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Endogenously arising network allocation rules
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Abstract

In this paper we study endogenously arising network allocation rules. We focus on three
allocation rules: the Myerson value, the position value and the component-wise egalitarian
solution. For any of these three rules we provide a characterization based on component
efficiency and some balanced contribution property. Additionally, we present three mech-
anisms whose equilibrium payoffs are well defined and coincide with the three rules under
consideration if the underlying value function is monotonic. Nonmonotonic value functions
are shown to deal with allocation rules applied to monotonic covers. The mechanisms
are inspired by the implementation of the Shapley value by Pérez-Castrillo and Wettstein
(2001). We conclude with some comments on this implementation of the Shapley value.
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1 Introduction

An important characteristic in many social and economic situations is the organization of
communication or cooperation. It is commonly observed that direct relationships exist, but
since not everyone interacts directly with anyone else, indirect relationships play an important
role as well.

Networks have proven to be an important modeling framework for social and economic
situations. Recent years have provided an increasing amount of literature on this subject.
Increasingly, the literature moves away from the original setting of Myerson (1977), who con-
sidered communication situations consisting of a cooperative game with transferable utilities
supplemented with a network, and moves to the setting popularized by Jackson and Wolinsky
(1996). This latter setting takes a value function, which assigns a value to any possible network
on a fixed set of players, as starting point. It is commonly understood that the latter setting
is richer.

Starting with Myerson (1977) the literature on communication situations mainly focused
on allocation rules or, more specifically, on the axiomatic foundations of allocation rules for
these situations. Myerson (1977) introduced and characterized an allocation rule, which is now
called the Myerson value. Later on, alternative characterizations, some valid on restricted sets
of communication situations only, were given in Myerson (1980) and Borm et al. (1992).

The main contribution of Meessen (1988) and Borm et al. (1992) was the introduction of
an alternative rule for communication situations. This rule is called the position value. Borm
et al. (1992) provided a characterization of this rule for communication situations with trees
as the underlying graphs only. A general characterization of the position value was recently
given by Slikker (2005a). Yet another rule for communication situations has been introduced
by Hamiache (1999). Some deficiencies in this paper were recently pointed out and addressed
by Bilbao et al. (2006).

Jackson and Wolinsky (1996) focused on the tension between efficiency and stability in
networks. Besides this they introduced an allocation rule, a straightforward adaptation of
the Myerson value for communication situations, which is simply called the Myerson value as
well. Following this work, a vast amount of literature concentrated on the relations between
efficiency and stability.

The existence of networks that are stable against changes in links by coalitions in investi-
gated by Jackson and van den Nouweland (2005). They show that the existence of so-called
strongly stable networks is equivalent to nonemptiness of the core of an associated cooperative
game. Moreover, they show that to investigate the existence of such strongly stable networks
one can restrict attention to the value that equally divides the value of a component, i.e., the
component-wise egalitarian solution.

For extensive surveys on the subjects described so far, we refer to Slikker and van den Nouwe-
land (2001), who focus on cooperative axiomatic approaches and network formation issues,
Dutta and Jackson (2003), containing several state-of-the-art papers, and Jackson (2005b),
containing a recent survey focusing on efficiency and stability.

Recently, Jackson (2005a) took a slightly different view in the analysis of network allocation



3

rules by focusing more on the integration between network formation and payoff division rather
than assuming some exogenously given network. He introduces and characterizes several new
allocation rules and subsequently presents a comparison of these rules. He ends with the ques-
tion where these allocation rules come from, i.e., he wonders about non-cooperative procedures
resulting in the same payoffs as allocation rules.

This last approach has, in the recent literature on cooperative games, been influenced much
by the work of Pérez-Castrillo and Wettstein (2001). They presented an implementation of
the Shapley value. Follow-ups of this paper considered comparable mechanisms, focusing on
efficient outcomes in economic environments (Mutuswami et al. (2004)), the Owen value (Vidal-
Puga and Bergantiños (2003)), and networks (Pérez-Castrillo and Wettstein (2005)). In Pérez-
Castrillo and Wettstein (2005) the player-based flexible network allocation rule of Jackson
(2005a) results. In the concluding section we will come back to the relation with our work.

This paper focuses on three allocation rules in a setting with value functions: the Myerson
value, the position value, and the component-wise egalitarian solution. We allow for a solid
comparison between the three rules. First, by introducing comparable characterizations, sub-
sequently, by comparable non-cooperative bargaining procedures resulting in the same payoffs
as these rules.

The setup of this paper is as follows. Preliminaries on games and networks are treated
in Section 2. Section 3 provides three comparable characterizations of the three allocation
rules. Subsequently, in Section 4 we provide recursive formulas for the allocation rules. Three
comparable mechanisms are presented and analyzed in Section 5. In Section 6 we adjust the
mechanisms to deal with nonmonotonic value functions. We conclude in Sections 7 and 8 with
some comments on Pérez-Castrillo and Wettstein (2001) and concluding remarks, respectively.

2 Preliminaries

In this section we present notation and definitions.
By N = {1, . . . , n} we denote a set of players. This set will generally be fixed. For con-

venience we denote S − i = S\{i} for any set and any player i. Furthermore, we denote
S − T = S\T for any pair of sets S, T .

By g we denote a network, i.e., a set of unordered pairs of players (in N). If {i, j} ∈ g we
say that players i and j are adjacent. For notational convenience we sometimes write ij rather
than {i, j}. The set of all unordered pairs within N is denoted by gN . The set of all networks
on N is denoted by GN = {g | g ⊆ gN}.

The network that results if link ij is added to g is denoted by g + ij. If link ij is deleted
from g this is denoted by g − ij. Adding or deleting a set of links g′ is denoted similarly by
g + g′ and g − g′, respectively.

By N(g) we denote the set of players that are involved in at least one link according to
g, i.e., N(g) = {i | ∃j ∈ N : ij ∈ g}. We abuse notation and denote the links in g in which
player i is involved by gi. Furthermore, we denote the set of links in g that are a subset
of S ⊆ N by g(S) = {{i, j} ∈ g | i, j ∈ S}. The complete network on S is denoted by
gS = {{i, j} | i, j ∈ S; i 6= j}.
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A path in g is a sequence of players (i1, . . . , iK) with ik, ik+1 ∈ g for all k ∈ {1, . . . ,K − 1}.
A path (i1, . . . , iK) is also called a path between i1 and iK . If there exists a path between i1

and iK we say that i1 and iK are connected. The notion of connectedness induces a partition
of the set of players. This partition is denoted by N/g. The elements of this partition are
called components. Obviously, two players are in the same component if and only if there is a
path between them. Similarly, S ⊆ N is partitioned into components by g(S). The resulting
partition is not only denoted by S/g(S) but also by S/g. If there is no ambiguity about g we
denote the component that contains player i ∈ N by Ci.

A value function v : GN → IR specifies the total value that is generated by the players in
any network structure. We assume that no cooperation results in no value, i.e., v(∅) = 0. The
set of all value functions (on N) is denoted by V . A value function is called component additive
if v(g) =

∑
C∈N/g v(g(C)), i.e., there are no externalities across components of a network. A

value function v is called monotonic if v(g) ≥ v(g′) for all g′ ⊂ g.
Throughout this work we restrict attention to value functions that are component additive.

Unless stated explicitly, we restrict ourselves to monotonic value functions as well.
For any value function v on player set N and any network g ∈ GN we denote the restriction

of v to subsets of g by v|g. Furthermore, we slightly abuse notation and denote for any S ⊆ N

the restriction of v to networks on S by v|S = v|g(S).
A pair (N, v) with set of players N and value function v is called a network game, a function

γ : GN × V → IRN is called an allocation rule, and a pair (g, v) consisting of a network and a
value function is simply called a situation.

Unanimity value function ug is defined by

ug(g′) =

{
1 if g ⊆ g′;
0 otherwise.

Unanimity value functions are a basis for the set of value functions. A value function can be
written as a unique linear combination of unanimity value functions, v =

∑
g⊆gN αgug. The

coefficients αg, g ⊆ gN are called the unanimity coefficients of v.
We will describe three allocation rules. The first allocation rule is the Myerson value, a

generalization of the Myerson value for communication situations:

µi(g, v) :=
∑

A⊆g: Ai 6=∅

αA

|N(A)|
for all i ∈ N. (1)

The Myerson value was introduced for communication situations by Myerson (1977). Its ex-
tension to value functions as defined here, was introduced by Jackson and Wolinsky (1996).
The current definition in terms of unanimity coefficients follows from the description of the
Shapley value in terms of unanimity coefficients and the fact that the Myerson value of (g, v)
equals the Shapley value of (N, vg), where vg(S) = v(g(S)) (cf. Slikker (2005b)).

