

Reusable cost-based scheduling of grid workflows operating
on higher-order components
Citation for published version (APA):
Dumitrescu, C., Epema, D. H. J., Dünnweber, J., & Gorlatch, S. (2006). Reusable cost-based scheduling of grid
workflows operating on higher-order components. In Proceedings of the 2nd IEEE International Conference on
e-Science and Grid Computing (e-Science'06, Amsterdam, The Netherlands, December 4-6, 2006) (pp. 1-8).
Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/E-SCIENCE.2006.261171

DOI:
10.1109/E-SCIENCE.2006.261171

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/E-SCIENCE.2006.261171
https://doi.org/10.1109/E-SCIENCE.2006.261171
https://research.tue.nl/en/publications/6e7d7aa1-5e9f-4970-9d27-983f91dfa2c2

Reusable Cost-based Scheduling of Grid Workflows
Operating on Higher-Order Components

C. L. Dumitrescu and D.H.J. Epema
Technical University of Delft

CoreGRID Institute on Resource Management and Scheduling
e-mail: {C.L.Dumitrescu,D.H.J.Epema}@tudelft.nl

J. Dünnweber and S. Gorlatch
The University of Münster

CoreGRID Institute on Programming Models
e-mail: {duennweb,gorlatch}@uni-muenster.de

Abstract

Grid applications are increasingly being developed as
workflows built of well-structured, reusable components.
We develop a user-transparent scheduling approach for
Higher-Order Components (HOCs) – parallel implementa-
tions of typical programming patterns, accessible and cus-
tomizable via Web services. We introduce a set of cost func-
tions for a reusable scheduling: when the workflow recurs,
it is mapped to the same execution nodes, avoiding the need
for a repeated scheduling phase. We prove the efficiency
of our scheduling by implementing it within the KOALA
scheduler and comparing it with KOALA’s standard Close-
to-File policy. Experiments on scheduling HOC-based ap-
plications achieve a 40% speedup in communication and a
100% throughput increase. 1

1 Introduction

Nowadays, Grid applications are increasingly not devel-
oped from scratch: because of their complexity and scale,
they rely on pre-packaged pieces of software which are
called components, modules, templates, etc. in different
contexts. Applications based on the component technol-
ogy expose a well-defined structure and enable the reuse
of code. At the same time, component-based development
brings a change of focus for scheduling, which now can
make use of the fact that a Grid application communica-
tion behavior adheres to well-defined patterns. In tradi-
tional scheduling, the user must provide detailed informa-
tion about the application to be executed, including a pre-
cise description of all input files, the executables and the
jobs’ requirements concerning the runtime platform. The
frequency of communication and the amounts of data being
communicated strongly matter in Grid applications [14], but

1This research work is carried out under the FP6 Network of Ex-
cellence CoreGRID funded by the European Commission (Contract IST-
2002-004265).

they cannot be foreseen by the scheduler before data pro-
cessing starts and the monitoring system provides feedback.

This paper suggests a scheduling approach, in which
the necessary information for the scheduler is provided by
the underlying component framework, in a user-transparent
manner. We use Higher-Order Components (HOCs [11])
– reusable components that are customizable for particular
applications using parameters which may be either data or
code. HOCs include the configuration required to run on
top of a standard Grid middleware [13] and can be remotely
accessed via Web Services. Thereby, HOCs abstract over
the technical features of the Grid platform and allow their
users to concentrate on their applications.

We use the KOALA scheduler [15] for handling the si-
multaneous reservation (co-allocation) of the required re-
sources based on the three-layer infrastructure proposed
in [5]. Using the BWCF (Bandwidth-Aware Close-to-File)
scheduling algorithm introduced in [5], a HOC-based ap-
plication can be scheduled transparently to the user. The
BWCF algorithm is an improvement of the default Close-
to-File policy (CF) of KOALA: whereas CF always chooses
the minimal transfer paths for exchanging input and output
files, BWCF relies on cost functions that take into account
bandwidth variations for different execution nodes and the
varying communication requirements of different compo-
nents.

