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Abstract

In this paper, we integrate inventory and handling into a single model for anal-

ysis and optimization of inventory replenishment decisions for a grocery retail store.

We consider a retailer who periodically manages his inventory of a single item facing

stochastic demand. The retailer may only order in multiples of a fixed batch size, the

lead time is less than the review period length and all unmet demand is lost, which is

a realistic situation for a large part of the assortment of grocery retailers. The replen-

ishment cost includes both fixed and variable components, dependent on the number

of batches and units in the order. This structure captures the shelf-stacking costs in

retail stores. We investigate the optimal policy structure under the long-run average

cost criterion. Our results show that it is worthwhile to explicitly take handling costs

into account when making inventory decisions. We use parameter values typical for

grocery retail environments. For an important subset of the retail assortment, we show

that significant cost reductions exist by explicitly considering handling in the inventory

policy.

Keywords: Retail inventory control, Handling, Lost sales, Periodic review, Fixed

batch sizes

1 Introduction

The grocery retail inventory problem has several rich features (Broekmeulen et al., 2004).

A store orders inventory on a periodic basis and receives replenishment according to a fixed

schedule. Demand for products is stochastic and is typically lost if inventory is not avail-

able on the shelf. Orders are usually constrained to batches of fixed sizes (case packs). In

this paper, we build upon the shelf-stacking insights of Curşeu et al. (2009) to investigate

inventory replenishment decisions including merchandise handling. The handling of goods

mainly represented the daily process of manually refilling the shelves in the store with prod-

ucts from new deliveries (i.e. shelf stacking), which is typically time consuming and costly.
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The case we consider is a lost sales inventory system, with fixed ordering cost, quantized

ordering quantity, the lead-time being less than review period, as well as additional handling

cost. In the literature, to our knowledge, no study exists that analyses the optimal policy

structure similar to the inventory problem discussed in this paper. Additional complexity

caused by cost components related to handling costs, substantially complicates the analysis

of the optimal solution structure.

We observed in the different in-company projects executed at various grocery retailers

that in-store retail inventory management ignores handling costs. This is remarkable since

Van Zelst et al. (2009) reported that the handling of goods in the store accounted for 75%

of the total logistics store costs, while inventory accounted for the remaining 25% of total

costs (see also Saghir and Jonson (2001) for similar insights on the importance of handling).

Van Donselaar et al. (2010) discussed in their paper that retailers do not always follow order

advices generated by an automated inventory replenishment system. These authors showed

that store managers consistently modify automated order advices by advancing orders from

peak to non-peak days. One important reason for doing so is to incorporate in-store handling

costs, which were not considered in their standard inventory replenishment systems. Several

other authors, not necessarily with a specific focus on inventory policy formulations, also

emphasize the importance of handling and labor in retail operations (see e.g. Fisher et al.

(2006), Fisher (2009), Randall et al. (2006), Roumiantsev and Netessine (2007)).

In this paper, we show that ignoring handling costs leads to serious cost increases. We

show that depending upon the specific product (category), significant gains can be realized by

considering handling costs in the objective function. These gains are especially pronounced

for slow to medium moving products. Based on the dataset used in Curşeu et al. (2009), we

find that around 25− 30% of the SKUs match these specifications, showing the potential for

using an inventory policy including handling costs. We also compare the optimal policy with

the best (s, S, nq) and (s,Q, nq) policies 1 both with handling and without handling in the

1The (s, S, nq) policy’s advice is as follows: whenever the inventory level at a review period is less than or
equal to s, order the largest integer multiple n of q which results in an inventory position less than or equal
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objective function. Interestingly, a large part of the potential gains of considering handling

can also be used when utilizing the best (s, S, nq) policy but with a complete objective

function (including handling).

Our paper makes a number of contributions to the existing literature. First, we study a

stochastic lost sales system that combines important features as seen in practice: fixed batch

sizes and inventory handling costs. We formulate the problem as a Markov decision process

and explore the structure of the optimal policies. We formulate a number of propositions

based on the observed structures. Secondly, we base our analysis and inventory models

on the real-life field study as presented in Curşeu et al. (2009). We draw upon this field

study to demonstrate the importance of considering merchandize handling. The field study

also provides us with realistic numbers to incorporate in our numerical analysis. Last, we

numerically illustrate the impact of handling cost components on the optimal policy and the

associated long-run average cost. We investigate the impact of inventory handling costs on

the structure of the optimal policies and the corresponding long-run average cost. Finally,

we analyze the added value of including the handling costs into decision making.

The remainder of this paper is organized as follows. The next section gives a brief review

of related literature. Section 2 gives a detailed discussion for the handling costs function used

in this paper. A literature review on the relevant references within inventory management is

given in Section 3. Section 4 formally introduces the problem and formulates the model using

a Markov decision process. The optimal policy is illustrated in Section 5.1. Specifically, we

illustrate the complexity of the optimal policies and identify some structural properties in

Section 5.2. In Section 5.3, we investigate the added value of handling costs and compare our

optimal policy to two policies well-known in the literature (and often employed in practice).

Section 6 discusses the results for the real-life data obtained in Curşeu et al. (2009). Finally,

we present our conclusions.

to S. For the (s,Q, nq) policy, one orders always Q if the inventory level at a review period is less than or
equal to s; Q is constrained to be an integer multiple n of q.
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2 In-store handling costs

Curşeu et al. (2009) estimated the handling time per Stock Keeping Unit (SKU) required to

execute the shelf-stacking operation depending on the number of batches and the number of

consumer units stacked. The authors estimated the Total Stacking Time per SKU (TST ),

based on a reduced set of underlying factors, given a specific inventory replenishment rule,

assortment, shelf space and package.

Two grocery retail chains (denoted as A and B) agreed to participate in this study.

Empirical data on the stacking process was collected using a motion and time study approach.

Data from chain A are used to test the hypotheses, and data from chain B are used to validate

the results. In four stores, (two for each supermarket chain) employees familiar with the

operations, were videotaped during the shelf stacking process. The product subgroups were

selected such that they: (1) contain both fast- and slow movers; (2) contain different case

pack sizes; (3) contain SKUs for which sufficient shelf space is available to accommodate

more than one case pack in a delivery; (4) contain items that are comparable in terms of

the handling process and productivity. Finally, we note that the data collection period did

not include days with peak or dropping demand, and the stores were consistent in their

operations. The stacking of items on the shelves is observed and recorded for each SKU.

Afterwards, the execution time of each individual sub-activity and the Total Stacking Time

per order line (TST ) was registered using a computerized time registration tool, and results

were entered into a database. Additional information necessary to identify the stacking

process for each SKU was added as well, such as the SKU type, the number of case packs

and case pack size per order line or the product category each SKU belongs to.

The final dataset contained 1048 observations, for chain A, across nine different product

categories. The authors adopted two strategies for estimating the TST per order line and

evaluating the relative impact of each factor identified (sequential vs. overall regression).

The two approaches served two different practical purposes. On one hand, the sequential

approach, allows one for a better insight into the details of the shelf-stacking process, iden-

5



tifying those sub-activities that are mostly affected by the number of items being handled

(case packs and number of consumer units), and those for which the variation in workload

is potentially affected by other factors. At the same time, the approach indicates which

sub-activities contribute mostly to the total variation in the stacking time of a new order

line. Using the overall regression strategy, the authors found enough support to conclude

that a simple prediction model, depending only on the number of case packs and the number

of consumer units, offers already a reliable estimate of the TST . Results from testing and

validation show that the model is stable and it explains the TST to a large extent. Although

the influence of case packs and number of consumer units on the shelf-stacking process may

be implicitly recognized, it was demonstrated that both variables are relevant predictors for

TST . For more details on this study, the reader is refered to Curşeu et al. (2009).

