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Summary 
 

 

3D-PTV of particle-laden turbulent pipe flows 
 

Turbulent dispersed two-phase flows are ubiquitous in both industry and nature. Flows of 

this kind are characterized by particles, droplets or bubbles dispersed within a carrier phase. 

Predicting the behavior of this kind of flows is therefore of quite some interest in 

engineering applications. However, due to the complex nature of the problem, the available 

models are usually simplified and not able to fully predict fluid and particle behavior for 

the whole range of applications. 

Experiments are indispensable tools to understand the underlying physics of dispersed two-

phase flows. Experiments therefore serve to improve the efficiency and reliability of 

numerical or theoretical models. However, the lack of consistent experimental data makes 

validation of existent models difficult. 

Among the numerous turbulent dispersed two-phase flows, a particular class possesses 

challengeable and interesting properties that need disclosure: flows where the dispersed 

phase is able to interact with turbulent eddies. This class of dispersed two-phase flows is 

even more interesting and of practical importance in an inhomogeneous turbulent velocity 

field such as found in pipes. This work aims at experimental clarification of the essential 

physics of turbulent particle-laden pipe flows with a characteristic ratio of turbulent carrier-

phase RMS velocity and terminal velocity of inertia particles, urms/UTV, of order one.  

An experimental setup is arranged in such way that the liquid and particle three-

dimensional velocities in upward and downward vertical flows can be measured. The 

optical technique three-dimensional particle tracking velocimetry (3D-PTV) is applied to 

gather Lagrangian and Eulerian statistics for both flow tracers and inertia particles. To the 

best of our knowledge, no Lagrangian results have been reported for particle-laden pipe 

flows. 

The role of inertia, flow turbulence and flow orientation with respect to gravity on 

concentration profile and mean relative velocity of particle-laden pipe flows is presented. 

The effect of particle feedback on the fluid is presented with δ-forcing. The relevance of the 



  

break-up mechanism in the transport of inertia particles in transient pipe flows is discussed. 

The main features of Lagrangian velocity and acceleration statistics of flow tracers and 

inertia particles are disclosed. 
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Introduction 
 

 
Turbulent dispersed two-phase flows are ubiquitous in both industry and nature. For 

example, the dispersion of pollutants in an urban environment, sediment transport or the 

fluidized catalytic cracking of carbohydrates are often studied.[1] Flows of this kind are 

characterized by particles, droplets or bubbles dispersed within a carrier phase. The 

occurrence of such flows in pipes is large as well, with applications ranging from 

pneumatic conveying systems to chemical reactor design. Predicting the behavior of this 

kind of flows is therefore of quite some interest in engineering applications. However, due 

to the complex nature of the problem, the available models are usually simplified and not 

able to fully predict fluid and particle behavior for the whole range of applications. 

Single-phase turbulent flows are intensively studied as well. In the range of low to 

moderate Reynolds numbers, Direct Numerical Simulation (DNS) of the Navier-Stokes 

equations enables the computation of complete turbulent flow fields without the need of 

any modeling assumptions. This method is well known to be limited by the requirement of 

quite some computational power, even at moderate Reynolds numbers. Single-phase 

turbulent flows at high Reynolds numbers or in complex flow geometries demand huge 

computational effort. In such conditions, predictions are only possible by modeling parts of 

governing equations, in particular the small scales, resulting in the so-called closure 

problem: the process of averaging leads to terms which require heuristic modeling. 

The stochastic nature of the carrier-phase turbulence is further complicated by the 

dispersed phase. Its presence makes such type of flow far more complex than its single-

phase counterpart. When particles are present in a fluid flow, the only way to exactly 

describe the system, including the interaction of the phases, is to fully resolve the particle 

surfaces, demanding severe mesh refinement at the surroundings of particles. The presence 
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of particles therefore significantly enhances the requirements with regard to computational 

memory and time. As a result, extra assumptions are needed to simplify the system, such as 

treating finite-size particles as point forces in the fluid domain. 

In this context, experiments are indispensable tools to understand the underlying 

physics of dispersed two-phase flows. Experiments therefore serve to improve the 

efficiency and reliability of numerical or theoretical models. However, the lack of 

consistent experimental data makes validation of existent models difficult. 

Among the numerous turbulent dispersed two-phase flows, a particular class possesses 

challengeable and interesting properties that need disclosure: flows where the dispersed 

phase is able to interact with turbulent eddies. The terminal velocity of the dispersed phase, 

UTV, is attained when gravitational and drag forces on a single particle are in equilibrium in 

a quiescent fluid. When a characteristic root-mean-square velocity of the turbulent carrier 

phase, urms, and the terminal velocity are of same order of magnitude, urms/UTV ≈ O(1), 

significant interaction between the dispersed phase and turbulent eddies is expected. For 

example, the entrapment of particles in vortical flow structures can modify the time-

averaged settling velocity. 

This class of dispersed two-phase flows is even more interesting and of practical 

importance in an inhomogeneous turbulent velocity field such as found in pipes. This thesis 

aims at clarifying some essential physics of turbulent dispersed two-phase pipe flows with 

urms/UTV ≈ O(1) by means of experiments and analysis. Particle-laden flow is chosen 

because solid particles make the control of the inertial characteristics of the dispersed 

phase, such as the mass density and volume, easier. In addition, the shape is controlled and 

precisely known while the difference in mass densities of carrier and dispersed phases can 

be varied at will. Two categories of polystyrene inertia particles are employed to represent 

the dispersed phase, with particle diameters corresponding to 0.80 and 0.96 mm. 

Polystyrene particles with 0.2 mm are employed as flow tracers. The ratio of mass densities 

of applied particles and of the carrier fluid (water) is 1.05. Vertical flow directions are also 

chosen, since the alignment (or counter alignment) of the main flow and gravity facilitates 

the analysis due to symmetry in azimuthal direction. 

Experimental approaches in fluid flows are often subdivided into Eulerian and 

Lagrangian. While the first approach employs a stationary observer to measure flow 

quantities, in the second particles are followed on their path through the flow and their 

changing behavior is monitored as a function of time. Therefore, an experimental technique 



Introduction 

  

3 
 

which allows statistical analysis in both Eulerian and Lagrangian reference frames is 

desirable. 

Two main categories of techniques are often applied in the acquisition of Lagrangian 

statistics: sonar and optical. The first is in general employed for low particle number 

densities; one or few more particles in the measurement volume at a certain time and 

during short measurement periods.[2] This is certainly a drawback when a large amount of 

particles is required to obtain reliable statistics. An optical technique allows a considerable 

range of particle number densities and sizes[3] and has therefore been chosen for the present 

work.   

The optical technique three-dimensional particle tracking velocimetry (3D-PTV) is 

applied to gather Lagrangian and Eulerian statistics of particle-laden turbulent pipe flows. 

This technique is chosen instead of PIV for the following reasons: the inhomogeneous 

nature of pipe flow where particle statistics are in general averaged on discrete radial 

positions and the sparse particle field, particularly for the dispersed phase. 

3D-PTV particle-laden pipe flow experiments have been performed in a test rig always 

at the same bulk flow Reynolds number (Reb), 10300, based on the pipe diameter and bulk 

velocity. Measurements at the specified Reynolds number favor direct comparison to 

literature results. Lagrangian measurements in flow geometries with non-zero mean 

velocity component are scarce. The work of Suzuki and Kasagi[4] represents one of the few 

exceptions. For the practical pipe flow, only the 3D-PTV results of Walpot et al.[5] at flow 

Reynolds number, 5300 and 10300, are available to our knowledge. At the same Reb, 

Veenman[6] provided Eulerian and Lagrangian computations of single-phase pipe flow, 

with DNS. However, these reference Eulerian and Lagrangian results have only been 

obtained for single-phase pipe flows in fully developed flow conditions. To the best of our 

knowledge, no Lagrangian results have been reported for particle-laden pipe flows. 

With the aim of evaluating the effect of flow orientation with respect to gravity on the 

concentration profiles of particles, the experimental setup is arranged in such way that the 

liquid and particle statistics in upward and downward vertical flows can be measured. To 

analyze the role of flow turbulence level on the time-averaged mean relative velocity, 

different stages of flow development are also tested at Reb = 10300. In chapter 3, it is 

shown that turbulent features provide a convenient way to distinguish flow conditions from 

the fully developed case. 
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Two types of inertia particles with Stokes number, based on the relaxation time for 

particles in stationary flow and on viscous scales, equal to 2.3 and 3.3 are applied. The 

mean volumetric concentration in the range 0.5×10-6 to 1.7×10-4 is varied in order to 

investigate above which limit two-way coupling comes into play. The effect of particle 

feedback on the fluid is presented with δ-forcing. For the category of particles and 

velocimetry results, a limiting value for mean concentration which can affect the frictional 

pressure drop is provided. 

The outline of the thesis is as follows. In Chapter 2, the 3D-PTV experimental setup is 

validated by comparing Eulerian and Lagrangian results of a single-phase pipe flow in fully 

developed conditions at Reb = 10300 with literature results. New experimental methods are 

explored and presented, paving the way for measurement of Lagrangian particle statistics, 

be it tracers or be it inertial particles, at tube Reynolds numbers 20,000 and higher. Chapter 

3 presents the role of inertia, flow turbulence and flow orientation with respect to gravity 

on concentration profile and mean relative velocity of particle-laden pipe flows. In Chapter 

4, the relevance of the break-up mechanism in the transport of inertia particles in transient 

pipe flows is discussed. The main features of Lagrangian velocity and acceleration statistics 

of flow tracers and inertia particles are disclosed in Chapter 5. Finally, Chapter 6 presents 

main conclusions of this thesis and recommendations for future work. Each chapter in this 

thesis is written in the format of articles in order to submit them to publication. As a result, 

some parts of this thesis may be present in more than one chapter. 
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Lagrangian and Eulerian statistics of pipe 
flows measured with 3D-PTV at moderate 

and high Reynolds numbers 

 
 

 

Three-dimensional particle tracking velocimetry (3D-PTV) measurements have provided 

accurate Eulerian and Lagrangian high-order statistics of velocity fluctuations and 

correlations at Reynolds number 10300, based on the bulk velocity and the pipe diameter. 

Spatial resolution required in the analysis method and number of correlation samples 

required for Lagrangian and Eulerian statistics have been quantified. Flaws in a previously 

published analyzing method have been overcome. Furthermore, new experimental solutions 

are presented to facilitate similar measurements at Reynolds numbers of 15000 and beyond. 

 

 

 

 
This Chapter is substantially reproduced from a submission to Flow, Turbulence and 

combustion by J. L. G. Oliveira, C. W. M. van der Geld and J. G. M. Kuerten 
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2.1 Introduction 

 

To experimentally determine statistical properties of a turbulent velocity field in a 

Lagrangian particle frame of reference is difficult. This determination is nevertheless 

essential for the development of stochastic models of turbulent transport in applications 

such as combustion, pollutant dispersion and industrial mixing; see Pope[1] and Yeung.[2]  

The difficulty is primarily caused by the presence of a wide range of dynamical time scales, 

a property inherent in turbulence. For a complete description of particle statistics it is 

necessary to follow particle paths with very fine spatial and temporal resolution, of the 

order of the Kolmogorov length and time scales, lk and τk respectively. To capture the large 

scale behavior trajectories should be tracked for long times, i.e. multitudes of τk. This 

obviously necessitates access to an experimental measurement volume with a typical length 

scale of the order of the bulk velocity times a typical Lagrangian correlation time, as will 

be defined in section 2.2; see Biferale et al.[3] 

As a means to testing experimental results, comparison with Direct Numerical 

Simulation (DNS) of the Navier-Stokes equations can be made in the range of low to 

moderate Reynolds numbers. The DNS enables computation of complete turbulent flow 

fields without the need of any modeling assumptions. This method is well known to be 

limited by the requirement of quite some computational power, even at moderate Reynolds 

numbers. Extension to higher Reynolds number is possible with the aid of Lagrangian 

stochastic models, see Brouwers[4] for example, but then experiments are required to 

furnish essential correlation parameters and validation data. Lagrangian statistics of 

turbulent flows play an essential role in Lagrangian stochastic models. In homogeneous 

turbulent shear flow, Pope[5] found good agreement between autocorrelation functions 

determined by DNS and the ones calculated by a linear Lagrangian stochastic model. In 

realistic inhomogeneous turbulent flows, much less information is available. 

Lagrangian experimental techniques such as three-dimensional particle tracking 

velocimetry, 3D-PTV, are for the above reasons a necessity in turbulence research. Despite 

the higher practicality of inhomogeneous turbulence, experimental Lagrangian results in 

the literature are mostly restricted to homogeneous turbulence. Lagrangian measurements 

in flow geometries with non-zero mean velocity component are scarce. The work of Suzuki 

and Kasagi[6] represents one of the few exceptions. For the practical pipe flow, only the 3D-

PTV results of Walpot et al.[7] are available to our knowledge. Veenman[8] provided 
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Eulerian and Lagrangian computations of pipe flow, with DNS, at Reb = 5300 and 10300. 

Walpot et al.[7] presented description at Reb = 5300 and some preliminary results at Reb = 

10300 and compared with the data of Veenman[8]. The present study is an extension of the 

work of Walpot et al.[7] using essential ingredients of their experimental set-up and utilizing 

the Veenman[8] code for comparison as well. 

 As compared to the work of Walpot et al.[7], the following changes and extensions are 

made in their measurement and analysis set-up: 

•  The test rig is equipped with 3 new cameras, each of the type Photron 

“HighSpeedStar” with 12-bit grayscale CMOS sensor and a resolution of 1024 x 1024 

pixels. With the new cameras, the recording frequency of the experiments has been 

enhanced from 30 to 50 Hz. In addition, the higher sensitivity of the new cameras has 

shortened the exposure time from 40 to 20 µs; what allowed sharper measurement images; 

•  The homemade analyzing software used by Walpot et al.[7] has been replaced by 

a commercially available PTV code from La Vision GmbH, named Davis. In contrast to the 

new code, the old homemade software did not provide documentation nor a user-friendly 

interface. Moreover, it did not allow massive parallel imaging processing and the 

possibility of enhancing the image contrast between particles and background by the use of 

built-in image filters; 

•  The two analyzing methods of Lagrangian trajectory statistics are revisited. They 

were only tested by Walpot et al.[21] at Reb = 5300 and compared with DNS data of 

Veenman[8] at this Reynolds number. In the present study, the methods are compared at Reb 

= 10300 with the aid of new experimental data; 

•  The smoothening applied to particle trajectories by Walpot et al.[7] is also 

revisited. The cut-off frequency of the smoothing filter was determined by these authors 

with DNS computations which is an undesirable feature. An experimental method should 

function fully independent of numerical results. It will be proven that no smoothening is 

required if a suitable localization accuracy is attained. To be specific, a maximum 

triangulation error of the order of 40 µm will be required in the particle detection algorithm 

at Reb = 10300. 

The following experimental results will be reported: 

•  High-order Eulerian statistics of the velocity distribution, such as skewness and 

flatness, for Reb = 10300. Skewness and flatness were measured by Walpot et al.[7] only for 

Reb = 5300; 
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•  A measure will be given for the number of correlation samples required to 

determine Lagrangian velocity statistics in the form of autocorrelations or cross-

correlations at Reb = 10300 with higher accuracy than 2 %; 

•  Lagrangian velocity autocorrelations and cross-correlations with time 

separations up to values of τuτR
-1 of about 0.08; here, uτ is the wall shear velocity and R the 

pipe radius. Similar Lagrangian statistics were obtained by Walpot et al.[7], but only for 

time separations up to τuτR
-1=0.06. 

In addition, new experimental methods will be explored and presented which pave the 

way for measurement of Lagrangian particle statistics, be it tracers or be it inertial particles, 

at tube Reynolds numbers 20,000 and higher. 

The structure of the paper is as follows. In Section 2.2, the experimental setup is 

presented, including specifications of flow tracers, calibration unit, cameras support and 

illumination systems. Optical requirements for 3D-PTV are also explained. Sections 2.3 

and 2.4 provide the 3D-PTV procedure for identification of individual particle trajectories 

and the analysis method, respectively. Section 2.5 presents Eulerian and Lagrangian results 

at Reb = 10300. Although higher Reynolds numbers have not actually been measured, 

Section 2.6 presents a systematic discussion for overcoming typical 3D-PTV challenges at 

higher Reb. Finally, conclusions are presented in Sections 2.7. 

2.2 Experimental setup 

 

The requisites for 3D-PTV in pipe flows are: an experimental setup capable of 

generating and reproducing particular process conditions; a mechanical construction to 

avoid relative motion between cameras and the measurement volume even if calibration 

plates are inserted; illumination equipment; image processing to identify the geometrical 

center of particles; an analysis method of particle trajectories. These are discussed below. 

2.2.1 Test rig 

 

Turbulent pipe flow has been created in a water loop driven by a centrifugal pump. The 

in-line 3 kW centrifugal pump of type DPV18-30, manufactured by “Duijvelaar pompen”, 

allows Reynolds numbers, based on the bulk velocity, Ub, and pipe diameter, D, in the 

range 103 to 105. A frequency controller permits fine-tuning of the Reynolds number by 
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adjusting the mass flow rate of the upward vertical flow in the measurement section; see 

Fig. 2.1. 

 

Figure 2.1 Schematic of the 3D-PTV experimental setup for pipe flow.  
 

 

The mass flow rate is measured by means of a Micro Motion Elite CMF300 mass flow 

and mass density meter, whose inaccuracy is less than 0.5% of the registered flow rate. 

There is no requirement of fully developed flow measurements in Coriolis meters. A water 

reservoir, located at the bottom of the setup, contains about 2 m3 of water. This value 

facilitates water temperature stabilization and Reynolds number control. Temperature 

during a test-run was essentially constant, varying typically 0.1ºC only. A submerged pump 

has been placed inside the water reservoir in order to promote homogeneous dispersion of 

the flow tracers. 

Water tank with 2 m3

Centrifugal pump

Coriolis 

flow meter

Flow straightener: 

Bundle type

Flow 

direction

Return pipe

Test section

~ 50D

~
 4

5
 D
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A flow straightener, tube bundle conditioner of ISO 5167-1:1991, see Miller[9], has 

been placed downstream of the 90º bend, see Fig. 2.1. The flow straightener removes 

secondary flows and shortens the required length to obtain a fully developed flow. At 45D 

further downstream, this flow condition has been achieved in the test section. At 25D 

downstream of the test section, the water enters a container which is connected to the main 

tank via a return pipe.   

The measurement section consists of a glass pipe to ensure optical accessibility. A 

water-filled rectangular glass box around the pipe minimizes optical distortions. The pipe 

diameter is chosen relatively large, 100 mm inner diameter, because measurements at high 

Reynolds numbers are required. For a certain Reynolds number, bulk velocities are lower 

for higher tube diameters, which is advantageous for the acquisition of Lagrangian 

statistics. 

2.2.2 Flow tracers 

 

Polystyrene seeding particles with a diameter of 0.2 mm and a density of 1.05 g/cm3 

have been added to the water as flow tracers. In order to assure that these particles follow 

the flow, time and length scales of particles, τp and lp, respectively, should be less than the 

fluid scales, τf and l f. The subscripts p and f denote particle and fluid. The relaxation time 

for particles in stationary flow is shown by Albrecht et al.[10] to be: 

τp = (d2ρp/18µ)(1 + 0.5ρf /ρp)                                                            (2.1) 

where d is the particle diameter, ρ the mass density and µ the dynamic viscosity. A 

relaxation time of τp ≈ 4 ms is obtained for the tracers. 

The fluid timescale τf is taken to be the Kolmogorov one, τk, for turbulent pipe flow at 

Reb = 10300. In the inhomogeneous pipe flow at hand, assessment of a mean Kolmogorov 

timescale can be done with τk = (ν/ε)1/2, where ν is the kinematic viscosity and ε, the kinetic 

energy dissipation per unit mass. In approximation, ε = 4uτ
2Ub/D, where uτ is the wall shear 

velocity and D the pipe diameter; see Bakewell et al.[11] For Reb < 105, the wall shear 

velocity can be estimated as uτ = (Ub
2f /8)1/2 with f = aReb

-m, m = 0.25 and a = 0.316; see 

Hinze.[12] For water flows at atmospheric conditions, ν ≈ 10-6 m2s-1, and an 83 ms 

estimation of τk is obtained. The presented mean estimation of τk is inside the range of 

Kolmogorov timescales as computed by DNS at Reb = 10300: 40 to 315 ms.   
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The Kolmogorov length is now compared to the diameter of the seeding particles in 

order to confirm that the tracers follow fluid fluctuations. Based on acceleration 

measurements, Volk et al.[13] observed that neutrally buoyant particles behaves as fluid 

ones if d/lk < 2. Here lk = (ν3/ε)1/4 is the Kolmogorov length. In the DNS code of Veenman[8] 

for turbulent pipe flow at Reb = 10300, the Kolmogorov length was about 0.6 mm in the 

pipe core and 0.2 mm at the wall region. As already mentioned, the diameter of the tracers 

is 0.2 mm. 

Lastly, the terminal velocity of tracers, UTV, is here evaluated in order to show that 

gravitational effects can be neglected. This term is often used to characterize suspensions 

and is a measure of the settling velocity a particle can achieve in a stationary fluid when 

gravitational and drag forcers are in equilibrium. The terminal velocity is represented by 

Eq. (2.2): 

UTV = {(4 (ρp - ρf ) dp g) / (3CD ρf )}
1/2                                              (2.2) 

where g is the gravity acceleration and CD the drag coefficient. The latter is a function of 

the particle Reynolds number, Rep = dp|(Urel|/ν, which is based on the particle diameter and 

the terminal velocity. For 0.01 < Rep < 20, Clift et al.[14] defined a correlation for CD as 

given by Eq. (2.3): 

 CD = (24 / Rep) (1 + 0.1315Rep
0.82-0.05log Rep )                                  (2.3) 

A numerical value for UTV can be obtained by an iterative computation concerning Eq. 

(2.2), Eq. (2.3) and Rep. An estimation of 1 mm/s was obtained for UTV, while the bulk flow 

velocity, Ub, is approximated 100 mm/s for the present case. Since Ub >> UTV, τp<τk  and 

lp<lk, the employed particles can work as flow tracers. 

2.2.3 Mechanical construction for camera support and reproducible calibration 

 

Descriptions of the camera support and calibration unit are now presented. The optical 

requirements for achieving high accuracy measurements are first provided. Lastly, 

requirements of the illumination apparatus are specified. 

 
A. Optical requirements for 3D-PTV 

To determine without ambiguities the center of a particle in the measurement space, a 

minimum of three cameras is required. When the center of a particle is determined for one 
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camera (2D), there is a line of possible crossing points for a second camera recording. The 

use of a third camera restricts the particle projection to a unique point. Therefore, three 

“HighSpeedStar” cameras with 12-bit grayscale CMOS sensor and a resolution of 1024 x 

1024 pixels have been utilized to capture almost instantaneous 3D particle positions in an 

approximate measurement volume of 1x1x1 dm3. The cameras can record at 1000 Hz at full 

resolution, but were operated at 50 Hz to maximize the flow measurement time. Recordings 

are performed until the internal memory of the cameras becomes full during approximately 

2 minutes. The above estimate of τk shows that maximum physically relevant frequencies 

are about 12 Hz for Reb = 10300, making a 50 Hz sampling rate sufficient according to the 

Nyquist Theorem. 

Settings of cameras and lens arrangement must be properly chosen in order to obtain 

sharp images of moving particles. While a minimum depth of field must be guaranteed to 

obtain sharp recordings in the whole volume of the measurement section, a minimum field 

of view is needed to obtain trajectories long enough to measure all relevant flow scales. For 

the present experiment, the settings can be summarized as: 

•  Sensor resolution 1 pixel = 17 µm2;  

•  Focal length of 105 mm; 

•  Exposure time of 20 µs; 

•  Distance from the lens to the object of roughly 800 mm. 

The magnification (M) of the particle image by a single lens is given by Eq. (2.4): 

 M = f / (f - do)                                                                                 (2.4) 

where f and do denote focal length and the distance from the lens to the object, respectively. 

Given the resolution of the cameras and the size of the tracers, f and do have been selected 

such that tracers occupy an area of 2 x 2 pixels of the camera sensor. 

 
B. Cameras support system and calibration unit 

A statically determined approach has been applied to a mechanical design, where no 

relative movement between the cameras and measurement volume is allowed throughout 

the calibration and 3D-PTV measurements. Following Walpot et al.[16], three cameras are 

attached to the flow tube by a stiff and lightweight equilateral triangular frame constructed 

between them, see Fig. 2.2. A total of 24 degrees of freedom, which includes three 

translations and three rotations for the three cameras and the measurement section, have 
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been prescribed once, either as positions to be held or desired motions to be set by 

manipulation. Due to the statically determined design, there is no incorporation of unknown 

thermal stresses in the frame or flow tube.  

To satisfy the optical requests previously described, the frame holds the cameras at an 

approximate distance of 800 mm to the measurement volume, assuring appropriate depth of 

field, magnification and field of view. The angles between their optical axes have been set 

over a reference value of 40º to minimize the error in 3D localization of a particle, see Kieft 

et al.[15] Appropriate positioning of the cameras can be achieved by inclined holders with 

incorporated elastic hinges. 

 

Figure 2.2 Schematic of the camera support system, stroboscopic light sources and the 

calibration unit inserted in the test section.  

 
An in-situ calibration method has been utilized to transform the two-dimensional pixel 

information of each camera to world coordinates. A calibration unit precisely moves a grid 

with regular inter-spaced points throughout the measurement volume to certain positions, 

with high reproducibility. The bigger and well resolved the volume covered by the 

calibration plate, the smaller interpolation and extrapolation errors of the calibration 

functions are. 

The grid points are essentially holes with a diameter of 0.3 mm, so that the projections 

of the dots on the camera sensor are at least several pixels in diameter. The grid is 

manufactured out of a 2.5 mm thick glass plate which is single-sidedly coated with a 

chromium coating of 150 nm thickness. The grid points are made up out of circular voids in 

the coating. The grid diameters are accurate within 0.5 µm. The relative position of two 

neighboring grid points is accurate within 0.1 µm. 
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Downstream of the measurement section, a pipe segment can be removed for 

calibration purposes. The centrifugal pump allows a stationary water-level just above the 

measurement volume, given that the energy provided by the centrifugal pump is in 

equilibrium with the potential energy of the static head. Once the water level is static, the 

calibration unit is inserted, making possible a reproducible positioning of the calibration 

grid throughout the measurement volume; see Fig. 2.2. 

 
C. Lighting systems 

During the calibration procedure, the calibration grid is homogeneously illuminated 

from behind by means of four floodlight halogen lamps. A semi-transparent plastic sheet is 

placed between the optical correction box and the floodlight sets to ensure uniform lighting 

of the measuring volume in order to improve the contrast between the circular void grid 

points and the continuous surface of the calibration plate. Examples will be given later. 

For lighting the measurement volume during the 3D-PTV measurements, powerful 

light sources are necessary for recordings with short exposure times. While the use of a 

continuous light source would result in serious heat generation and the efficiency of an 

expensive laser would decrease as a result of illuminating a big volume of approximate 0.1 

x 0.1 x 0.1 m3, two strong stroboscopic light sources with an output of about 5 J per pulse 

each have successfully been applied. They are positioned at the sides of the optical 

correction box; see Fig. 2.2. 

The strobes were custom-built in our laboratory to maximize the light output at a 

maximum of 60 Hz with light pulse duration of approximately 40 µs. A better image 

contrast was achieved by setting the exposure time of the cameras to 20 µs. In 20 µs, 

particles displace no more than 3 µm and, therefore, this time window was applied. Forced 

convection of air was necessary to cool down the electronic board that controls the 

stroboscope system. 

The digital delay/pulse generator DG535 assured a perfect synchronization between 

the recordings of the three cameras and the lighting pulse generated by the stroboscope 

equipment. 

2.3 Particle tracking algorithm 
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A commercial 3D-PVT imaging code from La Vision GmbH, named Davis, has been 

used to obtain tracers’ trajectories. Algorithm details of the Davis PTV tracking code can 

be found in Maas[17] and Dracos.[18] 

In Fig. 2.3, a flowchart describes the 3D-PTV procedure for identification of individual 

particle trajectories. Calibration and flow measurement images are processed in order to 

output files which contain time reference and spatial positions of individual particle 

trajectories to the analysis method. 

 

Figure 2.3 Flowchart for 3D-PTV procedure. Calibration and flow measurement images 

are processed until files with time reference and Cartesian positions of particle trajectories 

are exported to the analysis method. 

 
To create the calibration functions which correlate the pixel information of each 

camera to the world coordinates, recordings of the calibration unit have been carried out 

with the same orientation: calibration plate plane is parallel to the pipe axis. No rotations 

are allowed, just translations in the coordinate direction perpendicular to the calibration 

plate plane. The recordings of the calibration plate are registered in 26 different positions, 

moved with constant increments, ∆z = 2 mm, with an error of less than 1 µm. 

The centers of the circular voids in the plate are equidistant in horizontal and vertical 

direction: ∆x, ∆y = 5 mm; see Fig.’s 2.4a, 2.4b, 2.4c, which provide the view of the 

calibration plate by each camera. With the information of the pixel size of the cameras, 17 

µm2, and the diameter of the circular voids, Φ = 0.3 mm, 3rd order polynomials relate the 

pixel information to the physical dimensions of the calibration plate. As explained in 

section 2.2, linear interpolations and extrapolations of the generated polynomials are 
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extended to the whole volume of measurement. Root-mean-square (RMS) fit error of 

generated functions are smaller than 0.05 pixel; approximately 5 µm. 

Once the calibration procedure is completed, the tube section is placed and flow 

measurements are recorded; see Fig.’s 2.4d, 2.4e, 2.4f. Built-in imaging filters improve the 

unsatisfactory contrast between particles and background caused by light reflections at the 

wall; see Fig.’s 2.3, 2.4g, 2.4h, 2.4i. The 2D determination of the center of a tracer in the 

cameras plane is done by a Gaussian fit and cataloged only if its intensity threshold is 

larger than a default value. 

The 3D particle detection is then initiated, see Fig. 2.3. Since each detected particle on 

a camera plane is situated somewhere along a perspective line for each of the three 

cameras, the 3D position of a particle can be reconstructed at the position where the three 

perspective lines cross. The polynomials created during the calibration stage are used to 

determine the spatial Cartesian coordinates. 

However, due to bias and random errors generated by undesired relative motion of 

cameras and setup, finite spatial and time resolution of cameras, blur effect from shutter 

speed etc., the projections of the perspective lines don’t match perfectly. To find out the 

corresponding match of the perspective lines, a tolerance is necessary. The triangulation 

error is a 1D measure (e.g. in pixels) which allows such tolerance. Thus, it represents a 

direct measure of uncertainty on the 3D particle position determination for the whole 3D-

PTV procedure. 

At the present measurements, a maximum triangulation error equal to 0.2 pixel, 

roughly 20 µm, is enough to identify the 3D position of particles in the measurement space. 

However, a maximum triangulation error of 0.4 pixel is set to capture longer particle 

trajectories which are extended to regions in the space where the experimental uncertainties 

are higher. This was applied to achieve longer time spans in Lagrangian correlations. A 

further increase of the maximum triangulation error is risky, since higher levels of 

measurement noise and spurious vectors can lower the quality of Lagrangian trajectories. 

Subsequent to the 3D particle position determination, the algorithm checks which 

particle in frame i+1 is most likely to match to a particle in frame i, see Fig. 2.3. During 

this last step, information of previous matches of the current particle and neighboring 

particles, up to frame i, is used to extrapolate the particle track to the most likely position in 

frame i+1. A range of allowed particle displacements, which are input at the imaging code, 

facilitates a proper matching. 
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                                 2.4a                       2.4b                          2.4c 

 

                                 2.4d                       2.4e                          2.4f 

 

                                 2.4g                       2.4h                          2.4i 

 

                                      2.4j                                                    
Figure 2.4. Photos of the 3D-PTV procedure for determining the center of tracers along 

each individual particle trajectory. Figures 2.4a, 2.4b, 2.4c show photos of the calibration 

unit; Fig.’s 2.4d, 2.4e, 2.4f illustrate raw images of pipe flow measurements; Fig.’s 2.4g, 

2.4h, 2.4i present the action of imaging filters to improve contrast between tracers and 

background; and Fig. 2.4j shows the merging of individual tracer trajectories in a finite 

time window. 
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Finally, matrices with the spatial coordinates and the time reference of each particle 

trajectory successfully identified are exported to the analysis method, see Fig. 2.3. In Fig.’s 

2.4a – 2.4i, photos of each camera show different stages of the 3D-PTV procedure. Figure 

2.4j presents the merging of individual tracers’ trajectories in a finite time window. The 

colorful vectors represent the orientation and magnitude of particle velocities. Most of the 

generated spurious vectors are located at the wall region and removed in a way to be 

described in the next section, 2.4. 

2.4 Trajectory analysis 

 

The particle tracking algorithm yields matrices which contain time reference and 

spatial positions of particle trajectories from the flow measurement images. Before the 

Lagrangian and Eulerian statistical analysis of turbulent pipe flow, the spatial positions are 

converted from Cartesian to cylindrical coordinates. Of course, the spurious trajectories 

generated during the 3D-PTV procedure are discarded. The flowchart of Fig. 2.5 

summarizes the necessary steps in order to plot Lagrangian and Eulerian results. 

 

Figure 2.5 Flowchart for analysis method. Eulerian and Lagrangian results are the outputs. 

 
Let σ represent the standard deviation for velocity components at a specific radial 

position. The subscripts r, θ and z denote radial, tangential and axial cylindrical 

coordinates, respectively. Since statistics in fully developed pipe flow are inhomogeneous 

in the radial direction, the transformation from Cartesian to cylindrical coordinates is made. 

Cylindrical coordinate transformation 

Special treatment at tube axis

Spurious vectors filtering:

Outlier-check (± 5σ)

Minimum/maximum displacement

EULERIAN RESULTS

Averaged data in 

radial bins

No need of

high frequency noise 

removal

LAGRANGIAN RESULTS

Averaged data in radial bins 

Averaged data for time lag



Chapter 2 

 

20 
 

The removal of unrealistic trajectories has been accomplished by two filters: a length 

filter and a displacement outlier-check (±5σr,θ,z). The length filter consists of eliminating all 

trajectories of tracers outside a range of minimum and maximum positions of a particle 

track. Particle trajectories with just a few number of positions have higher probability of 

being false than trajectories with a large number of positions. A minimum number of 

positions is therefore required in order to account a particle trajectory. This procedure has 

proven to remove unrealistic particle trajectories. For example, elimination of particle 

trajectories comprising less than 10 spatial positions has been found to be efficient. On the 

other hand, a particle trajectory cannot exceed a maximum number of positions along the 

finite test section. No difference at final results was observed if the maximum limit varied 

from 80 to 300 positions per particle track. 

The standard deviation applied in the outlier-check filter is derived from the present 

experiments. As an alternative, velocity standard deviations obtained from literature could 

be used as well. For example, standard deviations exceeding Reb = 10300 can be found in 

Kunkel et al.[20] 

At the proximity of the pipe centerline, r/R = 0, discontinuity in radial and tangential 

velocities for cylindrical coordinates can cause wrong differentiation of displacements in 

time. If a particle crosses r = 0, the radial velocity, ur, may appear to be zero, and the 

tangential velocity, uθ ≈ πr/dt; see Equations (2.5) and (2.6). The problem can be avoided 

by selecting a Cartesian frame of reference before a cylindrical one, and later converted. 

ur(tj)= [   r(tj+1) -  r(t j)   ]/dt                                                                 (2.5) 

uθ(tj)= [   θ(tj+1) -  θ(tj)  ]r(t j) /dt                                                         (2.6) 

Walpot et al.[7] identified high-frequency noise in their 3D-PTV experiments. The 

authors filtered their experimental data by applying the low-pass smoothing filter 

introduced by Savitzky and Golay[19] to the measured particle tracks. They repeated the 

filter 10 times using a 3rd order polynomial with right and left span of 8 points.  

In the present 3D-PTV experiments, no need of filtering high frequency measurement 

noise has been observed. The results remain unchanged if the procedure as used by Walpot 

et al.[7] is adopted. Velocities derived by straightforward interpolations of consecutive 3D 

positions of a particle trajectory have been proved reliable to obtain pipe flow statistics. 

The application of Savitzy-Golay low-pass smoothing filter to correct the spatial position of 
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particles is unnecessary and also undesirable because of the necessity to know the cutoff 

frequency.  

After the coordinate transformation and the removal of the spurious particle tracks, see 

Fig. 2.5, the differentiation in time of the validated trajectories generates the velocity 

vectors. For 3D-PTV Eulerian results, which are plotted at Section 2.5.1, the velocity 

vectors are gathered in discrete radial bins, the only inhomogeneous direction. 

The velocity vectors are gathered in discrete radial positions in accordance to r i ± ∆r, 

where the subscript i varies from 0 to 50; see Fig. 2.13. The length (L) of each discrete bin 

is 100 mm, while the radial band has a dimension of 2∆r. Exceptions are the first and last 

grids which have a radial band dimension of ∆r. At Reb=10300, a radial discretization ∆r 

equal to 0.5 mm has been proved reasonable to describe the Eulerian results. A small ∆r is 

obviously required for a high resolution of velocity gradients such as ∂Uz/∂r. 

In the analysis of Lagrangian data, see Fig. 2.5, the same procedure as prescribed by 

Walpot et al.[21] will be applied. As these procedures are conveniently described with the 

aid of the present data, these explanations are given in Section 2.5.2. 

2.5 Results 

 

In this section, 3D-PTV results in fully developed pipe flow are compared to the 

Eulerian and Lagrangian outcomes at same Reynolds bulk number as provided by the 

validated direct numerical simulation (DNS) code developed by Veenman.[8] In this 

numerical method, simulations were executed in a finite part of a cylindrical pipe of length 

5D by applying a Fourier-Galerkin spectral method in the streamwise and azimuthal 

periodic directions, and a Chebyshev-collocation method in the radial one. Eulerian and 

Lagrangian results are presented in subsections 2.5.1 and 2.52, respectively. 

2.5.1 Eulerian results 

 

3D-PTV particle trajectories have been registered in 21 individual measurement sets of 

120 s each. The camera frame rate has been adjusted to 50 Hz for every experimental set. 

The differentiation of particle trajectories in time generates roughly 2.7 x 106 velocity 

vectors; see the square symbols in Fig. 2.6. The velocity vectors are ensemble-averaged in 
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distinct radial bands, which are delimited by a discrete width of ± ∆r = 0.5 mm around a 

chosen radius, see Fig. 2.13. 