The second allocation rule is the position value. Let v be a value function with unanimity
coefficients (αA)A⊆gN . Then the position value π(g, v) is defined by

πi(g, v) =
∑
A⊆g

αA|Ai|
2|A|

=
∑
A⊆g

∑
l∈Ai

αA

2|A|
for all i ∈ N. (2)
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This position value is a natural extension of the position value for cooperative games, introduced
by Borm et al. (1992), and discussed by Slikker (2005b). Recall that Φl(g, v|g) =

∑
A⊆g: l∈A

αA
|A| ,

where Φ denotes the Shapley value. Hence,

πi(g, v) =
∑
l∈gi

1
2
Φl(g, v|g) for all i ∈ N.

The third allocation rule is the component-wise egalitarian solution γCE , for any v, any g,
any C ∈ N/g, and any i ∈ C defined by

γCE
i (g, v) =

v(g(C))
|C|

.

3 Three characterizations

In this section we will provide a characterization for each of the allocation rules that were
introduced in the previous section.

The characterizations are in the spirit of the characterization of the Myerson value for com-
munication situations with component efficiency and balanced contributions that is attributed
to Myerson (1980) and the characterization of the position value for communication situations
with component efficiency and balanced link contributions of Slikker (2005a).

Consider the following properties for an allocation rule ϕ defined on a class of situations D,
where each element is a network-value function-pair:

Component efficiency (CE): For all (g, v) ∈ D and all C ∈ N/g,∑
i∈C

ϕi(g, v) = v(g(C)). (3)

Balanced contributions (BC): For all (g, v) ∈ D and all i, j ∈ N it holds that

ϕi(g, v)− ϕi(g − gj , v, ) = ϕj(g, v)− ϕj(g − gi, v, ). (4)

Balanced link contributions (BLC): For all (g, v) ∈ D and all i, j ∈ N ,∑
l∈gj

[
ϕi(g, v)− ϕi(g − l, v)

]
=

∑
l∈gi

[
ϕj(g, v)− ϕj(g − l, v)

]
. (5)

Balanced component contributions (BCC): For all (g, v) ∈ D and all i, j ∈ N ,

ϕi(g, v)− ϕi(g − g(Cj), v) = ϕj(g, v)− ϕj(g − g(Ci), v). (6)

The first property is standard and dates back to Myerson (1977). Balanced contributions is a
straightforward extension of the balanced contributions property for communication situations,
cf. Myerson (1980), and deals with the contribution of a player to the payoff of another player,
which is measured by the payoff difference a player experiences if all the links of the other player
are removed. According to balanced contributions such a contribution should be equal to the
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reverse contribution. Balanced link contributions is similar, however, now the total contribution
of a player to the payoff of another player is defined as the sum over all links of the first player
of the payoff difference the second player experiences if such a link is broken. Finally, Balanced
component contributions is similar as well, but now the contribution of a player to the payoff
of another player is defined as the difference in payoff of the second player if all links in the
component of the first player break down.

The following theorem provides characterizations of the Myerson value, the position value,
and the component-wise egalitarian solution. Each of the characterizations involve component
efficiency and a property that deals with balancedness of certain contributions.

Theorem 3.1 Let D be the set of network-value function-pairs. Then

1. The Myerson value is the unique allocation rule on D that satisfies component efficiency
and balanced contributions.

2. The position value is the unique allocation rule on D that satisfies component efficiency
and balanced link contributions.

3. The component-wise egalitarian solution is the unique allocation rule on D that satisfies
component efficiency and balanced component contributions.

Proof: The first part is a straightforward extension of the result of Myerson (1980). The
second part is a straightforward extension of a similar characterization of the position value
for communication situations of Slikker (2005a). It remains to show part 3.

First we will show that γCE satisfies the two properties. Let (g, v) ∈ D and let C ∈ N/g.
Then ∑

i∈C

γCE
i (g, v) =

∑
i∈C

v(g(C))
|C|

= v(g(C)).

Hence, γCE satisfies CE. To prove balanced component contributions let (g, v) ∈ D and let
i, j ∈ N . If there exists C ∈ N/g with C = Ci = Cj then

γCE
i (g, v)− γCE

i (g − g(C), v) =
v(g(C))
|C|

− 0 = γCE
j (g, v)− γCE

j (g − g(C), v).

If Ci 6= Cj then

γCE
i (g, v)− γCE

i (g − g(Cj), v) = 0 = γCE
j (g, v)− γCE

j (g − g(C), v).

We conclude that γCE satisfies BCC.
Secondly, suppose ϕ satisfies CE and BCC. Let (g, v) ∈ D and let C ∈ N/g. If |C| = 1, say

C = {i}, then ϕi(g, v) = v(∅) = γCE
i (g, v) by CE of both ϕ and γCE . Suppose |C| > 1. Fix

i ∈ C. Then for all j ∈ C it holds by BCC and the result for components with 1 player only
that

ϕj(g, v) = ϕj(g, v)− ϕj(g − g(C)) = ϕi(g, v)− ϕi(g − g(C)) = ϕi(g, v).
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Combining this with CE we conclude that

ϕi(g, v) =
v(g(C))
|C|

= γCE(g, v), for all i ∈ C.

This completes the proof. 2

4 Recursive formulas

In this section we present recursive formulas for the three allocation rules under consideration.
All formulas are in the same spirit as the recursive formula for the Shapley value that is used
by Maschler and Owen (1989), Hart and Mas-Colell (1996), and Pérez-Castrillo and Wettstein
(2001), which is Φi(N, v) = 1

|N |
[
v(N)− v(N − i) +

∑
j∈N−i Φi(N − j, v|N−j)

]
. For each of the

rules its recursive formula will be used in the next section to show that a certain mechanism
ends in payoffs equal to the allocation rule.

Since the focus of the next section is on the position value, we start with a recursive formula
for the position value. Throughout this section we denote the unanimity coefficients of v by
(αv

A)A⊆gN .

Theorem 4.1 Let v be a component additive value function and g a network. Then for all
C ∈ N/g and all i ∈ C

πi(g, v) =
1

2|g|

( ∑
l∈gi

[
v(g)− v(g − l)

]
+ 2

∑
l∈g

πi(g − l, v)
)
. (7)

Proof: Let C ∈ N/g and let i ∈ C. Then

1
2|g|

( ∑
l∈gi

[
v(g)− v(g − l)

]
+ 2

∑
l∈g

πi(g − l, v)
)

=
1

2|g|

( ∑
l∈gi

∑
A⊆g: l∈A

αv
A + 2

∑
l∈g

∑
A⊆g−l

|Ai|
2|A|

αv
A

)
=

1
2|g|

∑
A⊆g

(
|Ai|αv

A + |g −A| |Ai|
|A|

αv
A

)
=

1
2|g|

∑
A⊆g

(
|A| |Ai|

|A|
αv

A + |g −A| |Ai|
|A|

αv
A

)
=

1
2|g|

∑
A⊆g

|g| |Ai|
|A|

αv
A

=
∑
A⊆g

|Ai|
2|A|

αv
A

=πi(g, v).
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The first and last equality follow by (2). The other equalities follow by rearranging terms. The
second equality uses |g −A| = #{l ∈ g | A ⊆ g − l}. This completes the proof. 2

This theorem states that the position value of a player in a situation consists of two
parts. The first part is the average of his position values in situations with one less link,
1
|g|

∑
l∈g πi(g− l, v), and the second part is part of the sum of the marginal contributions of its

links, 1
2|g|

∑
l∈gi

[
v(g)− v(g − l)

]
.

Using αv
A = α

v|g
A for all g ⊇ A and (2) we derive that the position value is component

decomposable (cf. van den Nouweland (1993)), i.e., for all C ∈ N/g and all i ∈ C it holds
that πi(g, v) = πi(g(C), v|C), and we conclude that for all C ∈ N/g and all i ∈ C it holds that
πi(g, v) = πi(g(C), v). The following corollary then follows directly from theorem 4.1.

Corollary 4.1 Let v be a component additive value function and g a network. Then for all
C ∈ N/g and all i ∈ C

πi(g, v) = πi(g(C), v)

=
1

2|g(C)|

[ ∑
l∈gi

(
v(g(C))− v(g(C)− l))

)
+ 2

∑
l∈g(C)

πi(g(C)− l, v)
]
. (8)

Subsequently, we derive a recursive formula for the Myerson value similar to the recursive
formula for the Shapley value.