Based on the collected data, a predictive model is developed that allows estimating the

total stacking time. The model is tested and validated using the collected real-life data and

allows for evaluating the workload required for the shelf-stacking operations. The analysis

lead to a general handling cost structure in which each replenishment is associated with costs

of the following structure

c(nq) = δ(nq)K +K1n+K2nq

where q is the fixed batch size, order quantities nq are nonnegative integers multiple of

these q consumer units, K is the fixed cost incurred for each order, K1 is the variable

cost per batch, K2 is the variable unit handling cost, and δ(a) is a function with a value

equaling one if a is strictly positive, and zero otherwise. Table 1 gives the observed sales

characteristics (i.e. the average, minimum and maximum weekly demand) of the Chain A

product categories used in Curşeu et al. (2009). The table also gives details for the rounded

handling coefficients as estimated through the regression analysis. Ignoring the specific

product category, i.e. for an arbitrary product, the parameters are estimated in Curşeu et

al. (2009) to be K = 10, K1 = 20, K2 = 1. Note that since Curşeu et al. (2009) only were

able to statistically significantly capture the effect of the product group on the fixed cost
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K, the variable costs (K1 and K2) are independent of the product category. Table 1 clearly

shows the large spread in characteristics of the different product categories. Note that this is

observed sales and not necessarily equal to actual demand as lost sales might have occurred

(see also Huh et al., 2009b).

Table 1: Characteristics of the product categories used in Curşeu et al. (2009)
# of Weekly observed sales Casepacksize Handling

Category products Avg. Min. Max. Avg. Min. Max. K K1 K2

Arbitrary product 1048 17.11 0.17 491.46 12 1 36 10 20 1
Baby food 31 5.91 0.51 29.31 10 3 16 18 20 1
Chocolate 168 13.66 2.10 64.22 17 6 33 10 20 1
Coffee 163 18.81 0.77 491.46 12 1 30 21 20 1
Coffee milk 56 42.20 1.74 243.24 16 6 30 25 20 1
Candy 248 13.21 2.08 52.34 16 6 36 12 20 1
Sugar 18 23.86 1.31 226.84 10 5 20 14 20 1
Canned Meat 47 17.89 1.35 122.56 13 6 24 16 20 1
Canned Fruit 32 11.47 0.78 47.32 12 8 24 6 20 1
Personal Care 285 4.45 0.17 55.45 8 3 24 4 20 1

In this study, we adapt our cost function to include c(nq). Additionally, we make use of

the data summarised in Table 1 for benchmark computations.

3 Literature Review

We give a brief review of the literature on periodic review lost sales inventory models with

positive lead times and possibly batch (quantized) ordering. The complexity of optimal

policies for lost sales inventory models contrasts with that of classical backorder models,

which are known to have solutions of the (s, S) type, when only fixed ordering cost are

considered. For a lost sales formulation, the optimal control policy will, in general, be

neither of the (s, S) nor of the (s,Q) type, but will depend in a much more complex way on

the physical stock at the time of placing an order.

The classical lost sales problem, originally formulated by Karlin and Scarf (1958), is

known to be far less analytically tractable than the corresponding backorder problem. If

the lead time is positive, the complete structure of the optimal ordering policy is unknown

(Hadley and Within, 1963). In the presence of a positive setup cost, reorder-point polices

of (s, S) type (Wagner, 1962) or (s,Q) type (Johansen and Hill, 2000) are considered in
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a lost sales setting. Hill and Johansen (2006) presents numerical examples for detecting

optimal policy structure; concluding that neither (s, S) nor (s,Q) is optimal and the optimal

structure may look different depending on the inventory level . Chiang (2006, 2007) proposed

a dynamic programming model for periodic-review systems in which a replenishment cycle

consists of a number of small periods (each of identical but arbitrary length) and holding

and shortage costs are charged based on the ending inventory of small periods, rather than

ending inventory of replenishment cycles. Note that the way costs are charged becomes

especially important when the review cycle is considered as a decision variable. Chiang

(2006) considers the case with no fixed ordering cost, whereas Chiang (2007) concentrates

on the case with a fixed ordering cost. Both papers analyze backorder and lost sales inventory

models (under the assumptions of lead times shorter than the replenishment cycle length,

but a multiple of known length of time period). Chiang (2006) provides some properties and

structure, however Chiang (2007) provides mostly computational results. Other interesting

papers are considering a number of structural properties and have different extensions (see

e.g. Huh et al. (2009), Huh et al. (2011), Huh and Janakiraman (2010), Levi et al. (2008),

Zipkin (2008a), Zipkin (2008b)) but are different than our consider environment, as they do

not consider fixed ordering costs and have integer lead times. Li and Yu (2012) describe a

unified lost sales inventory model that takes a number of issues into consideration: capacity

constraints, two-ordering modes and supply capacity constraint. They show that, under

quite general conditions, with few restrictions, the expected profit function is quasi-concave.

The difference is, again, our lead-time structure, as well as we have discrete demand. Further

details and additional issues regarding lost sales systems can be found in the recent review

by Bijvank and Vis (2011).

The incorporation of a batch size that is a multiple of fixed amount is hardly taken

into account in lost sales inventory control models. The above mentioned policies can be

extended to the batch ordering policy variants: (s, S, nq) and (s,Q, nq). Veinott (1965)

points out that (R, nQ) policies are not optimal in general if a fixed cost is taken into
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consideration and he proposes a two parameter policy instead. Zheng and Chen (1992)

provide an efficient heuristic to compute the best R and Q parameters and later on, Hill

(2006) uses this heuristic in the analysis and optimization of an (s, S, q) policy, where s

and S are assumed to be multiples of q. The structure of the optimal policy for lost sales

systems with batch ordering remains an open question (Veinott, 1965; Hill and Johansen,

2006). A recent result of Huh et al. (2009) shows that, when there are no setup costs, the

order-up-to policies are asymptotically optimal as the penalty cost becomes large compared

to the holding cost and the lead time is an integral multiple of the review period length.

Given a fixed batch size q, our specific handling cost structure described in the previous

section can be rewritten as c(nq) = δ(nq)K + kqn, with kq = K1 + K2q. This model can

be motivated as a special case in an inventory control setting in which the order quantities

are not necessarily restricted to multiples of the batch size, and we interpret K as the

fixed administrative cost incurred for each order, and kq as the fixed cost charged per batch

(irrespective of being fully or partially filled). In a recent study, Caliskan-Demirag et al.

(2012) describe and study several variants of stochastic periodic-review inventory systems

with quantity-dependent fixed costs, including batch-dependent fixed costs.

4 The Mathematical Model

We use Markov Decision Processes to model the inventory system and to explore the structure

of the optimal policy. The main notation used throughout this paper is given in Table 2.

We assume the period demand to be a known, nonnegative discrete random variable and

the demand process is i.i.d. stationary. The lead time is fixed and shorter than the review

period length. The review cycle length R is exogenous to the model and set as the time unit.

Figure 1 depicts the sequence of events in each period.

More specifically, at the beginning of each review period, the inventory on-hand Xt is

observed and an order at is placed, which will arrive L time units later (but within the same
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Table 2: Notation used in this paper
R Review period
L Lead time (0 ≤ L ≤ R)
t Period index, t = 0, 1, 2, . . .
Xt Inventory on hand at the beginning of period t = 0, 1, 2, . . .
at Quantity ordered in period t = 0, 1, 2, . . .
DL Demand during lead time (i.e. the demand occurring between the start of

a period and the time the order at is received)
DR−L Demand after the receipt of the orders (and until the end of the period)
DR Total demand during a review period, DR = DL +DR−L
q Fixed (exogenously determined) batch size, q = 1, 2, . . .
K Fixed cost per order
K1 Handling cost per batch
K2 Handling cost per unit
h Holding cost per unit of inventory (charged at the end of the period)
p Penalty cost for each unit of sales lost during a period

(charged at the end of the period)
s Reorder level
IMax Maximum stock level

L R - L L R - L

Xt

Place order at

Xt+1

Place order at+1

DL DR-L DL DR-L

Order

receipt

Order

receipt

Figure 1: Sequence of events

review cycle). The order at is restricted to be a nonnegative integer, multiple of the fixed

batch size q, i.e. at ∈ {0, q, 2q, . . .}. Next, the stochastic demand DL is realized and satisfied

with on-hand inventory (if possible); unsatisfied demand is lost. Then, the order placed

at the beginning of the period arrives and afterwards stochastic demand DR−L continues to

occur, up until the beginning of the next ordering moment. All demand occurring in this time

period not directly satisfied is again assumed to be lost. The random variables DL and DR−L

are stochastically independent. In practice, independency is not necessarily guaranteed, but

this assumption is needed for obtaining a tractable model that can be analyzed.

