
Advance Reservations of Bandwidth in Computer
Networks

vorgelegt von
Diplom-Informatiker
Lars-Olof Burchard

aus Berlin

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Professor Dr.-Ing. A. Wolisz
Berichter: Professor Dr. H.-U. Heiß
Berichter: Professor Dr. L. Wolf

Tag der wissenschaftliche Aussprache: 14. Juli 2004

Berlin 2004
D 83





Abstract

In this thesis, the impact of using advance reservations of bandwidth in a com-
puter network on the performance for both clients and operators of the network
is examined. Based on an architecture that uses multi-protocol label switching
(MPLS) controlled by bandwidth brokers, a number of services that - compared
to todays best-effort or immediate reservation networks - provide an enhanced
functionality for clients were developed. These services allow clients to specify
requests in a less stringent way than currently necessary, for example, it is pos-
sible to define only the amount of data to be transmitted between two network
endpoints and the management system then determines suitable transmission
parameters such as start and stop time and transmission rate. This functionality
provides reliable feedback to clients and can serve as a foundation for providing
service-level agreements, e.g., guaranteeing deadlines for the transmission of a
certain amount of data.

The additional services can also be used by network operators to improve
the overall utilization of the network. In addition, the various opportunities of
using the additional temporal dimension of the advance reservation service are
suitable to improve the network performance. It can be shown that the amount
of blocked requests and bandwidth can be considerably decreased making use of
both services and the additional information available in the given environment.

Besides the achievable throughout and amount of admitted requests, the
term performance in the context of advance reservation systems also covers
other aspects such as failure recovery strategies and the processing time required
by the network management system. In the thesis, several strategies to be
applied in case of link failures are outlined and examined with respect to their
applicability and achievable performance. For example, it can be shown that it
is worthwhile to consider not only flows which are active at the time a failure
occurs but also to take inactive but already admitted flows into account in order
to achieve the best possible performance.

In addition to failure recovery, also the processing speed of the management
system is of importance. For that purpose, in particular the data structures used
to store the current and future network status need to be examined since they
dominate the processing time of the management system. Two data structures,
arrays and a tree which was especially designed for this purpose were examined,
showing that arrays are superior with respect to processing speed and memory
consumption in almost any environment.
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Chapter 1

Introduction

In many different environments, in order to allocate resources, the allocations are
made a long time before the resources are actually required. Examples are flight
or hotel booking, as well as seat reservations in cinemas or theaters. This very
natural way of reservation guarantees that the requested resources are available
when they are needed, provided that the reservation is made sufficiently early.
Besides this advantage for the prospective user of a given resource, reservations
made in advance are also attractive for the owner or manager of resources since
they permit of a better planning and scaling of their resources such that a
sufficient amount of resources is available when and where needed most. An
example is the major German railway company which recently introduced a new
pricing scheme, that rewards customers buying tickets at least 3 days before their
voyage while those buying tickets immediately before the journey were punished
with higher prices. This means, reservations in advance were not only allowed
but also forced in some sense. One of the reasons was that such reservations in
advance allow the management to more accurately predict the requested amount
of coaches and thus a better resource utilization. Although it must be mentioned
that this new pricing scheme was rather unpopular among the customers, the
example shows that also providers of a service have a strong motivation to
implement mechanisms that allow customers to reserve in advance.

In general, two basic types of reservations can be distinguished: reserva-
tions that are made in a just-in-time manner directly before the resources are
needed (immediate reservations) and those that are issued a longer period of
time (e.g., minutes, days, or even months) before the resources are actually re-
quired (advance reservations). While advance reservations dominate in ”real”
world resource allocations and are also used in some fields of computer science,
such as allocations on large-scale cluster and parallel computers, in the area of
computer networks this reservation type did not gain significant dissemination
and did not even attract much attention of the research community.

The reasons are plentiful, one of the major drawbacks is the lack of control
over the network in the common Internet environment which is a result of its
central design property as self-organizing network. However, with recent devel-
opments in network technology such as the introduction of the multiprotocol label
switching (MPLS) technology, which allows a much higher degree of control over
the network and its components, the situation changed. Furthermore, with the
evolving grid computing efforts to allow connecting resources on a potentially
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2 CHAPTER 1. INTRODUCTION

global scale and provide functionality for collaboration and co-allocations of
very different resource types over a network, advance reservations may become
a useful way to ensure the availability of communication lines between those
different resource types scattered across the globe. In contrast, data intensive
high-performance e-science applications, e.g., in the context of grid comput-
ing, require large amounts of bandwidth for the transmission of data. For such
applications, the lack of quality-of-service (QoS) availability poses a problem
which is addressed by specialized network infrastructures such as the Trans-
Light LambdaGrid [DdLM+03] where one wavelength of a fiber is dedicated to
a grid environment. In particular such networks should be equipped with a man-
agement system that provides not only advance reservations as required in the
grid environment, but furthermore allows to implement QoS mechanisms that
provide more than the current, relatively simple, QoS functionality, i.e., band-
width reservation or delay constraints. Future networking applications, e.g.,
in the field of grid computing, demand also for a more general notion of QoS,
which includes definitions of the temporal constraints of a job, e.g., a deadline,
or guarantees in case of failures. For this purpose, the usage of service level
agreements (SLA) is an approach to negotiate such enhanced QoS parameters.
As outlined in [BHK+04], SLAs for computing applications are an important
requirement which allow to negotiate transmission rates for large bulk trans-
fers or the transmission times. The content of SLAs also includes guarantees
such as deadlines for computations and the respective network transmissions.
These functionalities can only be implemented on top of an advance reservation
system, the current immediate reservation mechanisms do not suffice for this
purpose.

The nature of resource reservations in such systems differs largely from those
of current requirements for instantaneous calls such as video streaming of short
clips which have many similarities with phone calls, e.g., in the sense that their
duration is usually not known in advance and hence cannot not be reliably
planned. This obstructs the application of advance reservations in such cases.
In contrast, allocations in grid computing environments usually require large
amounts of resources which must be allocated in advance. In these cases, also
the network connections must be guaranteed and furthermore the start and
duration of the allocations of the different resources are known.

Besides the application in the field of grid computing, advance reservations
provide additional opportunities for users and operators of computer networks
in various aspects as expressed by Degermark, Pink, Köhler, and Schelen in
[DKPS95]:

”When resources are plentiful, not even immediate reservations
may be necessary but when resource are scarce enough to justify
reservations, it makes sense to be able to make them in advance.”

In the following chapters, the properties of advance reservations in computer
networks will be examined and it will be shown that the above cited statement is
correct from very different perspectives of clients (users, customers) and network
operators. The previous citation with its general scope can be expressed even
more restrictive: in some cases it is even necessary to reserve in advance, for
example, when co-allocation of different resources is required as in the field of
grid computing.



3

In general, the scarcity of resources is not a realistic assumption for a variety
of applications in computer networks. For example, access to web pages does
not require large amounts of network bandwidth and for such applications, to-
days network capacities are sufficient. In addition to the large amount of spare
network capacity, technological measures such as content distribution networks
help to avoid bottlenecks for these applications. However, increasing network
traffic and new, additional applications such as grid computing with potentially
huge amounts of data to be transmitted across a global network demand for
QoS, which is understood more generally than just as a definition of bandwidth
availability on network links.

In this context, the design and management of network services needs to
consider the applications that are run on the network. In [ABW04], it is stated
that it is ”imperative that we go back to the future [...] where both network and
application research were undertaken simultaneously on the same infrastruc-
ture” in order to study and understand the necessity for not only traditional,
immediate bandwidth reservation-centered quality-of-service mechanisms, but
also ”security, reliability, resilience, virtual environments, and network manage-
ment and monitoring”. Generally applicable for a variety of applications from
on-line gaming to video conferencing and grid computing, advance reservations
may serve as one building block for a future resource management platform.
In sight of the convergence of various compute resources into a single, global,
multi-purpose infrastructure with support for various user-oriented services, the
advance reservation service supports in particular these new application environ-
ments that require more functionality than the current network infrastructures
can offer. An advance reservation service, independent from its technological
basis (MPLS or any other suitable technology), is one important step towards
achieving this goal.

So far, only a small subset of topics related to advance reservations have been
investigated. One of the reasons is the lack of a suitable management architec-
ture that can be easily applied in a network without changing the whole soft-
and hardware. An opportunity to overcome this problem is the MPLS standard
that allows to influence the network behavior with nearly arbitrary granularity.
Based on this technology, the implementation of an advance reservation service
in a computer network such as the Internet may eventually become reality.

Using the technological foundation of MPLS, the different aspects of perfor-
mance of an advance reservation service will be examined in this thesis. For this
purpose, a network management system (bandwidth broker) was implemented
and used as simulation environment for the algorithms and mechanisms needed
to offer an advance reservation service in a computer network. This includes a
variety of different services and mechanisms that have the potential to influence
the performance of the network for customers and operators. For a customer,
performance relates to those properties of a network that deal with the individ-
ual requests. For example, besides the probability that a request is accepted,
which is of major interest for a customer, the speed of the management system
is an important factor in this context. Likewise, the behavior of the network
in case of failures is essential for the perceived performance of a network. In
the ideal case, a customer does not even notice when a failure occurs. For the
operator, the main performance aspect is the profit generated by the network.
This is directly related to the utilization of the network which is intended to
be maximized, but also other factors count, such as customers satisfaction or
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the costs of a management infrastructure. For obvious reasons, in this thesis
only those performance aspects are considered that can be measured without
making assumptions about the business model of a network operator. Thus, the
focus concerning the performance as perceived by operators is on the amount of
traffic that can be accommodated by the network and the amount of flows that
can be admitted.

The most interesting question concerning the performance of an advance
reservation network is how to use the additionally available information about
the future status of a network to improve the performance. On the one hand,
this allows to define additional services for customers that cannot be imple-
mented in an immediate reservation environment, such as searching for the first
feasible transmission interval for a given amount of data. Network operators
on the other hand need to adapt not only their management infrastructure in
order to keep information about allocations in the future but also need to im-
plement new functionality in order to fulfill the basic management tasks, i.e.,
admission control and routing, and to implement the additional services. More-
over, the available information about the future can be used by the operator
to improve the performance of the network. This impacts the routing strategy
where the opportunity arises to switch traffic flows onto different paths during
their lifetime. When a given amount of data must be transmitted between two
network end points, and the network management is requested by the client to
determine suitable transmission parameters, this degree of freedom can be used
to optimize the network performance by scheduling such transmissions in a way
which increases the overall network performance.

The network performance is closely related to the fault tolerance properties,
i.e., the question of how to react in case of link or router failures. Especially
in the field of advance reservations this is an important issue since reservations
can be made long before they are actually required. Although many strategies
for dealing with link failures in immediate reservation scenarios exist, so far this
aspect was not considered for advance reservation environments. In chapter
6, strategies for dealing with link failures are presented which also take the
available information about the current and future status of the network into
account. Their basic feature is to reroute flows in advance when it is likely that
they will be affected by a link failure in the future. This pro-active behavior
of the network allows the bandwidth broker to react to link failures as soon as
possible even when the impact of a link failure did not yet become visible in
terms of preemption or termination of flows.

Another important performance aspect is the speed of the admission control
process in an advance reservation environment which is a critical aspect for
end-users. Because of the large amount of status information to keep, it is
necessary to implement the reservation and allocation mechanisms such that
the response times of the reservation system is minimized. This means, each
client’s request can be processed without delays in an on-line fashion, delivering
the response with the admission decision as soon as possible after the request
was made. In order to efficiently implement this admission control process,
data structures are required which provide fast access to the information about
the future while supporting the additional services implemented in the advance
reservation environment, e.g., the search for suitable transmission parameters for
a particular request. In the prototype bandwidth broker implementation, about
50% of the processing time of each request is spent in these data structures. In
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contrast to previous studies which used specially designed trees for this purpose,
it will be shown that arrays are superior in many environments concerning
both admission speed and memory consumption. Furthermore, arrays can be
implemented much easier and better support the additional services offered in
the advance reservation environment.

In order to categorize the different mechanisms discussed in this thesis, two
main approaches can be distinguished: the first approach uses the properties
that are introduced by the needs of the clients and applications using an advance
reservation network service (application-oriented, services). This category cov-
ers, for example, the search for suitable transmission intervals and transmission
rates. On the other hand, a number of techniques, which constitute the second
type of approach, can and in some cases must be implemented transparently
for the applications (operator-oriented, management operations). Examples for
such approaches are the routing strategy and the selection of failure recovery
mechanisms. These mechanisms are developed in this thesis and examined with
respect to their implications for the performance of the overall advance reserva-
tion service.

The remainder of this document is organized as follows: firstly, in chapter
2 the foundations of this work are described. This includes an overview and a
comparison of existing approaches to implement advance reservations, showing
that especially the performance aspects of advance reservations have so far not
been exhaustively examined. The discussion of possible application environ-
ments show that a number of applications benefit from or even require advance
reservations and additional services that are not implementable in immediate
reservation networks.

In chapter 3, the opportunities to implement these services that go beyond
those available in immediate reservation networks are presented, such as the
search for suitable transmission intervals for a large amount of bulk data. In
addition, various opportunities to improve the performance of the network using
the properties of advance reservations, i.e., the availability of temporal informa-
tion about duration, start, or stop times of requests, are discussed. Based on this
foundation, the design and components of the reservation framework is outlined.
The architecture is based on domain-central bandwidth brokers which handle
requests issued by clients and set up the network components accordingly. The
impact of advance reservations on the overall performance of a computer net-
work is discussed in chapter 4. The main drawback of this reservation type is
a fragmentation of the available resources. Although this influences the overall
performance of the network, the benefits for individual clients of a network,
i.e., additional services and an improved admission probability, remain. The
actual extend of the possible performance degradation is evaluated using exten-
sive simulations with different network topologies. It can be shown that mainly
the amount of flows that can be accommodated by the network is affected while
the utilization remains less influenced.

Based on these results, in chapter 5 the basic techniques to deal with advance
reservation requests in a computer network are presented. This includes the
routing algorithms which can be derived from those used in immediate reserva-
tion QoS routing. In addition to these basic routing strategies, the exploitation
of the additional temporal information in the advance reservation environment
is of main interest. In particular, the opportunity to deal with requests that do
not specify fixed parameters such as start and stop time but allow (and some-



6 CHAPTER 1. INTRODUCTION

times even request) the management system to determine suitable parameters
for a particular transmission request can be used to significantly improve the
overall performance of a network. This leads to a number of different schedul-
ing strategies for those requests with variable parameters. The simulations with
the different approaches show, that significant differences exist among them and
hence, the actual strategy must be carefully chosen. Further opportunities to
improve the network performance are transmissions using different paths during
their lifetime or off-line optimizations based on solving multi-commodity flow
problems. Using these techniques leads to a significant performance gain which
can close the gap between immediate and advance reservations and sometimes
results in better performance of the advance reservation scenario. This means,
the performance degradation is avoidable when wisely using the properties of
the advance reservation framework.

The impact of link or router failures is examined in chapter 6, where a
concept to deal with link failures in the presence of advance reservations is
presented. Data structures used to store link status information about future
allocations are analyzed in chapter 7. It turns out, that arrays are well suited for
this purpose although specially designed tree structures exist. However, these
trees have significant disadvantages resulting from a distribution of the status
information across several tree layers. The superiority of arrays can be shown
using both analysis and measurements. After briefly discussing multi-domain
issues of the bandwidth broker architecture, the thesis is concluded with some
final remarks and a discussion of possible extensions in future work.



Chapter 2

Foundations

The advance reservation service architecture presented in this thesis is related
to various issues of managing network and compute resources. The implemen-
tation of advance reservations requires a number of already existing architec-
tures as building blocks for its application in a realistic environment. Since the
bandwidth broker design described in the following chapters concentrates on
functionalities on the flow level, it is important to connect these functionalities
to lower layer implementations, e.g., those supporting network QoS and hence,
the discussion in the following sections includes an overview of the currently
available techniques to support QoS in current IP networks.

In this chapter, the different approaches for implementing network QoS are
described and examined with respect to their suitability to support advance
reservations. Based on this examination, the approaches made in the past
to implement advance reservations and the different aspects of this particular
reservation type, as far as being subject of research so far, are presented. Fur-
thermore, examples of actual applications are given that benefit from advance
reservations or even require them. The discussions and examinations of advance
reservations in previous work usually did not take the actual requirements of
such applications into account, but only concentrated on the network layer and
its properties. This gap will be closed with the implementations described in
this thesis.

2.1 Quality-of-Service in Computer Networks

In order to implement an advance reservation service in a computer network, it
is important to examine the available protocols, architectures, and methods that
are available in order to establish network QoS The vast variety of developments
in this area cannot be summarized and presented here, however a number of dif-
ferent architectures are worth mentioning, as they have been used to implement
various advance reservation mechanisms in networks. Many of those techniques,
such as queuing, QoS routing, signaling etc. have to be applied together in order
to build a QoS framework that provides useful guarantees for an application.
For example, in [PD00] many of those techniques are described in a much more
detailed way than possible in this thesis.

Two major approaches for network QoS have been distinguished in the past,

7
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integrated and differentiated services. Both techniques serve orthogonal pur-
poses: while the integrated services (IntServ) approach is to treat each traffic
flow individually and consequently to provide a certain level of end-to-end QoS
for each individual flow, in contrast the differentiated services (DiffServ) ap-
proach is to offer a few service classes with different QoS parameters and to
multiplex the traffic within the service classes without distinguishing individual
flows.

2.1.1 Integrated Services

Within the IntServ framework, a number of service classes1 were specified to
meet the QoS requirements of applications. The most important are the guaran-
teed service [SPG97] and the controlled load service [Wro97a]. The former was
designed to support applications which cannot afford a single packet to arrive
”late”, e.g., a video streaming application with the requirement that each packet
arrives before its playout time. The introduction of the controlled load service
was based on the observation, that applications of this class behave sufficiently
well on a lightly loaded network. Thus, the intention of the controlled load
service is to simulate a lightly loaded network for these applications.

PATHPATH

RESV RESV

PATH PATH

RESV RESV
sender

receiver

Figure 2.1: RSVP signaling between sender (right) and receiver (left). RESV messages
follow the reverse route of the PATH messages and set up the reservation.

Often related to the IntServ approach is the usage of RSVP as reservation
protocol [Wro97b, ZDE+93, BZB+97]. RSVP provides signaling functionality
for individual flows using messages sent along the whole path from sender to
the receiver and back. On each router, an RSVP daemon is responsible for
processing those RSVP messages. For the basic functionality, two messages are
important. The PATH message is sent from the sender (data source) to the
receiver of the data stream (data sink) for which a certain QoS is required.
The purpose of the PATH message is to determine the path to be taken by
packets of the subsequent prioritized flow to the data sink. Each router on this
path determines the reverse path for the corresponding packet, i.e., figures out
which outgoing interface is used to send the reservation back to the source (see
figure 2.1). When the PATH message arrives at the data sink, the receiver’s
RSVP daemon generates a RESV message with the actual QoS parameters
which is sent back to the data source using the same path as the original PATH

1This does not mean, applications of a certain service class do not receive individual, i.e.,
fine-grained QoS. The notion of ”service class”here has a different meaning than in the context
of DiffServ.
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message. Each router on the reverse path checks whether sufficient resources are
available to satisfy the request. If so, the RESV message is forwarded using the
link determined during when the corresponding PATH message was examined.
In case, the resources do not suffice to provide the requested QoS, the router
generates an error message which is returned to the data source.

Applica-
tion

RSVP
Daemon

Admission
Control

Classifier
Packet

Scheduler

Routing

RSVP RSVP
Daemon

Admission
Control

Classifier
Packet

Scheduler
Data

Host (Sender) Router

Figure 2.2: Architecture of RSVP enabled router and end-system. Daemons exchange
RSVP signaling messages and determine the scheduling of the data packets [Bra97].
In addition to the specified components, each daemon needs a policy control module
for authorization and authentication purposes.

When a reservation can be admitted, i.e., when the RESV message is re-
ceived and successfully processed, each RSVP daemon on the path generates a
session which keeps status information about the source and sink pair, i.e., IP
address and port number, and the amount of resources to be reserved for the
corresponding flow. In order to keep the session alive, RSVP follows a soft-state
approach. This means, the session is not statically kept until explicitly removed
by the entities involved, instead it is required to repeatedly - the suggested de-
fault is every 30 seconds [BZB+97] - sent RESV messages in order to keep the
session alive. This is initiated by the RSVP daemons at the source and sink. In
case, no such message is received by an RSVP daemon on the path, the corre-
sponding session is removed. The main components of the RSVP architecture
are depicted in figure 2.2. In addition, a policy control module is required for
authorization and authentication purposes.

In order to accommodate for link failures and route updates in the network
that require to reserve resources on an alternative path, the PATH messages are
also sent periodically. In case of a failure, the refresh messages cannot be sent on
the original path and hence lead to a removal of the reservation due to the time-
out mechanism of RSVP. However, the PATH messages follow an alternative
path and eventually establish a new reservation when sufficient resources are
available on the alternative path.

One of the major drawbacks often related to IntServ and per-flow QoS is the
lack of scalability due to the property of requiring status at each intermediate
network node on the path between client and server. However, with efficient
implementation and the usage of a lightweight protocol, in [PS00] it was shown
that on an 700 MHz Pentium based PC, it was possible to handle around 10, 000
flow setups at a time or alternatively keep approximately 300, 000 IntServ ses-
sions alive. Therefore, scalability is not that much of an issue today. Together
with various extensions, RSVP has found a lot of different areas of application,
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some of them also support advance reservations. In this context however, it
will be shown in section 2.2 that the distributed approach of RSVP which does
not rely on keeping central knowledge anywhere in the network has some other
drawbacks that reduce its applicability to support advance reservations.

2.1.2 Differentiated Services

The DiffServ architectural model [NBBB98] itself does not provide end-to-end
QoS, instead only guarantees for the performance of the service classes are given.
For that purpose, a field in the IP header (DiffServ Code Point, DSCP) is used to
mark IP packets as belonging to one of those service classes [BCD+98, Gro02].
Using this technology, it is possible to, e.g., provide a single service class for
real-time traffic (Voice-over-IP, video streaming) and another service class for
bulk transfer.

In order to define the behavior of routers in a DiffServ network, a set of
per-hop behaviors (PHB) were specified which determine how a router treats
packets (depending on its DSCP), i.e., traffic belonging to other than the best-
effort class. Thus, DSCP specify a certain PHB. The expedited forwarding PHB
[DCB+02] (EF) defines the requirements and properties for implementing low
loss, low delay, and low jitter services, e.g., for real-time streaming. In contrast,
the assured forwarding PHB (AF) [HBWW99] group defines a set of four services
that provide different grades of assurance in the sense that packets in a service
class are forwarded with high probability unless the used bandwidth does not
exceed a certain level, previously notified or negotiated with the service provider.
This can be used to define a bulk transfer service.

Bandwidth
Broker

Edge Router

Premium Service
Assured Service
Best-effort

Figure 2.3: DiffServ network under the Two-Bit DiffServ model. Each router keeps
three queues for the packet of different service classes. Edge routers perform the
labeling of packets according to the rules set forth by the BB.

Since DiffServ itself does not provide end-to-end QoS guarantees, a mecha-
nism is required in order to control access to the network and to manage the
network’s resources. For that purpose, the notion of bandwidth brokers (BB)
was introduced which describes a centralized network management system. The
concept of BB was described in [NJZ99], together with an architecture using a
two-bit pattern of the DSCP to provide two service levels in addition to the



2.1. QUALITY-OF-SERVICE IN COMPUTER NETWORKS 11

best-effort service. The purpose of this two-bit pattern is to mark traffic and
to treat it differently, i.e., ”better” than best-effort traffic. These two additional
service classes defined in [NJZ99] were assured service and premium service. An
example for a network under this model is depicted in figure 2.3.

The authors assume each domain - defined as a ”region of trust” - within the
Internet has its own bandwidth broker statically associated. This may include
a hierarchy of bandwidth brokers supervised by a ”root” BB at the top of the
hierarchy. The purpose of the bandwidth broker is two-fold:

1. Management of each domains’ higher priority traffic. This means identi-
fying this traffic and configuring the routers within the domain to enable
the higher priority service levels for marked packets. This requires also to
control the edge routers which do the labeling of packets, i.e., adjusting
the DSCP value.

2. Management of packets sent across domains. This requires inter-domain
communication among different BB.

For that purpose, each bandwidth broker is equipped with a policy database
which describes the traffic to be marked and the corresponding configuration of
the routers.

BB

REQUEST REQUEST

ACK

BB BB

ACK

Domain A Domain B Domain C

Figure 2.4: Domain structure and inter-domain communication of three BB. The com-
munication follows a domain-per-domain concept. In this example, a request for a
reservation from domain A to domain C is processed.

The scalability of the BB approach was addressed by assuming that each BB
interacts with BBs in its neighboring domains (see figure 2.4). In general, two
approaches are conceivable: hop-by-hop one-to-one reservations along the path
from the source to the destination domain and one-to-many communication,
i.e., direct contact of the source domain’s BB with any other BB one the path
to the destination domain. While the former is more flexible in the sense that
each domain decides where to route its inter-domain traffic, the latter promises
faster admission decisions.

2.1.3 MPLS

Evolved from a number of similar approaches aimed at simplifying routing
in computer networks, the multiprotocol label switching (MPLS) architecture
[DR00, RVC01] provides a number of opportunities to provide QoS support in
networks. The importance of MPLS results from its wide availability and the
flexibility to support many important aspects such as resilience mechanisms and
traffic engineering.



12 CHAPTER 2. FOUNDATIONS

MPLS was designed as a technology for the simplification of the routing
process in a way that allows to use switching technology rather than routing
based on complicated metrics. The reason was that routers require more com-
plex hardware and software infrastructure than switches and therefore are more
costly at the same level of performance.

Label (20 bits) Exp (3 bits) Stack (1 bit) TTL (8 bits)

Figure 2.5: The content of the MPLS label stack.

The basic idea is to attach a label (see figure 2.5) to each packet in the
network. The forwarding decision in each label switching router (LSR) for a
packet is made solely on the basis of the packet’s label. A label is basically
a number encoded in a field a fixed length (20 bits) with no further internal
structure. In particular, the label is not related to the source or destination
address of the corresponding packet in any way. MPLS allows to build a label
stack that contains more than a single label. Each entry of the label stack
consists of four components:

1. the label

2. an experimental field (Exp)

3. the stack bit identifying the bottom of the stack

4. the TTL field, which serves the same purpose as in IP networks

This label stack allows to provide tunneling mechanisms within the MPLS
domain.

Incoming Label
Outgoing Label

Outgoing Interface
Next Hop Address

Outgoing Label
Outgoing Interface
Next Hop Address

Incoming Label First Subentry Second Subentry

Figure 2.6: MPLS forwarding table

Labels are attached to any packet in an MPLS domain. The relation between
label and forwarding decision (label binding) for the corresponding packet is
established using the forwarding table. Forwarding tables define which outgoing
interface the corresponding packet takes and which outgoing label the packet
takes (see figure 2.6). This means, an LSR performs label swapping, i.e., an
incoming label usually does not remain unchanged. This mechanism permits
to have the same label but different meanings (bindings) at different locations
within an MPLS domain. In addition to the information specified in figure 2.6,
each entry can contain information about the treatment of packets, in particular
which resources a packet may use, such as a certain output queue. A set of flows
which are forwarded according to the same rules within the MPLS domain are
called forward equivalence class (FEC). A path in the network for a FEC is
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Figure 2.7: Example: LSPs and label stacking.

called label switched path (LSP). Each LSP carries packets belonging only to a
single FEC.

In figure 2.7, an example of a network with three LSPs is outlined. Packets
associated via their FECs to LSP 3 (blue) are tunneled through LSP 2 (red)
using label stacking. The forwarding tables of LSR 3 and LSR 6 show the
assignment of labels to packets and the particular action to be taken depending
on the incoming label. For example, LSR 3 removes the topmost label of the
label stack and in case this was the only label, the packet was destined for LSR
3, whereas when there is another blue label, the packet is forwarded to LSR
2. LSR 6 works similarly: packets with green labels are forwarded to LSR 4
without changes. Packets with blue label get an additional red label attached
and are also sent to LSR 4. Packets which enter the network at LSR 6 get a
red label attached and are forwarded accordingly. In this example, colors are
used as labels. These labels are negotiated between each two LSRs and packets
of the same FEC do not necessarily carry the same label on the complete path.
Instead, label swapping may be used frequently.

In order to establish label bindings within an MPLS domain, signaling pro-
tocols exists, which are designed to exchange and negotiate binding information
among the LSRs. In general, it is possible to piggyback the label binding in-
formation on top of existing routing protocols such as BGP [RR01], but can
also be made using the label distribution protocol (LDP) which was especially
designed together with MPLS [ADF+01]. LDP runs over TCP in order to es-
tablish a reliable communication channel between LSRs. LDP does not only
provide means to distribute label bindings but also contains a discovery mech-
anism which enables LSRs to find each other and to establish communication
among them.

Traffic Engineering

Among the functionalities of MPLS, especially traffic engineering is a powerful
technique to optimize a network’s utilization. Traffic engineering mechanisms
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aim to avoid that some links are underutilized while others are congested. This
in particular is a very important aspect in the context of advance reservations
which - as will be shown in chapter 4 - tend to result in a degradation of
the network performance. In such an environment which has the potential of
negatively influencing the network performance, it is especially important to
consider opportunities to efficiently manage the networks resources such that
the impact of the performance degradation can be minimized.

One of the important requirements to support traffic engineering is to control
and establish routes. For that purpose, MPLS provides an explicit routing
mechanism. In general, the required signaling for defining an explicit route
can be provided using two mechanisms: RSVP-TE [ABG+01] and CR-LDP
[Jam02] which are extensions of RSVP respectively LDP with support for traffic
engineering. Both protocols may be used to establish routes, i.e., enforce label
bindings resulting in a certain state in the forwarding tables of LSRs, within an
MPLS domain.

LSR 1

LSR 2

LSR 4

LSR 3 LSR 5

LSR 6 LSR 7

PATH message
RESV message

Figure 2.8: Explicit routing using RSVP-TE. The ERO object is used to establish the
path <LSR1,LSR2,LSR4,LSR6,LSR7> for a particular FEC.

RSVP-TE is essentially plain RSVP augmented with a new object, the Ex-
plicit Route Object (ERO). The ERO is attached to the RSVP path message
and contains the explicit route to be set up in the MPLS domain. The ERO
object is examined by an LSR and the corresponding PATH message is sent
along this path (see figure 2.8). The last LSR on this path then generates a
RESV message sent on the reverse path. Thus, the common RSVP procedure
for establishing QoS guarantees on the given path may also apply, i.e., the nor-
mal RSVP mechanism of defining and establishing reservations can be invoked.
Establishing explicit routes in the network can be done using a management
system, for example, a BB.

In order to establish forwarding state on an explicit route, CR-LDP uses a
newly introduced object, called Explicit Route (ER). The ER object essentially
has the same content as the ERO of RSVP-TE. Another similarity is that, in
addition to the explicit route, CR-LDP messages can also contain information
about QoS parameters on the explicit route. Thus, it is possible to establish
not only the route but also to enforce QoS for the traffic with the corresponding
FEC. A route is established in the same manner as with RSVP-TE, i.e., a label
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request message is sent along the route to the destination and as response a
label mapping message is returned which establishes the required states on the
LSRs on the path.

As outlined in [DR00], plain IP routing is not sufficient to support traffic
engineering in a suitable way. IP routing mechanisms are destination based
routing techniques, that apply a least-cost routing depending on the destination
of a packet. This property of IP routing has a considerable impact of the possi-
ble architecture for an advance reservation system. The reason is that plain IP
routing, even QoS extensions for existing routing protocols such as QoS exten-
sions for OSPF [AKW+99], cannot take the actual utilization on individual links
into account for the end-to-end path selection. Since a considerable amount of
control over the network routing is required to guarantee the required stability of
routes together with its unsuitability for traffic engineering as described before,
any mechanisms based on IP routing (such as RSVP based advance reservation
systems) cannot achieve the best possible performance in a computer network.

It is possible to combine DiffServ with MPLS. In such a case, explicit control
over flow aggregates can be achieved while maintaining the prioritization of
DiffServ service classes.

2.2 Advance Reservations in Networks

Previous work on the field of advance reservations covered only some aspects of
the overall problem space. Compared to immediate reservations which received
most of the attention in the area of network QoS, only a few aspects have been
examined:

Requirements Some research dealt with the foundations of advance reserva-
tions and central design decisions to be made in such environments. Such
aspects have also been covered partly in other publications, dealing mainly
with other topics.

Architectures Most of the previous work on the field of advance reservations
dealt with architectures, such as extensions to existing reservation proto-
cols.

Admission Control The admission control process has been dealt with mostly
regarding the performance of the resulting process.

Performance A number of very different performance aspects have also been
examined. This covers the areas of off-line optimizations, computational
complexity, and overall network performance.

The results of these previous works laid out a foundation for implementing
advance reservations, especially those dealing with fundamental requirements,
which can be built upon in order to develop the more advanced services and
mechanisms discussed in this thesis.

2.2.1 Requirements

As described before, previous work dealt with basic issues that must be consid-
ered when implementing advance reservation services in networks. Besides the
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support from the network layer, which is covered in section 2.2.2, this means
the difference between immediate and advance reservations, client/management
system interaction, the request specification, and the different phases of the
negotiation process.

a) partitioned b) shared

advance and immediate
reservations

advance reservations

immediate reservations

Figure 2.9: Coexistence of advance and immediate reservations in different (left) or
the same partition (right).

In [WDSS95], a general approach to facilitate advance reservations in com-
puter networks was described. Advance reservations for real-time transmissions
such as video streaming applications were subject of a detailed examination
with respect to different problems to be overcome in a practical implementa-
tion, such as coexistence of advance and immediate reservations using shared
resource partitions. For that purpose, the advantages of distinct partitions for
advance respectively immediate reservations (see figure 2.9) are discussed (see
also [FGV95]). The main focus of [WDSS95] is on real-time connections as
required for video streaming applications. The authors restrict their in-depth
considerations to the network transmission but also mention the requirement to
consider the computational resources on the computers involved in the trans-
missions. They propose a reservation architecture that integrates network and
computer resource allocation.

In an extension of that work, a framework for advance reservations was
developed in [WS97] and integrated into a general resource reservation archi-
tecture. The characteristics of advance reservations are outlined together with
a systematic model of the interaction between clients and management system,
especially concerning the different states of a reservation system and the cor-
responding timescale. Three different phases during the lifetime of an advance
reservation are distinguished:

1. Negotiation phase between client and network management system

2. Intermediate phase

3. Usage phase of the allocated resources

The model allows for renegotiations during the usage phase, e.g., in order to
extend or reduce the duration of a request.

