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Abstract

We consider a single item assembled from two components. One of the components

has a long leadtime, high holding cost and short review period as compared to the

other one. We assume that net stocks are reviewed periodically, customer demand

is stochastic and unsatisfied demand is back ordered. We analyze the system under

two different policies and show how to determine the policy parameters minimizing

average holding and backorder costs. First, we consider a pure base stock policy, where

orders for each component are placed such that the inventory position is raised up to

a given base stock level. In contrast to this, only the orders for one component follow

this logic while the other orders are synchronized in case of a balanced base stock

policy. Through mathematical analysis, we come up with the exact long-run average

cost function and we show the optimality conditions for both policies. In a numerical

study the policies are compared and the results suggest that the balanced base stock

policy works better than the pure base stock policy under low service levels and when

there is a big difference in the holding costs of the components.
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1 Introduction

In real-life supply chains, individual items have their own lot sizing and leadtime constraints

based on contracts with suppliers or production process characteristics. Coordination of

release decisions across multiple items is thereby not an easy task. In the existing literature,

convenient assumptions are made, such as equal lot sizes for items (e.g. Svoronos and Zipkin

(1988)), equal review periods (e.g. Clark and Scarf (1960)), nested lot sizes (e.g. Chen

(2000)) and nested review periods (e.g. Van Houtum et al. (2007)). One of the consequences

of these assumptions is that upstream items and long leadtime items should have larger

lot sizes. Unfortunately, in practice, simple and cheap materials can have short leadtimes

whereas complex and expensive materials usually have long leadtimes. On top of that the

economic order quantity of complex and expensive items implies that such items should be

ordered more frequently than cheap items if they have equal demand rates.

Whether an item is cheap or expensive is generally determined by the complexity and

capital intensity of the production processes. Complex processes consisting of multiple trans-

formation steps require longer leadtimes, due to waiting times between these transformation

steps. On the other hand, capital-intense production is characterized by high utilization,

which naturally translates into long leadtimes. Thus, in practice long-leadtime items are

often more expensive than short-leadtime items. Typical examples of this situation can be

found in High Volume Electronics, where key components like LED screens and IC’s have

leadtimes beyond ten weeks, whereas cheap plastic parts have leadtimes of less than one week.

Similarly, in pharmaceutics industry active ingredients have leadtimes exceeding half a year,

while packaging materials and documentation have leadtimes of several weeks. According

to the lot sizing theory, long-leadtime items should have higher order frequencies. In capi-

tal goods industry, where typically products are assemble-to-order, long-leadtime expensive

items (e.g. magnets for medical scanning equipment, lenses for lithography machines) are

ordered daily or weekly, while short-leadtime metal and plastic parts may be ordered monthly

on average. Similar leadtime and review period relations between components also exist in
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make-to-order and configure-to-order environments. Concisely, there is a need for control

policies for assembly systems consisting of expensive, frequently ordered long-leadtime items

and cheap, infrequently ordered short-leadtime items.

In this context, we consider a two component assemble-to-order system, where the inven-

tory levels are reviewed periodically. One component has a high holding cost, long leadtime

and short review period, whereas the other component has a relatively low holding cost, short

leadtime and long review period. We further assume that leadtimes are deterministic and

review periods are determined exogenously. Customer demand is stochastic and unsatisfied

customer demand is backlogged. The objective is to minimize the expected cost per period

consisting of holding and backordering costs by determining the optimal policy parameters.

Since the form of the optimal policy is not known for this system, we explore the perfor-

mance of two different heuristic inventory control policies and determine the cost optimal

policy parameters minimizing holding and backorder costs.

The first policy considered is the pure base stock policy in which replenishment orders

are placed to restore a fixed base stock level for each component. This policy is well studied

in literature on assemble-to-order systems and widely applied in practice. Under a periodic

review setting, pure base stock policies are shown to be optimal for serial systems with equal

review intervals by Clark and Scarf (1960) and with nested review intervals by Van Houtum

et al. (2007). Rosling (1989) shows that the results and methods for serial systems can

be used for solving pure assembly systems. However, our problem does not fit into any of

these cases due to the review period constraints. If we apply Rosling (1989)’s approach to

our model, the equivalent serial network does not have the required nested review intervals

property. As a consequence, Van Houtum et al. (2007)’s result cannot be applied to this

model.

The second inventory control policy we consider is the so-called “balanced base stock pol-

icy”. Here, we assume a base stock policy for the longest leadtime component. Then, all other

components’ base stock levels are coordinated with respect to the stock level of this pivot
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component. Balanced base stock policy was first studied by Zhang (1995) for an assemble-

to-order system with one end-item and equal replenishment intervals. The analytical results

show that indeed the system behaves like a single stockpoint.

In assemble-to-order systems, there are two major challenging problems. The first one

is the component allocation problem for the case of multiple end-items. As we study a

single end-item model, this problem does not occur. The second problem is minimizing the

expected number of backorders or item-based backorders under pure base stock policies. In

general, this is computationally demanding because the process involves joint probabilities

and optimization of nonseparable functions.

The literature on discrete-time assemble-to-order systems considers both of these issues.

