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Two-dimensional vesicle dynamics under shear flow: Effect of confinement
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Dynamics of a single vesicle under shear flow between two parallel plates is studied in two-dimensions using
lattice-Boltzmann simulations. We first present how we adapted the lattice-Boltzmann method to simulate vesicle
dynamics, using an approach known from the immersed boundary method. The fluid flow is computed on an
Eulerian regular fixed mesh while the location of the vesicle membrane is tracked by a Lagrangian moving mesh.
As benchmarking tests, the known vesicle equilibrium shapes in a fluid at rest are found and the dynamical
behavior of a vesicle under simple shear flow is being reproduced. Further, we focus on investigating the effect
of the confinement on the dynamics, a question that has received little attention so far. In particular, we study
how the vesicle steady inclination angle in the tank-treading regime depends on the degree of confinement.
The influence of the confinement on the effective viscosity of the composite fluid is also analyzed. At a given
reduced volume (the swelling degree) of a vesicle we find that both the inclination angle, and the membrane
tank-treading velocity decrease with increasing confinement. At sufficiently large degree of confinement the
tank-treading velocity exhibits a nonmonotonous dependence on the reduced volume and the effective viscosity
shows a nonlinear behavior.

DOI: 10.1103/PhysRevE.83.066319 PACS number(s): 47.63.−b, 47.11.−j, 82.70.Uv

I. INTRODUCTION

The study of blood flow at the microscale, i.e., the scale of
blood corpuscules, is an important issue. In recent years this
field has embraced several communities ranging from medical
scientists to mathematicians. Classical continuum approaches
of blood flow, dating back to a century ago at least [1],
are based on several assumptions and approximations that
are both difficult to justify or to validate. For example, in
the microvasculature, where most of the blood flow resistance
takes place, red blood cells (RBCs), which are by far the
major component of blood, have a size which is of the same
order as that of the blood vessel diameter. Thus, one expects
that the discrete nature of blood should play a decisive role
in microcirculation. A prominent example is the Fahraeus-
Lindqvist effect: RBCs cross-streamline migration toward the
blood vessel center results in a dramatic collapse of blood
viscosity, causing a reduction of blood flow resistance in the
microvasculature. Even in larger blood vessels (e.g., veins and
arteries) a satisfactory phenomenological continuum approach
is lacking. One may thus hope that a constitutive law for blood
will ultimately emerge from numerical simulations taking
explicitly into account the blood elements. Still blood flow
simulation is a challenging task since it requires solving for
the dynamics of both the blood elements and the suspending
fluid (plasma).

Different numerical methods have been developed to
study RBCs or their biomimetic counterparts (represented by
vesicles and capsules), each having its own advantages and
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drawbacks. A widely used method is the boundary integral
method that is based on the use of Green’s function techniques
[2]. It has been successfully applied to vesicles [3–6]. The
advantage of this method is the high precision. However,
except for special geometries (e.g., unbounded fluid domain,
semi-infinite domain), an appropriate Green’s function is not
available. This means that extra integrations over boundaries
delimiting the fluid have to be performed, which increases the
computational time significantly. In addition, this method is
valid for Stokes flow only (no inertia). Other classes of methods
are phase-field [7–9] and level set approaches [10] that can
be applied both in the Stokes and Navier-Stokes regimes.
Their advantage is the ability of handling, in principle, many
particles by just specifying the initial condition (in any new
run with different vesicles, a number specifying only initial
conditions is required in principle). However, these methods
introduce a finite thickness of the membrane, which seems,
up to now, to set a quite severe limitation regarding extraction
of quantitative data in the dynamical regimes. This requires a
finite element technique with a grid refinement. Other types of
methods consist of solving the fluid equations by adopting a
“coarse-grained or mesoscopic” technique. Examples include
the so-called multiparticle collision dynamics (MPCD) or
stochastic rotation dynamics (SRD) [11,12]. Its advantages
are the relative ease of implementation and inherent thermal
fluctuations which make the method very efficient if these are
required.

In this paper we apply an alternative mesoscopic method,
namely the lattice-Boltzmann (LB) method. In the spirit of the
LB method, a fluid is seen as a cluster of pseudofluid particles
that can collide with each other when they spread under the
influence of external applied forces. Advantages of the LB
method are its relative ease of implementation together with
its versatile adaptability to quite arbitrary geometries. The
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LB method has been already adapted and used to perform
simulations of deformable particles such as capsules [13],
vesicles, and red blood cells [14] under flow. The main
issue of the work presented in Ref. [14] is to accomplish
simulations with a large number of particles while using a
small number of nodes to reduce the computational time
and the required memory. This has been achieved by using
ad hoc membrane forces that penalize any deviation from the
equilibrium configuration. In the present paper we use the
precise analytical expression of the local membrane force as it
has been derived [15] from the known Helfrich bending energy
[16]. The perimeter conservation in our case is achieved by
using a field of local Lagrangian multiplicators (equivalent to
an effective tension). To accomplish the fluid-vesicle coupling
we follow the same strategy used in Ref. [13] to simulate
capsules dynamics. In Ref. [13] the flow is computed by LB.
The flow-structure two-way coupling is achieved using the
immersed boundary method (IBM). Although confining walls
were considered in the above-mentioned studies their effect on
the dynamics was not studied. We believe that it is of interest
to study the impact of the walls on the dynamics of vesicles,
a question that, to the best of our knowledge, has not been
treated in the literature so far for vesicles, capsules, or red
blood cells but only for a droplet [17] and a hard sphere [18].