In order to overcome the strict distinction between advance and immediate
reservations - respectively the specification of the duration of a transmission at
its reservation time even for immediate reservations - in [KBWS99] a frame-
work which allows to provision of a ”general network service” supporting both
immediate and advance reservations was proposed. The framework allows to
specify a non-preemptable period of time within which a request is guaranteed
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not to be interrupted. During this period of time, the given request is marked
as prioritized. However, after this time has elapsed the request is not automat-
ically interrupted. Instead, the request may continue without reduction of its
QoS until further requests with prioritization, i.e., requests within their non-
preemptable period, block the available bandwidth. The system is accompanied
by a policy layer that controls the system and applies charges for user’s re-
quests. Using the ideas put forth in [KBWS99] allows to increase the flexibility
of an advance reservation service and reduce the dependency of the admission
control process on the specification of the duration of a transmission request.
Especially allowing to change the duration of a given resource allocation fur-
ther than originally specified is an important feature, which is also used in the
field of cluster management [KR01]. Extending the originally specified duration
requires invocation of the admission control procedure.

In [FGV95] some basic requirements for implementing advance reservations
in computer networks were discussed, such as defining the stop time of an ad-
vance reservation request in order to reliably perform admission control. For
supporting also immediate reservations, usually being defined without stop time,
it was proposed to introduce two resource partitions for advance and immediate
reservations in order to strictly divide resources available for both reservation
types (see figure 2.9). The boundary between both partitions was proposed
to be movable in order to avoid resource fragmentation as much as possible
and to support adaption to changing request characteristics. The requirement
for defining separate partitions for reservation types with defined end time and
those that may run infinitely has also be stated by others [WS97, SBK98, SP97].
The developments described in this thesis were based on the strict distinction
between requests with and without definition of the request duration. In this
sense, the advance reservation partition accommodates for all requests including
the requested duration, no matter whether made in advance or immediately.

In this thesis, the aspects considered in [WDSS95, WS97] are extended cov-
ering also performance optimization aspects and services that can be built on
top of the basic advance reservation service. For this purpose, the timing as-
pects are taken into account in order to develop mechanisms that may be used
to improve the performance of the network.

2.2.2 Architectures

Many early works related to advance reservations on the field of computer net-
works mainly concentrated on architectures and extensions of existing reserva-
tion technologies in order to support advance reservations. In general, two types
of approaches can be distinguished: those that allow and provide explicit con-
trol over routing in the network and those that do not. The former are mainly
based on a (domain) central management instance such as a bandwidth broker,
the latter rely on RSVP or similar mechanisms, or passive agents [SP98b].

In [Rei95b, Rei95a], RSVP and the Internet Stream Protocol ST-2 [DB95]
protocol were examined with respect to their suitability to implement advance
reservations and some general criteria for network protocols that support re-
serving resources in advance in computer networks have been postulated. In
particular, it was stated that routing stability is essential for a reliable advance
reservation service and thus, routes must be fixed during the negotiation phase.
While ST-2 supports this feature using a hard-state approach with fixed routes
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after the QoS negotiation phase [Rei95a], the soft-state implementation used by
RSVP is less suited due the requirement for periodical state updates and the
resulting uncertainty about the actual routes during the usage phase. The sta-
bility of routes during the intermediate phase is a very important aspect that,
in the implementations presented in this thesis, is dealt with using the MPLS
explicit routing functionality which allows one to use a source routing approach
initiated by the network management system.

The practical implementations described in [FGV95] focused on extending
of the TENET network protocol suite [BFM+94, GHMN95]. TENET however,
did not succeed in reaching broad acceptance and availability and hence, cannot
be considered as a useful foundation for further developments.

An approach to enhance the RSVP functionality to support advance reserva-
tions (called resource reservations in advance ReRA) was presented in [SKB97].
The authors considered networks with partial ATM infrastructure which was
assumed to be especially suited for supporting network QoS. The basic require-
ments for implementing advance reservations were discussed, such as the require-
ment for defining the request duration for reliable admission control. Further-
more, the signaling required for the advance reservations is discussed, especially
in the ATM environment. The main focus however, was on the extension of
RSVP for supporting RSVP.

The protocol extensions necessary to provide advance reservation support
within RSVP were described in more detail in [SBK98]. The focus was on
extensions of RSVP and the IntServ approach in order to support also the
allocation of resources in advance. The proposed solution mainly concentrates
on the protocol extension using an optional field in the RSVP signaling messages
to specify the start and stop time of the request.

The exchange of PATH and RESV messages between the routers on the
reserved path was extended to cover the whole intermediate phase (see figure
2.10). Modifications of the initial reservation can be made during this whole
phase up to the begin of the usage phase. For this purpose, modified RESV
messages are sent to the sender. The authors also proposed to extend the refresh
intervals and lifetime of a particular soft-state. Thus, it is not only possible to
reduce the amount of refresh messages sent during the intermediate phase but
also to ”survive”temporary router outages and hence the loss of refresh messages.
However, the approach does not deal with the treatment of link failures during
the transmission phase is not treated. The problem of defining the duration also
for immediate reservations when both reservation types use a shared partition
was solved using an approach with strict partitioning of advance and immediate
reservations. The time model is based on a time interval update technique rather
than using the slot-based model. The general problem of resource fragmentation
in advance reservation environments is also mentioned and it is proposed to be
overcome by defining and advertising periods of time with sufficient bandwidth
for the given request to the client. Gathering information for this service is made
by collecting status information from each router and providing this information
to the client. Finally, an admission control scheme is presented. This scheme
is based on the equivalent capacity admission control mechanism used in ATM
networks.

An agent-based approach to facilitate advance reservations in computer net-
works was presented in [SP97]. The considerations deal with deploying an infras-
tructure of reservation agents within routing domains. In order to select routes
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Figure 2.10: Extension of RSVP signaling for support of advance reservations as de-
scribed in [SBK98].

for advance reservations, the authors favor explicit routing over simply follow-
ing the available best-effort routes of the network. The latter approach has
the significant disadvantage of being inflexible towards route changes. When
allowing agents to explicitly set up routes for advance reservation flows, this
drawback can be avoided and control over the network is established. The work
was extended in [SP98b], with the agents being integrated into a network using
OSPF [Moy98] as routing protocol. The agents in this context are configured
to passively listen to OSPF messages, thus obtaining information about current
topology, routes, and route changes in the network. In order to implement this
approach, each router is configured to send OSPF messages to the reservation
agent of the respective routing domain. Thus, no explicit routing is done by
the agents. Instead, admission control is performed using only the information
obtained by listening to OSPF messages sent through the network.

In contrast to these architectures which did not actively influence the net-
work, e.g., in terms of explicit routing, in [San03] a bandwidth broker architec-
ture based on DiffServ in combination with MPLS was proposed. As discussed
before, using MPLS provides the opportunity to implement traffic engineering
mechanisms. However, in [San03], traffic engineering was not discussed. In-
stead, the focus was on the provisioning of two higher quality services which are
related to the considerations about the EF (premium) and AF (guaranteed rate)
PHB definitions (see section 2.1.2). An implementational framework as laid out
in [San03], which deals with the implementational aspects of reservations on
the network layer, is suited to be used as the foundation for the developments
described in this thesis which focus on higher level functionalities, such as traf-
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fic engineering, dealing only with flows rather than packet scheduling aspects.
However, the implementations presented in [San03] itself do not provide support
for any further service than bulk transfer and real-time streaming.

2.2.3 Admission Control

Admission control in general is a broad topic that contains a large variety of
different mechanisms and techniques for limiting access to resources of any
kind. Furthermore, in advance reservation environments different underlying
approaches and frameworks were considered which strongly influence the choice
of the admission control strategy. For example, models that consider advance
reservations similar to immediate reservations without the need to specify the
duration of a given request, cannot rely on accurate knowledge about request
durations and hence not provide hard QoS guarantees. As a result, existing
research on the field of admission control for advance reservations covers differ-
ent topics, ranging from probabilistic guarantees that base admission decisions
on the preemption probability [WG98], to the implementation of accurate ad-
mission control based on complete knowledge about the future [WS97, FGV95]
which on the other hand requires additional effort to save this status information
[SNNP99, BH02].

In [DKPS95], an admission control scheme for advance reservations was pre-
sented. The authors consider proprietary extensions of OSPF network infras-
tructure to support the advance reservation service based on an agent infras-
tructure [SP97] comparable to the concept of bandwidth brokers as described
in this thesis. In this context, also data structures for storing the status infor-
mation of future link utilization have been examined [SNNP99] and two tree
structures were proposed. However, in [BH02] the most suitable of these trees
has been compared to arrays with the result that arrays have significant advan-
tages in terms of admission speed and memory consumption, and furthermore
are much easier to implement. Details of the examination and the comparison
of both data structures can be found in section 7. In general, the usage of OSPF
causes problems in terms of general availability in networks and the inability
to explicitly define routes also restricts the benefits that can be achieved using
the available status information in order to influence and improve the network
performance. The performance aspect which is the main focus of this thesis has
not been considered in those papers.

A different admission control scheme for advance reservations based on prob-
abilistic guarantees is developed in [WG98]. In contrast to the other approaches
from this field, the authors only consider statistical guarantees rather than per-
forming deterministic admission control. In particular, it is assumed that the
stop time is not conveyed within the requests. Although working quite well for
the considered scenario, this approach has the major drawback that the distri-
bution of the duration of transmissions must be known in advance. The authors
also experienced the problem of performance degradation when reserving re-
sources in advance. However, the reasons were not examined.

In [GSW99], an approach to facilitate the co-existence of advance and imme-
diate reservation in a single partition is outlined. In such a case, one approach
is to require immediate reservations also to specify their duration in order to
allow reliable planning and admission control. The authors try to overcome this
requirement to notify the duration of immediate, instantaneous requests, by al-
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lowing requests to be interrupted. They present an admission control algorithm
that uses the probability of being interrupted in order to admit or reject a given
request.

2.2.4 Performance Issues

Performance is an important aspect in terms of both the performance of the
management system that controls the advance reservation environment and also
in terms of the achievable network performance, i.e., the amount of admitted
requests and the amount of data carried by the network. Previous work touched
this important topic only briefly. Three important aspects are described in the
following: the first deals with the overall network performance, i.e., the amount
of requests and bandwidth accommodated by the network. For that purpose,
an on-line algorithm (ROUTE OR BLOCK) was presented in [AAP93] which
provably achieves the optimal worst-case in terms of throughput of the over-
all network. The algorithm is used as reference for the evaluation of other
approaches developed in section 5.1.1. The second aspect covers the field of
computational complexity of routing algorithms in advance reservation environ-
ments, which shows the complexity of all problems discussed in this thesis are
computationally feasible. Finally, the third performance aspect deals with off-
line optimizations of the placement and routing of advance reservation requests
in networks. The general framework for these off-line optimizations requires
complete knowledge about all the requests in advance. This is considered to be
unrealistic for the environments discussed in this thesis. A fourth approach is
also mentioned here: deferred reservations which were introduced to immedi-
ate reservation schemes [NT01] in order to improve the utilization. Although
generally interesting, advance reservation environments provide even more op-
portunities to improve the network performance.

The ROUTE OR BLOCK Algorithm

Although not explicitly mentioning the term advance reservations, the through-
put competitive on-line admission control algorithm presented in [AAP93] also
falls into this category. Using only on-line admission control mechanisms, due
to the incomplete knowledge about future requests, it is impossible to reach an
optimal worst-case result. In [AAP93], lower bounds for the worst-case compet-
itiveness of an optimal on-line routing algorithm called ROUTE OR BLOCK
were given. Although not explicitly targeting advance reservations, the frame-
work presented in [AAP93] is general enough to cover also this case field of
application.

The algorithm achieves the theoretically optimal performance in the worst
possible case by avoiding to admit flows that block bandwidth on too many links.
In particular, a revenue is associated with each request and flows are admitted
depending on the revenue that can be achieved. In this scheme, flows that
require only a few links from the source to their destination are preferred since
higher overall revenue can be achieved when only those flows. In addition to
those requests with small path length, the algorithm also prefers flows with short
duration since this allows to maximize the amount of flows to be admitted over
time. In general, the revenue function can be arbitrarily chosen and therefore it
is possible to implement the admission control algorithm such that, for example,
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the total amount of accepted flows or the bandwidth carried by admitted flows
is optimized.

The algorithm is outlined in the following:

ROUTE OR BLOCK(G(V, E), s, t, tstart, tstop, r, ρ)

1 ∀τ ∈ [tstart, tstop], e ∈ E :
2 ce(τ, j) := u(e)(µλe(τ,j) − 1)
3 if ∃ path P in G(V, E) from s to t s.t.
4

∑
τ∈[tstart,tstop],e∈P

r(τ)
u(e)ce(τ) ≤ ρ

5 then route the connection on P , and set:
6 ∀e ∈ P, tstart ≤ τ ≤ tstop:
7 λe(τ, j + 1) := λe(τ, j) + r(τ)

u(e)

8 else block the connection

In the above algorithm, G(V, E) denotes the network graph, s and t denote
the source and destination node, tstart and tstop denote the start and stop time
of the transmission, r denotes the requested transmission rate, and it is assumed
that j requests were already admitted.

The parameter ρ denotes the revenue associated with a particular request
and can be arbitrarily chosen as described before. For example, if the amount
of requests to be accommodated by the network is to be optimized, ρ must be
set to 1 for each flow. ce(τ, j) denotes the cost of the edge e when request j is
admitted (l. 2), with µ := 2nTF − 1. F is chosen such that

1 ≤ 1
n
· ρ

r(τ)(tstop − tstart)
≤ F,

where u(e) denotes the capacity of the edge e. The ”relative” load on a link
e at time τ after admitting j requests is defined by λe(τ, j) which is updated
with each admitted request (l. 7).

where r(τ) denotes the sum of the allocated bandwidth at time τ . The
algorithm rejects a request, when the achieved revenue is less than the ”cost”
for routing the request. The cost of a request (l. 4) depends on its duration, the
number of links used, and the load already present on the links.

Let n be the number of vertexes, i.e., n = |V | and provided that the maxi-
mal duration T of all incoming requests is known in advance, it was shown in
[AAP93] that the ROUTE OR BLOCK algorithm is O(log nT )-competitive,
i.e., the performance of an optimal off-line strategy always reaches at most
O(log nT ) times the performance of the ROUTE OR BLOCK algorithm. Fur-
thermore, it was proved that this result is optimal, i.e., no other on-line routing
algorithm can perform better.

In [AAP93], the performance bound is achieved under the assumption, that
the minimal length of a path in the network is 1. In case the arrangement of
edge and core routers in the network topology or the traffic pattern guarantees
that the minimal length of a path is at least k < n = |V |, this lower bound can
be reduced to O(log (n−k+1)T ). The ROUTE OR BLOCK algorithm is used
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as reference routing algorithm to compare the performance of the other routing
algorithms described in section 5.1.

The algorithm was designed to be run in an environment where each request
is admitted on-line, and flows cannot be interrupted once admitted. This is
exactly the sort of environment as considered in this thesis.

Computational Complexity

The topic of computational complexity of routing problems related to network
with advance reservation mechanisms was discussed in [GO00]. The authors
present several routing problems and propose algorithms to solve those prob-
lems. Among the routing problems is finding the first available transmission
period as also discussed later in this thesis (see section 3.2.1). Most of the prob-
lems discussed can be solved in polynomial time, except for some of those that
search for the first suitable transmission interval and allow the transmission rate
to vary during the transmission period. Such a problem was proved NP-hard
and some heuristics were given. The performance of the advance reservation
mechanisms was only addressed with respect to the computational complexity.
For the approaches discussed later in this thesis, the results of [GO00] mean that
not the whole variety of possible services can be implemented in a sensible way,
since this meant to solve computationally infeasible problems. In this sense, the
authors of [GO00] showed the limits of implementing advance reservations in a
realistic system.

Off-line Optimization

Recently, the interest in performance aspects of advance reservations has lead
to two publications that deal with off-line optimizations of advance reservation
requests. An approximation algorithm for an off-line optimization in an advance
reservation system was described by [LNO02]. The authors show how geometric
algorithms and linear programming methods can be used to solve this problem
when complete knowledge about the whole set of requests is available.

The second approach to optimize the performance in advance reservation
environments [Erl02] is also based on complete knowledge about the whole set
of advance reservation requests. The author studies both on-line and off-line
admission control, i.e., the arrival of requests during the runtime of the reser-
vations system and the arrival of requests at the same time using admission
control based on approximation algorithms. The considerations lead to lower
bounds of the performance of admission control algorithms for both scenarios
which are proved for three types of topologies, star networks, trees, and trees of
rings.

These off-line optimization approaches require knowledge about the com-
plete set of requests in advance which is a questionable assumption in a realistic
environment. Instead, the considerations in this thesis apply off-line optimiza-
tion techniques only to the flows that are already known to the management
system.

Deferred Reservations

Besides those approaches to improve the performance of advance reservations,
another attempt to include the time into a QoS scheme uses deferred reserva-
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tions. This approach is solely intended to improve the overall performance of
a computer network by allowing an otherwise rejected request to be postponed
until sufficient bandwidth becomes available on the links with insufficient band-
width. This approach was outlined in [NT01]. However, although this approach
can increase the overall network performance, it is not useful in the scenarios
considered in this thesis. Deferred reservations do not allow to provide feedback
about the actual time of a transmission to a client since these information are
simply not available and is not possible to implement any additional service that
could not be offered using immediate reservations. Due to the lack of feedback
and hence the absence of a mechanism that provides an additional value for a
client in terms of reliable planning, deferred reservations may be an approach
to improve the performance of immediate reservation networks, however since
this requires additional efforts to deploy the mechanism, advance reservations
can be considered as a much more advanced technique with additional value
for clients. In particular the field of grid computing, which needs reliability and
planning for co-allocation and other purposes, cannot be satisfied using deferred
reservations.

2.3 Applications

2.3.1 Overview

Advance reservations are applicable not only for the reasons that are intuitively
clear, i.e., to provide increased admission probability when reserving sufficiently
early or to enable guaranteed allocations (co-allocations) when several resources
are required. The ability to reserve in advance, i.e., to get reliable information
and guarantees for a time interval in the future, can be seen as a QoS guarantee
by itself. This means, the uncertainty about the opportunity to obtain alloca-
tions in the future is removed and thus, a new service level with considerably
enhanced meaning can be offered to clients.

Applications for advance reservations have been identified in the field of
multimedia (video conferencing) and distributed systems, e.g., media servers
[BL00] with large amounts of data to be transferred in a timely fashion among
different locations (servers). The latter example also fits the area of content
distribution networks, e.g., large server networks for web caching. Furthermore,
it is conceivable to use advance reservations in order to manage virtual private
networks (VPN) in a timely fashion, i.e., provide bandwidth guarantees for such
VPNs that may vary over time but always require a certain level of QoS. For
example, the bandwidth broker application for managing VPNs, as described in
[KB00], can be extended to provide such an enhanced service and guarantees
the QoS level not only for the current time but also any desired interval in the
future.

In the following, a number of additional application environments are pre-
sented that benefit substantially from the ability to reserve resources in advance.

2.3.2 Mobile Computing

A special application of advance reservations in computer network is the field of
QoS provisioning for mobile devices. Providing QoS for such devices requires to
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Figure 2.11: Example: mobile, wireless streaming application. A client moves from
base station #1 to base station #3. Resources on the paths to any possible base
station, i.e., #1 to #4, are reserved in advance.

deal with handovers. Considering a server sending a video stream to a mobile
device, in a typical scenario the server is located somewhere in the wireline
Internet and the stream crosses a number of links until it reaches the access
point to which the mobile device is currently connected. In such a situation,
the QoS required for streaming the video is established along the route from the
server to the mobile client which involves a number of wired links. However,
when the client moves around and eventually leaves the area of its initial access
point, the handover that takes places requires not only to transmit the video
across a new path from the server to the access point but also to establish
the QoS guarantees for the video stream along this new path. This handover
must be done transparently for the client, i.e., without noticeable reduction of
the QoS. Such a situation is depicted in figure 2.11. It shows the problem of
resource wastage in such a situation: although the fourth base station is not
accessed, the resource on the corresponding path are reserved and hence not
available for other applications.

Such an approach has been outlined in [CCM+00]. The authors proposed
a framework for QoS in wireless networks called ITSUMO. Its foundation is a
bandwidth broker called QoS Global Server (QGS). This QGS is responsible
for negotiating QoS with wireless clients. Requests for QoS are only admitted
when the resources are sufficient in any of the possible access points. When a
reservation is successful, resources in all those access points are reserved. The
backbone is considered to be equipped with DiffServ-aware infrastructure.

A similar approach was described in [TBA01] and allows a mobile client to set
up a number of reservations along the paths from the server to the access points
that will be visited by the client at a later stage in advance. Ideally, the set of
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access points is known in advance. Otherwise predictions must be made which
was not further discussed in [TBA01]. Reservations are made to any access point
that may be visited in the future. In order not to waste too many resources,
the approach distinguishes active and passive reservations. The resources on
the paths that are currently unused may be used by other reservations. Once a
path becomes active, i.e., right before a handover takes place, the state of the
reservation is switched to active and is then exclusively available for the client
that initiated the resource allocation. This has the drawback that the total
amount of bandwidth available for reservations may be considerably decreased
because the scheme does not even allow other requests to allocate the resources
assigned to reservations in their passive state.

Another example for applying advance reservations in the field of wireless,
mobile networks is the application of M-RSVP [MA02], an extension of RSVP
to support wireless clients. The main idea behind this extension is to reserve
resources for existing sessions to the surrounding access points in advance. In
order to implement the reservation of resources for a wireless client which moves
around, it is critical to implement handovers between the different access points
and the wireless clients. Once an RSVP session is established between the client
and a server in the wireline network, this session and the respective reservation
will be lost once the client moves to another access point. The session therefore
must be established in the wireline network between the server and the access
point. The M-RSVP protocol allows to establish a resource reservation between
not only the currently active access point but also the access point(s) most likely
being accessed by the client in the near future before the handover actually
takes places. In this sense, M-RSVP can also be seen as an advance reservation
protocol for a special class of mobile applications.

In these environments, advance reservations impact the performance of the
underlying system in the sense that resource are wasted when resource alloca-
tions are kept on several paths in parallel, i.e., from the server to more than a
single access point. This is not only effective for the paths to access points that
are actually accessed during the lifetime of the transmission but also for paths to
access points that are not visited at all but had to be taken into consideration,
e.g., due to a false prediction on the basis of a mobility profile [CCM+00]. It is
possible that the predicted movement of a mobile client differs from its actual
behavior. For those reasons, the applicability of advance reservations in this
context is questionable and thus not explicitly in the focus of the considerations
in the following sections.

2.3.3 Cluster and Grid Computing

One of the most important fields of applications for advance reservations is the
area of cluster and grid computing [FK99b].

Cluster Computing

In the field of cluster computing, advance reservations are a mature concept to
allocate compute resources.

Large scale computers such as clusters require management systems in order
to control access to the nodes, monitor status, handle failures, and schedule
jobs. An example of a management system for such cluster systems is CCS
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Figure 2.12: Advance reservations of compute nodes using the CCS cluster manage-
ment system on a 16 node cluster.

[KR01] (see figure 2.12) which supports advance reservations of cluster nodes,
thus enabling reliable planning of resource allocations. In order to reserve not
only the compute resources in advance but also the network connections between
several advance reservation cluster systems, it is necessary to have an advance
reservation service available on the network layer, too.

Grid Environments

Although various other approaches exist to support grid computing, such as
UNICORE [Uni], the Globus toolkit [GLO] gained the most importance and
can be regarded as the de-facto standard in this area. This toolkit implements
means for the allocation of various types of compute resources in the field of
grid computing (see also [FK99a, FKL+99]). In [FKL+99], the implementation
of the resource allocation component GARA of Globus is outlined. In order to
keep track of future reservations, a time slot model is adopted [GO00, BH02],
i.e., the timeline is divided into slots of fixed size. This model was also adopted
for the implementations presented in this thesis (see section 3.4.2). A system
component called local resource allocation manager (LRAM) is responsible for
keeping track of the allocated and available resources in the future. The LRAM
component can be omitted in case an actual reservation system for the given
resource type is available which is capable of advance reservations. Resources in
this context may be any type of compute resources, mainly processor and net-
work, but may also include others, such as human resources, or other technical
installations such as radio telescopes.

The implementations concerned with the network resources as described in
[FKL+99] were based on RSVP without extensions for supporting advance reser-
vations and hence, an additional LRAM component was required. The structure
of GARA allows clients to use the respective functionality of any network reser-
vation system with support for advance reservations. Hence, it is possible to use
the bandwidth broker presented in this thesis also in a grid environment based
on Globus.

An example for a grid application is depicted in figure 2.13, describing a
tele-immersion application with the requirement to co-allocate very different
resources. A large amount of data received via satellite (e.g., from a space tele-
scope) is transmitted to distributed computer systems for processing. These
computer systems generate data streams which are transmitted to a third loca-
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3. data processing,
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(non real-time) (real-time)

Figure 2.13: Example: grid computing application using several resources and network
transmissions. Both bulk transfer of large amounts of data (step 2) and real-time
streaming transmissions (step 4) are required.

tion where the data is multiplexed and visualized. The visualization controls the
data processing and the real-time streaming. In this setting, the co-allocation
of the different resources is essential. The scarce resource ”space telescope” for
example determines the earliest time for which the reservations of the processing
units and the visualization infrastructure can be made. It must be assured, that
the network transfer of the bulk data is finished before the processing starts.
This processing may take some time before the actual streaming and finally
visualization can start. These timing dependencies must be considered during
the co-allocation which reasonably can only be made in advance.

As outlined in section 2.2.2, a bandwidth broker has been described in
[San03] in order to support the particular requirements of different grid comput-
ing application scenarios. However, as the thesis only implements two services
required by the grid environment, namely for real-time and bulk data trans-
mission, the additional requirements of grid computing in terms of higher level
services (see also [BHK+04]) are not addressed.

Future Directions

The current development in the area of Grid computing moves towards collab-
orative compute environments interconnected by dedicated network infrastruc-
tures, e.g., using a single fiber of an optical network solely for grid communica-
tion. Such infrastructures are called LambdaGrids, an example is the TransLight
project as described in [DdLM+03]. In such environments, a bandwidth bro-
ker which supports advance reservations can be used without the necessity to
support existing network infrastructure and components, e.g., based on RSVP
or MPLS, but may be directly applied in the network. If the LambdaGrid pro-
vides static routes, i.e., point-to-point connections, the important issues such
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as routing is no longer required. This simplifies the application of an advance
reservation service and allows to concentrate on the actual purpose of advance
reservations, i.e., providing enhanced services required to support future grid
computing infrastructures as described in the following.

Within such infrastructures, the enhanced services to be provided will be
based an SLA negotiations and deal with a different notion of network QoS
than mainly used today. These services, which will be discussed in the following
sections of this thesis, include fault tolerance and failure recovery, the capabil-
ities to support guaranteed deadlines, and allow clients to reliably plan their
compute jobs [BHK+04]. In this context, QoS requirements focus on the ap-
plications needs rather than the actual implementation of scheduling or routing
algorithms. Application requirements are the support for reliable co-allocations
of various resources with guaranteed start times and deadlines. The assurance of
deadline guarantees in turn requires the management systems to provide means
for failure recovery during runtime in order to find alternative resources if the
primary resources fail. Network support in this case does not only need to deal
with link failures but also with deadline guarantees for transmissions of bulk
data that occur due to job migration (run-time responsibility, see [BHK+04]).

2.4 Summary

The technologies, architectures, and algorithms previously presented show that
- among others - there exists a gap in previous work on advance reservations
in the sense, that besides developing architectures upon which advance reserva-
tion services can be implemented, the possible impact of those service on the
network performance have not been discussed in detail. Although sometimes
mentioned in the previous work, the newly added temporal dimension raises a
number of questions related to various performance aspects of the management
of advance reservation networks. In particular, it is of interest how the introduc-
tion of the additional temporal information can be used to improve the network
performance for clients and operators of a network. Performance in this con-
text is meant in a broader sense than only throughput, utilization, or admission
probability. In addition, such things as planning reliability, fault tolerance in
case of link outages or failures and the performance of the management system,
e.g., in terms of response times, are important to examine, in particular when
SLAs are negotiated that define not only the behavior of a single component of
a large system but the QoS provided by the system as a whole which includes
any component involved in processing a compute job [BHK+04].

The previously mentioned QoS techniques and methods can be seen as the
foundation for future implementations. In order to introduce a new network
service such as advance reservations, it is generally important to avoid that a
whole new infrastructure must be deployed in order to implement the service.
Instead, it is favorable to rely on existing infrastructures which can be used
without major adaptations.

When reviewing the QoS mechanisms available in current networks including
MPLS, the drawbacks of especially the IntServ/RSVP approach become obvi-
ous. Traffic engineering based solely on this protocol is impossible since it relies
on IP routing. The QoS requirements of future applications, e.g., in the field
of Grid computing, can only be dealt with by providing an infrastructure that
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supports more than the currently available QoS mechanisms.
In order to build a management infrastructure in such an environment, the

concept of bandwidth brokers as defined in the context of DiffServ together with
the flexibility of MPLS is a suitable foundation for advance reservations and the
additional service on top of it, which will be described in the following sections.
In particular, DiffServ may be used to provide partitioning of the available re-
sources and to implement a service class for advance reservation traffic which
is separated from immediate reservation traffic with unknown duration or best-
effort traffic. Depending on the nature of the traffic, bulk transfer or real-time
traffic, both the EF and AF PHB may be specified. Another example for such
a strict partitioning approach is the design of LambdaGrids which uses a dedi-
cated fiber of an optical network to interconnect the different entities of a grid
system, for example, clusters and networks. Such partitioning has the advan-
tage of allowing only access for reservations with specified duration and hence
avoiding complications with other reservations where the duration is unknown.
The combination of bandwidth brokers as admission control and management
component within dedicated networks, together with MPLS which provides the
functionality for traffic engineering, is the foundation for the implementations
described in the following sections.



Chapter 3

Advance Reservation
Framework

In order to provide an advance reservation service and the additional functional-
ity introduced by the temporal dimension, a framework is required that manages
the network resources and provides interfaces to clients in order to enable the
service negotiation. Using the concept of bandwidth brokers as already dis-
cussed in chapter 2 is a suitable way to deal with such issues. As described in
[San03], using MPLS together with DiffServ provides a suitable foundation for
advance reservations which guarantees control over the network infrastructure
as required for implementing a reliable advance reservation service.

In this chapter, the special properties of advance reservations in a computer
network are presented. The general concept of bandwidth brokers and various
aspects related to immediate reservations were introduced and widely discussed
in previous work, e.g., [NJZ99]. Hence, the focus in the following sections is
on the advance reservation environment and its special requirements that must
be supported by a bandwidth broker. Furthermore, the additional services that
can be offered to clients are discussed and how these services are implemented.

3.1 Application Environment

Due to various problems related to the different timing specifications in imme-
diate and advance reservation requests, the approach described here is based on
strict partitioning of advance and immediate reservations with known duration
and those with unknown duration (see section 2.2.1). This procedure simpli-
fies the implementation and can be extended to support also shared partitions
if necessary. The restriction to resource partitioning does not affect the gen-
eral approaches and techniques applicable in advance reservation environments
which are the focus of this thesis. Most recent developments in the area of
network support for e-science and grid computing focus on the implementation
of LambdaGrids [DdLM+03, ABW04] where a dedicated fiber is available for
inter-connecting globally distributed compute resources. Such a LambdaGrid
can be understood as a network that provides a dedicated resource partition
for the advance reservation service. The partitioning approach does not require
a LambdaGrid, but can be implemented using common Internet technologies,
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for instance, when using a particular DiffServ service class solely for advance
reservations.

time

bandwidth

space

Figure 3.1: Dimensions of the advance reservation problem. The spatial (routing) and
bandwidth dimension also exist in immediate reservation environments.

The space in which clients may specify their requests and the management
system can influence the overall network performance is determined by the three
dimensions space, bandwidth, and time (see figure 3.1). The spatial dimension
in this context means the path selection process, i.e., space in this sense is the
network topology, and the option to adjust the bandwidth is also a realistic
opportunity in the advance reservation environment. The main property of the
advance reservation service is to add the temporal dimension to the reservation
mechanism. In contrast to advance reservations, in an environment that sup-
ports only immediate reservations the temporal dimension can only be included
with very limited scope. For example, the approach to implement deferred reser-
vations, i.e., requests which cannot be fulfilled when they occur are delayed,
deals with this temporal aspect [NT01].

3.1.1 Reservation Model

The advance reservation service provides admission control for advance reserva-
tion requests. Such requests are processed and replied to in an on-line fashion
such that the time between request and response as short as possible. This is es-
sential in order to guarantee that in case a co-allocation of different resources in
a grid computing environment is made, the admission decision can be provided
as soon as possible to the grid application.

The general service model for advance reservation requests has been de-
scribed in other previous publications, e.g., [WS97]. Two essential definitions,
which will be used frequently throughout this thesis, are made in the following.

Definition 3.1 (Advance Reservation Request) An advance reservation
request is defined as ra := (s, d, tstart, tstop, b), where s and d are the source and
destination node, b denotes the requested transmission bandwidth, and tstart and
tstop denote the start and end time, respectively.

Definition 3.2 (Reservation Time) When an advance reservation request is
issued to the management system at time tresv, the difference tstart−tresv is called
reservation time.

An advance reservation request is sent to the bandwidth broker which pro-
cesses the request and grants or denies access to the network during the re-
quested time period.
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Figure 3.2: Advance reservation primitives and phases of the reservation [WS97].

This leads to the temporal sequence as depicted in figure 3.2. As in [WS97],
the three phases between the initiation of the request at tresv and the end of
the usage of the resources at tstop can be distinguished, using the reservation
primitives shown in figure 3.2.

During the first phase (negotiation), the admittance to the requested re-
sources is negotiated. This may include one or more rounds of REQUEST and
CONFIRM (or REJECT) messages exchanged between client and bandwidth
broker. The intermediate phase starts after the resources have been successfully
reserved and ends with an explicit DEMAND primitive, which denotes that the
client is alive and ready to start the usage phase. The DEMAND primitive may
initiate a preparation of the resources for the usage phase. The intermediate
phase is assumed to be considerably longer than the negotiation phase and per-
haps even than the usage phase, and may last several hours, days or even weeks.
In case the requested resources are not needed until the end of the negotiated
usage phase, the handshaking (CLOSE/ACK) at the end of the usage phase
can be used to signal to the bandwidth broker that the resources are no longer
required and may be used otherwise. In general, when a reservation terminates
as scheduled, it is not required to explicitly notify this event. For security rea-
sons, the bandwidth broker must signal the end of the usage phase to the edge
router in order to avoid having further packets emitted into the network by
unauthorized sources.