Hausman et al. (1998) study an assemble-to-order system with a decentralized base stock pol-

icy and normal distributed demand. They propose an equal fractile method for nonstockout

probability and develop a heuristic for maximizing a lowerbound on the order fill rate. Zhang

(1997) and Agrawal and Cohen (2001) study a similar system where the objective is to mini-

mize total inventory investment subject to a service level constraint. Zhang (1997) defines a

so-called fixed-priority allocation rule and concentrates on demand fulfillment rates. On the

other hand, Agrawal and Cohen (2001) gain managerial insights on the problem when the

component allocation is based on fair-shares rule. Akçay and Xu (2004) introduce a simple

and order-based component allocation rule and compare it with the previously stated ones.

De Kok (2003) defines a set of assemble-to-order systems named as “strongly ideal”. Then,

through rigorous analysis he finds exact expressions for the performance characteristics of

such systems. Based on these expressions, he develops efficient approximation methods to

solve large-scale assemble-to order systems.

In continuous-time framework, most research focuses on computing order-based back-

orders, performance measures like order-fulfillment rates or finding bounds for item-based

backorders. The most recent work in this setting includes Song (2002), Song and Yao (2002),

Lu et al. (2005), Lu and Song (2005), and Hoen et al. (2010). All these papers assume
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assemble-to-order systems with Possion distributed customer demand and pure base stock

policies. Finally, we refer the reader to the book chapter of Song and Zipkin (2004) for an

extensive literature review on assemble-to-order systems.

To the best of our knowledge, this is the first paper on assemble-to-order systems with

different review intervals for each component. We compute the exact expressions for expected

cost and expected number of backorders, and we derive optimality conditions. Reinforcing

the numerical results of De Kok (2003), we analytically prove the equivalence of nonstockout

probability to newsboy fraction at optimality for both pure base stock policy and balanced

base stock policy. Our numerical findings suggest that pure base stock policy is better for

the majority of the cases but the balanced base stock policy outperforms the other one when

service levels are low, demand is highly variable, and the difference between the holding costs

of the components is large.

The remainder of the article is organized as follows. Firstly, we describe the detailed

model assumptions and the related total cost function in Section 2. Secondly, we formulate

and analyze the optimization models based on pure base stock policy and balanced base stock

policy in Section 3. Next, In Section 4, we present numerical results to asses and compare

the system performance under both replenishment policies. Finally, we summarize the main

contributions of this study and give directions for further research in Section 5.

2 The Assemble-to-Order Model

We have a single item that is assembled from two components. One piece of each component

is needed to produce one end item. The expensive component is stocked at stockpoint 1

and the cheap component is stocked at stockpoint 2. It is assumed that the inventories

of components are replenished from suppliers with infinite capacity. Whenever customer

demand occurs, the end item is assembled immediately if both components are available

otherwise it is backordered.

Time is divided into periods of equal length and the planning horizon is infinite. We
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want to make a clear distinction between a “period” and a “review period”. Without loss of

generality each period is assumed to have length 1 and periods are numbered as {0, 1, 2, . . .}.

A review period, on the other hand, is composed of multiple periods where at the beginning

of a review period the stock levels are reviewed and orders are placed.

There are four main events that may occur during a period: (i) arrival of orders (if

scheduled to this period), (ii) placing of orders (if the period is also the beginning of a review

period), (iii) occurrence of demand, (iv) incurring costs. The first three events take place

at the beginning of the period. We assume that customer demand occurs after ordering

decisions are made. Holding and penalty costs are incurred at the end of each period.

We define In(t) as the total on-hand inventory of component n at the end of period t. The

net stock of a component equals all on-hand inventory at this stockpoint minus the amount

of backorders. Xn(t) denotes the net stock of component n at the end of period t. Also, we

define the inventory position of a component as its net stock plus all material in transfer to

that stockpoint. Let IPn(t) be the inventory position for component n at the beginning of a

period t after ordering decision is made.

Component n has a review period of length Rn such that the inventory position of n

is reviewed and replenishments are made every Rn periods. We assume that component 2’s

review period is an integer multiple of component 1’s review period. Further, we define r ∈ N

as the number of times that component 1 can be ordered per order of component 2. Thus,

the relationship is R2 = rR1 and R2 ≥ R1 by definition.

Customer demand in each period is independent and identically distributed with density

function f(.) and distribution function F (.). D[t, t+1) represents the demand during period

t with expected value µ, variance σ2, and coefficient of variation cv. Cumulative demand

occurring during a time interval between the beginning of period t1 and till the beginning of

period t2 (0 ≤ t1 < t2) is denoted byD[t1, t2). Further, we assume that F (D[t, t+1) < 0) = 0.

The leadtime Ln between placing and arrival of an order for stockpoint n is assumed

to be deterministic and it is defined in periods. The relation between the leadtime of the
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components is L2 < L1.

We further assume synchronization in the timing of order arrivals such that an order

arrival at stockpoint 2 always coincides with an order arrival at stockpoint 1. Without loss

of generality, we assume that stockpoint 1 places an order at the beginning of period zero.

Thus, the ordering periods of stockpoint 1 are defined by the set T1 = {kR1|k ∈ N0}. An

order placed by stockpoint 1 at period t (t ∈ T1) will arrive at the beginning of period t+L1

in which an order of stockpoint 2 will also arrive. Since R2 is an integer multiple of R1, at

periods kR2 + L1 (where k ∈ N0) there will be an arrival of both components. So, the set of

ordering periods for stockpoint 2 is T2 = {kR2+L1−L2|k ∈ N0}. Note that, in the long-run

the system state will not depend on the initial conditions, so there exists a specific period

such that the inventory positions will never be above their base stock levels.