Velocity statistics are normalized by the centerline velocity, Uc, and plotted against the 

dimensionless distance to the pipe centerline, r/R, which represents the discrete radial 

bands. The centerline velocity is chosen as a normalization quantity instead of the wall 

shear velocity, uτ, which is often used in the literature, because Uc can be determined more 

accurately in an experimental setup. Throughout this article, error bars, with size equal to 

±2σm, indicate the magnitude of the error in the mean of a certain quantity, x, in Eq. (2.7), 

measured. Here, σm denotes: 

σm={ [Σxi
2 – n-1( Σxi)

2]  / [n(n-1)] } 1/2                                              (2.7) 

with xi the average value for a single measurement set and n the total number of 

measurement sets: 21.  

In Fig. 2.6, the concentration, Φv, and the measured number of velocity vectors in the 

total period of 42 minutes are plotted. These quantities are represented by diamonds and 

squares, respectively. The registered number of velocity vectors rises from the pipe 

centerline to r/R = 0.57, where it is about 105 vectors, proportionally to the rise in volume 

of the experimental point. This is because the measured concentration of velocity vectors is 

homogeneous up to r/R = 0.57. 

 

Figure 2.6 Concentration and total number of velocity vectors as function of the 

dimensionless radius, r/R. Square and diamond symbols denote the total number and 

concentration of velocity vectors, respectively. 
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There is a continuous drop in the number of measured particle trajectories from            

r/R = 0.57 to r/R = 1. The difficulties in measuring particle trajectories in this region are 

caused by light reflections, which stem from differences in the refractive indices of water, n 

≈ 1.33, and glass, n ≈ 1.51, and the curvature of the glass pipe; see Fig.’s 2.4d, 2.4e and 

2.4f. As a result, the contrast between tracers and background becomes poor. Difficulties in 

capturing tracer trajectories increase at the grid elements of the experimental mesh closer to 

the wall. From r/R = 0.9 to r/R = 0.98, there is an approximate reduction from 2×104 

velocity vectors to 500. 

A suitable description of pipe flow statistics has also been achieved in the wall region 

despite the fact that the uncertainties in the computation of averaged velocity statistics 

increase with the reduction in the number of velocity vectors there. This can be observed by 

the way that the 3D-PTV results match the DNS ones at the wall region in the Eulerian 

results to be presented along this section.  

In Fig. 2.7, the mean axial velocity profiles as determined by the actual 3D-PTV 

experimental setup, denoted by diamonds, and DNS results of Veenman[8], denoted by a 

solid line, are shown. Mean streamwise velocity values are presented at the left axis of Fig. 

2.7. Good agreement between experimental and DNS results has been obtained. Due to 

their negligible size, no error-bars can be discerned. 

 

Figure 2.7 Mean streamwise velocity profiles for Reb = 10300. The solid line represents 

DNS data of Veenman[8] and the diamonds, 3D-PTV results. Square symbols denote an 

assessment of the relative deviation between the presented results. 
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To quantify the degree of conformity between experimental and DNS results, Fig. 2.7 

also provides the plot of the relative deviation between them, expressed here as a 

percentage value of |(U3D-PTV
 – UDNS)/U3D-PTV| and represented by squares. The values of the 

relative deviation are shown at the right axis of Fig. 2.7. 

The integration of the product of the mean axial velocity and the area of each point, 

(Uz)i × (Ai), gives the mean volumetric flow rate, Q, which crosses the measurement 

volume. Temperature measurements are used to determine the water mass density, ρ. The 

product ρ × Q provides a measure of the mass flow rate for each measurement set. These 

values match the ones given by the Coriolis meter within statistical accuracy.  

The relative deviation between DNS and 3D-PTV results is smaller than 1% until         

r/R = 0.8 and reaches 2.8% at r/R = 0.98. The rise in the relative deviation for r/R > 0.8 can 

be explained by a combination of three factors, as follows:  

•  The resolution of the discretization band at the wall. A smaller length of the radial 

band discretization, ∆r, is required to reduce the deviation values in Fig. 2.7 due to the 

higher gradient of average axial velocity in the radial direction, ∂Uz/∂r, there. While 

the mean axial velocity reduces 50% in the radial range from the pipe centerline to r/R 

= 0.95, it decreases to zero in the small region near the wall for the Reynolds number 

at hand;  

•  The reduced number of particle trajectories obtained there, see Fig. 2.6. The poor 

contrast between tracers and background due to the reflections at the wall just allowed 

a few particle trajectories to be acquired there, see Fig.’s 2.4d, 2.4e and 2.4f. Section 

2.6 provides measures to overcome reflection problems at pipe walls; 

•  The relative error growth in the mean axial velocity calculation. The magnitude of the 

tracer displacement is smaller at the wall region. Therefore, the relative error in the 

computation of the mean axial velocity increases when velocity vectors are determined 

by differentiation of the particle trajectories in time. 

The measurements of radial and tangential velocities are more challenging, since they 

present zero mean and standard deviations not bigger than 7 mm/s. With cameras frame 

rate at 50 Hz, displacements are smaller than 140 µm. However, the normalized probability 

density functions (PDFs) at r/R=0.5 demonstrate the capacities of the present 3D-PTV 

experimental measurements and analysis method, see Fig. 2.8.  
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Figure 2.8 Normalized probability density functions for all cylindrical velocity components 

at r/R=0.5. The diamonds represent 3D-PTV results, while solid and dashed lines denote 

DNS data of Veenman[8] and a Gaussian reference, respectively. 

 
In Fig. 2.8, 3D-PTV data closely match the ones obtained with DNS. The plot of the 

velocity fluctuation components in a logarithmic scale for y-axis shows also good 

agreement even at the tails far from the ensemble average. Similar results have been 

obtained at other radial positions. Gaussian reference distributions with the same mean and 

standard deviation, represented as dashed lines, are added as to show the well-known fact 

that, in inhomogeneous wall-bounded flows, the PDFs of the velocity components are bell-

shaped but not Gaussian, see Moser et al.[22] 

The main diagonal components of the Reynolds stress tensor σij = ‹u'iu'j› are compared 

with DNS results of Veenman[8] in Fig. 2.9. For all mean-square-value (MSV) plots, the 

3D-PTV data show good agreement with the DNS within measurement error, even close to 

the wall. Error-bars give an indication for the statistical error, ± 2σm; see Eq. (2.7). 
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Figure 2.9 Velocity MSV profiles of turbulent pipe flow for all the cylindrical components 

at Reb = 10300. The solid lines represent DNS data and the diamond symbols, 3D-PTV 

results. 

 
MSV of the radial and tangential velocity components are smaller than the axial one. 

While at the center of the tube (r/R<0.2) turbulence is nearly homogeneous, an 

inhomogeneous behavior is seen closer to the wall area (0.8<r/R<1). The biggest standard 

deviation for tangential direction is around 6% of centerline velocity at r/R ≈ 0.9, whereas, 

for the axial one, σz achieves ≈ 13% of Uc at r/R ≈ 0.95.  

For isotropic flows, the non-diagonal terms of σij are zero. However, in the case of 

inhomogeneous turbulent pipe flow, the only decoupled direction is the tangential one, 

which means that correlations like, e.g., u'θ u'r and u'θ u'z, are zero. The nonzero cross-

component of σij is ‹u'r u'z›, which is presented in Fig. 2.10. Error-bars give an indication for 

the statistical error. 
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Figure 2.10 Reynolds stress component ‹u'r u'z› as function of the dimensionless radius at 

Reb = 10300. The solid line represents DNS data and the diamonds, 3D-PTV results. 

 
The mean equation of motion in the axial direction is represented in cylindrical 

coordinates by Eq. (2.8). Axial normal stress gradient is equal to the cross-stream shear-

stress gradient: 

∂‹p›/∂z = (1/r) ∂(r‹T›)/∂r                                                                (2.8) 

where p is pressure and T is the total shear stress, which is a sum of the viscous stress, ρν 

d‹U›/dr, and Reynolds stress, ρ‹u'ru'z›. Since at the wall, the Reynolds stress is zero, wall 

shear stress is due entirely to the viscous contribution. The viscous stress drops abruptly for 

a short distance; and, for 0 < r/R< 0.9, the total shear stress is essentially due to the 

Reynolds stresses contribution. As the Reynolds number increases, the fraction of the pipe 

occupied by the viscous contribution decreases even more, see Pope[23], page 271. 

The description of the skewness (S=‹u' 3›/σ3) and flatness (F=‹u' 4›/σ4) factors of the 

velocity components plotted along the radius for the fully developed turbulent pipe flow are 

shown in Fig. 2.11 and Fig. 2.12. As already mentioned, error-bars represent a 95% 

confidence interval of the mean of the calculated quantities. 
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Figure 2.11 Velocity skewness of turbulent pipe flow for all cylindrical components at Reb 

= 10300. The solid line represents DNS data and the diamonds, 3D-PTV results. 

 

Figure 2.12 Velocity flatness of turbulent pipe flow for all cylindrical components at Reb = 

10300. The solid line represents DNS data and the diamonds, 3D-PTV results. 

 
In inhomogeneous wall-bounded flows, the PDFs of the velocity components are bell-

shaped but not exactly Gaussian; see Fig. 2.8. Gaussian distributions present skewness and 

flatness values equal to 0 and 3, respectively. The departure from Gaussian behavior 

increases as the wall is approached; see the skewness and flatness values for r/R > 0.8 in 

Fig. 2.11 and Fig. 2.12. In the near-wall region, the bursting processes of streaks that inject 

low-speed fluid into the core and sweep high-speed fluid towards the wall is responsible for 

increasing flatness values for all coordinate directions and skewness for the axial one. 

In fully developed flow, rotational symmetry of the flow requires the tangential 

velocity PDF to be symmetric. As a consequence, tangential skewness should be zero S(u'θ) 
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= 0 and radial skewness should be zero at the centerline, r = 0; see Fig. 2.11. In addition, 

correlations involving u'θ are zero as an outcome of the rotational symmetry. 

The radial and streamwise fluctuations are interrelated. Particles moving towards the 

wall usually retain its original axial velocity for a while and will be most probably found in 

an external radius with a positive u'z. The opposite conclusion holds for particles moving 

towards the core of the pipe. Skewness values of the radial and axial velocity components 

at the core pipe are negative until r/R ≈ 0.9 for the present Reynolds number and become 

positive towards the wall. Only close to the wall, r/R > 0.98, radial skewness becomes 

negative again. 

As a result, the transport in the radial direction of impulse in the axial direction, ‹u'ru'z›, 

should be positive on average what shows a flux of energy of the mean flow towards the 

wall where deformation into turbulent kinetic energy, k, mainly occurs. The radial 

skewness is associated to the transport of k by velocity fluctuations. In the radial range 

where radial skewness is positive, turbulent kinetic energy, k, is removed and then 

transported to the wall where it is dissipated into heat and to the core pipe to feed the mean 

flow turbulence. More details can be found in Tennekes and Lumley[24]. 

2.5.2 Lagrangian results 

 

In this section, Lagrangian results of pipe flow at Reb = 10300 are presented. The 

analysis required for inhomogeneous turbulent pipe flow is not straightforward since 

particles move during the time of observation to areas with other statistical properties. 

Discretization in space and time is necessary in such a way that enough independent data 

are collected in each point. The analysis applied follows closely the one presented by 

Walpot et al.[21], but in the present study a minimum number of correlation samples 

required for the description of Lagrangian velocity statistics will be specified. 

Walpot et al.[21] tested two analyzing methods for the assessment of Lagrangian 

statistics. These authors evaluated datasets provided by the DNS numerical code of 

Veenman[8] at Reb= 5300. One of the methods (Method I in their numbering, also adopted 

here) checks whether particles cross a chosen radial position, r i, satisfying Eq. (2.9): 

( r(tj+1)- r i) ( r(tj)- r i) < 0                                                                  (2.9) 

When a particle fulfills this condition, meaning that a particle crosses r i between two 

subsequent times, it starts to contribute to the Lagrangian correlations. For the situation 
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shown in Fig. 2.13, t3/50 would be the starting time to give Lagrangian correlations at the 

radial position in the point labeled "i”. It is obvious that within a finite time window it 

happens more often that a faster moving particle crosses the line at r i than slowly moving 

particles. For this reason, Walpot et al.[21] applied weighing factors, inversely proportional 

to the magnitude of the initial velocity component. These weighing factors were introduced 

by McLaughlin and Tiederman[25] to correct velocity bias in LDA measurements.  

Method II of Walpot et al.[21] gathers data in discrete radial bands: r i ± ∆r, with ∆r 

satisfying 2∆r > |u|∆t. Here, u is a typical radial velocity value, f.e. the standard deviation 

of radial velocity fluctuations. In Method II, the particle trajectory sketched in Fig. 2.13 

contributes to the Lagrangian correlations at grid “i” from t 1/50 to t6/50. Each particle position 

from t1/50 to t6/50 serve as an initial position of a new trajectory. When such additional 

trajectories are taken into account, the number of data available for short time correlations 

is increased. For this reason, Walpot et al.[21] introduced these extra trajectories 

corresponding to what they named ghost particles. 

The evaluation performed by Walpot et al.[21] with datasets based on the DNS of 

Veenman[8] at Reb= 5300 pointed out that Method II yielded almost unbiased statistics, 

while Method I required the weighing factors to function properly. However, their 

comparison utilized DNS results and data for Reynolds number Reb = 5300 only. Both 

methods have now been compared using data acquired by 3D-PTV at Reb = 10300. Results 

are discussed below. 

Lagrangian velocity autocorrelations and cross-correlations are defined by Eq. (2.10): 

ρij(τ,r)  = <u'i(t0)u'j(t0 + τ)>                                                             (2.10) 

where t0 denotes an arbitrary initial time and τ the correlation time span. The calculation of 

the correlations ρij(τ,r) is done by averaging all particles that are situated inside a discrete 

band centered at a radial position r in a certain time which is then marked t0 for that 

particle. These correlation functions depend on the radial coordinate r but are independent 

of t0. In addition, the correlations calculated by Methods I and II also need to meet the 

corresponding criteria above described. 
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Figure 2.13 Schematic of a particle trajectory which crosses the experimental grid "i”. The 

circles represent particle positions tracked at a frequency of 50 Hz. With Method I, t3/50 

would be the starting time to give Lagrangian correlations at grid “i”. With Method II, the 

particle trajectory contributes to Lagrangian correlations at each instant of time t1/50 to t6/50 

in a way explained in the text. 

 
Evaluation of velocity autocorrelations computed with the present experimental data at 

various radial positions showed deviations to DNS over 20% for Method I and up to 2% for 

Method II. In the evaluation of Method I, the same weighing factors were applied as in 

accordance to Walpot et al.[21] These authors tested only DNS data with Methods I and II, 

since experiments could introduce unknown side-effects. Later, Walpot et al.[7] successfully 

applied Method II to experimental data acquired by 3D-PTV. 

Since Method II gives results one order of magnitude more accurate than Method I, 

Method II is applied in the remainder of this study. In addition, the use of a method that 

does not demand any type of biasing correction is desirable for the analysis of experimental 

data. A radial band width, ∆r, of 0.5 mm and a camera frequency of 50 Hz sufficed to 

obtain negligible bias at Reb = 10300. 

With Method II, proper results have been achieved until time separations given by 

τuτR
-1 about 0.08; where uτ and R are the wall shear velocity and the pipe radius, 

respectively. To increase the band width ∆r from 0.5 to 1.5 mm has not improved results 
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for longer time separations. It just increased the amount of data for correlation time spans 

in the range: 0 < τuτR
-1 < 0.06, without significant changes in the results. A smaller band 

width resulted in the decrease of correlation samples for time separations shorter than 0.08. 

For sake of convenience the same ∆r was applied in the analysis of Eulerian data. 

The evaluation of Lagrangian velocity autocorrelations as obtained by Method II at 

different experimental grids with changeable ∆r revealed that appropriate results were 

obtained if a number of correlation samples exceeding 2×104 were available for each 

discrete time lag; see Fig. 2.14b. Figure 2.14a shows the streamwise autocorrelation as a 

function of the time separation τuτR
-1 at r/R=0.8. 

 

                             14a                                                                   14b 
Figure 2.14 Evaluation of the analyzing Method II in the description of Lagrangian pipe 

flow statistics. Figure 2.14a shows the streamwise autocorrelation as a function of the time 

separation τuτR
-1 at r/R=0.8. The solid line represents DNS data and the diamonds, 3D-PTV 

results. Figure 2.14b shows that a number of correlation samples exceeding 2×104 sufficed 

to obtain proper Lagrangian representation. 

 
As already mentioned, additional trajectories corresponding to what was named ghost 

particles were taken into account on the computation of Lagrangian velocity 

autocorrelations and cross-correlations as defined by Eq. (2.10). This resulted in the 

increase of correlation samples for short time correlations as it is shown in Fig. 2.14b. For 

time correlations up to 0.08, the influence of ghost particles becomes reduced and the 

number of correlations samples decrease. Of course, this time separation corresponds to 

end positions of the longest trajectories obtained at the present measurements. 

The computation of velocity autocorrelations and cross-correlations in a specific time 

separation provided good agreement to DNS if the number of correlation samples was over 
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an approximated value of 2 × 104. Deviations to DNS up to 2% were obtained with Method 

II if enough correlations samples were available. 

When the amount of correlation samples is below 2 × 104, there is a sudden increase in 

the Lagrangian autocorrelation values. This is due to a lack of enough data in a discrete 

time separation to compute the proper mean of correlation samples; what increases the 

coherence of the velocity product in Eq. (2.10). Radial, tangential and streamwise 

Lagrangian autocorrelations at other radial positions showed similar results as in Fig. 2.14. 

For the remaining of the Section, three dimensionless radial positions, r/R: 0.4, 0.6 and 

0.8, are chosen to present results of Lagrangian velocity autocorrelations and cross-

correlations, as defined by Eq. (2.10). 

 
A. Auto-correlations 

In Fig. 2.15, the number of correlation samples as a function of the time separation,  

τuτR
-1, is plotted for r/R equal to 0.4, 0.6 and 0.8. Appropriate Lagrangian statistics have 

been achieved roughly for 0 < τuτR
-1< 0.08. 

 

Figure 2.15 Number of correlation samples for Lagrangian statistics as a function of the 

time separation for the 3D-PTV results at r/R=0.4, r/R=0.6 and r/R=0.8. 

 

Figures 2.16 – 2.18 show comparisons between 3D-PTV and DNS results for the 

Lagrangian radial, azimuthal and streamwise velocity autocorrelation functions, 

respectively. These outcomes are shown at three radial positions: r/R=0.4, r/R=0.6 and 

r/R=0.8. 
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Solid lines represent Lagrangian DNS data calculated by Eq. (2.10); diamonds denote 

3D-PTV data. Error-bars, indicated by the dashed lines and with size equal to ±2σm, 

represent the statistical error in the 3D-PTV results. The error-bars are only plotted for 

r/R=0.4 and have similar magnitude for 3D-PTV data at r/R=0.6 and r/R=0.8. The starting 

point of the autocorrelation functions coincides with the MSV values presented in Fig. 2.9. 

 

Figure 2.16 Lagrangian radial velocity autocorrelation functions at r/R=0.4, r/R=0.6 and 

r/R=0.8. Solid lines represent the DNS data and diamonds, 3D-PTV results. Dashed lines 

denote the error-bars at r/R=0.4. 

 
Profiles of Lagrangian cylindrical autocorrelations for 3D-PTV and DNS agree within 

statistical accuracy until a separation time, τuτR
-1, close to 0.08. When the autocorrelations 

exceed this time lag reference, the slope of the profiles changes; and the agreement between 

3D-PTV and DNS Lagrangian results becomes poor. 
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Figure 2.17 Lagrangian azimuthal velocity autocorrelation functions at r/R=0.4, r/R=0.6 

and r/R=0.8. Solid lines represent the DNS data and diamonds, 3D-PTV results. Dashed 

lines denote the error-bars at r/R=0.4. 

 

 

Figure 2.18 Lagrangian streamwise velocity autocorrelation functions at r/R=0.4, r/R=0.6 

and r/R=0.8. Solid lines represent the DNS data and diamonds, 3D-PTV results. Dashed 

lines denote the error-bars at r/R=0.4. 

 
In Fig.’s 2.16 – 2.18, it is possible to observe a slower decay of autocorrelation values 

at radial positions closer to the pipe center. The inhomogeneous behavior of the flow close 

to the wall causes the autocorrelations to decay faster nearby the wall than in the pipe core. 

This behavior is better illustrated in Fig. 2.19, which shows normalized tangential 
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autocorrelation functions for the same previous radial positions. The azimuthal functions 

have been normalized with the corresponding starting values to highlight the decay rate. 

 

Figure 2.19 Normalized Lagrangian velocity autocorrelation functions for the tangential 

component at r/R=0.4, r/R=0.6 and r/R=0.8. The solid lines represent DNS data and the 

diamonds, 3D-PTV results. 

 
B. Cross-correlations 

3D-PTV and DNS results of the only non-zero cross-correlation functions, ρrz and ρzr, 

are shown at r/R=0.4, r/R=0.6 and r/R=0.8 in Fig. 2.20 and Fig. 2.21, respectively. The 

statistical error in the 3D-PTV results is indicated by the dashed lines with size equal to 

±2σm; see Eq. (2.7). As already pointed out, cross-correlations involving the tangential 

component are equal to zero, since this component is uncoupled to the other two 

components. The starting point of the cross-correlations coincides with the Reynolds stress 

component ‹u'r u'z› values presented in Fig. 2.10. 

A noteworthy difference between them is the considerably faster decay of ρzr. Particles 

which move towards the wall usually retain its original axial velocity for a while and will 

be most probably found in an external radius with a positive u'z. The opposite conclusions 

can be driven to particles moving towards the core of the pipe where those particles with 

negative radial velocities most probably shall have a negative u'z; and, as a consequence, 

the average product of u'z and u'r is positive. A particle moving in the radial direction tends 

to retain its original total axial velocity for a while, uz(t0 +τ) ≈ uz(t0); resulting in an average 

increase of the absolute value of the velocity fluctuation; given that ‹uz› varies along the 
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radius. Then, the average product ‹u'r(t0)u'z(t0 +τ)› is larger or as big as ‹u'r(t0)u'z(t0)›. The 

same cannot be said about ‹u'z(t0)u'r(t0+τ)›, since ‹ur› = 0 everywhere. 

 

Figure 2.20 Lagrangian velocity cross-correlation functions, ρrz, at r/R=0.4, r/R=0.6 and 

r/R=0.8. The solid line represents DNS data and diamonds symbols, 3D-PTV results. 

 

 

Figure 2.21 Lagrangian velocity cross-correlation functions, ρzr, at r/R=0.4, r/R=0.6 and 

r/R=0.8. The solid line represents DNS data and diamonds symbols, 3D-PTV results. 

2.6 Measures to facilitate 3D-PTV at Reynolds numbers above 14000 

 
The above determination of high-order Lagrangian and Eulerian statistics in turbulent 

pipe flow shows that high accuracy is attainable at Reb = 10300. We explored measures to 

warrant high accuracy at higher Reynolds numbers and these are now discussed, along with 

an inventory of challenges to be met. 
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A discussion about precision of 3D-PTV measurements, resolution of the analysis 

method and pipe flow scales is addressed in subsection 2.6.1. The inventory of challenges 

in higher Reynolds numbers, e.g. over 20,000, include measurements in the near-wall zone, 

light reflection at pipe walls, acquisition of longer particle trajectories and illumination 

limitations. While subsection 2.6.2 presents measures in evaluation to overcome some of 

the mentioned problems, subsection 2.6.3 provides untested suggestions. 

2.6.1 Discussion: 3D-PTV precision, analysis method resolution and pipe flow 

scales 

 

Of primary importance is the necessary 3D-PTV precision, represented by the 

maximum triangulation error, ∆tri, and the radial resolution of the analysis method, ∆r. The 

discussion of the results in the previous section provides reference values. The mean 

streamwise velocity profiles for 3D-PTV of Fig. 2.7 in section 2.5, with width ∆r equal to 

0.5 mm, showed deviations to DNS less than 1% for 0< r/R< 0.8 and exceeding 2% for 

0.95< r/R< 1. The rise in the relative deviation near the wall region makes clear that ∆tri and 

∆r are critical in the region near the wall, i.e. for 0.95< r/R< 1. This is particularly 

important if higher, i.e. above 14000, Reynolds numbers are studied since the wall region 

becomes smaller and velocity gradients more steep.  

It stands to reason that the width of a radial band, 2∆r, is coupled to the decrease in the 

mean axial velocity component in width ∆r. In the core, ∆r is chosen such that ∆Uz in ∆r is   

½Uc / 90 (45 radial bands, each with width 2∆r). In order to retain this velocity decrease per 

radial band in the near wall zone, also there 45 radial bands are required. This implies ∆r ≈ 

55 µm in the near-wall-zone. This estimation of ∆r is of the same order of magnitude as the 

present uncertainty in the particle’s center determination, represented by ∆tri. It is obvious 

that the real dimension of ∆tri, so in µm not in pixels, is also coupled to the decrease in the 

mean axial velocity component accuracy. An analogous scaling as applied above would 

result in an approximate value of 4.5 µm for the precision necessary to ∆tri in the near-wall-

zone. 

It is proposed to work with two zones in radial direction to solve the above mentioned 

problem concerning the distinct flow scales in the pipe core and in the near-wall-zone. One 

zone ranges from the pipe centerline to a radius where the axial velocity component drops 

to 50% of the axial centerline velocity, r(Uz=0.5Uc); the other domain ranges from this radius 
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to the wall. For Reb = 10300, the 50% drop in the axial velocity component occurs roughly 

at r/R = 0.95. With increasing Reynolds number this value becomes closer to 1. 

2.6.2 Measures in evaluation 

 
A. Measurements in the near-wall zone 

Higher precision measurements in the near-wall-zone can be achieved by in-situ 

calibration. In the present calibration system, a precision plate is traversed in a limited 

rectangular volume in the test section, see Fig. 2.22. Positions of tracer particles can only 

be reconstructed in the near-wall region by extrapolation of the calibration functions.  

 

Figure 2.22 Schematic shows the volume which the calibration plate traverses. 3rd order 

calibration functions are created. Particle trajectories identified in the near-wall zone are 

converted from pixel to world coordinates by extrapolation of calibration polynomials.  

 
A prototype was designed as a new concept of calibration system in order to promote 

in-situ calibration in the near-wall zone. The schematic of such prototype is shown in Fig. 

2.23. Inter-spaced circular voids are created in a circular calibration plate which is moved 

by a step-motor in equidistant steps. Obviously, the near-wall-zone is covered by the 

calibration plate. A precision screw or an adaptation of the transverse system used for the 

above measurements can achieve accurate traversing. 

The new calibration system was not applied to the present measurements. The camera 

frame holder at hand was designed to observe the calibration plate in a plane parallel to the 

pipe axis. The visualization of grid points of the circular calibration plate is distorted by the 

present cameras view. Modifications of the camera support system would therefore have 

been necessary to apply the new prototype. The concept of the new calibration system is 

saved to provide more accurate results in the near-wall region in future experiments. 
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Figure 2.23 Schematic of a prototype with a circular calibration plate (1) to promote an in-

situ calibration of the near-wall region. The circular plate is traversed along the axial pipe 

direction (2) by means of a precision screw. The precision screw is attached to a rod (3) 

which moves the circular plate.  

 
B. Measurements in the near-wall zone 

If conventional light sources are applied for the near-wall zone, the problem of light 

reflection at the pipe walls has to be overcome. Some tricks can improve the contrast 

between particles and background at regions close to the wall. For example, the use of a 

black paint or tape at the inner pipe walls can provide better contrast. The use of proper 

imaging processing filters can also help in identifying tracers at the wall region. The higher 

threshold caused by light reflections at the wall can be partially suppressed with dedicated 

algorithms. 

However, these solutions do not completely solve the reflection problem. The only 

way to systematically avoid reflections in pipes is to eliminate the differences in refractive 

indices. A solution for eliminating reflections has been found in the use of matching 

refractive indices of pipe material and fluid. For water flows, the use of polymers like 

Fluorinated Ethylene Propylene (FEP) satisfies the criterion of matching refractive indices. 

This possibility has been examined by us, see Fig. 2.24. 

This possible solution was not applied to the present mechanical construction due to 

the bad mechanical properties of this kind of polymer as compared to glass. In order to 

achieve no relative motion between cameras and a FEP pipe, the mechanical design 

concept must be revisited. In addition, lack of full transparency has been found for FEP 
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pipes, demanding light sources more powerful than the present stroboscopes and an 

increase of the exposure time of cameras. For these reasons, the mounting of a FEP test 

tube is saved as a possibility for future measurements of water flows bounded by 

transparent walls of a sort. 

 

Figure 2.24 Photograph of a circular plate submerged in water inside a fluorinated 

ethylene propylene (FEP) pipe. This solution promotes an in-situ calibration of the wall 

region and eliminates the light reflections at the wall for water flows. 

2.6.3 Untested measures 

 
A. Measurements in the near-wall zone 

A possibility for improving the precision in the near-wall-zone with the same 

experimental set-up is the use of new lenses with adapted magnification. In order to 

achieve a precision value of 4.5 µm in the near-wall zone as discussed in section 2.6.1, the 

projection of real space in the camera pixel should be reduced approximately from 100 to 

11 µm/pixel. The field of view would be reduced from 100 to 11 mm in the near-wall-zone. 

As the mean velocity near the wall is small, maximum Lagrangian correlation times 

measured will be sufficiently large in the near-wall zone for Reynolds numbers up to 

20,000. In the center zone, the present lenses can be utilized. 

An advantage of the higher spatial resolution is the possibility of reducing the diameter 

of a tracer particle. Near the wall time and length scales of the flow are smaller than in the 

pipe core and capturing these scales at higher Reynolds numbers requires smaller tracer 

particles. Other lenses are therefore a prerequisite for measurements at higher Reynolds 

numbers. A drawback is the need for longer measurement times since the measurement 

volume is reduced and less particles pass by (assuming the tracer particle concentration is 

kept constant) while the same statistical accuracy is needed. 
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B. Acquisition of longer particle trajectories 

Regardless of the possibility of change in the field of view, the increase in Reynolds 

number will demand solutions for the acquisition of longer particle trajectories. Despite the 

flow scales in the pipe core or in the near-wall-zone, for Reynolds number over 20,000, the 

concept of our mechanical 3D-PTV construction will require modification for attaining 

high precision for ∆tri and a higher spatial resolution for ∆r. A possibility is the use of a 

moving frame system traversing along the axial direction of the flow.  

 
C. Light reflection at the pipe walls 

Accurate determination of particle trajectories in the near-wall region also requires a 

solution to the problem of light reflections; see Fig.’s 2.4d, 2.4e, 2.4f and 2.6. A 

polarization filter is efficient in filtering out the reflections but absorbs too much light 

reflected by the tracers. A laser illumination technique would make it possible to use 

fluorescent particles and wavelength filters for the cameras, to filter out the wavelengths 

associated with the reflected light. Powerful lasers can also operate in higher frequencies 

than conventional light sources, but they will result in inefficient lighting systems if the 

beam has to be split up to cover the whole measurement area. Again, the introduction of a 

separately measured wall zone might offer opportunities as this reduces the actual volume 

to be lighted by the laser. The core region can be illuminated in the way applied in the 

present work. 

 
D. Illumination of large volumes at high frequencies 

To determine Lagrangian statistics in a turbulent pipe flow from the Kolmogorov 

timescale, τk, to the Lagrangian correlation time, τc, the camera frame rate must be set few 

times higher than the Kolmogorov frequency, 1/ τk. To achieve such frequencies with the 

present high-speed cameras is not a problem. But it is a problem for the home-made 

illumination system because of the generation of heat and the life-time of the light bulbs. 

The obvious solution is an increased number of light bulbs and an alternating feeding of the 

bulbs, but this solution is not low-cost. Recent progress with light-emitting diode (LED) 

bulbs may hopefully provide an alternative solution in the near future. 

2.7 Conclusions 
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High order Lagrangian and Eulerian statistics, such as skewness and flatness, of 

turbulent pipe flow at Reb = 10300 have been determined by 3D-PTV.  To the knowledge 

of the authors, similar accuracy for high order Lagrangian statistics was only 

experimentally obtained at Reb = 5300 by Walpot et al.[7] The newly measured data are 

essential for the quantification of parameters in, and validation of, Lagrangian stochastic 

models[4] to predict turbulent dispersion. 

The minimum amount of data in a discrete time separation needed for the description 

of Lagrangian velocity statistics, autocorrelations or cross-correlations, has been 

determined for  Reb = 10300 by comparison with DNS-data of Veenman[8]. Good 

agreement is found if the number of correlation samples exceeds 2 x 104. 

Velocities derived by straightforward interpolations of consecutive 3D positions of a 

particle trajectory have been found to yield accurate pipe flow statistics at Reb = 10300, if a 

maximum triangulation error of the order of 40 µm is allowed in the particle detection 

algorithm. There is no need to correct the spatial position of particles with smoothing 

filters, as done by Walpot et al.[7] The application of a Savitz-Golay low-pass smoothing 

filter to correct the spatial position of particles with a third order polynomial and a filter 

span of 17 points is found to be unnecessary with the measurement accuracies specified in 

the above. Naturally, such low-pass filtering is undesirable because of the a priori 

unknown cut-off frequency. 
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3  

The role of Inertia and Turbulence on 
Concentration Profile and Mean Relative Velocity 

in Particle-laden Pipe flow 
 
 

3D-PTV is applied to particle-laden pipe flows in various stages of development, 

characterized by both normal and higher levels of turbulence than in fully developed flow. 

All flows are tested at Reynolds number 10300 based on the bulk velocity and the pipe 

diameter. The effects of particle Stokes numbers, flow direction (upward or downward) and 

mean concentration on radial particle distribution, mean relative velocity and fluctuating 

velocities of particles and of fluid are shown. Reduction of the mean relative velocity is 

related to the increase in flow turbulence. Explanations of the interaction of inertia particles 

with flow turbulence are provided in particular for the large impact of flow orientation on 

concentration profiles. Two-way coupling is relevant for flows with mean volumetric 

concentrations exceeding 7x10-5. Turbulence augmentation is observed with increasing 

mean concentration of particles. 
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3.1 Introduction 

 

Turbulent dispersed two-phase flows are abundant in both industry and nature. For 

example, the dispersion of pollutants in an urban environment, sediment transport or the 

fluidized catalytic cracking of carbohydrates are of major importance. The ability to predict 

the behavior of this type of flow - either using numerical or theoretical models – is 

beneficial to a wide range of disciplines. A better understanding of this kind of flow would 

be a great benefit to scale-up process equipment or to improve mixing efficiencies. 

However, a lack of consistent experimental data currently makes validation of both 

numerical and theoretical results difficult; see Poelma et al.[1] 

Particle-laden flow in pipes has numerous engineering applications ranging from 

pneumatic conveying systems to chemical reactor design and is one of the most thoroughly 

investigated subjects in the area of multiphase flow; see Kartusinsky et al.[2] Turbulence 

modulation in two-phase flows has been described by a number of models; see Gore and 

Crowe[3], Hetsroni[4] and Elgobashi.[5] However, due to the complex nature of the problem, 

these simplified models are not able to fully predict fluid and particle behavior for the 

whole range of applications.  

When particles are in the flow, the only way to exactly describe the system, including 

the interaction of the phases, is to fully resolve stresses at the mobile particle surfaces. In 

order to calculate the total force on a particle exerted by the fluid, the stress tensor needs to 

be integrated over the surface (and the body forces over the volume). Numerical 

computations require significant memory and processing speed and only very simple 

geometries with a limited numbers of particles can be studied, see Tryggvason et al.[6] Most 

numerical work therefore uses simplifications, e.g. assuming the particle to be a point-force 

and choosing a model for the particle equation of motion; see Poelma.[7] 

The dispersion of inertial particles in turbulent flows is characterized by macroscopic 

phenomena such as non-homogeneous distribution, large-scale clustering, and preferential 

concentration due to the inertial bias between particles and surrounding fluid; see Wang 

and Maxey.[8] The distribution of particles may be crucial in determining collision 

frequency, breakage efficiency, agglomeration, reaction rates, deposition and entrainment; 

see Marchioli et al.[9] 

From an engineering viewpoint, the transient states of particle-laden flows are also 

interesting. In a number of industrial applications, including separation techniques and 
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droplet-laden flows, particle distributions never reach equilibrium; see Soldati.[10] In 

industrial loops, turbulent particle-laden pipe flows often do not achieve a steady state due 

to the length limitations; see Laws et al.[11] The required length for fully developed 

conditions enhances with increasing bulk Reynolds number. 

We would have preferred to study both upward and downward flow in fully-developed 

turbulent conditions. However, in our experimental setup the development length was too 

small to reach fully-developed turbulent downward flow. Therefore, in order to study the 

effect of different stages of development, we considered both upward and downward flow 

without flow straightener. In addition, criteria are sought and will be presented which 

quantify the state of development of the flow in terms of flow variables. It will be shown 

with the aid of these characterizations that the most well-developed downflow is nearly 

fully developed. The only part of a cross-section area where the flow is not yet fully 

developed is near the center of the channel while the concentration profiles will be found to 

be mainly affected by flow direction, Stokes number and other parameters in the remaining 

area of the flow. 

In the present study, 3D-PTV is applied to particle-laden pipe flows in various stages 

of development in order to investigate the impact of varying turbulence levels on particle 

behavior, in particular on the mean relative velocity. All flows are tested at Reynolds 

number 10300, based on the bulk velocity and the pipe diameter. Due to inertial bias 

between inertia particles and the carrier phase, the impact of flow direction (upward and 

downward) on radial particle distributions is studied. The influence of mean concentration 

on the fluctuating velocities of particles and fluid is also evaluated. Particles with diameters 

equal to 0.8 and 0.96 mm are chosen. Mass density of inertia particles (1050 kg/m3) slightly 

exceeds the mass density of the carrier fluid (~1000 kg/m3). 

Particle properties (volume and mass density) are selected with the aim of testing 

particle-laden flows for which the terminal velocity of the dispersed phase, UTV, is of the 

same order of magnitude as the root-mean-square velocity of the carrier phase, urms. 

Interesting phenomena have been reported when urms/UTV ≈ O(1): entrapment of bubbles or 

particles in vortical flow structures, transport of dispersed phase towards the flowing edges 

of eddies where static equilibrium of forces over an inertial body can modify its rise or 

settling velocity and the effects of crossing trajectories; see Sene et al.[12] and Spelt and 

Biesheuvel[13], for example. 
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The structure of the paper is as follows. In Section 3.2, the experimental setup is 

presented, including specifications of flow tracers and inertia particles, calibration unit, 

camera support and illumination systems. Optical requirements for 3D-PTV are also 

explained. Sections 3.3 and 3.4 provide the 3D-PTV procedure for identification of 

individual particle trajectories and the analysis method, respectively. A description of the 

experimental conditions is provided in Section 3.5. 

