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Abstract

In multicluster systems, and more generally, in grids,
parallel applications may require co-allocation, i.e., the si-
multaneous allocation of resources such as processors in
multiple clusters. Although co-allocation enables the allo-
cation of more processors than available on a single cluster,
depending on the applications’ communication character-
istics, it has the potential disadvantage of increased execu-
tion times due to relatively slow wide-area communication.
In this paper, we present two job placement policies, the
Cluster Minimization and the Flexible Cluster Minimiza-
tion policies which take into account the wide-area commu-
nication overhead when co-allocating applications across
the clusters. We have implemented these policies in our
grid scheduler called KOALA in order to serve different job
request types. To assess the performance of the policies,
we perform experiments in a real multicluster testbed using
communication-intensive parallel applications.

1. Introduction

Many of the parallel applications submitted to grids may
benefit from the allocation of multiple resources such as
processors in multiple sites simultaneously, i.e., they may
require processor co-allocation. However, with processor
co-allocation, the execution time of applications may be
severely increased due to wide-area communication over-
head. In this paper, we design, implement, and assess job
placement policies that explicitly consider this overhead in
the co-allocation of processors to parallel jobs.

With our KOALA [5] grid scheduler, which has been de-
signed for such multicluster systems as the DAS [2] (see
Section 5.3), it is our aim to research efficient placement
policies that are specialized for different application types.
In [18], we have introduced the Close-to-Files (CF) job
placement policy for parallel applications that may need
co-allocation. Basically, the CF policy tries to reduce the
overhead of waiting in multiple clusters for input files to
become available in the right locations. We have performed

comparison experiments of CF with the Worst-Fit (WF) job-
placement policy, which is the default policy of KOALA,
whose aim is to keep the loads in the clusters balanced [7].
The results showed that the combination of the CF policy
and file replication is very beneficial when jobs have large
input files (i.e., larger than 2GB). However, neither CF nor
WF targets to reduce the effects of wide-area communica-
tion overhead to the performance of parallel applications.
In general, what we observe with KOALA is that users usu-
ally do not submit jobs with large input files, and even that
jobs may not have any input file requirements. Therefore,
the inter-cluster communication while the application runs
induces the main overhead in most of the cases [11].

In this paper, we present two job placement policies,
Cluster Minimization (CM) and Flexible Cluster Minimiza-
tion (FCM), for jobs that may use co-allocation. The CM
policy serves job requests in which jobs are divided into
components each having a fixed processor requirement,
whereas FCM serves job requests in which jobs are repre-
sented as a single component that is allowed to be divided
into smaller components. The motivation behind the CM
policy is to minimize the number of clusters to be com-
bined for a given parallel job in order to reduce the number
of inter-cluster messages. While FCM also aims at mini-
mizing the number of clusters to be combined for parallel
jobs, it is also expected to decrease the queue time of jobs,
since it increases the placement chance by splitting the jobs
into components according to the numbers of idle proces-
sors in the clusters. However, splitting a job into many
components, which would be the case when the resource
contention is high in the system, may increase the execution
time of the job since more clusters would be combined, and
consequently, more inter-cluster communication would take
place. Studying this tradeoff is one of the aims of this paper.
As stated in Section 2.2, our job model may not allow all
parallel applications to be scheduled by FCM, since some
applications dictate specific patterns for splitting up into
components. Therefore, CM is our generic communication-
aware policy.

The rest of the paper is organized as follows. First,
communication-aware grid scheduling is discussed in Sec-
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tion 2. Then, Section 3 explains the main mechanisms of
our KOALA grid scheduler. In Section 4, the job placement
policies are presented. The experimental setup and the re-
sults are explained and discussed in Sections 5 and 6, re-
spectively. Section 7 reviews related work. Finally, Sec-
tion 8 makes some concluding remarks and points to future
work.

2 Communication-Aware Grid Scheduling

In computational grids [13], various application types
with different communication characteristics exist. Exam-
ples of these application types include data or process par-
allelism, divide and conquer, parameter sweep, workflows,
and data-intensive applications. While some of these ap-
plications may need intensive communication, others such
as parameter sweep applications may not. In order to in-
crease the execution performance of the applications, a grid
scheduler should have specialized policies for different ap-
plication types.