We assume linear inventory holding and backorder costs. Each end item backlogged at

the end of a period is charged a penalty cost p. Each component in stock at stockpoint n at

the end of a period is charged a holding cost hn. As we have already mentioned h1 ≥ h2.

A representation of this assemble to order system can be seen in Figure 1.

Figure 1: Assemble to order problem with two stockpoints

For any variable or parameter x, we define the operators “+” and “−” as x+ = max{0, x}

and x− = min{0, x} = max{0,−x} such that x = x+ − x−. The backlog of the end item

at the end of period t is denoted by B0(t). It is equal to max{[X1(t)]
−, [X2(t)]

−} where

[X1(t)]
− and [X2(t)]

− represents the shortage at the end of period t for component 1 and 2

respectively. We summarize the model variables and parameters in Table 1.

Let C(t) be the one period total costs incurred at the end of period t which is simply the

summation of holding costs for each component on stock and backlogging costs for each end

item which cannot be assembled immediately. Then, C(t) is equivalent to the following:

C(t) = h1I1(t) + h2I2(t) + pB0(t). (1)
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D[t1, t2): cumulative customer demand during the time interval [t1, t2)
f(.): probability density function for demand per period
F (.): cumulative distribution function for demand per period
µ: expected value of demand per period
σ: standard deviation of demand per period
cv: coefficient of variation of demand per period (cv = σ/µ)
Rn: review period of component n
r: the number of times that stockpoint 1 can order per order

of stockpoint 2. (r = R2/R1)
Ln: leadtime for arrival of orders for component n
hn: inventory holding cost per period for each unit of component n
p: penalty cost for each unit backlog
Sn: base stock level for component n
Xn(t): net stock of component n at the end of period t
In(t): on-hand inventory of component n at the end of period t
IPn(t): inventory position of component n at the beginning of period t after

the ordering decision is made
B0(t): the amount of backlog of the item at the end of period t

Table 1: Summary of model parameters

The on-hand inventory is dependent on the net stock by In(t) = Xn(t) + B0(t) as follows

from De Kok (2003). Be aware that, we can have backorders of the end item while having

stock of one of the components at hand. So, the total cost per period becomes:

C(t) = h1X1(t) + h2X2(t) + (p+ h1 + h2)B0(t). (2)

The objective is to minimize long-run expected system-wide cost per period under a given

replenishment policy. In the following section, we analyze the expected cost per period under

two different ordering policies. In order to facilitate the analysis, we define an order cycle as

the time interval which starts with an arrival of orders to both stockpoints and ends with

the period before the next delivery to both stockpoints again. Thus, the cycle has length

of R2 periods. Now, assume that a cycle starts with an order arrival to the stockpoints at

the beginning of period t0. During this cycle, stockpoint 2 will receive an order only once.

The related order decision was taken at the beginning of period t0 −L2. On the other hand,

stockpoint 1 will receive new components r times. Then, Stockpoint 1 will receive orders at
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the beginning of periods t0 + jR1 during the cycle where j = 0, . . . , r − 1. These arrivals of

orders are results of the ordering decisions taken at the beginning of periods t0 + jR1 − L1.

By renewal theory, in the long-run, expected average cost per period will be equivalent to

expected average cycle cost divided by the cycle length. Therefore, the cost function to

optimize is equal to:

1

R2

r−1∑
j=0

R1−1∑
k=0

E[C(t0 + jR1 + k)]. (3)

3 Analysis for Different Policies

In this section, we analyze the assemble-to-order system as described above under two differ-

ent heuristic policies. The first one is the pure base stock policy. Our motivation for choosing

this policy is its ease of implementation, and its optimality in assembly systems and serial

systems with stockpoints having different review periods. The other policy, is the balanced

base stock policy which was first introduced by Zhang (1995). Under this policy, the system

behaves like a single stockpoint and only one policy parameter has to be determined. While

the optimization of the balanced base stock policy is easier, the application of the policy may

be more difficult.

3.1 Pure Base Stock Policy

In this section, we assume a pure base stock policy which is characterized by two policy

parameters (S1, S2) such that at the beginning of each review period the inventory position

of component n is raised to the base stock level Sn:

IPn(t) = Sn if t ∈ Tn. (4)

GP (S1, S2) symbolizes the long-run average cost function for the pure base stock policy

where S1 and S2 represent the base stock levels. Then, the optimization problem (P1) to be
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studied is given as:

(P1) : Min GP (S1, S2) (5)

s.t. S1, S2 ≥ 0.

By using the cycle definition mentioned in Section 2, under pure base stock policy, the

corresponding net stocks at the end of periods t0 + jR1 + k for j = 0, . . . , r − 1 and k =

0, . . . , R1 − 1 are

X1(t0 + jR1 + k) = S1 −D[t0 + jR1 − L1, t0 + jR1 + k + 1), (6)

X2(t0 + jR1 + k) = S2 −D[t0 − L2, t0 + jR1 + k + 1). (7)

Then, the long-run average cost function given in equation (3) becomes:

GP (S1, S2) = h1

{
S1 − µ

[
L1 +

R1 + 1

2

]}
+ h2

{
S2 − µ

[
L2 +

R2 + 1

2

]}
+
(p+ h1 + h2)

R2

r−1∑
j=0

R1−1∑
k=0

E[B0(t0 + jR1 + k)]. (8)

Proposition 3.1 provides the analytical expression of the total expected backorders during the

order cycle in equation (8). Apparently, this part is the most complicated part of the objective

function. Let us define j∗ as the smallest integer that satisfies t0 + j∗R1 − L1 ≥ t0 − L2.