Vesicles are closed lipid membranes encapsulating a fluid
and are suspended in an aqueous solution. Their membrane
is constituted of lipid molecules (also the major component
of the RBC membrane) [19]. Each one has a hydrophilic
head and a two hydrophobic tails. These molecules reorganize
themselves if they are in contact with an aqueous solution,
or properly speaking self-assemble, into a bilayer in which
all the heads of the molecules are facing either the internal
fluid or the external one. Experimentally, vesicles with size
of the order of 10 μm—called giant unilamellar vesicles
(GUV)—can be easily prepared in the laboratory using,
for example, the electroformation technique [20]. Unlike
RBCs, for vesicles we can vary their intrinsic characteristic
parameters (e.g., size, degree of deflation, and nature of
internal fluid). Despite the simplicity of their structure, vesicles
have exhibited many features observed for red blood cells:
equilibrium shapes [21], tank-treading motion [3,22], lateral
migration [15,23,24], or slipperlike shapes [25,26]. Capsules
(a model system incorporating shear elasticity) have also
revealed some common features with vesicles [27,28].

In the following sections we briefly introduce the for-
mulation of the LB method for vesicles. We then study in
two dimensions (2D) the tank-treading motion of a single
vesicle under shear flow between two parallel plates. Here we
decided for 2D simulations since they are computationally less
demanding, but still capture all the relevant physics. We use
large systems (in lattice units) because of the higher resolution
required to extract the results shown below. Previous works
done in 2D dealing with vesicles (also for red blood cells)
have demonstrated that the dynamics in the third dimension is
not relevant, even in confined geometries [23,24,29]. Vesicle
dynamics under shear has been extensively studied in the
literature. It is known that a vesicle placed in shear flow
performs different kinds of motions depending on its degree
of deflation and the viscosity contrast between the internal
and the external fluids and on the strength of the shear flow

(see the phase diagram in Ref. [30]). When the viscosities of
the internal and the external fluids are identical the vesicle
performs a tank-treading motion. Its main long axis gets a
steady inclination angle with respect to the flow direction
while its membrane undergoes a tank-treading-like motion.
However, in the majority of the previous theoretical and
numerical works the vesicle is placed in an infinite fluid
(unbounded domain). This corresponds to the situation where
the walls are too far from the vesicle to have any influence on
its dynamics. For this reason here we study vesicle dynamics
in a confined geometry. However, studying numerically the
dynamics of vesicles in such conditions is a challenging
problem from a computational point of view, especially in
highly confined situations. We need to solve for the flow of the
internal and the external fluids. The boundary separating the
two fluids is also an unknown quantity since the membrane
shape is not known a priori.

Since the vesicle size (∼10 μm) is much larger than its
membrane thickness (∼5 nm), mathematically we model the
membrane as an interface with zero thickness. Tracking the
motion of this freely moving interface under flow is not a
simple task, especially when the membrane undergoes larger
deformations due to hydrodynamical stresses. We need to label
the interface by points which we track in time. Further, to take
into account the deformation an increased number of label
points is required for the code to be stable and to capture
deformation with good resolution. On the other hand, spatial
derivatives on the membrane are needed to be evaluated at
every time step to compute the membrane force. We need
to evaluate the local curvature that is the fourth derivative
of the vector position. Any formation of a highly buckled
region in the membrane will introduce potential instability.
Furthermore, the vesicle volume (the enclosed area in 2D) and
its surface area (the perimeter in 2D) have to be kept conserved
in time. At higher degrees of confinement possible undesirable
contact between the membrane and the walls of the channel
can be expected, and this is an additional difficulty to cope
with. We do not use any ad hoc repulsive force from the wall;
rather, the noncontact is achieved via a proper handling of the
viscous lubrication forces by the lattice Boltzmann method.

We shall discuss how the vesicle-fluid coupling is ac-
complished. For that purpose, an approach known from the
immersed boundary method [31] is adopted. We present tests
of the code by investigating vesicle equilibrium shapes in a
fluid at rest. We then present simulation results regarding the
steady inclination angle and the effective viscosity, as well as
the tank-treading velocity as functions of the reduced volume
and the degree of confinement.

II. THE LATTICE-BOLTZMANN METHOD

The motion of the membrane can be induced by exerting
an externally applied flow, and this is the physical situation
we are interested in. In the present section we discuss how
the fluid flow is solved for by using the LB method. In recent
decades, the LB method has been introduced and widely used
to simulate, e.g., fluid flow in complex geometries (e.g., in
porous media) and multicomponent and multiphase flow (e.g.,
droplets and binary fluids) [32,33]. Such popularity of the LB
method among scientists and engineers has been gained thanks
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to its straightforward implementation and its local nature that
allows for parallel programming.