Results are presented in Section 3.6. Reference turbulent single-phase pipe flows are 

characterized in sub-Section 3.6.1. Radial concentrations of inertia particles, mean axial 

velocity and Mean Square Value (MSV) of velocity for fluid and dispersed phases are 

shown in sub-Sections 3.6.2, 3.6.3 and 3.6.4, respectively. In sub-Section 3.6.5, results of 

the magnitude of the mean axial relative velocity as a function of flow turbulence level are 

presented. 

Analyses of the experimental results are given in Section 3.7. The role of inertia on the 

wall-normal distributions and mean relative velocities is interpreted in Section 3.8. In this 

same section, fluid turbulence modulation by the presence of inertia particles is discussed. 

Conclusions are summarized in Section 3.9. 

3.2 Experimental setup 

 

3.2.1 Test rig 

 
Turbulent particle-laden pipe flows have been created in a water loop driven by a 

centrifugal pump; see Fig. 3.1. The in-line 3 kW centrifugal pump of type DPV18-30, 

manufactured by “Duijvelaar pompen”, allows Reynolds numbers, based on the bulk 

velocity, Ub, and pipe diameter, D, in the range 103 to 105. 

A set of valves is arranged in such a way that downward and upward vertical flows are 

possible. In upward flows, a frequency controller permits fine-tuning of the Reynolds 

number by adjusting the mass flow rate in the measurement section. In downward flows, 

mass flow rate is adjusted by controlling pressure drop over a valve.  

The mass flow rate is measured by means of a Micro Motion Elite CMF300 mass flow 

and mass density meter, whose inaccuracy is less than 0.5% of the registered flow rate. A 

water reservoir (tank I), located at the bottom of the setup, contains about 2 m3 of water. 
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This value facilitates water temperature stabilization and Reynolds number control. 

Temperature during a test-run was essentially constant, varying typically 0.1ºC only.  

 

Figure 3.1 Schematic of the 3D-PTV experimental setup for downward or upward pipe 

flow.  

 
Submerged pumps are placed in the reservoir tanks at the bottom and at the top of the 

setup in order to promote homogeneous dispersion of the added tracers and inertial 
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particles. The volume of the top tank is smaller, ≈ 0.15 m3, facilitating control of the 

concentration of particles.  

The measurement section consists of a glass pipe to ensure optical accessibility. A 

water-filled rectangular glass box around the pipe minimizes optical distortions. The pipe 

diameter is chosen relatively large, 100 mm inner diameter, because measurements at high 

Reynolds numbers are required. For a certain Reynolds number, bulk velocities are lower 

for higher tube diameters, which is advantageous for the acquisition of Lagrangian 

statistics. 

Flow straighteners, tube bundle conditioners of ISO 5167-1:1991, see Miller[14], are 

employed to remove strong secondary flow effects. For upward flows, the bundle 

conditioner I is placed downstream of a 90º bend; see Fig. 3.2a. Flow straightener I consists 

of a set of pipes with an internal diameter of 10 mm and an approximate length of 50 cm. It 

is constructed in such way that it can be replaced by a straight pipe section. 

 

Figure 3.2 Schematics of the entrance regions. 3.2a: details of the bundle flow straightener 

I; 3.2b: details of the bundle flow conditioner II. 

 
For downward flows, the bundle conditioner II is placed downstream of the bottom of 

tank II in the pipe that conducts the flow to the test section; see Fig. 3.2b. Flow straightener 

II consists of a set of pipes with an internal diameter of 5 mm and an approximate length of 

40 cm. As bundle conditioner I, it can also be replaced by a straight pipe section. 
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3.2.2 Particle properties 

 

Properties of polystyrene particles applied in the present particle-laden experiments are 

given in Table 3.1. The fluid time-scale τf in the Stokes number, St, is based on viscous 

scales; see info below Table 3.1. The fluid length-scale is the Kolmogorov scale for fully 

developed single-phase pipe flow at Reb = 10300 as computed by Veenman.[15] The 

Kolmogorov length is about 0.6 mm in the pipe core and 0.2 mm in the wall region. For 

evaluation of the particle timescale, τp, the relaxation time for particles in stationary flow is 

used; see Albrecht et al.[16]: 

τp = (d2ρp/18µ)(1 + 0.5ρf /ρp)                                                            (3.1) 

where µ is the dynamic viscosity and ρp and ρf are the mass density of particles and of fluid, 

respectively. A relaxation time of τp ≈ 4 ms is obtained for the tracers. Note that the fluid 

inertia is accounted for by the added mass coefficient 0.5 which close to a wall is increased 

to about 0.7; see van der Geld.[17] 

 
Table 3.1 Properties of particles applied in the present particle-laden experiments 

 
* Settling velocity of a particle in an infinite, stagnant pool of water. 
** Fluid time-scale is based on viscous scales as given by: τf = ν/uτ

2. For Reb < 105, 
the wall shear velocity can be estimated as uτ = (Ub

2f /8)1/2 with f = a Reb
-m, m= 0.25 and a 

= 0.316; see Hinze.[18] τf  is roughly 28 ms.   
*** Kolmogorov length-scales for a fully developed single-phase pipe flow at Reb = 

10300 as computed from the DNS code developed by Veenman[15]: ≈ 0.6 mm at pipe 
centerline and ≈ 0.2 mm close to the wall. 
 

The terminal velocity is attained in quiescent fluid when gravitational and drag forces 

are in equilibrium: 

UTV = {(4 (ρp - ρf ) dp g) / (3CD ρf )}
1/2                                              (3.2) 

where g is the gravity acceleration and CD the drag coefficient. The latter is a function of 

the particle Reynolds number, Rep = dp|UTV|/ν, which is based on the particle diameter and 

the terminal velocity. In the Stokes regime, CD is given by Eq. (3.3). For 1< Rep< 1000, 

Schiller and Naumann[19] proposed a correlation for CD given by Eq. (3.4): 

 
Particles Mass density 

[kg/m3] 
Diameter 
dp [mm] 

Terminal velocity, 
|UTV|* [mm/s] 

*Rep ** St = τp/τf *** Length-scale 
ratio: dp/lk 

Tracers 1050 0.2 1.0 0.18 0.14 0.33 – 1 
Type I (PI) 1050 0.8 10.2 7.76 2.31 1.33 – 4 

Type II (PII) 1050 0.96 13.1 11.92 3.33 1.6 – 4.8 
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CD = (24 / Rep); for Rep < 1                                                             (3.3) 

CD = (24 / Rep) (1 + 1/6 Rep
2/3); for 1 < Rep < 1000                        (3.4) 

A value for UTV is obtained by an iterative computation concerning Eq. (3.2) and Eq.’s (3.3) 

or (3.4). Since the bulk flow velocity, Ub, is approximately 100 mm/s for the flows at hand, 

the ratio Ub/UTV is of order 102 for seeding particles. Since Ub >> UTV, τp<τf and dp<lk, the 

employed seeding particles work well as flow tracers. For particles of type I and II, the 

ratio Ub/UTV is of order 10, τp>τf and dp>lk. Therefore, particles type I and II have significant 

inertial characteristics to not behave as tracers. 

3.2.3 Mechanical construction for camera support and reproducible calibration 

 

Brief descriptions of the camera support and calibration unit are now presented. The 

applied optical settings and descriptions of the illumination and recording apparatus are 

also provided. More information is found in Oliveira et al.[20] 

Three “HighSpeedStar” cameras with 12-bit grayscale CMOS sensor and a resolution 

of 1024 x 1024 pixels have been utilized to capture almost instantaneous 3D particle 

positions in an approximate measurement volume of 0.1x0.1x0.1 m3. The cameras can 

record at 1000 Hz at full resolution, but were operated at 50 Hz to maximize the flow 

measurement time. Recordings are performed until the internal memory of the cameras 

becomes full during approximately 2 minutes. Maximum physically relevant frequencies 

are about 12 Hz for Reb = 10300, making a 50 Hz sampling rate sufficient according to the 

Nyquist Theorem. 

Settings of cameras and lens arrangement have been chosen as: sensor resolution (1 

pixel = 17 µm2), focal length (105 mm), exposure time (20 µs), distance from the lens to 

the object (~ 800 mm). These settings guarantee sharp images of moving particles in the 

whole volume of the measurement.   

A statically determined approach has been applied to a mechanical design, where no 

relative movement between the cameras and measurement volume is allowed throughout 

the calibration and 3D-PTV measurements. Following Walpot et al.[21], three cameras are 

attached to the flow tube by a stiff and lightweight equilateral triangular frame constructed 

between them, see Fig. 3.1. A total of 24 degrees of freedom, which include three 

translations and three rotations for the three cameras and the measurement section, have 
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been prescribed once, either as positions to be held or desired motions to be set by 

manipulation. Due to the statically determined design, there is no incorporation of unknown 

thermal stresses in the frame or flow tube.  

An in-situ calibration method has been utilized to transform the two-dimensional pixel 

information of each camera to world coordinates. A calibration unit precisely moves a grid 

with regular inter-spaced points throughout the measurement volume to certain positions, 

with high reproducibility. The bigger and well resolved the volume covered by the 

calibration plate, the smaller interpolation and extrapolation errors of the calibration 

functions are. 

On the top of the measurement section, a pipe segment can be removed for calibration 

purposes. The centrifugal pump allows a stationary water-level just above the measurement 

volume, given that the energy provided by the centrifugal pump is in equilibrium with the 

potential energy of the static head. Once the water level is static, the calibration unit is 

inserted, making possible a reproducible positioning of the calibration grid throughout the 

measurement volume. 

During the calibration procedure, the calibration grid is homogeneously illuminated 

from behind by means of four floodlight halogen lamps. For lighting the measurement 

volume during the 3D-PTV measurements, two strong stroboscopic light sources with an 

output of about 5 J per pulse each have successfully been applied. The digital delay/pulse 

generator DG535 assured a perfect synchronization between the recordings of the three 

cameras and the lighting pulse generated by the stroboscope equipment. 

3.3 Particle tracking algorithm 

 

A commercial 3D-PVT imaging code from La Vision GmbH, named Davis, has been 

used to obtain trajectories of tracers and inertia particles. Algorithm details of the Davis 

PTV tracking code can be found in Maas[22] and Dracos[23]. 

The 3D-PTV procedure for identification of individual particle trajectories is given by 

Oliveira et al.[20] Calibration and flow measurement images are processed in order to 

transfer files which contain time reference and spatial positions of individual particle 

trajectories to the analysis method. Here, the only difference from the 3D-PTV procedure 

as applied by Oliveira et al.[20] is the use of built-in imaging filters of Davis in order to 

obtain images with only inertial particles and images with only flow tracers. This task is 
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facilitated by the bigger imaging projection area of inertia particles on the camera sensor, 

exceeding the projection of tracers in 16 or 25 times.  

Reduced levels of noise are obtained for the trajectories of inertia particles. For tracers, 

noise is significant and removed in the trajectory analysis method. After the imaging 

segmentation stage, the procedure to determine the 3D particle position and to identify 

particle trajectories is the same. 

3.4 Trajectory analysis 

 

The particle tracking algorithm yields matrices which contain time reference and 

spatial positions of particle trajectories from the flow measurement images. Transformation 

from Cartesian (x,y,z) to cylindrical (r,θ,z) coordinates facilitates pipe flow statistical 

analyses; see Oliveira et al.[20] 

The removal of unrealistic trajectories has been accomplished by two filters: a length 

filter and a displacement outlier-check (±5σr,θ,z). The length filter consists of eliminating all 

trajectories of tracers outside a range of minimum and maximum positions of a particle 

track. The term σ represents the standard deviation for velocity components at a specific 

radial position. Here, the standard deviation applied in the outlier-check filter is derived 

from the present experiments.  

 In the present 3D-PTV experiments, no need of filtering high frequency measurement 

noise has been observed. Tracer and inertia particle velocities derived by straightforward 

interpolations of consecutive 3D positions of a particle trajectory have been proven reliable 

to obtain particle-laden pipe flow statistics. 

After the coordinate transformation and the removal of the spurious particle tracks, 

differentiation in time of the validated trajectories generates the velocity vectors. For 

Eulerian results, the velocity vectors are gathered in discrete radial bins in accordance to r i 

± ∆r, where the subscript i varies from 1 to 50. The axial length (L) of each discrete bin is 

100 mm, while the radial band has a dimension of 2∆r. At Reb=10300, a radial 

discretization ∆r equal to 0.5 mm has been found appropriate to describe the Eulerian 

results; see Oliveira et al.[20]  

Lagrangian results can also be gathered in discrete radial bands: r i ± ∆r, with ∆r 

satisfying 2∆r > |u|∆t. Here, u is a typical radial velocity value, e.g. the standard deviation 

of radial velocity fluctuations. A radial band width, ∆r, of 0.5 mm and a camera frequency 
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of 50 Hz sufficed to obtain negligible bias at Reb = 10300. More information is found in 

Oliveira et al.[20] 

3.5 Particle-laden experimental conditions 

 

A category of particle-laden experiments (2P) is shown in a map proposed by 

Elgobashi[5], see Fig. 3.3. Downward and upward vertical flows have been measured in 

various stages of development at the same bulk Reynolds number, Reb. The bulk velocity of 

each flow, Ub, was adapted to temperature changes to keep Reb ≈ 10300. Single-phase 

flows (1P) serve as a reference for two-phase flows.  

Particle-laden flows with mean volumetric concentrations, <Φv >, ranging from 5x10-6 

to 1.7x10-4 have been tested. The presence or absence of flow conditioners I and II affects 

the stage of flow development in the test section. In upward flows, 3D-PTV measurements 

are performed at 45D downstream of the entrance section; in downward flows, at 20D. In 

upflow with flow straightener I fully developed pipe flow is obtained.[20]  

 

 

Figure 3.3 Experimental conditions represented in the map of regimes of interaction 

between particles and turbulence as proposed by Elgobashi.[5] 

 
In Fig. 3.3, the rectangular areas represent mean concentration and time-scale ratios of 

particles in the present experiments. Single-phase flow measurements are represented by 1P 

in the region denoted as “one-way coupling”; only tracers are employed. Particle-laden 

measurements are represented by 2P in the region denoted as “two-way coupling”; tracers 
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and inertial particles type I or II are added to the water flow. Mean concentration of tracers 

less than 10-6 is also applied to the particle-laden experiments. 

Properties of inertial particles type I or II (volume and mass density) are selected with 

the aim of testing particle-laden flows which have a characteristic root-mean-square 

velocity representative of the turbulent carrier phase, urms, and the terminal velocity of the 

dispersed phase, UTV, of same order of magnitude: urms/UTV ≈ O(1). 

A particle-laden experimental case is represented here by a number (1, 2, 3 or 4) which 

indicates the flow direction and the presence or absence of a flow conditioner; and a letter 

(A, B, C, D or E), indicating the applied mean concentration of inertia particles. A 

summary of all tested particle-laden cases is shown in Table 3.2. The reference single-

phase flows are specified by 1S, 2S, 3S or 4S. The letter S denotes single-phase flow and 

the numbers are as defined above. 

 
Table 3.2 Summary of the single-phase and particle-laden flow experiments. All 

experimental runs have been performed at Reb = 10300 

 

3.6 Results 

 

3.6.1 Characterizing turbulent single-phase pipe flows at Reb = 10300 

 

 
Case Inertial 

particles 
Flow 

Direction 
Development 

Length 
Flow 

Straightener 

 
<Φv >×10-5 

1A Type I (PI) Upward 45D Bundle I 3.2 
1B Type I (PI) Upward 45D Bundle I 1.4 
1C Type I (PI) Upward 45D Bundle I 0.5 
1S -- Upward 45D Bundle I -- 
2A Type I (PI) Upward 45D -- 3.2 
2B Type I (PI) Upward 45D -- 1.9 
2S -- Upward 45D -- -- 
3A Type I (PI) Downward 20D -- 2.3 
3B Type I (PI) Downward 20D -- 1.0 
3S -- Downward 20D -- -- 
4A Type I (PI) Downward 20D Bundle II 7.0 
4B Type I (PI) Downward 20D Bundle II 2.8 
4C Type I (PI) Downward 20D Bundle II 1.8 
4D Type II (PII) Downward 20D Bundle II 17.0 
4E Type II (PII) Downward 20D Bundle II 8.3 
4S -- Downward 20D Bundle II -- 
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Tracer trajectories have been registered for turbulent single-phase pipe flows in four 

distinct flow conditions by 3D-PTV; see Section 3.5. With a camera frame rate of 50 Hz, 

the differentiation of particle trajectories in time generates on average 2 x 106 velocity 

vectors in each flow case. The velocity vectors are gathered in discrete radial bins in 

accordance to r i ± ∆r, with ∆r = 0.5 mm; see Section 3.4.  

Flow velocity statistics of case 1S, upward flow with the bundle flow straightener I, 

have already been investigated; see results in Oliveira et al.[20] This case represents the so-

called fully developed flow. For case 1S, mean fluctuating velocity components achieve the 

lowest fluctuation levels among all single-phase experiments.  

In order to establish a relationship among cases 1S/2S/3S/4S, the Mean Square Value 

(MSV) of the velocity fluctuations is determined for each flow condition. The MSV 

velocity is defined as the product of mean velocity fluctuations: <uh uq>. Subscripts h and q 

represent cylindrical coordinates (r, θ, z). Let the overbar character indicate cross-section 

average. 

>< qhuu = (0∫
R <uh uq>2πr  dr)/(πR2)                                               (3.5) 

By considering the diagonal components <uh
2> and averaging them in accordance to 

(3.5), it is possible to compare MSV of fluctuating velocities averaged in the cross-section 

for each single-phase flow case; see Fig 3.4. 

 

Figure 3.4 Diagonal components of the Reynolds stress tensor averaged in the cross-

section for four distinct flow conditions. Computed values are normalized by the square of 

the bulk velocity of each flow, Ub
2. Lines are added to guide the eye. 
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The averaged diagonal components, >< 2
hu , are normalized by the square of the bulk 

flow velocity, Ub
2, of the corresponding experiment. Here, Ub is chosen for normalization 

since it was set at each experiment to keep the same Reb, 10300, irrespective of temperature 

changes. The bulk velocity is chosen as normalization quantity instead of the wall shear 

velocity, uτ, which is often used in the literature, because Ub can be determined more 

accurately in our experimental setup. 

Disturbances created at the entrance affect turbulent flow levels. With sufficient 

development length, cross-section average turbulence of cases 2S/3S/4S as quantified by 

Eq. (3.5) becomes equal to the one presented by case 1S. In the presence of flow 

straighteners, the turbulence intensity levels at the test section are smaller; compare case 2S 

to 1S for upward flows and 3S to 4S for downward flows in Fig. 3.4. At 20D downstream 

of the entrance section, flow velocity statistics of downward flow with the bundle flow 

straightener II (case 4S) are not yet fully developed. Figure 3.4 neatly groups and shows the 

trend of these measurement conditions.  

Linear fits for the computed values of >< 2
hu  yields:   

2222 ><0.32=>< bzbθ U/uU/u                                                             (3.6) 

2222 ><0.4=>< bzbr U/uU/u                                                               (3.7) 

The quality of the fits is expressed by the two parameters rs
2 and F, defined as follows:  

∑ )-(∑ )-(=
1=

2

1=

22
n

i
i

n

i
is OO/OÔr                                                           (3.8) 

1)-)/(-}(∑ )-(∑ )-({=
1=

2

1=

2 KKnÔO/OÔF
n

i
ii

n

i
i                                      (3.9) 

Here, n is the number of measurements with outcome Oi, Ôi the predicted values and O  the 

mean of the set (Oi); the number of parameters determined in the fit is K. In Eq. (3.6), rs
2 

and F are equal to 0.98 and 81, respectively. In Eq. (3.7), rs
2 and F correspond to 0.98 and 

84, respectively. 

The transient states of pipe flow are of practical interest. In industrial loops, turbulent 

pipe flows often do not reach fully developed conditions due to the length limitations; see 
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Laws et al.[11] The required length enhances with increasing bulk Reynolds number. As 

observed in Fig. 3.4, the MSV velocities of cases 2S/3S/4S exceed those of case 1S. The 

fits, Eq. (3.6) and Eq. (3.7), distinguish flow conditions from the fully developed one in a 

convenient way. 

For flow cases with flow straighteners, 1S and 4S, ratios of the diagonal components of 

the Reynolds stress tensor, <uz
2>/<ur

2> and <uz
2>/<uθ

2>, increase linearly from the pipe 

centerline to a radial position about r/R = 0.8 at Reb = 10300; see Fig 3.5. The linear 

inhomogeneous behavior at the pipe core is characteristic for fully developed pipe flows. 

This feature is observed for case 4S even though this case is not yet fully developed. For 

r/R > 0.8, the increase in <uz
2>/<ur

2> and <uz
2>/<uθ

2> exceeds the typical linear growth. 

The axial normal stress remains bigger than the tangential and radial components, and the 

ratios achieve values exceeding 10 close to the wall. 

 

 

Figure 3.5 Ratios of the diagonal components of the Reynolds stress tensor, <uz
2>/<ur

2> 

and <uz
2>/<uθ

2>, for cases 1S and 4S. The presence of the Bundle flow straighteners I and 

II assures a characteristic linear behavior in the pipe core (0 <r/R< 0.8). 

 
For single-phase experiments without flow conditioners, cases 2S and 3S, the linear 

inhomogeneous behavior for 0 <r/R< 0.8 is not achieved. This linear feature at the pipe 

core is only observed for turbulent pipe flows which approach fully developed conditions. 

A summary of the single-phase flows tested at Reb = 10300 is shown in Table 3.3. 

Linear fits are applied for <uz
2>/<ur

2> and <uz
2>/<uθ

2> in flows which achieve a linear 

behavior in the radial range 0 <r/R< 0.8. Values for rs
2 and F statistics are also included. 
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Table 3.3 Summary of the single-phase flow experiments at Reb = 10300 

 
In this subsection, the present single-phase flow measurements have been categorized. 

This is achieved by evaluating turbulent flow features. In the remaining of section 3.6, 

particle-laden flow results are presented and compared to the above reference single-phase 

flows. 

3.6.2 Concentration of inertial particles 

 
The number of tracer trajectories measured in the range r/R = 0.6 to 1 decreases with 

increasing r/R - value. The difficulties in measuring tracer trajectories in this region were 

mainly due to light reflections stemming from differences in the refractive indices of water, 

n ≈ 1.33, and glass, n ≈ 1.51, and the curvature of the glass pipe. Light reflections 

deteriorate the contrast between tracers and background. However, the fluid flow could also 

be measured for r/R > 0.6 despite the lower number of usable tracers there. The measured 

concentration of tracers is roughly linear from r/R = 0 to 0.6 and decreases towards the wall 

for all particle-laden flows. In Oliveira et al.[20], Eulerian statistics of a single-phase 

turbulent pipe flow acquired by 3D-PTV have been found to be trustworthy in the near-wall 

zone if a number of velocity vectors per radial bin exceeding 1000 was acquired. The same 

criterion is also applied here. 

In the detection of inertia particle trajectories, the contrast problem between particles 

and background did not occur. The bigger imaging projection area of inertia particles on 

the camera sensor, exceeding the projection of tracers 16 or 25 times, avoided problems on 

the identification of particles. While the projection of a tracer image occupies nearly an 

area of 2x2 pixels, the projection of inertia particles occupies 8x8 or 10x10 pixels. 

Roughly, every 3D inertia particle position identified in the tracking algorithm corresponds 

to a real particle. On average, an approximate amount of 3 x 105 particle positions was 

 
Case Flow 

Direction 
Flow 

Condi-
tioner 

Development  
length 

Linear    
behavior 

<uz
2>/<ur

2> = 
a(r/R)+b 

in 
0<r/R<0.8 

<uz
2>/<uθ

2> = 
c(r/R)+d 

in 
0<r/R<0.8 

1S Upward Bundle I 45D Yes a=0.55; b=1.5 
rs

2=0.83; F=176 
c=1.9; d=1.5 

rs
2=0.98; F =1850 

2S Upward -- 45D No -- -- 
3S Downward -- 20D No -- -- 
4S Downward Bundle II 20D Yes a=0.48; b=1.7 

rs
2=0.76; F =75 

c=1.9; d=1.7 
rs

2=0.93; F=497 
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identified in each particle-laden case. 3D particle positions were identified with a camera 

frame rate of 50 Hz in average periods of 50 minutes. In this period, a volume 

corresponding to ≈ 2.3 m3 crosses the test section. Thus, accurate measurements of 

concentration profiles of inertia particles have been obtained.  

Throughout this article, the errors of time-averaged values of a measured quantity x are 

estimated with the aid of the so-called standard error, σm. Confidence intervals of 95% are 

considered. For a quantity which is measured n times, with instantaneous results xi and 

mean < x >, the standard error is given by: 

σm = [
n

i
Σ

1=
(xi -<x>)2 /(n (n -1))]1/2                                                      (3.10) 

The effects of upward or downward flow direction, presence or absence of flow 

straightener and mean concentration, <Φv >, in the range 0.5×10-6 to 1.7×10-4 on the 

concentration profiles of inertia particles, Φv (r/R), are presented in Fig.’s 3.6 – 3.10. Here, 

Φv (r/R) represents the time-averaged volume of particles within the volume of the 

corresponding bin element; see (3.11) and (3.12):  

<Nbin,i > = (1/m)
m

1j
Σ
=

Nbin,i (j)                                                          (3.11) 

Φv (bin,i) = <Nbin,i > (Vparticle/Vbin,i)                                                (3.12) 

where j denotes a single photograph and m is the total number of photographs. The 

subscript bin,i denotes a discrete radial position, r/R. The term <Nbin,i > represents the 

averaged number of particles which occur in a discrete radial bin. Vparticle denotes volume of 

a particle and Vbin,i, volume of a bin. The mean concentration of inertia particles, <Φv >, 

refers to the mean of Φv (bin,i) in all bins, Eq. (3.13). The subscript k represents the total 

number of radial bins, here 50.  

<Φv > = (1/k)
1-

0=

k

i,bin
Σ Φv (bin,i)                                                       (3.13) 
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Figure 3.6 Effect of the mean concentration, <Φv >, on the concentration profiles of inertial 

particles, Φv (r/R), in upward flow and in the presence of a flow straightener. Results are 

plotted for particle-laden cases 1A/1B/1C. Experiments are performed with particles type I 

in three distinct mean volumetric concentrations, <Φv >: 5.0 × 10-6, 1.4 × 10-5 and 3.2 × 10-5.  

 
 

 

Figure 3.7 Effect of mean concentration, <Φv >, on the concentration profiles of inertial 

particles, Φv (r/R), in upward flow and in the absence of a flow straightener. Results are 

plotted for particle-laden cases 2A/2B. Experimental runs are performed with particles type I 

in two distinct mean volumetric concentrations, <Φv >: 1.9 × 10-5 and 3.2 × 10-5.  
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Figure 3.8 Effect of mean concentration, <Φv >, on the concentration profiles of inertial 

particles, Φv (r/R), in downward flow and in the absence of a flow straightener. Results are 

plotted for particle-laden cases 3A/3B. Experimental runs are performed with particles type I 

in two distinct mean volumetric concentrations, <Φv >: 1.0 × 10-5 and 2.3 × 10-5. Dotted lines 

are added to guide the eye.  

 

                               3.9a                                                                3.9b 
Figure 3.9 Effect of mean concentration, <Φv >, on the concentration profiles of inertial 

particles, Φv (r/R), in downward flow and in the presence of a flow straightener. Results are 

plotted for particle-laden cases 4A/4B/4C. Experimental runs are performed with particles 

type I in three distinct mean volumetric concentrations, <Φv >: 1.8 × 10-5, 2.8 × 10-5 and 7.0 

× 10-5. Dotted lines are added to guide the eye. Figure 3.9a presents results in the range 0 

<r/R< 0.8 and Fig. 3.9b, in the range 0.8 <r/R< 1.The number of line markers corresponds to 

the number of bins measured; notice the difference in scales.  
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                               3.10a                                                             3.10b 
Figure 3.10 Effect of mean concentration, <Φv >, on the concentration profiles of inertial 

particles, Φv (r/R), in downward flow and in the presence of a flow straightener. Results are 

plotted for particle-laden cases 4D/4E. Experimental runs are performed with particles type 

II in two distinct mean volumetric concentrations, <Φv >: 8.3 × 10-5 and 1.7 × 10-4. Dotted 

lines are added to guide the eye. Figure 3.10a presents results in the range 0 <r/R< 0.8 and 

Fig. 3.10b, in the range 0.8 <r/R< 1.The number of line markers corresponds to the number 

of bins measured; notice the difference in scales.  

 
Close to the pipe walls in upward flows, for r/R > 0.85 a reduction in Φv occurs; see 

cases 1A/1B/1C and 2A/2B in Fig.’s 3.6 and 3.7. For downward flows, there is a peak at 

r/R ≈ 0.98; see cases 3A/3B, 4A/4B/4C and 4D/4E in Fig.’s 3.8, 3.9 and 3.10, respectively. 

Therefore, the direction of the vertical flow, upward or downward, is associated to changes 

in the concentration profiles, Φv (r/R), particularly in the near-wall zone. 

For upward flows, the ratio of the mean concentration from 0 <r/R< 0.8 to 0.8 <r/R< 1, 
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type I by particles type II and with a further increase of <Φv> to 8.3 x 10-5 and 1.7 x 10-4, 

RΦ became 0.33 and 0.41 for downward flows cases 4D/4E, respectively. 

The ratio of the maximum concentration found in a discrete bin to the mean 

concentration, Φv,max/<Φv >, is 2.92 and 3.17 for downward cases 3A/3B. For downward 

cases 4A/4B, this ratio became 3.55 and 3.21, respectively. By increasing <Φv > to    

7.0x10-5, the ratio increases to 4.15 for 4C. By replacing particles type I by particles type II 

and with a further increase of <Φv > to 8.3 x 10-5 and 1.7 x 10-4, the ratio increases to 4.5 

and 5.8 for cases 4D/4E, respectively. 

A summary of the results for concentration profiles and the values of the proposed 

ratios to characterize the present experiments are shown in Table 3.4. Information about the 

bundle flow straighteners I and II and about particles P-I and P-II is found in Section 3.2 

for case of reference. 

 
Table 3.4 Results of the inertia particle concentrations for the present experiments 

 
* RΦ is defined as: <Φv >(0<r/R<0.8) /<Φv >(0.8<r/R<1) 

3.6.3 Mean axial velocity profiles 

 
Inertia particle and tracer trajectories have been registered by 3D-PTV in a camera 

frame rate of 50 Hz. The differentiation of particle trajectories in time generates on average 

2 x 106 velocity vectors for tracers and 3 x 105 for inertia particles in each particle-laden 

case. The velocity vectors are ensemble-averaged in distinct radial bands, which are 

 
Case Inertial 

particles 
Flow 

Direction 
Flow 

Straightener 
dp/R 
×10-3 

<Φv>× 
10-5 

 
RΦ*  

>< v

max v,

Φ

Φ
 

 
rmax/R  

1A Type I Upward Bundle I 16.0 0.5 1.72 1.51 ~ 0 
1B Type I Upward Bundle I 16.0 1.4 1.75 1.42 ~ 0 
1C Type I Upward Bundle I 16.0 3.2 1.65 1.25 ~ 0 
2A Type I Upward -- 16.0 1.9 1.97 1.74 ~ 0 
2B Type I Upward -- 16.0 3.2 1.92 1.81 ~ 0 
3A Type I Downward -- 16.0 1.0 1.10 2.92 ~ 0.98 
3B Type I Downward -- 16.0 2.3 1.17 3.17 ~ 0.98 
4A Type I Downward Bundle II 16.0 1.8 0.75 3.55 ~ 0.98 
4B Type I Downward Bundle II 16.0 2.8 0.81 3.21 ~ 0.98 
4C Type I Downward Bundle II 16.0 7.0 0.47 4.15 ~ 0.98 
4D Type II Downward Bundle II 19.2 8.3 0.33 4.58 ~ 0.98 
4E Type II Downward Bundle II 19.2 17.0 0.41 5.80 ~ 0.98 
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delimited by a discrete width of ± ∆r = 0.5 mm around a chosen radius, see Oliveira et 

al.[20] and section 3.4 above. 

The effects of upward or downward flow direction, presence or absence of flow 

straightener and mean concentration on the mean axial velocity profiles of fluid, <Uz>, and 

inertia particles, <vp,z>, are presented in Fig.’s 3.11 – 3.16. The flow bulk velocity, Ub, was 

adjusted to keep the same Reb for each experiment, 10300. Inertia particle and tracer 

velocity profiles are normalized in these figures by the corresponding Ub. In each plot, the 

reference single-phase velocity profile is also shown. Tests with a different set of inertia 

particles are performed in cases 4D/4E. Error-bars with sizes comparable to the dimensions 

of symbols shown in Fig.’s 3.11 – 3.16 are computed by the standard error, Eq. (3.10), in 

95% confidence intervals. These errors could therefore not be indicated separately in these 

figures. 

 To check the fluid mean axial velocity profiles of particle-laden cases, the following 

procedure was followed. For each fluid flow profile, the product of the fluid mean axial 

velocity and the area of each discrete bin, (<Uz>)k × Ak, was integrated to obtain the mean 

volumetric flow rate, Q, which crossed the measurement volume. Temperature 

measurements yielded the water mass density, ρ. The product ρ × Q gave the mass flow 

rate for each experimental set, which corresponded to the ones given by the Coriolis meter 

within its inaccuracy range. The mass flow rate is measured by means of a Micro Motion 

Elite CMF300 Coriolis mass flow and mass density meter, whose inaccuracy is less than 

0.5% of the registered flow rate. 

In Fig. 3.11, the mean axial velocity profiles of inertia particles and tracers for case 1B 

are presented. Results for cases 1A/1C are similar. No significant changes in the axial 

velocity profiles are noticed when the mean volumetric concentration, <Φv >, is varied from 

0.5 x 10-5 to 3.2 x 10-5 in upward flows in the presence of flow straightener I. Similarity in 

particle-laden results is also found between cases 2A and 2B. No significant changes in the 

axial velocity profiles are noticed when the mean <Φv > is varied from 1.9 x 10-5 to 3.2 x 

10-5 in upward flows in the absence of flow straightener. 
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                                    3.11a                                                          3.11b 
Figure 3.11 Mean axial velocity profiles, <Uz> and <vp,z>, for particle-laden case 1B. The 
velocities are normalized by the bulk velocity of each flow, Ub. The subscript 1S denotes 
single-phase flow, and 2P and PI, tracers and inertia particles type I in two-phase flow. In case 
1B, <Φv > is 1.4 × 10-5. Dashed lines are added to guide the eye. Error-bars have same sizes as 
symbols. Figure 3.11a presents velocity profiles in the range 0 <r/R< 0.85 and Fig. 3.11b, in 
the range 0.85 <r/R< 1. The number of line markers corresponds to the number of bins 
measured; notice the difference in scales. 

 

 

                                      3.12a                                                            3.12b 
Figure 3.12 Mean axial velocity profiles, <Uz> and <vp,z>, for particle-laden case 2A. The 
velocities are normalized by the bulk velocity of each flow, Ub. The subscript 2S denotes 
single-phase flow, and 2P and PI, tracers and inertia particles type I in two-phase flow. In 
case 2A, <Φv > is 1.9 × 10-5. Dashed lines are added to guide the eye. Error-bars have same 
sizes as symbols. Figure 3.12a presents velocity profiles in the range 0 <r/R< 0.85 and Fig. 
3.12b, in the range 0.85 <r/R< 1.The number of line markers corresponds to the number of 
bins measured; notice the difference in scales. 
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Comparison of mean axial fluid velocities for single-phase and two-phase flows, cases 

1S and 1B, indicates a slight reduction in the mean flow velocity in the radial range: 0 

<r/R< 0.93. This reduction is compensated by an increase in mean fluid velocity in the 

range 0.93 <r/R< 1. Upflow cases 2A and 2S also present similar changes in the mean flow 

velocity profiles as observed for upflow cases 1S and 1B. 

For case 1B, the mean relative velocity between particles and fluid is observed to be 

about constant from 0 <r/R< 0.6, roughly 10 mm/s, and decreases for r/R > 0.6. For r/R > 

0.90, the mean flow and particle velocities are roughly equal; see Fig. 3.11b. For case 2A, 

the mean relative velocity is observed to be about constant from 0.3 <r/R< 0.7, about 10 

mm/s. The mean relative velocity difference is reduced for r/R< 0.3 and r/R>0.7. For r/R > 

0.95, the mean flow and particle velocities are almost equal. By observing cases 1B and 

2A, mean particle velocities in the absence of the flow straightener I approached the fluid 

mean ones in a bigger part of the flow section, i.e. for r/R< 0.3 and r/R > 0.7; see Fig.’s 

3.12a and 3.12b. In contrast to case 2A, the mean relative velocity for case 1B is roughly 

10 mm/s for r/R< 0.3. 

We now proceed with the description of downflow velocity profiles with <Φv > less 

than 2.8x10-5, cases 3A/3B and 4A/4B. 

 

Figure 3.13 Mean axial velocity profiles, <Uz> and <vp,z>, for particle-laden case 3A. The 

velocities are normalized by the bulk velocity of each flow, Ub. The subscript 3S denotes 

single-phase flow, and 2P and PI, tracers and inertia particles type I in two-phase flow. In 

case 3A, <Φv > is 1.0 × 10-5. Dashed lines are added to guide the eye. Error-bars have 

same sizes as symbols.  
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                                      3.14a                                                         3.14b 
Figure 3.14 Mean axial velocity profiles, <Uz> and <vp,z>, for particle-laden case 4B. The 

velocities are normalized by the bulk velocity of each flow, Ub. The subscript 4S denotes 

single-phase flow, and 2P and PI, tracers and inertia particles type I in two-phase flow. In 

case 4B, <Φv > is 2.8 × 10-5. Dashed lines are added to guide the eye. Error-bars have same 

sizes as symbols. Figure 3.14a presents velocity profiles in the range 0 <r/R< 0.80 and Fig. 

3.14b, in the range 0.80 <r/R< 1. The number of line markers corresponds to the number of 

bins measured; notice the difference in scales. 