2.1 Co-Allocation

Within the grid context, many parallel applications may
benefit from co-allocation that enables the execution of
the applications requiring more nodes simultaneously than
available on a single execution site. However, co-allocation
is not without cost; although it is expected to reduce the av-
erage job response time [12], it has the potential drawback
of increased execution times of applications due to low net-
work bandwidth and high latency over wide-area networks.
Hence, the performance of co-allocation may be severely
affected by the slow inter-cluster connections. In fact, this
overhead depends on the communication pattern of an ap-
plication and on the amount of data being communicated
among its sub-tasks. For instance, a fine-grained parallel
application is more likely to suffer from higher communi-
cation overhead than a coarse-grained parallel application.

2.2 The Job Model

In our model, a job comprises either one or multiple com-
ponents that together execute a single application. A job
component specifies its requirements and preferences such
as the application it wants to run, the number of proces-
sors it needs, and the names of its input files. We assume
jobs to be rigid, which means that the number of allocated
processors for a job remains fixed during its execution. Job
components may or may not specify an execution site where
they want to run. Based on this distinction and on the dis-
tinction of whether a job does or does not indicate how it
is split up into components, we consider three job request

structures, fixed requests, non-fixed requests, and flexible re-
quests.

In a fixed request, a job specifies the sizes of its compo-
nents and the execution site from which the processors must
be allocated for each component. On the other hand, in a
non-fixed request, a job also specifies the sizes of its compo-
nents, but it does not specify any execution site, leaving the
selection of the execution sites, which may even be the same
for some components, to the scheduler. In a flexible request,
a job only specifies its total size and allows a scheduler to
divide it into components (of the same total size) in order to
fit the job on the available execution sites. With a flexible
request, a user may impose restrictions on the number and
sizes of the components. For instance, a user may want to
specify for a job a lower bound on the component size or
an upper bound on the number of components. By default,
the lower bound is one, and the upper bound is equal to the
number of execution sites in the system. Although it is up
to the user to determine the number and sizes of the compo-
nents of a job, some applications such as the Poisson equa-
tion solver in [8] can dictate specific patterns for splitting
up the application into components, hence complete flexi-
bility is not suitable in such a case. So, a user may specify a
list of options of how a job can be split up, possibly ordered
according to preference.

We believe that these request structures give users the
opportunity of taking advantage of the system considering
their applications’ characteristics. For instance, a fixed job
request can be submitted when the data or software libraries
at different clusters mandate a specific way of splitting up
an application. When there is no such affinity, users may
want to leave the decision to the scheduler by submitting a
non-fixed or a flexible job request.

Of course, for jobs with fixed requests, there is nothing
a scheduler can do to schedule them optimally. So in this
paper we concentrate on non-fixed and flexible requests.

3 The KOALA Grid Scheduler

It this section we present the KOALA grid scheduler that
we have designed for such multicluster systems as DAS [2].
The main feature of KOALA is its support for processor co-
allocation.

3.1 The Architecture of KOALA

The KOALA grid scheduler employs some of the Globus
toolkit [3] services for job submission, file transfer, and
security and authentication. Besides, it has its own mecha-
nisms for data and processor co-allocation, resource moni-
toring, and fault tolerance. KOALA includes auxiliary com-
ponents called runners, which provide users an interface for
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submitting their job requests and monitoring the progress of
the job execution.

3.2 The Co-Allocation Process

We use the Globus Resource Specification Language
(RSL) [3] as our job description language with the RSL
“+” construct to aggregate job components to form multi-
requests. Upon receiving a job request from a runner, the
KOALA scheduler uses one of the placement policies (see
Section 4) to try to place the job components. If the place-
ment of the job succeeds and input files are required, the
scheduler informs the runner to initiate the third-party file
transfers from the selected file sites to the execution sites
of the job components. To realize co-allocation, we use an
atomic transaction approach [9] in which the job placement
only succeeds if all resources required by the job are allo-
cated.

If a placement try fails, KOALA places the job at the tail
of a placement queue. This queue holds all the jobs that
have not yet been successfully placed. The scheduler reg-
ularly scans the queue from head to tail to see whether any
job is able to be placed. For each job in the queue we record
its number of placement tries, and when this number ex-
ceeds a certain threshold value, the submission of that job
fails.