The negotiation phase is not restricted to only a single round of messages as
depicted here, i.e., negotiations with several rounds can be implemented. For
example, as required for more sophisticated resource allocation protocols, such
as auctions or malleable reservations as discussed in section 3.2.2, it is desir-
able to implement multiple rounds of negotiation in order to eventually reach
an agreement on the extend to which the network resources can be used by
the client. For example, it is possible that the BB responds to the initial re-
quest for a fixed transmission interval with a set of possible parameters that
describe reservation alternatives in case the requested interval may not be avail-
able. In a second phase, the client may select one of the alternatives which is
then acknowledged by the BB. Using such a mechanism is not only required to



34 CHAPTER 3. ADVANCE RESERVATION FRAMEWORK

implement auctions or malleable reservation but in case of an initial rejection
may be required to negotiate service parameters that are subject of an SLA
between client and management system.

3.1.2 Management Layers

Application

Application-dependent Operations Layer
(Services, Timing/Bandwidth Dimension)

Transparent Operations Layer
(Management, Spatial Dimension)

Network Core (Routers)

Network
Management

Application
Interface

Network
Interface

Figure 3.3: The two management layers of the bandwidth broker.

The bandwidth broker described in this thesis consists of two main lay-
ers which identify the different approaches to improve the performance. The
application-dependent operations layer contains the functionality to support ad-
ditional services, as will be described in section 3.2, such as the search for a suit-
able transmission interval. Below this, the transparent operations layer contains
the mechanisms that are used to manage and optimize the network performance
transparently for the applications. This contains the strategies that deal with
the optimization in the spatial dimension, i.e., in particular the routing strat-
egy. The two layers of the management system are depicted in figure 3.3. Both
services and management mechanisms are described in the following sections.

3.2 Services

Advance reservations provide an intuitive model for increasing the admission
probability and provisioning of reliable planning. On top of this advance reser-
vation service, a number of additional services can be implemented that are
new in the field of computer networks and improve the network performance
perceived by clients. These services cannot be implemented in a common im-
mediate reservation system but require the special temporal properties of the
advance reservation environment.

In [San03], a bulk-transfer service and a real-time transmission service re-
quired in the grid computing environment were presented, thus concentrating
on the way how a given requirement for a transmission is mapped onto the
corresponding functionalities of the network. In this context, the term service
refers to the way certain traffic characteristics can be assured using the router
mechanisms available to prioritize network packets.

In contrast, the services outlined here each describe a functionality that
uses in particular the additional temporal dimension in the advance reservation
framework.
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3.2.1 Search for Transmission Intervals

In a straightforward manner, a new service that can be implemented in the
advance reservation environment is to determine the first available transmission
period for a request of given duration and transmission rate. In the same way,
the search for a suitable time interval for a transmission within a given deadline
can be implemented.

time

bandwidth

t
resv tdeadlinetfirst

tduration =  tstop  - t start

request

search interval

Figure 3.4: Parameters and temporal sequence for requesting the first available trans-
mission interval starting at tfirst respectively the search for an interval up to the dead-
line tdeadline.

Such a service is preferably implemented in the management system of a net-
work. Although in general, it is possible to implement this functionality within a
client by repeatedly issuing requests until finally a suitable transmission interval
is found, the network overhead for submitting the requests and the computa-
tional overhead for processing frequently repeated requests is high and can be
avoided. In an immediate reservation system such services cannot be imple-
mented at all because information about the future is not available. In addition
to the simple search for a transmission interval for a fixed rate transmission,
e.g., required for streaming video, the transmission rate may vary during the
transmission interval in order to most efficiently utilize the available network
resources.

For this kind of service, in addition to the duration and bandwidth, the ear-
liest possible start time tfirst must be submitted within the REQUEST message
and perhaps the deadline for the transmission. The actual parameters then
must be included in the CONFIRM message sent by the bandwidth broker (see
figure 3.2).

3.2.2 Malleable Reservations

When extending the service outlined before and also allow the transmission rate
to vary within given boundaries, this leads to malleable reservations. This type
of reservations has so far mainly been discussed in the field of job scheduling
[LT94, Jan02, VD03]. The general idea of malleable reservations is that the du-
ration of a job is a function of its resource consumption. This general framework
allows to vary the resource consumption over time and also start and end times
of the job, thus making resource management more flexible and improving the
resource utilization.

In situations that require a fixed amount of data to be transmitted over a
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network, the exact transmission rate is not of importance as long as the gen-
eral capabilities of the sender and receiver, e.g., a maximum transmission rate,
are not exceeded and optional timing constraints for the transmissions, e.g., a
deadline, are met. As in the scenario outlined in section 3.2.1, in such a setting
it is suitable to implement the search for an appropriate transmission interval
and rate as a service within the bandwidth broker. A sample application for
this type of service is transferring backup data collected during night time to
a storage server until the next morning, or the transmission of input data re-
quired for a computation on a grid system to the computers involved in the
computation before the computation starts. Another application is a content
distribution network such a distributed media server system [BL00] where large
amounts of media files must be distributed across the interconnecting network
to the different servers.

time

bandwidth
interval

tresv tdeadline
tfirst

possible transmission
of b  bytes

search interval

Figure 3.5: Parameters and temporal sequence for requesting a malleable reservation,
e.g., for data transfers. Two possible shapes of the transmissions are given, both with
d bytes being transmitted in total. The bandwidth constraints of sender/receiver (bmin

and bmax) must be specified within the request.

As described in section 3.2.1, the actual transmission rate may vary during
the transmission period. In case the applications themselves are not capable of
adjusting the transmission rate accordingly, traffic shaping can be implemented
on the edge devices (routers) of the network by dropping packets in case the
incoming packet rate is too high. Thus, the sender can always use the maximally
possible transmission rate, and by dropping packets on the network devices,
most appropriately edge routers, the desired rate can be met.

This concept is somewhat orthogonal to what has been described in [FRS00],
where on-line QoS adaptations are proposed using sensor information from the
network. In our case, the admission control process of the management system
takes the sensor part (due to its knowledge about current and future network
status) and is responsible for the adaption of the transmission rate and time.
However, in contrast to [FRS00], in case of advance reservations these parame-
ters are guaranteed by the bandwidth broker after the decision of the manage-
ment system has been made. The parameters may be subject of an SLA, e.g.,
for the application in the larger context of a grid system [BHK+04].

In addition to the parameters identified in section 3.2.1, the capabilities of
the sender and receiver in terms of maximal and minimal transmission rate must
be specified for this service (see figure 3.5).
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3.2.3 Feedback
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Figure 3.6: Feedback: communication between client and bandwidth broker

The possibly considerable amount of time between request submission and
acknowledgment (CONFIRM), respectively the transmission start indicated by
the DEMAND primitive can be used to implement a service that provides feed-
back even for rejected requests. Considering a given request, it might not be
possible to admit the request to the network immediately after its submission,
even in case only loose constraints for a transmission interval were specified.
However, after a certain amount of time, but before the actual start time of the
rejected transmission request, the status of the network may change - e.g., due
to a reorganization of the admitted flows (see section 3.3.5) - and as a conse-
quence it may be possible to admit requests that had to be rejected before. In
those cases, the bandwidth broker can provide this as feedback to the clients.
This can also mean to delay the response to a request until the latest possible
point in time as specified by the client, thus increasing the time available for
the admission decision.

In figure 3.6, the steps during the communication between client and server
with enabled feedback are depicted. tfeedback is specified by the client within the
request and denotes the latest point in time for the feedback message to arrive at
the client. The response message contains information about the actual timing
and bandwidth parameters as chosen by the admission control process. Upon
reception of such a message, the client replies with an acknowledge message in
order to notify the acceptance to the management system.

In order to implement such a functionality, appropriate asynchronous com-
munication channels between clients and bandwidth broker must be established.
This is difficult to engineer since it highly depends on the communication part-
ners involved. For example, a human client may receive an email whereas a
software client, e.g., an autonomous agent acting as a part of a grid toolkit,
may be accepting asynchronous messages using a suitable network protocol.
Moreover, the feedback channel and the feedback protocol (email, TCP, etc.)
must be submitted within the request.
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Table 3.1: Parameter set of advance reservation requests

Service Type Parameters Status
Fixed optional

Start time mandatory
Stop time mandatory
Transmission rate mandatory

First-fit / Deadline optional
Duration mandatory
Transmission rate mandatory
Time mandatory

Malleable optional
Total amount of data mandatory
Earliest start time optional
Deadline optional
Min. transmission rate optional
Max. transmission rate optional

Feedback optional
Deadline mandatory
Feedback channel specs. mandatory

3.2.4 Request Types

The services described before require additional parameters to be submitted
with a request. These parameters are summarized in table 3.1. Exactly one
parameter out of fixed, first-fit/deadline, and malleable must be spec-
ified, changing the advance reservation request (see definition 3.1) accordingly.
The time parameter belonging to first-fit/deadline is interpreted as first
possible start time (first-fit) or deadline, respectively.

The first three items in the table describe the different service types which
can be submitted using a number of mandatory or optional parameters. The
feedback specification can be used to allow off-line optimizations and requires
to specify the deadline for the reception of the response message to the request
as well as the specification of the feedback channel, e.g., email, RPC, etc.

3.3 Managing Advance Reservations

In general, in the advance reservation environment any performance optimiza-
tion mechanism which is applicable in immediate reservation environments can
also be used. This includes techniques such as call preemption [GG92] or parallel
transmissions on multiple paths [AAA+02, LG01]. In addition to these mecha-
nisms, advance reservations allow the management to use a number additional
techniques in order to improve the performance and to admit more requests.

In the following, the basic ideas behind these techniques are presented. The
actual implementation and performance will be discussed in chapter 5.
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3.3.1 On-line versus Off-line Mechanisms

In contrast to immediate reservations, where usually only on-line admission
control is performed, i.e., requests are admitted as soon as possible after the
submission of the corresponding request, the advance reservation scheme allows
to include both on-line and off-line mechanisms in the management system. In
particular, it is possible to perform an optimization of the flow-to-path mapping
off-line. This extends the considerations in [WS97], which proposed to use the
intermediate phase for the preparation of the resources for the usage phase, e.g.,
set up routes. A management system should be capable of processing requests
both on-line, i.e., a response is expected as soon as possible, and off-line, where
”off-line” means, for example, that the response from the management system
is delayed (see section 3.2.3).

The problem to be dealt with in any case is to find suitable optimization
criteria for both on-line and off-line mechanisms. Using the on-line admission
control, knowledge about the whole set of reservations that will ever enter the
system is not available and admission control must be performed individually for
each request. This is likely to lead to suboptimal admission decisions [GG92].

In a realistic scenario, requests frequently enter the system at any time and
due to the dynamics in this environment, global knowledge is also unavailable
to an off-line strategy. This means, it is infeasible to compute a globally optimal
solution for the admission control problem, i.e., to determine which requests to
admit and which to reject. In such an environment, the strategies proposed in
[Erl02, LNO02] (see section 2.2.4) are not applicable.

3.3.2 Routing

In general, routing in advance reservation networks has the same purpose has
in immediate scenarios: the task is to find a path with sufficient bandwidth in
order to provide the requested transmission rate. For this purpose, any suitable
algorithm may be chosen, for example, Dijkstra or Bellman-Ford. The only
optimization opportunity arises when several such feasible paths exists. Then,
the routing algorithm needs to select one of the feasible paths.

time
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Figure 3.7: Routing in networks deals with the spatial dimension of the problem space.

In this sense, routing deals with the spatial dimension of the advance reser-
vation problem as depicted in figure 3.7. A considerable amount of research
has been dedicated to the field of routing and in particular QoS routing. The
different approaches can be divided into source routing, hierarchical routing,
and distributed routing strategies [CN98]. In the environment as presented here
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which supports explicit routing based on MPLS, a source routing approach is ap-
propriate. In general, source routing has some drawbacks, such as the difficulty
to obtain a global state and inaccurate state information due to propagation
delay and protocol overhead, in particular in case of link failures. However, in
the environment considered here, i.e., a bandwidth broker with knowledge about
the network topology, the network management itself keeps the global state (i.e.,
the information about link utilization) and thus does not rely on information
from nodes. The general setting uses a specific partition of the network capacity
only for advance reservations and immediate reservations with known duration.
This partition is exclusively controlled by the bandwidth broker and hence, the
drawbacks of source routing do not apply here. The routes can be set up by the
bandwidth broker and in case of failures, a number of different fast rerouting
schemes exist which do not require intervention of the bandwidth and can be
applied also in the advance reservation environment.

Suitable routing strategies for advance reservations are scarce and not well-
studied so far. There are mainly two interesting aspects in this context. The
first is the computational complexity of routing problems under the advance
reservation paradigm. This aspect was covered for a number of different scenar-
ios in [GO00]. A number of routing problems related to advance reservations
are computationally feasible, among the problem of finding a feasible path for a
request with fixed parameters 3.1. Only certain problems, allowing the resource
usage to vary during the transmission interval, are computationally infeasible,
i.e., NP-complete. The considerations in this thesis concentrate on fixed band-
width problems, since they are the most realistic ones. The second aspect of
routing in advance reservation environments is the overall performance of the
routing algorithms which has not attracted much attention in previous work.
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Figure 3.8: Routing: usage of link utilization to weight paths.

In order to develop routing algorithms that are successful in advance reserva-
tion environments, it is possible to adopt strategies applied in immediate reser-
vation scenarios. Routing algorithms that use link utilization to weight paths
have been shown to perform well in such immediate reservation environments
[MS97a, MS97b, WN02]. In that context, link utilization refers only to a single
point in time, i.e., the actual time. This must be extended in advance reser-
vation scenarios in order to cover the whole duration of the request (see figure
3.8). An example for such an algorithm is the ROUTE OR BLOCK algorithm
presented in section 2.2.4.

The performance of a particular routing algorithm in terms of achievable
number of admitted flows and throughput depends on the nature of the requests,
e.g., in case only requests between two end nodes of the networks are submitted,
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it is useful to exploit any possible network path between those nodes independent
of the hop count, whereas in case requests between many different pairs of end
nodes are submitted it is preferable to only use the shortest paths in order not
to waste bandwidth by allocating bandwidth on too many hops.

Concluding, it can be said that optimizing the performance in a network
with advance reservations using the on-line routing strategies differs from the
situation in an immediate reservation scenario, but the difference are only mod-
erate. In particular, the additional complexity of the routing process is only a
single factor which depends on the duration of a given request.

3.3.3 Flow Switching

time

bandwidth

space

Figure 3.9: Flow switching: the usage of multiple paths during the lifetime of a flow
affects both the spatial and temporal dimension.

In order to improve the performance of the network transparently for clients,
the advance reservation environment allows to transmit each flow using multiple
paths during its transmission interval, i.e., a flow can be switched to a different
path during its lifetime (flow switching). It must be noted, that this does not
mean the transmission of a single flow using multiple paths in parallel.

The flow switching approach affects both temporal and spatial dimension
(see figure 3.9). The time is affected at the single path level, since different
paths are used at different points in time.

In contrast to transmitting the packets of individual flows using multiple
paths in parallel [LG01], this approach does not have the drawback of requiring
intelligence within network devices that have to split flows, or large overhead
due to an increased number of routes to be set up on the network. Moreover,
the sequential usage of several paths during a data transmission does not require
additional efforts such as reordering packets at the sink and can be implemented
without impacting the sender or receiver application.

An example is depicted in figure 3.10. The search for the paths can be
efficiently implemented by iteratively computing the path with the longest pos-
sible time interval with sufficient bandwidth. The path computation can be
implemented, e.g., using Dijkstra’s shortest path algorithm as foundation.

A possible drawback of this approach is that the packet delay may change
due to the path switches and in case additional metrics besides bandwidth are
important for a flow, this must be considered.

The flow switching approach using several paths can only be applied in
the advance reservation environment by using the knowledge about future link
utilization.
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path 1

path 2

path 3
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request

Figure 3.10: Example of a flow taking multiple paths. The flow is routed using path
1 during the interval t1, path 2 during t2, and path 3 during t3.

3.3.4 Flow Scheduling

time
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space

Figure 3.11: Flow scheduling affects all three dimensions of the problem space.

In the advance reservation environment, the time difference between trans-
mission request and transmission start allows to handle requests much more
flexible than in an immediate reservation environment. The malleable reser-
vations service specified in section 3.2 where only boundaries for transmission
in terms of duration and bandwidth are given, allows to schedule such flows
according to the needs of the management system, i.e., that the network perfor-
mance is optimized. Thus, all three dimensions of the optimization space can be
exploited (see figure 3.11). In [Bur03a], the flow scheduling approach has been
examined, showing that the network performance can be significantly increased.

Using the on-line admission control approach, it is not possible to optimize
the network performance from a global view, i.e., each request is admitted in-
dividually and hence, any global optimization criterion such as the number of
admitted flows or the utilization of the network resources cannot be used. Con-
sequently, only algorithms can be applied that try to follow local optimization
criteria. In this context, ”local” refers to the individual admission decision, i.e.,
accepting or rejecting a request, where accepting is the optimization goal.

3.3.5 Off-line Optimization

As discussed in section 3.3.1, the intermediate phase can be used to perform
off-line optimizations, i.e., it is possible to optimize the placement of flows onto
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the network. Two variants are conceivable: the first requires to contact the
client and provide feedback concerning the parameters of the transmission in
an asynchronous manner, the second only performs optimizations which do not
require to send feedback to the client. The latter deals with rerouting of ad-
mitted flows, e.g., by choosing multiple transmission paths over time. Thus, it
is possible that the off-line optimization only affects the spatial dimension, but
also all three dimensions (in case feedback is possible) may get affected.

Source #1

Destination #2Source #2

MPLS
Domain Destination #1

MPLS
Domain

Source #2

Source #1

Destination #2

Destination #1

Figure 3.12: The route setup may result in blocking in the common link (left). Off-line
optimization can result in rerouting (right) and more efficient resource usage.

One task in this context is to determine the set of flows that can be con-
sidered during the optimization. In general, any admitted flow can be included
in that set. Furthermore, the advance reservation environment allows to take
rejected flows into account using the feedback mechanism described in section
3.2.3. Together with the flow scheduling option (see section 3.3.4), this allows
the management system to optimize not only the routes, which can be done
transparently for the network end points, but also to adjust the start and stop
times of future transmission according to the needs of the network management.
In figure 3.12, an example for this procedure is shown. A commonly used link
may be blocked when routes are set up as depicted on the left. This can be
detected and changed using the off-line optimization.

Such an optimization can be rather successful even in case only the currently
active flows - which represent only a subset of those flows that can be considered
in the advance reservation environment - are considered for rerouting. This was
shown in [BKL03], where the authors presented an optimization technique for
rerouting flows in MPLS-based networks. The technique can easily be adapted
to fit into the advance reservation environment.

In contrast, the optimization strategies for advance reservations proposed in
[Erl02, LNO02] require knowledge about the whole set of requests. It is ques-
tionable, whether such assumption is valid in a real-world scenario where the
status of the network constantly changes due to requests arriving frequently
over a long period of time rather than altogether at a single point in time.
Consequently, coordination between on-line admission control and off-line opti-
mization is required.

3.3.6 Failure Recovery

An important task of a network management system is to deal with link failures.
In case a failure occurs on any link of a path, the flows affected by the failure
are ordered, e.g., by their request time, and in this order switched - if possible -
to one of the other paths from the set which does not contain the broken link.
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Moreover, not only the flows being active at the time the failure occurs are
rerouted but also those that are expected to start within the downtime of the
broken link can be rerouted in advance which reduces their preemption probabil-
ity. The failure recovery strategy in an advance reservation network is especially
important with respect to the performance of the network. The consequences
of the additional temporal dimension for the failure recovery mechanisms are
discussed in chapter 6.

3.4 Software Architecture

Network Interface
(COPS, etc.)

Network Configuration
(Path setup, Label bindings)

Client

User Interface
(RPC, CORBA, .NET)

Netwok Components
(Routers)
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Failure Recovery
(off-line)
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(on-line)

Bandwidth Broker

Bandwidth
Broker

Bandwidth
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Communication
with other Domains
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with other Domains

Figure 3.13: Software architecture of the bandwidth broker

In order to provide the services previously described it is required to set
up a management infrastructure which provides the interface between network
layer, i.e., MPLS aware routing infrastructure, and clients such as grid or mo-
bile applications. Unlike the previous approaches that do not actively influence
the network behavior, e.g., RSVP-based mechanisms [SKB97] or passive man-
agement agents [SP97], the usage of MPLS allows the management system to
apply the services and management techniques previously described by defining
and setting up routes on the network using the explicit routing functionality
of MPLS. This is the purpose of the bandwidth broker. Its basic functional-
ity is to perform admission control, to set up paths, and to initiate binding of
flows to paths within a network domain. Performance from the view of the
network operator usually means to maximize the profit of the network in terms
of accepted requests and throughput, i.e., the amount of bytes carried by ad-
mitted flows. Based on the properties of the advance reservation environment
and using the services previously defined, the bandwidth broker can implement
a set of optimization procedures which improve the utilization and benefit of
the network.

The bandwidth broker implements the services and optimization mechanisms



3.4. SOFTWARE ARCHITECTURE 45

described in sections 3.2 and 3.3. The basic task of the bandwidth broker is
to control admission to the network, i.e., to check whether sufficient resources
are available to satisfy a given request, and to communicate with the network
components. The software architecture of the bandwidth broker is depicted in
figure 3.13. In addition to the denoted components, a policy module is required
in order to perform authentication and authorization. However, as the focus of
this thesis is on other aspects, the policy related questions are omitted here.

3.4.1 Interfaces

The bandwidth broker requires to expose three interface for the communica-
tion with the ”outside world”. The first is the user interface which provides
functionality to submit requests for network resources and the second is the
interface to the network which implements the functionalities required to estab-
lish the advance reservation service. The third interface is responsible for the
communication between bandwidth brokers in multiple domain environments.

Application Interface

The application interface can be implemented using a variety of different meth-
ods such as RPC, CORBA, Java RMI, or .NET. These functional interfaces can
be integrated into web services in order to provide user access. Hence, it is pos-
sible to have human clients as well as software agents. The actual type of client
(human or software program) also has implications on the functionality of the
bandwidth broker. For example, a software agent may allow several rounds of
negotiation and establish return channels thus allowing a considerable amount
of time between a request and the respective admission decision whereas human
clients may want to receive the response (i.e., admission or rejection) without
any delay.

Network Interface

The interface between the bandwidth broker and the network devices, i.e., in
general these are edge routers, can be implemented using several currently avail-
able protocols such as COPS [Dur00, CSD+01], or SNMP [MCRW96, CMPS02].

If the COPS protocol is used in order to enforce certain policies, e.g., QoS
or security, on the network, each network device connects to its policy decision
point (PDP) upon boot-up. In the context of this thesis, the policy relates to the
QoS guarantee for admitted flows and the PDP is the bandwidth broker. Upon
connection, the broker then provides the network device with any information
necessary to perform its role. For edge routers (PEPs) this comprises, e.g.,
information about set up of explicit routes and currently admitted flows.

In case a new flow is about to enter the network, the bandwidth broker uses
the protocol to inform edge routers (policy enforcement points, PEP) about this
event and - when required - initiates the definition of a new explicit route (see
figure 3.14). Following that, the traffic flow is admitted to enter the MPLS
domain at the specified start time. In order to accurately provide the requested
resources to clients, it is necessary to start the signaling and path setup a certain
time before the transmission commences. This scheme using explicit signaling
from the PDP is called control driven.
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Figure 3.14: Interface BB-Network: signaling between bandwidth broker (PDP) and
edge LSR which acts as PEP.

Using the reservation setup as outlined in figure 3.2, the signaling of the
bandwidth broker is preceded by a DEMAND message from the client request-
ing a transmission. The subsequent steps can be classified as preparation of
the requested resources for the usage phase [WS97]. Even when this DEMAND
message is omitted in the protocol, the control driven approach allows the band-
width broker to prepare the resources in a way that upon arrival of the first
packet of an admitted flow, the respective path is set up on the network.

As an alternative to the previously described control driven scenario, it is
conceivable to implement a data driven preparation of the requested resources.
This means, upon reception of a new data flow, the PEP (edge router) will
contact the bandwidth broker in order to acquire information about admissibility
and perhaps routing for the new transmission. The bandwidth broker may then
provide the requested information to the PEP, which in turn initiates the path
setup as in the control driven setting. This approach has the disadvantage that
a considerable amount of time may pass between the arrival of a new flow at
the PEP and the end of the resource preparation. During this period, the traffic
flow will not receive its guaranteed QoS. As this is usually not desirable, the
control driven approach should be preferred over the data driven approach.

In conjunction with an underlying MPLS infrastructure, routes are estab-
lished on the network using the explicit routing functionality. The setup of a new
path using CR-LDP or RSVP-TE on the network only needs to be performed
if the path does not exist yet. In any other case, it is sufficient to bind the new
flow to the respective label at the ingress node. This means, whenever a route
can be reused for a new flow, the bandwidth broker only notifies the arrival of
this new flow to the corresponding PEP which is responsible for appropriate
labeling of the flow’s packets.

Inter-Broker Interface

In order to communicate with other domains and to allow resource reservations
across domain borders, it is necessary to communicate among bandwidth brokers
of different domains. The different architectures and approaches for managing
inter-domain traffic in advance reservation scenarios will be described in chapter
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8.
The actual interfaces for establishing communication channels between bro-

kers in general does not necessarily differ from those used for the communication
between client and bandwidth broker. However, an effort to develop a protocol
was made by the Internet2 QBone Signaling Group [Tea01]. The Simple Interdo-
main Bandwidth Broker Signaling (SIBBS) protocol was developed but reached
dissemination only in the limited QBone environment. Its design goal was to
support the QBone premium service which can be observed as an instance of the
DiffServ premium service as described in section 2.1.2 and is characterized by
six parameters, i.e., start and end time, source and destination, MTU size, and
peak rate. The SIBBS protocol in this context is a TCP-based request-response
oriented protocol which can be used to request a certain type of service guaran-
tee of the QBone premium service. SIBBS acts on a 1:1, domain-to-domain basis
exchanging pairwise messages between two bandwidth brokers. This means, a
request message is sent from the source to the destination domain which - upon
successful reservation - in turn sends a response message back to the source do-
main (see also section 2.1.2). In case of resource shortages in any of the domains
involved, the request message is immediately responded by a negative response
message.

3.4.2 Admission Control

Requests from clients are processed by one or more admission control processes
(parallelism can be implemented using the locking mechanism described in sec-
tion 3.4.6) which uses the information stored in the database. This process
implements the services and strategies discussed in the previous sections, such
as routing or scheduling malleable requests. Once the admission decision is
made, the database is updated and the response sent to the client. In case, no
decision can be made in time, such a request is rejected.
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Figure 3.15: Storage of Requests using slotted time and fixed book-ahead interval.

In general, two opportunities exist to specify the timing parameters of an
advance reservation request. The first to allow a client to choose the start
and end time of a request without any restriction, i.e., it is possible to select
values with arbitrary granularity. On the other hand, several approaches exists
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which are based on slotted time. In this model, the timeline is divided into slots
of fixed size as depicted in figure 3.15. Thus, reservations can be issued for a
number of consecutive slots. The duration covered by a single slot can be chosen
depending on the actual application environment, i.e., a slot may represent a
minute, hour, etc. This slotted time scheme has been widely adopted [SNNP99,
GO00, FKL+99, BH02] and therefore is also applied for the implementations
made in this thesis. Furthermore, the slotted time model does not represent a
restriction if slots are reasonably sized.

Book-Ahead Interval

Using the slotted time model, the resource usage for each link in the network
must be stored by the bandwidth broker. This information is accessed during
admission control and used to determine whether sufficient bandwidth is avail-
able to admit a request. Storing utilization information in this way provides
much faster access to the relevant information during admission control in con-
trast to storing only flows with the related reservation data. The reason is, that
the admission speed is decoupled from the amount of admitted flows because
only a certain number of slots, which depends on the requested duration, needs
to be checked for each request.

The time interval for which reservations can be issued is called book-ahead
interval, which may be infinite or restricted to some large number in order to
limit the amount of status information stored in the bandwidth broker (see
figure 3.15). Both opportunities are conceivable, however using only a limited
book-ahead interval restricts the memory consumption of the bandwidth broker.

3.4.3 Database

Besides storing information about link utilization for the book-ahead interval,
it is required to keep the admitted flows in a separate database. This database
stores the flow’s source and destination, start and end time as well as the flow’s
path. Information like this is required to set up network paths and to reroute
flows in case of a link failure. This database can be implemented using com-
modity software and hence is not subject of this thesis.

The database is organized as two individual parts. The admission control
database keeps information about static parameters such as the network topol-
ogy, the available bandwidth on each link, and the utilization of the links during
the book-ahead interval. Furthermore, the link status (UP/DOWN) is stored
for each link. The data structures used to store the link status are examined in
chapter 7.

A second database is required to store information about admitted flows
(source and destination node, start and stop time, and path). This database
is queried periodically (once per slot) by the a process responsible for the con-
figuration of the network, i.e., the flow-to-label binding and - if required - the
explicit routing, i.e., the path setup. Furthermore this process collects informa-
tion from the network about link failures and updates the respective data in the
admission control database.
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3.4.4 Off-line Optimization

The off-line optimization process is supposed to run in the background while re-
quests arrive frequently at any time. Hence, the optimization process deals with
optimizing the routing transparently for clients and optimizing the placements
of those transmissions that requests that accepted feedback at a later time.

3.4.5 Failure Recovery

MPLS Domain

Source

Destination
Bandwidth

Broker

1. original path 3. backup path

link failure

2. failure notification and route update

Figure 3.16: Sequence of events after a link failure.

In case a link of the network fails and is detected by the network components,
this is notified to the bandwidth broker. The failure recovery module is then
started and initiates the rerouting. For each affected flow, the failure recovery
module determines an alternative path if possible and signals the new routes to
the network (see figure 3.16).

The failure recovery module runs as an independent process. The priority of
the respective process should be higher than that of the others, i.e., admission
control and off-line optimization, in order to handle failures as fast as possible
and to recover as many affected flows as possible. In fact, it is conceivable that
the failure recovery completely blocks the bandwidth broker for further requests
in order to assure that the maximal amount of affected flows can be switched
to alternative paths in the shortest possible time. The details of the failure
recovery will be described in chapter 6.

3.4.6 Locking Mechanisms

In order to run the independent processes in parallel, i.e., one or more on-line
admission control, off-line optimization, and perhaps failure recovery processes,
without completely blocking one of them, it is required to implement a locking
mechanism that takes the special properties of the advance reservation manage-
ment system into account. This means, the data structures of the management
system must not be locked completely for either of the two processes rather than
only the relevant parts. The three relevant parts in this sense correspond to the
three dimensions of advance reservations (see figure 3.1):
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Figure 3.17: Example: different locking strategies for a reservation request

Links Only parts of the network require locks that are currently used, i.e., cer-
tain paths required for admission control for a particular request. This is
especially useful when using the k path routing strategies with restricted
path set for each pair of network end points as described in [Bur03b]:
in this case only the links on the k precomputed paths are locked. Fur-
thermore, it is possible to perform local off-line optimizations, i.e., only a
subset of the network links is considered for that purpose.

Time It is not required to lock the complete book-ahead interval when a par-
ticular request processed by the on-line admission control only affects a
short period. The off-line optimization may still work on the remaining
portion of the book-ahead interval, i.e., it is possible to optimize flows
starting earlier or later.

Bandwidth When applied to one or more links, this lock restricts access to
the remaining amount of available bandwidth. This means, the currently
considered bandwidth is marked as unusable for other requests.

The locking strategies previously described can be combined in order to
restrict the impact of a single lock and thus, the granularity of the actual locking
mechanism can be chosen. This means, the parts as required by the respective
process can be locked using one or more of the locks previously described.

In figure 3.17, an example is given showing all three locking mechanisms.
The figure shows the situation for a request from node 1 to node 7 with the
bandwidth and time interval [t0, t1] as shown on the left hand side in the dark
gray box. On each link on the path, i.e., (1, 2) and (2, 7), locks for a certain
amount of bandwidth and time interval are applied as depicted on the left hand
side. The area denoted by the gray box shows the parts on the each links that
are actually not accessible for other admission control or optimization processes.
For example, a request on the same path for a time interval overlapping with
[t0, t1] will be blocked until the current request is either rejected or admitted.
On the other hand, requesting bandwidth during a time interval before t0 or
after t1 will not result in blocking the corresponding process.
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Deadlock Avoidance

The locking mechanisms need to be implemented in a way that avoids deadlock
situations. In order to avoid a scenario where several processes are in a dead-
lock situation, each process can be assigned a unique ID which determines the
priority of the respective process. Thus, higher priority processes may be given
preference in accessing the required locks. This ordering avoids deadlocks in a
simple and straightforward manner.
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Chapter 4

Performance Analysis

The performance of advance reservations is an important issues, as the benefit
for a network operator depends not only on the implementational effort and cost
of providing advance reservation mechanisms but also on the benefit that can
be achieved by offering those mechanisms to clients, i.e., the amount of traffic
that can be accommodated by the network.

4.1 Performance Metrics

Before discussing the performance issues, in this section the metrics used to
measure the performance in a network are given and the methodology for the
performance analysis is discussed. For a network operator, the profit of a net-
work mainly depends on the price that can be charged for the transmissions in
the network. For a client, it is important to have a high probability that its
transmissions are accepted by the network management. The request blocking
ratio (RBR), i.e., the probability that a request is rejected by the network, can
be easily measured. In contrast, the profit for a network operator cannot be
assessed that simple because it depends on many different parameters, such as
the charging model. Instead of trying to model such a complex system, in this
thesis the focus is on the amount of bandwidth that is transmitted by accepted
flows, measured by the bandwidth blocking ratio (BBR). These two metrics are
widely used as metrics for measuring the performance of computer networks
[MS97b]. Formally, RBR and BBR are defined as follows:

Definition 4.1 (Request Blocking Ratio, Bandwidth Blocking Ratio)
The request blocking ratio (RBR) is defined as

request blocking ratio :=
|R̄|
|R| , (4.1)

where R̄ denotes the set of rejected requests and R denotes the entirety of issued
requests. The bandwidth blocking ratio (BBR) is defined as

bandwidth blocking ratio :=

∑
f∈R̄ b(f)∑
f∈R, b(f)

(4.2)

with b(f) denoting the total number of bytes transmitted by f .

53
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RBR and BBR define the different properties that are important in the con-
text traffic flow in networks. A low RBR does not necessarily mean a high
network utilization since flows carry very different amounts of data. Conse-
quently, the BBR covers the amount of bytes transmitted by the flows in the
network. Other possible metrics, e.g., related to the profit achieved by the net-
work operator are assumed to be derived in some way from RBR and BBR and
are therefore not discussed here.