We address the following three questions: (a) What are
the most suitable cost functions to assign workflows oper-
ating on HOCs to different kinds of resources? (b) If an
optimal mapping for a HOC-based workflow is found, then
how can it be reused for other applications running the same
workflow? and (c) What is the impact of resource usage
restrictions, expressed via usage service level agreements
(uSLAs [6]) on the performance of HOCs? Besides the
user-transparent provision of scheduling information, our
main contributions are as follows: first, the identification of
the specific factors influencing the scheduling of our HOC-
based applications; second, the expression of these factors
by means of cost functions that can be integrated with our

1

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

BWCF scheduling algorithm and the KOALA scheduler;
third, the introduction of a schedule reuse technique for sim-
ilar workflows; fourth, the analysis of controlled resource
sharing (resources being provided under pre-defined uS-
LAs) and its impact on scheduling; and fifth, experiments
with the proposed scheduling enhancements on our Grid
testbed, the DAS-2 platform [10].

Section II presents HOC-based Grid programming and
our proposed cost functions for scheduling. Section III de-
scribes the KOALA scheduler and the DAS-2 Grid plat-
form, and shows how we use cost functions for schedul-
ing workflows. Section IV is about restrictions on Grid
resources expressed via uSLAs, and their influence on
scheduling. Section V presents experimental results, and
Section VI concludes the paper by comparing it with related
work.

2 Grid, HOCs and Cost Functions

In the following, we describe our Grid environment and
identify six cost functions reflecting the communication re-
quirements of HOCs.

2.1 Environment Description

The main elements of the Grid environment considered
for this work are as follows (see Figure 1):

• Node: a resource for computing and storing data;
• Site: a collection of nodes placed in a single adminis-

trative domain;
• Work unit (or job): a sequential code executed on a

single node;
• Application: computation composed of work units;
• Resource Manager (RM): a specific software that al-

locates resources and monitors applications submitted
by the users at a site level;
• Security Gate: a software that authenticates and autho-

rizes user requests and invokes the RM whenever an
application is submitted;

Work
Units

GRID
Abstraction
Layer

Client

Work
Unit
Submission

HOC

Submission
Application

Security
Gate

Security
Gate

Security
Gate

Site 1

Site 2

....

Site n

HOC Applications

GRID
Queue

HOC Services

GRID Ressource Dispatcher

WEB Service Node

Node n

Node 2

Node 1

Node n

Node 2

Node 1

Node n

Node 2

Node 1

Queue

Queue

Queue

Site

Site

Site

Figure 1. Environment Overview

• HOC Client: a computer used for submitting HOC-
based applications to the Grid built out of several sites;
• HOC Service Node: a resource providing a Web ser-

vice for accessing a HOC implementation;
• Grid Resource Dispatcher: software that maps HOC

applications onto a Grid, i. e. , it aggregates resources
(nodes and sites) and reserves them for work unit exe-
cution.

We use the DAS-2 Grid system for experiments. This
Grid testbed is a space-shared environment, where a node
is exclusively allocated to only one unit of work at a time;

2.2 HOCs and Workflows

Some of the popular patterns of parallelism supported by
HOCs are the farm, the pipeline [8] and the wavefront [9] as
shown in Fig. 2. The Farm-HOC is used for running appli-
cations without dependencies between tasks. All implemen-
tations of the Farm have in common the existence of a Mas-
ter unit, where data is partitioned; the parts are then pro-
cessed in multiple parallel Worker units (labeledW in the fig-
ure). In the Pipeline-HOC, parallelism is achieved by over-
lapping units for several input instances. The Wavefront-
HOC describes computations advancing as a hyperplane in
a multidimensional space (called diagonal sweep in the two-
dimensional case).

Software built using HOCs exhibits a communication be-
havior that fits into a certain finite set of communication pat-
terns. The HOCs’ structure allows to automatically create
performance models that rely on components’ behavioral
features, e.g., how often two units of work communicate.
HOCs come with a support for running them on a particular
Grid middleware platform, including configuration files that
specify public interfaces (provided via Web services) and
the locations of the code for serving the possible requests to
a HOC. Scheduling-relevant information, e. g. , the compo-
nent type, is also included in the HOC configuration. The

Figure 2. Examples of HOCs

2

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

users only upload an application-specific code to a HOC us-
ing the respective Web service; they never need to deal with
the HOC configuration.