In the limit of small Mach (Ma, ratio of the speed of a fluid
particle in a medium to the speed of sound in that medium)
and Knudsen (Kn, ratio of the molecular mean free path to
the macroscopic characteristic length scale) numbers the LB
method is known to recover with good approximation the
Navier-Stokes equations [32,33]:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + η∇2u + F, (1)

∇ · u = 0, (2)

governing the fluid flow of an incompressible Newtonian fluid.
ρ and η are the mass density and the dynamic viscosity of the
studied fluid, u and p are its velocity and pressure fields, and
t is the time. F on the right-hand side is a bulk force (e.g.,
gravity) or the membrane forces as is the case for vesicles
immersed in that fluid (see below). In the spirit of the LB
method, a fluid is seen as a cluster of pseudofluid particles
that can collide with each other when they spread under the
influence of external applied forces. In the LB context, not
only the spatial position is discretized but also the velocity.
This implies that every pseudofluid particle can move just
along discrete directions with given discrete velocities. The
main quantity associated with a pseudofluid particle is the
distribution function fi(r,t), with 0 � fi � 1, which gives
the probability of finding at time t the pseudofluid particle at
position r and having velocity ci, in the i direction. There is no
unique way in the choice of a lattice in the LB method. What
matters is that the discretization has to fulfill the following
constraints: mass conservation, momentum conservation, and
isotropy of the fluid. Here, we adopt the so-called the D2Q9
lattice, where D2 is an abbreviation for two-dimensional space
while Q9 refers to the number of possible discrete velocity
vectors [34].

The evolution in time of the distribution fi is governed by
the LB equation:

fi(r + ci�t,t + �t) − fi(r,t) = �t (�i + Fi) (i = 0 · · · 8),

(3)

where fi(r,t) is the old distribution of the pseudofluid particle
when it was at position r at previous time t , and fi(r +
ci�t,t + �t) is the new distribution of the same pseudofluid
particle after it moved in the direction ci to the new location
r + ci�t during the elapsed time �t , with �t being the time
step. The grid spacing is referred to by �x. In this paper
all units are given in lattice units, where �x = �t = 1. The
left-hand side of Eq. (3) alone represents the free propagation
of the pseudofluid particles without externally applied forces.
In the right-hand side of Eq. (3), Fi is any externally applied
force and �i is the collision operator. Here, we adopt the
Bhatnagar-Gross-Krook (BGK) approximation that is given
by

�i = − 1

τ

[
fi(r,t) − f

eq
i (r,t)

]
. (4)

The BGK collision operator describes the relaxation of the
distribution fi(r,t) toward an equilibrium distribution f

eq
i (r,t)

with a relaxation time τ . This relaxation time is set to 1 in this
paper and related to the dynamic viscosity η via the relation:

η = νρ = ρc2
s

�x2

�t

(
τ − 1

2

)
, (5)

where cs = 1/
√

3 is the speed of sound for the D2Q9 lattice.
f

eq
i (r,t) is the equilibrium distribution obtained from an

approximation of the Maxwell-Boltzmann distribution and is
given by

f
eq
i (r,t)=ωiρ(r,t)

[
1+ 1

c2
s

(ci ·u)+ 1

2c4
s

(ci ·u)2− 1

c2
s

(u·u)

]
,

(6)

where ωi are weight factors; ωi equals 4/9 for the 0 velocity
vector, 1/9 in the horizontal and vertical directions and 1/36 in
the diagonal directions. The macroscopic quantities describing
the flow are given by

ρ(r,t) =
8∑

i=0

fi(r,t) (7)

for the local mass density,

u(r,t) = 1

ρ(r,t)

8∑
i=0

fi(r,t)ci (8)

for the local fluid velocity, and

p(r,t) = ρ(r,t)c2
s (9)

is the local fluid pressure.
The computational domain is a rectangular box, with

length 2L and height 2W . We use x for the horizontal
position of the box and y for the vertical position. Periodic
boundary conditions are imposed on the right and on the
left side of the box. To generate a shear flow, the upper and
lower walls are displaced with the same velocity uwall but in
opposite directions. To achieve this numerically, within the LB
technique, the following bounce-back boundary conditions are
implemented on the two walls as [35]

f−i(r,t + �t) = fi(r,t) + 2
ρwi

c2
s

(uwall · c1). (10)

Here, f−i denotes the distribution function streaming in the
opposite direction of i. In the absence of a vesicle, the flow
relaxes toward a steady linear shear velocity profile of the form
u∞ = γyc1, where γ = uwall/W is the shear rate.

III. FLUID-VESICLE INTERACTION

We denote by �ext and �int the fluid domains outside and
inside the vesicle, respectively, and by � the vesicle boundary.
The flow has to be computed considering boundary conditions
on the membrane, which is a freely moving interface. At the
membrane � we require the continuity of the flow velocity

uext(rm) = uint(rm) = v(rm), with rm ∈ �. (11)

The ext and int suffixes are for the external and the internal
fluids, respectively, and v is the velocity of any point rm

belonging to the membrane. The continuity of the tangential
velocities of the two fluids on each side of the membrane
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follows from the assumption of the no-slip boundary condition
at the membrane. Continuity of the normal velocity is a conse-
quence of mass conservation (integrating the incompressibility
condition ∇ · u = 0 on a small volume straddling membrane
and using the divergence theorem yields that condition).
Continuity of the two fluid velocities with that of the membrane
expresses the fact that the membrane is nonpermeable (normal
component) and that we assume full adherence (tangential
component) [36]. Force balance (in the absence of inertia)
implies that the net force acting on a membrane element is
zero:

[σ ext(rm) − σ int(rm)]n = −f(rm), with rm ∈ �. (12)