Theorem 4.2 Let v be a component additive value function and g a network. Then for all
C ∈ N/g and all i ∈ C

µi(g, v) = µi(g(C), v)

=
1
|C|

[
v(g)− v(g − gi) +

∑
j∈C−i

µi(g − gj , v)
]
. (9)

Proof: Let C ∈ N/g and let i ∈ C. Then

1
|C|

[
v(g)− v(g − gi) +

∑
j∈C−i

µi(g − gj , v)
]

=
1
|C|

[ ∑
A⊆g:Ai 6=∅

αv
A +

∑
j∈C−i

∑
A⊆g−gj :Ai 6=∅

αv
A

|N(A)|

]
=

1
|C|

[ ∑
A⊆g:Ai 6=∅

|N(A)|
|N(A)|

αv
A +

∑
A⊆g:Ai 6=∅

|C −N(A)|
αv

A

|N(A)|

]
=

1
|C|

∑
A⊆g:Ai 6=∅

|C|
|N(A)|

αv
A

=
∑

A⊆g:Ai 6=∅

1
|N(A)|

αv
A

= µi(g, v) = µi(g(C), v).
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The first and fifth equality follow by (1), the last by definition, and the others by rearranging
terms. The second equality uses |C − N(A)| = #{j | A ⊆ g − gj}. The last equality follows
along the lines of reasoning right in front of corollary 4.1. 2

This theorem states that the Myerson value of a player in a situation consists of two parts.
The first part is the average of his Myerson values in situations with one player deleting all its
links, 1

|C|
∑

j∈C−i µi(g − gj , v), and the second part is part of the marginal contributions of all
its links, 1

|C|
[
v(g(C))− v(g(C)− gi)

]
.

For the sake of completeness and for further reference we provide a similar recursive formula
for the component-wise egalitarian solution as well.

Theorem 4.3 Let v be a component additive value function and g a network. Then for all
C ∈ N/g and all i ∈ C

γCE
i (g, v) =

1
|C|

[
v(g(C))− v(∅) +

∑
j∈C−i

γCE
i (g(C)− g(C), v)

]
(10)

Proof: Let C ∈ N/g and let i ∈ C. Then

1
|C|

[
v(g(C))− v(∅) +

∑
j∈C−i

γCE
i (g(C)− g(C), v)

]
=

1
|C|

[
v(g(C))− 0

)
+

∑
j∈C−i

0
]

= γCE
i (g, v).

This completes the proof. 2

5 Three mechanisms

In the previous sections we have provided similar characterizations and similar recursive for-
mulas for the position value, the Myerson value, and the component-wise egalitarian solution.
In this section we will study three mechanisms. Each of the mechanisms implements one of
the allocation rules in subgame perfect Nash equilibrium (SPNE).

5.1 The position value

In this section we introduce and analyze a mechanism that implements the position value.
We will formally describe the mechanism. The mechanism is specified recursively and

componentwise. Let C be a component of g in some situation (g, v) and let g(C) be the
links in component C. If |g(C)| = 0 then the unique player i in this component receives his
stand-alone value 0. Now, suppose |g(C)| = m ≥ 1 and that the mechanism has been specified
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for components with at most m − 1 links. The mechanism is played in several rounds. Each
round consists of five steps (t=1 through t=5) and after a round the game ends or new rounds
start for all components remaining. We will describe such a round for a component C with m

links:1

t=1 Each player i ∈ C makes to any player k 6= i, a bid bi
k ∈ IR. For each i ∈ C determine

the net bid
Bi =

∑
k 6=i

bi
k −

∑
k 6=i

bk
i .

Let α = argmaxi(Bi), with α chosen according to an arbitrary process among the maxi-
mizing indices in case of a nonunique maximizer.

t=2 Every player k 6= α divides the bid in his direction from player α over the links of player
α, i.e., he specifies bα,l

k ∈ IR for all l ∈ gα under the condition that
∑

l∈gα
bα,l
k = bα

k . We
remark that bα,l

k is allowed to be negative.

t=3 Player α chooses a link lα ∈ gα and pays bα,lα
k to every k 6= α.

t=4 Player α proposes payoffs yk to players k 6= α.

t=5 Players other than α sequentially either accept or reject the proposed offers. If the
proposal is rejected by at least one of the players then the players of C proceed to play
the next round where the set of links within C is g(C) − lα. Note that this next round
consists of several separate (sub-)mechanisms in case |C/(g(C)− lα)| > 1. If the proposal
is accepted, each k 6= α receives yk and player α receives v(g(C))−

∑
k 6=α yk. We remark

that these payoffs come on top of the bids that were paid at t = 3 and, perhaps, payoffs
from previous rounds. So, if the offers are accepted the payoff to player k 6= α in this
round equals yk + bα,lα

k , while for player α this payoff equals v(g(C))−
∑

k 6=α(yk + bα,lα
k ).

We remark that at t = 5 three different payoffs for each player come to the fore. First, the
payoffs that are in case of acceptance equal to the payoffs that are actually paid at t = 5 and
in case of rejection equal to the continuation payoff, i.e., payoffs received in subsequent rounds.
Secondly, these first payoffs with on top of these the payoffs at t = 3 in the round under
consideration. Finally, these second payoffs with on top of these the payoffs from previous
rounds. Note that this requires rejection in these previous rounds. Furthermore, note that if
we talk about maximizing profit at t = 1, t = 2, or t = 3 it does not matter whether we talk
about the second or third specification (difference between the two is already ’sunk’). Finally,
at t = 4 or t = 5 all three specifications can be used (again because the difference is already
’sunk’). Oftentimes the analysis is independent of the specification we are looking at. For
notational convenience, we will in general not specify which specification we are looking at, but
concentrate on payoff comparisons for some fixed specification.

1If no ambiguity can arise we will, throughout the remainder of this paper, write simply k 6= i rather than

k ∈ C − i.
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The mechanism described above applied to situation (g, v) and component C ∈ N/g will be
denoted by Γ(g, v, C).

Theorem 5.1 For all situations (g, v) and all C ∈ N/g there exists an SPNE in Γ(g, v, C)
such that the payoffs to the players correspond to the position value.

Proof: The proof will be by induction on the number of links within a component. Obviously,
the statement in the theorem holds for all situations and all its components with no link.

Now, let m ≥ 1 and assume that the statement in the theorem is true for all situations
and for all components with at most m− 1 links. Let (g, v) be a situation with C ∈ N/g and
|g(C)| = m.

Consider the following strategies:

t=1 Each player i ∈ C makes to any player k 6= i bid

bi
k =

∑
l∈gi

[πk(g, v)− πk(g − l, v)].

t=2 Each player k 6= α chooses for all l ∈ gα:2

bα,l
k = πk(g, v)− πk(g − l, v) +

bα
k −

∑
l′∈gα

[πk(g, v)− πk(g − l′, v)]
|gα|

(11)

(Note that
∑

l∈gα
bα,l
k = bα

k ).

t=3 Player α makes a subgame perfect choice, i.e., he chooses a link l that maximizes his
payoff when taking into account the strategies at t = 4 and t = 5.3

t=4 Player α proposes to every player k 6= α payoff yα
k = πk(g − lα, v).

t=5 Player k accepts if yα
k ≥ πk(g − lα, v) and rejects the offer otherwise.

First, we argue that these strategies have the position value as their final payoff. Note that
following the choices at t = 1, the last part of the right-hand-side of equation (11) equals zero.
Using this, we find that player k 6= α will receive

yα
k + bα,lα

k =πk(g − lα, v) + [πk(g, v)− πk(g − lα, v)]

=πk(g, v).

Player α will receive v(g(C))−
∑

k 6=α[yα
k + bα,lα

k ]. Using the expression above and component
efficiency of the position value it follows that player α receives v(g(C)) −

∑
k 6=α πk(g, v) =

πα(g, v).
2The last part of this expression is 0 in the node that follows the choices as just specified for t = 1. However,

this part needs to be included since we cannot restrict attention to the equilibrium path to make sure that a

strategy is a subgame perfect Nash equilibrium.
3Recall our remarks on different specifications of the payoffs of the players.
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Note that the payoff determination is independent of the identity of the proposer α and the
identity of the link lα. Furthermore, we note that the strategies above result in net bids equal
to zero for all i ∈ N since

Bi =
∑
k 6=i

bi
k −

∑
k 6=i

bk
i .