2.3 Influencing Factors

In this section, we identify three generic factors and
three HOC-specific factors influencing the performance of
the BWCF scheduling algorithm on the DAS-2 system
[10]. Our cost functions expect as their parameters vari-
ous monitoring information which in our case is collected
by the KOALA scheduler. The most notable parameters
are: (a) the total intra- and inter-site bandwidth (TBW),
(b) the available intra- and inter-site bandwidth (ABW),
and (c) the application required bandwidth (RBW) mea-
sured in megabits per second (Mb/s). The required band-
width (RBW) for executing an application is represented
by the bandwidth requirements of the N work units located
on the same execution site (LCi, i = 1..N) and the band-
width requirements of the M units located on a remote site
(RCk, k = 1..M). We compute RBWj as the sum of the
bandwidths of all used links for communications by the j-th
unit of work:

RBWj = ΣNi=1LCi + ΣMk=1RCk (1)

For each work unit, our scheduling algorithm (BWCF)
estimates the time costs of all scheduling possibilities, i. e. ,
mappings of units onto distributed nodes, and selects the
most appropriate ones in terms of a cost function, which
is therefore crucial for the efficiency of scheduling. The
factors used in our cost functions are the following:

1. Network Latency: the co-allocation of resources
leads to a data distribution where only a part of the data
required by an application is locally available, while
other necessary data must be exchanged with remote
sites. In our approach, network latency is the sum of
the latencies of each node plus the inter-site latencies;
both are recorded by the monitoring system and mea-
sured in seconds ([s]);

2. Network Bandwidth: the interaction of co-allocated
parallel applications can create contention in the Grid
[14]. To avoid this, our cost functions also incorporate
bandwidth data. Based on the monitored bandwidth of
each connection, we switch between links whenever
a bandwidth improvement is possible. Bandwidth is
measured in megabits per second ([Mb/s]);

3. Network Load: the load in the network is related to
both the frequency of communications and the mes-
sage sizes. Even if resources exchange small-sized
messages, a high amount of such messages may pro-
duce a load which requires the choice of nodes with a

fast broadband connection. The network load is mea-
sured in megabits per second ([Mb/s]).

The next three factors are specific to the pattern-based
structure of HOC applications:

1. HOC Communication Requirements: the commu-
nication requirements of a HOC-based application ex-
press how many times each unit of work is required to
communicate with other units. If an application per-
forms a lot of local computations and exchanges in-
formation only rarely, it has low communication re-
quirements and the three factors listed above will not
strongly influence the overall timing. The communi-
cation requirements of applications are expressed in
megabits per second ([Mb/s]);

2. HOC Startup Delay: Running a code unit requires an
initialization phase where communication channels are
reserved. Since every HOC application requires each
work unit to run a particular number of times, we mul-
tiply the monitored delay times for data transmissions
with a unit factor to build a finer application model.
This metric is expressed in seconds ([s]);

3. HOC Application Layout: for predicting network
load variations accurately, the ordering of the work
units in a HOC is also considered as a scheduling
factor in our model. Another coefficient is used to
weigh unidirectional communication with lower costs.
We express this as a set of numbers associated with
the application communication behavior measured in
megabits per second ([Mb/s]).

A cost function that includes all the above factors is dif-
ficult to devise without a precise analysis. Due to the many
values expected for each factor in a large Grid, the decision
making can become an expensive process.

2.4 The Six Proposed Cost Functions

Cost functions weigh the previously identified require-
ments in an application-specific way: For some applica-
tions, the wall-clock execution times are less important than
minimizing the occupancy times of certain resources, while
for other applications, the situation is opposite. We intro-
duce the following six cost functions:

1. Link Count Aware:

Flink count(j) = N + 3×M (2)

where N represents the number of neighbor units
scheduled on the same site (one network link) and M
the number of neighbor units scheduled on other sites
(modeled empirically as three network links). When
we schedule applications using this function, slower
links are weighed with higher costs;

3

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

2. Bandwidth Aware:

Fbw aware(j) =

ΣNi=1LCi/TBWj + ΣMj=1RCj/TBWj (3)

where LCi is the bandwidth of the intra-site links
used by the unit i, and RCj is the bandwidth of the
inter-site links used by the work unit j, with N and
M introduced before. This cost function optimizes
over the communication time required for each unit
to exchange information with all its peers. Formula
(3) sums up the required communication times for lo-
cal and remote communication, taking network band-
widths into account;