σ is the hydrodynamical stress expressed by σij = η(∂iuj +
∂jui) − pδij and n the unit vector normal to the membrane,
pointing from the interior domain of the vesicle to the exterior
one. f is the force exerted by the membrane on its surrounding
fluid and its expression is given below. At sufficiently large
distance from the vesicle membrane, the perturbation of the
velocity field due to the membrane decays so the fluid flow
recovers its undisturbed pattern:

uext(r) −→
|r−rm|→∞

u∞(r), (13)

where rm ∈ � and r ∈ �ext.
In what follows we show how these boundary conditions

can be used to achieve the coupling between the fluid flow and
the vesicle dynamics. In the present work the internal and the
external fluid flows are computed by the LB technique. The
velocity and the pressure fields are computed on an Eulerian
regular fixed mesh, while the vesicle membrane is represented
by a Lagrangian moving mesh immersed in the previous
fluid mesh. The adopted method is the so-called immersed
boundary method (IBM). This method was developed by
Peskin to simulate blood flow in the heart [37]. It is an
adequate method to simulate deformable structures in flow
(fluid-structure interaction). For a review, see, for example,
Ref. [31]. Within the framework of this method an interface
(separating two regions occupied by two distinct fluids) is
discretized into points interconnected by elastic “springs” (as
illustrated in Fig. 1 for the case of a vesicle). First, the fluid flow
is computed in the whole computational domain by ignoring
the existence of the interface. Then, the interface is advected

by the actual fluid velocity, obtained from the Eulerian mesh by
interpolation, as explained below. The fluid feels the existence
of the vesicle due to singular point forces exerted by the
interface nodes on their respective surrounding fluid nodes.
This is achieved by linking the physical quantities computed on
each mesh using a so-called discrete delta function suggested
by Peskin [38]. The discrete delta function is defined as

�(x) = 1

16�x2

(
1 + cos

πx

�x

) (
1 + cos

πy

2�x

)
(14)

for |x| � 2�x and |y| � 2�x. In all other regions we
set �(x) = 0, so the function � has nonzero values on a
square. Here we choose 4�x × 4�x. The velocity at a given
membrane node rm is evaluated by interpolating the velocities
at its nearest fluid nodes rm using the above � function so we
obtain

v(rm) =
∑
f

�(rf − rm)u(rf ). (15)

Here, u(rf ) is obtained from the LB procedure. Deducing the
velocity on the membrane nodes from the velocity of the fluid
nodes is possible since we consider that the fluid velocity is
continuous across the membrane and that the vesicle points are
massless, behaving as tracerlike particles, which do not disturb
the flow at this stage. After evaluating every membrane node
velocity we update its position using a Euler scheme

rm(t + �t) = rm(t) + v(rm(t)), (16)

and, consequently, the vesicle is advected and deformed.
However, the vesicle membrane is not a passive interface.
It reacts back on the flow thanks to its restoring bending force

f(rm)=
[
κB

(
∂2H

∂s2
+ H 3

2

)
−Hζ

]
n + ∂ζ

∂s
t + κA (A−A0) n,

(17)

where H is the local membrane curvature, κB is the bending
modulus, s is the arclength coordinate along the membrane
(the contour in 2D), and n and t are the normal and the
tangential unit vectors, respectively. ζ is a Lagrange multiplier
field that enforces local length conservation (the membrane is
a one-dimensional incompressible fluid). A detailed derivation
of this force can be found in Ref. [15]. The additional
last term in Eq. (17) is introduced in order to enforce

FIG. 1. (Color online) Schematic view of a moving Lagrangian mesh representing a two-dimensional vesicle (where the membrane is
represented by a contour) immersed in a fixed Eulerian mesh representing a fluid.
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area conservation, because numerically a slight variation is
observed (see Ref. [36]). A0 is the initial reference enclosed
area of the vesicle, A is its actual area, and κA a parameter that is
chosen in a such a way to keep the vesicle area conserved. This
conservation constraint can be improved also by increasing the
resolution. The membrane force has nonzero value only on the
membrane and should vanish elsewhere. More precisely, a
given fluid point rf is subject to the force

F(rf ) =
∫

�

f(rm)δ(rf − rm)ds(rm), with rm ∈ �, (18)

where ds is the distance between two adjacent membrane
points. However, since the membrane is discretized and thus
presented by a cluster of points, this integral is rather a sum
of the singular forces localized on the membrane nodes. In
addition, writing the force felt by a fluid node in terms of
an ordinary Dirac delta function is not adapted here, since
the membrane nodes can be off-lattice and do not necessarily
coincide with the fluid lattice nodes. The Dirac delta function in
Eq. (18) is replaced by the � function suggested above which
has a peak on the membrane node and decays at a distance
equal to twice the lattice spacing after which it vanishes [38].
In this way the membrane force has a nonzero value in a
squared area of 4�x × 4�x centered on the membrane node.
The force then takes the form

F(rf ) =
n∑

m=1

f(rm)�(rf − rm), (19)

where n is the number of membrane nodes. The vesicle
membrane finds itself, on the one hand, advected by its
surrounding fluid and, on the other hand, it exerts a force
in response to the applied hydrodynamical stresses, causing
thereby a disturbance and modification of the fluid flow.

IV. SIMULATION RESULTS AND DISCUSSION

A. Dimensionless numbers

The fluid flow and vesicle dynamics are controlled by the
following dimensionless parameters:

(i) The Reynolds number,

Re = ργR2
0

η
, (20)

is associated to the applied shear flow and measures the
importance of the inertial forces versus the viscous ones. R0

is the effective vesicle radius. In 2D, R0 can be deduced from
the vesicle perimeter R0 = P/2π . In our simulations we use
small enough values for Re (see below).