4.2 Analysis

It has been discovered in previous works that advance reservations can lead to
a different allocation and utilization of resources in contrast to immediate reser-
vations. This effect is not a specific problem of computer networks, however did
not attract much attention in the past research concerned with advance reser-
vations in networks. In particular, in [WG98] this effect is mentioned without
giving an explanation but stating that ”booking ahead can lead to either an
increase or a decrease in utilization depending on the traffic mix”. While it is
true that advance reservation can coincidentally also increase the network per-
formance, for instance, in terms of utilization, it is much more likely that the
performance degrades due to resource fragmentation, as will be shown in section
4.2.2. Furthermore, the fragmentation does not depend on the traffic mix but
the results presented in the following sections lead to the conclusion that this is
a phenomena that occurs frequently in such environments and is directly related
to the fact that reservations are made with different reservation times. It will
be shown that resource fragmentation is the cause for an increased blocking of
particularly requests with low transmission rate.

4.2.1 Overview

In general, the performance of advance reservations in comparison to immediate
reservations cannot be predicted accurately. In general, when all reservations
are made in advance, it is either possible that the performance increases or de-
creases with respect to the metrics presented in definition 4.1. The reason is
that allowing requests to be made in advance only changes the order in which
the reservations are made. Under the assumption that the network load is suffi-
ciently high and requests are being rejected - which is the only sensible scenario
in which to study the performance impact of advance reservations compared to
immediate reservations - it is possible that a single request of minimal bandwidth
and minimal duration blocks the complete bandwidth for any other request.

This is not a unique property of advance reservations but may happen with
both reservation types. An example for such a worst-case scenario is depicted in
figure 4.1. A small request of minimal duration (1 slot) and minimal bandwidth
allocation may block a large request independent of the reservation time of the
small request. In both cases, the large request may also be made in advance, only
the order in which both requests are made - small before large - is important
for the performance. The only difference is the order in which both requests
are made. Thus, advance reservations have the potential to either improve or
degrade the performance compared to immediate reservations.

The question is, whether fragmentation is either a common phenomena or
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Figure 4.1: This example illustrates the worst-case behavior of advance (left) and
immediate (right) reservations: a small request blocks a large request in both scenarios.

unlikely to happen, whereupon in the latter case, no additional measures are
required by the network management in order to avoid fragmentation. Ad-
ditionally, it must be determined how the fragmentation affects the network
performance, i.e., in which way the two metrics outlined in definition 4.1 are
affected when reserving in advance.

4.2.2 Resource Fragmentation
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Figure 4.2: An example of resource fragmentation resulting from advance reservations.
Future requests block the unused bandwidth.

As depicted in figure 4.2, the opportunity to allocate resources in advance
may lead to a fragmentation of the available resources. The reason is that
”gaps” appear when a certain amount of requests for future resource allocations
has been admitted. Between two peaks of small distance bandwidth remains
unused since on further requests are not sufficiently short to fit into the resulting
gaps.

The resource fragmentation as outlined in figure 4.2 is the reason for the
performance difference of advance and immediate reservations. Under the as-
sumption, that in a given set of requests there are always sufficient requests to
completely utilize the available bandwidth, it is possible to achieve 100% uti-
lization in immediate reservation environments. In the same setting, allowing
to reserve resources in advance may lead to fragmentation.

In order to assess the probability that fragmentation occurs, the following
scenario is considered. Assume unit transmission rates for all requests, a network
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consisting of only a single link, and unit bandwidth availability on that link, i.e.,
at most one request can be admitted per time unit. Furthermore, assume a set
R of requests, all requests in R are ordered according to their reservation time
(see definition 3.2), and there is more than a single request starting at any given
time, i.e., an overload scenario1.

When the requests in R are issued according to their given order, the result is
the immediate reservation scenario. It is easy to see, that this ordering results in
the optimal bandwidth utilization since new requests occur at any given time,
i.e., there is no unused bandwidth. In contrast, when a single request r is
issued tr time units in advance, this results in fragmentation. Let Tmin be the
minimal duration computed over all requests r ∈ R. For a duration equal 1,
the problem of fragmentation does not exist, therefore it is additionally required
that Tmin > 1.

A request r that is made tr < Tmin time units in advance and can be admitted
inevitably results in fragmentation of the bandwidth since Tmin − tr bandwidth
units cannot be allocated by subsequent requests. The reason is that tr for
the request r differs from the other reservation times, i.e., subsequent requests
exist for transmission bandwidth before tr. This means, the probability pfrag

that fragmentation exists in such a scenario depends on the probability that the
reservation times of requests differ. It is clear, that the case where tir = tjr = tr
for each two requests ri, rj , i �= j does not lead to fragmentation in this sense,
because this situation describes an immediate scenario with a ”time shift” of tr.

When tr > Tmin, the request r leads to fragmentation in the case that the
sum of the durations of requests admitted after r does not equal tr. This event
can considered to be extremely likely and thus, the probability for the event
that fragmentation occurs is also very high, i.e., in general close to or equal 1.

The previous observations can be generalized to the case where a link ac-
commodates more than unit bandwidth. In this case, w.l.o.g. the first request
r reserved tr < Tmin time units in advance occurs in a situation where r can
be admitted such that the remaining bandwidth is too few to admit additional
requests. As in the simple case discussed before, r then blocks at least tr band-
width units. Similar considerations lead to the conclusion, that fragmentation
also occurs in the case that tr > Tmin. In addition to the condition, that the
sum of the request durations does not equal tr, in this case it is also required
that the sum of the requested transmission rates does not equal the blocked
bandwidth which is a stronger, thus less likely, requirement.

In order to determine the impact of advance reservation on the performance
in a network with multiple links, it is useful to examine how resource are allo-
cated in a network when - as in this thesis - bandwidth is used as metric. In this
case, bandwidth can be seen as bottleneck metric [WC96] (sometimes also called
”concave”metric [XN99]) in contrast to, for example, delay which is an additive
metric. The nature of the bottleneck metric implies, that fragmentation may
occur also in a multiple link scenario.

Concluding, the examination of the very simple scenario shows, that frag-
mentation occurs very likely in case advance reservations are allowed, i.e., almost
anytime reservation and start times of two different requests differ. The actual
amount of fragmentation depends on the distributions of the reservation times,
start times, transmission rates, and transmission times of requests.

1Otherwise, reservations are not required at all (see chapter 1)
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4.2.3 Worst-Case Bounds

Since advance reservations almost inevitably lead to a degradation of the net-
work performance, it is also of interest to determine to which extend the network
performance is affected.

Under certain assumptions about the distribution of the requests, it is pos-
sible to determine bounds for the performance of advance reservations in the
worst case. In this context, the worst case means that the maximum amount
of requests are rejected and the maximum amount of transmission bandwidth
remains unused. The assumptions are that

1. at each time slot a sufficient number of requests is available in order to
completely utilize the available bandwidth

2. the minimal duration Tmin for a request is known in advance

The first assumption also implies, that when issuing all the requests in an
immediate reservation environment the total amount of bandwidth can be uti-
lized by admitting only the requests with minimal duration. This assumption
describes a scenario with a competition for the available resources which is also
the only scenario where reservations make sense at all (see chapter 1). The sec-
ond assumption is sensible, since it is unrealistic to assume that a reservation
- which requires additional administrative effort for the requesting client - is
made for a request with a duration that is hardly noticeable, in particular a
request with a duration of only 1 slot is not realistic. Hence, a lower bound for
the minimal transmission duration can be at least estimated.

The Single Link Case

In this case, the worst-case performance with respect to request blocking ratio
and bandwidth blocking ratio can be determined depending on the reservation
time tr of an advance reservation, i.e., the resource fragmentation resulting from
a single advance reservation will be assessed in the following.

blocked

slot

b

Tmin -1   (Tmin< tr)

tr

admitted
request  r

allocated by
previous requests

blocked

slot

b

tr   (< Tmin)
admitted
request  r

Figure 4.3: Worst-case bandwidth blocking: btr (tr ≥ Tmin) respectively b(Tmin − 1)
(tr < Tmin) units of bandwidth are blocked (light gray rectangles).

Throughout the following, the notion outlined in figure 4.3 is used. Consider
an admitted request r of given bandwidth b with a reservation time of tr - i.e.,
it is reserved tr slots in advance - and furthermore, let the shortest possible
duration of a request again be Tmin. Provided that at each time slot t there is
at least one request of duration Tmin starting at t, in the worst case the request
r blocks at most either
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btr , tr < Tmin or
b(Tmin − 1) , tr ≥ Tmin.

bandwidth units that cannot be used by other allocations, provided that for
each time slot a sufficient amount of requests with duration Tmin are issued.

rc

admitted requests

Tmin-1

r1

blocked requests

c

Tmin

...

......

Figure 4.4: Worst-case request blocking: on a link with capacity c the resources allo-
cated by the admitted requests block c requests. The unused time interval must be
less or equal Tmin − 1.

The number of request blocked as a consequence of the fragmentation can be
determined as illustrated by the example shown in figure 4.4. For each request
made in advance, two requests may be admitted, i.e., 2 instead of only 1 request
could have been admitted.

Using these considerations, the upper bound for the requests blocked as a
result of allowing advance reservations and the respective bandwidth can be
determined as follows. W.l.o.g., let tr < Tmin. Given a book-ahead interval T ,
link capacity c, and unit bandwidth requests, this means that for each request
admitted, the amount of requests blocked within the interval T in the worst
case can be determined as suggested in figure 4.4, which means

Rfrag ≤ c
T

2(Tmin − 1)
. (4.3)

Consequently, the upper bound of the bandwidth blocked as a consequence
of the fragmentation (Bfrag) is given by

Bfrag ≤ (Tmin − 1)c
T

2(Tmin − 1)
= c

T

2
. (4.4)

Although these worst-case bounds imply the performance impact on both
RBR and BBR is equally high, the simulations that will be presented in section
4.3.2 show that the impact on the RBR is actually very high while the BBR is
far less affected. The reason for this behavior will be illustrated in section 4.2.4.

The Multiple Link Case

As described before, bandwidth is a bottleneck metric. In this sense, the worst-
case fragmentation for a complete network is determined by the worst-case re-
source fragmentation at bottleneck links, i.e., links that are shared by many
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flows with different source and destination nodes. Obviously, for each bottle-
neck link the above equations hold as well. The performance can neither get
worse nor improve. Thus, the worst-case fragmentation in the network is deter-
mined by the worst-case fragmentation on the bottleneck links. Consequently,
the previously shown equations also hold for a complete network.

4.2.4 Impact of Fragmentation

The worst case describes the influence of fragmentation onto the performance of
the whole link or network and thus, is of interest for the operator of a network.
Besides, it is also of interest to examine the impact of the fragmentation on
other parameters, such as the average path length and individual requests. This
examination will give a more detailed impression of the possible impact of an
advance reservation service on the performance of a network.

The Single Link Case

When considering only a single link, the fragmentation leads to a reduction of the
available bandwidth on that link. This is the same effect as in other application
environments, such as node reservations in a single cluster computer. It will be
shown that resource fragmentation mainly affects requests with high admission
probability, this means requests which require only a low transmission rate.

Let R = {r1, . . . , rn} denote a set of n requests, and let B = {b1, . . . , bk}
be the possible transmission rates associated with requests r ∈ R. W.l.o.g.,
assume that bi < bj for i < j and that the transmission rates are uniformly
distributed among the requests r ∈ R. In an immediate reservation environment,
the probability for a given request r ∈ R to be admitted at time t0 depends on
its requested bandwidth b and the available capacity at time t0.

Let P(B) denote the power set of B, let B̂c ⊆ P(B) be the sets of transmission
rates with

∑
bj∈B′,B′∈B̂c

bj ≤ c and b1 +
∑

bj∈B′,B′∈B̂c
bj > c. Informally, this

means that B̂c contains each set of requests that fills the capacity c such that
no further request can be admitted. Furthermore, let B̂c(b) = {B′ ∈ B̂c|b ∈ B′}
denote the sets that contain b ∈ B at least once, and let fb : B̂c(b) → N

denote the overall number of occurrences of b in B′ ∈ B̂c(b), i.e., fb(B′) :=
|{m ∈ B′|m = b}|. The transmission rates are uniformly distributed among
the requests and hence, the mean value of fbi , i ∈ {1, . . . , n} depending on the
available capacity c can be recursively determined using the following recursive
formula:

(1) E(fbn , c) =

⌊
c∑

1≤l≤n bl

⌋

(2) E(fbi , c) = E(fbi+1) +

⌊
c − ∑

i<l≤n E(fbl
)bl∑

1≤l≤i bl

⌋
, with i ∈ {1, . . . , n − 1}.

In the second equation, the first term of the right hand side denotes the mean
value for the next larger transmission rate bi+1 and the second term denotes the
mean value for fbi for the remaining capacity when subtracting the respective
number of transmission rates > bi.
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Using this definition, the rejection probability prej(b, c) of a request with
transmission rate b ∈ B on a link with capacity c can be determined as

prej(b, c) = 1 − 1
n

E(fb, c).

W.l.o.g., assume bi, bi+1 with bi < bi+1. This means E(fbi) > E(fbi+1), and
therefore

prej(bi, c) = 1 − 1
n

E(fbi , c) < 1 − 1
n

E(fbi+1 , c) = prej(bi+1, c). (4.5)

Assume, the capacity c was reduced to c′. For simplicity, we define

e :=

⌊
c − ∑

i<l≤n E(fbl
)bl∑

1≤l≤i bl

⌋
and e′ :=

⌊
c′ − ∑

i<l≤n E(fbl
)bl∑

1≤l≤i bl

⌋
,

denoting the second terms of E(fbi , c) and E(fbi , c
′), respectively. For bi, bi+1 ∈

B this means

E(fbi , c) = E(fbi+1 , c) − e

E(fbi , c
′) = E(fbi+1 , c

′) − e′,

and since c > c′ it can be concluded, that

e ≥ e′.

With equation 4.5, the following inequality can be derived:

prej(bi, c
′) − prej(bi, c) = 1 − 1

n
E(fbi , c

′) − (
1 − 1

n
E(fbi , c)

)
=

1
n

(
E(fbi+1 , c) + e − (E(fbi+1 , c

′) − e′)
)

=
1
n

(
E(fbi+1 , c) − E(fbi+1 , c

′) + e − e′︸ ︷︷ ︸
≥0

)

≥ 1
n

(
E(fbi+1 , c) − E(fbi+1 , c

′)
)

= prej(bi+1, c
′) − prej(bi+1, c).

(4.6)

This inequality states, that the difference prej(b, c′) − prej(b, c) increases with
the difference |c − b|. Informally, this means that blocking a certain amount
of bandwidth capacity in general more likely affects those requests with low
transmission rate. In contrast, large requests suffer only little from the capacity
reduction since the admission probability of these requests is generally much
lower. Thus, fragmentation - which is essentially a capacity reduction - more
likely affects requests with low transmission rate.

Using similar calculations, this result can be generalized in a way, that re-
quests which are more likely admitted also suffer more likely from the capacity
reduction resulting from fragmentation.
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The Multiple Link Case

In a network, the bandwidth reduction due to fragmentation on the individual
links increases the path length for individual requests. The reason is that the
common routing algorithms are solely based on variants of a shortest path al-
gorithm [MS97b, WN02]. Using the shortest paths minimizes the number of
hops and thus, generally avoids using too many hops which potentially blocks
bandwidth for other requests.

When the available bandwidth on the shortest possible paths exhausts re-
sulting from fragmentation, paths with higher hop count must be used. Due
the reduced link capacity, this happens earlier than in immediate reservation
environments. The result is that the average path length computed over all
admitted requests increases. Therefore, in a network with multiple source/
destination pairs the reduction of the performance results not only from the
fragmentation on individual links but as a consequence also increases the path
length used to route admitted requests.

Although in this work only bandwidth is considered, the larger average path
lengths also show that the advance reservation service impacts the ability to
guarantee delay constraints, which are heavily depending on the hop count of
the routes.

4.3 Experimental Results

The equations shown previously mean that the RBR and BBR may increase
considerably under the given conditions when all requests from a given set are
defined in advance. Although this figure gives a hint on the amount of the
possible performance degradation, this can only be a rough estimate of the
actual impact of advance reservations on both performance metrics. Simulations
were made in different network environments, showing how the performance is
affected by allowing a varying percentage of requests to be advance reservations.

4.3.1 Simulation Environment

cost239

Figure 4.5: The network topology used for the subsequent simulations.

The simulations shown in this thesis were made in different environments
using a total of seven network topologies. These topologies represent flavors of
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networks with different properties, ranging from a simple single link network
with only two nodes to a large backbone topology with 60 nodes and 110 links.
Some of these topologies represent actual backbone networks, some are artificial
topologies, e.g., a 6x6 two-dimensional grid, and some of them were generated
using the BRITE network topology generator [MLMB01]. For the sake of sim-
plicity and clarity of the document’s organization, only the results for one of
them, the cost329 topology which represents an actual backbone [Bac], is given
in here thesis (see figure 4.5). Since the most important performance aspects
of advance reservations are similar, independent of the actual topology, selected
performance results using the other topologies are given in the appendix.

In order to study the impact of advance reservations, the performance of
advance reservations is compared to the performance achieved when allowing
only immediate reservations. Since immediate reservations are just a special
case of advance reservations without having a reservation time (see definition
4.1), the comparison was made as follows: a set of requests was generated with
each request defined by its start and stop time, source and destination node,
and the bandwidth requirement. In order to simulate advance reservations, each
request was randomly assigned a reservation time.

It is yet unknown how realistic parameters for advance reservation requests
look like. The environments considered here, e.g., grid computing, imply that
mostly high bandwidth connections will be requested. Similarly, the requested
duration (sometimes referred to as ”call holding time”) can be considered as
longer than assumed in usual studies of current Internet traffic [Bol94]. These
studies monitored todays Internet traffic consisting mainly of many short term
transmissions such as web traffic. However, in scenarios such as grid computing
with large amounts of bulk transfer requests or long-lasting video conferencing
sessions, the average duration will be much longer. Therefore, the requested
transmission duration was uniformly distributed in the interval [100, 1000] and
the transmission rates were uniformly distributed among 56 kb/s, 64 kb/s, 256
kb/s, 512 kb/s, 1024 kb/s, 2048 kb/s, 4096 kb/s, and 8192 kb/s. The request
inter-arrival times of requests were assumed to follow the Poisson distribution
as in [MS97b]. In [PF95], user initiated connection requests were found to be
well-modeled using Poisson inter-arrival times. The reservation time of advance
reservation requests was exponentially distributed with a mean of 200, unless
explicitly stated otherwise.

4.3.2 Network Performance

The first performance evaluation was made using a mixture of immediate reser-
vations with known duration and advance reservations. The route selection was
made using an algorithm that determines the shortest feasible path for each
request.

In figure 4.6, the RBR and BBR under three different load conditions are
shown. The different load conditions were generated by modifying the mean
inter-arrival time. In general, the performance decreases for both metrics in
particular the RBR is affected while the BBR is only reduced by a few percent.
It can be observed that both metrics decrease even with a low percentage of
advance reservations.

The RBR for each of the two reservation types is depicted in figure 4.7. The
admittance of advance reservation requests impacts especially the performance
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Figure 4.6: RBR (left) and BBR (right) for different percentages of advance reserva-
tions under three different load conditions.

of immediate reservations. This means, whenever advance and immediate reser-
vations2 share a single partition as is assumed here, immediate reservations
suffer from constantly higher blocking rates, independent of the percentage of
requests made in advance. Thus, it is not sensible to place immediate reserva-
tion requests in an advance reservation environment, as those requests are more
likely being rejected.
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Figure 4.7: RBR for different percentages of advance reservations for both reservation
types (medium load).

As discussed in section 4.2, the fragmentation is influenced by the variance
of the reservation times. Thus, with higher variance the RBR is expected to
increase. For example, when the reservation times are uniformly distributed
in a given time interval, the variance of the reservation times increases with
increasing interval size.

In figure 4.8, the relation of reservation time and RBR is depicted under
three different load conditions. The curves are almost identical to those shown
in figure 4.6. It can be clearly observed that, depending on the actual load,
increasing the mean reservation time leads to a significant rise of the RBR until
saturation is reached. Likewise, the BBR remains almost unaffected, similarly
to the results depicted in figure 4.6.
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Figure 4.8: Dependency of the RBR (left) and BBR (right) on the reservation time.
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Figure 4.9: Book-ahead interval status on average (left) and status of a single link at
four different points in time (right).

4.3.3 Link Utilization

In figure 4.9, the average book-ahead interval status in terms of utilization
computed over all links and the exact status of a single link at four different
times t1 < t2 < t3 < t4 is depicted. While the average shows virtually no
difference to the status of links in immediate reservation environments, the
utilization diagram of a single link illustrates the fragmentation resulting from
advance requests. As more requests are admitted, at certain times the link
utilization shows ”peaks”which increase over time. When the gap between such
peaks is too short for other reservations to fit in, bandwidth is blocked at this
place.

4.3.4 Impact on Individual Flows

Blocking Probability

The most important property of advance reservations for network users is out-
lined in figure 4.10. With increasing reservation time, the blocking probability
decreases and is reduced to zero at a certain point in time. Reservation requests
for bandwidth beyond this point in time can be admitted with 100% admis-
sion probability. This property is independent of the distribution of request
durations and reservation times (see also [WG98]). The point in time where
the blocking probability is below a certain level, e.g., predefined threshold, was

2Immediate reservations with known duration.
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Figure 4.10: The blocking probability as a function of the mean transfer time (left)
and the mean reservation time (right).

called critical time in previous examinations [WG98].
The blocking probability is influenced by the mean transfer time since this

directly impacts the load on the network, i.e., the amount of traffic increases
with higher transfer time. However, it is important to note that also the mean
reservation time has an impact in this context. The higher the mean reservation
time, the higher the blocking probability for flows, i.e., the critical time depends
on the mean reservation time.

Typically, the drastically reduced rejection probability for advance reserva-
tions with sufficiently large reservation time is the most important reason for
clients to employ advance reservations. In particular, when several different
resources need to be reserved in a strictly coordinated fashion, i.e., timing con-
straints apply to the order and duration in which the resources are used, only
the opportunity to reserve those resources well in advance provides the high
degree of certainty required for the co-allocation. For example, in grid com-
puting environments such co-allocations are necessary to guarantee to proper
operational sequence of the whole system.

Impact of Fragmentation

0

10

20

30

40

50

60

56 64 256 512 1024 2048 4096 8192
transmission rate (kb/s)

re
qu

es
t b

lo
ck

in
g 

ra
tio

 (
%

)

immediate

advance

Figure 4.11: The blocking probability of advance and immediate reservations depend-
ing on the requested bandwidth under medium load.

The simulations described in section 4.3.2 showed, that using advance reser-
vations mainly increases the RBR, although also the BBR is affected. This
can be explained using the results of the analysis. Compared to the immediate
reservation environment, requests with low transmission rate are more like being
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rejected in advance reservation environments. Since these requests carry only a
low percentage of the overall amount of traffic, the BBR is less affected by the
performance degradation than the RBR. This analytical result is confirmed by
the simulative results. In figure 4.11, the rejection probability depending on the
requested transmission rate is depicted for advance and immediate requests. It
can be observed that the immediate reservation scenario leads to a preference
of those requests with low bandwidth requirement while the usage of advance
reservations leads to higher fairness in the sense, that the rejection probability
of requests with high bandwidth is decreased while those with lower bandwidth
requirement are rejected more often.
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Figure 4.12: The distribution of path length of admitted requests.

Similarly, the distribution of the hop counts of admitted requests shows,
that advance reservations significantly reduce the number of requests mapped
onto short paths as outlined in figure 4.12. This results in a lower average path
length in the immediate scenario, for the depicted situation this was 2.15 for
immediate and 2.36 for advance reservations.

4.4 Conclusion

The important result of the discussion in this chapter is, that the main reason
for the performance degradation in advance reservation environments is a frag-
mentation of the available resources. Furthermore, such a fragmentation is a
very likely case and consequently, in order to improve the network performance
measure must be taken that are able to avoid fragmentation. In particular, the
flexibility permitting to define advanced services as described in section 3.2 can
be used to achieve this goal. These issues will be discussed in the following
chapter.



Chapter 5

Performance Optimizations

The performance of a networks degrades when advance reservations are allowed,
as visible mainly by an increased RBR (see chapter 4). The advance reservation
environment however provides mechanisms to overcome this problem. Some of
these mechanisms are similar to those used in immediate reservation networks,
i.e., these strategies only need to be adapted to fit the advance reservation
environment. This is applied, for example, in the case of the routing algorithms.
Other mechanisms are unique in the advance reservation environment and have
their origin in the availability of additional information about future allocations.
Using all those mechanisms, the performance achieved in immediate reservation
environments can be reached and, depending on the actual setting, in some
cases even outperformed. Thus, advance reservations are not only useful for
customers and users of a network but can also help operators to improve their
performance and revenue.

5.1 Routing

Routing represents the foremost measure to influence the performance of a net-
work in best-effort or immediate reservation scenarios. Both on-line and off-line
strategies have been proposed for that purpose. In the advance reservation en-
vironment, the routing strategy only serves as the foundation for further, more
sophisticated techniques based on the availability of the temporal information
in the advance reservation system.

The routing algorithm chosen for the measurements in the previous chapter
was a simple shortest path strategy which does not use information about the
future network load for more than the simple check for sufficient bandwidth.
This algorithm is described in more detail in this section. In addition, a number
of alternative routing algorithms are presented that make use of the knowl-
edge about link utilization during the requested transmission in order to select
paths. These routing strategies are used during admission control as described
in section 3.4.2.

The theoretical worst-case performance bounds for an on-line advance reser-
vation algorithm were shown in [AAP93], presenting the ROUTE OR BLOCK
algorithm. In particular, it was proven that compared with the optimal off-
line strategy, any on-line routing algorithm in the worst-case can only achieve

67
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at most an O(log nT ) share of the profit generated by the off-line strategy.
In contrast to this approach, the on-line strategies presented in this section
not necessarily reach the same competitiveness. However, as will be shown
the ROUTE OR BLOCK algorithm cannot reach the performance of the other
strategies which is a result of the conservative admission policy aimed on pre-
ferring requests that can be satisfied using only a few hops.

For the purpose of performing on-line admission control, two general ap-
proaches are conceivable that can be used in the given network management
model, i.e., bandwidth brokers using MPLS explicit routing in order to enforce
a particular routing strategy within a single domain. Firstly, it is possible to
compute a path individually on-demand for each incoming request (on-demand
computation), for example, using the ROUTE OR BLOCK algorithm. The sec-
ond strategy is to use a set of precomputed paths for each pair of network end
points and route a request on one of these paths with sufficient bandwidth (pre-
computation). The second approach is interesting in the MPLS environment.
Although it is possible to bind each new flow to an individually computed path,
which must be set up before the flow commences, it can be useful to predefine a
set of paths using the corresponding MPLS mechanisms and set up these paths
at start time of the system. Once a new flow starts, it remains to bind the flow
to an existing path. This reduces the administrative overhead and the time re-
quired to prepare the network for a new flow. Both strategies may be combined,
i.e., in case none of the precomputed paths has sufficient bandwidth to fulfill
the request, a new path may be computed individually.

In this section, the basic approach to compute a feasible path for an advance
reservation request is outlined and three variants of this algorithm are given.
These variants use actual link utilization in order to weight paths and are based
on existing strategies in the field of immediate reservation QoS routing. It will be
shown, that these strategies improve the overall network performance in terms
of RBR and BBR (see section 4.1).

5.1.1 On-Demand Path Computation

The on-demand path computation for each incoming request is based on an
adaptation of Dijkstra’s shortest path algorithm (DSP) to fit the advance reser-
vation environment. However, it is also possible to use the Bellman-Ford algo-
rithm for this purpose.

The computation of the link weight must include a check of the available
bandwidth on each link during the requested transmission interval. The re-
sulting algorithm ASP (Advance reservation Shortest Path), based on DSP as
described in [Jun99], is outlined in the following:
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ASP (G(V, E), s, d, tstart, tstop, b)

1 foreach (v ∈ V ) do
2 w[v] := ∞
3 φ[v] := NIL
4 done
5 T := V
6 w[s] := 0
7 while (T �= 0) do
8 find u ∈ T , such that w[u] is minimal
9 T := T \{u}
10 foreach (v ∈ T ∩ Adj[u]) do
11 if

(
(w[u] + weight(u, v, tstart, tstop) < w[v]) and

12 (c(u, v, tstart, tstop) > b)
)

13 then
14 w[v] := w[u] + weight(u, v, tstart, tstop)
15 φ[v] := u
16 fi
17 done
18 done

In the algorithm, the array w contains the current node weights and φ is the
array storing the actual path, i.e., predecessors of nodes. c(u, v, tstart, tstop) (l.
12) denotes the available capacity on link (u, v) during the period from tstart and
tstop, i.e., the condition in line 12 assures, that sufficient bandwidth is available
on the computed path. In contrast to immediate reservation scenarios, advance
reservation architectures as discussed here allow to use information about the
link load during the whole transmission period and to include this into the weight
for each link. This is achieved using the function weight(u, v, tstart, tstop) (l. 11).

Implementation Variants

Three variants are proposed here, using different implementations of the function
weight. In the following, let l(u, v, t) denote the allocated bandwidth at slot t
on link (u, v), and let c(u, v) denote the total bandwidth capacity of link (u, v).

• Shortest-Path: uses the hop count as the only path metric, i.e., the
weight equals 1 for each link with sufficient bandwidth, and ∞ otherwise.
In this case, the ASP algorithm computes the shortest available path. This
variant was used to compute the performance results shown in section
4.3.2.

• Widest/Shortest: computes the widest among the paths with the short-
est hop count. The algorithms includes the maximal available bandwidth
- computed over all slots within the requested transmission interval - as
link weight. This means, the weight is computed as

weight(u, v, tstart, tstop) :=
1

|V |c(u, v)
max

tstart≤t≤tstop
{l(u, v, t)} + 1. (5.1)
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• MinLoad/Shortest: uses the average load during the requested trans-
mission period as link weight. The path with the minimal average load
is chosen by this strategy. The average load on (u, v) during the interval
[tstart, tstop] is computed as

lavg(u, v, tstart, tstop) :=
1

tstop − tstart

∑
tstart≤t≤tstop

l(u, v, t).

The weight for each link is then determined as

weight(u, v, tstart, tstop) =
1

|V |c(u, v)
lavg(u, v, tstart, tstop) + 1. (5.2)

For both Widest/Shortest and MinLoad/Shortest, the additional fac-
tor 1/|V | assures that always one of the paths with the lowest hop count is
selected, i.e., that the addend 1 dominates the weight of each link. Thus, the
link utilization is only used as an additional metric in case several paths with
the same hop count exist.

The correctness of the algorithms is shown in the following proposition.

Proposition 5.1 (Correctness of the algorithms) The routing algorithms
Shortest-Path, Widest/Shortest, and MinLoad/Shortest work correctly.
This means, that Shortest-Path computes the shortest available path, and
Widest/Shortest and MinLoad/Shortest select the widest path respectively
the path with the minimal load among the set of shortest available paths with
equal hop count.

Proof. 1. Shortest-Path works correctly since the link weight is always
nonnegative.

2. Widest/Shortest works correctly, if it always selects the shortest avail-
able path and in case several such shortest paths are available, it selects
always the widest among them. The second property results directly from
the definition of the link weights. In order to prove the first property, let
popt denote the shortest available path with |popt| being its hop count, and
let weight(popt) denote the weight of popt according to eq. 5.1. Further-
more let ωmax := max(u,v)∈popt{weight(u, v, tstart, tstop)}.
Assume there exists a path p with higher hop count, i.e., |p| > |popt| but
lower weight (w.l.o.g. weight(p) = |p|, i.e., l(u, v, t) = 0, ∀t), i.e.,

weight(p) < weight(popt)
⇒ |p| < |popt|ωmax + |popt|.

Since |popt|ωmax < 1, this leads to

|p| < |popt| + 1
⇒ |p| ≤ |popt|.
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This contradicts the assumption, that |p| > |popt|, and therefore such a
path cannot be computed using Widest/Shortest, i.e., the algorithm
works correctly. The correctness of MinLoad/Shortest can be shown
using the same method. �

The complexity of the above algorithms is O(td|E| log |V |) with td = tstop −
tstart being the duration of a given request. This can be directly derived from
the complexity of the original algorithm by Dijkstra, when T is implemented as
a heap, and the fact, that the computation of the link weight in any case can
be performed in O(td) time when using arrays (see also chapter 7).

The algorithms are derived from the QoS routing algorithms described and
compared in [MS97a, MS97b] where they were implemented and compared in
immediate reservation environments. In such a scenario, the computation of the
link weights can take the actual utilization on the links into account, however
this is only possible for the current time rather than the whole transmission
duration.

With respect to the resource fragmentation, the Widest/Shortest ap-
proach, which uses the peak bandwidth utilization on each link, can avoid peaks
as long as possible by distributing load onto several alternative paths with the
same hop count. Besides avoiding that a single path fills up too soon which is its
main achievement in immediate reservation environments, this simple method
is very effective in avoiding peaks during the requested transmission period.
The MinLoad/Shortest approach yields slightly worse performance since the
peaks only contribute partially to the average load on a given link. This will be
more detailed described in section 5.4.1.

Path Caching

When the algorithms described in this section are applied in a bandwidth broker,
i.e., an on-demand path computation approach is used, the time required to
compute a feasible path can be reduced by caching computed paths. Each path
computed during the on-line admission control process is stored in a database
which is consulted when a new request enters the system. The stored path
set can then be checked for sufficient bandwidth and when possible a path can
be selected using the metrics previously described in order to determine, for
example, the Widest/Shortest path from the set.

When using the hop count as primary metric, this caching approach does
not necessarily result in paths consistent with the metric. Although the paths
stored in the database are actually shortest paths, it may be possible that more
paths with the same hop count exist than stored in the cache. This obstructs,
for example, the Widest/Shortest approach. Thus, paths from the cache of
a given hop count l may only be used, when at least one path with hop count
l+1 is also stored in the cache. In this case, paths with hop count ≤ l are called
valid paths and can be used. Among those valid paths, one is selected according
to the chosen metric, i.e., Widest/Shortest, MinLoad/Shortest etc. In any
other case, i.e., if no path with sufficient bandwidth is available from the set of
valid paths, the on-demand path computation must be involved in order to try
and find a suitable path.
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5.1.2 Other Routing Approaches

The algorithms presented in this section only represent a selection of imple-
mentation alternatives considered to be reasonable in the advance reservation
environment. Although other implementation alternatives are conceivable, stud-
ies of QoS routing algorithms in immediate reservation environments [MSZ96,
MS97a, MS97b, WN02] have shown that using other than shortest path algo-
rithms generally results in performance degradation. The reason is that in sce-
narios with high load, which are the only scenarios where QoS mechanisms can
be reasonably applied, it must be assured that not too many links are blocked
by traffic between two network end-points. This is a general problem of QoS
routing and hence, selecting only shortest paths is a successful and also easy to
compute metric for on-line QoS routing strategies.

