a cylinder—shaped MBZ with
height 7/d and radius ﬁ/Zdl, the volume of the MBZ amounts to ﬂ“/(édd 2y,

and the corresponding density of states in the k space Py is found as

oy = 4d¢’2rNAV/1r£*. , (26)
Of course, from a physical point of view, this assumption is not quite
compatible with equation (i8a), since in this equation dispersion effects
near the xy plane are not taken into account, but in the present deriva-
tion of an approximate relation between Wy and o the-resulting error in
the cut—off frequency of about a factor 7/2 is of no importance. Sub-

stitution of equation (26) in (21) yields the relation

™o ( 28 dl >1f2
W R[]+ . (27)
m 2 di 2a2d2

Given the fact that u>B and that d and d are of the same order of
magnitude, equation (27) shows that the value of W, may be used as an
indication of the ratio a/d

Next we will consider equation (18b). Following the same procedure as

described above the ffequency distribution function g(w) may be found as

16ﬂpk b
J gl1- (w !w) sin ;}

1o

-1/2

glw) = dzg, (28)

ad

wlth w, = Y/dl’ b = arcszn(w/w )y for w g W, and b = w/2 for w > > W,
Since an analytical evaluation of the 1ntegral in this equation is not
possible, the frequency distribution function has been computed numer-
ically, and the result is plotted in Figure 3.6. The dashed curve denotes
the limit for w > w; in which case equation (28) reduces to
161rpk m/2 21r3pk
ad; o le
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In order to obtain a rather simple and manageable expression for thé heat
capacity, involving only linear combinations of Debye functibns, similar
to equation (24), equation (28) will be used for w < 2wc, and the limit-
ing behaviour (29) in the frequency range w > 2w+ This approximation

may produce an error of v 1 Z in the magnitude of the heat capacity,

but this can be practically compensated by a small readjustment of the
parameters and w - For w > w, the number of vibrations I(w) with

w' < w is equal to

/2 ‘
16T0, w0t :
I(w) = ____%_c[ tlwu)? - sin’)'2ag (30)
- ,
1 o

and hence the mormalization condition (20) yields

/2
167p 2
k T e 2 1/2 T . _
5 [ms J 3 (4-sin"g) " 7dg + 5 (wp wg)] rNA\?’ (31
od :
1 o
:3_,:
o

|

We w 2w, w

FIG. 3.6. The frequency distribution function g(w) arising from the mode
of vibration, for which dispevsion effects near the xy plane
ave dominant. The dashed curve denotes the limiting behaviour
for w =+ =,
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in which expression Wy has been substituted for 2wc. If we denote the

intégral in equation (31} by Il, the frequency distribution function

b

8rN -
C[l-(w8/2w)zsinzC] ‘/zdc, (32a)

gw) = — AV

— 2-
LA (m SII)m8 5

with b = arcsin(Zw/wS) for @ € ws/z and b = /2 for msfz NN

8rN 2
AV X %; for w >‘ws (32b)

g = 53
wow ~(r ~811)ms

is obtained. Again, g(w) is completely determined by the magnitude of

wg and W The same arguments that were applied in the evaluation of
equation (18a) may be used to show that the value of W may now be
associated with the ratio §/d. If equation (32) is substituted in
equation (23), we obtain a comntribution Fz(@m,QS,T) to the heat capacity,

given by

X
2 2
3{w @m (r —811)08]

FZ(@m,QS,T) = %

81,6, G,(1/6) + wzem D, (6,/T) - nzes D,(©,/D]. (33)

D‘(GXT} denotes the one-dimensional Debye function, defined in the

Appendix, where the function GZ(T/G) will be treated also.

3.4. Layered structures

As has been pointed out in the foregoing section, the lattice heat
capacity CL{T) may be found by 2 summation of the three contributions
arising from the different modes of vibration. This summation may be

_ written as

CL(T) = FI(GR,SC,T) + Fl(@t,ac,r) + ?Z(OO,QS,T) . (34)
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In this expression 62, @t’ and 80 are associated with the ﬁut*off
frequencies of the "longitudinal in plane”, the "transverse in plane”,
and the "out of plane"” mode of vibration, respectively. The number of
adjustable parameters in equation (34) amounts to 5, but in order to
keep this expression manageable in numerical fitting procedures, a
further reduction of this number is generally imperative. Fortunately,
such a reduction is often possible.

Firstly, the majority of the investigations on low-dimensional magnetic
systems have been performed at rather low temperatures, in which case
one "average' characteristic temperature may be used to describe the cut-
off frequency of both the longitudinal and transverse in plane modes of
vibration. If the high temperature region should be described more accu-
rately, one might use the fact that the ratio Ol/gt is roughly equal to
vzfvt, where v, and v, denote the propagation- veloeities lof the long-
gitudinal and transverse waves in the xy plane, which are proportionmal
to VET? and vEg‘, respectively. Since for a wide variety of substances
[16] the ratio c“/c66 appears to range between 3 and 6, the additional
condition 92 = a@t, with a v 2, seems rather realistic.

Secondly, when the dimensions of the MBZ in the x,y and z direction
are not too different, the problem will be simplified by the fact that
“truncation" of the "cigar'-shaped contours in the 4 space occurs at the
same frequency as the "truncation' of the "disc'-shaped contour, because

“1!2. (cf.

Figure 3.1.) This yields the additional relation Gs = ZGC, which leaves

for all contours the maximum k-value is proportional to Sy

" only three independent parameters.

For extremely anisotropic substances, like graphite, boron nitride,
and perhaps (CH3NH3)ZCdC14 [5], a bending modulus K should be included
(cf. equation 17). We will, however, not consider this rather special
case in the present treatment. For a calculation of the frequency spec—
’trum for the "out of plane" mode of vibration and a discussion of the
contribution to the heat capacity, the reader is referved to literature
[o, 10, 11].

Finally, we would like to make some vemarks about the application of
equation (34) to the interpretation of experimental data. Both the in-
tegral on the right hand side of equation (24) and the function
Gz(Tf@), which has been substituted in equation (33), cannot be evaluated

analytically. With the aid of a high-speed computer they may be approxi-
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mated with a very high degree of accuracy, but, especially when the
functions F] and F2 are used in numerical fitting procedures, the time
involved with such a procedure is very large, since the various integrals
have to be computed for each iteration and for all temperatures that
correspond to the data points. Given the fact that even the accuracy of
rather elaborate specific heat measurements is generally not better than
about one percent, we found it useful to deduce some simple expressions,
which describe the various integrals with an accuracy of a few parts

in 104 for all values of T/O. The derivation of these expressions will
be given in the Appendix. ' '

As already mentioned in section 3.2.3 the functions Fl and F2 are
only physically meaningful when the ratio ec;em and the ratio es/@m are
small compared to unity. If the anisotropy for a particular mode of vi-
bration accidentally appears to be rather small, a description of the
corresponding coniribution with a properly normalized three-dimensional

Debye function is preferred.

3.5. Chainlike structures

In principle, the evaluation of the lattice dynamics of a chainlike
structure is completely analoguous to the problem treated in section

2 and 3 of this chapter, if the direction of the chains is chosen along
the z axis. Some modifications may arise from the fact that the relative
magnitude of the elastic constants may be different from those of a
layered structure. For a variety of anisotropic chainlike compounds,
however, the shearing constant ¢, appears to be small compared to ¢ e
o6 and Cqg [16]., Therefore the contours presented in Figure 3.1 can
still be considered as representative, except from the fact that the
constant Cq,, which now represents the compressional stiffness of the
chains, will generally be larger than €11 and 6" As can easily be
seen, this has no basic consequence for the description of the dynam-
ical behaviour, given by continuum elasticity theory, and the expres-—
sions - (10) and (11) are still valid. The dispersion relations dencted

by wl, wz and m3, are now associated with the '

‘out of chain longitudinal",
the "out of chain transverse", and the "in chain" mode of vibrationm,

respectively.
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In general, the latticerheat capacity of chainlike substances may be
describeﬁ by equation (34) with 5 independent parameters. For these com-
pounds, however, it is not obvious that both Sg and @t are high compared
to the temperature region in which the expression will be applied, and
hence the additional condition O£‘= a@t may produce some inaccuracies
in the description of the heat capacity. However, if the dimensions of
the MBZ are not too different, the number of parameters can be reduced
by the relation 93 = ZGC, as has been pointed out in the foregoing
section. '

To our knowledge, no heat capacity measurements have been reported
on substances, which are built up from very covalently bound purely
one~dimensional chains. Therefore the bending constant C, (cf. equation

|2

14) has not been included in the present treatment.

3.6, Discussgion

It has become common practice to describe both theoretical and experi-
mental results with an apparent ea value, i.e. the value of 8 that should
be substituted in a correctly normalized three-dimensional Debye function
to describe the predicted or observed magnitude of the specific heat at

a certain temperature T [15]. The contributions to the heat capacity

F‘ and Fz, obtained in section 3.3, can be described by apparent Oa values

defined by the equalities
i . v
§‘D3(831T) F‘(em’@c.T) » 7 (35a)

1 ~ 7; '

The results are presented in Figure 3.7 and 3.8, respectively, where the
ratio ea/em has been normalized to unity at T = 0. In view of the
mathematical form of equation (24) and (33), the different curves re-

presenting the contributions F, and F2 are characterized by the ratio

1
(ecfem)z and the ratio es/em, respectively. As may be inferred from the
derivation given in section 3.3, however, the elastic anisotropy of a

substance will actually be rveflected by the ratio (ec/®m)2 for the modes
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of vibration corresponding to a contribution Fl’ but by the ratio
(OS/ZOm)2 for the mode of vibration corresponding to a contribution F2.
One should note that - even for small values of the anisotropy - the
present theory predicts a minimum of @a in the temperature region
0.02 < T/G)m < 0.2. This behaviour has also been observed in\a consider-
able number of experimental investigations. Hence it appears that the
most essential shortcoming of the purely elastic Debye model in the
description of the low-temperature heat capacity may already be removed
by the inclusion of only the most dominant dispersion effects.
The limiting T3 dependence of the lattice heat capacity appears to
occur only at temperatures very low compared to the region in which the
"Debye T3 law" mathematically holds. Therefore conventional techniques

to separate the electronic or magnetic contribution from the total
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FIG. 3.7. Description of the contribution to the specific heat, arising
from a mode of vibration for which dispersion effects near the
2z axis are dominaﬁt, with an apparent Oa value. The different
curves are characterized by the ratio (Oc/Gm)Z, which may be
associated with the elastic anisotropy for this mode of vibra-
tion.
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FIG. 3.8. Description of the contribution to the specific heat, arising
from the mode of vibration for which dispersion effects near
 the xy plane are dominant, with an apparent @a value. The differ-
ent curves are characterized by the ratio es/em. The relation
of this ratio to the elastic anisotropy for this mode of vibra—

tion is pointed out in the text.

specific heat, such as a C/T versus T2 or a CT2 versus T5 plot, respec—
tively, should only be applied with great care-if the compound under
investigation has a fair amount of anisotropy, since they are based upon
a purely T3 dependence of the lattice heat capacity.

Concluding we would like to make the following remarks.
In this chapter an approximation has been presented, which is intended
to provide a rather general description of the lattice heat capacity of
both layered and chainlike compoundé. The model applied to the descrip-
tion of the lattice vibrations did only take into account the most
dominant dynamical characteristics of these particular substances, in
order to reduce the number of adjustable parameters as much as possible.

Given the succes of some well-known approximations to the heat capacity
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of compounds with a small anisotropy [2, 15], we feel that the simpli-
fications made in the course of the treatment will affect the details

of the dynamical behaviour rather than the integral properties, such as
the heat capacity. Although the effect of some approximations has already
been pointed out in the preceeding sections, a proper justification is -
of course - only possible by confronting the resulting description with

experimental results. We will return to this subject in Chapter V and VI.
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CHAPTER IV
EXPERIMENTAL APPARATUS
4.1. General

The heat capacity measurements were performed with an adiabatic calori-
meter, which is schematically shown in Figure 4.1, The sample, usually
consisting of v 0.1 mole of polycrystalline material, was sealed inside a
cylinder—shaped capsule (1), which was mainly made of copper. The bottom
of the sample holder consisted of stainless steel to enable the use of

6 5
3
3
9 4
' 3
r5cm
1 FIG. 4.1.
- ) ! Schematic cross-section
B of the ealorimeter.
Some details of the
0 congtruction ave given
- : in the text.
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indium O-ring seals. To establish thermal equilibrium within the gpecimen,
a little 3He gas (< 10 Torr at 77 K) was used. Discrete heat inputs could
‘be supplied by means of a heater, made of about 20 m. of manganin wire,
which was bifilarily wound around the capsule (R ~ 1000 ). To achieve a
good heat contact with the capsule, the heater was attached with GE 7031
varnish. During a heating period both the voltage and current supplied to
the heater were measured with a digital voltmeter. Temperatures were
measured with a "Cryocal' germanium resistance thermometer(2), having a
nominal resistance of 1 K§ at 4.2 K, which was firmly attached to the
capsule. The thermometer was incorporated in an a.c. resistance bridge,
which will be described in section 4.2.

The sample holder was suspended with silk threads inside a temperature
controlled heat screen (3), to which all electrical connections were
thermally anchored. The screen was fixed inside a copper can (4), which
was placed in liquid 4He. Quter can and screen were sealed with indium
O-ring seals and were evacuated with a conventional high vacuum pump assem~
bly. The top flange of the heat screen was linked to the helium bath with
a stainless steel tube (4 12 mm), which acted as a heat leak. A 100
manganin heater {5) and a carbon thermometer (6) were employed in the
temperature control unit, which will be described in section 4.2. The
sample holder could be cooled to lowvtemperatures by means of 6Hé exchange

gas.

4.2, Thermometer resistance bridge and temperature control unit

The basic circuit diagram of the a.c. resistance bridge, which operated at
% 172 Hz, is shown in Figure 4.2, A lock~in amplifier with input trans-
former is used as null-detector. To avoid excessive self-heating of the
.germanium thermometer, the bridge VOltagé has been chosen as 10 mV RMS,
which produces a power dissipation of 10-? W at 4,2 K. The electrical
resistance of the thermometer supply leads (™ 10 Q) has been compensated
by using a three-wire measuring technique. Across the decade resistor a
variable capacitor C was connected to balance the out of phase signal due
to the capacity of the thermometer leads. The weighed input noise of the

: 8 and 1077 v peak to peak in 1 Hz band-

width, which corresponds to a bridge resolution of a few parts in 106.

null-detector varied between 10
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PIG. 4.2. Schematic elvceuilt diagram of the thermometer resistance bridge.
The different components are considered in the text.

With the germanium thermometer used in the heat capacity measurements
temperastures could be determined with a resolution of n 10”5 K at 4,2 K
and &~ 1074 K at 50 K.

The .temperature control unit basically consisted of an a.c, thermometer
bridge as described above together with a booster amplifier, which was
connected to the recorder output of the lock-in amplifier. The booster
was activated only when the bridge voltage was negative, corresponding to
screen temperatures lower than the desired value. A maximum power of 2 W
could be supplied to the manganin heater on the top flange of the heat
screen, About 0.3 W was required to maintain a temperature difference of
50 K between the screen and the helium bath, The amount of feedback was
adiusted by means of the gain control of the lock-in amplifier. After
changing the‘temperature setting, the temperature of the heat screen ge-
nerally stabilized at the desired value within 10-60 seconds. Without any
further precautions the temperature was found to be stable within 0.5 mK
at 4.2 K and within 10 mK at 50 K for a period of ome hour, which was

much better than the experimental requirements.
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4.3. Calibration and testing

The good temperature stability of the heat screen enabled us to perform

an accurate calibration of the sample-holder thermometer against a factory
calibrated germanium thermometer, which was used as a. temperature~standard.
The calibration of this standard-thermometer was based upon the NBS 1965
scale between 2 and 20 K with an accuracy of 5 mK from 2 to 5 K and 10 mK
from 5 to 20 K. Above 20 K, the calibration was based upon the NBS 1955
scale with an accuracy of 40 mK from 20 K to 40 K and 100 K above 40 K,
The calibration data of the sample~holder thermometer were fitted to a

polynomial of the form

[a® /1'% = 5 & [P
n

Since it was not possible to cover the whole temperature region between
2 K and 50 K with sufficient accuracy by one fit, the data below and
above * 13 K were fitted separately. The standard-deviation of the fit
with n = 9 for the 82 data points in the range 2 - 15 K did amount to
0.03 Z, The 56 data between 10 K and 52 K could be fitted with a standard-
deviation of 0,02 Z. Between 10 K and 15 K, the two fits did overlap
within 0.1 Z.