The decision epoch is the beginning of each review period and the inventory on-hand at

the beginning of a review moment characterizes the system state, with state space SS =

{0, 1, 2, . . .}. At each review moment a decision is made regarding the ordering quantity,

which is limited to the set A(i) = {0, q, 2q, . . .}, for every i ∈ SS. Due to assumption L ≤ R,

the expected transition times from one decision epoch to the next are deterministic and equal

R. The evolution of on-hand inventory from one decision epoch to the next is given by the

10



following recursive relation:

Xt+1 = ((Xt −DL)+ + at −DR−L)+, t = 0, 1, 2, . . . ,

where (x)+ = max{0, x} for any x ∈ R.

The probability pij(ai) of a transition from state i at one decision epoch to state j at the

next epoch, given decision ai at the first decision epoch is defined as:

pij(ai) = P
(
j = ((i−DL)+ + ai −DR−L)+

)
, i, j = 0, 1, . . . , ai = 0, q, 2q, . . . ,

and is given by:

pi0(0) = P(DR ≥ i), i = 1, 2, . . . ,

pij(0) = P(DR = i− j), i = 0, 1, . . . , j = 1, 2, . . . , i,

p00(0) = 1,

when there is no order, and when the order amounts to ai = niq > 0 by:

pi0(ai) =
i−1∑
k=0

P(DL = k)P(DR−L ≥ i+ ai − k) + P(DL ≥ i)P(DR−L ≥ ai), i = 1, 2, . . . ,

pij(ai) =
i−1∑
k=0

P(DL = k)P(DR−L = i+ ai − j − k) + P(DL ≥ i)P(DR−L = ai − j), i = 1, 2, . . . ,

j = 1, 2, . . . , ai,

pij(ai) =

i+ai−j∑
k=0

P(DL = k)P(DR−L = i+ ai − j − k), i = 1, 2, . . . , j = ai + 1, . . . , ai + i,

p00(a0) = P(DR−L ≥ a0),

p0j(a0) = P(DR−L = a0 − j), j = 1, 2, . . . , a0,

pij(ai) = 0, otherwise.

The total expected cost from one decision epoch to the next (i.e., the one-period transition
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cost), given that we are in state i and order ai = niq, is defined as:

ci(ai) = cri (ai) + chi (ai) + cpi (ai), ai ∈ A(i), i ∈ SS, (1)

where the expected replenishment cost cri and the expected holding chi and penalty costs cpi

are given by:

cri (0) = 0,

cri (ai) = K +K1ai/q +K2ai ai = niq > 0 (2)

and

chi (0) + cpi (0) = hE
[
(i−DR)+

]
+ pE

[
(i−DR)−

]
,

chi (ai) + cpi (ai) = hE
[
((i−DL)+ + ai −DR−L)+

]
+p
{
E
[
(DL − i)+

]
+ E

[
(DR−L − ai − (i−DL)+)+

]}
= h

{
i−1∑
k=0

P(DL = k)E
[
(i− k + ai −DR−L)+

]
+ P(DL ≥ i)E

[
(ai −DR−L)+

]}

+p

{
E
[
(DL − i)+

]
+

i−1∑
k=0

P(DL = k)E
[
(DR−L − ai − i+ k)+

]}
+pP(DL ≥ i)E

[
(DR−L − ai)+

]
,

for ai > 0, respectively, where (x)− = max{0,−x} = −min{0, x} for any x ∈ R.

From (1) and (2), we derive the total one-period transition cost as follows:

ci(0) = hE
[
(i−DR)+

]
+ pE

[
(i−DR)−

]
,

ci(ai) = K +K1ai/q +K2ai

+hE
[
((i−DL)+ + ai −DR−L)+

]
+p
{
E
[
(DL − i)+

]
+ E

[
(DR−L − ai − (i−DL)+)+

]}
, ai = niq > 0. (3)
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We aim to determine the inventory policy U∗, solving the following optimization problem:

min
U

C(U) =
1

R

∑
i∈SS

πici(ai)
R=1
=
∑
i∈SS

πici(ai),

where C(U) denotes the long-run expected average cost under policy U , and (πi)i∈SS repre-

sents the steady-state distribution of the inventory on hand (provided it exists).

Note that C(U) is generally a very complex function of U and the steady-state distribution

may not be determined in closed form. For the exact conditions that guarantee the existence

of an average-cost optimal policy see, e.g., Puterman (1994), or Cavazos-Catena and Senott

(1992). If an optimal policy exists, then there exist relative values (vi)i∈SS and the long-run

average cost g, such that they satisfy the average-cost optimality equations:

vi = min
a∈A(i)

{ci(a)− g +
∑
j∈SS

pij(a)vj}, i ∈ SS. (4)

Unique relative values (vi)i∈SS are obtained if we provide an initial condition, such as v0 = 0.

In order to solve the optimality equations and determine an optimal policy, it is common to

use an algorithm such as policy iteration or value iteration (Puterman, 1994).

5 Structure of the optimal policy

For the lost-sales problem introduced in Section 4, there is no apparent analytic solution of

a simple form. To calculate the optimal stationary policy under the long-run average cost

criterion, we numerically solved the average cost optimality equations of the inventory system

using the standard relative value iteration algorithm with ε = 10−12 (see, e.g., Puterman,

1994 or Bertsekas, 1995). The state space was truncated to a size sufficiently large to ensure

finding a global optimum. The computational time increases with the state space size due

to the generation of all needed transition probabilities. In our numerical computations,

the state space is truncated to a size sufficiently large to ensure we find a global optimum.
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The state space size increases with the mean demand per period. The truncated state

space is determined by testing larger and larger sizes until the results are insensitive to the

increments. We observed that the computational time increases with the state space, which

indicates the size of the system of equations to be solved in the policy evaluation step. The

most time consuming part is the generation of transition probabilities in each step. For any

given policy, we evaluate numerically the long run average cost by solving the average-cost

optimality equations. The best policy within a given policy class is determined by exhaustive

search over its defining parameters.

We first illustrate the structure of the optimal policy, then we develop some structural

insights based on the optimal policy.

5.1 Illustrations of the optimal policy

As an illustration, Figure 2 depicts the optimal policies for three different lead times L (right

side) and the effect of the batch sizes, q = 1 vs. q = 6 vs. q = 12(left side). The top row in

Figure 2 assumes λ = 20, h = 1, p = 50, K = 10, K1 = 20, K2 = 1, q = 1, L = 0.5 in the base

case. The bottom row in Figure 2 assumes λ = 10, h = 1, p = 50, K = 10, K1 = 20, K2 =

1, q = 1, L = 0.5 in the base case.

Generally, when q > 1, the optimal order quantity is a stepwise decreasing function of

on-hand inventory, and the step size equals q. Note that the structure of the optimal solution

differs from an (s, S, nq) policy, as for this policy, for low levels of inventory on-hand, the

advice is to still order the same quantity, multiple of q. The optimal order quantity as a

function of on-hand inventory exhibits no clear structure. It is observed that there exists

a reorder point (s = max{i ∈ SS|ai > 0}) below which it is always optimal to place an

order and beyond which it is never optimal to order. Thus, s plays the role of a reorder

level in a general inventory policy. A similar observation was made by Hill and Johansen

(2006), both for a continuous review setting, as well as periodic review setting for the lost

sales system without handling costs. Moreover, as illustrated in Figure 2 bottom row, we
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Figure 2: Optimal order quantity as a function of inventory on-hand

find similar peculiar non-monotonic behavior of our policy as observed earlier by Hill and

Johansen (2006) and Jansen (1998). A complete and detailed sensitivity analysis for a broad

set of parameter values can be found in Appendix A.