=
∑
k 6=i

[ ∑
l∈gi

[πk(g, v)− πk(g − l, v)]−
∑
l∈gk

[πi(g, v)− πi(g − l, v)]
]
.

By the balanced link contributions property, we know that∑
l∈gk

[
πi(g, v)− πi(g − l, v)

]
=

∑
l∈gi

[
πk(g, v)− πk(g − l, v)

]
.

We conclude that Bi = 0.
It remains to check that the strategies constitute an SPNE. It is obvious that the strategies at

t = 5 are best responses. To check that the offers at t = 4 are subgame perfect, note that in case
of rejection proposer α obtains πα(g− lα, v). In case all others accept, player α can, taking into
account the choices at t = 5 obtain at most v(g(C))−

∑
k 6=α πk(g− lα, v). Since v is monotonic

we have that v(g(C)) ≥ v(g(C)−lα). Consequently, v(g(C))−
∑

k 6=α πk(g−lα, v) ≥ πα(g−lα, v).
Hence, player α maximizes his payoff by making the offers as described in the strategy.

The strategies at t = 3 are subgame perfect by definition.
To check that the strategies at t = 2 form a best response, note that for any k 6= α the

current choices at t = 2 imply that the payoff of k is independent of the choice of player α at
t = 3, namely bα,l

k + yk = πk(g, v) +
bα
k−

∑
l′∈gα

[πk(g,v)−πk(g−l′,v)]

|gα| . Consequently, the same holds
for player α, i.e., he can choose an arbitrary link at t = 3. For a fixed link l ∈ gα consider a
change of δk

l of player k in bα,l
k , i.e., change it to bα,l

k + δk
l . Assuming that l is chosen at t = 3

it follows that the payoff of player k changes by δk
l , whereas the payoff to player α changes by

−δk
l . Any change in the strategy of player k results in a negative δk

l for at least one link l.
Hence, player α will choose at t = 3 a link that increases his payoff (recall that currently his
payoff is independent of his choice) and, consequently, will decrease the payoff of player k.

Finally, consider the strategies at t = 1. Suppose player i changes his bids such that he
will be the proposer with certainty. Then he has increased his total bids and thereby, he has
decreased his eventual payoff (given his strategies at future periods and our analysis of these
periods, which holds both on and off the equilibrium path!). If he changes his bids such that,
with certainty, he will not be the proposer, another player will propose, meaning that his payoff
will not change. Finally, suppose that player i has changed his bids, and that he remains in
argmaxj(Bj), while simultaneously |argmaxj(Bj)| ≥ 2. Then there exist j, k ∈ C such that bi

j

has been increased, while bi
k has been decreased. To make sure that the net bid of player i is

at least as much as the (new) net bid of player k (which has been increased), the total bid of
player i must have been increased by at least the decrease in bi

k. So, if player i is chosen with
a positive probability he will increase his total bid and, hence, decrease his eventual payoff. If
he is not chosen with a positive probability his payoff will remain unchanged. 2
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The following theorem shows that the payoff to the players coincide with the position value
according to any SPNE. Though random devices may be used in the selection of the proposer
and the selection of the link we stress that any SPNE results in the position value with certainty,
and not in expectation only.

Theorem 5.2 For all situations (g, v), all C ∈ N/g, and each SPNE in Γ(g, v, C) the payoffs
to the players correspond to the position value.

Proof: The proof will be by induction on the number of links within a component. Obviously,
the statement in the theorem holds for all situations for all its components with no link.

Now, let m ≥ 1 and assume that the statement in the theorem is true for all situations and
for all its components with at most m − 1 links. Let (g, v) be a situation with C ∈ N/g such
that |g(C)| = m.

We will prove the induction step by proving several claims:

Claim 1 In any SPNE, at t = 5 all players who are not the proposer accept the proposal if
yα

k > πk(g − lα, v) for all k 6= α. Moreover, if yα
k < πk(g − lα, v) for some k 6= α then the

proposal is rejected.

By the induction hypothesis we have that in case of rejection the payoffs to players coincide
with π(g − lα, v). Hence, if all players but the last one have accepted the offer then the last
player in C −α, say k, will accept any offer higher than πk(g− lα, v) and reject any offer lower
than πk(g− lα, v). Anticipating this decision, the player right in front of the last player accepts
if he and the last player both receive more than their respective position values in g − lα. He
rejects if he receives less, while the last player would receive more, and he is indifferent about
his choice if the last player (k) receives less than πk(g − lα, v), irrespective of his own payoff.
Working our way back to the first player who has to decide at t = 5 in a similar manner, proves
the claim.

Claim 2 If v(g(C)) > v(g(C) − lα) then all SPNE of a game that starts at t = 4 satisfy the
following specifications:4 at t = 4 player α proposes yα

k = πk(g − lα, v) to all k 6= α and
at t = 5 every player k 6= α accepts offer yα

k if yα
j = πj(g − lα, v) for all j 6= α.

If v(g(C)) = v(g(C)− lα) then any SPNE that does not satisfy the specifications in the
first part of this claim satisfies the following specifications: at t = 4 player α proposes,
among others, yα

k ≤ πk(g − lα, v) to some player k 6= α and at t = 5 this offer is rejected
by some player.
In all SPNE of this subgame the payoffs to the players are given by v(g(C))− v(g(C)−
lα)−

∑
k 6=α bα,lα

k for player α and π(g − lα) + bα,lα
k for all k 6= α.

First, consider the case in which v(g(C)) > v(g(C)− lα). Then, if the offer is rejected by one
of the players, player α will receive πα(g− lα, v). Define ∆ = v(g(C))−v(g(C)− lα) > 0. Then
player α could have offered πk(g − lα, v) + ∆

|C| to all k 6= α. This offer will be accepted and it

4We will not give a complete description of the SPNE.
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will improve the payoff of player α by ∆− (|C| − 1) ∆
|C| = ∆

|C| . So, any SPNE requires an offer
at t = 4 that is accepted at t = 5. By Claim 1 this implies yα

k ≥ πk(g − lα, v) for all k 6= α.
If εk := yα

k − πk(g − lα, v) > 0 for some k 6= α then player α can clearly improve his payoff by
offering any j 6= α payoff πj(g − lα, v) + εk

|C| , which is accepted by all players and increases the
payoff of player α by εk

|C| . Hence, yα
k = πk(g − lα, v) for all k 6= α. Since any SPNE requires an

offer at t = 4 that is accepted at t = 5 we conclude that at t = 5 every player k 6= α accepts
any offer yα

k if yα
j = πj(g − lα, v) for all j 6= α.

If v(g(C)) = v(g(C) − lα) we may have two types of SPNE, namely with an accepted or
rejected set of offers. The proposer has to offer at least πj(g−lα, v) for all j 6= α to have the offers
accepted (cf Claim 1). Hence, the total offer is at least

∑
j 6=α πj(g−lα) = v(g(C))−πα(g−lα, v).

As in the previous case of the proof of this claim, every accepted offer in equilibrium should
be equal to πj(g− lα, v) for all j 6= α. Furthermore, by Claim 1 we know that an offer at t = 4
can only be rejected at t = 5 if yα

k ≤ πk(g − lα, v) for some k 6= α. Note that both types of
SPNE result in the same payoffs.

The last part of the claim now follows immediately.

Claim 3 In any SPNE of a game that starts at t = 2 the strategy of player k 6= α at t = 2 results
in the same payoff for player k independent of the choice of player α at t = 3. Hence, for
all l ∈ gα:

bα,l
k = πk(g, v)− πk(g − l, v) +

bα
k −

∑
l′∈gα

[πk(g, v)− πk(g − l′, v)]
|gα|

.

First we will show that player α is indifferent about his choice at t = 3. Subsequently, we will
show that the same holds for all k 6= α. Let L ⊆ gα be the set of links that maximize the payoff
of player α and let lα be the choice of player α. Suppose L ⊂ gα. Then for each l ∈ L player
α receives more than on average over all possible choices in gα. Since we know by claim 2 that
the sum of the payoffs to the players is constant there exists jl ∈ C\{α} who receives less if
l is chosen than he receives on average over all possible choices in gα. Let ∆ be the payoff
decrease for player α if he could only choose a link from the set gα\L, which is nonempty by
assumption. Denote the choice of player jlα at t = 2 by bα,l

jlα
, l ∈ gα. Consider the deviation to

dα,l
jlα

, l ∈ gα defined by

dα,l
jlα

=


bα,l
jlα

+ ∆
4|gα| if l = lα;

bα,l
jlα

+ 2 ∆
4|gα| if l ∈ L\{lα};

bα,l
jlα

−
(2|L|−1) ∆

4|gα|
|gα\L| if l ∈ gα\L.