For the specific heat measurements a discontinuous heating technique
was employed. The temperature increase of sample plus addenda was measured
upon an accurately known heat input. Typical heating periods were about
50 -~ 150 seconds. The error in the determination of the heat input and
the variation of the thermometer resistance was typically less than 0.1 Z.
The heat capacity Ca of the empty capsule was measured in a sep;;ife run,

with

a standard-deviation of 0.37 % for n = 9. The contribution of C_ to the

The data were described by a polynomial of the form Ca = E B T

total heat capacity did amount to ™ 25 Z at 2 K and 40 Z at 50 K.

To check the overall accuracy of the apparatus the heat capacity of
~ 100 grams of 99,999 Z spectographic pure copper was measured. The data
below 25 K were compared with the copper reference equation of Osborne
et al. [1], those above 25 K with the selected values of Furukawa et al.
[2]. The overall agreement was very satisfactory, Our data were slightly
higher €$ 1 %) than the values quoted sbove, which is most likely caused
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by the method of preparétion of the specimen, The relative deviations for
different temperatures varied slowly around their mean value; they showed
maxima at 15 K and 45 K and a minimum at v 30 K, the difference between
maxima and minimum being about 0.8 %. These variations, which are much
larger than the scatter in the experimental data, are shown [l] to arise
mainly from small systematic errors in the calibration of the thermo~

. meter, and therefore may reflect the uncertainty of the heat capacity

measurements, which is estimated to be less than v. 1 Z.

REFERENCES CHAPTER IV

1. D.W. Osborne, H.E. Flotow, and F. Schreiner, Rev. Sci. Instr. 38,
159 (1967).

2.  G.T. Furukawa, W.G. Saba, and M.L. Reilly, Natiomnal Standard
Reference Data Series, N.B.S. 18, Washington (1968).

50



CHAPTER V
SPECIFIC HEAT OF THE NEARLY ONE~DIMENSIONAL COMPOUNDS TMCC, TMMC AND TMNC
5.1, Introduction

Several investigations [1-4] have shown that at room temperature the
series of compounds (CH3)4NMCI3, with M = Mn, Ni or Cd, have isomorphous
hexagonal structures with space group P63/m and two formula enits per
unit cell. The crystals contain infinite linear chains of face-shared
M(:16 octahedra (-M—C13~M-C13~) separated by tetramgthjrlamonium (™)
ions. The crystallographic arrangement is schematically drawn in Figure
5.1, The chains are located parallel tb the ¢ axis, the distance between

the metal ions within a chain being ~ 3.3 %. Since the interchain metal

q) --

FIG. 5.1. Schematic representation of the room-temperature structure
of TMCC, TMMC and TMNC. Linear chains of the form
-M—CZ{M%Z';—, shom at the left hand side, are located
parallel to the e awxis. The chlorine {ons arve situated on mir-
ror planes at 1/4 and 3/4 along ¢. The T ions ave located
on three—fold axes in an orientationally disordered manner on
planes 1/4 and 3/4 along o. (after Peercy et al. [41).
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ion distance amounts to v 9 X, one~dimensional magnetic characteristics
may be expected for (CHS)4NMn013 (TMMC) and (CHB)éNNiC13 (TMNC) . TMMC,
TMNC and TMCC show a phase tramsition to a monoclinic structure at
T = 126, 171 and 118 K, respectively [4]. This transition, however, pro—
duces only a very slight shift of the M«ClB-M-Cl3 chains within the a,a,
plane, and does not essentially change their internal structure,

Because the elastic properties of these compounds have been found to
" be strongly anisotropic [4], the low temperature specific heat of the
diamagnetic (GHB)ANCdC13 (TMCC) may serve as a good check on the applic-
ability of the description of the lattice heat capacity presented in
Chapter IIL. Furthermore, the heat capacity of TMCC may be used to esti~-
mate the lattice contribution to the heat capacity of TMMC and TMNC.
This enables us — in principle - to confront the magnetic specific heat
of these two compounds with the predictions of some of the model systems

outlined in Chapter II,

5.2, (CHg) NCACT, (THCC) (5]

Crystals of TMCC were grown by slow evaporation of an aqueous solution
ofxstoichiometric amounts of CdClz'and [{CH3)4N]01. The starting mate-
rials contained less than 0.1 % impurities. The dimensions of the
single-crystals were typically in the order of a few millimeters.
Specific heat measurements were performed between 2.5 and 52 K
with the experimental apparatus described in Chapter IV. However, due to
the relatively high contribution of the sample holder, the uncertainty
in the measurements at low temperatures was rather large, Therefore the
specimen was measured in a separate run for 1.75 < T < 5 K with a second
calorimeter. This calorimeter was essentially identical to the apparatus
described in Chapter IV, but no heat screen was used, Furthermore, the
sample holder was entirely made of copper, which resultéd in a rather
small contribution to the total heat capacity at low temperatures.
Recently, Blacklock et al. [6] have reported specific heat measure-
ments in the temperature range from 1.66 to 17,72 K, Their data agree
within 2 Z with our results. The data were analyzed by describing them
with an "apparent" Debye temperature @a (cf. Chapter II1). The effective

number of vibrating units in a formula unit was assumed to amount to 9
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in the temperature region of interest. The experimental results are re-
presented by dots in Figure 5.2, which reveals a rather pronounced dif
in ea at v 6 K. Obviously the specific heat of TMCC cannot be described
with a three-dimensional Debye model. The fact that the dip ocecurs at
temperatures lower than 5% ea, where the Debye function is proportional
to T3, suggests that for T < 6 K higher order terms should be added to
describe the heat capacity. Blacklock et al, tried to fit their data
with a power series of the form

C=ar’ +bT° # ¢l + ....., m

but even this polynomial could not be fitted without large deviations

from the experimental data,
In view of these results we may expect that TMCC offers a good
opportunity to check the applicability of the theory given in Chapter

1 L ) 1 1 i i ¥ H 1
° {CHy), NCdCly

250 _— theoretical estimate

8, (K

m i s 1 1 - 1 A i ] ) i
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0

FIG. §.2. Representatioﬁ of the specific heat of TMCC by an "apparvent”
Ba value. The cireles corvespond to the experimental data, the
draum curve denotes the best fit to the data above 4 .
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I1I. The data between 4 and 52 K, where the experimental uncertainties

‘are expected to be small, were therefore described with the equation
‘C = FI(GQ’GC’T) + F](Qt’ec'T) + FZ(GO’QS’T)’ (2)

which contains 5 independent parameters. The fitting procedure, however,
revealed a strong correlation between the parameters @K,Gt and 00,

which is caused by the fact that the fit is performed in the ~ relativ~
ely limited ~ low temperature region. Because especially @O, reflecting
the "in chain" stiffness, showed a large standard-deviation, we imposed
the additional condition Oo = 2 @2; This condition is comsistent with the
difference between the compressibilities along the crystallographic a and
c axis in TMMC, which has been reported [4] to amount to a factor 4, if
we assume that the dimensions of the MBZ are not too different. This
assumption yields the additional relation SS = ZGC (cf. Chapter III),
With these simplifications the experimental data between 4 and 52 K
could be described within a few percent. Only a small improvement was
achieved by considering ec and GS as independent variables, and hence

the expression with three parameters was preferred. The result is

6, = 442 * 4K
6, =15 + 0.6K
0,= 36.5% 0.1K.

The quoted errorbounds of the ©-values correspond to their statistic—
al uncertainty, given by the fitting procedure., The actual uncertainty,
however, may be a few times larger, because the three parameters still
appeared to be somewhat correlated. The fit is shown as a drawn curve in
Figure 5.2. In the temperature region, where the fitting procedure has
been performed, the agreement 1s very satisfactory. Only slight deviat-
ions, which are about twice the experimental uncertainty, are present.

Below 4 K, however, the theoretical prediction systematically deviates
from the experimental data. This deviation canmmot be eliminated by a
-readjustment of the parameter-values. In fact, the observed magnitude of
the dip in the experimental Ga values cannot be accounted for by the
theory presented in Chapter III, It may be shown, however, that the

presence of one or more singularities in the frequency spectrum at
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moderafe @ which have not been inclﬁdéd in the general treatment tend to
increase the magnitude of the dip in Qa, if’they involve a rather large
number of degrees of freedom, In the present series of isomorphic com~
pounds, these singularities - which are often attributed to low-lying
librational states - have indeed been observed [4]. In the low temper-
ature region, however, where they produce significant deviations, the
specific heat of TMCC is in the order of 10_2 - 10-‘1 J/mol K, which is
small compared to the total specific heat of the magnetic isomorphs
(10-1—1 J/mel K for TMMC and 1-4 J/mol K for TMNC). Therefore we conclude
that the description of the heat capacity of TMCC, given by the simpli-
fied form of equation (2), may very probably serve as a good starting
point for the description of the lattice comtribution of TMMC and TMNC.
Finally we wish to remark that the quality of the fit appeared to be
rather insensitive to small variations of the value of r, which reflects
the "effective" number of vibrating units in a formula umit. On the
other hand, measurements on the isomorphic TMMC by Dietz et al. [7]
reveal that even at room temperature the total number of degrees of
freedom hardly exceeds 27 NAV’ which strongly indicates that the con-

jectured value (9) is correct.

5.5. (CHg) JMCL, (TMMC) [5]

Tetramethylammonium manganése trichloride (TMMC) is considered as one of
the best one-dimensional antiferromagnetic compounds known at this moment;
The ratio of the inter- to intrachain exchange interactions |3'/3] nas
been estimated to range between 10-3 and 10_5 [7]. The intrachain ex-
change interaction has been found to be highly isotropic, small anisotro-
py effects have only been observed in susceptibility measurements [8, 92].
Neutron-diffraction experiments [10, 11] have shown that the correlation
length and the spin-wave dispersion relation along different directions
are comsistent with a highly one~dimensional behaviour with § = 5/2,
although there exists some discrepancy between the inferred values for
the intrachain exchange interaction, Both susceptibility [8] and low-
temperature heat capacity {12, 13] measurements indicate that TMMC orders
antiferromagnetically at T = 0.83 K, An overall picture of the heat
capacity has been reported by Dietz et al. [7] at temperatures up to

300 X. )
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In view of the well-established one~dimensional magnetic behaviour
at temperatures down to & 1 K and the reported magnitude of the intra-
chain interaction (J/k &~ - 7 K), TMMC may - in principle - be used to
check the theoretical prediction for the low temperature behaviour of
the magnetic heat capacity, presented in Chapter II. For this purpose,
measurements were performed between 2 and 50 K on a sample consisting
of v 0.1 mole of small crystals of TMMC, which were grown by slow eva-
poration of a solution of stoichiometric amounts of Mn€12.4H20 and
[(CH3)4N]C1. Below 4 K, the data showed a good agreement with the measure-
ments reported by Takeda [12]. The combined data for 0.3 < T < 50 K are
shown in Figure 5.3. Tabulated results for both TMMC and TMCC have been

presented in literature [5].
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FIG. 5.3. Specific heat of TMMC. The drawn line through the data points
represents the best fit to the total heat capacity. The lattice
and magnetic contribution ave also dvawn separately.
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In order to obtain experimental information about the magnetic contri-
bution to the specific heat, we have to perform a separation of the mag-
netic and the lattice contribution. In general, such a separation is
performed - at least within a restricted temperature region — by assuming
that both the lattice and the magnetic contribution may be properly des-
cribed by their respective limiting behaviour. In this case such a pro-
cedure is rather meaningless, since the limiting low-temperature be~
haviour of neither the lattice nor the magnetic contribution is known to
a sufficient degree of accuracy. Of course, one may speculate on a cer—
tain limiting behaviour. Assuming a low—temperature magnetic contribution‘
which varies linearly with temperature, various polynomial forms for the
lattice heat capacity have been used. The results, however, were found
to be rather inconclusive [5, 7, 13]. Moreover, as stated before, our
aim is to confront the experimental data with the theoretical prediction
over a rather large temperature region, and for this purpose a procedure
as outlined above does not give much information,

A more direct approach to the problem may be found in the subtraction
of a suitably scaled heat capacity of a diamagnetic isomorph. The only
available compound for this purpose is TMCC, which has, however, the
disadvantage that due to the rather large mass difference between the
Mn++ and Cd++ ion, the scaling procedure suggested by Stout and Catalano
[14] may introduce serious errors. Moreover it has been shown that the
scaling factor is generally slightly temperature—dependent, and hence it
may be incorrect to describe the whole region of interest with one single
parameter. Despite this, the resulting magnetic heat capacity after sub-
traction of a scaled heat capacity of TMCC appeared to be rather realistic,
The scaling factor was determined as 1.083 by the conditioms that CM >4Q
in the whole temperature region and that the total evaluated magnetic
entropy increase should amount to Rln6. The curve showed a maximum of
" 6.8 J/mol K at T v 40 K, which is in agreement with the predicted
behaviour of a Heisenberg S = 5/2 linear chain system with J/k ~ -7.5 K.
A more detailed exawination, however, revealed rather large systematic
.deviations. '

A more appropriate &escription of the lattice contribution to the
heat capacity of TMMC may probably be possible with the theoretical
approximation represented by equation (2).

In view of the good fit of the simplified form of this equation
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(Oo = 292, ey = 29;) to the heat capacity of TMCC and the isomorphy of
TMCC and TMMC, we expect that an identical expression with roughly the
same O-values will apply to the latter compound. We therefore attempted
to fit the total specific heat of TMMC simultaneously varying the three
parameters in the expression for the lattice specific heat as well as the
exchange p&raﬁeter J in the expression for the magnetic specific heat.
The magnetic contribution was described with the § = 5/2 antiferromagne-
tic Heisenberg linear chain model treated in Chapter II. A least-squares

fit to the experimental data above v 2 K yielded

Jk = - 6,67 + 0.02 K
@, = 472+ 5K
169 1K
40.6 0.3 K.

D
r
]

X
+

@
]

The result is shown by drawn curves in Figure 5.3. In Figure 5.4 the
relative error of the fit is plotted versus temperature. For comparison,
the results for TMCC are plotted in the same figure.

As for TMCC, the quoted errorbounds of the parameter-values correspond
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FIG. 5.4. Relative ervor of the best fit to the experimental specific
heat of TMMC and TMCC as a funetion of temperature.
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_ to their statistical uncertainty. The actual uncertainty in the deter-
mination of the intrachain exchange interaction J/k has been estimated by
fitting the theoretical expression to the experimental data for several
fixed J/k values. The RMS error of these fits is plotted im Figure 5.5.
The uncertainty in the determination of J/k is estimated from this curve
as 0.5 K. The value of J/k = -6.7 + 0.5 K compares favourably with the
values cited in literature, which are obtained from susceptibility,
magnetization and neutron—diffraction experiments. A survey of these re-

sults is presented in Table 5.1,

TABLE 5.1. Values for the intrachain exchange interaction J/k in
TMMC obtained from several experimental techniques.

Technique Ik & Reference
susceptibility -6.3 [8]1
susceptibility -6.47 + 0,13 [11]
neutron scattering -7.7 + 0.3 [11]
spinwave dispersion ~6.6 + 0.15 [11]
specific heat - 6.7 +0.5 present work
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The inferred ©-values for TMMC appear to be about 9 Z highér than
those for TMCC, which is consistent with the mass difference between the
Cd++ and the Mn++ ioﬁ, if we assume that the binding forces in both -~
compounds are roughly the same. If we consider, however, the change of
@2, Gt and @O‘in more detail; there appears to be a small changerin their
relative ratio, which is most likely caused by a small difference between
the elastic anisotropy of TMMC and TMCC. Such a change cannot be accoun—
ted for by a simple temperature~independent scaling factor. This may be
demonstrated by a description of the inferred lattice contribution of TMMC
by a scaled heat capacity of TMCC according to the relation
(T/a). (3)

c (T) = C

., TMMC TMCC

The result is plotted in Figure 5.6 as a functiom of temperature.
Although the variation of the scaling factor o seems to be rather small,
it may give rise to serious systematic deviations in the determination

of CH at higher temperatures, because in that region CL >> CM'
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FIG. 5.6. Sealing factor o, defined by the relation Cr. o
. 3 2
= CL, TMCC( T/a), as a function of ftemperature.
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Because of the small ratio |J'/J| and the low three-dimensional orde-
ring temperature, TMMC offers a good opportunity to get experimental
evidence on the limiting low-temperature behaviour of an antiferromagne~
tic 8 = 5/2 Heisenberg linear chain system. One should note that the.
prediction for the low-temperature behaviour‘presented in Chaptér II is
only based upon a phenomenological description, while conventional spin-
wave theory yields somewhat contradictory results. Therefore the temper~
ature region below 7 K will be considered in more detail. At these tem-

peratures, the magnetic heat capacity of TMMC hag been approximated by

S, moc D = Cexe o P~ Caxp,mmce (F/1-09)- £

We have subtracted a simply scaled heat capacity of TMCC to avoid
any interference between magnetic and lattice contribution which might
arise from simultaneous fitting procedures. The result is shown in Figure
- 3.7. The temperature—independent scaling factor was chosen as an average
of the values of o for T < 7 K obtained from equation (3) (cf. Figure
5.6.) and the factor 1.083 obtained by simple temperature~independent
scaling. Because at lower temperatures CM > CL? we expect that small
variations of the scaling factor will not give rise to drastic changes
in the curve for CM' This is confirmed by the fact that below 7 K the
curve obtained by equation (4) agrees within 2 7 with the result obtained
by subtracting the theoretical lattice contribution given above from the
experimental data. For comparison, the total specific heat of both TMMC
and TMCC is also plotted.
The shaded area represents the estimate for the low-temperature be—
haviour of a linear antiferromagnetic Heisenberg S = 5/2 system (cf.
Chapter II):

Gy = =1.15 KT/J + 0.41 a1/H? + 0.08 (I/D3, (5)

with J/k = -6.7 K. The agreement is raﬁher satigfactory. The small sys-—
tematic deviations are comparable with the estimated inaccuracy of the
‘theoretical prediction, which amounts to v 4 %. Moreover, the inferred
value for the exchange interaction agrees very well with the value ob~-
tained from simultaneous fitting of CM and CL between 2 and 50 X. In

view of this we conclude that the phenomenclogical description of the
- >
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low-temperature behaviour by equation (5) is in agreement with the expe-

rimental evidence, at least within the estimated inaccuracy.