5.2 Structural insights from the optimal policy

Observe from Figure 2 that the advice is either to order a fixed amount Q (and thus act

like an (s,Q) policy), for low levels of stock on-hand; or, for high levels of inventory, order

enough to reach a target stock level S (and act like an (s, S) policy). Outside these regions

however, the optimal policy structure remains unclear. This observation also suggests that a

policy combining the logic of both (s,Q) and (s, S) policies might perform close to optimal.

The proposed policy is a structured way of taking into consideration the observations made

earlier in this paper, as well as Hill and Johansen (2006) and Chiang (2007). Both Hill

and Johansen (2006) and Chiang (2007) computationally came up with similar structures.

However the environment we consider has handling cost compared to both papers.
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Note that there is sufficient complexity to the periodic cost function for making a proof

of the optimal policy structure for the entire state space analytically challenging. However,

based on the numerical insights for the optimal policy, we present next three propositions.

Proposition C.1 discusses an upper threshold for the state variable, i.e. an inventory level

above which we will never order. Proposition C.2 discusses the instances where we never

order at all. Lastly, Proposition C.3 presents a sufficient condition that gives the existence

of a lower threshold for the state variable, i.e. an inventory level below which we will always

order. The proofs for the different propositions are given in Appendix C. Note that these

results can be utilised to have a more efficient search procedure for the optimal solution of

an instance.

Proposition 5.1. There exists a state iu such that for i ≥ iu the optimal decision is not to

order.

Proposition 5.2. There exists a set of parameter values for which we would not operate the

lost sales inventory system under consideration, i.e. we will never order.

Next, we identify a condition that guarantees a threshold value for the initial inventory

level below which it is always optimal to order.

Proposition 5.3. If

(h+ p)E[DR] ≥ K +K1a
NV
R−L/q +K2a

NV
R−L + hE

[
(aNV

R−L −DR−L)+
]

+ pE
[
(DR−L − aNV

R−L)+
]

+ pE [DL] + hE [DR] .

is satisfied, then there exists a state i for which it is optimal to order. Here aNV
R−L is the

optimal order-up-to-level for a news vendor problem with Poisson demand over R − L time

units.
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5.3 Ignoring retail handling costs in the optimal policy

Retail handling costs, although acknowledged in practice, are not taken into account when

making inventory replenishment decisions. We study the extra costs of using a suboptimal

policy (i.e. ignoring the handling costs). We first compute the optimal policy and its optimal

average cost under the assumption of no handling costs. Then, we evaluate this policy with

the lost sales model considering handling costs to obtain the corresponding average cost.

Finally, we compare the results against the true optimal cost, associated to the optimal

policy determined while taking the handling costs into account. The percentage difference

in costs for not explicitly considering handling, ξ, is calculated as follows.

ξ = 100×
C(K,K1,K2)(U(0,0,0))− C∗(K,K1,K2)

C∗(K,K1,K2) − (K1/q +K2) · λ
(5)

where U(0,0,0) denotes the optimal policy assuming no handling costs (K = K1 = K2 = 0),

C(K,K1,K2)(U) is the average cost of the original model with cost components K,K1 and K2

corresponding to policy U , and C∗(K,K1,K2) represents the true minimum average cost, which

is re-scaled to better reflect policy-related costs. Table 3 gives the average error averaged

over different q values (q ∈ {1, 3, 6, 9, 12}).

Table 3: Cost of ignoring handling ξ
L = 0.25
K λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20 Average
5 1.15% 4.80% 1.81% 0.37% 0.28% 0.36% 1.46%
10 1.72% 10.42% 8.22% 1.14% 0.42% 0.36% 3.71%
15 3.62% 16.70% 15.45% 7.66% 1.26% 0.41% 7.51%
20 5.21% 22.12% 22.50% 14.11% 6.51% 1.07% 11.92%
25 6.57% 27.18% 29.54% 20.28% 12.40% 5.35% 16.89%

L = 0.33
K λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20 Average
5 1.19% 4.56% 1.77% 0.36% 0.47% 0.42% 1.46%
10 1.77% 10.30% 7.89% 1.16% 0.56% 0.41% 3.68%
15 3.64% 16.17% 14.81% 7.46% 1.35% 0.45% 7.31%
20 5.21% 21.58% 21.91% 13.69% 6.54% 1.11% 11.67%
25 6.56% 26.53% 29.05% 19.76% 12.19% 5.28% 16.56%

L = 0.50
K λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20 Average
5 1.26% 4.01% 1.90% 0.45% 0.39% 0.38% 1.40%
10 1.88% 10.26% 7.69% 1.31% 0.50% 0.38% 3.67%
15 3.69% 15.91% 14.21% 7.23% 1.28% 0.43% 7.12%
20 5.22% 20.98% 21.01% 13.12% 6.20% 1.07% 11.27%
25 6.53% 25.84% 27.90% 18.93% 11.49% 5.05% 15.95%

Average 3.68% 15.82% 15.04% 8.47% 4.12% 1.50% 8.11%

Note: h = 1, K1 = 20, K2 = 1, p = 50

The results in Table 3 show that the cost impact of ignoring the handling costs may

be significant. Two effects are pronounced. First, for slow to medium moving products
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(i.e. λ ∈ {1, 5, 10}), the error made is high. Fast movers and extreme slow movers are

less affected by ignoring the handling aspects in the inventory policy. Secondly, increasing

K values lead to a larger error. Intuitively, the fixed ordering cost, K, affects the total

costs more substantially when ignored. From a broad retail assortment point of view, many

products in the categories referred to in Table 1 are affected by this significant cost of ignoring

the handling operations in the inventory ordering process.

6 Detailed results for the data from Curşeu et al. (2009)

In this section, we return to the dataset available from Curşeu et al. (2009). For the

different product categories presented in Table 1, we generated the optimal policy for the

average demand λ and the average casepack size q. The results are reported in Table 4.

Next to characterizing the optimal policy, we give the percentage error made if a retailer

would use the best (s, S, nq) or (s,Q, nq) policy including handling in the cost function.

Additionally, we also show in the last two columns the same two policies but excluding

the handling component in the cost function when identifying the best policy. The policy

obtained as such (i.e. excluding handling costs) is then evaluated in the full objective function

(including handling). Finally, note that this table does not represent a complete parametric

design (which is available in Appendix D).

Based on the results presented in Table 4, we make the following observations:

• In a number of cases, extending the objective function with a handling cost component

for the (s, S, nq) or (s,Q, nq) policy leads to errors less than 1%. This is an important

observation, since using an extended standard policy is more straightforward from a

practice point of view. In this case, retailers can use the same inventory logic but

only need to adapt their cost functions used, which is a small effort compared to

implementing a completely new policy.

• There are product categories where ignoring handling has a large effect on the costs.
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Table 4: Optimal policy for the product categories as reported in Curşeu et al. (2009)
Optimal Policy Handling No handling

λ q K L s Imax C∗ (s, S, nq) (s,Q, nq) (s, S, nq) (s,Q, nq)
Arbitrary product 17.11 12 10 0.5 30 44 78.4119 0.20% 12.53% 0.64% 12.53%

0.33 27 41 74.9735 0.19% 5.45% 0.39% 5.45%
0.25 25 39 73.2901 0.20% 6.12% 0.69% 6.12%

Baby food 5.91 10 18 0.5 11 29 39.7233 0.00% 0.81% 6.15% 6.46%
0.33 10 28 38.4331 0.00% 0.64% 6.67% 7.01%
0.25 9 27 37.7752 0.00% 0.84% 6.56% 6.92%

Chocolate 13.66 17 10 0.5 25 43 59.8172 0.00% 0.39% 0.04% 0.39%
0.33 22 41 57.0048 0.00% 0.67% 0.06% 0.67%
0.25 21 40 55.7162 0.00% 0.77% 0.06% 0.77%