 
In Fig. 3.13, the mean axial velocity profiles of inertia particles and tracers for case 3A 

are presented. Results for case 3B are similar. No significant changes in the axial velocity 

profiles are noticed when the mean volumetric concentration, <Φv >, is varied from 1.0x10-5 
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the measurement section for particle-laden downward flows in the absence of the flow 

straightener II. 

In contrast to cases 3A and 3S, good agreement between the fluid mean velocities of 

the single-phase and two-phase flows is observed for cases 4B and 4S in the presence of the 

flow straightener II. Comparison of mean axial fluid velocities for single-phase and two-

phase flows, cases 4S and 4B, indicates a slight increase in flow velocity in the radial 

range: 0 <r/R< 0.93. This increase is compensated by a reduction in fluid velocity in the 

range 0.93 <r/R< 1, see Fig. 3.14b. 

Mean particle velocities increased for cases 4A/4B in comparison to cases 3A/3B. The 

mean relative velocity between particles and fluid is observed to be about constant from 0 

<r/R< 0.4, roughly 10 mm/s, and decreases for r/R > 0.4. For r/R > 0.9, the mean flow and 

particle velocities are roughly equal. 

We now proceed with the description of downflow velocity profiles with <Φv > 

exceeding  7.0x10-5, cases 4C/4D/4E. 

 

 

Figure 3.15 Mean axial velocity profiles, <Uz> and <vp,z>, for particle-laden case 4C. The 

velocities are normalized by the bulk velocity of each flow, Ub. The subscript 4S denotes 

single-phase flow, and 2P and PI, tracers and inertia particles type I in two-phase flow. In 

case 4C, the <Φv > is 7.0 × 10-5. Dashed lines are added to guide the eye. Error-bars have 

same sizes as symbols.  
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Figure 3.16 Mean axial velocity profiles, <Uz> and <vp,z>, for particle-laden case 4E. The 

velocities are normalized by the bulk velocity of each flow, Ub. The subscript 4S denotes 

single-phase flow, and 2P and PII, tracers and inertia particles type II in two-phase flow. In 

case 4E, <Φv > is 1.7 × 10-4. Dashed lines are added to guide the eye. Error-bars have same 

sizes as symbols. 

 
In Fig. 3.15, the mean axial velocity profiles of inertia particles and tracers for case 4C 

are presented. As mentioned, changes on the profiles of <Uz> and <vp,z> are observed for 

fluid and particles when the mean concentration, <Φv >, exceeds 7.0 x 10-5 in downward 

flows in the presence of the flow straightener II. For case 4C, there is significant change in 

fluid velocity profile in comparison to case 4S. The fluid velocity is reduced in the radial 

range: 0.6 <r/R< 1. This reduction is compensated by an increase in fluid velocity in the 

range 0 <r/R< 0.6. The mean fluid velocity in case 4C is roughly equal to the particle mean 

velocity for r/R > 0.9.   

In Fig. 3.16, the mean axial velocity profiles of inertia particles and tracers for case 4E 

are presented. Results for case 4D are similar. No significant changes on the axial velocity 

profiles are noticed when the mean concentration, <Φv >, is varied from 8.3 x 10-5 to 1.7 x 

10-4 in downward flows in the presence of the flow straightener II. Results resemble the 
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bigger diameter (St = 3.3), the mean velocity difference between inertia particles and 

tracers was enhanced on average for cases 4D/4E in comparison to case 4C. 
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The difference between particle and fluid velocities is almost zero at the pipe 

centerline; see Fig. 3.16. It increases from 0 at r/R = 0 to 12 mm/s at r/R = 0.85. For r/R > 

0.85, the difference in velocity is reduced. For r/R > 0.95, the mean flow and particle 

velocities are roughly equal. 

Comparison of mean axial fluid velocities for single-phase and two-phase flows, cases 

4S and 4E indicates a reduction in flow velocity in the radial range: 0.55 <r/R< 1. This 

reduction is compensated by an increase in fluid velocity in the range 0 <r/R< 0.55. 

3.6.4 Mean square value of velocity fluctuations for fluid and dispersed phase  

 
The Mean Square Value (MSV) velocity is defined as the product of mean velocity 

fluctuations. Here, the following notations are applied to the MSV of fluid, <uh uq>, and of 

inertia particles, <vp'h vp'q>. Subscripts h and q represent cylindrical coordinates (r, θ, z). 

The effects of upward or downward flow direction, presence or absence of flow 

straightener and mean concentration on the MSV of the fluctuating velocity for fluid and 

dispersed phase (St = 2.3) are presented in Fig.’s 3.18 – 3.22. Tests with a second set of 

inertia particles (St = 3.3) are shown in Fig. 3.23. A cylindrical coordinate system with 

origin at the pipe centerline and with the axial axis anti-parallel to the gravitational 

acceleration is assumed for down- and upward flows; see Fig. 3.17. 

 

Figure 3.17 Cylindrical coordinate system for up- and downward flows. The origin is at 

the pipe centerline and the axial axis is anti-parallel to the gravitational acceleration. 

 
 Inertia particle and tracer MSV velocity profiles are normalized by the square of the 

bulk flow velocity, Ub
2, of the corresponding experiment. Here, Ub is chosen for 

normalization, since it was set at each experiment to keep the same Reb, 10300. In each 

plot, the reference single-phase MSV velocity profiles are also shown. Error-bars are 

computed by the standard error, Eq. (3.10), in 95% confidence intervals. 

In Fig.’s 3.18a and 3.18b, inertia particle and tracer MSV velocity profiles are 

presented for the case 1B. For isotropic flows, the MSV cross-components are zero. In 
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inhomogeneous fully developed pipe flows, the only decoupled direction is the tangential 

one, which means that correlations like, e.g., <uθ ur> and <uθuz>, are zero. The nonzero 

cross-components of <uh uq> and <vp'h vp'q> are <uruz> and <vp'r vp'z> which are presented in 

Fig. 3.18b. 

In Oliveira et al.[20], the MSV velocity profiles, <ur
2>, <uz

2>, <uθ
2> and <uruz>, of case 

1S have been compared to the DNS results of Veenman.[15] For all MSV plots, the 3D-PTV 

data of case 1S presented good agreement with DNS within measurement error. MSV of 

radial and tangential velocity components are smaller than the axial one. While at the 

center of the tube (r/R<0.2) turbulence is nearly homogeneous, highly inhomogeneous 

behavior is seen closer to the wall area (0.8<r/R<1). 

Good agreement is found for the fluid MSV velocity profiles for cases 1S/1B. Results 

for cases 1A/1C are similar. For fully developed particle-laden pipe flows in upward 

direction and in the presence of particles type I with <Φv > less than 3.2×10-5, the 

turbulence is barely modified.  

The dispersed phase MSV velocity profiles for radial and tangential components, 

<vp'r
2> and <vp'θ

2>, have similar behavior to the fluid profiles. For a given radial position, a 

fluid value of <ur
2> or <uθ

2> is found inside the error range of a dispersed phase fluctuation 

value in a 95% confidence interval. 

 

                                         3.18a                                                         3.18b 
Figure 3.18 Normal (a) and cross-component (b) MSV velocity profiles, <uhuq> and 

<vp'hvp'q>, for particle-laden case 1B. The MSV velocities are normalized by the square of 

the bulk velocity of each flow, Ub
2. The subscript 1S denotes single-phase flow, and 2P and 

PI, tracers and inertia particles type I in two-phase flow. In case 1B, <Φv >, is 1.4 × 10-5. 

Dotted and solid lines are added to guide the eye.  
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For comparing MSV experimental results, the fluctuation values are weighed with the 

area of the corresponding bin in order to get proper averages. This averaging procedure is 

adopted through this whole section. The dispersed phase MSV velocity profiles for the 

axial and cross-components, <vp'z
2> and <vp'rvp'z>, differ from those of the fluid profiles. 

For the radial range r/R< 0.8, inertia particles values of <vp'z
2> exceed on average 24 % the 

fluid ones. In the cross-component profiles, <vp'rvp'z> and <uruz>, particles and fluid have 

similar results only in the range 0 < r/R < 0.6. For the radial range 0.6 < r/R < 1, inertia 

particles values of <vp'rvp'z> are smaller than the fluid ones.  

In Fig. 3.19, the MSV velocity profiles of fluid and dispersed phase are presented for 

case 2A. The fluid MSV velocity profiles for case 1B are added to show the differences 

with the fully developed condition (the same procedure is adopted for the results of other 

developing particle-laden flows). Results for case 2B are similar. No significant changes in 

the MSV velocity profiles of fluid and inertia particles are noticed when the mean 

concentration, <Φv >, is varied from 1.9x10-5 to 3.2x10-5 in upward flows in the absence of 

the flow straightener I. The fluid MSV velocity profiles of all components, <ur
2>, <uz

2>, 

<uθ
2> and <uruz> for cases 2A/2B are similar to the single-phase flow, case 2S, in the 

presence of the inertial particles for the given concentrations. 

In comparison to the fluid behavior in case 1B, the fluid profiles of <ur
2>, <uz

2> and 

<uθ
2> are increased for case 2B, particularly for r/R < 0.4. There, <ur

2>, <uz
2> and <uθ

2> 

are on average 23, 53 and 21 % bigger. Fluid profiles of the cross-component, <uruz>, were 

similar in cases 2A/2S/1B; see Fig. 3.19c. 

The dispersed phase MSV velocity profiles for radial and tangential components, 

<vp'r
2> and <vp'θ

2>, present similar behavior as the fluid profiles in cases 2A/2B. However, 

the dispersed phase axial and cross-components, <vp'z
2> and <vp'rvp'z>, in cases 2A/2B, 

differ from those of the fluid profiles. Inertia particles values of <vp'z
2>, case 2A, are for the 

radial range r/R< 0.4 on average 22 % smaller than the fluid ones. In the cross-component 

profiles of <vp'rvp'z> and <uruz>, particles and fluid have similar values only in the range 0 < 

r/R < 0.55. Inertia particles values of <vp'rvp'z> are on average 23 % smaller there than the 

fluid ones. 

For the whole category of particle-laden developing flows, values of cross-components 

including the tangential direction, <uθ ur>, <uθ uz>, <vp'θ vp'r> and <vp'θ vp'z>, have been 

checked. They are close to zero and therefore are not shown.  
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                          3.19a 

 

                                          3.19b                                                       3.19c 
Figure 3.19 Effect of different stages of development on the axial (a), radial and tangential 

(b), and cross-component (c) MSV velocity profiles, <uhuq> and <vp'hvp'q>, for particle-

laden case 2A. The MSV velocities are normalized by the square of the bulk velocity of 

each flow, Ub
2. The subscript 2S denotes single-phase flow, and 2P and PI, tracers and 

inertia particles type I in two-phase flow. In case 2A, <Φv > is 1.9 × 10-5. Dotted, dashed 

and solid lines are added to guide the eye.   

    
In Fig. 3.20, the MSV velocity profiles of fluid and dispersed phase are presented for 

case 3A. Results for case 3B are similar. No significant changes in the MSV velocity 

profiles of fluid and inertia particles are noticed when the mean concentration, <Φv >, is 

varied from 1.0×10-5 to 2.3×10-5 in downward flows in the absence of the flow straightener 

II. 
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The fluid MSV velocity profiles of all components, <ur
2>, <uz

2>, <uθ
2> and <uruz>, for 

cases 3A/3B are modified in comparison with the single-phase flow, case 3S, in the 

presence of inertial particles for the given concentrations. Particularly at the pipe core (0 < 

r/R < 0.6), values of the fluid MSV, <ur
2>, <uz

2>, <uθ
2> and |<uruz>|, are increased by 23, 

37, 24 and 20 %, respectively, for case 3A. The discrepancies with the fluctuation levels of 

a fully developed flow are increased in the presence of inertia particles; see the fluid MSV 

profiles of cases 1B/3A/3S in Fig. 3.20. 

The dispersed phase MSV velocity profiles for radial and tangential components, 

<vp'r
2> and <vp'θ

2>, are similar to the fluid ones in case 3A. However, the dispersed phase 

axial and cross-components, <vp'z
2> and <vp'rvp'z>, in case 3A, differ from those of the fluid 

profiles. For the radial range 0.4 <r/R< 1, inertia particle values of <vp'z
2>, case 3A, exceed 

on average 14 % the fluid ones. In the cross-component profiles, inertia particle values of 

|<vp'rvp'z>| are on average 24 % bigger in the range 0.2 < r/R < 0.8. 
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                      3.20a 

 

                                         3.20b                                                      3.20c 
Figure 3.20 Effect of different stages of development on the axial (a), radial and tangential 

(b), and cross-component (c) MSV velocity profiles, <uhuq> and <vp'hvp'q>, for particle-

laden case 3A. The MSV velocities are normalized by the square of the bulk velocity of 

each flow, Ub
2. The subscript 3S denotes single-phase flow, and 2P and PI, tracers and 

inertia particles type I in two-phase flow. In case 3A, the mean volumetric concentration, 

<Φv >, is 1.0×10-5. Dotted, dashed and solid lines are added to guide the eye.  

 
In Fig. 3.21, the MSV velocity profiles of fluid and dispersed phase are presented for 

case 4B. Results for case 4A are similar. No significant changes in the MSV velocity 

profiles of fluid and inertia particles are noticed when the mean concentration, <Φv >, is 

varied from  1.8×10-5 to 2.8×10-5 in downward flows in the presence of flow straightener II. 

The fluid MSV velocity profiles of all components, <ur
2>, <uz

2>, <uθ
2> and <uruz>, for 
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particles for the given concentrations. The discrepancies with the fluctuation levels of a 

fully developed flow is particularly pronounced for the radial range 0.5 <r/R< 0.9; compare 

fluid MSV profiles of cases 4B/4S to the ones of case 1B in Fig. 3.21. 

 

                           3.21a 

 
                                         3.21b                                                       3.21c 

Figure 3.21 Effect of different stages of development on the axial (a), radial and tangential 

(b), and cross-component (c) MSV velocity profiles, <uhuq> and <vp'hvp'q>, for particle-

laden case 4B. The MSV velocities are normalized by the square of the bulk velocity of 

each flow, Ub
2. The subscript 4S denotes single-phase flow, and 2P and PI, tracers and 

inertia particles type I in two-phase flow. In case 4B, the mean volumetric concentration, 

<Φv >, is 2.8×10-5. Dotted, dashed and solid lines are added to guide the eye.   
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phase axial and cross-components, <vp'z
2> and <vp'rvp'z>, in cases 4A/4B, differ from those 

of the fluid profiles. For the radial range 0.4 <r/R< 0.8, inertia particle values of <vp'z
2>, 

case 4B, exceed on average 17 % the fluid ones. In the cross-component profiles, inertia 

particle values of |<vp'rvp'z>| are on average 23 % bigger in the range 0.2 < r/R < 0.8. 

In Fig. 3.22, the MSV velocity profiles of fluid and dispersed phase are presented for 

case 4C. 

 

                            3.22a 

 
                                           3.22b                                                      3.22c 

Figure 3.22 Effects of the mean volumetric concentration, <Φv >, and different stages of 

development on the axial (a), radial and tangential (b), and cross-component (c) MSV 

velocity profiles, <uhuq> and <vp'hvp'q>, for particle-laden case 4C. The MSV velocities are 

normalized by the square of the bulk velocity of each flow, Ub
2. The subscript 4S denotes 

single-phase flow, and 2P and PI, tracers and inertia particles type I in two-phase flow. In 

case 4C, <Φv > is 7.0×10-5. Dotted, dashed and solid lines are added to guide the eye.   
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Results differ from cases 4A/4B. Significant changes are observed to the MSV velocity 

profiles of fluid and inertia particles when the mean concentration, <Φv >, exceeds  7.0x10-5 

in downward flows in the presence of the flow straightener II; compare results of case 4B 

in Fig. 3.21 to results of case 4C in Fig. 3.22.  

The fluid MSV velocity profiles of components, <uz
2>, <uθ

2> and <uruz>, for case 4C 

differ from the single-phase flow, case 4S. For the axial component, <uz
2>, an average 

increase of 30% is observed for all cross-section. For <uθ
2> and |<uruz>|, a cross-section 

averaged increase of 8% and 13% are observed. The radial component <ur
2> is in better 

agreement to the fluid MSV profile of case 4S. As a consequence, the discrepancies with 

the fluctuation levels of a fully developed flow is increased; compare fluid MSV profiles of 

cases 4C to the ones of case 1B in Fig. 3.22. 

When <Φv > exceeds 7.0×10-5, changes also take place to the dispersed phase MSV 

velocity profiles of all components, <vp'r
2>, <vp'θ

2>, <vp'z
2> and <vp'rvp'z>. Differences 

between inertia particle and fluid MSV profiles of case 4C are increased in comparison 

with those of case 4B; compare Fig. 3.21 to Fig. 3.22. 

In Fig. 3.23, the MSV velocity profiles of fluid and dispersed phase are presented for 

case 4E. Results are similar to case 4D. No significant changes on the MSV velocity 

profiles are noticed when the mean concentration, <Φv >, is varied from 8.3×10-5 to  

1.7×10-4 in downward flows in the presence of the flow straightener II. 

Values for the fluid MSV velocity components of case 4E are increased in comparison 

to the components of case 4C; compare Fig. 3.22 to Fig. 3.23. In the presence of particles 

type II and for <Φv > exceeding 8.3×10-5, fluid MSV components are increased in 

downward flows in the presence of the flow straightener II.  

In comparison to single-phase flow case 4S, the increase in the fluid MSV velocity 

components of case 4E, <ur
2>, <uz

2>, <uθ
2> and |<uruz>|, is on average 11, 45, 14 and 20 %, 

respectively, in the entire cross-section. As a consequence, the discrepancies with the 

fluctuation levels of a fully developed flow is increased; compare fluid MSV profiles of 

cases 4E to the ones of case 1B in Fig. 3.23. 
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                            3.23a 

 
                                         3.23b                                                        3.23c 

Figure 3.23 Effects of the mean volumetric concentration, <Φv >, and different stages of 

development on the axial (a), radial and tangential (b), and cross-component (c) MSV 

velocity profiles, <uhuq> and <vp'hvp'q>, for particle-laden case 4E. The MSV velocities are 

normalized by the square of the bulk velocity of each flow, Ub
2. The subscript 4S denotes 

single-phase flow, and 2P and PII, tracers and inertia particles type II in two-phase flow. In 

case 4E, <Φv > is 1.7×10-4. Dotted, dashed and solid lines are added to guide the eye.   
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velocities are normalized by the square of the bulk velocity of each flow, Ub
2. The cross-

section averaging computation for the axial MSV component is performed according to Eq. 

(3.14); the overbar indicates cross-section average: 

>< 2
zu = (0∫

R <uz
2>2πr  dr)/(πR2)                                                     (3.14) 

Table 3.5 Cross-section averaged fluid turbulence ratios of present particle-laden 
flows to the corresponding single-phase references (cases 1S, 2S, 3S, 4S) 

 
 
Table 3.5 clearly shows how the flow turbulence is modified by the presence of inertia 

particles at the given concentrations and flow conditions. At 45D far from the entrance 

region, upward particle-laden flows with and without the Bundle flow straightener I 

experience a minor increase in the MSV velocities. The increase in flow turbulence levels 

of cases 1A/1B/1C and 2A/2B is about 2 % of the single-phase cross-section averaged 

values. In these cases, mean concentrations, <Φv >, are less than 3.2×10-5. 

   At 20D from the entrance region and with <Φv > less than 2.3×10-5, downward 

particle-laden flows without the Bundle flow straightener II experience a significant 

increase in the MSV velocity components, about 20 %. At 20D far from the entrance region 

and with <Φv > less than 2.8×10-5, downward particle-laden flows with the Bundle flow 

straightener II experience a clear increase in the MSV velocity axial component, about 8 %. 

Remaining components of cases 4A/4B are less affected by the presence of inertia particles. 

   At 20D from the entrance region and with <Φv > exceeding 7.0×10-5, downward 

particle-laden flows with the Bundle flow straightener II have significant increase in the 
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MSV velocity axial component, about 30 % for case 4C and 44 % for cases 4D/4E. The 

remaining components of cases 4C/4D/4E are also affected, but less. In cases 4D/4E, 

inertia particles type II have been applied. 

In Table 3.6 the cross-section averaged fluid turbulence ratios of particle-laden flows 

to the reference flow (case 1B) are presented. This last case 1B represents the fluid 

turbulence of a fully developed particle-laden flow in a weak two-way coupling. Results for 

cases 1A/1C are similar to case 1B. The cross-section averaging computation for the MSV 

components is performed according to Eq. (3.14). The MSV velocities are normalized by 

the square of the bulk velocity of each flow, Ub
2. 

 
Table 3.6 Cross-section averaged fluid turbulence ratios of present particle-laden 

flows to the fully developed particle-laden reference (case 1B) 
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development length, fluctuation levels of cases 3A/3B/4A/4B become similar to those of 

case 1B. 

At 20D from the entrance region and with <Φv > exceeding 7.0×10-5, downward 

particle-laden flows with the Bundle flow straightener II have significant increase in the 

MSV velocity components. Particularly, the fluid MSV axial component has 30 - 50 % 

higher levels in comparison to case 1B. For cases 4C/4D/4E, it is possible that the fluid 

fluctuation levels will differ from case 1B after enough development length to achieve a 

fully developed condition. It seems that the coupling effect between particles and fluid is 

increased for <Φv > exceeding 7.0×10-5. 

Table 3.7 shows the cross-section averaged deviations of inertia particles and fluid 

MSV velocity components for the present particle-laden flows. The averaged deviations are 

computed for all significant components. The cross-section averaging computation of the 

deviation for the axial MSV component is performed according to Eq. (3.15); the overbar 

indicates cross-section average: 

2
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Table 3.7 Cross-section averaged deviations of inertia particle and fluid MSV velocity 
components for the present particle-laden flows  
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less than 10 % of the fluid MSV, deviations for <vp'z
2> and |<vp'rvp'z>| can be higher than 20 

%. 

Cases 1A/1B/1C presented the biggest deviations for MSV components, <vp'z
2> and 

<vp'rvp'z>, among all particle-laden experiments. With increasing flow turbulence levels, the 

cases 2A/2B, 3A/3B and 4A/4B/4C/4B/4E had the mean deviations reduced for MSV 

components involving the axial direction: |uv| ,zzp ><->'< 2
2P

2  and 

|uuvv| ,zrzprp ><->''< 2P . 

3.6.5 Mean axial relative velocity and flow turbulence 

 
Inspection of Fig.’s 3.11 – 3.16 revealed distinct trends of the mean axial velocity 

profiles of fluid and particles. As will be shown in this section, the difference between 

particle and fluid mean velocities in the axial coordinate, <vrel,z> = <vp,z> - <Uz>, varies 

from the terminal velocity, UTV, to roughly zero. Values of UTV for particles type I and II, -

10.2 and -13.1 mm/s, respectively, were computed in Section 3.2.2. Assuming a cylindrical 

coordinate system with origin at the pipe centerline and with the axial axis anti-parallel to 

the gravitational acceleration, the signs of <vrel,z> and UTV are negative for both upward and 

downward particle-laden flows. 

The relative velocity <vrel,z> is close to UTV in the range r/R < 0.8 for particle-laden 

cases 1A/1B/1C. These two-phase flows were measured in a situation where the 

corresponding single-phase flow is fully developed, case 1S. In Fig. 3.24, the difference 

between <vrel,z> and UTV is plotted versus the radial coordinate for the cases mentioned. 

Error-bars with sizes comparable to the dimensions of symbols shown are computed by the 

standard error, Eq. (3.10), in 95% confidence intervals. 
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Figure 3.24 Difference between particle and fluid mean velocities in the axial coordinate, 

<vrel,z>, for particle-laden cases 1A/1B/1C. The dashed line represents UTV = <vrel,z>. Error-

bars have same sizes as symbols. Squares, diamonds and circles represent results of cases 

1A, 1B and 1C, respectively.  

 

For r/R > 0.8, the approximation UTV ≈ <vrel,z> is incorrect. The particle mean axial 

velocity approaches the fluid mean one with increasing radial distance. 

A similar finding as in Fig. 3.24 for the radial range r/R < 0.8, namely UTV ≈ ‹vrel,z›, 

was also observed by Suzuki et al.[24] who performed particle-laden experiments in a 

turbulent downward channel flow. In their research, particle-laden results were obtained for 

fully developed flows. They observed that the velocity difference between the carrier phase 

and the inertia particles is approximately the terminal velocity. They also observed a 

reduction of the magnitude of the mean relative axial velocity in the near-wall zone, by 

about 10 % of UTV. 

In the particle-laden cases 2A/2B, 3A/3B and 4A/4B/4C/4D/4E, the equality of the 

terminal velocity and the mean axial relative velocity, UTV ≈ ‹vrel,z›, in the radial range r/R < 

0.8 is not observed. As seen in Fig.’s 3.25 – 3.28, mean axial velocities of inertia particles 

approach the fluid ones at some radial positions. 
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Figure 3.25 Difference between particle and fluid mean velocities in the axial coordinate, 

<vrel,z>, for particle-laden cases 2A/2B. The dashed line represents UTV = <vrel,z>. Error-bars 

have same sizes of symbols. Squares and diamonds represent results of cases 2A and 2B, 

respectively.  

 

  

Figure 3.26 Difference between particle and fluid mean velocities in the axial coordinate, 

<vrel,z>, for particle-laden cases 3A/3B. The dashed line represents UTV = <vrel,z>. Error-bars 

have same sizes of symbols. Squares and diamonds represent results of cases 3A and 3B, 

respectively. 

 

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

 r/R

 <
v re

l,z
>

 −
 U

T
V
  
 (

m
m

/s
) 

 

 

Upward, PI, 2A/2B,
no flow straightener

<φ
v
>

2A
 = 1.9 x 10−5

<φ
v
>

2B
 = 3.2 x 10−5

<v
rel,z

> = − 10.2 mm/s

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

 r/R

 <
v re

l,z
>

 −
 U

T
V
  
 (

m
m

/s
) 

 

 

Downward, PI, 3A/3B,
no flow straightener

<φ
v
>

3A
 = 1.0 x 10−5

<φ
v
>

3B
 = 2.3 x 10−5

<v
rel,z

> = − 10.2 mm/s



The role of Inertia and Turbulence in Particle-laden Pipe flow 

  

89 
 

 

Figure 3.27 Difference between particle and fluid mean velocities in the axial coordinate, 

<vrel,z>, for particle-laden cases 4A/4B/4C. The dashed line represents UTV = <vrel,z>. Error-

bars have same sizes of symbols. Squares, diamonds and circles represent results of cases 

4A, 4B and 4C, respectively. 

 

 

Figure 3.28 Difference between particle and fluid mean velocities in the axial coordinate, 

<vrel,z>, for particle-laden cases 4D/4E. The dashed line represents UTV = <vrel,z>. Error-bars 

have same sizes of symbols. Squares and diamonds represent results of cases 4D and 4E, 

respectively. 
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For upward flows without flow straightener, cases 2A and 2B, the mean axial relative 

velocity approaches the terminal velocity, UTV ≈ <vrel,z>, only in the range 0.4 < r/R < 0.8. 

For the radial range 0 < r/R < 0.4, |<vrel,z>| reduces gradually until the mean axial velocity 

of inertia particles approaches the fluid one in the pipe centerline. For r/R > 0.8, the mean 

particle velocity approaches the mean fluid one with increasing radial distance similar to 

cases 1A/1B/1C. 

The equality of UTV and <vrel,z> is not observed in the radial range 0 < r/R < 0.8 for 

downward flows, cases 3A/3B and 4A/4B/4C/4D/4E. For the downward flows in absence 

of a flow straightener, cases 3A/3B, the particle mean axial velocity almost matches the 

fluid axial one, <vp,z> ≈ <Uz>, in nearly the entire range 0 < r/R < 0.8. For 0.6 < r/R < 0.8, 

there is a slight increase in |<vrel,z>|. 

For downward flows with flow straightener II, cases 4A and 4B, the equality of UTV 

and <vrel,z> is only observed for 0 < r/R < 0.4. From r/R = 0.4 to 0.8, the magnitude of the 

mean axial relative velocity, |<vrel,z>|, becomes smaller until reaching half of the terminal 

velocity value for inertia particles type I, roughly -5 mm/s.  

For case 4C, the profile of <vrel,z> is quite different from the ones shown for cases 4A 

and 4B. Values of |<vrel,z>| are approximate 40% of |UTV| for inertia particles type I in the 

range 0 < r/R < 0.6 and increase to 85% of |UTV| at r/R ≈ 0.8. Significant differences in the 

results of <vrel,z> were found when the mean volumetric concentration of particles exceeds 

7.0×10-5. 

For downward flows with flow straightener II, cases 4D and 4E, the mean axial 

relative velocity profiles show similar behavior as in case 4C. In these cases, inertia 

particles type II were applied. Values of |<vrel,z>| are close to 25% of |UTV| for particles type 

II at the pipe centerline and raise gradually to 80% at r/R ≈ 0.8. 

In all downward flows, <vp,z> approaches <Uz> for r/R > 0.8 in a similar fashion to 

upward flows. Careful inspection of Fig.’s 3.18 – 3.23 and 3.24 – 3.28 shows that the 

reduction in |<vrel,z>| in the radial range 0 < r/R < 0.8 coincides with the occurrence of 

increased levels of turbulence. The diagonal components of the Reynolds stress tensor, 

<ur
2>, <uz

2> and <uθ
2> are enhanced for developing flows. At the same radial position, the 

higher the discrepancies with the fully developed result, the bigger the reduction in 

|<vrel,z>|. 

In order to further investigate the relation between relative velocity and turbulence 

level, a convenient measure of the latter is now defined. It is the ratio of the local 



The role of Inertia and Turbulence in Particle-laden Pipe flow 

  

91 
 

turbulence intensity for developing flows to the one obtained in the fully developed cases 

(1A/1B/1C) in the radial range 0 < r/R < 0.8. The local turbulence intensity is given by: Ir/R 

= [(<uz
2>+ <ur

2> + <uθ
2>)1/2 ]r/R. Next, the turbulence intensity Ir/R is scaled with the bulk 

velocity of the corresponding flow, Ir/R /Ub. Case 1B is chosen as reference for the fully 

developed case. Cases 1A and 1C gave similar results. In Fig.’s 3.29 – 3.32, a plot of    

(UTV – <vrel,z>)/UTV and of the ratios of local turbulence intensity for developing particle-

laden flows to the fully developed one, (Ir/R/Ub)developing /(Ir/R/Ub )1B are shown. The standard 

error, Eq. (3.10), produced error-bars with sizes comparable to the size of markers shown in 

Fig.’s 3.29 – 3.32. 

 

 

Figure 3.29 Effect of the local turbulence intensity ratio, (Ir/R/Ub)developing /(Ir/R/Ub )1B, on 

the mean axial relative velocity for particle-laden cases 2A and 2B. Results are scaled with 

the bulk velocity of the corresponding flow, Ub. The dashed line represents UTV = <vrel,z>. 

Dotted line corresponds to I1B/Ub,1B = I2A/Ub,2A = I2B/Ub,2B. Squares and diamonds 

represent results of cases 2A and 2B, respectively.  
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Figure 3.30 Effect of the local turbulence intensity ratio, (Ir/R/Ub)developing /(Ir/R/Ub )1B, on the 

mean axial relative velocity for particle-laden cases 3A and 3B. Results are scaled with the 

bulk velocity of the corresponding flow, Ub. The dashed line represents UTV = <vrel,z>. 

Dotted line corresponds to I1B/Ub,1B = I3A/Ub,3A = I3B/Ub,3B. Squares and diamonds represent 

results of cases 3A and 3B, respectively. 

 

Figure 3.31 Effect of the local turbulence intensity ratio, (Ir/R/Ub)developing /(Ir/R/Ub )1B, on the 

mean axial relative velocity for particle-laden cases 4A, 4B and 4C. Results are scaled with 

the bulk velocity of the corresponding flow, Ub. The dashed line represents UTV = <vrel,z>. 

Dotted line corresponds to I1B/Ub,1B = I4A/Ub,4A = I4B/Ub,4B = I4C/Ub,4C. Squares, diamonds 

and circles represent results of cases 4A, 4B and 4C, respectively. 

0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 r/R

 ( 
I 3A

 / 
U

b,
3A

 ) 
/ (

I 1B
 / 

U
b,

1B
 ) 

 

( I
3B

 / 
U

b,
3B

 ) 
/ (

 I 1B
 / 

U
b,

1B
 )

 

 

<φ
v
>

3A
 = 1.0 x 10−5

<φ
v
>

3B
 = 2.3 x 10−5

0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2

2.5

3

 (U
TV

 −
 <

v re
l,z

>)
 / 

U
TV

Downward, PI, 3A/3B,
no flow straightener

0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2

 r/R

 (
 I

4
A
 /
 U

b
,4

A )
 /
 (

I 1
B
 /
 U

b
,1

B )
  

( 
I 4

B
 /
 U

b
,4

B )
 /
 (

 I 1
B
 /
 U

b
,1

B )

 (
 I

4
C
 /
 U

b
,4

C )
 /
 (

 I 1
B
 /
 U

b
,1

B )

 

 

<φ
v
>

4A
 = 1.8 x 10−5

<φ
v
>

4B
 = 2.8 x 10−5

<φ
v
>

4C
 = 7.0 x 10−5

0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

1.5

2

 (
U

T
V
 −

 <
v

re
l,z

>
) 

/ 
U

T
V

Downward, PI, 4A/4B/4C,
flow straightener II



The role of Inertia and Turbulence in Particle-laden Pipe flow 

  

93 
 

 

Figure 3.32 Effect of the local turbulence intensity ratio, (Ir/R/Ub)developing /(Ir/R/Ub )1B, on the 

mean axial relative velocity for particle-laden cases 4D and 4E. Results are scaled with the 

bulk velocity of the corresponding flow, Ub. The dashed line represents UTV = <vrel,z>. 

Dotted line corresponds to I1B/Ub,1B = I4D/Ub,4D = I4E/Ub,4E. Squares and diamonds represent 

results of cases 4D and 4E, respectively. 
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Fig. 3.33. Data of the fully developed cases 1A/1C are also included. Only data in the radial 

range 0 < r/R < 0.8 is considered. 

 

Figure 3.33 Relation between the reduction on the magnitude of the mean axial relative 

velocity, |<vrel,z>|, and the increase on local turbulence intensity as given by 

(Ir/R/Ub)developing /(Ir/R/Ub )1B. All particle-laden experiments are taken into account. Only 

data in the radial range 0 < r/R < 0.8 is considered. The dashed line represents a data fit as 

given by Eq. (3.16). 

 
For (Ir/R/Ub)developing /(Ir/R/Ub )1B  > 1.6, values of (UTV – <vrel,z>)/UTV approach 1 in an 

asymptotic way. In these situations, the inertia particles have almost the same mean 

velocity as the flow tracers. A fit of all experimental data presented in Fig. 3.33 is given by 

Eq. (3.16): 

(UTV – <vrel,z>)/UTV = tanh {a |
1B

developing

)/(

)/(

br/R

br/R

UI

UI
–1|b }         (3.16) 

where the fit parameters a and b are equal to 4.75 and 1.5, respectively. The quality of the 

fit is expressed by the two parameters rs
2 and F, defined in Eq. (3.8) and (3.9). In Eq. 

(3.16), rs
2 and F are equal to 0.82 and 2136, respectively. Relation (3.16) has the proper 

asymptotic limits for (Ir/R/Ub)developing /(Ir/R/Ub )1B going to zero and going to infinity. 

3.7 Analysis 
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3.7.1 Interaction between particles and turbulent fluid flow 

 
The effects of flow developing stage, of flow direction and of mean concentration on 

the mean axial and mean fluctuating velocity profiles of particles and fluid have been 

presented in Sections 3. 6.3 and 3.6.4, respectively. In Section 3.6.5, results concerning the 

mean axial relative velocity, <vrel,z>, have been presented. A decrease of the magnitude of 

<vrel,z> was observed to coincide with increasing flow turbulence, as quantified by 

(Ir/R/Ub)developing /(Ir/R/Ub )1B. 

The RMS velocity, urms, is the square root of the MSV velocity, <u2>: urms=<u2>0.5. 

The ratio of the RMS fluid velocities to the particle terminal velocity, |urms/UTV|, indicates 

the degree of interaction between particles and turbulent flow structures. Many in depth 

analytical and numerical studies revealed that the rise velocity of bubbles is reduced by 

turbulence due to the increased residence time of bubbles in the downward side of large 

vortices, where a theoretical static equilibrium point occurs; see Aliseda and Lasheras[25], 

for example. Particle entrapment in flow structures was investigated by Sene et al.[12] They 

showed that the characteristic ratio urms/UTV indicates if vortical structures can trap a bubble 

or a particle. For urms/UTV >> 1, trapping occurs in all flow structures, whereas if urms/UTV 

<< 1 little interaction with vortices is to be expected. Spelt and Biesheuvel[13] found 

reduction in the mean rise velocity of bubbles, even 50 % of UTV, for isotropic turbulence 

with urms/UTV > 0.2. They suggested that for higher values of urms/UTV the slowing down of 

the bubbles is associated with the eddy zones; although the mechanism is presumably not 

that of trapping them in vortex cores, but rather transporting them towards the downward 

flowing edges of the eddies, where the reduction of the velocity is predominantly caused by 

inertia forces and not by viscous forces. 

In turbulent pipe flows, turbulent properties are inhomogeneous in the radial direction. 

The ratio |urms/UTV| for a direction-dependent RMS velocity, |<uh
2>0.5/UTV|, is of interest in 

the present particle-laden pipe flows. Figure 3.34 shows the ratio of the normal components 

of the smallest RMS fluid values, which correspond to cases 1A/1B/1C (see Fig. 3.18a), to 

the terminal velocity of inertia particles type I. 
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Figure 3.34 Ratios of RMS fluid velocity fluctuations of normal components to the 

terminal velocity of particles type I, |<uh
2>0.5/UTV|, for case 1B. A mean volumetric 

concentration, <Φv>, equal to 1.4×10-5 has been applied to case 1B. Dashed lines are added 

to guide the eye. Error-bars are indicated for h=z. 

 
The values in Fig. 3.34 suggest significant interaction between the particle motion and 

the turbulent flow field, since |<uh
2>0.5/UTV| is of order 1. The ratio of the axial component 

for case 1B to the terminal velocity of particles I exceeds 1 for the radial range 0.7 < r/R < 

0.99. In this region, a decrease of the magnitude of <vrel,z> with decreasing distance to the 

wall has been found for all particle-laden cases.  

Aliseda and Lasheras[25] presented a cartoon to explain the theoretical static 

equilibrium point of forces on bubbles to elucidate the interaction with large vortices in a 

homogeneous and isotropic turbulent flow. Adapting their approach to the present vertical 

particle-laden pipe flows, a similar picture of the interaction of inertia particles (with ρp /ρf 

≈ 1.05) with the turbulent flow structures is presented in Fig. 3.35. 