So, player jlα increases the bid of player α on lα for jlα by ∆
4|gα|(<

1
2∆), the bid on any l ∈ L\{lα}

by 2 ∆
4|gα| , and he decreases the amount on l ∈ gα\L by

(2|L|−1) ∆
4|gα|

|gα\L| (< 1
2∆). Note that the sum

of these deviations equals 0. After this deviation lα is the unique link that maximizes the payoff
of α at t = 3. Furthermore, this deviation increases the payoff of player jlα by ∆

4|gα| .
We conclude that L = gα. Let lα be the link selected by α. We will argue that player j 6= α

does not prefer any other link. Suppose that player j would have preferred that α chose lj
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since that would have increased his payoff by ∆. Consider the following deviation of player j

at t = 2,

dα,l
j =


bα,l
j + ∆

10 if l = lα;
bα,l
j − ∆

10 if l = lj ;
bα,l
j if l ∈ gα\{lα, lj}.

Player α, who was indifferent between all links in gα before the deviation will after the deviation
choose lj . Hence, the (expected) payoff of player j increases by ∆− ∆

10 = 9 ∆
10 . This contradicts

that we are considering an SPNE. So, no player j 6= α prefers the choice of another link.
Additionally, since α is indifferent between all l ∈ L = gα and, by Claim 2, the sum of the
payoffs to the players is constant (v(g(C))) we conclude that no player prefers lα to any link
in gα\{lα} since that would require a reverse preference of another player.

We conclude that in any SPNE strategies at t = 2 are such that all players are indifferent
about the choice of player α at t = 3. Then, for any k 6= α we can combine

∑
l∈gα

bα,l
k = bα

k

with the payoff player k receives at t = 5, i.e., πk(g − l, v) if l is chosen by α at t = 3, to
conclude that

bα,l
k = πk(g, v)− πk(g − l, v) +

bα
k −

∑
l′∈gα

[πk(g, v)− πk(g − l′, v)]
|gα|

.

Claim 4 In any SPNE, each player is indifferent about the selection of the proposer among
argmax{Bi : i ∈ C}.

Suppose that Claim 4 does not hold true. Consider an SPNE such that |argmax{Bi : i ∈ C}| ≥
2 and there is a player (say k∗) who prefers one proposer (say i∗ ∈ argmax{Bi : i ∈ C}) to
some other proposer (say j∗ ∈ argmax{Bi : i ∈ C}). By Claim 2 we know that the total payoffs
to the players in C are the same and hence, we conclude that there is another player (say m∗)
who has a reverse preference. Since i∗ and j∗ being proposer result in different payoff vectors,
we have that for any proposer r∗ ∈ C\{i∗, j∗} there exists a proposer (say t∗, equal to i∗ or
j∗) such that r∗ and t∗ being proposer result in different payoff vectors. Hence, using Claim 2
(the sum of the payoffs to the players is constant) we know that there is a player who prefers
t∗ to r∗. We conclude that for any proposer in argmax{Bi : i ∈ C} we can identify a player
who prefers another player to be the proposer.

Let α ∈ argmax{Br : r ∈ C} be a player who will be proposer with a positive probability
p (possibly equal to 1). Then there exists i ∈ C who prefers j ∈ argmax{Br : r ∈ C} to α

and who weakly prefers j to any proposer in argmax{Br : r ∈ C}. Let ∆ be the difference in
payoff for player i if j is the proposer rather than α. We now distinguish three cases. Note
that j 6= α.

Case 1: i 6= j and i 6= α. Increase bi
α and decrease bi

j (both by the same arbitrary amount).
Then j becomes the proposer with certainty and player i improves his (expected) payoff by at
least p∆.

Case 2: i = j (and i 6= α): Increase bi
α by 1

2p∆ > 0. Then i(= j) becomes the proposer with
certainty. The gain (for player i) by going from proposer α (who proposed with probability p)
to proposer i would be p∆. Moving from other proposers to i increases the possible gain for
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player i. Bidding a higher bid decreases his payoff by at most 1
2p∆. Hence, the payoff of player

i will increase by at least 1
2p∆.

Case 3: i = α (and i 6= j): Decrease bi
j (by, e.g., 1

2p∆ > 0). Then j becomes the proposer
with certainty and player i improves his (expected) payoff by at least p∆.

Claim 5 In any SPNE, Bi = 0 for all i ∈ C.

Using Claims 2 and 3 we conclude that if i will be proposer, then his payoff will be

πi(g, v) +

∑
k 6=i[−bi

k +
∑

l∈gi
(πk(g, v)− πk(g − l, v))]
|gi|

.

Hence, his payoff is linear in
∑

k 6=i b
i
k, assuming that player i remains the proposer. By con-

struction of the net bid we know that
∑

j∈C Bj = 0. Suppose there exists k ∈ C with Bk < 0.
Let i be a player with maximum net bid. Note that Claim 4 implies that the payoff to player
i is independent of the choice of the proposer among argmax{Bj : j ∈ C}. Let C be the set
of players with maximal Bj . Let r be a player with the highest net bid smaller than Bi. Let
∆ = min{Bi −Br, |Bk|)}. Obviously, ∆ > 0. Consider the following deviation of player i:

di
j =


bi
j − ∆

2 if j = k;
bi
j + ∆

2|C|−1 if j ∈ C\{i};
bi
j if j ∈ C\(C ∪ {k}).

Then the net bid of player k increases by ∆
2 (but remains negative), whereas the net bid of any

player j ∈ C\(C ∪ {k}) remains unchanged. The net bid of any player j ∈ C\{i} decreases by
∆

2|C|−1 . Finally, the net bid of player i decreases by ∆
2 − (|C| − 1) ∆

2|C|−1 =
1
2
∆

2|C|−1 . We conclude

that player i will be the proposer for sure. Since his total bid decreased by
1
2
∆

2|C|−1 = ∆
4|C|−2 , he

will increase his payoff by
∆

4|C|−2

|gi| .

Claim 6 In any SPNE, the payoff of each of the players coincides with his position value.

Consider an SPNE. Let i ∈ C. If player i is the proposer and he chooses link l ∈ gi, then
his payoff equals xi,l

i = πi(g − l, v) + v(g(C)) − v(g(C) − l) −
∑

l∈gi

∑
j 6=i b

j
i,l. If j 6= i is the

proposer and he proposes l ∈ gj then player i receives xj,l
i = πi(g − l, v) + bj,l

i . Hence, the sum
of the payoffs of player i over all proposer-link combinations is given by∑

j∈C

∑
l∈gj

xj,l
i =

∑
l∈gi

[πi(g − l, v) + v(g(C))− v(g(C)− l)−
∑
l∈gi

∑
j 6=i

bj
i,l]

+
∑
j 6=i

∑
l∈gj

[πi(g − l, v) + bj,l
i ]

=
∑
l∈gi

(v(g(C))− v(g(C)− l)) +
∑
j∈C

∑
l∈gj

[πi(g − l, v)]−Bi

=
∑
l∈gi

(v(g(C))− v(g(C)− l)) +
∑
j∈C

∑
l∈gj

[πi(g − l, v)]

= 2|L|πi(g, v),
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where the third equality follows by Claim 5 and last equality by theorem 4.1. Since player i

is indifferent about the proposers (Claims 4 and 5) and about the link chosen by the proposer
(Claim 3) we have that all xj,l

i coincide and, hence, that xj,l
i = πi(g, v) for all j ∈ C and all

l ∈ gj . 2

5.2 The Myerson value

In this section we introduce and analyze a mechanism that implements the Myerson value.
We will formally describe the mechanism. The mechanism is specified recursively and

componentwise. Let C be a component of g in some situation (g, v) and let g(C) be the
links in component C. If |g(C)| = 0 then the unique player i in this component receives his
stand-alone value 0. Now, suppose |g(C)| = m ≥ 1 and that the mechanism has been specified
for components with at most m − 1 links. The mechanism is played in several rounds. Each
round consists of three steps (t=1 through t=3) and after a round the game ends or new rounds
start for all components remaining. We will describe such a round for a component C with m

links:

t=1 Each player i ∈ C makes to any player k 6= i, a bid bi
k ∈ IR. For each i ∈ C determine

the net bid
Bi =

∑
k 6=i

bi
k −

∑
k 6=i

bk
i .