Coffee 18.81 12 21 0.5 31 59 94.5068 0.00% 1.96% 3.11% 2.04%
0.33 27 56 90.5513 0.00% 2.76% 3.72% 2.76%
0.25 26 54 88.7614 0.00% 2.99% 3.87% 2.99%

Coffee milk 42.20 16 25 0.5 69 89 163.4191 0.00% 11.67% 0.01% 11.67%
0.33 62 81 155.3126 0.00% 27.88% 0.00% 27.88%
0.25 58 78 151.4613 0.00% 19.53% 0.00% 19.53%

Candy 13.21 16 12 0.5 23 42 53.3841 0.00% 0.70% 0.23% 0.70%
0.33 21 39 54.5734 0.00% 0.55% 0.14% 0.55%
0.25 20 38 53.3841 0.00% 0.70% 0.23% 0.70%

Sugar 23.86 10 14 0.5 40 52 113.7879 0.13% 19.73% 0.14% 19.73%
0.33 35 48 109.068 0.03% 26.65% 0.03% 26.65%
0.25 33 46 106.8054 0.00% 17.39% 0.01% 17.39%

Canned Meat 17.89 13 16 0.5 31 58 85.2725 0.12% 0.62% 0.83% 0.62%
0.33 27 55 81.636 0.11% 0.91% 0.88% 1.03%
0.25 26 53 79.9394 0.10% 0.95% 0.84% 0.95%

Canned Fruit 11.47 12 6 0.5 21 34 54.5348 0.00% 9.77% 0.22% 18.74%
0.33 18 31 52.0773 0.00% 11.14% 0.69% 22.76%
0.25 17 30 50.9219 0.00% 11.91% 0.46% 11.91%

Personal Care 4.45 8 4 0.5 8 16 28.3628 0.08% 0.00% 0.08% 0.00%
0.33 7 15 27.3204 0.08% 0.00% 0.08% 0.00%
0.25 7 15 26.8417 0.08% 0.00% 0.08% 0.00%

Note: h = 1, K1 = 20, K2 = 1, p = 50. Percentage errors computed based on the normalized costs

A detailed analysis of the different scenarios (the full table is given in Appendix D)

reveals that settings where λ ∈ {10, 15}, L ∈ {0.33, 0.50}, K ∈ {5, 10}, p ∈ {10, 25}

and q ∈ {1, 6, 12} gives improvements of over 1% when comparing the optimal policy

with the best (s, S, nq) policy.

• It is clear that the (s,Q, nq) policy may lead to a significant optimality gap, even when

explicitly considering the handling costs in the policy. Interestingly, the (s, S, nq) policy

performs remarkably well with a maximum optimality gap of less than 1% (considering

handling in the cost function).

• The results show that for a significant part of the retail assortment, especially the slow

to medium moving products, significant costs reductions can be expected. Note that a

1% cost reduction directly translates into important higher margins, which are already

very slim.

We observed in our experiments (Appendix D) that the cost C(s,Q, S) is relatively

flat around the optimal s and Q values, respectively and more sensitive to changes in S.

Similar to Hill and Johansen (2006), we observe the occurrence of local minima in the cost
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function. In view of these numerical results, we may expect that the (s, S, nq) policies

are also asymptotically optimal (see also Huh et al., 2009), as p gets large and K > 0.

Regarding the solution space, we observed that, in nearly all cases, the order-up-to levels

and the reorder points are nearly identical for both the optimal policy and the (s, S, nq)

policies (the occasional differences are small). Apparently, the average cost C(s,Q, S) is less

sensitive to changes in the values of parameter Q. These insights could be exploited in the

derivation of easily computable policy parameters, which is left for future research.

7 Conclusions and Future Research

We studied a single-location, single-item periodic-review lost-sales inventory control problem

with the following features: there are stochastic customer demands, lead time is less than the

review period length, there is a fixed (predetermined) batch size for ordering and orders are

restricted to integers multiples of the batch size. Furthermore, we assume a replenishment

cost structure that includes a fixed cost, as well as linear components depending on the

number of batches, and the number of units in a replenishment order. Our motivation

and data comes from the retail environment, but the analysis is appropriate for systems

in which there is a fixed unit-size and there are economies of scale in the replenishment

component. Using Markov decision processes, we explore the structure of the optimal policies

and investigate, in particular, the impact of handling costs on the optimal policy and the

long-run average cost.

Our results show that it is worthwhile to explicitly take handling costs into account when

making inventory decisions. We have used parameter values that are typical for grocery retail

environments, where decision models typically abstain from including these costs. Using an

(s, S, nq) policy rather than the often used in practice (s,Q, nq) policy seems from a cost

perspective more plausible. A detailed ABC analysis of the product portfolio is important

in using the obtained results. The results showed that for a significant part of the retail
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assortment, especially the slow to medium moving products, higher reductions are expected.

Moreover, a 1% cost reduction directly translates into important higher margins.

Future research could involve a number of directions. In many contexts there is also

consideration of a minimum stock presentation, i.e., retailers do not want the stock on the

shelf to go below some positive number of units, e.g. because of its marketing impact on the

visual impression given to customers. The incorporation of this minimum stock level is an

interesting path for future research.
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A Sensitivity Analysis

We discuss the sensitivity of the optimal policy and its associated average cost to the relevant

system parameters. In the absence of simple-structured policies, it is difficult to evaluate

the impact of changes in the problem parameters on the optimal solution. Therefore, we

use the reorder point (s = max{i ∈ SS|ai > 0}) and the maximum stock level (Imax =

max{i+ ai|0 ≤ i ≤ s}) as main operational indicators.

Sensitivity on λ, L,K and q

Table 5 provides a representative set of our results, where p = 50, L ∈ {0.25, 0.33, 0.5}, λ ∈

{0.1, 1, 5, 15, 25, 50}, K ∈ {5, 10, 15, 20, 25}, q ∈ {1, 3, 6, 12, 18, 36}.

Clearly, the results in Table 5 are in agreement with expectations. We observe that the

batch size q mostly affects Imax, which increases, in general, as q increases (other parameters

being equal). Numerical results suggest that, in general, s increases with L, and Imax also

increase with L and q (and there is little interaction between L and q). Additionally, s

decreases with K, while Imax increases with K and q. Furthermore, regarding the sensitivity

of the average cost to changes in problem parameters, our numerical studies suggest that

the optimal long-run average cost is increasing in L and K(all other things being equal).

Note that similar monotonic results (w.r.t. L) of the average cost (as well as the infinite

horizon discounted costs) are claimed by Zipkin (2008) for the lost sales model with lead

times which are integers multiple of the review period length. Note that previous research

(Janakiraman and Muckstadt, 2004) shows that linear purchase costs (K2) can be assumed

to be zero without loss of generality, for general distribution and assembly systems with lost

sales and/or backorders, when lead times are integers. Janakiraman and Muckstadt (2001)

extend the result to a lost sales model with lead times which are a fraction of the review

period length (see Lemma B.1 in Appendix B). The result states that the finite horizon,

discounted cost problem with no setup cost and a positive unit purchasing cost can be
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Table 5: Sensitivity analysis on L, λ,K, q
L = 0.25

λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
K q s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗

5 1 0 1 3.68 2 5 26.12 8 13 116.8 15 19 225.86 23 27 333.87 30 34 441.62
6 0 6 4.02 2 8 10.15 9 17 34.2 16 24 60.61 24 31 85.42 31 39 109.91

12 - - 4.98 1 13 10.62 8 20 26.4 16 29 44.90 23 36 61.95 30 43 78.17
18 - - 4.98 1 19 12.63 8 26 25.5 15 33 40.48 23 41 55.03 30 48 68.95
36 - - 4.98 0 36 20.56 6 42 30.0 14 50 41.25 21 57 52.20 28 64 63.15

10 1 0 2 4.11 1 6 27.30 7 16 119.3 14 20 230.79 22 27 338.87 29 34 446.62
6 0 6 4.10 2 8 10.98 8 20 36.8 15 30 65.09 23 31 90.40 30 39 114.91