0 0.5 1
0

0.5

1

1.5

2

 r/R

 (
<

u
h 2
>

 0
.5
) 1

B
 /
 |
U

T
V
 |
 

 

 

Upward, PI, 1B,
flow straightener I

 h = z
 h = θ
 h = r



The role of Inertia and Turbulence in Particle-laden Pipe flow 

  

97 
 

 

Figure 3.35 Schematics of the interaction of particles and turbulent flow eddies in particle-

laden flows for |urms/UTV| ≈ O(1). Particles interact with vortex structures carried by the 

mean flow. The cylindrical coordinate system used is shown in the left side. Region 1 

represents the upward side of eddies and region 2 the downward side. The terms D, L, G 

and PG represent drag, lift, gravitational and pressure-gradient forces, respectively. 

 
Bubbles in turbulent flows with |urms/UTV| ≈ O(1) experience a reduction in the mean 

rise velocity due to the increased residence time in the downward side of turbulent 

eddies.[25] This means that bubbles spend longer periods in the region denoted as “2” in Fig. 

3.35. Obviously, the gravitational force direction is upward in that case. Particles heavier 

than fluid and with urms/UTV ≈ O(1) (corresponding to the present experiments) are expected 

to have longer residence times in the upward side of eddies; region 1 in Fig. 3.35. 

Cartoons like Fig. 3.35 show the complexity of particle-flow interaction and may 

explain the reduction in relative velocity to some extent. However, they fail to explain the 

differences in concentration profiles found in upward and downward flows. These 

differences will be explained in the next section. 

3.7.2 Governing equations for fluid and particles 

 
In the particle-laden pipe flows tested here, upward and downward flows had different 

concentration profiles. The higher particle concentrations in the pipe core for upward flows 
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these results, the equations of motion for fluid and particles are now investigated. 
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is described by a set of equations for its position and velocity. The governing equations for 

the fluid consist of the continuity and the Navier-Stokes equations, Eq.’s (3.17) and (3.18). 

The particle action on the fluid is represented by δ-forcing, made possible by assuming that 

flow gradients are constant in the particle volume, see Mazzitelli et al.[29] The fluid flow in 

the volume of the particle is ignored and the local flow around the particle is not resolved 

in an attempt to elucidate the trends found. 

∇ . U = 0                                                                                        (3.17) 

∂U/∂t + U. U = – P/ρf + ν 
2U + g + Σi ap,i δ(x – xp,i)Vp            (3.18) 

In Equations (3.17) and (3.18), ρf and U denote the fluid mass density and velocity, P 

pressure, t time, ν fluid kinematic viscosity, Vp particle volume and g gravity acceleration. 

The expression Σi ap,i δ(x – xp,i)Vp describe the feedback by all particles on the fluid. The 

terms xp and ap denote particle position and fluid acceleration induced by a particle. Terms 

in bold indicate vectors. 

Because of axisymmetry, a cylindrical polar coordinate system (r, θ, z) rather than a 

Cartesian one is chosen to represent the governing equations in the remainder of this 

section. The origin of the cylindrical coordinate system is located at the pipe centerline and 

the gravity acceleration, g, is anti-parallel to the z-axis; see Fig. 3.17. The velocity 

components in radial, axial and tangential directions are denoted by: Ur = <Ur> + ur, Uz = 

<Uz> + uz and Uθ = <Uθ> + uθ, respectively. The notation <U> indicates mean value of U 

and the lowercase letters the fluctuating components. The Reynolds stresses for the 

turbulent flows are represented by <ur
2>, <uz

2>, <uθ
2> and <uruz>. Cross-components 

involving uθ can be neglected, e.g. <uθur> and <uθuz>. Results of present experiments 

indicate that azimuthal gradients, ∂/∂θ, and the mean tangential velocity, <Uθ>, can be 

neglected, also for developing flows. By averaging Eq.’s (3.17) and (3.18), continuity and 

Navier-Stokes equations for radial and axial components, Eq.’s (3.19), (3.20) and (3.21), 

are found. The azimuthal momentum equation only describes the relation of the tangential 

velocity correlations <uθur> and <uθuz> and is therefore not presented. 

(1/r) ∂(r  <Ur>)/∂r + ∂(<Uz>)/∂z = 0                                              (3.19) 

<Ur>∂(<Ur>)/∂r + <Uz>∂(<Ur>)/∂z + ∂(<uruz>)/∂z + (1/r)∂(r  <ur
2>)/∂r – (<uθ

2>)/r = – 

(∂P/∂r)/ρf + ν∂2(<Ur>)/∂z2 + (ν/r)∂(r{∂(<Ur>)/∂r})/∂r – (ν/r2)(<Ur>) + <ap,r>L n(r)Vp  (3.20) 
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<Ur> ∂(<Uz>)/∂r + <Uz> ∂(<Uz>)/∂z + ∂(<uz
2>)/∂z + (1/r) ∂(r  <uruz>)/∂r = – (∂P/∂z)/ρf + 

ν∂2(<Uz>)/∂z2 + (ν/r)∂(r{∂(<Uz>)/∂r})/∂r + g + <ap,z>L n(r)Vp                                       (3.21) 

The last terms in Eq.’s (3.20) and (3.21), <ap,r>L n(r)Vp and <ap,z>L n(r)Vp, describe the 

feedback by all particles on the radial and axial momentum equations, respectively. Their 

definitions will be shown at this section. The term n(r) denotes the local particle number 

density. The Lagrangian notation < >L is used to indicate an ensemble average over 

particles in a certain radial bin. 

For fully developed pipe flows, the mean fluid radial velocity and velocity axial 

gradients are negligible apart from ∂P/∂z; <Ur> = 0 and ∂/∂z = 0. Radial and axial 

components of the Reynolds-averaged Navier-Stokes equations take the form of Eq.’s 

(3.22) and (3.23). 

∂<ur
2>/∂r + (<ur

2> – <uθ
2>)/r = – (∂P/∂r)/ρf + <ap,r>L n(r)Vp       (3.22) 

∂<uruz>/∂r + <uruz >/r = – (∂P/∂z)/ρf + (ν/r)∂(r{∂(<Uz>)/∂r})/∂r + g + <ap,z>L n(r)Vp   (3.23) 

In order to quantify the terms <ap,r>L and <ap,z>L , the particle equation of motion is 

introduced in the form of Eq. (3.24): 

ρp Vp (dvp/dt) =  Vp (ρp – ρf) g + ρf Vp (DU/Dt) + ρf Vp CAM [(DU/Dt) – (dvp/dt)] –  (1/8) ρf CD π 

dp
2|vp –U|(vp –U)  – ρf Vp CL (vp –U) × ω + Frest                                                                 (3.24) 

where the terms ρ, dp, V and dvp/dt represent mass density, particle diameter, volume and 

particle acceleration, respectively. The subscripts f and p denote fluid and particle. The 

terms CAM, CD and CL denote added mass, drag and lift coefficients, respectively. The 

expression Frest comprises history terms and other forces. The velocity of the particle 

relative to the fluid and the vorticity of the flow field, ×U, are given by vrel = (vp –U) and 

ω, respectively. For the pipe flows at hand, only the gradient of axial velocity in the radial 

direction, ∂Uz /∂r, is significant. The lift force accounts for every possible form of lift on a 

particle. History effects are neglected; Frest  ≈ 0. The fluid acceleration is represented by 

DU/Dt, see Eq. (3.25); and is the unperturbed fluid acceleration that would be measured in 

the absence of a particle at its center. 

DU/Dt = ∂U/∂t + U. U                                                                 (3.25) 

The particle acceleration in Eq. (3.24), dvp/dt, is now averaged and split into the radial 

and axial components as given by <dvp,r /dt >L and <dvp,z /dt >L: 
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<dvp,r /dt >L =  [ρf (1+CAM) <DUr /Dt >L – (3ρf CD /4dp)|vrel|<vrel,r >L  – ρf  CL <vrel,z ∂Uz /∂r  >L] / 

(ρp +ρf CAM)                                                                                                                      (3.26) 

<dvp,z /dt >L =  [(ρp – ρf)g + ρf (1+CAM) <DUz /Dt >L – (3ρf CD /4dp)|vrel|<vrel,z >L +                    

ρf  CL <vrel,r ∂Uz /∂r  >L] / (ρp +ρf CAM)                                                                                (3.27) 

For particles with a small diameter, the drag term in Eq.’s (3.26) and (3.27) is more 

significant than the remaining ones. With increasing dp, a particle acquires enough inertia, 

(ρp + CAM ρf) Vp, not to behave as a fluid particle. In our analysis, all acceleration terms are 

relevant.  

In Eq.’s (3.22) and (3.23), <ap,r>L and <ap,z>L originate from the action of pressure and 

viscous terms on the particle surface. By inspection of Eq. (3.24), these contributions stem 

from the fluid acceleration, added mass, drag, lift and history forces averaged over particles 

for a given radial position. The gravitational force is not included in the term <ap,z>L. The 

terms <ap,r>L and <ap,z>L are given by Eq.’s (3.28) and (3.29): 

 
<ap,r>L =  – CAM < DUr /Dt – dvp,r /dt>L + (3CD /4dp)|vrel|<vrel,r >L + CL <vrel,z ∂Uz /∂r  >L     (3.28) 

<ap,z>L =  – CAM < DUz /Dt – dvp,z /dt>L + (3CD /4dp)|vrel|<vrel,z >L – CL <vrel,r ∂Uz /∂r  >L    (3.29) 

 
In order to predict the changes in the fluid flow due to the presence of particles, the 

Reynolds-averaged Navier-Stokes equations must be solved with inclusion of the terms 

<ap,r>L and <ap,z>L. By replacing <dvp,r /dt >L and <dvp,z /dt >L in Eq.’s (3.28) and (3.29) with 

Eq.’s (3.26) and (3.27), it is possible to rewrite <ap,r>L and <ap,z>L as: 

 
<ap,r>L =  [CAM (ρf  –ρp) <DUr /Dt >L + (3ρp CD /4dp)|vrel|<vrel,r >L+ ρp CL <vrel,z ∂Uz /∂r  >L] / 

(ρp+ρf CAM)                                                                                                                       (3.30) 

<ap,z>L =  [CAM (ρf  – ρp) <DUz/Dt >L + (3ρp CD /4dp)| vrel |<vrel,z >L+ CAM (ρp –ρf) g  –              

ρp CL<vrel,r ∂Uz /∂r  >L] / (ρp +ρf CAM)                                                                                 (3.31) 

 
The gravity term in Eq. (3.31) only affects <ap,z>L via an added mass term. The lift terms on 

Eq.’s (3.30) and (3.31) are now rearranged. By rewriting vrel and ∂U /∂r as a sum of mean 

and fluctuating parts: vrel = <vrel > + vrel' and ∂U/∂r  = ∂<U>/∂r + ∂u/∂r, and expanding the 

Lagrangian-averaged product term: <vrel ∂U/∂r> L, the following expressions are obtained: 
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 <vrel,r ∂Uz /∂r  >L = <(<vrel,r >) ∂<Uz>/∂r>L + <vrel'r ∂uz /∂r  >L + <vrel'r>L ∂<Uz>L/∂r  +          

<vrel,r >L <∂uz/∂r>L                                                                                                            (3.32) 

<vrel,z ∂Uz /∂r  >L =<(<vrel,z >) ∂<Uz>/∂r>L + <vrel'z ∂uz /∂r  >L + <vrel'z>L ∂<Uz>L/∂r  +          

<vrel,z >L <∂uz/∂r>L                                                                                                            (3.33) 

The third and fourth terms on the RHS of Eq.’s (3.32) and (3.33) are zero, since <vrel'r>L , 

<vrel'z>L and <∂uz/∂r>L = 0. By replacing <vrel,z ∂Uz /∂r  >L and <vrel,r ∂Uz /∂r  >L in Eq.’s 

(3.30) and (3.31) with Eq.’s (3.32) and (3.33), the terms <ap,r>L and <ap,z>L are rewritten 

into Eq.’s (3.34) and (3.35): 

 
<ap,r>L =  [ CAM (ρf  – ρp) <DUr /Dt >L + (3ρp CD / 4dp) |vrel| <vrel,r >L + ρp CL <vrel'z ∂uz /∂r  >L + 

ρp CL <(<vrel,z >) ∂<Uz>/∂r>L] / (ρp +ρf CAM)                                                                     (3.34) 

<ap,z>L =  [CAM (ρf  – ρp) <DUz/Dt >L + (3ρp CD /4dp)| vrel |<vrel,z >L+ CAM (ρp – ρf)g –              

ρp CL <(<vrel,r >) ∂<Uz>/∂r>L – ρp CL <vrel'r ∂uz /∂r  >L] / (ρp +ρf CAM)                                 (3.35) 

A. Concentration profiles 

In order to explain the differences in the measured concentration profiles for up- and 

downward flows, the local averaged feedback by particles on fluid in the radial direction, 

<ap,r>L, is now evaluated. Evaluation of Eq. (3.34) is performed with experimental data of 

one upward case (1B) and one downward case (4B). The analysis performed with the 

mentioned data can be extended to the remaining up- and downflow cases.  

The term <DUr /Dt >L in Eq. (3.34) is computed via the LHS of Eq. (3.22): ∂<ur
2>/∂r 

+(<ur
2>)/r – (<uθ

2>)/r. For case 1B, experimental data of <ur
2> and <uθ

2> as a radial 

function is found in Fig. 3.18a; and for case 4B, in Fig. 3.21b. For the computation of mean 

lift force term, <(<vrel,z >)∂<Uz>/∂r>L, experimental data is given in Fig.’s 3.11 and 3.14 for 

cases 1B and 4B, respectively. For the computation of the fluctuating lift force term, <vrel'z 

∂uz /∂r  >L, experimental data is not available in a Lagrangian reference frame. Therefore, 

the following approximation is carried out: <vrel'z ∂uz /∂r  >L*  ≈ <(vp'rms,z – urms,z) ∂<Uz>/∂r>L; 

where vp'rms,z = <vp'z
2>0.5; urms,z = <uz

2>0.5. It is obvious that the fluctuating component in 

axial direction of the relative velocity cannot be evaluated at the center of the particle from 

experimental data. Bagchi and Balachandar[26] introduced special measures to assess this 

velocity in a DNS with two-way coupling, but there is no way a similar procedure can be 
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applied to experimental data. The above approximation utilizes rms-values as typical 

measures for the fluctuating velocity components in order to at least have two values at the 

same position in the flow. This is believed to be important in pipe flow with typically large 

gradients in radial direction. Because of the large gradients, <∂uz /∂r  >L* is replaced by 

∂<Uz>L/∂r. The resulting estimate may be off by ±40%, but this will not affect the result of 

the reasoning below. The only way to investigate the accuracy of the above estimate is by 

means of a dedicated DNS analysis which is currently being performed in our group but 

which is beyond the scope of the present investigation. Moreover, we believe that a proper 

analysis of experimental data should be fully based on experimental data and not on 

additional information which can only be obtained by DNS or other methods. We believe 

that expressions for the drag force and the lift force based on potential flow considerations 

are unpractical from the point of view of the experimentalist. For this approximation, 

experimental data are available in Fig.’s 3.11, 3.14, 3.18a and 3.21a. In a fully developed 

flow, the drag term of the radial component is zero since <vrel,r >L = 0. 

For cases 1B and 4B, all force terms in the RHS of Eq. (3.34) are plotted as a function 

of radial coordinate in Fig. 3.36. Radial force terms of Eq. (3.34) are plotted in Fig.’s 3.36a 

and 3.36b for case 1B and in Fig.’s 3.36c and 3.36d for case 4B. A hypothetical mean lift 

force for the radial component is also plotted for sake of evaluating a common 

approximation applied to the motion of inertia particles, namely <vrel,z >L ≈ UTV. The terms 

FADM,r, FD,r, <FL,r>, FL'r and <FL,UTV,r > correspond to: 

•  FADM,r = CAM (ρf  –ρp) <DUr /Dt >L /(ρp+ρf CAM);  

•  FD,r = (3ρp CD /4dp)|vrel|<vrel,r >L /(ρp+ρf CAM); 

•  <FL,r> = ρp CL <(<vrel,z >) ∂<Uz>/∂r>L /(ρp+ρf CAM);  

•  FL'r = ρp CL <vrel'z ∂uz /∂r  >L*/(ρp+ρf CAM);  

•  <FL,UTV,r > = ρp CL  <UTV ∂(<Uz>)/∂r>L /(ρp +ρf CAM). 

 

The sum of all force terms, except the hypothetical <FL,UTV,r >, results in <ap,r >L. Each force 

term stands for force per mass unit [N/kg or m/s2].  
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                                   3.36a                                                          3.36b 

 
                                    3.36c                                                          3.36d 

Figure 3.36 Local averaged radial force per unit of mass exerted on fluid by particles for 

particle-laden cases 1B (a, b) and 4B (c, d). Results for the radial range 0 < r/R < 0.8 are 

shown in Fig.’s 3.36a and 3.36c, and for the range 0.8 < r/R < 1 in Fig.’s 3.36b and 3.36d; 

notice the difference in scales. The expressions FADM,r, FD,r, <FL,r> and FL'r denote modified 

added mass, drag, mean lift and fluctuating lift forces, respectively, for the radial 

component. The expression <FL,UTV,r > denotes the mean lift for the approximation: <vrel,z >L 

≈ UTV. Dotted lines are added to guide the eye.  

 

The magnitudes of the radial forces in the wall region exceed the magnitudes in the 

pipe core. The lift force terms are dominant. The contribution of the modified added mass 

force term, FADM,r, is negligible everywhere. Note that Fig. 3.36 presents the local mean 

radial acceleration imposed to the fluid by a particle. The force exerted on the particle by 

the fluid is in opposite direction. 
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For 0 < r/R < 0.8, the mean lift force, <FL,r>, is dominant. The proposed approximation 

for the fluctuating lift force, FL'r, is negligible in this range and dominant for 0.8 < r/R < 1, 

particularly for case 1B. The difference vp'rms,z – urms,z is significant in the range 0.8 < r/R < 

1 for upward particle-laden cases; see Fig.’s 3.18a, 3.19a and 3.36b. For case 4B, the 

approximation for the fluctuating lift is not as meaningful as in case 1B, since the 

difference vp'rms,z – urms,z is reduced in the range 0.8 < r/R < 1 for downward particle-laden 

cases; see Fig.’s 3.20a, 3.21a, 3.22a, 3.23a and 3.36d. 

For 0 < r/R < 0.8, the hypothetical mean lift force, <FL,UTV,r >, is comparable to the 

measured mean lift force, <FL,r>. For 0.8 < r/R < 1, the agreement between <FL,r> and 

<FL,UTV,r > is not observed. If <vrel,z >L would be taken as UTV, the mean lift force would be 

the dominant term for the range 0.8< r/R <1.  

 For the present particle-laden flows, with |urms/UTV| ≈ O(1), mean lift force is not 

dominant in the near-wall zone. In order to justify the different trends in Φv (r/R) profiles, it 

is hypothesized that the fluctuating form of the lift force, <vrel'z ∂uz/∂r >L, is responsible for 

moving particles towards the core in upward experiments and towards the wall in 

downward flows. For dispersed flows with |urms/UTV| << 1, the mean lift force is the most 

significant radial force for the whole cross-section, determining the trends of concentration 

profiles. 

 
B. Feedback by particles on fluid in the axial direction 

The local averaged feedback by particles on fluid in the axial direction, <ap,z>L, is now 

investigated. Evaluation of Eq. (3.35) is also performed with experimental data of upward 

case 1B and downward case 4B. This analysis can also be performed for the remaining up- 

and downflow cases. 

The term <DUz /Dt >L is computed via the LHS of Eq. (3.23): ∂<uruz>/∂r + <uruz >/r. 

For case 1B, experimental data of <uruz > as a radial function is found in Fig. 3.18b; and for 

case 4B, in Fig. 3.21c. The mean lift force term, <(<vrel,r >)∂<Uz>/∂r>L, is zero since 

<vrel,r>L = 0. For the computation of the fluctuating lift force term, <vrel'r ∂uz /∂r  >L, 

experimental data is not available in a Lagrangian reference frame. Therefore, the 

following approximation is carried out: <vrel'r ∂uz /∂r  >L*  ≈ <(vp'rms,r – urms,r) ∂<Uz>/∂r>L; 

where vp'rms,r = <vp'r
2>0.5; urms,z = <ur

2>0.5. For such approximation, experimental data is 

available in Fig.’s 3.11, 3.14, 3.18a and 3.21b.  
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For cases 1B and 4B, all force terms in the RHS of Eq. (3.35) are plotted as a function 

of radial coordinate in Fig. 3.37. Axial force terms of Eq. (3.35) are plotted in Fig. 3.37a for 

case 1B and in Fig. 3.37b for case 4B. A hypothetical drag force for the axial component is 

also plotted for sake of evaluating a common approximation applied on the motion of 

inertia particles, namely <vrel,z >L ≈ UTV. The expressions FADM,z, FD,z, Fg, <FL,z>, FL'z and 

FD,UTV,z correspond to: 

•  FADM,z = CAM (ρf  –ρp)<DUz/Dt >L /(ρp +ρf CAM);  

•  FD,z = (3ρp CD /4dp)| vrel |<vrel,z >L /(ρp +ρf CAM);  

•  Fg = CAM (ρp –ρf)g /(ρp +ρf CAM);  

•  <FL,z> = – ρp CL <(<vrel,r >) ∂<Uz>/∂r>L /(ρp +ρf CAM);         

•  FL'z = – ρp CL <vrel'r ∂uz /∂r  >L* /(ρp +ρf CAM);  

•  FD,UTV,z = (3ρp CD /4dp)| vrel |UTV /(ρp +ρf CAM);  

 
The sum of all force terms, except the hypothetical FD,UTV,z, results in <ap,z >L. Each force 

term stands for force per unit of mass [N/kg or m/s2]. 

 

 
                           3.37a                                                                3.37b 

Figure 3.37 Local averaged axial force per unit of mass exerted on fluid by particles for 

particle-laden cases 1B (a) and 4B (b). The expressions FADM,z, FD,z, Fg, <FL,z> and FL'z 

denote modified added mass, drag, gravitational, mean lift and fluctuating lift forces, 

respectively, for the axial component. The expression FD,UTV,z denotes the drag for the 

approximation: <vrel,z >L ≈ UTV. Dotted lines are added to guide the eye. 
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Opposite to the radial forces, the magnitude of local averaged axial forces is bigger in 

the pipe core (0<r/R<0.8). The drag and gravitational terms, FD,z and Fg, are dominant. As 

mentioned, the gravity term in Eq. (3.35) only affects <ap,z>L via an added mass term. The 

contributions of the modified added mass, mean lift and fluctuating lift force terms, FADM,z, 

<FL,z> and FL'z, respectively, are negligible everywhere. For 0 < r/R < 0.8, the drag force 

term, FD,z, exceeds the gravitational term, Fg. For 0.8 < r/R < 1, Fg is dominant. At this 

radial range, FD,z is reduced with decreasing distance to the wall. Notice that the term Fg 

differs from FD,UTV,z due to the added mass coefficient, CAM. 

The agreement between FD,z and the hypothetical FD,UTV,z is observed at the radial 

range 0 < r/R < 0.8 for case 1B, and at 0 < r/R < 0.4 for case 4B. If <vrel,z >L would be taken 

as UTV, the drag force would be also the dominant term close to the wall; r/R > 0.8. 

However, for the present particle-laden flows, with |urms/UTV| ≈ O(1), this approximation is 

incorrect. For dispersed flows with |urms/UTV| << 1, the drag force is the most significant 

axial force for the whole cross-section, including the near-wall zone. 

  
C. The effect of particles feedback on the pressure drop 

With the local averaged feedback by particles on fluid, <ap,r>L and <ap,z>L, specified by 

Eq.’s (3.34) and (3.35), the radial and axial components of the Reynolds-averaged Navier-

Stokes equations are now evaluated by averaging over the pipe cross-section: 

 
(0∫

R <ap,r >LΦv(r) rdr) / (R2/2) = {0∫
R { [(∂P/∂r)/ρf] – [<uθ

2>L/r] } rdr}/( R2/2)                  (3.36) 

(0∫
Rr’dr’ 0∫

r’ <ap,z >LΦv(r) rdr) / (R4/4) = [(1/8)R4(∂P/∂z)/ρf  + νQL,z/π +  0∫
R <ur uz>L r

2dr – 

(1/8)R4g ] / (R4/4)                                                                                                             (3.37) 

The physical interpretation of the expressions (3.36) and (3.37) is based on the RHS’s and 

will be made clear in the following. The terms (∂<ur
2>/∂r) +(<ur

2>/r) in Eq. (3.22) 

disappear after integration. The term QL,z in Eq. (3.37) is the volumetric flow rate crossing 

the test section. The particle density number is related to volume load by: Φv(r) = n(r)Vp. 

Experimental data of upward case 1B and downward case 4B are employed in the analysis 

of Eq.’s (3.36) and (3.37). The conclusions of this analysis can also be extended to the 

remaining up- and downflow cases. 
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Radial profiles of <ap,r>L Φv(r) and <ap,z>L Φv(r) for up- and downflow, cases 1B and 

4B, are observed in Fig. 3.38. Mean concentration profiles, Φv(r), for cases 1B and 4B are 

provided in Fig.’s 3.6 and 3.9, respectively. 

 
                                    3.38a                                                               3.38b 
Figure 3.38 Force exerted by all particles in the radial (a) and axial (b) fluid motion. The 

terms <ap,r>L Φv and <ap,z>L Φv denote force per unit of mass N/kg. In upward case 1B and 

downward case 4B, mean volumetric concentrations, <Φv >, equal to 1.4×10-5 and 2.8×10-5 

have been applied, respectively.  

 
For the downward particle-laden flow, case 4B, there is a maximum on the 

concentration profile of inertial particles, Φv (r/R), for r/R ≈ 0.97. Due to this maximum of 

the volume load profile, the overall force contribution of particles to the fluid is bigger at 

the radial range r/R > 0.8 for case 4B than 1B. In Fig. 3.38b, the maximum at r/R ≈ 0.96 in 

the profile of <ap,z>LΦv(r) for case 4B is due the overall gravitational force contribution, 

FgΦv; see Fig.’s 3.9, 3.37b and 3.38b. 

The LHS of Eq. (3.37), (0∫
Rr’dr’ 0∫

r’ <ap,z >LΦv(r) rdr) / (R4/4), yields in upflow (case 

1B) a small number, -4.9×10-6 N/kg or m/s2, as expected. The RHS of Eq. (3.37) is namely 

the total pressure gradient, [(1/8)R4(∂P/∂z)/ρf]/(R
4/4), minus the hydrostatic pressure 

gradient, [(1/8)R4g]/(R4/4), minus the viscous contribution, (νQL,z/π)/(R
4/4), (about 1.5×10-4 

N/kg in upflow) and minus the turbulent contribution, (0∫
R <ur uz>L r2dr)/(R4/4) (about 

6.2×10-4 N/kg in upflow). The total pressure gradient minus the hydrostatic pressure 

gradient can also be computed from the well-known Darcy–Weisbach equation for single-

phase turbulent pipe flows: (dP/dz)Darcy =f ρf Ub
2/2D; where f is the friction factor, which 

can be taken from Moody’s Diagram. For a smooth pipe at Reb ≈ 104, f is roughly 0.03. 
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With the pipe radius and the mass fluid density, [(1/8)R4(dP/dz)Darcy /ρf]/(R
4/4) yields 

7.5×10-4 N/kg, which is roughly the sum of viscous, (νQL,z/π)/(R
4/4), and turbulent 

contributions, (0∫
R <ur uz>L r

2dr)/(R4/4). This comparison makes obvious that in this case the 

particle concentration is low enough to hardly affect the frictional pressure drop (which is 

the total one minus the hydrostatic one). In downflow, case 4B, the numbers are the 

following: -5.0×10-6, 1.5×10-4 and 6.3×10-4 N/kg for the LHS of Eq. (3.37), viscous and 

turbulent contributions, respectively. In cases 1B and 4B, mean volume concentrations 

equal to 1.4×10-5 and 2.8×10-5 have been applied.  

Figure 3.38b makes clear why the contribution of the integral of <ap,z>Φv(r) to the 

pressure gradient is minor: at large radial distances <ap,z>Φv(r) is reduced due to the 

decrease on <vrel,z > for r/R > 0.8. If the relative velocity component in z-direction would be 

UTV everywhere, the integral of <ap,z>Φv(r) would yield -5.3×10-6 and -6.4×10-5 N/kg for 

cases 1B and 4B, respectively. Drag mainly determines the trend of <ap,z>. 

The values of (0∫
R<ap,r >LΦv(r) rdr)/(R2/2), LHS of Eq. (3.36), are similarly small 

because of the low concentration of inertia particles: 6.4×10-8 for upflow case 1B and -

3.7×10-7 N/kg for downflow case 4B. The pressure gradient in radial direction, 

{ 0∫
R[(∂P/∂r)/ρf]rdr}/( R2/2), compensates the mean azimuthal fluctuating term:                   

{– 0∫
R[<uθ

2>L/r]rdr}/( R2/2). The last term equals -1.0×10-3 and -1.1×10-3 N/kg in up- and 

downflow cases 1B and 4B, respectively. The pressure gradient can be estimated from 

literature values; see Laws et al.[11], for example. The last one provided radial profiles of 

pressure as a function of mass fluid density and the bulk flow velocity. Integration of 

{ 0∫
R[(∂P/∂r)/ρf]rdr}/( R2/2) with present experimental settings yields roughly 0.95×10-3 

m3/s2. The physical significance of the integrated <ap,r>L-equation is therefore the variation 

of pressure in radial direction due to centrifugal forces. Whether this pressure distribution is 

affected by the presence of particles is the subject of the present analysis. The results of the 

analysis remain practically the same if a lesser developed (in axial direction) flow is taken, 

showing that axial terms can be discarded for the present purposes. 

 However, if the relative velocity component in z-direction would be UTV everywhere, 

the integral (0∫
R<ap,r >LΦv(r) rdr)/(R2/2) would yield 1.0×10-7 instead of 6.4×10-8 N/kg in 

upflow (case 1B) and -1.9×10-6 instead of -3.7×10-7 N/kg downflow (case 4B). The mean 

lift force component, <FL,r>, would have more influence on the computation of <ap,r>L. 

This shows that small values of the mean relative velocity near the wall are essential in 
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keeping the integrated values of <ap,r>Φv(r) small. If the relative velocity component in z-

direction is taken to be UTV everywhere, the mean lift force term, <(<vrel,z >) ∂<Uz>/∂r>L, in 

<dvp,r /dt> is enhanced near the wall. Apparently, the lift force acts to reduce the mean 

relative velocity in the near-wall zone. 

It is probably no coincidence that the Lagrangian averaged lift force is small in the 

near-wall zone because of the small averaged relative velocity there. A speculative 

explanation is then provided: the relative velocity is kept minimal at the wall region to 

reduce the dissipated power by the fluid, and then the entropy production. The dissipated 

power is a function of vrel,z
3 and the radial range  0.8 < r/R < 1 corresponds to 36 % of the 

cross-section area. 

3.7.3 Wake interaction 

 
For the particle-laden pipe flows at hand, experiments with mean volumetric 

concentrations less than 7.0 × 10-5 had minor changes on final results once <Φv > was 

varied. This was noticed on the aspect of the radial particle distributions, Fig.’s 3.6 – 3.10, 

and on the similarity of velocimetry results, Fig.’s 3.11 – 3.33, for cases 1A/1B/1C, 2A/2B, 

3A/3B and 4A/4B.   

For downward particle-laden flows with mean volumetric concentrations exceeding 

7.0×10-5, changes on particle distribution and velocities were observed. This was noticed 

for the different results for cases 4A/4B in comparison to cases 4C/4D/4E. The 

measurement conditions of the downward particle-laden flows of case 4 are similar: they 

cross the bundle flow straightener II at the entrance and samples are collected at 20D from 

the straightener outlet. Particles type II were applied in cases 4D/4E, while particles type I 

in cases 4A/4B/4C.  

For example, cases 4A/4B showed similar <vrel,z> results, but different from cases 

4C/4D/4E; see Fig.’s 3.27 and 3.28. The fluid and particle mean velocity profiles of cases 

4C/4D/4E became peaky. Modifications were also observed on the aspect of concentration 

profiles, Φv (r/R), for cases 4C/4D/4E. The rise in the average concentration of inertia 

particles seems to be related to changes in distribution and velocimetry results from cases 

4A/4B to cases 4C/4D/4E. These changes suggest a stronger effect on the two-way 

coupling between particles and fluid for cases 4C/4D/4E. 
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The collective effect of a large number of particles can modify the effective drag force 

on a particle due to screening effect and thereby influence the mean settling and dispersion 

characteristics; see Bagchi and Balachandar.[26] In order to evaluate if the wake interaction 

of the particle distributions had significant effect on the velocimetry results, it is proposed 

to evaluate the extension of the wake downstream of a single particle and the average inter-

particle distance, Dp, for each specific particle-laden case. The computation of Dp is 

performed by considering the radial bin where the maximum time-averaged concentration 

of particles, Φv,max, was found; see Fig.’s 3.6 – 3.10 and Table 3.4. As a reference for the 

wake length behind a particle in an inhomogeneous flow, data of Suzuki et al.[24] can be of 

use. They found a wake extension of roughly 13 particle diameters, dp, at the channel 

centerline. This length is reduced to nearly 10 dp once the channel wall is approached. 

The distance between the surfaces of finite-sized particles in a regular distribution is 

given by Eq. (3.38): 

Dp /dp
 = [π/(6Φv)]

1/3 – 1                                                                 (3.38) 

The plot of the averaged inter-particle distance normalized by the particle diameter, Dp /dp, 

for each specific particle-laden case is shown in Fig. 3.39. Values of Dp /dp are presented 

only in the radial bin (rmax) where the maximum time-averaged concentration of particles, 

Φv,max, was found. That happened in rmax/R ~ 0 for upward flows, and in rmax/R ~ 0.98 for 

downward flows. Triangle symbols represent the maximum concentration found for 

particle-laden cases 1A/1B/1C, 2A/2B, 3A/3B and 4A/4B. Circle, square and diamond 

represent results for cases 4C, 4D and 4E, respectively. 
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Figure 3.39 Ratio of inter-particle distance to particle diameter, Dp /dp, in the radial bin 

(rmax) where the maximum time-averaged concentration of particles, Φv,max, was found. The 

solid line represents Eq. (3.38). Circle, square and diamond represent cases 4C, 4D and 4E, 

respectively. Triangles represent the remaining particle-laden cases. The dashed line crosses 

the solid line in Dp/dp ~ 13. 

 
For cases 4C, 4D and 4E, Φv,max is about 3×10-4, 4×10-4 and 10-3, respectively. The aim 

of this approach is to identify if a strong interaction of the set of individual wakes in the 

pipe flow happened. That would be possible if the reference wake extension behind a 

particle exceeds the average inter-particle distance. If this situation took place, a strong 

interference of the set of wakes in the velocimetry values is expected. Considering that the 

reference provided by Suzuki et al.[24] is appropriate, a significant wake interaction should 

be expected for cases 4C/4D/4E in the near-wall region. This can explain differences from 

cases 4A/4B to cases 4C/4D/4E, and why the changes in the mean volume load, <Φv >, did 

not affect cases 1A/1B/1C, 2A/2B and 3A/3B. 

Even though Dp /dp < 13 only in the near-wall zone for cases 4C/4D/4E, changes in 

results happened for the whole cross-section. Values of the fluid mean axial velocity for 

cases 4C/4D/4E became smaller than values of case 4S for 0.8 < r/R < 1 and bigger for 0 < 

r/R < 0.6. The stronger wake interaction as seen by cases 4C/4D/4E causes a reduction in 

velocities near the wall. By mass conservation, the fluid axial velocities increase in the core 

region. 
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3.8 Discussion 

 

3.8.1 Inertia, wall-normal distributions and relative velocity 

 
In the particle-laden flows measured, ratios of RMS fluid velocity to the terminal 

velocity of inertia particles are of order 1; |urms/UTV| ≈ O(1). The magnitude of <vrel,z> 

reduced with increasing flow turbulence. Upward and downward flows had different 

concentration profiles. The high particle concentrations in the pipe core for upward flows 

and in the near wall-zone for downward flows revealed that orientation with respect to 

gravity affects radial distribution of particles. 

With the observed trends being opposed to those in turbulent bubbly flows, it is 

conjectured that particles heavier than fluid and with urms/UTV ≈ O(1) possess longer 

residence times in the upward side of eddies. That would explain the reduction of |<vrel,z>| 

with increasing flow turbulence. In order to explain the different trends in Φv (r/R) profiles, 

it is hypothesized that a fluctuating component of the lift force on particles, <vrel'z ∂uz/∂r >L, 

is responsible for moving particles towards the core in upward flows and towards the wall 

in downward flows. 

The ratio of RMS fluid velocity to terminal velocity of particles with high inertia tends 

to go to zero: |urms/UTV| → 0. High inertia particles cross turbulent eddies with hardly any 

interaction. The relative velocity approaches the terminal velocity and in the presence of 

enough shear, a mean lift force in the form <(<vrel,z>) ∂(<Uz>)/∂r >L will be of importance 

in determining the wall-normal concentration profiles. For |urms/UTV| → 0, the magnitude of 

the mean lift component will overcome the fluctuating lift term, which was approximated 

in this work by: <vrel'z ∂uz /∂r  >L ≈ <(vp'rms,z – urms,z) ∂<Uz>/∂r>L; see previous section. 

In the particle-laden experiments of Suzuki et al.[24], mean concentration profiles of 

flow tracers, Φv (r/R), were not far from a homogeneous distribution. For flow tracers, 

ratios of urms/UTV considerably exceed 1; urms/UTV >> 1. The terminal velocity of flow 

tracers is not significant and |<vrel,z>| is also small. In this situation, the turbulent motion of 

particles with low inertia is governed by the interaction with flow eddies and lift does not 

play a role. 