3. Latency Aware:

Flt aware(j) =

ΣNi=1LCi/TLTj + ΣMj=1RCj/TLTj (4)

where TLT stands for network latency ([s]). This
cost function optimizes over the latency encountered
by each unit when exchanging information with all its
peers. As in (3), the costs associated with each unit-to-
node mapping are weighed by a different factor, which,
this time, corresponds to the unit j node’s latency;

4. Network Load Aware:

Fnet util(j) =

ΣNi=1LC
j
i /ABWj + ΣMk=1RC

j
k/ABWj (5)

Here, the bandwidth factor, which is a constant for the
previous cost functions, is replaced by the dynamically
monitored bandwidth (ABWj). In LCji , the index j
denotes the work unit number, i. e. , the j-th unit has
N local peers and M remote peers, while i stands for
the index of the unit’s neighbor.

In a HOC-based application, the factors relevant for pre-
dicting the time costs of each unit depend on the types of
the employed HOCs. Therefore, we propose two additional
cost functions, designed for scheduling HOC applications.

1. Application Topology Aware:

Fapp aware(j) = Σjl=1ΣNi=1LC
l
i/ABWj+

Σjl=1ΣMk=1RC
l
k/ABWj (6)

This cost function weighs local and remote link ca-
pacities as well as the simultaneous communications
for all units of an application (given by the employed
HOC type and captured by the external summation).
Thus, it is probably the most appropriate one for ap-
plications with similar requirements for all units, like,
e. g. , farm-based ones, while it is less appropriate for
pipelined computations that benefit most from the La-
tency Aware cost function (see experiments);

2. Predicted Network Variance Aware:

Fvariance(j) =

Fapp aware(j, AL)− PredV ar(link bw) (7)

This cost function incorporates measured network
variances and is probably most appropriate for appli-
cations with specific requirements for each work unit.
It optimizes over both the time required to perform the
communication between units and the estimated com-
munication penalties due to the network load produced
by other applications. The predictive part in this equa-
tion, (7), is measured like described in the work by
Yang et al. [17]: any change in the bandwidth usage is
considered to repeat in the future, thus, the average of
the observed changes are used for computing the pre-
diction.

3 HOC-Aware Scheduling Infrastructure

Due to their purpose of simplifying application devel-
opment without a significant loss of performance, as com-
pared to hand-tuned applications, HOCs have strict schedul-
ing requirements. We use the KOALA scheduler, whose
main features in our context are: (a) user-transparent HOC
scheduling [5], (b) multi-HOC application scheduling, and
(c) re-use of already computed schedules for HOCs, as de-
tailed in this section.

3.1 The KOALA Co-Allocation Scheduler

KOALA [15] was developed by the PDS group in Delft
[16] in the context of the Virtual Lab for e-Science (VL-
e [12]) project. Its main feature is the support for co-
allocation, i.e., simultaneous allocation of processors and
memory on multiple Grid sites to a single application con-
sisting of several work units.

Our execution testbed is the DAS-2 platform [10],
a wide-area network of 200 Dual Pentium-III computer
nodes. It comprises sites of workstations, which are inter-
connected by SurfNet, the Dutch University Internet back-
bone for wide-area communication, whereas Myrinet, a
popular multi-Gigabit LAN, is used for local communica-
tion. The resources in DAS-2 are space-shared: once re-
sources are allocated to a work unit, no other work units
can use them.

In our scheduling infrastructure, every submission host
has at least one KOALA runner in operation, while one
single host runs the KOALA engine. Runners communi-
cate with the engine via a proprietary light-weight protocol
based on exchanging requests and answers. Applica-
tions are executed by submitting single-CPU jobs (e.g., a
code parameter for a Pipeline-HOC stage) to runners which
handle the reservation of resources.

4

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

3.2 The Distribution of Responsibilities

Each HOC execution node runs an MDRunner instance,
where MDRunner [5] stands for Modified DRunner and
DRunner is the KOALA component for scheduling paral-
lel applications via Globus DUROC citeGLOBUS. In this
infrastructure, the responsibilities are distributed as follows
(see Figure 3):

• HOCs provide a high-level interface to the end user,
allowing to compose applications in terms of patterns
such as a wavefront or a pipeline;
• MDRunner makes the scheduling of HOC applica-

tions transparent to the user; it generates the HOC ap-
plication descriptions based on the initial description
included in the HOC configuration;
• the KOALA engine performs the resource acquisition

and aggregation, by collecting information about re-
sources, keeping track of application requirements and
scheduling components to different Grid sites;
• MDRunner and the KOALA engine share the func-

tionalities of monitoring the application progress and
the preservation of application-specific constraints,
e. g. , time limits to be met;
• BWCF employs different cost functions for optimal re-

source mapping. The selection of the most appropri-
ate cost function for an application is handled by the
MDRunner in a user-transparent manner.