The previously shown techniques can be combined with others, for exam-
ple, which restrict the path length either dynamically depending on the load
situation or statically to some predefined maximum hop count. An example
for the latter approach is the dynamic-alternative routing algorithm described
in [MS97a, MS97b] which is basically a Widest/Shortest algorithm, allowing
only paths with a maximal hop count of |popt|+ 1 where |popt| denotes the hop
count of the shortest distance path. Likewise, many other techniques were de-
veloped in order to restrict path lengths, such as multiplying a constant factor
to each link weight with increasing path length [WN02]. Since immediate reser-
vations are only a special case of advance reservations, these techniques can also
be applied in the advance reservation environment.

5.1.3 Path Precomputation

The precomputation of a set of alternative paths for each pair of network end-
points is another opportunity to perform admission control. The general idea is
to compute a fixed set of alternative paths for each pair of network end-points.
This can be used to predefined a set of paths in the MPLS environments and
as long as these path sets are used, each new flow only needs to be bound to
one of those paths. On the other hand, the disadvantage is that feasible paths
exists which are not contained in the precomputed path set. Therefore, it is
possible that requests are rejected although a path with sufficient bandwidth
exists. Furthermore, the advantage that a large number of alternative paths
is available and therefore the path computation can be avoided, can also be
achieved using the path caching approach which also results in a larger number
of available paths after an initial start-up phase. Hence, both precomputation
and path caching very likely lead to similar results in terms of processing time.
As will be shown in chapter 7, routing only requires about 8% of the processing
time of a single request and hence, the impact of the precomputation on the
processing time can be considered as rather limited.

Implementation Alternatives

Several opportunities exist to compute the path set. In [LG01], an algorithm
was proposed to compute a set of maximally disjoint paths for load-balancing
and fault tolerance purposes, based on Bellman-Ford for computing shortest
paths. The algorithm is repeatedly executed in a sequence of steps. In each
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step, a new path is added to the existing path set. Furthermore, each iteration
modifies the existing link weights in a way that more frequently used links are
assigned higher weights. The way this link weight is computed determines the
”disjointedness”of the resulting paths. Using high link weights in this case leads
to paths which have fewer links in common and vice-versa.

The drawback of the maximally disjoint path computation is the relatively
small set of alternative paths computed by the algorithm which leads to a sub-
optimal network utilization and high request rejection rates. Therefore, in
[BDF03] a set of k paths was used which allows to determine the parameter
k depending on the network topology and also on the actual load situation in
the network. The k shortest path computation was made using the algorithm
described in [Epp98]. These k paths can be also weighted according to the
Widest/Shortest and MinLoad/Shortest strategies as described before.

This approach has the interesting advantage that the computed path set
can be set up on the MPLS network at startup and only requires a binding
process of label to flow when a transmission starts. Instead, the individual path
computation in the worst case requires to set up a new path each time a new
transmission starts. As described in section 2.1.3, not only the signaling between
bandwidth broker and edge node is required but also the label binding process
using CR-LDP or RSVP-TE. In addition to the reduced signaling overhead, the
precomputation approach has the advantage of requiring less computation time
during admission control since only a check of the links has to be performed
instead of also requiring to compute a complete path. This makes this approach
interesting for the rerouting process in case of link failures (see chapter 6).

The drawback of the path precomputation of a limited set of paths is that
possibly not the whole variety of feasible paths can be exploited. This is partic-
ularly true for the maximally disjoint path computation. In contrast, a study
of both approaches [Bur03b] showed, that the number of requests rejected al-
though sufficient bandwidth was available, is lower using the k path approach.
This holds even with relatively low values of k. In contrast, the maximally
disjoint approach does not provide a sufficiently large path set and results in
much worse rejection rates. Unless it can be guaranteed, that the precomputa-
tion strategy determines any possible path, this approach has the drawback of
possibly rejecting many flows although sufficient bandwidth is available.

The strategies Widest/Shortest and MinLoad/Shortest can also be ap-
plied when using a precomputation based routing strategy [Bur03b]. In general,
the precomputation approach only reduces the admission speed and simplifies
the route setup but does not allow to apply any other mechanisms that are more
suited in the advance reservation environment than the on-demand computa-
tion. Hence, the performance evaluation only discussed the on-demand path
computation. As shown in [Bur03b], the precomputation yields similar results.

Other Approaches

The precomputation reduces the computational effort for the admission control
process, however still requires to potentially check the whole set of paths. In-
stead, it is conceivable to precompute not only the possible path set but also
paths which can be used to carry a certain amount of bandwidth as proposed
in [OS00]. However, this requires to compute feasible paths for any possible
bandwidth requirement not only for a single point in time as in [OS00], but
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includes the complete temporal dimension of the advance reservation problem,
i.e., the whole book-ahead period. Consequently, this results in a much higher
computation time, in particular in the advance reservation environment, and
therefore, this approach was not considered here.

5.1.4 Flow Switching

Based on the previously described on-line routing strategies, which only consider
the transmission of a flow on a single path during the flow’s transmission interval,
in advance reservation environments it is possible to also use multiple paths
during their lifetime as discussed in section 3.3.3 and switch flows at predefined
times onto different paths. While this flow switching is generally possible also in
immediate reservation environments, the advance reservation perspective allows
to plan these transmissions in advance, i.e., during admission control. It is
important to note, that the transmission of a flow using more than a single path
does not mean a parallel transmission but denotes the usage of more than one
path throughout the lifetime of a flow, but only one path at a time.

Flow switching can be implemented transparently for the sender and receiver
of a given flow by switching paths during run-time. However, in case other
than bandwidth constraints must be obeyed, e.g., delay, flow switching may be
infeasible unless it can be guaranteed that the delay bounds are satisfied by any
of the multiple paths. When knowledge about node delay is available to the
bandwidth broker this can be included in the admission decision. The routing
algorithms presented in the previous sections are sufficiently flexible to allow
the implementation of also such constraints. The only restriction in this case is,
that QoS routing with multiple constraints can become NP-complete [WC96]
and hence, computationally infeasible.

Routing Granularity

The granularity of the routing decision defines the length of the time interval
a particular flows remains on a single path. This granularity also determines
the computational, protocol, and administrative overhead of the flow switching
approach. In general, two solutions can be conceived:

1. Fixed granularity: division of the transmission duration into smaller
parts of fixed duration r. Each part is routed individually.

2. Variable granularity: determination of the granularity depending on
the actual traffic situation during the transmission period. This strategy
is activated only when the bandwidth is not sufficient to carry the request
on a single path and can be implemented such that the longest feasible
transmission interval is determined. If the available resources do not suffice
to transmit the requested flow completely on a single path, i.e., the interval
is shorter than the requested duration, the approach is to search for a new
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path for the remaining duration, which in turn also may be unavailable
for the whole remaining duration.

Fixed Granularity

Using this approach, the overhead for switching flows to new paths and for
the admission control procedure computation required is always proportional
to td/r, where td denotes the duration of a request and r is the granularity
parameter denoting the length of the transmission interval for which a flow is
routed on a path. However, the path computation can be made using one of
the algorithms described in section 5.1, and since the total amount of slots to
be checked remains td = tstop − tstart, the complexity of the admission control
algorithm does not differ from the single path case and is given by

O
(
td

(|E| log |V |)).

The computational complexity does not reflect the overhead required for
the multiple invocations of the routing algorithm and the protocol overhead for
switching flows to different paths. The implementation of such an approach
however requires constant overhead which is known in advance, i.e., it can be
statically determined whether the overhead is affordable for a given granularity
r.

Variable Granularity

The overhead of the variable granularity approach depends on the dynamic load
situation of the network resources during the requested transmission interval.
This means, in case sufficient bandwidth is available, a given request will be
transmitted on a single path. Otherwise, the length of an interval for which
a flow remains on a path may be anything between 1 slot in the worst case
and td (= tstop − tstart) slots. Although the actual length of these intervals
cannot be anticipated in advance, it is possible to restrict their length, i.e., to
reject requests which would require to switch a single flow within too short time
intervals.

Informally, the idea of the admission control algorithm is to determine the
longest available transmission interval on each link for a given request of band-
width b. In a series of computations, for each of the computed intervals a path
is searched in the corresponding network consisting only of links which provide
sufficient bandwidth. In each step, new links are added until eventually a path
is found or all links are included without finding a feasible path. The following
algorithm can be used to determine a minimal number of paths required for
transmitting a given request r = (s, d, tstart, tstop, b).
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FlowSwitching(G(V, E), r)

1 t := tstart
2 success := false
3 while

(
(success=false) ∧ (t < tstop)

)
do

4 L := ∅
5 foreach (e ∈ E) do
6 l := length of the interval on e with capacity ≥ b, starting at t
7 insert l in L
8 od
9 while (L �= ∅) do
10 find maximal l ∈ L
11 L := L\{l}
12 E′ := {e ∈ E| longest feasible interval on e is at least l}
13 p := DSP(G(E′, V ), s, d, t, t + l, b)
14 if (p =valid) then
15 if (t + l = tstop) then success := true
16 else t := t + l
17 fi
18 fi
19 od
20 od

With td := tstop − tstart, the outer while loop (l. 3) requires at most td
iterations, the for loop (l. 5) requires exactly |E| iterations, O(td) steps required
for scanning the links, and O(log |E|) steps to update the sorted list L (l. 7).
The inner while loop (l. 9) requires at most |L| ≤ |E| iterations, each with
complexity O(|E| log |V |) which is determined by the complexity of the DSP
algorithm. The maximum search in line 10 can be done in O(1) when L is
sorted. Thus, the overall complexity is given by

O
(
td|E|(|td| + log |E|︸ ︷︷ ︸

for loop (l. 5)

+ |E| log |V |︸ ︷︷ ︸
while loop (l. 9)

))
.

Hence, the worst-case complexity of the variable granularity flow switching
algorithm is higher than of the fixed granularity algorithm. However, as the
results of the simulation will show, the actual number of path switches for
each transmission is negligible and can be afforded. Since the above algorithm
switches flows only in case of insufficient bandwidth, for most admitted requests
the actual processing time is tolerable and the average admission speed is better
than for the fixed granularity approach with small values of r.

A threshold parameter, defining the critical interval length which denotes the
minimal length a flows must stay on a single path, can be integrated into the
admission control algorithm, such that requests are rejected when the parameter
l (l. 6) drops below the threshold.
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5.2 Malleable Reservations

In chapter 3, the additional services that can be defined in an advance reserva-
tion environment have been specified, and among them the concept of malleable
reservations in the environment of computer networks was outlined. The ser-
vice in general determines suitable parameters for a transmission of given size,
i.e., the amount of bytes to be transmitted. Based on that, it is possible to
restrict the parameters of a given request, for example, by defining a deadline
or requesting the earliest possible transmission start.

Malleable reservations may be used to achieve two different goals. Firstly, the
fragmentation can be avoided as long as possible by placing malleable requests
such that peaks do not occur. Secondly, in a situation where peaks have already
occurred, malleable requests may be placed such that the gap between two peaks
is filled as good as possible.

5.2.1 Properties

� �����
1. reduced duration
    increased bandwidth

2. start moved 3. increased duration
    reduced bandwidth

Figure 5.1: Examples how malleable reservations can permit the bandwidth broker to
admit a request that would otherwise be rejected.

In figure 5.1, three examples are given which show how a rejected request
(denoted by the dotted rectangle, see also figure 4.2) can be admitted when being
defined as malleable. As previously described, the actual start and stop time
and the bandwidth are not fixed but can be chosen by the network management
within a certain range. This range must be defined by the client who issues
a request. Alike job scheduling, the duration of malleable reservations can be
defined as a function of the bandwidth it is allotted to. Once admitted, the
bandwidth broker guarantees start and stop times, and transmission rate.

In general, enabling the mechanisms to cope also with variable transmission
rates can be expected to achieve the highest performance gain and can be imple-
mented, for example, by combining the flow switching mechanisms with those
for malleable reservations. Moreover, allowing transmissions to be interrupted
provides the highest amount of flexibility in terms of ”filling gaps”, i.e., utiliz-
ing resources likely to remain unused since the surrounding gaps are too short.
However, in this thesis only requests are considered where the transmission rate
does not vary throughout the transmission. This is an important difference
between the approach discussed here and those in the field of job scheduling.
The main reason is, that the admission control problem for searching the first
feasible interval [GO00] in case of varying transmission rate can become NP-
complete, and the question of providing accurate feedback about the variable
transmission rate to the applications or users involved in the transmission is
difficult to answer.
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Furthermore, in the most extreme case, the transmission rate may also be
zero during the transmission. Such an interruption of the transmission may not
be desired since it may interfere with the transmission protocols. For example,
interrupting an FTP session can mean that the transmission has to be started
at the beginning. Instead, the considerations presented here are restricted to
providing the parameters start and stop time together with the fixed transmis-
sion rate to the client in the response message to the request. This allows to
seamlessly integrate malleable reservations into existing network management
environments and simplifies admission control and notification to clients. It is
also necessary for transmissions that rely on a fixed rate such as video streams.

An advance reservation request was defined in 3.1. In order to distinguish
such requests from malleable requests, they are called fixed requests. In an
advance reservation environment, the additional parameters to be submitted
with a request defined as malleable are the minimal and maximal transmission
rate, and the first start time and deadline, respectively.

Definition 5.1 (Malleable Request) A malleable request is defined as rm =
(s, d, tmin, tmax, dmin, dmax, b̄), where tmin and tmax denote the earliest start re-
spectively the latest stop time, dmin and dmax denote the minimal and maximal
duration, and b̄ denotes the total amount of bytes to be transmitted. In ad-
dition, a maximal and minimal transmission rate may be specified, where the
maximal transmission rate may directly depend on the capabilities of the sender
and receiver.

Duration and transmission rate are directly related when a fixed amount of
bytes must be transmitted and therefore, instead of defining dmin and dmax, it
is also possible to provide the minimal and maximal transmission rate bmin and
bmax, respectively. This does not impact the admission control algorithm.

Instead of requesting a fixed amount of bytes to be transmitted, a malleable
request can also be used to search the first available transmission interval or
a suitable transmission interval up to a predefined deadline for a request with
fixed duration and transmission rate. In such a case, the parameters used in
definition 5.1 must be changed accordingly. Again, the general admission control
algorithm can remain unchanged.

5.2.2 Admission Control

Admission control for malleable reservations requires to find a path with suf-
ficient bandwidth such that the transmission can be made with parameters
within the requested boundaries. As described in section 3.3.4, the search space
for admission control of malleable requests covers all three dimensions of the
general problem space. The admission control algorithm for this reservation
type generally works as follows: a linear scan is performed over the available
time interval [tmin, tmax] where the duration of the request is adjusted within the
given boundaries dmin and dmax. Once a feasible path is found, the algorithm
stops and returns the parameters of the request, i.e., start time, stop time, and
transmission rate. Using this approach, the first dimension searched is the tem-
poral dimension. Although in general the order in which the three dimensions
are searched can be arbitrarily chosen, using the temporal dimension allows for
an easy implementation of the interval search (see section 3.2.1).
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The previously described approach selects the first feasible path. An imple-
mentation alternative is to choose the ”best”of the whole set of feasible paths. In
this case, it remains to define what ”best” path in this context means. For that
purpose, in the following an approach is presented that selects the path with the
fewest hops and most remaining bandwidth, similar to the Widest/Shortest
routing algorithm.

Before discussing the details of the different opportunities to select suitable
transmission parameters, the general admission control framework is outlined.
For a malleable request rm the basic admission control algorithm can be imple-
mented as follows:

Mall(G(V, E), rm)

1 foreach
(
td ∈ [dmin, dmax]

)
do

2 b := b̂
td

3 tstart := tmin

4 ∀e ∈ E : t∗(e) := tstart, t
∗
d(e) := 0

5 while (tstart ≤ tmax − td) do
6 foreach (e ∈ E, with tstart ≥ t∗(e) + t∗d(e), t∗(e) �= −1) do
7 T := {t|t ≥ tstart ∧ ∀t′ ∈ [t, t + td] : c(e, t′) ≥ b}
8 if (T �= ∅) then
9 t∗(e) := min{t ∈ T }
10 t∗d(e) := max{t|∀t′ ∈ [t∗(e), t∗(e) + t] : c(e, t′) ≥ b}
11 else
12 t∗(e) := −1
13 done
14 E′ := {e|t∗(e) �= −1 ∧ t∗(e) ≤ tstart ∧ t∗(e) + t∗d(e) ≥ tstart + td}
15 p := DSP (G(V, E′), s, d)
16 if (p =valid) then
17 break; // success: path p found
18 else
19 tstart := max

{
tstart + 1, min{t∗(e)|e ∈ E \ E′, t∗(e) �= −1}}

20 fi
21 done
22 done

The algorithm takes as input the network graph G(V, E) and the request rm.
A scan across the interval [tmin, tmax− td] is performed for td ∈ [dmin, dmax]. For
any position tstart within this interval, the DSP algorithm is used to determine
whether a path from u to v with sufficient bandwidth exists until such path is
found. The index t∗(e) denotes the start time for the first interval with sufficient
bandwidth, where c(e, t) denotes the available bandwidth capacity on link e at
time t, and a length of at least td, with t∗d(e) (line 10) denoting the length of
this interval. The computations in line 9 and 10 are implemented such that the
whole interval [tmin, tmax] is only scanned once for each duration td and each
link e. The usage of these indices guarantees that the DSP algorithm is only
performed on the network consisting of links from the set E′ (line 14), which
contains the links with sufficient bandwidth during the interval [tstart, tstart+td].
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In the algorithm, DSP denotes Dijkstra’s shortest path algorithm, which
determines the shortest path from s to d in the network given by G(V, E). DSP
can be used instead of ASP because the bandwidth availability was checked in
the lines before. If the path search fails, the new index tstart is chosen from
the indices t∗(e) of those nodes e which were not included in the set E′. It is
possible to use the also the other algorithms than DSP as show in section 5.1.1
in order to select other than the shortest paths.

Admission control for malleable reservations can be performed in polynomial
time using the algorithm previously outlined. It takes at most dmax−dmin cycles
of the outermost loop (line 1), tmax − dmin − tmin cycles of the loop in line 5,
and for any tstart there is a call to DSP with complexity O(|E| log |V |). The
computation of the indices t∗(e) and t∗d(e), e ∈ E, guarantees that for each link
the interval [tmin, tmax] is only scanned once. This means there are at most
tmax − dmin − tmin calls of DSP . Hence, the overall complexity of the algorithm
is given by:

O
(
(dmax − dmin)(tmax − dmin − tmin)|E| log |V |)

The complexity of admission control algorithm for malleable reservations is
considerably higher than the basic routing algorithm, in particular the duration
factor td := tstop − tstart is replaced by the length of the search interval and
an additional factor dmax − dmin is introduced which reflects the range of possi-
ble durations. Since in a realistic setting the search interval may not be much
longer than the duration parameter in the fixed reservation scenario, the factor
dmax−dmin dominates the additional complexity of the malleable admission con-
trol process. For example, a request with a duration parameter dmin = 100 and
dmax = 1000 may require a computation time which is 900 times higher than
needed for processing a similar request with fixed parameters. This represents a
substantially higher admission time which has be taken into account when im-
plementing such a service, in particular processing a single request may require
several seconds. In chapter 7, this aspect will be examined more thoroughly.

First-Fit

The previously outlined algorithm implements a first-fit approach, selecting the
first available position and bandwidth. For malleable reservations, different
variants of the algorithm are conceivable, depending on the way td (line 1) and
tstart (line 3) are initialized. Four variants of the algorithm are proposed in the
following:

• Max/Start: starts the scan with duration td = dmax at slot tstart = tmin.

• Max/End: starts the scan with td = dmax at slot tstart = tmax.

• Min/Start: starts the scan with td = dmin at slot tstart = tmin.

• Min/End: starts the scan with td = dmin at slot tstart = tmax.

The Min/End and Max/End variants require the scan to start from the
end of the search interval. For this purpose, the computation of t∗(e) and t∗d(e)
(line 9,10) must be changed accordingly.
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These strategies can also be used to schedule transmissions with fixed dead-
line or the earliest suitable interval for a transmission. In those cases, the
duration td remains fixed. In particular, the Min/Start and Max/Start ver-
sions of the algorithm implement the search for the first available transmission
interval with fixed transmission rate.

Best-Fit

path 1

path 2

path 3

request

search interval

selected transmission period

Figure 5.2: Widest-Interval strategy: setting with three alternative paths. The
request is allotted to path 3 at the end of the search interval since this provides the
lowest average utilization during the whole search interval.

Choosing the first available transmission interval and rate may not always
result in a good performance. Thus, in addition to the first-fit strategies, another
conceivable approach is to select a path according to a metric as used for the
routing algorithms in section 5.1.1. This means, the best path and transmission
rate according to some metric is selected. For example, the Widest/Shortest
strategy performs rather successful and its strategy can be adapted for the
malleable environment. Based on this observation, an additional scheduling
strategy called Widest-Interval is proposed. Among any feasible parameter
setting, this strategy chooses the path, transmission interval, and transmission
rate which assures that the remaining available bandwidth on the path during
the transmission interval is maximized (see figure 5.2). The Widest-Interval
strategy can be implemented by modifying two lines of the above algorithm as
follows:

MallWidest(G(V, E), rm)
...

3 tstart := tmin; c∗ := ∞
...

16 if
(
(p = valid)∧ (c(p) > c∗)

)
then

17 P := p; c∗ := c(p) // save path

where P denotes the currently best path, i.e., the path with the maximal
amount of unassigned bandwidth, the variable c∗ denotes the amount of unas-
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signed bandwidth on P , and c(p) denotes the available bandwidth on a path
p.

Its worst-case complexity is the same as for the other variants, however in any
case the whole interval size is checked which increases the run-time for accepted
requests. The nature of the Widest-Interval strategy implies that its run-time
can be considerably higher compared to the other, first-fit strategies.

The Widest-Interval approach may be restricted such that the scan is ter-
minated after a predefined sequence of scans. For example, the scan may be
terminated after the temporal dimension was scanned once using the lowest al-
lowed transmission rate and a feasible path was found with this transmission
rate. The rationale behind this approach is that using the lowest possible trans-
mission rate very likely results in a high remaining bandwidth on the respective
links.

Path Length Restriction

In order to restrict the path length generated by the previously outlined algo-
rithm, the decision to accept a path can depend on the actual length of the
path. The following extension to the previous algorithm outlines this idea.

16 if
(
(p = valid)∧ (c(p) > c∗) ∧ (|p| ≤ l∗)

)
then

17 P := p; c∗ := c(p) // save path

The hop count of a path p is denoted by |p| and can be restricted using the
third inequality in line 16. The parameter l∗ determines the longest allowed
path and, e.g., may be chosen by the operator. For example, when l̂ denotes
the hop count of the shortest path, l∗ may be set to l̂ + k, with k depending on
the network topology. Thus, a strategy like the dynamic-alternative (see section
5.1.2) can be implemented.

Interval Search

Depending on the actual application, instead of defining the total amount of
bytes b̄, it is possible to define other properties for the respective transmis-
sion from which the required parameters are then computed by the network
management system. For example, for a video streaming application, a max-
imal bandwidth bmax for the video stream and a fixed duration d might be
given. The required parameters then can be computed as d = dmin = dmax and
b̄ = bmax · dmax. The task of the admission control algorithm then remains to
search for a suitable transmission interval.

5.3 Off-line Optimization

The mechanisms described before were all applied during the on-line admission
control procedure. Since the knowledge of the admission control at the time of
the admission control is limited, i.e., only information about the current and past
requests is available, this can lead to routing decisions that are suboptimal. This
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means, routes block the available bandwidth that is required of other requests
(see also figure 3.12). In those cases, if the opportunity exists to revise the
on-line decisions, the performance of the network may be increased, i.e., more
requests can be admitted.

As described in section 3.3.5, when implementing such off-line optimization
mechanisms in immediate reservation environments, the difficulty is that no
information is available on the stability of current traffic demand. The off-
line optimization takes a certain amount of time and, when it is finished and
routes are updated accordingly, rapid changes in the traffic situation in the
network diminish the benefit of rerouting. The reason is that the time required
to compute the off-line optimization may well exceed the period of stability.

Hence, those optimization mechanisms can only be applied when a certain
stability of the traffic can be guaranteed. In contrast, the properties of advance
reservation systems provide a better environment to apply such techniques. The
flows present within the whole book-ahead interval can be included in the off-line
optimization. Thus, the time available in order to optimize the network routes
is much higher and therefore the application environment is much better suited
than the one of immediate reservation networks. In the following, the solution
to a multi-commodity flow problem is used to determine unbalanced network
situations and to remap flows onto the topology. The optimization strategy
was taken from [BKL03], where the approach was to optimize the route layout
in an immediate reservation or best-effort network environment. However, the
advance reservation environment is much better suited to support the off-line
optimization, since the route changes can be made only in the internal database
without the need to influence routes of active flows, i.e., interaction with the
network devices. As a consequence, additional protocol overhead can be com-
pletely avoided. Furthermore, the available time for the off-line optimization,
which is a critical factor, is much longer due to the length of the book-ahead
interval.

5.3.1 Optimization Framework

The Maximum Concurrent Flow Problem

In order to optimize the routing on the network, algorithms solving multi-
commodity flow problem are used. In particular, we deal with the maximum
concurrent flow (MCF) problem [SM90] which is defined as follows: with given
demand for bandwidth between pairs of network end-points, the question is to
compute routes for the given demand such that a maximum quantity of the
demand can be accommodated by the network.

Formally, this means for a given a network G(V, E) with V being the set
of vertexes and E the set of edges, link capacities c : E → R

+, and a set of
commodities (si, di) ∈ V × V defined by the source and destination nodes for
commodity i, a demand d(i) > 0 is defined for each commodity i. The MCF
problem is to find the largest λ such that at least a λ portion of each demand
d(i) can be routed on the network. The problem can be defined as a solution
for the following linear program: when Pi denotes the set of paths between si

and ti, P = ∪iPi, and x(p) denotes the amount of flow routed on path p for
each p ∈ P , the LP formulation of the problem is:
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maximize λ∑
p:e∈p x(p) ≤ c(e) ∀e ∈ E∑
p∈Pi

x(p) ≥ λd(i) ∀i

x(p) ≥ 0 ∀p

While the integral version of the MCF problem is NP-complete [SM90], it
is possible to compute an ε-approximation for the fractional maximum multi-
commodity flow problem in O(ε−2|E|2 logO(1) |E|) time with ε being the error
factor and E being the set of edges (links) in the network, as was shown by
[Kar02].

The basic idea of solving the MCF problem requires to specify the com-
modities and to find a way to implement the solution of the flow problem in the
network management system. In our case, we model commodities as the pairs
of end nodes (si, ti) ∈ V × V with demand di > 0, where di denotes the total
amount of bandwidth allocated by flows between si and ti. The values of di

are obtained using the status information available to the network management
system. Given these input parameters, the optimization process implements
the MCF algorithm described in [Kar02]. The solution to the MCF problem
provides not only the optimal value of λ but also an assignment of bandwidth
to routes such that the optimal value of λ is achieved. If the computed assign-
ment differs from the current assignment on the network, routes are updated
accordingly. In case this affects only inactive flows only the internal database is
updated, otherwise also the routes currently set up on the network are changed.
However, this can be adapted to only affect flows that are not active, thus
avoiding any reconfiguration of the network.

Using the MCF based optimization guarantees that at any point in time, the
currently best mapping of flows to paths is available at the time the optimization
is performed. When changes in the traffic pattern occur, the optimization pro-
cess reacts rapidly and thus keeps the network as balanced as possible with the
available information. Since traffic changes cannot be anticipated by the off-line
optimization (see also section 2.2.4), this strategy may also lead to suboptimal
results with respect to the global perspective.

The actual computing time for solving a single MCF problem and perform-
ing the route updates is rather high, in particular the simulations for this thesis
required an actual time of approximately 0.7 seconds for a single run of the
off-line optimization involving an average of 1, 000 flows. This value is of course
implementation dependent and cannot be seen as representative for other im-
plementations. However, this holds only for a single MCF computation. In the
advance reservation environment, this computation must be made for the entire
book-ahead interval. Using the slot based model, this yields at most a factor of
the length of the book-ahead interval. Hence, a single optimization of the entire
book-ahead interval takes a large amount of time and therefore the impact of
the off-line optimization may be limited, depending on the actual parameters of
the environment, e.g., the slot granularity.

Optimization Granularity

The granularity of the optimization process must be determined regarding the
intervals of consecutive slots for which an optimization is performed, similar to
the flow switching approach. The previously described optimization technique
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can only be applied to time intervals with the same network load. However,
this means the demand associated with any pair of network end points must
not change during this particular interval. Since the intervals with the same
demand are rather short as implied by the utilization profile of individual links
(see figure 4.9), this property is relatively difficult to achieve. Thus, it may
be possible to compute intervals with only similar demand, and compute the
solution of the MCF problem using the average demand during an interval. It
is also conceivable to compute the optimization only for individual slots which
would require much higher computational effort.

For each of those intervals, a solution for the MCF problem is computed. If
necessary, the routes stored in the network management database are updated
according to this solution. The slot-based allocation allows to perform the
optimization for each individual slot which is of course the finest granularity
for the flows.

F2

F4 F7

F3

F5F1

current time

inactive flows (considered by
the optimization process)

active flows (not optimized)

slot

intervals with constant demand

F6

Figure 5.3: Optimization scheme: an MCF computation is performed for each interval
with constant demand. Flows can take different routes during different intervals.

In figure 5.3, the general mechanism is depicted showing an example with
flows that are included in the computation within a certain interval. The dia-
gram only shows the situation on a single link, as outlined before the demand
for any pair of end points must not change during the optimization interval.

The active flows do not contribute to the demand, thus their bandwidth
allocations must be subtracted from the available bandwidth, and only inactive
flows are rerouted. A different routing can be computed for each time interval,
which means flows take more than a single route. This requires the network to
change routes over time. In this particular case, flow F3 may be assigned two
different paths during the two time intervals marked. The second interval in
this example must not be longer even if F7 had the same bandwidth allocation
as the cumulative bandwidth allocated by F3, F5, and F6.

Alike the flow switching approach described in section 5.1.4, the advance
reservation environment allows to send flows along different routes during their
lifetime and to compute these routes before the flows have actually started. This
is unique in the advance reservation environment and comprises a considerable
advantage in contrast to immediate reservation environments where this oppor-
tunity cannot be used for the optimization. This is the reason why the rerouting
approach in [BKL03] was only feasible for periods with the same demand matrix
which cannot be anticipated in the immediate reservation or best-effort environ-
ment. In contrast, the advance reservation environments provides much better
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prerequisites to perform an off-line optimization. Similar to the flow switching
approach, the off-line optimization also enables the bandwidth broker to restrict
the number of different paths that a flow can take.

5.3.2 MCF Implementation

The optimization is implemented as a background process which runs perma-
nently, scanning the whole book-ahead interval and performing optimizations if
necessary. As described before, the optimization is performed for time intervals
with the same demand such that flows do not start or end in the middle of the
interval. This allows to compute the MCF in parallel for different intervals since
the individual computations are independent of each other. In order to avoid
interference with the on-line admission control process, the locking mechanisms
described in section 3.4.6 can be used.

Each MCF computation yields an ε-optimal solution for the traffic flows
within the respective time interval. The actual parameter λ is not of particular
interest in this context. Instead, the assignment of demand to routes is more
important. This is implicitly given by the solution for the MCF problem, i.e.,
for each pair of network endpoints (si, ti) ∈ V × V with demand di > 0 the
MCF algorithm provides a set of paths P+

i with overload and a set of paths P−
i

with underload, i.e., for each p ∈ P+ the load must be reduced until the level
computed by the MCF algorithm is reached and accordingly for each p ∈ P−

the load must be increased.
After the MCF computation has finished, route changes are immediately

updated in the network management database according to the following algo-
rithm.

1 foreach (si, ti) ∈ V × V with di > 0 do
2 foreach p ∈ P+

i do
3 order flows on p in descending bandwidth order
4 while xcurrent(p) > xtarget(p) do
5 remove flow f with max. c(f)

such that c(f) < xcurrent(p) − xtarget(p)
6 foreach p ∈ P−

i do
7 order unassigned flows in ascending bandwidth order
8 while xcurrent(p) < xtarget(p) do
9 add unassigned flow f with max. c(f)

such that c(f) < xtarget(p) − xcurrent(p)

where xcurrent(p) denotes the amount of bandwidth currently carried on path
p and xtarget(p) denotes the target load on p computed by the MCF algorithm.
c(f) denotes the bandwidth carried by flow f .

It is important to note, that the optimization computes an optimal solution
for the MCF problem, but in order to exactly meet the computed amount of
traffic sent along each route, it may be necessary to route some flows along more
than a single path in parallel. Computing an optimal solution without allowing
flows to be transmitted on multiple paths in parallel can be reduced to the
integral multi-commodity flow problem and hence is NP-hard. Thus, the above
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algorithm computes an approximation using the greedy heuristic which removes
flows in descending bandwidth order from the overloaded paths, starting with
the flow with the maximal bandwidth. Flows are assigned to the underloaded
paths in the same way.

Alike the solution for immediate and best-effort environments outlined in
[BKL03], in order to reduce the amount of flow rerouting, it is possible to define
a threshold parameter δ such that the actual reassignment of flows to paths
is only started when the benefit obtained by rerouting is at least δ, i.e., the
condition λ ≥ δ holds. In this case, it is necessary to solve the MCF problem
twice: once with the currently available unused bandwidth and once with the
whole network capacity as unused. When the parameter λ shows a sufficiently
large difference when comparing both cases, it is beneficial to reroute the flows
according to the second solution.

5.3.3 Issues of the Implementation

A number of different parameters and implementation details exist that can
influence the quality of the optimization and the complexity of the optimization
process.

The main idea of the optimization is to include only flows that are not yet ac-
tive. As a consequence, updates are only required in the internal database of the
network management and an actual reconfiguration of the network is avoided.
However, the framework also enables including active flows in the optimization
since their duration is known to the network management system. In such case,
the MCF computation only includes those active flows with remaining lifetime
above a certain threshold t. This threshold is introduced to ensure that only
flows with a sufficiently high remaining transmission time are possibly rerouted.
This threshold can be an estimate based on the amount of flows that have to be
optimized and the size of the network. t is a parameter that can be dynamically
chosen by the network operator.