3.3 Supported Application Libraries

Currently, KOALA is capable of scheduling jobs employ-
ing the Message Passing Interface (MPI) and Ibis [4] paral-
lel communication libraries. The MPI jobs to be submitted
to KOALA need to be compiled with the grid-enabled imple-
mentation of MPI called MPICH-G2 [6]. The MPICH-G2
allows us to combine multiple clusters to run a single MPI
application by automatically handling both inter-cluster and
intra-cluster messaging. Ibis is a Java-based communica-
tion library for grid computing which enables writing pro-
grams using multiple programming models, such as stan-
dard Java RMI, divide-and-conquer, message passing, and
models which support group communication [4].

4 Job Placement Policies

In this section we will present our two communication-
aware job placement policies, which are the Cluster Mini-
mization policy for non-fixed job requests and the Flexible
Cluster Minimization policy for flexible job requests. The
default policy of KOALA is the Worst Fit (WF) job place-
ment policy [18], which we use as a reference in our exper-
iments (see Section 6). It places the job components in de-
creasing order of their sizes on the clusters with the largest
(remaining) number of idle processors.

4.1 The Cluster Minimization Policy

The Cluster Minimization (CM) policy is designed to
serve non-fixed job requests with the aim of minimizing the
number of clusters across which parallel applications are
spread in order to mitigate the overhead originating from
the inter-cluster communication.

procedure ClusterMinimization()
1. given a job, order its components in

decreasing order of size
2. order clusters in decreasing order of

number of idle processors
/* order of clusters remains the same */
3. for each (job component j) do
4. for each (cluster c) do
5. if(c can accommodate j) then
6. place j on c
7. end if
8. end for
9. if(placement of j fails) then
10. job submission failed, insert

the job into the placement queue
11. end if
12. end for
13. return;

Figure 1. Pseudo-code of the Cluster Mini-
mization policy

When given a non-fixed job to place, the CM policy (see
Figure 1) operates as follows. First, it sorts the clusters and
the job components in decreasing order of number of idle
processors and processor requirements (i.e., sizes), respec-
tively (lines 1-2). The order of the clusters remains the same
for the rest of the operations. Then it tries to place each
component in order, on a cluster that can accommodate this
component, traversing the ordered cluster sequence (lines
3-8). If a component cannot be placed, the job request fails
and the job is put into the placement queue of the KOALA

(lines 9-10). The decreasing order of the components is
used to increase the chance of success for large components,
and to place as many components as possible on a single
cluster.

To illustrate the operation of CM and its difference with
WF, let’s assume that a non-fixed job request with three
job components of size 8 each arrives at a system with
three clusters, C1, C2, and C3, which have 18, 15, and 12
idle processors, respectively. As Figure 2 shows, WF suc-
cessively places the three components on the cluster that
has the largest (remaining) number of available processors.
This results in the placement of one component on each of
the three clusters. However, CM tries to place as many com-
ponents as possible on the emptiest cluster before consider-
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ing the next one. Therefore, in this example, CM will place
the components on only two clusters.

III

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

C 1

 

C 1

WF:

 
.
.

I

IIIII

I

(18)

(18)

88 8

C 3 (12)

8

 8

8

8,8,8

8,8,8

C 3 (12)
C 2 (15)

C 2 (15)

CM:

II

Figure 2. An example comparing the WF and
the CM placement policies

It is of course possible to include a quota parameter into
the policy that will prevent it from filling each of the clusters
to more than a certain fraction, in order to avoid the local
users of the clusters to suffer from resource starvation.

4.2 The Flexible Cluster Minimization Policy

The Flexible Cluster Minimization (FCM) policy is con-
sidered for users who desire a short queue time along with
communication optimization for their applications, which
do not necessitate a specific way of splitting up into compo-
nents.

When given a job to place, FCM (see Figure 3) first sorts
the clusters in decreasing order of the number of idle pro-
cessors as in the CM policy (line 2). Then it tries to place
a component with a size equal to the remaining number of
processors requested which is initially set to the job’s to-
tal number of processor request (line 4-9). If the placement
succeeds, this means the total processors requested of the
job is satisfied; hence the job is placed successfully. Other-
wise, if the processor request is more than what is available
in the cluster considered, it places a component with a size
equal to the number of idle processors of that cluster, and
subsequently, updates the number of processors requested
for the remaining number of requested processors (line 10-
14). After traversing the complete ordered cluster sequence,
if the processor request cannot be satisfied, the job is put
into the placement queue of KOALA (lines 16-18).