12 - - 4.98 1 13 11.03 8 20 28.5 15 30 48.69 22 36 66.65 29 43 83.14
18 - - 4.98 1 19 12.91 8 26 26.9 15 33 43.25 22 42 58.97 29 49 73.58
36 - - 4.98 0 36 20.69 6 42 30.7 14 50 42.63 21 57 54.27 28 64 65.92

15 1 0 2 4.35 1 7 28.10 7 18 121.3 14 29 233.43 21 27 343.85 28 34 451.62
6 0 6 4.18 2 8 11.80 8 22 38.7 15 32 67.83 22 43 95.26 29 39 119.91

12 - - 4.98 1 13 11.44 8 24 30.6 15 36 51.66 22 46 70.91 29 55 88.08
18 - - 4.98 1 19 13.18 8 26 28.2 15 33 46.01 22 44 62.80 29 49 78.18
36 - - 4.98 0 36 20.83 6 42 31.4 14 50 44.02 21 57 56.35 28 64 68.69

20 1 0 2 4.58 1 8 28.83 7 20 123.0 14 30 235.88 20 41 346.89 27 34 456.62
6 0 6 4.26 2 8 12.62 8 23 40.5 15 34 70.23 22 45 98.18 28 39 124.90

12 - - 4.98 1 13 11.85 8 27 32.5 15 38 54.00 22 48 73.65 28 57 92.02
18 - - 4.98 1 19 13.46 8 26 29.6 15 41 48.69 22 51 66.11 28 61 82.39
36 - - 4.98 0 36 20.97 6 42 32.1 14 50 45.40 21 57 58.43 28 64 71.46

25 1 0 2 4.82 1 8 29.48 7 22 124.5 13 31 238.18 20 42 349.43 27 54 459.97
6 0 6 4.34 2 8 13.45 7 25 42.0 15 35 72.52 21 45 100.73 28 57 128.07

12 - - 4.98 1 13 12.25 8 28 34.2 15 39 56.09 21 49 76.20 28 59 95.29
18 - - 4.98 1 19 13.73 8 26 31.0 15 43 50.99 21 54 68.59 28 64 85.12
36 - - 4.98 0 36 21.10 6 42 32.8 14 50 46.79 21 57 60.50 28 64 74.23

L = 0.33
λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20

K q s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗

5 1 0 1 3.70 2 5 26.24 8 14 117.36 16 20 226.87 24 28 335.35 32 36 443.52
6 0 6 4.02 2 8 10.27 9 17 34.69 17 25 61.64 25 32 86.95 33 40 111.84

12 - - 4.98 1 13 10.80 9 21 27.01 17 30 45.91 24 37 63.45 32 45 80.07
18 - - 4.98 1 19 12.76 8 26 25.95 16 34 41.48 24 42 56.42 31 50 70.84
36 - - 4.98 0 36 20.70 7 43 30.49 15 51 42.23 22 58 53.62 30 66 65.02

10 1 0 2 4.12 2 6 27.41 8 17 119.81 15 28 231.79 23 28 340.35 30 36 448.52
6 0 6 4.11 2 8 11.09 9 20 37.34 16 31 66.11 24 33 91.93 32 40 116.84

12 - - 4.98 1 13 11.20 9 21 29.08 16 31 49.69 24 38 68.12 31 45 85.03
18 - - 4.98 1 19 13.03 8 26 27.33 16 34 44.25 24 43 60.41 31 51 75.49
36 - - 4.98 0 36 20.83 7 43 31.18 15 51 43.62 22 58 55.70 30 66 67.79

15 1 0 2 4.36 1 7 28.28 8 19 121.84 15 30 234.41 22 28 345.34 29 36 453.52
6 0 6 4.19 2 8 11.91 8 22 39.27 16 33 68.83 23 45 96.73 31 40 121.83

12 - - 4.98 1 13 11.61 9 25 31.15 16 37 52.66 23 47 72.35 31 57 89.97
18 - - 4.98 1 19 13.31 8 26 28.71 16 34 47.01 23 45 64.28 30 51 80.08
36 - - 4.98 0 36 20.97 7 43 31.87 15 51 45.00 22 58 57.77 30 66 70.56

20 1 0 2 4.59 1 8 28.98 7 21 123.56 15 31 236.86 22 43 348.31 29 36 458.51
6 0 6 4.27 2 8 12.73 8 24 40.98 16 35 71.24 23 46 99.61 30 40 126.83

12 - - 4.98 1 13 12.02 8 27 33.08 16 39 55.00 23 49 75.07 30 59 93.91
18 - - 4.98 1 19 13.58 8 26 30.09 16 42 49.69 23 53 67.53 30 63 84.26
36 - - 4.98 0 36 21.11 7 43 32.56 15 51 46.39 22 58 59.85 30 66 73.33

25 1 0 2 4.82 1 9 29.63 7 22 125.04 14 32 239.13 21 43 350.84 28 55 461.80
6 0 6 4.35 2 8 13.56 8 25 42.50 15 36 73.50 23 47 102.17 30 59 129.94

12 - - 4.98 1 13 12.42 8 29 34.67 15 40 57.06 23 51 77.62 30 61 97.17
18 - - 4.98 1 19 13.85 8 26 31.47 16 44 52.00 23 55 70.02 30 66 87.00
36 - - 4.98 0 36 21.24 7 43 33.25 15 51 47.77 22 58 61.92 30 66 76.10

L = 0.50
λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20

K q s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗

5 1 0 1 3.73 2 6 26.55 10 15 118.50 18 22 229.01 27 31 338.44 35 40 447.53
6 0 6 4.04 2 8 10.56 10 18 35.89 19 27 63.79 28 36 90.08 37 44 115.91

12 - - 4.98 2 14 11.09 10 22 28.16 19 31 48.03 27 40 66.57 36 49 84.08
18 - - 4.98 1 19 13.06 9 27 27.08 18 36 43.60 27 45 59.43 35 54 74.85
36 - - 4.98 1 37 20.89 8 44 31.57 17 53 44.30 25 61 56.62 34 70 68.99

10 1 0 2 4.14 2 7 27.63 9 18 120.93 17 30 233.86 26 31 343.43 34 40 452.53
6 0 6 4.12 2 8 11.38 10 21 38.48 18 34 68.26 27 36 95.05 36 44 120.91

12 - - 4.98 2 14 11.50 10 22 30.23 18 33 51.84 27 41 71.23 35 49 89.04
18 - - 4.98 1 19 13.33 9 27 28.46 18 36 46.36 27 46 63.46 35 55 79.52
36 - - 4.98 1 37 21.02 8 44 32.26 17 53 45.68 25 61 58.70 34 70 71.76

15 1 0 2 4.38 2 8 28.53 9 20 122.94 17 32 236.48 25 31 348.42 33 40 457.53
6 0 6 4.20 2 8 12.20 10 23 40.44 18 35 70.95 26 48 99.82 35 44 125.91

12 - - 4.98 2 14 11.91 10 26 32.29 18 39 54.78 26 50 75.42 34 61 93.97
18 - - 4.98 1 19 13.60 9 27 29.84 18 36 49.13 26 48 67.32 34 55 84.08
36 - - 4.98 1 37 21.16 8 44 32.95 17 53 47.07 25 61 60.77 34 70 74.53

20 1 0 2 4.61 2 8 29.30 8 22 124.66 17 33 238.92 25 46 351.31 32 40 462.53
6 0 6 4.29 2 8 13.02 9 25 42.12 18 37 73.34 26 49 102.66 34 44 130.90

12 - - 4.98 2 14 12.32 10 28 34.23 18 41 57.10 26 52 78.12 34 63 97.91
18 - - 4.98 1 19 13.87 9 27 31.22 18 44 51.80 26 56 70.56 34 67 88.24
36 - - 4.98 1 37 21.30 8 44 33.64 17 53 48.45 25 61 62.85 34 70 77.30

25 1 0 2 4.84 1 9 29.97 8 23 126.14 16 34 241.17 24 46 353.81 32 59 465.68
6 0 6 4.37 2 8 13.83 9 26 43.63 17 38 75.59 26 50 105.21 34 63 133.92