In these experiments of Suzuki et al.[24], ceramic beads with mass density exceeding 

the carrier-phase (water) 3.85 times have been applied in downflow, resulting in a 

maximum concentration of inertia particles at the channel walls (exceeding 7 to 8 times the 
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concentrations at the channel core) and in a decrease of |<vrel,z>| with decreasing distance to 

the wall. Ratios of RMS fluid velocity to the terminal velocity of inertia particles in their 

experiments are of order 0.2: |urms/UTV| ≈ 0.2. The mean lift, <(<vrel,z>) ∂(<Uz>)/∂r >L, can 

explain the maximum in Φv (r/R) profiles in the following way: in the the channel core, 

<vrel,z> approaches the terminal velocity. In the near-wall zone, |urms/UTV| is about 0.25 and 

a small reduction of |<vrel,z>| is observed: about 90 – 95% of UTV. Due to the high velocity 

gradients, ∂(<Uz>)/∂r, and relative velocity, <vrel,z>, at the wall, the mean lift force is 

dominant and explains the maximum in the wall-normal concentration profiles. In their 

experiments, the magnitude of the fluctuating lift term, approximated in this work by:  

<vrel'z ∂uz /∂r  >L ≈ <(vp'rms,z – urms,z) ∂<Uz>/∂r>L; is not relevant. 

3.8.2 Relation between shear rate and drag coefficient 

 
The influence of the shear on drag coefficients has been investigated numerically by 

Legendre and Magnaudet.[27] They analyzed the three-dimensional flow around a spherical 

bubble moving steadily in a viscous linear shear flow. The shear rate, Sr, is defined as the 

ratio of the velocity difference across the bubble (or particle) to the relative velocity; see 

Eq. (3.39): 

Sr = (dp ∂Uz/∂r)/vrel                                                                        (3.39) 

For a particle Reynolds number in the range 0.1< Rep < 500, the effect of shear on the drag 

coefficients was found[27] to be small for shear rates less than 0.2. The drag coefficient 

increases by less than 1% for Sr = 0.02 and by less than 5% for Sr = 0.2.  The distributions 

of pressure and viscous effects at the bubble surface were close to the one corresponding to 

a uniform flow (Sr = 0). For shear rates between 0.2 and 1 and for Rep equal to 300 or 500, 

the increase in drag coefficient was about 50%. The modification of the pressure 

distribution induced by inertia effects in the liquid is essentially responsible for the drag 

increase. To account for the shear rate influence on the computation of drag coefficients, a 

modified equation for CD was made[27] by fitting data for Rep = 300 and 500 and for 0.01 < 

Sr < 1: 

CD = CD
* (1+ 0.55 Sr2)                                                                  (3.40) 

where CD
* is the value of the drag coefficient for uniform flow at the velocity of the center 

of the particle. For the data of ∂Uz/∂r given in Fig.’s 3.11 – 3.16, for vrel = UTV and for 

particles I or II, Eq. (3.39) shows that Sr can exceed 1 for r/R > 0.95. This result indicates a 
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strong increase in the drag coefficient of particles flowing close to the wall (r/R > 0.95). 

For r/R < 0.95, the shear influence drops to values under 0.2, and the increase in drag due 

to shear is of minor importance.  

If the terminal velocity is taken to predict the relative velocity for r/R > 0.95, it is possible 

to quantify the expected reduction of the mean relative velocity due to the shear rate effect. 

With Sr = 1, the drag coefficient is increased by 55 %. Since vrel is a function of CD
-1/2, a 

reduction in the mean relative velocity of order 20% is expected. In this region, reductions 

over 90% of UTV were measured. Therefore, the main mechanisms to reduce |<vrel,z>| for 

r/R > 0.95 are not originating from an increase in drag coefficients due to shear rates. Note 

that Eq. (3.40) strictly holds for high Reynolds number (Rep = 300 or 500), while Rep ≤ 12 

in the present particle-laden flow cases. 

3.8.3 Turbulence modulation   

 

In Section 3.6.4, MSV velocity components of fluid and inertia particles have been 

presented. Cross-section averaged fluid turbulence ratios of particle-laden flows to the 

corresponding single-phase references showed an enhancement in the order of 5% for flows 

with <Φv > less than 3.2×10-5 and not far from fully developed conditions. In developing 

flows with <Φv > less than 2.3×10-5 and with high levels of turbulence, the presence of 

inertia particles caused turbulence enhancements in the order of 20 %. For flows with <Φv> 

exceeding 7.0×10-5 and not far from fully developed conditions, turbulence enhancements 

are about 20 - 30%. Apparently, for particle-laden flows with |urms/UTV| ≈ O(1), inertia 

particles enhance turbulence and even the more so if their concentration is higher or if the 

level of turbulence is higher. 

Here, turbulence enhancement has been achieved in particle-laden flows with Rep ≤ 12. 

Similar results have been obtained by Sato and Hishida[28] and by Suzuki et al.[24] The 

formers observed an increase in the streamwise turbulence intensity profiles of water by 

500 µm glass particles with Rep ≈ 40. Suzuki et al.[24] observed higher levels of turbulence 

in channel flow with ceramic beads at Rep ≈ 33. The ceramic beads had Stokes number 

equal to 3.6, based on the ratio of the relaxation time for particles to viscous scales, and 

were applied at a mean volumetric load about 3.2×10-4.   

The present results are in disagreement to those of Hetsroni[4] and Elgobashi.[5] The 

former stated that turbulence is enhanced for Rep > 400 due to the vortex shedding 
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phenomena and suppressed for low Rep. Elgobashi[5] suggests a map based on the ratio of 

particle to Komogorov time-scales as a function of volume load. In that map, the present 

data fall in the range of turbulence reduction. Apparently, one or more parameters of 

influence are missing. We suppose that the ratio |urms/UTV| is also relevant to predict 

turbulence modulation. 

Gore and Crowe[3] proposed the ratio of particle diameter to the integral length scale, 

dp/le, to explain either increase or decrease of turbulent intensity of the carrier fluid with the 

addition of particles to the flow. A demarcation between increase or decrease was stated for 

dp/le ≈ 0.1. In a fully developed turbulent pipe flow, the integral length scale is of order le/R 

≈ 0.2; see Hetsroni.[4] In the present experiments, particles are of order 1 mm and le ≈10 

mm, resulting in dp/le ≈ 0.1. Therefore, their proposal cannot be examined by the present 

experiments. 

3.9 Conclusions 

3D-PTV has been applied to particle-laden pipe flows in up- and downflow for various 

development stages. The effect of the level of turbulence on the mean relative velocity and 

the effect of flow direction on concentration profiles have been investigated. All flows have 

been measured at Reb =10300. The radial distribution, mean relative velocity and 

fluctuating velocities of particles and fluid have been measured. Inertia particles with 

Stokes number equal to 2.3 and 3.3 (based on the ratio of particle relaxation time to viscous 

scales) and at mean concentrations in the range 0.5×10-6 to 1.7×10-4 have been applied. The 

following conclusions and results are derived: 

•  Transient states of single-phase pipe flows at Reb = 10300 have been characterized 

by turbulent features. By quantifying the cross-section averaged diagonal 

components of the Reynolds stress tensor, linear fits distinguish flow conditions 

from the fully developed one in a convenient way. 

•  Turbulent pipe flows close to fully developed conditions present linear 

inhomogeneous behavior in the pipe core. At Reb = 10300, ratios of the diagonal 

components of the Reynolds stress tensor increase linearly from r/R = 0 to r/R ≈ 

0.8. 

•  When the terminal velocity of particles and a representative RMS turbulent flow 

velocity are of same order, i.e. |urms/UTV| ≈ O(1), the mean relative velocity 

decreases with increasing level of flow turbulence.  
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•  A correlation between the decrease of the magnitude of the mean axial relative 

velocity and the increase on local turbulence intensity is provided for the pipe core 

(0 <r/R< 0.8 at Reb = 10300). 

•  Flow orientation with respect to gravity has a strong effect on the concentration 

profile if |urms/UTV| ≈ O(1), with wall peaking in downflow and core peaking in 

upflow. It is hypothesized that a fluctuating component of the lift force on 

particles, <vrel'z ∂uz/∂r >L, is responsible for these trends. 

•  Particle and fluid flow statistics experience significant changes when the 

concentration for a given radial position exceeds about 3×10-4. Two-way coupling 

seems to come into play.  

•  Turbulence augmentation is observed with increasing mean concentration of 

particles with Rep < 12, St = 2.3 or 3.3, ρp/ρf ≈ 1.05 and |urms/UTV| ≈ O(1). Criteria 

based only on Rep, ratio of turbulence and particle length and time scales, and 

volume load do not suffice to predict the turbulent modulation found. 

•  The effect of particle feedback on the fluid is presented with δ-forcing. It is shown 

that the applied concentrations are too low to affect the frictional pressure drop. 

Only mean concentrations over 10-3 will affect the axial pressure drop for similar 

conditions (same category of particles and velocimetry results). 
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4  

Considerations about the concentration profiles 

of inertia particles and the break-up mechanism 

in transient particle-laden pipe flows  

 
 

3D-PTV is applied to particle-laden pipe flows in various stages of development, 

characterized by both normal and higher levels of turbulence than in fully developed flow. 

All flows are tested at Reynolds number 10300, based on the bulk velocity and the pipe 

diameter. The effects of particle Stokes numbers, flow direction (upward or downward) and 

mean concentration (in the range 0.5×10-6 to 1.7×10-4) on the turbulence production are 

shown. The effect of the inhomogeneity of the turbulence on break-up criteria for particles 

is assessed. Measurements of the turbulence production and the direction-dependent 

Kolmogorov “constant” allow the evaluation of Hinze’s[1] break-up criterion as a function 

of the radial coordinate. Maximum particle sizes at the pipe centerline can exceed those in 

the near-wall zone by more than a factor of 10. The effects of transient states and mean 

volumetric concentration on the particle break-up mechanism are evaluated. A correlation 

for particle break-up criterion is provided as a function of the radial coordinate.     
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4.1 Introduction 

  

The dispersion of inertial particles in turbulent flows is characterized by macroscopic 

phenomena such as a non-homogeneous distribution, large-scale clustering, and 

preferential concentration due to the inertial bias between particles and surrounding fluid; 

see Wang and Maxey.[2] The distribution of the dispersed phase may be crucial in 

determining collision frequency, breakage efficiency, agglomeration, reaction rates, 

deposition and entrainment; see Marchioli et al.[3]  

The occurrence of dispersed turbulent flows in pipes is large, with applications ranging 

from pneumatic conveying systems to chemical reactor design; see Kartusinsky et al.[4] Be 

it in oil pipelines or reactors, the accurate determination of inertia particle distributions is 

therefore of considerable interest in engineering applications, particularly for controlling 

the break-up mechanism.  

The control of the break-up mechanism plays an essential role in industrial processes, 

i.e. to enhance transfers, to predict the particle size for determining the two-phase mixture 

behavior or simply to prevent it, see Risso.[5] Since Hinze (1956), the break-up mechanism 

has been related to turbulent stresses and turbulent dissipation in particular. However, 

turbulent pipe flow is inhomogeneous and, consequently, to define break-up criteria in 

pipes is not simple.  

Accurate break-up criteria for pipe flows should take into account information about 

the concentration profile of the dispersed phase and the inhomogeneity of the turbulence. 

Other complications also arise. In applications such as separation techniques and droplet-

laden flows, particle distributions never reach equilibrium; see Soldati.[6] In industrial 

loops, turbulent pipe flows often do not achieve a steady state due to the length limitations; 

see Laws et al.[7] The required length for fully developed conditions increases with 

increasing bulk Reynolds number. Consistent information about the transient state of 

dispersed turbulent flows is scarce, if non-existent.  

In the present study, 3D-PTV is applied to particle-laden pipe flows in various stages 

of development in order to investigate the impact of varying flow turbulence levels on the 

break-up mechanism. With the aim of evaluating the effect of flow orientation with respect 

to gravity on the concentration profiles of particles, an experimental setup is arranged in 

such way that particle and fluid statistics in upward and downward vertical flows can be 

measured. The influence of mean volumetric concentration of particles (in the range 
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0.5×10-6 to 1.7×10-4) on turbulence production is also evaluated. All flows are tested at 

Reynolds number 10300, based on the bulk velocity and the pipe diameter. Particles with 

diameters equal to 0.8 and 0.96 mm are chosen. Mass density of inertia particles (1050 

kg/m3) slightly exceeds the mass density of the carrier fluid (~1000 kg/m3). 

The terminal velocity of the dispersed phase, UTV, is attained when gravitational and 

drag forces on a single particle are in equilibrium in a quiescent fluid. Particle properties 

(volume and mass density) are selected with the aim of testing particle-laden flows which 

have the characteristic root-mean-square velocity representative of the turbulent carrier 

phase, urms, and the terminal velocity of same order of magnitude: urms/UTV ≈ O(1). 

Interesting phenomena have been reported when the ratio urms/UTV ≈ O(1) is attained: 

entrapment of bubbles or particles in vortical flow structures; see Sene et al.[8] and Spelt 

and Biesheuvel[9], for example. 

In order to quantify the break-up criterion of Hinze, the turbulent dissipation rate and 

the Kolmogorov constant have to be known. The former can be estimated from the 

turbulence production, while the latter can be determined from the Lagrangian velocity 

correlation function. The turbulent production depends on the cross component of the 

Reynolds stress tensor and the mean axial velocity. Therefore, the focus in this article is on 

the dependence of mean axial velocity, cross-component of the Reynolds stress tensor and 

Lagrangian velocity correlation function on flow orientation, stage of development and 

particle concentration. 

The structure of the paper is as follows. In section 4.2, the experimental setup is 

presented. Description of the particle-laden experimental conditions is provided in section 

4.3. It is shown that turbulent features provide a convenient way to distinguish flow 

conditions from the fully developed case. 

Results are presented in section 4.4. Sub-section 4.4.1 presents results for the 

concentration profile of inertia particles. The mean axial velocity profiles for carrier and 

dispersed phases are shown in sub-section 4.4.2. Results of the cross-component of the 

Reynolds stress tensor are presented in sub-section 4.4.3. In sub-section 4.4.4, turbulence 

production results are shown. The determination of a direction-dependent Kolmogorov 

“constant” is provided in sub-section 4.4.5. Sub-section 4.4.6 presents the effect of 

inhomogeneous turbulence on break-up criteria for pipe flow at Reb = 10300. Discussions 

about the experimental results and conclusions are given in section 4.5. 
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4.2 Experimental setup and particle properties 

 

Information about the 3D-PTV experimental setup, particle tracking algorithm and 

analysis method of particle trajectories has been provided in Chapter 3. For sake of brevity, 

the reader is referred to Sections 3.2, 3.3 and 3.4. The experimental conditions are 

rigorously the same ones as applied in Chapter 3; however, the present analysis is given in 

the perspective of particle break-up. For sake of completeness, a brief description of the 

experimental conditions is given in Section 4.3. A summary of particle properties is found 

below in Table 4.1. More information about the applied particles is found in Section 3.2.2.  

 
Table 4.1 Properties of particles applied in the present particle-laden experiments 

 
* Settling velocity of a particle in an infinite, stagnant pool of water. 
** Fluid time-scale is based on viscous scales as given by: τf = ν/uτ

2. For Reb < 105, 
the wall shear velocity can be estimated as uτ = (Ub

2f /8)1/2 with f = a Reb
-m, m= 0.25 and a 

= 0.316; see Hinze.[10] τf  is roughly 28 ms.   
*** Kolmogorov length-scales for a fully developed single-phase pipe flow at Reb = 

10300 as computed from the DNS code developed by Veenman[11]: ≈ 0.6 mm at pipe 
centerline and ≈ 0.2 mm close to the wall. 
 

4.3 Particle-laden experimental conditions 

 

A division of particle-laden experiments (2P) is shown in a map proposed by 

Elgobashi[12], see Fig. 4.1. Downward and upward vertical flows have been measured in 

various stages of development at the same bulk Reynolds number, Reb. The bulk velocity of 

each flow, Ub, was adapted to temperature changes to keep Reb ≈ 10300. Single-phase 

flows (1P) serve as a reference for two-phase flows. 

 
Particles Mass density 

[kg/m3] 
Diameter 
dp [mm] 

Terminal velocity, 
|UTV|* [mm/s] 

*Rep ** St = τp/τf *** Length-scale 
ratio: dp/lk 

Tracers 1050 0.2 1.0 0.18 0.14 0.33 – 1 
Type I (PI) 1050 0.8 10.2 7.76 2.31 1.33 – 4 

Type II (PII) 1050 0.96 13.1 11.92 3.33 1.6 – 4.8 
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Figure 4.1 Experimental conditions represented in the map of regimes of interaction 

between particles and turbulence as proposed by Elgobashi.[12] 

 
Particle-laden flows with mean concentrations, <Φv >, ranging from 5 x 10-6 to 1.7 x 

10-4 have been tested. The presence or absence of flow conditioners I and II, see Fig. 3.2, 

affects the stage of flow development in the test section. In upward flows, 3D-PTV 

measurements are performed at 45D downstream of the entrance section; in downward 

flows, at 20D. In upflow with flow straightener I a fully developed pipe flow is obtained.[13] 

In Fig. 4.1, the rectangular areas represent mean concentration and time-scale ratios of 

particles in the present experiments. Single-phase flow measurements are represented by 1P 

in the region denoted as “one-way coupling”; only tracers are employed. Particle-laden 

measurements are represented by 2P in the region denoted as “two-way coupling”; tracers 

and inertial particles type I or II, see Table 4.1, are added to the water flow. A mean 

concentration of tracers less than 10-6 is also applied to the particle-laden experiments. 

Properties of inertial particles type I or II (volume and mass density) are selected with 

the aim of testing particle-laden flows which have a characteristic root-mean-square 

velocity representative of the turbulent carrier phase, urms, and the terminal velocity of the 

dispersed phase, UTV, of same order of magnitude: urms/UTV ≈ O(1). 

A particle-laden experimental case is represented here by a number (1, 2, 3 or 4) which 

indicates the flow direction and the presence or absence of a flow conditioner; and a letter 

(A, B, C, D or E), indicating the applied mean concentration of inertia particles. A 

summary of all tested particle-laden cases is shown in Table 4.2. The reference single-

phase flows are specified by 1S, 2S, 3S or 4S. The letter S denotes single-phase flow and 

the numbers, as defined above. 
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Table 4.2 Summary of the single-phase and particle-laden flow experiments. All 
experimental runs have been performed at Reb = 10300 

 
 

4.3.1  Characterizing turbulent single-phase pipe flows at Reb = 10300 

 

Tracer trajectories have been registered for turbulent single-phase pipe flows in four 

distinct flow conditions by 3D-PTV. On average 2 x 106 velocity vectors have been 

obtained for each flow case. The velocity vectors are gathered in discrete radial bins in 

accordance to r i ± ∆r, with ∆r = 0.5 mm; see Section 3.4.  

Flow velocity statistics of case 1S, upward flow with the bundle flow straightener I, 

have already been investigated.[13] This case represents the so-called fully developed flow. 

For case 1S, mean fluctuating velocity components achieve the lowest fluctuation levels 

among all single-phase experiments.  

In order to establish a relationship among cases 1S/2S/3S/4S, the Mean Square Value 

(MSV) of the velocity fluctuations is determined for each flow condition. The MSV 

velocity is defined as the product of mean velocity fluctuations: <uh uq>. Subscripts h and q 

represent cylindrical coordinates (r, θ, z). Let the overbar character indicate cross-section 

average. 

>< qhuu = (0∫
R <uh uq>2πr  dr)/(πR2)                                               (4.1) 

 
Case Inertial 

particles 
Flow 

Direction 
Development 

Length 
Flow 

Straightener 

 
<Φv >×10-5 

1A Type I (PI) Upward 45D Bundle I 3.2 
1B Type I (PI) Upward 45D Bundle I 1.4 
1C Type I (PI) Upward 45D Bundle I 0.5 
1S -- Upward 45D Bundle I -- 
2A Type I (PI) Upward 45D -- 3.2 
2B Type I (PI) Upward 45D -- 1.9 
2S -- Upward 45D -- -- 
3A Type I (PI) Downward 20D -- 2.3 
3B Type I (PI) Downward 20D -- 1.0 
3S -- Downward 20D -- -- 
4A Type I (PI) Downward 20D Bundle II 7.0 
4B Type I (PI) Downward 20D Bundle II 2.8 
4C Type I (PI) Downward 20D Bundle II 1.8 
4D Type II (PII) Downward 20D Bundle II 17.0 
4E Type II (PII) Downward 20D Bundle II 8.3 
4S -- Downward 20D Bundle II -- 
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By considering the diagonal components <uh
2> and averaging them in accordance to (4.1), 

it is possible to compare MSV of fluctuating velocities averaged in the cross-section for 

each single-phase flow case; see Fig 4.2. 

 

Figure 4.2 Diagonal components of the Reynolds stress tensor averaged in the cross-section 

for four distinct flow conditions. Computed values are normalized by the square of the bulk 

velocity of each flow, Ub
2. Lines are added to guide the eye. 

 

The averaged diagonal components, >< 2
hu , are normalized by the square of the bulk 

flow velocity, Ub
2, of the corresponding experiment. Here, Ub is chosen for normalization 

since it was set at each experiment to keep the same Reb, 10300, irrespective of temperature 

changes. The bulk velocity is chosen as normalization quantity instead of the wall shear 

velocity, uτ, which is often used in the literature, because Ub can be determined more 

accurately in our experimental setup. 

Disturbances created at the entrance affect turbulent flow levels. With sufficient 

development length, cross-section average turbulence of cases 2S/3S/4S as quantified by 

Eq. (4.1) becomes equal to the one presented by case 1S. In the presence of flow 

straighteners, the turbulence intensity levels at the test section are smaller; compare case 2S 

to 1S for upward flows and 3S to 4S for downward flows in Fig. 4.2. At 20D downstream 

of the entrance section, flow velocity statistics of downward flow with the bundle flow 

straightener II (case 4S) are not yet fully developed. Figure 4.2 neatly groups and shows the 

trend of these measurement conditions.  
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Linear fits for the computed values of >< 2
hu  yields:   

2222 ><0.32=>< bzbθ U/uU/u                                                             (4.2) 

2222 ><0.4=>< bzbr U/uU/u                                                               (4.3) 

The quality of the fits is expressed by the two parameters rs
2 and F, defined as follows:  

∑ )-(∑ )-(=
1=

2

1=

22
n

i
i

n

i
is OO/OÔr                                                           (4.4) 

1)-)/(-}(∑ )-(∑ )-({=
1=

2

1=

2 KKnÔO/OÔF
n

i
ii

n

i
i                                      (4.5) 

Here, n is the number of measurements with outcome Oi, Ôi the predicted values and O  the 

mean of the set (Oi); the number of parameters determined in the fit is K. In Eq. (4.2), rs
2 

and F are equal to 0.98 and 81, respectively. In Eq. (4.3), rs
2 and F correspond to 0.98 and 

84, respectively. 

The transient states of pipe flow are of practical interest. In industrial loops, turbulent 

pipe flows often do not reach fully developed conditions due to the length limitations; see 

Laws et al.[7] The required length enhances with increasing bulk Reynolds number. As 

observed in Fig. 4.2, the MSV velocities of cases 2S/3S/4S exceed those of case 1S. The 

fits, Eq. (4.2) and Eq. (4.3), distinguish flow conditions from the fully developed one in a 

convenient way. 

In this section, the present single-phase flow measurements have been categorized. 

This is achieved by evaluating turbulent flow features. In the next section, particle-laden 

flow results are presented and compared to the above reference single-phase flows. 

4.4 Results 

 

4.4.1 Concentration profiles of inertia particles 

 

The number of tracer trajectories measured in the range r/R = 0.6 to 1 decreases with 

increasing r/R - value. The difficulties in measuring tracer trajectories in this region were 

mainly due to light reflections stemming from difference between the refractive indices of 
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water, n ≈ 1.33, and glass, n ≈ 1.51, and the curvature of the glass pipe. Light reflections 

deteriorate the contrast between tracers and background. However, the fluid flow could also 

be measured for r/R > 0.6 despite the lower number of usable tracers there. The measured 

concentration of tracers is roughly linear from r/R = 0 to 0.6 and decreases towards the wall 

for all particle-laden flows. In Oliveira et al.[13], Eulerian statistics of a single-phase 

turbulent pipe flow acquired by 3D-PTV have been found to be trustworthy in the near-wall 

zone if a number of velocity vectors per radial bin exceeding 1000 was acquired. The same 

criterion is also applied here. 

In the detection of inertia particle trajectories, the contrast problem between particles 

and background did not occur. The bigger imaging projection area of inertia particles on 

the camera sensor, exceeding the projection of tracers by a factor of 16 or 25, avoided 

problems on the identification of particles. While the projection of a tracer image occupies 

nearly an area of 2x2 pixels, the projection of inertia particles occupies 8x8 or 10x10 

pixels. Roughly, every 3D inertia particle position identified in the tracking algorithm 

corresponds to a real particle. On average, an approximate number of 3 x 105 particle 

positions was identified in each particle-laden case. 3D particle positions were identified 

with a camera frame rate of 50 Hz in average periods of 50 minutes. In this period, a 

volume corresponding to ≈ 2.3 m3 crosses the test section. Thus, accurate measurements of 

concentration profiles of inertia particles have been obtained.  

Throughout this article, the errors of time-averaged values of a measured quantity x are 

estimated with the aid of the so-called standard error, σm. Confidence intervals of 95% are 

considered. For a quantity which is measured n times, with instantaneous results xi and 

mean < x >, the standard error is given by: 

σm = [
n

i
Σ

1=
(xi -<x>)2 /(n (n -1))]1/2                                                     (4.6) 

The effect of the flow orientation with respect to gravity on the concentration profiles of 

inertia particles, Φv (r/R), is presented in Fig. 4.3. Here, Φv (r/R) represents the time-

averaged volume of particles within the volume of the corresponding bin element; see (4.7) 

and (4.8): 

<Nbin,i > = (1/m) 
m

1j
Σ
=

Nbin,i (j)                                                           (4.7) 

Φv (bin,i) = <Nbin,i > (Vparticle/Vbin,i)                                                  (4.8) 
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where j denotes a single photograph and m is the total number of photographs. The 

subscript bin,i denotes a discrete radial position, r/R. The term <Nbin,i > represents the 

average number of particles in a discrete radial bin. Vparticle denotes the volume of a particle 

and Vbin,i the volume of a bin. The mean concentration of inertia particles, <Φv >, refers to 

the mean of Φv (bin,i) in all bins, Eq. (4.9). Symbol k represents the total number of radial 

bins, here 50. 

<Φv > = (1/k)
1-

0=

k

i,bin
Σ Φv (bin,i)                                                        (4.9) 

 

Figure 4.3 Effect of the flow orientation with respect to gravity on the concentration 

profiles of inertia particles, Φv (r/R), in upflow case 1B and in downflow case 4B. 

Experiments are performed with particles type I. For case 1B, the mean volumetric 

concentration, <Φv >, is 1.4×10-5 and for case 4B, 2.8×10-5. Dashed lines are added to guide 

the eye.  

 
Close to the pipe walls in upflow (r/R > 0.85), Φv reduces with decreasing distance to 

the wall. Same trends for the concentration profile of case 1B are found for upflow cases 

with and without bundle flow straightener I, cases 1A/1C and 2A/2B, respectively. For 

downflows, there is a peak at about r/R ≈ 0.98. This trend is also found for other downflow 

cases with and without bundle flow straightener II, cases 4A/4C/4D/4E and 3A/3B, 

respectively. Therefore, the direction of the vertical flow, upward or downward, is 

associated to changes in the concentration profiles, Φv (r/R), particularly in the near-wall 

zone (0.8 <r/R< 1). In downflow cases 4D and 4E, inertia particles type I (St = 2.3) were 

replaced by particles type II (St = 3.3). In cases 4D/4E, the maximum in Φv is also found at 
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r/R ≈ 0.98. For sake of brevity, only the concentration of two cases, upflow 1B and 

downflow 4B, are shown. The plot in Fig. 4.3 is sufficient to depict the main features of the 

effect of the flow orientation with respect to gravity for the selected particle-laden pipe 

flows. More information about the concentration profiles of inertia particles, including all 

the plots, is given in section 3.6.2. 

A summary of the results for concentration profiles is shown in Table 4.3. Some ratios 

were created to characterize the concentration profiles in the present experiments. For 

example, the ratio of the maximum concentration found in a discrete bin to the mean 

concentration, Φv,max/<Φv >, and the ratio of the mean concentration from 0 <r/R< 0.8 to 0.8 

<r/R< 1, RΦ. The ratio RΦ is defined as <Φv >(0<r/R<0.8)/<Φv >(0.8<r/R<1). Both terms <Φv 

>(0<r/R<0.8) and <Φv >(0.8<r/R<1) are computed similarly to the mean concentration, <Φv >, Eq. 

(4.9), but in the indicated parts of the measurement section volume. 

 

Table 4.3 Results of the inertia particle concentrations for the present experiments 

 
* RΦ is defined as: <Φv >(0<r/R<0.8) /<Φv >(0.8<r/R<1) 

 

4.4.2 Mean axial velocity profiles 

 

Inertia particle and tracer trajectories have been registered by 3D-PTV at a camera 

frame rate of 50 Hz. On average, 2 x 106 velocity vectors for tracers and 3 x 105 for inertia 

particles have been obtained for each particle-laden case. The velocity vectors are 

 
Case Inertial 

particles 
Flow 

Direction 
Flow 

Straightener 
dp/R 
×10-3 

<Φv>× 
10-5 

 
RΦ*  

>< v

max v,

Φ

Φ
 

 
rmax/R  

1A Type I Upward Bundle I 16.0 0.5 1.72 1.51 ~ 0 
1B Type I Upward Bundle I 16.0 1.4 1.75 1.42 ~ 0 
1C Type I Upward Bundle I 16.0 3.2 1.65 1.25 ~ 0 
2A Type I Upward -- 16.0 1.9 1.97 1.74 ~ 0 
2B Type I Upward -- 16.0 3.2 1.92 1.81 ~ 0 
3A Type I Downward -- 16.0 1.0 1.10 2.92 ~ 0.98 
3B Type I Downward -- 16.0 2.3 1.17 3.17 ~ 0.98 
4A Type I Downward Bundle II 16.0 1.8 0.75 3.55 ~ 0.98 
4B Type I Downward Bundle II 16.0 2.8 0.81 3.21 ~ 0.98 
4C Type I Downward Bundle II 16.0 7.0 0.47 4.15 ~ 0.98 
4D Type II Downward Bundle II 19.2 8.3 0.33 4.58 ~ 0.98 
4E Type II Downward Bundle II 19.2 17.0 0.41 5.80 ~ 0.98 
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ensemble-averaged in distinct radial bands, which are delimited by a discrete width of ± ∆r 

= 0.5 mm around a chosen radius, see Oliveira et al.[13] 

The effects of upward or downward flow direction on the mean axial velocity profiles 

of fluid, <Uz>, and inertia particles, <vp,z>, are presented in Fig.’s 4.4 and 4.5. The flow 

bulk velocity, Ub, was adjusted to keep the same Reb for each experiment, 10300. Inertia 

particle and tracer velocity profiles are normalized in these figures by the corresponding 

Ub. In each plot, the reference single-phase velocity profile is also shown. Error-bars in 

Fig.’s 4.4 and 4.5 have same sizes as symbols.  

 To check the fluid mean axial velocity profiles of particle-laden cases seen in Fig.’s 

4.4 and 4.5, the following procedure was followed. For each fluid flow profile, the product 

of the fluid mean axial velocity and the area of each discrete bin, (<Uz>)k × Ak, was 

integrated to obtain the mean volumetric flow rate, Q, which crossed the measurement 

volume. Temperature measurements yielded the water mass density, ρ. The product ρ × Q 

gave the mass flow rate for each experimental set, which corresponded to the ones given by 

the Coriolis meter within its inaccuracy range. The mass flow rate is measured by means of 

a Micro Motion Elite CMF300 Coriolis mass flow and mass density meter, whose 

inaccuracy is less than 0.5% of the registered flow rate. 
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                                    4.4a                                                           4.4b 
Figure 4.4 Effect of upward flow direction on the mean axial velocity profiles, <Uz> and 

<vp,z>, of particle-laden case 1B. The velocities are normalized by the bulk velocity of each 

flow, Ub. The subscript 1S denotes single-phase flow, and 2P and PI, tracers and inertia 

particles type I in two-phase flow. In case 1B, the mean volumetric concentration, <Φv >, is 

1.4×10-5. Dashed lines are added to guide the eye. Error-bars have same sizes of symbols. 

Figure 4.4a presents velocity profiles in the range 0 <r/R< 0.85 and Fig. 4.4b, in the range 

0.85 <r/R< 1. The number of line markers corresponds to the number of bins measured; 

notice the difference in scales.  

 

In Fig. 4.4, the mean axial velocity profiles of inertia particles and tracers for case 1B 

are presented. Comparison of mean axial fluid velocities for single-phase and two-phase 

flows, cases 1S and 1B, indicates a slight reduction in the mean flow velocity in the radial 

range: 0 <r/R< 0.93. This reduction is compensated by an increase in mean fluid velocity in 

the range 0.93 <r/R< 1. Similar modifications to the mean axial fluid velocity of particle-

laden case 1B are found for upward cases with and without the bundle flow straightener I, 

cases 1A/1C and 2A/2B, respectively. 
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                                     4.5a                                                              4.5b 
Figure 4.5 Effect of downward flow direction on the mean axial velocity profiles, <Uz> and 

<vp,z>, of particle-laden case 4B. The velocities are normalized by the bulk velocity of each 

flow, Ub. The subscript 4S denotes single-phase flow, and 2P and PI, tracers and inertia 

particles type I in two-phase flow. In case 4B, the mean volumetric concentration, <Φv >, is 

2.8 × 10-5. Dashed lines are added to guide the eye. Error-bars have same sizes of symbols. 

Figure 4.5a presents velocity profiles in the range 0 <r/R< 0.80 and Fig. 4.5b, in the range 

0.80 <r/R< 1. The number of line markers corresponds to the number of bins measured; 

notice the difference in scales. 

 
In Fig. 4.5, the mean axial velocity profiles of inertia particles and tracers for 

downflow case 4B are presented. Comparison of mean axial fluid velocities for single-

phase and two-phase flows, cases 4S and 4B, indicates a slight increase in flow velocity in 

the radial range: 0 <r/R< 0.93. This increase is compensated by a reduction in fluid velocity 

in the range 0.93 <r/R< 1. Similar changes to the mean axial fluid velocity of particle-laden 

case 4B are also found for other downward cases with and without the bundle flow 

straightener II, cases 4A/4C/4D/4E and 3A/3B, respectively. Therefore, the direction of the 

vertical flow, upward or downward, is associated to the changes in the mean axial velocity 

profiles. 

Results are only shown for two cases, upflow 1B and downflow 4B. The plots in Fig.’s 

4.4 and 4.5 are sufficient to depict the changes on the fluid profiles of selected particle-

laden flows. These changes are related to modifications on the turbulence production of 

particle-laden flows, which are shown later in this section. More information about the 

mean axial velocity profiles of fluid and inertia particles is given in Section 3.6.3. 
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4.4.3 Cross-component of the Reynolds stress tensor 

 

The effects of flow orientation with respect to gravity (upflow or downflow), different 

stages of development and mean volumetric concentration on the cross-component of the 

Reynolds stress tensor, <uruz>, are presented in Fig. 4.7. The lowercase u indicates the 

fluctuating fluid velocity. Results are normalized by the square of the bulk flow velocity, 

Ub
2, of the corresponding experiment. Results for the reference single-phase cross-

component are also shown. A cylindrical coordinate system with origin at the pipe 

centerline and with the axial axis anti-parallel to the gravitational acceleration is assumed 

for down- and upward flows; see Fig. 4.6. 

 

Figure 4.6 Cylindrical coordinate system for up- and downward flows. The origin is at the 

pipe centerline and the axial axis is anti-parallel to the gravitational acceleration. 

In inhomogeneous fully developed pipe flows, the only decoupled direction is the 

tangential, which means that correlations <uθ ur> and <uθuz> are zero. For all measured 

particle-laden developing flows, values of cross-components including the tangential 

direction have been checked. They are close to zero and therefore not shown.  

In Oliveira et al.[13], results of the single-phase fully developed flow, case 1S, have 

been compared to the DNS results of Veenman.[11] The 3D-PTV data of case 1S presented 

good agreement with DNS within measurement error. Good agreement is found for the 

fluid cross-components of cases 1S and 1B (Fig. 4.7a). Results for cases 1A/1C are similar 

to the ones of 1B. For fully developed particle-laden pipe flows in upward direction and in 

the presence of particles type I with <Φv > less than 3.2×10-5, the flow turbulence is barely 

modified. In fact, all particle-laden flows within the same development stage and with <Φv 

> less than 3.2×10-5 present similar results for <uruz>. This also holds for upward flows 

without flow straightener, cases 2A/2B, for downward flows without flow straightener, 

z

r
θ
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3A/3B, and for downward flows with the flow straightener II, cases 4A/4B. Therefore, only 

one of them is sufficient to present the main features of <uruz>. 

For all results presented in Fig.’s 4.7b – 4.7f, the cross-component profile of case 1B is 

added to show the differences with the fully developed condition. Upward flows at 45D 

from the entrance region and without the presence of the bundle flow straightener I, cases 

2A/2B/2S, yields similar results to case 1B. 

For comparing the experimental results, the fluctuation values are weighed with the 

area of the corresponding bin in order to get proper averages. This averaging procedure is 

adopted through this whole section. Results for particle-laden downflows at 20D from the 

entrance region and without the presence of the flow straightener, cases 3A/3B, are 

modified in comparison with the single-phase flow, case 3S. For those cases, cross-

component values are increased for flows with mean concentrations about 1.0×10-5 and 

2.3×10-5. In the pipe core (0 < r/R < 0.6), values of |<uruz>| are increased by 20 % for case 

3A. The discrepancies with the fluctuation levels of a fully developed flow are increased in 

the presence of inertia particles. 

Results of downflows at 20D from the entrance region, with the presence of the bundle 

flow straightener II and with mean concentration less than 2.8×10-5, cases 4A/4B, are 

similar to the reference single-phase flow, case 4S. The discrepancies with the fluctuation 

levels of a fully developed flow are particularly pronounced for the radial range 0.6 <r/R< 

0.9 (Fig. 4.7d). The cross-component results for downflow with a mean concentration about 

7.0×10-5, case 4C, differ from cases 4A/4B/4S. Significant changes are observed to <uruz> 

when the mean concentration, <Φv >, exceeds 7.0×10-5 in downward flows in the presence 

of the flow straightener II. A cross-section averaged increase of 13% is observed for case 

4C in comparison to case 4S. As a consequence, the discrepancies with the fluctuation 

levels of a fully developed flow are also increased. 