(Please note that if j∗ ≥ r, the expression (10) is zero.) For the aggregate demand during

(L2 + jR1 + k + 1), (k + L1 + 1), and (|L1 − L2 − jR1|) periods, we define the convoluted

distribution functions by F j
k , Fk, and F j respectively. Similarly, f j

k , fk, and f j represent the

density functions. We refer to the Appendix for the proofs of all propositions and theorems

presented throughout the paper.

Proposition 3.1. Under pure base stock policy, total expected backorders during a cycle is

10



given as:

r−1∑
j=0

R1−1∑
k=0

E[B0(t0 + jR1 + k)] =

j∗−1∑
j=0

R1−1∑
k=0

{
E[X2(t0 + jR1 + k)]− +

∫ ∞

0

∫ S2+x

0

(1− F j(S1 + x− y))f j
k(y)dydx

}
(9)

+
r−1∑
j=j∗

R1−1∑
k=0

{
E[X1(t0 + jR1 + k)]− +

∫ ∞

0

∫ S1+x

0

(1− F j(S2 + x− y))fk(y)dydx

}
.(10)

Let, SP
1 and SP

2 be the optimal base stock levels for this assemble-to-order system under

pure base stock policy. The properties of the objective function and optimality conditions

for problem (P1) are given by Theorem 3.2.

Theorem 3.2. The cost function GP (S1, S2) is convex under pure base stock policy and the

optimal base stock levels have to satisfy the following conditions:

1

R2

{(
j∗−1∑
j=0

R1−1∑
k=0

∫ ∞

0

∫ SP
2 +x

0

f j(SP
1 + x− y)f j

k(y)dydx

)

+

(
r−1∑
j=j∗

R1−1∑
k=0

[1− Fk(S
P
1 )]F

j(SP
2 − SP

1 )

)}
=

h1

(p+ h1 + h2)
, (11)

1

R2

{(
j∗−1∑
j=0

R1−1∑
k=0

[1− F j
k (S

P
2 )]F

j(SP
1 − SP

2 )

)

+

(
r−1∑
j=j∗

R1−1∑
k=0

∫ ∞

0

∫ SP
1 +x

0

f j(SP
2 + x− y)fk(y)dydx

)}
=

h2

(p+ h1 + h2)
. (12)

By Theorem 3.3, we show that at optimality the nonstockout probability is equal to the

newsboy ratio similar to the serial and assembly systems. However, for this assemble-to-order

system, this result does not lead to a recursive solution for finding the base stock levels.

Theorem 3.3. Under optimal pure base stock policy the following holds:

1

R2

r−1∑
j=0

R1−1∑
k=0

P {B0(t0 + jR1 + k) = 0} =
p

p+ h1 + h2

. (13)
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3.2 Balanced Base Stock Policy

In this section, we assume a base stock policy for one component and we synchronize the

inventory position of the other component. We define the review period plus the leadtime

of the component as its uncertainty period. The uncertainty periods of stockpoint 1 and

stockpoint 2 are denoted by ∆1 (= R1 +L1) and ∆2 (= R2 +L2) respectively. Moreover, we

define the difference between the uncertainty periods of the components by ∆ (= ∆1 −∆2).

When ∆ ≥ 0, we are able to completely synchronize the net stock of component 2 with

respect to the net stock of component 1 since component 2’s uncertainty period is shorter.

We explain this by using timing of orders. Firstly, we know that only one order of stockpoint

2 arrives during the order cycle that starts with period t0 and this order is placed at the

beginning of period t0 − L2. Secondly, the last order of the expensive item in a cycle is

received at the beginning of period t0 +(r− 1)R1. This order was placed at the beginning of

period t0 + (r − 1)R1 − L1. If we compare these two ordering periods, we find the following

relation:

t0 + (r − 1)R1 − L1 = t0 + rR1 −R1 − L1 = t0 +R2 − (R1 + L1) (14)

≤ t0 +R2 − (R2 + L2) = t0 − L2. (15)

So, just before component 2 is ordered at the beginning of period t0 − L2, we already know

how much of component 1 will be available during the cycle. Consequently, the amount of

order for component 2 can be made depending on the previous orders of component 1. This

result enables us to avoid having excess stock of component 2.

When ∆ < 0, the uncertainty period of component 1 is shorter. So, it makes sense to

completely synchronize the net stock of component 1 with respect to component 2. Again,

consider the cycle where at the beginning of period t0 the first orders of both components

arrive. The ordering decision of these first arrivals take place at the beginning of periods

t0 − L1 and t0 − L2 for item 1 and 2, respectively. Additionally, we know that by definition
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L1 > L2, so t0 − L1 < t0 − L2. This means that there is at least one order of stockpoint 1

that must be placed before we know what will be available for item 2 at the beginning of the

cycle. As a result, synchronization fails.