(ii) The capillary number,

Ca = ηγR3
0

κB

, (21)

represents the ratio between the shear time (1/γ ) and the char-
acteristic time (ηR3

0/κB) needed by a vesicle to relax toward its
equilibrium shape after flow cessation. This parameter controls
the deformability of the vesicle under flow. Larger Ca lead to
a larger deformability. Below we use the value Ca = 1 which
corresponds to the intermediate regime.

(iii) The reduced volume (the swelling degree) quantifies
how much a vesicle is swollen. In two dimensions it is given by

α = A

AC

= 4πA

P 2
, (22)

where AC is the area of a circle having the same perimeter P

as the vesicle. α is unity for a circular vesicle (a maximally
swollen vesicle) and less than unity for a deflated one 0 <

α < 1.
(iv) The viscosity ratio between the internal and external

fluids is given by

λ = ηint

ηext
. (23)

In this paper, however, this ratio is taken to be unity. For this
value, a vesicle is expected to undergo tank-treading motion
[3,39,40].

(v) The tension number,

Cas = ηγR0

κP

, (24)

is the ratio between the spring relaxation time (recall that
κP is the spring constant) and the shear time (1/γ ). This
number controls the inextensibility of the membrane under
flow. To ensure the vesicle perimeter conservation constraint
we set Cas significantly small as compared to Ca (below
we set Cas = 1.05 × 10−5). For the simulations, we tune κP

until we get very negligible variations of the perimeter P .
κP is related to ξ (the Lagrange multiplier) via the formula
ξ (s,t) = κP [ds(s,t) − ds(s,0)], where ds(s,0) is the initial
reference value [15,36].

(vi) The degree of confinement is given by the ratio of the
vesicle’s effective radius to the channel half height,

χ = R0/W. (25)

B. Computed equilibrium shapes

Finding the vesicle equilibrium shapes constitutes one
of the benchmarking tests we use to validate our code. In
contrast to a droplet, which adopts a spherical equilibrium
shape spontaneously, vesicles can adopt different kinds of
nonspherical shapes. In two dimensions, a vesicle gets a
circular equilibrium only for α = 1. Usually the equilibrium
shapes are obtained by minimizing the Helfrich bending
energy [16]

E = κB

2

∫
�

(2H )2ds, (26)

subject to the two constraints of vesicle area A and perimeter
P conservation (in 2D). The only parameter controlling the
shape of a vesicle, in the absence of an external applied flow
and in unbounded domain, is its reduced volume α [21].
An alternative to energy minimization is to set the flow to
zero (Re = 0) and let the vesicle relax to its terminal shape.
Technically, we place initially a vesicle with some shape (here
an ellipse) in a fluid at rest (no shear flow). The membrane
then starts to deform in order to relax toward the shape that
minimizes its energy [Eq. (26)]. During this transition the
membrane induces some weak fluid flow inside and outside the
vesicle. This flow stops once the vesicle gets its equilibrium
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FIG. 2. (Color online) Computed equilibrium shapes for vesicles having the same perimeter but different reduced volumes α. Red solid
lines are shapes computed by the LB method. For comparison purpose and for validation, we plot also equilibrium shapes computed by the
boundary integral method [41] (black dashed line).

shape. Figure 2 shows the computed equilibrium shapes for
five vesicles having different values of the reduced volume
α = 0.6, 0.7, 0.8, 0.9, and 1. The five vesicles have the
same perimeter. Varying the reduced volume is achieved only
by varying the vesicle area. It is somehow like swelling or
deflating these vesicles to get different equilibrium shapes.
To perform simulations we used the physical parameters
Re = Ca = 0 (fluid at rest), R0 = 20 (to achieve a sufficient
resolution at the scale of the LB grid), and χ = R0/W = 0.1.
We have set n = 100, a value for which the code is stable.
Significantly larger values of n may cause instability. From
this point of view, the LB method differs from the other
conventional numerical schemes, for instance, the boundary
integral or the finite difference/element methods. In those
methods, higher resolution and higher stability is achieved by
increasing (without limit) the number of discretization points.
In contrast, with the LB method an increase of n induces
higher resolution, but care should be taken not to exceed some
given threshold value, beyond which the code destabilizes [42].
Therefore, in all our simulations we have kept a sufficiently
small enough number of membrane nodes per lattice grid (by
keeping the distance between two adjacent membrane nodes
ds close to 1). Within the LB method the velocity has to
be kept small enough (in our case we choose the limit of
0.1) in order to have a sufficiently low Mach number and to
ascertain the limit of neglectable fluid compressibility. The
other parameters are chosen as follows. We have set L = 200,
so the flow perturbation due to the presence of the vesicle
is negligible at the computational domain boundaries where
periodic boundary conditions are imposed. We used κA = 0.01
to fulfill a precise enough conservation of the vesicle enclosed
area (we measure a variation of the order of 0.00015%) and we
set κP = 12 to keep the perimeter conserved as well (variation
of 0.00125% is measured). The obtained shape for every given
reduced volume is compared with its corresponding shape
obtained by the boundary integral method, the black dashed
lines in Fig. 2 (the same method as used in Refs. [3–5,41]).
For a given reduced volume, the computed equilibrium shapes
obtained by both numerical methods are indistinguishable,
especially at higher values of the reduced volume. In Fig. 2 we
can see that for a reduced volume of 0.6, the vesicle assumes
a biconcave shape, as it is typical for healthy red blood cells.