12 - - 4.98 2 14 12.74 9 30 35.81 17 42 59.15 26 54 80.66 34 65 101.15
18 - - 4.98 1 19 14.15 9 27 32.60 18 46 54.10 26 58 73.05 33 70 90.95
36 - - 4.98 1 37 21.44 8 44 34.33 17 53 49.83 25 61 64.92 34 70 80.07

Note: h = 1, K1 = 20, K2 = 1, p = 50; s = Imax = − refers to a do-not-order-policy with an average cost equal to p · λ.
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transformed into a finite horizon problem with zero unit purchase cost. We deduce that for

any value of q, the optimal policy for a problem with parameters (K1, K2, h, p, q) and K = 0

is the same as the optimal policy for a problem with parameters (0, 0, h, p−K1/q −K2, q),

and on the long-run, the average cost difference between the former and the latter model is

given by (K1/q+K2)∗λ, a term independent of the policy (see Proposition B.2 in Appendix

B). Therefore, when q is exogenous, the batch (K1) and unit (K2) handling costs can be

assumed to be zero without loss of generality, for determining the optimal policy, provided

the penalty cost transformation p(q) := p−K1/q −K2.

Sensitivity on p, λ and L

In the above scenarios, the penalty cost is quite high (p = 50) compared to the holding

costs, resulting in high service levels. With a very high service level, shortages are rare

events, and the lost sales model could be approximated by a backorder one. Table 6 shows

the performance with regards to different values of the lost sales penalty cost p, together with

λ and L. Clearly, if the penalty is too low (i.e. p = 5) the policy is to not order anything and

take the lost sales costs completely. Higher penalties for very low demand (λ = 0.1) also do

not lead to changes in this policy behavior. On the other hand, for higher levels of demand

(λ ≥ 1) it becomes more efficient from a cost point of view to order positive amounts of

inventory. Remember, that in the previous Table 5, we set p = 50 which resulted in policies

where also positive orders are seen for low values of λ, but only if q is small enough (q ≤ 6).

B On Unit vs. Batch Costs

Lemma B.1. (Janakiraman and Muckstadt 2001, Lemma 1) For all valid sets of cost pa-

rameters (c′;h′; p′) (i.e. (α(p′−h′) ≥ c′ )) there exists another set of cost parameters (0;h; p)
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Table 6: Sensitivity analysis on p
L = 0.25

λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
p s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗

5 - - 0.56 - - 5.00 - - 25.00 - - 50.00 - - 75.00 - - 100.00
15 - - 1.54 0 6 9.89 5 17 34.54 12 27 62.14 18 28 87.22 25 34 111.27
25 - - 2.52 1 7 10.33 7 19 35.63 14 29 63.59 21 29 88.78 27 36 113.06
40 - - 4.00 2 8 10.87 8 19 36.43 15 30 64.63 22 31 89.94 29 38 114.32
L = 0.33

λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
p s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗

5 - - 0.56 - - 5.00 - - 25.00 - - 50.00 - - 75.00 - - 100.00
15 - - 1.54 0 6 10.02 6 18 34.98 13 28 63.05 20 29 88.55 27 36 113.05
25 - - 2.52 1 7 10.47 7 19 36.14 14 30 64.57 22 31 90.21 29 38 114.90
40 - - 4.00 2 8 10.96 8 20 36.96 16 31 65.64 23 32 91.39 31 40 116.24
L = 0.50

λ = 0.1 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20
p s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗ s Imax C∗

5 - - 0.56 - - 5.00 - - 25.00 - - 50.00 - - 75.00 - - 100.00
15 - - 1.54 1 7 10.19 7 19 36.01 14 30 64.99 22 32 91.45 30 40 116.87
25 - - 2.52 1 7 10.79 8 20 37.23 16 32 66.60 25 34 93.22 33 42 118.83
40 - - 4.00 2 8 11.19 9 21 38.10 18 33 67.75 26 35 94.48 35 44 120.29

Note: h = 1, q = 6, K = 10, K1 = 20, K2 = 1 and s = Imax = − refers to a do-not-order-policy with an average cost equal to p · λ.

with h = h′ + c′(1− α)/α and p = p′ − c such that

f (c′;h′;p′)
n (xn, qn) = f (0;h;p)

n (xn, qn) + ζ,

where f
(c;h;p)
n (xn, qn) denotes the minimum expected sum of all discounted future costs (with

discount factor α and cost parameters c, h and p) and ζ is a term independent of the policy,

if we start period n with xn units of inventory on hand and we order qn units.

For the proof, we refer the reader to Janakiraman and Muckstadt (2001). In view of this

result, we derive the following result for the infinite horizon, average cost model with batch

ordering and no setup cost.

Proposition B.2. Consider the inventory system introduced in Section 4 and assume there

is no setup cost. For any given batch size q, and all sets of cost parameters (K1, K2, h, p)

such that p− h ≥ K1/q +K2, the parameter transformation

(K1, K2, h, p, q) 7→ (0, 0, h, p−K1/q −K2, q)

leads to the following cost transformation:

C∗(K1,K2,h,p,q) = C∗(0,0,h,p−K1/q−K2,q) + (K1/q +K2) · λ,
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where C∗(K1,K2,h,p,q) denotes the minimum long-run average cost corresponding to parameters

(K1, K2, h, p, q) and λ denotes the average demand per review period.

Proof. For every fixed value of the batch size q, we can rewrite the replenishment cost as

follows

cr(nq) = δ(nq)K +K1n+K2nq = δ(nq)K + (K1/q +K2)nq = δ(nq)K + c(q)nq,

where c(q) = K1/q + K2 is the per unit purchasing cost (given q). Then, since K = 0, we

apply Lemma B.1 and a limiting argument and deduce:

C∗(K1,K2,h,p,q) = C∗(0,0,h,p−c(q),q) + ζ. (6)

Next, assume that the problem parameters are such that the optimal policy corresponding

to (0, 0, h, p − c(q); q) is to never order, in which case the minimum average cost equals

C∗(0,0,h,p−c(q),q) = (p − c(q)) · λ = (p − K1/q − K2) · λ. It follows that the optimal policy

for the problem with parameters (K1, K2, h, p, q) is also the policy of never ordering and the

corresponding minimum average cost equals C∗(K1,K2,h,p,q) = p ·λ. Replacing the average costs

in (6) it follows that:

p · λ = (p− c(q)) · λ+ ζ,

and thus

ζ = c(q) · λ = (K1/q +K2) · λ

C Proofs for the different propositions

Proposition C.1. There exists a state iu such that for i ≥ iu the optimal decision is not to

order.

Proof. Consider the one-period transition cost ci(ai) defined in Equation (3), and let ci(ai)
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be a lower bound for ci(ai) when ai units are ordered. A possible ci(ai) can be obtained

when we eliminate certain terms in Equation (3).

To simplify notation, let

θ(i) = ((i−DL)+ + ai −DR−L)+

θ1(i) = (DL − i)+ + (DR−L − ai − (i−DL)+)+.

Then, using the identify (x− y)+ = x− y + (x− y)+, we obtain

θ(i) = (i−DL + (DL − i)+ + ai −DR−L)+ = (i+ ai −DR + (DL − i)+)+,

θ1(i) = (DL − i)+ +DR−L − ai − (i−DL)+ + ((i−DL)+ −DR−L + ai)
+

= DL − i+DR−L − ai + ((i−DL)+ + ai −DR−L)+

= DR − i− ai + ((i−DL)+ + ai −DR−L)+

= DR − i− ai + θ(i).

Next, observe that

θ(i) ≥ (i+ ai −DR)+,

θ1(i) ≥ DR − i− ai + (i+ ai −DR)+ = (DR − i− ai)+.