We define the balanced base stock policy only for the case where ∆ ≥ 0 as follows:

IP1(t) = S1, if t ∈ T1 (16)

IP2(t) = S1 −D[t−∆, t), if t ∈ T2 (17)

By this way, it is guaranteed that the net stocks of both components will be the same

at the end of an order cycle. Let, GB(S1) be the long-run average cost period under the

balanced base stock policy. Then, the optimization problem (P2) to be studied is

(P2) : Min GB(S1) (18)

s.t. S1 ≥ 0.

In the long-run, the net stocks of stockpoint 1 during the cycle are the same as in the equations

(6). The net stocks for stockpoint 2 at the end of periods t0 + jR1 + k for j = 0, . . . , r − 1

and k = 0, . . . , R1 − 1 are

X2(t0 + jR1 + k) = S1 −D[t0 + (r − 1)R1 − L1, t0 + jR1 + k + 1). (19)

Proposition 3.4. Under balanced base stock policy with ∆ ≥ 0 the net stock of component

2 is always greater than or equal to the net stock of component 1.

As a result of Proposition 3.4, the penalty cost will be charged with respect to the net
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stock of component 1 only. Then, the cost per period is computed by:

GB(S1) = (h1 + h2)

{
S1 − µ(L1 +

1

2
)

}
− µ(h1 + (2− r)h2)

R1

2
(20)

+
(p+ h1 + h2)

R2

r−1∑
j=0

R1−1∑
k=0

E[X1(t0 + jR1 + k + 1)−]. (21)

Theorem 3.5 states necessary and sufficient conditions for optimal solution of problem (P2).

Theorem 3.5. The cost function GB(S1) is convex and the corresponding optimal base stock

level SB
1 is found by:

1

R1

R1−1∑
k=0

Fk(S
B
1 ) =

p

p+ h1 + h2

. (22)

The proof of this theorem can be done by following the same outline given for the proof

of Theorem 3.2. Notice that equation (22) is also the nonstockout probability for this system

and it is equivalent to newsboy ratio similar to a single stockpoint. This property makes it

computationally easy to find the optimal base stock level, unlike the pure base stock policy

case defined in Section 3.1.

4 Comparison of the Policies

In this section we compare the performance of the pure base stock policy and balanced

base stock policy on the assemble-to-order model discussed in Sections 2 and 3. At first, we

analytically show the relation between the optimal base stock levels found by the two policies

by Theorem 4.1.

Theorem 4.1. The optimal base stock levels of stockpoint 1 found by pure base stock policy

and balanced base stock policy meet the following condition when ∆ ≥ 0:

SB
1 ≤ SP

1 (23)

We know that under balanced base stock policy component 2 never imposes a restriction

14



on the release decision to assemble the final product. However, the same service level require-

ment applies to both of the policies, which depends on the same nonstockout probability. To

fulfill this requirement under balanced base stock policy, the base stock level of component 1

has to be lower so that the nonstockout probability always depends on the expensive compo-

nent. This theorem implies that stockpoint 1 incurs lower holding costs under the balanced

base stock policy whereas the penalty costs incurred due to the unavailability of component

1 will be lower for the pure base stock policy.

Furthermore, we have conducted numerical studies involving five different factors: holding

costs, service level, coefficient of variation of demand, replenishment intervals, and leadtimes.

Firstly, we fix h1 = 1 and change the level of h2. We vary the penalty cost according to type

1 service level criterion. This service level denotes the nonstockout probability per period,

which is indeed equal to equations (13) and (22). Let, γ be the target service level, then the

corresponding penalty cost becomes: p = γ(h1 + h2)/(1− γ).

We take customer demand as Mixed Erlang distributed. There are two main reasons

for choosing this distribution. Firstly, it is easy to approximate other distributions with a

Mixed Erlang distribution by using two-moment fits (see Tijms, 1986). Secondly, there is an

exact evaluation procedure to compute the backorders as described in Van Houtum (2006).

The factors and their levels used in the numerical experiment are presented in the first two

columns of Table 2. Additionally, we set the review periods as R1 = 1, R2 = 4 and the

leadtime of component 2 as L2 = 1.

We have solved 81 problem instances with Matlab. We used the built-in nonlinear op-

timization tool procedure “fmincon” to compute the optimal base stock levels of problem

(P1). Then we optimized problem (P2) by finding the root of (22) for the balanced base

stock policy. We compared the optimal cost and optimal base stock level of stockpoint 1 un-

der different policies for each parameter setting. We present the results in terms of relative
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differences which are denoted by δG and δS as shown below:

δG =
GP (S

P
1 , S

P
2 )−GB(S

B
1 )

GP (SP
1 , S

P
2 )

(24)

δS =
SP
1 − SB

1

SP
1

(25)

Table 2: Summary of the results of numerical experiment

%δG %δS

Factor Level Avg. Max. Min. Avg. Max. Min.

h2

0.1 -0.06 1.50 -1.95 0.56 2.19 0.00
0.25 -1.49 0.94 -5.73 1.19 2.99 0.00
0.5 -4.33 -0.11 -11.58 2.52 5.48 0.68

γ
0.9 -1.36 1.5 -9.24 1.64 5.48 0.00
0.95 -1.93 0.88 -10.30 1.43 4.66 0.00
0.99 -2.57 0.70 -11.58 1.21 3.54 0.00

cv

0.5 -2.47 0.78 -11.58 0.98 2.42 0.00
1 -1.74 1.25 -9.86 1.46 4.10 0.00
1.5 -1.66 1.50 -10.46 1.83 5.48 0.00

L1

4 -0.06 0.70 -0.50 0.42 2.19 0.00
8 -1.18 1.50 -5.25 1.98 5.48 0.39
16 -4.63 0.13 -11.58 1.88 5.22 0.35

Overall -1.96 1.50 -11.58 1.42 5.48 0.00

The results are summarized in Table 2. From the overall results, we see that there

is not much cost difference between the two policies but pure base stock policies are on

average slightly better. In cases with high holding cost at stockpoint 2, high service level,

low coefficient of variation, and longer leadtime at stockpoint 1 the pure base stock policy

performs better.