C. Tank-treading under shear flow

In the present section, we treat the effect of confinement on
the dynamics of a tank-treading vesicle. First, we study how

the physical quantities, associated to the tank-treading regime,
vary with the reduced volume. Then, for a given reduced
volume, we analyze the effect of confinement on dynamics and
rheology. We consider a single vesicle placed in a fluid subject
to a simple shear. Here, we set R0 = 30 in order to achieve a
high-enough resolution. For R0 = 30, our explorations led us
to the conclusion that n = 150 is a good compromise between
numerical stability and resolution. For this value of n the code
is stable even at higher degree of confinement. This also allows
us to keep a sufficient number of fluid nodes between the
wall and the membrane, a precision required in more confined
situations. The length of the simulation box is set to L = 600,
chosen to minimize perturbations by the vesicle at the edge
of the simulation box, where periodic boundary conditions
are imposed. Under such conditions, and in the absence of a
viscosity contrast (λ = 1), a vesicle performs a tank-treading
motion [3,39,40]. It deforms until reaching a steady fixed
shape with its main axis assuming a steady inclination angle
with respect to the flow direction. The membrane undergoes
a tank-treading-like motion and generates a rotational flow of
the internal enclosed fluid.

D. Effect of the reduced volume

Figure 3 shows different physical quantities measured in
the tank-treading regime. In Fig. 3(a) we show a vesicle
performing tank-treading motion in a confined channel. The
vesicle assumes a steady inclination angle (the red solid line).
The streamlines inside and outside the vesicle (the gray solid
lines) show that the internal fluid undergoes a rotational flow,
induced by the membrane tank treading. The external fluid
exhibits recirculations at the rear (the left side of the figure)
and at the front (the right side of the figure) of the vesicle. Such
recirculations do not take place in the unbounded geometry [5].
For a tank-treading vesicle in unbounded geometry (or at a
sufficiently weak confinement), the external fluid lines are
curved around the vesicle without being separated. In Fig. 3(a)
the external fluid lines are separated into two portions before
approaching the vesicle at two saddle points (located close
to the channel centerline at the back and at the front of the
vesicle): One portion continues its flow (through the region
between the wall and the membrane) and passes the vesicle,
while the other portion is reflected back by the vesicle. Such
flow recirculations are also observed for confined rotating
rigid spheres [43] and rigid ellipsoids [44]. For the same
degree of confinement (χ = 0.4), in Fig. 3(b) we varied
the reduced volume of the vesicle. In Fig. 3(b) we report
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FIG. 3. (Color online) Physical quantities associated to the tank-
treading motion of vesicles (with R0 = 30) under shear flow (with
Re = 9.45 × 10−2 and Ca = 1) in a confined channel: (a) streamlines
pattern inside and outside a vesicle (α = 0.9) performing a tank-
treading motion in a confined channel, (b) steady shapes for different
values of the reduced volumes, (c) inclination angle versus the vesicle
reduced volume for two degrees of confinement χ = R0/W = 0.40
and 0.81, and (d) membrane tank-treading velocity (scaled by γR0/2,
the rotational velocity of a circular vesicle under shear flow in
unbounded geometry) versus the reduced volume.

the steady-state shapes obtained for different values of the
vesicle reduced volume. All the vesicles in Fig. 3(b) have
been initialized with a zero inclination angle. Figure 3(c)
shows the steady inclination angle as a function of the
reduced volume (for two confinements: χ = 0.4 and 0.81).
The steady inclination angle increases monotonically (for

both values of χ ) with the reduced volume increasing until
it approaches 45◦ in the limiting case of circular vesicles.
The same qualitative tendency is observed in the unbounded
geometry [3,39,41].

Figure 3(d) shows the behavior of the tank-treading velocity
normalized by γR0/2, which is the tank-treading velocity
of a circular vesicle [45]. For χ = 0.4, the tank-treading
velocity increases monotonically with increasing the reduced
volume, as observed for the unbounded geometry [3,39,41].
However, for higher confinement, for example χ = 0.81, the
tank-treading velocity no longer varies in a monotonous way.
It has a maximum around α = 0.85 before it decreases at
larger α. This behavior can be explained by the fact that at
a higher degree of confinement, the amount of the external
fluid able to flow from one side (the left) to the other side (the
right) of the channel by crossing the narrow region between
the wall and the membrane becomes smaller and smaller when
increasing the reduced volume. At higher reduced volumes the
inclination angle increases and the membrane comes in closer
proximity to the wall; see Fig. 4. Therefore, the external fluid
flow does not participate fully to generate the tank-treading
motion of the vesicle. This is also corroborated by the fact
that the external fluid undergoes recirculation [see Fig. 3(b)
and 4], meaning that part of the fluid is reflected backward
when approaching the vesicle. For a circular vesicle (α = 1),
the amount of the reflected fluid is larger compared to the
amount crossing the narrower region between the membrane
and the walls. The induced pressure field shown in the three
left panels in Fig. 4 is significantly affected by increasing α.
For α = 1, a significant pressure gradient is observed at the
inlet and the outlet of the narrower gap between the membrane
and the wall. Such a pressure drop along this narrower region
generates an almost parabolic velocity profile for the case of
α = 1, as shown in Fig. 5. In the same figure, for comparison
purposes, we report the disturbed velocity profile for other
different values of the reduced volume (these profiles are taken
at x = 0). The disturbance is maximal for α = 1.