To illustrate the process of the policy, let’s assume an ex-
ample where the cluster availabilities are the same as in the
example given for CM in Section 4.1, and where there is a
flexible job request of 24 processors. In this case, WF and
CM are not able to place this job since there are not enough
idle processors in any cluster to accommodate the job. How-

procedure FlexibleClusterMinimization()
1. given a job
2. order clusters in decreasing order of

the number of idle processors
/* the order of clusters remains same */
3. R = Size of processor request
/* R is initially set to the job’s total

processor requirement */
4. for each (cluster c) do
5. S = # of idle processors of c
6. if(S ≥ R) then
7. create a job component j with size R
8. place j on c
9. return; // job submission succeeded
10. else
11. create a job component j with size S
12. place j on c
13. R = R − S;
14. end if
15. end for
16. if(R > 0) then
17. job submission failed, insert the

job to the placement queue
18. end if

Figure 3. Pseudo-code of the Flexible Cluster
Minimization policy

ever, considering that the emptiest cluster, C1, has 18 idle
processors, FCM first creates a component of size 18. Then
it considers the second emptiest cluster, C2, which is able to
meet the remaining request, and so it creates a component
of size 6. As a consequence, it places the components onto
the clusters as shown in Figure 4.

FCM:
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Figure 4. An example illustrating the place-
ment process of the FCM policy

Similarly as in CM, a quota parameter can also be con-
sidered to prevent the policy from filling the clusters without
leaving any space for local users.

5 Experimental Setup

In this section we describe the setup of the experiments
we have conducted to evaluate the performance of the CM
and FCM placement policies, and compare them with WF.
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For the experiments, we use two communication-intensive
MPI applications: The Laplace Equation Solver [14] and
the 2D-Heat Equation Solver [1], which do not have any re-
strictions when scheduled by any of the policies. We set the
interval between successive scans of the placement queue at
4 seconds, and we set the maximum placement try value to
infinite.

5.1 The Laplace Equation Solver Application

The Laplace Equation Solver application [14] uses a
finite-difference method to solve the Laplace equation for
a square matrix distributed over a square (logical) processor
topology. Each matrix element is updated based on the val-
ues of the four adjacent matrix elements. First, each process
exchanges edge values with its four neighbors. Then, new
values are calculated for the upper left and lower right cor-
ners of each process’s matrix and the processes exchange
values again. Finally, the upper right and lower left corners
are calculated. This process is repeated until the data con-
verge, i.e., the average change in any matrix element (com-
pared to the value 20 iterations before) is smaller than a
specified value. The number of processes, the matrix size,
and the convergence factor can be adjusted in order to in-
crease or decrease the execution time of the application.

5.2 The 2D-Heat Equation Solver Application

The 2D-Heat Equation Solver application [1] works
with a master-worker paradigm. A two-dimensional do-
main is decomposed by the master process and then dis-
tributed by rows to the worker processes. At each time
step, worker processes exchange border data with neigh-
bors, since the current temperature of a point in the domain
depends on its previous time step value plus the values of
the adjacent points. Upon completion of all time steps, the
worker processes return their results to the master process.
The number of processes, the domain size, and the number
of iterations affect the execution time of the application.

5.3 The Testbed

Our testbed is the Distributed ASCI Supercomputer
(DAS) [2], which is a wide-area computer system in the
Netherlands that is used for research on parallel, distributed,
and grid computing. It consists of five clusters of 200 dual
Pentium-III nodes (400 processors) in total. The distribu-
tion of the nodes over the clusters is given in Table 1. The
clusters are interconnected by the Dutch university back-
bone (100 Mbit/s), and the workstations within a cluster are
connected by Myrinet LAN (1200 Mbit/s). On each of the
DAS clusters, the Sun N1 Grid Engine (SGE) [19] is used
as the local resource manager. SGE has been configured to

Table 1. The distribution of the nodes over the
DAS clusters

Cluster Location Total number Number of
of nodes functioning nodes

(during the experiments)

Vrije University 72 67
Uni. of Amsterdam 32 20

Delft University 32 26
Utrecht University 32 28
Leiden University 32 19

run applications on the nodes in an exclusive fashion, i.e.,
in space-shared mode.