3.3 The Multi-HOC Application Support

Compositions of multiple HOCs were not addressed so
far, although many applications are based on several dif-
ferent components glued together [2]. In order to sched-
ule applications that use multiple HOCs, we included in the
MDRunner support for processing workflows, specified via
a MDRunner-specific workflow description. Such work-
flows occur when an application invokes several HOCs in a
sequential order, for example, the Farm-HOC is employed

Figure 3. Integration of HOCs with KOALA

to distribute the input elements in parallel, after which the
application uses the Pipeline-HOC to perform the required
data processing.

Our BWCF scheduling algorithm processes multi-HOC
applications by computing the communication costs for
each single HOC and by summing up these costs to obtain a
scheduling criterion, which is valid for the combination of
the employed HOCs without the need for work unit migra-
tion.

3.4 HOC Schedule Reuse

Many different applications can be built using the same
HOCs or combinations of them, but our automated schedul-
ing of HOC-based applications works independently of
application-specific code and data parameters. It is only re-
lated to the types of HOCs which are employed and, there-
fore, different applications using the same HOCs will be
mapped onto the same resources. To avoid the need to com-
pute the same schedules again and again, we included in the
MDRunner the support for reuse of schedules for already
processed HOCs and compositions of them.

The scheduling of an application in a Grid environment
includes many expensive operations, e. g. , the aggregation
of resources for multi-job submissions. In our infrastruc-
ture, the reuse of schedules reduces much of the overhead
introduced by these operations.

3.5 HOC-Aware Scheduling Algorithm

In our HOC scheduling infrastructure, the MDRunner
makes use of the BWCF algorithm, which combines the CF
scheduling policy with communication cost awareness or
other input- and computation-related cost functions. For ex-
ample, a cost function may take into consideration resource
(node or/and network) market values. BWCF replaces the
greedy approach of the CF policy by one of the cost func-
tions introduced in Section 2.4 for performing the optimal
resource selection.

4 The Impact of uSLAs on HOC Execution

Sharing of resources is required at several levels in multi-
domain environments like Grids. Resource sharing be-
comes challenging, once the distribution of resources spans
multiple physical institutions. Because access to resources
is controlled, application timeliness becomes important.
Resource owners grant the right to use certain amounts of
their resources to various consumers. The sharing rules un-
der which resources are made available are expressed using
uSLAs [7]. These uSLAs govern the sharing of specific re-
sources among multiple consumers. Once a consumer is

5

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

permitted to access a resource via an access policy, the re-
source uSLA steps in to govern how much of the resource
can be consumed [6].

On the DAS-2 system [10], a set of uSLAs are enforced,
the most important one being: any application cannot run
for more than 15 minutes from 08:00 to 20:00 and pro-
gram execution MUST be performed on the compute nodes,
NEVER on a file/compile server. Such restrictions represent
a good motivation for introducing uSLAs for component-
based applications, as large scale systems like DAS-2 are
a possible target platform for them. Some resource access
limitations are not controlled by the scheduler, but via op-
erating system tools (xinetd, tcpd, etc). In its standard im-
plementation, the KOALA scheduler deals with access lim-
itations via trial-and-error: when a Runner reports repeated
failures of a job (e. g. , due to insufficient resources) at a
site, the site is temporarily removed from the pool of avail-
able resources.

We have therefore implemented a fixed-limit uSLA
mechanism by means of MDRunner, ensuring that the re-
source managers (see Section 3) are not overloaded. In
our experiments, the fixed-limit uSLA allowed at most four
HOC workflows running simultaneously.

5 Experimental Evaluation

In this section, we report the results of experiments with
our scheduling approach for three HOC scenarios. In these
experiments, we identify empirically the most efficient cost
functions for scheduling the different types of HOCs com-
monly used by means of the BWCF scheduling policy. We
use synthetic workloads which well represent the data flows
occurring in real applications.