Obviously the approximation of the magnetic heat capacity in this

region by a power series of the reduced temperature kI/J is fairly good

for § = 5/2. This might have been conjectured already from the fact that

the coefficients in equation (5) seem to converge rapidly. The effect of

truncation of the series may be examined by adding a fourth term, in

whieh case the coefficients can be obtained from the following boundary
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T{K)

FIG. 5.7. Total specific heat of TMMC and TMCC, denoted by e and +,
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respectively. The open cirveles represent Cyt. Tapac and are
R . £
obtained from CM,MC(T) = CEE,TWC(T) - C’EXP’TMCC{T/J.OQ).

‘Below ™ 2 K the magnetic and the total heat capacity almost

coineide. The shaded area is the eetimated low-temperatuve
behaviour for Cy in the case of Heisenberg exchange with

J/k = - 6.7 K. The eurve denoted by "spimwave 1" represents
the prediction from linear spin—wave theovy for J/k = - 6.7 K.
The curve marked "spimwave 2" represents the rvesult for Cy ob~
tained from divect integration of the experimental spin-wave
dispersion velation given by [7].



conditions. Firstly, we require that the series correctly predicts the
heat capacity and derivative with respect to temperature at a "take—
over" temperature T* in the region where the results obtained from H.T.E.
are still accurate. Secondly, the total evaluated magnetic entropy in-
crease should amount to Rln6é, and the series should represent the re-
sults obtained by extrapolation of the heat capacity of finite chains

as well as possible for T < T*, By these conditions four coefficients

are uniquely determined. The result is

Cy = ~1.10 KI/3 + 0.50 (kT/D? + 0.13 (k1/3)> + 0.008 GT/D*.  (6)

Analogous to the derivation of equation (5) (cf. Chapter II) the error
has been estimated by varying T* as ~ 4 7. Comparison of equation (5)
and (6) shows that the quoted errorbounds of the phenomenological des-
cription are rather realistic, which is supported by the experimental
evidence.

The region where CM may be approximated by a linear term only is
greatly obscured by the three-dimensional ordering phenomena. This region,
however, doesg certainly not extend above "~ 2 X, which corresponds to
|eT/3] ~ 0.3. In view of this we conclude that the results of previous
attempts to determine the exchange interaction in TMMC, which did rely
on a linear temperature dependence of the magnetic contribution up till
T v 6 K, should be considered with reservations. For comparison some of

these results are plotted in Figure 5.7.

TABLE 5.2, Theorvetical and experimental estimates for the coefficient
bo in the expressionVCM/R = boT repregenting the limiting
behaviour for T ~ 0 of the heat capacity of an antiferro-
magnetic Heisenberg linear chain.

theory:
Substance s spinwave |numerical | experiment

(CH3)4NMnCl3 5/2 0.21 [15]} 0.14 [26]] 0.13, present work

CuCl,.2BCHs | 1/2 | 1.05 [15]] 0.35 [16]| 0.36 [17, 18]
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The theoretical prediction for the limiting low-temperature behaviour
of the heat capacity of an antiferromagnetic Heisenberg linear chain
system has - to our knowledge - only been confronted with experimental
evidence for 8§ = 1/2 and S = 5/2. Results are presented in Table 5.2,
which demonstrates that conventional spin-wave theory tends to give a

" better prediction as the spin quantum number increases.

9.4, (033)4NNiCls (rne) {191

In contrast to the behaviour of TMMC, the magnetic interactions in TMNC
do not seem to be very well established, The powder susceptibility has
been meagured for 1.6 - 79 K by Gerstein et al. [20], who reported de-
viations from a Curie-Weiss behaviour x = C/(T-0) with © = + 4,80 + 5,25 K
below 30 K. Their data strongly suggest that the dominant interaction is
Ferromagnetic. Specific heat measurements for 0.64 < T < 27.4 K performed
by Hurley and Gerstein [21] reveal a three-dimensional ordering peak at
Tc ~ 1,21 K superimposed on a broad bump with a maximm of 4.5 J/mol K
at '1‘m = |,5 K, The critical entropy amounts te 0,21 R (19 Z), which is
low compared to the values predicted for various three—dimensional § = 1
models [22]., This suggests a rather low-dimensional character of the
magnetic properties, which was already conjectured from the isomorphy
with TMMC. In order to account for the magnitude of the heat capacity
maximum, Hurley and Gerstein interpreted the data with the spin 1 linear
Heisenberg model, but this yielded an antiférromagnetie intrachain inter-
action, which clearly is in disagreement with powder susceptibility
measurements.

Single-crystal susceptibility measurements in the liquid hydrogen and
helium region were performed by Dupas et al, [23]. They analyzed their
data within the framework of a hamiltonian describing a Heisenberg

linear chain system with uniaxial single~ion anisotropy

2 1
H==-23% Si §1+1 D3 {Siz 3 s<s+1)] . (N
i i
This resulted in J/k = + 1.1 K and D/k = - 2,1 K. The interchain
interactions were estimated from Xy in the ordered state and from a
Green's funct:on method [24], which yielded a J'/J value of 3 x !0 and

7x 10 » respectively, confirming the conjectured one-dimensional mag-
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netic behaviour at high temperatures. In view of this, we thought it
worthwhile to analyse the specific heat data of Hurley and Gerstein in
more detail} in order to confront them with estimates for'the magnetic
specific heat resulting from the hamiltonian (7), given in Chépter iI.
A reliasble separation of the magnetic and lattice contribution to the
heat capacity in TMNC seems possible, since the lattice heat capacity
of the isomorphic TMCC has been determined fairly accurately.
The magnetic contribution CM was obtained by subtracting the scaled

heat capacity of TMCC. The scaling factor, which was assumed to be
temperature-independent in the region under consideration, was deter—

mined by the conditions CM > 0 and SCMIST < 0 for T > 20 K. This resul-
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FIG. 5.8. Experimental magnetic specific heat of TMNC. The eivcles ave
the data obtained by subtracting a scaled heat capacity of
TMCC from the total specific heat. The crosses represent the
data obtained by subtracting a scaled lattice heat capacity
of TMMC. The drawn curve denoctes the best fit, corresponding
to J/k = + 1.7 K, D/k = - 3.3 K. The dashed part of the curve
indieates the estimated low-temperature behaviowr, if no
interchain interactions were pregent (ef. Chapter II).

65



TABLE 5.3. Values for the intvachain exchange interaction and the
single-ton anisotropy in TMNC obtained from different
experimental techniques.

Technique J/k (K) D/k (K) Comment

Powder- S} +1.8 + 2.0 - [20] G~value 30-80 K

susceptibility| +1.9 e [20] Ising S =1 3-80K
*1.0 —— [20] Fisher S =1 2-80 K

Specific heat | -2.73 - [21] 6-20 K

Single—crystal| +1.1 + 0.1 [-2.1 + 0.5 | [23] 13-20 K

susceptibility

Specific heat | +1.7 + 0.3 | -3.3 + 0.5 | present work 3.5-20 K

ted in a scaling factor 1.230 + 0.005. The total evaluated magnetic en~
tropy increase, including the extrapalated contribution (.02 R below
T = 0.64 K, did amount to 1.09 R, which corresponds within 1 Z to the
theoretical value Rln3. ; '

As cutlined before, use of a temperature-independent scaling factor
may produce some systematic deviations, since the mass difference between
the Ni++ and the Cd++ ion is rather large. In order to check the accuracy
of the procedure presented above we determined CM in a similar way using
the inferred lattice contribution of TMMC, which resulted in a scaling
factor 1.125 + 0.005. The magnitude of both scaling factors indicates
that the binding forces in the Ni++ compound are significantly different
frém those in the Mn'@ and Cd'' isomorphs. The results of both procedu-
© res are plotted in Figure 5.8, Both sets of data are quite consistent;
significant differences are found for T > 12 K only.

The data for 3.5 < T < 20 K could be described within the experimental
uncertainty with the hamiltonian (7) with J/k = + 1.7 + 0.3 X, and
D/k = - 3.3 + 0.5 K. The parameters were obtained by a least-squares fi;
to the experimental GH data. The best fit is shown as a drawn curve in
Figure 5.8. Below T = 3 K the observed magnetic specific heat rises sys—
tematically above the theoretical prediction, indicating that interchain

interactions in this compound are presumably no longer negligible. This
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is;supported by the fact that the three~dimensional 6rdering temperature

is comparable to the temperature corresponding to the maximum of Cy

predicted for a linear chain model.

The values for J and D obtained from different experimental techmiques
are listed in Table 5.3. It appears that the present values are somewhat
higher than those reported by Dupas et al. [23], which is most likely
explained by the fact that their interpretation is based upon a Curie-
Weiss behaviour of the susceptibility at liquid hydrogen temperatures.
This is inconsistent with earlier measurements of Gerstein et al. [20],

- which reveal a Curie-Weiss behaviour at temperatures above 30 K only.

In general, a 1/x versus T plot at temperatures low cbmpared to the region

in which the Curie—Weiss law y = C/(T-0) strictly holds will yield an

. extrapolated intersection ©F on the temperature axis with ©* < O, This
indicates that the parameter-values obtained from the single-crystal sus-—
ceptibility measurements are indeed to low.

' The intrachain interaction in TMNC is found to be ferromagnetic, where-
as this interaction in the isomorphic TMMC is strongly antiferromagnetic.
A% each magﬁetic ion is linked with its nearest neighbours within the
chain by three chlorine bridges with a bond angle of about 800, this
behaviour is not inconsistent with the model of Anderson [25], which
predicts — for a 90° bridge - a decreasing importance of the antiferro-

magnetic contributions to the superexchange going from 3d5 to 3d8.
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CHAPTER VI

SOME MAGNETIC PROPERTIES OF CsMnCl .2H20, oRbMnCl

3 .2H,0 and CsMaBr,.2H_.0

3772 3'72
6.1. Iﬁtroduction‘

CsMnCl3.ZHZO (CMC), ctRanCl3

a series of isomorphic compounds AMB3.2H

.2H20 (ORMC), and CsMnBr3.2H20 (CMB) belong to
20 with A = Cs,Rb; M = Mn,Fe,Co;
and B = Cl1,Br, Their crystallographic structure is orthorhombic with space
group Pcca and 4 formula units in a chemical unit cell [1, 2]. The A,M and
one. of the B ions occupy special positions on Zc’ Zb.and 2c axes, respec— .
tively. The unit cell dimensions of the Mn compounds are given in Table
6.1. The crystallographic arrangement is schematically drawn in Figure 6.1.
The structure can be considered as built up from cig-octahedra of four

B ions and two oxygen ions. Neighbouring octahedra in the a direction
share one B ion, and form slightly staggered chains along this axis, which
are separated in the b direction by layers of A ions. In the ¢ direction
the chemical structure is kept together by hydrogen bonds.

The existence of — M++ -8 - M++ - B - chains in the a direction,
where the B ionms provide a superexchange coupling between the M++ spins,
will very likely give rise to one-dimensional characteristics in the
magnetic behaviour of these compounds. Especially in CMC these characteris-
tics have been the subject of a large number of experimental investigations
[3~11]. These studies reveal that above v 9 K the magnetic behaviour can
be described by a system of isolated chains of § = 5/2 ions with an iso-

tropic antiferromagnetic intrachain exchange interaction J of about 3 K.

TABLE 6.1. The unit cell dimensions of Cs&h023.2H20, aRanCZs.Zﬂza
and CaMhBrz.zﬁgo at room temperature.

Substance a (&) b &) e &) Reference
CsMaCl,.2H,0 | 9.060 | 7.285 | 11.455 [
ORbMAC1,.2H,0 | 9.005 | 7.005 | 11.340 [2]
CsMnBr . zﬁzo 9.61 7.49 11.94 [23]
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In the next sectiom, we will investigate to what extent the Heisenberg
§ = 5/2 linear chain model describes the magnetic heat capacity of CMC
also. In order to perform such an analysis, however, we have to separate
the magnetic and the lattice contribution to the total specific heat. It
will be shown that the model presented in Chapter III uffeis a good
descriptioﬁ of the lattice heat capacity of CMC. An appropriate procedure
to separate both contributions to the heat capacity will be outlined.

In CMC relatively small interchain interactions are present, giving
‘rise to a three-dimensional ordering at T

°N
wave theory we may anticipate a drastic influence of these interactions

= 4,89 K. From linear spin-

on the magnetic properties'below T,., because in the limit of the ordered
purely one~dimensional case the density of states would diverge in the
origin of the k space, Therefore we shall consider the region below TN
in more detail ia the second part of the next section. v
In the last .section the heat capacity of the two other Mt isomorphs,

ORMC and (MB, will be analyzed. Such an analysis serves two different

FIG. 6.1. Schematic vepresenmtation of the erystallographic structure
of AMB . 2H,0. Only one set of hydrogens and hydvogen bonds is
shoun.
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purposes, Firstly, these isomorphs involve rather different atomic masses,
and hence the lattice contribution to the heat capacity may be fairly
different from that of CMC. This may yield additional information about
the reliability of the theoretical model for the lattice heat capacity.,
Secondly, by comparison of the magnetic behaviour of these compounds the
influence of the intermediate alkali ion as well as the halide ions. on

the various magnetic interactions may be studied.

6.2. CsMnCZs.ZHBO (eMc) 19,12]
6.2.1. Imtroduction

As already mentioned, the magnetic properties of CMC have been the sub-
ject of a large number of experimental investigations. The intrachain
interaction has been determined from susceptibility [3], neutron diffrac-
tion [5], and EPR [6, 7] studies. The magnetic space group in the ordered

state has been determined from NMR experiments as P_ c’ca’ [4]. The inter-

chain interactions have been estimated by a Green‘szzunction method [4].
and have been found experimentally from neutron—diffraction [5], EPR line-
shape [7] and NMR [13] studies. Recently a fairly consistent set of inter-
actions has been determined from a spin-wave analysis of the suscepti-
bility in the ordered state [10]. The available experimental evidence
indicates that the ratio of the in;erchaig interactions to the intrachain
- 10 7.

In view of these extensive investigations it is surprising that no

interaction is in the order of 10

detajled heat capacity measurements have been reported. The main reason
for this may be found in the fact that no reliable estimate was available
for the relatively large lattice contribution. A direct interpretation

of the heat capacity measurements was hamperéd by the fact that all at~
tempts to grow a diamagnetic isomorph were unsuccessful, Furthermore,

an independent determination of the lattice heat capacity by saturating
the magnetic system with an extérnal magnetic field was precluded by the
magnitude of the intrachain coupling and the temperature region of inter-
est. A description of the lattice contribution with the usual three-

dimensional Debye model yielded very unsatisfactory results.
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A more appropriate description of the lattice heat capacity may be
fouhd‘by considering the typical chemical structure of these compounds.
As already mentioned, the chemical structure in the ¢ direction is kept
together by hydrogen bonds. Because the crystals cleave very easily
parallel to the ab plane and no other cleavage planes are present, we
assert that, from a lattice dynamical point of view, these compounds may
be considered as systems of loosely coupled layeré. Hence we expect that
" the model presented in Chapter III may provide a fair description of the
lattice heat capacity.