FIG. 4. (Color online) Induced pressure field (with the gray scale) and flow streamlines (the gray solid lines in the right figure), inside and
outside the vesicle, for different values of the reduced volume α = 0.6, 0.8, and 1 (Re = 9.45 × 10−2, Ca = 1, and χ = 0.81). The black solid
lines in the left figures and the red solid lines in the right figures represent the vesicle membrane. In the right figures, the regions with black
color correspond to higher pressure while the white regions correspond to lower pressure.
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FIG. 5. (Color online) Disturbed flow velocity profile measured
at x = 0 for different values of the vesicle reduced volume. The black
dashed line is the undisturbed applied shear flow profile ux = γy in
the absence of the vesicle. The pink solid line corresponds to the
location of the membrane for α = 1.

The bounce-back boundary condition of Ladd [35] allows
us to measure directly the hydrodynamical stress field σxy

exerted by the fluid on the channel walls. Figures 6(a) and 6(b)
show the measured hydrodynamical stress for two degrees of
confinement, χ = 0.4 and 0.81. The effective viscosity ηeff can
be extracted from the hydrodynamical stress using the formula

ηeff = 〈σxy〉
γ

, (27)

where 〈σxy〉 refers to the volume average of the stress tensor.
The stress σxy has been averaged along the bottom wall. As
shown in Figs. 6(a) and 6(b) the hydrodynamical stress on the
bottom wall exhibits important variations for a larger reduced
volume α. For α = 1, the stress is symmetrical with respect to
the vertical axis at x = 0 (which is perpendicular to the walls
and passing through the center of mass of the vesicle). This

symmetry is also observed for confined rigid spheres [18] and
is a consequence of the symmetry of the Stokes equations on
time reversal. Actually, our simulation contains a small amount
of inertia, but it is so small that the asymmetry is difficult to
identify on the figure. For deflated vesicles (α �= 1) the stress
curve has two unequal maxima and one minimum. The flow
deforms the vesicle and breaks the up-stream/down-stream
symmetry (see Fig. 4 for α = 0.6 and α = 0.8). In other words,
the Stokes reversibility is broken by the shape deformation.
The values of these maxima and minimum significantly deviate
from the corresponding value ηγ in the absence of the vesicle
(presented by the horizontal gray solid line in Fig. 6) on
increasing the reduced volume. By comparing Figs. 6(a)
and 6(b), one notes that the stress is important for higher
degrees of confinement, as expected. Surprisingly, at higher
R0/W , we observe regions with negative hydrodynamical
stress. We believe that this results from a subtle effect
due to fluid recirculation around the vesicle. However, a
clear explanation of this phenomenon is at present not
available.

Figure 6(c) shows the behavior of the effective viscosity for
different values of the vesicle reduced volume. The viscosity
increases when increasing the reduced volume. The same
tendency was observed for a vesicle placed in an unbounded
domain [45]. This result is explained as follows: for a given
confinement, the increase of the reduced volume implies a
larger cross section of the vesicle in the channel (because of
the large increase in the inclination angle), and this creates
more resistance to the fluid flow.

E. Effect of confinement

Here we set (α = 0.9) and vary only the width (2W ) of
the channel in order to study the effect of confinement. All
the other physical and numerical parameters are kept identical
to those of the previous section. All simulations in Fig. 7 are
performed with χ varying from 0.4 to 0.81. For this set of
parameters, the code is still stable and guarantees a quite
satisfactory conservation of the vesicle area and perimeter
(�A/A0 ∼ 0.00015% and �P/P0 ∼ 0.013%). Note that in
Fig. 7 we have kept the same shear rate, γ = 1.75 × 10−5.
Figure 7(a) shows a decrease of the inclination angle on

FIG. 6. (Color online) The hydrodynamical stress exerted by the suspending fluid on the bottom wall for two degrees of confinement,
χ = 0.4 (a) and 0.81 (b). The gray solid line is the stress calculated analytically in the absence of the vesicle ηγ . (c) The deduced effective
viscosity of the fluid, in the presence of the vesicle, for both degrees of confinement.
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FIG. 7. (Color online) Variation of the measured physical quan-
tities associated to a vesicle performing tank-treading motion in
confined geometries when varying the degree of confinement:
(a) steady inclination angle, (b) the membrane tank-treading velocity
(scaled by γR0/2), (c) the hydrodynamical stress field applied on the
bottom wall, and (d) the effective viscosity. Parameters are α = 0.9,
R0 = 30, Re = 9.45 × 10−2, and Ca = 1.

increasing confinement. Under confinement the angle saturates
at smaller values as compared to the corresponding one in
the unbounded flow. The wall acts via a hydrodynamical
repulsive force (a viscous force) tending to push, so to speak,
the orientation angle back to zero in order to align the vesicle
with the flow. Such a decrease of the inclination angle was also

reported by Janssen and Anderson [17] for a confined droplet
under shear flow.

By decreasing confinement further, we expect to reach the
unbounded geometry limit (χ = 0). We did not attempt to
study this asymptotic limit. For χ < 0.4 and within the present
resolution (R0 = 30) a significant increase of L is required
in order to avoid unphysical effects induced by the periodic
boundary conditions. This task requires a very high amount of
computational time.