Therefore, we obtain the following lower bounds for the expected one-period holding and

penalty costs:

chi (ai) = hE
[
((i−DL)+ + ai −DR−L)+

]
≥ hE

[
(i+ ai −DR)+

]
,

cpi (ai) = p
{
E
[
(DL − i)+

]
+ E

[
(DR−L − ai − (i−DL)+)+

]}
≥ pE

[
(DR − i− ai)+

]
.
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Now, we define ci(ai) as

ci(ai) = δ(ai)K + hE
[
(i+ ai −DR)+

]
+ pE

[
(DR − i− ai)+

]
to obtain a lower bound for the one-period transition cost ci(ai). Note that ci(ai) has a

newsvendor structure, except for the fixed cost K.

Let aNV
R be the optimal order quantity when i is not considered. Hence, the optimal

solution for ci(ai) would be

a∗i =

{
aNV
R − i, if i ≤ aNV

R

0, otherwise.

Note that with this ordering policy ci(a
∗
i ) ≥ ci(0), for i ≥ aNV

R . Hence, iu = aNV
R .

Proposition C.2. There exists a set of parameter values for which we would not operate

the lost sales inventory system under consideration, i.e. we will never order.

Proof. No formal proof is necessary as one can set K arbitrarily large in Equation (3) to

satisfy this proposition.

Next, we identify a condition that guarantees a threshold value for the initial inventory

level below which it is always optimal to order.

Proposition C.3. If

(h+ p)E[DR] ≥ K +K1a
NV
R−L/q +K2a

NV
R−L + hE

[
(aNV

R−L −DR−L)+
]

+ pE
[
(DR−L − aNV

R−L)+
]

+ pE [DL] + hE [DR] .

is satisfied, then there exists a state i for which it is optimal to order. Here aNV
R−L is the

optimal order-up-to-level for a news vendor problem with Poisson demand over R − L time

units.
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Proof. Consider Equation (3) for ai = 0 and observe that

ci(0) = hE
[
(i−DR)+

]
+ pE

[
(DR − i)+

]
= (h+ p)E

[
(DR − i)+

]
+ hi− hE [DR] ,

using the identity (x− y)+ = x− y + (y − x)+. Using Equation (3) for ai > 0 and defining

c′i(ai) to be an upper bound for ci(ai), we obtain the following:

c′i(ai) = K +K1ai/q +K2ai + hE
[
(i+ ai −DR−L)+

]
+ pE

[
(DR−L − ai − i)+

]
+ pE [DL] .

Assuming that we always carry the initial i units and satisfy the demand from the incoming

order only, we obtain another upper bound for ci(ai), denoted as ci(ai):

ci(ai) = K +K1ai/q +K2ai + hi+ hE
[
(ai −DR−L)+

]
+ pE

[
(DR−L − ai)+

]
+ pE [DL] .

Hence, any non-optimal solution for the upper bound will still be an upper bound for the

original problem. Similarly to Proposition C.1, define aNV
R−L. Hence,

ci(a
NV
R−L) ≥ ci(a

∗
i ).

As a result,

ci(a
NV
R−L) ≤ K +K1a

NV
R−L/q +K2a

NV
R−L + hi+ hE

[
(aNV

R−L −DR−L)+
]

+ pE
[
(DR−L − aNV

R−L)+
]

+ pE [DL] .
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Now, writing ci(0) and ci(a
NV
R−L) together, we want ci(0) ≥ ci(a

NV
R−L) or

(h+ p)E
[
(DR − i)+

]
+ hi− hE [DR] ≥ K +K1a

NV
R−L/q +K2a

NV
R−L

+ hi+ hE
[
(aNV

R−L −DR−L)+
]

+ pE
[
(DR−L − aNV

R−L)+
]

+ pE [DL] .

Eliminating hi terms,

(h+ p)E
[
(DR − i)+

]
≥ K +K1a

NV
R−L/q +K2a

NV
R−L + hE

[
(aNV

R−L −DR−L)+
]

+ pE
[
(DR−L − aNV

R−L)+
]

+ pE [DL] + hE [DR] .

Note that the righthand side is constant in i and the lefthand side is decreasing with i. The

existence condition given in the statement of the proposition is the case when i = 0. Hence,

if the condition is satisfied, the largest i satisfying this condition is iL, a lower bound for

inventory level i where it is optimal to order.

D Comparing with (s, S, nq) and (s,Q, nq) policies

We now report on the computational results on the performance of the best (s, S, nq) and

the best (s,Q, nq) policies, compared to the optimal policy. This is an important analysis,

since many retailers employ these policies. The key question to be answered is then whether

by extending the cost function to include handling, these standard policies get closer in

performance compared to the optimal policy. For any policy, we use a dynamic programming

formulation (similar to (4) in Section 4) in order to determine the long-run average cost of

the policy. In this case, for any state i ∈ SS, instead of minimizing over all possible

order quantities, the order quantity is determined by the logic of the specific policy (either

the (s, S, nq) or the (s,Q, nq) policy). We then solve the resulting system of equations to

determine the long-run average cost C(s,Q, S). To obtain the best policy, we exhaustively
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search over a sufficiently large feasible region to ensure finding a global optimum. Note that

all policies have a cost function including handling (which is not done in retail practice).

Table 7: Performance of the optimal policy compared to the best (s, S, nq) and the best
(s,Q, nq) policies

(s, S, nq) (s,Q, nq)
λ Avg Min Max Avg Min Max

0.1 0.00% 0.00% 0.00% 37.63% 24.94% 50.32%
1 0.00% 0.00% 0.00% 1.33% 0.00% 10.88%
5 0.02% 0.00% 0.28% 0.29% 0.00% 4.75%

10 0.09% 0.00% 1.43% 0.91% 0.00% 8.91%
15 0.13% 0.00% 1.44% 2.81% 0.00% 15.37%
20 0.30% 0.00% 1.70% 6.31% 0.00% 20.52%
q Avg Min Max Avg Min Max
1 0.30% 0.00% 1.39% 4.84% 0.01% 50.32%
6 0.18% 0.00% 1.44% 4.14% 0.00% 24.94%

12 0.15% 0.00% 1.70% 2.73% 0.00% 13.27%
18 0.01% 0.00% 0.39% 2.06% 0.00% 20.52%
36 0.00% 0.00% 0.00% 0.23% 0.00% 2.27%
K Avg Min Max Avg Min Max
5 0.12% 0.00% 1.44% 6.04% 0.00% 50.32%

10 0.09% 0.00% 1.17% 2.23% 0.00% 14.12%
15 0.12% 0.00% 0.83% 1.15% 0.00% 7.66%
20 0.17% 0.00% 1.70% 0.88% 0.00% 4.08%
25 0.06% 0.00% 0.80% 0.80% 0.00% 3.99%
p Avg Min Max Avg Min Max

10 0.17% 0.00% 1.70% 1.85% 0.00% 18.83%
25 0.11% 0.00% 1.70% 2.03% 0.00% 20.52%
50 0.03% 0.00% 0.54% 5.48% 0.00% 50.32%
L Avg Min Max Avg Min Max

0.25 0.10% 0.00% 1.70% 2.08% 0.00% 20.52%
0.33 0.11% 0.00% 1.70% 3.11% 0.00% 50.32%
0.5 0.13% 0.00% 1.04% 1.68% 0.00% 9.45%

Overall 0.11% 0.00% 1.70% 2.59% 0.00% 50.32%

Note: h = 1, K1 = 20, K2 = 1. Percentage errors computed based on the normalized costs, i.e. total average costs −(K1/q +K2) · λ

Table 7 summarizes the results of our experiments. Results for the best (s, S, nq) and

(s,Q, nq) policy are stated as percentage increase in average costs from the cost of the

optimal policy. In computing the percentage errors, all average costs are first normalized

by subtracting from the total costs the constant (K1/q + K2) · λ. The main observation

from Table 7 is that, on average, the best (s, S, nq) policy is performing relatively close to

optimal, while the (s,Q, nq) heuristic is remarkably worse. The best (s, S, nq) policy, with

an average error of 0.09%, deteriorates slightly. An important reason for the small optimality

gap between these heuristics is the flatness of the cost curves C(s,Q, S) around the optimal

Q value.
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