Single~crystals of CMC were grown by slow evaporation of an equimolar
solution of CsCl and Mn012.4H20. They showed the morphology described by
Jensen et al. [1]. A specimen consisting of 38 grams of small crystals
(average dimensions 2 i 5 x 5 mm) was measured with the calorimeter de-
scribed in Chapter IV. The data between 1.l and 52 K are shown in Figure

6.2. Above the three-dimensional ordering temperature, the total heat

80— T T T T ] T T 1 T
a CsMnCl3. 2H,0
- 00
~Clattice
<
- -
£
=
o 4
g ;
0 10 20 30 & 50

)

FIG. 6.2. Specific heat of CaMaCly.2H,0 versus temperatuve. The open
eireles represent the experimental data, the dvawn line
denotee the lattice contribution obtained from the procedure

outlined in section 6.2.2. '
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capacity gradually increases to ~ 70 J/mol K, indicating that the magne-
tic heat capacity in the paramagnetic region is completely dominated by

the lattice contribution. We will first focus our attention on this region.

6.2.2. Heat capacity in the paramagnetic region

In view of the reported experimental results, the magnetic heat capacity
above 9 K has been described by the S = 5/2 antiferromagnetic Heisen—
berg linear chain model, presented in Chapter II. To reduce the total
number of parameters as much as possible, the lattice contribution was
represented by the simplified form of the expression for the heat capa-

city of a layered structure, given in Chapter III:

CL(T) = FI(ZGt, @c’ ) + Fl(at’ Gc, T) + FZ(GO’ ZGC, ). (1)

It was assumed that in the temperature region of interest the Hzo mole~
cules vibrate as a whole and that rotational states are of no importance.
This yields a number of 7 vibrating units in a formula unit,

We fitted the data asbove 9 K simultaneously varying the three para—
meters in the expression for the lattice specific heat as well as the

parameter J/k in the expression for the magnetic specific heat. This

yielded
J/k =~ 2,85+ 0.02 K
Gt = 287 *+ 1.0K
@O = 204 + 1.5K
6., = 56.0+ 0.5K.

The quoted exrorbounds correspond to the uncertainty of the parameter—
values assuming that the deviations are statistical in nature. The actual
uncertainty, however, may be larger., Since we are primarily interested
in the value of the exchange interaction J/k, we performed several fits
in which this parameter was fixed at a certain value. The RMS error of
these fits is pletted in Figure 6.3 as a function of J/k. From this curve

no reliable upperbound for |J/k| can be determined. Therefore the possible
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runcertainty was estimated independently by considering the total magnetic
entropy gain associated with these fits. Below 1.1 K, the entropy increase
waé estimated by approximating the heat capacity down to T = 0 with the

relation Cy = aTB
of the data between |.l and 1.5 K. The extrapolated fraction did amount to

. o and B were obtained from a double-logarithmic plot

%~ 0.5 Z., For 1.1 < T < 52 K, the entropy gain was calculated by numerical

integration of (C )/T, while the increase above 52 K was

N : EXP™CL, CALC
determined from the high temperature series expansion for an antiferro-
magnetic § = 5/2 Heisenberg linear chain system. For the various“fi*gs, this
Eraction typically did amount to ~ 10 %. Since the magnetic heat capacity
below 9 K has been obtained by subtracting an extrapolated lattice
contributién, we estimate that the error in the calculation of 8o So may
be v 3 Z. Given a spinvalue of 5/2, the value of S‘» - So should amount to

Riné within this uncertainty. This condition was found to be satisfied

i 1 1

CsMnCly. 2H;0

RMS error (%)
&
N\
\
.
N\

T \\)\ o,-o’o"o”
o
\l\ '« ”
“Cu-0”
0 i i I
-20 -25 -30 ~35
3 (K

FIG. 6.3. RMS error of fits of the theoretical expression to the experi-
mental specific heat of CsMnCZg.ZHgo between 8 and 52 K for
fixed values of J/k. The shaded bar denotes the region in
which the total magnetic entropy gain amounts to RIné within
the experimental uncertainty.
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TABLE 6.2. Values for the intrachain exchange inkeraction J/k in
CsMn023.2320 obtained from several experimental techniques.
Exeept for the heat capacity vesults no errorbounds werve

reported.
Technique J/x (K) Reference
I Paramagnetic susceptibility -3.12 [3]
I1 I + quantumcorrections - ~3.00 [3]
III Perpendicular susceptibility -3.39 [8]
below T ) '
N
IV - Spin-wave analysis of X -3.2 [10]
below T :
N
v Neutron scattering -3.53 [5]
VI  Electron paramagnetic resonance -3.57 [6]
VII Specific heat -3.3 + 0.3 [9]
VIII Specific heat -3.0 © g'i present work

for - 2.8 > J/k > - 3.5 K, which is represented by the shaded bar in Figure

6.3. The intrachain interaction is estimated from a weighed average of both
+ 0.2
~ 0.4
in good agreement with the reported experimental results obtained from

procedures presented in this figure as J/k = - 3.0 K. This value is

susceptibility, neutron~diffraction and EPR linewidth studies. For
comparison, a survey of these results is presented in Table 6.2.

The theoretical lattice contribution GL,CALC corresponding to
J/k = - 3.0 K is shown as a solid line in Figure 6,2. The experimental
c is represented by the open circles

7 EXP L,CALC A
in Figure 6.4, while the drawn curve denotes the theoretical estimate for

magnetic heat capacity C

a $§ = 5/2 Heisenberg linear chain with J/k = - 3.0 K. The errorbars reflect
the uncertainty in the experimental determination of the Zotal heat

capacity ( n~ 1 2). The agreement is very satisfactory. The small systematic
variations of the experimental data around the theoretical curve above 12 K

show a striking resemblance to the deviations, which were observed in the
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reéulté of the measurements on pure copper (cf. Chapter IV). Therefore
these variations will reflect a systematic experimental error rather than
any inadequacy of the theoretical description. Below 7 K, the experimental
data begin to deviate significantly from the theoretical curve, which
indicates that in this region the interchain interactions are presumably
no longer negligible. The ordering phenomena will be discussed in some
detail in Chapter VIII.

The question may arise, to what extent the inferred value of the intra-
chain exchange coupling depends on the particular expression for the
lattice contribution used in the separation procedure. In principle, this
problem may be examined by simultaneous fits of the lattice and the
magnetic heat capacity to the experimental data for various expressions for

the lattice contribution. Because the physical relevance of a number of

10 T T T T 1 1 T T T T
L ' CsMnClz-2H,0

8- — theoretical estimate
with J/k=-3.0

magnetic specific heat {J/mol K
i

A g .
1+3 0%0
™ N ]
]
2 °° =
oo
<
I i 3 ] | I | i I |
0 10 20 35 40 50
T(K)

FIG, 8.4. Magnetic heat capacity of CsMh013.233Q. The open cirvoleg
correspond to the experimental data minus the calculated
lattice contribution, the ervorbars reflect the experimental
uncertainty in the determination of the total heat eapacity.
The drawm curve denctes the theoretical estimate for a
S = 5/2 Heisenberg linear chain system with J/k = - 3.0 K.
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TABLE 6.3. Valuea for the intrachain exchange imteraction J/k in
C‘sMnCZs.%ZO obtained from simultaneous fits of the lattice
and magnetie heat capacity to the éxperimental data. The
eolum headed "Cz" gives the model with which the lattice
heat capacity has been deseribed. In the cases marked *)
both systematic deviations and corvelations between the
deseription of the lattice and the magnetic heat ocapacity
have been takenm into account.

CL J/k (R) RMS error
7D,(9,) -2.8 * 0.7 T~ 30 %
7D,(9,) -2.95 + 0,25 "~ 10 2

2 N " _
7[5 D,(85)+35D,(0,")] 3.32 + 0.02 AU B 4
Tarasov, modified =3.3 % 0.3%) 0.4~ 12
pseudo-elastic -3.0 i g’i*) 0.4 -0.872

these expressions has already been considered before [9], we will confine
ocurselves to a summary of the results, which is presented in Table 6.3.

It appears that, although some of these fits show very large systematic
deviations from the experimental data, the‘resulting values for J/k are
within 10 % equal to the value obtained from the present analysis. Hence we
conclude that, given the characteristic properﬁies of CMC, a fairly accu-
rate determination of the intrachain exchange interaction has been possible.
From the measurements in the paramagnetic region, however, no estimate for
the magnitude of the interchain interactions could be deduced. Since we
anticipate a drastic influence of these interactions on the magnetic pro-

perties below T, we will consider the ordered state in the next part of

N
this section.
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6.2.3. Spin-wave analysis of the ordered state

Because the magnetic structure of (MC in the ordered state is well-
establiéhed [4, 5], the calculation of the spin-wave spectrum is rather
straightforward, if only nearest—neighbour interactions are taken into
account. The magnetic structure is schematically drawn in Figure 6.5. The
intrachain interaction along the a axis is denoted'by Jl; J2 and 33 re-
present the interchain interactions along the ¢ and b axis, respectively.
It is evident that all interactions are antiferromagnetic, and that
neighbouring spins belong.to different sublattices. The system will there-

fore be described with the hamiltonian

#=-2 % 3, 8,3 —euH (£s,%2-1:8% (2)
fm "L °m ~ BHpMa 2 m "’
L,m £ m

where HA denotes the anisotropy~fie1d arising from - relatively small ~
dipolar and crystal-field effects. The indices ¢,m refer to spins located

on the + and - sublattice, respectively. Within the Holstein-Primakoff

FIG. 6.5. The spin array of CsMhCla.2H20 in the ordeved state. The
draum figure corvesponds to the magnetic unit cell. o)
denotes the intrachain interaction along the a axis, Iy and
Jz are interchain interactions.
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formalism [14], this hamiltonian can be written as

= 2_ *
) zlzmjlm{s S(aiaz * b;lbm * a,zbm * albm) ]
’

- gupnA[i (s-aja,) + i (s-bxb )] (3)

ai, a, and b;, bm represent creation and annihilation operators acting on
spins at + and - lattice sites, respectively. All terms of higher order
than quadratic in these operators are neglected (unrenormalized spin-wave
theory). The next step in the derivation is the introduction of the Fourier
transforms of the creation and annihilation operators and the diagonal-
ization of the hamiltomian by a suitably chosen canonical transformation

[15, 16]. The result is

-5
En,P = NS(5+1) E J(rh) guy A(S+—)
+ I @e@ + I (prye® ‘ (4)
k k
n,p = 0,1,2,0000cenn. ceessuas
In this expression N denotes the total number of spins, and k = _X ek, a
wave vector in the direction of the unit propagation vector ek. The
following substitutions have been made:
> > > 1/2
T, =TT , e = [b(k)] !
> o
N - » > 1k.rh (5
€ =-28%2 J(r, ) + guH, , b(k) = - 25 L J(r )e
m h h B A h h

€ corresponds to the maximum energy of the spin-wave spectrum, which is
twofold degenerate in zero applied field. If the slight zig-zag of the
chains in the a direction is ignored, the contribution of the exchange

interactions can be evaluated as

z J(r ) = 23 +3,43,)
e ' (6)
ﬁ J(zg)e h Z[chos(kaa/Z)’*chos(kcc/Z)-+J3cos(kbb)],
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Usually, the density function N(g) is calculated from the small~k approxi-
mation of the dispersion relation [17]. In this pseudo one-dimensional
system, however, this approximation has been shown to give very unsatis—
factofy results [11]. Therefore the density fuction was caleulated by the
root sampling method. A large number of energies were generated by solving
the dispersion relation (5) for a large number of uniformly distributed
points within the first Brillouin zone, and the real spectrum was approxi-
mated by a normalized histogram. The sampling was performed according to the
procedure described in [11]}. In Figure 6.6 the density function is shown
for some representative values of the exchaﬁge interactions. €, denotes the
minimum energy of the spin~wave spectrum, corresponding to ¥ = 0. As anti-
cipated above, the low-energy part of the spectrum appears to be very

sensitive to the ratio JZXJI. Therefore we expect that the magnitude of the

' CsMnCt3 2H,0

d

Ik =-3.0K
Jpthy =816
J3=0

H/k=-30K
Jpld =3x102
J3=0

N{E)

.———-—————"‘"-"

€ e €m

FIG, 6.6. Magnon density of states N(c) versus £ ealoulated for
CsMnCZ 23 0 for different sets of exchange constants. The
curve marked "1d" denotes the purely one-dimensional limit
(Jé = d, = 0). The dashed curve refleets the small-k

3
approximation for a representative set of exchange conetants.
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interchain coupling may be estimated from the thermodynamic properties at
low temperatures.
Firstly we will consider the magnetic specific heat, which is related
to the normalized spectrum N(e) by
€m
CM(T) =k I (E/kT)zeE/kT[eE/kT—l]
€

o

"2 N(e)de, )

since the spin-waves described by equation (4) and (5) can be considered as
decoupled Bose-oscillators. The integral may be solved numerically. In an
actual calculation, one should note that the lower bound of the spin-wave
energy spectrum (so) is found to be temperature-dependent. In CMC, €, has
been determined experimentally from neutron-diffraction experiments [5].
The observed temperature-dependence could be described by assuming a re=-
normalization of €, proportional to the sublattice magnetization

(eO = 2.2 Kat 1.5K, 1.7 K at 4.2 K), In the present calculations, this
variation of €, has been taken into account explicitly by adjusting the
value of HA (cf. equation 5). In Figure 6.7 some results are plotted. The
open circles correspond to the experimental data corrected for the lattice
contribution. Because in this temperature region the lattice heat capacity‘
amounts to less than 6 % of the total specific heat, the data in Figure
6.7 will reflect the magnetic contribution fairly accurately. The drawn
curve corresponds to the best fit of equation (7) to these data. Since the
theoretical prediction at these temperatures was found to depend on

|J2 + J3| rather than on J2 and J3 separately, and several experimental
studies indicate that |J3| << |J2|, the problem has been simplified by

putting J, equal to zero. The result obtained from the set of exchange

3

constants Jllk =~ 3,2 K, |J2/Jl| =7x 10'3, J,=1/5 J,» determined by

3
Iwvashita and Uryl from their fit of linear spin wave theory to the low-
temperature susceptibility [10], is represented by the dashed curve marked
"Iw". For comparison the predictions from some purely one-~dimensional

models are also given. The curve marked "ldsw"

represents the estimate from
linear spin-wave theory given by Kubo [16] for J/k = - 3.0 K, the curve
marked "ldnum" corresponds to the low-temperature behaviour of a S = 5/2
Heisenberg antiferromagnetic linear chain system, presented in Chapter II.
The large deviation of these one-dimensional predictions from the actual
behaviour clearly demonstrates the drastic influence of the interchain

interactions. Three-dimensional linear spin—wave theory appears to give a
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CsMnCly. 2H,0

T(K)

FIG., 6.7. Magnetie heat capacity of CSMnCZS.ZH‘?O at low temperatures.
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‘The open cireles corvespond to the experimental data ecorrected

for the lattice comtribution. The drawn curve demotes the best
Fit of the spin-wave prediction to the experimental vesults.
This fit covrvesponds to the set of exchange in?:emciions

Iy k== 8.0K J /7, =8 10°°, J = 0. The dashed curve

© marked "Iu" represents the result obtained from the set of

interactions J./k = = 8.2 K, Jy/d, = 7w 1070, J3/7, = 0.2
reported by [10]. The curve marked "1d sw" reflects the pre—
dietion from puvely one-dimemsional spin-wave theory. The low-
temperature behavicur of the S = 5/2 linear chain model pre-
sented in Chapter II ig denoted by "ldnm".



TABLE 6.4. Values for the intrachain exchange interqetion J 1 and the
interchain interactions J P and J 3 for CeMnCl 3'. 28,0,
aRanC‘ZS.Zﬂgo and C’sMnBrg. 25120. The last column gives the
fraction of the total magnetic entropy inerease removed below
the ordering temperature.

CaMaCl ;. 20,0
Neutron diffraction {5] I 353K, || =7 ;:0‘31311
ESR lineshape [7] between [J2| - |J31 ) :10'2[..:‘|
and [3,] = 100]3,] = 2.6 x107%3,|

Parsmagnetic NMR [13] [Jz| - 3.52!0-2]-1'] >> |J3| i
Proton spin-lattice relaxation [11] }le -5 xlleJll, Iy 0
Oguchi's formuta [24] 19,1 = 13,0 = 8x1073, ;
Susceptibility betow Ty [10] Ik = =32k, [5,] = sxm‘3|Jl| - 5l9,|
Specific heat ENCERE N Y SRR Bxlo-legl S pip = 1392

ORBMACL ;. 2H,0
Susceptibility [26] below T, Jyfk = -2.9 K

Specific heat + Oguchi's formula |J,/k = -3.0K, 132] - [13l - 7x10-3|.1‘] Sepje " 1362

CabinBr .. 26,0
Susceptibility [26] above Ty J!!k = ~3,2 K
below TK J!Ik - ~3.0 K
Specific heat + Oguchi's formula [J,/k = -2.6 K, [3,| = |J3| - Sepie ™ 20-9 %
- 1ax1073|

fair description of the data up till ~ 3 K, which corresponds to 0.6 TN'
The intra~ and interchain interactions Jllk = - 3.0 K, fJZ/JI{ =

-3
=8x 107, J3

results, compare favourably with the values cited in literature. A survey

o O, which yielded the best fit with the experimental

of these results is given in Table 6.4.