5.1 Performance Metrics

We focus on measuring the performance when employ-
ing the reusable workflow scheduling technique. In order to
quantify our results, we employ three metrics as follows:

1. Utilization Ratio (UR) is defined as the ratio of the
computation time and the communication time of a
HOC-based application that employs several units that
perform a predefined number of computations and re-
quire a certain number of message exchanges;

2. Communication Speedup (CS) is defined as the ratio
of the value of UR for BWCF under a certain cost
function to the value of UR for the default KOALA
scheduling policy (CF). The formula used to measure
the communication improvement for an application
that uses a single HOC is:

CS = (URCF − URCostFunc) / URCF (8)

where Cost Func stands for the analyzed cost func-
tion and CF stands for the time costs using KOALA’s
Close-To-File scheduling policy.

3. Throughput is defined as the number of work units ex-
ecuted on the Grid in a pre-defined interval of time.

5.2 Experimental Results

We have performed three sets of experiments for three
different scenarios in scheduling HOC-based applications,
namely communication-size analysis, cost function analy-
sis, and schedule reuse analysis. The results are captured in
Tables 1, 2, and 3. The values in parentheses are the number
of units and messages. The values in parentheses in the next
two tables are the number of units, the number of exchanged
messages and the size of each message.

5.2.1 The Communication-size Analysis Scenario

For the communication-size analysis, we perform 10 runs of
each single HOC type using synthetic applications and we
present the average value and the standard deviation. Each
HOC-based application was composed of 15 to 22 units and
ran on three DAS-2 sites: Delft, Utrecht, and Leiden.

Table 1. Speedup for Link-Count (%)
Comm. Synthetic HOC Application Type

Req. Farm (15x20) Pipe (15x20) Wave (22x20)
50Kb 0.71±3.2 10.95±6.6 15.81±15.2

100Kb 0.47±2.2 12.15±7.9 14.11±6.4
500Kb 0.87±4.5 14.68±2.5 14.22±4.6

1Mb 0.19±2.8 13.59±4.9 14.26±2.6
5Mb 0.89±1.4 12.56±5.5 15.38±2.8

10Mb 0.23±5.9 13.61±5.6 14.86±5.6

For the Farm-HOC, we observed similar performance
when using link-count and the CF policy (see Table 1),
which we explain by the identical mapping of units to
resources. However, when more resources were avail-
able, KOALA’s default scheduling policy performs worse as
shown in Table 2. For the Pipeline-HOC and the Wavefront-
HOC, the performance increase when using the link-count
is similar, regardless of the amount of input data (the gain is
expressed in percentage for 20 data items of 50Kb–10Mb).

5.2.2 The Cost Function Analysis Scenario

For the cost function analysis, each HOC-based application
exchanged 20 messages with 2 to 10 Mb of data (a 10 times
higher communication requirement than in the previous sce-
nario), while running on all five sites of DAS-2.

Table 2 captures our results for running communication-
intensive HOC-based applications: they consist of 20 to 50

6

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

units of work and have high communication requirements
compared to the capacity of the inter-site network links.
We observe that the link-count cost function (our previous
choice) yields a lower performance than the bandwidth-
aware cost function, while our implementation of the
application-aware cost function introduces the lowest per-
formance, even lower than the performance of the default
CF scheduling policy (Table 2). The value for the standard
deviation is quite high (Table 2), since we compared BWCF
also with KOALA’s default scheduling policy, which leads
to much higher time needs in component-based applica-
tions, regardless of the employed cost function.

Table 2. Speedup for the Six Costs (%)
Synthetic HOC Application Type

Cost Farm Pipeline Wavefront
Function (20×20×2M) (50×20×10M) (46×20×10M)
Link Count 7.18±9.6 21.46±19.4 34.00±26.9
Bandwidth 34.06±6.8 20.90±19.5 39.37±29.2
Latency 31.06±2.8 24.60±19.2 28.30±29.2
Network 33.80±6.8 22.60±19.1 17.40±33.6
Application 36.10±5.9 -5.00±0.1 -1.13±4.6
Predicted 34.21±1.8 21.04±19.5 38.22±6.2

In summary, the most appropriate cost function seems to
be the bandwidth-aware function. By HOC type, the most
appropriate functions are application-aware for the Farm-
HOC, and latency-aware for the Pipeline-HOC, which
supports our assumption. For the Wavefront-HOC, the
bandwidth-aware and predicted cost functions lead to the
most efficient scheduling.