Restricting the number of different routes of a flow as discussed before may
reduce the complexity of the MCF computation but on the other hand lead to a
reduced efficiency of the optimization process. Flows that have already taken n
different routes will no longer be included in the computation and hence the total
computing time is reduced. In this case, restricting the amount of alternative
paths each flow may is introduced in order to restrict the processing time of the
off-line optimization.

The processing time can be further reduced using the following observation.
When the result λ of the MCF computation for a particular time interval yields
less or equal 1 + ε for the second consecutive time, this means optimizing the
respective time interval does not result in any further benefit. Hence, such a
time interval no longer needs to be processed in subsequent optimization steps.

When the off-line optimization is implemented as a background process, this
process only needs to be run when significant changes of the traffic situation
during certain periods within the book-ahead interval occur. Thus, the process
can be paused when incoming requests do not imply changes of the demand or
actually no requests are issued at all.
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5.4 Evaluation

In this section, the mechanisms presented in this chapter were examined using
the same setting as described in section 4.3.1, i.e., using the cost239 topology.
Several load situations were examined, which were modeled by adjusting the
request inter-arrival times.

5.4.1 Routing
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Figure 5.4: RBR and BBR of the different routing algorithms under variable load
conditions.

In figure 5.4, the performance of the ASP routing algorithm variants is de-
picted for different load conditions. Evidently, the ROUTE OR BLOCK algo-
rithm cannot compete with the other strategies in the examined environment
whereas the other three variants achieve similar performance. This holds for
both performance metrics.

The more detailed illustration depicted in figure 5.5 shows that the other
algorithms result in similar performance under any of the load conditions, al-
though the Widest/Shortest variant achieves better RBR and BBR compared
to the simple Shortest-Path routing algorithm and the MinLoad/Shortest
strategy. These results show, that the routing strategy itself is important, and
the straightforward extension of known immediate reservation algorithms such
as Widest/Shortest to advance reservations shows no surprises. Although
theoretically optimal in the on-line routing scenario, the ROUTE OR BLOCK
algorithm cannot compete with the other algorithms.

5.4.2 Flow Switching

The flow switching strategy can increase the network performance. Both types
of flow switching approaches described in section 5.1.4 are conceivable and were
examined in this context.

Fixed Granularity

The impact of the switching granularity on RBR and BBR is depicted in figure
5.6. The longer the routing intervals are the higher is the BBR. With respect
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Figure 5.5: RBR and BBR of the on-demand routing algorithms under medium load
(1.4 GB/s). Widest/Shortest achieves the lowest RBR and BBR.
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Figure 5.6: RBR and BBR as a function of the routing granularity with medium
network load. The dotted line denotes the RBR and BBR using the Widest/Shortest

algorithm.

to the RBR, the performance does not improve, instead a degradation can be
observed. In terms of BBR a slight gain can be achieved when using a granularity
of 2 slots. However, in general the fixed granularity approach does not improve
the overall performance.

Variable Granularity

Using variable granularity, the RBR and BBR can be improved more signifi-
cantly. As can be observed in figure 5.7, especially with low load this strategy
leads to a performance improvement which even outperforms the approach us-
ing fixed granularity. In contrast to the fixed granularity approach which may
result in worse performance, the variable granularity approach has the major
advantage of achieving considerable performance gains (around 10%) under any
load condition.

The overhead of the flow switching approach under the different load con-
ditions is determined by the number of different paths each flow takes. This is
depicted in figure 5.8. The diagrams shows, that the average ranges between
1.21 and at most 2.45 different paths. This is a significant advantage compared
to the approach using fixed sizes. This approach requires an average of up to
100 different paths when using a granularity of 2 slots with an average duration
of 200 slots. The fixed granularity approach with granularity equal to the av-
erage number of path switches required for the variable approach is inferior to
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Figure 5.7: Variable granularity of flow switching. In order to show the improve-
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Figure 5.8: The average number of different paths for flows routed on multiple paths
using the variable granularity approach.

the variable granularity approach. Concluding, the variable granularity reaches
by far superior performance while requiring less frequent route changes. This
makes this approach preferable in the given environment.

5.4.3 Malleable Reservations

In order to generate the request sets for malleable reservations, the same param-
eters as described in section 4.3.1 were chosen and a varying portion of those
requests were defined as malleable, while always 100% of the reservations were
made in advance. Malleable requests were allowed to differ from the original
start, stop times, and bandwidth, i.e., the network management was allowed
to change these parameters. In order to exemplify the possible performance of
networks with malleable reservations, the following setting was chosen. Some
restrictions were applied to malleable reservations: The duration was allowed to
differ at most 50% from the originally defined duration. The earliest start time
tmin and the latest stop time tmax were at most 50% of the original duration
earlier and later, respectively. This means, a request with a given duration of
10 slots was allowed to commence 5 slots earlier than originally specified. These
parameters can influence the performance in the sense that less flexibility results
in lower and more flexibility results in higher performance.
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Figure 5.9: RBR and BBR for varying percentage of malleable reservations, using low
(1 GB/s, above) and high load (2.4 GB/s, below).

In figure 5.9, the RBR and BBR are depicted under low and high load con-
ditions, i.e., a load of 1 GB/s and 2.4 GB/s, respectively. It can be observed,
that with a relatively low percentage of malleable reservations, the RBR in-
creases for some of the strategies until a point is reached (approximately 40%
malleable reservations) where the increment is stopped and the RBR drops sig-
nificantly to at most below 1%. The BBR is affected in a similar way. Besides
this common behavior, the results of the strategies differ largely. While the
Min/End strategy nearly doubles the RBR with 50% malleable reservations,
the Widest-Interval strategy achieves an improvement with rising amount of
malleable reservations.

The performance in the high load scenario shows a different picture. Only
two strategies achieve a performance gain, although this is only moderate. How-
ever, the performance is increased with respect to both metrics.

In general, the best performance is achieved using the Widest-Interval
strategy, although this is achieved at the expense of a much higher computation
time. With 100% malleable reservations, the RBR and BBR can be reduced to
almost zero percent in the scenario with low network load. This is a significant
reduction which outperforms the result of the immediate reservation scenario
by far.

The interpretation of the results shown in figure 5.9 requires to recall the
results of the analysis in chapter 4. It was shown, that the reason for the per-
formance degradation of advance reservations is fragmentation which impacts
the RBR and BBR even with a few percent of the reservations made in ad-
vance. Consequently, those strategies which place malleable requests at the end
of the search interval increase the fragmentation, while the others - including
Widest-Interval - achieve a significant performance improvement with suffi-
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ciently high amount of malleable requests. In most cases, the Widest-Interval
approach outperforms the other strategies which shows that a best-fit strategy
is worthwhile being implemented although it requires higher response times.
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Figure 5.10: The RBR of malleable and fixed reservations using the Widest-Interval
strategy.

Using a suitable scheduling strategy, malleable reservations are an opportu-
nity to significantly improve the performance of a network. For an individual
request, it is also beneficial to be specify as malleable as depicted in figure 5.10.
It can be observed, that the RBR of malleable requests remains very low for
any possible percentage of malleable requests. In contrast, the RBR of fixed re-
quests increases rapidly, reaching a maximum at approximately 80% malleable
requests. With higher percentage, also the RBR of fixed requests decreases.

5.4.4 Off-line Optimization

In order to obtain results for the off-line optimization, the optimization pro-
cess was run in the background during the whole usual simulation using the
Widest/Shortest routing algorithm. The granularity for the off-line opti-
mization was 1 slot.

Widest/Shortest off-line opt.

load = 2.4 GB/s

43 44 45 46 47

request blocking ratio (%)

load = 2.4 GB/s

58,5 59 59,5 60

bandwidth blocking ratio (%)

load = 1 GB/s

16 16,5 17 17,5 18

bandwidth blocking ratio (%)

load = 1 GB/s

8,4 8,6 8,8 9 9,2 9,4

request blocking ratio (%)

Figure 5.11: The results of the off-line optimization together with Widest/Shortest
compared to only the Widest/Shortest algorithm.
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The result of the off-line optimization is depicted in figure 5.11 for two load
situations compared to the results of only the Widest/Shortest algorithm. It
can be clearly observed, that the performance gain is only small with respect to
RBR and BBR. In particular, the RBR is reduced whereas the BBR, especially
for the higher load scenario, is less affected.

Although the actual computation time depends heavily on the actual imple-
mentation and load situation, the simulations made for this thesis showed that
the time required for the off-line optimization is considerable. Since locking
of certain time intervals enables parallel processing of off-line optimization and
on-line admission control, it is possible to handle also incoming requests in par-
allel. However, the performance of the bandwidth broker is still degraded since
the off-line optimization process is operating throughout the whole run-time of
the management system. In the bandwidth broker implementation used for the
simulations described in this thesis, the off-line optimization required approx-
imately 0.7 seconds for solving the multi-commodity problem for a single slot
on a Pentium IV, 1 GHz PC with an average of approximately 1, 000 flows to
be handled. With a book-ahead interval of several thousand slots, this means a
considerable amount of time must be spent for the off-line computation.

5.4.5 Summary
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Figure 5.12: Comparison of the different optimization techniques. RBR and BBR are
depicted for different load situations.

The performance gain that can be achieved using the different techniques de-
scribed in the previous sections is depicted in figure 5.12. The diagram shows the
performance of the Widest/Shortest routing algorithm for immediate and ad-
vance reservations compared to the variable granularity flow switching approach
and 20% respectively 100% malleable reservations using the Widest-Interval
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strategy. Furthermore, the result of the off-line optimization is depicted. It
can be clearly observed that the performance of immediate reservations can be
reached and even improved, in particular with respect to BBR. It is apparent,
that especially the flow switching approach achieves a considerable performance
advantage. The off-line optimization in general achieves only a low reduction of
RBR and BBR. However, the when the costs of this type of optimization can
be afforded, in particular the blocking caused by the locks, its application is
in particular suitable for the advance reservation environment since stability of
the traffic at least during a single slot can be guaranteed and the length of the
book-ahead interval allows also for longer processing times of the optimization
algorithm than possible in immediate reservation environments.

These results show the considerable performance improvement that can be
achieved when using the opportunities of the temporal dimension available in
the advance reservation environment. Besides the increased admission proba-
bility and additional services that can be implemented for clients in such an
environment, the performance that can be achieved by network operators in the
environment shows, that it is worth to offer such services. The figures show
also, that the actual pricing policy of network operators should be related to
the amount of traffic carried by admitted requests rather than to the amount
of flows admitted in the network. When the BBR is the dominating perfor-
mance metric, the performance of advance reservation networks is comparable
to immediate environments or even better, depending on the properties of the
requests.



Chapter 6

Fault Tolerance

In any QoS environment, the tolerance against the failure of components is a
vital part of the system and considerably affects the performance of the network.
The term failure in this context applies solely to link failures. The reason is
that the failure of any other component, e.g., the bandwidth broker, does not
require strategies specific to advance reservations but can be implemented as in
an immediate reservation environment with similar setup. Furthermore, since
router failures in essence result in a number of link failures, the same strategies
for failure recovery can be applied.

Since failures in computer networks are a common phenomena [ICM+02], it
is necessary to develop mechanisms that deal with failures also in the advance
reservation environment where resources can be reserved well before they are
used. Thus, also in this context the management system needs to use the avail-
able knowledge about flows which are not yet active but already admitted and
might get affected by a failure.

In this chapter, strategies are described which tackle this problem. These
strategies were integrated into the failure recovery module of the bandwidth
broker (see section 3.4.5). As for the overall performance (see chapter 4), the
focus of the developments shown in the following is on the question how to use
the additional knowledge about the future to improve the systems’ performance.
In particular, two issues are of interest. The first is the impact of failures on
the overall network performance, and the second is the impact on individual
flows. It can be shown, that the general method to find alternative routes also
for flows that are not yet started but are likely to be affected by a link failure
reduces the termination probability for flows when reserved sufficiently early.
Alike to reserving in advance, this approach is called rerouting in advance. In
comparison to immediate reservation environments, the proposed techniques
lead to superior fault tolerance properties of the underlying network since a
larger amount of the affected flows can be rerouted.

6.1 Failure Recovery Mechanisms

6.1.1 Overview

Fault tolerance mechanisms for immediate reservations have been widely stud-
ied, in particular in conjunction with MPLS. The general framework for MPLS

95
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based failure recovery was outlined in [SH03] and distinguishes two basic ap-
proaches: protection switching and rerouting. The former requires establishing
recovery paths before a failure occurs and in case of a failure only requires
switching the affected traffic to such a recovery path. In case the affected flows
were given a QoS guarantee it is required to assure sufficient capacity on the
recovery paths is available. Otherwise, the flows will experience a performance
degradation or even termination. Alternatively, it is possible to preempt other
than QoS flows on the recovery paths. In contrast, the rerouting approach does
not establish any recovery paths in advance and hence, does not require re-
source reservations for higher quality traffic before a failure occurs. The option
to establish recovery paths is an important feature of MPLS since it allows one
to switch LSPs as soon as the failure becomes known at the respective LSRs.
Since this process does not require convergence of routing protocols (in order to
deal with the failure and the resulting topology), switching can be made within
extremely short periods of time.

timefailure failure
notification

sent

flows switched
to recovery path

routing protocol
convergence

(path recomputation)

flows switched from
recovery path

to new working path

1 2 3 4 5

Figure 6.1: Event sequence of the recovery mechanisms used by MPLS [SH03].

Both protection switching and rerouting may be used in combination, i.e.,
traffic is firstly switched to the recovery paths while new working paths are
determined by the routing protocols or a central instance like a bandwidth
broker. Once the new working paths are computed, traffic is switched from the
recovery paths to the new working paths. The temporal sequence of the whole
failure recovery mechanism is outlined in figure 6.1.

In [AK02], an approach to provide different resilience classes was introduced.
The considerations are focused on providing sufficient bandwidth for all flows in
better than best-effort resilience classes using a protection switching approach.
The protection alternatives path protection and link protection were examined.
In addition, the impact of link protection respectively path protection mech-
anisms in the given scenario is examined. The result is the path protection
approaches provide a higher resource efficiency, i.e., less bandwidth must be
provided for the resilience classes. The reason is that path protection aims to
find a global solution for the rerouting problem, thus allowing the management
system to use alternative paths with equal or similar hop count. In contrast, link
protection reroutes flows locally around the fault and hence, the local alternative
increases the overall path length significantly.

In order to determine suitable recovery paths, in [LG01] a path computation
algorithm is presented that provides a set of maximally disjoint paths for each
pair of network end points. This properties assures that a number of alternative
paths is available for the initial admission control algorithm which aims to pro-
vide load balancing functionality such that a single link failure does not affect
too many flows. Furthermore, the path set is used as recovery paths in case
of a failure. Flows are switched to the first available of the alternative paths if
sufficient capacity is available, and are preempted otherwise.

The approaches described previously deal with routing issues in case of link
failures, i.e., how to find an alternative path and which alternative path to
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choose. In case, insufficient bandwidth is available at any alternative path,
other mechanisms were developed. For example, it is possible to reduce the rate
of selected flows in order to allow others to survive a link failure. Besides a rate
reduction it is also possible to use preemption. Its aim is to preempt one or more
low priority flows in order to allow other flows to survive a link failure. Using
the preemptive approach, a priority is assigned to each flow and flows of higher
priority may preempt those of lower priority. For example, in [dSAU02], an NP-
complete optimization problem was formulated which describes the problem of
minimal rerouting LSPs in case of link failures in an MPLS-aware network. The
optimization problem then is to reduce the amount of LSPs that are rerouted
and - based on a priority assignment for LSPs according to the DiffServ model
- allows one to reduce the capacity of LSPs in order to reroute higher priority
LSPs. Both the preemption and rate reduction of flows (LSPs) are opportunities
to limit the impact of link failures on the network performance.

Previous work in the field of failure recovery in advance reservation scenarios
dealt mainly with architectures that provide fault tolerance. The assumptions
made in [SBK98] are based on the network mechanisms to find alternative routes
of RSVP signaling messages. However, as stated in [Rei95a] this is a problem
since it leads to an unpredictable behavior and does not provide a sufficient
amount of fault tolerance for advance reservations.

In [BN02], a distributed approach for managing advance reservations has
been proposed. The focus on the survivability of the management infrastructure.
The actual considerations deal with measures that handle with link failures when
they occur.

6.1.2 Properties of Advance Reservations

In an advance reservation environment, in accordance with [WS97] three periods
of time where failures occur can be distinguished:

1. during the reservation and negotiation phase

2. during the intermediate phase, i.e., when resources are allocated but not
yet used

3. during the usage phase

As outlined in [WS97], dealing with failures during the first and the third
phase of a flow does not significantly differ from the case in immediate envi-
ronments. For example, in case of MPLS networks failure recovery mechanisms
as described in [LG01] may be used when the failure occurs during the usage
phase. Failures occurring during the reservation and negotiation phase, e.g.,
failures of the bandwidth broker, are not considered here.

Thus, due to the nature of advance reservations, link failures in such environ-
ments do not only affect currently active flows but also those that have already
been admitted but are not yet active (see figure 6.2). These flows are affected
during their intermediate phase. Since a QoS guarantee has already been given,
interruptions of these flows must be avoided and hence, advance reservations
require a different approach for dealing with link failures.
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Figure 6.2: Flows in advance reservation environments

6.2 Failure Recovery

As described before, the approach discussed here is the rerouting as denoted
in [SH03]. Evidently, it is possible to apply a combination with the recovery
switching techniques provided by the MPLS network infrastructure.

The fault tolerance concept for advance reservations outlined in the fol-
lowing consists of two mechanisms: pre-failure and post-failure schemes. The
pre-failure strategies are the initial routing strategies which may be designed
in a way to perform load-balancing [LG01], i.e., trying to avoid that a single
link failure affects too many flows in situations with low network utilization.
Furthermore, when a set of precomputed paths, determined by the pre-failure
strategy, is available when a link fails, this path set can be checked in order
to determine backup paths. Since this does not require to compute new paths,
the whole rerouting process can be accelerated. This is especially important
because advance reservations require to check the whole duration of each flow
in order to perform admission control. In contrast, the post-failure strategies
which are applied after a failure occurred, determine the affected flows and how
these flows are treated during the subsequent recovery steps, e.g., the order in
which flows are rerouted.

timefailure notification;
start of post-failure

computation

2

failure

1

path
selection

4

flow
ordering

3

finish of post-failure
computations, setup of

new working paths

5

Figure 6.3: Temporal sequence of events in case of a link failure in the advance reser-
vation scenario.

The failure recovery procedure works as indicated by the temporal sequence
outlined in figure 6.3. In case a link failure occurs and is notified to the band-
width broker, the flows that have to be rerouted are determined. The affected
flows are then ordered according to the post-failure strategies which will be pre-
sented in section 6.3.3. Using the path set associated with each pair of nodes, for
each flow a backup path with sufficient bandwidth from the set of precomputed
paths is determined. If such a path is found, the flow is rerouted. If not, an
individual backup path is computed if one exists, otherwise the flow must be
terminated.

The approach described in the following sections aims to use the information
about the future network status and reservations as available in the advance
reservation scenario in order to improve the probability for a given flow to survive
a link failure. Its key feature is that in case of a failure those flows that not yet
active but likely to suffer from a service degradation or interruption due to the
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failure are rerouted in advance. The failure recovery mechanism is implemented
within the bandwidth broker as described in section 3.4.

The emphasis in this thesis is on the general approach to provide fault tol-
erance mechanisms in advance reservation environments. A variety of different
opportunities exist to further increase the performance of the network, such as
rate reduction or preemption of low priority flows [dSAU02], or transmissions
across multiple paths in parallel [LG01]. Support for these methods can be easily
added to the bandwidth broker framework, however is not considered here.

According to [SH03], the scheme described before can be classified as a
rerouting technique, i.e., no recovery paths are allocated before a failure oc-
curs. Instead, each alternative path is determined on-demand at the time the
failure is notified to the bandwidth broker. This can be combined with pro-
tection switching, i.e., in the MPLS scenario the respective mechanisms for
switching the active flows to alternative recovery paths may be used to tem-
porarily reroute the affected flows [AK02, LG01]. In the advance reservation
scenario, these recovery paths would be computed and maintained by the band-
width broker and, since timing is important in the advance reservation context,
these recovery paths may change over time.

6.2.1 Rerouting in Advance

The cancellation of flows already admitted a long time ago (see figure 6.2) should
be avoided which leads to the question which flows are actually affected by a link
failure. For that purpose, the notion of expected downtime is introduced which
defines the assumed downtime period of a given link. The expected downtime
must be computed for each link failure, for example by using statistical data
about the duration of former failures, as measured by [ICM+02]. Any flow
which is active within this period is taken into account for rerouting which is an
important requirement of the failure recovery mechanisms in advance reservation
networks. The opportunity to reroute also flows not yet affected by a link
failure is very important for the whole setting and distinguishes this approach
from previous work in immediate and advance reservation scenarios. As will
be shown later, this reduces the termination probability and bandwidth loss
compared to scenarios which only allow immediate reservation. The usage of
information about future network status, i.e., admitted reservations, in this
context can be effectively used to significantly improve the performance of the
network for clients as well as for network operators.
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Figure 6.4: Expected downtime and affected flows

An example for the general procedure is given in figure 6.4. The flows F1,
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F2, F3, F4, and F5 are affected by the link failure and are rerouted if possible.
If F5 cannot be rerouted it will not be canceled but in case the link failure is
still present at the start time of F5, the bandwidth broker will then again try to
find an alternative path. F6 does not start within the expected downtime and
therefore the network management system does not try to find another feasible
route for F6.

The other important difference between advance and immediate reservation
scenarios is, that once an alternative path with sufficient bandwidth for a given
flow is found in an immediate reservation environment, this path can be used
until the flow is finished. This means, no further computational effort is required.
In an advance reservation scenario, such an approach is not feasible since future
requests might block the available bandwidth. Hence, for any alternative path
the whole transmission period of a given interrupted flow has to be checked for
sufficient bandwidth.

Requests that arrive during the downtime of a particular link and require
bandwidth after the expected downtime period for that link can be accepted as
usual. Such requests are not influenced by the link failure unless the downtime
estimation is incorrect.

The procedures previously described rely on the important assumption that
the expected downtime can be accurately determined. The effects of incorrect
downtime calculations are described in section 6.3.5. In that section, the effect
of not using the expected downtime, i.e., of not rerouting inactive but admitted
flows, is also shown. In general, when the bandwidth broker receives up-to-
date information about an extended duration of a link failure compared to the
original estimation, the post-failure rerouting process is initiated again using
the new information. This procedure can be repeated as often as required.
Similarly, when a link failure lasts shorter than expected, the bandwidth broker
will simply update the status information in its internal database. In case,
network rebalancing is required this will be detected and handled by the off-
line optimization module. An extended link failure will not require any active
flows to be switched to recovery paths since none of those flows are actually
routed using the failed link. Instead, the bandwidth broker only needs to reroute
inactive flows to alternative paths.

6.2.2 Pre-Failure Strategies

Fault tolerance in an environment as considered in this document is closely
related to routing. The actual routing policy as enforced by the bandwidth
broker determines how flows are mapped onto the network, i.e., which paths
are used, and therefore influences the load that can be put onto the network.
For the advance reservation environment, the different aspects of routing were
described in chapter 5.

In the context of fault tolerance, routing strategies are seen as pre-failure
mechanisms with a twofold purpose. In addition to the on-line admission control
process, the routing mechanisms are used to determine paths that can be used
in case a failure occurs. This path selection process must be performed as fast
as possible, i.e., in the best case without having to individually try to determine
feasible alternative paths for any flow to be rerouted.

For that purpose, several approaches can be conceived, three of them are
described in the following:
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1. k shortest paths

2. maximally disjoint paths

3. on-demand path computation (variant: with path caching)

In [BDF03], two pre-failure strategies were compared that are based on a
set of k precomputed paths (see also section 5.1.3). The first simply computes
the k shortest paths. The currently fastest known algorithm to compute such a
path set is described in [Epp98] (EPP).

A different approach was followed in [LG01], where an approach for provid-
ing fault tolerance in immediate reservation environments was proposed. The
idea was to compute maximally disjoint paths (MAXDIS) in order reduce the
probability that too many flows are affected by a single failure, thus achieving
also load balancing when applying this strategy also as the main routing algo-
rithm. However, as pointed out in [BDF03] the major drawback of the MAXDIS
approach is that the compute path set is relatively small and hence unsuited for
both admission control and failure recovery purposes. However, the MAXDIS
approach may be used to determine recovery paths for switching active flows if
this option is required.

The third approach considered here is based on the on-demand path com-
putation with caching of the computed paths for future usage as outlined in
section 5.1.1. In case of a link failure, the paths from the cache are checked for
sufficient bandwidth for the affected flows.

When no suitable alternative path can be found after a failure occurred, for
any of the pre-failure strategies the on-demand path computation is used as
backup solution to try and compute a feasible rerouting path. Thus, each strat-
egy will determine any possible alternative path as long as sufficient bandwidth
is available to reroute flows.

Because of the drawbacks of the two precomputing approaches, the on-
demand path computation together with the path caching strategy was used
as pre-failure strategy.

6.2.3 Post-Failure Strategies

After a link failure is detected and notified to the bandwidth broker, the post-
failure strategy determines the reaction to this failure. The following steps are
performed in this case:

1. determine the set of affected flows

2. select alternative, feasible path for each flow (using the path set as given
by the pre-failure strategy)

3. determine the duration the alternative route is used for

After determining the set of flows affected by a link failure, which includes
those flows that are likely affected by the failure in the future, the task of the
post-failure strategies is to determine which of the affected flows are rerouted.
Formally, when having a number of i affected flows with bandwidth requirements
bi and a total capacity c on the alternative paths, the question is which flows to
reroute such that an optimal solution is achieved, i.e., that the amount of bytes
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transmitted by flows that are rerouted using the alternative paths is maximized.
Another conceivable metric is the number of flows that are successfully rerouted.

Lemma 6.1 (Flow rerouting complexity) Let G(V, E) be a network, let
(u, v) be a link that fails at time te, and let F = (f1, ..., fn). Furthermore, let
fi := (si, di, ti,start, ti,stop, bi) ∀i ∈ {1, ..., }, be the set of flows routed using the
link (u, v) ∈ E such that ti,start ≤ te ≤ ti,stop ∀i ∈ {1, ..., n}. The problem of
finding a subset F̂ ⊂ F to be rerouted on alternative paths such that b(F̂ ) :=∑|F̂ |

j=0 bi ∗ (ti,stop − max(te, ti,start)), i.e., the amount of bandwidth carried by
rerouted flows is maximized, is NP-complete.

In case, the individual flows fi are not allowed to be routed in fractions, this
problem is an instance of the integral multi-commodity flow problem and hence
NP-complete [SM90]. It is possible to obtain a simpler problem by allowing
each flow to be routed in fractions using more than a single path in parallel. In
this case, the resulting multi-commodity flow problem is solvable in polynomial
time. However, the parallel transmission of a single flow using multiple paths
was not considered here and in the following sections the focus is on the integer
problem.

The complexity of the process that reroutes flows is critical in this envi-
ronment since the goal is to avoid packet loss which requires a sufficiently fast
rerouting process at least for active flows. Computations that last longer can
be afforded when dealing with inactive flows.

In the following, a number of different heuristics to solve the flow rerouting
problem are proposed which take the properties of the advance reservation en-
vironment, i.e., knowledge about the future, into account. The strategy is to
firstly order the flows and then try to find an alternative path for the flows in
the computed order. The additional amount of information available can all be
used to order the flows which leads to a large number of possible strategies. The
following seven strategies were chosen, representing a subset of the theoretically
possible number of alternative prioritization opportunities.

First-Come First-Served (FCFS) Similar to the basic advance reservation
principle, this straightforward strategy prefers flows that have been re-
quested early. FCFS provides a high degree of fairness as perceived by
users in the sense that flows admitted at a very early stage are rerouted
with a high probability, independent of other properties of the correspond-
ing flow. This is also the basic idea of advance reservations, i.e., early re-
quests for QoS have a high probability that such requests will be admitted.
This FCFS strategy however results in a rather unpredictable performance
as can be observed in section 6.3. In our experiments, FCFS nearly always
ranged between the best and the worst.

Largest Remaining Transmission First (LRTF) LRTF selects transmis-
sions with a high amount of remaining bytes to be rerouted with higher
priority.

Smallest Remaining Transmission First (SRTF) SRTF has the opposite
effect of LRTF, i.e., transmissions with few amount of bytes left to transfer
are preferred.
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Widest First (WF) This strategy prioritizes transmissions with the highest
transmission rate.

Smallest First (SF) The counterpart of the WF strategy is Smallest First
(SF), preferring flows with low transmission rate.

Largest Request First (LRF) This strategy uses the totally allocated band-
width as a metric to order flows, i.e., LRF prefers flows transmitting a large
amount of bytes.

Smallest Request First (SRF) Alike WF, LRF also has a counterpart which
prefers requests with a low amount of bytes.

In general, any possible metric can be used to prioritize flows during the
rerouting process, such as a profit associated with each flow or charge to be
paid when a flow is terminated. However, the techniques presented before do not
require ”external” knowledge about prizing or other prioritization strategy but
solely use the available information about flows such as bandwidth requirement
or duration which are available in the bandwidth broker.

Path Selection

3

2

1

Figure 6.5: Path selection after link failure.

When the previously described ordering of flows is finished, the set of pre-
computed paths is used in order to select a new path for the affected flows.
In case, no suitable path is found among the precomputed paths, the fall-back
solution is to compute a feasible path using an on-demand routing strategy de-
scribed in section 5.1.1. If this computation fails as well, no suitable path is
available and the flow in question must be interrupted. In general, the same
strategies as described in section 5.1.1 can be used to weight the alternative
paths. The actual strategy used during rerouting was Widest/Shortest.

The example depicted in figure 6.5 shows a setup with 3 alternative paths.
Each flow mapped onto path 1 is chosen for rerouting and either of the two
alternative paths can be chosen as long as they provide sufficient bandwidth to
carry those flows. In this particular case, path 3 has a lower hop count and
therefore will be preferred when applying the rerouting strategy.

Rerouting Duration

As described in section 6.2.1, any flow which uses a broken link during its
expected downtime is selected for rerouting. Several alternatives exist for how
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long these flows are rerouted. Realistically, only two strategies can be applied:

1. Rerouting each flow for the longest possible period of time, at most for the
expected downtime. When the expected downtime is over, each rerouted
flow is switched back to its original path. If the link failure lasts shorter
than expected, flows can be switched back to the original path if sufficient
capacity is available.

2. Rerouting during the whole duration of a flow, independent of expected
and real downtime.

While the former has the potential to reroute a higher number of flows since
rerouting is only required for a shorter period, the latter approach has the
advantage of reduced administrative overhead since a flow needs to be switched
at most once. Any of the two approaches can be combined with a flow switching
approach as described in section 5.1.4, which means that several different paths
can be used in order to increase the amount of successfully rerouted flows. It
is clear, that flow switching increases the administrative overhead, as already
outlined in section 5.1.4. In this case, the second approach of rerouting for the
whole duration of a flow looses its only advantage and cannot be reasonably
applied.

When rerouting fails even using the multiple path approach, in case a flow
cannot be rerouted during the whole expected downtime it is advantageous to
reroute as long as possible and try the rerouting again when this period of time
is over. The reason is that flows which had to be terminated release bandwidth
that becomes available to other flows, thus avoiding an interruption.

As a result of the previous considerations, the failure recovery module in the
bandwidth broker implements the flow switching strategy and reroutes flows
only during the downtime of a link.

6.3 Evaluation

6.3.1 Simulation Environment

The environment for the simulations is the same as outlined in chapter 4. The
failure model was derived from the examinations in [ICM+02] which studied link
failures in IP backbone networks. The study presented in [ICM+02] describes
measurements in an IP backbone network made during a 5 month period. Other
studies of link failures used a variety of different failure models e.g., with con-
stant failure probability for each link and linearly increasing failure probability
over time [BN02]. In [LG01], the examinations are made using a grid topology
with uniformly distributed mean time between failures. This does not conform
to the observations and measurements real networks and hence is not applied
here. Instead, the simulations described in the following use a failure model as
described in [ICM+02]. The probability distribution for the failures were model
according to the examinations in [ICM+02].

The performance of the pre- and post-failure strategies was assessed using
mainly two metrics. Firstly, the termination ratio describes the impact of link
failures on the flows and is defined as
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termination ratio =
|B|
|A| .

where B denotes the set of terminated flows due to link failures and A denotes
the set of flows that was affected by the link failure. The second metric is the
bandwidth loss ratio which is defined as

bandwidth loss ratio =
∑

i∈B bi∑
i∈A bi

.

with bi being the amount of bytes carried by flow fi. Again, in order to reduce
the number of figures and for the sake of clarity, only the cost239 topology (see
section 4.3.1) was used to generate the results described in this section.

6.3.2 Performance of the Pre-Failure Strategies
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Figure 6.6: Pre-failure strategies: average number of alternative paths between two
end nodes depending on the parameter k.

Both k path algorithms, i.e., EPP and MAXDIS, do not compute exactly k
paths. In case of EPP, this is due to the fact that this algorithm also returns
paths with loops which must be removed, and in case of MAXDIS, this is caused
by the way the ”maximally disjointedness” is determined by the algorithm. Fig-
ure 6.6 shows the average size of the path set compute over any two end nodes
of the cost239 topology. This illustrates the general problem of the MAXDIS
strategy: this algorithm only computes a very limited number of alternative
paths and a ”saturation” is reached very soon. For example, with a parame-
ter of k = 15, the average path set consists of 4.5 paths for the EPP strategy
whereas MAXDIS computes path sets with an average size of only 2.5. Hence,
the amount of interrupted flows for which no alternative path can be found is
higher than for the EPP strategy. This shows, that MAXDIS in general is less
suited to be applied in an environment as considered here although its approach
is to compute maximally disjoint paths and therefore to achieve a relatively even
distribution of the network load. In contrast, the k shortest strategy using the
EPP algorithm always reaches the desired number of alternative paths if they
are theoretically feasible and the parameter k is adjusted accordingly. The path
caching approach is the third alternative for using precomputed paths. This
strategy achieves an average path set size of 14.6.

Since an on-demand path computation is applied as a backup solution for any
of the previously described strategies, the possible set of paths is only important
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for the time required to compute the backup paths. It is always guaranteed that
a path with sufficient bandwidth is found if one exists.