Inspection of Figure 6.7 shows that at the lowest temperatures, where
three-dimensional linear spin-wave theory is expected to give the best
description, the observed heat capaéity systematically rises above the
theoretical prediction. Partly this deviation arises from the high tem~
‘perature tail of the nuclear_)Schottky anomaly of the Mn++ iong caused
by the hyperfine coupling TZS in the magnetically ordered state., If we

assume |A|/k = 0.012 K, a value which can be considered as representative
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for Mn++ ions in an octahedral environment [18], we arrive at a nuclear
contribution to the heat capacity of about 0.02 J/mol K at | K, which
accounts for ~ 30 7 of the observed deviation. The remaining discrepancy
may presumably be removed by the introduction of small non-uniaxial
terms in the anisotrépy. Susceptibility measurements have indicated the
existence of such terms [8].

Next we will consider the magnetic ground state energy Eg. At T=20
equation (4) reduces to:

€m

") = gl  N(S+g) + «ej N(e)de. ®)

o]

Eg = 2NS(S+1)(J +J

Due to the zero—point mgtion of the spins, Eg is different from the '‘naive”
ground-state energy 2NS (J1+32+J3) corresponding to a completely anti-
parallel alignment of the magnetic moments. This antiparallel alignment,
however, is not an eigenstate of the hamiltonian (1). 'Since it has been
shown [16] that the inclusion of fourth order terms in the spin-wave hamil-
tonian produces an increase of dnly 0.5 % in Eg for an S = 5/2 antiferro—
magnetic linear chain, equation (8) will very likely offer a good estimate
of the actual ground state energy of CMC. Substitution of HA and the set
of exchange constants found above in this equation yields E_ = - 357 J/wol.
If we assert that the dominant contribution to Eg will arise from the large
intrachain interaction this value may be confronted with the rigorous

bounds given by Anderson [19]
2 2
NzIs® > Eg > NzJS“(1+1/z8), (9}

where z denotes the number of nearest neighbours. For z = 2, § = 5!2 and
J/k = - 3.0 K this equation yields - 312 > Eg > =~ 374 J/mol, which comprises
the value calculated above. Of course, the ground-state energy may be
calculated directly from the experimental data by integrat?ng the CM versus
T curve. Following a procedure similar to the method used in the calcula-
tion of the mggnetic entropy gain we find E8 = - 361 J/mol, which is in
excellent agreement with the prediction from linear spin~wave theory.

The magnitude of the sublattice magnetlzatlon (M ) may be found by
considering the difference of M+ and M_, which represent the magnetization |

of the + and - sublattice, respectively, as a thermodynamic quantity. Since
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in zero applied field ﬁ; = - ﬁ , the sublattice magnetization M can be
written as ﬁ = —(M -M . The magnitude of M may be obtained by differ—
entiating the energy, given by equation (4), wlth respect to the conjugate
thermodynamic variable of §+4§_. This variable is usually called the
staggered field ﬁst’ which points along the preferred ditectiqn of spin
alignment, being positive at the + lattice sites and negative at the -
lattice sites. Since for an antiferromagnetic array the anisotropy field

ﬁ& has a staggered character also, H_, enters in the hamiltonian (1) in

st
the same way as HA’ and hence it may simply be added to HA in the final
solution (4~53). The sublattice magnetization Ms may be obtained from this

modified solution directly as

1
Ms = - g(az/anst) . (10)

stao

where E denotes the thermal average of En P The result is
?

Sm € -
: N 1 e N(E) 1 P N (€)
Ms‘ﬁgusf“f'ﬂ e % Nf—aﬁ—de]» | an
, . «

(]

which is - in fact — equivalent to the expression given by Kubo [16].
At T = 0 the sublattice magnetization is different from the saturation

value gguBS by a factor

S U T B i
T "8 NsJ 79 , (12}

usually called the zero-point spin reduction.

The actual behaviour of the sublattice magnetization MS has been deter-
mined from nuclear magnetic resonance measurements on the hydrogen nuclei,
hereafter referred to as proton-resonance. From the variation of the proton
absorption frequency as a function of temperature the relative behaviour of
MS may be inferred. In order to obtain an estimate of the absolute value of
M o the observed local fields at the proton sites can be compared with the
calculated internal fields originating from the magnetic dipole moments on
the Mn ions. Whether such a dipole sum really reflects the actual local
magnetic fields at the proton sites depends on a number of conditionms,

which have been pointed out by De Jonge and Swuste [20], and may be summa-
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rized as follows. Firstly, the direction of the magnetic dipole moments (or
the sublattice magnetization) has to be known exactly. In CMC this is given
by symmetry as the b axis. Secondly, the hydrogen positions shoﬁld be known
with a sufficient degree of accuracy. Furthermore, the hyperfine interact~
ion of the‘hﬁdrogen nuclei with the Mn*+ gpins should be small compared to
the dipolar interaction. Although the hyperfine contribution cannot be
calculated straightforwardly, it seems to be relatively small in this type
of Mn' " compounds [20, 21]. If we confront the calculated dipole sums at
the proton sites, corresponding to the maggetic space'group‘PZbc'ca‘, with
the experimentally determined internal fields, a magnetic moment of

++ . . . . .
4.0 Hg on the Mn  ions is required to fit the experimental fields extra-

] i ¥ | i 1 T 1 L4

10 . CsMnCt3.2H,0 .

Msubt/ g gHgS
&

l L { I ] L ] 1

TK)

FIG. 6.8. Sublattice magnetization of CsMh025.2320. The open eircles
denote the experimental behaviour deduced from proton NMR
measurements. The dashed curve represents the spim-wave
prediction corresponding to the eet of ewchange éonstanta
I /K== 8.0 K T, =8 1070, g = 0 inferved from the
heat capacity measurements, ae well as the prediction corre-
sponding to the set of exchange comstants given by [10]. The
drawn curve ig obtained by a readjustment of the interchain
interaction Jy to 4 % 107 4.
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polated to T = 0, Given the small uncertainty of both the hydrogen posi-
‘tians and the hyperfine contribution, we conclude that in CMC a zerb—point
spin reduction of 20 + 47 is present. The dorresponding temperature
dependence of the absolute value of the sublattice magnetization is given
by open circles in Figure 6.8. The dashed curve in this figure is obtained
from equation (11) by substitution of the values for the exchange inter-
actions J,/k = - 3.0 K, [J,/7,] = 8 x 1073, J, = 0 found from the analysis
of the heat capacity. The .prediction resulting from the set of exchange
constants J]!k = - 3.2 K, }szJil =7 x 10-3, Iy = 1/5 J, reported by
Iwashita and UryG [10] almost coincides with this curve, and has not been
shown separately. The drawn curve corresponds to the best fit of equation
(11) to the experimental data, given a fixed value of J1 and the observed
temperature-~dependence of €y The ratio lJZ/Jll = 4 x 10"3 resulting from
this fit is considerably smaller than the value 8 x 10—3 obtained from
the low-temperature specific heat. The calculated spin reduction; however,
is in excellent agreement with the experimental evidence.

In view of the results of the present analysis of both heat capacity
and sublattice magnetization as well as the interpretation of the suscepti-’
bility in the ordered state [10], we would like to conclude that linear
spin-wave theory offers a fair description of the magnetic behaviour of
CMC in the ordered state. Unlike the purely three-dimensional case, where

considerable renormalization effects occur as T, is approached, the

validity range of the linear spin-wave approximgtion in this pseudo one-
dimensional case extends up till 0.6 TN. The only renormalization effect
that has been considered in the present treatment is the observed
temperature~dependence of the energy gap €,° The fact that no other renor-
malization effects have been taken into account does mot seriously impair
the description of the thermodynamic properties, as can be seen as follows.
‘Firstly, for spin-~waves propagating in the direction of the chains, Skalyo
et al, [5] have shown that energy renormalization at the zone boundary is
only detectable far above TN’ and hence £, may safely be considered as
being constant in the temperature region below TN' Moreover, the calcula-~
tion of the magnetic properties at these temperatures involves mainly the
density of states for low values of €. For spin-waves propagating per-
pendicular to the chain direction, an energy renormalization of 10 7 was
observed at the zone boundary. This would give rise to a small shift of the

bump in the low-emergy part of the spin-wave spectrum. As can be seen from
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Figure 6.6, however, such a shift may - to a certain extent — be compen-
sated by a readjustment of the value of (J2 + J3)/Jl’ This probably explains
the slightly different sets of exchange constants used to describe the be-
haviour of the various magnetic properties. Since these differences are not
very significant, we are tempted to conclude that linear spin-wave theory
may provide vefy realistic estimates for both the intra~ and interchain

interaction in pseudo one-dimensional magnetic systems.

6.3, aRth023.2320 (oRMC)- and CsMnBr .2520 {CMB)

3
The magnetic properties of oRMC and CMB have been studied less extensively
than those of the isomorphic CMC. oRMC has been found to order antiferro-
magnetically at TN = 4,56 K [22] with the same magnetic space group as

cMC, i.e. PZbc'ca' {20, 23}, while CMB orders antiferromagnetically at

TN = 5.75 X [22] with magnetic space group Pc'c'a' [24], From the corres—
ponding magnetic arrays it is obvious that in CMB the interchain inter-
action J3-aloug the crystallographic b direction is positive, in contrast
to both oRMC and CMC.

In principle, the influence of the intermediate alkali ion as well as
the halide ions on the various magnetic interactions may be studied
by comparing the magnetic properties of CMC, GBMC and CMB. On the other
hand, the lattice heat capacity of these compounds will probably Be con-
siderably different, because the mass difference between the Cs+ and Rb+
ions or, alternatively, the Cl™ and Br ‘ions is rather large. Therefore an
analysis of this series of compounds may serve as a check on the applica-
bility of the description of the lattice heat capacity presented in Chapter
III to this particular chemical structure.

Single-crystals of oRMC were grown by cooling a saturated solution of
MnCl,.4K,0 and RbCL in molar ratio 5:1 in 84 HCL from 50 to 5°C. The
crystallized mixture of o and B modification transforms gradually into the
o modification after a few weeks at 5°C. The crystals were more or less
needle-shaped with average dimensions of 10.x 1 x 1 mm, Singlé—crystais of
CMB were grown by slow evaporation of a saturated solution of MnBrg.&HQO
and CsBr in molar ratio of 6:] at room temperature. The crystals were
rather large (typical dimensions 3 x 8 x 15 mm) and showed roughly the same

morphology as CMC [1]. Calorimetric measurements were performed on both
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ORMC and CMB with the experimental apparatus, described in Chapier 1V. The
data between 1.1 and 52 K are shown in Figure 6.9 and 6.10 for oRMC and CMB,
respectively. The total heat capacity in the paramagnetic regiom varies in ‘
a similar way as the experimental data on CMC. The heat capacity of CMB,
however, appears to be considerably larger than that of the two chlorine
isomorphs. The small lambda anomalies at T = 4.56 K for oRMC and T = 5.75 K
for CMB are associated with the respective three-dimensional ordering
temperatures. )

The separation of the magnetic and the lattice contribution to the heat
capacity has been achieved by analysing the data between 9 and 52 K
according to the procedure described in the preceeding section. The intra-

chain interaction in oRMC amounts to J/k = - 3.0 f g‘z K, the corresponding

. ' . . + 0. .
interaction in CMB is found as J/k = - 2.6 _ g 2 K. Due to the relatively
high lattice contribution, the uncertainty in the value of J/k in CMB is
somewhat larger than that in both chlorine isomorphs. The lattice con-

tribution in ORMC is represented by @t = 254 K, 90 = 232 K, Gc = 63 K; for

s a-RbMnClg-2H0 i

Clattice

specific heat (J/mol K)

] 18 20 30 40 50
TIK)

FIG. 6.9. Specific heat of aRbMnCl,.2H,0 versus temperature. The open
eireles repreagent the experimental data, the dvawm curve denotes
the lattice contribution given in section 6.3.
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FIG. 6.10. Specific heat of C'eMnBrs.zHZO versus temperature. The open
. eiveles represent the emperimental data, the drawn curve
denotes the lattice contribution given in section 6.3.

CMB the parameters Gt = 204 K, 00 = 165 K, @c = 52 K are obtained. If these
values are compared with the values O, = 277 K, ©, = 219 K, @C ="53 K
obtained for CMC from the fit with J/k = ~ 3.0 X, it appears that apart
from a change of the parameters with a constant fraction, which might
arise from the difference of the atomic masses, the relative ratio of the
© values varies considerably. This indicates that the substitution of Cs
by Rb or Cl by Br has a rather drastic effect on the elastic anisotropy,
and hence the lattice specific heats of these compounds cannot be related
to each other by a simple temperature—independent scaling factor.

The magnetic heat capacity, obtained by subtracting the calculated
lattice contribution from the experimental data, is shown by open circles
in Figure 6.1] and 6.12 for oRMC and CMB, respectively. The drawn curves
represent the corresponding theoretical estimate for an S = 5/2 antiferro-
magnetic Heisenberg linear chain; given in Chapter II. The errorbars
reflect the uncertainty in the experimental determination of the total
heat capacity (v 1 Z). The variations of the experimental data above 12 K
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around the theoretical prediction mainly reflect a systematic experi-
mental error, as has been pointed out in the preceeding section. The
magnetic heat capacity of oRMC appears to be basically identical to thét

of CMC, except for the three~dimensional ordering, which occurs at slightly
lower temperatures. The small peak at 2.19 K is due to a small fractlon
(1-2 Z) of BRanC13 2H20. Unfortunately, this peak precludes a deter-
mination of the interchain interactions from the magnetic heat capacity at
low temperatures by linear spin-wave theory. Therefore these interactions

have been estimated using the expressionm based upon Green's function theory
given by Oguchi [25]:

10 T T T T T T T T T T

- . Q- Rb Mn C‘3 2H20
—- theoretical estimate
with J/k=-3.0K

he
B
£
L T
g
g 7
g 4 i
3
o 8o oo
@ NG -
2 %
€ 2- % -
[+ ]
<o
i 1 i { 1 i ] i i
1] 10 20 30 : 40 50

TK}

FIG. 6.11. Magnetic heat capacity of aRﬁMhCZs.2H20. The open cirveles
correspond to the experimental data minus the calculated
lattice contyibution, the errorbars reflect the experimental
uncertainty in the determination of the total heat capacity.
The draum curve denotes the theoretical estimate for a

= 5/2 Heisenberg linear chain system with J/k = — 3.0 K.
The anomaly at 2.19 K i¢ due to a small fraction of '
BRbM%CZS.2820.
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FIG. 6.12. Magnetic heat capacity of CsbﬁzBrs. 2820. The open circles
correspond to the experimental data minus the caleulated
lattice contribution, the errorbars reflect the experimental
uncertainty in the determination of the total heat capacity.
The drawm curve denotes the theoretical estimate for a
8 = 5/2 Heisenberg linear chain system with J/k = - 2.6 K.
The anomaly at 2.8 K s due to a small fraction of

CsZMnBr’4.2H20.

KT
N AS(STD)

[3] 313"/ ' (13)
dq_dq, dq

1@/3) = I a b ¢

7379 (1-cosq ) + [J'iJ{(l—cosqb) + [J'/J](!-—ccsqc)

In this expression J denotes the intrachain interaction, while

la*] = [3,] = |J3|. Substitution of the values J/k = - 3.0 K and Ty =
4.56 K for aRMC yields [9'/3] =7 x 10_3. A similar procedure for CMC
yields |J'/J] = 8 x 1073, In CMB, an analysis of the low-temperature

92



magnetic heat capacity with linear spin-wave theory is hamperéd by the
ZMnBra.ZQZO [26].
Substitution of the values J/k = - 2.6 K and Ty = 5.75 K for CMB in

equation (13) yields [J'/J| = 1.4 x 10-2.

In view of the results given above, one might be tempted to conclude

small peak at 2.8 K, which is due to a small fraction of Cs

that the magﬁitude of the interchain interactions increases going from
ORMC via CMC to CMB, We wish to emphasize, however,'that the observed
changes of the ordering temperature may probably also be explained by a '
variation of the - relatively small ~ magnetic anisotropy, which has

been reported to increase going from oRMC via CMC to CMB [27]. The
influence of anisctropy, which may arise from dipolar or crystal-field
effects, is not included in the expression given by Oguchi, and hence the
estimated values of |J'/J| should be considered with some reservations. A
survey of the results obtained in this chapter, together with some re-

presentative values reported in literature, is presented in Table 6.4.