To understand these results better we conducted some experiments that show the marginal

effects of the factors. We set a base case where h1 = 1, h2 = 0.1, γ = 0.95, cv = 1, R1 = 1,

R2 = 4, L1 = 8, and L2 = 1. For the following numerical results, we use these parameters

unless they are specifically stated.

We start with analyzing the trade-off between the holding and backordering costs as
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Figure 2: The effects of holding cost and service level on the performance of policies

shown in Figure 2. Clearly the the pure base stock policy performs better with service levels

higher than 0.7 and with holding cost higher than 0.3. The balanced base stock policy, on

the other hand, should be preferred for the cases where the service level is as low as 0.5

and the holding cost at stockpoint 2 is low compared to the holding cost of stockpoint 1.

Such service levels may seem unrealistic but they can occur in practice if there is an agreed

upon time window for fulfilling the customer demand. Here, the low service level makes

holding cost as important as the penalty cost, as a result holding less stock on hand becomes

favorable. Balanced base stock policy is better since it gives lower optimal base stock level

for the expensive item. As the service level increases, together with the h2/h1 ratio, the

pure base stock policy performs better since penalty cost is the most important term in the

cost function. Moreover, the holding cost of both components have similar weights in the

objective function. Finally, when h2 is zero both policies give the same result because the

system actually reduces to a single stockpoint and the policies converge.

Figure 3: The effect of difference between uncertainty periods on the performance of policies

Further, we demonstrate the effect of ∆ on the optimal cost as shown in Figure 3. At

the extreme case ∆ = 0, the base stock level of the cheap component will be fixed under

balanced base stock policy, thus the policy will behave as a pure base stock policy. This

explains δG being zero at that point. As the number of times stockpoint 1 can order during a

cycle decreases (like when r = 1), we observe sharper differences on the optimal costs. If the

difference between uncertainty periods is short, the balanced base stock policy outperforms

the pure base stock policy. As absolute difference between uncertainty periods in terms

of leadtimes and review periods increases, we need to apply more sophisticated policies to

control the system. The pure base stock policy works better under high ∆, by having two

control parameters for the system instead of one.

Next, we explore the effect of coefficient of variation under extreme service levels and
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Figure 4: The effect of coefficient of variation on the performance of policies, γ = 0.5

Figure 5: The effect of coefficient of variation on the performance of policies, γ = 0.95

different holding costs in Figures 4 and 5. In cases where service level and h2/h1 is low, there

is no regular pattern of results in terms of coefficient of variation in Figure 4. In all other low

service level cases, the balanced base stock policy performs even better as the coefficient of

variation increases. In contrast, under high service level, the gap between the optimal cost

of both policies increases with lower cv levels as shown in Figure 5. This result suggests that

synchronization of the net stocks is helpful under highly uncertain demand.

Table 3: The effect of γ, cv and h2/h1 on optimal base stock levels

γ cv h2/h1 SB
1 SP

1 SP
2

0.5 1 0.25 866.90 898.86 493.35
0.75 866.90 958.79 414.60

0.5 1.5 0.25 839.65 886.13 547.03
0.75 839.65 987.24 422.57

0.5 2.5 0.25 513.51 531.62 307.09
0.75 513.51 626.22 246.52

0.95 1 0.25 1443.46 1471.09 954.40
0.75 1443.46 1521.16 868.55

0.95 1.5 0.25 1738.10 1783.07 1220.02
0.75 1738.10 1858.04 1101.53

0.95 2.5 0.25 2439.19 2499.78 1876.32
0.75 2439.19 2670.13 1589.75

Furthermore, we analyze the behavior of optimal base stock levels in Table 3. As h2/h1

increases under pure base stock policy, the optimal base stock level of stockpoint 1 slightly

increases and the base stock level of stockpoint 2 decreases to reduce the holding cost at

stage 2. This result is related to the change in the weight of the optimality equations (11)

and (12). Under given coefficient of variation and service level, optimal base stock level of

stockpoint 1 found by the balanced base stock policy does not change due to different h2/h1

levels. This is because the optimality equation (22) depends on the p
p+h1+h2

ratio which is

equal to the service level. As observed from the table, the high coefficient of variation results
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in sharp changes in optimal base stock levels when service level changes. We explain this

effect due to higher uncertainty conditions. As service level decreases holding cost becomes

more important, under highly uncertain demand and it is advantageous to keep the net stocks

as low as possible. On the contrary, when penalty cost is high, the optimal base stock levels

are higher with high cv.

5 Summary and Conclusions

We studied an assemble-to-order system with one final product that is composed of one long

leadtime component with short review period and one short leadtime component with long

review period. Such a system cannot be solved to optimality by existing methods in literature

since the review periods are not nested. Instead, we assumed and compared two heuristic

control policies: the so-called balanced base stock policy and pure base stock policy.