Let α = argmaxi(Bi), with α chosen according to an arbitrary mechanism among the
maximizing indices in case of a nonunique maximizer. Player α pays bα

k to every k 6= α.

t=2 Player α proposes payoffs yk to players k 6= α.

t=3 Players other than α sequentially either accept or reject the proposal. If the offer is
rejected by at least one of the players then the players of C proceed to play the next
round where the set of links within C is g(C) − gα. Note that this next round might
consist of several separate (sub-)mechanisms. If the offer is accepted, each k 6= α receives
yk and player α receives v(g(C))−

∑
k 6=α yk. We remark that these payoffs come on top

of the bids that were paid at t = 3 and, perhaps, payoffs from previous rounds. So, if
the offers are accepted the payoff to player k 6= α in this round equals yk + bα

k , while for
player α this payoff equals v(g(C))−

∑
k 6=α(yk + bα

k ).

Similar to the mechanism for the position value several different (relevant) payoffs come to
the fore. As for the position value we will in general not specify which specification we are
looking at, but concentrate on payoff comparisons for some fixed specification.

This mechanism applied to situation (g, v) and component C ∈ N/g will be denoted by
ΓM (g, v, C).

Since the Myerson value of (g, v) coincides with the Shapley value of (N, vg) the proof of
the following theorems follows by Pérez-Castrillo and Wettstein (2001). A sketch of a slightly
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different proof, similar to the proof that the mechanism in the previous subsection implements
the position value, can be found in the appendix. We refer to section 8 for some comments on
Pérez-Castrillo and Wettstein (2001).

Theorem 5.3 For all situations (g, v) and all C ∈ N/g there exists an SPNE in ΓM (g, v, C)
such that the payoffs to the players correspond to the Myerson value.

Theorem 5.4 For all situations (g, v), all C ∈ N/g, and each SPNE in ΓM (g, v, C) the payoffs
to the players correspond to the Myerson value.

5.3 The component-wise egalitarian solution

In this subsection we introduce and analyze a mechanism that implements the component-wise
egalitarian solution.

We will formally describe the mechanism. The mechanism is specified recursively and
componentwise. Let C be a component of g in some situation (g, v) and let g(C) be the
links in component C. If |g(C)| = 0 then the unique player i in this component receives his
stand-alone value 0. Now, suppose |g(C)| = m ≥ 1 and that the mechanism has been specified
for components with at most m − 1 links. The mechanism is played in several rounds. Each
round consists of three steps (t=1 through t=3) and after a round the game ends or new rounds
start for all components remaining. We will describe such a round for a component C with m

links:

t=1 Each player i ∈ C makes to any player k 6= i, a bid bi
k ∈ IR. For each i ∈ C determine

the net bid
Bi =

∑
k 6=i

bi
k −

∑
k 6=i

bk
i .

Let α = argmaxi(Bi), with α chosen according to an arbitrary mechanism among the
maximizing indices in case of a nonunique maximizer. Player α pays bα

k to every k 6= α.

t=2 Player α proposes payoffs yk to players k 6= α.

t=3 Players other than α sequentially either accept or reject the proposal. If the offer is
rejected by at least one of the players then the players of C proceed to play the next
round where the set of links within C is g(C)− g(Cα) = ∅. If the offer is accepted, each
k 6= α receives yk and player α receives v(g(C))−

∑
k 6=α yk. We remark that these payoffs

come on top of the bids that were paid at t = 3 and, perhaps, payoffs from previous
rounds. So, if the offers are accepted the payoff to player k 6= α in this round equals
yk + bα,lα

k , while for player α this payoff equals v(g(C))−
∑

k 6=α(yk + bα,lα
k ).

Similar to the mechanisms in the previous subsections several different (relevant) payoffs
come to the fore. Once again, we will in general not specify which specification we are looking
at, but concentrate on payoff comparisons for some fixed specification.

This mechanism applied to situation (g, v) and component C ∈ N/g will be denoted by
ΓCE(g, v, C).



19

A sketch of the proofs, similar to the proofs for the theorems in the previous subsections,
can be found in the appendix.

Theorem 5.5 For all situations (g, v) and all C ∈ N/g there exists an SPNE in Γ(g, v, C)
such that the payoffs to the players correspond to the component-wise egalitarian solution.

Theorem 5.6 For all situations (g, v), all C ∈ N/g, and each SPNE in ΓCE(g, v, C) the payoffs
to the players correspond to the component-wise egalitarian solution.

6 Nonmonotonic value functions

So far, we have restricted attention to monotonic value functions. In such a setting players
jointly have an incentive to stick to the starting network since subnetworks do not have a higher
value. In each of the three mechanisms, independent of the starting network, an equilibrium
exists that does not break down any cooperation.

In case we drop our monotonicity assumption, the issue of network formation is added to our
setting. This is similar to the extension of Pérez-Castrillo and Wettstein (2001) in their work
on the Shapley value when they move from the restricted setting of zero-monotonic transferable
utility games to general transferable utility games. They altered their basic mechanism slightly
and showed that this resulted in an efficient partition as cooperation structure and the Shapley
value of the superadditive cover as payoffs. In their approach in the one-but-last stage the
proposer proposes a coalition and a payoff vector for this coalition. If in the last stage all
players in this coalition accept, the next round is played with the remaining players (the players
not in this coalition). If a player refuses the next round is played with all players accept the
proposer.

We take a somewhat different approach, which has similar results. In the one-but last stage,
the proposer does not only choose a payoff to all other players in his component C but also a
network g′ ⊆ g(C). This network need not be connected. In the last round then, all players in
C have to accept or reject, as before.

For any of the three mechanisms we described in the previous section, this adaptation results
in the same allocation rule as before, but now applied to the monotonic cover.

6.1 The position value

In this subsection we consider the position value. Consider the mechanism of subsection 5.1.
Consider the following mechanism that coincides with the mechanism of subsection 5.1 except
for the fourth and fifth step. These steps are changed as follows:

t=4 Player α proposes g′ ⊆ g(C) and payoffs yk to players k 6= α.

t=5 As original step 5, except for player α receiving v(g′) −
∑

k 6=α yk rather than v(g(C)) −∑
k 6=α yk.
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Denote this mechanism applied to situation (g, v) and component C ∈ N/g by Γ(g, v, C).
Furthermore, denote the monotonic of v by v, i.e., v(g) = maxg′⊆g v(g′). Along the lines of the
proofs in section 5.1 one can prove the following theorems.

Theorem 6.1 For all situations (g, v) and all C ∈ N/g there exists an SPNE in Γ(g, v, C)
such that the payoffs to the players correspond to the position value of (g, v).

Theorem 6.2 For all situations (g, v), all C ∈ N/g, and each SPNE in Γ(g, v, C) the payoffs
to the players correspond to the position value of (g, v).

Though not explicitly mentioned in the theorems, all SPNE result in networks that maximize
total profit, taking into account that starting from a certain network, links can only be broken
and not restored. So, notice that though the payoffs that result in Γ(g, v, C) correspond to the
position value of (g, v), the resulting network will be some g ⊆ g with v(g) = maxg′⊆g v(g′).

6.2 The Myerson value and the component-wise egalitarian solution

Similar to the previous subsection we extend in this section the results of sections 5.2 and 5.3
to nonmonotonic value functions.

First, for any (g, v) and component C ∈ N/g let ΓM (g, v, C) correspond to ΓM (g, v, C)
except for steps 2 and 3:

t=2 Player α proposes g′ ⊆ g(C) and payoffs yk to player k 6= α.

t=3 As original step 3, except for player α receiving v(g′) −
∑

k 6=α yk rather than v(g(C)) −∑
k 6=α yk.

Similarly, for any (g, v) and component C ∈ N/g let ΓCE(g, v, C) correspond to ΓCE(g, v, C)
except for steps 2 and 3, which are altered similar as for ΓM (g, v, C) above.

Along the lines of the results in sections 5.2 and 5.3 the following theorems are easily shown.

Theorem 6.3 For all situations (g, v) and all C ∈ N/g there exists an SPNE in ΓM (g, v, C)
such that the payoffs to the players correspond to the Myerson value of (g, v).

Theorem 6.4 For all situations (g, v), all C ∈ N/g, and each SPNE in ΓM (g, v, C) the payoffs
to the players correspond to the Myerson value of (g, v).