REFERENCES CHAPTER VI

1. §.J. Jensen, P. Andersen and S.E. Rasmussen, Acta Chem, Scand. 16,
1890 (1962).

2. 5.3, Jensen, Acta Chem. Scand. 21, 889 (1967).
3. T. Smith and S.A. Friedberg, Phys. Rev. 176, 660 (1968).

4.. R.D. Spence, W.J.M. de Jonge, and K.V.S. Rama Rao, J. Chem. Phys. 51,
4694 (1969).

. 5. J. 8kalyo, G. Shiranme, S.A. Friedberg, and H. Kobayashi, Phys. Rev.

B2, 1310, 4632 (1970),

6. K. Nagata and Y. Tazuke, J. Phys. Soc. Japam 32, 337 (1972).

7. M.J. Hennessy, C.D. McElwee, and P.M. Richards, Phys. Rev. B7,
930 (1973). ‘ '

8. H. Kobayashi, L. Tsujikawa, and S.A, Friedberg, J. Low-Temp. Phys. 10,
621 (1973).

93



10.

I1.

12.

13.

5.

16.
17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

94

K. Kopinga, T. de Neef and W.J.M. de Jonge, Phys. Rev. Bll, 2364
(1975).

T. Iwashita and N. Ury@, J. Phys. Soc. Japan 39, 1226 (1975).

H. Nishihara, W.J.M. de Jonge and T. de Neef, Phys. Rev. Bl2, 5325
(1975).

W.J.M. de Jonge, C.H.W. Swiiste and K. Kopinga, accepted for publi-
cation in Phys. Rev. B.

F. Ferrieu, Phys. Lett. A49, 253 (1974).
T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

F. Keffer, Handbuch der Phyeik, edited by S. Flugge (Springer, Berlin
1966), Vol. 18, Bd. 2. '

‘R. Kubo, Phys. Rev. 87, 568 (1952).

T. Moriya, Progr. Theor. Phys. 16, 23 (1956).

A. Abragam and B. Bleaney, "Electron Paramagnetic Resonance of
Transitions Jong", Clarendon Press, Oxford (1970).

- P.W. Anderson, Phys. Rev. 83, 1260 (1951).

W.J.M. de Jonge and C.H.W. Swiste, J. Chem. Phys. 61, 4981 (1974).

D, van Ormond, R. de Beer, M. Brouha, and F. de Groot, Z. Naturforsch.
A24, 1764 (1969).

C.H.W. Swuste, K. Kopinga, W.J.M. de Jonge, J.P.A.M. Hijmans and
A.C. Botterman. Proc. Int., Conf. Magn. ICM~-73, Moscow {1973).

J.P.AM, Hijmans and W.J.M. de Jonge, Phys. Lett. 43A, 441 (1973).
C.H.W. Swuste. Ph.D. Thesis, Eindhoven (1973).
T. Oguchi. Phys. Rev. 133, A1098 (1964).

H. Forstat, J.N. McElearny and P.T. Bailey, Proc. 11th Int. Conf.
Low~Temp. Phys., St. Andrews (1968).

A.C. Botterman. Ph.D. Thesis, Eindhoven (1976).



CHAPTER VIL

SOME MAGNETIC PROPERTIES OF CsCoCla.2HZO AND RbFeC13.2H20

7.1. Introduction

The preceeding chapter has been devoted to the magnetic hroperties of
the Mn' T compounds belonging to the isomorphous sefies AMBB.ZHZO. In
view of the 365 configuration of the unperturbed ground state of the
Mn++ ion (L =0, § = 5/2) the exchange interactions were represented by
the Heisenberg model. The substitution of Mot by’Co++ or Fe'  is
expected to result in a large magnetic anisotropy, since the unperturbed
ground state of these ions is 3d?;and 3d6, respectively, and hence spin~
orbit coupling and crystal-field effects will have a rather drastic
influence. In fact, a large number of investigations on co™* compounds
reveal rather pronounced Ising or XY characteristics [144].

In the past few years, CsCoCl3;2H20 has been the subject of a number
of rather detailed investigations [5-7]. The crystal structure has been
determinéd by Thorup and Soling [8] as Pcca, with a = 8.914 X,
b=7.174 &, ¢ = 11.360 &. The chemical unit cell contains four formula
units. The structure is isomorphic with CsMnCl3.2H20. The magnetic
behaviour of CsCoC13.2H20 was explained by Herweijer et al. [6], who
combined the results of specific heat, NMR, magnetic susceptibility, mag-
netization and antiferromagnetic resonance (AFMR) measurements. From this
study a magnetic space group szcca' was deduced. The magnetic array is
schematically drawn in Figure 7.1. The array represents a canted struc-
ture with the magnetic moments located in the ac plane, the angle ¢
between the magnetic moments and the ¢ direction being about 10°. The
magnetic interaction in the a direction - which is essentially antiferro-
magnetic - was found to be large compared to the coupling in the other
directions. The interactions along the c and b axis are ferromagnetic
and antiferromagnetic, respectively: Due to the canted structure the
individual - Co-Cl-Co-Cl - chains in the a direction have a net magnetic
moment along a. The proposed magnetic structure has been confirmed by
subsequent neutron~diffraction experiments [7]. ‘

The magnetic behaviour of CsCoC13.2H20 has been described by a

pseudo one-dimensional § = 1/2 Ising~like system, but the estimates
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for the magnitude of the various interactions obtained from different
experimental techniques were rather inconsistent. The interpretation of
the AFMR results as a spin-cluster resonance yielded an intrachain inter-
action J,/k of about -8 K, which is much smaller than the value

Ja/k = =36 K resulting from a preliminary analysis of the heat capacity
in the paramagnetic region. As already noticed by Herweijer et al. [6]
their interpretation of the AFMR results should be considered with some
reservations. Apart from the fact, that the presence of impurities has

" been shown [9] to affect the calculation of the J, value by a factor 2,
the interpretation assumes that the magnetic eigenstates can be repre-
sented exactly by the Ising model, in which case the first excited level
corresponds to a reversal of one single spin. As we will point out

below, CsCoCl3.2H2
other hand, a straightforward analysis of the heat capacity was hampered

0 can only roughly be described by this model. On the

by the fact that at that time no reliable estimates for the lattice
contribution were available. In view of the good results obtained in the
preceeding chapter for the isomorphous manganese compounds we thought

it worthwhile to re-examine the heat capacity of CsCoC13.2H20. The results
of this analysis will be confronted with recent experimental evidence
from neutron-diffraction studies [10]. Section 7.2 will be devoted to

this subject.
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FIG. 7.1. Arrangemerit of the magnetic momente in antifervomagnetic
CsCoCl 4. 2H,0. All spins are located in the ac plane.
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The magnetic properties of RbFeC13.2H20 have not yet been reported;
X-ray diffraction experiments have shown [11] that this compound may be
considered as isomorphic with the other members of the present series
AMB3.2H20. A direct interpretation of the measurements on RbFe013.2H20
is hindered by the fact that unlikg Co++ systems, where the magnetic

properties at low temperatures may usually be described by an "effective
spinvalue 1/2, the effective spinvalue for Fe'" varies from salt to salt
[12, 13, 14]. This problem will be considered in section 7.3, where we
will present some measurements on this system and propose a model which

explains the main features of the observed magnetic behaviour.

7.8, 0300013.2H20 (cee)

Single~crystals of CsCoCl3.2H20 were grown by slow evaporation at room
temperature from a solution of CoClZ.6H20 and CsCl in a molar ratio of
4.8 : 1. The crystals were plate-like and not very well developed in the
¢ direction. Calorimetric measurements were performed between 2 and 52 K
on ~ 0.1 mole of small crystals (average dimensions 5 x 5 x 1 mm) with o
the experimental apparatus described in Chapter IV. The data are shown

in Figure 7.2. The small lambda anomaly at 3.4 K is associated with

the three-dimensional ordering. Tha data for 4 < T < 25 K were found to
agree within a few percent with the earlier measurements of Herweijer

et al. [6].

Although some magnetic properties of CsCoCl3.2H20 have been reported
to display rather pronounced Ising-like characteristics, this does not
necessarily imply that the Ising model will provide a correct description
of the magnetic heat capacity also. Hence an analysis of the data in the
paramagnetic region by a simultaneous fitting procedure as used in the
preceeding chapter should only be applied with great care. Therefore we
have chosen a somewhat different approach.

As a first attempt, we investigated the overall magnetic heat capacity
of CsCoC13.2H20 by subtracting a scaled lattice heat capacity of
CsMnCl3.2H2

independent scaling factor. Within a wide range of values of the scaling

0 from the experimental data, using a simple temperature-—

factor, the result showed a broad bump with a maximum at temperatures

between 14 and 18 K, which may be attributed to one-dimensional corre-—
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lation effects. The range of possible values of the scaling factor a
was restricted by the condition Cy > 0 for T 52 K to a > 1.07. For
these values of o, the magnetic entropy increase below 52 K, including
the'extrapolated fraction 0.03 R below 2 K, was found to be at least .
8 Z higher than the theoretical prediction Rin2 for a § = 1/2 system.
Therefére we choose the smallest allowed value of the scaling factor,
i.e. o = 1.07. The resulting data could not be represented properly by
any of the § = 1/2 model systems, presented in Chapter II. The best
agreement was found b§ describing the results with a linear chain Ising
model, but even this description was rather unsatisfactory. A least-
squares fit of the Ising model and the lattice contribution to the ex-—
perimental data above 9 K, by varying both the exehange parameter J and
the scaling factor o, yielded }Ja/k] = 38.6 K and o = 1.076. The result
is plotted in Figure 7.3. The open circles are the experimental data

minus the lattice contribution, the drawn curve denotes the theoretical

80, T T T T T T T T T T
C5CoClz. 2Hy0

= Clattice

specific heat (J/mol K)

T{K)

FIG. 7.2. Specific heat of 0300023.2320 versue temperature. The open
eireles represent the experimental data, the drawm curve
denoteg the inferred lattice contribution.
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FIG. 7.3. Magnetic heat capacity of 0300013.25120 versus temperature. The
open civcles are the experimental data minus a scaled lattice
heat capacity of CsMnCZs. 2H,0. The errvorbare reflect the un-
certainty in the evaluation of the lattice heat capacity of
the latter compound. The droawn curve denotes the theoretical
prediction for an S = 1/2 Ising linear chain system with
|Ja/k1 = 38.6 K. '

prediction. The corresponding lattice contribution is plotted as a
drawn curve in Figure 7.2.

Before proceeding any further, we would like to make the following
remarks. In order to reduce the systematic experimental deviétions,
the lattice heat capacity CL of CsMnC13;2H20~abovey9 X has been obtained
by subtracting the calculated magnetic contribution from the experimental
specific heat. Below 9 K, we used the theoretical estimate for CL’
since in this temperature region the magnetic heat capacity of
CsMnC13.2320 has not been fitted to a linear chain model. The resul;ing
lattice heat capacity used in the scaling procedure depends ~ of course -
on the particular choice of the J value in CsMnC13.2H20. This may intro-

duce an additional uncertainty in the determination of the magnetic heat
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capacity of CsCoCly.2H,0, because in CsMnCl,.2H,0 the intrachain inter-
action J may range between -2.8 and ~3.3 K (cf. Chapter VI). This un-
certainty is reflected by the errorbars in Figure 7.3. Given the small
spin quantum number S and the corresponding small magnefic contribution,
the relative uncertainty is very large, but, nevertheless, the magnetic
contribution above 9 K still seems to be represented most properly by
the Ising model. The XY model seems to be ruled out by the experimental
data, since it predicts a maximum of the heat capécity in the para-
magnetic region with a magnitude of only 2.7 J/mel K (cf.Chapter II).
Although the mass difference between cott and ™" is very small, the
_description of the lattice heatvcapacity by one temperature~independent
scaling factor in the whole temperature region up till 52 K may give
‘rise to some systematic deviations, as the binding forces and hence the
elastic constants may change. Therefore the magnetic contribution was
evaluated independently by simultaneous fits to the total specific heat

using the expression for the lattice contribution

G = F,(9,,6,,T) + F,(20,,0,,T) + F,(0,,20,,T), m
in combination with the predictions for the various antiferromagnetic

8 = 1/2 linear chain model gystems, presented in Chapter II. The data

in the paramagnetic region could be described - at least roughly - in
all these cases; the resulting parameter-values are presented in Table
7.1. At first sight, this procedure seems rather inconclusive, but one
should note that only the © values resulting from the fit to the Ising
model can be approximately scaled to the values @t = 277 K, OQ = 219 K,
and Gc = 53 K obtained for CsMnCl3.2H20.

Combining the results of both procedures, we are led to the conclu~
sion that the intrachain interaction in CsCoCl3.2H20 is more or less
Ising~like with a magnitude of about 40 K. This conclusion is supported
by recent measurements of the correlation length in the a direction by
means of neutron-scattering experiments [18]. In principle, the intra-
chain interaction may be calculated from the correlation lemgth if the
magnetic model system is known. Due to the finite resolution of the neu-
tron~diffraction experiments, only a lower-bound for J could be deter-
wined, yielding |J, /x| > 25 K for the Ising model and [J /k| > 150 K
for the Heisenberg model. An estimate for the XY model has not been gi~
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TABLE 7.1. Lattice pavameters and J,, values for CaCoCly.2Hy0 obtained
from stmultaneous fits imvolving diffevent linear § = 1/2
magnetic model systems. The numbers between brackes denote
the relative increase of the lattice parameters compared to
the values 0, = 277 X, 0, = 219 X, 6, = 53 K for CeMnCl . 20,0.

2
System laafki 0, A 6,
Heisenberg 17 K 293 K (1,058) |242 K (1.105) |51 K (0.962).
Ising 40 K 294 K (1.061) [239 K (1.091) |57 K (1.076)
XY 35 K 278 X (1.004) 1277 K (1.265) 143 K (0.811)

ven, but actually this model has been ruled out already by the foregoing
analysis of the heat capacity. If we confront the reported lowerbounds
for I, with the corresponding values given in Table 7.1, i.e. !Ja/kl
= 40 K for the Ising model and ]Ja/kl = 17 K for the Heisenberg model,
the conjectured Ising-like character of the intrachain interaction seems
to be eétablished. ’
The magnitude of the interchain interaction in the b direction Jb
has been determined by Herweijer et al.[6] from the metamagnetic transi-
tion in applied fields along the a axis. They explained this transition
by assuming that at a certain critical field H, all magnetic moments
within chains having a net moment opposite to the external field reverse
their directions. As may be seen from the magnetic array presented in
Figure 7.1, this transition only disturbs the antiferromagnetic coupling
Jb between adjacent chaing in the b direction: This process has been
verified by neutron-diffraction experiments [7]. From the magnitude of
Hc an interchain coupling Jb!k = ~0,1 K was deduced. The magnitude of
the ferromagnetic coupling in the ¢ direction Jc has been estimated
from the location of the tricritiecal point in the magnetic phase-diagram
[15, 16] as J /k 0.2 + 0.2 K [10].
If all znteractions in CsCoCl,.2H

372
the Ising model, a lower bound for TN might be obtained from the rect-

0 could be properly described by
angular Ising model presented in Chapter II by putting Jc equal to

zero. In that case, however, the interactions Ja/k = =39 K and Jb/k =

~0.1 K would produce a two-dimensional ordering already above 6 K. To
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obtain an ordering at 3.4 K the interchain coupling would have to be
A 10“4 K, which is ruled out by the experimeqtal evidence. If ome
assumes that, in contrast to the intrachain interaction, the inter-
chain coupling is Heisenberg-like, the results might be confronted with
theories like that of Stout and Chisholm {17], in which the interchain
coupling is treated within the molecular-field approximation. These
theories, however, are not applicable to cases where |J'| << |J|.

if, on the other hand, the values for Ja and T, are substituted in
Oguchi's formula (cf. Chapter VI), we obtain IJb/k[ = [Jc/kl = 0,12 K.
Although this method should be considered with some reservations,
since Ja is not Heisenberg-like, these values are rather realistic.

The results presented in this section establish the pseudo one-
dimensional Ising-like character of CsCoClB.ZHZO. The ratio of the
inter— to intrachain interactions (!Jb[ + JC)I[Jai n 8 x 1070 indicates
that this substance has about the same degree of one-dimensionality as
the isomorphic CsMnCl, '
rather high compared to the theoretical prediction, which is also re-

.2H20. The magnetic heat capacity below 9 K is

flected by the value of the evaluated magnetic entropy increase, which
is too high by ~ 10 . This might indicate that the simple 8 = 1/2 Ising
model is a somewhat crude approximation to the thermodynamic properties
of CsQoCIS.ZHZO. The result obtained by approximating the lattice con-
tribution to the heat capacity of CsCoCl3.2320 by a simple temperature-
independent scaling of the lattice heat capacity of the corresponding
manganese isomorph compares favourably with the result of a more general
approach. This agreement may serve to justify the analysis of the spe-

cific heat of RbFeCl3.2H20, which will be presented in the next section.