We derived the exact cost expressions for both policies and we provide the optimality

conditions for the policy parameters. We also show the equivalence of newsboy ratio to the

nonstockout probability at optimality for both policies. For both the balanced base stock

policy and the pure base stock policy, we showed that the under the optimal policy parameters

the final product nonstockout probability is equal to the Newsboy fractile. Moreover, we

prove that the balanced base stock policy gives lower optimal base stock level for stockpoint

1 compared to the pure base stock policy. Here, we would like to mention that the analytical

results of this model holds under general holding costs. The specific choice for the cost

parameters is based on our observations from practice.

The numerical results show that the balanced base stock policy performs better under

low service levels, low h2/h1 ratios, and high demand uncertainty. Conversely, the pure base

stock policy is preferable under high service levels, high h2/h1 ratio, and large difference

between uncertainty periods.

Computationally speaking, finding the optimal base stock level in balanced base stock

policy is much easier since we directly use the newsboy formula given in equation (22). For
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the pure base stock policy we have to use a generic optimization method to determine the

optimal solution which takes longer time. On the other hand, from a practical point of view,

applying the pure base stock policy is easy for the companies. Since the base stock levels are

fixed to a certain value.

Clearly, the model discussed in this paper is far from the true complexity in practice.

Thus, we intend to extend our research to more complex systems. The balanced base stock

policy can be applied to two-echelon ATO systems with multiple components as long as we

preserve the ordering of sums of lead times and review periods indicated by the situation ∆ ≥

0. This leads to a single base stock level governing all subsequent decisions. The challenge is

to develop the exact expressions for the component holding costs and final product penalty

costs. Especially, the derivation of the exact backorder cost term will become complicated.

Even for the current one-product two-component ATO system, we need to explore the case

of ∆ < 0 and formulate policies that allow for exact analysis. Towards this end, we intend

to derive optimal policies for this system based on stochastic dynamic programming. This

research should reveal whether we can make steps towards multi-item multi-echelon inventory

systems without restrictive conditions on lead times and order frequencies.
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Appendix

Proof of Propostion 3.1.

Proof. The proof will be shown only for expression (9) which is j < j∗ case. For ease of notation,

we define the following variables: D1(j, k) = D[t0 + jR1 − L1, t0 + jR1 + k + 1), D2(j, k) = D[t0 −

L2, t0 + jR1 + k + 1). The expectation of backorders at the end of period t0 + jR1 + k is

E[B0(t0 + jR1 + k)] =

∫ ∞

0
P{ max(X1[t0 + jR1 + k]−, X2[t0 + jR1 + k]−) > x}dx (26)

=

∫ ∞

0
(1− P{[D1(j, k)− S1]

+ ≤ x, [D2(j, k)− S2]
+ ≤ x})dx (27)

=

∫ ∞

0
(1− P{[D1(j, k) ≤ S1 + x,D2(j, k) ≤ S2 + x})dx. (28)
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Notice that D1(j, k) and D2(j, k) are dependent. When j < j∗, it holds that t0−L2 > t0+jR1−L1.

Thus, D2(j, k) < D1(j, k) for given j and k. Now, we redefine D1(j, k) as D1(j, k) = D2(j, k) +

D3(j, k) such that D3(j, k) = D[t0 + jR1 − L1, t0 − L2). Then, the following holds:

P{D1(j, k) ≤ S1 + x,D2(j, k) ≤ S2 + x} (29)

= P{D2(j, k) +D3(j, k) ≤ S1 + x,D2(j, k) ≤ S2 + x} (30)

=

∫ S2+x

0
P{D3(j, k) ≤ S1 + x− y,D2(j, k) = y}dy (31)

=

∫ S2+x

0
F j(S1 + x− y)f j

k(y)dy. (32)

By using the resulting equation (32), in equation (28) the expectation of backorder for j < j∗

becomes:

E[B0(t0 + jR1 + k)] =

∫ ∞

0

{
1−

∫ S2+x

0
F j(S1 + x− y)f j

k(y)dy

}
dx (33)

=

∫ ∞

0

{
1−

∫ S2+x

0

{
1− P{D3(j, k) > S1 + x− y}f j

k(y)
}
dy

}
dx (34)

=

∫ ∞

S2

{
1− F j

k (z)
}
dz +

∫ ∞

0

∫ S2+x

0
P{D3(j, k) > S1 + x− y}f j

k(y)dydx (35)

= E[X2(t0 + jR1 + k)]− +

∫ ∞

0

∫ S2+x

0
(1− F j(S1 + x− y))f j

k(y)dydx. (36)

The expression (10) can be proven by following the same steps.

The proof of Theorem 3.2

Proof. The proof of this theorem follows from standard calculus. First, take the first order partial

derivatives of the cost function (8) with respect to S1 and S2. Then, by making these partial

derivatives equal to zero, we get equations (11) and (12). To prove convexity, first derive the

related Hessian matrix by taking second order partial derivatives. Then, it can be shown that the

determinants of the Hessian are nonnegative. This result implies that the cost function is convex,

and the first order derivatives provide the optimal base stock levels.