Figure 7(b) shows a decrease of the membrane tank-
treading velocity (scaled by γR0/2) versus confinement.
At high-enough confinement, the external fluid no longer
participates wholly in membrane tank treading. The fluid is
partially reflected backward when approaching the vesicle,
an effect that increases with confinement (see Fig. 8). For
rigid spheres a similar decrease of the rotation velocity is
also observed when increasing confinement [18]. Varying
confinement affects also the way the membrane and the wall
interact. Figure 7(c) shows the hydrodynamical stress exerted
by the fluid on the bottom wall. The horizonal black solid line
is the stress measured in the absence of the vesicle (ηγ ). At
distances far from the location of the vesicle (on the extreme
right and left sides of the figure), the stress measured for
all degrees of confinement matches with the stress in the
absence of the vesicle. In the vicinity of the vesicle, around
x = 0, we see deviation of the stress from the value ηγ .
Such deviations become larger and larger when increasing
confinement. Again, as in the previous section, we observe
stress with negative values at higher confinement. The effective
viscosity is extracted from the stress [using Eq. (27)] and the
results are shown in Fig. 7(d). The effective viscosity is found
to significantly increase nonlinearly with confinement.

In order to gain further insight, we represent the pres-
sure field and the streamlines (Fig. 8) for three different
confinements, χ = 0.81, 0.6, and 0.4. Confining the vesicle
further results in an increase of the pressure inside the vesicle,
entailing a higher pressure gradient along the fluid layer

FIG. 8. (Color online) Induced pressure field and flow streamlines, inside and outside the vesicle, for different values of the degree of
confinement χ = 0.81, 0.6, and 0.4. Parameters are α = 0.9, R0 = 30, Re = 9.45 × 10−2, and Ca = 1.
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located between the membrane and the wall. The amount of
the fluid crossing this region decreases also when increasing
confinement. The streamlines pattern shows that the recircula-
tion becomes important at higher degree of confinement. Their
two focal points move closer and closer to the vesicle when
confinement is increased. A closer inspection of the pressure
field and the streamlines (for a given degree of confinement χ )
reveals interesting dynamics occurring in the narrow region
between the vesicle and the wall. When the external fluid
approaches the vesicle it splits into two parts. One part is
reflected by the vesicle and pushed backward without passing
the vesicle. The other part continues its flow and crosses the
narrower gap formed between the wall and the membrane.
At the inlet, of this gap, the pressure is significantly higher,
resulting in a slowing down of the fluid (the streamlines
are separated). Once the fluid enters this region its velocity
is amplified (the streamlines come closer), under the action
of the pressure gradient along the gap, until it exits that
region. At the outlet, the pressure drops to a lower value
and the fluid is slowed down again (the streamlines separate
again).

Finally, some general comments are worth mentioning.
The fluid motion in the narrower gap, formed between the
vesicle membrane and the wall, is induced under the action
of three mechanisms: (a) the membrane force, (b) the shear
flow, and (c) the pressure gradient along this region. The third
mechanism dominates at high confinement. In that regime the
fluid (in the gap) is subject to the sum of forces induced by
the above three mechanisms. Within the present method, this
sum must not exceed some given threshold, otherwise the
code becomes unstable (due to higher flow velocities). There
is also another technical detail that becomes problematic in
situations of higher degrees of confinement. We assumed that
the membrane has a zero thickness. However, by using the
expression Eq. (14) the membrane force is distributed on fluid
nodes located at distances of roughly 4�x from the membrane.
The membrane acquires a nonzero effective thickness. In more
confined situations we need to leave at least four fluid nodes
in the gap between the membrane and the wall, otherwise
the dynamics of the vesicle suffer from numerical artifacts.
For example, a leakage of the internal fluid is observed, and
the tank-treading velocity exhibited a nonuniform behavior
along the membrane. To overcome all these problems we
had to increase the resolution. For the resolution of R0 = 30
used in this section, the upper limit of the confinement we
were able to reproduce without any apparent problem is
χ = 0.81.

V. CONCLUSION

We have studied the effect of confinement between two
parallel walls on vesicle dynamics under shear flow. We limited
ourselves to the case of having the same fluid inside and
outside the vesicle. In such a situation the vesicle performs
tank-treading motion. We developed a lattice-Boltzmann
method to perform two-dimensional simulations. The coupling
between fluid flow and vesicle dynamics was adopted from
the immersed boundary method. Unlike previous works, we
have introduced the membrane force by using its analytical
expression as a function of the mean curvature and its
derivative. The vesicle enclosed area and its perimeter were
conserved in our method. We first computed the known vesicle
equilibrium shapes for different values of the swelling degree
in order to validate our code. The obtained shapes match
perfectly the ones computed by the boundary integral method.
As a second step, we studied the case of a vesicle placed
in a domain bounded by two parallel walls. We induced the
shear flow by moving these two walls in opposite directions.
We found that both the vesicle inclination angle, with respect
to the flow, and its membrane tank-treading velocity decrease
when increasing the degree of confinement. Moreover, since at
sufficiently large degree of confinement the vesicle membrane
comes close to the wall so just a very narrow region is
left for the external fluid to flow. Therefore, the vesicle
acts as an obstacle and thus the effective viscosity increases
dramatically when increasing confinement. At a given degree
of confinement, we varied the swelling degree. We observed
the same qualitative tendency as for the unbounded geometry
for the behavior of the angle, tank-treading velocity, and
viscosity as a function of the swelling degree. However, at
higher degrees of confinement even the angle still shows an
increase with increasing the swelling degree, whereas the
measured values are lower. The tank-treading velocity does not
increase monotonically with the swelling degree. It exhibits a
maximum value before getting to lower values in the limit of
circular vesicles.
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