7.3, RbFeCZS.ZHZO (RFC)

Single-crystals of RbFeClS.ZHZO were grown by slow evaporation at 38 °c
from a solution of FeClz.4H20 and RbCl in a molar ratio of 3.2 : 1.

To prevent oxidation of the Fe++ ions, a few drops of HCl were added

to the solution, which was kept in a N2 atmosphere. The crystals were
very pale violet~brown with average dimensions of 2 x5 x 8 mm and
cleaved rather easily parallel to the largest surface, which corresponds

to the ab plane. X~ray diffraction experiments showed them to be iso-
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morphic with aRanClg.ZHzo [11]. Calorimetric measurements were performed
between 2 and 50 K on v 0.1 mole of single~crystals with the experimen—
tal apparatus described in Chapter IV, The data are plotted.in Figure 7.4.
They reveal a rather promounced A anomaly at 11.96 K, which is associa-
ted with the three-dimensional ordering.

A direct intérpretation of the measurements on this compound is ham—
pered by the fact that the actual ground state of the Fe'” ions is ge-
nerally not kno&n. The unperturbed ground state of an Fe++ ion is 3d6
(L =2, 8 =2). In the presence of an octahedral crystalline field the
orbital levels split into a doublet and a triplet, with the triplet
lowest [123. Distortions from octahedral symmetry,and spin~orbit coupling
split the levels further [12, 13]. The details of the resulting energy ‘
spectrum are found to differ considerably from salt to salt.

The number of energy levels per spin Ns involved in the magnetic
behaviour in a certain temperature region is usually represented by an
effective spin-value, defined by N; = 28 + 1, In principle, the effective

spin~value may be estimated directly from the magnetic entropy increase
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FIG. 7.4. Specifie heat of EbFeCl,. 21,0 versus temperature.
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AS = RIn(2S + 1). In order to perform such a calculation, the magnetic
éontribution should be separated from the total heat capacity. In this
case, however, such a separation camnnot be performed straightforwardly,
since the magnetic model system representing the most dominant features
of the actual behavioﬁr is not known. Therefore we are forced to deve-
lop a procedure which avoids - as much as possible - any interference
which might arise from a simultaneous determination of the lattice and
magnetic contribution.

In view of the results given in the preceeding section, which reveal
that the lattice contribution to the heat capacity of CsCoCl3.2H20 can
be fairly well approximated by a scaled lattice heat capacity of
CsMnCIB.ZHZO, we will try to analyse the present data on RbFe013.2H20
by subtracting a scaled lattice heat capacity of the corresponding
isomorph ORbMnCL . 2H,0. The scaling factor can be roughly estimated as
follows. The available experimental evidence on several series of
isostructural 3d transition-metal halides indicates a gradual decrease
of the lattice heat capacity going from Mn via Fe and Co to Ni,

Since the mass differences between these metal jons are rather small,
this decrease is caused primarily by a change of the binding forces

and hence the various elastic constants., A large number of investi-
gations have been devoted to the series HFz, resulting in scaling factors
1.08, 1,12, and 1.26 for Mn-Fe, Mn-Co, and Mn-Ni, respectively [18, 19].
‘The experimental data on other series of isomorphic compounds are less
exhaustive, but generally indicate a decreasing influence of the par—
ticglar kind of metal ion with increasing "dilution" of the system.

Among these we mention:

#

MnCl, . 4H,0/FeCl, . 4H,0 a = 1.025 [14, 20]

2.6H20 o

CoCl1, .6H,0/NiC1 1.018 [4]

as well as ‘the results obtained in Chapter V and VI

TMMC/TMNC = 1.125

.2H,0 a= 1.076.

CsMnCl .2320/0300c13 2

3
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Given these values of o it seems not unrealistic to assume - as a first
attempt — a scaling factor o = 1.03 in the present case. The resulting
magnetic heat capacity is plotted in Figure 7.5. This figure reveals a
rather constant magnitude (¢ 5 J/mol K) of the magnetic heat capacity
in the paramagnetic region. The magnetic entropy increase below 50 K is
found by numerical integration of the data as 1,013 R, which is slightly
lower than the theoretical prediction 1.099 R for a S = 1 system. The
critical entropy, i.e. the fraction of entropy removed below the ordering
temperature, is found as ~ 0.13 R, corresponding to N 12 %. This value
suggests a rather pronounced one-dimensional magnetic behaviour.
Measurements of the magnetization in the ordered state revealed two
metamagnetic transitions in applied fields along the ¢ axis at 8.1 and
12.4 KOe, respectively [21]. From these measurements an Ising-like
anisotropy at low temperatures may be concluded, and hence one might be
tempted to describe the magnetic properties in the paramagnetic region
by the § = | linear chain Ising model or, alternatively, by the § = |
linear chain model with Heisenberg exchange and a large positive D term,
although the Heisenberg character of the exchange within a répresentation
by an effective spin | may be somewhat doubtful. The linear § = I Ising
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FIG. 7.5. Specific heat of RbF9023.2H20 minue the lattice heat capacity

of aRan013.2320 sealed by a factor 1.03.
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model is ruled out byvthé experimental evidence, since it predicts a
broad bump in the heat capacity with a magnitude of about 7.8 J/mol K
[23]. On the other hand, attempts to fit the S = 1 linear chain model
with Heisenberg exchange and a positive D term to the experimental data
above 13 K, by varying D, J and the scaling factor o, all resulted in
a rather poor agreement, but indicated a ratio |J|/D < 1/8.

As for positive values of D the single~ion ground state is a doublet,
the magnetic properties at low temperatures may according to the spin-
hamiltonian formalism be described in first order of |J|/D by the Ising

model with an effective spin 1/2. In fact, the hamiltonian
g=-2118.3 . -os? -Lseng 2
i i*Yi+l iz 3
transforms into

Hogs 23, f 81 Sie1 ° 3

where s = 1/2 and J1 = 4J, Of courge, formally this description is only
correct for kT << D and LJ};<< D. It has been shown [23, 24], however,
that for small values of |J|/D the heat capacity within the whole temper-
ature. region may be fairly well approximated by the heat capacity
resulting from the hamiltonian (3), superimposed on a Schottky anomaly,
which can be described by the hamiltonian (2) with J = 0. This anomaly
corresponds to a broad bump in the heat capacity with a maximum of

~ 2 J/mol K for D > 0 and v 6 J/mol K for D < O at kT/|D| ~ 0.4. Given
the small ratio of ]JIJD inferred above, we assert that the maximum of
the Schottky anomaly will be located at rather high temperatures, and
may therefore be partly compensated by a readjustment of the scaling
factor. Hence we tried - for what it is worth - to describe the magnetic
heat capacity by the S = 1/2 Ising model.

At this.stage one should realize that the one-dimensional character-
istics of the magnetic heat capacity, involving a broad bump in the
paramagnetic region, are somewhat obscured by the three-dimensional
ordering, which indicates that significant interchain interactions are
present. If e assume, however, that the interactions in the b and ¢
direction are rather different, the heat capacity in the paramagnetic
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regioﬁ should display some characteristics of . the two-dimensi&hal rect-
angular Ising model, which has been presented in Chapter II. We have
fitted the heat capacity predicted by this model to the experimental
data sbove 13 K for several values of the scaling factor o. An excellent
agreement was found for o = 0.98. The result is plotted in Figure 7.6,
The open circles denote the experimentai data corrected for the lattice
contribution. The drawn curve denotes the heat capacity of a 8 = 1/2
rectangular Ising model with |J /k| = 39 K, |J,/k| = 0.7 K. The error-
bars reflect the uncertainty in the evaluation of the lattice heat
capacity of uRanC13.2H20, which has been used in the scaling procedure

(cf. section 7.2). As may be seen from this figure, the § = 1/2
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FIG. 7.6. Magnetic heat capacity of RbFeC‘Zg'. 2H,0 versus temperature.
The open civeles. are the experimental data minus a scaled
lattice heat capacity of aRan{;‘Zz.zﬁgo. The errorbars reflect
the wnsertainty in the evaluation of the lattice heat capac-
ity of the latter compound. The drawn curve denotes the the-
oretical predietion for a § = 1/2 rectangular Ising model with
}Jz/kl = 39 X, [Jz/k} = 0.7 K. The small anomalies at 3.3 and

4.8 K are due to sample impurities.
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FIG. 7.7. Magnetic heat capacity of RbFeC23.2H2O near the three-dimen—
gional ordering tempevature. Details are explained in the
eaption of Figure 7.6.

rectangular Ising model does not only give a fair description of the
paramagnetic region, but does also correctly predict the behaviour of
the ordered state below 10 K. The small anomalies at 3.3 and 4.6 X are
due to sample impurities. The behaviocur mear the ordering temperature
is plotted ip detail in Figure 7.7. We are tempted to conclude that the
second interchain interaction shifts the ordering towards higher
temperatures, but produces only a very small effect on the heat capac~
ity below 10 K and above 12,5 K.

If we confront the value lJ;/k] = 39 K, obtained from the fit of the
Ising model to the heat capacity, with the relation J1 = 4J and the
condition |J/D| < 1/8 inferred above, we find that the first excited
leve; in the single-ion energy spectrum should be located more than
80 K above the ground state doublet. One should bear in mind, however,
that although theAheat capacity at low temperatures can be very well
described by the S = 1/2 Ising model, a direct relation with the
hamiltonian (2) or (3) would drastically oversimplify the physical
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reality., Firstly, NMR [25] and magnetization [21] experiments.suggest’A
a canted array with the magnetic moments situated in the ac plane, like
CsCoCla.ZHZO, but individual chains having a net moment along c instead
of a. Secondly, preliminary measurements of the susceptibility at room
temperature [21] can be described with g v 2 and $ = 2. These results
may indicate that in this substance the orbital degeneracy of the Fe'
ground state has been removed completely, which occurs for crystalline
fields of sufficiently low symmetry, e.g., rhombic. If this splitting
is large compared to the spin-orbit coﬁpling, which is about 100 cm-1
[13], we have to deal with a spin-quintet, that may be described with
the hamiltonian [13, 14]:

2 1 2 2
H=D[s, - 35(5+ D] +E(S -S), §=2, (4)

in combination with exchange interactions. If these interactions are

relatively weak, equation (4) yields the single-ion energy levels

W, = 2001 + 3E2f1)2)1/2 (5a)
W, = 2D ‘ (5b)
W3 =~ D + ?E 7 (5¢)
W, =-D- 3E . (5d)
W = - 20(1 + 38%/0%)1/2, © (5e)

For D < 0 and small values of E or, alterﬁatively, for D > 0 and

|E| ~ D - two situations which are basically identical but correspond

to different sets of quantization axes - the resulting energy-level scheme
has a quasi-doublet lowest, as is shown in Figure 7.8. As we mentioned
above, there is some evidence that the first excited level will be

located more than 80 K above the ground state "doublet"”. Since at room
temperature all five levels seem to be populated, the overall width of

the level scheme should be considerably smaller than 300 K.

Finally, we would like to make some COncluding remarks. The higher
excited levels, depicted in Figure 7.8, would give rise to a small
gradual increase of the magnetic heat capacity, even below 50 K, which
has not been accounted for explicitly in the fitting procedure. As

already mentioned above, the resulting error may to a large extent be
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compensated by a readjustment of the scaling factor o, which might
explain the rather low value 0.98 corresponding to the best £it to the
experimental data.

The conjectured magnitude of the zero-field splitting seems somewhat
large coméared to the éplitting of some other ferrous compounds, for
instance FeClz.&Hzo [14], which would suggest a relatively small splitting
of the orbital triplet in RFC [13]. Optical measurements may be neces~
sary to clarify this question.

The present analysis of RbFeClS.ZHZO reveals a highly one-dimensio—
nal magnetic behaviour. The intrachain interaction has a magnitude of
~ 39 K, which is almost equal to the corresponding interaction in
CsCoCl3.2H20; the interchain coupling in RbFeC13.2H20 seems larger by
a factor 3. Although a description of the lattice contribution to the
heat capacity by simple temperature-independent scaling of the lattice
heat capacity of an isomorphic éompound should generally be considered
with some reservations, for these "diluted" systems, where the mass
difference of the magnetic ions of both isomorphs is very small and all
other constituents are equal, it proves to be a powerful tool in the
determination of the characteristic behaviour of the magnetic contri-
bution.

In the analysis given above as well as in the preceeding chapters we

assumed that the lattice and magnetic contributions could be linear-

=80K <300K FIG. 7.8.

Proposed energy level scheme
of Fe++ in RbFeCZS.2H20. T&e
level separations ave ewplained
in the text.
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ly separated., This assumption is very likely correct fer the.manganesé
salts, since for these compounds the magnon-phonom interaction energies
are rather small [26, 27]. For the co™ and Fe'* salts, however, these
energies may be substantially larger, because the modulation of the
crystal field at the spin sites by the lattice vibrations has a rather
direct effect on the "effeective" exchange interactions. In fact, optical
measurements on Caclz ZH 0 and FeCl 2H 0 [27, 28, 29] show that a low-
lying optical phonon (Ep ~ 30 em ), correspondlng to a vibration of
the waters of hydration, interacts rather strongly with the magnons.

For CCC and RFC, the "unperturbed” magnon energies will be about twice
as high as the magnon energies in CoClz-Zﬁzﬁ and FeClz;Zﬂzo, due to the
large value of the intrachain interaction (v 40 K) in the former two
compounds. However, detailed far-infrared optical measurements are nec-
essary to amalyse the possible phonon-mdgnon interaction processes as

well as the influence of these effects on the specific heat.
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CHAPTER VIII
THREE-DIMENSIONAL ORDERING OF THE SERIES AMB,.2H,0
8.1, Introduction

The preceeding two chapters have been devoted mainly to those magnetic
characteristics of the series AMBB.ZHZO, which strongiy reflect the
pseudo one—dimensional magnetic behaviour of these compounds. In this
chapter, we shall consider the region neay the three~dimensional

ordering temperature. Apart from the fact, that this‘region is very
interesting from a theoretical point of view [1], it may -~ in principle -
serve as a source of additional information about the magnetic properties
[2“4] A detalled investigation of the critical behaviour, however, would

be beyond the scope of this thesis, and hence it will be studied only

briefly.
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FIG. 8.1, thneéia specific heat of the compounds AMB,.2H,0 near the
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In Chapter VII we have shown that the magnetic anisotropy of both
CsCéClB.ZHZO (CCC) and RbFeCl3.2H20 (RFC) is very large compared to the
anisotropy of the manganese isomorphs. As a first step towards the study
of the eritical behaviour, we thought it worthwhile to investigate
whether this difference is also reflected by the magnetic heat capacity

in the neighbourhood of T _. For this purpose, we plotted log (CM) versus

T/TN for all five compoungs. The results are drawn in Figure 8.1 for

0.9 < T/TN < 1.1; the pagnetic heat capacity was obtained by subtracting
the corresponding lattice contribution from the experimental data. In-
spection of this figure shows that two curves, denoted by black circles
and black triangles, respectively, have a rather pronounced lambda shape.
They can clearly be distinguished from the remaining three curves, which
are mutually similar, apart from a small shift in the vertical direction.
Since the latter three curves represent the data on the manganese com-
pounds, one is tempted to conclude that the difference in the character
of the magnetic interactiong is - to a certain extent - reflected by the
behaviour in the neighbourhood of TN' Next, we shall consider the region

very close to the ordering temperature.

 8.2. The eritical behaviour

The properties of magnetic systems in the limit IT-TNI -+ 0 have been

the subject of a large number of both theoretical and experimental
investigations [1]. These studies reveal that for systems with short-
range interactions this critical behaviour only depends upon the dimen—
sionality of the lattice and the number of spin-components involved

in the magnetic ordering process. The critical behaviour of the magnetic
heat capacity just above TN is customarily characterized by a critical '

exponent ¢, defined as
-0 = lim [ln(CM)/In(e)], with ¢ = ‘I‘/TN - 1. (1)
: 0
Below the critical temperature, the heat capacity may,be characterigzed

in a similar way by a critical exponent a'. Theoretical investigations

on some magnetic model systems suggest that o' and o may be equal [1].

114



For three-dimensional ordering processes, numerical estimates for
the value of o have been obtained for several model systems. The results

are

o= 1/8 Ising [2]
oav0 XY [3] (2)

a0 Heisenberg [4].