Results of downflow at 20D from the entrance region, with the presence of the bundle 

flow straightener II and with mean concentration about 1.7×10-4, case 4E, is presented in 

Fig. 4.7f. Results of case 4D are similar and therefore not shown. In cases 4D/4E, inertia 

particles type II have been applied. Values of the cross-component of case 4E are increased 

in comparison to the components of case 4C. In comparison to single-phase flow case 4S, 

the increase in |<uruz>| of case 4E is on average 20 % in the entire cross-section. As a 

consequence, the discrepancies with the fluctuation levels of a fully developed flow are 

increased. 
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                           4.7a                                                              4.7b 

 

                           4.7c                                                             4.7d 

 

                          4.7e                                                              4.7f 
Figure 4.7 Effects of the mean concentration, <Φv >, different stages of development and 

flow orientation with respect to gravity (upflow or downflow) on the cross-component of 

the Reynolds stress tensor, <uruz>, for particle-laden flows 1B/2A/3A/4B/4C/4E. Results are 

normalized by Ub
2. The subscripts 1S/2S/3S/4S denote single-phase reference flows and 2P, 

tracers in two-phase flow. The terms PI and PII stand for inertia particles type I and II, 

respectively. Dashed lines are added to guide the eye. 
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A summary of the results presented in Fig. 4.7 is found in Table 4.4. Cross-section 

averaged ratios of present particle-laden flows to the corresponding single-phase references 

(cases 1S, 2S, 3S, 4S) are shown for <uruz>. Results are normalized by Ub
2. The cross-

section averaging is performed according to Eq. (4.10): 

>< zr uu = (0∫
R <ur uz>2πr  dr)/(πR2)                                              (4.10) 

Table 4.4 clearly shows how the cross-component of the Reynolds stress tensor is 

modified by the presence of inertia particles at the given concentrations and flow 

conditions. Only particle-laden flows with high levels of turbulence, cases 3A/3B, or flows 

with the highest volume loads, cases 4D/4E, present significant increase in the averaged 

cross-component in relation to the single-phase counterpart. About 9% for case 3B and 20 

% for case 4E.   

 
Table 4.4 Cross-section averaged ratios of the cross-components of the Reynolds 

stress tensor 

 
 
In Table 4.4 the cross-section averaged ratios of particle-laden flows to the reference 

flow (case 1B) are also presented. Case 1B represents the fluid turbulence of a fully 

developed particle-laden flow in weak two-way coupling. The averaged cross-components 

for cases 3B and 4E are, respectively, 29 and 35 % larger than for case 1B. 

 

4.4.4 Turbulent production of energy 

 

As will be seen in sub-section 4.4.6, the production of turbulent kinetic energy is 

important for the appraisal of particle break-up. The production of kinetic energy in the 

macro scales is given by: 

Pk  = Σi Σj <ui uj > (∂<Ui >/∂xj)                                                       (4.11) 
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in a Cartesian coordinate system {xj}. For pipe flows not far from a fully developed 

condition, the only meaningful component is: <ur uz> ∂<Uz >/∂r. 

The effects of the flow orientation with respect to gravity (upflow or downflow) and 

different stages of development on the turbulence production, Pk, for particle-laden flows 

1B/3A are presented in Fig. 4.8. Results are normalized by the cube of the bulk velocity of 

each flow divided by the pipe radius, Ub
3/R. Results for the reference single-phase flows 

cases 1S/3S are also shown. Figures 4.8a and 4.8c present profiles in the range 0 <r/R< 0.7 

and Fig.’s 4.8b and 4.8d, in the range 0.7 <r/R< 1. 

Good agreement is found for the results of cases 1S and 1B. Results for case 1B 

resemble the ones of other particle-laden upflows, cases 1A/1C/2A/2B, and are not shown 

here. For particle-laden upflows and in the presence of particles type I with <Φv > less than 

3.2×10-5, the turbulence production is barely modified. An exception is made for the radial 

location of the maximum in Pk , which is shifted from r/R ≈ 0.96 to 0.98 in upflows (Fig. 

4.8b). 

For particle-laden downflows at 20D from the entrance region and without the 

presence of a flow straightener, cases 3A/3B, results are modified in comparison with the 

single-phase flow, case 3S. Results for case 3A are similar to the ones of case 3B. For these 

cases, turbulence production values are enhanced for flows with mean concentrations about 

1.0×10-5 and 2.3×10-5. Considering the entire cross-section, the averaged value of Pk is 

increased by 14 % for case 3A. The discrepancies with the turbulent production levels of a 

fully developed particle-laden flow are also increased, exceeding about 80% of the cross-

section averaged value of Pk for case 1B. 
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                              4.8a                                                              4.8b 

 

                             4.8c                                                              4.8d 
Figure 4.8 Effect of the flow orientation with respect to gravity (upflow or downflow) and 

different stages of development on the turbulence production, Pk, for particle-laden flows 

1B/3A. Results are normalized by Ub
3/R. The subscripts 1S/3S denote single-phase reference 

flow and 2P, tracers in two-phase flow. Dashed lines are added to guide the eye. The number 

of line markers corresponds to the number of bins measured; notice the difference in scales. 

 
The effect of the mean concentration, <Φv >, on the turbulence production, Pk, for 

particle-laden downflows 4B/4C/4E is presented in Fig. 4.9. Results are also normalized by 

Ub
3/R. Results for the reference single-phase flow, case 4S, are also shown. Figures 4.9a, 

4.9c and 4.9e present profiles in the range 0 <r/R< 0.7 and Fig.’s 4.9b, 4.9d and 4.9f, in the 

range 0.7 <r/R< 1. For the results presented in Fig. 4.9, the turbulence production profile of 

case 1B is added to show the differences with the fully developed condition.  
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                           4.9a                                                          4.9b 

 

                            4.9c                                                           4.9d 

 

                           4.9e                                                            4.9f 
Figure 4.9 Effect of the mean concentration, <Φv > on the turbulence production, Pk, for 

particle-laden flows 4B/4C/4E. Results are normalized by Ub
3/R. The subscript 4S denotes 

single-phase flow and 2P, tracers in two-phase flow. Dashed lines are added to guide the 

eye. The number of line markers corresponds to the number of bins measured; notice the 

difference in scales. The terms PI and PII stand for inertia particles type I and II, 

respectively. 
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Results for cases 4A and 4D resemble the ones for cases 4B and 4E, respectively, and 

are not presented. For downflows at 20D from the entrance region, in the presence of 

bundle flow straightener II and with mean concentration less than 2.8×10-5, cases 4A/4B, 

production is enhanced with respect to the reference single-phase flow, case 4S. The radial 

location of the maximum in Pk is shifted from r/R ≈ 0.96 to 0.94 in downflows (Fig. 4.9b). 

Considering the entire cross-section, the averaged value of Pk is increased by 9 % for case 

4B in comparison to case 4S and by 19% in comparison to the fully developed case 1B. 

By increasing the mean volumetric concentration of particles in downflows from 

2.8×10-5 to 7.0×10-5, cases 4B and 4C, respectively, the discrepancies with the fluctuation 

levels of a fully developed flow, 1B, and the single phase reference flow, 4S, also increase. 

For case 4C, cross-section averaged values of Pk are increased by 33 and 51% in relation to 

cases 4S and 1B, respectively. With a further increase in the mean concentration to 1.7×10-

4, case 4E, cross-section averaged values of Pk are increased by 37 and 59% in relation to 

cases 4S and 1B, in the order mentioned. 

The change from r/R ≈ 0.96 to 0.94 in the position of the maximum in Pk is also 

observed for downflows 4C and 4E (Fig.’s 4.9d and 4.9f) and it is contrast to the shift in 

upflows from r/R ≈ 0.96 to 0.98. For the selected particle-laden flows, flow orientation with 

respect to gravity affects the location of the maximum in Pk. With the changes in the fluid 

mean velocity profiles as observed in section 4.4.2, the mean strain rate is also modified. 

Figure 4.10 shows the effect of up- or downflow and different stages of development on the 

mean strain rate, ∂<Uz >/∂r, for particle-laden flows 1B/3A/4B. Error-bars have same sizes 

as symbols. Figure 4.10a presents results in the range 0 <r/R< 0.80 and Fig. 4.10b, in the 

range 0.80 <r/R< 1. 
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                           4.10a                                                        4.10b 
Figure 4.10 Effect of the flow orientation with respect to gravity (upflow or downflow) and 

different stages of development on the mean strain rate, ∂<Uz >/∂r, for particle-laden flows 

1B/3A/4B. The subscript 1S denotes single-phase fully developed flow. Dashed lines are 

added to guide the eye. The number of line markers corresponds to the number of bins 

measured; notice the difference in scales. 

 
The gradient of the mean strain rate in radial direction is strongly modified at about r/R 

≈ 0.88 for particle-laden downflows and at about 0.92 for particle-laden upflows. For 

single-phase flows, this happens in radial positions about 0.90. The position shift in the 

maximum of Pk is apparently related to the changes in the mean strain rate profile, which 

can be understood in terms of local decrease in relative velocity. In upflows, the drag 

imposed to the fluid by particles results in a reduction of the fluid velocity in the pipe core. 

This reduction is compensated by mass conservation with an increase in the fluid velocity 

in the near wall-zone. The opposite trend is found in downflows. For case 3A, the flat 

profile of the mean strain rate in the range 0 < r/R < 0.5 explains the small values of Pk 

there (Fig.’s 4.8c and 4.10a). 

A summary of the results presented in Fig.’s 4.8 and 4.9 is found in Table 4.5. Cross-

section averaged ratios of present particle-laden flows to the corresponding single-phase 

references (cases 1S, 2S, 3S, 4S) are shown for Pk. Comparisons to the fully developed 

reference flow (case 1B) are also presented. Results are normalized by Ub
3/R. The cross-

section averaging is performed according to Eq. (4.12): 

kP = (0∫
R<ur uz>

 (∂<Uz >/∂r)2πr  dr)/(πR2)                                    (4.12) 
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Table 4.5 Cross-section averaged ratios of the turbulence production 

 
In the measured development stages, turbulence production is larger than in fully 

developed flows. Turbulence production is enhanced for particle-laden flows with |urms/UTV| 

of order 1 and particles with St = 2.3 or 3.3, and even more so if the volumetric 

concentration is higher or if the level of turbulence is higher.  

 

4.4.5 Direction-dependent Kolmogorov constant 

 

The second order Lagrangian velocity structure function, Dkk (τ), is defined by Eq. 

(4.13): 

Dkk (τ) = <[uk (τ) – uk (0) ]2>                                                          (4.13) 

where τ is the correlation time span and u the fluctuating fluid velocity. The subscript k 

indicates cylindrical coordinate components (r, z, θ). The quantity Dkk(τ) determines the 

Kolmogorov constant C0, which is necessary in the evaluation of particle break-up, see van 

Wissen et al.[14] Kolmogorov theory of local isotropy gives a scaling rule connecting the 

fluid structure functions with the universal Kolmogorov constant, C0; see Pope.[15] The 

scaling rule is given by Eq. (4.14): 

Dkk (τ) = C0 <ε>τ                                                                            (4.14) 

where ε is the dissipation rate given by ε = 2νSkm
2. ν is the kinematic viscosity and Skm the 

rate-of-strain tensor. The last one is given by: Skm = (1/2)(∂Uk/∂xm + ∂Um/∂xk), with U the 

instantaneous fluid velocity and x the space coordinate. Eq. (4.14) is valid in the inertial 

sub-range for time τ in the interval: τk << τ << τc. The Kolmogorov time-scale, τk, is 

representative of dissipative scales, while the Lagrangian correlation time, τc, is 

representative of large energy-containing scales. In turbulent flows, τk is related to τc by the 

Reynolds number: τk = τc Re-1/2. Since turbulent pipe flows are inhomogeneous in radial 

direction, τk and τc are function of the radial coordinate. In section 3.2.2, an average 
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estimation for τk was computed, roughly 28 ms. For Reb = 10300, that would result in the 

following average estimation of τc: 2.8 s. 

Due to the hypothesis of local isotropy, turbulence statistics are invariant to rotations 

and reflections of the coordinate system. The local isotropy assumption implies that the 

structure functions in the three principal directions are equal and therefore C0 is a constant. 

At the level of second order statistics, the local isotropy assumption for very large 

Reynolds numbers has been very successful, see Mydlarski and Warhaft.[16] However, the 

present Reynolds number is far from this limit. This makes it necessary to introduce a 

direction-dependent C0
k. This was proposed by Pope[17] in a linear stochastic model for 

homogeneous shear flow. Later, Walpot et al.[18] followed the same proposal for the 

definition of C0 for inhomogeneous pipe flow. According to Kolmogorov similarity, one 

should observe a plateau of C0 in the inertial subrange. However, for the limited Reynolds 

numbers studied here, the inertial subrange has finite width. For finite Reynolds numbers, 

the plateaus of C0 may be short or exist only as bumps, see Lien and D’asaro.[19] Therefore, 

the value of C0 will be determined from the maximum in the function of Dkk (τ)/ <ε>τ. 

Lagrangian structure function for the radial velocity component scaled with <ε>τ is 

presented at r/R=0.7 in Fig. 4.11. The calculation of Dkk (τ,r) is done by averaging over 

flow tracers that are situated inside a discrete band centered at a radial position r. The solid 

line represents DNS data.[11] Diamonds represent flow tracers in particle-laden pipe flow 

for case 1B at Reb = 10300. Dashed lines indicate error-bars. Information about the applied 

Lagrangian method of analyzing particle trajectories in pipes is provided in Oliveira et 

al.[13] 

 
Figure 4.11 Lagrangian structure function for the radial velocity component scaled with 
<ε>τ at r/R=0.7 for case 1B. The solid line represents DNS at Reb = 10300. Dashed lines 
indicate error-bars. 
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Trajectories of tracers have been registered long enough to achieve the time interval 

where the maximum occurs; see Fig. 4.11. The value of C0
k is the value of Drr /<ε>τ at the 

maximum. Similar results are found at other radial positions and for tangential structure 

functions. For axial structure functions, the Lagrangian correlation times are bigger and the 

time interval where the maxima occur cannot be achieved due to the limited axial length of 

the measurement volume. For this case, the axial structure functions are fitted with a linear 

function in a time interval that is assumed to be in the inertial range; see Section 5.3.2. This 

approach was also done by Walpot et al.[18] Results for the direction-dependent C0
k thus 

obtained are provided in Fig. 4.12. Values of C0
k are roughly 3 in the pipe core (r/R < 0.8) 

and decrease with decreasing distance to the wall. The decrease of C0
k with decreasing 

distance to the wall is for tracers also found by Choi et al.[20] for turbulent channel flow. 

This result is in good agreement to single-phase experimental results of Walpot et al.[18] and 

to the DNS computations of Veenman.[11] 

 

Figure 4.12 Direction-dependent Kolmogorov, C0
k, constant computed for case 1B. k 

represents cylindrical coordinates (r, z, θ). Dotted lines are added to guide the eye. 

 
As mentioned above, C0 is a quantity necessary to determine break-up criteria. Since 

turbulent pipe flows are inhomogeneous in radial direction, the determination of a 

direction-dependent C0
k is necessary. With the above determination of the Kolmogorov 

constant and turbulence production, all the ingredients to evaluate break-up criteria in pipe 

flows are available. The computation of a direction-dependent C0
k for particle-laden flows 

is further investigated in Section 5.3.2. 

0 0.5 1
0

1

2

3

4

r/R

C
0k

 

 

k=r

k=θ
k=z

1B



Particle Break-up in Pipe Flows 

  

145 
 

 

4.4.6 Particle break-up in turbulent pipe flows 

 

In many mixtures in process industry small particles occur that have a chance of being 

torn apart if exposed to too high fluid stresses; see van Wissen et al.[21] This section 

presents the effect of inhomogeneous turbulence in pipe flow at Reb=10300 on the particle 

break-up mechanism. In principle, the break-up process is isotropic; however it is strongly 

dependent on the distance to the pipe wall. The prediction of the maximum particle 

diameter, dp,max, in turbulent flows is usually based on the pioneering article by Hinze 

(1956). If particle sizes are in the inertial subrange, this approach states that a critical value 

of the following Weber number, Wecrit, exists: 

(ρf /σ Wecrit)
3/5

 dp,max = C0
* –3/5 ε –2/5                                                 (4.15) 

where ρf is the mass density of the continuous phase, σ surface tension coefficient, ε 

turbulent dissipation and C0
* the Kolmogorov constant.  

Several authors, i.e Walter and Blanch[21] and Hesketh et al.[22], employed the approach 

given by Eq. (4.15) and proposed different expressions for Wecrit. No universal correlation 

is available or takes into account all the possible effects for the prediction of break-up in 

pipe flows such as large mean-velocity gradients near the pipe wall.[5] Critical Weber 

numbers are usually a function of particle and fluid properties[21,22]. In other proposals for 

Wecrit, the bulk flow velocity is also taken into, see Karabelas[23] for example. The terms on 

the LHS of Eq. (4.15) depend on the specific properties of the continuous and dispersed 

phase and on the proposal for Wecrit. However, the terms on the RHS can be evaluated from 

the measured data discussed in this section and show how the maximum particle diameter 

depends on the radial coordinate, the particle concentration and the state of development of 

the turbulence. This will be investigated next. 

In turbulent pipe flows, turbulent dissipation is largest near the wall. Apart from the 

viscous region near the wall and from a small area at the central region (where dissipation 

balances turbulent transport), turbulent dissipation is of the same order of magnitude as 

turbulence production[11], ε ≈ Pk. Measurements of the latter in particle-laden up- and 

downward flows have been shown above together with the direction-dependent 

Kolmogorov constant, C0
k, as given in Fig. 4.12. With these measurements, the RHS of Eq. 

(4.15) can be determined as a function of the radial coordinate. Here, values of a modified 
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constant, C0
*, are computed by averaging C0

z, C0
r and C0

θ at each radial bin. With the above 

determination of C0
* and Pk, all the ingredients to evaluate existent break-up criteria for 

pipe flows which takes into account the inhomogeneity of the turbulence are available for 

the given Reynolds number. 

The computation of the RHS of Eq. (4.15) is now carried out with the present 

experimental data. In Fig. 4.13, results are shown for particle-laden cases 

1B/2A/3A/4B/4C/4E. The effects of different stages of development and mean volumetric 

concentration of particles (in the range 0.5×10-6 to 1.7×10-4) on particle break-up are 

presented.  

 

                                  4.13a                                                      4.13b 
Figure 4.13 Effect of pipe inhomogeneous turbulence at Reb=10300 on the particle break-

up criterion. Turbulence dissipation is estimated from the turbulence production; ε ≈ Pk. 

Particle-laden up- and downward flows have been measured in different stages of 

development with mean volumetric concentration of particles in the range 0.5×10-6 to 

1.7×10-4. Figure 4.13a presents results in the range 0 <r/R< 0.6 and Fig. 4.13b, in the range 

0.6 <r/R< 1; notice the difference in scales. 

 
As expected, small values of the quantity C0

* –3/5 ε –2/5 are obtained close to the wall, 

meaning that smaller values of dp,max are found there. For given fluid and particle 

properties, values of dp,max at the pipe centerline exceed the ones in the near-wall zone by a 

factor of more than 10. The effects of transient states and mean volumetric concentrations 

are particularly observed in the critical region: the near-wall zone. In the measured 

development stages, dp,max is slightly reduced for r/R > 0.6. It was shown in Table 4.5 that 

cross-section turbulence production values were increased by factors of 1.8 for cases 

3A/3B and of 1.6 for cases 4D/4E. These cases correspond to transient particle-laden flows 
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with high level of turbulence and high mean volumetric concentrations (order 10-4), 

respectively. Since the effect of production in dp,max scales with the power -2/5, an increase 

in Pk of 80 % corresponds to a reduction in dp,max about 20%. As a consequence, results for 

cases 3A and 4E in Fig. 4.13b are only subtly decreased in comparison to the results of case 

1B.  

A fit of all experimental data presented in Fig. 4.13 is given by a sum of Gaussian 

functions: 

 
(ρf /σ Wecrit)

3/5
 dp,max  =  a1 exp{–[( r/R – a2)/ a3]

2} + a4 exp{–[( r/R – a5)/ a6]
2}               (4.16) 

The quality of the fit is expressed by the two parameters rs
2 and F, defined in Eq. (4.4) 

and (4.5). In Eq. (4.16), rs
2 and F are equal to 0.88 and 3391, respectively. The coefficients 

are given by: a1 = 133.3, a2 = –0.04492, a3 = 0.112, a4 = 2.573×1015, a5 = –27.87 and a6 = 

5.049. 

4.5 Discussion and conclusions 

 

The determination of a break-up criterion with regards to a specific type of dispersed 

phase is beyond the scope of the present experimental study. Measurements of turbulence 

production and the direction-dependent Kolmogorov constant allow the evaluation of 

Hinze’s1 break-up criterion as a function of the radial coordinate. At Reb =10300 and for 

given fluid and particle properties, maximum particle sizes at the pipe centerline can 

exceed the ones in the near-wall zone by more than a factor of 10. Therefore, the 

concentration profiles of particles are fundamental for a proper break-up evaluation.  

Flow orientation with respect to gravity affects the concentration profiles of inertia 

particles in particle-laden flows with |urms/UTV| ≈ O(1), inertia particles with St = 2.3 or 3.3 

and ρp/ρf  ≈ 1.05. The effect of up- and downflows on concentration profiles is different: 

with wall peaking in downflow and core peaking in upflow. Accurate predictions of the 

radial distribution of particles in a pipe are also essential for modeling phenomena such as 

collision frequency, reaction rates, deposition and entrainment. In the last section, the 

break-up criterion based on Hinze’s1 approach contemplated the influence of 

inhomogeneous turbulent pipe flow as a function of radial coordinate. In chapter 3, it was 

shown that flow orientation with respect to gravity, the ratio |urms/UTV| and the presence of 

shear affect the concentration profile of the dispersed phase. For the present class of 
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particle-laden flows with |urms/UTV| ≈ O(1), St = 2.3 or 3.3 and ρp/ρf  ≈ 1.05, they 

hypothesized that a fluctuating component of the lift force on particles is responsible for 

moving particles towards the core in upward and towards the wall in downward flows. 

For particles with high inertia, the ratio of RMS fluid velocity to terminal velocity 

tends to zero: |urms/UTV| → 0. High inertia particles cross turbulent eddies with hardly any 

interaction. The relative velocity approaches the terminal velocity and in the presence of 

enough shear, a mean lift force will be of importance in determining the wall-normal 

concentration profiles. For |urms/UTV| → 0, the magnitude of the mean lift component will 

dominate the fluctuating lift term. Particles with low inertia possess urms/UTV >> 1. For this 

class of particles, the terminal velocity is not significant and the mean relative velocity is 

also small. In this situation, the turbulent motion of particles with low inertia is governed 

by the interaction with flow eddies and lift does not play a role. 

In industrial loops, turbulent pipe flows often do not achieve a steady state due to the 

length limitations; see Laws et al.7 The required length for fully developed conditions 

increases with increasing bulk Reynolds number. Therefore, the effect of transient states of 

dispersed turbulent flows on particle break-up must also be considered. For the present 

class of particle-laden flows with |urms/UTV| ≈ O(1), St = 2.3 or 3.3 and ρp/ρf  ≈ 1.05, 

turbulence production is enhanced particularly in the critical region: the near-wall zone. 

The maximum particle size is reduced and even more so for high volumetric concentrations 

or for high level of turbulence. 
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5  

Lagrangian velocity and acceleration statistics of 

fluid and inertia particles in a particle-laden pipe 

flow measured with 3D-PTV 

 
 

 

 

Three-dimensional particle tracking velocimetry (3D-PTV) has been applied to particle-

laden pipe flow with mean volumetric concentration of inertia particles equal to 1.4x10-5 at 

Reynolds number 10300, based on the bulk velocity and the pipe diameter. Velocity and 

acceleration Lagrangian as well as Eulerian statistics have been determined for flow tracers 

and for inertia particles with Stokes number equal to 2.3, based on the particle relaxation 

time and viscous scales. The decay of fluctuating velocity and acceleration Lagrangian 

correlations has been measured for fluid and dispersed phase at different radial positions 

for the given inhomogeneous flow. Ratios of Eulerian acceleration variance of inertia 

particles to the acceleration variance of flow tracers have been quantified for all cylindrical 

coordinate components. These ratios do not obey the power law found in von Kármán and 

wind-tunnel turbulent flows. The minimum number of correlation samples required for 

reliable Lagrangian statistics of inertia particles has been quantified. 
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5.1 Introduction 

 

Turbulent dispersed two-phase flows are ubiquitous in both industry and nature. For 

example, the dispersion of pollutants in an urban environment, sediment transport or the 

fluidized catalytic cracking of carbohydrates are often studied; see Poelma et al.[1] Flows of 

this kind are characterized by particles, droplets or bubbles dispersed within a carrier phase. 

The occurrence of such flows in pipes is wide as well, with applications ranging from 

pneumatic conveying systems to chemical reactor design; see Kartusinsky et al.[2] The 

ability to predict the behavior of this kind of flow is therefore of quite some interest in 

engineering applications. However, due to the complex nature of the problem, available 

models are usually simplified and not able to fully predict fluid and particle behavior for 

the whole range of applications. 

The experimental determination of statistical properties of particles in a Lagrangian 

frame of reference is essential for the development of stochastic models of turbulent 

transport in applications such as combustion, pollutant dispersion and industrial mixing; see 

Pope[3] and Yeung.[4] For a complete description of particle statistics it is necessary to 

follow particle paths with very fine spatial and temporal resolution, of the order of the 

Kolmogorov length and time scales, η and τk, respectively. To capture the large scale 

behavior in a turbulent pipe flow, trajectories should be tracked for long times, i.e. 

multitudes of τk. This obviously necessitates access to an experimental measurement 

volume with a typical length scale of the order of the bulk velocity times a typical 

Lagrangian correlation time; see Biferale et al.[5] 

The determination of Lagrangian velocity correlations and structure functions allows 

the determination of Lagrangian stochastic models as the Langevin model for example; see 

Brouwers.[6] For the above reasons Lagrangian experimental techniques such as three-

dimensional particle tracking velocimetry, 3D-PTV, are a necessity in turbulence research. 

Despite the higher practical impact of inhomogeneous turbulent flows, experimental 

Lagrangian results in the literature are mostly restricted to homogeneous turbulence. 

Lagrangian measurements in flow geometries with non-zero mean velocity component are 

scarce. The work of Suzuki and Kasagi[7] represents one of the few exceptions. For the 

industrially relevant pipe flow, only the 3D-PTV results of Walpot et al.[8] and Oliveira et 

al.[9] are available to our knowledge. Veenman[10] provided Eulerian and Lagrangian DNS 

computations of pipe flow at Reb = 5300 and 10300. Walpot et al.[8] presented data for Reb = 
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5300 and some preliminary results at Reb = 10300. Recently, Oliveira et al.[9] presented new 

experimental Lagrangian results for pipe flow at Reb = 10300 and compared these with 

DNS-data of Veenman.[10] 

The present work aims at providing Lagrangian velocity and acceleration statistics of 

flow tracers and one class of inertia particles (with Stokes number 2.3 and diameter 0.8 

mm) simultaneously. To our knowledge, consistent experimental data for the formulation 

of stochastic models for heavy particles in a turbulent particle-laden pipe flow has never 

been provided. In the present study, similarities in the results of Lagrangian velocity 

structure functions of tracers and inertia particles will be sought in order to validate a 

modified Langevin approach for heavy particle dispersion. 3D-PTV is applied to particle-

laden pipe flow in upward vertical direction at bulk Reynolds number, Reb=10300. Here, 

Reb is based on the bulk velocity and the pipe diameter. Mean volumetric concentration of 

inertia particles is equal to 1.4×10-5. The mass density of the inertia particles (ρp ≈ 1050 

kg/m3) is bigger than the mass density of the carrier fluid (ρf ≈ 1000 kg/m3). 

The structure of the paper is as follows. In Section 5.2, the experimental setup is 

presented, including specifications of flow tracers and inertial particles. Section 5.3 

provides the 3D-PTV results for the particle-laden flow. Results concerning velocity and 

acceleration fluctuations of fluid and dispersed phase are provided. A discussion of these 

experimental results is given in Section 5.4. Finally, conclusions are presented in Section 

5.5. 

5.2 Experimental setup 

 

5.2.1 Test rig 

 
Turbulent particle-laden pipe flow has been created in a water loop driven by a 

centrifugal pump; see Fig. 5.1. The in-line 3 kW centrifugal pump of type DPV18-30, 

manufactured by “Duijvelaar pompen”, allows Reynolds numbers based on the bulk 

velocity, Ub, and pipe diameter, D, in the range 103 to 105. A frequency controller permits 

fine-tuning of the Reynolds number by adjusting the mass flow rate of the upward vertical 

flow in the measurement section; see Fig. 5.1.  

The mass flow rate is measured by means of a Micro Motion Elite CMF300 mass flow 

and mass density meter, whose inaccuracy is less than 0.5% of the registered flow rate. A 
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water reservoir contains about 2 m3 of water. This value facilitates water temperature 

stabilization and Reynolds number control. Temperature during a test-run was essentially 

constant, varying typically 0.1ºC only.  

Submerged pumps are placed in the reservoir tank in order to promote homogeneous 

dispersion of the added tracers and inertial particles. The measurement section consists of a 

glass pipe to ensure optical accessibility. A water-filled rectangular glass box around the 

pipe minimizes optical distortions. The pipe diameter is chosen relatively large, 100 mm 

inner diameter, because measurements at high Reynolds numbers are required. For a certain 

Reynolds number, bulk velocities are lower for higher tube diameters, which is 

advantageous for the acquisition of Lagrangian statistics. 

A flow straightener, tube bundle conditioner of ISO 5167-1:1991, see Miller[11], has 

been placed downstream of the 90º bend, see Fig. 5.1. The flow straightener removes 

secondary flows and shortens the required length to obtain a fully developed flow. At 45D 

further downstream, the location of the test section, a fully developed flow has been 

achieved. 

 

Figure 5.1 Schematic of the 3D-PTV experimental setup for particle-laden pipe flow. 

 

5.2.2 Properties of applied particles 
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Properties of polystyrene particles applied in the present particle-laden experiment are 

given in Table 5.1. The fluid time-scale τf in the Stokes number, St, is based on viscous 

scales; see info below Table 5.1. The fluid length-scale is the Kolmogorov scale for fully 

developed single-phase pipe flow at Reb = 10300 as computed by Veenman.[10] The 

Kolmogorov length is about 0.60 mm in the pipe core and 0.23 mm close to the wall. For 

evaluation of the particle timescale, τp, the relaxation time for particles in stationary flow is 

used; see Albrecht et al.[12]:  

 

τp = (dp
2ρp/18µ)(1 + 0.5ρf /ρp)                                                          (5.1) 

where µ is the dynamic viscosity, dp is the particle diameter and ρp and ρf are the mass 

densities of particles and of fluid, respectively. A relaxation time of τp ≈ 4 ms is obtained 

for the tracers. Note that the fluid inertia is accounted for by the added mass coefficient 0.5 

which close to a wall is increased to about 0.7; see van der Geld.[13] 

 

Table 5.1 Properties of particles applied in the present particle-laden experiment 

 
* Settling velocity of a particle in an infinite, stagnant pool of water. 
** Fluid time-scale is based on viscous scales as given by: τf = ν/uτ

2. For Reb < 105, the 
wall shear velocity can be estimated as uτ = (Ub

2f /8)1/2 with f = a Reb
-m, m= 0.25 and a = 

0.316; see Hinze.[14]  τf  is roughly 28 ms. 
*** Kolmogorov length-scales for a fully developed single-phase pipe flow at Reb = 

10300 as computed from the DNS code developed by Veenman[10]: ≈ 0.60 mm at pipe 
centerline and ≈ 0.23 mm close to the wall. 

 

The terminal velocity specified in Table 5.1 is attained in quiescent fluid when 

gravitational and drag forces are in equilibrium: 

 

UTV = {(4 (ρp – ρf ) dp g) / (3CD ρf )}
1/2                                             (5.2) 

where g is the gravity acceleration and CD the drag coefficient. The latter is a function of 

the particle Reynolds number, Rep = dp|UTV|/ν, which is based on the particle diameter and 

 
Particles Mass 

density 
[kg/m3] 

Diameter 
dp [mm] 

Terminal 
velocity, UTV* 

[mm/s] 

*Rep ** St = 
τp/τf 

*** Length-
scale ratio: 

dp/η 
Flow tracers 1050 0.2 1.0 0.18 0.14 0.33 – 1 

Inertia particles 1050 0.8 10.2 7.76 2.31 1.33 – 3.5 
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the terminal velocity. In the Stokes regime, CD is given by Eq. (5.3). For 1< Rep< 1000, 

Schiller and Naumann[15] proposed a correlation for CD given by Eq. (5.4): 

 
CD = (24 / Rep); for Rep < 1                                                             (5.3) 

CD = (24 / Rep) (1 + 1/6 Rep
2/3); for 1 < Rep < 1000                        (5.4) 

A value for UTV is obtained by an iterative computation using Eq. (5.2) and Eq.’s (5.3) or 

(5.4). Since the bulk flow velocity, Ub, is approximately 100 mm/s, the ratio Ub/UTV is on 

the order of 102 for seeding particles, see Table 5.1. Since Ub >> UTV, τp<τf and dp<lk, the 

employed seeding particles work well as flow tracers. For inertia particles, the ratio Ub/UTV 

is on the order of 10, τp>τf and dp>lk. Therefore, inertia particles have significant inertial 

characteristics to not behave as tracers. 

5.3 Results 

 

In this section, Lagrangian velocity and acceleration results of particle-laden pipe flow 

at Reb = 10300 and with a mean volume load equal to 1.4×10-5 are presented. Similarities in 

the Lagrangian results of tracers and inertia particles are required in order to validate a 

modified Langevin approach for heavy particle dispersion. The experimental analysis 

required for inhomogeneous turbulent pipe flow is not straightforward since particles move 

during the time of observation to areas with other statistical properties. Discretization in 

space and time is necessary in such a way that enough independent data are collected in 

each point. The computation of Lagrangian statistics is done separately for each class of 

particles; see Table 5.1. The experimental analysis applied follows closely the ones 

presented by Oliveira et al.[9,16] and Walpot et al.[17] To determine Lagrangian statistics of 

particles trajectories, the analysis method gathers data in discrete radial bands: r i ± ∆r, with 

∆r satisfying 2∆r > |u|∆t. Here, u is a typical radial velocity value, e.g. the standard 

deviation of radial velocity fluctuations. The particle trajectory sketched in Fig. 5.2 

contributes to the Lagrangian correlations in band "i" from t1/50 to t6/50. Each particle 

position from t1/50 to t6/50 serves as an initial position of a new trajectory. When these 

additional trajectories are taken into account, the number of data available for short time 

correlations is increased.  
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Figure 5.2 Schematic of a particle trajectory which crosses the experimental band of grid 

point "i". The circles represent particle positions tracked at a frequency of 50 Hz. The 

particle trajectory contributes to Lagrangian correlations at grid points "i" in a way explained 

in the text. 

 
Lagrangian velocity auto- and cross-correlations are defined by Eq. (5.5), while Eq. 

(5.6) defines Lagrangian acceleration correlations: 

 
ρkm(τ,r)  = <uk(t0)um(t0 + τ)>                                                              (5.5) 

βkm(τ,r)  = <ak(t0)am(t0 + τ)>                                                              (5.6) 

The term t0 denotes an arbitrary initial time and τ the correlation time span. The terms ρ and 

β denote Lagrangian velocity and acceleration correlations, respectively. The variables u 

and a represent the fluctuating velocity and acceleration, respectively. The subscripts k and 

m indicate cylindrical coordinate components (r, z, θ). The calculation of the correlations 

ρkm(τ,r) and βkm(τ,r) is done by averaging over all particles that are situated inside a discrete 

band centered at a radial position r in a certain time which is then marked t0 for that 

particle. These correlation functions depend on the radial coordinate r but are independent 

of t0. Lagrangian velocity correlations are sought to determine the damping tensor in 

Langevin stochastic models.[6,810]     
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Presently, DNS computations are performed in which solid particles (with diameter 0.8 

mm and mass density 1050 kg/m3) in water flow are represented by point particles. These 

computational results will be compared with the present experimental findings in another 

paper. 

 
5.3.1 Velocity correlations 

 
Two dimensionless radial positions are chosen to present results of Lagrangian 

velocity auto- and cross-correlations, as defined by Eq. (5.5), for both classes of particles: 

one close to the pipe core, r/R=0.5, and another not far from the wall, r/R=0.7. These radial 

points are sufficient to depict the main inhomogeneous turbulent features of the given 

particle-laden pipe flow. Errors of time-averaged values of a measured quantity x are 

estimated with the aid of the so-called standard error, σm. Confidence intervals of 95% are 

considered. For a quantity which is measured n times, with instantaneous results xi and 

mean <x>, the standard error is given by: 

 

σm = [
n

i
Σ

1=
(xi -<x>)2 /(n (n -1))]1/2                                                     (5.7) 

Figure 5.3a shows normalized velocity autocorrelation functions for the axial 

component. Normalization is done with the starting point of the correlations; τ = 0. Solid 

lines represent DNS data of Veenman[10] at the same Reb. Diamonds and circles represent 

3D-PTV data of flow tracers (FT) and inertia particles (IP), respectively. Error-bars are 

indicated only for tracers at r/R=0.5 and have similar sizes for other experimental results. 

Figure 5.3b shows the corresponding total number of correlation samples measured. 
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Figure 5.3 Comparison of measured autocorrelation functions for the axial component at 

r/R=0.5 and r/R=0.7 with DNS data of Veenman.[10] Diamonds and circles represent 3D-

PTV data of flow tracers (FT) and inertia particles (IP), respectively. Dashed lines indicate 

error-bars. At r/R=0.5, values of <uFT,z(0)> and <uIP,z(0)> are 8.1 and 9.3 mm/s, respectively. 

At r/R=0.7, values of <uFT,z(0)> and <uIP,z(0)> are 9.6 and 10.1 mm/s, respectively. 

 
Lagrangian axial velocity statistics of flow tracers are similar to the ones of a single-

phase fully developed pipe flow represented by DNS until a time lag, τ/τf, of about 24. 

Here, τf is the fluid time-scale given by ν/uτ
2. It represents an average estimation for the 

Kolmogorov time-scale, which is a function of the radial coordinate in inhomogeneous 

turbulent pipe flows. At other radial positions, velocity correlations of flow tracers are also 

similar to the ones computed by DNS. Flow tracer results are in agreement with the single-

phase flow measurements performed by Oliveira et al.[9] at the same Reb. In a particle-laden 

flow with a mean volumetric concentration of inertia particles of 1.4×10-5 and with St = 

2.3, Lagrangian statistics of flow tracers are hardly different from those in single-phase 

flow. 