5.2.3 The Schedule Reuse Analysis Scenario

In the schedule reuse analysis, we test the performance of
our scheduling when schedules are reused for HOC-based
applications that exhibit the same workflow, i.e., they em-
ploy the same HOCs in identical order. Also, a fixed-limit
uSLA at the user level was enforced. The uSLA allowed at
most four applications to run in parallel on the DAS-2 re-
sources. Table 3 captures our results for HOCs with 15 to
22 units and message sizes of 1Mb to 10 Mb.

We note a high throughput improvement due to the
schedule reuse: the reduction of the scheduling overhead
allows to increase the total throughput by more than 100%
in our test scenario.

This observation can be easily traced in Fig. 4, where the
work unit termination time is plotted on the vertical axis.
Once a HOC instance terminates and is requested again, the
reserved resources are reused instead of computing a new
schedule.

Table 3. Throughput Gains with Reuse (%)
Synthetic HOC Workload Type

Cost Farm Pipeline Wavefront
Function 20×30×1M 20×30×10M 20×30×5M
CF 93.7 112.9 101.8
Link 100.7 116.3 161.0
Bandwidth 118.6 126.4 170.4
Latency 117.4 133.6 161.6
Network 106.3 134.8 170.2
Application 101.0 117.4 127.3
Predicted 118.2 123.6 194.0

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

Tim
e [

se
c]

HOC Instance Count [#]

Bandwidth Aware
Schedule Reuse

Predictive
Latency Aware

Application Aware
Link Count Aware

Network Utilization Aware
CF/WF

Figure 4. Farm-HOC Execution Shapes

6 Related Work

The workflow descriptions processed by our MDRunner
serve a similar purpose as the ASSIST coordination lan-
guage, devised by Aldinucci et al. [1]. A specialized com-
piler translates the graph of modules into a network of pro-
cesses on a Grid, under pre-specified rules. In our approach,
applications are never re-scheduled, which is an advantage,
compared to ASSIST. Moreover, BWCF takes application
submission costs into account and optimizes the scheduling
of workflows, which is not the case in ASSIST. Benoit et al.
used a Performance Evaluation Process Algebra (PEPA) [4]
which can be used for mapping ASSIST applications onto
Grid resources [3]. Contrary to this approach, the input to
our cost functions is directly given by the monitoring infor-
mation and no scheduling requirements are described using
a specific formalism.

In the broader context of bandwidth-aware scheduling,
Jones et al. [14] introduce several scheduling policies for
parallel applications where information about the commu-
nication behavior is provided by the user. They conclude
that it is challenging to devise a scheduling algorithm when
no a priori knowledge about an application is provided.
Their simulation results show that co-scheduling a large part
(85%) of an application on a single site provides the best so-
lution, independently of the communication pattern.

7

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

7 Conclusions

In this paper, we addressed the problem of user-
transparent scheduling for application workflows built out
of higher-order components (HOCs). We introduced our ap-
proach for enabling the KOALA Grid scheduler to perform
communication cost-aware scheduling by using the knowl-
edge about an application behavior available at compile
time. We experimentally proved advantages over KOALA’s
CF scheduling for three advanced scheduling techniques,
namely: cost-based scheduling, multi-HOC workflow sup-
port, and schedule reuse.

We focused on identifying the specific factors that must
be considered for HOC-based application scheduling. In
a set of experiments, we addressed the question “What are
the most suitable cost functions for scheduling workloads of
HOC-based applications? ” The answer is: the bandwidth-
aware and the predicted-variance functions. The improve-
ments for single large HOC-based applications and for
multi-HOC workflows surpassed the other cost functions by
5% to 20%. The aggregated submission provided additional
gains by reducing the submission time for multi-component
applications, and the schedule reuse led to the highest per-
formance improvement, whenever workflow repetitions al-
lowed to apply it.

Another problem addressed in this paper is how resource
policies (uSLAs) affect HOC scheduling. Our experiments
proved that uSLAs, in combination with workflow aggrega-
tion and schedule reuse, do not impede on the overall per-
formance gains. Future work will study the impact of the
monitoring quality on the proposed scheduling infrastruc-
ture, exploration of alternative scheduling heuristics and ex-
tensions of KOALA for preventing applications from con-
flicting with each other.