Experimental estimates for o as well as o' may ~ in principle - be
obtained by plotting C, versus log|e| or log(C,) versus logle| in a
region close enough to Ty- For all five compounds under investigation
these plots revealed a very pronounced curvature of the experimental
data, which could not be removed by a physically acceptable readjust—
ment of the value of TN‘ This is demonstrated by Figure 8.2 and 8.3,
in which the results for CsMnCl3.2H20 and CsCoClB.ZHZO are presented,
The "rounding off" of the data in the region |g| < 10 has been
suggested [5, 6] to be due to sample imperfections, alfhough a

plausible mechanism to explain the observed order of magnitude has
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not been reported. The curvature for larger values of |c| may be caused
by the fact that the critical behaviour of the heat capacity is described
by a rather small value of the critical exponent. In this case - a so
called "weak divergence" - correction terms on the limiting behéviour
CM = As-a, corresponding to equation (1), may be important already for
small values of €.

The relative influence of these correction terms is smaller for a
"strong divergence" like the critical behaviour of the magnetic entropy

increase, which is given by

lim {1n[s(e) - scritjfln(e)} =1 - q. (3)
£+0

In this expression Scrit denotes the critical entropy. Both 8{(g) and

S may be calculated from the experimental data by numerical inte-

erit
gration of CM/T. Estimates of | ~ o and | - o' may be obtained from

double-logarithmic plots of § - 8§ versus |g|. In Figure 8.4 the

. cerit
results for the manganese compounds are given. Inspection of this figure

shows that the data for T > ’I‘N can be represented very well by straight
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lines., The data for T < 'I.‘N reveal some curvature, but the reéults indi-
cate that a' = a. The slope (Vv 0.90) of the lines representing the data
for T > TN suggests a critical behaviour involving a smaller number of
spin—components than 3, a value that would have been expected from the
Heisenberg character of the exchange interactions. One should note;
however, that in these compounds small dipolar interactions and crystal-
field effects are present. Although these "perturbations" are negligible
at higher temperatures, they may play an important role in the ordering
process close to TN'
In Figure 8.5 the results for CCC and RFC are presented. The data on
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the latter compound show a considerable scatter for |e| < 5x107>. This
is caused by the fact that at temperatures of about 12 K, corresponding
to the ordering temperature of RFC, the experimental resolution is much
smaller than in the helium region, due to the lower sensitivity of the

thermometer. For both compounds, the data above T

N
represented by a straight line with a slope of v 0.85. This value is

can be fairly well

not very different from the value 0.875 corresponding to the three-
dimensional Ising model {cf. equation (2)), which is in agreement with
the conjectured Ising-like character of the exchange interactions in

these compounds. The data below T show considerable deviations from

a linear behaviour, which cannot §e~eliminated by a readjustment of
the value of TN./For 10-3 < -g < 10_2 the results may locally be de—
scribed by a straight line with a slope of ~ 1, which is indicated by
dashed lines in Figure 8.5. For what it is worth, this value of 1 ~ &'
is not inconsistent with the theoretical observation that for

(- T/T) > 1074

model may be "virtualiy" iogarithmic [21.

the "critical" behaviour of a three-dimensional Ising
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In principle, the divergence of the magﬁetic entropy increase as a
function of T should be similar to the divergence of the induced magne-
tization M as a function of the applied field H at temperatures not too
far below TN [1]. Detailed information about the behaviour of M(H) is
available for CCC, which haa been 1nvestzgated with neutron-diffraction
experiments [71. Some typiéal resuits of these experiments are plotted
in Figure 8.6, together with our data for the magnetic entropy increase.
As can be seen from this figure the overall behaviour of the various
sets of data is indeed largely similar. After a gradual increase they
have a maximum sldpe at T~ TN or Hn Hcrit’ the increase above the
critical point being much smaller. One should note that the data for
S{Scrit méy have some systematic error, because the magnetic entropy
increase below 2 K (v 0.03 R) is obtained by extrapolating the experimen—~
tal data down to T = (. This extrapolated fraction is rather large compared

to the value 0.08 R of the critical entropy. Therefore an investigation

1 T 1
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FIG. 8. 6. Behaviour of the magnetic entropy S and the induced magneti-
zation M near the antiferromagnetic-paramagnetic phase boundhry
in CsCoCZg.ZHZO.

119



whether the various sets of data can be made to overlap by a suitable

scaling procedure has to await accurate heat capacity measurements down

to very low temperatures. »
Concluding we would iike to make the following remarks. The results

presented in this chapter clearly establish that the ofdering process

of CCC and RFC differs significantly from that of the manganese isomorphs.

A further analysis is necessary to clarify the observed values of the

critical exponents. Moreover, some attention should be given to the fact

that ~ in contrast to the magnetic heat capacity - the plots of § - §

crit

for T > TN do not show any significant rounding for ¢ < 10~3. The present

study, however, did not intend to consider the eritical behaviour in

great detail, but the results obtained above seem rather promising.
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APPENDIX

The n~dimensional Debye function is defined as

xn+lex
Dn(Y) = 3nR/y = dx ,
. (e=1)

o

where R denotes the molar gas constant.

The integral that appears at the right hand side of equation (III,24)
can be evaluated as follows. Let’ns define a function GI(T/OC) as

BCIT
24RT2 x3ex
Gl(T/@ )y = J arcsin(xT/0 ) dx .
fd 2 X 2 c
‘if@c 5 (e™-1) ‘

The low-temperature behaviour of Gl(T}Gc) can be found by substituting

arcsin (xT{@c) = xT/@c, since the integrand goes exponentially to zero

for large values of x. The result is
-8,
GI(T/GC) =g DB(Gc/T) .

At low temperatures, the function Gl may also be described by the
equation GI(TfGC} = DB(O/T), if we put

0= crs'/3e, .

At higher temperatures, the relative difference between the function
GI(T/ec) and the three-dimensional Debye function DB[(Bﬂ/8)1/3@/T]
may now be approximated with a function PI(TIGC), for example a

polynomial series in T{@C. The approximation
3m,.1/3 »
6,(1/0 ) = D [(F) "76 /1) x [1-P (T/6 )]

. -4
was found to have a relative accuracy better than 2 x 10  for
0 < T/@c < w with the polfnomial series

i
B, ; [(1/6)17}.

1,

. 9
PI(T/GC) = exp { ;

i=0

1)

2)

(3

(4)

(5)

(6)
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The coefficients B, ., obtained by a 1east—squares fit of approximation

. 1,i
(6), are listed in Table A.l.

The function GZ(TIG), substituted in eéquation (XIII, 33), is equal
to the heat capacity that is obtained if the frequency distribution
function
b
g = 3/G,1) | cl-Go /20 sk 2ar, %)
o
with b = arcsin(Zmlms) for w £ ws/2 and b = 1/2 for w > mslz, is
substituted in equation (IIXI, 23) with wo=w.. For w << w_» equation
(7) reduces to
2w/w

s _ 2
8@ = 3/ [ ety g < L2 ®
o 1%

The limiting low-temperature behaviour of the heat capacity may now be

found as

TABLE A. 1. Coéfficients B, 1,4 of the polynomial series P, (T/G ) that
relates the f‘unctzon G, t’i’/@ Jtoa tkree—dmenswnal Debye-
function (cf. equation 5)

T/@c £ 0.1 T,@c 2 0.1
_ *2

B, =+ 2.43502 x 10 B, . = - 5.63143

, ” 1,0
B, , =+ 7.11922 x 10 B, , = - 1.94211

’ 42 ? -2
B, , = + 8.66012 x 10 B, , = - 5.32241 x 10

3’ - -

B, , = + 5.87204 x 10%2 B, 4 =+ 3.39971 x 10 2

? * -
B, =+ 2.46622 x 102 B, , = - 1.88309 x 10 2

s .

B, . =+ 6.7016] x 10*! B, 5 =+ 7.53021 x 10 3

3 > -
B, =+ 1.18407 x 10t! B, ¢ = = 1.48747 x 10 3

> * -
B, , =+ 1.31640 B, . = - 5.64074 x 10 °

; -2 1,7 -5
B, o = + 8.37847 x 10 B, g =+ 4.33673 x 10

] - > -
B, . =+ 2.33086 x 107> B, = - 4.44569 x 10°°

1,9 1,9
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TABLE A.2. Coefficients B, ; of the polynomial serieavpz(T/Qs) that
relates the function Gz{ T/(-)s) to @ three-dimensional Debye-
funetion (ef. equation 11).

Tf@s £°0.03 0.03 g '1?/6s £ 0.40 0.40 £ T/0
B, =~ 2.49859%10%%|B, = - 3.00059 B, . = - 4.94117
2,0 +4 2,0 2,0
B =~ 7.32324%10 T|B = 4+ 8.17766 B, . = - 2.00101
2,1 vyl 201 e1] 20 : -
B =~ 9.28342x 10 '|B =+ 2,37706 x10 " |B =+ 7,11166 x 10
2,2 " 2,2 +1 2,2 -4
82 3= 6.70697 x 10 32 3 = + 3,24892 %10 B2 3= + 4.36995 % 10
3 s . LA - _-
B, , = - 3.05181 x 10748 = + 2.86322x10"|B, = - 1.73992x 1073
2,4 #3| 204 +] 24 -3
B =~ 9.08819x10 °|B = 4+ 1.68368x10 '|B =+ 1,71293x 10
2,5 3] 255 2,5 -
B =~ 1,77404 x 10 " |B = + 6,57270 B = -~ 8,19824 x 10
2,6 + 2,6 2,6 -4
32’7 =~ 2,19161 x 10 BZ 7 = + }1.63229 BZ 7 = 4+ 2,09085 x 10
b - s -
B, .=~ 1.55637x10" |8, , = + 2.31085x10 ' |B, _ = - 2.72743x 107>
2,8 -1 2,8 ! -2 2,8 -6
32’9 = - 4,84491 x 10 32’9 = + 1,40476 x 10 32’9 = 1.&3144}{10).
GZ(T/GS) = 4/(311) D3(QS/T), (9)
or, alternmatively,
GZ(T/@S) = D3[{3I!/4)I/3GS/T]. _ (10)
Foliowing the same procedure as outlined above the function G2(T/OS)
can be described with a relative accuracy better than 5 xl()-4 for
all temperatures by the approximation
l .
6,(1/8,) = 0,131,760, /1) x [1- 2, (x/0))]. (1

The magnitude of I] has been numerically evaluated as I} = 1.11906??,
while the constants B2 i in the polynomial series Pz(Tles), having

* .
the same functional form as PI(T/GC), are listed in Table A.2.

123



~ Given the fact, that for the usual Debye functions various series
expansions are available [1], the results given by the relations (5) and
(11) are very suitable in numerical fitting procedures, since the deri-

vatives to the different parameters may be calculated very easily.

In this thesis no tabulated results of the heat capacity measurements
have been presented. In order to make such tables useful for numerical
fitting procedures, they would have to contain a rather large number
of experimental data. Detailed results of the measurements, however,

are presented elsewhere [2].
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SAMENVATTING

Dit proefschrift is gewij& aan de bestudering van de scortelijke warmte
van magnetische ketenverbindingen. ; '

Omdat het magnetische gedrag - zelfs van deze verbindingen - doorgaans
bijzonder gecompliceerd is, worden de meest karakteristieke kemmerken er-
van vergeleken of beschreven met de eigenschappen van een vereenvoudigd
magnetisch modelsysteem. Een dergelijk modelsysteem bestaat veelal uit
een verzameling geisoleerde‘ketens of lagen van magnetische ionen. In
hoofdstuk II wordt een overzicht gegevem wan de voor het onderzoek rele-
vante modelsystemen en wordt de soortelijke warmte ervan behandeld.

Voor de interpretatie van de meetgegevens is een scheiding van de to-
tale soortelijke warmte in een magnetische en een roosterbijdrage nood-
zakelijk. In hoofdstuk III wordt daartoe een theoretisch model ontwikkeld,
waarmee de rooster soortelijke warmte van verbindingen met een gelaagde
of keten-structuur op een voor sepératieQdoeleinden bevredigende wijze
kan worden benaderd. k -

In hoofdstuk IV wordt de gebruikte meetopstelling besproken.

In de daarop volgende hoofdstukken komen de metingen aan de orde dis
verricht zijn aan een tweetal reeksen isostructurele verbindingen, te
weten de reeks (CH3}4NXC13, met X = Cd, Mn, Ni en een aantal stoffen uit
de serie AMB3.2H20, te weten CsMnCl3.2H20, aRanCl3.2H20, CsﬁnBr3.2H20,
CsCoC13.2H20 en Rb?eC13.2H20. De verkregen meetgegevens zijn vanuit twee
verschillende gezichtshoeken bezien., Enerzijds kon, door vergelijking van
de eigenschappen van de verschillende verhindingen het door de model-
systemen voorspelde gedrag aan de praktijk worden getoetst. Anderzijds
kon, gedeeltelijk door combinatie met de resultaten verkregen via andere
experimentele metingen (kernspinresonautie, AFMR, neutronen—diffractie,
magnetisatie en susceptibiliteit) een gedetailleerd inzicht worden
verkregen in de aard en grootte van de magnetische wisgelwerkingen

in deze verbindingen ;

’ De reeks (CH3)ASX013 wordt behandeld in hoofdstuk V. Na een analyse

van de rooster soortelijke warmte van de - diamagnetische - Cd verbinding )
. wordt de magnetische soortelijke warmte van de Mn verbinding (TMMC) onder-
zocht; dit omdat de laatstgenoemde stof als een vrijwel ideale benadering
van een zuiver &éndimensionaal magnetisch modelsysteem kan worden be-

schouwd. Vervolgens worden enkele eigenschappen van de isostructurele Ni
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verbinding besproken.

" De gencemde Mn verbindingen uit de rezks AMB3.2H20 worden behandeld

in hoofdstuk VI, Naast een vergelijking va: de magnetischs eigenschappen
van deze verbindingen wordt ingsgaan op de invloed van kleine afwijkingen
van het zuiver &8ndimensionale modelsgysteem op het gedrag in zowel de
paramagnetische als de geordende toéstand.

De eigenschappen van de twee laatstgenoemde verbindingen, CsCoC13.2H20
en RbFeC13.2H20, komen aan de orde in hoofdstuk VII. Deze stoffen onder-
scheiden zich van de drie mangaan-verbindingen door hun grote magnetische
anisotropie.

De invliced van de aard van de magnetische wisselwerkingen in de ver-
bindingen van de reeks AMB3.2H20 op het gedrag in de omgeving van de drie-
dimensionale ordeningstemperatuur wordt tenslotte besproken in hoofdstuk
VIII,

Het in dit proefschrift beschreven onderzoek is uitgevoerd binnen het
kader van het onderzoekprogramma van de groep magnetisme onder leiding
van Prof. Dr. P. van der Leeden en Dr. Ir. W.J.M. de Jonge.

Aan het totstandkomen van dit proefschrift hebben velen meegewerkt.

~ Ir. A. Herweijer heeft mij op de hoogte gebracht van de techniek van
de soortelijke-warmte metingen.

~ Verschillende stagiairs en afstudeerders, in het bijzonder de heer
A.J.M. Kuipers, hebben een belangrijke bijdvage geleverd aan het ver-
zamelen en verwerken van de meetgegevens.

- De technische assistentie werd verleend door de heer AM.d. Duijmelinck
en Ing. J. Millenaar.

- De discussies met mign collega's Dr. Ir. A.L.M. Bongaarts, Ir. J.P.A.M.
Higmans, Dr. Ir. C.H.W. Suilete en Dr. Ir. T. de Neef hebben een zeer
positieve invloed gehad op de imhoud van het ondermoek.

- Bijaonder veel dank ben ik verschuldigd aan Dr. I». W.J.M. de Jonge

- en Prof. Dr. P. van der Lecdsn voor hun zeer gtimulerende belangstel-
ling en begeletiding.

- Mej. M.C.K. Grurjters en Mevr. M.J.H. Doors-Smits ben 1k erkentelijk
voor het teken- en typwerk.
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welke gekarakteriseerd kummen worden door een effectieve spin 1/2, met
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heid, waarmee het betreffende rekenprogramma is opgezet.
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door veel fabrikanten en verkooporganisaties wordt gedaan — geeft een
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v

Het uitsluitend toedichten van "vakidiotisme™ aan beoefenaren der exacte
wetenschappen gaat voorbij aan de sterk vakgerichte of ideologie-—
bepaalde houding van sommige beoefenaren der niet-exacte wetenschap-

pen; veelal getuigt het ook van een gebrek aan zelfkritiek.
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Vi

Het planten van jonge bomen in een peasfalteerds parkeerplaats in
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tijd schaduw te bieden aan geparkeerde auto's, berust op een misvatting.
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