5.4 The Workloads

To evaluate the performance of the placement policies,
we submit workloads of jobs to be co-allocated on the DAS
that run the applications of Sections 5.1 and 5.2, in addition
to the regular workload of the other users. For the Laplace
Equation Solver application, we consider job sizes of 36 and
64, since it can run only on a square processor topology. For
the 2D-Heat Equation Solver application, we consider total
job sizes of 36, 64 and 72.

The component sizes are attained by dividing the job size
by the number of components; hence, the components are
of equal size within a particular job. For the experiments
in which WF and CM are employed, the number of com-
ponents are 2, 3 or 4; however, we restrict the component
sizes to be not greater than 24. Therefore, the jobs of size
36 can have any of the three numbers of components, while
those of size 64 have only 4, and those of size 72 have 3
or 4 components. In the experiments with FCM, all jobs
are considered to be composed of a single component with
the same total size as in the experiments with WF and CM.
FCM can split up the jobs in any way, taking into account
the number of available processors and the number of clus-
ters in the system.

The average execution times of the applications, depend-
ing on the number of clusters combined and on the consid-
ered job sizes, are shown in Figure 5. The measurements
have been done by submitting fixed job requests. Since the
applications are communication-intensive, their execution
time increases remarkably with multiple clusters.

The job arrival process is Poisson. The applications,
their sizes, and the number of components are randomly
chosen from a uniform distribution. We generate two work-
loads of 200 jobs, W1 and W2, with average interarrival
times of 80 and 40 seconds, respectively. With these work-
loads, we intend to assess the policies in the circumstances
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Figure 5. The average execution times of the
co-allocated applications depending on the
number of clusters combined and on the total
number of processor

where resource contention is low and high, respectively. We
use the tools provided within the GrenchMark project [16]
to ensure the correct submission of our workloads to the
DAS.

5.5 The Background Load

One of the problems we have to deal with is that we
do not have control over the background load due to the
other users of the DAS. During the experiments, we moni-
tor this background load and we try to maintain it at 15%–
20%. This corresponds to the realistic load observed in the
DAS system [15]. When this utilization drops below 15%,
we inject dummy jobs to maintain the utilization within the
given range. If the utilization rises above 20%, we kill the
dummy jobs to lower the utilization. In case the background
load rises above 20% and stays there for more than a minute
without any of our dummy jobs, the experiment is declared
void and is repeated.

6 Results

In this section, we present the results of the experiments
described in Section 5.

6.1 Timeline of a job submission in KOALA

Before discussing our results, we illustrate the timeline
of a job submission in KOALA (Figure 6). The time instant
of the successful placement of a job is called its placement
time. The start time of a job is the time instant when all
components are ready to execute. The total time elapsed
from the submission of a job to the start of its execution
is the wait time of a job. The time interval between the
submission and the placement shows the amount of time a
job spends in the placement queue, i.e., the queue time. The
time interval between the placement time and the start time
is the startup overhead of the middleware (i.e., GRAM [3]).

 Start

 

       

     

   

Time
Submission Finish 

 Time    Time

OverheadQueue Time

Response Time

TimeExecution 

Placement 
Time

Wait Time

Figure 6. The timeline of a job submission in
KOALA

We will present the variation of this overhead depending on
the number of components that a job is split up into. The
difference between the start time and the time when a job’s
execution is finished (i.e., its finish time), is the execution
time, and finally, the total time elapsed from submission to
finish is the response time of a job.

6.2 Discussion of the Results

Figure 7 presents all the metrics that we consider in eval-
uating the performance of the policies. The average re-
sponse time and average wait time (Figure 7(a) and Fig-
ure 7(b)) show that FCM performs consistently better than
the other policies, and as one might expect, WF performs
consistently worse than the others, both when the resource
contention is low and high.

From Figure 7(c), we observe that for all policies, the
average execution time of the applications increases when
the resource contention is high due to the increase of the
number of clusters combined for the applications. As Fig-
ures 7(d) and 7(e) show, FCM and CM are better in min-
imizing the number of clusters combined for the applica-
tions than WF, and therefore yield shorter execution times.
WF schedules a job by distributing it as evenly as possi-
ble across the available clusters, and consequently causes
more inter-cluster communication. It is also important to
note that, although FCM tends to combine more clusters
than CM when the resource contention is high, as a result
of our experiments, it seems this does not have a serious ef-
fect on overall performance. FCM is able to utilize clusters
better due to the flexibility mechanism, and in doing so, it
achieves better cluster minimization.