Acknowledgments

We would like to thank the DAS-2 system team for
kindly providing their resources for our experiments.

Sincere thanks also go to the anonymous referees of the
draft version of this paper for their constructive comments.

References

[1] M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic
QoS in ASSIST Grid-aware Components. In Euromicro
PDP 2006: Parallel Distributed and network-based Pro-
cessing, IEEE, Montbliard, France, 2006.

[2] M. Alt, S. Gorlatch, A. Hoheisel, and H.-W. Pohl. A Grid
Workflow Language Using High-Level Petri Nets. In Sec-
ond Grid Resource Management Workshop, Poznan, Poland,
September 2005.

[3] A. Benoit and M. Aldinucci. Towards the Automatic Map-
ping of ASSIST Applications for the Grid. In Proceedings of
CoreGRID Integration Workshop, University of Pisa, Italy,
November 2005.

[4] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Evaluat-
ing the performance of pipeline-structured parallel programs
with skeletons and process algebra. Parallel and Distributed
Computing Practices, special issue on Practical Aspects of
High-level Parallel Programming (PAPP’04), 2005.

[5] C. Dumitrescu, D. Epema, J. Dünnweber, and S. Gorlatch.
User Transparent Scheduling of Structured Parallel Appli-
cations in Grid Environments. In HPC-GECO/CompFrame
Workshop held in Conjunction with HPDC’06, Paris,
France, 2006.

[6] C. Dumitrescu, I. Raicu, and I. Foster. Experiences in run-
ning workloads over Grid3. In Proceedings of Grid and Co-
operative Computing (GCC’05), Beijing, China, 2005.

[7] C. Dumitrescu, M. Wilde, and I. Foster. A Model for Usage
Policy-based Resource Allocation in Grids. In Policies for
Distributed Systems and Networks, 2005. Sixth IEEE Inter-
national Workshop on Policy, pages 191 – 200, Stockholm,
Sweden, June 2005.

[8] J. Dünnweber, S. Gorlatch, A. Benoit, and M. Cole. Integrat-
ing MPI-Skeletons with Web services. In Proceedings of the
International Conference on Parallel Computing, Malaga,
Spain, September 2005.

[9] J. Dünnweber, S. Gorlatch, S. Campa, M. Danelutto, and
M. Aldinucci. Using code parameters for component adap-
tations. In Proceedings of the CoreGRID Integration Work-
shop, Pisa, Italy, November 2005.

[10] Dutch University Backbone. The distributed ASCI super-
computer 2 (DAS-2), 2006.

[11] S. Gorlatch and J. Dünnweber. From Grid Middleware to
Grid Applications: Bridging the Gap with HOCs. In Future
Generation Grids. Springer Verlag, 2005.

[12] H. Bal et al. Virtual Laboratory for e-Science (vl-e). Web
Page: http://www.vl-e.nl, 2002.

[13] M. Humphrey, G. Wasson, J. Gawor, J. Bester, S. Lang,
I. Foster, S. Pickles, M. M. Keown, K. Jackson, J. Bover-
hof, M. Rodriguez, and S. Meder. State and events for
Web services: A comparison of five WS-resource frame-
work and WS-notification implementations. In Proceedings
of the 14th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-14), Triangle Park,
North Carolina, 2005.

[14] W. M. Jones, L. W. Pang, D. Stanzione, and W. Ligon III.
Bandwidth-aware co-allocation meta-schedulers for mini-
grid architectures. In International Conference on Cluster
Computing (Cluster 2004), San Diego, California, 2004.

[15] H. Mohamed and D. Epema. The Design and Implementa-
tion of the KOALA Co-Allocating Grid Scheduler. In Pro-
ceedings of the European Grid Conference, Amsterdam, vol-
ume 3470 of LNCS, pages 640–650, 2005.

[16] KOALA Co-Allocating Grid Scheduler. Web Page:
http://www.st.ewi.tudelft.nl/koala/.

[17] L. Yang, J. Schopf, and I. Foster. Conservative Schedul-
ing: Using Predicted Variance to Improve Scheduling De-
cisions in Dynamic Environments. In Proceedings of the
International Conference for High Performance Computing
and Communications (SC’03), Phoenix, Arizona, 2003.

8

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