In a situation as discussed here, i.e., with a network utilization near the
maximum, the number of links with sufficient amount of free bandwidth for
rerouting a flow is limited. Therefore, the MAXDIS strategy with only a few
alternative paths cannot exploit the whole set of available paths and leads to
an increased termination ratio. Using the backup on-demand path computation
will therefore be needed very often which reduces the speed of the algorithm.
With large parameter k, this requires a considerable amount of time. Although
in the advance reservation scenario a slightly higher time required for rerouting
is affordable for most of the affected flows because there can be considerable
amount of time between the link failure and the start of those flows, the general
approach should be to finish the rerouting process as soon as possible. This
is needed particularly for short link outages which make up the largest overall
share of failures according to [ICM+02].
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Figure 6.7: Performance of the EPP strategy relative to the on-demand/path caching
approach (100%): rerouting speed (left), termination ratio, and bandwidth loss ratio
(right).

In figure 6.7, the average time required for the rerouting process using the
k-path approach is depicted relative to the time required using path caching,
i.e., the path caching approach exactly results in 100%. It can be observed that
up to a path size of approximately k = 22, the k-path approach is superior but
then the performance decreases drastically. On the other hand, the diagram
on the right hand side shows that the parameter k must be relatively large in
order to achieve a significantly lower termination ratio and bandwidth loss rate.
Adjusting the parameter k requires to make a trade-off between rerouting speed
and network performance. Since the k-path strategy is not used to provide
recovery paths for recovery switching, but to improve the admission speed for
rerouting the affected flows, the path caching approach was used for the sub-
sequent simulations. Its advantage is that no trade-off must be made between
rerouting speed and performance.
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6.3.3 Performance of the Post-Failure Strategies

As described before, the chosen pre-failure strategy implements the on-demand
path computation together with caching of computed paths. The post-failure
strategy then determines which flows are rerouted in case of failures.
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Figure 6.8: Post-failure strategies: termination ratio and bandwidth loss ratio with
different amount of simultaneous link failures.

In figure 6.8 the termination ratio and bandwidth loss rate are depicted for
variable amount of simultaneous link failures. It can be seen, that differences
exist between the different strategies. In general, those strategies which prefer
requests with short remaining duration or requests with low remaining amount
of bytes to be transferred (SF, SRF, SRTF) perform well with respect to the
termination ratio. In contrast, it can be observed that those strategies which
prefer flows with long remaining duration respectively high remaining bandwidth
requirement (WF, LRF, LRTF) achieve a lower bandwidth loss ratio than the
others (see figure 6.9). The FCFS strategy which prefers flows admitted the
longest time ago, ranges between the best and the worst strategy.
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Figure 6.9: Termination ratio and bandwidth loss ratio for the different post-failure
strategies with 25% link failures.

While figure 6.8 shows that the performance difference of the strategies per-
sists with increasing amount of link failures, in figure 6.9 the performance of the
strategies is examined in more detail. Among the ”S” strategies, SF consistently
performs best concerning the termination ratio and SRF is superior with respect
to the bandwidth loss ratio, whereas the WF strategy performs best among the
”L” strategies with respect to the termination ratio but cannot compete with
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the other concerning the bandwidth loss ratio. LRTF is most successful with
respect to the bandwidth loss ratio. This mixed picture shows the difficulty to
select a reasonable strategy.

However, since the FCFS strategy always achieves a result between the best
and the worst of the other strategies, it is reasonable to use the FCFS strategy
in order to implement a policy which prefer those flows admitted very early.
This can positively influence the customer satisfaction and meet the clients
expectations and therefore can also be of interest for network operators. The
usage of FCFS for failure recovery implements an analogue idea as the advance
reservation service itself: requests issued at an early stage receive the requested
QoS with the highest probability. This important property is examined in more
detail in section 6.3.4. Using FCFS as post-failure strategy therefore seems to
be a reasonable approach since it provides the highest fairness as perceived by
clients, and also can be seen as a trade-off between the other strategies which
achieve either good termination ratio or good bandwidth loss ratio. Therefore,
unless otherwise stated the subsequent simulations were all made using the
FCFS strategy.

6.3.4 Impact on Individual Flows

As mentioned in section 6.3.3, the FCFS strategy provides lower termination
probability for flows reserved a long time in advance. This property is fostered
further using the pro-active rerouting in advance approach as will be shown in
this section.
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Figure 6.10: Termination probability as a function of the reservation time for different
post-failure strategies with a mean reservation time of 500.

The impact of the reservation time on the termination probability is depicted
in figure 6.10. The diagram shows the termination probability of advance reser-
vations as a function of the reservation time for different post-failure strategies.
It can be observed, that reserving a long time before the usage phase pays off
not only in terms of admission probability (see also [WG98]) but also in case of
link failures. For each of the simulations, the reservation times of the requests
were exponentially distributed with a mean of 500.

The FCFS strategy has the lowest termination ratio for flows with reserva-
tion times larger than the mean. For FCFS, the result is a strictly monotonic
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decreasing curve, which is a consequence of the ordering of flows which only takes
the reservation time into account. In contrast, the WF and SF strategy show
a peak at 500 (SF) and approximately 600 (WF), respectively. Both strategies
show a local minimum at approximately 250 which is exactly the mean duration
of the requests. In general, SF has the lowest average termination probability
as was already shown in Sec. 6.3.3. The order according to the transmission
rate as made by WF and SF leads to the peak near the mean reservation time
from where on the termination probability declines since the total amount of
reservation present with reservation times higher than the mean is relatively
small.

For other than FCFS strategies, the time from whereon the termination
probability decreases can be denoted as a critical time (see also [WG98]), which
may be conveyed to clients in order to allow them to plan their reservations
accordingly.

With the same mean reservation time, the FCFS strategy results in the
lowest termination ratio for requests reserved at least the mean reservation time
in advance. The reason is two-fold: although all strategies perform rerouting in
advance, longer reservation times are preferred for rerouting by FCFS and as a
consequence their termination probability is reduced significantly. In contrast,
the termination rates of the WF and SF strategies are higher for reservation
times around the mean.

6.3.5 Influence of the Downtime Calculation

In the previous simulations, it was assumed that the expected downtime exactly
matched the actual downtime. However, it cannot be assumed this is always
possible under realistic conditions and hence, it is important to look at the
impact of inaccurate downtime calculations on the performance. In particular,
it is of interest how inaccurate assumptions, i.e., over- or underestimations of
the actual downtime, influence termination ratio and bandwidth loss ratio on
the one hand and request blocking ratio and bandwidth blocking ratio on the
other hand. In order to determine the impact of inaccurate estimations, the
following simulations were always made using the same actual downtime with
different estimations, i.e., underestimating a failure with duration 100 by 10%
means a downtime of 90 is estimated.

Two cases can be distinguished: the downtime might be calculated too con-
servatively which means the actual downtime of a link is shorter than expected.
In the second case the downtime is underestimated, i.e., the actual downtime
is longer than expected. In the simulations, the recomputation of the expected
downtime in those cases was made accordingly: the remaining actual downtime
was underestimated by the same percentage as for the initial estimation. This
process continued until eventually the actual downtime was correctly estimated.

In figure 6.11, RBR and BBR are shown as a function of the downtime
deviation, i.e., the difference of the actual downtime compared to the estimate.
A negative downtime deviation means an overestimation and positive deviation
means an underestimation of the actual downtime. It can be observed that
overestimating the actual downtime leads to a reduced amount of flows being
accepted. The blocking ratios decrease when the estimated time is reduced.
The lower the estimate, the higher the amount of flows that can be accepted.
The reason is that rerouting flows on alternative - in this context: less optimal -
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Figure 6.11: Influence of inaccurate downtime estimation on RBR and BBR. Negative
values denote an overestimation and positive denote an underestimation of the actual
downtime.

paths leads to a higher bandwidth consumption and thus, to a reduced amount
of flows that can be accepted. However, the expected downtime computation
also affects new requests for bandwidth that fall into the expected downtime:
the bandwidth broker does not map those new requests onto a link which is
known to be down. This increases the effect of using suboptimal paths and
hence, when the actual downtime period is shorter than expected both RBR
and BBR rise. However, the figures also show that, using the failure model of
[ICM+02], the impact on the overall performance remains low since the failure
situations are only exceptions of the normal operation.
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Figure 6.12: Influence of inaccurate downtime estimation on termination ratio and
bandwidth loss ratio.

The impact of an inaccurate downtime estimation on termination ratio and
bandwidth loss ratio is shown in figure 6.12. It can be observed that overestimat-
ing the actual downtime only slightly affects termination rate and bandwidth
loss ratio. This is the expected behavior of the system since inactive flows
that cannot be rerouted at the time of the failure will not be terminated but
checked again at their start time. When the actual downtime is below the ex-
pected downtime, flows that cannot be rerouted but start after the end of the
downtime are not affected at all by the failure. On the other hand, an underes-
timation of the actual downtime immediately leads to a significant performance
loss compared to the case of an exact estimation. This occurs even with only
little underestimation and - compared to the exact computation - results in an
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aggravation of up to 34% with respect to the termination ratio and 26% with
respect to the bandwidth loss ratio.

When the downtime is overestimated, the network load becomes unbalanced
at the time the failed link is active again. In this case, it is possible to apply
off-line optimization techniques in order to rebalance the load and thus, avoid
the negative impact of the overestimation on the request blocking ratio and
bandwidth blocking ratio. However, the actual impact on the network perfor-
mance is rather low compared to the result when having an exact estimation and
additionally, rebalancing cannot completely expel the performance degradation,
since incoming requests are not allotted to links known to be down during the
requested transmission time.

The conclusion to be drawn from these examinations is that the estimation
of the link downtime must be made such that underestimations are avoided, e.g.,
the actual estimations can be based on the results of the analysis of link failures
in a network, as made in [ICM+02]. The results also show, that rerouting in
advance, i.e., rerouting inactive flows, is important. When only active flows are
rerouted, e.g., using a mechanism from the field of immediate reservations, each
inactive, affected flows must be rerouted when they start. Consequently, the
result is the same as for the underestimation (positive deviation) shown in figure
6.11, i.e., a significant rise of the termination ratio and bandwidth loss ratio.
The importance of rerouting in advance is even higher than the actual choice of
the rerouting strategy, since the differences among those are less significant (see
section 6.3.3).

With an underlying business model which defines the cost of a terminated
flow and the revenue of an accepted flow, it is possible to determine the opti-
mal ”overestimation” time by using a trade-off between termination ratio and
bandwidth blocking ratio on the one hand and RBR and BBR on the other
hand.
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Chapter 7

Data Structures for
Admission Control

Performance aspects as considered in this thesis do not only cover the field of
network performance in terms of request or bandwidth blocking ratio. In addi-
tion, another important performance aspect is the time required to manage the
network resources. This aspect deals with issues like computational complex-
ity of the tasks to be fulfilled in order to compute routes, determine suitable
transmission intervals for large amounts of files, etc. These issues, as far as they
concerned the developments described in this thesis, have been covered in the
previous sections.

The missing aspect is the question of the performance of the bandwidth
broker itself, i.e., the response time of the broker to a given advance or immediate
reservation request. In this context, the data structures in which the information
about future link utilization is stored, play a key role. Most of the time required
to compute routes during admission control is spent when accessing those data
structures. This occurs during the common on-line admission control, where
in particular the support for malleable reservations demands rapid access to
the data structures, and furthermore the off-line mechanisms used to optimize
the overall network performance and the failure recovery mechanisms. The
different mechanisms presented in the previous chapters require to minimize the
computation time for several reasons:

• Short admission times are important in the on-line scenario as they min-
imize the response time for clients. The response time for an individual
client also depends on various other factors, e.g., the message run-time and
therefore the processing time of the broker may not be a major concern
for individual clients since advance reservations usually also allow for a
considerable reservation time. However, the shorter the on-line admission
time for a single request, the more requests can be accommodated by the
bandwidth broker in general. This is important when the bandwidth bro-
ker runs on a device with limited processing capability such as a router.
Furthermore, request types such as malleable reservations with their dras-
tically increased complexity may influence the processing time such that
it can become the dominating factor.

113
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• Failure recovery mechanisms due to their nature demand for fast response
times in order to reduce packet loss and performance degradation of ad-
mitted flows. Failure recovery requires fast switching of flows depending,
and hence can be observed as admission control task.

• Off-line optimization can result in network performance gains but require
also significant computing time. Therefore, the time spent in this process
should be minimized.

• Although locking mechanisms enable concurrent processing of on-line and
off-line mechanisms, blocking of either process is not desirable. Hence,
the shorter the locking periods of either process, the better for the overall
processing time.

• The on-line admission control of the network system may only be a single
of a large number of different resources, for example in a grid environment.
In such a setting, the co-allocation of the requested resources may need
more than a single round of requests between the client and the respective
resource management systems. In this context, the whole admission pro-
cess can be delayed considerably when the response times of the individual
resource management systems are too long.

The total processing time of the bandwidth broker for a single request con-
sists of various tasks. The most important one in terms of processing time is
the check for sufficient bandwidth on the links of the network and the update
of the internal data structures. Following that, the routing, i.e., the search for
a suitable path using the results from the bandwidth check, is the factor with
the next lower amount of processing time in the broker. The remaining tasks
each require very short amounts of time. These tasks are related to queuing of
incoming requests, the framework around routing and bandwidth check, and the
representation of the network in the bandwidth broker. Furthermore, besides
updating the data structures, for each accepted flow some more information
need to be stored, such as the source and destination node, the path it takes,
the start and stop time, etc. In the following, the tasks not directly associated
with either routing or the data structures are all referred to as administrative
tasks. As will be shown later in more detail, the processing time spent in the
data structures adds up to up to 60% of the total processing time required
by the bandwidth broker, whereas routing requires only about 8% and the ad-
ministrative tasks the remaining 32% of the total processing time. Therefore,
optimizations of the data structures are most likely to improve the processing
speed of the bandwidth broker.

As described in chapter 3, the aggregated bandwidth for each link is stored
for each time slot. For the purpose of storing the aggregated bandwidth allo-
cation with each link, two data structures are examined with respect to their
performance in a bandwidth broker. Besides the basic functionality of efficiently
adding and deleting bandwidth, the capability to determine the available band-
width during longer time intervals is required, for example, in order to perform
efficient admission control for malleable reservations. Apart from the analysis
and measurement of the processing time, another aspect is the memory efficiency
which may also influence the applicability of either data structure.
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In order to perform the basic admission control process, two operations must
be supported. Before a reservation can be made, it is required to check each
link on the path for sufficient bandwidth. Therefore, admission control involves
a two-phase procedure:

• CHECK: Determine whether a reservation request can be fulfilled.

• UPDATE: The data structures for each link involved in a transmission are
filled with the new values, i.e., the resource requirement of the newly
admitted request is added to the existing entries of the data structure.
The UPDATE phase is only performed in case the previous CHECK phase
succeeded.

Before examining the data structures with respect to these two operations,
the properties of both arrays and trees are briefly introduced.

7.1 Array
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Figure 7.1: Example: Allocation profile and bandwidth values stored in an array. For
each affected slot, the bandwidth of the new request (50) is added to the existing
quantities.

Using the slotted time model as assumed throughout this document, the
application of arrays is straightforward. Each entry of the array represents a
single time slot and stores the accumulated resource requirement (in our case:
link bandwidth) during the corresponding time interval (see figure 7.1). In order
to limit the book-ahead interval, the array is implemented as a ring buffer using
a pointer to the time slot representing the current time in the bandwidth broker
(see figure 7.2). This allows to handle the advancing time in a very elegant and
efficient way.

book-ahead interval

current time

Figure 7.2: Array implemented as ring buffer with pointer to current time slot.

The memory requirement of an array in this form is b × s, with b being the
length of the book-ahead interval and s denoting the memory requirement for
a single slot.
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7.2 Segment Tree

In [SNNP99], a tree structure was developed for supporting the admission con-
trol task in advance reservation environments, the so-called segment tree which
is described in the following.

A segment tree is essentially a complete binary tree with nodes representing
the allocated bandwidth during certain time intervals. Each node of the binary
segment tree represents one period of the overall book-ahead interval and stores
the bandwidth reserved exactly for that period. Both start and stop time of
the respective interval of a given node are stored within the node together with
two values related to the reserved bandwidth. The first value (denoted by node
value) is the bandwidth reserved during the particular period of time the node
stands for. The second value (max value) denotes the maximum sum of node
values in any of the subtrees below the current node (see figure 7.3). Starting
at the top node, the two child nodes each represent one half of the duration
of their father node. In order to perform admission control, each reservation
request is processed as follows:

1. Starting at the top node, each reservation whose period is covered by the
current node, ”falls” through to the next level below the current node, i.e.,
the admission procedure is done with the node at the level below which
covers the particular period of the reservation.

2. If the duration of the request intersects with the duration of more than
one node on the current level, the reservation is split at the intersection
points and then each of the parts ”falls” through, i.e., for each part the
admission decision is made independently.

3. If a reservation or a part of it completely fits into the duration covered by
a tree node (such a node is called final node), the ”fall-through” process
stops for the respective part or the whole reservation1.

While the reservation or the parts of it ”fall through”the tree, the node values
of each tree node visited are added up. This happens also for final nodes. When
”fall-through” process is finished, i.e., all final nodes are found and completely
cover the duration of a part of the original reservation, it is checked whether the
requested bandwidth together with the computed sum does not exceed the link
bandwidth. In case the bandwidth is sufficient, the request can be admitted.
This has to be checked for each path from the top node to the final nodes. In
case sufficient bandwidth is available for any part of the reservation, the node
values in the corresponding final nodes can be updated. The traversal process
can be stopped in case insufficient bandwidth is detected at any of the visited
nodes. Following a successful check, each path has to be traversed backwards
in order to update the max values in each node previously visited. Figure 7.3
shows a segment tree before and after a new request (bandwidth = 50, starting
slot = 1, finishing slot = 6) is inserted, final nodes are denoted in gray. The
bandwidth values stored in the tree before the insertion corresponds to those
depicted in figure 7.1.

1The final nodes are not necessarily leaf nodes.
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Figure 7.3: A segment tree before (above) and after (below) insertion of a request.

7.2.1 Details of the Implementation

Two alternatives are conceivable in order to implement the segment tree:

1. pointer based implementation

2. tree embedded in an array

Pointers - although suggested in [SNNP99] - are rather unsuited in this
particular case because the segment tree represents a complete binary tree and
hence embedding the tree in an array saves the memory space required for the
pointers. On the other hand, a pointer based implementation allows one to use
dynamic memory allocation of tree nodes during run-time as will be described
in section 7.2.2.

t0

t1 t2

t3 t4 t5 t6

array index

tree indext0 t1 t2 t3 t4 t5 t6

0 1 2 3 4 5 6 7

Figure 7.4: Tree embedded in array: root node is placed at array index 1.
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Tree traversal as required by the CHECK and the UPDATE operation require
to compute the respective array indices for father and child nodes. This can
be supported by embedding the tree in the array starting with the root node
of the tree at element with index 1 (instead of index 0, see figure 7.4) this
allows to ascend or descend in the tree using only one shift operation (instead
of multiplying or dividing by 2) and at most one addition. This means, when
n is the array index of the currently visited node, the index of the father node
is computed as n/2 = (n � 1) (where � denotes the shift right operation) and
the left and right child nodes are computed as n · 2 = (n � 1) and n · 2 + 1 =
(n � 1) + 1 respectively.

Furthermore, two other alternatives exist to implement the tree traversal:
recursive and nonrecursive descend and ascend operations. However, recursions
are costly (although the computational complexity is not affected) in practical
implementations due to the computational overhead required for function calls
and hence, this alternative is unsuited. Therefore, nonrecursive tree traversal
was used for the following examinations. The complete admission control pro-
cedure requires at most one descend (CHECK) to the final nodes and one ascend
(UPDATE) from the final nodes in the tree.

3 4 5 6

1 2

0

3 4 5 6

1 2

0

1. CHECK phase, descend
    indices stored: 1,5

2. UPDATE phase, ascend
    start at indices stored during phase 1

Figure 7.5: CHECK and UPDATE phase for segment trees, gray boxes denoting visited
nodes. The final nodes (1, 5) for each descend/ascend path must be stored during
CHECK.

Using the nonrecursive tree descend approach requires to keep those nodes
where the left and the right subtree must be checked in a separate data structure
(”split” nodes). For example, the root node 0 in the situation depicted in figure
7.5 needs to be stored like this. Since the number of those ”split”nodes is limited
by the total number of nodes visited during the traversal, it is feasible to store
these nodes in an array. In the given network scenario, the CHECK phase must
be performed for any link on a given path. This means, it is required to store
the final nodes, respectively their indices in the array the tree is embedded in
(see figure 7.5), after each successful CHECK phase in order to support efficient
retrieval of those nodes during the UPDATE phase. For this purpose, final nodes
are also stored in an array during the CHECK phase.

These considerations lead to the following implementation of the CHECK phase
(tree descend). Two additional arrays are required, i.e., the array to store final
nodes and one to temporarily store ”split” nodes:

1. Descend to the next lower level in the tree, checking each node for sufficient
bandwidth as described in section 7.2.

2. In case a node is found where left and right subtree must be checked, insert
this node’s index in the array used to store ”split” nodes at the rightmost
position. Then, scan the left subtree of this node.
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3. In case a final node is found during the descend process, i.e., no further
descend is required, insert this node’s index in the corresponding array
storing final nodes. Remove the leftmost index from the array storing
”split”nodes (with right subtree still to be checked) and restart descending
the right subtree of this node. If this array is empty, the check is over.
The index of each final node visited during the whole process is stored in
another array. These indices are used to start the update phase from.

4. In case, insufficient bandwidth is determined at any node visited during
the descend process, the check phase can be stopped immediately.

In a network management system as considered here, the CHECK phase has
to be successful not only for a single tree but for the whole number of trees
associated with the links on a given path. This means, the CHECK phase for
the whole admission control process is successful only if sufficient bandwidth is
available on all links on a given path.

Following a successful CHECK phase, the UPDATE process for each link is ini-
tiated, starting from the final nodes which were stored in an array during the
CHECK phase. During this process, the node value of the final nodes and the
max value of any other node is updated.

7.2.2 Dynamic Memory Allocation

One of the major drawbacks of the segment tree is the memory consumption.
Although the memory consumption of the original implementation [SNNP99]
can be reduced by not storing start and stop times with each node (instead
they can be computed during tree traversal) which was the approach for the
implementations presented here, the memory requirement is far worse than that
of arrays.

Starting from the observation that only a limited number of tree nodes is
actually required even in case many reservations are stored within the tree,
the memory requirement can be reduced by only allocating the nodes that are
actually required. This is done dynamically during run-time. At the beginning,
only the root node is present. In case a new reservation is added, missing tree
nodes are generated on-demand during the tree traversal.

In order to realize this implementation alternative, the pointer-based method
must be used.

7.3 Advancing Book-Ahead Interval

A drawback of the segment tree is its unsuitability for a dynamically advancing
book-ahead interval. This means, that with advancing time but unchanged
duration of the book-ahead interval for each new time slot a new memory cell
must be used.

In order to cope with that problem, two trees can be used as depicted in
figure 7.6. At the time the book-ahead window completely covers one tree, the
content of the other tree can be completely deleted or remain in place for re-
usage in order to implement a mechanism similar to the ring buffer. However,
in the latter case the node value and may value of each node in the tree must
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tree #1 tree #2

... ...

book-ahead interval

Figure 7.6: Usage of two trees for coping with the dynamically advancing book-ahead
interval.

be reset to zero. This process may require more time than the deletion which
must be considered.

In any case, the worst-case memory consumption is doubled. In addition to
that, in case a single reservation spans more than one tree this does also increase
the admission time since reservations must be split and an admission decision
has to be made in both trees.

In contrast, arrays can be easily implemented as ring buffers using a single
pointer to mark the current time (see figure 7.2). This does neither affect the
admission speed nor the memory requirement of the array.

7.4 Performance Analysis

In order to analyze the behavior and performance of both data structures, it
is of interest to determine the number of memory cells a(n) accessed during a
single round of CHECK and UPDATE, with n being the duration of the correspond-
ing request2. Instead of examining only the worst-case using the O notation,
this approach has the advantage to more accurately show the properties of the
data structures while revealing also the reasons, which cannot be expected from
measurements.

7.4.1 Array

The memory requirement of arrays is fixed and equals the size of the book-
ahead interval counted in slots. The number of memory cells accessed during
the CHECK and the UPDATE phase only depends on n and can be easily computed
as

aarray(n) = 2n. (7.1)

7.4.2 Segment Trees

While arrays are easy to analyze, things get more complicated in case of the
segment tree. For a given request of duration n and a book-ahead interval b,
atree(b, n) represents the average number of memory cells accessed during both
phases. The average is computed over any possible start time of the request

2This corresponds to the steps performed when a request can be admitted.
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within the book-ahead interval b. Unlike arrays, in this case atree also depends
on b.

The approach is to determine the average amount of final nodes and their
length, i.e., the duration each final node covers, accessed during both phases.
With this knowledge, it is possible to determine the average depth of each final
node in the tree which is then used to determine to average amount of memory
cells a(n).

In the following, the estimations will be made under the assumption that the
start time of the reservation is uniformly distributed in the interval [0, b], with
b being the book-ahead interval. This means, requests appear at each position
in the interval [0, b] with the same probability. The general approach in this
analysis is to determine for each such position in the tree the number of final
nodes (see section 7.2) and thus the total amount of final nodes f . Then, the
average duration l covered by each final node within the tree and the average
amount of final nodes f̂ for each position is computed. With these results, the
distance of those final nodes from the root node in the segment tree can be
computed which provides the number of nodes and hence memory cells that
need to be accessed during the CHECK and the UPDATE phases.

Position 0 Position 1 Position 2

Figure 7.7: Final nodes (gray) and possible positions for a request of duration 2 in a
tree with b = 4.

The following example illustrates the approach. For the situation given in
figure 7.7, with n = 2 and b = 4 there is a total of 3 different positions of the
request of duration 2 in the tree. There are in total 4 final nodes at the three
positions. In order to reach a final node during the CHECK phase, 2 memory cells
(node value and max value) are accessed for each node on the path. Then, each
final node is stored in an array and recovered in the UPDATE phase which starts
at those final nodes. During the UPDATE phase, only 1 memory cell is accessed
per node, i.e., the node value at the final nodes and the max value at any other
node.

The means, for position 0, the CHECK phase requires to access 2 ·2+1 memory
cells and 1 + 2 · 1 memory cells during the UPDATE phase (see figure 7.8). The
same holds for position 2. For position 1, for each of the two final nodes 32̇ + 1
cells are access during CHECK and 1 + 3 · 1 cells during UPDATE. In total, this
means 8 cells are accessed for position 0 resp. 2 and 2 · 11 = 22 cells for position
1. Thus, the average amount of memory cells accessed for CHECK and UPDATE at
a single position is determined as (8 + 8 + 22)/3 ≈ 12.6667.

In order to generalize this approach, firstly the total number of final nodes
f(n) as a function of the duration n of a given request for all possible positions
is determined. As depicted in figure 7.7, the number of final nodes for a request
of duration n depends on the actual position in the tree, i.e., the start time of
the request. W.l.o.g., only the number of different positions is considered for
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Figure 7.8: Cells accessed during CHECK and UPDATE phase in position 0. The final
node (black frame) is stored in an extra array.

this estimation. This means, for the example shown in figure 7.7 only position
0 and 1 would have been considered. This estimation can be made when n is
much smaller than b which is a realistic assumption. The number of different
positions depends on the duration of the requests, i.e., for a request of duration
n there exist 2�log n� different positions until the initial position is reached again.

In the following, it is assumed that n � b where b = 2k denotes the book-
ahead interval.

Lemma 7.1 (Number of final nodes) The total number of final nodes for a
given duration n can be determined as

f(n) = 1 +
�log n�−1∑

i=0

(i + 1)2i + (n − 2�log n�)

= 1 + 2�log n��log n� + n − 2�log n�

= 1 + n + 2�log n�(�log n� − 1
)
.

Proof. The formula will be proven in two steps: the first step is to prove the
validity for n = 2k for all k ∈ N. In the second step, the result will be generalized
for all n ∈ N.

Step 1: (complete induction over k). In case n = 2k for k ∈ N, the formula
can be simplified to

f(n) = 1 +
k−1∑
i=0

(i + 1)2i = 1 + nk.

For k = 1 follows f(2k) = 3 and hence correctness of the formula (see also
figure 7.7).

Let now be n = 2k+1. Compared to a duration of 2k there are 2k additional
positions for the reservation in the tree until the initial position is reached again.
For the other 2k positions, the number of final nodes remains the same as for
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Situation 1: only the tree depth of final node changes

... ...

... ...

... ...

... ...

Situation 2: "splitting" leftmost final node

Figure 7.9: Example: Node changes and new final nodes when the duration is doubled

(2k → 2k+1).

the case n = 2k, i.e., 1 + nk, and only the depth in the tree of the respective
final nodes changes.

The 2k new positions can be constructed from the old positions by taking
the position with the maximum number of final nodes, splitting the leftmost
respectively rightmost final node (with duration of at least 2) and adding the
split part to the rightmost respectively leftmost node. This is depicted in figure
7.9. For each of those 2k new positions, there are log 2k + 1 = k + 1 nodes, and
therefore

f(2k+1) = 2k(k + 1) + 1 +
k−1∑
i=0

2i(i + 1) = 1 +
k∑

i=0

2i(i + 1) = 1 + n(k + 1).

Step 2: In this step, the result from step 1 is generalized to arbitrary values
of n. It was already shown, that the formula is valid for n = 1. Assuming the
validity of the formula was already shown for duration n, for duration n + 1
with n �= 2k − 1 for k ∈ N, the number of positions does not change compared
to duration n. This means, when increasing the duration by 1, two cases can
be distinguished:

1. The rightmost final node for duration n has a length of 2i for some i ∈
N. Hence, increasing the length by 1 results in the creation of exactly 1
additional node. In total, there are n/2 such cases and hence n/2 new
final nodes.

2. The rightmost final node for duration n has a length of 1. In this case,
increasing the request duration by 1 has the effect, that some final nodes
are merged. The reason is that 1 node of length 2 comes into existence,
and in some cases this node of length 2 merges with another node, etc.
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The amount of nodes that actually ”disappear” in this process is given by

log n − 1 +
�log n�−2∑

i=0

2i(log n − 2 − i) = log n − 1 +
n

2
− log n =

n

2
− 1.

The validity of the formula was already shown for n = 2i, i ∈ N and therefore
by combining the results from step 1 and 2, f(n + 1) with n ∈ N we obtain

f(n + 1) = f(n) + 1

= 1 +
�log n�−1∑

i=0

2i(i + 1) + (n − 2�log n�) + 1

= 1 +
�log n+1�−1∑

i=0

2i(i + 1) + (n + 1 − 2�log n+1�)

= 1 + 2�log n+1��log(n + 1)� + (n + 1) − 2�log n+1�

= 1 + (n + 1) + 2�log n+1�(�log(n + 1)� − 1
)
.

�

The result stated in lemma 7.1 can now be used to determine the remaining
components that are required to determine the average amount of memory cells
accessed during admission control.

The average length l(n) of the final nodes can be easily computed as

l(n) =
n2�log n�

f(n)
. (7.2)

This is true because the duration of the request was assumed to be n and a
total of 2�log n� different positions in the tree exists. Furthermore, the average
number of final nodes f̂(n) can then be computed as

f̂(n) =
f(n)

2�log n� . (7.3)

With these results, the average amount of memory cells accessed during a
complete CHECK and UPDATE can now be calculated. It is assumed, that each
CHECK phase requires to access the memory cells starting from the root node to
each final node. During this phase, both the node value and the max value of
each node must be accessed, i.e., 2 memory cells per node. During the UPDATE
phase, in the worst case the same memory cells need to be accessed, in this case
only 1 cell per node since either the node value (for final nodes) or the max
value (for the nonfinal nodes) are updated.

The nature of the implementation requires that firstly all the CHECK phases
for each link must be performed and only in case all these checks were successful
the updates are made. This requires to store the final nodes3 found during the
CHECK phase. The implementation presented here uses an additional array to
store these final nodes. This means for each CHECK and UPDATE phase, f̂(n)
additional memory cells must be accessed.

3Final nodes are start nodes for the UPDATE phase.



7.4. PERFORMANCE ANALYSIS 125

The number of nodes accessed during a complete CHECK and UPDATE phase
depends on the book-ahead interval b = 2k and the request duration n and is
given as follows

atree(b, n) = 2f̂(n)︸ ︷︷ ︸
array storage for final nodes

+ 2f̂(n)

distance from the root node︷ ︸︸ ︷
(log b − log l(n) + 1)︸ ︷︷ ︸

CHECK

+ f̂(n) (log b − log l(n) + 1)︸ ︷︷ ︸
UPDATE

= 2f̂(n) + 3f̂(n) (log b − log l(n) + 1) .

(7.4)

With given book-ahead interval, this formula allows to determine the mini-
mal duration n for which the usage of trees pays off, i.e., faster admission times
are achieved. For example, aarray(n) = atree(65536, n) for n ≈ 138.7489 with
b = 65536.

When using this formula for the example shown at the beginning of this sec-
tion, we obtain atree(4, 2) ≈ 14.6323. The difference to the previously computed
value of ≈ 12.6667 results from including only positions that are different in
(7.4). This requires n being much smaller than b which is not the case in our
simple example.
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Figure 7.10: atree(b, n) compared to aarray(n) for three different book-ahead periods b

In figure 7.10, the values of a(b, n) are depicted for b = 4096, 16384, and
65536 and varying n and compared to the respective numbers for arrays.

7.4.3 Support for Flow Scheduling and Malleable Reser-
vations

In order to support more sophisticated allocation strategies such as finding the
first suitable interval for a reservation of given length or support for malleable
reservations (see section 5.2), it is required to scan intervals larger than the
requested duration n and also to determine the average utilization for those
intervals. Besides required for flow scheduling, such functionality is also nec-
essary to support routing algorithms based on other than simple shortest path
routing, such as Widest/Shortest or MinLoad/Shortest (see section 5.1).
In this section, the considerations of sections 7.4.1 and 7.4.2 are extended to ex-
amine the suitability of both data structures for malleable reservations. In case,
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a suitable transmission interval is found, the complexity of the UPDATE phase
remains the same as described in the previous sections. Hence, in the following
only the CHECK phase is examined which requires scanning the complete search
interval.

Two additional request types are distinguished: malleable reservations which
require accessing each individual time slot within a given search interval and an
interval search which has the purpose to determine the first available transmis-
sion interval for a request of given duration and bandwidth.

Array

Using arrays, such functionality can be realized using a linear scan over the
search interval. For given search interval length t, this means the scan can be
implemented with at most t memory cells of the array being accessed, inde-
pendent of the request duration n. This holds for both the worst case for the
search for the first time interval with sufficient duration n and bandwidth and
for the support of flow scheduling where the average or peak utilization within
the whole search interval needs to be determined. Formally, this means

aarray/mall(t, n) = aarray/ival(t, n) = t. (7.5)

Segment Tree

...