Theorem 6.5 For all situations (g, v) and all C ∈ N/g there exists an SPNE in ΓCE(g, v, C)
such that the payoffs to the players correspond to the component-wise egalitarian solution of
(g, v).

Theorem 6.6 For all situations (g, v), all C ∈ N/g, and each SPNE in ΓCE(g, v, C) the payoffs
to the players correspond to the component-wise egalitarian solution of (g, v).

As for the nonmonotonic result for the position value, in both models all SPNE result in
networks that maximize total profit, taking into account that starting from a certain network,
links can only be broken and not restored.
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7 Some comments on Pérez-Castrillo and Wettstein (2001)

In this section we present some comments on Pérez-Castrillo and Wettstein (2001). For a
description and analysis of this model we refer to Pérez-Castrillo and Wettstein (2001).

First, it seems that their model is not specified completely. In the introduction of their model
at page 281 they note that “...the element of randomness is inconsequential to our proofs. Our
results still hold if ties in net bids are broken deterministically...” In the proof of their Claim
(c) on page 284, they conclude that a player has the same probability of becoming the proposer
if the set of players with maximal net bid is not changed. Hence, the mechanism to choose the
proposer should depend on the set of players with maximal net bid only. Altering their Claims
(c) and (d) by making them similar to Claims 4 and 5 in the proof of theorem 5.2 would prove
that their results are truly independent of the mechanism to select the proposer among the
players with maximal net bid (i.e., first prove that the payoff of any player is independent of
the specific choice between the players with maximal net bid and, secondly, prove that all net
bids should be equal to zero).

Secondly, at page 283, Pérez-Castrillo and Wettstein (2001) claim that “If player i increases
his net bid

∑
j 6=i b

i
j , then that player will be chosen as proposer with certainty.” Now, suppose

player 1 changes his bids to players 2 and 3 by −2 and 3, respectively. Then the net bid of
player 1 increases by 1, whereas the net bid of player 2 increases by 2. Hence, player 2 would
become the proposer (which would leave the payoff of player 1 unchanged). The conclusion
that their strategy under consideration constitutes an SPNE, however, still holds.

Finally, in Claim (b) at page 284 they claim that “If v(N) > v(N\{α}) + v({α}), the only
SPNE of the game that starts at t = 2 is the following: At t = 2, player α offers yα

i = Φi(N\{α})
to all i 6= α; at t = 3, every player i 6= α accepts any offer yα

i ≥ Φ(N\{α}) and rejects the
offer otherwise.” Though they claim that the equilibrium is unique, they can only justify a
conclusion that the equilibrium path is unique. This is illustrated in the following example.
We stress that this example deals with the mechanism defined in Pérez-Castrillo and Wettstein
(2001).

Example 7.1 Let N = {1, 2, 3} and v = uN . Suppose that at t = 1 all bids have been chosen
equal to 1

3 and that player 1 has been selected as the proposer. Then the following strategies
constitute an SPNE of the game that starts at t = 2: At t = 2, player 1 chooses y1

2 = y1
3 = 0.

At t = 3, the last player (say k) rejects if yk < 0 and accepts otherwise, while the one-but-last
player rejects if min{y1

2, y
1
3} < 0 and accepts otherwise. It follows straightforwardly that these

strategies constitute an SPNE. 3

8 Concluding remarks

The previous sections provide a solid basis to provide a comparison between our three allocation
rules. We will summarize and discuss the main insights. Furthermore, we will compare the
mechanisms with similar mechanisms in the literature.
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First, the results in section 5 make clear that the Myerson value, the position value and the
component-wise egalitarian solution have a different focus. The Myerson value can be seen as
focusing on the role of a player, the position value on the role of the links, and the component-
wise egalitarian solution, as the name suggests, on the role of the component. For each of these
rules, a characterization is provided with a balancedness property that takes this focus into
account, together with component efficiency, which is standard. For a more detailed discussion
on the difference between balanced contributions and balanced link contributions we refer to
Slikker (2005a).

The same difference in focus can be seen in the mechanisms that were shown to have these
allocation rules as their payoffs. A survey on similarities and (sometimes only subtle) differences
between the mechanisms can be found in table 1.

stage description of stage

1.a. Bid to be proposer

1.b.

µ π γCE

Winner pays his bids Each non winner splits bid of Winner pays his bids
winner to him over links of winner;

Winner chooses one of his links
and pays associated bids

2. Winner proposes payoffs

3.a Sequential acceptance/rejection by non winners.

If accepted by all then pay proposed payoffs. Otherwise:

3.b.
µ π γCE

Remove all links of Remove link chosen by Disconnect component of
winner and restart winner and restart winner and restart

Table 1: Survey of mechanisms

In the literature several similar mechanisms have appeared. None of them deal with the
position value or the component-wise egalitarian solution. Taking this into account, together
with the fact that the Myerson value is the Shapley value of some game associated with the
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underlying situation, it is not surprising that our mechanisms for the Myerson value come
closest to the mechanisms in the literature. In fact the mechanism for monotonic value functions
can be seen as a straightforward adaptation of the model of Pérez-Castrillo and Wettstein
(2001) to a setting with networks and value functions. In a separate paper, Pérez-Castrillo and
Wettstein (2005) describe a mechanism that ends in the Myerson value of the monotonic cover
of the value function.5 Their results differ in three ways from the current paper. First, they
consider the full graph only, whereas we take an arbitrary graph as our starting point. Secondly,
in step 2 they let the proposer choose a coalition, a network on the players in this coalition,
and payoffs for players in this coalition. Moreover, if all players in this coalition accept in
the final round then the remaining players restart. In our model no coalition is specified, but
a graph, which might consist of several components. After acceptance, no new round starts
(for the component under consideration). Finally, they consider a slightly different bidding
mechanism. Though Pérez-Castrillo and Wettstein (2005) only consider starting from the full
graph, their mechanism can be applied starting from an arbitrary graph and can be shown to
always end up in the Myerson value of the monotonic cover.

This last difference provides the basis for an adjusted model to implement the Shapley
value of the monotonic cover for arbitrary cooperative games with transferable utilities. Rather
than picking a coalition and payoffs for players in this coalition only as in Pérez-Castrillo and
Wettstein (2001), a partition and a payoff vector for all players should be picked. Similar proof
techniques result in similar results as Pérez-Castrillo and Wettstein (2001) derive for their
mechanism.

Finally, we remark that much of our analysis could have been carried out for a fourth
rule as well, namely the rule that equally divides the value of a network among the players
involved in at least one link. Whereas the position value focuses on a link, the Myerson value
on a player, and the component-wise egalitarian solution on a component, this rule focuses
on all cooperating players. Though this rule is not component efficient, it is efficient and
satisfies a balancedness property, in which the contribution of a player to another player is
measured by the payoff difference the second player experiences if all cooperation breaks down.
Mechanisms can be described similarly as well. We concentrated on the Myerson value, the
position value and the component-wise egalitarian solution only, because in our opinion they
are more appealing then this egalitarian type of rule.

Appendix

In this appendix we provide proofs of several theorems.

Proof of theorem 5.3

Proof: The proof will be by induction on the number of links within a component. Obviously,
5They conclude that their mechanism ends up with the player-based flexible allocation and an efficient graph.

However, this rule corresponds to the Myerson value of the monotonic cover of the value function in conjunction

with the complete graph.
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the statement in the theorem holds for all situations for all its components with no link.
Now, let m ≥ 1 and assume that the statement in the theorem is true for all situations

and for all components with at most m− 1 links. Let (g, v) be a situation with C ∈ N/g and
|g(C)| = m.

Consider the following strategies:

t=1 Each player i ∈ C makes to any player k 6= i bid

bi
k = µk(g, v)− µk(g − gi, v).

t=2 Player α proposes to every player k 6= α payoff yα
k = µk(g − gα, v).

t=3 Player k accepts if yα
k ≥ µk(g − gα, v) and rejects the offer otherwise.

First, we argue that these strategies have the Myerson value as their final payoff. Player
k 6= α will receive

yα
k + bα

k =µk(g − gα, v) + [µk(g, v)− µk(g − gα, v)]

=µk(g, v).

Player α will receive v(g(C)) −
∑

k 6=α[yα
k + bα

k ]. Using the expression above and component
efficiency of the Myerson value it follows that player α receives v(g(C)) −

∑
k 6=α µk(g, v) =

µα(g, v).
Note that the payoff determination does not need the identity of the proposer α. Further-

more, we note that the strategies above result in net bids equal to zero for all i ∈ N since

Bi =
∑
k 6=i

bi
k −

∑
k 6=i

bk
i .