For τ/τf >24, there is a sudden increase in the velocity correlation function. This 

increase happens for both classes of particles and is related to a reduction in the number of 

correlation samples, which is shown in Fig. 5.3b. Increasing the band width ∆r from 0.5 to 

1.5 mm does not improve the results for longer time lags. It just increases the amount of 

data for correlation time spans in the range 0 < τ/τf < 18 without significantly changing the 

Lagrangian velocity results for τ/τf >24. A further increase in ∆r can induce significant 

changes on final results due to the differences in flow statistical properties along the radial 
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coordinate. A smaller band width results in a decrease of correlation samples for time lags 

in the range 0 < τ/τf < 18. The bandwidth selected is therefore considered to be optimal. The 

evaluation of Lagrangian velocity autocorrelations at different radial positions with various 

bandwidths ∆r reveals that reliable results are obtained for both flow tracers and inertia 

particles, if a number of correlation samples exceeding about 1.5×104 is available. A radial 

band width, ∆r, of 0.5 mm and a camera frequency of 50 Hz suffice to obtain negligible 

bias for velocity Lagrangian statistics of both classes of particles at Reb = 10300. A similar 

requirement for the minimum number of correlation samples was observed by Oliveira et 

al.[9]  

Axial velocity correlations of flow tracers decay more slowly than the correlations of 

inertia particles. For inertia particles in τ = 24 τf, the normalized autocorrelations are 

roughly: ρzz/<uz(0)2> ≈ 0.62 at r/R=0.5 and 0.58 at r/R=0.7. For flow tracers in the same 

time lag, these values are 0.8 at r/R=0.5 and 0.7 at r/R=0.7. The slower decay for 

correlations of flow tracers is also observed for radial, azimuthal and cross-components as 

will be shown below. The faster decay in the correlations of inertia particles also holds at 

other radial positions. A discussion about the differences in the velocity de-correlation 

process of both classes of particles is provided in section 5.4. 

Figures 5.4 and 5.5 show 3D-PTV results for normalized radial and azimuthal velocity 

autocorrelations, respectively, at r/R=0.5 and r/R=0.7. Normalization is done with the 

starting point of the correlations at τ = 0. Solid lines represent DNS data of Veenman[10] at 

the same Reb. Diamonds and circles represent 3D-PTV data of flow tracers (FT) and inertia 

particles (IP), respectively. Error-bars, indicated by the dashed lines and with size equal to 

±2σm, are only plotted for one dataset and have similar magnitude for the remaining 3D-

PTV results. 
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Figure 5.4 Comparison of measured autocorrelation functions for the radial component at 

r/R=0.5 and r/R=0.7 with DNS data. Diamonds and circles represent 3D-PTV data of flow 

tracers (FT) and inertia particles (IP), respectively. Dashed lines indicate error-bars. At 

r/R=0.5, values of <uFT,r(0)> and <uIP,r(0)> are 5.2 and 5.4 mm/s, respectively. At r/R=0.7, 

values of <uFT,r(0)> and <uIP,r(0)> are 5.7 and 5.8 mm/s, respectively. 

 
For inertia particles in τ = 24 τf, the normalized radial autocorrelations are roughly: 

ρrr/<ur(0)2> ≈ 0.34 at r/R=0.5 and 0.19 at r/R=0.7. For flow tracers in the same time lag, 

these values are 0.52 at r/R=0.5 and 0.43 at r/R=0.7. For the tangential correlations of 

inertia particles in τ = 24 τf, values of ρθθ/<uθ(0)2> are roughly: 0.37 at r/R=0.5 and 0.31 at 

r/R=0.7. For flow tracers in the same time lag, these values are 0.66 at r/R=0.5 and 0.50 at 

r/R=0.7. 
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Figure 5.5 Comparison of measured autocorrelation functions for the tangential component 

at r/R=0.5 and r/R=0.7 with DNS data. Diamonds and circles represent 3D-PTV data of flow 

tracers (FT) and inertia particles (IP), respectively. Dashed lines indicate error-bars. At 

r/R=0.5, values of <uFT,θ(0)> and <uIP,θ(0)> are 5.8 and 5.7 mm/s, respectively. At r/R=0.7, 

values of <uFT,θ(0)> and <uIP,θ(0)> are 6.8 and 6.9 mm/s, respectively. 

 
At radial positions closer to the pipe center (r/R=0.5), a slower decay of 

autocorrelation values is observed for both classes of particles. The presence of the wall 

causes the velocity correlations of particles to decay faster nearby the wall than in the pipe 

core. In the time interval τ = 24 τf, the ratios of autocorrelations of inertia particles at 

r/R=0.5 to the ones at r/R=0.7, [ρkk/<uk(0)2>]r/R=0.5/[ρkk/<uk(0)2>]r/R=0.7, for axial, radial and 

tangential components are 7, 79 and 20 %, respectively. For flow tracers, these values are: 

14, 20 and 32 %. For both particles, the axial autocorrelations decay more slowly than 

tangential and radial ones.  

3D-PTV and DNS results of the only non-zero cross-correlation functions, ρrz and ρzr, 

are shown for r/R=0.7 in Fig. 5.6. The statistical error in the 3D-PTV results is indicated by 

the dashed lines with size equal to ±2σm; see Eq. (5.7). Cross-correlations involving the 

tangential component are equal to zero, since this component is uncoupled to the other two 

components. This has also been found for inertia particles. 

 

0 10 20 30
0

0.2

0.4

0.6

0.8

1

τ / τ
f

ρ θ 
θ(τ

,r
) 

/ <
u θ(0

) 2
>

 

 

r/R=0.5

r/R=0.7

DNS

FT, τ
p
 / τ

f
 = 0.14

IP, τ
p
 / τ

f
 = 2.3



Chapter 5 

 

162 
 

 

Figure 5.6 Comparison of measured cross-correlation functions, ρrz and ρzr, at r/R=0.7 with 

DNS data. Diamonds and circles represent flow tracers (FT) and inertia particles (IP), 

respectively. Dashed lines indicate error-bars. At r/R=0.7, values of <uFT,r(0)uFT,z(0)>1/2 and 

<uIP,r(0)uIP,z(0)>1/2 are 4.8 and 4.5 mm/s, respectively. The starting point of cross-

correlations is equal: ρrz(0) = ρzr(0). 

 
Cross-correlations ρzr decay considerably faster than cross-correlations ρrz. For inertia 

particles in τ = 24 τf, ρzr/<uz(0)ur(0)> is 0.41 and ρrz/<ur(0)uz(0)> is 0.76. Particles which 

move towards the wall usually retain their original axial velocity for a while and will most 

likely be found at larger values of r/R with a relatively large value of uz. The opposite 

conclusion is drawn for particles moving towards the core of the pipe. As a consequence, 

the average product of uz and ur is positive. An inertia particle moving in radial direction 

tends to retain its original total axial velocity for a while, uz(t0 +τ) ≈ uz(t0), resulting in an 

average increase of the absolute value of the velocity fluctuation. The average product 

‹ur(t0)uz(t0 +τ)› is larger than ‹ur(t0)uz(t0)›. The same cannot be said about ‹uz(t0)ur(t0+τ)›, 

since ‹ur›=0 everywhere. 

 
5.3.2 Velocity structure function and Kolmogorov constant 

 
The second order Lagrangian velocity structure function, Dkk (τ), is defined by Eq. 

(5.8): 

Dkk (τ) = <[uk (τ) – uk (0) ]2>                                                            (5.8) 

Values of Dθθ at r/R=0.7 are presented in Fig. 5.7. The solid line represents DNS data at Reb 

= 10300. Diamonds and circles represent flow tracers (FT) and inertia particles (IP), 
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respectively, in particle-laden pipe flow at the same Reb. Dashed lines indicate error-bars, 

as before. 

 

Figure 5.7 Comparison of measured structure functions for the tangential component at 

r/R=0.7 with DNS data. Diamonds and squares represent flow tracers (FT) and inertia 

particles (IP), respectively. Dashed lines indicate error-bars. 

 
The slope of velocity structure functions is bigger for inertia particles than for flow 

tracers; see velocity tangential components in Fig. 5.7. At r/R=0.7, values of Dθθ
½ in the 

range τ/τf =4 to τ/τf =24 increase from 0.02 to 0.06 m/s for inertia particles and from 0.015 

to 0.05 m/s for flow tracers. Similar trends in the results of Fig. 5.7 are found at other radial 

positions and for radial and axial structure functions. 

Lagrangian velocity structure functions as well as Lagrangian velocity correlations of 

tracers, whose results are among those shown in the last subsection, are important 

quantities in Lagrangian stochastic models able to predict turbulent dispersion. The 

quantities, ρkm(τ,r) and Dkk(τ), determine the Kolmogorov constant C0 and the damping 

coefficients in the Langevin model for fluid particle velocity.[6,8,10] Kolmogorov theory of 

local isotropy gives a scaling rule connecting the fluid structure functions with the 

universal Kolmogorov constant, C0; see Pope.[18] The scaling rule is given by Eq. (5.9): 

 
Dkk (τ) = C0 <ε>τ                                                                              (5.9) 

where ε is the dissipation rate given by ε = 2νSkm
2. ν is the kinematic viscosity and Skm the 

rate-of-strain tensor. The last one is given by: Skm = (1/2)(∂Uk/∂xm + ∂Um/∂xk), with U the 

instantaneous fluid velocity and x the space coordinate. Eq. (5.9) is valid in the inertial sub-
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range for time τ in the interval: τk << τ << τc. The Kolmogorov time-scale, τk, is 

representative of dissipative scales, while the Lagrangian correlation time, τc, is 

representative of large energy-containing scales. In turbulent flows, τk is related to τc by the 

Reynolds number: τk = τc Re-1/2. Since turbulent pipe flows are inhomogeneous in radial 

direction, τk and τc are function of the radial coordinate. In section 5.2.2, an average 

estimation for τk was computed, roughly 28 ms. For Reb = 10300, that would result in the 

following average estimation of τc: 2.8 s.  

Due to the hypothesis of local isotropy, turbulence statistics are invariant to rotations 

and reflections of the coordinate system. The local isotropy assumption implies that the 

structure functions in the three principal directions are equal and therefore C0 is a constant. 

At the level of second order statistics, the local isotropy assumption for very large 

Reynolds numbers has been very successful, see Mydlarski and Warhaft.[19] However, the 

present Reynolds number is far from this limit. This makes it necessary to introduce a 

direction-dependent C0
k, where k represents r, z, θ. This was proposed by Pope[20] in a 

linear stochastic model for homogeneous shear flow. Later, Walpot et al.[8] followed the 

same proposal for the definition of C0 for an inhomogeneous pipe flow. According to 

Kolmogorov similarity, one should observe a plateau of C0 in the inertial subrange. 

However, for the limited Reynolds numbers studied here, the inertial subrange has finite 

width. For finite Reynolds numbers, the plateaus of C0 may be short or exist only as bumps, 

see Lien and D’asaro.[21] Therefore, the value of C0 will be determined from the maximum 

in the function of Dkk (τ)/ <ε>τ. 

Lagrangian structure functions for the radial velocity component scaled with <ε>τ are 

presented at r/R=0.7 in Fig. 8. The solid line represents DNS data10. Diamonds and circles 

represent flow tracers (FT) and inertia particles (IP), respectively, in particle-laden pipe 

flow at Reb = 10300. Dashed lines indicate error-bars, as before. 
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Figure 5.8 Comparison of measured structure functions for the radial component scaled with 

<ε>τ at r/R=0.7 with DNS data of Veenman.[10] Diamonds and squares represent flow tracers 

(FT) and inertia particles (IP), respectively. Dashed lines indicate error-bars. 

Trajectories of tracers have been registered long enough to achieve the time interval 

where the maximum occurs; see Fig. 5.8. The value of C0
k is the value of Drr /<ε>τ at the 

maximum. Similar results are found at other radial position and for tangential structure 

functions. For axial structure functions, the Lagrangian correlation times are bigger and the 

time interval where the maxima occur cannot be achieved due to the limited axial length of 

the measurement volume. For this case, the axial structure functions are fitted with a linear 

function in a time interval that is assumed to be in the inertial range (roughly from τ/τf ≈ 4 

to the longest measured time lag, τ/τf ≈ 24). This approach was also done by Walpot et al.[8] 

Results for the direction-dependent C0
k thus obtained are provided in Fig. 5.9. For tracers, 

values of C0
k are roughly 3 in the pipe core (r/R < 0.8) and decrease with decreasing 

distance to the wall. The decrease of C0
k with decreasing distance to the wall is for tracers 

also found by Choi et al.[22] for turbulent channel flow. This result is in good agreement to 

single-phase experimental results of Walpot et al.[8] and to the numerical computations of 

Veenman.[10] Application of Lagrangian stochastic models to fluid particles immersed in a 

particle-laden flow with a mean volumetric concentration of inertia particles equal to 

1.4×10-5 and with St = 2.3 seems feasible. 

In Fig. 5.8, a maximum is also found for the velocity structure functions of inertia 

particles when they are scaled with <ε>τ. The same trend is observed at other radial 

positions and for other structure functions. Following the same procedure as for flow 
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tracers, the modified direction-dependent C0
k have been determined for inertia particles, 

see Fig. 5.9.  

 

Figure 5.9 Ratios of Eulerian acceleration variance of inertia particles (IP) to flow tracers 

(FT). Subscripts kk stand for normal components in cylindrical coordinates: zz, rr and θθ. 

Error-bars are computed by the standard error in 95% confidence intervals. 

 
Values of C0

r and C0
θ are about 6 for inertia particles at r/R < 0.6, while values of C0

z 

are about 4. Values of the direction-dependent Kolmogorov constant, C0
k, decrease with 

decreasing distance to the wall for r/R > 0.6; see open symbols in Fig. 5.9. 

The determination of Lagrangian correlations and structure functions, ρkm(τ,r) and 

Dkk(τ), is necessary to develop Lagrangian stochastic models.[6,8,10] The development of a 

model to predict turbulent dispersion of heavy particles is a challenging topic. The 

existence of a maximum when the structure functions of inertia particles is scaled with 

<ε>τ allows the determination of a modified direction-dependent Kolmogorov constant, as 

done above. By means of C0
k and Lagrangian velocity correlations, computations of a 

modified damping tensor as needed for a Langevin model are also possible, if such a model 

is applicable at all. Zaichik and Alipchenkov[23], for example, proposed a statistical model 

for the dispersion of heavy particles immersed in a turbulent fluid flow.  

In order to facilitate the development of quantitative stochastic models for particles 

with significant inertia, Lagrangian velocity correlations and structure functions have been 

presented. We now proceed with the description of acceleration results. 
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5.3.3 Eulerian acceleration variance 

 

The evolution of the acceleration variance of inertial particles in turbulent flows has 

been subject of research in recent years; see Volk et al.[24], for example. Most of the 

experimental results (if not all) were reported in flows where the turbulence is close to 

homogeneous, isotropic or with zero mean velocity, i.e. Qureshi et al.[25] or Brown et al.[26] 

For pipe flow, which is more important for practical and industrial applications, there is a 

lack of experimental results.  

In the present study, the mass density of the inertia particles almost matches the fluid 

mass density, ρp/ρf ≈ 1.05.  For neutrally buoyant particles with dp > η (the Kolmogorov 

length-scale), Calzavarini et al.[27] showed that the acceleration variance decreases for 

increasing particle size. Moreover, when the acceleration variance of a neutrally buoyant 

particle is scaled with the one of a flow tracer, ‹aIP
2›/‹aFT

2›, the decrease is expected to be in 

the form:  

‹aIP
2›/‹aFT

2›≈ (dp/η)
-2/3                                                                              (5.10) 

In order to investigate the acceleration of almost neutrally buoyant particles in pipes, 

ratios of Eulerian acceleration variance of inertia particles (IP) to flow tracers (FT), 

βIP,km(0,r)/βFT,km(0,r), are presented in Fig. 5.10. Results are shown for all acceleration 

components in cylindrical coordinates: zz, rr and θθ. 

 

 

Figure 5.10 Ratios of Eulerian acceleration variance of inertia particles (IP) to flow tracers 

(FT). Subscripts kk stand for normal components in cylindrical coordinates: zz, rr and θθ. 

Error-bars are computed by the standard error in 95% confidence intervals. 
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The ratios of acceleration variance, [‹aIP

2›/‹aFT
2›]kk, increase with decreasing distance 

to the pipe walls for all normal acceleration components. Tangential and radial ratios are 

roughly equal to 0.3 at the pipe centerline and get values of order 1 in the vicinity of the 

pipe wall. Streamwise ratios are 0.25 at the pipe centerline and increase to nearly 0.5 at r/R 

≈ 0.98. 

Flow geometries such as Von Kármán flows and wind-tunnel turbulent flows showed a 

reduction in the acceleration variance with increasing particle size.[24] According to Voth et 

al.[28], pressure forces which are the main cause of the motion of particles, are averaged 

over an increasingly large area with increasing particle size. Thus, one expects the 

acceleration variance to reduce with increasing particle size. This decrease is consistent 

with the power law ‹aIP
2›/‹aFT

2›≈ (dp/η)
-2/3. In turbulent pipe flows, viscous scales are 

smaller near the wall than in the pipe core. The Kolmogorov length-scales for a fully 

developed single-phase pipe flow at Reb = 10300 have been computed by the DNS code 

developed by Veenman.[10] The ratio dp/η increases from roughly 1.3 at pipe centerline to 

3.5 at the wall surroundings. Plotting the acceleration variance ratio according to the power 

law -2/3 with the present particle diameter of 0.8 mm and with η as given by the DNS 

results yields an unexpected behavior, see pentagrams in Fig. 5.11. Notice that the results in 

Fig. 5.10 increase with decreasing distance to the wall, while the pentagrams in Fig. 5.11 

present opposite trend. A discussion about the unpredicted results for the Eulerian 

acceleration ratios is given in section 5.4.  



Lagrangian Statistics in Particle-laden Pipe Flow  

  

169 
 

 

Figure 5.11 At the left side, ratios of Eulerian acceleration variance of inertia particles (IP) 

to flow tracers (FT) as given by the power law (dp/η)
-2/3; see Volk et al.[24] At the right side, 

ratio of particle diameter to the Kolmogorov length-scale, η, as obtained by the DNS code of 

Veenman.[10] 

 

5.3.4 Acceleration autocorrelations 

 
Normalized autocorrelation functions for the axial acceleration component at r/R=0.5 

are shown in Fig. 5.12. Squares and triangles represent 3D-PTV data of flow tracers (FT) 

and inertia particles (IP), respectively. Error-bars have about the same size as symbols.  

 

Figure 5.12 Normalized autocorrelation functions for the axial acceleration component at 

r/R=0.5. Squares and triangles represent 3D-PTV data of flow tracers (FT) and inertia 

particles (IP), respectively. 
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The decay of fluctuating acceleration correlations happens in shorter time intervals 

than the decay of velocity correlations. While the first ones de-correlate in periods of time a 

few times bigger than the smallest fluid time-scales, characterized by τk, the second ones 

de-correlate in intervals associated with the biggest flow structures or energy-containing 

eddies, τc. In section 5.3.2, estimations of τk and τc were given: about 28ms and 2.8s, 

respectively. The de-correlation of Lagrangian acceleration statistics for both categories of 

particles takes place in τ/τf ≈ 3 to 4 (about 0.084 to 0.112 s). Therefore, it was possible to 

track particles until βkm(τ,r) ≈ 0. This result is similar for axial acceleration correlations at 

other radial positions as well as azimuthal and radial acceleration autocorrelations. If all 

normal accelerations are taken into account for all radial positions, the de-correlation 

period ratio of inertia particles to flow tracers is about 1.25. The increase in the de-

correlation period with increasing particle inertia is in accordance with findings in Von 

Kármán and wind-tunnel turbulent flow experiments; see Volk et al.[24] In the next section, 

the differences in the acceleration correlation decay of both classes of particles are 

discussed. 

5.4 Discussion 

 

The decay of Lagrangian velocity auto and cross-correlations of inertia particles takes 

place in shorter times than the velocity decay of flow tracers (section III-A). This feature of 

the decay of velocity correlations was attributed to the effect of crossing trajectories by 

Wells and Stock.[29] According to them, a heavy particle, influenced by an external 

potential force field such as gravity, falls from one eddy to another at a rate faster than the 

average eddy-decay rate. In contrast, a light particle (or a fluid point) will generally remain 

within an eddy until the eddy decays. As a result, the heavy particle tends to lose velocity 

correlation more rapidly than a light particle. 

Many in depth analytical and numerical studies revealed that an indication of the 

degree of interaction between particles and turbulent flow structures is given by the ratio of 

a characteristic root-mean-square (RMS) fluid velocity to the particle terminal velocity, 

urms/UTV; see Sene et al.[30] and Spelt and Biesheuvel[31], for example. Here, the RMS fluid 

velocities are a function of the radial coordinate and are given by the starting point of 

velocity correlations, urms=<ρkm(0,r)2>0.5. For urms/UTV << 1 little interaction with vortices is 
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expected, whereas for urms/UTV >> 1 the turbulent motion of particles with low inertia is 

governed by intense interaction with flow eddies. In the last situation, particles shall behave 

as fluid particles. In the present particle-laden flow, the ratio urms/UTV is of order 1 for 

inertia particles and of order 10 for the flow tracers. These values indicate that the applied 

flow tracers are expected to behave as fluid particles, while the inertia particles are 

expected to interact partially with the turbulent flow structures. As a consequence, velocity 

correlations of inertia particles decay faster than the velocity correlations of tracers. 

However, the fast decay in the velocity correlations of heavy particles in turbulent flows 

only seems reasonable if the particle is able to partially interact with the flow eddies 

(urms/UTV ≈1). Particles with high inertia do not interact with turbulent structures (urms/UTV 

→ 0) and are expected to keep their velocity correlated for longer periods. Particles with 

high inertia cross turbulent eddies with hardly any interaction. 

 In opposite trend to the velocity correlations, the decay of Lagrangian acceleration 

correlations is slower for inertia particles than for flow tracers (section 5.3.4). Here, the 

particle inertia acts in maintaining the previously attained acceleration in response to the 

evolving flow conditions. The increase in the de-correlation period of the fluctuating 

acceleration with increasing particle inertia is in accordance with findings in Von Kármán 

and wind-tunnel turbulent flow experiments.[25] While the inertia of a flow tracer is small 

and its acceleration is quickly modified in order to follow the biggest turbulent flow 

structures, the inertia of a heavy particle is significant, keeping “memory” of previous 

pressure and velocity distributions over the particles surface. As a result, the acceleration 

correlations of inertia particles decay more slowly than the acceleration correlations of 

flow tracers. Thus, inertia particles are not able to completely follow large energy-

containing eddies.  

It was shown that the particle Eulerian acceleration variance increases towards the wall 

where viscous scales are smaller (section III-C). The ratio of the acceleration variance of 

inertia particles and the fluid ones does not obey the power law -2/3 as observed in other 

flow geometries such as Von Kármán and wind-tunnel turbulent flows. In homogeneous 

turbulent flows without shear, turbulent fluctuations of the pressure gradient in the vicinity 

of the particle are the main responsible force for the particle motion. For these flows, the 

acceleration variance of neutrally buoyant particles is properly accounted for by the second 

moment of pressure increments at the particle scale, see Brown et al.[26] When the 

acceleration variance of a neutrally buoyant particle is scaled with the one of a flow tracer, 
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‹aIP
2›/‹aFT

2›, the decrease is consistent with the power law -2/3 in the form: ‹aIP
2›/‹aFT

2›≈ 

(dp/η)
-2/3, see Calzavarini et al.[27] 

In inhomogeneous shear flows as in pipes, the particle motion analysis is more 

complicated. In the presence of shear and for particles with relevant size, general forms of 

lift need to be accounted for in the particle motion. For pipe flows at Reb=10300, the 

gradient of average axial velocity in the radial direction, ∂Uz/∂r, is of order 60 s-1 at the 

pipe walls, see Oliveira et al.[9,16] In the wall region, ratios of acceleration variance of order 

1 are found for tangential and radial components. Moreover, the turbulent flow field in 

pipes is inhomogeneous. Once particles move in the radial direction, they shift to areas with 

distinct pressure and velocity distribution characteristics. Particles with relevant inertia 

maintain information about the evolving flow conditions from different areas (acceleration 

correlations decay slower). Not surprisingly, the scaling law (-2/3) behavior fails to 

represent the acceleration variance of inertia particles for the present turbulent pipe flow. 

5.5 Conclusions 

 

3D-PTV has been applied to particle-laden pipe flow at Reb=10300 with mean 

volumetric concentration of inertia particles equal to 1.4×10-5. Fluid statistics of flow 

tracers have been found to be similar to the ones of a single-phase fully developed pipe 

flow. Velocity and acceleration Lagrangian statistics have been determined for inertia 

particles with Stokes number (St) equal to 2.3, based on the particle relaxation time and 

viscous scales. To the best of our knowledge, no measurements of Lagrangian statistics of 

inertial particles in a pipe flow have been reported before. 

The minimum amount of data in a discrete time separation needed for the description 

of Lagrangian velocity correlations has been determined for Reb =10300. Appropriate 

results are found if the number of correlation samples exceeds 1.5×104. 

The decay of Lagrangian velocity correlations is faster for inertia particles (St = 2.3) 

than for flow tracers due to the crossing trajectories effect. On the other hand, the decay of 

Lagrangian acceleration correlations is about 25 % slower for inertia particles. Here, the 

particle inertia acts in maintaining the prior acceleration while the flow conditions evolve. 

Velocity correlations for both classes of particles decay in periods of time associated with 

the biggest flow structures or energy-containing eddies. For acceleration correlations, the 

de-correlation takes place in periods of time a few times bigger than the Kolmogorov time.  



Lagrangian Statistics in Particle-laden Pipe Flow  

  

173 
 

In inhomogeneous turbulent pipe flow, the acceleration variance of inertia particles 

normalized by the fluid acceleration variance does not obey the power law (dp/η)
-2/3, as 

observed for neutrally buoyant particles in other flow geometries such as Von Kármán and 

wind-tunnel turbulent flows. In the presence of shear and for particles with relevant size, 

general forms of lift need to be accounted for in the particle motion.  

All necessary ingredients of a Langevin model for inertia particles have been 

quantified for turbulent upward concurrent flow of a fluid with ρf ≈ 1000 kg/m3 and 

particles with ρp ≈ 1050 kg/m3, diameter of 0.8 mm, Stokes number of 2.3 and with 

volumetric concentration of 1.4×10-5. The maximum observed in the velocity structure 

function of inertia particles when scaled with <ε>τ allows the determination of a modified 

direction-dependent Kolmogorov constant, C0
k. With the measured Lagrangian velocity 

correlations for inertia particles, a modified damping tensor can be also determined. Full 

examination of such a Langevin model is beyond the scope of the present experimental 

study. 
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6  

Conclusions 
 

 

 

 

This work aimed at experimental clarification of the essential physics of turbulent 

particle-laden pipe flows with a characteristic ratio of turbulent carrier-phase RMS velocity 

and terminal velocity of inertia particles, urms/UTV, of order one. An experimental setup has 

been arranged in such way that the liquid and particle three-dimensional velocities in 

upward and downward vertical flows could be measured. With bulk flow Reynolds number 

equal to 10300, particle-laden flows with volumetric loads of inertia particles ranging from 

0.5×10-6 to 1.7×10-4 have been tested. Two categories of inertia particles with Stokes 

number, based on the relaxation time for particles in stationary flow and on viscous scales, 

equal to 2.3 and 3.3 have been measured. By means of 3D-PTV, both Eulerian and 

Lagrangian velocity characterizations have been determined for both flow tracers and 

inertia particles.  

An overview of main results and conclusions is presented in section 6.1. 

Recommendations for future work are given in section 6.2. 
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6.1 Summary of main results and conclusions 

 

A 3D-PTV experimental setup has been validated by comparing Eulerian and 

Lagrangian results of a single-phase pipe flow in fully developed conditions at Reb = 10300 

with literature results (chapter 2). New experimental methods have been explored and 

presented, paving the way for measurement of Lagrangian particle statistics, be it tracers or 

be it inertial particles, at bulk Reynolds numbers 20,000 and higher. 

Two analysis methods of Lagrangian trajectory statistics as proposed by Walpot et 

al.[1] have been revisited (chapter 2). One of the methods has been successfully applied to 

the trajectory analysis of flow tracers and inertia particles in particle-laden flows (chapter 

5). Velocities derived by straightforward interpolations of consecutive 3D positions of a 

particle trajectory have been found to yield accurate pipe flow statistics at Reb = 10300, if a 

maximum triangulation error of the order of 40 µm is allowed in the particle detection 

algorithm. There is no need to correct the spatial position of particles with smoothing 

filters, as has been done by Walpot et al.[1] The application of a Savitz-Golay low-pass 

smoothing filter to correct the spatial position of particles with a third order polynomial and 

a filter span of 17 points is found to be unnecessary with the measurement accuracies 

specified above. Naturally, such low-pass filtering is undesirable because of the a priori 

unknown cut-off frequency. 

To analyze the impact of flow turbulence level on particle behavior, different stages of 

flow development have been tested. Transient states of pipe flows at Reb = 10300 have 

been characterized by the characteristics of the turbulence. By quantifying the cross-section 

averaged diagonal components of the Reynolds stress tensor, linear fits distinguish flow 

conditions from the fully developed state in a convenient way. Turbulent pipe flows close 

to fully developed conditions exhibit linear inhomogeneous behavior in the pipe core. At 

Reb = 10300, ratios of the diagonal components of the Reynolds stress tensor increase 

linearly from r/R = 0 to r/R ≈ 0.8. When the terminal velocity of particles and a 

representative RMS turbulent flow velocity are of same order, i.e. |urms/UTV| ≈ O(1), the 

time-averaged mean relative velocity decreases with increasing level of flow turbulence. A 

correlation between axial relative velocity and flow turbulence level has been proposed. 

With the observed trends being opposed to those in turbulent bubbly flows, it is conjectured 

that particles heavier than fluid and with urms/UTV ≈ O(1) possess longer residence times in 
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the upward side of eddies. This explains the observed reduction of the mean relative 

velocity. 

Flow orientation with respect to gravity has a strong effect on the concentration profile 

of particles if |urms/UTV| ≈ O(1), with wall peaking in downflow and core peaking in upflow. 

It is hypothesized that a fluctuating component of the lift force on particles is responsible 

for these trends. If |urms/UTV| → 0, particles cross turbulent eddies with hardly any 

interaction because of their high inertia. The relative velocity approaches the terminal 

velocity and in the presence of enough shear, a mean lift force will be dominant in the 

determination of wall-normal concentration profiles, see results of Suzuki et al.[2], for 

example. In this situation, the magnitude of a fluctuating lift component is not relevant. If 

|urms/UTV| >> 1, the terminal velocity of particles with low inertia is not significant and the 

relative velocity is also small. Particles act as tracers. In this situation, the turbulent motion 

of particles is governed by the interaction with flow eddies and lift force does not play a 

role. Mean concentration profiles of the low-inertia particles will not be far from a 

homogeneous distribution. 

When the volumetric concentration of particles for a given radial position exceeds 

about 3×10-4, particle and fluid flow statistics experience significant changes, i.e. in the 

concentration profiles of particles. In this situation, the average inter-particle distance is 

smaller than the expected wake downstream of a single particle in an inhomogeneous flow. 

Two-way coupling seems to come into play. Reference values of the wake length behind a 

particle are taken from literature.[2]   

Turbulence augmentation is observed with increasing mean concentration of particles 

with St = 2.3 or 3.3, |urms/UTV| ≈ O(1), particle Reynolds number, Rep, less than 12 and mass 

density ratio of particles to fluid, ρp/ρf, roughly 1.05. Criteria based only on Rep, ratio of 

turbulence and particle length and time scales, and volume load do not suffice to predict the 

turbulent modulation found. Apparently, one or more parameters of influence are missing. 

It is conjectured that the ratio |urms/UTV| is also relevant to predict turbulence modulation. 

The effect of particle feedback on the fluid is presented with δ-forcing. It is shown that 

the applied mean concentrations, 0.5×10-6 to 1.7×10-4, are too low to affect the frictional 

pressure drop. For example, particle feedback on the fluid yields roughly 5.7×10-6 N/kg for 

upflow with St = 2.3 and mean volumetric concentration of 1.4×10-5, while the frictional 

pressure drop yields about 7.5×10-4 N/kg for a fully-developed pipe flow at Reb = 10300. 

Only mean concentrations over 10-3 will affect the axial pressure drop for similar conditions 
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(same category of particles and velocimetry results). In the pipe core region (0 < r/R < 0.8), 

drag forces are dominant on the coupling term for the streamwise direction. In the wall 

region (0.8 < r/R < 1), drag forces reduce with decreasing distance to the wall. There, the 

gravity term, which only affects the particle feedback via an added mass term, is the 

dominant contribution for the present flows.  

 

6.1.1 Considerations about the transport of inertia particles 

 

The distribution of particles in a cross-section may be crucial in determining collision 

frequency, breakage efficiency, reaction rates, deposition and entrainment. As shown 

above, several parameters can be relevant in the concentration profile of the dispersed 

phase, such as flow orientation with respect to gravity, the ratio |urms/UTV|, the presence of 

shear etc. Break-up of particles is related to turbulent stresses and turbulent dissipation. In 

inhomogeneous turbulent pipe flow, turbulent dissipation is more pronounced at the pipe 

walls. Apart from the small viscous region near the wall, turbulent dissipation is of the 

same order of magnitude as turbulence production.[3] The latter has been measured in the 

present work together with the direction-dependent Kolmogorov constant, C0
k. With these 

measurements, a correlation for critical Weber as a function of radius has been determined. 

Different break-up criteria can be evaluated for a given radial position at Reb = 10300. 

Turbulence production has also been measured in transient states of particle-laden pipe 

flows at Reb = 10300. In the measured development stages, turbulence production is larger 

than in fully developed flow. Apparently, turbulence production is enhanced for particle-

laden flows with |urms/UTV| ≈ O(1) and inertia particles with St = 2.3 or 3.3, and even more 

so if the volumetric concentration is higher or if the level of turbulence is higher. 

 

6.1.2 Lagrangian statistics of particle-laden pipe flow 

 

Flow tracer and inertia particle velocity and acceleration Lagrangian statistics were 

analyzed in a particle-laden pipe flow at Reb=10300 with mean volumetric concentration of 

inertia particles equal to 1.4×10-5 and St = 2.3. To our knowledge, no simultaneous 

measurements of Lagrangian statistics of flow tracers and inertial particles in a pipe flow 

have been reported before. Flow tracer statistics have been found to be similar as in single-

phase fully developed pipe flow. 
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The Lagrangian analysis method was successfully applied to the trajectories of inertia 

particles as well as flow tracers. A radial band width, ∆r, of 0.5 mm in a pipe diameter of 

0.1 m and a camera frequency of 50 Hz sufficed to obtain negligible bias at Reb=10300. 

The minimum amount of data in a discrete time interval needed for the description of 

Lagrangian velocity correlations (be it tracers or inertia particles) has been determined. 

Appropriate results are found if the number of correlation samples exceeds 1.5×104. 

The decay of Lagrangian velocity correlations is faster for inertia particles (St = 2.3) 

than for flow tracers (St = 0.1) due to the crossing trajectories effect. In opposite trend to 

velocity correlations, Lagrangian acceleration correlations of inertia particles decay more 

slowly than for flow tracers: about 25 % more slowly if all normal accelerations are taken 

into account and all radial positions. While the inertia of a flow tracer is small and its 

acceleration is quickly modified in order to follow all turbulent flow structures, the inertia 

of a heavy particle is significant, keeping “memory” of previous pressure and velocity 

distributions over the particle surface. As a result, the acceleration correlations of inertia 

particles decay more slowly than the acceleration correlations of flow tracers. Thus, inertia 

particles are not able to completely follow large energy-containing eddies. Velocity 

correlations for both classes of particles decay in periods of time associated with the 

biggest flow structures or energy-containing eddies, τc. For acceleration correlations, the 

decay takes place in periods of time a few times bigger than the Kolmogorov time, τk. 

Average estimations of τk and τc at Reb = 10300 were given: about 28ms and 2.8s, 

respectively. 

The Eulerian acceleration variance of inertia particles normalized by the fluid one does 

not obey the power law (dp/η)
-2/3, as observed for neutrally buoyant particles in other flow 

geometries such as Von Kármán and wind-tunnel turbulent flows.[4] In the presence of 

shear and for particles with relevant size, general forms of lift need to be accounted for in 

the particle motion. Moreover, the turbulent flow field in pipes is inhomogeneous. Once 

particles move in the radial direction, they shift to areas with distinct pressure and velocity 

distribution characteristics. Particles with relevant inertia maintain information about the 

evolving flow conditions from different areas (acceleration correlations decay more 

slowly). Not surprisingly, the scaling law (-2/3) behavior fails to represent the Eulerian 

acceleration variance of inertia particles for the selected turbulent pipe flow. 

All necessary ingredients of a Langevin model for inertia particles have been quantified for 

turbulent upward concurrent flow of a fluid with ρf ≈ 1000 kg/m3 and particles with ρp ≈ 
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1050 kg/m3, diameter of 0.8 mm, Stokes number of 2.3 and with volumetric concentration 

of 1.4×10-5. The maximum observed in the velocity structure function of inertia particles 

when scaled with the product of mean dissipation rate and correlation time span, <ε>τ, 

allows the determination of a modified direction-dependent Kolmogorov constant, C0
k. 

With the measured Lagrangian velocity correlations for inertia particles, a modified 

damping tensor can be also determined. Full examination of such a Langevin model is 

beyond the scope of the present experimental study. 

6.2 Recommendations 

 

Experimental analysis of particle-laden flows in situations where the particle feedback 

on the fluid can affect the frictional pressure drop would complement the contents of the 

present study. This can be achieved in different ways, such as increasing the mean 

volumetric concentration of applied inertia particles (St = 2.3 or 3.3) to larger than 10-3 or 

changing the particle properties. In this situation, particle and fluid statistics may differ 

from the ones obtained in this work. Other interesting phenomena can be relevant in the 

analysis, i.e. particle-particle and particle-wall collisions. If higher mean volumetric 

concentrations are applied, the stronger effect of the set of wakes behind particles will also 

be relevant in flow and particle statistics.    

The evaluation of Lagrangian approaches to modeling the dispersion of inertial 

particles suspended in turbulent flows is also a challenge. In the present work, the 

necessary ingredients of a Langevin model for inertia particles with St = 2.3 have been 

quantified. However, a more extensive study is required to further develop and validate 

such a model.  
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