The proof of Theorem 3.3
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Proof. First, we write down the nonstockout probability in terms of conditional probabilities. For

any j and k:

P {B0(t0 + jR1 + k) = 0} =

1− P {X1(t0 + jR1 + k) < 0, X1(t0 + jR1 + k) ≤ X2(t0 + jR1 + k)}

−P {X2(t0 + jR1 + k) < 0, X2(t0 + jR1 + k) < X1(t0 + jR1 + k)} . (37)

Consider the expression P {X1(t0 + jR1 + k) < 0, X1(t0 + jR1 + k) ≤ X2(t0 + jR1 + k)} in equa-

tion (37) when j < j∗. Then, we can rewrite D1(j, k) as D1(j, k) = D2(j, k) + D3(j, k) and the

expression becomes:

P {X1(t0 + jR1 + k) < 0, X1(t0 + jR1 + k) ≤ X2(t0 + jR1 + k)}

= P {D1(j, k) > S1, D2(j, k)−D1(j, k) ≤ S2 − S1} (38)

= P {D2(j, k) +D3(j, k) > S1, D3(j, k) ≥ S1 − S2} (39)

=

∫ ∞

0
P {D2(j, k) +D3(j, k) = S1 + x,D3(j, k) ≥ S1 − S2} dx (40)

=

∫ ∞

0

∫ S1+x

S1−S2

f j
k(S1 + x− z)f j(z)dzdx (41)

=

∫ ∞

0

∫ S2+x

0
f j
k(y)f

j(S1 + x− y)dydx. (42)

Here again, under the same condition the other term

P {X2(t0 + jR1 + k) < 0, X2(t0 + jR1 + k) < X1(t0 + jR1 + k)} is equal to:

P {X2(t0 + jR1 + k) < 0, X2(t0 + jR1 + k) < X1(t0 + jR1 + k)}

= P {D2(j, k) > S2, D1(j, k)−D2(j, k) < S1 − S2} (43)

= [1− F j
k (S2)]F

j(S1 − S2). (44)
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If we follow the same arguments for j ≥ j∗ case, we get the following set of equations:

P {X1(t0 + jR1 + k) < 0, X1(t0 + jR1 + k) ≤ X2(t0 + jR1 + k)}

= [1− Fk(S1)]F
j(S2 − S1), (45)

P {X2(t0 + jR1 + k) < 0, X2(t0 + jR1 + k) < X1(t0 + jR1 + k)}

=

∫ ∞

0

∫ S1+x

0
fk(y)f

j(S2 + x− y)dydx. (46)

If we plug the equations (42), (44), (45), and (46) in equation (37), total the nonstockout probability

for the optimal base stock levels becomes:

r−1∑
j=0

R1−1∑
k=0

P {B0(t0 + jR1 + k) = 0} =

1− 1

R2




j∗−1∑
j=0

R1−1∑
k=0

[1− F j
k (S

P
2 )]F

j(SP
1 − SP

2 )


+


r−1∑
j=j∗

R1−1∑
k=0

∫ ∞

0

∫ SP
1 +x

0
f j(SP

2 + x− y)fk(y)dydx




− 1

R2




j∗−1∑
j=0

R1−1∑
k=0

∫ ∞

0

∫ SP
2 +x

0
f j(SP

1 + x− y)f j
k(y)dydx

}

+


r−1∑
j=j∗

R1−1∑
k=0

[1− Fk(S
P
1 )]F

j(SP
2 − SP

1 )


 . (47)

We know that the optimal base stock levels satisfy the equations (11) and (12). Notice that the left

hand side of the optimality conditions are contained in the equation (47). Then it holds that:

r−1∑
j=0

R1−1∑
k=0

P {B0(t0 + jR1 + k) = 0} =

= 1− h1
(p+ h1 + h2)

− h2
(p+ h1 + h2)

=
p

(p+ h1 + h2)
. (48)

The proof of Proposition 3.4
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Proof. For each j = 0, . . . , r − 1 and k = 0, . . . , R1 − 1 the following holds:

X2(t0 + jR1 + k)−X1(t0 + jR1 + k) = D[t0 + jR1 − L1, t0 + (r − 1)R1 − L1) > 0. (49)

The proof of Theorem 4.1

Proof. For ease of notation, we again use the following variables: D1(j, k) = D[t0 + jR1 − L1, t0 +

jR1 + k + 1), D2(j, k) = D[t0 − L2, t0 + jR1 + k + 1). From the equations (13) and (22) we have:

1

R2

r−1∑
j=0

R1−1∑
k=0

P
{
D1(j, k) ≤ SP

1 , D2(j, k) ≤ SP
2

}
=

1

R2

r−1∑
j=0

R1−1∑
k=0

P
{
D1(j, k) ≤ SB

1

}
. (50)

Let’s assume that SP
1 < SB

1 , then for any j and k it holds that

P
{
D1(j, k) ≤ SP

1 , D2(j, k) ≤ SP
2

}
< P

{
D1(j, k) ≤ SB

1 , D2(j, k) ≤ SP
2

}
(51)

≤ P
{
D1(j, k) ≤ SB

1

}
. (52)

This results leads us to the following inequality:

1

R2

r−1∑
j=0

R1−1∑
k=0

P
{
D1(j, k) ≤ SP

1 , D2(j, k) ≤ SP
2

}
<

1

R2

r−1∑
j=0

R1−1∑
k=0

P
{
D1(j, k) ≤ SB

1

}
. (53)

Equation (53) contradicts with equation (50). Thus, the relation between the optimal base stock

levels must be SP
1 ≥ SB

1 .
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