=
∑
k 6=i

[
[µk(g, v)− µk(g − gi, v)]− [µi(g, v)− µi(g − gk, v)]

]
= 0,

where the last equality follows from the balanced contributions property.
It remains to check that the strategies constitute an SPNE. It is obvious that the strategies

at t = 3 are best responses. To check that the offers at t = 2 are subgame perfect, note that
in case of rejection proposer α obtains µα(g − gα, v). In case all others accept, player α can,
taking into account the choices at t = 3 obtain at most v(g(C))−

∑
k 6=α µk(g−gα, v). Since v is

monotonic we have that v(g(C)) ≥ v(g(C)−gα). Consequently, v(g(C))−
∑

k 6=α µk(g−gα, v) ≥
µα(g − gα, v). Hence, player α maximizes his payoff by making the offers as described in the
strategy.

Finally, consider the strategies at t = 1. Suppose player i changes his bids such that he
will be the proposer with certainty. Then he has increased his total bids and thereby, he has
decreased his eventual payoff (given his strategies at future periods and our analysis of these
periods, which holds both on and off the equilibrium path!). If he changes his bids such that,
with certainty, he will not be the proposer, another player will propose, meaning that his payoff
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will not change. Finally, suppose that player i has changed his bids, and that he remains in
argmaxj(Bj), while simultaneously |argmaxj(Bj)| ≥ 2. Then there exist j, k ∈ C such that bi

j

has been increased, while bi
k has been decreased. To make sure that the net bid of player i is

at least as much as the (new) net bid of player k (which has been increased), the total bid of
player i must have been increased by at least the decrease in bi

k. So, if player i is chosen with
a positive probability he will increase his total bid and, hence, decrease his eventual payoff. If
he is not chosen with a positive probability his payoff will remain unchanged. 2

Proof of theorem 5.4

Proof: The proof will be by induction on the number of links within a component. Obviously,
the statement in the theorem holds for all situations and all its components with no link.

Now, let m ≥ 1 and assume that the statement in the theorem is true for all situations for
all its components with at most m− 1 links. Let (g, v) be a situation with C ∈ N/g such that
|g(C)| = m.

We will prove the induction step by proving several claims:

Claim 1 In any SPNE, at t = 3 all players who are not the proposer accept the proposal if
yα

k > µk(g− gα, v) for all k 6= α. Moreover, if yα
k < µk(g− gα, v) for some k 6= α then the

proposal is rejected.

Claim 2 If v(g(C)) > v(g(C) − gα) then all SPNE of a game that starts at t = 2 satisfy the
following specifications:6 at t = 2 player α proposes yα

k = µk(g − gα, v) to all k 6= α and
at t = 3 every player k 6= α accepts offer yα

k if yα
j = µj(g − gα, v) for all j 6= α.

If v(g(C)) = v(g(C)− gα) then any SPNE that does not satisfy the specifications in the
first part of this claim satisfies the following specifications: at t = 2 player α proposes,
among others, yα

k ≤ µk(g − gα, v) to some player k 6= α and at t = 3 this offer is rejected
by some player.
In all SPNE of this subgame the payoffs to the players are given by v(g(C))− v(g(C)−
gα)−

∑
k 6=α bα

k for player α and µ(g − gα) + bα
k for all k 6= α.

Claim 3 In any SPNE, each player is indifferent about the selection of the proposer among
argmax{Bi : i ∈ C}.

Claim 4 In any SPNE, Bi = 0 for all i ∈ C.

Claim 5 In any SPNE, the payoff of each of the players coincides with his Myerson value.

The proofs of the claims are along the lines of similar claims for the position value and have
therefore been omitted. 2

6We will not give a complete description of the SPNE.
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Proof of theorem 5.5

Proof: The proof will be by induction on the number of links within a component. Obviously,
the statement in the theorem holds for all situations and all its components with no link.

Now, let m ≥ 1 and assume that the statement in the theorem is true for all situations
and for all components with at most m− 1 links. Let (g, v) be a situation with C ∈ N/g and
|g(C)| = m.

Consider the following strategies:

t=1 Each player i ∈ C makes to any player k 6= i bid

bi
k = γCE

k (g, v).

t=2 Player α proposes to every player k 6= α payoff yα
k = 0.

t=3 Player k accepts if yα
k ≥ 0 and rejects the offer otherwise.

First, we argue that these strategies have the component-wise egalitarian solution as their
final payoff. Player k 6= α will receive

yα
k + bα

k = γCE
k (g, v).

Player α will receive v(g(C)) −
∑

k 6=α[yα
k + bα

k ]. Using the expression above and component
efficiency of the position value it follows that player α receives v(g(C)) −

∑
k 6=α γCE

k (g, v) =
γCE

α (g, v).
Note that the payoff determination does not need the identity of the proposer α. Further-

more, we note that the strategies above result in net bids equal to zero for all i ∈ N since

Bi =
∑
k 6=i

bi
k −

∑
k 6=i

bk
i .

=
∑
k 6=i

[
[γCE

k (g, v)− γCE
k (g − g(Ci), v)]− [γCE

i (g, v)− γCE
i (g − g(Ck), v)]

]
= 0,

where the last equality follows from the balanced component contributions property.
It remains to check that the strategies constitute an SPNE. It is obvious that the strategies at

t = 3 are best responses. To check that the offers at t = 2 are subgame perfect, note that in case
of rejection proposer α obtains 0. In case all others accept, player α can, taking into account the
choices at t = 3 obtain at most v(g(C)) −

∑
k 6=α γCE

k (g − g(Cα), v) = v(g(C)) − 0 = v(g(C)).
Since v is monotonic we have that v(g(C)) ≥ 0. Hence, player α maximizes his payoff by
making the offers as described in the strategy.

Finally, consider the strategies at t = 1. Suppose player i changes his bids such that he
will be the proposer with certainty. Then he has increased his total bids and thereby, he has
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decreased his eventual payoff (given his strategies at future periods and our analysis of these
periods, which holds both on and off the equilibrium path!). If he changes his bids such that,
with certainty, he will not be the proposer, another player will propose, meaning that his payoff
will not change. Finally, suppose that player i has changed his bids, and that he remains in
argmaxj(Bj), while simultaneously |argmaxj(Bj)| ≥ 2. Then there exist j, k ∈ C such that bi

j

has been increased, while bi
k has been decreased. To make sure that the net bid of player i is

at least as much as the (new) net bid of player k (which has been increased), the total bid of
player i must have been increased by at least the decrease in bi

k. So, if player i is chosen with
a positive probability he will increase his total bid and, hence, decrease his eventual payoff. If
he is not chosen with a positive probability his payoff will remain unchanged. 2

Proof of theorem 5.6

Proof: The proof will be by induction on the number of links within a component. Obviously,
the statement in the theorem holds for all situations for all its components with no link.

Now, let m ≥ 1 and assume that the statement in the theorem is true for all situations and
for all its components with at most m − 1 links. Let (g, v) be a situation with C ∈ N/g such
that |g(C)| = m.

We will prove the induction step by proving several claims:

Claim 1 In any SPNE, at t = 3 all players who are not the proposer accept the proposal if yα
k > 0

for all k 6= α. Moreover, if yα
k < 0 for some k 6= α then the proposal is rejected.

Claim 2 If v(g(C)) > 0 then all SPNE of a game that starts at t = 2 satisfy the following
specifications:7 at t = 2 player α proposes yα

k = 0 to all k 6= α and at t = 3 every player
k 6= α accepts offer yα

k if yα
j = 0 for all j 6= α.

If v(g(C)) = 0 then any SPNE that does not satisfy the specifications in the first part of
this claim satisfies the following specifications: at t = 2 player α proposes, among others,
yα

k ≤ 0 to some player k 6= α and at t = 3 this offer is rejected by some player.
In all SPNE of this subgame the payoffs to the players are given by v(g(C)) −

∑
k 6=α bα

k

for player α and bα
k for all k 6= α.

Claim 3 In any SPNE, each player is indifferent about the selection of the proposer among
argmax{Bi : i ∈ C}.

Claim 4 In any SPNE, Bi = 0 for all i ∈ C.

Claim 5 In any SPNE, the payoff of each of the players coincides with his component-wise egali-
tarian solution.

The proofs of the claims are along the lines of similar claims for the position value and have
therefore been omitted. 2

7We will not give a complete description of the SPNE.
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