...

search interval t

level i:           cells accessed
t

2k-i

level i+1:           cells accessed
t

2k-i+1

Figure 7.11: Accessed nodes in malleable scenario. Any node covering a part of the
search interval must be accessed to obtain utilization for any single time slot within
the search interval. The tree descend proceeds until the leaf nodes are reached.

As described before, supporting malleable reservations may require knowl-
edge about the link utilization at every single time slot. However, the tree was
designed to hide this information as much as possible and only store informa-
tion for larger periods of time in higher tree levels. In order to determine the
utilization for every single slot with an interval of length t, t/2k−i nodes need
to be accessed on tree level i with b = 2k being the duration of the book-ahead
interval (see figure 7.11). In contrast to the CHECK phase described in section
7.2, in this case only the node value of each node needs to be accessed and
the tree descend always proceeds until the leaf nodes of the tree are reached.
When t denotes the duration of the search interval, the amount of memory cells
accessed yields
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atree/mall(k, t) =
i=k∑
i=0

t

2k−i
= 2t − 1

2k
. (7.6)

The search for the first time interval of duration n within a larger search
interval of duration t which satisfies the bandwidth constraints - in order to
support the strategies Min/Start, Min/End, etc. - requires less effort, since ini-
tially a CHECK phase as described in section 7.2 can be performed for a request of
duration n starting at the beginning of the search interval, followed by checking
each slot within the remaining slots of the search interval. In the worst case, ev-
ery slot within this remaining interval needs to be checked. The initial check can
be bounded using the formula from section 7.4.2 for the UPDATE phase because
only one cell needs to be accessed for this check. This leads to the following
estimation

atree/ival(k, t, n) = f̂(n) (k − log l(n) + 1)︸ ︷︷ ︸
initial check phase

+
i=k∑
i=0

t − n

2k−i︸ ︷︷ ︸
remaining interval

= f̂(n) (k − log l(n) + 1) + 2(t − n) − 1
2k

,

(7.7)

where t denotes the duration of the search interval, n denotes the requested
duration, and k determines the length of the book-ahead period with b = 2k.
While equation 7.6 represents an upper bound for the number of memory cells
being accessed, in equation 7.7 only an average is given because atree/ival(k, t, n)
also depends on the requested duration n.
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Figure 7.12: Memory cells accessed during CHECK phase: fixed search interval size
t = 500 (left) vs. fixed request duration n = t/3 (right) for k = 16384.

In figure 7.12, the amount of memory cells accessed when admitting a flexible
reservation request4 is given. When accessing any single time slot and fixed
search interval t, the time required using trees is approximately twice as large
as that using arrays, independent of the request duration (see equation 7.6).
Whereas the search for the first suitable interval achieves similar results than
arrays when the request duration n reaches the size of the search interval t. For

4Flexible here means movable or malleable.
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malleable requests, the requirements using trees is more than doubled compared
to arrays. The same holds for the case of variable search interval t and request
duration n = t/3. The performance advantage of arrays is even more evident
in this case. Trees cannot achieve a similar performance at all. Due to the
influence of the requested duration n, the curve for the interval search increases
more slowly than the one related to malleable reservations.

7.4.4 Worst-Case Memory Requirement

The worst-case memory requirement of the data structures is another important
performance aspect which can considerably impact the applicability of a data
structure in a given environment. For the following computations, a memory
requirement of 4 bytes per integer and 4 bytes per pointer is assumed.

When b is the length of the book-ahead interval, i.e., the total number of
time slots covered, arrays require 4 · b bytes. The original implementation of the
segment tree uses 20 bytes per tree node: 4 bytes each for the max and node
values, 4 bytes for the pointer to the child nodes and 4 bytes for start and stop
time. The memory requirement can be reduced by 8 bytes by not storing the
start and stop times within the nodes but computing them during the traversal.
In addition to that, using dynamic memory allocation it is possible to further
reduce the requirement during the run-time of the broker. However, in the worst
case there is still a worst-case requirement of (2b − 1) · 12 bytes when start and
stop times are not stored. In case, the segment tree is stored using an array (i.e.,
each tree node corresponds to an element of the array), the memory for pointers
to child nodes can be saved. This leads to a worst-case memory requirement of
(2b− 1) · 8 bytes which is 4 times the memory allocation to be made for arrays.

Concluding, the analysis shows that arrays have a significant advantage in
terms of memory requirement (see section 7.4.4). With respect to the number of
memory cells accessed during the CHECK and the UPDATE phase, it was shown that
trees only have an advantage when the requested duration is rather long. Arrays
were competitive up to a duration of approximately 90− 140, depending on the
duration of the book-ahead interval. However, when it is required to obtain the
utilization for single time slots within a given search interval as is the case for
scheduling malleable reservations, the segment tree cannot compete with arrays
at all, i.e., the performance of arrays is never reached. This is independent of
the request duration. Only in certain cases, when the first suitable time interval
for a transmission is requested, trees can reach the performance of arrays (see
figure 7.12).

7.5 Performance Measurements

In order to determine how the results previously described impact the perfor-
mance in an actual application of the data structures, tests were made using
the bandwidth broker implementation as described in chapter 3. The implemen-
tation has the full functionality described in chapter 3, i.e., supports fixed and
malleable reservations. The results presented here may not be representative for
any possible environment, in particular the measurements involving the whole
bandwidth broker are very much implementation dependent. However, the fig-
ures presented here illustrate the effects when applying the data structures in
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an actual environment and give an idea of how the performance is affected.

7.5.1 Environment

Two types of tests were made. Firstly, the performance of only the single data
structure (segment tree or array) was measured. Secondly the time required
for admission control in the bandwidth broker was examined using the cost239
topology (see section 4.3.1). This allows to evaluate how the performance of the
data structure influences the overall admission time of the bandwidth broker. In
addition to the admission control task, in the second environment also the path
computation in the network is included. In case the available bandwidth of a
chosen link is not sufficient for the requirement of a given request, an alternative
path must be found and checked. The measurements presented here were made
on a 1 GHz Pentium IV PC with 1GB of main memory running Linux.

The segment tree implementation variant embedded in arrays was used for
the time measurements. The tests related to the memory consumption (see
section 7.5.5) were made using the memory saving variant based on the pointer
implementation with dynamic memory allocation.

7.5.2 Performance of the Data Structures

Initially, the admission time of the data structures as a function of the duration
of the reservation request was measured. Every single reservation request was
made on an empty data structure, i.e., no other reservations were present. For
these results, only the time required by the functions accessing the data struc-
tures was measured, i.e., there was no overhead introduced by the bandwidth
broker framework.
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Figure 7.13: Admission speed as a function of the duration for book-ahead intervals
of 4096, 16384, and 65536 slots.

Figure 7.13 shows the measure admission times for the array and the tree
implementation. In order to generate these results, successful requests of given
duration were simulated, i.e., both the CHECK and UPDATE phase were performed.
For each duration, a request was generated for any possible start time within the
book-ahead interval. Thus, each sample point represents the average of the mea-
sured times for both phases at each possible slot and hence, these measurements
are comparable to the analytic result depicted in figure 7.10.

In general, the curves are similar as those determined by the analysis with
the only difference that arrays perform even better. It can be observed that



130 CHAPTER 7. DATA STRUCTURES FOR ADMISSION CONTROL

arrays are competitive up to a reservation length of approximately 300 − 500
slots which is about 3 times more than computed in section 7.4.2. This is
due to the actual implementation which, besides the number of memory cells
accesses, requires other operations such as function calls or index computations.
In this context, trees are more complicated to implement and hence some more
administrative framework is required which also affects the actual run-time of
CHECK and UPDATE routines.

7.5.3 Multi-Link Admission Control

The results of the analysis and the previous measurements imply that request
sets as used in [SNNP99], i.e., with a book-ahead interval of approximately 8000
slots and extremely short reservation durations between 4 and 32 slots are inap-
propriate for a performance comparison because trees are not competitive under
these conditions. Instead, the parameters as used for the simulations shown in
previous sections are applied here, using various mean request durations.

The tests were made using the cost239 topology (see figure 4.5). For each
outgoing interface, admission control has to be performed, i.e., a total of 2 ·26 =
52 data structures representing link utilization is kept in the bandwidth broker.
Besides the time require to access the data structures, in this setting also the
path computation - in this case using the Widest/Shortest algorithm - and the
other administrative tasks, e.g., storing information about accepted requests,
are included in the run-time. Using this setting, the average path length for
accepted requests was 4.04.

The results shown here may of course vary depending on the actual band-
width broker implementation and network topology. However, the figures give
a hint on how the admission speed evolves when applying the data structures
in a bandwidth broker.
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Figure 7.14: The processing time of the bandwidth broker divided into the different
tasks routing, data structure related processing, and the remaining parts (administra-
tion) to be performed by the broker. The average request duration was 500 slots.

The processing time of the bandwidth broker is depicted in figure 7.14, de-
composed into the time spent for each of the three main parts data structures,
i.e., mostly CHECK and UPDATE operations, routing, and the remaining adminis-
trative operations to be performed, e.g., storing information such as source and
destination node for admitted requests. The figure shows, that using segment
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trees almost 60% of the total processing time of the broker is required for data
structure related operations, whereas the processing time can be reduced to ap-
proximately 30% when using arrays instead. The overall performance difference
results completely from using different data structures, the remaining parts of
the broker are not affected in their run-time. The results were measured using
an average request size of 500 slots which denoted the ”break-even” point of
arrays and tree as indicated in figure 7.13.
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Figure 7.15: Average admission speed for a single request depending on the average
requested duration. The request set was used with varying average duration in order
to generate these results.

Since this does not hold in the multi-link scenario, the average admission
speed depending on the average request duration is depicted in figure 7.15. As
indicated by the plots in figure 7.14, the actual length of the book-ahead interval
is less important in this case. It can be observed, that using the multi link sce-
nario, the ”break-even” point is reached at a request duration of approximately
1, 500 slots, i.e., three times more than measured for a single data structure.

7.5.4 Malleable Reservations

Performance of the Data Structures

In order to examine the impact of the data structures in case of interval search
and malleable reservations, time measurements were made that underline the
analytical results presented in section 7.4.3.

In figure 7.16, the average time required for the only the CHECK phase when
scanning an interval of fixed size (500 slots) in a single data structure is depicted.
Alike in case of fixed reservations, it can be clearly observed that trees have an
even larger disadvantage than shown in the analysis (see figure 7.12). In order to
obtain those results, the situation as analyzed in section 7.4.3 was simulated, i.e.,
for each request the worst-case scenario was simulated, i.e., the maximal number
of tree nodes had to be accessed. Using arrays, the actual times measured here
are shorter than e.g., those shown in figure 7.13, since here only the CHECK phase
was measured.

Multi-Link Admission Control

As depicted in figure 7.17, when processing malleable requests in the multiple
link scenario, the percentage of the overall processing time spent with data
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Figure 7.16: Single data structure: Measured time of only the CHECK phase for mal-
leable requests: fixed search interval size t = 500 (left) vs. fixed request duration
n = t/3 (right). The results were measured using a book-ahead period of b = 16384,
i.e., k = 14.
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Figure 7.17: Processing time of the bandwidth broker for malleable requests using the
Min/Start strategy. The average search interval length was 1000 slots.

structure related functions is significantly increased compared to the results
shown in figure 7.14. It can be observed, that the time spent in the data
structures nearly completely determines the total processing time. The diagram
shows the average processing time required for the whole request set in the
medium load scenario (1.4 GB/s). The request sets used to generate these
figures only contained 30% malleable requests. These figures show, that the
actual choice of the data structures plays an important role for the admission
speed of the bandwidth broker, in particular, using segment trees results in
about 10 times higher processing time compared to arrays.

In figure 7.18, another important factor with considerable impact on the
processing time is depicted. It can be observed that, the maximum processing
time for a single malleable request, computed over the whole request set, is up
to 100 times larger than the average. In particular, the maximal processing
time was several seconds for a single request. The reason is that using the
Min/Start strategy, some malleable requests can be admitted very quickly
without performing a large number of checks, whereas in the worst case, i.e.,
a rejection of the malleable requests, the amount of checks to be performed is
significantly higher, as outlined in section 5.2.2. Therefore, the actual network
load is an important factor with respect to the admission time required for a
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Figure 7.18: Peak processing time for a single malleable request compared to the
average (logarithmic scale). The average search interval length was 1000 slots.
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Figure 7.19: Processing time as a function of the search interval length.

The dependency of the processing time on the average search interval length
is depicted in figure 7.19. The diagram shows the similar effect as outlined figure
7.16: the advantage of array increases with the search interval length. The
length of the book-ahead interval is less important. Although the processing
times rise slightly in the scenario with 65536 slots, in general the difference
between trees and arrays remains stable. The reason is, that using trees the
malleable scenario requires frequently accessing leaf nodes, i.e., traversing 14
(using a book-ahead interval of 16384) or 16 (using a book-ahead interval of
65536) tree nodes. Hence, only 2 additional nodes must be accessed for each
traversal which influence the overall processing time only moderately.

7.5.5 Memory Consumption

In the previous sections, only the admission speed using trees or arrays was ex-
amined. Memory consumption is another important factor for the applicability
of a data structure in the given environment. In this case, using the tree stat-
ically embedded in an array has a great disadvantage over arrays with 4 times
higher memory consumption (see section 7.4.4). In section 7.2.1, another imple-
mentation alternative was presented, based on pointers and dynamic allocation
of tree nodes during run-time. Although this tree variant has an even larger
disadvantage in terms of admission speed, for the sake of completeness it is also
tested with respect to the memory performance. For that purpose, the same
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parameters as previously used were chosen to simulate the multi-link scenario
with the cost239 topology.
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Figure 7.20: Memory consumption of array and segment tree. The diagrams show the
dynamic behavior for a complete set of requests with varying mean request duration
(left) and the final memory requirement (right).

In figure 7.20, it can be observed that the usage of dynamic memory al-
location has a significant advantage over the static tree implementation which
requires 4 times more memory than arrays. However, trees are still not as mem-
ory efficient as arrays. On the left, the development of the overall memory
consumption of all data structures in the bandwidth broker is depicted using
different average request durations. The memory consumption heavily depends
on this parameter. On the right hand side, this is outlined. It can be observed
that trees retain the worse memory performance up to an average duration of
4, 500 slots. This means, trees in this case show an even worse performance than
in terms admission speed where equal performance could be achieve at approx-
imately 1, 500 slots. Hence, the dynamic memory allocation does not provide
any advantage.

7.6 Other Approaches

In addition to the segment tree, in [SNNP99] a binary search tree was presented
which also uses slotted time however, the number of tree nodes depends on the
amount of admitted requests. Furthermore, this approach has the drawback of
getting unbalanced over time. Hence, balancing is required periodically which
results in significant performance disadvantages and therefore, this tree was not
considered here.

7.7 Conclusion

The most important result of the examination of both data structures is that
arrays, being one of the simplest conceivable data structures, have a significant
advantage over segment trees below a certain average request duration which in
the previously described environment covered any of the expected application
scenarios. However, when it is guaranteed that the average request duration is
above this point, it may be reasonable to use segment trees, when the higher
memory consumption can be tolerated. The picture is different when investigat-
ing reservation methods which need to scan larger intervals, in particular with
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the additional requirement of having access to the resource allocation of every
single time slot. In such a case, trees are unsuitable and - apart from some rather
unlikely cases such as requests covering the whole book-ahead interval - always
result in a worse performance. Since request types such as malleable requests are
one of the key improvements in advance reservation environments compared to
an immediate scenario, it is likely that in a real-world implementation especially
this request type will be of significant importance.

The easy implementation, also for the dynamically advancing time, is an
additional factor in favor of arrays. Concluding it can be stated, that the usage
of arrays is favorable in the examined environments. In particular, when using
the flow switching approach described in section 5.1.4, only short time inter-
vals need to be checked, which leads to a significant advantage of arrays. The
analysis showed that the superiority of arrays results from the property, that
the information is stored locally at each array element rather than distributed
across several nodes as is the case for the tree.

The memory consumption of trees was far worse compared to arrays us-
ing any of the tested implementations. Even with dynamic memory allocation,
trees were only competitive with very long average request durations. In partic-
ular, those durations were several times longer than those were the static tree
implementation became as fast as arrays.

The measurements presented here were made using the application in net-
work management systems. However, the analytical results and the measure-
ments of the individual data structures can also be applied to any other resource
management system with support for advance reservations, for example the one
described in [FKL+99]. Although the measured times depend on the actual
implementation and hardware platform, the general result that arrays provide
a much better performance up to a certain average request duration can be
generalized to other areas of applications.
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Chapter 8

Multi-Domain
Architectures

The techniques discussed in the previous chapters were aimed at providing an
advance reservation service within a single domain. As is the case in larger
environments, it is important to study the impact of these techniques on the
scalability of the system in terms of the ability cover multiple domains. Scala-
bility of a single bandwidth broker mostly concerns the capabilities to deal with
a large quantity of flows at a time. This affects the data structures studied
in chapter 7. The other aspect of scalability is how to deal with the presented
techniques in a multi-domain environment, such as the Internet, where networks
domains of more than a single ISP must be traversed. Furthermore, even within
the network of a single ISP several bandwidth brokers may be installed for load
balancing purposes.

While in general, communication between different brokers can be modeled
alike the communication between a normal client and the respective bandwidth
broker, the additional performance optimization techniques presented in this
thesis need to be examined with respect to their suitability for networks with
more than a single domain. The failure recovery mechanisms described in chap-
ter 6 can be excluded from this examination since the demand for quick responses
to failures prohibits long lasting communication among different brokers. Fur-
thermore, also all the optimization techniques that are transparent for clients
can be excluded from this analysis. These are the general routing decision
which must be handled within each domain, the flow switching approach, and
also the off-line optimization which can be performed within a single domain
or sub-domain without interacting with other brokers. In contrast, malleable
reservations may require additional considerations in multiple domain scenarios
since the timing affects each domain between source and destination of a given
traffic flow.

Before describing details of the different opportunities to realize inter-broker
communication for the previously described purposes, a brief overview of previ-
ous work on this field is given.

137
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8.1 Overview

The aspect of communication between different network management systems
has been discussed by several previous publications, however almost exclusively
for the immediate reservation scenario.

The concept of bandwidth brokers as described in [NJZ99] also addressed
the issue of multi-domain environments. In such a case, it was proposed to use
domain-by-domain forwarding of reservation requests. The general approach
was to provide only coarse grain reservations for flow aggregates. In such a
case, it is possible to define a certain amount of traffic that is routed through
other domains without explicit reservation. This means, ISPs define how much
traffic from other domains can be accommodated by their own network, e.g.,
using SLAs. Such an SLA can be conceived as a coarse grain advance reservation
that lasts as long as the corresponding SLA between two ISPs [ZOS00].

In the advance reservation scenario this SLA-based approach is also applica-
ble. Furthermore, it is possible to make SLAs time-dependent, i.e., SLA param-
eters are dependent on the time and can be conceived as advance reservations
for aggregated flows. For example, it may be reasonable to require less stringent
bandwidth constraints during night time which usually low traffic. Thus, the
dynamic SLA parameters can be taken into account by bandwidth brokers.

In [GB99], different signaling strategies for notifying and negotiating SLAs,
i.e., flow aggregates, in DiffServ environments were proposed and compared.
The focus was the trade-off between fine grained per-flow reservation and coarse
grained aggregate reservations specified by an SLA. The authors consider the
per-flow reservation approach infeasible due to the extensive signaling over-
head and instead propose two approaches that limit the number of signaling
messages by using massive overprovisioning or signaling only in case of ”sig-
nificant” changes of the flow characteristics. The two basic approaches, i.e.,
per-reservation signaling and the definition of SLAs, proposed in [GB99] were
examined to their suitability to support advance reservations, and the results
are presented in this chapter.

In contrast to reserving only coarse grain flow aggregates, which is suitable
for inter-ISP traffic, in order to reserve resources between the different band-
width brokers of a single ISP, more fine-granular reservation requests must be
considered. Solutions for dividing a large network into smaller sub-domains each
managed by a bandwidth broker was presented in [RG02]. Also within such a
network of sub-domains, support for the different new services provided in the
advance reservation environment (see section 3.2) is required.

The advance reservation bandwidth broker presented in [San03] includes only
a brief description of such inter-domain mechanisms, assuming that the corre-
sponding protocols work exactly like in immediate reservation environments.
While this may be conceivable for inter-ISP traffic, a more elaborate view is
required for the case of intra-domain traffic within a single network domains.
In such a case, the brokerage mechanisms supported by the BB, for example,
malleable reservations, may also be of interest on the intra-domain level. Al-
though it is possible the reserve resources for flow aggregates, this may result
in a wastage of bandwidth within an ISPs network. In section 3.4.1, the SIBBS
protocol [Tea01] for inter-broker communication was mentioned which can be
used to manage such SLAs.

In [SP98a], the problem of reservation agents (bandwidth brokers) in multi-
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domain environments with support for advance reservations was addressed. The
main idea of the paper - similar to the consideration sin [GB99] - was to ag-
gregate flows in order to reduce the complexity of the signaling and negotiation
process and keep the architecture scalable. For each request with the destination
domain outside the source domain, the agent located within the source domain
is responsible for identifying an agent in a domain closer to the destination.
Thus, the request is forwarded from to domain to domain until eventually the
destination is reached. In order to aggregate flows sent across domains and thus,
to reduce the number of messages sent between different agents, the idea is to
make large bulk reservations in advance and to aggregate individual microflows
into these bulk reservations.

8.2 Architectures

In the following sections, the notion domain means a large network which in
turn can be composed of several smaller domains, called sub-domains. For ex-
ample, a domain in this context describes the network of a single ISP which, for
administrative reasons, contains a number of sub-domains. Each sub-domain is
managed by a single bandwidth broker. The different implementation alterna-
tives as indicated in the previous section are depicted in table 8.1.

Table 8.1: Multi-Domain Reservation Architectures

SLA based SLA negotiated between domains determine
the amount of inter-domain traffic
domain-by-domain signaling

per-flow reservation direct communication between two
bandwidth brokers:

1:1 domain-by-domain signaling
1:n multicast

hybrid SLAs between ISP domains
per-flow reservation within ISP sub-domains

8.2.1 SLA-based Inter-Domain Reservations using Flow
Aggregates

This approach defines only coarse-grained reservations for flow aggregates based
on SLA negotiation. This means, no signaling is required for a single reservation.
Instead, the total amount of traffic that is send through a given domain is
negotiated in advance. This quantity of traffic may depend on the time.

The advantage of this approach is, that no signaling is required for a single
reservation. This is particularly useful for the services described in section 3.2.
Determining a suitable reservation period for a given amount of data may require
more than a single round of negotiation.

The setup is depicted in figure 8.1, showing an example for an SLA with
four domains being involved. The SLA for traffic from domain A to domain D
consists of three single SLAs between domain A and the three other domains
B,C, and D respectively. The result is, that upon successful negotiation - which



140 CHAPTER 8. MULTI-DOMAIN ARCHITECTURES

Domain A Domain B Domain C Domain D
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REQUEST/
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A - D: 100 MBit/s
A - B: 200 MBit/s

Figure 8.1: SLA negotiation and setup between different domains.

is done using the domain-by-domain forwarding of the request - the resulting
SLAs allow 100 MB/s of traffic from domain A to be injected into each of
the other domains. This covers only the situation for establishing an SLA for
the traffic from A to D. Further SLA may be established for example for the
traffic from A to B of another 100 MBit/s. Consequently, in this example the
total amount of traffic allowed to be sent from A to B, independent of its final
destination within B, is 200 MBit/s.

The major disadvantage is its inefficiency. In case, the SLA provides more
than the required bandwidth, the unused part cannot be allotted to other reser-
vations and hence is wasted. However, it is also in the reserving domains interest
not to waste bandwidth which must be paid for. Hence, renegotiation may be
dynamically carried out in order to adjust the SLA to the actual needs. How-
ever, it must be avoided to perform renegotiations on a per-flow basis. In order
to overcome this problem, in [GB99] it is proposed to implicitly define SLAs
by measuring the traffic capacity with adjacent network domains. Furthermore,
when sufficient bandwidth between two domains is available, an SLA may not be
renegotiated when higher capacity within the available constraints is required.
This scenario was called limited notification.

Time-dependent SLAs - which are in turn also advance reservations - can
reduce the necessity for renegotiations. Such SLAs can be applied whenever
the amount of required bandwidth is known in advance. If an SLA is time-
dependent, renegotiation can be very easily achieved by adjusting the bandwidth
requirement during certain periods of time with similar traffic profile in advance.
For example, less bandwidth may be required at night than during the day.

If more than one domain is to be traversed, SLAs must be established with
each domain on the path from the source to the destination domain. Within
source and destination domain, the actual reservations must be made. In this
context, cooperation between the respective bandwidth brokers is necessary.
The coordination in case of reservations without fixed reservations can be made
using one of the per-reservation approaches described in the following sections.

8.2.2 Per-Reservation Signaling

This approach may be more useful within the domain of a single ISP since it
uses per-reservation signaling for every single request. On a large scale, this is
infeasible due to the large communication and negotiation overhead.

Several opportunities exist to implement per-reservation signaling which are
described in the following sections. In general, it is assumed that n denotes the
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number of domains involved in a reservation request.

Domain-by-Domain Reservation (1:1)

BB 2BB 1

...

REQUEST 1 REQUEST n-1

RESPONSE  1RESPONSE  n-1

Domain 1 Domain 2 Domain n

...

BB n

RESPONSE  n-2

REQUEST 2
...

Figure 8.2: Domain-by-domain reservation model

This approach was also described in section 2.1.2: each bandwidth broker
contacts its successor on the path from source to destination domain in order
to establish a reservation. If the reservation fails in a domain, the process is
finished and the negative result returned to the source domain (see figure 8.2).

The disadvantage in this case is that malleable reservations are costly to
implement. Using the basic approach, in order to test n different ”shapes” for a
given transmission a message must be sent n times through the whole path of
domains.

Table 8.2: Domain-by-Domain Forwarding: Parameters

fixed malleable
# messages 2(n − 1) 2(n − 1)(tmax − tmin)(bmax − bmin)

admission time trtt + ntadm (trtt + ntadm)(tmax − tmin)(bmax − bmin)

Table 8.2 shows the message complexity and the resulting admission time
for processing a single reservation request. It is assumed, that trtt denotes the
total round trip time required for sending a request message to the destination
domain and the response message back to the source domain. Furthermore, n
denotes the number of domains involved and tadm denotes the admission time
on a single broker. For malleable requests, the same notation as in section 5.2
is used to denote the upper respectively lower bounds of transmission rate (b)
and search interval (t).

Multicast Communication (1:n)

In this case, one bandwidth broker acts as master and coordinates the other
bandwidth brokers involved (see figure 8.3). Using multicast, this architecture
works as for the domain-by-domain approach with the only difference, that
time can be save by multi-casting the request to any of the brokers involved.
However, this approach suffers from the same drawbacks as the domain-by-
domain approach and requires knowledge about the network status, i.e., which
domains will be traversed by the flow for which the reservation is made.
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Figure 8.3: Domain-by-domain reservation model for multicast communication.

Table 8.3: Multicast Communication: Parameters

fixed malleable
# messages 2(n − 1) 2(n − 1)(tmax − tmin)(bmax − bmin)

admission time trtt + tadm (trtt + tadm)(tmax − tmin)(bmax − bmin)

As depicted in table 8.3, the multicast solution achieves parallelism of the
computations, thus saving the time waiting for the result from a preceding
bandwidth broker.

Exchange of Status Information

In order to reduce the admission time on cases where several bandwidth brokers
need to communicate, it is possible to exchange status information about the
affected period of time between the brokers in the 1 : n and the hierarchical
m : n model. This reduces the number of message exchanges whenever mal-
leable reservation requests are processed. This approach requires to send the
status of each sub-domain’s network links to a single broker which then acts as
the only admission instance for the given request on behalf of the bandwidth
brokers involved. Besides the exchange of status information, which raises secu-
rity issues, this approach requires to accept the admission decision of the master
broker. While this is relatively easy to implement within the network of a single
ISP, it is unrealistic to assume an implementation across different ISP networks.

Table 8.4: Exchange of Status Information

fixed malleable
# messages 2(n − 1) 2(n − 1)

admission time trtt + tadm trtt + tadm

In table 8.4, the parameters are depicted when using the status exchange
approach together with the 1 : n multicast solution. While the time and com-
plexity for fixed reservations does not change, the time for admitting malleable
requests is considerably lower when using this approach.

However, this approach requires to exchange status information for each
malleable reservation. Thus, the protocol overhead caused by the increased
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length of each message can rise considerably with large number of malleable
reservations.

8.2.3 Hybrid Model

SLASLASLA

ISP domain sub-domain

Figure 8.4: Hybrid model: SLAs on inter-ISP layer and per-flow reservation signaling
on sub-domain layer.

It is conceivable to implement a hybrid model which uses SLA-based aggre-
gate reservation between ISP networks and per-reservation signaling for traffic
within the sub-domains of each ISP network (see figure 8.4) in a straightforward
manner. Furthermore, in case the negotiated SLAs do not suffice for a given
bandwidth reservation, one of the per-reservation models can be used to adjust
the available bandwidth.

8.3 Conclusion

Using advance reservation across multiple domains increases the overhead of
the whole reservation system. Using the SLA-based approach which does not
require frequent updates of the SLAs, the overhead is tolerable. As stated in
[SP98a, GB99], the usage of per-flow reservations on a large scale increases the
amount of message exchanged between brokers considerably and hence cannot
be applied in a sensible manner. In particular, if malleable reservations are
to be processed this overhead adds up to an enormous amount. Thus, the
SLA-based approach is the most applicable, since it allows brokers to reserve
larger bandwidth quantities and to aggregate the microflows within these larger
reservations as described in [SP98a]. In certain cases, using the exchange of
status information for a certain, limited number of malleable reservations can
be a realistic alternative to reduce the total amount of messages. However, in
general the advance reservation model is not designed to cover environments
with millions of flows. Instead, applications such as grid computing, e.g., using
a dedicated network partition will not generate the same amount of flows as the
common Internet.
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Chapter 9

Conclusion

In this thesis, the different performance aspects important in the context of
advance reservations in computer networks were presented and examined. Based
on a bandwidth broker architecture using MPLS in order to control the network,
a number of additional services and techniques were developed which improve
the network performance compared to the implementations in today’s networks.
The term performance in this context comprises the various aspects important
for network operators and clients, i.e., the performance of the network in terms of
the amount of admitted flows, and the amount of bandwidth carried by admitted
flows. For clients, also the increased admission probability, the response time
of the management system, and the behavior in case of network failures are
important and were examined within this thesis.

While for many applications, such as web browsing and transmission of small
or medium amounts of data, QoS guarantees are not required, future scientific
applications in the field of grid computing with vast amounts of data to be
transmitted over networks demand for more than currently possible. In com-
puter networks, even the opportunity to reserve resources in advance is currently
not available and its reliability to plan transmissions in advance can be defined
as a quality-of-service guarantee of its own.

In general, advance reservations improve the usability and performance of
the network in various ways and are an interesting opportunity for customers
and operators of a network. The improvements for clients, such as increased
admission probability or additional services, are evident. However, also network
operators can benefit from the implementation of advance reservation mecha-
nism when not only the very basic opportunity to reserve in advance is offered
but also the additional mechanisms for improving the overall network perfor-
mance are implemented. Although in general the efforts to enable advance
reservations rise compared to an immediate reservation service, the additional
processing time for routing, flow switching, or the usage of malleable reserva-
tions, is worthwhile as shown by the performance results.

Besides the additional services that can be implemented in an advance reser-
vation environment, such as search for suitable transmission intervals, also the
performance of the network can be improved considerably when applying the
techniques described in this thesis. In particular, those strategies that a trans-
parent for clients, for example, flow switching or off-line optimizations provide
a useful opportunity to improve the network performance. While the services,
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most of which are new in computer networks, are likewise implementable in
other environments supporting advance reservations, e.g., cluster and grid man-
agement, the routing methods are unique in the network environment.

The application fields for advance reservations are mainly seen in the area
of grid computing, although several approaches considered using this reserva-
tion type for content distribution networks, video conferencing, or even wireless
scenarios. However, even in the wireless application scenarios, advance reser-
vations are only implemented in a static manner. Environments with highly
dynamic route or topology changes do not provide sufficiently reliable input to
the advance reservation mechanisms discussed in this thesis, because these sce-
narios are difficult to predict or to anticipate but rather dependent on actual user
behavior which is complicated to model. The same holds for wireless, mobile ad-
hoc networks, where the dynamics of the environment in general contradict the
idea of reliable planning which is the essence of advance reservations. However,
the discussion of fault tolerance mechanisms shows, that also in a dynamically
changing network a considerable gain can be achieved using the suitable recov-
ery mechanisms. But this cannot be seen as the foundation for implementing
advance reservations in ad-hoc scenarios, since failures occur far more often than
in wireline networks. Furthermore, the failures only change the topology for a
short period of time before the original status is recovered in contrast to ad-hoc
scenarios, where a certain topology may only be valid for a short period of time
and never occur again.

The convergence of network and application research towards a large-scale,
global compute platform, the Grid, will also require for technologies that provide
QoS guarantees for the behavior of the systems as a whole. QoS in this context
describes the behavior of the entire system and requires co-allocations of various
resource types, i.e., also computer networks. In this application environment,
advance reservations already play an important role. Extending the scope of
this reservation type to cover also computer networks is only a logical step and
the developments described in this thesis can serve as one piece in the puzzle
which will eventually constitute a large-scale, worldwide computational Grid
with possibly billions of interconnected nodes [BdLH+03]. The results of this
thesis have shown, that an advance reservation service with its various opportu-
nities to enhance the functionality and performance of a network is affordable to
implement with respect to the complexity of the advance reservation framework
while giving operators the opportunity to also improve the performance and
usability of the network. Thus, the advance reservation service as presented in
this thesis can - among others - be conceived as one building blocking for the
future Grid.
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Network Topologies

mci

grid 6x6isp-b1single link

bottleneck

isp-b3

Figure A.1: The six additional network topologies used for the simulations.
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Appendix B

Performance Analysis
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Figure B.1: RBR and BBR for different percentages of advance reservations under
three different load conditions for the topologies single link, isp-b1, and grid6x6.
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Figure B.2: RBR and BBR for different percentages of advance reservations under
three different load conditions for the topologies mci, bottleneck, and isp-b3.



Appendix C

Performance Optimizations

The results of the performance optimization mechanisms for the different topolo-
gies under low and high load are depicted in this section. For the sake of clarity,
only the summary of the results is given.
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Figure C.1: Single Link: RBR and BBR
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Figure C.4: Grid6x6: RBR and BBR
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