In the low resource contention case, all policies have
similar (low) queue times (Figure 7(f)); however, when the
resource contention is high, FCM performs significantly
better in terms of queue time, since it is allowed to split up
jobs in any way it likes across the clusters. This substantial
reduction in queue time eventually results in better overall
performance in average response time.

From Figures 7(b) and 7(f), we find that the dominant
factor for the wait time is the middleware overhead when
the resource contention is low, and the queue time when the
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Figure 7. Performance results of the three policies with workloads W1 and W2

resource contention is high. Furthermore, the overhead in-
creases when the number of components that an application
is split up into, or when the resource contention increases
(Figure 8).

Our experimental results show that splitting jobs into
smaller components with the FCM policy to achieve a
shorter placement time rather than having them wait in the
queue for enough processors to become idle as CM policy
does, yields better performance. However, it would be pre-
tentious to generalize this statement since the results depend
very much on the number of clusters, the number of pro-
cessors in the system, and the execution time of the appli-
cations. Nevertheless, in our system where the execution
time of an application is limited to 15 minutes as an ad-
ministration policy, FCM seems to be the best policy to be
used for communication-intensive applications. Although
we observe that it would be really advantageous to schedule
such applications on a single cluster from the perspective
of execution time (Figure 5), users may prefer co-allocation
when more processors are needed than available on a sin-
gle cluster. For such cases, we have clearly demonstrated
the advantage of minimizing the number of clusters to be
combined.

7 Related Work

The Grid Application Development Software (GrADS)
[10] enables co-allocation of grid resources for parallel ap-
plications that may have significant inter-process communi-
cation. Basically, for a given application, the resource selec-
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Figure 8. The average middleware overhead
by the number of job components

tion mechanism of the GrADS tries to reduce the number of
workstations to be considered according to their availabil-
ities, local computational and memory capacities, network
bandwidth and latency information. Then, among all pos-
sible scheduling solutions the one that gives the minimum
estimated execution time is chosen for the application.

In [12], co-allocation is studied with simulations, taking
the average weighted response time as the performance met-
ric. The work presents an adaptive co-allocation algorithm
that uses a simple decision rule whether to use co-allocation
for a job considering the given parameters such as requested
run time and the requested number of resources. The slow
wide-area communication is considered by a parameter by
which the total execution time of a job is multiplied. Co-
allocation is compared to keeping jobs local and to only
sharing load among the clusters, assuming that all jobs fit
in a single cluster. The results show that considering the
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communication overhead, it pays to use co-allocation if the
overhead is limited to about 40 % of the run time of a job.

In [17], several bandwidth-aware co-allocating meta-
schedulers are presented for mini-grids. These schedulers
consider network utilization to alleviate the slowdown as-
sociated with the communication of co-allocated jobs. For
each job modeled, its computation time and average per-
processor bandwidth requirement is assumed to be known.
Besides, all jobs assumed to perform all-to-all global com-
munication periodically. Several scheduling approaches are
compared in a simulation environment consisting of clus-
ters with globally homogeneous processors. The most sig-
nificant result of the experiments performed is that co-
allocating jobs when it is possible to allocate a large fraction
(85%) on a single cluster provides the best performance in
alleviating the slowdown impact due to inter-cluster com-
munication.

8 Conclusions and Future Work

In this paper, we have presented two communication-
aware job placement policies for parallel applications that
we have implemented in our KOALA grid scheduler. Our ex-
perimental results show that the FCM policy is the best op-
tion to be used for communication optimization in KOALA,
unless the application requires a specific way of splitting up
into components. If so, one should prefer the CM policy.

The system in which we performed our experiments is
homogeneous in terms of network connections. However, in
a heterogeneous environment (a typical case in grids), band-
width and latency between resources should be considered
to achieve communication optimization. As future work,
we aim to enhance our policies so that they will consider
the impact of bandwidth and latency as resource selection
criteria, and we aim to collaborate with other grid systems
to test our policies in a heterogeneous environment.
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